xref: /linux/kernel/bpf/verifier.c (revision 7fa00fd6ff5366b50dcba2525b9743e1612da2aa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 #include <linux/trace_events.h>
32 #include <linux/kallsyms.h>
33 
34 #include "disasm.h"
35 
36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
38 	[_id] = & _name ## _verifier_ops,
39 #define BPF_MAP_TYPE(_id, _ops)
40 #define BPF_LINK_TYPE(_id, _name)
41 #include <linux/bpf_types.h>
42 #undef BPF_PROG_TYPE
43 #undef BPF_MAP_TYPE
44 #undef BPF_LINK_TYPE
45 };
46 
47 struct bpf_mem_alloc bpf_global_percpu_ma;
48 static bool bpf_global_percpu_ma_set;
49 
50 /* bpf_check() is a static code analyzer that walks eBPF program
51  * instruction by instruction and updates register/stack state.
52  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
53  *
54  * The first pass is depth-first-search to check that the program is a DAG.
55  * It rejects the following programs:
56  * - larger than BPF_MAXINSNS insns
57  * - if loop is present (detected via back-edge)
58  * - unreachable insns exist (shouldn't be a forest. program = one function)
59  * - out of bounds or malformed jumps
60  * The second pass is all possible path descent from the 1st insn.
61  * Since it's analyzing all paths through the program, the length of the
62  * analysis is limited to 64k insn, which may be hit even if total number of
63  * insn is less then 4K, but there are too many branches that change stack/regs.
64  * Number of 'branches to be analyzed' is limited to 1k
65  *
66  * On entry to each instruction, each register has a type, and the instruction
67  * changes the types of the registers depending on instruction semantics.
68  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
69  * copied to R1.
70  *
71  * All registers are 64-bit.
72  * R0 - return register
73  * R1-R5 argument passing registers
74  * R6-R9 callee saved registers
75  * R10 - frame pointer read-only
76  *
77  * At the start of BPF program the register R1 contains a pointer to bpf_context
78  * and has type PTR_TO_CTX.
79  *
80  * Verifier tracks arithmetic operations on pointers in case:
81  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
82  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
83  * 1st insn copies R10 (which has FRAME_PTR) type into R1
84  * and 2nd arithmetic instruction is pattern matched to recognize
85  * that it wants to construct a pointer to some element within stack.
86  * So after 2nd insn, the register R1 has type PTR_TO_STACK
87  * (and -20 constant is saved for further stack bounds checking).
88  * Meaning that this reg is a pointer to stack plus known immediate constant.
89  *
90  * Most of the time the registers have SCALAR_VALUE type, which
91  * means the register has some value, but it's not a valid pointer.
92  * (like pointer plus pointer becomes SCALAR_VALUE type)
93  *
94  * When verifier sees load or store instructions the type of base register
95  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
96  * four pointer types recognized by check_mem_access() function.
97  *
98  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
99  * and the range of [ptr, ptr + map's value_size) is accessible.
100  *
101  * registers used to pass values to function calls are checked against
102  * function argument constraints.
103  *
104  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
105  * It means that the register type passed to this function must be
106  * PTR_TO_STACK and it will be used inside the function as
107  * 'pointer to map element key'
108  *
109  * For example the argument constraints for bpf_map_lookup_elem():
110  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
111  *   .arg1_type = ARG_CONST_MAP_PTR,
112  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
113  *
114  * ret_type says that this function returns 'pointer to map elem value or null'
115  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
116  * 2nd argument should be a pointer to stack, which will be used inside
117  * the helper function as a pointer to map element key.
118  *
119  * On the kernel side the helper function looks like:
120  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
121  * {
122  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
123  *    void *key = (void *) (unsigned long) r2;
124  *    void *value;
125  *
126  *    here kernel can access 'key' and 'map' pointers safely, knowing that
127  *    [key, key + map->key_size) bytes are valid and were initialized on
128  *    the stack of eBPF program.
129  * }
130  *
131  * Corresponding eBPF program may look like:
132  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
133  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
134  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
135  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
136  * here verifier looks at prototype of map_lookup_elem() and sees:
137  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
138  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
139  *
140  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
141  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
142  * and were initialized prior to this call.
143  * If it's ok, then verifier allows this BPF_CALL insn and looks at
144  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
145  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
146  * returns either pointer to map value or NULL.
147  *
148  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
149  * insn, the register holding that pointer in the true branch changes state to
150  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
151  * branch. See check_cond_jmp_op().
152  *
153  * After the call R0 is set to return type of the function and registers R1-R5
154  * are set to NOT_INIT to indicate that they are no longer readable.
155  *
156  * The following reference types represent a potential reference to a kernel
157  * resource which, after first being allocated, must be checked and freed by
158  * the BPF program:
159  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
160  *
161  * When the verifier sees a helper call return a reference type, it allocates a
162  * pointer id for the reference and stores it in the current function state.
163  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
164  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
165  * passes through a NULL-check conditional. For the branch wherein the state is
166  * changed to CONST_IMM, the verifier releases the reference.
167  *
168  * For each helper function that allocates a reference, such as
169  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
170  * bpf_sk_release(). When a reference type passes into the release function,
171  * the verifier also releases the reference. If any unchecked or unreleased
172  * reference remains at the end of the program, the verifier rejects it.
173  */
174 
175 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
176 struct bpf_verifier_stack_elem {
177 	/* verifier state is 'st'
178 	 * before processing instruction 'insn_idx'
179 	 * and after processing instruction 'prev_insn_idx'
180 	 */
181 	struct bpf_verifier_state st;
182 	int insn_idx;
183 	int prev_insn_idx;
184 	struct bpf_verifier_stack_elem *next;
185 	/* length of verifier log at the time this state was pushed on stack */
186 	u32 log_pos;
187 };
188 
189 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
190 #define BPF_COMPLEXITY_LIMIT_STATES	64
191 
192 #define BPF_MAP_KEY_POISON	(1ULL << 63)
193 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
194 
195 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE  512
196 
197 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
198 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
199 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
200 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
201 static int ref_set_non_owning(struct bpf_verifier_env *env,
202 			      struct bpf_reg_state *reg);
203 static void specialize_kfunc(struct bpf_verifier_env *env,
204 			     u32 func_id, u16 offset, unsigned long *addr);
205 static bool is_trusted_reg(const struct bpf_reg_state *reg);
206 
207 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
208 {
209 	return aux->map_ptr_state.poison;
210 }
211 
212 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
213 {
214 	return aux->map_ptr_state.unpriv;
215 }
216 
217 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
218 			      struct bpf_map *map,
219 			      bool unpriv, bool poison)
220 {
221 	unpriv |= bpf_map_ptr_unpriv(aux);
222 	aux->map_ptr_state.unpriv = unpriv;
223 	aux->map_ptr_state.poison = poison;
224 	aux->map_ptr_state.map_ptr = map;
225 }
226 
227 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
228 {
229 	return aux->map_key_state & BPF_MAP_KEY_POISON;
230 }
231 
232 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
233 {
234 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
235 }
236 
237 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
238 {
239 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
240 }
241 
242 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
243 {
244 	bool poisoned = bpf_map_key_poisoned(aux);
245 
246 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
247 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
248 }
249 
250 static bool bpf_helper_call(const struct bpf_insn *insn)
251 {
252 	return insn->code == (BPF_JMP | BPF_CALL) &&
253 	       insn->src_reg == 0;
254 }
255 
256 static bool bpf_pseudo_call(const struct bpf_insn *insn)
257 {
258 	return insn->code == (BPF_JMP | BPF_CALL) &&
259 	       insn->src_reg == BPF_PSEUDO_CALL;
260 }
261 
262 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
263 {
264 	return insn->code == (BPF_JMP | BPF_CALL) &&
265 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
266 }
267 
268 struct bpf_call_arg_meta {
269 	struct bpf_map *map_ptr;
270 	bool raw_mode;
271 	bool pkt_access;
272 	u8 release_regno;
273 	int regno;
274 	int access_size;
275 	int mem_size;
276 	u64 msize_max_value;
277 	int ref_obj_id;
278 	int dynptr_id;
279 	int map_uid;
280 	int func_id;
281 	struct btf *btf;
282 	u32 btf_id;
283 	struct btf *ret_btf;
284 	u32 ret_btf_id;
285 	u32 subprogno;
286 	struct btf_field *kptr_field;
287 };
288 
289 struct bpf_kfunc_call_arg_meta {
290 	/* In parameters */
291 	struct btf *btf;
292 	u32 func_id;
293 	u32 kfunc_flags;
294 	const struct btf_type *func_proto;
295 	const char *func_name;
296 	/* Out parameters */
297 	u32 ref_obj_id;
298 	u8 release_regno;
299 	bool r0_rdonly;
300 	u32 ret_btf_id;
301 	u64 r0_size;
302 	u32 subprogno;
303 	struct {
304 		u64 value;
305 		bool found;
306 	} arg_constant;
307 
308 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
309 	 * generally to pass info about user-defined local kptr types to later
310 	 * verification logic
311 	 *   bpf_obj_drop/bpf_percpu_obj_drop
312 	 *     Record the local kptr type to be drop'd
313 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
314 	 *     Record the local kptr type to be refcount_incr'd and use
315 	 *     arg_owning_ref to determine whether refcount_acquire should be
316 	 *     fallible
317 	 */
318 	struct btf *arg_btf;
319 	u32 arg_btf_id;
320 	bool arg_owning_ref;
321 
322 	struct {
323 		struct btf_field *field;
324 	} arg_list_head;
325 	struct {
326 		struct btf_field *field;
327 	} arg_rbtree_root;
328 	struct {
329 		enum bpf_dynptr_type type;
330 		u32 id;
331 		u32 ref_obj_id;
332 	} initialized_dynptr;
333 	struct {
334 		u8 spi;
335 		u8 frameno;
336 	} iter;
337 	struct {
338 		struct bpf_map *ptr;
339 		int uid;
340 	} map;
341 	u64 mem_size;
342 };
343 
344 struct btf *btf_vmlinux;
345 
346 static const char *btf_type_name(const struct btf *btf, u32 id)
347 {
348 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
349 }
350 
351 static DEFINE_MUTEX(bpf_verifier_lock);
352 static DEFINE_MUTEX(bpf_percpu_ma_lock);
353 
354 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
355 {
356 	struct bpf_verifier_env *env = private_data;
357 	va_list args;
358 
359 	if (!bpf_verifier_log_needed(&env->log))
360 		return;
361 
362 	va_start(args, fmt);
363 	bpf_verifier_vlog(&env->log, fmt, args);
364 	va_end(args);
365 }
366 
367 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
368 				   struct bpf_reg_state *reg,
369 				   struct bpf_retval_range range, const char *ctx,
370 				   const char *reg_name)
371 {
372 	bool unknown = true;
373 
374 	verbose(env, "%s the register %s has", ctx, reg_name);
375 	if (reg->smin_value > S64_MIN) {
376 		verbose(env, " smin=%lld", reg->smin_value);
377 		unknown = false;
378 	}
379 	if (reg->smax_value < S64_MAX) {
380 		verbose(env, " smax=%lld", reg->smax_value);
381 		unknown = false;
382 	}
383 	if (unknown)
384 		verbose(env, " unknown scalar value");
385 	verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
386 }
387 
388 static bool reg_not_null(const struct bpf_reg_state *reg)
389 {
390 	enum bpf_reg_type type;
391 
392 	type = reg->type;
393 	if (type_may_be_null(type))
394 		return false;
395 
396 	type = base_type(type);
397 	return type == PTR_TO_SOCKET ||
398 		type == PTR_TO_TCP_SOCK ||
399 		type == PTR_TO_MAP_VALUE ||
400 		type == PTR_TO_MAP_KEY ||
401 		type == PTR_TO_SOCK_COMMON ||
402 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
403 		type == PTR_TO_MEM;
404 }
405 
406 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
407 {
408 	struct btf_record *rec = NULL;
409 	struct btf_struct_meta *meta;
410 
411 	if (reg->type == PTR_TO_MAP_VALUE) {
412 		rec = reg->map_ptr->record;
413 	} else if (type_is_ptr_alloc_obj(reg->type)) {
414 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
415 		if (meta)
416 			rec = meta->record;
417 	}
418 	return rec;
419 }
420 
421 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
422 {
423 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
424 
425 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
426 }
427 
428 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
429 {
430 	struct bpf_func_info *info;
431 
432 	if (!env->prog->aux->func_info)
433 		return "";
434 
435 	info = &env->prog->aux->func_info[subprog];
436 	return btf_type_name(env->prog->aux->btf, info->type_id);
437 }
438 
439 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog)
440 {
441 	struct bpf_subprog_info *info = subprog_info(env, subprog);
442 
443 	info->is_cb = true;
444 	info->is_async_cb = true;
445 	info->is_exception_cb = true;
446 }
447 
448 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
449 {
450 	return subprog_info(env, subprog)->is_exception_cb;
451 }
452 
453 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
454 {
455 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
456 }
457 
458 static bool type_is_rdonly_mem(u32 type)
459 {
460 	return type & MEM_RDONLY;
461 }
462 
463 static bool is_acquire_function(enum bpf_func_id func_id,
464 				const struct bpf_map *map)
465 {
466 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
467 
468 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
469 	    func_id == BPF_FUNC_sk_lookup_udp ||
470 	    func_id == BPF_FUNC_skc_lookup_tcp ||
471 	    func_id == BPF_FUNC_ringbuf_reserve ||
472 	    func_id == BPF_FUNC_kptr_xchg)
473 		return true;
474 
475 	if (func_id == BPF_FUNC_map_lookup_elem &&
476 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
477 	     map_type == BPF_MAP_TYPE_SOCKHASH))
478 		return true;
479 
480 	return false;
481 }
482 
483 static bool is_ptr_cast_function(enum bpf_func_id func_id)
484 {
485 	return func_id == BPF_FUNC_tcp_sock ||
486 		func_id == BPF_FUNC_sk_fullsock ||
487 		func_id == BPF_FUNC_skc_to_tcp_sock ||
488 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
489 		func_id == BPF_FUNC_skc_to_udp6_sock ||
490 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
491 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
492 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
493 }
494 
495 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
496 {
497 	return func_id == BPF_FUNC_dynptr_data;
498 }
499 
500 static bool is_sync_callback_calling_kfunc(u32 btf_id);
501 static bool is_async_callback_calling_kfunc(u32 btf_id);
502 static bool is_callback_calling_kfunc(u32 btf_id);
503 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
504 
505 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id);
506 
507 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
508 {
509 	return func_id == BPF_FUNC_for_each_map_elem ||
510 	       func_id == BPF_FUNC_find_vma ||
511 	       func_id == BPF_FUNC_loop ||
512 	       func_id == BPF_FUNC_user_ringbuf_drain;
513 }
514 
515 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
516 {
517 	return func_id == BPF_FUNC_timer_set_callback;
518 }
519 
520 static bool is_callback_calling_function(enum bpf_func_id func_id)
521 {
522 	return is_sync_callback_calling_function(func_id) ||
523 	       is_async_callback_calling_function(func_id);
524 }
525 
526 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
527 {
528 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
529 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
530 }
531 
532 static bool is_async_callback_calling_insn(struct bpf_insn *insn)
533 {
534 	return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) ||
535 	       (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm));
536 }
537 
538 static bool is_may_goto_insn(struct bpf_insn *insn)
539 {
540 	return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO;
541 }
542 
543 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx)
544 {
545 	return is_may_goto_insn(&env->prog->insnsi[insn_idx]);
546 }
547 
548 static bool is_storage_get_function(enum bpf_func_id func_id)
549 {
550 	return func_id == BPF_FUNC_sk_storage_get ||
551 	       func_id == BPF_FUNC_inode_storage_get ||
552 	       func_id == BPF_FUNC_task_storage_get ||
553 	       func_id == BPF_FUNC_cgrp_storage_get;
554 }
555 
556 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
557 					const struct bpf_map *map)
558 {
559 	int ref_obj_uses = 0;
560 
561 	if (is_ptr_cast_function(func_id))
562 		ref_obj_uses++;
563 	if (is_acquire_function(func_id, map))
564 		ref_obj_uses++;
565 	if (is_dynptr_ref_function(func_id))
566 		ref_obj_uses++;
567 
568 	return ref_obj_uses > 1;
569 }
570 
571 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
572 {
573 	return BPF_CLASS(insn->code) == BPF_STX &&
574 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
575 	       insn->imm == BPF_CMPXCHG;
576 }
577 
578 static int __get_spi(s32 off)
579 {
580 	return (-off - 1) / BPF_REG_SIZE;
581 }
582 
583 static struct bpf_func_state *func(struct bpf_verifier_env *env,
584 				   const struct bpf_reg_state *reg)
585 {
586 	struct bpf_verifier_state *cur = env->cur_state;
587 
588 	return cur->frame[reg->frameno];
589 }
590 
591 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
592 {
593        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
594 
595        /* We need to check that slots between [spi - nr_slots + 1, spi] are
596 	* within [0, allocated_stack).
597 	*
598 	* Please note that the spi grows downwards. For example, a dynptr
599 	* takes the size of two stack slots; the first slot will be at
600 	* spi and the second slot will be at spi - 1.
601 	*/
602        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
603 }
604 
605 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
606 			          const char *obj_kind, int nr_slots)
607 {
608 	int off, spi;
609 
610 	if (!tnum_is_const(reg->var_off)) {
611 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
612 		return -EINVAL;
613 	}
614 
615 	off = reg->off + reg->var_off.value;
616 	if (off % BPF_REG_SIZE) {
617 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
618 		return -EINVAL;
619 	}
620 
621 	spi = __get_spi(off);
622 	if (spi + 1 < nr_slots) {
623 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
624 		return -EINVAL;
625 	}
626 
627 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
628 		return -ERANGE;
629 	return spi;
630 }
631 
632 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
633 {
634 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
635 }
636 
637 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
638 {
639 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
640 }
641 
642 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
643 {
644 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
645 	case DYNPTR_TYPE_LOCAL:
646 		return BPF_DYNPTR_TYPE_LOCAL;
647 	case DYNPTR_TYPE_RINGBUF:
648 		return BPF_DYNPTR_TYPE_RINGBUF;
649 	case DYNPTR_TYPE_SKB:
650 		return BPF_DYNPTR_TYPE_SKB;
651 	case DYNPTR_TYPE_XDP:
652 		return BPF_DYNPTR_TYPE_XDP;
653 	default:
654 		return BPF_DYNPTR_TYPE_INVALID;
655 	}
656 }
657 
658 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
659 {
660 	switch (type) {
661 	case BPF_DYNPTR_TYPE_LOCAL:
662 		return DYNPTR_TYPE_LOCAL;
663 	case BPF_DYNPTR_TYPE_RINGBUF:
664 		return DYNPTR_TYPE_RINGBUF;
665 	case BPF_DYNPTR_TYPE_SKB:
666 		return DYNPTR_TYPE_SKB;
667 	case BPF_DYNPTR_TYPE_XDP:
668 		return DYNPTR_TYPE_XDP;
669 	default:
670 		return 0;
671 	}
672 }
673 
674 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
675 {
676 	return type == BPF_DYNPTR_TYPE_RINGBUF;
677 }
678 
679 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
680 			      enum bpf_dynptr_type type,
681 			      bool first_slot, int dynptr_id);
682 
683 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
684 				struct bpf_reg_state *reg);
685 
686 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
687 				   struct bpf_reg_state *sreg1,
688 				   struct bpf_reg_state *sreg2,
689 				   enum bpf_dynptr_type type)
690 {
691 	int id = ++env->id_gen;
692 
693 	__mark_dynptr_reg(sreg1, type, true, id);
694 	__mark_dynptr_reg(sreg2, type, false, id);
695 }
696 
697 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
698 			       struct bpf_reg_state *reg,
699 			       enum bpf_dynptr_type type)
700 {
701 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
702 }
703 
704 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
705 				        struct bpf_func_state *state, int spi);
706 
707 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
708 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
709 {
710 	struct bpf_func_state *state = func(env, reg);
711 	enum bpf_dynptr_type type;
712 	int spi, i, err;
713 
714 	spi = dynptr_get_spi(env, reg);
715 	if (spi < 0)
716 		return spi;
717 
718 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
719 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
720 	 * to ensure that for the following example:
721 	 *	[d1][d1][d2][d2]
722 	 * spi    3   2   1   0
723 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
724 	 * case they do belong to same dynptr, second call won't see slot_type
725 	 * as STACK_DYNPTR and will simply skip destruction.
726 	 */
727 	err = destroy_if_dynptr_stack_slot(env, state, spi);
728 	if (err)
729 		return err;
730 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
731 	if (err)
732 		return err;
733 
734 	for (i = 0; i < BPF_REG_SIZE; i++) {
735 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
736 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
737 	}
738 
739 	type = arg_to_dynptr_type(arg_type);
740 	if (type == BPF_DYNPTR_TYPE_INVALID)
741 		return -EINVAL;
742 
743 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
744 			       &state->stack[spi - 1].spilled_ptr, type);
745 
746 	if (dynptr_type_refcounted(type)) {
747 		/* The id is used to track proper releasing */
748 		int id;
749 
750 		if (clone_ref_obj_id)
751 			id = clone_ref_obj_id;
752 		else
753 			id = acquire_reference_state(env, insn_idx);
754 
755 		if (id < 0)
756 			return id;
757 
758 		state->stack[spi].spilled_ptr.ref_obj_id = id;
759 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
760 	}
761 
762 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
763 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
764 
765 	return 0;
766 }
767 
768 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
769 {
770 	int i;
771 
772 	for (i = 0; i < BPF_REG_SIZE; i++) {
773 		state->stack[spi].slot_type[i] = STACK_INVALID;
774 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
775 	}
776 
777 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
778 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
779 
780 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
781 	 *
782 	 * While we don't allow reading STACK_INVALID, it is still possible to
783 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
784 	 * helpers or insns can do partial read of that part without failing,
785 	 * but check_stack_range_initialized, check_stack_read_var_off, and
786 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
787 	 * the slot conservatively. Hence we need to prevent those liveness
788 	 * marking walks.
789 	 *
790 	 * This was not a problem before because STACK_INVALID is only set by
791 	 * default (where the default reg state has its reg->parent as NULL), or
792 	 * in clean_live_states after REG_LIVE_DONE (at which point
793 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
794 	 * verifier state exploration (like we did above). Hence, for our case
795 	 * parentage chain will still be live (i.e. reg->parent may be
796 	 * non-NULL), while earlier reg->parent was NULL, so we need
797 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
798 	 * done later on reads or by mark_dynptr_read as well to unnecessary
799 	 * mark registers in verifier state.
800 	 */
801 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
802 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
803 }
804 
805 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
806 {
807 	struct bpf_func_state *state = func(env, reg);
808 	int spi, ref_obj_id, i;
809 
810 	spi = dynptr_get_spi(env, reg);
811 	if (spi < 0)
812 		return spi;
813 
814 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
815 		invalidate_dynptr(env, state, spi);
816 		return 0;
817 	}
818 
819 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
820 
821 	/* If the dynptr has a ref_obj_id, then we need to invalidate
822 	 * two things:
823 	 *
824 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
825 	 * 2) Any slices derived from this dynptr.
826 	 */
827 
828 	/* Invalidate any slices associated with this dynptr */
829 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
830 
831 	/* Invalidate any dynptr clones */
832 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
833 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
834 			continue;
835 
836 		/* it should always be the case that if the ref obj id
837 		 * matches then the stack slot also belongs to a
838 		 * dynptr
839 		 */
840 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
841 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
842 			return -EFAULT;
843 		}
844 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
845 			invalidate_dynptr(env, state, i);
846 	}
847 
848 	return 0;
849 }
850 
851 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
852 			       struct bpf_reg_state *reg);
853 
854 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
855 {
856 	if (!env->allow_ptr_leaks)
857 		__mark_reg_not_init(env, reg);
858 	else
859 		__mark_reg_unknown(env, reg);
860 }
861 
862 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
863 				        struct bpf_func_state *state, int spi)
864 {
865 	struct bpf_func_state *fstate;
866 	struct bpf_reg_state *dreg;
867 	int i, dynptr_id;
868 
869 	/* We always ensure that STACK_DYNPTR is never set partially,
870 	 * hence just checking for slot_type[0] is enough. This is
871 	 * different for STACK_SPILL, where it may be only set for
872 	 * 1 byte, so code has to use is_spilled_reg.
873 	 */
874 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
875 		return 0;
876 
877 	/* Reposition spi to first slot */
878 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
879 		spi = spi + 1;
880 
881 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
882 		verbose(env, "cannot overwrite referenced dynptr\n");
883 		return -EINVAL;
884 	}
885 
886 	mark_stack_slot_scratched(env, spi);
887 	mark_stack_slot_scratched(env, spi - 1);
888 
889 	/* Writing partially to one dynptr stack slot destroys both. */
890 	for (i = 0; i < BPF_REG_SIZE; i++) {
891 		state->stack[spi].slot_type[i] = STACK_INVALID;
892 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
893 	}
894 
895 	dynptr_id = state->stack[spi].spilled_ptr.id;
896 	/* Invalidate any slices associated with this dynptr */
897 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
898 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
899 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
900 			continue;
901 		if (dreg->dynptr_id == dynptr_id)
902 			mark_reg_invalid(env, dreg);
903 	}));
904 
905 	/* Do not release reference state, we are destroying dynptr on stack,
906 	 * not using some helper to release it. Just reset register.
907 	 */
908 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
909 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
910 
911 	/* Same reason as unmark_stack_slots_dynptr above */
912 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
913 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
914 
915 	return 0;
916 }
917 
918 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
919 {
920 	int spi;
921 
922 	if (reg->type == CONST_PTR_TO_DYNPTR)
923 		return false;
924 
925 	spi = dynptr_get_spi(env, reg);
926 
927 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
928 	 * error because this just means the stack state hasn't been updated yet.
929 	 * We will do check_mem_access to check and update stack bounds later.
930 	 */
931 	if (spi < 0 && spi != -ERANGE)
932 		return false;
933 
934 	/* We don't need to check if the stack slots are marked by previous
935 	 * dynptr initializations because we allow overwriting existing unreferenced
936 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
937 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
938 	 * touching are completely destructed before we reinitialize them for a new
939 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
940 	 * instead of delaying it until the end where the user will get "Unreleased
941 	 * reference" error.
942 	 */
943 	return true;
944 }
945 
946 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
947 {
948 	struct bpf_func_state *state = func(env, reg);
949 	int i, spi;
950 
951 	/* This already represents first slot of initialized bpf_dynptr.
952 	 *
953 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
954 	 * check_func_arg_reg_off's logic, so we don't need to check its
955 	 * offset and alignment.
956 	 */
957 	if (reg->type == CONST_PTR_TO_DYNPTR)
958 		return true;
959 
960 	spi = dynptr_get_spi(env, reg);
961 	if (spi < 0)
962 		return false;
963 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
964 		return false;
965 
966 	for (i = 0; i < BPF_REG_SIZE; i++) {
967 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
968 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
969 			return false;
970 	}
971 
972 	return true;
973 }
974 
975 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
976 				    enum bpf_arg_type arg_type)
977 {
978 	struct bpf_func_state *state = func(env, reg);
979 	enum bpf_dynptr_type dynptr_type;
980 	int spi;
981 
982 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
983 	if (arg_type == ARG_PTR_TO_DYNPTR)
984 		return true;
985 
986 	dynptr_type = arg_to_dynptr_type(arg_type);
987 	if (reg->type == CONST_PTR_TO_DYNPTR) {
988 		return reg->dynptr.type == dynptr_type;
989 	} else {
990 		spi = dynptr_get_spi(env, reg);
991 		if (spi < 0)
992 			return false;
993 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
994 	}
995 }
996 
997 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
998 
999 static bool in_rcu_cs(struct bpf_verifier_env *env);
1000 
1001 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1002 
1003 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1004 				 struct bpf_kfunc_call_arg_meta *meta,
1005 				 struct bpf_reg_state *reg, int insn_idx,
1006 				 struct btf *btf, u32 btf_id, int nr_slots)
1007 {
1008 	struct bpf_func_state *state = func(env, reg);
1009 	int spi, i, j, id;
1010 
1011 	spi = iter_get_spi(env, reg, nr_slots);
1012 	if (spi < 0)
1013 		return spi;
1014 
1015 	id = acquire_reference_state(env, insn_idx);
1016 	if (id < 0)
1017 		return id;
1018 
1019 	for (i = 0; i < nr_slots; i++) {
1020 		struct bpf_stack_state *slot = &state->stack[spi - i];
1021 		struct bpf_reg_state *st = &slot->spilled_ptr;
1022 
1023 		__mark_reg_known_zero(st);
1024 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1025 		if (is_kfunc_rcu_protected(meta)) {
1026 			if (in_rcu_cs(env))
1027 				st->type |= MEM_RCU;
1028 			else
1029 				st->type |= PTR_UNTRUSTED;
1030 		}
1031 		st->live |= REG_LIVE_WRITTEN;
1032 		st->ref_obj_id = i == 0 ? id : 0;
1033 		st->iter.btf = btf;
1034 		st->iter.btf_id = btf_id;
1035 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1036 		st->iter.depth = 0;
1037 
1038 		for (j = 0; j < BPF_REG_SIZE; j++)
1039 			slot->slot_type[j] = STACK_ITER;
1040 
1041 		mark_stack_slot_scratched(env, spi - i);
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1048 				   struct bpf_reg_state *reg, int nr_slots)
1049 {
1050 	struct bpf_func_state *state = func(env, reg);
1051 	int spi, i, j;
1052 
1053 	spi = iter_get_spi(env, reg, nr_slots);
1054 	if (spi < 0)
1055 		return spi;
1056 
1057 	for (i = 0; i < nr_slots; i++) {
1058 		struct bpf_stack_state *slot = &state->stack[spi - i];
1059 		struct bpf_reg_state *st = &slot->spilled_ptr;
1060 
1061 		if (i == 0)
1062 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1063 
1064 		__mark_reg_not_init(env, st);
1065 
1066 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1067 		st->live |= REG_LIVE_WRITTEN;
1068 
1069 		for (j = 0; j < BPF_REG_SIZE; j++)
1070 			slot->slot_type[j] = STACK_INVALID;
1071 
1072 		mark_stack_slot_scratched(env, spi - i);
1073 	}
1074 
1075 	return 0;
1076 }
1077 
1078 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1079 				     struct bpf_reg_state *reg, int nr_slots)
1080 {
1081 	struct bpf_func_state *state = func(env, reg);
1082 	int spi, i, j;
1083 
1084 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1085 	 * will do check_mem_access to check and update stack bounds later, so
1086 	 * return true for that case.
1087 	 */
1088 	spi = iter_get_spi(env, reg, nr_slots);
1089 	if (spi == -ERANGE)
1090 		return true;
1091 	if (spi < 0)
1092 		return false;
1093 
1094 	for (i = 0; i < nr_slots; i++) {
1095 		struct bpf_stack_state *slot = &state->stack[spi - i];
1096 
1097 		for (j = 0; j < BPF_REG_SIZE; j++)
1098 			if (slot->slot_type[j] == STACK_ITER)
1099 				return false;
1100 	}
1101 
1102 	return true;
1103 }
1104 
1105 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1106 				   struct btf *btf, u32 btf_id, int nr_slots)
1107 {
1108 	struct bpf_func_state *state = func(env, reg);
1109 	int spi, i, j;
1110 
1111 	spi = iter_get_spi(env, reg, nr_slots);
1112 	if (spi < 0)
1113 		return -EINVAL;
1114 
1115 	for (i = 0; i < nr_slots; i++) {
1116 		struct bpf_stack_state *slot = &state->stack[spi - i];
1117 		struct bpf_reg_state *st = &slot->spilled_ptr;
1118 
1119 		if (st->type & PTR_UNTRUSTED)
1120 			return -EPROTO;
1121 		/* only main (first) slot has ref_obj_id set */
1122 		if (i == 0 && !st->ref_obj_id)
1123 			return -EINVAL;
1124 		if (i != 0 && st->ref_obj_id)
1125 			return -EINVAL;
1126 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1127 			return -EINVAL;
1128 
1129 		for (j = 0; j < BPF_REG_SIZE; j++)
1130 			if (slot->slot_type[j] != STACK_ITER)
1131 				return -EINVAL;
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 /* Check if given stack slot is "special":
1138  *   - spilled register state (STACK_SPILL);
1139  *   - dynptr state (STACK_DYNPTR);
1140  *   - iter state (STACK_ITER).
1141  */
1142 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1143 {
1144 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1145 
1146 	switch (type) {
1147 	case STACK_SPILL:
1148 	case STACK_DYNPTR:
1149 	case STACK_ITER:
1150 		return true;
1151 	case STACK_INVALID:
1152 	case STACK_MISC:
1153 	case STACK_ZERO:
1154 		return false;
1155 	default:
1156 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1157 		return true;
1158 	}
1159 }
1160 
1161 /* The reg state of a pointer or a bounded scalar was saved when
1162  * it was spilled to the stack.
1163  */
1164 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1165 {
1166 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1167 }
1168 
1169 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1170 {
1171 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1172 	       stack->spilled_ptr.type == SCALAR_VALUE;
1173 }
1174 
1175 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack)
1176 {
1177 	return stack->slot_type[0] == STACK_SPILL &&
1178 	       stack->spilled_ptr.type == SCALAR_VALUE;
1179 }
1180 
1181 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
1182  * case they are equivalent, or it's STACK_ZERO, in which case we preserve
1183  * more precise STACK_ZERO.
1184  * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take
1185  * env->allow_ptr_leaks into account and force STACK_MISC, if necessary.
1186  */
1187 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
1188 {
1189 	if (*stype == STACK_ZERO)
1190 		return;
1191 	if (env->allow_ptr_leaks && *stype == STACK_INVALID)
1192 		return;
1193 	*stype = STACK_MISC;
1194 }
1195 
1196 static void scrub_spilled_slot(u8 *stype)
1197 {
1198 	if (*stype != STACK_INVALID)
1199 		*stype = STACK_MISC;
1200 }
1201 
1202 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1203  * small to hold src. This is different from krealloc since we don't want to preserve
1204  * the contents of dst.
1205  *
1206  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1207  * not be allocated.
1208  */
1209 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1210 {
1211 	size_t alloc_bytes;
1212 	void *orig = dst;
1213 	size_t bytes;
1214 
1215 	if (ZERO_OR_NULL_PTR(src))
1216 		goto out;
1217 
1218 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1219 		return NULL;
1220 
1221 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1222 	dst = krealloc(orig, alloc_bytes, flags);
1223 	if (!dst) {
1224 		kfree(orig);
1225 		return NULL;
1226 	}
1227 
1228 	memcpy(dst, src, bytes);
1229 out:
1230 	return dst ? dst : ZERO_SIZE_PTR;
1231 }
1232 
1233 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1234  * small to hold new_n items. new items are zeroed out if the array grows.
1235  *
1236  * Contrary to krealloc_array, does not free arr if new_n is zero.
1237  */
1238 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1239 {
1240 	size_t alloc_size;
1241 	void *new_arr;
1242 
1243 	if (!new_n || old_n == new_n)
1244 		goto out;
1245 
1246 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1247 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1248 	if (!new_arr) {
1249 		kfree(arr);
1250 		return NULL;
1251 	}
1252 	arr = new_arr;
1253 
1254 	if (new_n > old_n)
1255 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1256 
1257 out:
1258 	return arr ? arr : ZERO_SIZE_PTR;
1259 }
1260 
1261 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1262 {
1263 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1264 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1265 	if (!dst->refs)
1266 		return -ENOMEM;
1267 
1268 	dst->acquired_refs = src->acquired_refs;
1269 	return 0;
1270 }
1271 
1272 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1273 {
1274 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1275 
1276 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1277 				GFP_KERNEL);
1278 	if (!dst->stack)
1279 		return -ENOMEM;
1280 
1281 	dst->allocated_stack = src->allocated_stack;
1282 	return 0;
1283 }
1284 
1285 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1286 {
1287 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1288 				    sizeof(struct bpf_reference_state));
1289 	if (!state->refs)
1290 		return -ENOMEM;
1291 
1292 	state->acquired_refs = n;
1293 	return 0;
1294 }
1295 
1296 /* Possibly update state->allocated_stack to be at least size bytes. Also
1297  * possibly update the function's high-water mark in its bpf_subprog_info.
1298  */
1299 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1300 {
1301 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
1302 
1303 	/* The stack size is always a multiple of BPF_REG_SIZE. */
1304 	size = round_up(size, BPF_REG_SIZE);
1305 	n = size / BPF_REG_SIZE;
1306 
1307 	if (old_n >= n)
1308 		return 0;
1309 
1310 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1311 	if (!state->stack)
1312 		return -ENOMEM;
1313 
1314 	state->allocated_stack = size;
1315 
1316 	/* update known max for given subprogram */
1317 	if (env->subprog_info[state->subprogno].stack_depth < size)
1318 		env->subprog_info[state->subprogno].stack_depth = size;
1319 
1320 	return 0;
1321 }
1322 
1323 /* Acquire a pointer id from the env and update the state->refs to include
1324  * this new pointer reference.
1325  * On success, returns a valid pointer id to associate with the register
1326  * On failure, returns a negative errno.
1327  */
1328 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1329 {
1330 	struct bpf_func_state *state = cur_func(env);
1331 	int new_ofs = state->acquired_refs;
1332 	int id, err;
1333 
1334 	err = resize_reference_state(state, state->acquired_refs + 1);
1335 	if (err)
1336 		return err;
1337 	id = ++env->id_gen;
1338 	state->refs[new_ofs].id = id;
1339 	state->refs[new_ofs].insn_idx = insn_idx;
1340 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1341 
1342 	return id;
1343 }
1344 
1345 /* release function corresponding to acquire_reference_state(). Idempotent. */
1346 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1347 {
1348 	int i, last_idx;
1349 
1350 	last_idx = state->acquired_refs - 1;
1351 	for (i = 0; i < state->acquired_refs; i++) {
1352 		if (state->refs[i].id == ptr_id) {
1353 			/* Cannot release caller references in callbacks */
1354 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1355 				return -EINVAL;
1356 			if (last_idx && i != last_idx)
1357 				memcpy(&state->refs[i], &state->refs[last_idx],
1358 				       sizeof(*state->refs));
1359 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1360 			state->acquired_refs--;
1361 			return 0;
1362 		}
1363 	}
1364 	return -EINVAL;
1365 }
1366 
1367 static void free_func_state(struct bpf_func_state *state)
1368 {
1369 	if (!state)
1370 		return;
1371 	kfree(state->refs);
1372 	kfree(state->stack);
1373 	kfree(state);
1374 }
1375 
1376 static void clear_jmp_history(struct bpf_verifier_state *state)
1377 {
1378 	kfree(state->jmp_history);
1379 	state->jmp_history = NULL;
1380 	state->jmp_history_cnt = 0;
1381 }
1382 
1383 static void free_verifier_state(struct bpf_verifier_state *state,
1384 				bool free_self)
1385 {
1386 	int i;
1387 
1388 	for (i = 0; i <= state->curframe; i++) {
1389 		free_func_state(state->frame[i]);
1390 		state->frame[i] = NULL;
1391 	}
1392 	clear_jmp_history(state);
1393 	if (free_self)
1394 		kfree(state);
1395 }
1396 
1397 /* copy verifier state from src to dst growing dst stack space
1398  * when necessary to accommodate larger src stack
1399  */
1400 static int copy_func_state(struct bpf_func_state *dst,
1401 			   const struct bpf_func_state *src)
1402 {
1403 	int err;
1404 
1405 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1406 	err = copy_reference_state(dst, src);
1407 	if (err)
1408 		return err;
1409 	return copy_stack_state(dst, src);
1410 }
1411 
1412 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1413 			       const struct bpf_verifier_state *src)
1414 {
1415 	struct bpf_func_state *dst;
1416 	int i, err;
1417 
1418 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1419 					  src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
1420 					  GFP_USER);
1421 	if (!dst_state->jmp_history)
1422 		return -ENOMEM;
1423 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1424 
1425 	/* if dst has more stack frames then src frame, free them, this is also
1426 	 * necessary in case of exceptional exits using bpf_throw.
1427 	 */
1428 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1429 		free_func_state(dst_state->frame[i]);
1430 		dst_state->frame[i] = NULL;
1431 	}
1432 	dst_state->speculative = src->speculative;
1433 	dst_state->active_rcu_lock = src->active_rcu_lock;
1434 	dst_state->active_preempt_lock = src->active_preempt_lock;
1435 	dst_state->in_sleepable = src->in_sleepable;
1436 	dst_state->curframe = src->curframe;
1437 	dst_state->active_lock.ptr = src->active_lock.ptr;
1438 	dst_state->active_lock.id = src->active_lock.id;
1439 	dst_state->branches = src->branches;
1440 	dst_state->parent = src->parent;
1441 	dst_state->first_insn_idx = src->first_insn_idx;
1442 	dst_state->last_insn_idx = src->last_insn_idx;
1443 	dst_state->dfs_depth = src->dfs_depth;
1444 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1445 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1446 	dst_state->may_goto_depth = src->may_goto_depth;
1447 	for (i = 0; i <= src->curframe; i++) {
1448 		dst = dst_state->frame[i];
1449 		if (!dst) {
1450 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1451 			if (!dst)
1452 				return -ENOMEM;
1453 			dst_state->frame[i] = dst;
1454 		}
1455 		err = copy_func_state(dst, src->frame[i]);
1456 		if (err)
1457 			return err;
1458 	}
1459 	return 0;
1460 }
1461 
1462 static u32 state_htab_size(struct bpf_verifier_env *env)
1463 {
1464 	return env->prog->len;
1465 }
1466 
1467 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1468 {
1469 	struct bpf_verifier_state *cur = env->cur_state;
1470 	struct bpf_func_state *state = cur->frame[cur->curframe];
1471 
1472 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1473 }
1474 
1475 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1476 {
1477 	int fr;
1478 
1479 	if (a->curframe != b->curframe)
1480 		return false;
1481 
1482 	for (fr = a->curframe; fr >= 0; fr--)
1483 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1484 			return false;
1485 
1486 	return true;
1487 }
1488 
1489 /* Open coded iterators allow back-edges in the state graph in order to
1490  * check unbounded loops that iterators.
1491  *
1492  * In is_state_visited() it is necessary to know if explored states are
1493  * part of some loops in order to decide whether non-exact states
1494  * comparison could be used:
1495  * - non-exact states comparison establishes sub-state relation and uses
1496  *   read and precision marks to do so, these marks are propagated from
1497  *   children states and thus are not guaranteed to be final in a loop;
1498  * - exact states comparison just checks if current and explored states
1499  *   are identical (and thus form a back-edge).
1500  *
1501  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1502  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1503  * algorithm for loop structure detection and gives an overview of
1504  * relevant terminology. It also has helpful illustrations.
1505  *
1506  * [1] https://api.semanticscholar.org/CorpusID:15784067
1507  *
1508  * We use a similar algorithm but because loop nested structure is
1509  * irrelevant for verifier ours is significantly simpler and resembles
1510  * strongly connected components algorithm from Sedgewick's textbook.
1511  *
1512  * Define topmost loop entry as a first node of the loop traversed in a
1513  * depth first search starting from initial state. The goal of the loop
1514  * tracking algorithm is to associate topmost loop entries with states
1515  * derived from these entries.
1516  *
1517  * For each step in the DFS states traversal algorithm needs to identify
1518  * the following situations:
1519  *
1520  *          initial                     initial                   initial
1521  *            |                           |                         |
1522  *            V                           V                         V
1523  *           ...                         ...           .---------> hdr
1524  *            |                           |            |            |
1525  *            V                           V            |            V
1526  *           cur                     .-> succ          |    .------...
1527  *            |                      |    |            |    |       |
1528  *            V                      |    V            |    V       V
1529  *           succ                    '-- cur           |   ...     ...
1530  *                                                     |    |       |
1531  *                                                     |    V       V
1532  *                                                     |   succ <- cur
1533  *                                                     |    |
1534  *                                                     |    V
1535  *                                                     |   ...
1536  *                                                     |    |
1537  *                                                     '----'
1538  *
1539  *  (A) successor state of cur   (B) successor state of cur or it's entry
1540  *      not yet traversed            are in current DFS path, thus cur and succ
1541  *                                   are members of the same outermost loop
1542  *
1543  *                      initial                  initial
1544  *                        |                        |
1545  *                        V                        V
1546  *                       ...                      ...
1547  *                        |                        |
1548  *                        V                        V
1549  *                .------...               .------...
1550  *                |       |                |       |
1551  *                V       V                V       V
1552  *           .-> hdr     ...              ...     ...
1553  *           |    |       |                |       |
1554  *           |    V       V                V       V
1555  *           |   succ <- cur              succ <- cur
1556  *           |    |                        |
1557  *           |    V                        V
1558  *           |   ...                      ...
1559  *           |    |                        |
1560  *           '----'                       exit
1561  *
1562  * (C) successor state of cur is a part of some loop but this loop
1563  *     does not include cur or successor state is not in a loop at all.
1564  *
1565  * Algorithm could be described as the following python code:
1566  *
1567  *     traversed = set()   # Set of traversed nodes
1568  *     entries = {}        # Mapping from node to loop entry
1569  *     depths = {}         # Depth level assigned to graph node
1570  *     path = set()        # Current DFS path
1571  *
1572  *     # Find outermost loop entry known for n
1573  *     def get_loop_entry(n):
1574  *         h = entries.get(n, None)
1575  *         while h in entries and entries[h] != h:
1576  *             h = entries[h]
1577  *         return h
1578  *
1579  *     # Update n's loop entry if h's outermost entry comes
1580  *     # before n's outermost entry in current DFS path.
1581  *     def update_loop_entry(n, h):
1582  *         n1 = get_loop_entry(n) or n
1583  *         h1 = get_loop_entry(h) or h
1584  *         if h1 in path and depths[h1] <= depths[n1]:
1585  *             entries[n] = h1
1586  *
1587  *     def dfs(n, depth):
1588  *         traversed.add(n)
1589  *         path.add(n)
1590  *         depths[n] = depth
1591  *         for succ in G.successors(n):
1592  *             if succ not in traversed:
1593  *                 # Case A: explore succ and update cur's loop entry
1594  *                 #         only if succ's entry is in current DFS path.
1595  *                 dfs(succ, depth + 1)
1596  *                 h = get_loop_entry(succ)
1597  *                 update_loop_entry(n, h)
1598  *             else:
1599  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1600  *                 update_loop_entry(n, succ)
1601  *         path.remove(n)
1602  *
1603  * To adapt this algorithm for use with verifier:
1604  * - use st->branch == 0 as a signal that DFS of succ had been finished
1605  *   and cur's loop entry has to be updated (case A), handle this in
1606  *   update_branch_counts();
1607  * - use st->branch > 0 as a signal that st is in the current DFS path;
1608  * - handle cases B and C in is_state_visited();
1609  * - update topmost loop entry for intermediate states in get_loop_entry().
1610  */
1611 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1612 {
1613 	struct bpf_verifier_state *topmost = st->loop_entry, *old;
1614 
1615 	while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1616 		topmost = topmost->loop_entry;
1617 	/* Update loop entries for intermediate states to avoid this
1618 	 * traversal in future get_loop_entry() calls.
1619 	 */
1620 	while (st && st->loop_entry != topmost) {
1621 		old = st->loop_entry;
1622 		st->loop_entry = topmost;
1623 		st = old;
1624 	}
1625 	return topmost;
1626 }
1627 
1628 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1629 {
1630 	struct bpf_verifier_state *cur1, *hdr1;
1631 
1632 	cur1 = get_loop_entry(cur) ?: cur;
1633 	hdr1 = get_loop_entry(hdr) ?: hdr;
1634 	/* The head1->branches check decides between cases B and C in
1635 	 * comment for get_loop_entry(). If hdr1->branches == 0 then
1636 	 * head's topmost loop entry is not in current DFS path,
1637 	 * hence 'cur' and 'hdr' are not in the same loop and there is
1638 	 * no need to update cur->loop_entry.
1639 	 */
1640 	if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1641 		cur->loop_entry = hdr;
1642 		hdr->used_as_loop_entry = true;
1643 	}
1644 }
1645 
1646 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1647 {
1648 	while (st) {
1649 		u32 br = --st->branches;
1650 
1651 		/* br == 0 signals that DFS exploration for 'st' is finished,
1652 		 * thus it is necessary to update parent's loop entry if it
1653 		 * turned out that st is a part of some loop.
1654 		 * This is a part of 'case A' in get_loop_entry() comment.
1655 		 */
1656 		if (br == 0 && st->parent && st->loop_entry)
1657 			update_loop_entry(st->parent, st->loop_entry);
1658 
1659 		/* WARN_ON(br > 1) technically makes sense here,
1660 		 * but see comment in push_stack(), hence:
1661 		 */
1662 		WARN_ONCE((int)br < 0,
1663 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1664 			  br);
1665 		if (br)
1666 			break;
1667 		st = st->parent;
1668 	}
1669 }
1670 
1671 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1672 		     int *insn_idx, bool pop_log)
1673 {
1674 	struct bpf_verifier_state *cur = env->cur_state;
1675 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1676 	int err;
1677 
1678 	if (env->head == NULL)
1679 		return -ENOENT;
1680 
1681 	if (cur) {
1682 		err = copy_verifier_state(cur, &head->st);
1683 		if (err)
1684 			return err;
1685 	}
1686 	if (pop_log)
1687 		bpf_vlog_reset(&env->log, head->log_pos);
1688 	if (insn_idx)
1689 		*insn_idx = head->insn_idx;
1690 	if (prev_insn_idx)
1691 		*prev_insn_idx = head->prev_insn_idx;
1692 	elem = head->next;
1693 	free_verifier_state(&head->st, false);
1694 	kfree(head);
1695 	env->head = elem;
1696 	env->stack_size--;
1697 	return 0;
1698 }
1699 
1700 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1701 					     int insn_idx, int prev_insn_idx,
1702 					     bool speculative)
1703 {
1704 	struct bpf_verifier_state *cur = env->cur_state;
1705 	struct bpf_verifier_stack_elem *elem;
1706 	int err;
1707 
1708 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1709 	if (!elem)
1710 		goto err;
1711 
1712 	elem->insn_idx = insn_idx;
1713 	elem->prev_insn_idx = prev_insn_idx;
1714 	elem->next = env->head;
1715 	elem->log_pos = env->log.end_pos;
1716 	env->head = elem;
1717 	env->stack_size++;
1718 	err = copy_verifier_state(&elem->st, cur);
1719 	if (err)
1720 		goto err;
1721 	elem->st.speculative |= speculative;
1722 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1723 		verbose(env, "The sequence of %d jumps is too complex.\n",
1724 			env->stack_size);
1725 		goto err;
1726 	}
1727 	if (elem->st.parent) {
1728 		++elem->st.parent->branches;
1729 		/* WARN_ON(branches > 2) technically makes sense here,
1730 		 * but
1731 		 * 1. speculative states will bump 'branches' for non-branch
1732 		 * instructions
1733 		 * 2. is_state_visited() heuristics may decide not to create
1734 		 * a new state for a sequence of branches and all such current
1735 		 * and cloned states will be pointing to a single parent state
1736 		 * which might have large 'branches' count.
1737 		 */
1738 	}
1739 	return &elem->st;
1740 err:
1741 	free_verifier_state(env->cur_state, true);
1742 	env->cur_state = NULL;
1743 	/* pop all elements and return */
1744 	while (!pop_stack(env, NULL, NULL, false));
1745 	return NULL;
1746 }
1747 
1748 #define CALLER_SAVED_REGS 6
1749 static const int caller_saved[CALLER_SAVED_REGS] = {
1750 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1751 };
1752 
1753 /* This helper doesn't clear reg->id */
1754 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1755 {
1756 	reg->var_off = tnum_const(imm);
1757 	reg->smin_value = (s64)imm;
1758 	reg->smax_value = (s64)imm;
1759 	reg->umin_value = imm;
1760 	reg->umax_value = imm;
1761 
1762 	reg->s32_min_value = (s32)imm;
1763 	reg->s32_max_value = (s32)imm;
1764 	reg->u32_min_value = (u32)imm;
1765 	reg->u32_max_value = (u32)imm;
1766 }
1767 
1768 /* Mark the unknown part of a register (variable offset or scalar value) as
1769  * known to have the value @imm.
1770  */
1771 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1772 {
1773 	/* Clear off and union(map_ptr, range) */
1774 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1775 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1776 	reg->id = 0;
1777 	reg->ref_obj_id = 0;
1778 	___mark_reg_known(reg, imm);
1779 }
1780 
1781 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1782 {
1783 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1784 	reg->s32_min_value = (s32)imm;
1785 	reg->s32_max_value = (s32)imm;
1786 	reg->u32_min_value = (u32)imm;
1787 	reg->u32_max_value = (u32)imm;
1788 }
1789 
1790 /* Mark the 'variable offset' part of a register as zero.  This should be
1791  * used only on registers holding a pointer type.
1792  */
1793 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1794 {
1795 	__mark_reg_known(reg, 0);
1796 }
1797 
1798 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1799 {
1800 	__mark_reg_known(reg, 0);
1801 	reg->type = SCALAR_VALUE;
1802 	/* all scalars are assumed imprecise initially (unless unprivileged,
1803 	 * in which case everything is forced to be precise)
1804 	 */
1805 	reg->precise = !env->bpf_capable;
1806 }
1807 
1808 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1809 				struct bpf_reg_state *regs, u32 regno)
1810 {
1811 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1812 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1813 		/* Something bad happened, let's kill all regs */
1814 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1815 			__mark_reg_not_init(env, regs + regno);
1816 		return;
1817 	}
1818 	__mark_reg_known_zero(regs + regno);
1819 }
1820 
1821 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1822 			      bool first_slot, int dynptr_id)
1823 {
1824 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1825 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1826 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1827 	 */
1828 	__mark_reg_known_zero(reg);
1829 	reg->type = CONST_PTR_TO_DYNPTR;
1830 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1831 	reg->id = dynptr_id;
1832 	reg->dynptr.type = type;
1833 	reg->dynptr.first_slot = first_slot;
1834 }
1835 
1836 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1837 {
1838 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1839 		const struct bpf_map *map = reg->map_ptr;
1840 
1841 		if (map->inner_map_meta) {
1842 			reg->type = CONST_PTR_TO_MAP;
1843 			reg->map_ptr = map->inner_map_meta;
1844 			/* transfer reg's id which is unique for every map_lookup_elem
1845 			 * as UID of the inner map.
1846 			 */
1847 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1848 				reg->map_uid = reg->id;
1849 			if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE))
1850 				reg->map_uid = reg->id;
1851 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1852 			reg->type = PTR_TO_XDP_SOCK;
1853 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1854 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1855 			reg->type = PTR_TO_SOCKET;
1856 		} else {
1857 			reg->type = PTR_TO_MAP_VALUE;
1858 		}
1859 		return;
1860 	}
1861 
1862 	reg->type &= ~PTR_MAYBE_NULL;
1863 }
1864 
1865 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1866 				struct btf_field_graph_root *ds_head)
1867 {
1868 	__mark_reg_known_zero(&regs[regno]);
1869 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1870 	regs[regno].btf = ds_head->btf;
1871 	regs[regno].btf_id = ds_head->value_btf_id;
1872 	regs[regno].off = ds_head->node_offset;
1873 }
1874 
1875 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1876 {
1877 	return type_is_pkt_pointer(reg->type);
1878 }
1879 
1880 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1881 {
1882 	return reg_is_pkt_pointer(reg) ||
1883 	       reg->type == PTR_TO_PACKET_END;
1884 }
1885 
1886 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1887 {
1888 	return base_type(reg->type) == PTR_TO_MEM &&
1889 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1890 }
1891 
1892 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1893 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1894 				    enum bpf_reg_type which)
1895 {
1896 	/* The register can already have a range from prior markings.
1897 	 * This is fine as long as it hasn't been advanced from its
1898 	 * origin.
1899 	 */
1900 	return reg->type == which &&
1901 	       reg->id == 0 &&
1902 	       reg->off == 0 &&
1903 	       tnum_equals_const(reg->var_off, 0);
1904 }
1905 
1906 /* Reset the min/max bounds of a register */
1907 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1908 {
1909 	reg->smin_value = S64_MIN;
1910 	reg->smax_value = S64_MAX;
1911 	reg->umin_value = 0;
1912 	reg->umax_value = U64_MAX;
1913 
1914 	reg->s32_min_value = S32_MIN;
1915 	reg->s32_max_value = S32_MAX;
1916 	reg->u32_min_value = 0;
1917 	reg->u32_max_value = U32_MAX;
1918 }
1919 
1920 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1921 {
1922 	reg->smin_value = S64_MIN;
1923 	reg->smax_value = S64_MAX;
1924 	reg->umin_value = 0;
1925 	reg->umax_value = U64_MAX;
1926 }
1927 
1928 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1929 {
1930 	reg->s32_min_value = S32_MIN;
1931 	reg->s32_max_value = S32_MAX;
1932 	reg->u32_min_value = 0;
1933 	reg->u32_max_value = U32_MAX;
1934 }
1935 
1936 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1937 {
1938 	struct tnum var32_off = tnum_subreg(reg->var_off);
1939 
1940 	/* min signed is max(sign bit) | min(other bits) */
1941 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1942 			var32_off.value | (var32_off.mask & S32_MIN));
1943 	/* max signed is min(sign bit) | max(other bits) */
1944 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1945 			var32_off.value | (var32_off.mask & S32_MAX));
1946 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1947 	reg->u32_max_value = min(reg->u32_max_value,
1948 				 (u32)(var32_off.value | var32_off.mask));
1949 }
1950 
1951 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1952 {
1953 	/* min signed is max(sign bit) | min(other bits) */
1954 	reg->smin_value = max_t(s64, reg->smin_value,
1955 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1956 	/* max signed is min(sign bit) | max(other bits) */
1957 	reg->smax_value = min_t(s64, reg->smax_value,
1958 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1959 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1960 	reg->umax_value = min(reg->umax_value,
1961 			      reg->var_off.value | reg->var_off.mask);
1962 }
1963 
1964 static void __update_reg_bounds(struct bpf_reg_state *reg)
1965 {
1966 	__update_reg32_bounds(reg);
1967 	__update_reg64_bounds(reg);
1968 }
1969 
1970 /* Uses signed min/max values to inform unsigned, and vice-versa */
1971 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1972 {
1973 	/* If upper 32 bits of u64/s64 range don't change, we can use lower 32
1974 	 * bits to improve our u32/s32 boundaries.
1975 	 *
1976 	 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
1977 	 * u64) is pretty trivial, it's obvious that in u32 we'll also have
1978 	 * [10, 20] range. But this property holds for any 64-bit range as
1979 	 * long as upper 32 bits in that entire range of values stay the same.
1980 	 *
1981 	 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
1982 	 * in decimal) has the same upper 32 bits throughout all the values in
1983 	 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
1984 	 * range.
1985 	 *
1986 	 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
1987 	 * following the rules outlined below about u64/s64 correspondence
1988 	 * (which equally applies to u32 vs s32 correspondence). In general it
1989 	 * depends on actual hexadecimal values of 32-bit range. They can form
1990 	 * only valid u32, or only valid s32 ranges in some cases.
1991 	 *
1992 	 * So we use all these insights to derive bounds for subregisters here.
1993 	 */
1994 	if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
1995 		/* u64 to u32 casting preserves validity of low 32 bits as
1996 		 * a range, if upper 32 bits are the same
1997 		 */
1998 		reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
1999 		reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
2000 
2001 		if ((s32)reg->umin_value <= (s32)reg->umax_value) {
2002 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2003 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2004 		}
2005 	}
2006 	if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
2007 		/* low 32 bits should form a proper u32 range */
2008 		if ((u32)reg->smin_value <= (u32)reg->smax_value) {
2009 			reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
2010 			reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
2011 		}
2012 		/* low 32 bits should form a proper s32 range */
2013 		if ((s32)reg->smin_value <= (s32)reg->smax_value) {
2014 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2015 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2016 		}
2017 	}
2018 	/* Special case where upper bits form a small sequence of two
2019 	 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
2020 	 * 0x00000000 is also valid), while lower bits form a proper s32 range
2021 	 * going from negative numbers to positive numbers. E.g., let's say we
2022 	 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
2023 	 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
2024 	 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
2025 	 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
2026 	 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
2027 	 * upper 32 bits. As a random example, s64 range
2028 	 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
2029 	 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
2030 	 */
2031 	if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
2032 	    (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
2033 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2034 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2035 	}
2036 	if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
2037 	    (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
2038 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2039 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2040 	}
2041 	/* if u32 range forms a valid s32 range (due to matching sign bit),
2042 	 * try to learn from that
2043 	 */
2044 	if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
2045 		reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
2046 		reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
2047 	}
2048 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2049 	 * are the same, so combine.  This works even in the negative case, e.g.
2050 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2051 	 */
2052 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2053 		reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
2054 		reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
2055 	}
2056 }
2057 
2058 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2059 {
2060 	/* If u64 range forms a valid s64 range (due to matching sign bit),
2061 	 * try to learn from that. Let's do a bit of ASCII art to see when
2062 	 * this is happening. Let's take u64 range first:
2063 	 *
2064 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2065 	 * |-------------------------------|--------------------------------|
2066 	 *
2067 	 * Valid u64 range is formed when umin and umax are anywhere in the
2068 	 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
2069 	 * straightforward. Let's see how s64 range maps onto the same range
2070 	 * of values, annotated below the line for comparison:
2071 	 *
2072 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2073 	 * |-------------------------------|--------------------------------|
2074 	 * 0                        S64_MAX S64_MIN                        -1
2075 	 *
2076 	 * So s64 values basically start in the middle and they are logically
2077 	 * contiguous to the right of it, wrapping around from -1 to 0, and
2078 	 * then finishing as S64_MAX (0x7fffffffffffffff) right before
2079 	 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
2080 	 * more visually as mapped to sign-agnostic range of hex values.
2081 	 *
2082 	 *  u64 start                                               u64 end
2083 	 *  _______________________________________________________________
2084 	 * /                                                               \
2085 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2086 	 * |-------------------------------|--------------------------------|
2087 	 * 0                        S64_MAX S64_MIN                        -1
2088 	 *                                / \
2089 	 * >------------------------------   ------------------------------->
2090 	 * s64 continues...        s64 end   s64 start          s64 "midpoint"
2091 	 *
2092 	 * What this means is that, in general, we can't always derive
2093 	 * something new about u64 from any random s64 range, and vice versa.
2094 	 *
2095 	 * But we can do that in two particular cases. One is when entire
2096 	 * u64/s64 range is *entirely* contained within left half of the above
2097 	 * diagram or when it is *entirely* contained in the right half. I.e.:
2098 	 *
2099 	 * |-------------------------------|--------------------------------|
2100 	 *     ^                   ^            ^                 ^
2101 	 *     A                   B            C                 D
2102 	 *
2103 	 * [A, B] and [C, D] are contained entirely in their respective halves
2104 	 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2105 	 * will be non-negative both as u64 and s64 (and in fact it will be
2106 	 * identical ranges no matter the signedness). [C, D] treated as s64
2107 	 * will be a range of negative values, while in u64 it will be
2108 	 * non-negative range of values larger than 0x8000000000000000.
2109 	 *
2110 	 * Now, any other range here can't be represented in both u64 and s64
2111 	 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2112 	 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2113 	 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2114 	 * for example. Similarly, valid s64 range [D, A] (going from negative
2115 	 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2116 	 * ranges as u64. Currently reg_state can't represent two segments per
2117 	 * numeric domain, so in such situations we can only derive maximal
2118 	 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2119 	 *
2120 	 * So we use these facts to derive umin/umax from smin/smax and vice
2121 	 * versa only if they stay within the same "half". This is equivalent
2122 	 * to checking sign bit: lower half will have sign bit as zero, upper
2123 	 * half have sign bit 1. Below in code we simplify this by just
2124 	 * casting umin/umax as smin/smax and checking if they form valid
2125 	 * range, and vice versa. Those are equivalent checks.
2126 	 */
2127 	if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2128 		reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2129 		reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2130 	}
2131 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2132 	 * are the same, so combine.  This works even in the negative case, e.g.
2133 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2134 	 */
2135 	if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2136 		reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2137 		reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2138 	}
2139 }
2140 
2141 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2142 {
2143 	/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2144 	 * values on both sides of 64-bit range in hope to have tighter range.
2145 	 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2146 	 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2147 	 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2148 	 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2149 	 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2150 	 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2151 	 * We just need to make sure that derived bounds we are intersecting
2152 	 * with are well-formed ranges in respective s64 or u64 domain, just
2153 	 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2154 	 */
2155 	__u64 new_umin, new_umax;
2156 	__s64 new_smin, new_smax;
2157 
2158 	/* u32 -> u64 tightening, it's always well-formed */
2159 	new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2160 	new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2161 	reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2162 	reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2163 	/* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2164 	new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2165 	new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2166 	reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2167 	reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2168 
2169 	/* if s32 can be treated as valid u32 range, we can use it as well */
2170 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2171 		/* s32 -> u64 tightening */
2172 		new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2173 		new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2174 		reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2175 		reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2176 		/* s32 -> s64 tightening */
2177 		new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2178 		new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2179 		reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2180 		reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2181 	}
2182 
2183 	/* Here we would like to handle a special case after sign extending load,
2184 	 * when upper bits for a 64-bit range are all 1s or all 0s.
2185 	 *
2186 	 * Upper bits are all 1s when register is in a range:
2187 	 *   [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff]
2188 	 * Upper bits are all 0s when register is in a range:
2189 	 *   [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff]
2190 	 * Together this forms are continuous range:
2191 	 *   [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff]
2192 	 *
2193 	 * Now, suppose that register range is in fact tighter:
2194 	 *   [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R)
2195 	 * Also suppose that it's 32-bit range is positive,
2196 	 * meaning that lower 32-bits of the full 64-bit register
2197 	 * are in the range:
2198 	 *   [0x0000_0000, 0x7fff_ffff] (W)
2199 	 *
2200 	 * If this happens, then any value in a range:
2201 	 *   [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff]
2202 	 * is smaller than a lowest bound of the range (R):
2203 	 *   0xffff_ffff_8000_0000
2204 	 * which means that upper bits of the full 64-bit register
2205 	 * can't be all 1s, when lower bits are in range (W).
2206 	 *
2207 	 * Note that:
2208 	 *  - 0xffff_ffff_8000_0000 == (s64)S32_MIN
2209 	 *  - 0x0000_0000_7fff_ffff == (s64)S32_MAX
2210 	 * These relations are used in the conditions below.
2211 	 */
2212 	if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) {
2213 		reg->smin_value = reg->s32_min_value;
2214 		reg->smax_value = reg->s32_max_value;
2215 		reg->umin_value = reg->s32_min_value;
2216 		reg->umax_value = reg->s32_max_value;
2217 		reg->var_off = tnum_intersect(reg->var_off,
2218 					      tnum_range(reg->smin_value, reg->smax_value));
2219 	}
2220 }
2221 
2222 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2223 {
2224 	__reg32_deduce_bounds(reg);
2225 	__reg64_deduce_bounds(reg);
2226 	__reg_deduce_mixed_bounds(reg);
2227 }
2228 
2229 /* Attempts to improve var_off based on unsigned min/max information */
2230 static void __reg_bound_offset(struct bpf_reg_state *reg)
2231 {
2232 	struct tnum var64_off = tnum_intersect(reg->var_off,
2233 					       tnum_range(reg->umin_value,
2234 							  reg->umax_value));
2235 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2236 					       tnum_range(reg->u32_min_value,
2237 							  reg->u32_max_value));
2238 
2239 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2240 }
2241 
2242 static void reg_bounds_sync(struct bpf_reg_state *reg)
2243 {
2244 	/* We might have learned new bounds from the var_off. */
2245 	__update_reg_bounds(reg);
2246 	/* We might have learned something about the sign bit. */
2247 	__reg_deduce_bounds(reg);
2248 	__reg_deduce_bounds(reg);
2249 	/* We might have learned some bits from the bounds. */
2250 	__reg_bound_offset(reg);
2251 	/* Intersecting with the old var_off might have improved our bounds
2252 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2253 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2254 	 */
2255 	__update_reg_bounds(reg);
2256 }
2257 
2258 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2259 				   struct bpf_reg_state *reg, const char *ctx)
2260 {
2261 	const char *msg;
2262 
2263 	if (reg->umin_value > reg->umax_value ||
2264 	    reg->smin_value > reg->smax_value ||
2265 	    reg->u32_min_value > reg->u32_max_value ||
2266 	    reg->s32_min_value > reg->s32_max_value) {
2267 		    msg = "range bounds violation";
2268 		    goto out;
2269 	}
2270 
2271 	if (tnum_is_const(reg->var_off)) {
2272 		u64 uval = reg->var_off.value;
2273 		s64 sval = (s64)uval;
2274 
2275 		if (reg->umin_value != uval || reg->umax_value != uval ||
2276 		    reg->smin_value != sval || reg->smax_value != sval) {
2277 			msg = "const tnum out of sync with range bounds";
2278 			goto out;
2279 		}
2280 	}
2281 
2282 	if (tnum_subreg_is_const(reg->var_off)) {
2283 		u32 uval32 = tnum_subreg(reg->var_off).value;
2284 		s32 sval32 = (s32)uval32;
2285 
2286 		if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2287 		    reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2288 			msg = "const subreg tnum out of sync with range bounds";
2289 			goto out;
2290 		}
2291 	}
2292 
2293 	return 0;
2294 out:
2295 	verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2296 		"s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n",
2297 		ctx, msg, reg->umin_value, reg->umax_value,
2298 		reg->smin_value, reg->smax_value,
2299 		reg->u32_min_value, reg->u32_max_value,
2300 		reg->s32_min_value, reg->s32_max_value,
2301 		reg->var_off.value, reg->var_off.mask);
2302 	if (env->test_reg_invariants)
2303 		return -EFAULT;
2304 	__mark_reg_unbounded(reg);
2305 	return 0;
2306 }
2307 
2308 static bool __reg32_bound_s64(s32 a)
2309 {
2310 	return a >= 0 && a <= S32_MAX;
2311 }
2312 
2313 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2314 {
2315 	reg->umin_value = reg->u32_min_value;
2316 	reg->umax_value = reg->u32_max_value;
2317 
2318 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2319 	 * be positive otherwise set to worse case bounds and refine later
2320 	 * from tnum.
2321 	 */
2322 	if (__reg32_bound_s64(reg->s32_min_value) &&
2323 	    __reg32_bound_s64(reg->s32_max_value)) {
2324 		reg->smin_value = reg->s32_min_value;
2325 		reg->smax_value = reg->s32_max_value;
2326 	} else {
2327 		reg->smin_value = 0;
2328 		reg->smax_value = U32_MAX;
2329 	}
2330 }
2331 
2332 /* Mark a register as having a completely unknown (scalar) value. */
2333 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg)
2334 {
2335 	/*
2336 	 * Clear type, off, and union(map_ptr, range) and
2337 	 * padding between 'type' and union
2338 	 */
2339 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2340 	reg->type = SCALAR_VALUE;
2341 	reg->id = 0;
2342 	reg->ref_obj_id = 0;
2343 	reg->var_off = tnum_unknown;
2344 	reg->frameno = 0;
2345 	reg->precise = false;
2346 	__mark_reg_unbounded(reg);
2347 }
2348 
2349 /* Mark a register as having a completely unknown (scalar) value,
2350  * initialize .precise as true when not bpf capable.
2351  */
2352 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2353 			       struct bpf_reg_state *reg)
2354 {
2355 	__mark_reg_unknown_imprecise(reg);
2356 	reg->precise = !env->bpf_capable;
2357 }
2358 
2359 static void mark_reg_unknown(struct bpf_verifier_env *env,
2360 			     struct bpf_reg_state *regs, u32 regno)
2361 {
2362 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2363 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2364 		/* Something bad happened, let's kill all regs except FP */
2365 		for (regno = 0; regno < BPF_REG_FP; regno++)
2366 			__mark_reg_not_init(env, regs + regno);
2367 		return;
2368 	}
2369 	__mark_reg_unknown(env, regs + regno);
2370 }
2371 
2372 static int __mark_reg_s32_range(struct bpf_verifier_env *env,
2373 				struct bpf_reg_state *regs,
2374 				u32 regno,
2375 				s32 s32_min,
2376 				s32 s32_max)
2377 {
2378 	struct bpf_reg_state *reg = regs + regno;
2379 
2380 	reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min);
2381 	reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max);
2382 
2383 	reg->smin_value = max_t(s64, reg->smin_value, s32_min);
2384 	reg->smax_value = min_t(s64, reg->smax_value, s32_max);
2385 
2386 	reg_bounds_sync(reg);
2387 
2388 	return reg_bounds_sanity_check(env, reg, "s32_range");
2389 }
2390 
2391 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2392 				struct bpf_reg_state *reg)
2393 {
2394 	__mark_reg_unknown(env, reg);
2395 	reg->type = NOT_INIT;
2396 }
2397 
2398 static void mark_reg_not_init(struct bpf_verifier_env *env,
2399 			      struct bpf_reg_state *regs, u32 regno)
2400 {
2401 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2402 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2403 		/* Something bad happened, let's kill all regs except FP */
2404 		for (regno = 0; regno < BPF_REG_FP; regno++)
2405 			__mark_reg_not_init(env, regs + regno);
2406 		return;
2407 	}
2408 	__mark_reg_not_init(env, regs + regno);
2409 }
2410 
2411 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2412 			    struct bpf_reg_state *regs, u32 regno,
2413 			    enum bpf_reg_type reg_type,
2414 			    struct btf *btf, u32 btf_id,
2415 			    enum bpf_type_flag flag)
2416 {
2417 	if (reg_type == SCALAR_VALUE) {
2418 		mark_reg_unknown(env, regs, regno);
2419 		return;
2420 	}
2421 	mark_reg_known_zero(env, regs, regno);
2422 	regs[regno].type = PTR_TO_BTF_ID | flag;
2423 	regs[regno].btf = btf;
2424 	regs[regno].btf_id = btf_id;
2425 	if (type_may_be_null(flag))
2426 		regs[regno].id = ++env->id_gen;
2427 }
2428 
2429 #define DEF_NOT_SUBREG	(0)
2430 static void init_reg_state(struct bpf_verifier_env *env,
2431 			   struct bpf_func_state *state)
2432 {
2433 	struct bpf_reg_state *regs = state->regs;
2434 	int i;
2435 
2436 	for (i = 0; i < MAX_BPF_REG; i++) {
2437 		mark_reg_not_init(env, regs, i);
2438 		regs[i].live = REG_LIVE_NONE;
2439 		regs[i].parent = NULL;
2440 		regs[i].subreg_def = DEF_NOT_SUBREG;
2441 	}
2442 
2443 	/* frame pointer */
2444 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2445 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2446 	regs[BPF_REG_FP].frameno = state->frameno;
2447 }
2448 
2449 static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
2450 {
2451 	return (struct bpf_retval_range){ minval, maxval };
2452 }
2453 
2454 #define BPF_MAIN_FUNC (-1)
2455 static void init_func_state(struct bpf_verifier_env *env,
2456 			    struct bpf_func_state *state,
2457 			    int callsite, int frameno, int subprogno)
2458 {
2459 	state->callsite = callsite;
2460 	state->frameno = frameno;
2461 	state->subprogno = subprogno;
2462 	state->callback_ret_range = retval_range(0, 0);
2463 	init_reg_state(env, state);
2464 	mark_verifier_state_scratched(env);
2465 }
2466 
2467 /* Similar to push_stack(), but for async callbacks */
2468 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2469 						int insn_idx, int prev_insn_idx,
2470 						int subprog, bool is_sleepable)
2471 {
2472 	struct bpf_verifier_stack_elem *elem;
2473 	struct bpf_func_state *frame;
2474 
2475 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2476 	if (!elem)
2477 		goto err;
2478 
2479 	elem->insn_idx = insn_idx;
2480 	elem->prev_insn_idx = prev_insn_idx;
2481 	elem->next = env->head;
2482 	elem->log_pos = env->log.end_pos;
2483 	env->head = elem;
2484 	env->stack_size++;
2485 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2486 		verbose(env,
2487 			"The sequence of %d jumps is too complex for async cb.\n",
2488 			env->stack_size);
2489 		goto err;
2490 	}
2491 	/* Unlike push_stack() do not copy_verifier_state().
2492 	 * The caller state doesn't matter.
2493 	 * This is async callback. It starts in a fresh stack.
2494 	 * Initialize it similar to do_check_common().
2495 	 */
2496 	elem->st.branches = 1;
2497 	elem->st.in_sleepable = is_sleepable;
2498 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2499 	if (!frame)
2500 		goto err;
2501 	init_func_state(env, frame,
2502 			BPF_MAIN_FUNC /* callsite */,
2503 			0 /* frameno within this callchain */,
2504 			subprog /* subprog number within this prog */);
2505 	elem->st.frame[0] = frame;
2506 	return &elem->st;
2507 err:
2508 	free_verifier_state(env->cur_state, true);
2509 	env->cur_state = NULL;
2510 	/* pop all elements and return */
2511 	while (!pop_stack(env, NULL, NULL, false));
2512 	return NULL;
2513 }
2514 
2515 
2516 enum reg_arg_type {
2517 	SRC_OP,		/* register is used as source operand */
2518 	DST_OP,		/* register is used as destination operand */
2519 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2520 };
2521 
2522 static int cmp_subprogs(const void *a, const void *b)
2523 {
2524 	return ((struct bpf_subprog_info *)a)->start -
2525 	       ((struct bpf_subprog_info *)b)->start;
2526 }
2527 
2528 static int find_subprog(struct bpf_verifier_env *env, int off)
2529 {
2530 	struct bpf_subprog_info *p;
2531 
2532 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2533 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2534 	if (!p)
2535 		return -ENOENT;
2536 	return p - env->subprog_info;
2537 
2538 }
2539 
2540 static int add_subprog(struct bpf_verifier_env *env, int off)
2541 {
2542 	int insn_cnt = env->prog->len;
2543 	int ret;
2544 
2545 	if (off >= insn_cnt || off < 0) {
2546 		verbose(env, "call to invalid destination\n");
2547 		return -EINVAL;
2548 	}
2549 	ret = find_subprog(env, off);
2550 	if (ret >= 0)
2551 		return ret;
2552 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2553 		verbose(env, "too many subprograms\n");
2554 		return -E2BIG;
2555 	}
2556 	/* determine subprog starts. The end is one before the next starts */
2557 	env->subprog_info[env->subprog_cnt++].start = off;
2558 	sort(env->subprog_info, env->subprog_cnt,
2559 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2560 	return env->subprog_cnt - 1;
2561 }
2562 
2563 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2564 {
2565 	struct bpf_prog_aux *aux = env->prog->aux;
2566 	struct btf *btf = aux->btf;
2567 	const struct btf_type *t;
2568 	u32 main_btf_id, id;
2569 	const char *name;
2570 	int ret, i;
2571 
2572 	/* Non-zero func_info_cnt implies valid btf */
2573 	if (!aux->func_info_cnt)
2574 		return 0;
2575 	main_btf_id = aux->func_info[0].type_id;
2576 
2577 	t = btf_type_by_id(btf, main_btf_id);
2578 	if (!t) {
2579 		verbose(env, "invalid btf id for main subprog in func_info\n");
2580 		return -EINVAL;
2581 	}
2582 
2583 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2584 	if (IS_ERR(name)) {
2585 		ret = PTR_ERR(name);
2586 		/* If there is no tag present, there is no exception callback */
2587 		if (ret == -ENOENT)
2588 			ret = 0;
2589 		else if (ret == -EEXIST)
2590 			verbose(env, "multiple exception callback tags for main subprog\n");
2591 		return ret;
2592 	}
2593 
2594 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2595 	if (ret < 0) {
2596 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2597 		return ret;
2598 	}
2599 	id = ret;
2600 	t = btf_type_by_id(btf, id);
2601 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2602 		verbose(env, "exception callback '%s' must have global linkage\n", name);
2603 		return -EINVAL;
2604 	}
2605 	ret = 0;
2606 	for (i = 0; i < aux->func_info_cnt; i++) {
2607 		if (aux->func_info[i].type_id != id)
2608 			continue;
2609 		ret = aux->func_info[i].insn_off;
2610 		/* Further func_info and subprog checks will also happen
2611 		 * later, so assume this is the right insn_off for now.
2612 		 */
2613 		if (!ret) {
2614 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2615 			ret = -EINVAL;
2616 		}
2617 	}
2618 	if (!ret) {
2619 		verbose(env, "exception callback type id not found in func_info\n");
2620 		ret = -EINVAL;
2621 	}
2622 	return ret;
2623 }
2624 
2625 #define MAX_KFUNC_DESCS 256
2626 #define MAX_KFUNC_BTFS	256
2627 
2628 struct bpf_kfunc_desc {
2629 	struct btf_func_model func_model;
2630 	u32 func_id;
2631 	s32 imm;
2632 	u16 offset;
2633 	unsigned long addr;
2634 };
2635 
2636 struct bpf_kfunc_btf {
2637 	struct btf *btf;
2638 	struct module *module;
2639 	u16 offset;
2640 };
2641 
2642 struct bpf_kfunc_desc_tab {
2643 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2644 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2645 	 * available, therefore at the end of verification do_misc_fixups()
2646 	 * sorts this by imm and offset.
2647 	 */
2648 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2649 	u32 nr_descs;
2650 };
2651 
2652 struct bpf_kfunc_btf_tab {
2653 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2654 	u32 nr_descs;
2655 };
2656 
2657 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2658 {
2659 	const struct bpf_kfunc_desc *d0 = a;
2660 	const struct bpf_kfunc_desc *d1 = b;
2661 
2662 	/* func_id is not greater than BTF_MAX_TYPE */
2663 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2664 }
2665 
2666 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2667 {
2668 	const struct bpf_kfunc_btf *d0 = a;
2669 	const struct bpf_kfunc_btf *d1 = b;
2670 
2671 	return d0->offset - d1->offset;
2672 }
2673 
2674 static const struct bpf_kfunc_desc *
2675 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2676 {
2677 	struct bpf_kfunc_desc desc = {
2678 		.func_id = func_id,
2679 		.offset = offset,
2680 	};
2681 	struct bpf_kfunc_desc_tab *tab;
2682 
2683 	tab = prog->aux->kfunc_tab;
2684 	return bsearch(&desc, tab->descs, tab->nr_descs,
2685 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2686 }
2687 
2688 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2689 		       u16 btf_fd_idx, u8 **func_addr)
2690 {
2691 	const struct bpf_kfunc_desc *desc;
2692 
2693 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2694 	if (!desc)
2695 		return -EFAULT;
2696 
2697 	*func_addr = (u8 *)desc->addr;
2698 	return 0;
2699 }
2700 
2701 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2702 					 s16 offset)
2703 {
2704 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2705 	struct bpf_kfunc_btf_tab *tab;
2706 	struct bpf_kfunc_btf *b;
2707 	struct module *mod;
2708 	struct btf *btf;
2709 	int btf_fd;
2710 
2711 	tab = env->prog->aux->kfunc_btf_tab;
2712 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2713 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2714 	if (!b) {
2715 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2716 			verbose(env, "too many different module BTFs\n");
2717 			return ERR_PTR(-E2BIG);
2718 		}
2719 
2720 		if (bpfptr_is_null(env->fd_array)) {
2721 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2722 			return ERR_PTR(-EPROTO);
2723 		}
2724 
2725 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2726 					    offset * sizeof(btf_fd),
2727 					    sizeof(btf_fd)))
2728 			return ERR_PTR(-EFAULT);
2729 
2730 		btf = btf_get_by_fd(btf_fd);
2731 		if (IS_ERR(btf)) {
2732 			verbose(env, "invalid module BTF fd specified\n");
2733 			return btf;
2734 		}
2735 
2736 		if (!btf_is_module(btf)) {
2737 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2738 			btf_put(btf);
2739 			return ERR_PTR(-EINVAL);
2740 		}
2741 
2742 		mod = btf_try_get_module(btf);
2743 		if (!mod) {
2744 			btf_put(btf);
2745 			return ERR_PTR(-ENXIO);
2746 		}
2747 
2748 		b = &tab->descs[tab->nr_descs++];
2749 		b->btf = btf;
2750 		b->module = mod;
2751 		b->offset = offset;
2752 
2753 		/* sort() reorders entries by value, so b may no longer point
2754 		 * to the right entry after this
2755 		 */
2756 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2757 		     kfunc_btf_cmp_by_off, NULL);
2758 	} else {
2759 		btf = b->btf;
2760 	}
2761 
2762 	return btf;
2763 }
2764 
2765 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2766 {
2767 	if (!tab)
2768 		return;
2769 
2770 	while (tab->nr_descs--) {
2771 		module_put(tab->descs[tab->nr_descs].module);
2772 		btf_put(tab->descs[tab->nr_descs].btf);
2773 	}
2774 	kfree(tab);
2775 }
2776 
2777 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2778 {
2779 	if (offset) {
2780 		if (offset < 0) {
2781 			/* In the future, this can be allowed to increase limit
2782 			 * of fd index into fd_array, interpreted as u16.
2783 			 */
2784 			verbose(env, "negative offset disallowed for kernel module function call\n");
2785 			return ERR_PTR(-EINVAL);
2786 		}
2787 
2788 		return __find_kfunc_desc_btf(env, offset);
2789 	}
2790 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2791 }
2792 
2793 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2794 {
2795 	const struct btf_type *func, *func_proto;
2796 	struct bpf_kfunc_btf_tab *btf_tab;
2797 	struct bpf_kfunc_desc_tab *tab;
2798 	struct bpf_prog_aux *prog_aux;
2799 	struct bpf_kfunc_desc *desc;
2800 	const char *func_name;
2801 	struct btf *desc_btf;
2802 	unsigned long call_imm;
2803 	unsigned long addr;
2804 	int err;
2805 
2806 	prog_aux = env->prog->aux;
2807 	tab = prog_aux->kfunc_tab;
2808 	btf_tab = prog_aux->kfunc_btf_tab;
2809 	if (!tab) {
2810 		if (!btf_vmlinux) {
2811 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2812 			return -ENOTSUPP;
2813 		}
2814 
2815 		if (!env->prog->jit_requested) {
2816 			verbose(env, "JIT is required for calling kernel function\n");
2817 			return -ENOTSUPP;
2818 		}
2819 
2820 		if (!bpf_jit_supports_kfunc_call()) {
2821 			verbose(env, "JIT does not support calling kernel function\n");
2822 			return -ENOTSUPP;
2823 		}
2824 
2825 		if (!env->prog->gpl_compatible) {
2826 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2827 			return -EINVAL;
2828 		}
2829 
2830 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2831 		if (!tab)
2832 			return -ENOMEM;
2833 		prog_aux->kfunc_tab = tab;
2834 	}
2835 
2836 	/* func_id == 0 is always invalid, but instead of returning an error, be
2837 	 * conservative and wait until the code elimination pass before returning
2838 	 * error, so that invalid calls that get pruned out can be in BPF programs
2839 	 * loaded from userspace.  It is also required that offset be untouched
2840 	 * for such calls.
2841 	 */
2842 	if (!func_id && !offset)
2843 		return 0;
2844 
2845 	if (!btf_tab && offset) {
2846 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2847 		if (!btf_tab)
2848 			return -ENOMEM;
2849 		prog_aux->kfunc_btf_tab = btf_tab;
2850 	}
2851 
2852 	desc_btf = find_kfunc_desc_btf(env, offset);
2853 	if (IS_ERR(desc_btf)) {
2854 		verbose(env, "failed to find BTF for kernel function\n");
2855 		return PTR_ERR(desc_btf);
2856 	}
2857 
2858 	if (find_kfunc_desc(env->prog, func_id, offset))
2859 		return 0;
2860 
2861 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2862 		verbose(env, "too many different kernel function calls\n");
2863 		return -E2BIG;
2864 	}
2865 
2866 	func = btf_type_by_id(desc_btf, func_id);
2867 	if (!func || !btf_type_is_func(func)) {
2868 		verbose(env, "kernel btf_id %u is not a function\n",
2869 			func_id);
2870 		return -EINVAL;
2871 	}
2872 	func_proto = btf_type_by_id(desc_btf, func->type);
2873 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2874 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2875 			func_id);
2876 		return -EINVAL;
2877 	}
2878 
2879 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2880 	addr = kallsyms_lookup_name(func_name);
2881 	if (!addr) {
2882 		verbose(env, "cannot find address for kernel function %s\n",
2883 			func_name);
2884 		return -EINVAL;
2885 	}
2886 	specialize_kfunc(env, func_id, offset, &addr);
2887 
2888 	if (bpf_jit_supports_far_kfunc_call()) {
2889 		call_imm = func_id;
2890 	} else {
2891 		call_imm = BPF_CALL_IMM(addr);
2892 		/* Check whether the relative offset overflows desc->imm */
2893 		if ((unsigned long)(s32)call_imm != call_imm) {
2894 			verbose(env, "address of kernel function %s is out of range\n",
2895 				func_name);
2896 			return -EINVAL;
2897 		}
2898 	}
2899 
2900 	if (bpf_dev_bound_kfunc_id(func_id)) {
2901 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2902 		if (err)
2903 			return err;
2904 	}
2905 
2906 	desc = &tab->descs[tab->nr_descs++];
2907 	desc->func_id = func_id;
2908 	desc->imm = call_imm;
2909 	desc->offset = offset;
2910 	desc->addr = addr;
2911 	err = btf_distill_func_proto(&env->log, desc_btf,
2912 				     func_proto, func_name,
2913 				     &desc->func_model);
2914 	if (!err)
2915 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2916 		     kfunc_desc_cmp_by_id_off, NULL);
2917 	return err;
2918 }
2919 
2920 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2921 {
2922 	const struct bpf_kfunc_desc *d0 = a;
2923 	const struct bpf_kfunc_desc *d1 = b;
2924 
2925 	if (d0->imm != d1->imm)
2926 		return d0->imm < d1->imm ? -1 : 1;
2927 	if (d0->offset != d1->offset)
2928 		return d0->offset < d1->offset ? -1 : 1;
2929 	return 0;
2930 }
2931 
2932 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2933 {
2934 	struct bpf_kfunc_desc_tab *tab;
2935 
2936 	tab = prog->aux->kfunc_tab;
2937 	if (!tab)
2938 		return;
2939 
2940 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2941 	     kfunc_desc_cmp_by_imm_off, NULL);
2942 }
2943 
2944 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2945 {
2946 	return !!prog->aux->kfunc_tab;
2947 }
2948 
2949 const struct btf_func_model *
2950 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2951 			 const struct bpf_insn *insn)
2952 {
2953 	const struct bpf_kfunc_desc desc = {
2954 		.imm = insn->imm,
2955 		.offset = insn->off,
2956 	};
2957 	const struct bpf_kfunc_desc *res;
2958 	struct bpf_kfunc_desc_tab *tab;
2959 
2960 	tab = prog->aux->kfunc_tab;
2961 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2962 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2963 
2964 	return res ? &res->func_model : NULL;
2965 }
2966 
2967 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2968 {
2969 	struct bpf_subprog_info *subprog = env->subprog_info;
2970 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
2971 	struct bpf_insn *insn = env->prog->insnsi;
2972 
2973 	/* Add entry function. */
2974 	ret = add_subprog(env, 0);
2975 	if (ret)
2976 		return ret;
2977 
2978 	for (i = 0; i < insn_cnt; i++, insn++) {
2979 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2980 		    !bpf_pseudo_kfunc_call(insn))
2981 			continue;
2982 
2983 		if (!env->bpf_capable) {
2984 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2985 			return -EPERM;
2986 		}
2987 
2988 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2989 			ret = add_subprog(env, i + insn->imm + 1);
2990 		else
2991 			ret = add_kfunc_call(env, insn->imm, insn->off);
2992 
2993 		if (ret < 0)
2994 			return ret;
2995 	}
2996 
2997 	ret = bpf_find_exception_callback_insn_off(env);
2998 	if (ret < 0)
2999 		return ret;
3000 	ex_cb_insn = ret;
3001 
3002 	/* If ex_cb_insn > 0, this means that the main program has a subprog
3003 	 * marked using BTF decl tag to serve as the exception callback.
3004 	 */
3005 	if (ex_cb_insn) {
3006 		ret = add_subprog(env, ex_cb_insn);
3007 		if (ret < 0)
3008 			return ret;
3009 		for (i = 1; i < env->subprog_cnt; i++) {
3010 			if (env->subprog_info[i].start != ex_cb_insn)
3011 				continue;
3012 			env->exception_callback_subprog = i;
3013 			mark_subprog_exc_cb(env, i);
3014 			break;
3015 		}
3016 	}
3017 
3018 	/* Add a fake 'exit' subprog which could simplify subprog iteration
3019 	 * logic. 'subprog_cnt' should not be increased.
3020 	 */
3021 	subprog[env->subprog_cnt].start = insn_cnt;
3022 
3023 	if (env->log.level & BPF_LOG_LEVEL2)
3024 		for (i = 0; i < env->subprog_cnt; i++)
3025 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
3026 
3027 	return 0;
3028 }
3029 
3030 static int check_subprogs(struct bpf_verifier_env *env)
3031 {
3032 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
3033 	struct bpf_subprog_info *subprog = env->subprog_info;
3034 	struct bpf_insn *insn = env->prog->insnsi;
3035 	int insn_cnt = env->prog->len;
3036 
3037 	/* now check that all jumps are within the same subprog */
3038 	subprog_start = subprog[cur_subprog].start;
3039 	subprog_end = subprog[cur_subprog + 1].start;
3040 	for (i = 0; i < insn_cnt; i++) {
3041 		u8 code = insn[i].code;
3042 
3043 		if (code == (BPF_JMP | BPF_CALL) &&
3044 		    insn[i].src_reg == 0 &&
3045 		    insn[i].imm == BPF_FUNC_tail_call) {
3046 			subprog[cur_subprog].has_tail_call = true;
3047 			subprog[cur_subprog].tail_call_reachable = true;
3048 		}
3049 		if (BPF_CLASS(code) == BPF_LD &&
3050 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3051 			subprog[cur_subprog].has_ld_abs = true;
3052 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3053 			goto next;
3054 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3055 			goto next;
3056 		if (code == (BPF_JMP32 | BPF_JA))
3057 			off = i + insn[i].imm + 1;
3058 		else
3059 			off = i + insn[i].off + 1;
3060 		if (off < subprog_start || off >= subprog_end) {
3061 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
3062 			return -EINVAL;
3063 		}
3064 next:
3065 		if (i == subprog_end - 1) {
3066 			/* to avoid fall-through from one subprog into another
3067 			 * the last insn of the subprog should be either exit
3068 			 * or unconditional jump back or bpf_throw call
3069 			 */
3070 			if (code != (BPF_JMP | BPF_EXIT) &&
3071 			    code != (BPF_JMP32 | BPF_JA) &&
3072 			    code != (BPF_JMP | BPF_JA)) {
3073 				verbose(env, "last insn is not an exit or jmp\n");
3074 				return -EINVAL;
3075 			}
3076 			subprog_start = subprog_end;
3077 			cur_subprog++;
3078 			if (cur_subprog < env->subprog_cnt)
3079 				subprog_end = subprog[cur_subprog + 1].start;
3080 		}
3081 	}
3082 	return 0;
3083 }
3084 
3085 /* Parentage chain of this register (or stack slot) should take care of all
3086  * issues like callee-saved registers, stack slot allocation time, etc.
3087  */
3088 static int mark_reg_read(struct bpf_verifier_env *env,
3089 			 const struct bpf_reg_state *state,
3090 			 struct bpf_reg_state *parent, u8 flag)
3091 {
3092 	bool writes = parent == state->parent; /* Observe write marks */
3093 	int cnt = 0;
3094 
3095 	while (parent) {
3096 		/* if read wasn't screened by an earlier write ... */
3097 		if (writes && state->live & REG_LIVE_WRITTEN)
3098 			break;
3099 		if (parent->live & REG_LIVE_DONE) {
3100 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3101 				reg_type_str(env, parent->type),
3102 				parent->var_off.value, parent->off);
3103 			return -EFAULT;
3104 		}
3105 		/* The first condition is more likely to be true than the
3106 		 * second, checked it first.
3107 		 */
3108 		if ((parent->live & REG_LIVE_READ) == flag ||
3109 		    parent->live & REG_LIVE_READ64)
3110 			/* The parentage chain never changes and
3111 			 * this parent was already marked as LIVE_READ.
3112 			 * There is no need to keep walking the chain again and
3113 			 * keep re-marking all parents as LIVE_READ.
3114 			 * This case happens when the same register is read
3115 			 * multiple times without writes into it in-between.
3116 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3117 			 * then no need to set the weak REG_LIVE_READ32.
3118 			 */
3119 			break;
3120 		/* ... then we depend on parent's value */
3121 		parent->live |= flag;
3122 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3123 		if (flag == REG_LIVE_READ64)
3124 			parent->live &= ~REG_LIVE_READ32;
3125 		state = parent;
3126 		parent = state->parent;
3127 		writes = true;
3128 		cnt++;
3129 	}
3130 
3131 	if (env->longest_mark_read_walk < cnt)
3132 		env->longest_mark_read_walk = cnt;
3133 	return 0;
3134 }
3135 
3136 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3137 {
3138 	struct bpf_func_state *state = func(env, reg);
3139 	int spi, ret;
3140 
3141 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3142 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3143 	 * check_kfunc_call.
3144 	 */
3145 	if (reg->type == CONST_PTR_TO_DYNPTR)
3146 		return 0;
3147 	spi = dynptr_get_spi(env, reg);
3148 	if (spi < 0)
3149 		return spi;
3150 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3151 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3152 	 * read.
3153 	 */
3154 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3155 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3156 	if (ret)
3157 		return ret;
3158 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3159 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3160 }
3161 
3162 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3163 			  int spi, int nr_slots)
3164 {
3165 	struct bpf_func_state *state = func(env, reg);
3166 	int err, i;
3167 
3168 	for (i = 0; i < nr_slots; i++) {
3169 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3170 
3171 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3172 		if (err)
3173 			return err;
3174 
3175 		mark_stack_slot_scratched(env, spi - i);
3176 	}
3177 
3178 	return 0;
3179 }
3180 
3181 /* This function is supposed to be used by the following 32-bit optimization
3182  * code only. It returns TRUE if the source or destination register operates
3183  * on 64-bit, otherwise return FALSE.
3184  */
3185 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3186 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3187 {
3188 	u8 code, class, op;
3189 
3190 	code = insn->code;
3191 	class = BPF_CLASS(code);
3192 	op = BPF_OP(code);
3193 	if (class == BPF_JMP) {
3194 		/* BPF_EXIT for "main" will reach here. Return TRUE
3195 		 * conservatively.
3196 		 */
3197 		if (op == BPF_EXIT)
3198 			return true;
3199 		if (op == BPF_CALL) {
3200 			/* BPF to BPF call will reach here because of marking
3201 			 * caller saved clobber with DST_OP_NO_MARK for which we
3202 			 * don't care the register def because they are anyway
3203 			 * marked as NOT_INIT already.
3204 			 */
3205 			if (insn->src_reg == BPF_PSEUDO_CALL)
3206 				return false;
3207 			/* Helper call will reach here because of arg type
3208 			 * check, conservatively return TRUE.
3209 			 */
3210 			if (t == SRC_OP)
3211 				return true;
3212 
3213 			return false;
3214 		}
3215 	}
3216 
3217 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3218 		return false;
3219 
3220 	if (class == BPF_ALU64 || class == BPF_JMP ||
3221 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3222 		return true;
3223 
3224 	if (class == BPF_ALU || class == BPF_JMP32)
3225 		return false;
3226 
3227 	if (class == BPF_LDX) {
3228 		if (t != SRC_OP)
3229 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3230 		/* LDX source must be ptr. */
3231 		return true;
3232 	}
3233 
3234 	if (class == BPF_STX) {
3235 		/* BPF_STX (including atomic variants) has multiple source
3236 		 * operands, one of which is a ptr. Check whether the caller is
3237 		 * asking about it.
3238 		 */
3239 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3240 			return true;
3241 		return BPF_SIZE(code) == BPF_DW;
3242 	}
3243 
3244 	if (class == BPF_LD) {
3245 		u8 mode = BPF_MODE(code);
3246 
3247 		/* LD_IMM64 */
3248 		if (mode == BPF_IMM)
3249 			return true;
3250 
3251 		/* Both LD_IND and LD_ABS return 32-bit data. */
3252 		if (t != SRC_OP)
3253 			return  false;
3254 
3255 		/* Implicit ctx ptr. */
3256 		if (regno == BPF_REG_6)
3257 			return true;
3258 
3259 		/* Explicit source could be any width. */
3260 		return true;
3261 	}
3262 
3263 	if (class == BPF_ST)
3264 		/* The only source register for BPF_ST is a ptr. */
3265 		return true;
3266 
3267 	/* Conservatively return true at default. */
3268 	return true;
3269 }
3270 
3271 /* Return the regno defined by the insn, or -1. */
3272 static int insn_def_regno(const struct bpf_insn *insn)
3273 {
3274 	switch (BPF_CLASS(insn->code)) {
3275 	case BPF_JMP:
3276 	case BPF_JMP32:
3277 	case BPF_ST:
3278 		return -1;
3279 	case BPF_STX:
3280 		if ((BPF_MODE(insn->code) == BPF_ATOMIC ||
3281 		     BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) &&
3282 		    (insn->imm & BPF_FETCH)) {
3283 			if (insn->imm == BPF_CMPXCHG)
3284 				return BPF_REG_0;
3285 			else
3286 				return insn->src_reg;
3287 		} else {
3288 			return -1;
3289 		}
3290 	default:
3291 		return insn->dst_reg;
3292 	}
3293 }
3294 
3295 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3296 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3297 {
3298 	int dst_reg = insn_def_regno(insn);
3299 
3300 	if (dst_reg == -1)
3301 		return false;
3302 
3303 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3304 }
3305 
3306 static void mark_insn_zext(struct bpf_verifier_env *env,
3307 			   struct bpf_reg_state *reg)
3308 {
3309 	s32 def_idx = reg->subreg_def;
3310 
3311 	if (def_idx == DEF_NOT_SUBREG)
3312 		return;
3313 
3314 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3315 	/* The dst will be zero extended, so won't be sub-register anymore. */
3316 	reg->subreg_def = DEF_NOT_SUBREG;
3317 }
3318 
3319 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3320 			   enum reg_arg_type t)
3321 {
3322 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3323 	struct bpf_reg_state *reg;
3324 	bool rw64;
3325 
3326 	if (regno >= MAX_BPF_REG) {
3327 		verbose(env, "R%d is invalid\n", regno);
3328 		return -EINVAL;
3329 	}
3330 
3331 	mark_reg_scratched(env, regno);
3332 
3333 	reg = &regs[regno];
3334 	rw64 = is_reg64(env, insn, regno, reg, t);
3335 	if (t == SRC_OP) {
3336 		/* check whether register used as source operand can be read */
3337 		if (reg->type == NOT_INIT) {
3338 			verbose(env, "R%d !read_ok\n", regno);
3339 			return -EACCES;
3340 		}
3341 		/* We don't need to worry about FP liveness because it's read-only */
3342 		if (regno == BPF_REG_FP)
3343 			return 0;
3344 
3345 		if (rw64)
3346 			mark_insn_zext(env, reg);
3347 
3348 		return mark_reg_read(env, reg, reg->parent,
3349 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3350 	} else {
3351 		/* check whether register used as dest operand can be written to */
3352 		if (regno == BPF_REG_FP) {
3353 			verbose(env, "frame pointer is read only\n");
3354 			return -EACCES;
3355 		}
3356 		reg->live |= REG_LIVE_WRITTEN;
3357 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3358 		if (t == DST_OP)
3359 			mark_reg_unknown(env, regs, regno);
3360 	}
3361 	return 0;
3362 }
3363 
3364 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3365 			 enum reg_arg_type t)
3366 {
3367 	struct bpf_verifier_state *vstate = env->cur_state;
3368 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3369 
3370 	return __check_reg_arg(env, state->regs, regno, t);
3371 }
3372 
3373 static int insn_stack_access_flags(int frameno, int spi)
3374 {
3375 	return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3376 }
3377 
3378 static int insn_stack_access_spi(int insn_flags)
3379 {
3380 	return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3381 }
3382 
3383 static int insn_stack_access_frameno(int insn_flags)
3384 {
3385 	return insn_flags & INSN_F_FRAMENO_MASK;
3386 }
3387 
3388 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3389 {
3390 	env->insn_aux_data[idx].jmp_point = true;
3391 }
3392 
3393 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3394 {
3395 	return env->insn_aux_data[insn_idx].jmp_point;
3396 }
3397 
3398 #define LR_FRAMENO_BITS	3
3399 #define LR_SPI_BITS	6
3400 #define LR_ENTRY_BITS	(LR_SPI_BITS + LR_FRAMENO_BITS + 1)
3401 #define LR_SIZE_BITS	4
3402 #define LR_FRAMENO_MASK	((1ull << LR_FRAMENO_BITS) - 1)
3403 #define LR_SPI_MASK	((1ull << LR_SPI_BITS)     - 1)
3404 #define LR_SIZE_MASK	((1ull << LR_SIZE_BITS)    - 1)
3405 #define LR_SPI_OFF	LR_FRAMENO_BITS
3406 #define LR_IS_REG_OFF	(LR_SPI_BITS + LR_FRAMENO_BITS)
3407 #define LINKED_REGS_MAX	6
3408 
3409 struct linked_reg {
3410 	u8 frameno;
3411 	union {
3412 		u8 spi;
3413 		u8 regno;
3414 	};
3415 	bool is_reg;
3416 };
3417 
3418 struct linked_regs {
3419 	int cnt;
3420 	struct linked_reg entries[LINKED_REGS_MAX];
3421 };
3422 
3423 static struct linked_reg *linked_regs_push(struct linked_regs *s)
3424 {
3425 	if (s->cnt < LINKED_REGS_MAX)
3426 		return &s->entries[s->cnt++];
3427 
3428 	return NULL;
3429 }
3430 
3431 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track
3432  * number of elements currently in stack.
3433  * Pack one history entry for linked registers as 10 bits in the following format:
3434  * - 3-bits frameno
3435  * - 6-bits spi_or_reg
3436  * - 1-bit  is_reg
3437  */
3438 static u64 linked_regs_pack(struct linked_regs *s)
3439 {
3440 	u64 val = 0;
3441 	int i;
3442 
3443 	for (i = 0; i < s->cnt; ++i) {
3444 		struct linked_reg *e = &s->entries[i];
3445 		u64 tmp = 0;
3446 
3447 		tmp |= e->frameno;
3448 		tmp |= e->spi << LR_SPI_OFF;
3449 		tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF;
3450 
3451 		val <<= LR_ENTRY_BITS;
3452 		val |= tmp;
3453 	}
3454 	val <<= LR_SIZE_BITS;
3455 	val |= s->cnt;
3456 	return val;
3457 }
3458 
3459 static void linked_regs_unpack(u64 val, struct linked_regs *s)
3460 {
3461 	int i;
3462 
3463 	s->cnt = val & LR_SIZE_MASK;
3464 	val >>= LR_SIZE_BITS;
3465 
3466 	for (i = 0; i < s->cnt; ++i) {
3467 		struct linked_reg *e = &s->entries[i];
3468 
3469 		e->frameno =  val & LR_FRAMENO_MASK;
3470 		e->spi     = (val >> LR_SPI_OFF) & LR_SPI_MASK;
3471 		e->is_reg  = (val >> LR_IS_REG_OFF) & 0x1;
3472 		val >>= LR_ENTRY_BITS;
3473 	}
3474 }
3475 
3476 /* for any branch, call, exit record the history of jmps in the given state */
3477 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3478 			    int insn_flags, u64 linked_regs)
3479 {
3480 	u32 cnt = cur->jmp_history_cnt;
3481 	struct bpf_jmp_history_entry *p;
3482 	size_t alloc_size;
3483 
3484 	/* combine instruction flags if we already recorded this instruction */
3485 	if (env->cur_hist_ent) {
3486 		/* atomic instructions push insn_flags twice, for READ and
3487 		 * WRITE sides, but they should agree on stack slot
3488 		 */
3489 		WARN_ONCE((env->cur_hist_ent->flags & insn_flags) &&
3490 			  (env->cur_hist_ent->flags & insn_flags) != insn_flags,
3491 			  "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n",
3492 			  env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3493 		env->cur_hist_ent->flags |= insn_flags;
3494 		WARN_ONCE(env->cur_hist_ent->linked_regs != 0,
3495 			  "verifier insn history bug: insn_idx %d linked_regs != 0: %#llx\n",
3496 			  env->insn_idx, env->cur_hist_ent->linked_regs);
3497 		env->cur_hist_ent->linked_regs = linked_regs;
3498 		return 0;
3499 	}
3500 
3501 	cnt++;
3502 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3503 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3504 	if (!p)
3505 		return -ENOMEM;
3506 	cur->jmp_history = p;
3507 
3508 	p = &cur->jmp_history[cnt - 1];
3509 	p->idx = env->insn_idx;
3510 	p->prev_idx = env->prev_insn_idx;
3511 	p->flags = insn_flags;
3512 	p->linked_regs = linked_regs;
3513 	cur->jmp_history_cnt = cnt;
3514 	env->cur_hist_ent = p;
3515 
3516 	return 0;
3517 }
3518 
3519 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
3520 						        u32 hist_end, int insn_idx)
3521 {
3522 	if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
3523 		return &st->jmp_history[hist_end - 1];
3524 	return NULL;
3525 }
3526 
3527 /* Backtrack one insn at a time. If idx is not at the top of recorded
3528  * history then previous instruction came from straight line execution.
3529  * Return -ENOENT if we exhausted all instructions within given state.
3530  *
3531  * It's legal to have a bit of a looping with the same starting and ending
3532  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3533  * instruction index is the same as state's first_idx doesn't mean we are
3534  * done. If there is still some jump history left, we should keep going. We
3535  * need to take into account that we might have a jump history between given
3536  * state's parent and itself, due to checkpointing. In this case, we'll have
3537  * history entry recording a jump from last instruction of parent state and
3538  * first instruction of given state.
3539  */
3540 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3541 			     u32 *history)
3542 {
3543 	u32 cnt = *history;
3544 
3545 	if (i == st->first_insn_idx) {
3546 		if (cnt == 0)
3547 			return -ENOENT;
3548 		if (cnt == 1 && st->jmp_history[0].idx == i)
3549 			return -ENOENT;
3550 	}
3551 
3552 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3553 		i = st->jmp_history[cnt - 1].prev_idx;
3554 		(*history)--;
3555 	} else {
3556 		i--;
3557 	}
3558 	return i;
3559 }
3560 
3561 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3562 {
3563 	const struct btf_type *func;
3564 	struct btf *desc_btf;
3565 
3566 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3567 		return NULL;
3568 
3569 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3570 	if (IS_ERR(desc_btf))
3571 		return "<error>";
3572 
3573 	func = btf_type_by_id(desc_btf, insn->imm);
3574 	return btf_name_by_offset(desc_btf, func->name_off);
3575 }
3576 
3577 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3578 {
3579 	bt->frame = frame;
3580 }
3581 
3582 static inline void bt_reset(struct backtrack_state *bt)
3583 {
3584 	struct bpf_verifier_env *env = bt->env;
3585 
3586 	memset(bt, 0, sizeof(*bt));
3587 	bt->env = env;
3588 }
3589 
3590 static inline u32 bt_empty(struct backtrack_state *bt)
3591 {
3592 	u64 mask = 0;
3593 	int i;
3594 
3595 	for (i = 0; i <= bt->frame; i++)
3596 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3597 
3598 	return mask == 0;
3599 }
3600 
3601 static inline int bt_subprog_enter(struct backtrack_state *bt)
3602 {
3603 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3604 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3605 		WARN_ONCE(1, "verifier backtracking bug");
3606 		return -EFAULT;
3607 	}
3608 	bt->frame++;
3609 	return 0;
3610 }
3611 
3612 static inline int bt_subprog_exit(struct backtrack_state *bt)
3613 {
3614 	if (bt->frame == 0) {
3615 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3616 		WARN_ONCE(1, "verifier backtracking bug");
3617 		return -EFAULT;
3618 	}
3619 	bt->frame--;
3620 	return 0;
3621 }
3622 
3623 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3624 {
3625 	bt->reg_masks[frame] |= 1 << reg;
3626 }
3627 
3628 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3629 {
3630 	bt->reg_masks[frame] &= ~(1 << reg);
3631 }
3632 
3633 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3634 {
3635 	bt_set_frame_reg(bt, bt->frame, reg);
3636 }
3637 
3638 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3639 {
3640 	bt_clear_frame_reg(bt, bt->frame, reg);
3641 }
3642 
3643 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3644 {
3645 	bt->stack_masks[frame] |= 1ull << slot;
3646 }
3647 
3648 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3649 {
3650 	bt->stack_masks[frame] &= ~(1ull << slot);
3651 }
3652 
3653 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3654 {
3655 	return bt->reg_masks[frame];
3656 }
3657 
3658 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3659 {
3660 	return bt->reg_masks[bt->frame];
3661 }
3662 
3663 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3664 {
3665 	return bt->stack_masks[frame];
3666 }
3667 
3668 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3669 {
3670 	return bt->stack_masks[bt->frame];
3671 }
3672 
3673 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3674 {
3675 	return bt->reg_masks[bt->frame] & (1 << reg);
3676 }
3677 
3678 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg)
3679 {
3680 	return bt->reg_masks[frame] & (1 << reg);
3681 }
3682 
3683 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
3684 {
3685 	return bt->stack_masks[frame] & (1ull << slot);
3686 }
3687 
3688 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3689 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3690 {
3691 	DECLARE_BITMAP(mask, 64);
3692 	bool first = true;
3693 	int i, n;
3694 
3695 	buf[0] = '\0';
3696 
3697 	bitmap_from_u64(mask, reg_mask);
3698 	for_each_set_bit(i, mask, 32) {
3699 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3700 		first = false;
3701 		buf += n;
3702 		buf_sz -= n;
3703 		if (buf_sz < 0)
3704 			break;
3705 	}
3706 }
3707 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3708 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3709 {
3710 	DECLARE_BITMAP(mask, 64);
3711 	bool first = true;
3712 	int i, n;
3713 
3714 	buf[0] = '\0';
3715 
3716 	bitmap_from_u64(mask, stack_mask);
3717 	for_each_set_bit(i, mask, 64) {
3718 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3719 		first = false;
3720 		buf += n;
3721 		buf_sz -= n;
3722 		if (buf_sz < 0)
3723 			break;
3724 	}
3725 }
3726 
3727 /* If any register R in hist->linked_regs is marked as precise in bt,
3728  * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs.
3729  */
3730 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist)
3731 {
3732 	struct linked_regs linked_regs;
3733 	bool some_precise = false;
3734 	int i;
3735 
3736 	if (!hist || hist->linked_regs == 0)
3737 		return;
3738 
3739 	linked_regs_unpack(hist->linked_regs, &linked_regs);
3740 	for (i = 0; i < linked_regs.cnt; ++i) {
3741 		struct linked_reg *e = &linked_regs.entries[i];
3742 
3743 		if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) ||
3744 		    (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) {
3745 			some_precise = true;
3746 			break;
3747 		}
3748 	}
3749 
3750 	if (!some_precise)
3751 		return;
3752 
3753 	for (i = 0; i < linked_regs.cnt; ++i) {
3754 		struct linked_reg *e = &linked_regs.entries[i];
3755 
3756 		if (e->is_reg)
3757 			bt_set_frame_reg(bt, e->frameno, e->regno);
3758 		else
3759 			bt_set_frame_slot(bt, e->frameno, e->spi);
3760 	}
3761 }
3762 
3763 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3764 
3765 /* For given verifier state backtrack_insn() is called from the last insn to
3766  * the first insn. Its purpose is to compute a bitmask of registers and
3767  * stack slots that needs precision in the parent verifier state.
3768  *
3769  * @idx is an index of the instruction we are currently processing;
3770  * @subseq_idx is an index of the subsequent instruction that:
3771  *   - *would be* executed next, if jump history is viewed in forward order;
3772  *   - *was* processed previously during backtracking.
3773  */
3774 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3775 			  struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
3776 {
3777 	const struct bpf_insn_cbs cbs = {
3778 		.cb_call	= disasm_kfunc_name,
3779 		.cb_print	= verbose,
3780 		.private_data	= env,
3781 	};
3782 	struct bpf_insn *insn = env->prog->insnsi + idx;
3783 	u8 class = BPF_CLASS(insn->code);
3784 	u8 opcode = BPF_OP(insn->code);
3785 	u8 mode = BPF_MODE(insn->code);
3786 	u32 dreg = insn->dst_reg;
3787 	u32 sreg = insn->src_reg;
3788 	u32 spi, i, fr;
3789 
3790 	if (insn->code == 0)
3791 		return 0;
3792 	if (env->log.level & BPF_LOG_LEVEL2) {
3793 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3794 		verbose(env, "mark_precise: frame%d: regs=%s ",
3795 			bt->frame, env->tmp_str_buf);
3796 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3797 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3798 		verbose(env, "%d: ", idx);
3799 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3800 	}
3801 
3802 	/* If there is a history record that some registers gained range at this insn,
3803 	 * propagate precision marks to those registers, so that bt_is_reg_set()
3804 	 * accounts for these registers.
3805 	 */
3806 	bt_sync_linked_regs(bt, hist);
3807 
3808 	if (class == BPF_ALU || class == BPF_ALU64) {
3809 		if (!bt_is_reg_set(bt, dreg))
3810 			return 0;
3811 		if (opcode == BPF_END || opcode == BPF_NEG) {
3812 			/* sreg is reserved and unused
3813 			 * dreg still need precision before this insn
3814 			 */
3815 			return 0;
3816 		} else if (opcode == BPF_MOV) {
3817 			if (BPF_SRC(insn->code) == BPF_X) {
3818 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3819 				 * dreg needs precision after this insn
3820 				 * sreg needs precision before this insn
3821 				 */
3822 				bt_clear_reg(bt, dreg);
3823 				if (sreg != BPF_REG_FP)
3824 					bt_set_reg(bt, sreg);
3825 			} else {
3826 				/* dreg = K
3827 				 * dreg needs precision after this insn.
3828 				 * Corresponding register is already marked
3829 				 * as precise=true in this verifier state.
3830 				 * No further markings in parent are necessary
3831 				 */
3832 				bt_clear_reg(bt, dreg);
3833 			}
3834 		} else {
3835 			if (BPF_SRC(insn->code) == BPF_X) {
3836 				/* dreg += sreg
3837 				 * both dreg and sreg need precision
3838 				 * before this insn
3839 				 */
3840 				if (sreg != BPF_REG_FP)
3841 					bt_set_reg(bt, sreg);
3842 			} /* else dreg += K
3843 			   * dreg still needs precision before this insn
3844 			   */
3845 		}
3846 	} else if (class == BPF_LDX) {
3847 		if (!bt_is_reg_set(bt, dreg))
3848 			return 0;
3849 		bt_clear_reg(bt, dreg);
3850 
3851 		/* scalars can only be spilled into stack w/o losing precision.
3852 		 * Load from any other memory can be zero extended.
3853 		 * The desire to keep that precision is already indicated
3854 		 * by 'precise' mark in corresponding register of this state.
3855 		 * No further tracking necessary.
3856 		 */
3857 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3858 			return 0;
3859 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3860 		 * that [fp - off] slot contains scalar that needs to be
3861 		 * tracked with precision
3862 		 */
3863 		spi = insn_stack_access_spi(hist->flags);
3864 		fr = insn_stack_access_frameno(hist->flags);
3865 		bt_set_frame_slot(bt, fr, spi);
3866 	} else if (class == BPF_STX || class == BPF_ST) {
3867 		if (bt_is_reg_set(bt, dreg))
3868 			/* stx & st shouldn't be using _scalar_ dst_reg
3869 			 * to access memory. It means backtracking
3870 			 * encountered a case of pointer subtraction.
3871 			 */
3872 			return -ENOTSUPP;
3873 		/* scalars can only be spilled into stack */
3874 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3875 			return 0;
3876 		spi = insn_stack_access_spi(hist->flags);
3877 		fr = insn_stack_access_frameno(hist->flags);
3878 		if (!bt_is_frame_slot_set(bt, fr, spi))
3879 			return 0;
3880 		bt_clear_frame_slot(bt, fr, spi);
3881 		if (class == BPF_STX)
3882 			bt_set_reg(bt, sreg);
3883 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3884 		if (bpf_pseudo_call(insn)) {
3885 			int subprog_insn_idx, subprog;
3886 
3887 			subprog_insn_idx = idx + insn->imm + 1;
3888 			subprog = find_subprog(env, subprog_insn_idx);
3889 			if (subprog < 0)
3890 				return -EFAULT;
3891 
3892 			if (subprog_is_global(env, subprog)) {
3893 				/* check that jump history doesn't have any
3894 				 * extra instructions from subprog; the next
3895 				 * instruction after call to global subprog
3896 				 * should be literally next instruction in
3897 				 * caller program
3898 				 */
3899 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3900 				/* r1-r5 are invalidated after subprog call,
3901 				 * so for global func call it shouldn't be set
3902 				 * anymore
3903 				 */
3904 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3905 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3906 					WARN_ONCE(1, "verifier backtracking bug");
3907 					return -EFAULT;
3908 				}
3909 				/* global subprog always sets R0 */
3910 				bt_clear_reg(bt, BPF_REG_0);
3911 				return 0;
3912 			} else {
3913 				/* static subprog call instruction, which
3914 				 * means that we are exiting current subprog,
3915 				 * so only r1-r5 could be still requested as
3916 				 * precise, r0 and r6-r10 or any stack slot in
3917 				 * the current frame should be zero by now
3918 				 */
3919 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3920 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3921 					WARN_ONCE(1, "verifier backtracking bug");
3922 					return -EFAULT;
3923 				}
3924 				/* we are now tracking register spills correctly,
3925 				 * so any instance of leftover slots is a bug
3926 				 */
3927 				if (bt_stack_mask(bt) != 0) {
3928 					verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3929 					WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)");
3930 					return -EFAULT;
3931 				}
3932 				/* propagate r1-r5 to the caller */
3933 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3934 					if (bt_is_reg_set(bt, i)) {
3935 						bt_clear_reg(bt, i);
3936 						bt_set_frame_reg(bt, bt->frame - 1, i);
3937 					}
3938 				}
3939 				if (bt_subprog_exit(bt))
3940 					return -EFAULT;
3941 				return 0;
3942 			}
3943 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
3944 			/* exit from callback subprog to callback-calling helper or
3945 			 * kfunc call. Use idx/subseq_idx check to discern it from
3946 			 * straight line code backtracking.
3947 			 * Unlike the subprog call handling above, we shouldn't
3948 			 * propagate precision of r1-r5 (if any requested), as they are
3949 			 * not actually arguments passed directly to callback subprogs
3950 			 */
3951 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3952 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3953 				WARN_ONCE(1, "verifier backtracking bug");
3954 				return -EFAULT;
3955 			}
3956 			if (bt_stack_mask(bt) != 0) {
3957 				verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3958 				WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)");
3959 				return -EFAULT;
3960 			}
3961 			/* clear r1-r5 in callback subprog's mask */
3962 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3963 				bt_clear_reg(bt, i);
3964 			if (bt_subprog_exit(bt))
3965 				return -EFAULT;
3966 			return 0;
3967 		} else if (opcode == BPF_CALL) {
3968 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3969 			 * catch this error later. Make backtracking conservative
3970 			 * with ENOTSUPP.
3971 			 */
3972 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3973 				return -ENOTSUPP;
3974 			/* regular helper call sets R0 */
3975 			bt_clear_reg(bt, BPF_REG_0);
3976 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3977 				/* if backtracing was looking for registers R1-R5
3978 				 * they should have been found already.
3979 				 */
3980 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3981 				WARN_ONCE(1, "verifier backtracking bug");
3982 				return -EFAULT;
3983 			}
3984 		} else if (opcode == BPF_EXIT) {
3985 			bool r0_precise;
3986 
3987 			/* Backtracking to a nested function call, 'idx' is a part of
3988 			 * the inner frame 'subseq_idx' is a part of the outer frame.
3989 			 * In case of a regular function call, instructions giving
3990 			 * precision to registers R1-R5 should have been found already.
3991 			 * In case of a callback, it is ok to have R1-R5 marked for
3992 			 * backtracking, as these registers are set by the function
3993 			 * invoking callback.
3994 			 */
3995 			if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
3996 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3997 					bt_clear_reg(bt, i);
3998 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3999 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
4000 				WARN_ONCE(1, "verifier backtracking bug");
4001 				return -EFAULT;
4002 			}
4003 
4004 			/* BPF_EXIT in subprog or callback always returns
4005 			 * right after the call instruction, so by checking
4006 			 * whether the instruction at subseq_idx-1 is subprog
4007 			 * call or not we can distinguish actual exit from
4008 			 * *subprog* from exit from *callback*. In the former
4009 			 * case, we need to propagate r0 precision, if
4010 			 * necessary. In the former we never do that.
4011 			 */
4012 			r0_precise = subseq_idx - 1 >= 0 &&
4013 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
4014 				     bt_is_reg_set(bt, BPF_REG_0);
4015 
4016 			bt_clear_reg(bt, BPF_REG_0);
4017 			if (bt_subprog_enter(bt))
4018 				return -EFAULT;
4019 
4020 			if (r0_precise)
4021 				bt_set_reg(bt, BPF_REG_0);
4022 			/* r6-r9 and stack slots will stay set in caller frame
4023 			 * bitmasks until we return back from callee(s)
4024 			 */
4025 			return 0;
4026 		} else if (BPF_SRC(insn->code) == BPF_X) {
4027 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
4028 				return 0;
4029 			/* dreg <cond> sreg
4030 			 * Both dreg and sreg need precision before
4031 			 * this insn. If only sreg was marked precise
4032 			 * before it would be equally necessary to
4033 			 * propagate it to dreg.
4034 			 */
4035 			bt_set_reg(bt, dreg);
4036 			bt_set_reg(bt, sreg);
4037 		} else if (BPF_SRC(insn->code) == BPF_K) {
4038 			 /* dreg <cond> K
4039 			  * Only dreg still needs precision before
4040 			  * this insn, so for the K-based conditional
4041 			  * there is nothing new to be marked.
4042 			  */
4043 		}
4044 	} else if (class == BPF_LD) {
4045 		if (!bt_is_reg_set(bt, dreg))
4046 			return 0;
4047 		bt_clear_reg(bt, dreg);
4048 		/* It's ld_imm64 or ld_abs or ld_ind.
4049 		 * For ld_imm64 no further tracking of precision
4050 		 * into parent is necessary
4051 		 */
4052 		if (mode == BPF_IND || mode == BPF_ABS)
4053 			/* to be analyzed */
4054 			return -ENOTSUPP;
4055 	}
4056 	/* Propagate precision marks to linked registers, to account for
4057 	 * registers marked as precise in this function.
4058 	 */
4059 	bt_sync_linked_regs(bt, hist);
4060 	return 0;
4061 }
4062 
4063 /* the scalar precision tracking algorithm:
4064  * . at the start all registers have precise=false.
4065  * . scalar ranges are tracked as normal through alu and jmp insns.
4066  * . once precise value of the scalar register is used in:
4067  *   .  ptr + scalar alu
4068  *   . if (scalar cond K|scalar)
4069  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
4070  *   backtrack through the verifier states and mark all registers and
4071  *   stack slots with spilled constants that these scalar regisers
4072  *   should be precise.
4073  * . during state pruning two registers (or spilled stack slots)
4074  *   are equivalent if both are not precise.
4075  *
4076  * Note the verifier cannot simply walk register parentage chain,
4077  * since many different registers and stack slots could have been
4078  * used to compute single precise scalar.
4079  *
4080  * The approach of starting with precise=true for all registers and then
4081  * backtrack to mark a register as not precise when the verifier detects
4082  * that program doesn't care about specific value (e.g., when helper
4083  * takes register as ARG_ANYTHING parameter) is not safe.
4084  *
4085  * It's ok to walk single parentage chain of the verifier states.
4086  * It's possible that this backtracking will go all the way till 1st insn.
4087  * All other branches will be explored for needing precision later.
4088  *
4089  * The backtracking needs to deal with cases like:
4090  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
4091  * r9 -= r8
4092  * r5 = r9
4093  * if r5 > 0x79f goto pc+7
4094  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4095  * r5 += 1
4096  * ...
4097  * call bpf_perf_event_output#25
4098  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4099  *
4100  * and this case:
4101  * r6 = 1
4102  * call foo // uses callee's r6 inside to compute r0
4103  * r0 += r6
4104  * if r0 == 0 goto
4105  *
4106  * to track above reg_mask/stack_mask needs to be independent for each frame.
4107  *
4108  * Also if parent's curframe > frame where backtracking started,
4109  * the verifier need to mark registers in both frames, otherwise callees
4110  * may incorrectly prune callers. This is similar to
4111  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4112  *
4113  * For now backtracking falls back into conservative marking.
4114  */
4115 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4116 				     struct bpf_verifier_state *st)
4117 {
4118 	struct bpf_func_state *func;
4119 	struct bpf_reg_state *reg;
4120 	int i, j;
4121 
4122 	if (env->log.level & BPF_LOG_LEVEL2) {
4123 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4124 			st->curframe);
4125 	}
4126 
4127 	/* big hammer: mark all scalars precise in this path.
4128 	 * pop_stack may still get !precise scalars.
4129 	 * We also skip current state and go straight to first parent state,
4130 	 * because precision markings in current non-checkpointed state are
4131 	 * not needed. See why in the comment in __mark_chain_precision below.
4132 	 */
4133 	for (st = st->parent; st; st = st->parent) {
4134 		for (i = 0; i <= st->curframe; i++) {
4135 			func = st->frame[i];
4136 			for (j = 0; j < BPF_REG_FP; j++) {
4137 				reg = &func->regs[j];
4138 				if (reg->type != SCALAR_VALUE || reg->precise)
4139 					continue;
4140 				reg->precise = true;
4141 				if (env->log.level & BPF_LOG_LEVEL2) {
4142 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4143 						i, j);
4144 				}
4145 			}
4146 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4147 				if (!is_spilled_reg(&func->stack[j]))
4148 					continue;
4149 				reg = &func->stack[j].spilled_ptr;
4150 				if (reg->type != SCALAR_VALUE || reg->precise)
4151 					continue;
4152 				reg->precise = true;
4153 				if (env->log.level & BPF_LOG_LEVEL2) {
4154 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4155 						i, -(j + 1) * 8);
4156 				}
4157 			}
4158 		}
4159 	}
4160 }
4161 
4162 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4163 {
4164 	struct bpf_func_state *func;
4165 	struct bpf_reg_state *reg;
4166 	int i, j;
4167 
4168 	for (i = 0; i <= st->curframe; i++) {
4169 		func = st->frame[i];
4170 		for (j = 0; j < BPF_REG_FP; j++) {
4171 			reg = &func->regs[j];
4172 			if (reg->type != SCALAR_VALUE)
4173 				continue;
4174 			reg->precise = false;
4175 		}
4176 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4177 			if (!is_spilled_reg(&func->stack[j]))
4178 				continue;
4179 			reg = &func->stack[j].spilled_ptr;
4180 			if (reg->type != SCALAR_VALUE)
4181 				continue;
4182 			reg->precise = false;
4183 		}
4184 	}
4185 }
4186 
4187 /*
4188  * __mark_chain_precision() backtracks BPF program instruction sequence and
4189  * chain of verifier states making sure that register *regno* (if regno >= 0)
4190  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4191  * SCALARS, as well as any other registers and slots that contribute to
4192  * a tracked state of given registers/stack slots, depending on specific BPF
4193  * assembly instructions (see backtrack_insns() for exact instruction handling
4194  * logic). This backtracking relies on recorded jmp_history and is able to
4195  * traverse entire chain of parent states. This process ends only when all the
4196  * necessary registers/slots and their transitive dependencies are marked as
4197  * precise.
4198  *
4199  * One important and subtle aspect is that precise marks *do not matter* in
4200  * the currently verified state (current state). It is important to understand
4201  * why this is the case.
4202  *
4203  * First, note that current state is the state that is not yet "checkpointed",
4204  * i.e., it is not yet put into env->explored_states, and it has no children
4205  * states as well. It's ephemeral, and can end up either a) being discarded if
4206  * compatible explored state is found at some point or BPF_EXIT instruction is
4207  * reached or b) checkpointed and put into env->explored_states, branching out
4208  * into one or more children states.
4209  *
4210  * In the former case, precise markings in current state are completely
4211  * ignored by state comparison code (see regsafe() for details). Only
4212  * checkpointed ("old") state precise markings are important, and if old
4213  * state's register/slot is precise, regsafe() assumes current state's
4214  * register/slot as precise and checks value ranges exactly and precisely. If
4215  * states turn out to be compatible, current state's necessary precise
4216  * markings and any required parent states' precise markings are enforced
4217  * after the fact with propagate_precision() logic, after the fact. But it's
4218  * important to realize that in this case, even after marking current state
4219  * registers/slots as precise, we immediately discard current state. So what
4220  * actually matters is any of the precise markings propagated into current
4221  * state's parent states, which are always checkpointed (due to b) case above).
4222  * As such, for scenario a) it doesn't matter if current state has precise
4223  * markings set or not.
4224  *
4225  * Now, for the scenario b), checkpointing and forking into child(ren)
4226  * state(s). Note that before current state gets to checkpointing step, any
4227  * processed instruction always assumes precise SCALAR register/slot
4228  * knowledge: if precise value or range is useful to prune jump branch, BPF
4229  * verifier takes this opportunity enthusiastically. Similarly, when
4230  * register's value is used to calculate offset or memory address, exact
4231  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4232  * what we mentioned above about state comparison ignoring precise markings
4233  * during state comparison, BPF verifier ignores and also assumes precise
4234  * markings *at will* during instruction verification process. But as verifier
4235  * assumes precision, it also propagates any precision dependencies across
4236  * parent states, which are not yet finalized, so can be further restricted
4237  * based on new knowledge gained from restrictions enforced by their children
4238  * states. This is so that once those parent states are finalized, i.e., when
4239  * they have no more active children state, state comparison logic in
4240  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4241  * required for correctness.
4242  *
4243  * To build a bit more intuition, note also that once a state is checkpointed,
4244  * the path we took to get to that state is not important. This is crucial
4245  * property for state pruning. When state is checkpointed and finalized at
4246  * some instruction index, it can be correctly and safely used to "short
4247  * circuit" any *compatible* state that reaches exactly the same instruction
4248  * index. I.e., if we jumped to that instruction from a completely different
4249  * code path than original finalized state was derived from, it doesn't
4250  * matter, current state can be discarded because from that instruction
4251  * forward having a compatible state will ensure we will safely reach the
4252  * exit. States describe preconditions for further exploration, but completely
4253  * forget the history of how we got here.
4254  *
4255  * This also means that even if we needed precise SCALAR range to get to
4256  * finalized state, but from that point forward *that same* SCALAR register is
4257  * never used in a precise context (i.e., it's precise value is not needed for
4258  * correctness), it's correct and safe to mark such register as "imprecise"
4259  * (i.e., precise marking set to false). This is what we rely on when we do
4260  * not set precise marking in current state. If no child state requires
4261  * precision for any given SCALAR register, it's safe to dictate that it can
4262  * be imprecise. If any child state does require this register to be precise,
4263  * we'll mark it precise later retroactively during precise markings
4264  * propagation from child state to parent states.
4265  *
4266  * Skipping precise marking setting in current state is a mild version of
4267  * relying on the above observation. But we can utilize this property even
4268  * more aggressively by proactively forgetting any precise marking in the
4269  * current state (which we inherited from the parent state), right before we
4270  * checkpoint it and branch off into new child state. This is done by
4271  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4272  * finalized states which help in short circuiting more future states.
4273  */
4274 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4275 {
4276 	struct backtrack_state *bt = &env->bt;
4277 	struct bpf_verifier_state *st = env->cur_state;
4278 	int first_idx = st->first_insn_idx;
4279 	int last_idx = env->insn_idx;
4280 	int subseq_idx = -1;
4281 	struct bpf_func_state *func;
4282 	struct bpf_reg_state *reg;
4283 	bool skip_first = true;
4284 	int i, fr, err;
4285 
4286 	if (!env->bpf_capable)
4287 		return 0;
4288 
4289 	/* set frame number from which we are starting to backtrack */
4290 	bt_init(bt, env->cur_state->curframe);
4291 
4292 	/* Do sanity checks against current state of register and/or stack
4293 	 * slot, but don't set precise flag in current state, as precision
4294 	 * tracking in the current state is unnecessary.
4295 	 */
4296 	func = st->frame[bt->frame];
4297 	if (regno >= 0) {
4298 		reg = &func->regs[regno];
4299 		if (reg->type != SCALAR_VALUE) {
4300 			WARN_ONCE(1, "backtracing misuse");
4301 			return -EFAULT;
4302 		}
4303 		bt_set_reg(bt, regno);
4304 	}
4305 
4306 	if (bt_empty(bt))
4307 		return 0;
4308 
4309 	for (;;) {
4310 		DECLARE_BITMAP(mask, 64);
4311 		u32 history = st->jmp_history_cnt;
4312 		struct bpf_jmp_history_entry *hist;
4313 
4314 		if (env->log.level & BPF_LOG_LEVEL2) {
4315 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4316 				bt->frame, last_idx, first_idx, subseq_idx);
4317 		}
4318 
4319 		if (last_idx < 0) {
4320 			/* we are at the entry into subprog, which
4321 			 * is expected for global funcs, but only if
4322 			 * requested precise registers are R1-R5
4323 			 * (which are global func's input arguments)
4324 			 */
4325 			if (st->curframe == 0 &&
4326 			    st->frame[0]->subprogno > 0 &&
4327 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4328 			    bt_stack_mask(bt) == 0 &&
4329 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4330 				bitmap_from_u64(mask, bt_reg_mask(bt));
4331 				for_each_set_bit(i, mask, 32) {
4332 					reg = &st->frame[0]->regs[i];
4333 					bt_clear_reg(bt, i);
4334 					if (reg->type == SCALAR_VALUE)
4335 						reg->precise = true;
4336 				}
4337 				return 0;
4338 			}
4339 
4340 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4341 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4342 			WARN_ONCE(1, "verifier backtracking bug");
4343 			return -EFAULT;
4344 		}
4345 
4346 		for (i = last_idx;;) {
4347 			if (skip_first) {
4348 				err = 0;
4349 				skip_first = false;
4350 			} else {
4351 				hist = get_jmp_hist_entry(st, history, i);
4352 				err = backtrack_insn(env, i, subseq_idx, hist, bt);
4353 			}
4354 			if (err == -ENOTSUPP) {
4355 				mark_all_scalars_precise(env, env->cur_state);
4356 				bt_reset(bt);
4357 				return 0;
4358 			} else if (err) {
4359 				return err;
4360 			}
4361 			if (bt_empty(bt))
4362 				/* Found assignment(s) into tracked register in this state.
4363 				 * Since this state is already marked, just return.
4364 				 * Nothing to be tracked further in the parent state.
4365 				 */
4366 				return 0;
4367 			subseq_idx = i;
4368 			i = get_prev_insn_idx(st, i, &history);
4369 			if (i == -ENOENT)
4370 				break;
4371 			if (i >= env->prog->len) {
4372 				/* This can happen if backtracking reached insn 0
4373 				 * and there are still reg_mask or stack_mask
4374 				 * to backtrack.
4375 				 * It means the backtracking missed the spot where
4376 				 * particular register was initialized with a constant.
4377 				 */
4378 				verbose(env, "BUG backtracking idx %d\n", i);
4379 				WARN_ONCE(1, "verifier backtracking bug");
4380 				return -EFAULT;
4381 			}
4382 		}
4383 		st = st->parent;
4384 		if (!st)
4385 			break;
4386 
4387 		for (fr = bt->frame; fr >= 0; fr--) {
4388 			func = st->frame[fr];
4389 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4390 			for_each_set_bit(i, mask, 32) {
4391 				reg = &func->regs[i];
4392 				if (reg->type != SCALAR_VALUE) {
4393 					bt_clear_frame_reg(bt, fr, i);
4394 					continue;
4395 				}
4396 				if (reg->precise)
4397 					bt_clear_frame_reg(bt, fr, i);
4398 				else
4399 					reg->precise = true;
4400 			}
4401 
4402 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4403 			for_each_set_bit(i, mask, 64) {
4404 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4405 					verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n",
4406 						i, func->allocated_stack / BPF_REG_SIZE);
4407 					WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)");
4408 					return -EFAULT;
4409 				}
4410 
4411 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4412 					bt_clear_frame_slot(bt, fr, i);
4413 					continue;
4414 				}
4415 				reg = &func->stack[i].spilled_ptr;
4416 				if (reg->precise)
4417 					bt_clear_frame_slot(bt, fr, i);
4418 				else
4419 					reg->precise = true;
4420 			}
4421 			if (env->log.level & BPF_LOG_LEVEL2) {
4422 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4423 					     bt_frame_reg_mask(bt, fr));
4424 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4425 					fr, env->tmp_str_buf);
4426 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4427 					       bt_frame_stack_mask(bt, fr));
4428 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4429 				print_verifier_state(env, func, true);
4430 			}
4431 		}
4432 
4433 		if (bt_empty(bt))
4434 			return 0;
4435 
4436 		subseq_idx = first_idx;
4437 		last_idx = st->last_insn_idx;
4438 		first_idx = st->first_insn_idx;
4439 	}
4440 
4441 	/* if we still have requested precise regs or slots, we missed
4442 	 * something (e.g., stack access through non-r10 register), so
4443 	 * fallback to marking all precise
4444 	 */
4445 	if (!bt_empty(bt)) {
4446 		mark_all_scalars_precise(env, env->cur_state);
4447 		bt_reset(bt);
4448 	}
4449 
4450 	return 0;
4451 }
4452 
4453 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4454 {
4455 	return __mark_chain_precision(env, regno);
4456 }
4457 
4458 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4459  * desired reg and stack masks across all relevant frames
4460  */
4461 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4462 {
4463 	return __mark_chain_precision(env, -1);
4464 }
4465 
4466 static bool is_spillable_regtype(enum bpf_reg_type type)
4467 {
4468 	switch (base_type(type)) {
4469 	case PTR_TO_MAP_VALUE:
4470 	case PTR_TO_STACK:
4471 	case PTR_TO_CTX:
4472 	case PTR_TO_PACKET:
4473 	case PTR_TO_PACKET_META:
4474 	case PTR_TO_PACKET_END:
4475 	case PTR_TO_FLOW_KEYS:
4476 	case CONST_PTR_TO_MAP:
4477 	case PTR_TO_SOCKET:
4478 	case PTR_TO_SOCK_COMMON:
4479 	case PTR_TO_TCP_SOCK:
4480 	case PTR_TO_XDP_SOCK:
4481 	case PTR_TO_BTF_ID:
4482 	case PTR_TO_BUF:
4483 	case PTR_TO_MEM:
4484 	case PTR_TO_FUNC:
4485 	case PTR_TO_MAP_KEY:
4486 	case PTR_TO_ARENA:
4487 		return true;
4488 	default:
4489 		return false;
4490 	}
4491 }
4492 
4493 /* Does this register contain a constant zero? */
4494 static bool register_is_null(struct bpf_reg_state *reg)
4495 {
4496 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4497 }
4498 
4499 /* check if register is a constant scalar value */
4500 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
4501 {
4502 	return reg->type == SCALAR_VALUE &&
4503 	       tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
4504 }
4505 
4506 /* assuming is_reg_const() is true, return constant value of a register */
4507 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
4508 {
4509 	return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
4510 }
4511 
4512 static bool __is_pointer_value(bool allow_ptr_leaks,
4513 			       const struct bpf_reg_state *reg)
4514 {
4515 	if (allow_ptr_leaks)
4516 		return false;
4517 
4518 	return reg->type != SCALAR_VALUE;
4519 }
4520 
4521 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env,
4522 					struct bpf_reg_state *src_reg)
4523 {
4524 	if (src_reg->type != SCALAR_VALUE)
4525 		return;
4526 
4527 	if (src_reg->id & BPF_ADD_CONST) {
4528 		/*
4529 		 * The verifier is processing rX = rY insn and
4530 		 * rY->id has special linked register already.
4531 		 * Cleared it, since multiple rX += const are not supported.
4532 		 */
4533 		src_reg->id = 0;
4534 		src_reg->off = 0;
4535 	}
4536 
4537 	if (!src_reg->id && !tnum_is_const(src_reg->var_off))
4538 		/* Ensure that src_reg has a valid ID that will be copied to
4539 		 * dst_reg and then will be used by sync_linked_regs() to
4540 		 * propagate min/max range.
4541 		 */
4542 		src_reg->id = ++env->id_gen;
4543 }
4544 
4545 /* Copy src state preserving dst->parent and dst->live fields */
4546 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4547 {
4548 	struct bpf_reg_state *parent = dst->parent;
4549 	enum bpf_reg_liveness live = dst->live;
4550 
4551 	*dst = *src;
4552 	dst->parent = parent;
4553 	dst->live = live;
4554 }
4555 
4556 static void save_register_state(struct bpf_verifier_env *env,
4557 				struct bpf_func_state *state,
4558 				int spi, struct bpf_reg_state *reg,
4559 				int size)
4560 {
4561 	int i;
4562 
4563 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4564 	if (size == BPF_REG_SIZE)
4565 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4566 
4567 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4568 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4569 
4570 	/* size < 8 bytes spill */
4571 	for (; i; i--)
4572 		mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
4573 }
4574 
4575 static bool is_bpf_st_mem(struct bpf_insn *insn)
4576 {
4577 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4578 }
4579 
4580 static int get_reg_width(struct bpf_reg_state *reg)
4581 {
4582 	return fls64(reg->umax_value);
4583 }
4584 
4585 /* See comment for mark_fastcall_pattern_for_call() */
4586 static void check_fastcall_stack_contract(struct bpf_verifier_env *env,
4587 					  struct bpf_func_state *state, int insn_idx, int off)
4588 {
4589 	struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno];
4590 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
4591 	int i;
4592 
4593 	if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern)
4594 		return;
4595 	/* access to the region [max_stack_depth .. fastcall_stack_off)
4596 	 * from something that is not a part of the fastcall pattern,
4597 	 * disable fastcall rewrites for current subprogram by setting
4598 	 * fastcall_stack_off to a value smaller than any possible offset.
4599 	 */
4600 	subprog->fastcall_stack_off = S16_MIN;
4601 	/* reset fastcall aux flags within subprogram,
4602 	 * happens at most once per subprogram
4603 	 */
4604 	for (i = subprog->start; i < (subprog + 1)->start; ++i) {
4605 		aux[i].fastcall_spills_num = 0;
4606 		aux[i].fastcall_pattern = 0;
4607 	}
4608 }
4609 
4610 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4611  * stack boundary and alignment are checked in check_mem_access()
4612  */
4613 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4614 				       /* stack frame we're writing to */
4615 				       struct bpf_func_state *state,
4616 				       int off, int size, int value_regno,
4617 				       int insn_idx)
4618 {
4619 	struct bpf_func_state *cur; /* state of the current function */
4620 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4621 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4622 	struct bpf_reg_state *reg = NULL;
4623 	int insn_flags = insn_stack_access_flags(state->frameno, spi);
4624 
4625 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4626 	 * so it's aligned access and [off, off + size) are within stack limits
4627 	 */
4628 	if (!env->allow_ptr_leaks &&
4629 	    is_spilled_reg(&state->stack[spi]) &&
4630 	    size != BPF_REG_SIZE) {
4631 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4632 		return -EACCES;
4633 	}
4634 
4635 	cur = env->cur_state->frame[env->cur_state->curframe];
4636 	if (value_regno >= 0)
4637 		reg = &cur->regs[value_regno];
4638 	if (!env->bypass_spec_v4) {
4639 		bool sanitize = reg && is_spillable_regtype(reg->type);
4640 
4641 		for (i = 0; i < size; i++) {
4642 			u8 type = state->stack[spi].slot_type[i];
4643 
4644 			if (type != STACK_MISC && type != STACK_ZERO) {
4645 				sanitize = true;
4646 				break;
4647 			}
4648 		}
4649 
4650 		if (sanitize)
4651 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4652 	}
4653 
4654 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4655 	if (err)
4656 		return err;
4657 
4658 	check_fastcall_stack_contract(env, state, insn_idx, off);
4659 	mark_stack_slot_scratched(env, spi);
4660 	if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) {
4661 		bool reg_value_fits;
4662 
4663 		reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size;
4664 		/* Make sure that reg had an ID to build a relation on spill. */
4665 		if (reg_value_fits)
4666 			assign_scalar_id_before_mov(env, reg);
4667 		save_register_state(env, state, spi, reg, size);
4668 		/* Break the relation on a narrowing spill. */
4669 		if (!reg_value_fits)
4670 			state->stack[spi].spilled_ptr.id = 0;
4671 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4672 		   env->bpf_capable) {
4673 		struct bpf_reg_state *tmp_reg = &env->fake_reg[0];
4674 
4675 		memset(tmp_reg, 0, sizeof(*tmp_reg));
4676 		__mark_reg_known(tmp_reg, insn->imm);
4677 		tmp_reg->type = SCALAR_VALUE;
4678 		save_register_state(env, state, spi, tmp_reg, size);
4679 	} else if (reg && is_spillable_regtype(reg->type)) {
4680 		/* register containing pointer is being spilled into stack */
4681 		if (size != BPF_REG_SIZE) {
4682 			verbose_linfo(env, insn_idx, "; ");
4683 			verbose(env, "invalid size of register spill\n");
4684 			return -EACCES;
4685 		}
4686 		if (state != cur && reg->type == PTR_TO_STACK) {
4687 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4688 			return -EINVAL;
4689 		}
4690 		save_register_state(env, state, spi, reg, size);
4691 	} else {
4692 		u8 type = STACK_MISC;
4693 
4694 		/* regular write of data into stack destroys any spilled ptr */
4695 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4696 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4697 		if (is_stack_slot_special(&state->stack[spi]))
4698 			for (i = 0; i < BPF_REG_SIZE; i++)
4699 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4700 
4701 		/* only mark the slot as written if all 8 bytes were written
4702 		 * otherwise read propagation may incorrectly stop too soon
4703 		 * when stack slots are partially written.
4704 		 * This heuristic means that read propagation will be
4705 		 * conservative, since it will add reg_live_read marks
4706 		 * to stack slots all the way to first state when programs
4707 		 * writes+reads less than 8 bytes
4708 		 */
4709 		if (size == BPF_REG_SIZE)
4710 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4711 
4712 		/* when we zero initialize stack slots mark them as such */
4713 		if ((reg && register_is_null(reg)) ||
4714 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4715 			/* STACK_ZERO case happened because register spill
4716 			 * wasn't properly aligned at the stack slot boundary,
4717 			 * so it's not a register spill anymore; force
4718 			 * originating register to be precise to make
4719 			 * STACK_ZERO correct for subsequent states
4720 			 */
4721 			err = mark_chain_precision(env, value_regno);
4722 			if (err)
4723 				return err;
4724 			type = STACK_ZERO;
4725 		}
4726 
4727 		/* Mark slots affected by this stack write. */
4728 		for (i = 0; i < size; i++)
4729 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
4730 		insn_flags = 0; /* not a register spill */
4731 	}
4732 
4733 	if (insn_flags)
4734 		return push_jmp_history(env, env->cur_state, insn_flags, 0);
4735 	return 0;
4736 }
4737 
4738 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4739  * known to contain a variable offset.
4740  * This function checks whether the write is permitted and conservatively
4741  * tracks the effects of the write, considering that each stack slot in the
4742  * dynamic range is potentially written to.
4743  *
4744  * 'off' includes 'regno->off'.
4745  * 'value_regno' can be -1, meaning that an unknown value is being written to
4746  * the stack.
4747  *
4748  * Spilled pointers in range are not marked as written because we don't know
4749  * what's going to be actually written. This means that read propagation for
4750  * future reads cannot be terminated by this write.
4751  *
4752  * For privileged programs, uninitialized stack slots are considered
4753  * initialized by this write (even though we don't know exactly what offsets
4754  * are going to be written to). The idea is that we don't want the verifier to
4755  * reject future reads that access slots written to through variable offsets.
4756  */
4757 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4758 				     /* func where register points to */
4759 				     struct bpf_func_state *state,
4760 				     int ptr_regno, int off, int size,
4761 				     int value_regno, int insn_idx)
4762 {
4763 	struct bpf_func_state *cur; /* state of the current function */
4764 	int min_off, max_off;
4765 	int i, err;
4766 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4767 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4768 	bool writing_zero = false;
4769 	/* set if the fact that we're writing a zero is used to let any
4770 	 * stack slots remain STACK_ZERO
4771 	 */
4772 	bool zero_used = false;
4773 
4774 	cur = env->cur_state->frame[env->cur_state->curframe];
4775 	ptr_reg = &cur->regs[ptr_regno];
4776 	min_off = ptr_reg->smin_value + off;
4777 	max_off = ptr_reg->smax_value + off + size;
4778 	if (value_regno >= 0)
4779 		value_reg = &cur->regs[value_regno];
4780 	if ((value_reg && register_is_null(value_reg)) ||
4781 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4782 		writing_zero = true;
4783 
4784 	for (i = min_off; i < max_off; i++) {
4785 		int spi;
4786 
4787 		spi = __get_spi(i);
4788 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4789 		if (err)
4790 			return err;
4791 	}
4792 
4793 	check_fastcall_stack_contract(env, state, insn_idx, min_off);
4794 	/* Variable offset writes destroy any spilled pointers in range. */
4795 	for (i = min_off; i < max_off; i++) {
4796 		u8 new_type, *stype;
4797 		int slot, spi;
4798 
4799 		slot = -i - 1;
4800 		spi = slot / BPF_REG_SIZE;
4801 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4802 		mark_stack_slot_scratched(env, spi);
4803 
4804 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4805 			/* Reject the write if range we may write to has not
4806 			 * been initialized beforehand. If we didn't reject
4807 			 * here, the ptr status would be erased below (even
4808 			 * though not all slots are actually overwritten),
4809 			 * possibly opening the door to leaks.
4810 			 *
4811 			 * We do however catch STACK_INVALID case below, and
4812 			 * only allow reading possibly uninitialized memory
4813 			 * later for CAP_PERFMON, as the write may not happen to
4814 			 * that slot.
4815 			 */
4816 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4817 				insn_idx, i);
4818 			return -EINVAL;
4819 		}
4820 
4821 		/* If writing_zero and the spi slot contains a spill of value 0,
4822 		 * maintain the spill type.
4823 		 */
4824 		if (writing_zero && *stype == STACK_SPILL &&
4825 		    is_spilled_scalar_reg(&state->stack[spi])) {
4826 			struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr;
4827 
4828 			if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) {
4829 				zero_used = true;
4830 				continue;
4831 			}
4832 		}
4833 
4834 		/* Erase all other spilled pointers. */
4835 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4836 
4837 		/* Update the slot type. */
4838 		new_type = STACK_MISC;
4839 		if (writing_zero && *stype == STACK_ZERO) {
4840 			new_type = STACK_ZERO;
4841 			zero_used = true;
4842 		}
4843 		/* If the slot is STACK_INVALID, we check whether it's OK to
4844 		 * pretend that it will be initialized by this write. The slot
4845 		 * might not actually be written to, and so if we mark it as
4846 		 * initialized future reads might leak uninitialized memory.
4847 		 * For privileged programs, we will accept such reads to slots
4848 		 * that may or may not be written because, if we're reject
4849 		 * them, the error would be too confusing.
4850 		 */
4851 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4852 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4853 					insn_idx, i);
4854 			return -EINVAL;
4855 		}
4856 		*stype = new_type;
4857 	}
4858 	if (zero_used) {
4859 		/* backtracking doesn't work for STACK_ZERO yet. */
4860 		err = mark_chain_precision(env, value_regno);
4861 		if (err)
4862 			return err;
4863 	}
4864 	return 0;
4865 }
4866 
4867 /* When register 'dst_regno' is assigned some values from stack[min_off,
4868  * max_off), we set the register's type according to the types of the
4869  * respective stack slots. If all the stack values are known to be zeros, then
4870  * so is the destination reg. Otherwise, the register is considered to be
4871  * SCALAR. This function does not deal with register filling; the caller must
4872  * ensure that all spilled registers in the stack range have been marked as
4873  * read.
4874  */
4875 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4876 				/* func where src register points to */
4877 				struct bpf_func_state *ptr_state,
4878 				int min_off, int max_off, int dst_regno)
4879 {
4880 	struct bpf_verifier_state *vstate = env->cur_state;
4881 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4882 	int i, slot, spi;
4883 	u8 *stype;
4884 	int zeros = 0;
4885 
4886 	for (i = min_off; i < max_off; i++) {
4887 		slot = -i - 1;
4888 		spi = slot / BPF_REG_SIZE;
4889 		mark_stack_slot_scratched(env, spi);
4890 		stype = ptr_state->stack[spi].slot_type;
4891 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4892 			break;
4893 		zeros++;
4894 	}
4895 	if (zeros == max_off - min_off) {
4896 		/* Any access_size read into register is zero extended,
4897 		 * so the whole register == const_zero.
4898 		 */
4899 		__mark_reg_const_zero(env, &state->regs[dst_regno]);
4900 	} else {
4901 		/* have read misc data from the stack */
4902 		mark_reg_unknown(env, state->regs, dst_regno);
4903 	}
4904 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4905 }
4906 
4907 /* Read the stack at 'off' and put the results into the register indicated by
4908  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4909  * spilled reg.
4910  *
4911  * 'dst_regno' can be -1, meaning that the read value is not going to a
4912  * register.
4913  *
4914  * The access is assumed to be within the current stack bounds.
4915  */
4916 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4917 				      /* func where src register points to */
4918 				      struct bpf_func_state *reg_state,
4919 				      int off, int size, int dst_regno)
4920 {
4921 	struct bpf_verifier_state *vstate = env->cur_state;
4922 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4923 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4924 	struct bpf_reg_state *reg;
4925 	u8 *stype, type;
4926 	int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
4927 
4928 	stype = reg_state->stack[spi].slot_type;
4929 	reg = &reg_state->stack[spi].spilled_ptr;
4930 
4931 	mark_stack_slot_scratched(env, spi);
4932 	check_fastcall_stack_contract(env, state, env->insn_idx, off);
4933 
4934 	if (is_spilled_reg(&reg_state->stack[spi])) {
4935 		u8 spill_size = 1;
4936 
4937 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4938 			spill_size++;
4939 
4940 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4941 			if (reg->type != SCALAR_VALUE) {
4942 				verbose_linfo(env, env->insn_idx, "; ");
4943 				verbose(env, "invalid size of register fill\n");
4944 				return -EACCES;
4945 			}
4946 
4947 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4948 			if (dst_regno < 0)
4949 				return 0;
4950 
4951 			if (size <= spill_size &&
4952 			    bpf_stack_narrow_access_ok(off, size, spill_size)) {
4953 				/* The earlier check_reg_arg() has decided the
4954 				 * subreg_def for this insn.  Save it first.
4955 				 */
4956 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4957 
4958 				copy_register_state(&state->regs[dst_regno], reg);
4959 				state->regs[dst_regno].subreg_def = subreg_def;
4960 
4961 				/* Break the relation on a narrowing fill.
4962 				 * coerce_reg_to_size will adjust the boundaries.
4963 				 */
4964 				if (get_reg_width(reg) > size * BITS_PER_BYTE)
4965 					state->regs[dst_regno].id = 0;
4966 			} else {
4967 				int spill_cnt = 0, zero_cnt = 0;
4968 
4969 				for (i = 0; i < size; i++) {
4970 					type = stype[(slot - i) % BPF_REG_SIZE];
4971 					if (type == STACK_SPILL) {
4972 						spill_cnt++;
4973 						continue;
4974 					}
4975 					if (type == STACK_MISC)
4976 						continue;
4977 					if (type == STACK_ZERO) {
4978 						zero_cnt++;
4979 						continue;
4980 					}
4981 					if (type == STACK_INVALID && env->allow_uninit_stack)
4982 						continue;
4983 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4984 						off, i, size);
4985 					return -EACCES;
4986 				}
4987 
4988 				if (spill_cnt == size &&
4989 				    tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
4990 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
4991 					/* this IS register fill, so keep insn_flags */
4992 				} else if (zero_cnt == size) {
4993 					/* similarly to mark_reg_stack_read(), preserve zeroes */
4994 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
4995 					insn_flags = 0; /* not restoring original register state */
4996 				} else {
4997 					mark_reg_unknown(env, state->regs, dst_regno);
4998 					insn_flags = 0; /* not restoring original register state */
4999 				}
5000 			}
5001 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5002 		} else if (dst_regno >= 0) {
5003 			/* restore register state from stack */
5004 			copy_register_state(&state->regs[dst_regno], reg);
5005 			/* mark reg as written since spilled pointer state likely
5006 			 * has its liveness marks cleared by is_state_visited()
5007 			 * which resets stack/reg liveness for state transitions
5008 			 */
5009 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5010 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
5011 			/* If dst_regno==-1, the caller is asking us whether
5012 			 * it is acceptable to use this value as a SCALAR_VALUE
5013 			 * (e.g. for XADD).
5014 			 * We must not allow unprivileged callers to do that
5015 			 * with spilled pointers.
5016 			 */
5017 			verbose(env, "leaking pointer from stack off %d\n",
5018 				off);
5019 			return -EACCES;
5020 		}
5021 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5022 	} else {
5023 		for (i = 0; i < size; i++) {
5024 			type = stype[(slot - i) % BPF_REG_SIZE];
5025 			if (type == STACK_MISC)
5026 				continue;
5027 			if (type == STACK_ZERO)
5028 				continue;
5029 			if (type == STACK_INVALID && env->allow_uninit_stack)
5030 				continue;
5031 			verbose(env, "invalid read from stack off %d+%d size %d\n",
5032 				off, i, size);
5033 			return -EACCES;
5034 		}
5035 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5036 		if (dst_regno >= 0)
5037 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
5038 		insn_flags = 0; /* we are not restoring spilled register */
5039 	}
5040 	if (insn_flags)
5041 		return push_jmp_history(env, env->cur_state, insn_flags, 0);
5042 	return 0;
5043 }
5044 
5045 enum bpf_access_src {
5046 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
5047 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
5048 };
5049 
5050 static int check_stack_range_initialized(struct bpf_verifier_env *env,
5051 					 int regno, int off, int access_size,
5052 					 bool zero_size_allowed,
5053 					 enum bpf_access_src type,
5054 					 struct bpf_call_arg_meta *meta);
5055 
5056 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
5057 {
5058 	return cur_regs(env) + regno;
5059 }
5060 
5061 /* Read the stack at 'ptr_regno + off' and put the result into the register
5062  * 'dst_regno'.
5063  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
5064  * but not its variable offset.
5065  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
5066  *
5067  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5068  * filling registers (i.e. reads of spilled register cannot be detected when
5069  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5070  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5071  * offset; for a fixed offset check_stack_read_fixed_off should be used
5072  * instead.
5073  */
5074 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5075 				    int ptr_regno, int off, int size, int dst_regno)
5076 {
5077 	/* The state of the source register. */
5078 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5079 	struct bpf_func_state *ptr_state = func(env, reg);
5080 	int err;
5081 	int min_off, max_off;
5082 
5083 	/* Note that we pass a NULL meta, so raw access will not be permitted.
5084 	 */
5085 	err = check_stack_range_initialized(env, ptr_regno, off, size,
5086 					    false, ACCESS_DIRECT, NULL);
5087 	if (err)
5088 		return err;
5089 
5090 	min_off = reg->smin_value + off;
5091 	max_off = reg->smax_value + off;
5092 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5093 	check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off);
5094 	return 0;
5095 }
5096 
5097 /* check_stack_read dispatches to check_stack_read_fixed_off or
5098  * check_stack_read_var_off.
5099  *
5100  * The caller must ensure that the offset falls within the allocated stack
5101  * bounds.
5102  *
5103  * 'dst_regno' is a register which will receive the value from the stack. It
5104  * can be -1, meaning that the read value is not going to a register.
5105  */
5106 static int check_stack_read(struct bpf_verifier_env *env,
5107 			    int ptr_regno, int off, int size,
5108 			    int dst_regno)
5109 {
5110 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5111 	struct bpf_func_state *state = func(env, reg);
5112 	int err;
5113 	/* Some accesses are only permitted with a static offset. */
5114 	bool var_off = !tnum_is_const(reg->var_off);
5115 
5116 	/* The offset is required to be static when reads don't go to a
5117 	 * register, in order to not leak pointers (see
5118 	 * check_stack_read_fixed_off).
5119 	 */
5120 	if (dst_regno < 0 && var_off) {
5121 		char tn_buf[48];
5122 
5123 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5124 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5125 			tn_buf, off, size);
5126 		return -EACCES;
5127 	}
5128 	/* Variable offset is prohibited for unprivileged mode for simplicity
5129 	 * since it requires corresponding support in Spectre masking for stack
5130 	 * ALU. See also retrieve_ptr_limit(). The check in
5131 	 * check_stack_access_for_ptr_arithmetic() called by
5132 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5133 	 * with variable offsets, therefore no check is required here. Further,
5134 	 * just checking it here would be insufficient as speculative stack
5135 	 * writes could still lead to unsafe speculative behaviour.
5136 	 */
5137 	if (!var_off) {
5138 		off += reg->var_off.value;
5139 		err = check_stack_read_fixed_off(env, state, off, size,
5140 						 dst_regno);
5141 	} else {
5142 		/* Variable offset stack reads need more conservative handling
5143 		 * than fixed offset ones. Note that dst_regno >= 0 on this
5144 		 * branch.
5145 		 */
5146 		err = check_stack_read_var_off(env, ptr_regno, off, size,
5147 					       dst_regno);
5148 	}
5149 	return err;
5150 }
5151 
5152 
5153 /* check_stack_write dispatches to check_stack_write_fixed_off or
5154  * check_stack_write_var_off.
5155  *
5156  * 'ptr_regno' is the register used as a pointer into the stack.
5157  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5158  * 'value_regno' is the register whose value we're writing to the stack. It can
5159  * be -1, meaning that we're not writing from a register.
5160  *
5161  * The caller must ensure that the offset falls within the maximum stack size.
5162  */
5163 static int check_stack_write(struct bpf_verifier_env *env,
5164 			     int ptr_regno, int off, int size,
5165 			     int value_regno, int insn_idx)
5166 {
5167 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5168 	struct bpf_func_state *state = func(env, reg);
5169 	int err;
5170 
5171 	if (tnum_is_const(reg->var_off)) {
5172 		off += reg->var_off.value;
5173 		err = check_stack_write_fixed_off(env, state, off, size,
5174 						  value_regno, insn_idx);
5175 	} else {
5176 		/* Variable offset stack reads need more conservative handling
5177 		 * than fixed offset ones.
5178 		 */
5179 		err = check_stack_write_var_off(env, state,
5180 						ptr_regno, off, size,
5181 						value_regno, insn_idx);
5182 	}
5183 	return err;
5184 }
5185 
5186 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5187 				 int off, int size, enum bpf_access_type type)
5188 {
5189 	struct bpf_reg_state *regs = cur_regs(env);
5190 	struct bpf_map *map = regs[regno].map_ptr;
5191 	u32 cap = bpf_map_flags_to_cap(map);
5192 
5193 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5194 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5195 			map->value_size, off, size);
5196 		return -EACCES;
5197 	}
5198 
5199 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5200 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5201 			map->value_size, off, size);
5202 		return -EACCES;
5203 	}
5204 
5205 	return 0;
5206 }
5207 
5208 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5209 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5210 			      int off, int size, u32 mem_size,
5211 			      bool zero_size_allowed)
5212 {
5213 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5214 	struct bpf_reg_state *reg;
5215 
5216 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5217 		return 0;
5218 
5219 	reg = &cur_regs(env)[regno];
5220 	switch (reg->type) {
5221 	case PTR_TO_MAP_KEY:
5222 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5223 			mem_size, off, size);
5224 		break;
5225 	case PTR_TO_MAP_VALUE:
5226 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5227 			mem_size, off, size);
5228 		break;
5229 	case PTR_TO_PACKET:
5230 	case PTR_TO_PACKET_META:
5231 	case PTR_TO_PACKET_END:
5232 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5233 			off, size, regno, reg->id, off, mem_size);
5234 		break;
5235 	case PTR_TO_MEM:
5236 	default:
5237 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5238 			mem_size, off, size);
5239 	}
5240 
5241 	return -EACCES;
5242 }
5243 
5244 /* check read/write into a memory region with possible variable offset */
5245 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5246 				   int off, int size, u32 mem_size,
5247 				   bool zero_size_allowed)
5248 {
5249 	struct bpf_verifier_state *vstate = env->cur_state;
5250 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5251 	struct bpf_reg_state *reg = &state->regs[regno];
5252 	int err;
5253 
5254 	/* We may have adjusted the register pointing to memory region, so we
5255 	 * need to try adding each of min_value and max_value to off
5256 	 * to make sure our theoretical access will be safe.
5257 	 *
5258 	 * The minimum value is only important with signed
5259 	 * comparisons where we can't assume the floor of a
5260 	 * value is 0.  If we are using signed variables for our
5261 	 * index'es we need to make sure that whatever we use
5262 	 * will have a set floor within our range.
5263 	 */
5264 	if (reg->smin_value < 0 &&
5265 	    (reg->smin_value == S64_MIN ||
5266 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5267 	      reg->smin_value + off < 0)) {
5268 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5269 			regno);
5270 		return -EACCES;
5271 	}
5272 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5273 				 mem_size, zero_size_allowed);
5274 	if (err) {
5275 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5276 			regno);
5277 		return err;
5278 	}
5279 
5280 	/* If we haven't set a max value then we need to bail since we can't be
5281 	 * sure we won't do bad things.
5282 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5283 	 */
5284 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5285 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5286 			regno);
5287 		return -EACCES;
5288 	}
5289 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5290 				 mem_size, zero_size_allowed);
5291 	if (err) {
5292 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5293 			regno);
5294 		return err;
5295 	}
5296 
5297 	return 0;
5298 }
5299 
5300 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5301 			       const struct bpf_reg_state *reg, int regno,
5302 			       bool fixed_off_ok)
5303 {
5304 	/* Access to this pointer-typed register or passing it to a helper
5305 	 * is only allowed in its original, unmodified form.
5306 	 */
5307 
5308 	if (reg->off < 0) {
5309 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5310 			reg_type_str(env, reg->type), regno, reg->off);
5311 		return -EACCES;
5312 	}
5313 
5314 	if (!fixed_off_ok && reg->off) {
5315 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5316 			reg_type_str(env, reg->type), regno, reg->off);
5317 		return -EACCES;
5318 	}
5319 
5320 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5321 		char tn_buf[48];
5322 
5323 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5324 		verbose(env, "variable %s access var_off=%s disallowed\n",
5325 			reg_type_str(env, reg->type), tn_buf);
5326 		return -EACCES;
5327 	}
5328 
5329 	return 0;
5330 }
5331 
5332 static int check_ptr_off_reg(struct bpf_verifier_env *env,
5333 		             const struct bpf_reg_state *reg, int regno)
5334 {
5335 	return __check_ptr_off_reg(env, reg, regno, false);
5336 }
5337 
5338 static int map_kptr_match_type(struct bpf_verifier_env *env,
5339 			       struct btf_field *kptr_field,
5340 			       struct bpf_reg_state *reg, u32 regno)
5341 {
5342 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5343 	int perm_flags;
5344 	const char *reg_name = "";
5345 
5346 	if (btf_is_kernel(reg->btf)) {
5347 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5348 
5349 		/* Only unreferenced case accepts untrusted pointers */
5350 		if (kptr_field->type == BPF_KPTR_UNREF)
5351 			perm_flags |= PTR_UNTRUSTED;
5352 	} else {
5353 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5354 		if (kptr_field->type == BPF_KPTR_PERCPU)
5355 			perm_flags |= MEM_PERCPU;
5356 	}
5357 
5358 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5359 		goto bad_type;
5360 
5361 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5362 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5363 
5364 	/* For ref_ptr case, release function check should ensure we get one
5365 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5366 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5367 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5368 	 * reg->off and reg->ref_obj_id are not needed here.
5369 	 */
5370 	if (__check_ptr_off_reg(env, reg, regno, true))
5371 		return -EACCES;
5372 
5373 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5374 	 * we also need to take into account the reg->off.
5375 	 *
5376 	 * We want to support cases like:
5377 	 *
5378 	 * struct foo {
5379 	 *         struct bar br;
5380 	 *         struct baz bz;
5381 	 * };
5382 	 *
5383 	 * struct foo *v;
5384 	 * v = func();	      // PTR_TO_BTF_ID
5385 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5386 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5387 	 *                    // first member type of struct after comparison fails
5388 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5389 	 *                    // to match type
5390 	 *
5391 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5392 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5393 	 * the struct to match type against first member of struct, i.e. reject
5394 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5395 	 * strict mode to true for type match.
5396 	 */
5397 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5398 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5399 				  kptr_field->type != BPF_KPTR_UNREF))
5400 		goto bad_type;
5401 	return 0;
5402 bad_type:
5403 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5404 		reg_type_str(env, reg->type), reg_name);
5405 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5406 	if (kptr_field->type == BPF_KPTR_UNREF)
5407 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5408 			targ_name);
5409 	else
5410 		verbose(env, "\n");
5411 	return -EINVAL;
5412 }
5413 
5414 static bool in_sleepable(struct bpf_verifier_env *env)
5415 {
5416 	return env->prog->sleepable ||
5417 	       (env->cur_state && env->cur_state->in_sleepable);
5418 }
5419 
5420 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5421  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5422  */
5423 static bool in_rcu_cs(struct bpf_verifier_env *env)
5424 {
5425 	return env->cur_state->active_rcu_lock ||
5426 	       env->cur_state->active_lock.ptr ||
5427 	       !in_sleepable(env);
5428 }
5429 
5430 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5431 BTF_SET_START(rcu_protected_types)
5432 BTF_ID(struct, prog_test_ref_kfunc)
5433 #ifdef CONFIG_CGROUPS
5434 BTF_ID(struct, cgroup)
5435 #endif
5436 #ifdef CONFIG_BPF_JIT
5437 BTF_ID(struct, bpf_cpumask)
5438 #endif
5439 BTF_ID(struct, task_struct)
5440 BTF_ID(struct, bpf_crypto_ctx)
5441 BTF_SET_END(rcu_protected_types)
5442 
5443 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5444 {
5445 	if (!btf_is_kernel(btf))
5446 		return true;
5447 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5448 }
5449 
5450 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
5451 {
5452 	struct btf_struct_meta *meta;
5453 
5454 	if (btf_is_kernel(kptr_field->kptr.btf))
5455 		return NULL;
5456 
5457 	meta = btf_find_struct_meta(kptr_field->kptr.btf,
5458 				    kptr_field->kptr.btf_id);
5459 
5460 	return meta ? meta->record : NULL;
5461 }
5462 
5463 static bool rcu_safe_kptr(const struct btf_field *field)
5464 {
5465 	const struct btf_field_kptr *kptr = &field->kptr;
5466 
5467 	return field->type == BPF_KPTR_PERCPU ||
5468 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5469 }
5470 
5471 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5472 {
5473 	struct btf_record *rec;
5474 	u32 ret;
5475 
5476 	ret = PTR_MAYBE_NULL;
5477 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5478 		ret |= MEM_RCU;
5479 		if (kptr_field->type == BPF_KPTR_PERCPU)
5480 			ret |= MEM_PERCPU;
5481 		else if (!btf_is_kernel(kptr_field->kptr.btf))
5482 			ret |= MEM_ALLOC;
5483 
5484 		rec = kptr_pointee_btf_record(kptr_field);
5485 		if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
5486 			ret |= NON_OWN_REF;
5487 	} else {
5488 		ret |= PTR_UNTRUSTED;
5489 	}
5490 
5491 	return ret;
5492 }
5493 
5494 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5495 				 int value_regno, int insn_idx,
5496 				 struct btf_field *kptr_field)
5497 {
5498 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5499 	int class = BPF_CLASS(insn->code);
5500 	struct bpf_reg_state *val_reg;
5501 
5502 	/* Things we already checked for in check_map_access and caller:
5503 	 *  - Reject cases where variable offset may touch kptr
5504 	 *  - size of access (must be BPF_DW)
5505 	 *  - tnum_is_const(reg->var_off)
5506 	 *  - kptr_field->offset == off + reg->var_off.value
5507 	 */
5508 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5509 	if (BPF_MODE(insn->code) != BPF_MEM) {
5510 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5511 		return -EACCES;
5512 	}
5513 
5514 	/* We only allow loading referenced kptr, since it will be marked as
5515 	 * untrusted, similar to unreferenced kptr.
5516 	 */
5517 	if (class != BPF_LDX &&
5518 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5519 		verbose(env, "store to referenced kptr disallowed\n");
5520 		return -EACCES;
5521 	}
5522 
5523 	if (class == BPF_LDX) {
5524 		val_reg = reg_state(env, value_regno);
5525 		/* We can simply mark the value_regno receiving the pointer
5526 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5527 		 */
5528 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5529 				kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5530 	} else if (class == BPF_STX) {
5531 		val_reg = reg_state(env, value_regno);
5532 		if (!register_is_null(val_reg) &&
5533 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5534 			return -EACCES;
5535 	} else if (class == BPF_ST) {
5536 		if (insn->imm) {
5537 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5538 				kptr_field->offset);
5539 			return -EACCES;
5540 		}
5541 	} else {
5542 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5543 		return -EACCES;
5544 	}
5545 	return 0;
5546 }
5547 
5548 /* check read/write into a map element with possible variable offset */
5549 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5550 			    int off, int size, bool zero_size_allowed,
5551 			    enum bpf_access_src src)
5552 {
5553 	struct bpf_verifier_state *vstate = env->cur_state;
5554 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5555 	struct bpf_reg_state *reg = &state->regs[regno];
5556 	struct bpf_map *map = reg->map_ptr;
5557 	struct btf_record *rec;
5558 	int err, i;
5559 
5560 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5561 				      zero_size_allowed);
5562 	if (err)
5563 		return err;
5564 
5565 	if (IS_ERR_OR_NULL(map->record))
5566 		return 0;
5567 	rec = map->record;
5568 	for (i = 0; i < rec->cnt; i++) {
5569 		struct btf_field *field = &rec->fields[i];
5570 		u32 p = field->offset;
5571 
5572 		/* If any part of a field  can be touched by load/store, reject
5573 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5574 		 * it is sufficient to check x1 < y2 && y1 < x2.
5575 		 */
5576 		if (reg->smin_value + off < p + field->size &&
5577 		    p < reg->umax_value + off + size) {
5578 			switch (field->type) {
5579 			case BPF_KPTR_UNREF:
5580 			case BPF_KPTR_REF:
5581 			case BPF_KPTR_PERCPU:
5582 				if (src != ACCESS_DIRECT) {
5583 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5584 					return -EACCES;
5585 				}
5586 				if (!tnum_is_const(reg->var_off)) {
5587 					verbose(env, "kptr access cannot have variable offset\n");
5588 					return -EACCES;
5589 				}
5590 				if (p != off + reg->var_off.value) {
5591 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5592 						p, off + reg->var_off.value);
5593 					return -EACCES;
5594 				}
5595 				if (size != bpf_size_to_bytes(BPF_DW)) {
5596 					verbose(env, "kptr access size must be BPF_DW\n");
5597 					return -EACCES;
5598 				}
5599 				break;
5600 			default:
5601 				verbose(env, "%s cannot be accessed directly by load/store\n",
5602 					btf_field_type_name(field->type));
5603 				return -EACCES;
5604 			}
5605 		}
5606 	}
5607 	return 0;
5608 }
5609 
5610 #define MAX_PACKET_OFF 0xffff
5611 
5612 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5613 				       const struct bpf_call_arg_meta *meta,
5614 				       enum bpf_access_type t)
5615 {
5616 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5617 
5618 	switch (prog_type) {
5619 	/* Program types only with direct read access go here! */
5620 	case BPF_PROG_TYPE_LWT_IN:
5621 	case BPF_PROG_TYPE_LWT_OUT:
5622 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5623 	case BPF_PROG_TYPE_SK_REUSEPORT:
5624 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5625 	case BPF_PROG_TYPE_CGROUP_SKB:
5626 		if (t == BPF_WRITE)
5627 			return false;
5628 		fallthrough;
5629 
5630 	/* Program types with direct read + write access go here! */
5631 	case BPF_PROG_TYPE_SCHED_CLS:
5632 	case BPF_PROG_TYPE_SCHED_ACT:
5633 	case BPF_PROG_TYPE_XDP:
5634 	case BPF_PROG_TYPE_LWT_XMIT:
5635 	case BPF_PROG_TYPE_SK_SKB:
5636 	case BPF_PROG_TYPE_SK_MSG:
5637 		if (meta)
5638 			return meta->pkt_access;
5639 
5640 		env->seen_direct_write = true;
5641 		return true;
5642 
5643 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5644 		if (t == BPF_WRITE)
5645 			env->seen_direct_write = true;
5646 
5647 		return true;
5648 
5649 	default:
5650 		return false;
5651 	}
5652 }
5653 
5654 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5655 			       int size, bool zero_size_allowed)
5656 {
5657 	struct bpf_reg_state *regs = cur_regs(env);
5658 	struct bpf_reg_state *reg = &regs[regno];
5659 	int err;
5660 
5661 	/* We may have added a variable offset to the packet pointer; but any
5662 	 * reg->range we have comes after that.  We are only checking the fixed
5663 	 * offset.
5664 	 */
5665 
5666 	/* We don't allow negative numbers, because we aren't tracking enough
5667 	 * detail to prove they're safe.
5668 	 */
5669 	if (reg->smin_value < 0) {
5670 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5671 			regno);
5672 		return -EACCES;
5673 	}
5674 
5675 	err = reg->range < 0 ? -EINVAL :
5676 	      __check_mem_access(env, regno, off, size, reg->range,
5677 				 zero_size_allowed);
5678 	if (err) {
5679 		verbose(env, "R%d offset is outside of the packet\n", regno);
5680 		return err;
5681 	}
5682 
5683 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5684 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5685 	 * otherwise find_good_pkt_pointers would have refused to set range info
5686 	 * that __check_mem_access would have rejected this pkt access.
5687 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5688 	 */
5689 	env->prog->aux->max_pkt_offset =
5690 		max_t(u32, env->prog->aux->max_pkt_offset,
5691 		      off + reg->umax_value + size - 1);
5692 
5693 	return err;
5694 }
5695 
5696 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5697 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5698 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5699 			    struct btf **btf, u32 *btf_id, bool *is_retval, bool is_ldsx)
5700 {
5701 	struct bpf_insn_access_aux info = {
5702 		.reg_type = *reg_type,
5703 		.log = &env->log,
5704 		.is_retval = false,
5705 		.is_ldsx = is_ldsx,
5706 	};
5707 
5708 	if (env->ops->is_valid_access &&
5709 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5710 		/* A non zero info.ctx_field_size indicates that this field is a
5711 		 * candidate for later verifier transformation to load the whole
5712 		 * field and then apply a mask when accessed with a narrower
5713 		 * access than actual ctx access size. A zero info.ctx_field_size
5714 		 * will only allow for whole field access and rejects any other
5715 		 * type of narrower access.
5716 		 */
5717 		*reg_type = info.reg_type;
5718 		*is_retval = info.is_retval;
5719 
5720 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5721 			*btf = info.btf;
5722 			*btf_id = info.btf_id;
5723 		} else {
5724 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5725 		}
5726 		/* remember the offset of last byte accessed in ctx */
5727 		if (env->prog->aux->max_ctx_offset < off + size)
5728 			env->prog->aux->max_ctx_offset = off + size;
5729 		return 0;
5730 	}
5731 
5732 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5733 	return -EACCES;
5734 }
5735 
5736 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5737 				  int size)
5738 {
5739 	if (size < 0 || off < 0 ||
5740 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5741 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5742 			off, size);
5743 		return -EACCES;
5744 	}
5745 	return 0;
5746 }
5747 
5748 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5749 			     u32 regno, int off, int size,
5750 			     enum bpf_access_type t)
5751 {
5752 	struct bpf_reg_state *regs = cur_regs(env);
5753 	struct bpf_reg_state *reg = &regs[regno];
5754 	struct bpf_insn_access_aux info = {};
5755 	bool valid;
5756 
5757 	if (reg->smin_value < 0) {
5758 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5759 			regno);
5760 		return -EACCES;
5761 	}
5762 
5763 	switch (reg->type) {
5764 	case PTR_TO_SOCK_COMMON:
5765 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5766 		break;
5767 	case PTR_TO_SOCKET:
5768 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5769 		break;
5770 	case PTR_TO_TCP_SOCK:
5771 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5772 		break;
5773 	case PTR_TO_XDP_SOCK:
5774 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5775 		break;
5776 	default:
5777 		valid = false;
5778 	}
5779 
5780 
5781 	if (valid) {
5782 		env->insn_aux_data[insn_idx].ctx_field_size =
5783 			info.ctx_field_size;
5784 		return 0;
5785 	}
5786 
5787 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5788 		regno, reg_type_str(env, reg->type), off, size);
5789 
5790 	return -EACCES;
5791 }
5792 
5793 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5794 {
5795 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5796 }
5797 
5798 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5799 {
5800 	const struct bpf_reg_state *reg = reg_state(env, regno);
5801 
5802 	return reg->type == PTR_TO_CTX;
5803 }
5804 
5805 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5806 {
5807 	const struct bpf_reg_state *reg = reg_state(env, regno);
5808 
5809 	return type_is_sk_pointer(reg->type);
5810 }
5811 
5812 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5813 {
5814 	const struct bpf_reg_state *reg = reg_state(env, regno);
5815 
5816 	return type_is_pkt_pointer(reg->type);
5817 }
5818 
5819 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5820 {
5821 	const struct bpf_reg_state *reg = reg_state(env, regno);
5822 
5823 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5824 	return reg->type == PTR_TO_FLOW_KEYS;
5825 }
5826 
5827 static bool is_arena_reg(struct bpf_verifier_env *env, int regno)
5828 {
5829 	const struct bpf_reg_state *reg = reg_state(env, regno);
5830 
5831 	return reg->type == PTR_TO_ARENA;
5832 }
5833 
5834 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5835 #ifdef CONFIG_NET
5836 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5837 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5838 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5839 #endif
5840 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5841 };
5842 
5843 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5844 {
5845 	/* A referenced register is always trusted. */
5846 	if (reg->ref_obj_id)
5847 		return true;
5848 
5849 	/* Types listed in the reg2btf_ids are always trusted */
5850 	if (reg2btf_ids[base_type(reg->type)] &&
5851 	    !bpf_type_has_unsafe_modifiers(reg->type))
5852 		return true;
5853 
5854 	/* If a register is not referenced, it is trusted if it has the
5855 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5856 	 * other type modifiers may be safe, but we elect to take an opt-in
5857 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5858 	 * not.
5859 	 *
5860 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5861 	 * for whether a register is trusted.
5862 	 */
5863 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5864 	       !bpf_type_has_unsafe_modifiers(reg->type);
5865 }
5866 
5867 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5868 {
5869 	return reg->type & MEM_RCU;
5870 }
5871 
5872 static void clear_trusted_flags(enum bpf_type_flag *flag)
5873 {
5874 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5875 }
5876 
5877 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5878 				   const struct bpf_reg_state *reg,
5879 				   int off, int size, bool strict)
5880 {
5881 	struct tnum reg_off;
5882 	int ip_align;
5883 
5884 	/* Byte size accesses are always allowed. */
5885 	if (!strict || size == 1)
5886 		return 0;
5887 
5888 	/* For platforms that do not have a Kconfig enabling
5889 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5890 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5891 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5892 	 * to this code only in strict mode where we want to emulate
5893 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5894 	 * unconditional IP align value of '2'.
5895 	 */
5896 	ip_align = 2;
5897 
5898 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5899 	if (!tnum_is_aligned(reg_off, size)) {
5900 		char tn_buf[48];
5901 
5902 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5903 		verbose(env,
5904 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5905 			ip_align, tn_buf, reg->off, off, size);
5906 		return -EACCES;
5907 	}
5908 
5909 	return 0;
5910 }
5911 
5912 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5913 				       const struct bpf_reg_state *reg,
5914 				       const char *pointer_desc,
5915 				       int off, int size, bool strict)
5916 {
5917 	struct tnum reg_off;
5918 
5919 	/* Byte size accesses are always allowed. */
5920 	if (!strict || size == 1)
5921 		return 0;
5922 
5923 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5924 	if (!tnum_is_aligned(reg_off, size)) {
5925 		char tn_buf[48];
5926 
5927 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5928 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5929 			pointer_desc, tn_buf, reg->off, off, size);
5930 		return -EACCES;
5931 	}
5932 
5933 	return 0;
5934 }
5935 
5936 static int check_ptr_alignment(struct bpf_verifier_env *env,
5937 			       const struct bpf_reg_state *reg, int off,
5938 			       int size, bool strict_alignment_once)
5939 {
5940 	bool strict = env->strict_alignment || strict_alignment_once;
5941 	const char *pointer_desc = "";
5942 
5943 	switch (reg->type) {
5944 	case PTR_TO_PACKET:
5945 	case PTR_TO_PACKET_META:
5946 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5947 		 * right in front, treat it the very same way.
5948 		 */
5949 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5950 	case PTR_TO_FLOW_KEYS:
5951 		pointer_desc = "flow keys ";
5952 		break;
5953 	case PTR_TO_MAP_KEY:
5954 		pointer_desc = "key ";
5955 		break;
5956 	case PTR_TO_MAP_VALUE:
5957 		pointer_desc = "value ";
5958 		break;
5959 	case PTR_TO_CTX:
5960 		pointer_desc = "context ";
5961 		break;
5962 	case PTR_TO_STACK:
5963 		pointer_desc = "stack ";
5964 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5965 		 * and check_stack_read_fixed_off() relies on stack accesses being
5966 		 * aligned.
5967 		 */
5968 		strict = true;
5969 		break;
5970 	case PTR_TO_SOCKET:
5971 		pointer_desc = "sock ";
5972 		break;
5973 	case PTR_TO_SOCK_COMMON:
5974 		pointer_desc = "sock_common ";
5975 		break;
5976 	case PTR_TO_TCP_SOCK:
5977 		pointer_desc = "tcp_sock ";
5978 		break;
5979 	case PTR_TO_XDP_SOCK:
5980 		pointer_desc = "xdp_sock ";
5981 		break;
5982 	case PTR_TO_ARENA:
5983 		return 0;
5984 	default:
5985 		break;
5986 	}
5987 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5988 					   strict);
5989 }
5990 
5991 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth)
5992 {
5993 	if (env->prog->jit_requested)
5994 		return round_up(stack_depth, 16);
5995 
5996 	/* round up to 32-bytes, since this is granularity
5997 	 * of interpreter stack size
5998 	 */
5999 	return round_up(max_t(u32, stack_depth, 1), 32);
6000 }
6001 
6002 /* starting from main bpf function walk all instructions of the function
6003  * and recursively walk all callees that given function can call.
6004  * Ignore jump and exit insns.
6005  * Since recursion is prevented by check_cfg() this algorithm
6006  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
6007  */
6008 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
6009 {
6010 	struct bpf_subprog_info *subprog = env->subprog_info;
6011 	struct bpf_insn *insn = env->prog->insnsi;
6012 	int depth = 0, frame = 0, i, subprog_end;
6013 	bool tail_call_reachable = false;
6014 	int ret_insn[MAX_CALL_FRAMES];
6015 	int ret_prog[MAX_CALL_FRAMES];
6016 	int j;
6017 
6018 	i = subprog[idx].start;
6019 process_func:
6020 	/* protect against potential stack overflow that might happen when
6021 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
6022 	 * depth for such case down to 256 so that the worst case scenario
6023 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
6024 	 * 8k).
6025 	 *
6026 	 * To get the idea what might happen, see an example:
6027 	 * func1 -> sub rsp, 128
6028 	 *  subfunc1 -> sub rsp, 256
6029 	 *  tailcall1 -> add rsp, 256
6030 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
6031 	 *   subfunc2 -> sub rsp, 64
6032 	 *   subfunc22 -> sub rsp, 128
6033 	 *   tailcall2 -> add rsp, 128
6034 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
6035 	 *
6036 	 * tailcall will unwind the current stack frame but it will not get rid
6037 	 * of caller's stack as shown on the example above.
6038 	 */
6039 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
6040 		verbose(env,
6041 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
6042 			depth);
6043 		return -EACCES;
6044 	}
6045 	depth += round_up_stack_depth(env, subprog[idx].stack_depth);
6046 	if (depth > MAX_BPF_STACK) {
6047 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
6048 			frame + 1, depth);
6049 		return -EACCES;
6050 	}
6051 continue_func:
6052 	subprog_end = subprog[idx + 1].start;
6053 	for (; i < subprog_end; i++) {
6054 		int next_insn, sidx;
6055 
6056 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
6057 			bool err = false;
6058 
6059 			if (!is_bpf_throw_kfunc(insn + i))
6060 				continue;
6061 			if (subprog[idx].is_cb)
6062 				err = true;
6063 			for (int c = 0; c < frame && !err; c++) {
6064 				if (subprog[ret_prog[c]].is_cb) {
6065 					err = true;
6066 					break;
6067 				}
6068 			}
6069 			if (!err)
6070 				continue;
6071 			verbose(env,
6072 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
6073 				i, idx);
6074 			return -EINVAL;
6075 		}
6076 
6077 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
6078 			continue;
6079 		/* remember insn and function to return to */
6080 		ret_insn[frame] = i + 1;
6081 		ret_prog[frame] = idx;
6082 
6083 		/* find the callee */
6084 		next_insn = i + insn[i].imm + 1;
6085 		sidx = find_subprog(env, next_insn);
6086 		if (sidx < 0) {
6087 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6088 				  next_insn);
6089 			return -EFAULT;
6090 		}
6091 		if (subprog[sidx].is_async_cb) {
6092 			if (subprog[sidx].has_tail_call) {
6093 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
6094 				return -EFAULT;
6095 			}
6096 			/* async callbacks don't increase bpf prog stack size unless called directly */
6097 			if (!bpf_pseudo_call(insn + i))
6098 				continue;
6099 			if (subprog[sidx].is_exception_cb) {
6100 				verbose(env, "insn %d cannot call exception cb directly\n", i);
6101 				return -EINVAL;
6102 			}
6103 		}
6104 		i = next_insn;
6105 		idx = sidx;
6106 
6107 		if (subprog[idx].has_tail_call)
6108 			tail_call_reachable = true;
6109 
6110 		frame++;
6111 		if (frame >= MAX_CALL_FRAMES) {
6112 			verbose(env, "the call stack of %d frames is too deep !\n",
6113 				frame);
6114 			return -E2BIG;
6115 		}
6116 		goto process_func;
6117 	}
6118 	/* if tail call got detected across bpf2bpf calls then mark each of the
6119 	 * currently present subprog frames as tail call reachable subprogs;
6120 	 * this info will be utilized by JIT so that we will be preserving the
6121 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
6122 	 */
6123 	if (tail_call_reachable)
6124 		for (j = 0; j < frame; j++) {
6125 			if (subprog[ret_prog[j]].is_exception_cb) {
6126 				verbose(env, "cannot tail call within exception cb\n");
6127 				return -EINVAL;
6128 			}
6129 			subprog[ret_prog[j]].tail_call_reachable = true;
6130 		}
6131 	if (subprog[0].tail_call_reachable)
6132 		env->prog->aux->tail_call_reachable = true;
6133 
6134 	/* end of for() loop means the last insn of the 'subprog'
6135 	 * was reached. Doesn't matter whether it was JA or EXIT
6136 	 */
6137 	if (frame == 0)
6138 		return 0;
6139 	depth -= round_up_stack_depth(env, subprog[idx].stack_depth);
6140 	frame--;
6141 	i = ret_insn[frame];
6142 	idx = ret_prog[frame];
6143 	goto continue_func;
6144 }
6145 
6146 static int check_max_stack_depth(struct bpf_verifier_env *env)
6147 {
6148 	struct bpf_subprog_info *si = env->subprog_info;
6149 	int ret;
6150 
6151 	for (int i = 0; i < env->subprog_cnt; i++) {
6152 		if (!i || si[i].is_async_cb) {
6153 			ret = check_max_stack_depth_subprog(env, i);
6154 			if (ret < 0)
6155 				return ret;
6156 		}
6157 		continue;
6158 	}
6159 	return 0;
6160 }
6161 
6162 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6163 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6164 				  const struct bpf_insn *insn, int idx)
6165 {
6166 	int start = idx + insn->imm + 1, subprog;
6167 
6168 	subprog = find_subprog(env, start);
6169 	if (subprog < 0) {
6170 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6171 			  start);
6172 		return -EFAULT;
6173 	}
6174 	return env->subprog_info[subprog].stack_depth;
6175 }
6176 #endif
6177 
6178 static int __check_buffer_access(struct bpf_verifier_env *env,
6179 				 const char *buf_info,
6180 				 const struct bpf_reg_state *reg,
6181 				 int regno, int off, int size)
6182 {
6183 	if (off < 0) {
6184 		verbose(env,
6185 			"R%d invalid %s buffer access: off=%d, size=%d\n",
6186 			regno, buf_info, off, size);
6187 		return -EACCES;
6188 	}
6189 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6190 		char tn_buf[48];
6191 
6192 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6193 		verbose(env,
6194 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6195 			regno, off, tn_buf);
6196 		return -EACCES;
6197 	}
6198 
6199 	return 0;
6200 }
6201 
6202 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6203 				  const struct bpf_reg_state *reg,
6204 				  int regno, int off, int size)
6205 {
6206 	int err;
6207 
6208 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6209 	if (err)
6210 		return err;
6211 
6212 	if (off + size > env->prog->aux->max_tp_access)
6213 		env->prog->aux->max_tp_access = off + size;
6214 
6215 	return 0;
6216 }
6217 
6218 static int check_buffer_access(struct bpf_verifier_env *env,
6219 			       const struct bpf_reg_state *reg,
6220 			       int regno, int off, int size,
6221 			       bool zero_size_allowed,
6222 			       u32 *max_access)
6223 {
6224 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6225 	int err;
6226 
6227 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6228 	if (err)
6229 		return err;
6230 
6231 	if (off + size > *max_access)
6232 		*max_access = off + size;
6233 
6234 	return 0;
6235 }
6236 
6237 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6238 static void zext_32_to_64(struct bpf_reg_state *reg)
6239 {
6240 	reg->var_off = tnum_subreg(reg->var_off);
6241 	__reg_assign_32_into_64(reg);
6242 }
6243 
6244 /* truncate register to smaller size (in bytes)
6245  * must be called with size < BPF_REG_SIZE
6246  */
6247 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6248 {
6249 	u64 mask;
6250 
6251 	/* clear high bits in bit representation */
6252 	reg->var_off = tnum_cast(reg->var_off, size);
6253 
6254 	/* fix arithmetic bounds */
6255 	mask = ((u64)1 << (size * 8)) - 1;
6256 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6257 		reg->umin_value &= mask;
6258 		reg->umax_value &= mask;
6259 	} else {
6260 		reg->umin_value = 0;
6261 		reg->umax_value = mask;
6262 	}
6263 	reg->smin_value = reg->umin_value;
6264 	reg->smax_value = reg->umax_value;
6265 
6266 	/* If size is smaller than 32bit register the 32bit register
6267 	 * values are also truncated so we push 64-bit bounds into
6268 	 * 32-bit bounds. Above were truncated < 32-bits already.
6269 	 */
6270 	if (size < 4)
6271 		__mark_reg32_unbounded(reg);
6272 
6273 	reg_bounds_sync(reg);
6274 }
6275 
6276 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6277 {
6278 	if (size == 1) {
6279 		reg->smin_value = reg->s32_min_value = S8_MIN;
6280 		reg->smax_value = reg->s32_max_value = S8_MAX;
6281 	} else if (size == 2) {
6282 		reg->smin_value = reg->s32_min_value = S16_MIN;
6283 		reg->smax_value = reg->s32_max_value = S16_MAX;
6284 	} else {
6285 		/* size == 4 */
6286 		reg->smin_value = reg->s32_min_value = S32_MIN;
6287 		reg->smax_value = reg->s32_max_value = S32_MAX;
6288 	}
6289 	reg->umin_value = reg->u32_min_value = 0;
6290 	reg->umax_value = U64_MAX;
6291 	reg->u32_max_value = U32_MAX;
6292 	reg->var_off = tnum_unknown;
6293 }
6294 
6295 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6296 {
6297 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6298 	u64 top_smax_value, top_smin_value;
6299 	u64 num_bits = size * 8;
6300 
6301 	if (tnum_is_const(reg->var_off)) {
6302 		u64_cval = reg->var_off.value;
6303 		if (size == 1)
6304 			reg->var_off = tnum_const((s8)u64_cval);
6305 		else if (size == 2)
6306 			reg->var_off = tnum_const((s16)u64_cval);
6307 		else
6308 			/* size == 4 */
6309 			reg->var_off = tnum_const((s32)u64_cval);
6310 
6311 		u64_cval = reg->var_off.value;
6312 		reg->smax_value = reg->smin_value = u64_cval;
6313 		reg->umax_value = reg->umin_value = u64_cval;
6314 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6315 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6316 		return;
6317 	}
6318 
6319 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6320 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6321 
6322 	if (top_smax_value != top_smin_value)
6323 		goto out;
6324 
6325 	/* find the s64_min and s64_min after sign extension */
6326 	if (size == 1) {
6327 		init_s64_max = (s8)reg->smax_value;
6328 		init_s64_min = (s8)reg->smin_value;
6329 	} else if (size == 2) {
6330 		init_s64_max = (s16)reg->smax_value;
6331 		init_s64_min = (s16)reg->smin_value;
6332 	} else {
6333 		init_s64_max = (s32)reg->smax_value;
6334 		init_s64_min = (s32)reg->smin_value;
6335 	}
6336 
6337 	s64_max = max(init_s64_max, init_s64_min);
6338 	s64_min = min(init_s64_max, init_s64_min);
6339 
6340 	/* both of s64_max/s64_min positive or negative */
6341 	if ((s64_max >= 0) == (s64_min >= 0)) {
6342 		reg->s32_min_value = reg->smin_value = s64_min;
6343 		reg->s32_max_value = reg->smax_value = s64_max;
6344 		reg->u32_min_value = reg->umin_value = s64_min;
6345 		reg->u32_max_value = reg->umax_value = s64_max;
6346 		reg->var_off = tnum_range(s64_min, s64_max);
6347 		return;
6348 	}
6349 
6350 out:
6351 	set_sext64_default_val(reg, size);
6352 }
6353 
6354 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6355 {
6356 	if (size == 1) {
6357 		reg->s32_min_value = S8_MIN;
6358 		reg->s32_max_value = S8_MAX;
6359 	} else {
6360 		/* size == 2 */
6361 		reg->s32_min_value = S16_MIN;
6362 		reg->s32_max_value = S16_MAX;
6363 	}
6364 	reg->u32_min_value = 0;
6365 	reg->u32_max_value = U32_MAX;
6366 	reg->var_off = tnum_subreg(tnum_unknown);
6367 }
6368 
6369 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6370 {
6371 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6372 	u32 top_smax_value, top_smin_value;
6373 	u32 num_bits = size * 8;
6374 
6375 	if (tnum_is_const(reg->var_off)) {
6376 		u32_val = reg->var_off.value;
6377 		if (size == 1)
6378 			reg->var_off = tnum_const((s8)u32_val);
6379 		else
6380 			reg->var_off = tnum_const((s16)u32_val);
6381 
6382 		u32_val = reg->var_off.value;
6383 		reg->s32_min_value = reg->s32_max_value = u32_val;
6384 		reg->u32_min_value = reg->u32_max_value = u32_val;
6385 		return;
6386 	}
6387 
6388 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6389 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6390 
6391 	if (top_smax_value != top_smin_value)
6392 		goto out;
6393 
6394 	/* find the s32_min and s32_min after sign extension */
6395 	if (size == 1) {
6396 		init_s32_max = (s8)reg->s32_max_value;
6397 		init_s32_min = (s8)reg->s32_min_value;
6398 	} else {
6399 		/* size == 2 */
6400 		init_s32_max = (s16)reg->s32_max_value;
6401 		init_s32_min = (s16)reg->s32_min_value;
6402 	}
6403 	s32_max = max(init_s32_max, init_s32_min);
6404 	s32_min = min(init_s32_max, init_s32_min);
6405 
6406 	if ((s32_min >= 0) == (s32_max >= 0)) {
6407 		reg->s32_min_value = s32_min;
6408 		reg->s32_max_value = s32_max;
6409 		reg->u32_min_value = (u32)s32_min;
6410 		reg->u32_max_value = (u32)s32_max;
6411 		reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
6412 		return;
6413 	}
6414 
6415 out:
6416 	set_sext32_default_val(reg, size);
6417 }
6418 
6419 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6420 {
6421 	/* A map is considered read-only if the following condition are true:
6422 	 *
6423 	 * 1) BPF program side cannot change any of the map content. The
6424 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6425 	 *    and was set at map creation time.
6426 	 * 2) The map value(s) have been initialized from user space by a
6427 	 *    loader and then "frozen", such that no new map update/delete
6428 	 *    operations from syscall side are possible for the rest of
6429 	 *    the map's lifetime from that point onwards.
6430 	 * 3) Any parallel/pending map update/delete operations from syscall
6431 	 *    side have been completed. Only after that point, it's safe to
6432 	 *    assume that map value(s) are immutable.
6433 	 */
6434 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6435 	       READ_ONCE(map->frozen) &&
6436 	       !bpf_map_write_active(map);
6437 }
6438 
6439 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6440 			       bool is_ldsx)
6441 {
6442 	void *ptr;
6443 	u64 addr;
6444 	int err;
6445 
6446 	err = map->ops->map_direct_value_addr(map, &addr, off);
6447 	if (err)
6448 		return err;
6449 	ptr = (void *)(long)addr + off;
6450 
6451 	switch (size) {
6452 	case sizeof(u8):
6453 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6454 		break;
6455 	case sizeof(u16):
6456 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6457 		break;
6458 	case sizeof(u32):
6459 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6460 		break;
6461 	case sizeof(u64):
6462 		*val = *(u64 *)ptr;
6463 		break;
6464 	default:
6465 		return -EINVAL;
6466 	}
6467 	return 0;
6468 }
6469 
6470 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6471 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6472 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6473 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type)  __PASTE(__type, __safe_trusted_or_null)
6474 
6475 /*
6476  * Allow list few fields as RCU trusted or full trusted.
6477  * This logic doesn't allow mix tagging and will be removed once GCC supports
6478  * btf_type_tag.
6479  */
6480 
6481 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6482 BTF_TYPE_SAFE_RCU(struct task_struct) {
6483 	const cpumask_t *cpus_ptr;
6484 	struct css_set __rcu *cgroups;
6485 	struct task_struct __rcu *real_parent;
6486 	struct task_struct *group_leader;
6487 };
6488 
6489 BTF_TYPE_SAFE_RCU(struct cgroup) {
6490 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6491 	struct kernfs_node *kn;
6492 };
6493 
6494 BTF_TYPE_SAFE_RCU(struct css_set) {
6495 	struct cgroup *dfl_cgrp;
6496 };
6497 
6498 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6499 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6500 	struct file __rcu *exe_file;
6501 };
6502 
6503 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6504  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6505  */
6506 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6507 	struct sock *sk;
6508 };
6509 
6510 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6511 	struct sock *sk;
6512 };
6513 
6514 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6515 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6516 	struct seq_file *seq;
6517 };
6518 
6519 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6520 	struct bpf_iter_meta *meta;
6521 	struct task_struct *task;
6522 };
6523 
6524 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6525 	struct file *file;
6526 };
6527 
6528 BTF_TYPE_SAFE_TRUSTED(struct file) {
6529 	struct inode *f_inode;
6530 };
6531 
6532 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6533 	/* no negative dentry-s in places where bpf can see it */
6534 	struct inode *d_inode;
6535 };
6536 
6537 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
6538 	struct sock *sk;
6539 };
6540 
6541 static bool type_is_rcu(struct bpf_verifier_env *env,
6542 			struct bpf_reg_state *reg,
6543 			const char *field_name, u32 btf_id)
6544 {
6545 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6546 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6547 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6548 
6549 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6550 }
6551 
6552 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6553 				struct bpf_reg_state *reg,
6554 				const char *field_name, u32 btf_id)
6555 {
6556 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6557 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6558 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6559 
6560 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6561 }
6562 
6563 static bool type_is_trusted(struct bpf_verifier_env *env,
6564 			    struct bpf_reg_state *reg,
6565 			    const char *field_name, u32 btf_id)
6566 {
6567 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6568 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6569 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6570 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6571 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6572 
6573 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6574 }
6575 
6576 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
6577 				    struct bpf_reg_state *reg,
6578 				    const char *field_name, u32 btf_id)
6579 {
6580 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
6581 
6582 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
6583 					  "__safe_trusted_or_null");
6584 }
6585 
6586 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6587 				   struct bpf_reg_state *regs,
6588 				   int regno, int off, int size,
6589 				   enum bpf_access_type atype,
6590 				   int value_regno)
6591 {
6592 	struct bpf_reg_state *reg = regs + regno;
6593 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6594 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6595 	const char *field_name = NULL;
6596 	enum bpf_type_flag flag = 0;
6597 	u32 btf_id = 0;
6598 	int ret;
6599 
6600 	if (!env->allow_ptr_leaks) {
6601 		verbose(env,
6602 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6603 			tname);
6604 		return -EPERM;
6605 	}
6606 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6607 		verbose(env,
6608 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6609 			tname);
6610 		return -EINVAL;
6611 	}
6612 	if (off < 0) {
6613 		verbose(env,
6614 			"R%d is ptr_%s invalid negative access: off=%d\n",
6615 			regno, tname, off);
6616 		return -EACCES;
6617 	}
6618 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6619 		char tn_buf[48];
6620 
6621 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6622 		verbose(env,
6623 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6624 			regno, tname, off, tn_buf);
6625 		return -EACCES;
6626 	}
6627 
6628 	if (reg->type & MEM_USER) {
6629 		verbose(env,
6630 			"R%d is ptr_%s access user memory: off=%d\n",
6631 			regno, tname, off);
6632 		return -EACCES;
6633 	}
6634 
6635 	if (reg->type & MEM_PERCPU) {
6636 		verbose(env,
6637 			"R%d is ptr_%s access percpu memory: off=%d\n",
6638 			regno, tname, off);
6639 		return -EACCES;
6640 	}
6641 
6642 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6643 		if (!btf_is_kernel(reg->btf)) {
6644 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6645 			return -EFAULT;
6646 		}
6647 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6648 	} else {
6649 		/* Writes are permitted with default btf_struct_access for
6650 		 * program allocated objects (which always have ref_obj_id > 0),
6651 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6652 		 */
6653 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6654 			verbose(env, "only read is supported\n");
6655 			return -EACCES;
6656 		}
6657 
6658 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6659 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6660 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6661 			return -EFAULT;
6662 		}
6663 
6664 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6665 	}
6666 
6667 	if (ret < 0)
6668 		return ret;
6669 
6670 	if (ret != PTR_TO_BTF_ID) {
6671 		/* just mark; */
6672 
6673 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6674 		/* If this is an untrusted pointer, all pointers formed by walking it
6675 		 * also inherit the untrusted flag.
6676 		 */
6677 		flag = PTR_UNTRUSTED;
6678 
6679 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6680 		/* By default any pointer obtained from walking a trusted pointer is no
6681 		 * longer trusted, unless the field being accessed has explicitly been
6682 		 * marked as inheriting its parent's state of trust (either full or RCU).
6683 		 * For example:
6684 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6685 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6686 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6687 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6688 		 *
6689 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6690 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6691 		 */
6692 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6693 			flag |= PTR_TRUSTED;
6694 		} else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
6695 			flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
6696 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6697 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6698 				/* ignore __rcu tag and mark it MEM_RCU */
6699 				flag |= MEM_RCU;
6700 			} else if (flag & MEM_RCU ||
6701 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6702 				/* __rcu tagged pointers can be NULL */
6703 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6704 
6705 				/* We always trust them */
6706 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6707 				    flag & PTR_UNTRUSTED)
6708 					flag &= ~PTR_UNTRUSTED;
6709 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6710 				/* keep as-is */
6711 			} else {
6712 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6713 				clear_trusted_flags(&flag);
6714 			}
6715 		} else {
6716 			/*
6717 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6718 			 * aggressively mark as untrusted otherwise such
6719 			 * pointers will be plain PTR_TO_BTF_ID without flags
6720 			 * and will be allowed to be passed into helpers for
6721 			 * compat reasons.
6722 			 */
6723 			flag = PTR_UNTRUSTED;
6724 		}
6725 	} else {
6726 		/* Old compat. Deprecated */
6727 		clear_trusted_flags(&flag);
6728 	}
6729 
6730 	if (atype == BPF_READ && value_regno >= 0)
6731 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6732 
6733 	return 0;
6734 }
6735 
6736 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6737 				   struct bpf_reg_state *regs,
6738 				   int regno, int off, int size,
6739 				   enum bpf_access_type atype,
6740 				   int value_regno)
6741 {
6742 	struct bpf_reg_state *reg = regs + regno;
6743 	struct bpf_map *map = reg->map_ptr;
6744 	struct bpf_reg_state map_reg;
6745 	enum bpf_type_flag flag = 0;
6746 	const struct btf_type *t;
6747 	const char *tname;
6748 	u32 btf_id;
6749 	int ret;
6750 
6751 	if (!btf_vmlinux) {
6752 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6753 		return -ENOTSUPP;
6754 	}
6755 
6756 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6757 		verbose(env, "map_ptr access not supported for map type %d\n",
6758 			map->map_type);
6759 		return -ENOTSUPP;
6760 	}
6761 
6762 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6763 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6764 
6765 	if (!env->allow_ptr_leaks) {
6766 		verbose(env,
6767 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6768 			tname);
6769 		return -EPERM;
6770 	}
6771 
6772 	if (off < 0) {
6773 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6774 			regno, tname, off);
6775 		return -EACCES;
6776 	}
6777 
6778 	if (atype != BPF_READ) {
6779 		verbose(env, "only read from %s is supported\n", tname);
6780 		return -EACCES;
6781 	}
6782 
6783 	/* Simulate access to a PTR_TO_BTF_ID */
6784 	memset(&map_reg, 0, sizeof(map_reg));
6785 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6786 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6787 	if (ret < 0)
6788 		return ret;
6789 
6790 	if (value_regno >= 0)
6791 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6792 
6793 	return 0;
6794 }
6795 
6796 /* Check that the stack access at the given offset is within bounds. The
6797  * maximum valid offset is -1.
6798  *
6799  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6800  * -state->allocated_stack for reads.
6801  */
6802 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6803                                           s64 off,
6804                                           struct bpf_func_state *state,
6805                                           enum bpf_access_type t)
6806 {
6807 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[env->insn_idx];
6808 	int min_valid_off, max_bpf_stack;
6809 
6810 	/* If accessing instruction is a spill/fill from bpf_fastcall pattern,
6811 	 * add room for all caller saved registers below MAX_BPF_STACK.
6812 	 * In case if bpf_fastcall rewrite won't happen maximal stack depth
6813 	 * would be checked by check_max_stack_depth_subprog().
6814 	 */
6815 	max_bpf_stack = MAX_BPF_STACK;
6816 	if (aux->fastcall_pattern)
6817 		max_bpf_stack += CALLER_SAVED_REGS * BPF_REG_SIZE;
6818 
6819 	if (t == BPF_WRITE || env->allow_uninit_stack)
6820 		min_valid_off = -max_bpf_stack;
6821 	else
6822 		min_valid_off = -state->allocated_stack;
6823 
6824 	if (off < min_valid_off || off > -1)
6825 		return -EACCES;
6826 	return 0;
6827 }
6828 
6829 /* Check that the stack access at 'regno + off' falls within the maximum stack
6830  * bounds.
6831  *
6832  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6833  */
6834 static int check_stack_access_within_bounds(
6835 		struct bpf_verifier_env *env,
6836 		int regno, int off, int access_size,
6837 		enum bpf_access_src src, enum bpf_access_type type)
6838 {
6839 	struct bpf_reg_state *regs = cur_regs(env);
6840 	struct bpf_reg_state *reg = regs + regno;
6841 	struct bpf_func_state *state = func(env, reg);
6842 	s64 min_off, max_off;
6843 	int err;
6844 	char *err_extra;
6845 
6846 	if (src == ACCESS_HELPER)
6847 		/* We don't know if helpers are reading or writing (or both). */
6848 		err_extra = " indirect access to";
6849 	else if (type == BPF_READ)
6850 		err_extra = " read from";
6851 	else
6852 		err_extra = " write to";
6853 
6854 	if (tnum_is_const(reg->var_off)) {
6855 		min_off = (s64)reg->var_off.value + off;
6856 		max_off = min_off + access_size;
6857 	} else {
6858 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6859 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6860 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6861 				err_extra, regno);
6862 			return -EACCES;
6863 		}
6864 		min_off = reg->smin_value + off;
6865 		max_off = reg->smax_value + off + access_size;
6866 	}
6867 
6868 	err = check_stack_slot_within_bounds(env, min_off, state, type);
6869 	if (!err && max_off > 0)
6870 		err = -EINVAL; /* out of stack access into non-negative offsets */
6871 	if (!err && access_size < 0)
6872 		/* access_size should not be negative (or overflow an int); others checks
6873 		 * along the way should have prevented such an access.
6874 		 */
6875 		err = -EFAULT; /* invalid negative access size; integer overflow? */
6876 
6877 	if (err) {
6878 		if (tnum_is_const(reg->var_off)) {
6879 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6880 				err_extra, regno, off, access_size);
6881 		} else {
6882 			char tn_buf[48];
6883 
6884 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6885 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
6886 				err_extra, regno, tn_buf, off, access_size);
6887 		}
6888 		return err;
6889 	}
6890 
6891 	/* Note that there is no stack access with offset zero, so the needed stack
6892 	 * size is -min_off, not -min_off+1.
6893 	 */
6894 	return grow_stack_state(env, state, -min_off /* size */);
6895 }
6896 
6897 static bool get_func_retval_range(struct bpf_prog *prog,
6898 				  struct bpf_retval_range *range)
6899 {
6900 	if (prog->type == BPF_PROG_TYPE_LSM &&
6901 		prog->expected_attach_type == BPF_LSM_MAC &&
6902 		!bpf_lsm_get_retval_range(prog, range)) {
6903 		return true;
6904 	}
6905 	return false;
6906 }
6907 
6908 /* check whether memory at (regno + off) is accessible for t = (read | write)
6909  * if t==write, value_regno is a register which value is stored into memory
6910  * if t==read, value_regno is a register which will receive the value from memory
6911  * if t==write && value_regno==-1, some unknown value is stored into memory
6912  * if t==read && value_regno==-1, don't care what we read from memory
6913  */
6914 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6915 			    int off, int bpf_size, enum bpf_access_type t,
6916 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6917 {
6918 	struct bpf_reg_state *regs = cur_regs(env);
6919 	struct bpf_reg_state *reg = regs + regno;
6920 	int size, err = 0;
6921 
6922 	size = bpf_size_to_bytes(bpf_size);
6923 	if (size < 0)
6924 		return size;
6925 
6926 	/* alignment checks will add in reg->off themselves */
6927 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6928 	if (err)
6929 		return err;
6930 
6931 	/* for access checks, reg->off is just part of off */
6932 	off += reg->off;
6933 
6934 	if (reg->type == PTR_TO_MAP_KEY) {
6935 		if (t == BPF_WRITE) {
6936 			verbose(env, "write to change key R%d not allowed\n", regno);
6937 			return -EACCES;
6938 		}
6939 
6940 		err = check_mem_region_access(env, regno, off, size,
6941 					      reg->map_ptr->key_size, false);
6942 		if (err)
6943 			return err;
6944 		if (value_regno >= 0)
6945 			mark_reg_unknown(env, regs, value_regno);
6946 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6947 		struct btf_field *kptr_field = NULL;
6948 
6949 		if (t == BPF_WRITE && value_regno >= 0 &&
6950 		    is_pointer_value(env, value_regno)) {
6951 			verbose(env, "R%d leaks addr into map\n", value_regno);
6952 			return -EACCES;
6953 		}
6954 		err = check_map_access_type(env, regno, off, size, t);
6955 		if (err)
6956 			return err;
6957 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6958 		if (err)
6959 			return err;
6960 		if (tnum_is_const(reg->var_off))
6961 			kptr_field = btf_record_find(reg->map_ptr->record,
6962 						     off + reg->var_off.value, BPF_KPTR);
6963 		if (kptr_field) {
6964 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6965 		} else if (t == BPF_READ && value_regno >= 0) {
6966 			struct bpf_map *map = reg->map_ptr;
6967 
6968 			/* if map is read-only, track its contents as scalars */
6969 			if (tnum_is_const(reg->var_off) &&
6970 			    bpf_map_is_rdonly(map) &&
6971 			    map->ops->map_direct_value_addr) {
6972 				int map_off = off + reg->var_off.value;
6973 				u64 val = 0;
6974 
6975 				err = bpf_map_direct_read(map, map_off, size,
6976 							  &val, is_ldsx);
6977 				if (err)
6978 					return err;
6979 
6980 				regs[value_regno].type = SCALAR_VALUE;
6981 				__mark_reg_known(&regs[value_regno], val);
6982 			} else {
6983 				mark_reg_unknown(env, regs, value_regno);
6984 			}
6985 		}
6986 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6987 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6988 
6989 		if (type_may_be_null(reg->type)) {
6990 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6991 				reg_type_str(env, reg->type));
6992 			return -EACCES;
6993 		}
6994 
6995 		if (t == BPF_WRITE && rdonly_mem) {
6996 			verbose(env, "R%d cannot write into %s\n",
6997 				regno, reg_type_str(env, reg->type));
6998 			return -EACCES;
6999 		}
7000 
7001 		if (t == BPF_WRITE && value_regno >= 0 &&
7002 		    is_pointer_value(env, value_regno)) {
7003 			verbose(env, "R%d leaks addr into mem\n", value_regno);
7004 			return -EACCES;
7005 		}
7006 
7007 		err = check_mem_region_access(env, regno, off, size,
7008 					      reg->mem_size, false);
7009 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
7010 			mark_reg_unknown(env, regs, value_regno);
7011 	} else if (reg->type == PTR_TO_CTX) {
7012 		bool is_retval = false;
7013 		struct bpf_retval_range range;
7014 		enum bpf_reg_type reg_type = SCALAR_VALUE;
7015 		struct btf *btf = NULL;
7016 		u32 btf_id = 0;
7017 
7018 		if (t == BPF_WRITE && value_regno >= 0 &&
7019 		    is_pointer_value(env, value_regno)) {
7020 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
7021 			return -EACCES;
7022 		}
7023 
7024 		err = check_ptr_off_reg(env, reg, regno);
7025 		if (err < 0)
7026 			return err;
7027 
7028 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
7029 				       &btf_id, &is_retval, is_ldsx);
7030 		if (err)
7031 			verbose_linfo(env, insn_idx, "; ");
7032 		if (!err && t == BPF_READ && value_regno >= 0) {
7033 			/* ctx access returns either a scalar, or a
7034 			 * PTR_TO_PACKET[_META,_END]. In the latter
7035 			 * case, we know the offset is zero.
7036 			 */
7037 			if (reg_type == SCALAR_VALUE) {
7038 				if (is_retval && get_func_retval_range(env->prog, &range)) {
7039 					err = __mark_reg_s32_range(env, regs, value_regno,
7040 								   range.minval, range.maxval);
7041 					if (err)
7042 						return err;
7043 				} else {
7044 					mark_reg_unknown(env, regs, value_regno);
7045 				}
7046 			} else {
7047 				mark_reg_known_zero(env, regs,
7048 						    value_regno);
7049 				if (type_may_be_null(reg_type))
7050 					regs[value_regno].id = ++env->id_gen;
7051 				/* A load of ctx field could have different
7052 				 * actual load size with the one encoded in the
7053 				 * insn. When the dst is PTR, it is for sure not
7054 				 * a sub-register.
7055 				 */
7056 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
7057 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
7058 					regs[value_regno].btf = btf;
7059 					regs[value_regno].btf_id = btf_id;
7060 				}
7061 			}
7062 			regs[value_regno].type = reg_type;
7063 		}
7064 
7065 	} else if (reg->type == PTR_TO_STACK) {
7066 		/* Basic bounds checks. */
7067 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
7068 		if (err)
7069 			return err;
7070 
7071 		if (t == BPF_READ)
7072 			err = check_stack_read(env, regno, off, size,
7073 					       value_regno);
7074 		else
7075 			err = check_stack_write(env, regno, off, size,
7076 						value_regno, insn_idx);
7077 	} else if (reg_is_pkt_pointer(reg)) {
7078 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
7079 			verbose(env, "cannot write into packet\n");
7080 			return -EACCES;
7081 		}
7082 		if (t == BPF_WRITE && value_regno >= 0 &&
7083 		    is_pointer_value(env, value_regno)) {
7084 			verbose(env, "R%d leaks addr into packet\n",
7085 				value_regno);
7086 			return -EACCES;
7087 		}
7088 		err = check_packet_access(env, regno, off, size, false);
7089 		if (!err && t == BPF_READ && value_regno >= 0)
7090 			mark_reg_unknown(env, regs, value_regno);
7091 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
7092 		if (t == BPF_WRITE && value_regno >= 0 &&
7093 		    is_pointer_value(env, value_regno)) {
7094 			verbose(env, "R%d leaks addr into flow keys\n",
7095 				value_regno);
7096 			return -EACCES;
7097 		}
7098 
7099 		err = check_flow_keys_access(env, off, size);
7100 		if (!err && t == BPF_READ && value_regno >= 0)
7101 			mark_reg_unknown(env, regs, value_regno);
7102 	} else if (type_is_sk_pointer(reg->type)) {
7103 		if (t == BPF_WRITE) {
7104 			verbose(env, "R%d cannot write into %s\n",
7105 				regno, reg_type_str(env, reg->type));
7106 			return -EACCES;
7107 		}
7108 		err = check_sock_access(env, insn_idx, regno, off, size, t);
7109 		if (!err && value_regno >= 0)
7110 			mark_reg_unknown(env, regs, value_regno);
7111 	} else if (reg->type == PTR_TO_TP_BUFFER) {
7112 		err = check_tp_buffer_access(env, reg, regno, off, size);
7113 		if (!err && t == BPF_READ && value_regno >= 0)
7114 			mark_reg_unknown(env, regs, value_regno);
7115 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
7116 		   !type_may_be_null(reg->type)) {
7117 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
7118 					      value_regno);
7119 	} else if (reg->type == CONST_PTR_TO_MAP) {
7120 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
7121 					      value_regno);
7122 	} else if (base_type(reg->type) == PTR_TO_BUF) {
7123 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
7124 		u32 *max_access;
7125 
7126 		if (rdonly_mem) {
7127 			if (t == BPF_WRITE) {
7128 				verbose(env, "R%d cannot write into %s\n",
7129 					regno, reg_type_str(env, reg->type));
7130 				return -EACCES;
7131 			}
7132 			max_access = &env->prog->aux->max_rdonly_access;
7133 		} else {
7134 			max_access = &env->prog->aux->max_rdwr_access;
7135 		}
7136 
7137 		err = check_buffer_access(env, reg, regno, off, size, false,
7138 					  max_access);
7139 
7140 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
7141 			mark_reg_unknown(env, regs, value_regno);
7142 	} else if (reg->type == PTR_TO_ARENA) {
7143 		if (t == BPF_READ && value_regno >= 0)
7144 			mark_reg_unknown(env, regs, value_regno);
7145 	} else {
7146 		verbose(env, "R%d invalid mem access '%s'\n", regno,
7147 			reg_type_str(env, reg->type));
7148 		return -EACCES;
7149 	}
7150 
7151 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
7152 	    regs[value_regno].type == SCALAR_VALUE) {
7153 		if (!is_ldsx)
7154 			/* b/h/w load zero-extends, mark upper bits as known 0 */
7155 			coerce_reg_to_size(&regs[value_regno], size);
7156 		else
7157 			coerce_reg_to_size_sx(&regs[value_regno], size);
7158 	}
7159 	return err;
7160 }
7161 
7162 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
7163 			     bool allow_trust_mismatch);
7164 
7165 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
7166 {
7167 	int load_reg;
7168 	int err;
7169 
7170 	switch (insn->imm) {
7171 	case BPF_ADD:
7172 	case BPF_ADD | BPF_FETCH:
7173 	case BPF_AND:
7174 	case BPF_AND | BPF_FETCH:
7175 	case BPF_OR:
7176 	case BPF_OR | BPF_FETCH:
7177 	case BPF_XOR:
7178 	case BPF_XOR | BPF_FETCH:
7179 	case BPF_XCHG:
7180 	case BPF_CMPXCHG:
7181 		break;
7182 	default:
7183 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
7184 		return -EINVAL;
7185 	}
7186 
7187 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7188 		verbose(env, "invalid atomic operand size\n");
7189 		return -EINVAL;
7190 	}
7191 
7192 	/* check src1 operand */
7193 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7194 	if (err)
7195 		return err;
7196 
7197 	/* check src2 operand */
7198 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7199 	if (err)
7200 		return err;
7201 
7202 	if (insn->imm == BPF_CMPXCHG) {
7203 		/* Check comparison of R0 with memory location */
7204 		const u32 aux_reg = BPF_REG_0;
7205 
7206 		err = check_reg_arg(env, aux_reg, SRC_OP);
7207 		if (err)
7208 			return err;
7209 
7210 		if (is_pointer_value(env, aux_reg)) {
7211 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
7212 			return -EACCES;
7213 		}
7214 	}
7215 
7216 	if (is_pointer_value(env, insn->src_reg)) {
7217 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7218 		return -EACCES;
7219 	}
7220 
7221 	if (is_ctx_reg(env, insn->dst_reg) ||
7222 	    is_pkt_reg(env, insn->dst_reg) ||
7223 	    is_flow_key_reg(env, insn->dst_reg) ||
7224 	    is_sk_reg(env, insn->dst_reg) ||
7225 	    (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) {
7226 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7227 			insn->dst_reg,
7228 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7229 		return -EACCES;
7230 	}
7231 
7232 	if (insn->imm & BPF_FETCH) {
7233 		if (insn->imm == BPF_CMPXCHG)
7234 			load_reg = BPF_REG_0;
7235 		else
7236 			load_reg = insn->src_reg;
7237 
7238 		/* check and record load of old value */
7239 		err = check_reg_arg(env, load_reg, DST_OP);
7240 		if (err)
7241 			return err;
7242 	} else {
7243 		/* This instruction accesses a memory location but doesn't
7244 		 * actually load it into a register.
7245 		 */
7246 		load_reg = -1;
7247 	}
7248 
7249 	/* Check whether we can read the memory, with second call for fetch
7250 	 * case to simulate the register fill.
7251 	 */
7252 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7253 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7254 	if (!err && load_reg >= 0)
7255 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7256 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
7257 				       true, false);
7258 	if (err)
7259 		return err;
7260 
7261 	if (is_arena_reg(env, insn->dst_reg)) {
7262 		err = save_aux_ptr_type(env, PTR_TO_ARENA, false);
7263 		if (err)
7264 			return err;
7265 	}
7266 	/* Check whether we can write into the same memory. */
7267 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7268 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7269 	if (err)
7270 		return err;
7271 	return 0;
7272 }
7273 
7274 /* When register 'regno' is used to read the stack (either directly or through
7275  * a helper function) make sure that it's within stack boundary and, depending
7276  * on the access type and privileges, that all elements of the stack are
7277  * initialized.
7278  *
7279  * 'off' includes 'regno->off', but not its dynamic part (if any).
7280  *
7281  * All registers that have been spilled on the stack in the slots within the
7282  * read offsets are marked as read.
7283  */
7284 static int check_stack_range_initialized(
7285 		struct bpf_verifier_env *env, int regno, int off,
7286 		int access_size, bool zero_size_allowed,
7287 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7288 {
7289 	struct bpf_reg_state *reg = reg_state(env, regno);
7290 	struct bpf_func_state *state = func(env, reg);
7291 	int err, min_off, max_off, i, j, slot, spi;
7292 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7293 	enum bpf_access_type bounds_check_type;
7294 	/* Some accesses can write anything into the stack, others are
7295 	 * read-only.
7296 	 */
7297 	bool clobber = false;
7298 
7299 	if (access_size == 0 && !zero_size_allowed) {
7300 		verbose(env, "invalid zero-sized read\n");
7301 		return -EACCES;
7302 	}
7303 
7304 	if (type == ACCESS_HELPER) {
7305 		/* The bounds checks for writes are more permissive than for
7306 		 * reads. However, if raw_mode is not set, we'll do extra
7307 		 * checks below.
7308 		 */
7309 		bounds_check_type = BPF_WRITE;
7310 		clobber = true;
7311 	} else {
7312 		bounds_check_type = BPF_READ;
7313 	}
7314 	err = check_stack_access_within_bounds(env, regno, off, access_size,
7315 					       type, bounds_check_type);
7316 	if (err)
7317 		return err;
7318 
7319 
7320 	if (tnum_is_const(reg->var_off)) {
7321 		min_off = max_off = reg->var_off.value + off;
7322 	} else {
7323 		/* Variable offset is prohibited for unprivileged mode for
7324 		 * simplicity since it requires corresponding support in
7325 		 * Spectre masking for stack ALU.
7326 		 * See also retrieve_ptr_limit().
7327 		 */
7328 		if (!env->bypass_spec_v1) {
7329 			char tn_buf[48];
7330 
7331 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7332 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7333 				regno, err_extra, tn_buf);
7334 			return -EACCES;
7335 		}
7336 		/* Only initialized buffer on stack is allowed to be accessed
7337 		 * with variable offset. With uninitialized buffer it's hard to
7338 		 * guarantee that whole memory is marked as initialized on
7339 		 * helper return since specific bounds are unknown what may
7340 		 * cause uninitialized stack leaking.
7341 		 */
7342 		if (meta && meta->raw_mode)
7343 			meta = NULL;
7344 
7345 		min_off = reg->smin_value + off;
7346 		max_off = reg->smax_value + off;
7347 	}
7348 
7349 	if (meta && meta->raw_mode) {
7350 		/* Ensure we won't be overwriting dynptrs when simulating byte
7351 		 * by byte access in check_helper_call using meta.access_size.
7352 		 * This would be a problem if we have a helper in the future
7353 		 * which takes:
7354 		 *
7355 		 *	helper(uninit_mem, len, dynptr)
7356 		 *
7357 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7358 		 * may end up writing to dynptr itself when touching memory from
7359 		 * arg 1. This can be relaxed on a case by case basis for known
7360 		 * safe cases, but reject due to the possibilitiy of aliasing by
7361 		 * default.
7362 		 */
7363 		for (i = min_off; i < max_off + access_size; i++) {
7364 			int stack_off = -i - 1;
7365 
7366 			spi = __get_spi(i);
7367 			/* raw_mode may write past allocated_stack */
7368 			if (state->allocated_stack <= stack_off)
7369 				continue;
7370 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7371 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7372 				return -EACCES;
7373 			}
7374 		}
7375 		meta->access_size = access_size;
7376 		meta->regno = regno;
7377 		return 0;
7378 	}
7379 
7380 	for (i = min_off; i < max_off + access_size; i++) {
7381 		u8 *stype;
7382 
7383 		slot = -i - 1;
7384 		spi = slot / BPF_REG_SIZE;
7385 		if (state->allocated_stack <= slot) {
7386 			verbose(env, "verifier bug: allocated_stack too small");
7387 			return -EFAULT;
7388 		}
7389 
7390 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7391 		if (*stype == STACK_MISC)
7392 			goto mark;
7393 		if ((*stype == STACK_ZERO) ||
7394 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7395 			if (clobber) {
7396 				/* helper can write anything into the stack */
7397 				*stype = STACK_MISC;
7398 			}
7399 			goto mark;
7400 		}
7401 
7402 		if (is_spilled_reg(&state->stack[spi]) &&
7403 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7404 		     env->allow_ptr_leaks)) {
7405 			if (clobber) {
7406 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7407 				for (j = 0; j < BPF_REG_SIZE; j++)
7408 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7409 			}
7410 			goto mark;
7411 		}
7412 
7413 		if (tnum_is_const(reg->var_off)) {
7414 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7415 				err_extra, regno, min_off, i - min_off, access_size);
7416 		} else {
7417 			char tn_buf[48];
7418 
7419 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7420 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7421 				err_extra, regno, tn_buf, i - min_off, access_size);
7422 		}
7423 		return -EACCES;
7424 mark:
7425 		/* reading any byte out of 8-byte 'spill_slot' will cause
7426 		 * the whole slot to be marked as 'read'
7427 		 */
7428 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7429 			      state->stack[spi].spilled_ptr.parent,
7430 			      REG_LIVE_READ64);
7431 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7432 		 * be sure that whether stack slot is written to or not. Hence,
7433 		 * we must still conservatively propagate reads upwards even if
7434 		 * helper may write to the entire memory range.
7435 		 */
7436 	}
7437 	return 0;
7438 }
7439 
7440 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7441 				   int access_size, enum bpf_access_type access_type,
7442 				   bool zero_size_allowed,
7443 				   struct bpf_call_arg_meta *meta)
7444 {
7445 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7446 	u32 *max_access;
7447 
7448 	switch (base_type(reg->type)) {
7449 	case PTR_TO_PACKET:
7450 	case PTR_TO_PACKET_META:
7451 		return check_packet_access(env, regno, reg->off, access_size,
7452 					   zero_size_allowed);
7453 	case PTR_TO_MAP_KEY:
7454 		if (access_type == BPF_WRITE) {
7455 			verbose(env, "R%d cannot write into %s\n", regno,
7456 				reg_type_str(env, reg->type));
7457 			return -EACCES;
7458 		}
7459 		return check_mem_region_access(env, regno, reg->off, access_size,
7460 					       reg->map_ptr->key_size, false);
7461 	case PTR_TO_MAP_VALUE:
7462 		if (check_map_access_type(env, regno, reg->off, access_size, access_type))
7463 			return -EACCES;
7464 		return check_map_access(env, regno, reg->off, access_size,
7465 					zero_size_allowed, ACCESS_HELPER);
7466 	case PTR_TO_MEM:
7467 		if (type_is_rdonly_mem(reg->type)) {
7468 			if (access_type == BPF_WRITE) {
7469 				verbose(env, "R%d cannot write into %s\n", regno,
7470 					reg_type_str(env, reg->type));
7471 				return -EACCES;
7472 			}
7473 		}
7474 		return check_mem_region_access(env, regno, reg->off,
7475 					       access_size, reg->mem_size,
7476 					       zero_size_allowed);
7477 	case PTR_TO_BUF:
7478 		if (type_is_rdonly_mem(reg->type)) {
7479 			if (access_type == BPF_WRITE) {
7480 				verbose(env, "R%d cannot write into %s\n", regno,
7481 					reg_type_str(env, reg->type));
7482 				return -EACCES;
7483 			}
7484 
7485 			max_access = &env->prog->aux->max_rdonly_access;
7486 		} else {
7487 			max_access = &env->prog->aux->max_rdwr_access;
7488 		}
7489 		return check_buffer_access(env, reg, regno, reg->off,
7490 					   access_size, zero_size_allowed,
7491 					   max_access);
7492 	case PTR_TO_STACK:
7493 		return check_stack_range_initialized(
7494 				env,
7495 				regno, reg->off, access_size,
7496 				zero_size_allowed, ACCESS_HELPER, meta);
7497 	case PTR_TO_BTF_ID:
7498 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7499 					       access_size, BPF_READ, -1);
7500 	case PTR_TO_CTX:
7501 		/* in case the function doesn't know how to access the context,
7502 		 * (because we are in a program of type SYSCALL for example), we
7503 		 * can not statically check its size.
7504 		 * Dynamically check it now.
7505 		 */
7506 		if (!env->ops->convert_ctx_access) {
7507 			int offset = access_size - 1;
7508 
7509 			/* Allow zero-byte read from PTR_TO_CTX */
7510 			if (access_size == 0)
7511 				return zero_size_allowed ? 0 : -EACCES;
7512 
7513 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7514 						access_type, -1, false, false);
7515 		}
7516 
7517 		fallthrough;
7518 	default: /* scalar_value or invalid ptr */
7519 		/* Allow zero-byte read from NULL, regardless of pointer type */
7520 		if (zero_size_allowed && access_size == 0 &&
7521 		    register_is_null(reg))
7522 			return 0;
7523 
7524 		verbose(env, "R%d type=%s ", regno,
7525 			reg_type_str(env, reg->type));
7526 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7527 		return -EACCES;
7528 	}
7529 }
7530 
7531 /* verify arguments to helpers or kfuncs consisting of a pointer and an access
7532  * size.
7533  *
7534  * @regno is the register containing the access size. regno-1 is the register
7535  * containing the pointer.
7536  */
7537 static int check_mem_size_reg(struct bpf_verifier_env *env,
7538 			      struct bpf_reg_state *reg, u32 regno,
7539 			      enum bpf_access_type access_type,
7540 			      bool zero_size_allowed,
7541 			      struct bpf_call_arg_meta *meta)
7542 {
7543 	int err;
7544 
7545 	/* This is used to refine r0 return value bounds for helpers
7546 	 * that enforce this value as an upper bound on return values.
7547 	 * See do_refine_retval_range() for helpers that can refine
7548 	 * the return value. C type of helper is u32 so we pull register
7549 	 * bound from umax_value however, if negative verifier errors
7550 	 * out. Only upper bounds can be learned because retval is an
7551 	 * int type and negative retvals are allowed.
7552 	 */
7553 	meta->msize_max_value = reg->umax_value;
7554 
7555 	/* The register is SCALAR_VALUE; the access check happens using
7556 	 * its boundaries. For unprivileged variable accesses, disable
7557 	 * raw mode so that the program is required to initialize all
7558 	 * the memory that the helper could just partially fill up.
7559 	 */
7560 	if (!tnum_is_const(reg->var_off))
7561 		meta = NULL;
7562 
7563 	if (reg->smin_value < 0) {
7564 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7565 			regno);
7566 		return -EACCES;
7567 	}
7568 
7569 	if (reg->umin_value == 0 && !zero_size_allowed) {
7570 		verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
7571 			regno, reg->umin_value, reg->umax_value);
7572 		return -EACCES;
7573 	}
7574 
7575 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7576 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7577 			regno);
7578 		return -EACCES;
7579 	}
7580 	err = check_helper_mem_access(env, regno - 1, reg->umax_value,
7581 				      access_type, zero_size_allowed, meta);
7582 	if (!err)
7583 		err = mark_chain_precision(env, regno);
7584 	return err;
7585 }
7586 
7587 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7588 			 u32 regno, u32 mem_size)
7589 {
7590 	bool may_be_null = type_may_be_null(reg->type);
7591 	struct bpf_reg_state saved_reg;
7592 	int err;
7593 
7594 	if (register_is_null(reg))
7595 		return 0;
7596 
7597 	/* Assuming that the register contains a value check if the memory
7598 	 * access is safe. Temporarily save and restore the register's state as
7599 	 * the conversion shouldn't be visible to a caller.
7600 	 */
7601 	if (may_be_null) {
7602 		saved_reg = *reg;
7603 		mark_ptr_not_null_reg(reg);
7604 	}
7605 
7606 	err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL);
7607 	err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL);
7608 
7609 	if (may_be_null)
7610 		*reg = saved_reg;
7611 
7612 	return err;
7613 }
7614 
7615 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7616 				    u32 regno)
7617 {
7618 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7619 	bool may_be_null = type_may_be_null(mem_reg->type);
7620 	struct bpf_reg_state saved_reg;
7621 	struct bpf_call_arg_meta meta;
7622 	int err;
7623 
7624 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7625 
7626 	memset(&meta, 0, sizeof(meta));
7627 
7628 	if (may_be_null) {
7629 		saved_reg = *mem_reg;
7630 		mark_ptr_not_null_reg(mem_reg);
7631 	}
7632 
7633 	err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta);
7634 	err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta);
7635 
7636 	if (may_be_null)
7637 		*mem_reg = saved_reg;
7638 
7639 	return err;
7640 }
7641 
7642 /* Implementation details:
7643  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7644  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7645  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7646  * Two separate bpf_obj_new will also have different reg->id.
7647  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7648  * clears reg->id after value_or_null->value transition, since the verifier only
7649  * cares about the range of access to valid map value pointer and doesn't care
7650  * about actual address of the map element.
7651  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7652  * reg->id > 0 after value_or_null->value transition. By doing so
7653  * two bpf_map_lookups will be considered two different pointers that
7654  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7655  * returned from bpf_obj_new.
7656  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7657  * dead-locks.
7658  * Since only one bpf_spin_lock is allowed the checks are simpler than
7659  * reg_is_refcounted() logic. The verifier needs to remember only
7660  * one spin_lock instead of array of acquired_refs.
7661  * cur_state->active_lock remembers which map value element or allocated
7662  * object got locked and clears it after bpf_spin_unlock.
7663  */
7664 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7665 			     bool is_lock)
7666 {
7667 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7668 	struct bpf_verifier_state *cur = env->cur_state;
7669 	bool is_const = tnum_is_const(reg->var_off);
7670 	u64 val = reg->var_off.value;
7671 	struct bpf_map *map = NULL;
7672 	struct btf *btf = NULL;
7673 	struct btf_record *rec;
7674 
7675 	if (!is_const) {
7676 		verbose(env,
7677 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7678 			regno);
7679 		return -EINVAL;
7680 	}
7681 	if (reg->type == PTR_TO_MAP_VALUE) {
7682 		map = reg->map_ptr;
7683 		if (!map->btf) {
7684 			verbose(env,
7685 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7686 				map->name);
7687 			return -EINVAL;
7688 		}
7689 	} else {
7690 		btf = reg->btf;
7691 	}
7692 
7693 	rec = reg_btf_record(reg);
7694 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7695 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7696 			map ? map->name : "kptr");
7697 		return -EINVAL;
7698 	}
7699 	if (rec->spin_lock_off != val + reg->off) {
7700 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7701 			val + reg->off, rec->spin_lock_off);
7702 		return -EINVAL;
7703 	}
7704 	if (is_lock) {
7705 		if (cur->active_lock.ptr) {
7706 			verbose(env,
7707 				"Locking two bpf_spin_locks are not allowed\n");
7708 			return -EINVAL;
7709 		}
7710 		if (map)
7711 			cur->active_lock.ptr = map;
7712 		else
7713 			cur->active_lock.ptr = btf;
7714 		cur->active_lock.id = reg->id;
7715 	} else {
7716 		void *ptr;
7717 
7718 		if (map)
7719 			ptr = map;
7720 		else
7721 			ptr = btf;
7722 
7723 		if (!cur->active_lock.ptr) {
7724 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7725 			return -EINVAL;
7726 		}
7727 		if (cur->active_lock.ptr != ptr ||
7728 		    cur->active_lock.id != reg->id) {
7729 			verbose(env, "bpf_spin_unlock of different lock\n");
7730 			return -EINVAL;
7731 		}
7732 
7733 		invalidate_non_owning_refs(env);
7734 
7735 		cur->active_lock.ptr = NULL;
7736 		cur->active_lock.id = 0;
7737 	}
7738 	return 0;
7739 }
7740 
7741 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7742 			      struct bpf_call_arg_meta *meta)
7743 {
7744 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7745 	bool is_const = tnum_is_const(reg->var_off);
7746 	struct bpf_map *map = reg->map_ptr;
7747 	u64 val = reg->var_off.value;
7748 
7749 	if (!is_const) {
7750 		verbose(env,
7751 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7752 			regno);
7753 		return -EINVAL;
7754 	}
7755 	if (!map->btf) {
7756 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7757 			map->name);
7758 		return -EINVAL;
7759 	}
7760 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7761 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7762 		return -EINVAL;
7763 	}
7764 	if (map->record->timer_off != val + reg->off) {
7765 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7766 			val + reg->off, map->record->timer_off);
7767 		return -EINVAL;
7768 	}
7769 	if (meta->map_ptr) {
7770 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7771 		return -EFAULT;
7772 	}
7773 	meta->map_uid = reg->map_uid;
7774 	meta->map_ptr = map;
7775 	return 0;
7776 }
7777 
7778 static int process_wq_func(struct bpf_verifier_env *env, int regno,
7779 			   struct bpf_kfunc_call_arg_meta *meta)
7780 {
7781 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7782 	struct bpf_map *map = reg->map_ptr;
7783 	u64 val = reg->var_off.value;
7784 
7785 	if (map->record->wq_off != val + reg->off) {
7786 		verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n",
7787 			val + reg->off, map->record->wq_off);
7788 		return -EINVAL;
7789 	}
7790 	meta->map.uid = reg->map_uid;
7791 	meta->map.ptr = map;
7792 	return 0;
7793 }
7794 
7795 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7796 			     struct bpf_call_arg_meta *meta)
7797 {
7798 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7799 	struct btf_field *kptr_field;
7800 	struct bpf_map *map_ptr;
7801 	struct btf_record *rec;
7802 	u32 kptr_off;
7803 
7804 	if (type_is_ptr_alloc_obj(reg->type)) {
7805 		rec = reg_btf_record(reg);
7806 	} else { /* PTR_TO_MAP_VALUE */
7807 		map_ptr = reg->map_ptr;
7808 		if (!map_ptr->btf) {
7809 			verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7810 				map_ptr->name);
7811 			return -EINVAL;
7812 		}
7813 		rec = map_ptr->record;
7814 		meta->map_ptr = map_ptr;
7815 	}
7816 
7817 	if (!tnum_is_const(reg->var_off)) {
7818 		verbose(env,
7819 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7820 			regno);
7821 		return -EINVAL;
7822 	}
7823 
7824 	if (!btf_record_has_field(rec, BPF_KPTR)) {
7825 		verbose(env, "R%d has no valid kptr\n", regno);
7826 		return -EINVAL;
7827 	}
7828 
7829 	kptr_off = reg->off + reg->var_off.value;
7830 	kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR);
7831 	if (!kptr_field) {
7832 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7833 		return -EACCES;
7834 	}
7835 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
7836 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7837 		return -EACCES;
7838 	}
7839 	meta->kptr_field = kptr_field;
7840 	return 0;
7841 }
7842 
7843 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7844  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7845  *
7846  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7847  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7848  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7849  *
7850  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7851  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7852  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7853  * mutate the view of the dynptr and also possibly destroy it. In the latter
7854  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7855  * memory that dynptr points to.
7856  *
7857  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7858  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7859  * readonly dynptr view yet, hence only the first case is tracked and checked.
7860  *
7861  * This is consistent with how C applies the const modifier to a struct object,
7862  * where the pointer itself inside bpf_dynptr becomes const but not what it
7863  * points to.
7864  *
7865  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7866  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7867  */
7868 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7869 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7870 {
7871 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7872 	int err;
7873 
7874 	if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) {
7875 		verbose(env,
7876 			"arg#%d expected pointer to stack or const struct bpf_dynptr\n",
7877 			regno);
7878 		return -EINVAL;
7879 	}
7880 
7881 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7882 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7883 	 */
7884 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7885 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7886 		return -EFAULT;
7887 	}
7888 
7889 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7890 	 *		 constructing a mutable bpf_dynptr object.
7891 	 *
7892 	 *		 Currently, this is only possible with PTR_TO_STACK
7893 	 *		 pointing to a region of at least 16 bytes which doesn't
7894 	 *		 contain an existing bpf_dynptr.
7895 	 *
7896 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7897 	 *		 mutated or destroyed. However, the memory it points to
7898 	 *		 may be mutated.
7899 	 *
7900 	 *  None       - Points to a initialized dynptr that can be mutated and
7901 	 *		 destroyed, including mutation of the memory it points
7902 	 *		 to.
7903 	 */
7904 	if (arg_type & MEM_UNINIT) {
7905 		int i;
7906 
7907 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7908 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7909 			return -EINVAL;
7910 		}
7911 
7912 		/* we write BPF_DW bits (8 bytes) at a time */
7913 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7914 			err = check_mem_access(env, insn_idx, regno,
7915 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7916 			if (err)
7917 				return err;
7918 		}
7919 
7920 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7921 	} else /* MEM_RDONLY and None case from above */ {
7922 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7923 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7924 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7925 			return -EINVAL;
7926 		}
7927 
7928 		if (!is_dynptr_reg_valid_init(env, reg)) {
7929 			verbose(env,
7930 				"Expected an initialized dynptr as arg #%d\n",
7931 				regno);
7932 			return -EINVAL;
7933 		}
7934 
7935 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7936 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7937 			verbose(env,
7938 				"Expected a dynptr of type %s as arg #%d\n",
7939 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7940 			return -EINVAL;
7941 		}
7942 
7943 		err = mark_dynptr_read(env, reg);
7944 	}
7945 	return err;
7946 }
7947 
7948 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7949 {
7950 	struct bpf_func_state *state = func(env, reg);
7951 
7952 	return state->stack[spi].spilled_ptr.ref_obj_id;
7953 }
7954 
7955 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7956 {
7957 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7958 }
7959 
7960 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7961 {
7962 	return meta->kfunc_flags & KF_ITER_NEW;
7963 }
7964 
7965 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7966 {
7967 	return meta->kfunc_flags & KF_ITER_NEXT;
7968 }
7969 
7970 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7971 {
7972 	return meta->kfunc_flags & KF_ITER_DESTROY;
7973 }
7974 
7975 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx,
7976 			      const struct btf_param *arg)
7977 {
7978 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7979 	 * kfunc is iter state pointer
7980 	 */
7981 	if (is_iter_kfunc(meta))
7982 		return arg_idx == 0;
7983 
7984 	/* iter passed as an argument to a generic kfunc */
7985 	return btf_param_match_suffix(meta->btf, arg, "__iter");
7986 }
7987 
7988 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7989 			    struct bpf_kfunc_call_arg_meta *meta)
7990 {
7991 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7992 	const struct btf_type *t;
7993 	int spi, err, i, nr_slots, btf_id;
7994 
7995 	/* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs()
7996 	 * ensures struct convention, so we wouldn't need to do any BTF
7997 	 * validation here. But given iter state can be passed as a parameter
7998 	 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more
7999 	 * conservative here.
8000 	 */
8001 	btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1);
8002 	if (btf_id < 0) {
8003 		verbose(env, "expected valid iter pointer as arg #%d\n", regno);
8004 		return -EINVAL;
8005 	}
8006 	t = btf_type_by_id(meta->btf, btf_id);
8007 	nr_slots = t->size / BPF_REG_SIZE;
8008 
8009 	if (is_iter_new_kfunc(meta)) {
8010 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
8011 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
8012 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
8013 				iter_type_str(meta->btf, btf_id), regno);
8014 			return -EINVAL;
8015 		}
8016 
8017 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
8018 			err = check_mem_access(env, insn_idx, regno,
8019 					       i, BPF_DW, BPF_WRITE, -1, false, false);
8020 			if (err)
8021 				return err;
8022 		}
8023 
8024 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
8025 		if (err)
8026 			return err;
8027 	} else {
8028 		/* iter_next() or iter_destroy(), as well as any kfunc
8029 		 * accepting iter argument, expect initialized iter state
8030 		 */
8031 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
8032 		switch (err) {
8033 		case 0:
8034 			break;
8035 		case -EINVAL:
8036 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
8037 				iter_type_str(meta->btf, btf_id), regno);
8038 			return err;
8039 		case -EPROTO:
8040 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
8041 			return err;
8042 		default:
8043 			return err;
8044 		}
8045 
8046 		spi = iter_get_spi(env, reg, nr_slots);
8047 		if (spi < 0)
8048 			return spi;
8049 
8050 		err = mark_iter_read(env, reg, spi, nr_slots);
8051 		if (err)
8052 			return err;
8053 
8054 		/* remember meta->iter info for process_iter_next_call() */
8055 		meta->iter.spi = spi;
8056 		meta->iter.frameno = reg->frameno;
8057 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
8058 
8059 		if (is_iter_destroy_kfunc(meta)) {
8060 			err = unmark_stack_slots_iter(env, reg, nr_slots);
8061 			if (err)
8062 				return err;
8063 		}
8064 	}
8065 
8066 	return 0;
8067 }
8068 
8069 /* Look for a previous loop entry at insn_idx: nearest parent state
8070  * stopped at insn_idx with callsites matching those in cur->frame.
8071  */
8072 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
8073 						  struct bpf_verifier_state *cur,
8074 						  int insn_idx)
8075 {
8076 	struct bpf_verifier_state_list *sl;
8077 	struct bpf_verifier_state *st;
8078 
8079 	/* Explored states are pushed in stack order, most recent states come first */
8080 	sl = *explored_state(env, insn_idx);
8081 	for (; sl; sl = sl->next) {
8082 		/* If st->branches != 0 state is a part of current DFS verification path,
8083 		 * hence cur & st for a loop.
8084 		 */
8085 		st = &sl->state;
8086 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
8087 		    st->dfs_depth < cur->dfs_depth)
8088 			return st;
8089 	}
8090 
8091 	return NULL;
8092 }
8093 
8094 static void reset_idmap_scratch(struct bpf_verifier_env *env);
8095 static bool regs_exact(const struct bpf_reg_state *rold,
8096 		       const struct bpf_reg_state *rcur,
8097 		       struct bpf_idmap *idmap);
8098 
8099 static void maybe_widen_reg(struct bpf_verifier_env *env,
8100 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8101 			    struct bpf_idmap *idmap)
8102 {
8103 	if (rold->type != SCALAR_VALUE)
8104 		return;
8105 	if (rold->type != rcur->type)
8106 		return;
8107 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
8108 		return;
8109 	__mark_reg_unknown(env, rcur);
8110 }
8111 
8112 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
8113 				   struct bpf_verifier_state *old,
8114 				   struct bpf_verifier_state *cur)
8115 {
8116 	struct bpf_func_state *fold, *fcur;
8117 	int i, fr;
8118 
8119 	reset_idmap_scratch(env);
8120 	for (fr = old->curframe; fr >= 0; fr--) {
8121 		fold = old->frame[fr];
8122 		fcur = cur->frame[fr];
8123 
8124 		for (i = 0; i < MAX_BPF_REG; i++)
8125 			maybe_widen_reg(env,
8126 					&fold->regs[i],
8127 					&fcur->regs[i],
8128 					&env->idmap_scratch);
8129 
8130 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
8131 			if (!is_spilled_reg(&fold->stack[i]) ||
8132 			    !is_spilled_reg(&fcur->stack[i]))
8133 				continue;
8134 
8135 			maybe_widen_reg(env,
8136 					&fold->stack[i].spilled_ptr,
8137 					&fcur->stack[i].spilled_ptr,
8138 					&env->idmap_scratch);
8139 		}
8140 	}
8141 	return 0;
8142 }
8143 
8144 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st,
8145 						 struct bpf_kfunc_call_arg_meta *meta)
8146 {
8147 	int iter_frameno = meta->iter.frameno;
8148 	int iter_spi = meta->iter.spi;
8149 
8150 	return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8151 }
8152 
8153 /* process_iter_next_call() is called when verifier gets to iterator's next
8154  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
8155  * to it as just "iter_next()" in comments below.
8156  *
8157  * BPF verifier relies on a crucial contract for any iter_next()
8158  * implementation: it should *eventually* return NULL, and once that happens
8159  * it should keep returning NULL. That is, once iterator exhausts elements to
8160  * iterate, it should never reset or spuriously return new elements.
8161  *
8162  * With the assumption of such contract, process_iter_next_call() simulates
8163  * a fork in the verifier state to validate loop logic correctness and safety
8164  * without having to simulate infinite amount of iterations.
8165  *
8166  * In current state, we first assume that iter_next() returned NULL and
8167  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
8168  * conditions we should not form an infinite loop and should eventually reach
8169  * exit.
8170  *
8171  * Besides that, we also fork current state and enqueue it for later
8172  * verification. In a forked state we keep iterator state as ACTIVE
8173  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
8174  * also bump iteration depth to prevent erroneous infinite loop detection
8175  * later on (see iter_active_depths_differ() comment for details). In this
8176  * state we assume that we'll eventually loop back to another iter_next()
8177  * calls (it could be in exactly same location or in some other instruction,
8178  * it doesn't matter, we don't make any unnecessary assumptions about this,
8179  * everything revolves around iterator state in a stack slot, not which
8180  * instruction is calling iter_next()). When that happens, we either will come
8181  * to iter_next() with equivalent state and can conclude that next iteration
8182  * will proceed in exactly the same way as we just verified, so it's safe to
8183  * assume that loop converges. If not, we'll go on another iteration
8184  * simulation with a different input state, until all possible starting states
8185  * are validated or we reach maximum number of instructions limit.
8186  *
8187  * This way, we will either exhaustively discover all possible input states
8188  * that iterator loop can start with and eventually will converge, or we'll
8189  * effectively regress into bounded loop simulation logic and either reach
8190  * maximum number of instructions if loop is not provably convergent, or there
8191  * is some statically known limit on number of iterations (e.g., if there is
8192  * an explicit `if n > 100 then break;` statement somewhere in the loop).
8193  *
8194  * Iteration convergence logic in is_state_visited() relies on exact
8195  * states comparison, which ignores read and precision marks.
8196  * This is necessary because read and precision marks are not finalized
8197  * while in the loop. Exact comparison might preclude convergence for
8198  * simple programs like below:
8199  *
8200  *     i = 0;
8201  *     while(iter_next(&it))
8202  *       i++;
8203  *
8204  * At each iteration step i++ would produce a new distinct state and
8205  * eventually instruction processing limit would be reached.
8206  *
8207  * To avoid such behavior speculatively forget (widen) range for
8208  * imprecise scalar registers, if those registers were not precise at the
8209  * end of the previous iteration and do not match exactly.
8210  *
8211  * This is a conservative heuristic that allows to verify wide range of programs,
8212  * however it precludes verification of programs that conjure an
8213  * imprecise value on the first loop iteration and use it as precise on a second.
8214  * For example, the following safe program would fail to verify:
8215  *
8216  *     struct bpf_num_iter it;
8217  *     int arr[10];
8218  *     int i = 0, a = 0;
8219  *     bpf_iter_num_new(&it, 0, 10);
8220  *     while (bpf_iter_num_next(&it)) {
8221  *       if (a == 0) {
8222  *         a = 1;
8223  *         i = 7; // Because i changed verifier would forget
8224  *                // it's range on second loop entry.
8225  *       } else {
8226  *         arr[i] = 42; // This would fail to verify.
8227  *       }
8228  *     }
8229  *     bpf_iter_num_destroy(&it);
8230  */
8231 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
8232 				  struct bpf_kfunc_call_arg_meta *meta)
8233 {
8234 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
8235 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
8236 	struct bpf_reg_state *cur_iter, *queued_iter;
8237 
8238 	BTF_TYPE_EMIT(struct bpf_iter);
8239 
8240 	cur_iter = get_iter_from_state(cur_st, meta);
8241 
8242 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
8243 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
8244 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
8245 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
8246 		return -EFAULT;
8247 	}
8248 
8249 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
8250 		/* Because iter_next() call is a checkpoint is_state_visitied()
8251 		 * should guarantee parent state with same call sites and insn_idx.
8252 		 */
8253 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
8254 		    !same_callsites(cur_st->parent, cur_st)) {
8255 			verbose(env, "bug: bad parent state for iter next call");
8256 			return -EFAULT;
8257 		}
8258 		/* Note cur_st->parent in the call below, it is necessary to skip
8259 		 * checkpoint created for cur_st by is_state_visited()
8260 		 * right at this instruction.
8261 		 */
8262 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
8263 		/* branch out active iter state */
8264 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
8265 		if (!queued_st)
8266 			return -ENOMEM;
8267 
8268 		queued_iter = get_iter_from_state(queued_st, meta);
8269 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
8270 		queued_iter->iter.depth++;
8271 		if (prev_st)
8272 			widen_imprecise_scalars(env, prev_st, queued_st);
8273 
8274 		queued_fr = queued_st->frame[queued_st->curframe];
8275 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
8276 	}
8277 
8278 	/* switch to DRAINED state, but keep the depth unchanged */
8279 	/* mark current iter state as drained and assume returned NULL */
8280 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8281 	__mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]);
8282 
8283 	return 0;
8284 }
8285 
8286 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8287 {
8288 	return type == ARG_CONST_SIZE ||
8289 	       type == ARG_CONST_SIZE_OR_ZERO;
8290 }
8291 
8292 static bool arg_type_is_raw_mem(enum bpf_arg_type type)
8293 {
8294 	return base_type(type) == ARG_PTR_TO_MEM &&
8295 	       type & MEM_UNINIT;
8296 }
8297 
8298 static bool arg_type_is_release(enum bpf_arg_type type)
8299 {
8300 	return type & OBJ_RELEASE;
8301 }
8302 
8303 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8304 {
8305 	return base_type(type) == ARG_PTR_TO_DYNPTR;
8306 }
8307 
8308 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8309 				 const struct bpf_call_arg_meta *meta,
8310 				 enum bpf_arg_type *arg_type)
8311 {
8312 	if (!meta->map_ptr) {
8313 		/* kernel subsystem misconfigured verifier */
8314 		verbose(env, "invalid map_ptr to access map->type\n");
8315 		return -EACCES;
8316 	}
8317 
8318 	switch (meta->map_ptr->map_type) {
8319 	case BPF_MAP_TYPE_SOCKMAP:
8320 	case BPF_MAP_TYPE_SOCKHASH:
8321 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8322 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8323 		} else {
8324 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
8325 			return -EINVAL;
8326 		}
8327 		break;
8328 	case BPF_MAP_TYPE_BLOOM_FILTER:
8329 		if (meta->func_id == BPF_FUNC_map_peek_elem)
8330 			*arg_type = ARG_PTR_TO_MAP_VALUE;
8331 		break;
8332 	default:
8333 		break;
8334 	}
8335 	return 0;
8336 }
8337 
8338 struct bpf_reg_types {
8339 	const enum bpf_reg_type types[10];
8340 	u32 *btf_id;
8341 };
8342 
8343 static const struct bpf_reg_types sock_types = {
8344 	.types = {
8345 		PTR_TO_SOCK_COMMON,
8346 		PTR_TO_SOCKET,
8347 		PTR_TO_TCP_SOCK,
8348 		PTR_TO_XDP_SOCK,
8349 	},
8350 };
8351 
8352 #ifdef CONFIG_NET
8353 static const struct bpf_reg_types btf_id_sock_common_types = {
8354 	.types = {
8355 		PTR_TO_SOCK_COMMON,
8356 		PTR_TO_SOCKET,
8357 		PTR_TO_TCP_SOCK,
8358 		PTR_TO_XDP_SOCK,
8359 		PTR_TO_BTF_ID,
8360 		PTR_TO_BTF_ID | PTR_TRUSTED,
8361 	},
8362 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8363 };
8364 #endif
8365 
8366 static const struct bpf_reg_types mem_types = {
8367 	.types = {
8368 		PTR_TO_STACK,
8369 		PTR_TO_PACKET,
8370 		PTR_TO_PACKET_META,
8371 		PTR_TO_MAP_KEY,
8372 		PTR_TO_MAP_VALUE,
8373 		PTR_TO_MEM,
8374 		PTR_TO_MEM | MEM_RINGBUF,
8375 		PTR_TO_BUF,
8376 		PTR_TO_BTF_ID | PTR_TRUSTED,
8377 	},
8378 };
8379 
8380 static const struct bpf_reg_types spin_lock_types = {
8381 	.types = {
8382 		PTR_TO_MAP_VALUE,
8383 		PTR_TO_BTF_ID | MEM_ALLOC,
8384 	}
8385 };
8386 
8387 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8388 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8389 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8390 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8391 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8392 static const struct bpf_reg_types btf_ptr_types = {
8393 	.types = {
8394 		PTR_TO_BTF_ID,
8395 		PTR_TO_BTF_ID | PTR_TRUSTED,
8396 		PTR_TO_BTF_ID | MEM_RCU,
8397 	},
8398 };
8399 static const struct bpf_reg_types percpu_btf_ptr_types = {
8400 	.types = {
8401 		PTR_TO_BTF_ID | MEM_PERCPU,
8402 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
8403 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8404 	}
8405 };
8406 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8407 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8408 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8409 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8410 static const struct bpf_reg_types kptr_xchg_dest_types = {
8411 	.types = {
8412 		PTR_TO_MAP_VALUE,
8413 		PTR_TO_BTF_ID | MEM_ALLOC
8414 	}
8415 };
8416 static const struct bpf_reg_types dynptr_types = {
8417 	.types = {
8418 		PTR_TO_STACK,
8419 		CONST_PTR_TO_DYNPTR,
8420 	}
8421 };
8422 
8423 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8424 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
8425 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
8426 	[ARG_CONST_SIZE]		= &scalar_types,
8427 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
8428 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
8429 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
8430 	[ARG_PTR_TO_CTX]		= &context_types,
8431 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
8432 #ifdef CONFIG_NET
8433 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
8434 #endif
8435 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
8436 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
8437 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
8438 	[ARG_PTR_TO_MEM]		= &mem_types,
8439 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
8440 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
8441 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
8442 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
8443 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
8444 	[ARG_PTR_TO_TIMER]		= &timer_types,
8445 	[ARG_KPTR_XCHG_DEST]		= &kptr_xchg_dest_types,
8446 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
8447 };
8448 
8449 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8450 			  enum bpf_arg_type arg_type,
8451 			  const u32 *arg_btf_id,
8452 			  struct bpf_call_arg_meta *meta)
8453 {
8454 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8455 	enum bpf_reg_type expected, type = reg->type;
8456 	const struct bpf_reg_types *compatible;
8457 	int i, j;
8458 
8459 	compatible = compatible_reg_types[base_type(arg_type)];
8460 	if (!compatible) {
8461 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8462 		return -EFAULT;
8463 	}
8464 
8465 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8466 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8467 	 *
8468 	 * Same for MAYBE_NULL:
8469 	 *
8470 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8471 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8472 	 *
8473 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8474 	 *
8475 	 * Therefore we fold these flags depending on the arg_type before comparison.
8476 	 */
8477 	if (arg_type & MEM_RDONLY)
8478 		type &= ~MEM_RDONLY;
8479 	if (arg_type & PTR_MAYBE_NULL)
8480 		type &= ~PTR_MAYBE_NULL;
8481 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
8482 		type &= ~DYNPTR_TYPE_FLAG_MASK;
8483 
8484 	/* Local kptr types are allowed as the source argument of bpf_kptr_xchg */
8485 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) {
8486 		type &= ~MEM_ALLOC;
8487 		type &= ~MEM_PERCPU;
8488 	}
8489 
8490 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8491 		expected = compatible->types[i];
8492 		if (expected == NOT_INIT)
8493 			break;
8494 
8495 		if (type == expected)
8496 			goto found;
8497 	}
8498 
8499 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8500 	for (j = 0; j + 1 < i; j++)
8501 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8502 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8503 	return -EACCES;
8504 
8505 found:
8506 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8507 		return 0;
8508 
8509 	if (compatible == &mem_types) {
8510 		if (!(arg_type & MEM_RDONLY)) {
8511 			verbose(env,
8512 				"%s() may write into memory pointed by R%d type=%s\n",
8513 				func_id_name(meta->func_id),
8514 				regno, reg_type_str(env, reg->type));
8515 			return -EACCES;
8516 		}
8517 		return 0;
8518 	}
8519 
8520 	switch ((int)reg->type) {
8521 	case PTR_TO_BTF_ID:
8522 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8523 	case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL:
8524 	case PTR_TO_BTF_ID | MEM_RCU:
8525 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8526 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8527 	{
8528 		/* For bpf_sk_release, it needs to match against first member
8529 		 * 'struct sock_common', hence make an exception for it. This
8530 		 * allows bpf_sk_release to work for multiple socket types.
8531 		 */
8532 		bool strict_type_match = arg_type_is_release(arg_type) &&
8533 					 meta->func_id != BPF_FUNC_sk_release;
8534 
8535 		if (type_may_be_null(reg->type) &&
8536 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8537 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8538 			return -EACCES;
8539 		}
8540 
8541 		if (!arg_btf_id) {
8542 			if (!compatible->btf_id) {
8543 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8544 				return -EFAULT;
8545 			}
8546 			arg_btf_id = compatible->btf_id;
8547 		}
8548 
8549 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8550 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8551 				return -EACCES;
8552 		} else {
8553 			if (arg_btf_id == BPF_PTR_POISON) {
8554 				verbose(env, "verifier internal error:");
8555 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8556 					regno);
8557 				return -EACCES;
8558 			}
8559 
8560 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8561 						  btf_vmlinux, *arg_btf_id,
8562 						  strict_type_match)) {
8563 				verbose(env, "R%d is of type %s but %s is expected\n",
8564 					regno, btf_type_name(reg->btf, reg->btf_id),
8565 					btf_type_name(btf_vmlinux, *arg_btf_id));
8566 				return -EACCES;
8567 			}
8568 		}
8569 		break;
8570 	}
8571 	case PTR_TO_BTF_ID | MEM_ALLOC:
8572 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8573 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8574 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8575 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8576 			return -EFAULT;
8577 		}
8578 		/* Check if local kptr in src arg matches kptr in dst arg */
8579 		if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) {
8580 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8581 				return -EACCES;
8582 		}
8583 		break;
8584 	case PTR_TO_BTF_ID | MEM_PERCPU:
8585 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8586 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8587 		/* Handled by helper specific checks */
8588 		break;
8589 	default:
8590 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8591 		return -EFAULT;
8592 	}
8593 	return 0;
8594 }
8595 
8596 static struct btf_field *
8597 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8598 {
8599 	struct btf_field *field;
8600 	struct btf_record *rec;
8601 
8602 	rec = reg_btf_record(reg);
8603 	if (!rec)
8604 		return NULL;
8605 
8606 	field = btf_record_find(rec, off, fields);
8607 	if (!field)
8608 		return NULL;
8609 
8610 	return field;
8611 }
8612 
8613 static int check_func_arg_reg_off(struct bpf_verifier_env *env,
8614 				  const struct bpf_reg_state *reg, int regno,
8615 				  enum bpf_arg_type arg_type)
8616 {
8617 	u32 type = reg->type;
8618 
8619 	/* When referenced register is passed to release function, its fixed
8620 	 * offset must be 0.
8621 	 *
8622 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8623 	 * meta->release_regno.
8624 	 */
8625 	if (arg_type_is_release(arg_type)) {
8626 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8627 		 * may not directly point to the object being released, but to
8628 		 * dynptr pointing to such object, which might be at some offset
8629 		 * on the stack. In that case, we simply to fallback to the
8630 		 * default handling.
8631 		 */
8632 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8633 			return 0;
8634 
8635 		/* Doing check_ptr_off_reg check for the offset will catch this
8636 		 * because fixed_off_ok is false, but checking here allows us
8637 		 * to give the user a better error message.
8638 		 */
8639 		if (reg->off) {
8640 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8641 				regno);
8642 			return -EINVAL;
8643 		}
8644 		return __check_ptr_off_reg(env, reg, regno, false);
8645 	}
8646 
8647 	switch (type) {
8648 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8649 	case PTR_TO_STACK:
8650 	case PTR_TO_PACKET:
8651 	case PTR_TO_PACKET_META:
8652 	case PTR_TO_MAP_KEY:
8653 	case PTR_TO_MAP_VALUE:
8654 	case PTR_TO_MEM:
8655 	case PTR_TO_MEM | MEM_RDONLY:
8656 	case PTR_TO_MEM | MEM_RINGBUF:
8657 	case PTR_TO_BUF:
8658 	case PTR_TO_BUF | MEM_RDONLY:
8659 	case PTR_TO_ARENA:
8660 	case SCALAR_VALUE:
8661 		return 0;
8662 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8663 	 * fixed offset.
8664 	 */
8665 	case PTR_TO_BTF_ID:
8666 	case PTR_TO_BTF_ID | MEM_ALLOC:
8667 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8668 	case PTR_TO_BTF_ID | MEM_RCU:
8669 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8670 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8671 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8672 		 * its fixed offset must be 0. In the other cases, fixed offset
8673 		 * can be non-zero. This was already checked above. So pass
8674 		 * fixed_off_ok as true to allow fixed offset for all other
8675 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8676 		 * still need to do checks instead of returning.
8677 		 */
8678 		return __check_ptr_off_reg(env, reg, regno, true);
8679 	default:
8680 		return __check_ptr_off_reg(env, reg, regno, false);
8681 	}
8682 }
8683 
8684 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8685 						const struct bpf_func_proto *fn,
8686 						struct bpf_reg_state *regs)
8687 {
8688 	struct bpf_reg_state *state = NULL;
8689 	int i;
8690 
8691 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8692 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8693 			if (state) {
8694 				verbose(env, "verifier internal error: multiple dynptr args\n");
8695 				return NULL;
8696 			}
8697 			state = &regs[BPF_REG_1 + i];
8698 		}
8699 
8700 	if (!state)
8701 		verbose(env, "verifier internal error: no dynptr arg found\n");
8702 
8703 	return state;
8704 }
8705 
8706 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8707 {
8708 	struct bpf_func_state *state = func(env, reg);
8709 	int spi;
8710 
8711 	if (reg->type == CONST_PTR_TO_DYNPTR)
8712 		return reg->id;
8713 	spi = dynptr_get_spi(env, reg);
8714 	if (spi < 0)
8715 		return spi;
8716 	return state->stack[spi].spilled_ptr.id;
8717 }
8718 
8719 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8720 {
8721 	struct bpf_func_state *state = func(env, reg);
8722 	int spi;
8723 
8724 	if (reg->type == CONST_PTR_TO_DYNPTR)
8725 		return reg->ref_obj_id;
8726 	spi = dynptr_get_spi(env, reg);
8727 	if (spi < 0)
8728 		return spi;
8729 	return state->stack[spi].spilled_ptr.ref_obj_id;
8730 }
8731 
8732 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8733 					    struct bpf_reg_state *reg)
8734 {
8735 	struct bpf_func_state *state = func(env, reg);
8736 	int spi;
8737 
8738 	if (reg->type == CONST_PTR_TO_DYNPTR)
8739 		return reg->dynptr.type;
8740 
8741 	spi = __get_spi(reg->off);
8742 	if (spi < 0) {
8743 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8744 		return BPF_DYNPTR_TYPE_INVALID;
8745 	}
8746 
8747 	return state->stack[spi].spilled_ptr.dynptr.type;
8748 }
8749 
8750 static int check_reg_const_str(struct bpf_verifier_env *env,
8751 			       struct bpf_reg_state *reg, u32 regno)
8752 {
8753 	struct bpf_map *map = reg->map_ptr;
8754 	int err;
8755 	int map_off;
8756 	u64 map_addr;
8757 	char *str_ptr;
8758 
8759 	if (reg->type != PTR_TO_MAP_VALUE)
8760 		return -EINVAL;
8761 
8762 	if (!bpf_map_is_rdonly(map)) {
8763 		verbose(env, "R%d does not point to a readonly map'\n", regno);
8764 		return -EACCES;
8765 	}
8766 
8767 	if (!tnum_is_const(reg->var_off)) {
8768 		verbose(env, "R%d is not a constant address'\n", regno);
8769 		return -EACCES;
8770 	}
8771 
8772 	if (!map->ops->map_direct_value_addr) {
8773 		verbose(env, "no direct value access support for this map type\n");
8774 		return -EACCES;
8775 	}
8776 
8777 	err = check_map_access(env, regno, reg->off,
8778 			       map->value_size - reg->off, false,
8779 			       ACCESS_HELPER);
8780 	if (err)
8781 		return err;
8782 
8783 	map_off = reg->off + reg->var_off.value;
8784 	err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8785 	if (err) {
8786 		verbose(env, "direct value access on string failed\n");
8787 		return err;
8788 	}
8789 
8790 	str_ptr = (char *)(long)(map_addr);
8791 	if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8792 		verbose(env, "string is not zero-terminated\n");
8793 		return -EINVAL;
8794 	}
8795 	return 0;
8796 }
8797 
8798 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8799 			  struct bpf_call_arg_meta *meta,
8800 			  const struct bpf_func_proto *fn,
8801 			  int insn_idx)
8802 {
8803 	u32 regno = BPF_REG_1 + arg;
8804 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8805 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8806 	enum bpf_reg_type type = reg->type;
8807 	u32 *arg_btf_id = NULL;
8808 	int err = 0;
8809 
8810 	if (arg_type == ARG_DONTCARE)
8811 		return 0;
8812 
8813 	err = check_reg_arg(env, regno, SRC_OP);
8814 	if (err)
8815 		return err;
8816 
8817 	if (arg_type == ARG_ANYTHING) {
8818 		if (is_pointer_value(env, regno)) {
8819 			verbose(env, "R%d leaks addr into helper function\n",
8820 				regno);
8821 			return -EACCES;
8822 		}
8823 		return 0;
8824 	}
8825 
8826 	if (type_is_pkt_pointer(type) &&
8827 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8828 		verbose(env, "helper access to the packet is not allowed\n");
8829 		return -EACCES;
8830 	}
8831 
8832 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8833 		err = resolve_map_arg_type(env, meta, &arg_type);
8834 		if (err)
8835 			return err;
8836 	}
8837 
8838 	if (register_is_null(reg) && type_may_be_null(arg_type))
8839 		/* A NULL register has a SCALAR_VALUE type, so skip
8840 		 * type checking.
8841 		 */
8842 		goto skip_type_check;
8843 
8844 	/* arg_btf_id and arg_size are in a union. */
8845 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8846 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8847 		arg_btf_id = fn->arg_btf_id[arg];
8848 
8849 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8850 	if (err)
8851 		return err;
8852 
8853 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8854 	if (err)
8855 		return err;
8856 
8857 skip_type_check:
8858 	if (arg_type_is_release(arg_type)) {
8859 		if (arg_type_is_dynptr(arg_type)) {
8860 			struct bpf_func_state *state = func(env, reg);
8861 			int spi;
8862 
8863 			/* Only dynptr created on stack can be released, thus
8864 			 * the get_spi and stack state checks for spilled_ptr
8865 			 * should only be done before process_dynptr_func for
8866 			 * PTR_TO_STACK.
8867 			 */
8868 			if (reg->type == PTR_TO_STACK) {
8869 				spi = dynptr_get_spi(env, reg);
8870 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8871 					verbose(env, "arg %d is an unacquired reference\n", regno);
8872 					return -EINVAL;
8873 				}
8874 			} else {
8875 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8876 				return -EINVAL;
8877 			}
8878 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8879 			verbose(env, "R%d must be referenced when passed to release function\n",
8880 				regno);
8881 			return -EINVAL;
8882 		}
8883 		if (meta->release_regno) {
8884 			verbose(env, "verifier internal error: more than one release argument\n");
8885 			return -EFAULT;
8886 		}
8887 		meta->release_regno = regno;
8888 	}
8889 
8890 	if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) {
8891 		if (meta->ref_obj_id) {
8892 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8893 				regno, reg->ref_obj_id,
8894 				meta->ref_obj_id);
8895 			return -EFAULT;
8896 		}
8897 		meta->ref_obj_id = reg->ref_obj_id;
8898 	}
8899 
8900 	switch (base_type(arg_type)) {
8901 	case ARG_CONST_MAP_PTR:
8902 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8903 		if (meta->map_ptr) {
8904 			/* Use map_uid (which is unique id of inner map) to reject:
8905 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8906 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8907 			 * if (inner_map1 && inner_map2) {
8908 			 *     timer = bpf_map_lookup_elem(inner_map1);
8909 			 *     if (timer)
8910 			 *         // mismatch would have been allowed
8911 			 *         bpf_timer_init(timer, inner_map2);
8912 			 * }
8913 			 *
8914 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8915 			 */
8916 			if (meta->map_ptr != reg->map_ptr ||
8917 			    meta->map_uid != reg->map_uid) {
8918 				verbose(env,
8919 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8920 					meta->map_uid, reg->map_uid);
8921 				return -EINVAL;
8922 			}
8923 		}
8924 		meta->map_ptr = reg->map_ptr;
8925 		meta->map_uid = reg->map_uid;
8926 		break;
8927 	case ARG_PTR_TO_MAP_KEY:
8928 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8929 		 * check that [key, key + map->key_size) are within
8930 		 * stack limits and initialized
8931 		 */
8932 		if (!meta->map_ptr) {
8933 			/* in function declaration map_ptr must come before
8934 			 * map_key, so that it's verified and known before
8935 			 * we have to check map_key here. Otherwise it means
8936 			 * that kernel subsystem misconfigured verifier
8937 			 */
8938 			verbose(env, "invalid map_ptr to access map->key\n");
8939 			return -EACCES;
8940 		}
8941 		err = check_helper_mem_access(env, regno, meta->map_ptr->key_size,
8942 					      BPF_READ, false, NULL);
8943 		break;
8944 	case ARG_PTR_TO_MAP_VALUE:
8945 		if (type_may_be_null(arg_type) && register_is_null(reg))
8946 			return 0;
8947 
8948 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8949 		 * check [value, value + map->value_size) validity
8950 		 */
8951 		if (!meta->map_ptr) {
8952 			/* kernel subsystem misconfigured verifier */
8953 			verbose(env, "invalid map_ptr to access map->value\n");
8954 			return -EACCES;
8955 		}
8956 		meta->raw_mode = arg_type & MEM_UNINIT;
8957 		err = check_helper_mem_access(env, regno, meta->map_ptr->value_size,
8958 					      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
8959 					      false, meta);
8960 		break;
8961 	case ARG_PTR_TO_PERCPU_BTF_ID:
8962 		if (!reg->btf_id) {
8963 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8964 			return -EACCES;
8965 		}
8966 		meta->ret_btf = reg->btf;
8967 		meta->ret_btf_id = reg->btf_id;
8968 		break;
8969 	case ARG_PTR_TO_SPIN_LOCK:
8970 		if (in_rbtree_lock_required_cb(env)) {
8971 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8972 			return -EACCES;
8973 		}
8974 		if (meta->func_id == BPF_FUNC_spin_lock) {
8975 			err = process_spin_lock(env, regno, true);
8976 			if (err)
8977 				return err;
8978 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8979 			err = process_spin_lock(env, regno, false);
8980 			if (err)
8981 				return err;
8982 		} else {
8983 			verbose(env, "verifier internal error\n");
8984 			return -EFAULT;
8985 		}
8986 		break;
8987 	case ARG_PTR_TO_TIMER:
8988 		err = process_timer_func(env, regno, meta);
8989 		if (err)
8990 			return err;
8991 		break;
8992 	case ARG_PTR_TO_FUNC:
8993 		meta->subprogno = reg->subprogno;
8994 		break;
8995 	case ARG_PTR_TO_MEM:
8996 		/* The access to this pointer is only checked when we hit the
8997 		 * next is_mem_size argument below.
8998 		 */
8999 		meta->raw_mode = arg_type & MEM_UNINIT;
9000 		if (arg_type & MEM_FIXED_SIZE) {
9001 			err = check_helper_mem_access(env, regno, fn->arg_size[arg],
9002 						      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
9003 						      false, meta);
9004 			if (err)
9005 				return err;
9006 			if (arg_type & MEM_ALIGNED)
9007 				err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true);
9008 		}
9009 		break;
9010 	case ARG_CONST_SIZE:
9011 		err = check_mem_size_reg(env, reg, regno,
9012 					 fn->arg_type[arg - 1] & MEM_WRITE ?
9013 					 BPF_WRITE : BPF_READ,
9014 					 false, meta);
9015 		break;
9016 	case ARG_CONST_SIZE_OR_ZERO:
9017 		err = check_mem_size_reg(env, reg, regno,
9018 					 fn->arg_type[arg - 1] & MEM_WRITE ?
9019 					 BPF_WRITE : BPF_READ,
9020 					 true, meta);
9021 		break;
9022 	case ARG_PTR_TO_DYNPTR:
9023 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
9024 		if (err)
9025 			return err;
9026 		break;
9027 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
9028 		if (!tnum_is_const(reg->var_off)) {
9029 			verbose(env, "R%d is not a known constant'\n",
9030 				regno);
9031 			return -EACCES;
9032 		}
9033 		meta->mem_size = reg->var_off.value;
9034 		err = mark_chain_precision(env, regno);
9035 		if (err)
9036 			return err;
9037 		break;
9038 	case ARG_PTR_TO_CONST_STR:
9039 	{
9040 		err = check_reg_const_str(env, reg, regno);
9041 		if (err)
9042 			return err;
9043 		break;
9044 	}
9045 	case ARG_KPTR_XCHG_DEST:
9046 		err = process_kptr_func(env, regno, meta);
9047 		if (err)
9048 			return err;
9049 		break;
9050 	}
9051 
9052 	return err;
9053 }
9054 
9055 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
9056 {
9057 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
9058 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9059 
9060 	if (func_id != BPF_FUNC_map_update_elem &&
9061 	    func_id != BPF_FUNC_map_delete_elem)
9062 		return false;
9063 
9064 	/* It's not possible to get access to a locked struct sock in these
9065 	 * contexts, so updating is safe.
9066 	 */
9067 	switch (type) {
9068 	case BPF_PROG_TYPE_TRACING:
9069 		if (eatype == BPF_TRACE_ITER)
9070 			return true;
9071 		break;
9072 	case BPF_PROG_TYPE_SOCK_OPS:
9073 		/* map_update allowed only via dedicated helpers with event type checks */
9074 		if (func_id == BPF_FUNC_map_delete_elem)
9075 			return true;
9076 		break;
9077 	case BPF_PROG_TYPE_SOCKET_FILTER:
9078 	case BPF_PROG_TYPE_SCHED_CLS:
9079 	case BPF_PROG_TYPE_SCHED_ACT:
9080 	case BPF_PROG_TYPE_XDP:
9081 	case BPF_PROG_TYPE_SK_REUSEPORT:
9082 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
9083 	case BPF_PROG_TYPE_SK_LOOKUP:
9084 		return true;
9085 	default:
9086 		break;
9087 	}
9088 
9089 	verbose(env, "cannot update sockmap in this context\n");
9090 	return false;
9091 }
9092 
9093 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
9094 {
9095 	return env->prog->jit_requested &&
9096 	       bpf_jit_supports_subprog_tailcalls();
9097 }
9098 
9099 static int check_map_func_compatibility(struct bpf_verifier_env *env,
9100 					struct bpf_map *map, int func_id)
9101 {
9102 	if (!map)
9103 		return 0;
9104 
9105 	/* We need a two way check, first is from map perspective ... */
9106 	switch (map->map_type) {
9107 	case BPF_MAP_TYPE_PROG_ARRAY:
9108 		if (func_id != BPF_FUNC_tail_call)
9109 			goto error;
9110 		break;
9111 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
9112 		if (func_id != BPF_FUNC_perf_event_read &&
9113 		    func_id != BPF_FUNC_perf_event_output &&
9114 		    func_id != BPF_FUNC_skb_output &&
9115 		    func_id != BPF_FUNC_perf_event_read_value &&
9116 		    func_id != BPF_FUNC_xdp_output)
9117 			goto error;
9118 		break;
9119 	case BPF_MAP_TYPE_RINGBUF:
9120 		if (func_id != BPF_FUNC_ringbuf_output &&
9121 		    func_id != BPF_FUNC_ringbuf_reserve &&
9122 		    func_id != BPF_FUNC_ringbuf_query &&
9123 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
9124 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
9125 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
9126 			goto error;
9127 		break;
9128 	case BPF_MAP_TYPE_USER_RINGBUF:
9129 		if (func_id != BPF_FUNC_user_ringbuf_drain)
9130 			goto error;
9131 		break;
9132 	case BPF_MAP_TYPE_STACK_TRACE:
9133 		if (func_id != BPF_FUNC_get_stackid)
9134 			goto error;
9135 		break;
9136 	case BPF_MAP_TYPE_CGROUP_ARRAY:
9137 		if (func_id != BPF_FUNC_skb_under_cgroup &&
9138 		    func_id != BPF_FUNC_current_task_under_cgroup)
9139 			goto error;
9140 		break;
9141 	case BPF_MAP_TYPE_CGROUP_STORAGE:
9142 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
9143 		if (func_id != BPF_FUNC_get_local_storage)
9144 			goto error;
9145 		break;
9146 	case BPF_MAP_TYPE_DEVMAP:
9147 	case BPF_MAP_TYPE_DEVMAP_HASH:
9148 		if (func_id != BPF_FUNC_redirect_map &&
9149 		    func_id != BPF_FUNC_map_lookup_elem)
9150 			goto error;
9151 		break;
9152 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
9153 	 * appear.
9154 	 */
9155 	case BPF_MAP_TYPE_CPUMAP:
9156 		if (func_id != BPF_FUNC_redirect_map)
9157 			goto error;
9158 		break;
9159 	case BPF_MAP_TYPE_XSKMAP:
9160 		if (func_id != BPF_FUNC_redirect_map &&
9161 		    func_id != BPF_FUNC_map_lookup_elem)
9162 			goto error;
9163 		break;
9164 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
9165 	case BPF_MAP_TYPE_HASH_OF_MAPS:
9166 		if (func_id != BPF_FUNC_map_lookup_elem)
9167 			goto error;
9168 		break;
9169 	case BPF_MAP_TYPE_SOCKMAP:
9170 		if (func_id != BPF_FUNC_sk_redirect_map &&
9171 		    func_id != BPF_FUNC_sock_map_update &&
9172 		    func_id != BPF_FUNC_msg_redirect_map &&
9173 		    func_id != BPF_FUNC_sk_select_reuseport &&
9174 		    func_id != BPF_FUNC_map_lookup_elem &&
9175 		    !may_update_sockmap(env, func_id))
9176 			goto error;
9177 		break;
9178 	case BPF_MAP_TYPE_SOCKHASH:
9179 		if (func_id != BPF_FUNC_sk_redirect_hash &&
9180 		    func_id != BPF_FUNC_sock_hash_update &&
9181 		    func_id != BPF_FUNC_msg_redirect_hash &&
9182 		    func_id != BPF_FUNC_sk_select_reuseport &&
9183 		    func_id != BPF_FUNC_map_lookup_elem &&
9184 		    !may_update_sockmap(env, func_id))
9185 			goto error;
9186 		break;
9187 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
9188 		if (func_id != BPF_FUNC_sk_select_reuseport)
9189 			goto error;
9190 		break;
9191 	case BPF_MAP_TYPE_QUEUE:
9192 	case BPF_MAP_TYPE_STACK:
9193 		if (func_id != BPF_FUNC_map_peek_elem &&
9194 		    func_id != BPF_FUNC_map_pop_elem &&
9195 		    func_id != BPF_FUNC_map_push_elem)
9196 			goto error;
9197 		break;
9198 	case BPF_MAP_TYPE_SK_STORAGE:
9199 		if (func_id != BPF_FUNC_sk_storage_get &&
9200 		    func_id != BPF_FUNC_sk_storage_delete &&
9201 		    func_id != BPF_FUNC_kptr_xchg)
9202 			goto error;
9203 		break;
9204 	case BPF_MAP_TYPE_INODE_STORAGE:
9205 		if (func_id != BPF_FUNC_inode_storage_get &&
9206 		    func_id != BPF_FUNC_inode_storage_delete &&
9207 		    func_id != BPF_FUNC_kptr_xchg)
9208 			goto error;
9209 		break;
9210 	case BPF_MAP_TYPE_TASK_STORAGE:
9211 		if (func_id != BPF_FUNC_task_storage_get &&
9212 		    func_id != BPF_FUNC_task_storage_delete &&
9213 		    func_id != BPF_FUNC_kptr_xchg)
9214 			goto error;
9215 		break;
9216 	case BPF_MAP_TYPE_CGRP_STORAGE:
9217 		if (func_id != BPF_FUNC_cgrp_storage_get &&
9218 		    func_id != BPF_FUNC_cgrp_storage_delete &&
9219 		    func_id != BPF_FUNC_kptr_xchg)
9220 			goto error;
9221 		break;
9222 	case BPF_MAP_TYPE_BLOOM_FILTER:
9223 		if (func_id != BPF_FUNC_map_peek_elem &&
9224 		    func_id != BPF_FUNC_map_push_elem)
9225 			goto error;
9226 		break;
9227 	default:
9228 		break;
9229 	}
9230 
9231 	/* ... and second from the function itself. */
9232 	switch (func_id) {
9233 	case BPF_FUNC_tail_call:
9234 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
9235 			goto error;
9236 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
9237 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
9238 			return -EINVAL;
9239 		}
9240 		break;
9241 	case BPF_FUNC_perf_event_read:
9242 	case BPF_FUNC_perf_event_output:
9243 	case BPF_FUNC_perf_event_read_value:
9244 	case BPF_FUNC_skb_output:
9245 	case BPF_FUNC_xdp_output:
9246 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
9247 			goto error;
9248 		break;
9249 	case BPF_FUNC_ringbuf_output:
9250 	case BPF_FUNC_ringbuf_reserve:
9251 	case BPF_FUNC_ringbuf_query:
9252 	case BPF_FUNC_ringbuf_reserve_dynptr:
9253 	case BPF_FUNC_ringbuf_submit_dynptr:
9254 	case BPF_FUNC_ringbuf_discard_dynptr:
9255 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
9256 			goto error;
9257 		break;
9258 	case BPF_FUNC_user_ringbuf_drain:
9259 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
9260 			goto error;
9261 		break;
9262 	case BPF_FUNC_get_stackid:
9263 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
9264 			goto error;
9265 		break;
9266 	case BPF_FUNC_current_task_under_cgroup:
9267 	case BPF_FUNC_skb_under_cgroup:
9268 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
9269 			goto error;
9270 		break;
9271 	case BPF_FUNC_redirect_map:
9272 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
9273 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
9274 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
9275 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
9276 			goto error;
9277 		break;
9278 	case BPF_FUNC_sk_redirect_map:
9279 	case BPF_FUNC_msg_redirect_map:
9280 	case BPF_FUNC_sock_map_update:
9281 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
9282 			goto error;
9283 		break;
9284 	case BPF_FUNC_sk_redirect_hash:
9285 	case BPF_FUNC_msg_redirect_hash:
9286 	case BPF_FUNC_sock_hash_update:
9287 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
9288 			goto error;
9289 		break;
9290 	case BPF_FUNC_get_local_storage:
9291 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
9292 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
9293 			goto error;
9294 		break;
9295 	case BPF_FUNC_sk_select_reuseport:
9296 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
9297 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
9298 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
9299 			goto error;
9300 		break;
9301 	case BPF_FUNC_map_pop_elem:
9302 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9303 		    map->map_type != BPF_MAP_TYPE_STACK)
9304 			goto error;
9305 		break;
9306 	case BPF_FUNC_map_peek_elem:
9307 	case BPF_FUNC_map_push_elem:
9308 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9309 		    map->map_type != BPF_MAP_TYPE_STACK &&
9310 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9311 			goto error;
9312 		break;
9313 	case BPF_FUNC_map_lookup_percpu_elem:
9314 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9315 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9316 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9317 			goto error;
9318 		break;
9319 	case BPF_FUNC_sk_storage_get:
9320 	case BPF_FUNC_sk_storage_delete:
9321 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9322 			goto error;
9323 		break;
9324 	case BPF_FUNC_inode_storage_get:
9325 	case BPF_FUNC_inode_storage_delete:
9326 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9327 			goto error;
9328 		break;
9329 	case BPF_FUNC_task_storage_get:
9330 	case BPF_FUNC_task_storage_delete:
9331 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9332 			goto error;
9333 		break;
9334 	case BPF_FUNC_cgrp_storage_get:
9335 	case BPF_FUNC_cgrp_storage_delete:
9336 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9337 			goto error;
9338 		break;
9339 	default:
9340 		break;
9341 	}
9342 
9343 	return 0;
9344 error:
9345 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
9346 		map->map_type, func_id_name(func_id), func_id);
9347 	return -EINVAL;
9348 }
9349 
9350 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9351 {
9352 	int count = 0;
9353 
9354 	if (arg_type_is_raw_mem(fn->arg1_type))
9355 		count++;
9356 	if (arg_type_is_raw_mem(fn->arg2_type))
9357 		count++;
9358 	if (arg_type_is_raw_mem(fn->arg3_type))
9359 		count++;
9360 	if (arg_type_is_raw_mem(fn->arg4_type))
9361 		count++;
9362 	if (arg_type_is_raw_mem(fn->arg5_type))
9363 		count++;
9364 
9365 	/* We only support one arg being in raw mode at the moment,
9366 	 * which is sufficient for the helper functions we have
9367 	 * right now.
9368 	 */
9369 	return count <= 1;
9370 }
9371 
9372 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9373 {
9374 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9375 	bool has_size = fn->arg_size[arg] != 0;
9376 	bool is_next_size = false;
9377 
9378 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9379 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9380 
9381 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9382 		return is_next_size;
9383 
9384 	return has_size == is_next_size || is_next_size == is_fixed;
9385 }
9386 
9387 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9388 {
9389 	/* bpf_xxx(..., buf, len) call will access 'len'
9390 	 * bytes from memory 'buf'. Both arg types need
9391 	 * to be paired, so make sure there's no buggy
9392 	 * helper function specification.
9393 	 */
9394 	if (arg_type_is_mem_size(fn->arg1_type) ||
9395 	    check_args_pair_invalid(fn, 0) ||
9396 	    check_args_pair_invalid(fn, 1) ||
9397 	    check_args_pair_invalid(fn, 2) ||
9398 	    check_args_pair_invalid(fn, 3) ||
9399 	    check_args_pair_invalid(fn, 4))
9400 		return false;
9401 
9402 	return true;
9403 }
9404 
9405 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9406 {
9407 	int i;
9408 
9409 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9410 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9411 			return !!fn->arg_btf_id[i];
9412 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9413 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
9414 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9415 		    /* arg_btf_id and arg_size are in a union. */
9416 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9417 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9418 			return false;
9419 	}
9420 
9421 	return true;
9422 }
9423 
9424 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9425 {
9426 	return check_raw_mode_ok(fn) &&
9427 	       check_arg_pair_ok(fn) &&
9428 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
9429 }
9430 
9431 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9432  * are now invalid, so turn them into unknown SCALAR_VALUE.
9433  *
9434  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9435  * since these slices point to packet data.
9436  */
9437 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9438 {
9439 	struct bpf_func_state *state;
9440 	struct bpf_reg_state *reg;
9441 
9442 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9443 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9444 			mark_reg_invalid(env, reg);
9445 	}));
9446 }
9447 
9448 enum {
9449 	AT_PKT_END = -1,
9450 	BEYOND_PKT_END = -2,
9451 };
9452 
9453 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9454 {
9455 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9456 	struct bpf_reg_state *reg = &state->regs[regn];
9457 
9458 	if (reg->type != PTR_TO_PACKET)
9459 		/* PTR_TO_PACKET_META is not supported yet */
9460 		return;
9461 
9462 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9463 	 * How far beyond pkt_end it goes is unknown.
9464 	 * if (!range_open) it's the case of pkt >= pkt_end
9465 	 * if (range_open) it's the case of pkt > pkt_end
9466 	 * hence this pointer is at least 1 byte bigger than pkt_end
9467 	 */
9468 	if (range_open)
9469 		reg->range = BEYOND_PKT_END;
9470 	else
9471 		reg->range = AT_PKT_END;
9472 }
9473 
9474 /* The pointer with the specified id has released its reference to kernel
9475  * resources. Identify all copies of the same pointer and clear the reference.
9476  */
9477 static int release_reference(struct bpf_verifier_env *env,
9478 			     int ref_obj_id)
9479 {
9480 	struct bpf_func_state *state;
9481 	struct bpf_reg_state *reg;
9482 	int err;
9483 
9484 	err = release_reference_state(cur_func(env), ref_obj_id);
9485 	if (err)
9486 		return err;
9487 
9488 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9489 		if (reg->ref_obj_id == ref_obj_id)
9490 			mark_reg_invalid(env, reg);
9491 	}));
9492 
9493 	return 0;
9494 }
9495 
9496 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9497 {
9498 	struct bpf_func_state *unused;
9499 	struct bpf_reg_state *reg;
9500 
9501 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9502 		if (type_is_non_owning_ref(reg->type))
9503 			mark_reg_invalid(env, reg);
9504 	}));
9505 }
9506 
9507 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9508 				    struct bpf_reg_state *regs)
9509 {
9510 	int i;
9511 
9512 	/* after the call registers r0 - r5 were scratched */
9513 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9514 		mark_reg_not_init(env, regs, caller_saved[i]);
9515 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9516 	}
9517 }
9518 
9519 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9520 				   struct bpf_func_state *caller,
9521 				   struct bpf_func_state *callee,
9522 				   int insn_idx);
9523 
9524 static int set_callee_state(struct bpf_verifier_env *env,
9525 			    struct bpf_func_state *caller,
9526 			    struct bpf_func_state *callee, int insn_idx);
9527 
9528 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9529 			    set_callee_state_fn set_callee_state_cb,
9530 			    struct bpf_verifier_state *state)
9531 {
9532 	struct bpf_func_state *caller, *callee;
9533 	int err;
9534 
9535 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9536 		verbose(env, "the call stack of %d frames is too deep\n",
9537 			state->curframe + 2);
9538 		return -E2BIG;
9539 	}
9540 
9541 	if (state->frame[state->curframe + 1]) {
9542 		verbose(env, "verifier bug. Frame %d already allocated\n",
9543 			state->curframe + 1);
9544 		return -EFAULT;
9545 	}
9546 
9547 	caller = state->frame[state->curframe];
9548 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9549 	if (!callee)
9550 		return -ENOMEM;
9551 	state->frame[state->curframe + 1] = callee;
9552 
9553 	/* callee cannot access r0, r6 - r9 for reading and has to write
9554 	 * into its own stack before reading from it.
9555 	 * callee can read/write into caller's stack
9556 	 */
9557 	init_func_state(env, callee,
9558 			/* remember the callsite, it will be used by bpf_exit */
9559 			callsite,
9560 			state->curframe + 1 /* frameno within this callchain */,
9561 			subprog /* subprog number within this prog */);
9562 	/* Transfer references to the callee */
9563 	err = copy_reference_state(callee, caller);
9564 	err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9565 	if (err)
9566 		goto err_out;
9567 
9568 	/* only increment it after check_reg_arg() finished */
9569 	state->curframe++;
9570 
9571 	return 0;
9572 
9573 err_out:
9574 	free_func_state(callee);
9575 	state->frame[state->curframe + 1] = NULL;
9576 	return err;
9577 }
9578 
9579 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
9580 				    const struct btf *btf,
9581 				    struct bpf_reg_state *regs)
9582 {
9583 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
9584 	struct bpf_verifier_log *log = &env->log;
9585 	u32 i;
9586 	int ret;
9587 
9588 	ret = btf_prepare_func_args(env, subprog);
9589 	if (ret)
9590 		return ret;
9591 
9592 	/* check that BTF function arguments match actual types that the
9593 	 * verifier sees.
9594 	 */
9595 	for (i = 0; i < sub->arg_cnt; i++) {
9596 		u32 regno = i + 1;
9597 		struct bpf_reg_state *reg = &regs[regno];
9598 		struct bpf_subprog_arg_info *arg = &sub->args[i];
9599 
9600 		if (arg->arg_type == ARG_ANYTHING) {
9601 			if (reg->type != SCALAR_VALUE) {
9602 				bpf_log(log, "R%d is not a scalar\n", regno);
9603 				return -EINVAL;
9604 			}
9605 		} else if (arg->arg_type == ARG_PTR_TO_CTX) {
9606 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9607 			if (ret < 0)
9608 				return ret;
9609 			/* If function expects ctx type in BTF check that caller
9610 			 * is passing PTR_TO_CTX.
9611 			 */
9612 			if (reg->type != PTR_TO_CTX) {
9613 				bpf_log(log, "arg#%d expects pointer to ctx\n", i);
9614 				return -EINVAL;
9615 			}
9616 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
9617 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9618 			if (ret < 0)
9619 				return ret;
9620 			if (check_mem_reg(env, reg, regno, arg->mem_size))
9621 				return -EINVAL;
9622 			if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) {
9623 				bpf_log(log, "arg#%d is expected to be non-NULL\n", i);
9624 				return -EINVAL;
9625 			}
9626 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
9627 			/*
9628 			 * Can pass any value and the kernel won't crash, but
9629 			 * only PTR_TO_ARENA or SCALAR make sense. Everything
9630 			 * else is a bug in the bpf program. Point it out to
9631 			 * the user at the verification time instead of
9632 			 * run-time debug nightmare.
9633 			 */
9634 			if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) {
9635 				bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno);
9636 				return -EINVAL;
9637 			}
9638 		} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
9639 			ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR);
9640 			if (ret)
9641 				return ret;
9642 
9643 			ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0);
9644 			if (ret)
9645 				return ret;
9646 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
9647 			struct bpf_call_arg_meta meta;
9648 			int err;
9649 
9650 			if (register_is_null(reg) && type_may_be_null(arg->arg_type))
9651 				continue;
9652 
9653 			memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */
9654 			err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta);
9655 			err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type);
9656 			if (err)
9657 				return err;
9658 		} else {
9659 			bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n",
9660 				i, arg->arg_type);
9661 			return -EFAULT;
9662 		}
9663 	}
9664 
9665 	return 0;
9666 }
9667 
9668 /* Compare BTF of a function call with given bpf_reg_state.
9669  * Returns:
9670  * EFAULT - there is a verifier bug. Abort verification.
9671  * EINVAL - there is a type mismatch or BTF is not available.
9672  * 0 - BTF matches with what bpf_reg_state expects.
9673  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
9674  */
9675 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
9676 				  struct bpf_reg_state *regs)
9677 {
9678 	struct bpf_prog *prog = env->prog;
9679 	struct btf *btf = prog->aux->btf;
9680 	u32 btf_id;
9681 	int err;
9682 
9683 	if (!prog->aux->func_info)
9684 		return -EINVAL;
9685 
9686 	btf_id = prog->aux->func_info[subprog].type_id;
9687 	if (!btf_id)
9688 		return -EFAULT;
9689 
9690 	if (prog->aux->func_info_aux[subprog].unreliable)
9691 		return -EINVAL;
9692 
9693 	err = btf_check_func_arg_match(env, subprog, btf, regs);
9694 	/* Compiler optimizations can remove arguments from static functions
9695 	 * or mismatched type can be passed into a global function.
9696 	 * In such cases mark the function as unreliable from BTF point of view.
9697 	 */
9698 	if (err)
9699 		prog->aux->func_info_aux[subprog].unreliable = true;
9700 	return err;
9701 }
9702 
9703 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9704 			      int insn_idx, int subprog,
9705 			      set_callee_state_fn set_callee_state_cb)
9706 {
9707 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
9708 	struct bpf_func_state *caller, *callee;
9709 	int err;
9710 
9711 	caller = state->frame[state->curframe];
9712 	err = btf_check_subprog_call(env, subprog, caller->regs);
9713 	if (err == -EFAULT)
9714 		return err;
9715 
9716 	/* set_callee_state is used for direct subprog calls, but we are
9717 	 * interested in validating only BPF helpers that can call subprogs as
9718 	 * callbacks
9719 	 */
9720 	env->subprog_info[subprog].is_cb = true;
9721 	if (bpf_pseudo_kfunc_call(insn) &&
9722 	    !is_callback_calling_kfunc(insn->imm)) {
9723 		verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9724 			func_id_name(insn->imm), insn->imm);
9725 		return -EFAULT;
9726 	} else if (!bpf_pseudo_kfunc_call(insn) &&
9727 		   !is_callback_calling_function(insn->imm)) { /* helper */
9728 		verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9729 			func_id_name(insn->imm), insn->imm);
9730 		return -EFAULT;
9731 	}
9732 
9733 	if (is_async_callback_calling_insn(insn)) {
9734 		struct bpf_verifier_state *async_cb;
9735 
9736 		/* there is no real recursion here. timer and workqueue callbacks are async */
9737 		env->subprog_info[subprog].is_async_cb = true;
9738 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9739 					 insn_idx, subprog,
9740 					 is_bpf_wq_set_callback_impl_kfunc(insn->imm));
9741 		if (!async_cb)
9742 			return -EFAULT;
9743 		callee = async_cb->frame[0];
9744 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9745 
9746 		/* Convert bpf_timer_set_callback() args into timer callback args */
9747 		err = set_callee_state_cb(env, caller, callee, insn_idx);
9748 		if (err)
9749 			return err;
9750 
9751 		return 0;
9752 	}
9753 
9754 	/* for callback functions enqueue entry to callback and
9755 	 * proceed with next instruction within current frame.
9756 	 */
9757 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9758 	if (!callback_state)
9759 		return -ENOMEM;
9760 
9761 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9762 			       callback_state);
9763 	if (err)
9764 		return err;
9765 
9766 	callback_state->callback_unroll_depth++;
9767 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9768 	caller->callback_depth = 0;
9769 	return 0;
9770 }
9771 
9772 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9773 			   int *insn_idx)
9774 {
9775 	struct bpf_verifier_state *state = env->cur_state;
9776 	struct bpf_func_state *caller;
9777 	int err, subprog, target_insn;
9778 
9779 	target_insn = *insn_idx + insn->imm + 1;
9780 	subprog = find_subprog(env, target_insn);
9781 	if (subprog < 0) {
9782 		verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9783 		return -EFAULT;
9784 	}
9785 
9786 	caller = state->frame[state->curframe];
9787 	err = btf_check_subprog_call(env, subprog, caller->regs);
9788 	if (err == -EFAULT)
9789 		return err;
9790 	if (subprog_is_global(env, subprog)) {
9791 		const char *sub_name = subprog_name(env, subprog);
9792 
9793 		/* Only global subprogs cannot be called with a lock held. */
9794 		if (env->cur_state->active_lock.ptr) {
9795 			verbose(env, "global function calls are not allowed while holding a lock,\n"
9796 				     "use static function instead\n");
9797 			return -EINVAL;
9798 		}
9799 
9800 		/* Only global subprogs cannot be called with preemption disabled. */
9801 		if (env->cur_state->active_preempt_lock) {
9802 			verbose(env, "global function calls are not allowed with preemption disabled,\n"
9803 				     "use static function instead\n");
9804 			return -EINVAL;
9805 		}
9806 
9807 		if (err) {
9808 			verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
9809 				subprog, sub_name);
9810 			return err;
9811 		}
9812 
9813 		verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
9814 			subprog, sub_name);
9815 		/* mark global subprog for verifying after main prog */
9816 		subprog_aux(env, subprog)->called = true;
9817 		clear_caller_saved_regs(env, caller->regs);
9818 
9819 		/* All global functions return a 64-bit SCALAR_VALUE */
9820 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
9821 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9822 
9823 		/* continue with next insn after call */
9824 		return 0;
9825 	}
9826 
9827 	/* for regular function entry setup new frame and continue
9828 	 * from that frame.
9829 	 */
9830 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
9831 	if (err)
9832 		return err;
9833 
9834 	clear_caller_saved_regs(env, caller->regs);
9835 
9836 	/* and go analyze first insn of the callee */
9837 	*insn_idx = env->subprog_info[subprog].start - 1;
9838 
9839 	if (env->log.level & BPF_LOG_LEVEL) {
9840 		verbose(env, "caller:\n");
9841 		print_verifier_state(env, caller, true);
9842 		verbose(env, "callee:\n");
9843 		print_verifier_state(env, state->frame[state->curframe], true);
9844 	}
9845 
9846 	return 0;
9847 }
9848 
9849 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9850 				   struct bpf_func_state *caller,
9851 				   struct bpf_func_state *callee)
9852 {
9853 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9854 	 *      void *callback_ctx, u64 flags);
9855 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9856 	 *      void *callback_ctx);
9857 	 */
9858 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9859 
9860 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9861 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9862 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9863 
9864 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9865 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9866 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9867 
9868 	/* pointer to stack or null */
9869 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9870 
9871 	/* unused */
9872 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9873 	return 0;
9874 }
9875 
9876 static int set_callee_state(struct bpf_verifier_env *env,
9877 			    struct bpf_func_state *caller,
9878 			    struct bpf_func_state *callee, int insn_idx)
9879 {
9880 	int i;
9881 
9882 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9883 	 * pointers, which connects us up to the liveness chain
9884 	 */
9885 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9886 		callee->regs[i] = caller->regs[i];
9887 	return 0;
9888 }
9889 
9890 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9891 				       struct bpf_func_state *caller,
9892 				       struct bpf_func_state *callee,
9893 				       int insn_idx)
9894 {
9895 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9896 	struct bpf_map *map;
9897 	int err;
9898 
9899 	/* valid map_ptr and poison value does not matter */
9900 	map = insn_aux->map_ptr_state.map_ptr;
9901 	if (!map->ops->map_set_for_each_callback_args ||
9902 	    !map->ops->map_for_each_callback) {
9903 		verbose(env, "callback function not allowed for map\n");
9904 		return -ENOTSUPP;
9905 	}
9906 
9907 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9908 	if (err)
9909 		return err;
9910 
9911 	callee->in_callback_fn = true;
9912 	callee->callback_ret_range = retval_range(0, 1);
9913 	return 0;
9914 }
9915 
9916 static int set_loop_callback_state(struct bpf_verifier_env *env,
9917 				   struct bpf_func_state *caller,
9918 				   struct bpf_func_state *callee,
9919 				   int insn_idx)
9920 {
9921 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9922 	 *	    u64 flags);
9923 	 * callback_fn(u32 index, void *callback_ctx);
9924 	 */
9925 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9926 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9927 
9928 	/* unused */
9929 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9930 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9931 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9932 
9933 	callee->in_callback_fn = true;
9934 	callee->callback_ret_range = retval_range(0, 1);
9935 	return 0;
9936 }
9937 
9938 static int set_timer_callback_state(struct bpf_verifier_env *env,
9939 				    struct bpf_func_state *caller,
9940 				    struct bpf_func_state *callee,
9941 				    int insn_idx)
9942 {
9943 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9944 
9945 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9946 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9947 	 */
9948 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9949 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9950 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9951 
9952 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9953 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9954 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9955 
9956 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9957 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9958 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9959 
9960 	/* unused */
9961 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9962 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9963 	callee->in_async_callback_fn = true;
9964 	callee->callback_ret_range = retval_range(0, 1);
9965 	return 0;
9966 }
9967 
9968 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9969 				       struct bpf_func_state *caller,
9970 				       struct bpf_func_state *callee,
9971 				       int insn_idx)
9972 {
9973 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9974 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9975 	 * (callback_fn)(struct task_struct *task,
9976 	 *               struct vm_area_struct *vma, void *callback_ctx);
9977 	 */
9978 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9979 
9980 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9981 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9982 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9983 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
9984 
9985 	/* pointer to stack or null */
9986 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9987 
9988 	/* unused */
9989 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9990 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9991 	callee->in_callback_fn = true;
9992 	callee->callback_ret_range = retval_range(0, 1);
9993 	return 0;
9994 }
9995 
9996 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9997 					   struct bpf_func_state *caller,
9998 					   struct bpf_func_state *callee,
9999 					   int insn_idx)
10000 {
10001 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
10002 	 *			  callback_ctx, u64 flags);
10003 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
10004 	 */
10005 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
10006 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
10007 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10008 
10009 	/* unused */
10010 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10011 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10012 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10013 
10014 	callee->in_callback_fn = true;
10015 	callee->callback_ret_range = retval_range(0, 1);
10016 	return 0;
10017 }
10018 
10019 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
10020 					 struct bpf_func_state *caller,
10021 					 struct bpf_func_state *callee,
10022 					 int insn_idx)
10023 {
10024 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
10025 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
10026 	 *
10027 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
10028 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
10029 	 * by this point, so look at 'root'
10030 	 */
10031 	struct btf_field *field;
10032 
10033 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
10034 				      BPF_RB_ROOT);
10035 	if (!field || !field->graph_root.value_btf_id)
10036 		return -EFAULT;
10037 
10038 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
10039 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
10040 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
10041 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
10042 
10043 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10044 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10045 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10046 	callee->in_callback_fn = true;
10047 	callee->callback_ret_range = retval_range(0, 1);
10048 	return 0;
10049 }
10050 
10051 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
10052 
10053 /* Are we currently verifying the callback for a rbtree helper that must
10054  * be called with lock held? If so, no need to complain about unreleased
10055  * lock
10056  */
10057 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
10058 {
10059 	struct bpf_verifier_state *state = env->cur_state;
10060 	struct bpf_insn *insn = env->prog->insnsi;
10061 	struct bpf_func_state *callee;
10062 	int kfunc_btf_id;
10063 
10064 	if (!state->curframe)
10065 		return false;
10066 
10067 	callee = state->frame[state->curframe];
10068 
10069 	if (!callee->in_callback_fn)
10070 		return false;
10071 
10072 	kfunc_btf_id = insn[callee->callsite].imm;
10073 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
10074 }
10075 
10076 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg,
10077 				bool return_32bit)
10078 {
10079 	if (return_32bit)
10080 		return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval;
10081 	else
10082 		return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
10083 }
10084 
10085 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
10086 {
10087 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
10088 	struct bpf_func_state *caller, *callee;
10089 	struct bpf_reg_state *r0;
10090 	bool in_callback_fn;
10091 	int err;
10092 
10093 	callee = state->frame[state->curframe];
10094 	r0 = &callee->regs[BPF_REG_0];
10095 	if (r0->type == PTR_TO_STACK) {
10096 		/* technically it's ok to return caller's stack pointer
10097 		 * (or caller's caller's pointer) back to the caller,
10098 		 * since these pointers are valid. Only current stack
10099 		 * pointer will be invalid as soon as function exits,
10100 		 * but let's be conservative
10101 		 */
10102 		verbose(env, "cannot return stack pointer to the caller\n");
10103 		return -EINVAL;
10104 	}
10105 
10106 	caller = state->frame[state->curframe - 1];
10107 	if (callee->in_callback_fn) {
10108 		if (r0->type != SCALAR_VALUE) {
10109 			verbose(env, "R0 not a scalar value\n");
10110 			return -EACCES;
10111 		}
10112 
10113 		/* we are going to rely on register's precise value */
10114 		err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
10115 		err = err ?: mark_chain_precision(env, BPF_REG_0);
10116 		if (err)
10117 			return err;
10118 
10119 		/* enforce R0 return value range, and bpf_callback_t returns 64bit */
10120 		if (!retval_range_within(callee->callback_ret_range, r0, false)) {
10121 			verbose_invalid_scalar(env, r0, callee->callback_ret_range,
10122 					       "At callback return", "R0");
10123 			return -EINVAL;
10124 		}
10125 		if (!calls_callback(env, callee->callsite)) {
10126 			verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
10127 				*insn_idx, callee->callsite);
10128 			return -EFAULT;
10129 		}
10130 	} else {
10131 		/* return to the caller whatever r0 had in the callee */
10132 		caller->regs[BPF_REG_0] = *r0;
10133 	}
10134 
10135 	/* callback_fn frame should have released its own additions to parent's
10136 	 * reference state at this point, or check_reference_leak would
10137 	 * complain, hence it must be the same as the caller. There is no need
10138 	 * to copy it back.
10139 	 */
10140 	if (!callee->in_callback_fn) {
10141 		/* Transfer references to the caller */
10142 		err = copy_reference_state(caller, callee);
10143 		if (err)
10144 			return err;
10145 	}
10146 
10147 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
10148 	 * there function call logic would reschedule callback visit. If iteration
10149 	 * converges is_state_visited() would prune that visit eventually.
10150 	 */
10151 	in_callback_fn = callee->in_callback_fn;
10152 	if (in_callback_fn)
10153 		*insn_idx = callee->callsite;
10154 	else
10155 		*insn_idx = callee->callsite + 1;
10156 
10157 	if (env->log.level & BPF_LOG_LEVEL) {
10158 		verbose(env, "returning from callee:\n");
10159 		print_verifier_state(env, callee, true);
10160 		verbose(env, "to caller at %d:\n", *insn_idx);
10161 		print_verifier_state(env, caller, true);
10162 	}
10163 	/* clear everything in the callee. In case of exceptional exits using
10164 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
10165 	free_func_state(callee);
10166 	state->frame[state->curframe--] = NULL;
10167 
10168 	/* for callbacks widen imprecise scalars to make programs like below verify:
10169 	 *
10170 	 *   struct ctx { int i; }
10171 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
10172 	 *   ...
10173 	 *   struct ctx = { .i = 0; }
10174 	 *   bpf_loop(100, cb, &ctx, 0);
10175 	 *
10176 	 * This is similar to what is done in process_iter_next_call() for open
10177 	 * coded iterators.
10178 	 */
10179 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
10180 	if (prev_st) {
10181 		err = widen_imprecise_scalars(env, prev_st, state);
10182 		if (err)
10183 			return err;
10184 	}
10185 	return 0;
10186 }
10187 
10188 static int do_refine_retval_range(struct bpf_verifier_env *env,
10189 				  struct bpf_reg_state *regs, int ret_type,
10190 				  int func_id,
10191 				  struct bpf_call_arg_meta *meta)
10192 {
10193 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
10194 
10195 	if (ret_type != RET_INTEGER)
10196 		return 0;
10197 
10198 	switch (func_id) {
10199 	case BPF_FUNC_get_stack:
10200 	case BPF_FUNC_get_task_stack:
10201 	case BPF_FUNC_probe_read_str:
10202 	case BPF_FUNC_probe_read_kernel_str:
10203 	case BPF_FUNC_probe_read_user_str:
10204 		ret_reg->smax_value = meta->msize_max_value;
10205 		ret_reg->s32_max_value = meta->msize_max_value;
10206 		ret_reg->smin_value = -MAX_ERRNO;
10207 		ret_reg->s32_min_value = -MAX_ERRNO;
10208 		reg_bounds_sync(ret_reg);
10209 		break;
10210 	case BPF_FUNC_get_smp_processor_id:
10211 		ret_reg->umax_value = nr_cpu_ids - 1;
10212 		ret_reg->u32_max_value = nr_cpu_ids - 1;
10213 		ret_reg->smax_value = nr_cpu_ids - 1;
10214 		ret_reg->s32_max_value = nr_cpu_ids - 1;
10215 		ret_reg->umin_value = 0;
10216 		ret_reg->u32_min_value = 0;
10217 		ret_reg->smin_value = 0;
10218 		ret_reg->s32_min_value = 0;
10219 		reg_bounds_sync(ret_reg);
10220 		break;
10221 	}
10222 
10223 	return reg_bounds_sanity_check(env, ret_reg, "retval");
10224 }
10225 
10226 static int
10227 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10228 		int func_id, int insn_idx)
10229 {
10230 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10231 	struct bpf_map *map = meta->map_ptr;
10232 
10233 	if (func_id != BPF_FUNC_tail_call &&
10234 	    func_id != BPF_FUNC_map_lookup_elem &&
10235 	    func_id != BPF_FUNC_map_update_elem &&
10236 	    func_id != BPF_FUNC_map_delete_elem &&
10237 	    func_id != BPF_FUNC_map_push_elem &&
10238 	    func_id != BPF_FUNC_map_pop_elem &&
10239 	    func_id != BPF_FUNC_map_peek_elem &&
10240 	    func_id != BPF_FUNC_for_each_map_elem &&
10241 	    func_id != BPF_FUNC_redirect_map &&
10242 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
10243 		return 0;
10244 
10245 	if (map == NULL) {
10246 		verbose(env, "kernel subsystem misconfigured verifier\n");
10247 		return -EINVAL;
10248 	}
10249 
10250 	/* In case of read-only, some additional restrictions
10251 	 * need to be applied in order to prevent altering the
10252 	 * state of the map from program side.
10253 	 */
10254 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
10255 	    (func_id == BPF_FUNC_map_delete_elem ||
10256 	     func_id == BPF_FUNC_map_update_elem ||
10257 	     func_id == BPF_FUNC_map_push_elem ||
10258 	     func_id == BPF_FUNC_map_pop_elem)) {
10259 		verbose(env, "write into map forbidden\n");
10260 		return -EACCES;
10261 	}
10262 
10263 	if (!aux->map_ptr_state.map_ptr)
10264 		bpf_map_ptr_store(aux, meta->map_ptr,
10265 				  !meta->map_ptr->bypass_spec_v1, false);
10266 	else if (aux->map_ptr_state.map_ptr != meta->map_ptr)
10267 		bpf_map_ptr_store(aux, meta->map_ptr,
10268 				  !meta->map_ptr->bypass_spec_v1, true);
10269 	return 0;
10270 }
10271 
10272 static int
10273 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10274 		int func_id, int insn_idx)
10275 {
10276 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10277 	struct bpf_reg_state *regs = cur_regs(env), *reg;
10278 	struct bpf_map *map = meta->map_ptr;
10279 	u64 val, max;
10280 	int err;
10281 
10282 	if (func_id != BPF_FUNC_tail_call)
10283 		return 0;
10284 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
10285 		verbose(env, "kernel subsystem misconfigured verifier\n");
10286 		return -EINVAL;
10287 	}
10288 
10289 	reg = &regs[BPF_REG_3];
10290 	val = reg->var_off.value;
10291 	max = map->max_entries;
10292 
10293 	if (!(is_reg_const(reg, false) && val < max)) {
10294 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10295 		return 0;
10296 	}
10297 
10298 	err = mark_chain_precision(env, BPF_REG_3);
10299 	if (err)
10300 		return err;
10301 	if (bpf_map_key_unseen(aux))
10302 		bpf_map_key_store(aux, val);
10303 	else if (!bpf_map_key_poisoned(aux) &&
10304 		  bpf_map_key_immediate(aux) != val)
10305 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10306 	return 0;
10307 }
10308 
10309 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
10310 {
10311 	struct bpf_func_state *state = cur_func(env);
10312 	bool refs_lingering = false;
10313 	int i;
10314 
10315 	if (!exception_exit && state->frameno && !state->in_callback_fn)
10316 		return 0;
10317 
10318 	for (i = 0; i < state->acquired_refs; i++) {
10319 		if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
10320 			continue;
10321 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
10322 			state->refs[i].id, state->refs[i].insn_idx);
10323 		refs_lingering = true;
10324 	}
10325 	return refs_lingering ? -EINVAL : 0;
10326 }
10327 
10328 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
10329 				   struct bpf_reg_state *regs)
10330 {
10331 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
10332 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
10333 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
10334 	struct bpf_bprintf_data data = {};
10335 	int err, fmt_map_off, num_args;
10336 	u64 fmt_addr;
10337 	char *fmt;
10338 
10339 	/* data must be an array of u64 */
10340 	if (data_len_reg->var_off.value % 8)
10341 		return -EINVAL;
10342 	num_args = data_len_reg->var_off.value / 8;
10343 
10344 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
10345 	 * and map_direct_value_addr is set.
10346 	 */
10347 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
10348 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
10349 						  fmt_map_off);
10350 	if (err) {
10351 		verbose(env, "verifier bug\n");
10352 		return -EFAULT;
10353 	}
10354 	fmt = (char *)(long)fmt_addr + fmt_map_off;
10355 
10356 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
10357 	 * can focus on validating the format specifiers.
10358 	 */
10359 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
10360 	if (err < 0)
10361 		verbose(env, "Invalid format string\n");
10362 
10363 	return err;
10364 }
10365 
10366 static int check_get_func_ip(struct bpf_verifier_env *env)
10367 {
10368 	enum bpf_prog_type type = resolve_prog_type(env->prog);
10369 	int func_id = BPF_FUNC_get_func_ip;
10370 
10371 	if (type == BPF_PROG_TYPE_TRACING) {
10372 		if (!bpf_prog_has_trampoline(env->prog)) {
10373 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
10374 				func_id_name(func_id), func_id);
10375 			return -ENOTSUPP;
10376 		}
10377 		return 0;
10378 	} else if (type == BPF_PROG_TYPE_KPROBE) {
10379 		return 0;
10380 	}
10381 
10382 	verbose(env, "func %s#%d not supported for program type %d\n",
10383 		func_id_name(func_id), func_id, type);
10384 	return -ENOTSUPP;
10385 }
10386 
10387 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
10388 {
10389 	return &env->insn_aux_data[env->insn_idx];
10390 }
10391 
10392 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
10393 {
10394 	struct bpf_reg_state *regs = cur_regs(env);
10395 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
10396 	bool reg_is_null = register_is_null(reg);
10397 
10398 	if (reg_is_null)
10399 		mark_chain_precision(env, BPF_REG_4);
10400 
10401 	return reg_is_null;
10402 }
10403 
10404 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
10405 {
10406 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
10407 
10408 	if (!state->initialized) {
10409 		state->initialized = 1;
10410 		state->fit_for_inline = loop_flag_is_zero(env);
10411 		state->callback_subprogno = subprogno;
10412 		return;
10413 	}
10414 
10415 	if (!state->fit_for_inline)
10416 		return;
10417 
10418 	state->fit_for_inline = (loop_flag_is_zero(env) &&
10419 				 state->callback_subprogno == subprogno);
10420 }
10421 
10422 static int get_helper_proto(struct bpf_verifier_env *env, int func_id,
10423 			    const struct bpf_func_proto **ptr)
10424 {
10425 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID)
10426 		return -ERANGE;
10427 
10428 	if (!env->ops->get_func_proto)
10429 		return -EINVAL;
10430 
10431 	*ptr = env->ops->get_func_proto(func_id, env->prog);
10432 	return *ptr ? 0 : -EINVAL;
10433 }
10434 
10435 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10436 			     int *insn_idx_p)
10437 {
10438 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10439 	bool returns_cpu_specific_alloc_ptr = false;
10440 	const struct bpf_func_proto *fn = NULL;
10441 	enum bpf_return_type ret_type;
10442 	enum bpf_type_flag ret_flag;
10443 	struct bpf_reg_state *regs;
10444 	struct bpf_call_arg_meta meta;
10445 	int insn_idx = *insn_idx_p;
10446 	bool changes_data;
10447 	int i, err, func_id;
10448 
10449 	/* find function prototype */
10450 	func_id = insn->imm;
10451 	err = get_helper_proto(env, insn->imm, &fn);
10452 	if (err == -ERANGE) {
10453 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id);
10454 		return -EINVAL;
10455 	}
10456 
10457 	if (err) {
10458 		verbose(env, "program of this type cannot use helper %s#%d\n",
10459 			func_id_name(func_id), func_id);
10460 		return err;
10461 	}
10462 
10463 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
10464 	if (!env->prog->gpl_compatible && fn->gpl_only) {
10465 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10466 		return -EINVAL;
10467 	}
10468 
10469 	if (fn->allowed && !fn->allowed(env->prog)) {
10470 		verbose(env, "helper call is not allowed in probe\n");
10471 		return -EINVAL;
10472 	}
10473 
10474 	if (!in_sleepable(env) && fn->might_sleep) {
10475 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
10476 		return -EINVAL;
10477 	}
10478 
10479 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
10480 	changes_data = bpf_helper_changes_pkt_data(fn->func);
10481 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10482 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10483 			func_id_name(func_id), func_id);
10484 		return -EINVAL;
10485 	}
10486 
10487 	memset(&meta, 0, sizeof(meta));
10488 	meta.pkt_access = fn->pkt_access;
10489 
10490 	err = check_func_proto(fn, func_id);
10491 	if (err) {
10492 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10493 			func_id_name(func_id), func_id);
10494 		return err;
10495 	}
10496 
10497 	if (env->cur_state->active_rcu_lock) {
10498 		if (fn->might_sleep) {
10499 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10500 				func_id_name(func_id), func_id);
10501 			return -EINVAL;
10502 		}
10503 
10504 		if (in_sleepable(env) && is_storage_get_function(func_id))
10505 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10506 	}
10507 
10508 	if (env->cur_state->active_preempt_lock) {
10509 		if (fn->might_sleep) {
10510 			verbose(env, "sleepable helper %s#%d in non-preemptible region\n",
10511 				func_id_name(func_id), func_id);
10512 			return -EINVAL;
10513 		}
10514 
10515 		if (in_sleepable(env) && is_storage_get_function(func_id))
10516 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10517 	}
10518 
10519 	meta.func_id = func_id;
10520 	/* check args */
10521 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10522 		err = check_func_arg(env, i, &meta, fn, insn_idx);
10523 		if (err)
10524 			return err;
10525 	}
10526 
10527 	err = record_func_map(env, &meta, func_id, insn_idx);
10528 	if (err)
10529 		return err;
10530 
10531 	err = record_func_key(env, &meta, func_id, insn_idx);
10532 	if (err)
10533 		return err;
10534 
10535 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
10536 	 * is inferred from register state.
10537 	 */
10538 	for (i = 0; i < meta.access_size; i++) {
10539 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10540 				       BPF_WRITE, -1, false, false);
10541 		if (err)
10542 			return err;
10543 	}
10544 
10545 	regs = cur_regs(env);
10546 
10547 	if (meta.release_regno) {
10548 		err = -EINVAL;
10549 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10550 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10551 		 * is safe to do directly.
10552 		 */
10553 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10554 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10555 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10556 				return -EFAULT;
10557 			}
10558 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
10559 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
10560 			u32 ref_obj_id = meta.ref_obj_id;
10561 			bool in_rcu = in_rcu_cs(env);
10562 			struct bpf_func_state *state;
10563 			struct bpf_reg_state *reg;
10564 
10565 			err = release_reference_state(cur_func(env), ref_obj_id);
10566 			if (!err) {
10567 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10568 					if (reg->ref_obj_id == ref_obj_id) {
10569 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
10570 							reg->ref_obj_id = 0;
10571 							reg->type &= ~MEM_ALLOC;
10572 							reg->type |= MEM_RCU;
10573 						} else {
10574 							mark_reg_invalid(env, reg);
10575 						}
10576 					}
10577 				}));
10578 			}
10579 		} else if (meta.ref_obj_id) {
10580 			err = release_reference(env, meta.ref_obj_id);
10581 		} else if (register_is_null(&regs[meta.release_regno])) {
10582 			/* meta.ref_obj_id can only be 0 if register that is meant to be
10583 			 * released is NULL, which must be > R0.
10584 			 */
10585 			err = 0;
10586 		}
10587 		if (err) {
10588 			verbose(env, "func %s#%d reference has not been acquired before\n",
10589 				func_id_name(func_id), func_id);
10590 			return err;
10591 		}
10592 	}
10593 
10594 	switch (func_id) {
10595 	case BPF_FUNC_tail_call:
10596 		err = check_reference_leak(env, false);
10597 		if (err) {
10598 			verbose(env, "tail_call would lead to reference leak\n");
10599 			return err;
10600 		}
10601 		break;
10602 	case BPF_FUNC_get_local_storage:
10603 		/* check that flags argument in get_local_storage(map, flags) is 0,
10604 		 * this is required because get_local_storage() can't return an error.
10605 		 */
10606 		if (!register_is_null(&regs[BPF_REG_2])) {
10607 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10608 			return -EINVAL;
10609 		}
10610 		break;
10611 	case BPF_FUNC_for_each_map_elem:
10612 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10613 					 set_map_elem_callback_state);
10614 		break;
10615 	case BPF_FUNC_timer_set_callback:
10616 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10617 					 set_timer_callback_state);
10618 		break;
10619 	case BPF_FUNC_find_vma:
10620 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10621 					 set_find_vma_callback_state);
10622 		break;
10623 	case BPF_FUNC_snprintf:
10624 		err = check_bpf_snprintf_call(env, regs);
10625 		break;
10626 	case BPF_FUNC_loop:
10627 		update_loop_inline_state(env, meta.subprogno);
10628 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
10629 		 * is finished, thus mark it precise.
10630 		 */
10631 		err = mark_chain_precision(env, BPF_REG_1);
10632 		if (err)
10633 			return err;
10634 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10635 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10636 						 set_loop_callback_state);
10637 		} else {
10638 			cur_func(env)->callback_depth = 0;
10639 			if (env->log.level & BPF_LOG_LEVEL2)
10640 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
10641 					env->cur_state->curframe);
10642 		}
10643 		break;
10644 	case BPF_FUNC_dynptr_from_mem:
10645 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10646 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10647 				reg_type_str(env, regs[BPF_REG_1].type));
10648 			return -EACCES;
10649 		}
10650 		break;
10651 	case BPF_FUNC_set_retval:
10652 		if (prog_type == BPF_PROG_TYPE_LSM &&
10653 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10654 			if (!env->prog->aux->attach_func_proto->type) {
10655 				/* Make sure programs that attach to void
10656 				 * hooks don't try to modify return value.
10657 				 */
10658 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10659 				return -EINVAL;
10660 			}
10661 		}
10662 		break;
10663 	case BPF_FUNC_dynptr_data:
10664 	{
10665 		struct bpf_reg_state *reg;
10666 		int id, ref_obj_id;
10667 
10668 		reg = get_dynptr_arg_reg(env, fn, regs);
10669 		if (!reg)
10670 			return -EFAULT;
10671 
10672 
10673 		if (meta.dynptr_id) {
10674 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10675 			return -EFAULT;
10676 		}
10677 		if (meta.ref_obj_id) {
10678 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10679 			return -EFAULT;
10680 		}
10681 
10682 		id = dynptr_id(env, reg);
10683 		if (id < 0) {
10684 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10685 			return id;
10686 		}
10687 
10688 		ref_obj_id = dynptr_ref_obj_id(env, reg);
10689 		if (ref_obj_id < 0) {
10690 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10691 			return ref_obj_id;
10692 		}
10693 
10694 		meta.dynptr_id = id;
10695 		meta.ref_obj_id = ref_obj_id;
10696 
10697 		break;
10698 	}
10699 	case BPF_FUNC_dynptr_write:
10700 	{
10701 		enum bpf_dynptr_type dynptr_type;
10702 		struct bpf_reg_state *reg;
10703 
10704 		reg = get_dynptr_arg_reg(env, fn, regs);
10705 		if (!reg)
10706 			return -EFAULT;
10707 
10708 		dynptr_type = dynptr_get_type(env, reg);
10709 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10710 			return -EFAULT;
10711 
10712 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10713 			/* this will trigger clear_all_pkt_pointers(), which will
10714 			 * invalidate all dynptr slices associated with the skb
10715 			 */
10716 			changes_data = true;
10717 
10718 		break;
10719 	}
10720 	case BPF_FUNC_per_cpu_ptr:
10721 	case BPF_FUNC_this_cpu_ptr:
10722 	{
10723 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
10724 		const struct btf_type *type;
10725 
10726 		if (reg->type & MEM_RCU) {
10727 			type = btf_type_by_id(reg->btf, reg->btf_id);
10728 			if (!type || !btf_type_is_struct(type)) {
10729 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
10730 				return -EFAULT;
10731 			}
10732 			returns_cpu_specific_alloc_ptr = true;
10733 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
10734 		}
10735 		break;
10736 	}
10737 	case BPF_FUNC_user_ringbuf_drain:
10738 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10739 					 set_user_ringbuf_callback_state);
10740 		break;
10741 	}
10742 
10743 	if (err)
10744 		return err;
10745 
10746 	/* reset caller saved regs */
10747 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10748 		mark_reg_not_init(env, regs, caller_saved[i]);
10749 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10750 	}
10751 
10752 	/* helper call returns 64-bit value. */
10753 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10754 
10755 	/* update return register (already marked as written above) */
10756 	ret_type = fn->ret_type;
10757 	ret_flag = type_flag(ret_type);
10758 
10759 	switch (base_type(ret_type)) {
10760 	case RET_INTEGER:
10761 		/* sets type to SCALAR_VALUE */
10762 		mark_reg_unknown(env, regs, BPF_REG_0);
10763 		break;
10764 	case RET_VOID:
10765 		regs[BPF_REG_0].type = NOT_INIT;
10766 		break;
10767 	case RET_PTR_TO_MAP_VALUE:
10768 		/* There is no offset yet applied, variable or fixed */
10769 		mark_reg_known_zero(env, regs, BPF_REG_0);
10770 		/* remember map_ptr, so that check_map_access()
10771 		 * can check 'value_size' boundary of memory access
10772 		 * to map element returned from bpf_map_lookup_elem()
10773 		 */
10774 		if (meta.map_ptr == NULL) {
10775 			verbose(env,
10776 				"kernel subsystem misconfigured verifier\n");
10777 			return -EINVAL;
10778 		}
10779 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
10780 		regs[BPF_REG_0].map_uid = meta.map_uid;
10781 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10782 		if (!type_may_be_null(ret_type) &&
10783 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10784 			regs[BPF_REG_0].id = ++env->id_gen;
10785 		}
10786 		break;
10787 	case RET_PTR_TO_SOCKET:
10788 		mark_reg_known_zero(env, regs, BPF_REG_0);
10789 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10790 		break;
10791 	case RET_PTR_TO_SOCK_COMMON:
10792 		mark_reg_known_zero(env, regs, BPF_REG_0);
10793 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10794 		break;
10795 	case RET_PTR_TO_TCP_SOCK:
10796 		mark_reg_known_zero(env, regs, BPF_REG_0);
10797 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10798 		break;
10799 	case RET_PTR_TO_MEM:
10800 		mark_reg_known_zero(env, regs, BPF_REG_0);
10801 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10802 		regs[BPF_REG_0].mem_size = meta.mem_size;
10803 		break;
10804 	case RET_PTR_TO_MEM_OR_BTF_ID:
10805 	{
10806 		const struct btf_type *t;
10807 
10808 		mark_reg_known_zero(env, regs, BPF_REG_0);
10809 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10810 		if (!btf_type_is_struct(t)) {
10811 			u32 tsize;
10812 			const struct btf_type *ret;
10813 			const char *tname;
10814 
10815 			/* resolve the type size of ksym. */
10816 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10817 			if (IS_ERR(ret)) {
10818 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10819 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
10820 					tname, PTR_ERR(ret));
10821 				return -EINVAL;
10822 			}
10823 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10824 			regs[BPF_REG_0].mem_size = tsize;
10825 		} else {
10826 			if (returns_cpu_specific_alloc_ptr) {
10827 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
10828 			} else {
10829 				/* MEM_RDONLY may be carried from ret_flag, but it
10830 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10831 				 * it will confuse the check of PTR_TO_BTF_ID in
10832 				 * check_mem_access().
10833 				 */
10834 				ret_flag &= ~MEM_RDONLY;
10835 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10836 			}
10837 
10838 			regs[BPF_REG_0].btf = meta.ret_btf;
10839 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10840 		}
10841 		break;
10842 	}
10843 	case RET_PTR_TO_BTF_ID:
10844 	{
10845 		struct btf *ret_btf;
10846 		int ret_btf_id;
10847 
10848 		mark_reg_known_zero(env, regs, BPF_REG_0);
10849 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10850 		if (func_id == BPF_FUNC_kptr_xchg) {
10851 			ret_btf = meta.kptr_field->kptr.btf;
10852 			ret_btf_id = meta.kptr_field->kptr.btf_id;
10853 			if (!btf_is_kernel(ret_btf)) {
10854 				regs[BPF_REG_0].type |= MEM_ALLOC;
10855 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
10856 					regs[BPF_REG_0].type |= MEM_PERCPU;
10857 			}
10858 		} else {
10859 			if (fn->ret_btf_id == BPF_PTR_POISON) {
10860 				verbose(env, "verifier internal error:");
10861 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10862 					func_id_name(func_id));
10863 				return -EINVAL;
10864 			}
10865 			ret_btf = btf_vmlinux;
10866 			ret_btf_id = *fn->ret_btf_id;
10867 		}
10868 		if (ret_btf_id == 0) {
10869 			verbose(env, "invalid return type %u of func %s#%d\n",
10870 				base_type(ret_type), func_id_name(func_id),
10871 				func_id);
10872 			return -EINVAL;
10873 		}
10874 		regs[BPF_REG_0].btf = ret_btf;
10875 		regs[BPF_REG_0].btf_id = ret_btf_id;
10876 		break;
10877 	}
10878 	default:
10879 		verbose(env, "unknown return type %u of func %s#%d\n",
10880 			base_type(ret_type), func_id_name(func_id), func_id);
10881 		return -EINVAL;
10882 	}
10883 
10884 	if (type_may_be_null(regs[BPF_REG_0].type))
10885 		regs[BPF_REG_0].id = ++env->id_gen;
10886 
10887 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10888 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10889 			func_id_name(func_id), func_id);
10890 		return -EFAULT;
10891 	}
10892 
10893 	if (is_dynptr_ref_function(func_id))
10894 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10895 
10896 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10897 		/* For release_reference() */
10898 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10899 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
10900 		int id = acquire_reference_state(env, insn_idx);
10901 
10902 		if (id < 0)
10903 			return id;
10904 		/* For mark_ptr_or_null_reg() */
10905 		regs[BPF_REG_0].id = id;
10906 		/* For release_reference() */
10907 		regs[BPF_REG_0].ref_obj_id = id;
10908 	}
10909 
10910 	err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
10911 	if (err)
10912 		return err;
10913 
10914 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10915 	if (err)
10916 		return err;
10917 
10918 	if ((func_id == BPF_FUNC_get_stack ||
10919 	     func_id == BPF_FUNC_get_task_stack) &&
10920 	    !env->prog->has_callchain_buf) {
10921 		const char *err_str;
10922 
10923 #ifdef CONFIG_PERF_EVENTS
10924 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
10925 		err_str = "cannot get callchain buffer for func %s#%d\n";
10926 #else
10927 		err = -ENOTSUPP;
10928 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10929 #endif
10930 		if (err) {
10931 			verbose(env, err_str, func_id_name(func_id), func_id);
10932 			return err;
10933 		}
10934 
10935 		env->prog->has_callchain_buf = true;
10936 	}
10937 
10938 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10939 		env->prog->call_get_stack = true;
10940 
10941 	if (func_id == BPF_FUNC_get_func_ip) {
10942 		if (check_get_func_ip(env))
10943 			return -ENOTSUPP;
10944 		env->prog->call_get_func_ip = true;
10945 	}
10946 
10947 	if (changes_data)
10948 		clear_all_pkt_pointers(env);
10949 	return 0;
10950 }
10951 
10952 /* mark_btf_func_reg_size() is used when the reg size is determined by
10953  * the BTF func_proto's return value size and argument.
10954  */
10955 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10956 				   size_t reg_size)
10957 {
10958 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10959 
10960 	if (regno == BPF_REG_0) {
10961 		/* Function return value */
10962 		reg->live |= REG_LIVE_WRITTEN;
10963 		reg->subreg_def = reg_size == sizeof(u64) ?
10964 			DEF_NOT_SUBREG : env->insn_idx + 1;
10965 	} else {
10966 		/* Function argument */
10967 		if (reg_size == sizeof(u64)) {
10968 			mark_insn_zext(env, reg);
10969 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10970 		} else {
10971 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10972 		}
10973 	}
10974 }
10975 
10976 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10977 {
10978 	return meta->kfunc_flags & KF_ACQUIRE;
10979 }
10980 
10981 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10982 {
10983 	return meta->kfunc_flags & KF_RELEASE;
10984 }
10985 
10986 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10987 {
10988 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10989 }
10990 
10991 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10992 {
10993 	return meta->kfunc_flags & KF_SLEEPABLE;
10994 }
10995 
10996 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10997 {
10998 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10999 }
11000 
11001 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
11002 {
11003 	return meta->kfunc_flags & KF_RCU;
11004 }
11005 
11006 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
11007 {
11008 	return meta->kfunc_flags & KF_RCU_PROTECTED;
11009 }
11010 
11011 static bool is_kfunc_arg_mem_size(const struct btf *btf,
11012 				  const struct btf_param *arg,
11013 				  const struct bpf_reg_state *reg)
11014 {
11015 	const struct btf_type *t;
11016 
11017 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11018 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11019 		return false;
11020 
11021 	return btf_param_match_suffix(btf, arg, "__sz");
11022 }
11023 
11024 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
11025 					const struct btf_param *arg,
11026 					const struct bpf_reg_state *reg)
11027 {
11028 	const struct btf_type *t;
11029 
11030 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11031 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11032 		return false;
11033 
11034 	return btf_param_match_suffix(btf, arg, "__szk");
11035 }
11036 
11037 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
11038 {
11039 	return btf_param_match_suffix(btf, arg, "__opt");
11040 }
11041 
11042 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
11043 {
11044 	return btf_param_match_suffix(btf, arg, "__k");
11045 }
11046 
11047 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
11048 {
11049 	return btf_param_match_suffix(btf, arg, "__ign");
11050 }
11051 
11052 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg)
11053 {
11054 	return btf_param_match_suffix(btf, arg, "__map");
11055 }
11056 
11057 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
11058 {
11059 	return btf_param_match_suffix(btf, arg, "__alloc");
11060 }
11061 
11062 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
11063 {
11064 	return btf_param_match_suffix(btf, arg, "__uninit");
11065 }
11066 
11067 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
11068 {
11069 	return btf_param_match_suffix(btf, arg, "__refcounted_kptr");
11070 }
11071 
11072 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
11073 {
11074 	return btf_param_match_suffix(btf, arg, "__nullable");
11075 }
11076 
11077 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
11078 {
11079 	return btf_param_match_suffix(btf, arg, "__str");
11080 }
11081 
11082 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
11083 					  const struct btf_param *arg,
11084 					  const char *name)
11085 {
11086 	int len, target_len = strlen(name);
11087 	const char *param_name;
11088 
11089 	param_name = btf_name_by_offset(btf, arg->name_off);
11090 	if (str_is_empty(param_name))
11091 		return false;
11092 	len = strlen(param_name);
11093 	if (len != target_len)
11094 		return false;
11095 	if (strcmp(param_name, name))
11096 		return false;
11097 
11098 	return true;
11099 }
11100 
11101 enum {
11102 	KF_ARG_DYNPTR_ID,
11103 	KF_ARG_LIST_HEAD_ID,
11104 	KF_ARG_LIST_NODE_ID,
11105 	KF_ARG_RB_ROOT_ID,
11106 	KF_ARG_RB_NODE_ID,
11107 	KF_ARG_WORKQUEUE_ID,
11108 };
11109 
11110 BTF_ID_LIST(kf_arg_btf_ids)
11111 BTF_ID(struct, bpf_dynptr)
11112 BTF_ID(struct, bpf_list_head)
11113 BTF_ID(struct, bpf_list_node)
11114 BTF_ID(struct, bpf_rb_root)
11115 BTF_ID(struct, bpf_rb_node)
11116 BTF_ID(struct, bpf_wq)
11117 
11118 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
11119 				    const struct btf_param *arg, int type)
11120 {
11121 	const struct btf_type *t;
11122 	u32 res_id;
11123 
11124 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11125 	if (!t)
11126 		return false;
11127 	if (!btf_type_is_ptr(t))
11128 		return false;
11129 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
11130 	if (!t)
11131 		return false;
11132 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
11133 }
11134 
11135 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
11136 {
11137 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
11138 }
11139 
11140 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
11141 {
11142 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
11143 }
11144 
11145 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
11146 {
11147 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
11148 }
11149 
11150 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
11151 {
11152 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
11153 }
11154 
11155 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
11156 {
11157 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
11158 }
11159 
11160 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg)
11161 {
11162 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID);
11163 }
11164 
11165 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
11166 				  const struct btf_param *arg)
11167 {
11168 	const struct btf_type *t;
11169 
11170 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
11171 	if (!t)
11172 		return false;
11173 
11174 	return true;
11175 }
11176 
11177 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
11178 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
11179 					const struct btf *btf,
11180 					const struct btf_type *t, int rec)
11181 {
11182 	const struct btf_type *member_type;
11183 	const struct btf_member *member;
11184 	u32 i;
11185 
11186 	if (!btf_type_is_struct(t))
11187 		return false;
11188 
11189 	for_each_member(i, t, member) {
11190 		const struct btf_array *array;
11191 
11192 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
11193 		if (btf_type_is_struct(member_type)) {
11194 			if (rec >= 3) {
11195 				verbose(env, "max struct nesting depth exceeded\n");
11196 				return false;
11197 			}
11198 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
11199 				return false;
11200 			continue;
11201 		}
11202 		if (btf_type_is_array(member_type)) {
11203 			array = btf_array(member_type);
11204 			if (!array->nelems)
11205 				return false;
11206 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
11207 			if (!btf_type_is_scalar(member_type))
11208 				return false;
11209 			continue;
11210 		}
11211 		if (!btf_type_is_scalar(member_type))
11212 			return false;
11213 	}
11214 	return true;
11215 }
11216 
11217 enum kfunc_ptr_arg_type {
11218 	KF_ARG_PTR_TO_CTX,
11219 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
11220 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
11221 	KF_ARG_PTR_TO_DYNPTR,
11222 	KF_ARG_PTR_TO_ITER,
11223 	KF_ARG_PTR_TO_LIST_HEAD,
11224 	KF_ARG_PTR_TO_LIST_NODE,
11225 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
11226 	KF_ARG_PTR_TO_MEM,
11227 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
11228 	KF_ARG_PTR_TO_CALLBACK,
11229 	KF_ARG_PTR_TO_RB_ROOT,
11230 	KF_ARG_PTR_TO_RB_NODE,
11231 	KF_ARG_PTR_TO_NULL,
11232 	KF_ARG_PTR_TO_CONST_STR,
11233 	KF_ARG_PTR_TO_MAP,
11234 	KF_ARG_PTR_TO_WORKQUEUE,
11235 };
11236 
11237 enum special_kfunc_type {
11238 	KF_bpf_obj_new_impl,
11239 	KF_bpf_obj_drop_impl,
11240 	KF_bpf_refcount_acquire_impl,
11241 	KF_bpf_list_push_front_impl,
11242 	KF_bpf_list_push_back_impl,
11243 	KF_bpf_list_pop_front,
11244 	KF_bpf_list_pop_back,
11245 	KF_bpf_cast_to_kern_ctx,
11246 	KF_bpf_rdonly_cast,
11247 	KF_bpf_rcu_read_lock,
11248 	KF_bpf_rcu_read_unlock,
11249 	KF_bpf_rbtree_remove,
11250 	KF_bpf_rbtree_add_impl,
11251 	KF_bpf_rbtree_first,
11252 	KF_bpf_dynptr_from_skb,
11253 	KF_bpf_dynptr_from_xdp,
11254 	KF_bpf_dynptr_slice,
11255 	KF_bpf_dynptr_slice_rdwr,
11256 	KF_bpf_dynptr_clone,
11257 	KF_bpf_percpu_obj_new_impl,
11258 	KF_bpf_percpu_obj_drop_impl,
11259 	KF_bpf_throw,
11260 	KF_bpf_wq_set_callback_impl,
11261 	KF_bpf_preempt_disable,
11262 	KF_bpf_preempt_enable,
11263 	KF_bpf_iter_css_task_new,
11264 	KF_bpf_session_cookie,
11265 };
11266 
11267 BTF_SET_START(special_kfunc_set)
11268 BTF_ID(func, bpf_obj_new_impl)
11269 BTF_ID(func, bpf_obj_drop_impl)
11270 BTF_ID(func, bpf_refcount_acquire_impl)
11271 BTF_ID(func, bpf_list_push_front_impl)
11272 BTF_ID(func, bpf_list_push_back_impl)
11273 BTF_ID(func, bpf_list_pop_front)
11274 BTF_ID(func, bpf_list_pop_back)
11275 BTF_ID(func, bpf_cast_to_kern_ctx)
11276 BTF_ID(func, bpf_rdonly_cast)
11277 BTF_ID(func, bpf_rbtree_remove)
11278 BTF_ID(func, bpf_rbtree_add_impl)
11279 BTF_ID(func, bpf_rbtree_first)
11280 BTF_ID(func, bpf_dynptr_from_skb)
11281 BTF_ID(func, bpf_dynptr_from_xdp)
11282 BTF_ID(func, bpf_dynptr_slice)
11283 BTF_ID(func, bpf_dynptr_slice_rdwr)
11284 BTF_ID(func, bpf_dynptr_clone)
11285 BTF_ID(func, bpf_percpu_obj_new_impl)
11286 BTF_ID(func, bpf_percpu_obj_drop_impl)
11287 BTF_ID(func, bpf_throw)
11288 BTF_ID(func, bpf_wq_set_callback_impl)
11289 #ifdef CONFIG_CGROUPS
11290 BTF_ID(func, bpf_iter_css_task_new)
11291 #endif
11292 BTF_SET_END(special_kfunc_set)
11293 
11294 BTF_ID_LIST(special_kfunc_list)
11295 BTF_ID(func, bpf_obj_new_impl)
11296 BTF_ID(func, bpf_obj_drop_impl)
11297 BTF_ID(func, bpf_refcount_acquire_impl)
11298 BTF_ID(func, bpf_list_push_front_impl)
11299 BTF_ID(func, bpf_list_push_back_impl)
11300 BTF_ID(func, bpf_list_pop_front)
11301 BTF_ID(func, bpf_list_pop_back)
11302 BTF_ID(func, bpf_cast_to_kern_ctx)
11303 BTF_ID(func, bpf_rdonly_cast)
11304 BTF_ID(func, bpf_rcu_read_lock)
11305 BTF_ID(func, bpf_rcu_read_unlock)
11306 BTF_ID(func, bpf_rbtree_remove)
11307 BTF_ID(func, bpf_rbtree_add_impl)
11308 BTF_ID(func, bpf_rbtree_first)
11309 BTF_ID(func, bpf_dynptr_from_skb)
11310 BTF_ID(func, bpf_dynptr_from_xdp)
11311 BTF_ID(func, bpf_dynptr_slice)
11312 BTF_ID(func, bpf_dynptr_slice_rdwr)
11313 BTF_ID(func, bpf_dynptr_clone)
11314 BTF_ID(func, bpf_percpu_obj_new_impl)
11315 BTF_ID(func, bpf_percpu_obj_drop_impl)
11316 BTF_ID(func, bpf_throw)
11317 BTF_ID(func, bpf_wq_set_callback_impl)
11318 BTF_ID(func, bpf_preempt_disable)
11319 BTF_ID(func, bpf_preempt_enable)
11320 #ifdef CONFIG_CGROUPS
11321 BTF_ID(func, bpf_iter_css_task_new)
11322 #else
11323 BTF_ID_UNUSED
11324 #endif
11325 #ifdef CONFIG_BPF_EVENTS
11326 BTF_ID(func, bpf_session_cookie)
11327 #else
11328 BTF_ID_UNUSED
11329 #endif
11330 
11331 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
11332 {
11333 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
11334 	    meta->arg_owning_ref) {
11335 		return false;
11336 	}
11337 
11338 	return meta->kfunc_flags & KF_RET_NULL;
11339 }
11340 
11341 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
11342 {
11343 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
11344 }
11345 
11346 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
11347 {
11348 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
11349 }
11350 
11351 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta)
11352 {
11353 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable];
11354 }
11355 
11356 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta)
11357 {
11358 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable];
11359 }
11360 
11361 static enum kfunc_ptr_arg_type
11362 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
11363 		       struct bpf_kfunc_call_arg_meta *meta,
11364 		       const struct btf_type *t, const struct btf_type *ref_t,
11365 		       const char *ref_tname, const struct btf_param *args,
11366 		       int argno, int nargs)
11367 {
11368 	u32 regno = argno + 1;
11369 	struct bpf_reg_state *regs = cur_regs(env);
11370 	struct bpf_reg_state *reg = &regs[regno];
11371 	bool arg_mem_size = false;
11372 
11373 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
11374 		return KF_ARG_PTR_TO_CTX;
11375 
11376 	/* In this function, we verify the kfunc's BTF as per the argument type,
11377 	 * leaving the rest of the verification with respect to the register
11378 	 * type to our caller. When a set of conditions hold in the BTF type of
11379 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
11380 	 */
11381 	if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
11382 		return KF_ARG_PTR_TO_CTX;
11383 
11384 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
11385 		return KF_ARG_PTR_TO_NULL;
11386 
11387 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
11388 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
11389 
11390 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
11391 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
11392 
11393 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
11394 		return KF_ARG_PTR_TO_DYNPTR;
11395 
11396 	if (is_kfunc_arg_iter(meta, argno, &args[argno]))
11397 		return KF_ARG_PTR_TO_ITER;
11398 
11399 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
11400 		return KF_ARG_PTR_TO_LIST_HEAD;
11401 
11402 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
11403 		return KF_ARG_PTR_TO_LIST_NODE;
11404 
11405 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
11406 		return KF_ARG_PTR_TO_RB_ROOT;
11407 
11408 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
11409 		return KF_ARG_PTR_TO_RB_NODE;
11410 
11411 	if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
11412 		return KF_ARG_PTR_TO_CONST_STR;
11413 
11414 	if (is_kfunc_arg_map(meta->btf, &args[argno]))
11415 		return KF_ARG_PTR_TO_MAP;
11416 
11417 	if (is_kfunc_arg_wq(meta->btf, &args[argno]))
11418 		return KF_ARG_PTR_TO_WORKQUEUE;
11419 
11420 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
11421 		if (!btf_type_is_struct(ref_t)) {
11422 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
11423 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
11424 			return -EINVAL;
11425 		}
11426 		return KF_ARG_PTR_TO_BTF_ID;
11427 	}
11428 
11429 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
11430 		return KF_ARG_PTR_TO_CALLBACK;
11431 
11432 	if (argno + 1 < nargs &&
11433 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
11434 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
11435 		arg_mem_size = true;
11436 
11437 	/* This is the catch all argument type of register types supported by
11438 	 * check_helper_mem_access. However, we only allow when argument type is
11439 	 * pointer to scalar, or struct composed (recursively) of scalars. When
11440 	 * arg_mem_size is true, the pointer can be void *.
11441 	 */
11442 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
11443 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
11444 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
11445 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
11446 		return -EINVAL;
11447 	}
11448 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
11449 }
11450 
11451 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
11452 					struct bpf_reg_state *reg,
11453 					const struct btf_type *ref_t,
11454 					const char *ref_tname, u32 ref_id,
11455 					struct bpf_kfunc_call_arg_meta *meta,
11456 					int argno)
11457 {
11458 	const struct btf_type *reg_ref_t;
11459 	bool strict_type_match = false;
11460 	const struct btf *reg_btf;
11461 	const char *reg_ref_tname;
11462 	bool taking_projection;
11463 	bool struct_same;
11464 	u32 reg_ref_id;
11465 
11466 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
11467 		reg_btf = reg->btf;
11468 		reg_ref_id = reg->btf_id;
11469 	} else {
11470 		reg_btf = btf_vmlinux;
11471 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
11472 	}
11473 
11474 	/* Enforce strict type matching for calls to kfuncs that are acquiring
11475 	 * or releasing a reference, or are no-cast aliases. We do _not_
11476 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
11477 	 * as we want to enable BPF programs to pass types that are bitwise
11478 	 * equivalent without forcing them to explicitly cast with something
11479 	 * like bpf_cast_to_kern_ctx().
11480 	 *
11481 	 * For example, say we had a type like the following:
11482 	 *
11483 	 * struct bpf_cpumask {
11484 	 *	cpumask_t cpumask;
11485 	 *	refcount_t usage;
11486 	 * };
11487 	 *
11488 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
11489 	 * to a struct cpumask, so it would be safe to pass a struct
11490 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
11491 	 *
11492 	 * The philosophy here is similar to how we allow scalars of different
11493 	 * types to be passed to kfuncs as long as the size is the same. The
11494 	 * only difference here is that we're simply allowing
11495 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
11496 	 * resolve types.
11497 	 */
11498 	if ((is_kfunc_release(meta) && reg->ref_obj_id) ||
11499 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
11500 		strict_type_match = true;
11501 
11502 	WARN_ON_ONCE(is_kfunc_release(meta) &&
11503 		     (reg->off || !tnum_is_const(reg->var_off) ||
11504 		      reg->var_off.value));
11505 
11506 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
11507 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
11508 	struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match);
11509 	/* If kfunc is accepting a projection type (ie. __sk_buff), it cannot
11510 	 * actually use it -- it must cast to the underlying type. So we allow
11511 	 * caller to pass in the underlying type.
11512 	 */
11513 	taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname);
11514 	if (!taking_projection && !struct_same) {
11515 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
11516 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
11517 			btf_type_str(reg_ref_t), reg_ref_tname);
11518 		return -EINVAL;
11519 	}
11520 	return 0;
11521 }
11522 
11523 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11524 {
11525 	struct bpf_verifier_state *state = env->cur_state;
11526 	struct btf_record *rec = reg_btf_record(reg);
11527 
11528 	if (!state->active_lock.ptr) {
11529 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
11530 		return -EFAULT;
11531 	}
11532 
11533 	if (type_flag(reg->type) & NON_OWN_REF) {
11534 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
11535 		return -EFAULT;
11536 	}
11537 
11538 	reg->type |= NON_OWN_REF;
11539 	if (rec->refcount_off >= 0)
11540 		reg->type |= MEM_RCU;
11541 
11542 	return 0;
11543 }
11544 
11545 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
11546 {
11547 	struct bpf_func_state *state, *unused;
11548 	struct bpf_reg_state *reg;
11549 	int i;
11550 
11551 	state = cur_func(env);
11552 
11553 	if (!ref_obj_id) {
11554 		verbose(env, "verifier internal error: ref_obj_id is zero for "
11555 			     "owning -> non-owning conversion\n");
11556 		return -EFAULT;
11557 	}
11558 
11559 	for (i = 0; i < state->acquired_refs; i++) {
11560 		if (state->refs[i].id != ref_obj_id)
11561 			continue;
11562 
11563 		/* Clear ref_obj_id here so release_reference doesn't clobber
11564 		 * the whole reg
11565 		 */
11566 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
11567 			if (reg->ref_obj_id == ref_obj_id) {
11568 				reg->ref_obj_id = 0;
11569 				ref_set_non_owning(env, reg);
11570 			}
11571 		}));
11572 		return 0;
11573 	}
11574 
11575 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
11576 	return -EFAULT;
11577 }
11578 
11579 /* Implementation details:
11580  *
11581  * Each register points to some region of memory, which we define as an
11582  * allocation. Each allocation may embed a bpf_spin_lock which protects any
11583  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
11584  * allocation. The lock and the data it protects are colocated in the same
11585  * memory region.
11586  *
11587  * Hence, everytime a register holds a pointer value pointing to such
11588  * allocation, the verifier preserves a unique reg->id for it.
11589  *
11590  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
11591  * bpf_spin_lock is called.
11592  *
11593  * To enable this, lock state in the verifier captures two values:
11594  *	active_lock.ptr = Register's type specific pointer
11595  *	active_lock.id  = A unique ID for each register pointer value
11596  *
11597  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11598  * supported register types.
11599  *
11600  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11601  * allocated objects is the reg->btf pointer.
11602  *
11603  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11604  * can establish the provenance of the map value statically for each distinct
11605  * lookup into such maps. They always contain a single map value hence unique
11606  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11607  *
11608  * So, in case of global variables, they use array maps with max_entries = 1,
11609  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11610  * into the same map value as max_entries is 1, as described above).
11611  *
11612  * In case of inner map lookups, the inner map pointer has same map_ptr as the
11613  * outer map pointer (in verifier context), but each lookup into an inner map
11614  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11615  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11616  * will get different reg->id assigned to each lookup, hence different
11617  * active_lock.id.
11618  *
11619  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11620  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11621  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11622  */
11623 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11624 {
11625 	void *ptr;
11626 	u32 id;
11627 
11628 	switch ((int)reg->type) {
11629 	case PTR_TO_MAP_VALUE:
11630 		ptr = reg->map_ptr;
11631 		break;
11632 	case PTR_TO_BTF_ID | MEM_ALLOC:
11633 		ptr = reg->btf;
11634 		break;
11635 	default:
11636 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
11637 		return -EFAULT;
11638 	}
11639 	id = reg->id;
11640 
11641 	if (!env->cur_state->active_lock.ptr)
11642 		return -EINVAL;
11643 	if (env->cur_state->active_lock.ptr != ptr ||
11644 	    env->cur_state->active_lock.id != id) {
11645 		verbose(env, "held lock and object are not in the same allocation\n");
11646 		return -EINVAL;
11647 	}
11648 	return 0;
11649 }
11650 
11651 static bool is_bpf_list_api_kfunc(u32 btf_id)
11652 {
11653 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11654 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11655 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11656 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11657 }
11658 
11659 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11660 {
11661 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11662 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11663 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11664 }
11665 
11666 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11667 {
11668 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11669 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11670 }
11671 
11672 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11673 {
11674 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11675 }
11676 
11677 static bool is_async_callback_calling_kfunc(u32 btf_id)
11678 {
11679 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
11680 }
11681 
11682 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
11683 {
11684 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
11685 	       insn->imm == special_kfunc_list[KF_bpf_throw];
11686 }
11687 
11688 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)
11689 {
11690 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
11691 }
11692 
11693 static bool is_callback_calling_kfunc(u32 btf_id)
11694 {
11695 	return is_sync_callback_calling_kfunc(btf_id) ||
11696 	       is_async_callback_calling_kfunc(btf_id);
11697 }
11698 
11699 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11700 {
11701 	return is_bpf_rbtree_api_kfunc(btf_id);
11702 }
11703 
11704 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11705 					  enum btf_field_type head_field_type,
11706 					  u32 kfunc_btf_id)
11707 {
11708 	bool ret;
11709 
11710 	switch (head_field_type) {
11711 	case BPF_LIST_HEAD:
11712 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11713 		break;
11714 	case BPF_RB_ROOT:
11715 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11716 		break;
11717 	default:
11718 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11719 			btf_field_type_name(head_field_type));
11720 		return false;
11721 	}
11722 
11723 	if (!ret)
11724 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11725 			btf_field_type_name(head_field_type));
11726 	return ret;
11727 }
11728 
11729 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11730 					  enum btf_field_type node_field_type,
11731 					  u32 kfunc_btf_id)
11732 {
11733 	bool ret;
11734 
11735 	switch (node_field_type) {
11736 	case BPF_LIST_NODE:
11737 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11738 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11739 		break;
11740 	case BPF_RB_NODE:
11741 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11742 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11743 		break;
11744 	default:
11745 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11746 			btf_field_type_name(node_field_type));
11747 		return false;
11748 	}
11749 
11750 	if (!ret)
11751 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11752 			btf_field_type_name(node_field_type));
11753 	return ret;
11754 }
11755 
11756 static int
11757 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11758 				   struct bpf_reg_state *reg, u32 regno,
11759 				   struct bpf_kfunc_call_arg_meta *meta,
11760 				   enum btf_field_type head_field_type,
11761 				   struct btf_field **head_field)
11762 {
11763 	const char *head_type_name;
11764 	struct btf_field *field;
11765 	struct btf_record *rec;
11766 	u32 head_off;
11767 
11768 	if (meta->btf != btf_vmlinux) {
11769 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11770 		return -EFAULT;
11771 	}
11772 
11773 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11774 		return -EFAULT;
11775 
11776 	head_type_name = btf_field_type_name(head_field_type);
11777 	if (!tnum_is_const(reg->var_off)) {
11778 		verbose(env,
11779 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11780 			regno, head_type_name);
11781 		return -EINVAL;
11782 	}
11783 
11784 	rec = reg_btf_record(reg);
11785 	head_off = reg->off + reg->var_off.value;
11786 	field = btf_record_find(rec, head_off, head_field_type);
11787 	if (!field) {
11788 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11789 		return -EINVAL;
11790 	}
11791 
11792 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11793 	if (check_reg_allocation_locked(env, reg)) {
11794 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11795 			rec->spin_lock_off, head_type_name);
11796 		return -EINVAL;
11797 	}
11798 
11799 	if (*head_field) {
11800 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11801 		return -EFAULT;
11802 	}
11803 	*head_field = field;
11804 	return 0;
11805 }
11806 
11807 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11808 					   struct bpf_reg_state *reg, u32 regno,
11809 					   struct bpf_kfunc_call_arg_meta *meta)
11810 {
11811 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11812 							  &meta->arg_list_head.field);
11813 }
11814 
11815 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11816 					     struct bpf_reg_state *reg, u32 regno,
11817 					     struct bpf_kfunc_call_arg_meta *meta)
11818 {
11819 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11820 							  &meta->arg_rbtree_root.field);
11821 }
11822 
11823 static int
11824 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11825 				   struct bpf_reg_state *reg, u32 regno,
11826 				   struct bpf_kfunc_call_arg_meta *meta,
11827 				   enum btf_field_type head_field_type,
11828 				   enum btf_field_type node_field_type,
11829 				   struct btf_field **node_field)
11830 {
11831 	const char *node_type_name;
11832 	const struct btf_type *et, *t;
11833 	struct btf_field *field;
11834 	u32 node_off;
11835 
11836 	if (meta->btf != btf_vmlinux) {
11837 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11838 		return -EFAULT;
11839 	}
11840 
11841 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11842 		return -EFAULT;
11843 
11844 	node_type_name = btf_field_type_name(node_field_type);
11845 	if (!tnum_is_const(reg->var_off)) {
11846 		verbose(env,
11847 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11848 			regno, node_type_name);
11849 		return -EINVAL;
11850 	}
11851 
11852 	node_off = reg->off + reg->var_off.value;
11853 	field = reg_find_field_offset(reg, node_off, node_field_type);
11854 	if (!field) {
11855 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11856 		return -EINVAL;
11857 	}
11858 
11859 	field = *node_field;
11860 
11861 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11862 	t = btf_type_by_id(reg->btf, reg->btf_id);
11863 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11864 				  field->graph_root.value_btf_id, true)) {
11865 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11866 			"in struct %s, but arg is at offset=%d in struct %s\n",
11867 			btf_field_type_name(head_field_type),
11868 			btf_field_type_name(node_field_type),
11869 			field->graph_root.node_offset,
11870 			btf_name_by_offset(field->graph_root.btf, et->name_off),
11871 			node_off, btf_name_by_offset(reg->btf, t->name_off));
11872 		return -EINVAL;
11873 	}
11874 	meta->arg_btf = reg->btf;
11875 	meta->arg_btf_id = reg->btf_id;
11876 
11877 	if (node_off != field->graph_root.node_offset) {
11878 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11879 			node_off, btf_field_type_name(node_field_type),
11880 			field->graph_root.node_offset,
11881 			btf_name_by_offset(field->graph_root.btf, et->name_off));
11882 		return -EINVAL;
11883 	}
11884 
11885 	return 0;
11886 }
11887 
11888 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11889 					   struct bpf_reg_state *reg, u32 regno,
11890 					   struct bpf_kfunc_call_arg_meta *meta)
11891 {
11892 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11893 						  BPF_LIST_HEAD, BPF_LIST_NODE,
11894 						  &meta->arg_list_head.field);
11895 }
11896 
11897 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11898 					     struct bpf_reg_state *reg, u32 regno,
11899 					     struct bpf_kfunc_call_arg_meta *meta)
11900 {
11901 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11902 						  BPF_RB_ROOT, BPF_RB_NODE,
11903 						  &meta->arg_rbtree_root.field);
11904 }
11905 
11906 /*
11907  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
11908  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
11909  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
11910  * them can only be attached to some specific hook points.
11911  */
11912 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
11913 {
11914 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11915 
11916 	switch (prog_type) {
11917 	case BPF_PROG_TYPE_LSM:
11918 		return true;
11919 	case BPF_PROG_TYPE_TRACING:
11920 		if (env->prog->expected_attach_type == BPF_TRACE_ITER)
11921 			return true;
11922 		fallthrough;
11923 	default:
11924 		return in_sleepable(env);
11925 	}
11926 }
11927 
11928 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11929 			    int insn_idx)
11930 {
11931 	const char *func_name = meta->func_name, *ref_tname;
11932 	const struct btf *btf = meta->btf;
11933 	const struct btf_param *args;
11934 	struct btf_record *rec;
11935 	u32 i, nargs;
11936 	int ret;
11937 
11938 	args = (const struct btf_param *)(meta->func_proto + 1);
11939 	nargs = btf_type_vlen(meta->func_proto);
11940 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11941 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11942 			MAX_BPF_FUNC_REG_ARGS);
11943 		return -EINVAL;
11944 	}
11945 
11946 	/* Check that BTF function arguments match actual types that the
11947 	 * verifier sees.
11948 	 */
11949 	for (i = 0; i < nargs; i++) {
11950 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11951 		const struct btf_type *t, *ref_t, *resolve_ret;
11952 		enum bpf_arg_type arg_type = ARG_DONTCARE;
11953 		u32 regno = i + 1, ref_id, type_size;
11954 		bool is_ret_buf_sz = false;
11955 		int kf_arg_type;
11956 
11957 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11958 
11959 		if (is_kfunc_arg_ignore(btf, &args[i]))
11960 			continue;
11961 
11962 		if (btf_type_is_scalar(t)) {
11963 			if (reg->type != SCALAR_VALUE) {
11964 				verbose(env, "R%d is not a scalar\n", regno);
11965 				return -EINVAL;
11966 			}
11967 
11968 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11969 				if (meta->arg_constant.found) {
11970 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11971 					return -EFAULT;
11972 				}
11973 				if (!tnum_is_const(reg->var_off)) {
11974 					verbose(env, "R%d must be a known constant\n", regno);
11975 					return -EINVAL;
11976 				}
11977 				ret = mark_chain_precision(env, regno);
11978 				if (ret < 0)
11979 					return ret;
11980 				meta->arg_constant.found = true;
11981 				meta->arg_constant.value = reg->var_off.value;
11982 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11983 				meta->r0_rdonly = true;
11984 				is_ret_buf_sz = true;
11985 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11986 				is_ret_buf_sz = true;
11987 			}
11988 
11989 			if (is_ret_buf_sz) {
11990 				if (meta->r0_size) {
11991 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11992 					return -EINVAL;
11993 				}
11994 
11995 				if (!tnum_is_const(reg->var_off)) {
11996 					verbose(env, "R%d is not a const\n", regno);
11997 					return -EINVAL;
11998 				}
11999 
12000 				meta->r0_size = reg->var_off.value;
12001 				ret = mark_chain_precision(env, regno);
12002 				if (ret)
12003 					return ret;
12004 			}
12005 			continue;
12006 		}
12007 
12008 		if (!btf_type_is_ptr(t)) {
12009 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
12010 			return -EINVAL;
12011 		}
12012 
12013 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
12014 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
12015 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
12016 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
12017 			return -EACCES;
12018 		}
12019 
12020 		if (reg->ref_obj_id) {
12021 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
12022 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
12023 					regno, reg->ref_obj_id,
12024 					meta->ref_obj_id);
12025 				return -EFAULT;
12026 			}
12027 			meta->ref_obj_id = reg->ref_obj_id;
12028 			if (is_kfunc_release(meta))
12029 				meta->release_regno = regno;
12030 		}
12031 
12032 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
12033 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
12034 
12035 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
12036 		if (kf_arg_type < 0)
12037 			return kf_arg_type;
12038 
12039 		switch (kf_arg_type) {
12040 		case KF_ARG_PTR_TO_NULL:
12041 			continue;
12042 		case KF_ARG_PTR_TO_MAP:
12043 			if (!reg->map_ptr) {
12044 				verbose(env, "pointer in R%d isn't map pointer\n", regno);
12045 				return -EINVAL;
12046 			}
12047 			if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) {
12048 				/* Use map_uid (which is unique id of inner map) to reject:
12049 				 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
12050 				 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
12051 				 * if (inner_map1 && inner_map2) {
12052 				 *     wq = bpf_map_lookup_elem(inner_map1);
12053 				 *     if (wq)
12054 				 *         // mismatch would have been allowed
12055 				 *         bpf_wq_init(wq, inner_map2);
12056 				 * }
12057 				 *
12058 				 * Comparing map_ptr is enough to distinguish normal and outer maps.
12059 				 */
12060 				if (meta->map.ptr != reg->map_ptr ||
12061 				    meta->map.uid != reg->map_uid) {
12062 					verbose(env,
12063 						"workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
12064 						meta->map.uid, reg->map_uid);
12065 					return -EINVAL;
12066 				}
12067 			}
12068 			meta->map.ptr = reg->map_ptr;
12069 			meta->map.uid = reg->map_uid;
12070 			fallthrough;
12071 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
12072 		case KF_ARG_PTR_TO_BTF_ID:
12073 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
12074 				break;
12075 
12076 			if (!is_trusted_reg(reg)) {
12077 				if (!is_kfunc_rcu(meta)) {
12078 					verbose(env, "R%d must be referenced or trusted\n", regno);
12079 					return -EINVAL;
12080 				}
12081 				if (!is_rcu_reg(reg)) {
12082 					verbose(env, "R%d must be a rcu pointer\n", regno);
12083 					return -EINVAL;
12084 				}
12085 			}
12086 			fallthrough;
12087 		case KF_ARG_PTR_TO_CTX:
12088 		case KF_ARG_PTR_TO_DYNPTR:
12089 		case KF_ARG_PTR_TO_ITER:
12090 		case KF_ARG_PTR_TO_LIST_HEAD:
12091 		case KF_ARG_PTR_TO_LIST_NODE:
12092 		case KF_ARG_PTR_TO_RB_ROOT:
12093 		case KF_ARG_PTR_TO_RB_NODE:
12094 		case KF_ARG_PTR_TO_MEM:
12095 		case KF_ARG_PTR_TO_MEM_SIZE:
12096 		case KF_ARG_PTR_TO_CALLBACK:
12097 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
12098 		case KF_ARG_PTR_TO_CONST_STR:
12099 		case KF_ARG_PTR_TO_WORKQUEUE:
12100 			break;
12101 		default:
12102 			WARN_ON_ONCE(1);
12103 			return -EFAULT;
12104 		}
12105 
12106 		if (is_kfunc_release(meta) && reg->ref_obj_id)
12107 			arg_type |= OBJ_RELEASE;
12108 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
12109 		if (ret < 0)
12110 			return ret;
12111 
12112 		switch (kf_arg_type) {
12113 		case KF_ARG_PTR_TO_CTX:
12114 			if (reg->type != PTR_TO_CTX) {
12115 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n",
12116 					i, reg_type_str(env, reg->type));
12117 				return -EINVAL;
12118 			}
12119 
12120 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12121 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
12122 				if (ret < 0)
12123 					return -EINVAL;
12124 				meta->ret_btf_id  = ret;
12125 			}
12126 			break;
12127 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
12128 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
12129 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
12130 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
12131 					return -EINVAL;
12132 				}
12133 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
12134 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12135 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
12136 					return -EINVAL;
12137 				}
12138 			} else {
12139 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
12140 				return -EINVAL;
12141 			}
12142 			if (!reg->ref_obj_id) {
12143 				verbose(env, "allocated object must be referenced\n");
12144 				return -EINVAL;
12145 			}
12146 			if (meta->btf == btf_vmlinux) {
12147 				meta->arg_btf = reg->btf;
12148 				meta->arg_btf_id = reg->btf_id;
12149 			}
12150 			break;
12151 		case KF_ARG_PTR_TO_DYNPTR:
12152 		{
12153 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
12154 			int clone_ref_obj_id = 0;
12155 
12156 			if (reg->type == CONST_PTR_TO_DYNPTR)
12157 				dynptr_arg_type |= MEM_RDONLY;
12158 
12159 			if (is_kfunc_arg_uninit(btf, &args[i]))
12160 				dynptr_arg_type |= MEM_UNINIT;
12161 
12162 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
12163 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
12164 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
12165 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
12166 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
12167 				   (dynptr_arg_type & MEM_UNINIT)) {
12168 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
12169 
12170 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
12171 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
12172 					return -EFAULT;
12173 				}
12174 
12175 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
12176 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
12177 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
12178 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
12179 					return -EFAULT;
12180 				}
12181 			}
12182 
12183 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
12184 			if (ret < 0)
12185 				return ret;
12186 
12187 			if (!(dynptr_arg_type & MEM_UNINIT)) {
12188 				int id = dynptr_id(env, reg);
12189 
12190 				if (id < 0) {
12191 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
12192 					return id;
12193 				}
12194 				meta->initialized_dynptr.id = id;
12195 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
12196 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
12197 			}
12198 
12199 			break;
12200 		}
12201 		case KF_ARG_PTR_TO_ITER:
12202 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
12203 				if (!check_css_task_iter_allowlist(env)) {
12204 					verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
12205 					return -EINVAL;
12206 				}
12207 			}
12208 			ret = process_iter_arg(env, regno, insn_idx, meta);
12209 			if (ret < 0)
12210 				return ret;
12211 			break;
12212 		case KF_ARG_PTR_TO_LIST_HEAD:
12213 			if (reg->type != PTR_TO_MAP_VALUE &&
12214 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12215 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
12216 				return -EINVAL;
12217 			}
12218 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
12219 				verbose(env, "allocated object must be referenced\n");
12220 				return -EINVAL;
12221 			}
12222 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
12223 			if (ret < 0)
12224 				return ret;
12225 			break;
12226 		case KF_ARG_PTR_TO_RB_ROOT:
12227 			if (reg->type != PTR_TO_MAP_VALUE &&
12228 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12229 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
12230 				return -EINVAL;
12231 			}
12232 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
12233 				verbose(env, "allocated object must be referenced\n");
12234 				return -EINVAL;
12235 			}
12236 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
12237 			if (ret < 0)
12238 				return ret;
12239 			break;
12240 		case KF_ARG_PTR_TO_LIST_NODE:
12241 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12242 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
12243 				return -EINVAL;
12244 			}
12245 			if (!reg->ref_obj_id) {
12246 				verbose(env, "allocated object must be referenced\n");
12247 				return -EINVAL;
12248 			}
12249 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
12250 			if (ret < 0)
12251 				return ret;
12252 			break;
12253 		case KF_ARG_PTR_TO_RB_NODE:
12254 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
12255 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
12256 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
12257 					return -EINVAL;
12258 				}
12259 				if (in_rbtree_lock_required_cb(env)) {
12260 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
12261 					return -EINVAL;
12262 				}
12263 			} else {
12264 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12265 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
12266 					return -EINVAL;
12267 				}
12268 				if (!reg->ref_obj_id) {
12269 					verbose(env, "allocated object must be referenced\n");
12270 					return -EINVAL;
12271 				}
12272 			}
12273 
12274 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
12275 			if (ret < 0)
12276 				return ret;
12277 			break;
12278 		case KF_ARG_PTR_TO_MAP:
12279 			/* If argument has '__map' suffix expect 'struct bpf_map *' */
12280 			ref_id = *reg2btf_ids[CONST_PTR_TO_MAP];
12281 			ref_t = btf_type_by_id(btf_vmlinux, ref_id);
12282 			ref_tname = btf_name_by_offset(btf, ref_t->name_off);
12283 			fallthrough;
12284 		case KF_ARG_PTR_TO_BTF_ID:
12285 			/* Only base_type is checked, further checks are done here */
12286 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
12287 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
12288 			    !reg2btf_ids[base_type(reg->type)]) {
12289 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
12290 				verbose(env, "expected %s or socket\n",
12291 					reg_type_str(env, base_type(reg->type) |
12292 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
12293 				return -EINVAL;
12294 			}
12295 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
12296 			if (ret < 0)
12297 				return ret;
12298 			break;
12299 		case KF_ARG_PTR_TO_MEM:
12300 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
12301 			if (IS_ERR(resolve_ret)) {
12302 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
12303 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
12304 				return -EINVAL;
12305 			}
12306 			ret = check_mem_reg(env, reg, regno, type_size);
12307 			if (ret < 0)
12308 				return ret;
12309 			break;
12310 		case KF_ARG_PTR_TO_MEM_SIZE:
12311 		{
12312 			struct bpf_reg_state *buff_reg = &regs[regno];
12313 			const struct btf_param *buff_arg = &args[i];
12314 			struct bpf_reg_state *size_reg = &regs[regno + 1];
12315 			const struct btf_param *size_arg = &args[i + 1];
12316 
12317 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
12318 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
12319 				if (ret < 0) {
12320 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
12321 					return ret;
12322 				}
12323 			}
12324 
12325 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
12326 				if (meta->arg_constant.found) {
12327 					verbose(env, "verifier internal error: only one constant argument permitted\n");
12328 					return -EFAULT;
12329 				}
12330 				if (!tnum_is_const(size_reg->var_off)) {
12331 					verbose(env, "R%d must be a known constant\n", regno + 1);
12332 					return -EINVAL;
12333 				}
12334 				meta->arg_constant.found = true;
12335 				meta->arg_constant.value = size_reg->var_off.value;
12336 			}
12337 
12338 			/* Skip next '__sz' or '__szk' argument */
12339 			i++;
12340 			break;
12341 		}
12342 		case KF_ARG_PTR_TO_CALLBACK:
12343 			if (reg->type != PTR_TO_FUNC) {
12344 				verbose(env, "arg%d expected pointer to func\n", i);
12345 				return -EINVAL;
12346 			}
12347 			meta->subprogno = reg->subprogno;
12348 			break;
12349 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
12350 			if (!type_is_ptr_alloc_obj(reg->type)) {
12351 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
12352 				return -EINVAL;
12353 			}
12354 			if (!type_is_non_owning_ref(reg->type))
12355 				meta->arg_owning_ref = true;
12356 
12357 			rec = reg_btf_record(reg);
12358 			if (!rec) {
12359 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
12360 				return -EFAULT;
12361 			}
12362 
12363 			if (rec->refcount_off < 0) {
12364 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
12365 				return -EINVAL;
12366 			}
12367 
12368 			meta->arg_btf = reg->btf;
12369 			meta->arg_btf_id = reg->btf_id;
12370 			break;
12371 		case KF_ARG_PTR_TO_CONST_STR:
12372 			if (reg->type != PTR_TO_MAP_VALUE) {
12373 				verbose(env, "arg#%d doesn't point to a const string\n", i);
12374 				return -EINVAL;
12375 			}
12376 			ret = check_reg_const_str(env, reg, regno);
12377 			if (ret)
12378 				return ret;
12379 			break;
12380 		case KF_ARG_PTR_TO_WORKQUEUE:
12381 			if (reg->type != PTR_TO_MAP_VALUE) {
12382 				verbose(env, "arg#%d doesn't point to a map value\n", i);
12383 				return -EINVAL;
12384 			}
12385 			ret = process_wq_func(env, regno, meta);
12386 			if (ret < 0)
12387 				return ret;
12388 			break;
12389 		}
12390 	}
12391 
12392 	if (is_kfunc_release(meta) && !meta->release_regno) {
12393 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
12394 			func_name);
12395 		return -EINVAL;
12396 	}
12397 
12398 	return 0;
12399 }
12400 
12401 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
12402 			    struct bpf_insn *insn,
12403 			    struct bpf_kfunc_call_arg_meta *meta,
12404 			    const char **kfunc_name)
12405 {
12406 	const struct btf_type *func, *func_proto;
12407 	u32 func_id, *kfunc_flags;
12408 	const char *func_name;
12409 	struct btf *desc_btf;
12410 
12411 	if (kfunc_name)
12412 		*kfunc_name = NULL;
12413 
12414 	if (!insn->imm)
12415 		return -EINVAL;
12416 
12417 	desc_btf = find_kfunc_desc_btf(env, insn->off);
12418 	if (IS_ERR(desc_btf))
12419 		return PTR_ERR(desc_btf);
12420 
12421 	func_id = insn->imm;
12422 	func = btf_type_by_id(desc_btf, func_id);
12423 	func_name = btf_name_by_offset(desc_btf, func->name_off);
12424 	if (kfunc_name)
12425 		*kfunc_name = func_name;
12426 	func_proto = btf_type_by_id(desc_btf, func->type);
12427 
12428 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
12429 	if (!kfunc_flags) {
12430 		return -EACCES;
12431 	}
12432 
12433 	memset(meta, 0, sizeof(*meta));
12434 	meta->btf = desc_btf;
12435 	meta->func_id = func_id;
12436 	meta->kfunc_flags = *kfunc_flags;
12437 	meta->func_proto = func_proto;
12438 	meta->func_name = func_name;
12439 
12440 	return 0;
12441 }
12442 
12443 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
12444 
12445 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
12446 			    int *insn_idx_p)
12447 {
12448 	bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable;
12449 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
12450 	struct bpf_reg_state *regs = cur_regs(env);
12451 	const char *func_name, *ptr_type_name;
12452 	const struct btf_type *t, *ptr_type;
12453 	struct bpf_kfunc_call_arg_meta meta;
12454 	struct bpf_insn_aux_data *insn_aux;
12455 	int err, insn_idx = *insn_idx_p;
12456 	const struct btf_param *args;
12457 	const struct btf_type *ret_t;
12458 	struct btf *desc_btf;
12459 
12460 	/* skip for now, but return error when we find this in fixup_kfunc_call */
12461 	if (!insn->imm)
12462 		return 0;
12463 
12464 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
12465 	if (err == -EACCES && func_name)
12466 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
12467 	if (err)
12468 		return err;
12469 	desc_btf = meta.btf;
12470 	insn_aux = &env->insn_aux_data[insn_idx];
12471 
12472 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
12473 
12474 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
12475 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
12476 		return -EACCES;
12477 	}
12478 
12479 	sleepable = is_kfunc_sleepable(&meta);
12480 	if (sleepable && !in_sleepable(env)) {
12481 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
12482 		return -EACCES;
12483 	}
12484 
12485 	/* Check the arguments */
12486 	err = check_kfunc_args(env, &meta, insn_idx);
12487 	if (err < 0)
12488 		return err;
12489 
12490 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12491 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12492 					 set_rbtree_add_callback_state);
12493 		if (err) {
12494 			verbose(env, "kfunc %s#%d failed callback verification\n",
12495 				func_name, meta.func_id);
12496 			return err;
12497 		}
12498 	}
12499 
12500 	if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) {
12501 		meta.r0_size = sizeof(u64);
12502 		meta.r0_rdonly = false;
12503 	}
12504 
12505 	if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) {
12506 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12507 					 set_timer_callback_state);
12508 		if (err) {
12509 			verbose(env, "kfunc %s#%d failed callback verification\n",
12510 				func_name, meta.func_id);
12511 			return err;
12512 		}
12513 	}
12514 
12515 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
12516 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
12517 
12518 	preempt_disable = is_kfunc_bpf_preempt_disable(&meta);
12519 	preempt_enable = is_kfunc_bpf_preempt_enable(&meta);
12520 
12521 	if (env->cur_state->active_rcu_lock) {
12522 		struct bpf_func_state *state;
12523 		struct bpf_reg_state *reg;
12524 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
12525 
12526 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
12527 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
12528 			return -EACCES;
12529 		}
12530 
12531 		if (rcu_lock) {
12532 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
12533 			return -EINVAL;
12534 		} else if (rcu_unlock) {
12535 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
12536 				if (reg->type & MEM_RCU) {
12537 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
12538 					reg->type |= PTR_UNTRUSTED;
12539 				}
12540 			}));
12541 			env->cur_state->active_rcu_lock = false;
12542 		} else if (sleepable) {
12543 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
12544 			return -EACCES;
12545 		}
12546 	} else if (rcu_lock) {
12547 		env->cur_state->active_rcu_lock = true;
12548 	} else if (rcu_unlock) {
12549 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
12550 		return -EINVAL;
12551 	}
12552 
12553 	if (env->cur_state->active_preempt_lock) {
12554 		if (preempt_disable) {
12555 			env->cur_state->active_preempt_lock++;
12556 		} else if (preempt_enable) {
12557 			env->cur_state->active_preempt_lock--;
12558 		} else if (sleepable) {
12559 			verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name);
12560 			return -EACCES;
12561 		}
12562 	} else if (preempt_disable) {
12563 		env->cur_state->active_preempt_lock++;
12564 	} else if (preempt_enable) {
12565 		verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name);
12566 		return -EINVAL;
12567 	}
12568 
12569 	/* In case of release function, we get register number of refcounted
12570 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
12571 	 */
12572 	if (meta.release_regno) {
12573 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
12574 		if (err) {
12575 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12576 				func_name, meta.func_id);
12577 			return err;
12578 		}
12579 	}
12580 
12581 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12582 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12583 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12584 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
12585 		insn_aux->insert_off = regs[BPF_REG_2].off;
12586 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
12587 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
12588 		if (err) {
12589 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
12590 				func_name, meta.func_id);
12591 			return err;
12592 		}
12593 
12594 		err = release_reference(env, release_ref_obj_id);
12595 		if (err) {
12596 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12597 				func_name, meta.func_id);
12598 			return err;
12599 		}
12600 	}
12601 
12602 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
12603 		if (!bpf_jit_supports_exceptions()) {
12604 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
12605 				func_name, meta.func_id);
12606 			return -ENOTSUPP;
12607 		}
12608 		env->seen_exception = true;
12609 
12610 		/* In the case of the default callback, the cookie value passed
12611 		 * to bpf_throw becomes the return value of the program.
12612 		 */
12613 		if (!env->exception_callback_subprog) {
12614 			err = check_return_code(env, BPF_REG_1, "R1");
12615 			if (err < 0)
12616 				return err;
12617 		}
12618 	}
12619 
12620 	for (i = 0; i < CALLER_SAVED_REGS; i++)
12621 		mark_reg_not_init(env, regs, caller_saved[i]);
12622 
12623 	/* Check return type */
12624 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
12625 
12626 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
12627 		/* Only exception is bpf_obj_new_impl */
12628 		if (meta.btf != btf_vmlinux ||
12629 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
12630 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
12631 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
12632 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
12633 			return -EINVAL;
12634 		}
12635 	}
12636 
12637 	if (btf_type_is_scalar(t)) {
12638 		mark_reg_unknown(env, regs, BPF_REG_0);
12639 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
12640 	} else if (btf_type_is_ptr(t)) {
12641 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
12642 
12643 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12644 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
12645 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12646 				struct btf_struct_meta *struct_meta;
12647 				struct btf *ret_btf;
12648 				u32 ret_btf_id;
12649 
12650 				if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
12651 					return -ENOMEM;
12652 
12653 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
12654 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
12655 					return -EINVAL;
12656 				}
12657 
12658 				ret_btf = env->prog->aux->btf;
12659 				ret_btf_id = meta.arg_constant.value;
12660 
12661 				/* This may be NULL due to user not supplying a BTF */
12662 				if (!ret_btf) {
12663 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
12664 					return -EINVAL;
12665 				}
12666 
12667 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
12668 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
12669 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
12670 					return -EINVAL;
12671 				}
12672 
12673 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12674 					if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
12675 						verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
12676 							ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
12677 						return -EINVAL;
12678 					}
12679 
12680 					if (!bpf_global_percpu_ma_set) {
12681 						mutex_lock(&bpf_percpu_ma_lock);
12682 						if (!bpf_global_percpu_ma_set) {
12683 							/* Charge memory allocated with bpf_global_percpu_ma to
12684 							 * root memcg. The obj_cgroup for root memcg is NULL.
12685 							 */
12686 							err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
12687 							if (!err)
12688 								bpf_global_percpu_ma_set = true;
12689 						}
12690 						mutex_unlock(&bpf_percpu_ma_lock);
12691 						if (err)
12692 							return err;
12693 					}
12694 
12695 					mutex_lock(&bpf_percpu_ma_lock);
12696 					err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
12697 					mutex_unlock(&bpf_percpu_ma_lock);
12698 					if (err)
12699 						return err;
12700 				}
12701 
12702 				struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
12703 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12704 					if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
12705 						verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
12706 						return -EINVAL;
12707 					}
12708 
12709 					if (struct_meta) {
12710 						verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
12711 						return -EINVAL;
12712 					}
12713 				}
12714 
12715 				mark_reg_known_zero(env, regs, BPF_REG_0);
12716 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12717 				regs[BPF_REG_0].btf = ret_btf;
12718 				regs[BPF_REG_0].btf_id = ret_btf_id;
12719 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
12720 					regs[BPF_REG_0].type |= MEM_PERCPU;
12721 
12722 				insn_aux->obj_new_size = ret_t->size;
12723 				insn_aux->kptr_struct_meta = struct_meta;
12724 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
12725 				mark_reg_known_zero(env, regs, BPF_REG_0);
12726 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12727 				regs[BPF_REG_0].btf = meta.arg_btf;
12728 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
12729 
12730 				insn_aux->kptr_struct_meta =
12731 					btf_find_struct_meta(meta.arg_btf,
12732 							     meta.arg_btf_id);
12733 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12734 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
12735 				struct btf_field *field = meta.arg_list_head.field;
12736 
12737 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12738 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12739 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12740 				struct btf_field *field = meta.arg_rbtree_root.field;
12741 
12742 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12743 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12744 				mark_reg_known_zero(env, regs, BPF_REG_0);
12745 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
12746 				regs[BPF_REG_0].btf = desc_btf;
12747 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
12748 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
12749 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
12750 				if (!ret_t || !btf_type_is_struct(ret_t)) {
12751 					verbose(env,
12752 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
12753 					return -EINVAL;
12754 				}
12755 
12756 				mark_reg_known_zero(env, regs, BPF_REG_0);
12757 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
12758 				regs[BPF_REG_0].btf = desc_btf;
12759 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
12760 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
12761 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
12762 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
12763 
12764 				mark_reg_known_zero(env, regs, BPF_REG_0);
12765 
12766 				if (!meta.arg_constant.found) {
12767 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
12768 					return -EFAULT;
12769 				}
12770 
12771 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
12772 
12773 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
12774 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
12775 
12776 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
12777 					regs[BPF_REG_0].type |= MEM_RDONLY;
12778 				} else {
12779 					/* this will set env->seen_direct_write to true */
12780 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
12781 						verbose(env, "the prog does not allow writes to packet data\n");
12782 						return -EINVAL;
12783 					}
12784 				}
12785 
12786 				if (!meta.initialized_dynptr.id) {
12787 					verbose(env, "verifier internal error: no dynptr id\n");
12788 					return -EFAULT;
12789 				}
12790 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
12791 
12792 				/* we don't need to set BPF_REG_0's ref obj id
12793 				 * because packet slices are not refcounted (see
12794 				 * dynptr_type_refcounted)
12795 				 */
12796 			} else {
12797 				verbose(env, "kernel function %s unhandled dynamic return type\n",
12798 					meta.func_name);
12799 				return -EFAULT;
12800 			}
12801 		} else if (btf_type_is_void(ptr_type)) {
12802 			/* kfunc returning 'void *' is equivalent to returning scalar */
12803 			mark_reg_unknown(env, regs, BPF_REG_0);
12804 		} else if (!__btf_type_is_struct(ptr_type)) {
12805 			if (!meta.r0_size) {
12806 				__u32 sz;
12807 
12808 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
12809 					meta.r0_size = sz;
12810 					meta.r0_rdonly = true;
12811 				}
12812 			}
12813 			if (!meta.r0_size) {
12814 				ptr_type_name = btf_name_by_offset(desc_btf,
12815 								   ptr_type->name_off);
12816 				verbose(env,
12817 					"kernel function %s returns pointer type %s %s is not supported\n",
12818 					func_name,
12819 					btf_type_str(ptr_type),
12820 					ptr_type_name);
12821 				return -EINVAL;
12822 			}
12823 
12824 			mark_reg_known_zero(env, regs, BPF_REG_0);
12825 			regs[BPF_REG_0].type = PTR_TO_MEM;
12826 			regs[BPF_REG_0].mem_size = meta.r0_size;
12827 
12828 			if (meta.r0_rdonly)
12829 				regs[BPF_REG_0].type |= MEM_RDONLY;
12830 
12831 			/* Ensures we don't access the memory after a release_reference() */
12832 			if (meta.ref_obj_id)
12833 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12834 		} else {
12835 			mark_reg_known_zero(env, regs, BPF_REG_0);
12836 			regs[BPF_REG_0].btf = desc_btf;
12837 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12838 			regs[BPF_REG_0].btf_id = ptr_type_id;
12839 
12840 			if (is_iter_next_kfunc(&meta)) {
12841 				struct bpf_reg_state *cur_iter;
12842 
12843 				cur_iter = get_iter_from_state(env->cur_state, &meta);
12844 
12845 				if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */
12846 					regs[BPF_REG_0].type |= MEM_RCU;
12847 				else
12848 					regs[BPF_REG_0].type |= PTR_TRUSTED;
12849 			}
12850 		}
12851 
12852 		if (is_kfunc_ret_null(&meta)) {
12853 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12854 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12855 			regs[BPF_REG_0].id = ++env->id_gen;
12856 		}
12857 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12858 		if (is_kfunc_acquire(&meta)) {
12859 			int id = acquire_reference_state(env, insn_idx);
12860 
12861 			if (id < 0)
12862 				return id;
12863 			if (is_kfunc_ret_null(&meta))
12864 				regs[BPF_REG_0].id = id;
12865 			regs[BPF_REG_0].ref_obj_id = id;
12866 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12867 			ref_set_non_owning(env, &regs[BPF_REG_0]);
12868 		}
12869 
12870 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
12871 			regs[BPF_REG_0].id = ++env->id_gen;
12872 	} else if (btf_type_is_void(t)) {
12873 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12874 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
12875 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12876 				insn_aux->kptr_struct_meta =
12877 					btf_find_struct_meta(meta.arg_btf,
12878 							     meta.arg_btf_id);
12879 			}
12880 		}
12881 	}
12882 
12883 	nargs = btf_type_vlen(meta.func_proto);
12884 	args = (const struct btf_param *)(meta.func_proto + 1);
12885 	for (i = 0; i < nargs; i++) {
12886 		u32 regno = i + 1;
12887 
12888 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12889 		if (btf_type_is_ptr(t))
12890 			mark_btf_func_reg_size(env, regno, sizeof(void *));
12891 		else
12892 			/* scalar. ensured by btf_check_kfunc_arg_match() */
12893 			mark_btf_func_reg_size(env, regno, t->size);
12894 	}
12895 
12896 	if (is_iter_next_kfunc(&meta)) {
12897 		err = process_iter_next_call(env, insn_idx, &meta);
12898 		if (err)
12899 			return err;
12900 	}
12901 
12902 	return 0;
12903 }
12904 
12905 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12906 				  const struct bpf_reg_state *reg,
12907 				  enum bpf_reg_type type)
12908 {
12909 	bool known = tnum_is_const(reg->var_off);
12910 	s64 val = reg->var_off.value;
12911 	s64 smin = reg->smin_value;
12912 
12913 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12914 		verbose(env, "math between %s pointer and %lld is not allowed\n",
12915 			reg_type_str(env, type), val);
12916 		return false;
12917 	}
12918 
12919 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12920 		verbose(env, "%s pointer offset %d is not allowed\n",
12921 			reg_type_str(env, type), reg->off);
12922 		return false;
12923 	}
12924 
12925 	if (smin == S64_MIN) {
12926 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12927 			reg_type_str(env, type));
12928 		return false;
12929 	}
12930 
12931 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12932 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
12933 			smin, reg_type_str(env, type));
12934 		return false;
12935 	}
12936 
12937 	return true;
12938 }
12939 
12940 enum {
12941 	REASON_BOUNDS	= -1,
12942 	REASON_TYPE	= -2,
12943 	REASON_PATHS	= -3,
12944 	REASON_LIMIT	= -4,
12945 	REASON_STACK	= -5,
12946 };
12947 
12948 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12949 			      u32 *alu_limit, bool mask_to_left)
12950 {
12951 	u32 max = 0, ptr_limit = 0;
12952 
12953 	switch (ptr_reg->type) {
12954 	case PTR_TO_STACK:
12955 		/* Offset 0 is out-of-bounds, but acceptable start for the
12956 		 * left direction, see BPF_REG_FP. Also, unknown scalar
12957 		 * offset where we would need to deal with min/max bounds is
12958 		 * currently prohibited for unprivileged.
12959 		 */
12960 		max = MAX_BPF_STACK + mask_to_left;
12961 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12962 		break;
12963 	case PTR_TO_MAP_VALUE:
12964 		max = ptr_reg->map_ptr->value_size;
12965 		ptr_limit = (mask_to_left ?
12966 			     ptr_reg->smin_value :
12967 			     ptr_reg->umax_value) + ptr_reg->off;
12968 		break;
12969 	default:
12970 		return REASON_TYPE;
12971 	}
12972 
12973 	if (ptr_limit >= max)
12974 		return REASON_LIMIT;
12975 	*alu_limit = ptr_limit;
12976 	return 0;
12977 }
12978 
12979 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12980 				    const struct bpf_insn *insn)
12981 {
12982 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12983 }
12984 
12985 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12986 				       u32 alu_state, u32 alu_limit)
12987 {
12988 	/* If we arrived here from different branches with different
12989 	 * state or limits to sanitize, then this won't work.
12990 	 */
12991 	if (aux->alu_state &&
12992 	    (aux->alu_state != alu_state ||
12993 	     aux->alu_limit != alu_limit))
12994 		return REASON_PATHS;
12995 
12996 	/* Corresponding fixup done in do_misc_fixups(). */
12997 	aux->alu_state = alu_state;
12998 	aux->alu_limit = alu_limit;
12999 	return 0;
13000 }
13001 
13002 static int sanitize_val_alu(struct bpf_verifier_env *env,
13003 			    struct bpf_insn *insn)
13004 {
13005 	struct bpf_insn_aux_data *aux = cur_aux(env);
13006 
13007 	if (can_skip_alu_sanitation(env, insn))
13008 		return 0;
13009 
13010 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
13011 }
13012 
13013 static bool sanitize_needed(u8 opcode)
13014 {
13015 	return opcode == BPF_ADD || opcode == BPF_SUB;
13016 }
13017 
13018 struct bpf_sanitize_info {
13019 	struct bpf_insn_aux_data aux;
13020 	bool mask_to_left;
13021 };
13022 
13023 static struct bpf_verifier_state *
13024 sanitize_speculative_path(struct bpf_verifier_env *env,
13025 			  const struct bpf_insn *insn,
13026 			  u32 next_idx, u32 curr_idx)
13027 {
13028 	struct bpf_verifier_state *branch;
13029 	struct bpf_reg_state *regs;
13030 
13031 	branch = push_stack(env, next_idx, curr_idx, true);
13032 	if (branch && insn) {
13033 		regs = branch->frame[branch->curframe]->regs;
13034 		if (BPF_SRC(insn->code) == BPF_K) {
13035 			mark_reg_unknown(env, regs, insn->dst_reg);
13036 		} else if (BPF_SRC(insn->code) == BPF_X) {
13037 			mark_reg_unknown(env, regs, insn->dst_reg);
13038 			mark_reg_unknown(env, regs, insn->src_reg);
13039 		}
13040 	}
13041 	return branch;
13042 }
13043 
13044 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
13045 			    struct bpf_insn *insn,
13046 			    const struct bpf_reg_state *ptr_reg,
13047 			    const struct bpf_reg_state *off_reg,
13048 			    struct bpf_reg_state *dst_reg,
13049 			    struct bpf_sanitize_info *info,
13050 			    const bool commit_window)
13051 {
13052 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
13053 	struct bpf_verifier_state *vstate = env->cur_state;
13054 	bool off_is_imm = tnum_is_const(off_reg->var_off);
13055 	bool off_is_neg = off_reg->smin_value < 0;
13056 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
13057 	u8 opcode = BPF_OP(insn->code);
13058 	u32 alu_state, alu_limit;
13059 	struct bpf_reg_state tmp;
13060 	bool ret;
13061 	int err;
13062 
13063 	if (can_skip_alu_sanitation(env, insn))
13064 		return 0;
13065 
13066 	/* We already marked aux for masking from non-speculative
13067 	 * paths, thus we got here in the first place. We only care
13068 	 * to explore bad access from here.
13069 	 */
13070 	if (vstate->speculative)
13071 		goto do_sim;
13072 
13073 	if (!commit_window) {
13074 		if (!tnum_is_const(off_reg->var_off) &&
13075 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
13076 			return REASON_BOUNDS;
13077 
13078 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
13079 				     (opcode == BPF_SUB && !off_is_neg);
13080 	}
13081 
13082 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
13083 	if (err < 0)
13084 		return err;
13085 
13086 	if (commit_window) {
13087 		/* In commit phase we narrow the masking window based on
13088 		 * the observed pointer move after the simulated operation.
13089 		 */
13090 		alu_state = info->aux.alu_state;
13091 		alu_limit = abs(info->aux.alu_limit - alu_limit);
13092 	} else {
13093 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
13094 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
13095 		alu_state |= ptr_is_dst_reg ?
13096 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
13097 
13098 		/* Limit pruning on unknown scalars to enable deep search for
13099 		 * potential masking differences from other program paths.
13100 		 */
13101 		if (!off_is_imm)
13102 			env->explore_alu_limits = true;
13103 	}
13104 
13105 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
13106 	if (err < 0)
13107 		return err;
13108 do_sim:
13109 	/* If we're in commit phase, we're done here given we already
13110 	 * pushed the truncated dst_reg into the speculative verification
13111 	 * stack.
13112 	 *
13113 	 * Also, when register is a known constant, we rewrite register-based
13114 	 * operation to immediate-based, and thus do not need masking (and as
13115 	 * a consequence, do not need to simulate the zero-truncation either).
13116 	 */
13117 	if (commit_window || off_is_imm)
13118 		return 0;
13119 
13120 	/* Simulate and find potential out-of-bounds access under
13121 	 * speculative execution from truncation as a result of
13122 	 * masking when off was not within expected range. If off
13123 	 * sits in dst, then we temporarily need to move ptr there
13124 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
13125 	 * for cases where we use K-based arithmetic in one direction
13126 	 * and truncated reg-based in the other in order to explore
13127 	 * bad access.
13128 	 */
13129 	if (!ptr_is_dst_reg) {
13130 		tmp = *dst_reg;
13131 		copy_register_state(dst_reg, ptr_reg);
13132 	}
13133 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
13134 					env->insn_idx);
13135 	if (!ptr_is_dst_reg && ret)
13136 		*dst_reg = tmp;
13137 	return !ret ? REASON_STACK : 0;
13138 }
13139 
13140 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
13141 {
13142 	struct bpf_verifier_state *vstate = env->cur_state;
13143 
13144 	/* If we simulate paths under speculation, we don't update the
13145 	 * insn as 'seen' such that when we verify unreachable paths in
13146 	 * the non-speculative domain, sanitize_dead_code() can still
13147 	 * rewrite/sanitize them.
13148 	 */
13149 	if (!vstate->speculative)
13150 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
13151 }
13152 
13153 static int sanitize_err(struct bpf_verifier_env *env,
13154 			const struct bpf_insn *insn, int reason,
13155 			const struct bpf_reg_state *off_reg,
13156 			const struct bpf_reg_state *dst_reg)
13157 {
13158 	static const char *err = "pointer arithmetic with it prohibited for !root";
13159 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
13160 	u32 dst = insn->dst_reg, src = insn->src_reg;
13161 
13162 	switch (reason) {
13163 	case REASON_BOUNDS:
13164 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
13165 			off_reg == dst_reg ? dst : src, err);
13166 		break;
13167 	case REASON_TYPE:
13168 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
13169 			off_reg == dst_reg ? src : dst, err);
13170 		break;
13171 	case REASON_PATHS:
13172 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
13173 			dst, op, err);
13174 		break;
13175 	case REASON_LIMIT:
13176 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
13177 			dst, op, err);
13178 		break;
13179 	case REASON_STACK:
13180 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
13181 			dst, err);
13182 		break;
13183 	default:
13184 		verbose(env, "verifier internal error: unknown reason (%d)\n",
13185 			reason);
13186 		break;
13187 	}
13188 
13189 	return -EACCES;
13190 }
13191 
13192 /* check that stack access falls within stack limits and that 'reg' doesn't
13193  * have a variable offset.
13194  *
13195  * Variable offset is prohibited for unprivileged mode for simplicity since it
13196  * requires corresponding support in Spectre masking for stack ALU.  See also
13197  * retrieve_ptr_limit().
13198  *
13199  *
13200  * 'off' includes 'reg->off'.
13201  */
13202 static int check_stack_access_for_ptr_arithmetic(
13203 				struct bpf_verifier_env *env,
13204 				int regno,
13205 				const struct bpf_reg_state *reg,
13206 				int off)
13207 {
13208 	if (!tnum_is_const(reg->var_off)) {
13209 		char tn_buf[48];
13210 
13211 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
13212 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
13213 			regno, tn_buf, off);
13214 		return -EACCES;
13215 	}
13216 
13217 	if (off >= 0 || off < -MAX_BPF_STACK) {
13218 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
13219 			"prohibited for !root; off=%d\n", regno, off);
13220 		return -EACCES;
13221 	}
13222 
13223 	return 0;
13224 }
13225 
13226 static int sanitize_check_bounds(struct bpf_verifier_env *env,
13227 				 const struct bpf_insn *insn,
13228 				 const struct bpf_reg_state *dst_reg)
13229 {
13230 	u32 dst = insn->dst_reg;
13231 
13232 	/* For unprivileged we require that resulting offset must be in bounds
13233 	 * in order to be able to sanitize access later on.
13234 	 */
13235 	if (env->bypass_spec_v1)
13236 		return 0;
13237 
13238 	switch (dst_reg->type) {
13239 	case PTR_TO_STACK:
13240 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
13241 					dst_reg->off + dst_reg->var_off.value))
13242 			return -EACCES;
13243 		break;
13244 	case PTR_TO_MAP_VALUE:
13245 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
13246 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
13247 				"prohibited for !root\n", dst);
13248 			return -EACCES;
13249 		}
13250 		break;
13251 	default:
13252 		break;
13253 	}
13254 
13255 	return 0;
13256 }
13257 
13258 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
13259  * Caller should also handle BPF_MOV case separately.
13260  * If we return -EACCES, caller may want to try again treating pointer as a
13261  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
13262  */
13263 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
13264 				   struct bpf_insn *insn,
13265 				   const struct bpf_reg_state *ptr_reg,
13266 				   const struct bpf_reg_state *off_reg)
13267 {
13268 	struct bpf_verifier_state *vstate = env->cur_state;
13269 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13270 	struct bpf_reg_state *regs = state->regs, *dst_reg;
13271 	bool known = tnum_is_const(off_reg->var_off);
13272 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
13273 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
13274 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
13275 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
13276 	struct bpf_sanitize_info info = {};
13277 	u8 opcode = BPF_OP(insn->code);
13278 	u32 dst = insn->dst_reg;
13279 	int ret;
13280 
13281 	dst_reg = &regs[dst];
13282 
13283 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
13284 	    smin_val > smax_val || umin_val > umax_val) {
13285 		/* Taint dst register if offset had invalid bounds derived from
13286 		 * e.g. dead branches.
13287 		 */
13288 		__mark_reg_unknown(env, dst_reg);
13289 		return 0;
13290 	}
13291 
13292 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
13293 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
13294 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13295 			__mark_reg_unknown(env, dst_reg);
13296 			return 0;
13297 		}
13298 
13299 		verbose(env,
13300 			"R%d 32-bit pointer arithmetic prohibited\n",
13301 			dst);
13302 		return -EACCES;
13303 	}
13304 
13305 	if (ptr_reg->type & PTR_MAYBE_NULL) {
13306 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
13307 			dst, reg_type_str(env, ptr_reg->type));
13308 		return -EACCES;
13309 	}
13310 
13311 	switch (base_type(ptr_reg->type)) {
13312 	case PTR_TO_CTX:
13313 	case PTR_TO_MAP_VALUE:
13314 	case PTR_TO_MAP_KEY:
13315 	case PTR_TO_STACK:
13316 	case PTR_TO_PACKET_META:
13317 	case PTR_TO_PACKET:
13318 	case PTR_TO_TP_BUFFER:
13319 	case PTR_TO_BTF_ID:
13320 	case PTR_TO_MEM:
13321 	case PTR_TO_BUF:
13322 	case PTR_TO_FUNC:
13323 	case CONST_PTR_TO_DYNPTR:
13324 		break;
13325 	case PTR_TO_FLOW_KEYS:
13326 		if (known)
13327 			break;
13328 		fallthrough;
13329 	case CONST_PTR_TO_MAP:
13330 		/* smin_val represents the known value */
13331 		if (known && smin_val == 0 && opcode == BPF_ADD)
13332 			break;
13333 		fallthrough;
13334 	default:
13335 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
13336 			dst, reg_type_str(env, ptr_reg->type));
13337 		return -EACCES;
13338 	}
13339 
13340 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
13341 	 * The id may be overwritten later if we create a new variable offset.
13342 	 */
13343 	dst_reg->type = ptr_reg->type;
13344 	dst_reg->id = ptr_reg->id;
13345 
13346 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
13347 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
13348 		return -EINVAL;
13349 
13350 	/* pointer types do not carry 32-bit bounds at the moment. */
13351 	__mark_reg32_unbounded(dst_reg);
13352 
13353 	if (sanitize_needed(opcode)) {
13354 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
13355 				       &info, false);
13356 		if (ret < 0)
13357 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
13358 	}
13359 
13360 	switch (opcode) {
13361 	case BPF_ADD:
13362 		/* We can take a fixed offset as long as it doesn't overflow
13363 		 * the s32 'off' field
13364 		 */
13365 		if (known && (ptr_reg->off + smin_val ==
13366 			      (s64)(s32)(ptr_reg->off + smin_val))) {
13367 			/* pointer += K.  Accumulate it into fixed offset */
13368 			dst_reg->smin_value = smin_ptr;
13369 			dst_reg->smax_value = smax_ptr;
13370 			dst_reg->umin_value = umin_ptr;
13371 			dst_reg->umax_value = umax_ptr;
13372 			dst_reg->var_off = ptr_reg->var_off;
13373 			dst_reg->off = ptr_reg->off + smin_val;
13374 			dst_reg->raw = ptr_reg->raw;
13375 			break;
13376 		}
13377 		/* A new variable offset is created.  Note that off_reg->off
13378 		 * == 0, since it's a scalar.
13379 		 * dst_reg gets the pointer type and since some positive
13380 		 * integer value was added to the pointer, give it a new 'id'
13381 		 * if it's a PTR_TO_PACKET.
13382 		 * this creates a new 'base' pointer, off_reg (variable) gets
13383 		 * added into the variable offset, and we copy the fixed offset
13384 		 * from ptr_reg.
13385 		 */
13386 		if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) ||
13387 		    check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) {
13388 			dst_reg->smin_value = S64_MIN;
13389 			dst_reg->smax_value = S64_MAX;
13390 		}
13391 		if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) ||
13392 		    check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) {
13393 			dst_reg->umin_value = 0;
13394 			dst_reg->umax_value = U64_MAX;
13395 		}
13396 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
13397 		dst_reg->off = ptr_reg->off;
13398 		dst_reg->raw = ptr_reg->raw;
13399 		if (reg_is_pkt_pointer(ptr_reg)) {
13400 			dst_reg->id = ++env->id_gen;
13401 			/* something was added to pkt_ptr, set range to zero */
13402 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13403 		}
13404 		break;
13405 	case BPF_SUB:
13406 		if (dst_reg == off_reg) {
13407 			/* scalar -= pointer.  Creates an unknown scalar */
13408 			verbose(env, "R%d tried to subtract pointer from scalar\n",
13409 				dst);
13410 			return -EACCES;
13411 		}
13412 		/* We don't allow subtraction from FP, because (according to
13413 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
13414 		 * be able to deal with it.
13415 		 */
13416 		if (ptr_reg->type == PTR_TO_STACK) {
13417 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
13418 				dst);
13419 			return -EACCES;
13420 		}
13421 		if (known && (ptr_reg->off - smin_val ==
13422 			      (s64)(s32)(ptr_reg->off - smin_val))) {
13423 			/* pointer -= K.  Subtract it from fixed offset */
13424 			dst_reg->smin_value = smin_ptr;
13425 			dst_reg->smax_value = smax_ptr;
13426 			dst_reg->umin_value = umin_ptr;
13427 			dst_reg->umax_value = umax_ptr;
13428 			dst_reg->var_off = ptr_reg->var_off;
13429 			dst_reg->id = ptr_reg->id;
13430 			dst_reg->off = ptr_reg->off - smin_val;
13431 			dst_reg->raw = ptr_reg->raw;
13432 			break;
13433 		}
13434 		/* A new variable offset is created.  If the subtrahend is known
13435 		 * nonnegative, then any reg->range we had before is still good.
13436 		 */
13437 		if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) ||
13438 		    check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) {
13439 			/* Overflow possible, we know nothing */
13440 			dst_reg->smin_value = S64_MIN;
13441 			dst_reg->smax_value = S64_MAX;
13442 		}
13443 		if (umin_ptr < umax_val) {
13444 			/* Overflow possible, we know nothing */
13445 			dst_reg->umin_value = 0;
13446 			dst_reg->umax_value = U64_MAX;
13447 		} else {
13448 			/* Cannot overflow (as long as bounds are consistent) */
13449 			dst_reg->umin_value = umin_ptr - umax_val;
13450 			dst_reg->umax_value = umax_ptr - umin_val;
13451 		}
13452 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
13453 		dst_reg->off = ptr_reg->off;
13454 		dst_reg->raw = ptr_reg->raw;
13455 		if (reg_is_pkt_pointer(ptr_reg)) {
13456 			dst_reg->id = ++env->id_gen;
13457 			/* something was added to pkt_ptr, set range to zero */
13458 			if (smin_val < 0)
13459 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13460 		}
13461 		break;
13462 	case BPF_AND:
13463 	case BPF_OR:
13464 	case BPF_XOR:
13465 		/* bitwise ops on pointers are troublesome, prohibit. */
13466 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
13467 			dst, bpf_alu_string[opcode >> 4]);
13468 		return -EACCES;
13469 	default:
13470 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
13471 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
13472 			dst, bpf_alu_string[opcode >> 4]);
13473 		return -EACCES;
13474 	}
13475 
13476 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
13477 		return -EINVAL;
13478 	reg_bounds_sync(dst_reg);
13479 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
13480 		return -EACCES;
13481 	if (sanitize_needed(opcode)) {
13482 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
13483 				       &info, true);
13484 		if (ret < 0)
13485 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
13486 	}
13487 
13488 	return 0;
13489 }
13490 
13491 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
13492 				 struct bpf_reg_state *src_reg)
13493 {
13494 	s32 *dst_smin = &dst_reg->s32_min_value;
13495 	s32 *dst_smax = &dst_reg->s32_max_value;
13496 	u32 *dst_umin = &dst_reg->u32_min_value;
13497 	u32 *dst_umax = &dst_reg->u32_max_value;
13498 
13499 	if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) ||
13500 	    check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) {
13501 		*dst_smin = S32_MIN;
13502 		*dst_smax = S32_MAX;
13503 	}
13504 	if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) ||
13505 	    check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) {
13506 		*dst_umin = 0;
13507 		*dst_umax = U32_MAX;
13508 	}
13509 }
13510 
13511 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
13512 			       struct bpf_reg_state *src_reg)
13513 {
13514 	s64 *dst_smin = &dst_reg->smin_value;
13515 	s64 *dst_smax = &dst_reg->smax_value;
13516 	u64 *dst_umin = &dst_reg->umin_value;
13517 	u64 *dst_umax = &dst_reg->umax_value;
13518 
13519 	if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) ||
13520 	    check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) {
13521 		*dst_smin = S64_MIN;
13522 		*dst_smax = S64_MAX;
13523 	}
13524 	if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) ||
13525 	    check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) {
13526 		*dst_umin = 0;
13527 		*dst_umax = U64_MAX;
13528 	}
13529 }
13530 
13531 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
13532 				 struct bpf_reg_state *src_reg)
13533 {
13534 	s32 *dst_smin = &dst_reg->s32_min_value;
13535 	s32 *dst_smax = &dst_reg->s32_max_value;
13536 	u32 umin_val = src_reg->u32_min_value;
13537 	u32 umax_val = src_reg->u32_max_value;
13538 
13539 	if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) ||
13540 	    check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) {
13541 		/* Overflow possible, we know nothing */
13542 		*dst_smin = S32_MIN;
13543 		*dst_smax = S32_MAX;
13544 	}
13545 	if (dst_reg->u32_min_value < umax_val) {
13546 		/* Overflow possible, we know nothing */
13547 		dst_reg->u32_min_value = 0;
13548 		dst_reg->u32_max_value = U32_MAX;
13549 	} else {
13550 		/* Cannot overflow (as long as bounds are consistent) */
13551 		dst_reg->u32_min_value -= umax_val;
13552 		dst_reg->u32_max_value -= umin_val;
13553 	}
13554 }
13555 
13556 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
13557 			       struct bpf_reg_state *src_reg)
13558 {
13559 	s64 *dst_smin = &dst_reg->smin_value;
13560 	s64 *dst_smax = &dst_reg->smax_value;
13561 	u64 umin_val = src_reg->umin_value;
13562 	u64 umax_val = src_reg->umax_value;
13563 
13564 	if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) ||
13565 	    check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) {
13566 		/* Overflow possible, we know nothing */
13567 		*dst_smin = S64_MIN;
13568 		*dst_smax = S64_MAX;
13569 	}
13570 	if (dst_reg->umin_value < umax_val) {
13571 		/* Overflow possible, we know nothing */
13572 		dst_reg->umin_value = 0;
13573 		dst_reg->umax_value = U64_MAX;
13574 	} else {
13575 		/* Cannot overflow (as long as bounds are consistent) */
13576 		dst_reg->umin_value -= umax_val;
13577 		dst_reg->umax_value -= umin_val;
13578 	}
13579 }
13580 
13581 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
13582 				 struct bpf_reg_state *src_reg)
13583 {
13584 	s32 smin_val = src_reg->s32_min_value;
13585 	u32 umin_val = src_reg->u32_min_value;
13586 	u32 umax_val = src_reg->u32_max_value;
13587 
13588 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
13589 		/* Ain't nobody got time to multiply that sign */
13590 		__mark_reg32_unbounded(dst_reg);
13591 		return;
13592 	}
13593 	/* Both values are positive, so we can work with unsigned and
13594 	 * copy the result to signed (unless it exceeds S32_MAX).
13595 	 */
13596 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
13597 		/* Potential overflow, we know nothing */
13598 		__mark_reg32_unbounded(dst_reg);
13599 		return;
13600 	}
13601 	dst_reg->u32_min_value *= umin_val;
13602 	dst_reg->u32_max_value *= umax_val;
13603 	if (dst_reg->u32_max_value > S32_MAX) {
13604 		/* Overflow possible, we know nothing */
13605 		dst_reg->s32_min_value = S32_MIN;
13606 		dst_reg->s32_max_value = S32_MAX;
13607 	} else {
13608 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13609 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13610 	}
13611 }
13612 
13613 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
13614 			       struct bpf_reg_state *src_reg)
13615 {
13616 	s64 smin_val = src_reg->smin_value;
13617 	u64 umin_val = src_reg->umin_value;
13618 	u64 umax_val = src_reg->umax_value;
13619 
13620 	if (smin_val < 0 || dst_reg->smin_value < 0) {
13621 		/* Ain't nobody got time to multiply that sign */
13622 		__mark_reg64_unbounded(dst_reg);
13623 		return;
13624 	}
13625 	/* Both values are positive, so we can work with unsigned and
13626 	 * copy the result to signed (unless it exceeds S64_MAX).
13627 	 */
13628 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
13629 		/* Potential overflow, we know nothing */
13630 		__mark_reg64_unbounded(dst_reg);
13631 		return;
13632 	}
13633 	dst_reg->umin_value *= umin_val;
13634 	dst_reg->umax_value *= umax_val;
13635 	if (dst_reg->umax_value > S64_MAX) {
13636 		/* Overflow possible, we know nothing */
13637 		dst_reg->smin_value = S64_MIN;
13638 		dst_reg->smax_value = S64_MAX;
13639 	} else {
13640 		dst_reg->smin_value = dst_reg->umin_value;
13641 		dst_reg->smax_value = dst_reg->umax_value;
13642 	}
13643 }
13644 
13645 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
13646 				 struct bpf_reg_state *src_reg)
13647 {
13648 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13649 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13650 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13651 	u32 umax_val = src_reg->u32_max_value;
13652 
13653 	if (src_known && dst_known) {
13654 		__mark_reg32_known(dst_reg, var32_off.value);
13655 		return;
13656 	}
13657 
13658 	/* We get our minimum from the var_off, since that's inherently
13659 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13660 	 */
13661 	dst_reg->u32_min_value = var32_off.value;
13662 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
13663 
13664 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
13665 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13666 	 */
13667 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13668 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13669 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13670 	} else {
13671 		dst_reg->s32_min_value = S32_MIN;
13672 		dst_reg->s32_max_value = S32_MAX;
13673 	}
13674 }
13675 
13676 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
13677 			       struct bpf_reg_state *src_reg)
13678 {
13679 	bool src_known = tnum_is_const(src_reg->var_off);
13680 	bool dst_known = tnum_is_const(dst_reg->var_off);
13681 	u64 umax_val = src_reg->umax_value;
13682 
13683 	if (src_known && dst_known) {
13684 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13685 		return;
13686 	}
13687 
13688 	/* We get our minimum from the var_off, since that's inherently
13689 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13690 	 */
13691 	dst_reg->umin_value = dst_reg->var_off.value;
13692 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
13693 
13694 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
13695 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13696 	 */
13697 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13698 		dst_reg->smin_value = dst_reg->umin_value;
13699 		dst_reg->smax_value = dst_reg->umax_value;
13700 	} else {
13701 		dst_reg->smin_value = S64_MIN;
13702 		dst_reg->smax_value = S64_MAX;
13703 	}
13704 	/* We may learn something more from the var_off */
13705 	__update_reg_bounds(dst_reg);
13706 }
13707 
13708 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
13709 				struct bpf_reg_state *src_reg)
13710 {
13711 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13712 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13713 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13714 	u32 umin_val = src_reg->u32_min_value;
13715 
13716 	if (src_known && dst_known) {
13717 		__mark_reg32_known(dst_reg, var32_off.value);
13718 		return;
13719 	}
13720 
13721 	/* We get our maximum from the var_off, and our minimum is the
13722 	 * maximum of the operands' minima
13723 	 */
13724 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
13725 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13726 
13727 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
13728 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13729 	 */
13730 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13731 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13732 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13733 	} else {
13734 		dst_reg->s32_min_value = S32_MIN;
13735 		dst_reg->s32_max_value = S32_MAX;
13736 	}
13737 }
13738 
13739 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13740 			      struct bpf_reg_state *src_reg)
13741 {
13742 	bool src_known = tnum_is_const(src_reg->var_off);
13743 	bool dst_known = tnum_is_const(dst_reg->var_off);
13744 	u64 umin_val = src_reg->umin_value;
13745 
13746 	if (src_known && dst_known) {
13747 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13748 		return;
13749 	}
13750 
13751 	/* We get our maximum from the var_off, and our minimum is the
13752 	 * maximum of the operands' minima
13753 	 */
13754 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13755 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13756 
13757 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
13758 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13759 	 */
13760 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13761 		dst_reg->smin_value = dst_reg->umin_value;
13762 		dst_reg->smax_value = dst_reg->umax_value;
13763 	} else {
13764 		dst_reg->smin_value = S64_MIN;
13765 		dst_reg->smax_value = S64_MAX;
13766 	}
13767 	/* We may learn something more from the var_off */
13768 	__update_reg_bounds(dst_reg);
13769 }
13770 
13771 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13772 				 struct bpf_reg_state *src_reg)
13773 {
13774 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13775 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13776 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13777 
13778 	if (src_known && dst_known) {
13779 		__mark_reg32_known(dst_reg, var32_off.value);
13780 		return;
13781 	}
13782 
13783 	/* We get both minimum and maximum from the var32_off. */
13784 	dst_reg->u32_min_value = var32_off.value;
13785 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13786 
13787 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
13788 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13789 	 */
13790 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13791 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13792 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13793 	} else {
13794 		dst_reg->s32_min_value = S32_MIN;
13795 		dst_reg->s32_max_value = S32_MAX;
13796 	}
13797 }
13798 
13799 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13800 			       struct bpf_reg_state *src_reg)
13801 {
13802 	bool src_known = tnum_is_const(src_reg->var_off);
13803 	bool dst_known = tnum_is_const(dst_reg->var_off);
13804 
13805 	if (src_known && dst_known) {
13806 		/* dst_reg->var_off.value has been updated earlier */
13807 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13808 		return;
13809 	}
13810 
13811 	/* We get both minimum and maximum from the var_off. */
13812 	dst_reg->umin_value = dst_reg->var_off.value;
13813 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13814 
13815 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
13816 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13817 	 */
13818 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13819 		dst_reg->smin_value = dst_reg->umin_value;
13820 		dst_reg->smax_value = dst_reg->umax_value;
13821 	} else {
13822 		dst_reg->smin_value = S64_MIN;
13823 		dst_reg->smax_value = S64_MAX;
13824 	}
13825 
13826 	__update_reg_bounds(dst_reg);
13827 }
13828 
13829 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13830 				   u64 umin_val, u64 umax_val)
13831 {
13832 	/* We lose all sign bit information (except what we can pick
13833 	 * up from var_off)
13834 	 */
13835 	dst_reg->s32_min_value = S32_MIN;
13836 	dst_reg->s32_max_value = S32_MAX;
13837 	/* If we might shift our top bit out, then we know nothing */
13838 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13839 		dst_reg->u32_min_value = 0;
13840 		dst_reg->u32_max_value = U32_MAX;
13841 	} else {
13842 		dst_reg->u32_min_value <<= umin_val;
13843 		dst_reg->u32_max_value <<= umax_val;
13844 	}
13845 }
13846 
13847 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13848 				 struct bpf_reg_state *src_reg)
13849 {
13850 	u32 umax_val = src_reg->u32_max_value;
13851 	u32 umin_val = src_reg->u32_min_value;
13852 	/* u32 alu operation will zext upper bits */
13853 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13854 
13855 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13856 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13857 	/* Not required but being careful mark reg64 bounds as unknown so
13858 	 * that we are forced to pick them up from tnum and zext later and
13859 	 * if some path skips this step we are still safe.
13860 	 */
13861 	__mark_reg64_unbounded(dst_reg);
13862 	__update_reg32_bounds(dst_reg);
13863 }
13864 
13865 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13866 				   u64 umin_val, u64 umax_val)
13867 {
13868 	/* Special case <<32 because it is a common compiler pattern to sign
13869 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13870 	 * positive we know this shift will also be positive so we can track
13871 	 * bounds correctly. Otherwise we lose all sign bit information except
13872 	 * what we can pick up from var_off. Perhaps we can generalize this
13873 	 * later to shifts of any length.
13874 	 */
13875 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13876 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13877 	else
13878 		dst_reg->smax_value = S64_MAX;
13879 
13880 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13881 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13882 	else
13883 		dst_reg->smin_value = S64_MIN;
13884 
13885 	/* If we might shift our top bit out, then we know nothing */
13886 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13887 		dst_reg->umin_value = 0;
13888 		dst_reg->umax_value = U64_MAX;
13889 	} else {
13890 		dst_reg->umin_value <<= umin_val;
13891 		dst_reg->umax_value <<= umax_val;
13892 	}
13893 }
13894 
13895 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13896 			       struct bpf_reg_state *src_reg)
13897 {
13898 	u64 umax_val = src_reg->umax_value;
13899 	u64 umin_val = src_reg->umin_value;
13900 
13901 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
13902 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13903 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13904 
13905 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13906 	/* We may learn something more from the var_off */
13907 	__update_reg_bounds(dst_reg);
13908 }
13909 
13910 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13911 				 struct bpf_reg_state *src_reg)
13912 {
13913 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13914 	u32 umax_val = src_reg->u32_max_value;
13915 	u32 umin_val = src_reg->u32_min_value;
13916 
13917 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13918 	 * be negative, then either:
13919 	 * 1) src_reg might be zero, so the sign bit of the result is
13920 	 *    unknown, so we lose our signed bounds
13921 	 * 2) it's known negative, thus the unsigned bounds capture the
13922 	 *    signed bounds
13923 	 * 3) the signed bounds cross zero, so they tell us nothing
13924 	 *    about the result
13925 	 * If the value in dst_reg is known nonnegative, then again the
13926 	 * unsigned bounds capture the signed bounds.
13927 	 * Thus, in all cases it suffices to blow away our signed bounds
13928 	 * and rely on inferring new ones from the unsigned bounds and
13929 	 * var_off of the result.
13930 	 */
13931 	dst_reg->s32_min_value = S32_MIN;
13932 	dst_reg->s32_max_value = S32_MAX;
13933 
13934 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
13935 	dst_reg->u32_min_value >>= umax_val;
13936 	dst_reg->u32_max_value >>= umin_val;
13937 
13938 	__mark_reg64_unbounded(dst_reg);
13939 	__update_reg32_bounds(dst_reg);
13940 }
13941 
13942 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13943 			       struct bpf_reg_state *src_reg)
13944 {
13945 	u64 umax_val = src_reg->umax_value;
13946 	u64 umin_val = src_reg->umin_value;
13947 
13948 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13949 	 * be negative, then either:
13950 	 * 1) src_reg might be zero, so the sign bit of the result is
13951 	 *    unknown, so we lose our signed bounds
13952 	 * 2) it's known negative, thus the unsigned bounds capture the
13953 	 *    signed bounds
13954 	 * 3) the signed bounds cross zero, so they tell us nothing
13955 	 *    about the result
13956 	 * If the value in dst_reg is known nonnegative, then again the
13957 	 * unsigned bounds capture the signed bounds.
13958 	 * Thus, in all cases it suffices to blow away our signed bounds
13959 	 * and rely on inferring new ones from the unsigned bounds and
13960 	 * var_off of the result.
13961 	 */
13962 	dst_reg->smin_value = S64_MIN;
13963 	dst_reg->smax_value = S64_MAX;
13964 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13965 	dst_reg->umin_value >>= umax_val;
13966 	dst_reg->umax_value >>= umin_val;
13967 
13968 	/* Its not easy to operate on alu32 bounds here because it depends
13969 	 * on bits being shifted in. Take easy way out and mark unbounded
13970 	 * so we can recalculate later from tnum.
13971 	 */
13972 	__mark_reg32_unbounded(dst_reg);
13973 	__update_reg_bounds(dst_reg);
13974 }
13975 
13976 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13977 				  struct bpf_reg_state *src_reg)
13978 {
13979 	u64 umin_val = src_reg->u32_min_value;
13980 
13981 	/* Upon reaching here, src_known is true and
13982 	 * umax_val is equal to umin_val.
13983 	 */
13984 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13985 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13986 
13987 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13988 
13989 	/* blow away the dst_reg umin_value/umax_value and rely on
13990 	 * dst_reg var_off to refine the result.
13991 	 */
13992 	dst_reg->u32_min_value = 0;
13993 	dst_reg->u32_max_value = U32_MAX;
13994 
13995 	__mark_reg64_unbounded(dst_reg);
13996 	__update_reg32_bounds(dst_reg);
13997 }
13998 
13999 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
14000 				struct bpf_reg_state *src_reg)
14001 {
14002 	u64 umin_val = src_reg->umin_value;
14003 
14004 	/* Upon reaching here, src_known is true and umax_val is equal
14005 	 * to umin_val.
14006 	 */
14007 	dst_reg->smin_value >>= umin_val;
14008 	dst_reg->smax_value >>= umin_val;
14009 
14010 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
14011 
14012 	/* blow away the dst_reg umin_value/umax_value and rely on
14013 	 * dst_reg var_off to refine the result.
14014 	 */
14015 	dst_reg->umin_value = 0;
14016 	dst_reg->umax_value = U64_MAX;
14017 
14018 	/* Its not easy to operate on alu32 bounds here because it depends
14019 	 * on bits being shifted in from upper 32-bits. Take easy way out
14020 	 * and mark unbounded so we can recalculate later from tnum.
14021 	 */
14022 	__mark_reg32_unbounded(dst_reg);
14023 	__update_reg_bounds(dst_reg);
14024 }
14025 
14026 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn,
14027 					     const struct bpf_reg_state *src_reg)
14028 {
14029 	bool src_is_const = false;
14030 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
14031 
14032 	if (insn_bitness == 32) {
14033 		if (tnum_subreg_is_const(src_reg->var_off)
14034 		    && src_reg->s32_min_value == src_reg->s32_max_value
14035 		    && src_reg->u32_min_value == src_reg->u32_max_value)
14036 			src_is_const = true;
14037 	} else {
14038 		if (tnum_is_const(src_reg->var_off)
14039 		    && src_reg->smin_value == src_reg->smax_value
14040 		    && src_reg->umin_value == src_reg->umax_value)
14041 			src_is_const = true;
14042 	}
14043 
14044 	switch (BPF_OP(insn->code)) {
14045 	case BPF_ADD:
14046 	case BPF_SUB:
14047 	case BPF_AND:
14048 	case BPF_XOR:
14049 	case BPF_OR:
14050 	case BPF_MUL:
14051 		return true;
14052 
14053 	/* Shift operators range is only computable if shift dimension operand
14054 	 * is a constant. Shifts greater than 31 or 63 are undefined. This
14055 	 * includes shifts by a negative number.
14056 	 */
14057 	case BPF_LSH:
14058 	case BPF_RSH:
14059 	case BPF_ARSH:
14060 		return (src_is_const && src_reg->umax_value < insn_bitness);
14061 	default:
14062 		return false;
14063 	}
14064 }
14065 
14066 /* WARNING: This function does calculations on 64-bit values, but the actual
14067  * execution may occur on 32-bit values. Therefore, things like bitshifts
14068  * need extra checks in the 32-bit case.
14069  */
14070 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
14071 				      struct bpf_insn *insn,
14072 				      struct bpf_reg_state *dst_reg,
14073 				      struct bpf_reg_state src_reg)
14074 {
14075 	u8 opcode = BPF_OP(insn->code);
14076 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
14077 	int ret;
14078 
14079 	if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) {
14080 		__mark_reg_unknown(env, dst_reg);
14081 		return 0;
14082 	}
14083 
14084 	if (sanitize_needed(opcode)) {
14085 		ret = sanitize_val_alu(env, insn);
14086 		if (ret < 0)
14087 			return sanitize_err(env, insn, ret, NULL, NULL);
14088 	}
14089 
14090 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
14091 	 * There are two classes of instructions: The first class we track both
14092 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
14093 	 * greatest amount of precision when alu operations are mixed with jmp32
14094 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
14095 	 * and BPF_OR. This is possible because these ops have fairly easy to
14096 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
14097 	 * See alu32 verifier tests for examples. The second class of
14098 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
14099 	 * with regards to tracking sign/unsigned bounds because the bits may
14100 	 * cross subreg boundaries in the alu64 case. When this happens we mark
14101 	 * the reg unbounded in the subreg bound space and use the resulting
14102 	 * tnum to calculate an approximation of the sign/unsigned bounds.
14103 	 */
14104 	switch (opcode) {
14105 	case BPF_ADD:
14106 		scalar32_min_max_add(dst_reg, &src_reg);
14107 		scalar_min_max_add(dst_reg, &src_reg);
14108 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
14109 		break;
14110 	case BPF_SUB:
14111 		scalar32_min_max_sub(dst_reg, &src_reg);
14112 		scalar_min_max_sub(dst_reg, &src_reg);
14113 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
14114 		break;
14115 	case BPF_MUL:
14116 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
14117 		scalar32_min_max_mul(dst_reg, &src_reg);
14118 		scalar_min_max_mul(dst_reg, &src_reg);
14119 		break;
14120 	case BPF_AND:
14121 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
14122 		scalar32_min_max_and(dst_reg, &src_reg);
14123 		scalar_min_max_and(dst_reg, &src_reg);
14124 		break;
14125 	case BPF_OR:
14126 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
14127 		scalar32_min_max_or(dst_reg, &src_reg);
14128 		scalar_min_max_or(dst_reg, &src_reg);
14129 		break;
14130 	case BPF_XOR:
14131 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
14132 		scalar32_min_max_xor(dst_reg, &src_reg);
14133 		scalar_min_max_xor(dst_reg, &src_reg);
14134 		break;
14135 	case BPF_LSH:
14136 		if (alu32)
14137 			scalar32_min_max_lsh(dst_reg, &src_reg);
14138 		else
14139 			scalar_min_max_lsh(dst_reg, &src_reg);
14140 		break;
14141 	case BPF_RSH:
14142 		if (alu32)
14143 			scalar32_min_max_rsh(dst_reg, &src_reg);
14144 		else
14145 			scalar_min_max_rsh(dst_reg, &src_reg);
14146 		break;
14147 	case BPF_ARSH:
14148 		if (alu32)
14149 			scalar32_min_max_arsh(dst_reg, &src_reg);
14150 		else
14151 			scalar_min_max_arsh(dst_reg, &src_reg);
14152 		break;
14153 	default:
14154 		break;
14155 	}
14156 
14157 	/* ALU32 ops are zero extended into 64bit register */
14158 	if (alu32)
14159 		zext_32_to_64(dst_reg);
14160 	reg_bounds_sync(dst_reg);
14161 	return 0;
14162 }
14163 
14164 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
14165  * and var_off.
14166  */
14167 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
14168 				   struct bpf_insn *insn)
14169 {
14170 	struct bpf_verifier_state *vstate = env->cur_state;
14171 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14172 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
14173 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
14174 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
14175 	u8 opcode = BPF_OP(insn->code);
14176 	int err;
14177 
14178 	dst_reg = &regs[insn->dst_reg];
14179 	src_reg = NULL;
14180 
14181 	if (dst_reg->type == PTR_TO_ARENA) {
14182 		struct bpf_insn_aux_data *aux = cur_aux(env);
14183 
14184 		if (BPF_CLASS(insn->code) == BPF_ALU64)
14185 			/*
14186 			 * 32-bit operations zero upper bits automatically.
14187 			 * 64-bit operations need to be converted to 32.
14188 			 */
14189 			aux->needs_zext = true;
14190 
14191 		/* Any arithmetic operations are allowed on arena pointers */
14192 		return 0;
14193 	}
14194 
14195 	if (dst_reg->type != SCALAR_VALUE)
14196 		ptr_reg = dst_reg;
14197 
14198 	if (BPF_SRC(insn->code) == BPF_X) {
14199 		src_reg = &regs[insn->src_reg];
14200 		if (src_reg->type != SCALAR_VALUE) {
14201 			if (dst_reg->type != SCALAR_VALUE) {
14202 				/* Combining two pointers by any ALU op yields
14203 				 * an arbitrary scalar. Disallow all math except
14204 				 * pointer subtraction
14205 				 */
14206 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
14207 					mark_reg_unknown(env, regs, insn->dst_reg);
14208 					return 0;
14209 				}
14210 				verbose(env, "R%d pointer %s pointer prohibited\n",
14211 					insn->dst_reg,
14212 					bpf_alu_string[opcode >> 4]);
14213 				return -EACCES;
14214 			} else {
14215 				/* scalar += pointer
14216 				 * This is legal, but we have to reverse our
14217 				 * src/dest handling in computing the range
14218 				 */
14219 				err = mark_chain_precision(env, insn->dst_reg);
14220 				if (err)
14221 					return err;
14222 				return adjust_ptr_min_max_vals(env, insn,
14223 							       src_reg, dst_reg);
14224 			}
14225 		} else if (ptr_reg) {
14226 			/* pointer += scalar */
14227 			err = mark_chain_precision(env, insn->src_reg);
14228 			if (err)
14229 				return err;
14230 			return adjust_ptr_min_max_vals(env, insn,
14231 						       dst_reg, src_reg);
14232 		} else if (dst_reg->precise) {
14233 			/* if dst_reg is precise, src_reg should be precise as well */
14234 			err = mark_chain_precision(env, insn->src_reg);
14235 			if (err)
14236 				return err;
14237 		}
14238 	} else {
14239 		/* Pretend the src is a reg with a known value, since we only
14240 		 * need to be able to read from this state.
14241 		 */
14242 		off_reg.type = SCALAR_VALUE;
14243 		__mark_reg_known(&off_reg, insn->imm);
14244 		src_reg = &off_reg;
14245 		if (ptr_reg) /* pointer += K */
14246 			return adjust_ptr_min_max_vals(env, insn,
14247 						       ptr_reg, src_reg);
14248 	}
14249 
14250 	/* Got here implies adding two SCALAR_VALUEs */
14251 	if (WARN_ON_ONCE(ptr_reg)) {
14252 		print_verifier_state(env, state, true);
14253 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
14254 		return -EINVAL;
14255 	}
14256 	if (WARN_ON(!src_reg)) {
14257 		print_verifier_state(env, state, true);
14258 		verbose(env, "verifier internal error: no src_reg\n");
14259 		return -EINVAL;
14260 	}
14261 	err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
14262 	if (err)
14263 		return err;
14264 	/*
14265 	 * Compilers can generate the code
14266 	 * r1 = r2
14267 	 * r1 += 0x1
14268 	 * if r2 < 1000 goto ...
14269 	 * use r1 in memory access
14270 	 * So for 64-bit alu remember constant delta between r2 and r1 and
14271 	 * update r1 after 'if' condition.
14272 	 */
14273 	if (env->bpf_capable &&
14274 	    BPF_OP(insn->code) == BPF_ADD && !alu32 &&
14275 	    dst_reg->id && is_reg_const(src_reg, false)) {
14276 		u64 val = reg_const_value(src_reg, false);
14277 
14278 		if ((dst_reg->id & BPF_ADD_CONST) ||
14279 		    /* prevent overflow in sync_linked_regs() later */
14280 		    val > (u32)S32_MAX) {
14281 			/*
14282 			 * If the register already went through rX += val
14283 			 * we cannot accumulate another val into rx->off.
14284 			 */
14285 			dst_reg->off = 0;
14286 			dst_reg->id = 0;
14287 		} else {
14288 			dst_reg->id |= BPF_ADD_CONST;
14289 			dst_reg->off = val;
14290 		}
14291 	} else {
14292 		/*
14293 		 * Make sure ID is cleared otherwise dst_reg min/max could be
14294 		 * incorrectly propagated into other registers by sync_linked_regs()
14295 		 */
14296 		dst_reg->id = 0;
14297 	}
14298 	return 0;
14299 }
14300 
14301 /* check validity of 32-bit and 64-bit arithmetic operations */
14302 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
14303 {
14304 	struct bpf_reg_state *regs = cur_regs(env);
14305 	u8 opcode = BPF_OP(insn->code);
14306 	int err;
14307 
14308 	if (opcode == BPF_END || opcode == BPF_NEG) {
14309 		if (opcode == BPF_NEG) {
14310 			if (BPF_SRC(insn->code) != BPF_K ||
14311 			    insn->src_reg != BPF_REG_0 ||
14312 			    insn->off != 0 || insn->imm != 0) {
14313 				verbose(env, "BPF_NEG uses reserved fields\n");
14314 				return -EINVAL;
14315 			}
14316 		} else {
14317 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
14318 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
14319 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
14320 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
14321 				verbose(env, "BPF_END uses reserved fields\n");
14322 				return -EINVAL;
14323 			}
14324 		}
14325 
14326 		/* check src operand */
14327 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14328 		if (err)
14329 			return err;
14330 
14331 		if (is_pointer_value(env, insn->dst_reg)) {
14332 			verbose(env, "R%d pointer arithmetic prohibited\n",
14333 				insn->dst_reg);
14334 			return -EACCES;
14335 		}
14336 
14337 		/* check dest operand */
14338 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
14339 		if (err)
14340 			return err;
14341 
14342 	} else if (opcode == BPF_MOV) {
14343 
14344 		if (BPF_SRC(insn->code) == BPF_X) {
14345 			if (BPF_CLASS(insn->code) == BPF_ALU) {
14346 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16) ||
14347 				    insn->imm) {
14348 					verbose(env, "BPF_MOV uses reserved fields\n");
14349 					return -EINVAL;
14350 				}
14351 			} else if (insn->off == BPF_ADDR_SPACE_CAST) {
14352 				if (insn->imm != 1 && insn->imm != 1u << 16) {
14353 					verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n");
14354 					return -EINVAL;
14355 				}
14356 				if (!env->prog->aux->arena) {
14357 					verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n");
14358 					return -EINVAL;
14359 				}
14360 			} else {
14361 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16 &&
14362 				     insn->off != 32) || insn->imm) {
14363 					verbose(env, "BPF_MOV uses reserved fields\n");
14364 					return -EINVAL;
14365 				}
14366 			}
14367 
14368 			/* check src operand */
14369 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14370 			if (err)
14371 				return err;
14372 		} else {
14373 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
14374 				verbose(env, "BPF_MOV uses reserved fields\n");
14375 				return -EINVAL;
14376 			}
14377 		}
14378 
14379 		/* check dest operand, mark as required later */
14380 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14381 		if (err)
14382 			return err;
14383 
14384 		if (BPF_SRC(insn->code) == BPF_X) {
14385 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
14386 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
14387 
14388 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
14389 				if (insn->imm) {
14390 					/* off == BPF_ADDR_SPACE_CAST */
14391 					mark_reg_unknown(env, regs, insn->dst_reg);
14392 					if (insn->imm == 1) { /* cast from as(1) to as(0) */
14393 						dst_reg->type = PTR_TO_ARENA;
14394 						/* PTR_TO_ARENA is 32-bit */
14395 						dst_reg->subreg_def = env->insn_idx + 1;
14396 					}
14397 				} else if (insn->off == 0) {
14398 					/* case: R1 = R2
14399 					 * copy register state to dest reg
14400 					 */
14401 					assign_scalar_id_before_mov(env, src_reg);
14402 					copy_register_state(dst_reg, src_reg);
14403 					dst_reg->live |= REG_LIVE_WRITTEN;
14404 					dst_reg->subreg_def = DEF_NOT_SUBREG;
14405 				} else {
14406 					/* case: R1 = (s8, s16 s32)R2 */
14407 					if (is_pointer_value(env, insn->src_reg)) {
14408 						verbose(env,
14409 							"R%d sign-extension part of pointer\n",
14410 							insn->src_reg);
14411 						return -EACCES;
14412 					} else if (src_reg->type == SCALAR_VALUE) {
14413 						bool no_sext;
14414 
14415 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14416 						if (no_sext)
14417 							assign_scalar_id_before_mov(env, src_reg);
14418 						copy_register_state(dst_reg, src_reg);
14419 						if (!no_sext)
14420 							dst_reg->id = 0;
14421 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
14422 						dst_reg->live |= REG_LIVE_WRITTEN;
14423 						dst_reg->subreg_def = DEF_NOT_SUBREG;
14424 					} else {
14425 						mark_reg_unknown(env, regs, insn->dst_reg);
14426 					}
14427 				}
14428 			} else {
14429 				/* R1 = (u32) R2 */
14430 				if (is_pointer_value(env, insn->src_reg)) {
14431 					verbose(env,
14432 						"R%d partial copy of pointer\n",
14433 						insn->src_reg);
14434 					return -EACCES;
14435 				} else if (src_reg->type == SCALAR_VALUE) {
14436 					if (insn->off == 0) {
14437 						bool is_src_reg_u32 = get_reg_width(src_reg) <= 32;
14438 
14439 						if (is_src_reg_u32)
14440 							assign_scalar_id_before_mov(env, src_reg);
14441 						copy_register_state(dst_reg, src_reg);
14442 						/* Make sure ID is cleared if src_reg is not in u32
14443 						 * range otherwise dst_reg min/max could be incorrectly
14444 						 * propagated into src_reg by sync_linked_regs()
14445 						 */
14446 						if (!is_src_reg_u32)
14447 							dst_reg->id = 0;
14448 						dst_reg->live |= REG_LIVE_WRITTEN;
14449 						dst_reg->subreg_def = env->insn_idx + 1;
14450 					} else {
14451 						/* case: W1 = (s8, s16)W2 */
14452 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14453 
14454 						if (no_sext)
14455 							assign_scalar_id_before_mov(env, src_reg);
14456 						copy_register_state(dst_reg, src_reg);
14457 						if (!no_sext)
14458 							dst_reg->id = 0;
14459 						dst_reg->live |= REG_LIVE_WRITTEN;
14460 						dst_reg->subreg_def = env->insn_idx + 1;
14461 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
14462 					}
14463 				} else {
14464 					mark_reg_unknown(env, regs,
14465 							 insn->dst_reg);
14466 				}
14467 				zext_32_to_64(dst_reg);
14468 				reg_bounds_sync(dst_reg);
14469 			}
14470 		} else {
14471 			/* case: R = imm
14472 			 * remember the value we stored into this reg
14473 			 */
14474 			/* clear any state __mark_reg_known doesn't set */
14475 			mark_reg_unknown(env, regs, insn->dst_reg);
14476 			regs[insn->dst_reg].type = SCALAR_VALUE;
14477 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
14478 				__mark_reg_known(regs + insn->dst_reg,
14479 						 insn->imm);
14480 			} else {
14481 				__mark_reg_known(regs + insn->dst_reg,
14482 						 (u32)insn->imm);
14483 			}
14484 		}
14485 
14486 	} else if (opcode > BPF_END) {
14487 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
14488 		return -EINVAL;
14489 
14490 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
14491 
14492 		if (BPF_SRC(insn->code) == BPF_X) {
14493 			if (insn->imm != 0 || insn->off > 1 ||
14494 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14495 				verbose(env, "BPF_ALU uses reserved fields\n");
14496 				return -EINVAL;
14497 			}
14498 			/* check src1 operand */
14499 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14500 			if (err)
14501 				return err;
14502 		} else {
14503 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
14504 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14505 				verbose(env, "BPF_ALU uses reserved fields\n");
14506 				return -EINVAL;
14507 			}
14508 		}
14509 
14510 		/* check src2 operand */
14511 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14512 		if (err)
14513 			return err;
14514 
14515 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
14516 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
14517 			verbose(env, "div by zero\n");
14518 			return -EINVAL;
14519 		}
14520 
14521 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
14522 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
14523 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
14524 
14525 			if (insn->imm < 0 || insn->imm >= size) {
14526 				verbose(env, "invalid shift %d\n", insn->imm);
14527 				return -EINVAL;
14528 			}
14529 		}
14530 
14531 		/* check dest operand */
14532 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14533 		err = err ?: adjust_reg_min_max_vals(env, insn);
14534 		if (err)
14535 			return err;
14536 	}
14537 
14538 	return reg_bounds_sanity_check(env, &regs[insn->dst_reg], "alu");
14539 }
14540 
14541 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
14542 				   struct bpf_reg_state *dst_reg,
14543 				   enum bpf_reg_type type,
14544 				   bool range_right_open)
14545 {
14546 	struct bpf_func_state *state;
14547 	struct bpf_reg_state *reg;
14548 	int new_range;
14549 
14550 	if (dst_reg->off < 0 ||
14551 	    (dst_reg->off == 0 && range_right_open))
14552 		/* This doesn't give us any range */
14553 		return;
14554 
14555 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
14556 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
14557 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
14558 		 * than pkt_end, but that's because it's also less than pkt.
14559 		 */
14560 		return;
14561 
14562 	new_range = dst_reg->off;
14563 	if (range_right_open)
14564 		new_range++;
14565 
14566 	/* Examples for register markings:
14567 	 *
14568 	 * pkt_data in dst register:
14569 	 *
14570 	 *   r2 = r3;
14571 	 *   r2 += 8;
14572 	 *   if (r2 > pkt_end) goto <handle exception>
14573 	 *   <access okay>
14574 	 *
14575 	 *   r2 = r3;
14576 	 *   r2 += 8;
14577 	 *   if (r2 < pkt_end) goto <access okay>
14578 	 *   <handle exception>
14579 	 *
14580 	 *   Where:
14581 	 *     r2 == dst_reg, pkt_end == src_reg
14582 	 *     r2=pkt(id=n,off=8,r=0)
14583 	 *     r3=pkt(id=n,off=0,r=0)
14584 	 *
14585 	 * pkt_data in src register:
14586 	 *
14587 	 *   r2 = r3;
14588 	 *   r2 += 8;
14589 	 *   if (pkt_end >= r2) goto <access okay>
14590 	 *   <handle exception>
14591 	 *
14592 	 *   r2 = r3;
14593 	 *   r2 += 8;
14594 	 *   if (pkt_end <= r2) goto <handle exception>
14595 	 *   <access okay>
14596 	 *
14597 	 *   Where:
14598 	 *     pkt_end == dst_reg, r2 == src_reg
14599 	 *     r2=pkt(id=n,off=8,r=0)
14600 	 *     r3=pkt(id=n,off=0,r=0)
14601 	 *
14602 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
14603 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
14604 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
14605 	 * the check.
14606 	 */
14607 
14608 	/* If our ids match, then we must have the same max_value.  And we
14609 	 * don't care about the other reg's fixed offset, since if it's too big
14610 	 * the range won't allow anything.
14611 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
14612 	 */
14613 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14614 		if (reg->type == type && reg->id == dst_reg->id)
14615 			/* keep the maximum range already checked */
14616 			reg->range = max(reg->range, new_range);
14617 	}));
14618 }
14619 
14620 /*
14621  * <reg1> <op> <reg2>, currently assuming reg2 is a constant
14622  */
14623 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14624 				  u8 opcode, bool is_jmp32)
14625 {
14626 	struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
14627 	struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
14628 	u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
14629 	u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
14630 	s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
14631 	s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
14632 	u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
14633 	u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
14634 	s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
14635 	s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
14636 
14637 	switch (opcode) {
14638 	case BPF_JEQ:
14639 		/* constants, umin/umax and smin/smax checks would be
14640 		 * redundant in this case because they all should match
14641 		 */
14642 		if (tnum_is_const(t1) && tnum_is_const(t2))
14643 			return t1.value == t2.value;
14644 		/* non-overlapping ranges */
14645 		if (umin1 > umax2 || umax1 < umin2)
14646 			return 0;
14647 		if (smin1 > smax2 || smax1 < smin2)
14648 			return 0;
14649 		if (!is_jmp32) {
14650 			/* if 64-bit ranges are inconclusive, see if we can
14651 			 * utilize 32-bit subrange knowledge to eliminate
14652 			 * branches that can't be taken a priori
14653 			 */
14654 			if (reg1->u32_min_value > reg2->u32_max_value ||
14655 			    reg1->u32_max_value < reg2->u32_min_value)
14656 				return 0;
14657 			if (reg1->s32_min_value > reg2->s32_max_value ||
14658 			    reg1->s32_max_value < reg2->s32_min_value)
14659 				return 0;
14660 		}
14661 		break;
14662 	case BPF_JNE:
14663 		/* constants, umin/umax and smin/smax checks would be
14664 		 * redundant in this case because they all should match
14665 		 */
14666 		if (tnum_is_const(t1) && tnum_is_const(t2))
14667 			return t1.value != t2.value;
14668 		/* non-overlapping ranges */
14669 		if (umin1 > umax2 || umax1 < umin2)
14670 			return 1;
14671 		if (smin1 > smax2 || smax1 < smin2)
14672 			return 1;
14673 		if (!is_jmp32) {
14674 			/* if 64-bit ranges are inconclusive, see if we can
14675 			 * utilize 32-bit subrange knowledge to eliminate
14676 			 * branches that can't be taken a priori
14677 			 */
14678 			if (reg1->u32_min_value > reg2->u32_max_value ||
14679 			    reg1->u32_max_value < reg2->u32_min_value)
14680 				return 1;
14681 			if (reg1->s32_min_value > reg2->s32_max_value ||
14682 			    reg1->s32_max_value < reg2->s32_min_value)
14683 				return 1;
14684 		}
14685 		break;
14686 	case BPF_JSET:
14687 		if (!is_reg_const(reg2, is_jmp32)) {
14688 			swap(reg1, reg2);
14689 			swap(t1, t2);
14690 		}
14691 		if (!is_reg_const(reg2, is_jmp32))
14692 			return -1;
14693 		if ((~t1.mask & t1.value) & t2.value)
14694 			return 1;
14695 		if (!((t1.mask | t1.value) & t2.value))
14696 			return 0;
14697 		break;
14698 	case BPF_JGT:
14699 		if (umin1 > umax2)
14700 			return 1;
14701 		else if (umax1 <= umin2)
14702 			return 0;
14703 		break;
14704 	case BPF_JSGT:
14705 		if (smin1 > smax2)
14706 			return 1;
14707 		else if (smax1 <= smin2)
14708 			return 0;
14709 		break;
14710 	case BPF_JLT:
14711 		if (umax1 < umin2)
14712 			return 1;
14713 		else if (umin1 >= umax2)
14714 			return 0;
14715 		break;
14716 	case BPF_JSLT:
14717 		if (smax1 < smin2)
14718 			return 1;
14719 		else if (smin1 >= smax2)
14720 			return 0;
14721 		break;
14722 	case BPF_JGE:
14723 		if (umin1 >= umax2)
14724 			return 1;
14725 		else if (umax1 < umin2)
14726 			return 0;
14727 		break;
14728 	case BPF_JSGE:
14729 		if (smin1 >= smax2)
14730 			return 1;
14731 		else if (smax1 < smin2)
14732 			return 0;
14733 		break;
14734 	case BPF_JLE:
14735 		if (umax1 <= umin2)
14736 			return 1;
14737 		else if (umin1 > umax2)
14738 			return 0;
14739 		break;
14740 	case BPF_JSLE:
14741 		if (smax1 <= smin2)
14742 			return 1;
14743 		else if (smin1 > smax2)
14744 			return 0;
14745 		break;
14746 	}
14747 
14748 	return -1;
14749 }
14750 
14751 static int flip_opcode(u32 opcode)
14752 {
14753 	/* How can we transform "a <op> b" into "b <op> a"? */
14754 	static const u8 opcode_flip[16] = {
14755 		/* these stay the same */
14756 		[BPF_JEQ  >> 4] = BPF_JEQ,
14757 		[BPF_JNE  >> 4] = BPF_JNE,
14758 		[BPF_JSET >> 4] = BPF_JSET,
14759 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
14760 		[BPF_JGE  >> 4] = BPF_JLE,
14761 		[BPF_JGT  >> 4] = BPF_JLT,
14762 		[BPF_JLE  >> 4] = BPF_JGE,
14763 		[BPF_JLT  >> 4] = BPF_JGT,
14764 		[BPF_JSGE >> 4] = BPF_JSLE,
14765 		[BPF_JSGT >> 4] = BPF_JSLT,
14766 		[BPF_JSLE >> 4] = BPF_JSGE,
14767 		[BPF_JSLT >> 4] = BPF_JSGT
14768 	};
14769 	return opcode_flip[opcode >> 4];
14770 }
14771 
14772 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14773 				   struct bpf_reg_state *src_reg,
14774 				   u8 opcode)
14775 {
14776 	struct bpf_reg_state *pkt;
14777 
14778 	if (src_reg->type == PTR_TO_PACKET_END) {
14779 		pkt = dst_reg;
14780 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
14781 		pkt = src_reg;
14782 		opcode = flip_opcode(opcode);
14783 	} else {
14784 		return -1;
14785 	}
14786 
14787 	if (pkt->range >= 0)
14788 		return -1;
14789 
14790 	switch (opcode) {
14791 	case BPF_JLE:
14792 		/* pkt <= pkt_end */
14793 		fallthrough;
14794 	case BPF_JGT:
14795 		/* pkt > pkt_end */
14796 		if (pkt->range == BEYOND_PKT_END)
14797 			/* pkt has at last one extra byte beyond pkt_end */
14798 			return opcode == BPF_JGT;
14799 		break;
14800 	case BPF_JLT:
14801 		/* pkt < pkt_end */
14802 		fallthrough;
14803 	case BPF_JGE:
14804 		/* pkt >= pkt_end */
14805 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14806 			return opcode == BPF_JGE;
14807 		break;
14808 	}
14809 	return -1;
14810 }
14811 
14812 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
14813  * and return:
14814  *  1 - branch will be taken and "goto target" will be executed
14815  *  0 - branch will not be taken and fall-through to next insn
14816  * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
14817  *      range [0,10]
14818  */
14819 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14820 			   u8 opcode, bool is_jmp32)
14821 {
14822 	if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
14823 		return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
14824 
14825 	if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
14826 		u64 val;
14827 
14828 		/* arrange that reg2 is a scalar, and reg1 is a pointer */
14829 		if (!is_reg_const(reg2, is_jmp32)) {
14830 			opcode = flip_opcode(opcode);
14831 			swap(reg1, reg2);
14832 		}
14833 		/* and ensure that reg2 is a constant */
14834 		if (!is_reg_const(reg2, is_jmp32))
14835 			return -1;
14836 
14837 		if (!reg_not_null(reg1))
14838 			return -1;
14839 
14840 		/* If pointer is valid tests against zero will fail so we can
14841 		 * use this to direct branch taken.
14842 		 */
14843 		val = reg_const_value(reg2, is_jmp32);
14844 		if (val != 0)
14845 			return -1;
14846 
14847 		switch (opcode) {
14848 		case BPF_JEQ:
14849 			return 0;
14850 		case BPF_JNE:
14851 			return 1;
14852 		default:
14853 			return -1;
14854 		}
14855 	}
14856 
14857 	/* now deal with two scalars, but not necessarily constants */
14858 	return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
14859 }
14860 
14861 /* Opcode that corresponds to a *false* branch condition.
14862  * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
14863  */
14864 static u8 rev_opcode(u8 opcode)
14865 {
14866 	switch (opcode) {
14867 	case BPF_JEQ:		return BPF_JNE;
14868 	case BPF_JNE:		return BPF_JEQ;
14869 	/* JSET doesn't have it's reverse opcode in BPF, so add
14870 	 * BPF_X flag to denote the reverse of that operation
14871 	 */
14872 	case BPF_JSET:		return BPF_JSET | BPF_X;
14873 	case BPF_JSET | BPF_X:	return BPF_JSET;
14874 	case BPF_JGE:		return BPF_JLT;
14875 	case BPF_JGT:		return BPF_JLE;
14876 	case BPF_JLE:		return BPF_JGT;
14877 	case BPF_JLT:		return BPF_JGE;
14878 	case BPF_JSGE:		return BPF_JSLT;
14879 	case BPF_JSGT:		return BPF_JSLE;
14880 	case BPF_JSLE:		return BPF_JSGT;
14881 	case BPF_JSLT:		return BPF_JSGE;
14882 	default:		return 0;
14883 	}
14884 }
14885 
14886 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
14887 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14888 				u8 opcode, bool is_jmp32)
14889 {
14890 	struct tnum t;
14891 	u64 val;
14892 
14893 	/* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */
14894 	switch (opcode) {
14895 	case BPF_JGE:
14896 	case BPF_JGT:
14897 	case BPF_JSGE:
14898 	case BPF_JSGT:
14899 		opcode = flip_opcode(opcode);
14900 		swap(reg1, reg2);
14901 		break;
14902 	default:
14903 		break;
14904 	}
14905 
14906 	switch (opcode) {
14907 	case BPF_JEQ:
14908 		if (is_jmp32) {
14909 			reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
14910 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
14911 			reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
14912 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
14913 			reg2->u32_min_value = reg1->u32_min_value;
14914 			reg2->u32_max_value = reg1->u32_max_value;
14915 			reg2->s32_min_value = reg1->s32_min_value;
14916 			reg2->s32_max_value = reg1->s32_max_value;
14917 
14918 			t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
14919 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14920 			reg2->var_off = tnum_with_subreg(reg2->var_off, t);
14921 		} else {
14922 			reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
14923 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
14924 			reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
14925 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
14926 			reg2->umin_value = reg1->umin_value;
14927 			reg2->umax_value = reg1->umax_value;
14928 			reg2->smin_value = reg1->smin_value;
14929 			reg2->smax_value = reg1->smax_value;
14930 
14931 			reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
14932 			reg2->var_off = reg1->var_off;
14933 		}
14934 		break;
14935 	case BPF_JNE:
14936 		if (!is_reg_const(reg2, is_jmp32))
14937 			swap(reg1, reg2);
14938 		if (!is_reg_const(reg2, is_jmp32))
14939 			break;
14940 
14941 		/* try to recompute the bound of reg1 if reg2 is a const and
14942 		 * is exactly the edge of reg1.
14943 		 */
14944 		val = reg_const_value(reg2, is_jmp32);
14945 		if (is_jmp32) {
14946 			/* u32_min_value is not equal to 0xffffffff at this point,
14947 			 * because otherwise u32_max_value is 0xffffffff as well,
14948 			 * in such a case both reg1 and reg2 would be constants,
14949 			 * jump would be predicted and reg_set_min_max() won't
14950 			 * be called.
14951 			 *
14952 			 * Same reasoning works for all {u,s}{min,max}{32,64} cases
14953 			 * below.
14954 			 */
14955 			if (reg1->u32_min_value == (u32)val)
14956 				reg1->u32_min_value++;
14957 			if (reg1->u32_max_value == (u32)val)
14958 				reg1->u32_max_value--;
14959 			if (reg1->s32_min_value == (s32)val)
14960 				reg1->s32_min_value++;
14961 			if (reg1->s32_max_value == (s32)val)
14962 				reg1->s32_max_value--;
14963 		} else {
14964 			if (reg1->umin_value == (u64)val)
14965 				reg1->umin_value++;
14966 			if (reg1->umax_value == (u64)val)
14967 				reg1->umax_value--;
14968 			if (reg1->smin_value == (s64)val)
14969 				reg1->smin_value++;
14970 			if (reg1->smax_value == (s64)val)
14971 				reg1->smax_value--;
14972 		}
14973 		break;
14974 	case BPF_JSET:
14975 		if (!is_reg_const(reg2, is_jmp32))
14976 			swap(reg1, reg2);
14977 		if (!is_reg_const(reg2, is_jmp32))
14978 			break;
14979 		val = reg_const_value(reg2, is_jmp32);
14980 		/* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
14981 		 * requires single bit to learn something useful. E.g., if we
14982 		 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
14983 		 * are actually set? We can learn something definite only if
14984 		 * it's a single-bit value to begin with.
14985 		 *
14986 		 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
14987 		 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
14988 		 * bit 1 is set, which we can readily use in adjustments.
14989 		 */
14990 		if (!is_power_of_2(val))
14991 			break;
14992 		if (is_jmp32) {
14993 			t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
14994 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14995 		} else {
14996 			reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
14997 		}
14998 		break;
14999 	case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
15000 		if (!is_reg_const(reg2, is_jmp32))
15001 			swap(reg1, reg2);
15002 		if (!is_reg_const(reg2, is_jmp32))
15003 			break;
15004 		val = reg_const_value(reg2, is_jmp32);
15005 		if (is_jmp32) {
15006 			t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
15007 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
15008 		} else {
15009 			reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
15010 		}
15011 		break;
15012 	case BPF_JLE:
15013 		if (is_jmp32) {
15014 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
15015 			reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
15016 		} else {
15017 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
15018 			reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
15019 		}
15020 		break;
15021 	case BPF_JLT:
15022 		if (is_jmp32) {
15023 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
15024 			reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
15025 		} else {
15026 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
15027 			reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
15028 		}
15029 		break;
15030 	case BPF_JSLE:
15031 		if (is_jmp32) {
15032 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
15033 			reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
15034 		} else {
15035 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
15036 			reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
15037 		}
15038 		break;
15039 	case BPF_JSLT:
15040 		if (is_jmp32) {
15041 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
15042 			reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
15043 		} else {
15044 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
15045 			reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
15046 		}
15047 		break;
15048 	default:
15049 		return;
15050 	}
15051 }
15052 
15053 /* Adjusts the register min/max values in the case that the dst_reg and
15054  * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
15055  * check, in which case we have a fake SCALAR_VALUE representing insn->imm).
15056  * Technically we can do similar adjustments for pointers to the same object,
15057  * but we don't support that right now.
15058  */
15059 static int reg_set_min_max(struct bpf_verifier_env *env,
15060 			   struct bpf_reg_state *true_reg1,
15061 			   struct bpf_reg_state *true_reg2,
15062 			   struct bpf_reg_state *false_reg1,
15063 			   struct bpf_reg_state *false_reg2,
15064 			   u8 opcode, bool is_jmp32)
15065 {
15066 	int err;
15067 
15068 	/* If either register is a pointer, we can't learn anything about its
15069 	 * variable offset from the compare (unless they were a pointer into
15070 	 * the same object, but we don't bother with that).
15071 	 */
15072 	if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
15073 		return 0;
15074 
15075 	/* fallthrough (FALSE) branch */
15076 	regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
15077 	reg_bounds_sync(false_reg1);
15078 	reg_bounds_sync(false_reg2);
15079 
15080 	/* jump (TRUE) branch */
15081 	regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
15082 	reg_bounds_sync(true_reg1);
15083 	reg_bounds_sync(true_reg2);
15084 
15085 	err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
15086 	err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
15087 	err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
15088 	err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
15089 	return err;
15090 }
15091 
15092 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
15093 				 struct bpf_reg_state *reg, u32 id,
15094 				 bool is_null)
15095 {
15096 	if (type_may_be_null(reg->type) && reg->id == id &&
15097 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
15098 		/* Old offset (both fixed and variable parts) should have been
15099 		 * known-zero, because we don't allow pointer arithmetic on
15100 		 * pointers that might be NULL. If we see this happening, don't
15101 		 * convert the register.
15102 		 *
15103 		 * But in some cases, some helpers that return local kptrs
15104 		 * advance offset for the returned pointer. In those cases, it
15105 		 * is fine to expect to see reg->off.
15106 		 */
15107 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
15108 			return;
15109 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
15110 		    WARN_ON_ONCE(reg->off))
15111 			return;
15112 
15113 		if (is_null) {
15114 			reg->type = SCALAR_VALUE;
15115 			/* We don't need id and ref_obj_id from this point
15116 			 * onwards anymore, thus we should better reset it,
15117 			 * so that state pruning has chances to take effect.
15118 			 */
15119 			reg->id = 0;
15120 			reg->ref_obj_id = 0;
15121 
15122 			return;
15123 		}
15124 
15125 		mark_ptr_not_null_reg(reg);
15126 
15127 		if (!reg_may_point_to_spin_lock(reg)) {
15128 			/* For not-NULL ptr, reg->ref_obj_id will be reset
15129 			 * in release_reference().
15130 			 *
15131 			 * reg->id is still used by spin_lock ptr. Other
15132 			 * than spin_lock ptr type, reg->id can be reset.
15133 			 */
15134 			reg->id = 0;
15135 		}
15136 	}
15137 }
15138 
15139 /* The logic is similar to find_good_pkt_pointers(), both could eventually
15140  * be folded together at some point.
15141  */
15142 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
15143 				  bool is_null)
15144 {
15145 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
15146 	struct bpf_reg_state *regs = state->regs, *reg;
15147 	u32 ref_obj_id = regs[regno].ref_obj_id;
15148 	u32 id = regs[regno].id;
15149 
15150 	if (ref_obj_id && ref_obj_id == id && is_null)
15151 		/* regs[regno] is in the " == NULL" branch.
15152 		 * No one could have freed the reference state before
15153 		 * doing the NULL check.
15154 		 */
15155 		WARN_ON_ONCE(release_reference_state(state, id));
15156 
15157 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
15158 		mark_ptr_or_null_reg(state, reg, id, is_null);
15159 	}));
15160 }
15161 
15162 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
15163 				   struct bpf_reg_state *dst_reg,
15164 				   struct bpf_reg_state *src_reg,
15165 				   struct bpf_verifier_state *this_branch,
15166 				   struct bpf_verifier_state *other_branch)
15167 {
15168 	if (BPF_SRC(insn->code) != BPF_X)
15169 		return false;
15170 
15171 	/* Pointers are always 64-bit. */
15172 	if (BPF_CLASS(insn->code) == BPF_JMP32)
15173 		return false;
15174 
15175 	switch (BPF_OP(insn->code)) {
15176 	case BPF_JGT:
15177 		if ((dst_reg->type == PTR_TO_PACKET &&
15178 		     src_reg->type == PTR_TO_PACKET_END) ||
15179 		    (dst_reg->type == PTR_TO_PACKET_META &&
15180 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15181 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
15182 			find_good_pkt_pointers(this_branch, dst_reg,
15183 					       dst_reg->type, false);
15184 			mark_pkt_end(other_branch, insn->dst_reg, true);
15185 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15186 			    src_reg->type == PTR_TO_PACKET) ||
15187 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15188 			    src_reg->type == PTR_TO_PACKET_META)) {
15189 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
15190 			find_good_pkt_pointers(other_branch, src_reg,
15191 					       src_reg->type, true);
15192 			mark_pkt_end(this_branch, insn->src_reg, false);
15193 		} else {
15194 			return false;
15195 		}
15196 		break;
15197 	case BPF_JLT:
15198 		if ((dst_reg->type == PTR_TO_PACKET &&
15199 		     src_reg->type == PTR_TO_PACKET_END) ||
15200 		    (dst_reg->type == PTR_TO_PACKET_META &&
15201 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15202 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
15203 			find_good_pkt_pointers(other_branch, dst_reg,
15204 					       dst_reg->type, true);
15205 			mark_pkt_end(this_branch, insn->dst_reg, false);
15206 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15207 			    src_reg->type == PTR_TO_PACKET) ||
15208 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15209 			    src_reg->type == PTR_TO_PACKET_META)) {
15210 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
15211 			find_good_pkt_pointers(this_branch, src_reg,
15212 					       src_reg->type, false);
15213 			mark_pkt_end(other_branch, insn->src_reg, true);
15214 		} else {
15215 			return false;
15216 		}
15217 		break;
15218 	case BPF_JGE:
15219 		if ((dst_reg->type == PTR_TO_PACKET &&
15220 		     src_reg->type == PTR_TO_PACKET_END) ||
15221 		    (dst_reg->type == PTR_TO_PACKET_META &&
15222 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15223 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
15224 			find_good_pkt_pointers(this_branch, dst_reg,
15225 					       dst_reg->type, true);
15226 			mark_pkt_end(other_branch, insn->dst_reg, false);
15227 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15228 			    src_reg->type == PTR_TO_PACKET) ||
15229 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15230 			    src_reg->type == PTR_TO_PACKET_META)) {
15231 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
15232 			find_good_pkt_pointers(other_branch, src_reg,
15233 					       src_reg->type, false);
15234 			mark_pkt_end(this_branch, insn->src_reg, true);
15235 		} else {
15236 			return false;
15237 		}
15238 		break;
15239 	case BPF_JLE:
15240 		if ((dst_reg->type == PTR_TO_PACKET &&
15241 		     src_reg->type == PTR_TO_PACKET_END) ||
15242 		    (dst_reg->type == PTR_TO_PACKET_META &&
15243 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15244 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
15245 			find_good_pkt_pointers(other_branch, dst_reg,
15246 					       dst_reg->type, false);
15247 			mark_pkt_end(this_branch, insn->dst_reg, true);
15248 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15249 			    src_reg->type == PTR_TO_PACKET) ||
15250 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15251 			    src_reg->type == PTR_TO_PACKET_META)) {
15252 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
15253 			find_good_pkt_pointers(this_branch, src_reg,
15254 					       src_reg->type, true);
15255 			mark_pkt_end(other_branch, insn->src_reg, false);
15256 		} else {
15257 			return false;
15258 		}
15259 		break;
15260 	default:
15261 		return false;
15262 	}
15263 
15264 	return true;
15265 }
15266 
15267 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg,
15268 				  u32 id, u32 frameno, u32 spi_or_reg, bool is_reg)
15269 {
15270 	struct linked_reg *e;
15271 
15272 	if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id)
15273 		return;
15274 
15275 	e = linked_regs_push(reg_set);
15276 	if (e) {
15277 		e->frameno = frameno;
15278 		e->is_reg = is_reg;
15279 		e->regno = spi_or_reg;
15280 	} else {
15281 		reg->id = 0;
15282 	}
15283 }
15284 
15285 /* For all R being scalar registers or spilled scalar registers
15286  * in verifier state, save R in linked_regs if R->id == id.
15287  * If there are too many Rs sharing same id, reset id for leftover Rs.
15288  */
15289 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id,
15290 				struct linked_regs *linked_regs)
15291 {
15292 	struct bpf_func_state *func;
15293 	struct bpf_reg_state *reg;
15294 	int i, j;
15295 
15296 	id = id & ~BPF_ADD_CONST;
15297 	for (i = vstate->curframe; i >= 0; i--) {
15298 		func = vstate->frame[i];
15299 		for (j = 0; j < BPF_REG_FP; j++) {
15300 			reg = &func->regs[j];
15301 			__collect_linked_regs(linked_regs, reg, id, i, j, true);
15302 		}
15303 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
15304 			if (!is_spilled_reg(&func->stack[j]))
15305 				continue;
15306 			reg = &func->stack[j].spilled_ptr;
15307 			__collect_linked_regs(linked_regs, reg, id, i, j, false);
15308 		}
15309 	}
15310 }
15311 
15312 /* For all R in linked_regs, copy known_reg range into R
15313  * if R->id == known_reg->id.
15314  */
15315 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg,
15316 			     struct linked_regs *linked_regs)
15317 {
15318 	struct bpf_reg_state fake_reg;
15319 	struct bpf_reg_state *reg;
15320 	struct linked_reg *e;
15321 	int i;
15322 
15323 	for (i = 0; i < linked_regs->cnt; ++i) {
15324 		e = &linked_regs->entries[i];
15325 		reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno]
15326 				: &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr;
15327 		if (reg->type != SCALAR_VALUE || reg == known_reg)
15328 			continue;
15329 		if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST))
15330 			continue;
15331 		if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) ||
15332 		    reg->off == known_reg->off) {
15333 			s32 saved_subreg_def = reg->subreg_def;
15334 
15335 			copy_register_state(reg, known_reg);
15336 			reg->subreg_def = saved_subreg_def;
15337 		} else {
15338 			s32 saved_subreg_def = reg->subreg_def;
15339 			s32 saved_off = reg->off;
15340 
15341 			fake_reg.type = SCALAR_VALUE;
15342 			__mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off);
15343 
15344 			/* reg = known_reg; reg += delta */
15345 			copy_register_state(reg, known_reg);
15346 			/*
15347 			 * Must preserve off, id and add_const flag,
15348 			 * otherwise another sync_linked_regs() will be incorrect.
15349 			 */
15350 			reg->off = saved_off;
15351 			reg->subreg_def = saved_subreg_def;
15352 
15353 			scalar32_min_max_add(reg, &fake_reg);
15354 			scalar_min_max_add(reg, &fake_reg);
15355 			reg->var_off = tnum_add(reg->var_off, fake_reg.var_off);
15356 		}
15357 	}
15358 }
15359 
15360 static int check_cond_jmp_op(struct bpf_verifier_env *env,
15361 			     struct bpf_insn *insn, int *insn_idx)
15362 {
15363 	struct bpf_verifier_state *this_branch = env->cur_state;
15364 	struct bpf_verifier_state *other_branch;
15365 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
15366 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
15367 	struct bpf_reg_state *eq_branch_regs;
15368 	struct linked_regs linked_regs = {};
15369 	u8 opcode = BPF_OP(insn->code);
15370 	bool is_jmp32;
15371 	int pred = -1;
15372 	int err;
15373 
15374 	/* Only conditional jumps are expected to reach here. */
15375 	if (opcode == BPF_JA || opcode > BPF_JCOND) {
15376 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
15377 		return -EINVAL;
15378 	}
15379 
15380 	if (opcode == BPF_JCOND) {
15381 		struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
15382 		int idx = *insn_idx;
15383 
15384 		if (insn->code != (BPF_JMP | BPF_JCOND) ||
15385 		    insn->src_reg != BPF_MAY_GOTO ||
15386 		    insn->dst_reg || insn->imm || insn->off == 0) {
15387 			verbose(env, "invalid may_goto off %d imm %d\n",
15388 				insn->off, insn->imm);
15389 			return -EINVAL;
15390 		}
15391 		prev_st = find_prev_entry(env, cur_st->parent, idx);
15392 
15393 		/* branch out 'fallthrough' insn as a new state to explore */
15394 		queued_st = push_stack(env, idx + 1, idx, false);
15395 		if (!queued_st)
15396 			return -ENOMEM;
15397 
15398 		queued_st->may_goto_depth++;
15399 		if (prev_st)
15400 			widen_imprecise_scalars(env, prev_st, queued_st);
15401 		*insn_idx += insn->off;
15402 		return 0;
15403 	}
15404 
15405 	/* check src2 operand */
15406 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15407 	if (err)
15408 		return err;
15409 
15410 	dst_reg = &regs[insn->dst_reg];
15411 	if (BPF_SRC(insn->code) == BPF_X) {
15412 		if (insn->imm != 0) {
15413 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
15414 			return -EINVAL;
15415 		}
15416 
15417 		/* check src1 operand */
15418 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15419 		if (err)
15420 			return err;
15421 
15422 		src_reg = &regs[insn->src_reg];
15423 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
15424 		    is_pointer_value(env, insn->src_reg)) {
15425 			verbose(env, "R%d pointer comparison prohibited\n",
15426 				insn->src_reg);
15427 			return -EACCES;
15428 		}
15429 	} else {
15430 		if (insn->src_reg != BPF_REG_0) {
15431 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
15432 			return -EINVAL;
15433 		}
15434 		src_reg = &env->fake_reg[0];
15435 		memset(src_reg, 0, sizeof(*src_reg));
15436 		src_reg->type = SCALAR_VALUE;
15437 		__mark_reg_known(src_reg, insn->imm);
15438 	}
15439 
15440 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
15441 	pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
15442 	if (pred >= 0) {
15443 		/* If we get here with a dst_reg pointer type it is because
15444 		 * above is_branch_taken() special cased the 0 comparison.
15445 		 */
15446 		if (!__is_pointer_value(false, dst_reg))
15447 			err = mark_chain_precision(env, insn->dst_reg);
15448 		if (BPF_SRC(insn->code) == BPF_X && !err &&
15449 		    !__is_pointer_value(false, src_reg))
15450 			err = mark_chain_precision(env, insn->src_reg);
15451 		if (err)
15452 			return err;
15453 	}
15454 
15455 	if (pred == 1) {
15456 		/* Only follow the goto, ignore fall-through. If needed, push
15457 		 * the fall-through branch for simulation under speculative
15458 		 * execution.
15459 		 */
15460 		if (!env->bypass_spec_v1 &&
15461 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
15462 					       *insn_idx))
15463 			return -EFAULT;
15464 		if (env->log.level & BPF_LOG_LEVEL)
15465 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
15466 		*insn_idx += insn->off;
15467 		return 0;
15468 	} else if (pred == 0) {
15469 		/* Only follow the fall-through branch, since that's where the
15470 		 * program will go. If needed, push the goto branch for
15471 		 * simulation under speculative execution.
15472 		 */
15473 		if (!env->bypass_spec_v1 &&
15474 		    !sanitize_speculative_path(env, insn,
15475 					       *insn_idx + insn->off + 1,
15476 					       *insn_idx))
15477 			return -EFAULT;
15478 		if (env->log.level & BPF_LOG_LEVEL)
15479 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
15480 		return 0;
15481 	}
15482 
15483 	/* Push scalar registers sharing same ID to jump history,
15484 	 * do this before creating 'other_branch', so that both
15485 	 * 'this_branch' and 'other_branch' share this history
15486 	 * if parent state is created.
15487 	 */
15488 	if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id)
15489 		collect_linked_regs(this_branch, src_reg->id, &linked_regs);
15490 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id)
15491 		collect_linked_regs(this_branch, dst_reg->id, &linked_regs);
15492 	if (linked_regs.cnt > 1) {
15493 		err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs));
15494 		if (err)
15495 			return err;
15496 	}
15497 
15498 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
15499 				  false);
15500 	if (!other_branch)
15501 		return -EFAULT;
15502 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
15503 
15504 	if (BPF_SRC(insn->code) == BPF_X) {
15505 		err = reg_set_min_max(env,
15506 				      &other_branch_regs[insn->dst_reg],
15507 				      &other_branch_regs[insn->src_reg],
15508 				      dst_reg, src_reg, opcode, is_jmp32);
15509 	} else /* BPF_SRC(insn->code) == BPF_K */ {
15510 		/* reg_set_min_max() can mangle the fake_reg. Make a copy
15511 		 * so that these are two different memory locations. The
15512 		 * src_reg is not used beyond here in context of K.
15513 		 */
15514 		memcpy(&env->fake_reg[1], &env->fake_reg[0],
15515 		       sizeof(env->fake_reg[0]));
15516 		err = reg_set_min_max(env,
15517 				      &other_branch_regs[insn->dst_reg],
15518 				      &env->fake_reg[0],
15519 				      dst_reg, &env->fake_reg[1],
15520 				      opcode, is_jmp32);
15521 	}
15522 	if (err)
15523 		return err;
15524 
15525 	if (BPF_SRC(insn->code) == BPF_X &&
15526 	    src_reg->type == SCALAR_VALUE && src_reg->id &&
15527 	    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
15528 		sync_linked_regs(this_branch, src_reg, &linked_regs);
15529 		sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs);
15530 	}
15531 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
15532 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
15533 		sync_linked_regs(this_branch, dst_reg, &linked_regs);
15534 		sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs);
15535 	}
15536 
15537 	/* if one pointer register is compared to another pointer
15538 	 * register check if PTR_MAYBE_NULL could be lifted.
15539 	 * E.g. register A - maybe null
15540 	 *      register B - not null
15541 	 * for JNE A, B, ... - A is not null in the false branch;
15542 	 * for JEQ A, B, ... - A is not null in the true branch.
15543 	 *
15544 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
15545 	 * not need to be null checked by the BPF program, i.e.,
15546 	 * could be null even without PTR_MAYBE_NULL marking, so
15547 	 * only propagate nullness when neither reg is that type.
15548 	 */
15549 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
15550 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
15551 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
15552 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
15553 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
15554 		eq_branch_regs = NULL;
15555 		switch (opcode) {
15556 		case BPF_JEQ:
15557 			eq_branch_regs = other_branch_regs;
15558 			break;
15559 		case BPF_JNE:
15560 			eq_branch_regs = regs;
15561 			break;
15562 		default:
15563 			/* do nothing */
15564 			break;
15565 		}
15566 		if (eq_branch_regs) {
15567 			if (type_may_be_null(src_reg->type))
15568 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
15569 			else
15570 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
15571 		}
15572 	}
15573 
15574 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
15575 	 * NOTE: these optimizations below are related with pointer comparison
15576 	 *       which will never be JMP32.
15577 	 */
15578 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
15579 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
15580 	    type_may_be_null(dst_reg->type)) {
15581 		/* Mark all identical registers in each branch as either
15582 		 * safe or unknown depending R == 0 or R != 0 conditional.
15583 		 */
15584 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
15585 				      opcode == BPF_JNE);
15586 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
15587 				      opcode == BPF_JEQ);
15588 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
15589 					   this_branch, other_branch) &&
15590 		   is_pointer_value(env, insn->dst_reg)) {
15591 		verbose(env, "R%d pointer comparison prohibited\n",
15592 			insn->dst_reg);
15593 		return -EACCES;
15594 	}
15595 	if (env->log.level & BPF_LOG_LEVEL)
15596 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
15597 	return 0;
15598 }
15599 
15600 /* verify BPF_LD_IMM64 instruction */
15601 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
15602 {
15603 	struct bpf_insn_aux_data *aux = cur_aux(env);
15604 	struct bpf_reg_state *regs = cur_regs(env);
15605 	struct bpf_reg_state *dst_reg;
15606 	struct bpf_map *map;
15607 	int err;
15608 
15609 	if (BPF_SIZE(insn->code) != BPF_DW) {
15610 		verbose(env, "invalid BPF_LD_IMM insn\n");
15611 		return -EINVAL;
15612 	}
15613 	if (insn->off != 0) {
15614 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
15615 		return -EINVAL;
15616 	}
15617 
15618 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
15619 	if (err)
15620 		return err;
15621 
15622 	dst_reg = &regs[insn->dst_reg];
15623 	if (insn->src_reg == 0) {
15624 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
15625 
15626 		dst_reg->type = SCALAR_VALUE;
15627 		__mark_reg_known(&regs[insn->dst_reg], imm);
15628 		return 0;
15629 	}
15630 
15631 	/* All special src_reg cases are listed below. From this point onwards
15632 	 * we either succeed and assign a corresponding dst_reg->type after
15633 	 * zeroing the offset, or fail and reject the program.
15634 	 */
15635 	mark_reg_known_zero(env, regs, insn->dst_reg);
15636 
15637 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
15638 		dst_reg->type = aux->btf_var.reg_type;
15639 		switch (base_type(dst_reg->type)) {
15640 		case PTR_TO_MEM:
15641 			dst_reg->mem_size = aux->btf_var.mem_size;
15642 			break;
15643 		case PTR_TO_BTF_ID:
15644 			dst_reg->btf = aux->btf_var.btf;
15645 			dst_reg->btf_id = aux->btf_var.btf_id;
15646 			break;
15647 		default:
15648 			verbose(env, "bpf verifier is misconfigured\n");
15649 			return -EFAULT;
15650 		}
15651 		return 0;
15652 	}
15653 
15654 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
15655 		struct bpf_prog_aux *aux = env->prog->aux;
15656 		u32 subprogno = find_subprog(env,
15657 					     env->insn_idx + insn->imm + 1);
15658 
15659 		if (!aux->func_info) {
15660 			verbose(env, "missing btf func_info\n");
15661 			return -EINVAL;
15662 		}
15663 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
15664 			verbose(env, "callback function not static\n");
15665 			return -EINVAL;
15666 		}
15667 
15668 		dst_reg->type = PTR_TO_FUNC;
15669 		dst_reg->subprogno = subprogno;
15670 		return 0;
15671 	}
15672 
15673 	map = env->used_maps[aux->map_index];
15674 	dst_reg->map_ptr = map;
15675 
15676 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
15677 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
15678 		if (map->map_type == BPF_MAP_TYPE_ARENA) {
15679 			__mark_reg_unknown(env, dst_reg);
15680 			return 0;
15681 		}
15682 		dst_reg->type = PTR_TO_MAP_VALUE;
15683 		dst_reg->off = aux->map_off;
15684 		WARN_ON_ONCE(map->max_entries != 1);
15685 		/* We want reg->id to be same (0) as map_value is not distinct */
15686 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
15687 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
15688 		dst_reg->type = CONST_PTR_TO_MAP;
15689 	} else {
15690 		verbose(env, "bpf verifier is misconfigured\n");
15691 		return -EINVAL;
15692 	}
15693 
15694 	return 0;
15695 }
15696 
15697 static bool may_access_skb(enum bpf_prog_type type)
15698 {
15699 	switch (type) {
15700 	case BPF_PROG_TYPE_SOCKET_FILTER:
15701 	case BPF_PROG_TYPE_SCHED_CLS:
15702 	case BPF_PROG_TYPE_SCHED_ACT:
15703 		return true;
15704 	default:
15705 		return false;
15706 	}
15707 }
15708 
15709 /* verify safety of LD_ABS|LD_IND instructions:
15710  * - they can only appear in the programs where ctx == skb
15711  * - since they are wrappers of function calls, they scratch R1-R5 registers,
15712  *   preserve R6-R9, and store return value into R0
15713  *
15714  * Implicit input:
15715  *   ctx == skb == R6 == CTX
15716  *
15717  * Explicit input:
15718  *   SRC == any register
15719  *   IMM == 32-bit immediate
15720  *
15721  * Output:
15722  *   R0 - 8/16/32-bit skb data converted to cpu endianness
15723  */
15724 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
15725 {
15726 	struct bpf_reg_state *regs = cur_regs(env);
15727 	static const int ctx_reg = BPF_REG_6;
15728 	u8 mode = BPF_MODE(insn->code);
15729 	int i, err;
15730 
15731 	if (!may_access_skb(resolve_prog_type(env->prog))) {
15732 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
15733 		return -EINVAL;
15734 	}
15735 
15736 	if (!env->ops->gen_ld_abs) {
15737 		verbose(env, "bpf verifier is misconfigured\n");
15738 		return -EINVAL;
15739 	}
15740 
15741 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
15742 	    BPF_SIZE(insn->code) == BPF_DW ||
15743 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
15744 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
15745 		return -EINVAL;
15746 	}
15747 
15748 	/* check whether implicit source operand (register R6) is readable */
15749 	err = check_reg_arg(env, ctx_reg, SRC_OP);
15750 	if (err)
15751 		return err;
15752 
15753 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
15754 	 * gen_ld_abs() may terminate the program at runtime, leading to
15755 	 * reference leak.
15756 	 */
15757 	err = check_reference_leak(env, false);
15758 	if (err) {
15759 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
15760 		return err;
15761 	}
15762 
15763 	if (env->cur_state->active_lock.ptr) {
15764 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
15765 		return -EINVAL;
15766 	}
15767 
15768 	if (env->cur_state->active_rcu_lock) {
15769 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
15770 		return -EINVAL;
15771 	}
15772 
15773 	if (env->cur_state->active_preempt_lock) {
15774 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_preempt_disable-ed region\n");
15775 		return -EINVAL;
15776 	}
15777 
15778 	if (regs[ctx_reg].type != PTR_TO_CTX) {
15779 		verbose(env,
15780 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
15781 		return -EINVAL;
15782 	}
15783 
15784 	if (mode == BPF_IND) {
15785 		/* check explicit source operand */
15786 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15787 		if (err)
15788 			return err;
15789 	}
15790 
15791 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
15792 	if (err < 0)
15793 		return err;
15794 
15795 	/* reset caller saved regs to unreadable */
15796 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
15797 		mark_reg_not_init(env, regs, caller_saved[i]);
15798 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
15799 	}
15800 
15801 	/* mark destination R0 register as readable, since it contains
15802 	 * the value fetched from the packet.
15803 	 * Already marked as written above.
15804 	 */
15805 	mark_reg_unknown(env, regs, BPF_REG_0);
15806 	/* ld_abs load up to 32-bit skb data. */
15807 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
15808 	return 0;
15809 }
15810 
15811 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
15812 {
15813 	const char *exit_ctx = "At program exit";
15814 	struct tnum enforce_attach_type_range = tnum_unknown;
15815 	const struct bpf_prog *prog = env->prog;
15816 	struct bpf_reg_state *reg;
15817 	struct bpf_retval_range range = retval_range(0, 1);
15818 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
15819 	int err;
15820 	struct bpf_func_state *frame = env->cur_state->frame[0];
15821 	const bool is_subprog = frame->subprogno;
15822 	bool return_32bit = false;
15823 
15824 	/* LSM and struct_ops func-ptr's return type could be "void" */
15825 	if (!is_subprog || frame->in_exception_callback_fn) {
15826 		switch (prog_type) {
15827 		case BPF_PROG_TYPE_LSM:
15828 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
15829 				/* See below, can be 0 or 0-1 depending on hook. */
15830 				break;
15831 			fallthrough;
15832 		case BPF_PROG_TYPE_STRUCT_OPS:
15833 			if (!prog->aux->attach_func_proto->type)
15834 				return 0;
15835 			break;
15836 		default:
15837 			break;
15838 		}
15839 	}
15840 
15841 	/* eBPF calling convention is such that R0 is used
15842 	 * to return the value from eBPF program.
15843 	 * Make sure that it's readable at this time
15844 	 * of bpf_exit, which means that program wrote
15845 	 * something into it earlier
15846 	 */
15847 	err = check_reg_arg(env, regno, SRC_OP);
15848 	if (err)
15849 		return err;
15850 
15851 	if (is_pointer_value(env, regno)) {
15852 		verbose(env, "R%d leaks addr as return value\n", regno);
15853 		return -EACCES;
15854 	}
15855 
15856 	reg = cur_regs(env) + regno;
15857 
15858 	if (frame->in_async_callback_fn) {
15859 		/* enforce return zero from async callbacks like timer */
15860 		exit_ctx = "At async callback return";
15861 		range = retval_range(0, 0);
15862 		goto enforce_retval;
15863 	}
15864 
15865 	if (is_subprog && !frame->in_exception_callback_fn) {
15866 		if (reg->type != SCALAR_VALUE) {
15867 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
15868 				regno, reg_type_str(env, reg->type));
15869 			return -EINVAL;
15870 		}
15871 		return 0;
15872 	}
15873 
15874 	switch (prog_type) {
15875 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15876 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15877 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15878 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
15879 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15880 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15881 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
15882 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15883 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
15884 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
15885 			range = retval_range(1, 1);
15886 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15887 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15888 			range = retval_range(0, 3);
15889 		break;
15890 	case BPF_PROG_TYPE_CGROUP_SKB:
15891 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15892 			range = retval_range(0, 3);
15893 			enforce_attach_type_range = tnum_range(2, 3);
15894 		}
15895 		break;
15896 	case BPF_PROG_TYPE_CGROUP_SOCK:
15897 	case BPF_PROG_TYPE_SOCK_OPS:
15898 	case BPF_PROG_TYPE_CGROUP_DEVICE:
15899 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
15900 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15901 		break;
15902 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
15903 		if (!env->prog->aux->attach_btf_id)
15904 			return 0;
15905 		range = retval_range(0, 0);
15906 		break;
15907 	case BPF_PROG_TYPE_TRACING:
15908 		switch (env->prog->expected_attach_type) {
15909 		case BPF_TRACE_FENTRY:
15910 		case BPF_TRACE_FEXIT:
15911 			range = retval_range(0, 0);
15912 			break;
15913 		case BPF_TRACE_RAW_TP:
15914 		case BPF_MODIFY_RETURN:
15915 			return 0;
15916 		case BPF_TRACE_ITER:
15917 			break;
15918 		default:
15919 			return -ENOTSUPP;
15920 		}
15921 		break;
15922 	case BPF_PROG_TYPE_SK_LOOKUP:
15923 		range = retval_range(SK_DROP, SK_PASS);
15924 		break;
15925 
15926 	case BPF_PROG_TYPE_LSM:
15927 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15928 			/* no range found, any return value is allowed */
15929 			if (!get_func_retval_range(env->prog, &range))
15930 				return 0;
15931 			/* no restricted range, any return value is allowed */
15932 			if (range.minval == S32_MIN && range.maxval == S32_MAX)
15933 				return 0;
15934 			return_32bit = true;
15935 		} else if (!env->prog->aux->attach_func_proto->type) {
15936 			/* Make sure programs that attach to void
15937 			 * hooks don't try to modify return value.
15938 			 */
15939 			range = retval_range(1, 1);
15940 		}
15941 		break;
15942 
15943 	case BPF_PROG_TYPE_NETFILTER:
15944 		range = retval_range(NF_DROP, NF_ACCEPT);
15945 		break;
15946 	case BPF_PROG_TYPE_EXT:
15947 		/* freplace program can return anything as its return value
15948 		 * depends on the to-be-replaced kernel func or bpf program.
15949 		 */
15950 	default:
15951 		return 0;
15952 	}
15953 
15954 enforce_retval:
15955 	if (reg->type != SCALAR_VALUE) {
15956 		verbose(env, "%s the register R%d is not a known value (%s)\n",
15957 			exit_ctx, regno, reg_type_str(env, reg->type));
15958 		return -EINVAL;
15959 	}
15960 
15961 	err = mark_chain_precision(env, regno);
15962 	if (err)
15963 		return err;
15964 
15965 	if (!retval_range_within(range, reg, return_32bit)) {
15966 		verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
15967 		if (!is_subprog &&
15968 		    prog->expected_attach_type == BPF_LSM_CGROUP &&
15969 		    prog_type == BPF_PROG_TYPE_LSM &&
15970 		    !prog->aux->attach_func_proto->type)
15971 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15972 		return -EINVAL;
15973 	}
15974 
15975 	if (!tnum_is_unknown(enforce_attach_type_range) &&
15976 	    tnum_in(enforce_attach_type_range, reg->var_off))
15977 		env->prog->enforce_expected_attach_type = 1;
15978 	return 0;
15979 }
15980 
15981 /* non-recursive DFS pseudo code
15982  * 1  procedure DFS-iterative(G,v):
15983  * 2      label v as discovered
15984  * 3      let S be a stack
15985  * 4      S.push(v)
15986  * 5      while S is not empty
15987  * 6            t <- S.peek()
15988  * 7            if t is what we're looking for:
15989  * 8                return t
15990  * 9            for all edges e in G.adjacentEdges(t) do
15991  * 10               if edge e is already labelled
15992  * 11                   continue with the next edge
15993  * 12               w <- G.adjacentVertex(t,e)
15994  * 13               if vertex w is not discovered and not explored
15995  * 14                   label e as tree-edge
15996  * 15                   label w as discovered
15997  * 16                   S.push(w)
15998  * 17                   continue at 5
15999  * 18               else if vertex w is discovered
16000  * 19                   label e as back-edge
16001  * 20               else
16002  * 21                   // vertex w is explored
16003  * 22                   label e as forward- or cross-edge
16004  * 23           label t as explored
16005  * 24           S.pop()
16006  *
16007  * convention:
16008  * 0x10 - discovered
16009  * 0x11 - discovered and fall-through edge labelled
16010  * 0x12 - discovered and fall-through and branch edges labelled
16011  * 0x20 - explored
16012  */
16013 
16014 enum {
16015 	DISCOVERED = 0x10,
16016 	EXPLORED = 0x20,
16017 	FALLTHROUGH = 1,
16018 	BRANCH = 2,
16019 };
16020 
16021 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
16022 {
16023 	env->insn_aux_data[idx].prune_point = true;
16024 }
16025 
16026 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
16027 {
16028 	return env->insn_aux_data[insn_idx].prune_point;
16029 }
16030 
16031 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
16032 {
16033 	env->insn_aux_data[idx].force_checkpoint = true;
16034 }
16035 
16036 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
16037 {
16038 	return env->insn_aux_data[insn_idx].force_checkpoint;
16039 }
16040 
16041 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
16042 {
16043 	env->insn_aux_data[idx].calls_callback = true;
16044 }
16045 
16046 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
16047 {
16048 	return env->insn_aux_data[insn_idx].calls_callback;
16049 }
16050 
16051 enum {
16052 	DONE_EXPLORING = 0,
16053 	KEEP_EXPLORING = 1,
16054 };
16055 
16056 /* t, w, e - match pseudo-code above:
16057  * t - index of current instruction
16058  * w - next instruction
16059  * e - edge
16060  */
16061 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
16062 {
16063 	int *insn_stack = env->cfg.insn_stack;
16064 	int *insn_state = env->cfg.insn_state;
16065 
16066 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
16067 		return DONE_EXPLORING;
16068 
16069 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
16070 		return DONE_EXPLORING;
16071 
16072 	if (w < 0 || w >= env->prog->len) {
16073 		verbose_linfo(env, t, "%d: ", t);
16074 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
16075 		return -EINVAL;
16076 	}
16077 
16078 	if (e == BRANCH) {
16079 		/* mark branch target for state pruning */
16080 		mark_prune_point(env, w);
16081 		mark_jmp_point(env, w);
16082 	}
16083 
16084 	if (insn_state[w] == 0) {
16085 		/* tree-edge */
16086 		insn_state[t] = DISCOVERED | e;
16087 		insn_state[w] = DISCOVERED;
16088 		if (env->cfg.cur_stack >= env->prog->len)
16089 			return -E2BIG;
16090 		insn_stack[env->cfg.cur_stack++] = w;
16091 		return KEEP_EXPLORING;
16092 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
16093 		if (env->bpf_capable)
16094 			return DONE_EXPLORING;
16095 		verbose_linfo(env, t, "%d: ", t);
16096 		verbose_linfo(env, w, "%d: ", w);
16097 		verbose(env, "back-edge from insn %d to %d\n", t, w);
16098 		return -EINVAL;
16099 	} else if (insn_state[w] == EXPLORED) {
16100 		/* forward- or cross-edge */
16101 		insn_state[t] = DISCOVERED | e;
16102 	} else {
16103 		verbose(env, "insn state internal bug\n");
16104 		return -EFAULT;
16105 	}
16106 	return DONE_EXPLORING;
16107 }
16108 
16109 static int visit_func_call_insn(int t, struct bpf_insn *insns,
16110 				struct bpf_verifier_env *env,
16111 				bool visit_callee)
16112 {
16113 	int ret, insn_sz;
16114 
16115 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
16116 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
16117 	if (ret)
16118 		return ret;
16119 
16120 	mark_prune_point(env, t + insn_sz);
16121 	/* when we exit from subprog, we need to record non-linear history */
16122 	mark_jmp_point(env, t + insn_sz);
16123 
16124 	if (visit_callee) {
16125 		mark_prune_point(env, t);
16126 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
16127 	}
16128 	return ret;
16129 }
16130 
16131 /* Bitmask with 1s for all caller saved registers */
16132 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
16133 
16134 /* Return a bitmask specifying which caller saved registers are
16135  * clobbered by a call to a helper *as if* this helper follows
16136  * bpf_fastcall contract:
16137  * - includes R0 if function is non-void;
16138  * - includes R1-R5 if corresponding parameter has is described
16139  *   in the function prototype.
16140  */
16141 static u32 helper_fastcall_clobber_mask(const struct bpf_func_proto *fn)
16142 {
16143 	u32 mask;
16144 	int i;
16145 
16146 	mask = 0;
16147 	if (fn->ret_type != RET_VOID)
16148 		mask |= BIT(BPF_REG_0);
16149 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i)
16150 		if (fn->arg_type[i] != ARG_DONTCARE)
16151 			mask |= BIT(BPF_REG_1 + i);
16152 	return mask;
16153 }
16154 
16155 /* True if do_misc_fixups() replaces calls to helper number 'imm',
16156  * replacement patch is presumed to follow bpf_fastcall contract
16157  * (see mark_fastcall_pattern_for_call() below).
16158  */
16159 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm)
16160 {
16161 	switch (imm) {
16162 #ifdef CONFIG_X86_64
16163 	case BPF_FUNC_get_smp_processor_id:
16164 		return env->prog->jit_requested && bpf_jit_supports_percpu_insn();
16165 #endif
16166 	default:
16167 		return false;
16168 	}
16169 }
16170 
16171 /* Same as helper_fastcall_clobber_mask() but for kfuncs, see comment above */
16172 static u32 kfunc_fastcall_clobber_mask(struct bpf_kfunc_call_arg_meta *meta)
16173 {
16174 	u32 vlen, i, mask;
16175 
16176 	vlen = btf_type_vlen(meta->func_proto);
16177 	mask = 0;
16178 	if (!btf_type_is_void(btf_type_by_id(meta->btf, meta->func_proto->type)))
16179 		mask |= BIT(BPF_REG_0);
16180 	for (i = 0; i < vlen; ++i)
16181 		mask |= BIT(BPF_REG_1 + i);
16182 	return mask;
16183 }
16184 
16185 /* Same as verifier_inlines_helper_call() but for kfuncs, see comment above */
16186 static bool is_fastcall_kfunc_call(struct bpf_kfunc_call_arg_meta *meta)
16187 {
16188 	if (meta->btf == btf_vmlinux)
16189 		return meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
16190 		       meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast];
16191 	return false;
16192 }
16193 
16194 /* LLVM define a bpf_fastcall function attribute.
16195  * This attribute means that function scratches only some of
16196  * the caller saved registers defined by ABI.
16197  * For BPF the set of such registers could be defined as follows:
16198  * - R0 is scratched only if function is non-void;
16199  * - R1-R5 are scratched only if corresponding parameter type is defined
16200  *   in the function prototype.
16201  *
16202  * The contract between kernel and clang allows to simultaneously use
16203  * such functions and maintain backwards compatibility with old
16204  * kernels that don't understand bpf_fastcall calls:
16205  *
16206  * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5
16207  *   registers are not scratched by the call;
16208  *
16209  * - as a post-processing step, clang visits each bpf_fastcall call and adds
16210  *   spill/fill for every live r0-r5;
16211  *
16212  * - stack offsets used for the spill/fill are allocated as lowest
16213  *   stack offsets in whole function and are not used for any other
16214  *   purposes;
16215  *
16216  * - when kernel loads a program, it looks for such patterns
16217  *   (bpf_fastcall function surrounded by spills/fills) and checks if
16218  *   spill/fill stack offsets are used exclusively in fastcall patterns;
16219  *
16220  * - if so, and if verifier or current JIT inlines the call to the
16221  *   bpf_fastcall function (e.g. a helper call), kernel removes unnecessary
16222  *   spill/fill pairs;
16223  *
16224  * - when old kernel loads a program, presence of spill/fill pairs
16225  *   keeps BPF program valid, albeit slightly less efficient.
16226  *
16227  * For example:
16228  *
16229  *   r1 = 1;
16230  *   r2 = 2;
16231  *   *(u64 *)(r10 - 8)  = r1;            r1 = 1;
16232  *   *(u64 *)(r10 - 16) = r2;            r2 = 2;
16233  *   call %[to_be_inlined]         -->   call %[to_be_inlined]
16234  *   r2 = *(u64 *)(r10 - 16);            r0 = r1;
16235  *   r1 = *(u64 *)(r10 - 8);             r0 += r2;
16236  *   r0 = r1;                            exit;
16237  *   r0 += r2;
16238  *   exit;
16239  *
16240  * The purpose of mark_fastcall_pattern_for_call is to:
16241  * - look for such patterns;
16242  * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern;
16243  * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction;
16244  * - update env->subprog_info[*]->fastcall_stack_off to find an offset
16245  *   at which bpf_fastcall spill/fill stack slots start;
16246  * - update env->subprog_info[*]->keep_fastcall_stack.
16247  *
16248  * The .fastcall_pattern and .fastcall_stack_off are used by
16249  * check_fastcall_stack_contract() to check if every stack access to
16250  * fastcall spill/fill stack slot originates from spill/fill
16251  * instructions, members of fastcall patterns.
16252  *
16253  * If such condition holds true for a subprogram, fastcall patterns could
16254  * be rewritten by remove_fastcall_spills_fills().
16255  * Otherwise bpf_fastcall patterns are not changed in the subprogram
16256  * (code, presumably, generated by an older clang version).
16257  *
16258  * For example, it is *not* safe to remove spill/fill below:
16259  *
16260  *   r1 = 1;
16261  *   *(u64 *)(r10 - 8)  = r1;            r1 = 1;
16262  *   call %[to_be_inlined]         -->   call %[to_be_inlined]
16263  *   r1 = *(u64 *)(r10 - 8);             r0 = *(u64 *)(r10 - 8);  <---- wrong !!!
16264  *   r0 = *(u64 *)(r10 - 8);             r0 += r1;
16265  *   r0 += r1;                           exit;
16266  *   exit;
16267  */
16268 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env,
16269 					   struct bpf_subprog_info *subprog,
16270 					   int insn_idx, s16 lowest_off)
16271 {
16272 	struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx;
16273 	struct bpf_insn *call = &env->prog->insnsi[insn_idx];
16274 	const struct bpf_func_proto *fn;
16275 	u32 clobbered_regs_mask = ALL_CALLER_SAVED_REGS;
16276 	u32 expected_regs_mask;
16277 	bool can_be_inlined = false;
16278 	s16 off;
16279 	int i;
16280 
16281 	if (bpf_helper_call(call)) {
16282 		if (get_helper_proto(env, call->imm, &fn) < 0)
16283 			/* error would be reported later */
16284 			return;
16285 		clobbered_regs_mask = helper_fastcall_clobber_mask(fn);
16286 		can_be_inlined = fn->allow_fastcall &&
16287 				 (verifier_inlines_helper_call(env, call->imm) ||
16288 				  bpf_jit_inlines_helper_call(call->imm));
16289 	}
16290 
16291 	if (bpf_pseudo_kfunc_call(call)) {
16292 		struct bpf_kfunc_call_arg_meta meta;
16293 		int err;
16294 
16295 		err = fetch_kfunc_meta(env, call, &meta, NULL);
16296 		if (err < 0)
16297 			/* error would be reported later */
16298 			return;
16299 
16300 		clobbered_regs_mask = kfunc_fastcall_clobber_mask(&meta);
16301 		can_be_inlined = is_fastcall_kfunc_call(&meta);
16302 	}
16303 
16304 	if (clobbered_regs_mask == ALL_CALLER_SAVED_REGS)
16305 		return;
16306 
16307 	/* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */
16308 	expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS;
16309 
16310 	/* match pairs of form:
16311 	 *
16312 	 * *(u64 *)(r10 - Y) = rX   (where Y % 8 == 0)
16313 	 * ...
16314 	 * call %[to_be_inlined]
16315 	 * ...
16316 	 * rX = *(u64 *)(r10 - Y)
16317 	 */
16318 	for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) {
16319 		if (insn_idx - i < 0 || insn_idx + i >= env->prog->len)
16320 			break;
16321 		stx = &insns[insn_idx - i];
16322 		ldx = &insns[insn_idx + i];
16323 		/* must be a stack spill/fill pair */
16324 		if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) ||
16325 		    ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) ||
16326 		    stx->dst_reg != BPF_REG_10 ||
16327 		    ldx->src_reg != BPF_REG_10)
16328 			break;
16329 		/* must be a spill/fill for the same reg */
16330 		if (stx->src_reg != ldx->dst_reg)
16331 			break;
16332 		/* must be one of the previously unseen registers */
16333 		if ((BIT(stx->src_reg) & expected_regs_mask) == 0)
16334 			break;
16335 		/* must be a spill/fill for the same expected offset,
16336 		 * no need to check offset alignment, BPF_DW stack access
16337 		 * is always 8-byte aligned.
16338 		 */
16339 		if (stx->off != off || ldx->off != off)
16340 			break;
16341 		expected_regs_mask &= ~BIT(stx->src_reg);
16342 		env->insn_aux_data[insn_idx - i].fastcall_pattern = 1;
16343 		env->insn_aux_data[insn_idx + i].fastcall_pattern = 1;
16344 	}
16345 	if (i == 1)
16346 		return;
16347 
16348 	/* Conditionally set 'fastcall_spills_num' to allow forward
16349 	 * compatibility when more helper functions are marked as
16350 	 * bpf_fastcall at compile time than current kernel supports, e.g:
16351 	 *
16352 	 *   1: *(u64 *)(r10 - 8) = r1
16353 	 *   2: call A                  ;; assume A is bpf_fastcall for current kernel
16354 	 *   3: r1 = *(u64 *)(r10 - 8)
16355 	 *   4: *(u64 *)(r10 - 8) = r1
16356 	 *   5: call B                  ;; assume B is not bpf_fastcall for current kernel
16357 	 *   6: r1 = *(u64 *)(r10 - 8)
16358 	 *
16359 	 * There is no need to block bpf_fastcall rewrite for such program.
16360 	 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy,
16361 	 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills()
16362 	 * does not remove spill/fill pair {4,6}.
16363 	 */
16364 	if (can_be_inlined)
16365 		env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1;
16366 	else
16367 		subprog->keep_fastcall_stack = 1;
16368 	subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off);
16369 }
16370 
16371 static int mark_fastcall_patterns(struct bpf_verifier_env *env)
16372 {
16373 	struct bpf_subprog_info *subprog = env->subprog_info;
16374 	struct bpf_insn *insn;
16375 	s16 lowest_off;
16376 	int s, i;
16377 
16378 	for (s = 0; s < env->subprog_cnt; ++s, ++subprog) {
16379 		/* find lowest stack spill offset used in this subprog */
16380 		lowest_off = 0;
16381 		for (i = subprog->start; i < (subprog + 1)->start; ++i) {
16382 			insn = env->prog->insnsi + i;
16383 			if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) ||
16384 			    insn->dst_reg != BPF_REG_10)
16385 				continue;
16386 			lowest_off = min(lowest_off, insn->off);
16387 		}
16388 		/* use this offset to find fastcall patterns */
16389 		for (i = subprog->start; i < (subprog + 1)->start; ++i) {
16390 			insn = env->prog->insnsi + i;
16391 			if (insn->code != (BPF_JMP | BPF_CALL))
16392 				continue;
16393 			mark_fastcall_pattern_for_call(env, subprog, i, lowest_off);
16394 		}
16395 	}
16396 	return 0;
16397 }
16398 
16399 /* Visits the instruction at index t and returns one of the following:
16400  *  < 0 - an error occurred
16401  *  DONE_EXPLORING - the instruction was fully explored
16402  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
16403  */
16404 static int visit_insn(int t, struct bpf_verifier_env *env)
16405 {
16406 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
16407 	int ret, off, insn_sz;
16408 
16409 	if (bpf_pseudo_func(insn))
16410 		return visit_func_call_insn(t, insns, env, true);
16411 
16412 	/* All non-branch instructions have a single fall-through edge. */
16413 	if (BPF_CLASS(insn->code) != BPF_JMP &&
16414 	    BPF_CLASS(insn->code) != BPF_JMP32) {
16415 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
16416 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
16417 	}
16418 
16419 	switch (BPF_OP(insn->code)) {
16420 	case BPF_EXIT:
16421 		return DONE_EXPLORING;
16422 
16423 	case BPF_CALL:
16424 		if (is_async_callback_calling_insn(insn))
16425 			/* Mark this call insn as a prune point to trigger
16426 			 * is_state_visited() check before call itself is
16427 			 * processed by __check_func_call(). Otherwise new
16428 			 * async state will be pushed for further exploration.
16429 			 */
16430 			mark_prune_point(env, t);
16431 		/* For functions that invoke callbacks it is not known how many times
16432 		 * callback would be called. Verifier models callback calling functions
16433 		 * by repeatedly visiting callback bodies and returning to origin call
16434 		 * instruction.
16435 		 * In order to stop such iteration verifier needs to identify when a
16436 		 * state identical some state from a previous iteration is reached.
16437 		 * Check below forces creation of checkpoint before callback calling
16438 		 * instruction to allow search for such identical states.
16439 		 */
16440 		if (is_sync_callback_calling_insn(insn)) {
16441 			mark_calls_callback(env, t);
16442 			mark_force_checkpoint(env, t);
16443 			mark_prune_point(env, t);
16444 			mark_jmp_point(env, t);
16445 		}
16446 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
16447 			struct bpf_kfunc_call_arg_meta meta;
16448 
16449 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
16450 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
16451 				mark_prune_point(env, t);
16452 				/* Checking and saving state checkpoints at iter_next() call
16453 				 * is crucial for fast convergence of open-coded iterator loop
16454 				 * logic, so we need to force it. If we don't do that,
16455 				 * is_state_visited() might skip saving a checkpoint, causing
16456 				 * unnecessarily long sequence of not checkpointed
16457 				 * instructions and jumps, leading to exhaustion of jump
16458 				 * history buffer, and potentially other undesired outcomes.
16459 				 * It is expected that with correct open-coded iterators
16460 				 * convergence will happen quickly, so we don't run a risk of
16461 				 * exhausting memory.
16462 				 */
16463 				mark_force_checkpoint(env, t);
16464 			}
16465 		}
16466 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
16467 
16468 	case BPF_JA:
16469 		if (BPF_SRC(insn->code) != BPF_K)
16470 			return -EINVAL;
16471 
16472 		if (BPF_CLASS(insn->code) == BPF_JMP)
16473 			off = insn->off;
16474 		else
16475 			off = insn->imm;
16476 
16477 		/* unconditional jump with single edge */
16478 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
16479 		if (ret)
16480 			return ret;
16481 
16482 		mark_prune_point(env, t + off + 1);
16483 		mark_jmp_point(env, t + off + 1);
16484 
16485 		return ret;
16486 
16487 	default:
16488 		/* conditional jump with two edges */
16489 		mark_prune_point(env, t);
16490 		if (is_may_goto_insn(insn))
16491 			mark_force_checkpoint(env, t);
16492 
16493 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
16494 		if (ret)
16495 			return ret;
16496 
16497 		return push_insn(t, t + insn->off + 1, BRANCH, env);
16498 	}
16499 }
16500 
16501 /* non-recursive depth-first-search to detect loops in BPF program
16502  * loop == back-edge in directed graph
16503  */
16504 static int check_cfg(struct bpf_verifier_env *env)
16505 {
16506 	int insn_cnt = env->prog->len;
16507 	int *insn_stack, *insn_state;
16508 	int ex_insn_beg, i, ret = 0;
16509 	bool ex_done = false;
16510 
16511 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
16512 	if (!insn_state)
16513 		return -ENOMEM;
16514 
16515 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
16516 	if (!insn_stack) {
16517 		kvfree(insn_state);
16518 		return -ENOMEM;
16519 	}
16520 
16521 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
16522 	insn_stack[0] = 0; /* 0 is the first instruction */
16523 	env->cfg.cur_stack = 1;
16524 
16525 walk_cfg:
16526 	while (env->cfg.cur_stack > 0) {
16527 		int t = insn_stack[env->cfg.cur_stack - 1];
16528 
16529 		ret = visit_insn(t, env);
16530 		switch (ret) {
16531 		case DONE_EXPLORING:
16532 			insn_state[t] = EXPLORED;
16533 			env->cfg.cur_stack--;
16534 			break;
16535 		case KEEP_EXPLORING:
16536 			break;
16537 		default:
16538 			if (ret > 0) {
16539 				verbose(env, "visit_insn internal bug\n");
16540 				ret = -EFAULT;
16541 			}
16542 			goto err_free;
16543 		}
16544 	}
16545 
16546 	if (env->cfg.cur_stack < 0) {
16547 		verbose(env, "pop stack internal bug\n");
16548 		ret = -EFAULT;
16549 		goto err_free;
16550 	}
16551 
16552 	if (env->exception_callback_subprog && !ex_done) {
16553 		ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
16554 
16555 		insn_state[ex_insn_beg] = DISCOVERED;
16556 		insn_stack[0] = ex_insn_beg;
16557 		env->cfg.cur_stack = 1;
16558 		ex_done = true;
16559 		goto walk_cfg;
16560 	}
16561 
16562 	for (i = 0; i < insn_cnt; i++) {
16563 		struct bpf_insn *insn = &env->prog->insnsi[i];
16564 
16565 		if (insn_state[i] != EXPLORED) {
16566 			verbose(env, "unreachable insn %d\n", i);
16567 			ret = -EINVAL;
16568 			goto err_free;
16569 		}
16570 		if (bpf_is_ldimm64(insn)) {
16571 			if (insn_state[i + 1] != 0) {
16572 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
16573 				ret = -EINVAL;
16574 				goto err_free;
16575 			}
16576 			i++; /* skip second half of ldimm64 */
16577 		}
16578 	}
16579 	ret = 0; /* cfg looks good */
16580 
16581 err_free:
16582 	kvfree(insn_state);
16583 	kvfree(insn_stack);
16584 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
16585 	return ret;
16586 }
16587 
16588 static int check_abnormal_return(struct bpf_verifier_env *env)
16589 {
16590 	int i;
16591 
16592 	for (i = 1; i < env->subprog_cnt; i++) {
16593 		if (env->subprog_info[i].has_ld_abs) {
16594 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
16595 			return -EINVAL;
16596 		}
16597 		if (env->subprog_info[i].has_tail_call) {
16598 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
16599 			return -EINVAL;
16600 		}
16601 	}
16602 	return 0;
16603 }
16604 
16605 /* The minimum supported BTF func info size */
16606 #define MIN_BPF_FUNCINFO_SIZE	8
16607 #define MAX_FUNCINFO_REC_SIZE	252
16608 
16609 static int check_btf_func_early(struct bpf_verifier_env *env,
16610 				const union bpf_attr *attr,
16611 				bpfptr_t uattr)
16612 {
16613 	u32 krec_size = sizeof(struct bpf_func_info);
16614 	const struct btf_type *type, *func_proto;
16615 	u32 i, nfuncs, urec_size, min_size;
16616 	struct bpf_func_info *krecord;
16617 	struct bpf_prog *prog;
16618 	const struct btf *btf;
16619 	u32 prev_offset = 0;
16620 	bpfptr_t urecord;
16621 	int ret = -ENOMEM;
16622 
16623 	nfuncs = attr->func_info_cnt;
16624 	if (!nfuncs) {
16625 		if (check_abnormal_return(env))
16626 			return -EINVAL;
16627 		return 0;
16628 	}
16629 
16630 	urec_size = attr->func_info_rec_size;
16631 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
16632 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
16633 	    urec_size % sizeof(u32)) {
16634 		verbose(env, "invalid func info rec size %u\n", urec_size);
16635 		return -EINVAL;
16636 	}
16637 
16638 	prog = env->prog;
16639 	btf = prog->aux->btf;
16640 
16641 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
16642 	min_size = min_t(u32, krec_size, urec_size);
16643 
16644 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
16645 	if (!krecord)
16646 		return -ENOMEM;
16647 
16648 	for (i = 0; i < nfuncs; i++) {
16649 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
16650 		if (ret) {
16651 			if (ret == -E2BIG) {
16652 				verbose(env, "nonzero tailing record in func info");
16653 				/* set the size kernel expects so loader can zero
16654 				 * out the rest of the record.
16655 				 */
16656 				if (copy_to_bpfptr_offset(uattr,
16657 							  offsetof(union bpf_attr, func_info_rec_size),
16658 							  &min_size, sizeof(min_size)))
16659 					ret = -EFAULT;
16660 			}
16661 			goto err_free;
16662 		}
16663 
16664 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
16665 			ret = -EFAULT;
16666 			goto err_free;
16667 		}
16668 
16669 		/* check insn_off */
16670 		ret = -EINVAL;
16671 		if (i == 0) {
16672 			if (krecord[i].insn_off) {
16673 				verbose(env,
16674 					"nonzero insn_off %u for the first func info record",
16675 					krecord[i].insn_off);
16676 				goto err_free;
16677 			}
16678 		} else if (krecord[i].insn_off <= prev_offset) {
16679 			verbose(env,
16680 				"same or smaller insn offset (%u) than previous func info record (%u)",
16681 				krecord[i].insn_off, prev_offset);
16682 			goto err_free;
16683 		}
16684 
16685 		/* check type_id */
16686 		type = btf_type_by_id(btf, krecord[i].type_id);
16687 		if (!type || !btf_type_is_func(type)) {
16688 			verbose(env, "invalid type id %d in func info",
16689 				krecord[i].type_id);
16690 			goto err_free;
16691 		}
16692 
16693 		func_proto = btf_type_by_id(btf, type->type);
16694 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
16695 			/* btf_func_check() already verified it during BTF load */
16696 			goto err_free;
16697 
16698 		prev_offset = krecord[i].insn_off;
16699 		bpfptr_add(&urecord, urec_size);
16700 	}
16701 
16702 	prog->aux->func_info = krecord;
16703 	prog->aux->func_info_cnt = nfuncs;
16704 	return 0;
16705 
16706 err_free:
16707 	kvfree(krecord);
16708 	return ret;
16709 }
16710 
16711 static int check_btf_func(struct bpf_verifier_env *env,
16712 			  const union bpf_attr *attr,
16713 			  bpfptr_t uattr)
16714 {
16715 	const struct btf_type *type, *func_proto, *ret_type;
16716 	u32 i, nfuncs, urec_size;
16717 	struct bpf_func_info *krecord;
16718 	struct bpf_func_info_aux *info_aux = NULL;
16719 	struct bpf_prog *prog;
16720 	const struct btf *btf;
16721 	bpfptr_t urecord;
16722 	bool scalar_return;
16723 	int ret = -ENOMEM;
16724 
16725 	nfuncs = attr->func_info_cnt;
16726 	if (!nfuncs) {
16727 		if (check_abnormal_return(env))
16728 			return -EINVAL;
16729 		return 0;
16730 	}
16731 	if (nfuncs != env->subprog_cnt) {
16732 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
16733 		return -EINVAL;
16734 	}
16735 
16736 	urec_size = attr->func_info_rec_size;
16737 
16738 	prog = env->prog;
16739 	btf = prog->aux->btf;
16740 
16741 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
16742 
16743 	krecord = prog->aux->func_info;
16744 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
16745 	if (!info_aux)
16746 		return -ENOMEM;
16747 
16748 	for (i = 0; i < nfuncs; i++) {
16749 		/* check insn_off */
16750 		ret = -EINVAL;
16751 
16752 		if (env->subprog_info[i].start != krecord[i].insn_off) {
16753 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
16754 			goto err_free;
16755 		}
16756 
16757 		/* Already checked type_id */
16758 		type = btf_type_by_id(btf, krecord[i].type_id);
16759 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
16760 		/* Already checked func_proto */
16761 		func_proto = btf_type_by_id(btf, type->type);
16762 
16763 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
16764 		scalar_return =
16765 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
16766 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
16767 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
16768 			goto err_free;
16769 		}
16770 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
16771 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
16772 			goto err_free;
16773 		}
16774 
16775 		bpfptr_add(&urecord, urec_size);
16776 	}
16777 
16778 	prog->aux->func_info_aux = info_aux;
16779 	return 0;
16780 
16781 err_free:
16782 	kfree(info_aux);
16783 	return ret;
16784 }
16785 
16786 static void adjust_btf_func(struct bpf_verifier_env *env)
16787 {
16788 	struct bpf_prog_aux *aux = env->prog->aux;
16789 	int i;
16790 
16791 	if (!aux->func_info)
16792 		return;
16793 
16794 	/* func_info is not available for hidden subprogs */
16795 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
16796 		aux->func_info[i].insn_off = env->subprog_info[i].start;
16797 }
16798 
16799 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
16800 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
16801 
16802 static int check_btf_line(struct bpf_verifier_env *env,
16803 			  const union bpf_attr *attr,
16804 			  bpfptr_t uattr)
16805 {
16806 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
16807 	struct bpf_subprog_info *sub;
16808 	struct bpf_line_info *linfo;
16809 	struct bpf_prog *prog;
16810 	const struct btf *btf;
16811 	bpfptr_t ulinfo;
16812 	int err;
16813 
16814 	nr_linfo = attr->line_info_cnt;
16815 	if (!nr_linfo)
16816 		return 0;
16817 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
16818 		return -EINVAL;
16819 
16820 	rec_size = attr->line_info_rec_size;
16821 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
16822 	    rec_size > MAX_LINEINFO_REC_SIZE ||
16823 	    rec_size & (sizeof(u32) - 1))
16824 		return -EINVAL;
16825 
16826 	/* Need to zero it in case the userspace may
16827 	 * pass in a smaller bpf_line_info object.
16828 	 */
16829 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
16830 			 GFP_KERNEL | __GFP_NOWARN);
16831 	if (!linfo)
16832 		return -ENOMEM;
16833 
16834 	prog = env->prog;
16835 	btf = prog->aux->btf;
16836 
16837 	s = 0;
16838 	sub = env->subprog_info;
16839 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
16840 	expected_size = sizeof(struct bpf_line_info);
16841 	ncopy = min_t(u32, expected_size, rec_size);
16842 	for (i = 0; i < nr_linfo; i++) {
16843 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
16844 		if (err) {
16845 			if (err == -E2BIG) {
16846 				verbose(env, "nonzero tailing record in line_info");
16847 				if (copy_to_bpfptr_offset(uattr,
16848 							  offsetof(union bpf_attr, line_info_rec_size),
16849 							  &expected_size, sizeof(expected_size)))
16850 					err = -EFAULT;
16851 			}
16852 			goto err_free;
16853 		}
16854 
16855 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
16856 			err = -EFAULT;
16857 			goto err_free;
16858 		}
16859 
16860 		/*
16861 		 * Check insn_off to ensure
16862 		 * 1) strictly increasing AND
16863 		 * 2) bounded by prog->len
16864 		 *
16865 		 * The linfo[0].insn_off == 0 check logically falls into
16866 		 * the later "missing bpf_line_info for func..." case
16867 		 * because the first linfo[0].insn_off must be the
16868 		 * first sub also and the first sub must have
16869 		 * subprog_info[0].start == 0.
16870 		 */
16871 		if ((i && linfo[i].insn_off <= prev_offset) ||
16872 		    linfo[i].insn_off >= prog->len) {
16873 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
16874 				i, linfo[i].insn_off, prev_offset,
16875 				prog->len);
16876 			err = -EINVAL;
16877 			goto err_free;
16878 		}
16879 
16880 		if (!prog->insnsi[linfo[i].insn_off].code) {
16881 			verbose(env,
16882 				"Invalid insn code at line_info[%u].insn_off\n",
16883 				i);
16884 			err = -EINVAL;
16885 			goto err_free;
16886 		}
16887 
16888 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
16889 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
16890 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
16891 			err = -EINVAL;
16892 			goto err_free;
16893 		}
16894 
16895 		if (s != env->subprog_cnt) {
16896 			if (linfo[i].insn_off == sub[s].start) {
16897 				sub[s].linfo_idx = i;
16898 				s++;
16899 			} else if (sub[s].start < linfo[i].insn_off) {
16900 				verbose(env, "missing bpf_line_info for func#%u\n", s);
16901 				err = -EINVAL;
16902 				goto err_free;
16903 			}
16904 		}
16905 
16906 		prev_offset = linfo[i].insn_off;
16907 		bpfptr_add(&ulinfo, rec_size);
16908 	}
16909 
16910 	if (s != env->subprog_cnt) {
16911 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
16912 			env->subprog_cnt - s, s);
16913 		err = -EINVAL;
16914 		goto err_free;
16915 	}
16916 
16917 	prog->aux->linfo = linfo;
16918 	prog->aux->nr_linfo = nr_linfo;
16919 
16920 	return 0;
16921 
16922 err_free:
16923 	kvfree(linfo);
16924 	return err;
16925 }
16926 
16927 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
16928 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
16929 
16930 static int check_core_relo(struct bpf_verifier_env *env,
16931 			   const union bpf_attr *attr,
16932 			   bpfptr_t uattr)
16933 {
16934 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
16935 	struct bpf_core_relo core_relo = {};
16936 	struct bpf_prog *prog = env->prog;
16937 	const struct btf *btf = prog->aux->btf;
16938 	struct bpf_core_ctx ctx = {
16939 		.log = &env->log,
16940 		.btf = btf,
16941 	};
16942 	bpfptr_t u_core_relo;
16943 	int err;
16944 
16945 	nr_core_relo = attr->core_relo_cnt;
16946 	if (!nr_core_relo)
16947 		return 0;
16948 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
16949 		return -EINVAL;
16950 
16951 	rec_size = attr->core_relo_rec_size;
16952 	if (rec_size < MIN_CORE_RELO_SIZE ||
16953 	    rec_size > MAX_CORE_RELO_SIZE ||
16954 	    rec_size % sizeof(u32))
16955 		return -EINVAL;
16956 
16957 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
16958 	expected_size = sizeof(struct bpf_core_relo);
16959 	ncopy = min_t(u32, expected_size, rec_size);
16960 
16961 	/* Unlike func_info and line_info, copy and apply each CO-RE
16962 	 * relocation record one at a time.
16963 	 */
16964 	for (i = 0; i < nr_core_relo; i++) {
16965 		/* future proofing when sizeof(bpf_core_relo) changes */
16966 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
16967 		if (err) {
16968 			if (err == -E2BIG) {
16969 				verbose(env, "nonzero tailing record in core_relo");
16970 				if (copy_to_bpfptr_offset(uattr,
16971 							  offsetof(union bpf_attr, core_relo_rec_size),
16972 							  &expected_size, sizeof(expected_size)))
16973 					err = -EFAULT;
16974 			}
16975 			break;
16976 		}
16977 
16978 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
16979 			err = -EFAULT;
16980 			break;
16981 		}
16982 
16983 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
16984 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
16985 				i, core_relo.insn_off, prog->len);
16986 			err = -EINVAL;
16987 			break;
16988 		}
16989 
16990 		err = bpf_core_apply(&ctx, &core_relo, i,
16991 				     &prog->insnsi[core_relo.insn_off / 8]);
16992 		if (err)
16993 			break;
16994 		bpfptr_add(&u_core_relo, rec_size);
16995 	}
16996 	return err;
16997 }
16998 
16999 static int check_btf_info_early(struct bpf_verifier_env *env,
17000 				const union bpf_attr *attr,
17001 				bpfptr_t uattr)
17002 {
17003 	struct btf *btf;
17004 	int err;
17005 
17006 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
17007 		if (check_abnormal_return(env))
17008 			return -EINVAL;
17009 		return 0;
17010 	}
17011 
17012 	btf = btf_get_by_fd(attr->prog_btf_fd);
17013 	if (IS_ERR(btf))
17014 		return PTR_ERR(btf);
17015 	if (btf_is_kernel(btf)) {
17016 		btf_put(btf);
17017 		return -EACCES;
17018 	}
17019 	env->prog->aux->btf = btf;
17020 
17021 	err = check_btf_func_early(env, attr, uattr);
17022 	if (err)
17023 		return err;
17024 	return 0;
17025 }
17026 
17027 static int check_btf_info(struct bpf_verifier_env *env,
17028 			  const union bpf_attr *attr,
17029 			  bpfptr_t uattr)
17030 {
17031 	int err;
17032 
17033 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
17034 		if (check_abnormal_return(env))
17035 			return -EINVAL;
17036 		return 0;
17037 	}
17038 
17039 	err = check_btf_func(env, attr, uattr);
17040 	if (err)
17041 		return err;
17042 
17043 	err = check_btf_line(env, attr, uattr);
17044 	if (err)
17045 		return err;
17046 
17047 	err = check_core_relo(env, attr, uattr);
17048 	if (err)
17049 		return err;
17050 
17051 	return 0;
17052 }
17053 
17054 /* check %cur's range satisfies %old's */
17055 static bool range_within(const struct bpf_reg_state *old,
17056 			 const struct bpf_reg_state *cur)
17057 {
17058 	return old->umin_value <= cur->umin_value &&
17059 	       old->umax_value >= cur->umax_value &&
17060 	       old->smin_value <= cur->smin_value &&
17061 	       old->smax_value >= cur->smax_value &&
17062 	       old->u32_min_value <= cur->u32_min_value &&
17063 	       old->u32_max_value >= cur->u32_max_value &&
17064 	       old->s32_min_value <= cur->s32_min_value &&
17065 	       old->s32_max_value >= cur->s32_max_value;
17066 }
17067 
17068 /* If in the old state two registers had the same id, then they need to have
17069  * the same id in the new state as well.  But that id could be different from
17070  * the old state, so we need to track the mapping from old to new ids.
17071  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
17072  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
17073  * regs with a different old id could still have new id 9, we don't care about
17074  * that.
17075  * So we look through our idmap to see if this old id has been seen before.  If
17076  * so, we require the new id to match; otherwise, we add the id pair to the map.
17077  */
17078 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
17079 {
17080 	struct bpf_id_pair *map = idmap->map;
17081 	unsigned int i;
17082 
17083 	/* either both IDs should be set or both should be zero */
17084 	if (!!old_id != !!cur_id)
17085 		return false;
17086 
17087 	if (old_id == 0) /* cur_id == 0 as well */
17088 		return true;
17089 
17090 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
17091 		if (!map[i].old) {
17092 			/* Reached an empty slot; haven't seen this id before */
17093 			map[i].old = old_id;
17094 			map[i].cur = cur_id;
17095 			return true;
17096 		}
17097 		if (map[i].old == old_id)
17098 			return map[i].cur == cur_id;
17099 		if (map[i].cur == cur_id)
17100 			return false;
17101 	}
17102 	/* We ran out of idmap slots, which should be impossible */
17103 	WARN_ON_ONCE(1);
17104 	return false;
17105 }
17106 
17107 /* Similar to check_ids(), but allocate a unique temporary ID
17108  * for 'old_id' or 'cur_id' of zero.
17109  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
17110  */
17111 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
17112 {
17113 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
17114 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
17115 
17116 	return check_ids(old_id, cur_id, idmap);
17117 }
17118 
17119 static void clean_func_state(struct bpf_verifier_env *env,
17120 			     struct bpf_func_state *st)
17121 {
17122 	enum bpf_reg_liveness live;
17123 	int i, j;
17124 
17125 	for (i = 0; i < BPF_REG_FP; i++) {
17126 		live = st->regs[i].live;
17127 		/* liveness must not touch this register anymore */
17128 		st->regs[i].live |= REG_LIVE_DONE;
17129 		if (!(live & REG_LIVE_READ))
17130 			/* since the register is unused, clear its state
17131 			 * to make further comparison simpler
17132 			 */
17133 			__mark_reg_not_init(env, &st->regs[i]);
17134 	}
17135 
17136 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
17137 		live = st->stack[i].spilled_ptr.live;
17138 		/* liveness must not touch this stack slot anymore */
17139 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
17140 		if (!(live & REG_LIVE_READ)) {
17141 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
17142 			for (j = 0; j < BPF_REG_SIZE; j++)
17143 				st->stack[i].slot_type[j] = STACK_INVALID;
17144 		}
17145 	}
17146 }
17147 
17148 static void clean_verifier_state(struct bpf_verifier_env *env,
17149 				 struct bpf_verifier_state *st)
17150 {
17151 	int i;
17152 
17153 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
17154 		/* all regs in this state in all frames were already marked */
17155 		return;
17156 
17157 	for (i = 0; i <= st->curframe; i++)
17158 		clean_func_state(env, st->frame[i]);
17159 }
17160 
17161 /* the parentage chains form a tree.
17162  * the verifier states are added to state lists at given insn and
17163  * pushed into state stack for future exploration.
17164  * when the verifier reaches bpf_exit insn some of the verifer states
17165  * stored in the state lists have their final liveness state already,
17166  * but a lot of states will get revised from liveness point of view when
17167  * the verifier explores other branches.
17168  * Example:
17169  * 1: r0 = 1
17170  * 2: if r1 == 100 goto pc+1
17171  * 3: r0 = 2
17172  * 4: exit
17173  * when the verifier reaches exit insn the register r0 in the state list of
17174  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
17175  * of insn 2 and goes exploring further. At the insn 4 it will walk the
17176  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
17177  *
17178  * Since the verifier pushes the branch states as it sees them while exploring
17179  * the program the condition of walking the branch instruction for the second
17180  * time means that all states below this branch were already explored and
17181  * their final liveness marks are already propagated.
17182  * Hence when the verifier completes the search of state list in is_state_visited()
17183  * we can call this clean_live_states() function to mark all liveness states
17184  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
17185  * will not be used.
17186  * This function also clears the registers and stack for states that !READ
17187  * to simplify state merging.
17188  *
17189  * Important note here that walking the same branch instruction in the callee
17190  * doesn't meant that the states are DONE. The verifier has to compare
17191  * the callsites
17192  */
17193 static void clean_live_states(struct bpf_verifier_env *env, int insn,
17194 			      struct bpf_verifier_state *cur)
17195 {
17196 	struct bpf_verifier_state_list *sl;
17197 
17198 	sl = *explored_state(env, insn);
17199 	while (sl) {
17200 		if (sl->state.branches)
17201 			goto next;
17202 		if (sl->state.insn_idx != insn ||
17203 		    !same_callsites(&sl->state, cur))
17204 			goto next;
17205 		clean_verifier_state(env, &sl->state);
17206 next:
17207 		sl = sl->next;
17208 	}
17209 }
17210 
17211 static bool regs_exact(const struct bpf_reg_state *rold,
17212 		       const struct bpf_reg_state *rcur,
17213 		       struct bpf_idmap *idmap)
17214 {
17215 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
17216 	       check_ids(rold->id, rcur->id, idmap) &&
17217 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
17218 }
17219 
17220 enum exact_level {
17221 	NOT_EXACT,
17222 	EXACT,
17223 	RANGE_WITHIN
17224 };
17225 
17226 /* Returns true if (rold safe implies rcur safe) */
17227 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
17228 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap,
17229 		    enum exact_level exact)
17230 {
17231 	if (exact == EXACT)
17232 		return regs_exact(rold, rcur, idmap);
17233 
17234 	if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT)
17235 		/* explored state didn't use this */
17236 		return true;
17237 	if (rold->type == NOT_INIT) {
17238 		if (exact == NOT_EXACT || rcur->type == NOT_INIT)
17239 			/* explored state can't have used this */
17240 			return true;
17241 	}
17242 
17243 	/* Enforce that register types have to match exactly, including their
17244 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
17245 	 * rule.
17246 	 *
17247 	 * One can make a point that using a pointer register as unbounded
17248 	 * SCALAR would be technically acceptable, but this could lead to
17249 	 * pointer leaks because scalars are allowed to leak while pointers
17250 	 * are not. We could make this safe in special cases if root is
17251 	 * calling us, but it's probably not worth the hassle.
17252 	 *
17253 	 * Also, register types that are *not* MAYBE_NULL could technically be
17254 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
17255 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
17256 	 * to the same map).
17257 	 * However, if the old MAYBE_NULL register then got NULL checked,
17258 	 * doing so could have affected others with the same id, and we can't
17259 	 * check for that because we lost the id when we converted to
17260 	 * a non-MAYBE_NULL variant.
17261 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
17262 	 * non-MAYBE_NULL registers as well.
17263 	 */
17264 	if (rold->type != rcur->type)
17265 		return false;
17266 
17267 	switch (base_type(rold->type)) {
17268 	case SCALAR_VALUE:
17269 		if (env->explore_alu_limits) {
17270 			/* explore_alu_limits disables tnum_in() and range_within()
17271 			 * logic and requires everything to be strict
17272 			 */
17273 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
17274 			       check_scalar_ids(rold->id, rcur->id, idmap);
17275 		}
17276 		if (!rold->precise && exact == NOT_EXACT)
17277 			return true;
17278 		if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST))
17279 			return false;
17280 		if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off))
17281 			return false;
17282 		/* Why check_ids() for scalar registers?
17283 		 *
17284 		 * Consider the following BPF code:
17285 		 *   1: r6 = ... unbound scalar, ID=a ...
17286 		 *   2: r7 = ... unbound scalar, ID=b ...
17287 		 *   3: if (r6 > r7) goto +1
17288 		 *   4: r6 = r7
17289 		 *   5: if (r6 > X) goto ...
17290 		 *   6: ... memory operation using r7 ...
17291 		 *
17292 		 * First verification path is [1-6]:
17293 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
17294 		 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark
17295 		 *   r7 <= X, because r6 and r7 share same id.
17296 		 * Next verification path is [1-4, 6].
17297 		 *
17298 		 * Instruction (6) would be reached in two states:
17299 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
17300 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
17301 		 *
17302 		 * Use check_ids() to distinguish these states.
17303 		 * ---
17304 		 * Also verify that new value satisfies old value range knowledge.
17305 		 */
17306 		return range_within(rold, rcur) &&
17307 		       tnum_in(rold->var_off, rcur->var_off) &&
17308 		       check_scalar_ids(rold->id, rcur->id, idmap);
17309 	case PTR_TO_MAP_KEY:
17310 	case PTR_TO_MAP_VALUE:
17311 	case PTR_TO_MEM:
17312 	case PTR_TO_BUF:
17313 	case PTR_TO_TP_BUFFER:
17314 		/* If the new min/max/var_off satisfy the old ones and
17315 		 * everything else matches, we are OK.
17316 		 */
17317 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
17318 		       range_within(rold, rcur) &&
17319 		       tnum_in(rold->var_off, rcur->var_off) &&
17320 		       check_ids(rold->id, rcur->id, idmap) &&
17321 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
17322 	case PTR_TO_PACKET_META:
17323 	case PTR_TO_PACKET:
17324 		/* We must have at least as much range as the old ptr
17325 		 * did, so that any accesses which were safe before are
17326 		 * still safe.  This is true even if old range < old off,
17327 		 * since someone could have accessed through (ptr - k), or
17328 		 * even done ptr -= k in a register, to get a safe access.
17329 		 */
17330 		if (rold->range > rcur->range)
17331 			return false;
17332 		/* If the offsets don't match, we can't trust our alignment;
17333 		 * nor can we be sure that we won't fall out of range.
17334 		 */
17335 		if (rold->off != rcur->off)
17336 			return false;
17337 		/* id relations must be preserved */
17338 		if (!check_ids(rold->id, rcur->id, idmap))
17339 			return false;
17340 		/* new val must satisfy old val knowledge */
17341 		return range_within(rold, rcur) &&
17342 		       tnum_in(rold->var_off, rcur->var_off);
17343 	case PTR_TO_STACK:
17344 		/* two stack pointers are equal only if they're pointing to
17345 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
17346 		 */
17347 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
17348 	case PTR_TO_ARENA:
17349 		return true;
17350 	default:
17351 		return regs_exact(rold, rcur, idmap);
17352 	}
17353 }
17354 
17355 static struct bpf_reg_state unbound_reg;
17356 
17357 static __init int unbound_reg_init(void)
17358 {
17359 	__mark_reg_unknown_imprecise(&unbound_reg);
17360 	unbound_reg.live |= REG_LIVE_READ;
17361 	return 0;
17362 }
17363 late_initcall(unbound_reg_init);
17364 
17365 static bool is_stack_all_misc(struct bpf_verifier_env *env,
17366 			      struct bpf_stack_state *stack)
17367 {
17368 	u32 i;
17369 
17370 	for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) {
17371 		if ((stack->slot_type[i] == STACK_MISC) ||
17372 		    (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack))
17373 			continue;
17374 		return false;
17375 	}
17376 
17377 	return true;
17378 }
17379 
17380 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env,
17381 						  struct bpf_stack_state *stack)
17382 {
17383 	if (is_spilled_scalar_reg64(stack))
17384 		return &stack->spilled_ptr;
17385 
17386 	if (is_stack_all_misc(env, stack))
17387 		return &unbound_reg;
17388 
17389 	return NULL;
17390 }
17391 
17392 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
17393 		      struct bpf_func_state *cur, struct bpf_idmap *idmap,
17394 		      enum exact_level exact)
17395 {
17396 	int i, spi;
17397 
17398 	/* walk slots of the explored stack and ignore any additional
17399 	 * slots in the current stack, since explored(safe) state
17400 	 * didn't use them
17401 	 */
17402 	for (i = 0; i < old->allocated_stack; i++) {
17403 		struct bpf_reg_state *old_reg, *cur_reg;
17404 
17405 		spi = i / BPF_REG_SIZE;
17406 
17407 		if (exact != NOT_EXACT &&
17408 		    (i >= cur->allocated_stack ||
17409 		     old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
17410 		     cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
17411 			return false;
17412 
17413 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)
17414 		    && exact == NOT_EXACT) {
17415 			i += BPF_REG_SIZE - 1;
17416 			/* explored state didn't use this */
17417 			continue;
17418 		}
17419 
17420 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
17421 			continue;
17422 
17423 		if (env->allow_uninit_stack &&
17424 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
17425 			continue;
17426 
17427 		/* explored stack has more populated slots than current stack
17428 		 * and these slots were used
17429 		 */
17430 		if (i >= cur->allocated_stack)
17431 			return false;
17432 
17433 		/* 64-bit scalar spill vs all slots MISC and vice versa.
17434 		 * Load from all slots MISC produces unbound scalar.
17435 		 * Construct a fake register for such stack and call
17436 		 * regsafe() to ensure scalar ids are compared.
17437 		 */
17438 		old_reg = scalar_reg_for_stack(env, &old->stack[spi]);
17439 		cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]);
17440 		if (old_reg && cur_reg) {
17441 			if (!regsafe(env, old_reg, cur_reg, idmap, exact))
17442 				return false;
17443 			i += BPF_REG_SIZE - 1;
17444 			continue;
17445 		}
17446 
17447 		/* if old state was safe with misc data in the stack
17448 		 * it will be safe with zero-initialized stack.
17449 		 * The opposite is not true
17450 		 */
17451 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
17452 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
17453 			continue;
17454 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
17455 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
17456 			/* Ex: old explored (safe) state has STACK_SPILL in
17457 			 * this stack slot, but current has STACK_MISC ->
17458 			 * this verifier states are not equivalent,
17459 			 * return false to continue verification of this path
17460 			 */
17461 			return false;
17462 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
17463 			continue;
17464 		/* Both old and cur are having same slot_type */
17465 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
17466 		case STACK_SPILL:
17467 			/* when explored and current stack slot are both storing
17468 			 * spilled registers, check that stored pointers types
17469 			 * are the same as well.
17470 			 * Ex: explored safe path could have stored
17471 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
17472 			 * but current path has stored:
17473 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
17474 			 * such verifier states are not equivalent.
17475 			 * return false to continue verification of this path
17476 			 */
17477 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
17478 				     &cur->stack[spi].spilled_ptr, idmap, exact))
17479 				return false;
17480 			break;
17481 		case STACK_DYNPTR:
17482 			old_reg = &old->stack[spi].spilled_ptr;
17483 			cur_reg = &cur->stack[spi].spilled_ptr;
17484 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
17485 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
17486 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
17487 				return false;
17488 			break;
17489 		case STACK_ITER:
17490 			old_reg = &old->stack[spi].spilled_ptr;
17491 			cur_reg = &cur->stack[spi].spilled_ptr;
17492 			/* iter.depth is not compared between states as it
17493 			 * doesn't matter for correctness and would otherwise
17494 			 * prevent convergence; we maintain it only to prevent
17495 			 * infinite loop check triggering, see
17496 			 * iter_active_depths_differ()
17497 			 */
17498 			if (old_reg->iter.btf != cur_reg->iter.btf ||
17499 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
17500 			    old_reg->iter.state != cur_reg->iter.state ||
17501 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
17502 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
17503 				return false;
17504 			break;
17505 		case STACK_MISC:
17506 		case STACK_ZERO:
17507 		case STACK_INVALID:
17508 			continue;
17509 		/* Ensure that new unhandled slot types return false by default */
17510 		default:
17511 			return false;
17512 		}
17513 	}
17514 	return true;
17515 }
17516 
17517 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
17518 		    struct bpf_idmap *idmap)
17519 {
17520 	int i;
17521 
17522 	if (old->acquired_refs != cur->acquired_refs)
17523 		return false;
17524 
17525 	for (i = 0; i < old->acquired_refs; i++) {
17526 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
17527 			return false;
17528 	}
17529 
17530 	return true;
17531 }
17532 
17533 /* compare two verifier states
17534  *
17535  * all states stored in state_list are known to be valid, since
17536  * verifier reached 'bpf_exit' instruction through them
17537  *
17538  * this function is called when verifier exploring different branches of
17539  * execution popped from the state stack. If it sees an old state that has
17540  * more strict register state and more strict stack state then this execution
17541  * branch doesn't need to be explored further, since verifier already
17542  * concluded that more strict state leads to valid finish.
17543  *
17544  * Therefore two states are equivalent if register state is more conservative
17545  * and explored stack state is more conservative than the current one.
17546  * Example:
17547  *       explored                   current
17548  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
17549  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
17550  *
17551  * In other words if current stack state (one being explored) has more
17552  * valid slots than old one that already passed validation, it means
17553  * the verifier can stop exploring and conclude that current state is valid too
17554  *
17555  * Similarly with registers. If explored state has register type as invalid
17556  * whereas register type in current state is meaningful, it means that
17557  * the current state will reach 'bpf_exit' instruction safely
17558  */
17559 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
17560 			      struct bpf_func_state *cur, enum exact_level exact)
17561 {
17562 	int i;
17563 
17564 	if (old->callback_depth > cur->callback_depth)
17565 		return false;
17566 
17567 	for (i = 0; i < MAX_BPF_REG; i++)
17568 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
17569 			     &env->idmap_scratch, exact))
17570 			return false;
17571 
17572 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
17573 		return false;
17574 
17575 	if (!refsafe(old, cur, &env->idmap_scratch))
17576 		return false;
17577 
17578 	return true;
17579 }
17580 
17581 static void reset_idmap_scratch(struct bpf_verifier_env *env)
17582 {
17583 	env->idmap_scratch.tmp_id_gen = env->id_gen;
17584 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
17585 }
17586 
17587 static bool states_equal(struct bpf_verifier_env *env,
17588 			 struct bpf_verifier_state *old,
17589 			 struct bpf_verifier_state *cur,
17590 			 enum exact_level exact)
17591 {
17592 	int i;
17593 
17594 	if (old->curframe != cur->curframe)
17595 		return false;
17596 
17597 	reset_idmap_scratch(env);
17598 
17599 	/* Verification state from speculative execution simulation
17600 	 * must never prune a non-speculative execution one.
17601 	 */
17602 	if (old->speculative && !cur->speculative)
17603 		return false;
17604 
17605 	if (old->active_lock.ptr != cur->active_lock.ptr)
17606 		return false;
17607 
17608 	/* Old and cur active_lock's have to be either both present
17609 	 * or both absent.
17610 	 */
17611 	if (!!old->active_lock.id != !!cur->active_lock.id)
17612 		return false;
17613 
17614 	if (old->active_lock.id &&
17615 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
17616 		return false;
17617 
17618 	if (old->active_rcu_lock != cur->active_rcu_lock)
17619 		return false;
17620 
17621 	if (old->active_preempt_lock != cur->active_preempt_lock)
17622 		return false;
17623 
17624 	if (old->in_sleepable != cur->in_sleepable)
17625 		return false;
17626 
17627 	/* for states to be equal callsites have to be the same
17628 	 * and all frame states need to be equivalent
17629 	 */
17630 	for (i = 0; i <= old->curframe; i++) {
17631 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
17632 			return false;
17633 		if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
17634 			return false;
17635 	}
17636 	return true;
17637 }
17638 
17639 /* Return 0 if no propagation happened. Return negative error code if error
17640  * happened. Otherwise, return the propagated bit.
17641  */
17642 static int propagate_liveness_reg(struct bpf_verifier_env *env,
17643 				  struct bpf_reg_state *reg,
17644 				  struct bpf_reg_state *parent_reg)
17645 {
17646 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
17647 	u8 flag = reg->live & REG_LIVE_READ;
17648 	int err;
17649 
17650 	/* When comes here, read flags of PARENT_REG or REG could be any of
17651 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
17652 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
17653 	 */
17654 	if (parent_flag == REG_LIVE_READ64 ||
17655 	    /* Or if there is no read flag from REG. */
17656 	    !flag ||
17657 	    /* Or if the read flag from REG is the same as PARENT_REG. */
17658 	    parent_flag == flag)
17659 		return 0;
17660 
17661 	err = mark_reg_read(env, reg, parent_reg, flag);
17662 	if (err)
17663 		return err;
17664 
17665 	return flag;
17666 }
17667 
17668 /* A write screens off any subsequent reads; but write marks come from the
17669  * straight-line code between a state and its parent.  When we arrive at an
17670  * equivalent state (jump target or such) we didn't arrive by the straight-line
17671  * code, so read marks in the state must propagate to the parent regardless
17672  * of the state's write marks. That's what 'parent == state->parent' comparison
17673  * in mark_reg_read() is for.
17674  */
17675 static int propagate_liveness(struct bpf_verifier_env *env,
17676 			      const struct bpf_verifier_state *vstate,
17677 			      struct bpf_verifier_state *vparent)
17678 {
17679 	struct bpf_reg_state *state_reg, *parent_reg;
17680 	struct bpf_func_state *state, *parent;
17681 	int i, frame, err = 0;
17682 
17683 	if (vparent->curframe != vstate->curframe) {
17684 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
17685 		     vparent->curframe, vstate->curframe);
17686 		return -EFAULT;
17687 	}
17688 	/* Propagate read liveness of registers... */
17689 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
17690 	for (frame = 0; frame <= vstate->curframe; frame++) {
17691 		parent = vparent->frame[frame];
17692 		state = vstate->frame[frame];
17693 		parent_reg = parent->regs;
17694 		state_reg = state->regs;
17695 		/* We don't need to worry about FP liveness, it's read-only */
17696 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
17697 			err = propagate_liveness_reg(env, &state_reg[i],
17698 						     &parent_reg[i]);
17699 			if (err < 0)
17700 				return err;
17701 			if (err == REG_LIVE_READ64)
17702 				mark_insn_zext(env, &parent_reg[i]);
17703 		}
17704 
17705 		/* Propagate stack slots. */
17706 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
17707 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
17708 			parent_reg = &parent->stack[i].spilled_ptr;
17709 			state_reg = &state->stack[i].spilled_ptr;
17710 			err = propagate_liveness_reg(env, state_reg,
17711 						     parent_reg);
17712 			if (err < 0)
17713 				return err;
17714 		}
17715 	}
17716 	return 0;
17717 }
17718 
17719 /* find precise scalars in the previous equivalent state and
17720  * propagate them into the current state
17721  */
17722 static int propagate_precision(struct bpf_verifier_env *env,
17723 			       const struct bpf_verifier_state *old)
17724 {
17725 	struct bpf_reg_state *state_reg;
17726 	struct bpf_func_state *state;
17727 	int i, err = 0, fr;
17728 	bool first;
17729 
17730 	for (fr = old->curframe; fr >= 0; fr--) {
17731 		state = old->frame[fr];
17732 		state_reg = state->regs;
17733 		first = true;
17734 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
17735 			if (state_reg->type != SCALAR_VALUE ||
17736 			    !state_reg->precise ||
17737 			    !(state_reg->live & REG_LIVE_READ))
17738 				continue;
17739 			if (env->log.level & BPF_LOG_LEVEL2) {
17740 				if (first)
17741 					verbose(env, "frame %d: propagating r%d", fr, i);
17742 				else
17743 					verbose(env, ",r%d", i);
17744 			}
17745 			bt_set_frame_reg(&env->bt, fr, i);
17746 			first = false;
17747 		}
17748 
17749 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
17750 			if (!is_spilled_reg(&state->stack[i]))
17751 				continue;
17752 			state_reg = &state->stack[i].spilled_ptr;
17753 			if (state_reg->type != SCALAR_VALUE ||
17754 			    !state_reg->precise ||
17755 			    !(state_reg->live & REG_LIVE_READ))
17756 				continue;
17757 			if (env->log.level & BPF_LOG_LEVEL2) {
17758 				if (first)
17759 					verbose(env, "frame %d: propagating fp%d",
17760 						fr, (-i - 1) * BPF_REG_SIZE);
17761 				else
17762 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
17763 			}
17764 			bt_set_frame_slot(&env->bt, fr, i);
17765 			first = false;
17766 		}
17767 		if (!first)
17768 			verbose(env, "\n");
17769 	}
17770 
17771 	err = mark_chain_precision_batch(env);
17772 	if (err < 0)
17773 		return err;
17774 
17775 	return 0;
17776 }
17777 
17778 static bool states_maybe_looping(struct bpf_verifier_state *old,
17779 				 struct bpf_verifier_state *cur)
17780 {
17781 	struct bpf_func_state *fold, *fcur;
17782 	int i, fr = cur->curframe;
17783 
17784 	if (old->curframe != fr)
17785 		return false;
17786 
17787 	fold = old->frame[fr];
17788 	fcur = cur->frame[fr];
17789 	for (i = 0; i < MAX_BPF_REG; i++)
17790 		if (memcmp(&fold->regs[i], &fcur->regs[i],
17791 			   offsetof(struct bpf_reg_state, parent)))
17792 			return false;
17793 	return true;
17794 }
17795 
17796 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
17797 {
17798 	return env->insn_aux_data[insn_idx].is_iter_next;
17799 }
17800 
17801 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
17802  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
17803  * states to match, which otherwise would look like an infinite loop. So while
17804  * iter_next() calls are taken care of, we still need to be careful and
17805  * prevent erroneous and too eager declaration of "ininite loop", when
17806  * iterators are involved.
17807  *
17808  * Here's a situation in pseudo-BPF assembly form:
17809  *
17810  *   0: again:                          ; set up iter_next() call args
17811  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
17812  *   2:   call bpf_iter_num_next        ; this is iter_next() call
17813  *   3:   if r0 == 0 goto done
17814  *   4:   ... something useful here ...
17815  *   5:   goto again                    ; another iteration
17816  *   6: done:
17817  *   7:   r1 = &it
17818  *   8:   call bpf_iter_num_destroy     ; clean up iter state
17819  *   9:   exit
17820  *
17821  * This is a typical loop. Let's assume that we have a prune point at 1:,
17822  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
17823  * again`, assuming other heuristics don't get in a way).
17824  *
17825  * When we first time come to 1:, let's say we have some state X. We proceed
17826  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
17827  * Now we come back to validate that forked ACTIVE state. We proceed through
17828  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
17829  * are converging. But the problem is that we don't know that yet, as this
17830  * convergence has to happen at iter_next() call site only. So if nothing is
17831  * done, at 1: verifier will use bounded loop logic and declare infinite
17832  * looping (and would be *technically* correct, if not for iterator's
17833  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
17834  * don't want that. So what we do in process_iter_next_call() when we go on
17835  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
17836  * a different iteration. So when we suspect an infinite loop, we additionally
17837  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
17838  * pretend we are not looping and wait for next iter_next() call.
17839  *
17840  * This only applies to ACTIVE state. In DRAINED state we don't expect to
17841  * loop, because that would actually mean infinite loop, as DRAINED state is
17842  * "sticky", and so we'll keep returning into the same instruction with the
17843  * same state (at least in one of possible code paths).
17844  *
17845  * This approach allows to keep infinite loop heuristic even in the face of
17846  * active iterator. E.g., C snippet below is and will be detected as
17847  * inifintely looping:
17848  *
17849  *   struct bpf_iter_num it;
17850  *   int *p, x;
17851  *
17852  *   bpf_iter_num_new(&it, 0, 10);
17853  *   while ((p = bpf_iter_num_next(&t))) {
17854  *       x = p;
17855  *       while (x--) {} // <<-- infinite loop here
17856  *   }
17857  *
17858  */
17859 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
17860 {
17861 	struct bpf_reg_state *slot, *cur_slot;
17862 	struct bpf_func_state *state;
17863 	int i, fr;
17864 
17865 	for (fr = old->curframe; fr >= 0; fr--) {
17866 		state = old->frame[fr];
17867 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
17868 			if (state->stack[i].slot_type[0] != STACK_ITER)
17869 				continue;
17870 
17871 			slot = &state->stack[i].spilled_ptr;
17872 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
17873 				continue;
17874 
17875 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
17876 			if (cur_slot->iter.depth != slot->iter.depth)
17877 				return true;
17878 		}
17879 	}
17880 	return false;
17881 }
17882 
17883 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
17884 {
17885 	struct bpf_verifier_state_list *new_sl;
17886 	struct bpf_verifier_state_list *sl, **pprev;
17887 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
17888 	int i, j, n, err, states_cnt = 0;
17889 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
17890 	bool add_new_state = force_new_state;
17891 	bool force_exact;
17892 
17893 	/* bpf progs typically have pruning point every 4 instructions
17894 	 * http://vger.kernel.org/bpfconf2019.html#session-1
17895 	 * Do not add new state for future pruning if the verifier hasn't seen
17896 	 * at least 2 jumps and at least 8 instructions.
17897 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
17898 	 * In tests that amounts to up to 50% reduction into total verifier
17899 	 * memory consumption and 20% verifier time speedup.
17900 	 */
17901 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
17902 	    env->insn_processed - env->prev_insn_processed >= 8)
17903 		add_new_state = true;
17904 
17905 	pprev = explored_state(env, insn_idx);
17906 	sl = *pprev;
17907 
17908 	clean_live_states(env, insn_idx, cur);
17909 
17910 	while (sl) {
17911 		states_cnt++;
17912 		if (sl->state.insn_idx != insn_idx)
17913 			goto next;
17914 
17915 		if (sl->state.branches) {
17916 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
17917 
17918 			if (frame->in_async_callback_fn &&
17919 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
17920 				/* Different async_entry_cnt means that the verifier is
17921 				 * processing another entry into async callback.
17922 				 * Seeing the same state is not an indication of infinite
17923 				 * loop or infinite recursion.
17924 				 * But finding the same state doesn't mean that it's safe
17925 				 * to stop processing the current state. The previous state
17926 				 * hasn't yet reached bpf_exit, since state.branches > 0.
17927 				 * Checking in_async_callback_fn alone is not enough either.
17928 				 * Since the verifier still needs to catch infinite loops
17929 				 * inside async callbacks.
17930 				 */
17931 				goto skip_inf_loop_check;
17932 			}
17933 			/* BPF open-coded iterators loop detection is special.
17934 			 * states_maybe_looping() logic is too simplistic in detecting
17935 			 * states that *might* be equivalent, because it doesn't know
17936 			 * about ID remapping, so don't even perform it.
17937 			 * See process_iter_next_call() and iter_active_depths_differ()
17938 			 * for overview of the logic. When current and one of parent
17939 			 * states are detected as equivalent, it's a good thing: we prove
17940 			 * convergence and can stop simulating further iterations.
17941 			 * It's safe to assume that iterator loop will finish, taking into
17942 			 * account iter_next() contract of eventually returning
17943 			 * sticky NULL result.
17944 			 *
17945 			 * Note, that states have to be compared exactly in this case because
17946 			 * read and precision marks might not be finalized inside the loop.
17947 			 * E.g. as in the program below:
17948 			 *
17949 			 *     1. r7 = -16
17950 			 *     2. r6 = bpf_get_prandom_u32()
17951 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
17952 			 *     4.   if (r6 != 42) {
17953 			 *     5.     r7 = -32
17954 			 *     6.     r6 = bpf_get_prandom_u32()
17955 			 *     7.     continue
17956 			 *     8.   }
17957 			 *     9.   r0 = r10
17958 			 *    10.   r0 += r7
17959 			 *    11.   r8 = *(u64 *)(r0 + 0)
17960 			 *    12.   r6 = bpf_get_prandom_u32()
17961 			 *    13. }
17962 			 *
17963 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
17964 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
17965 			 * not have read or precision mark for r7 yet, thus inexact states
17966 			 * comparison would discard current state with r7=-32
17967 			 * => unsafe memory access at 11 would not be caught.
17968 			 */
17969 			if (is_iter_next_insn(env, insn_idx)) {
17970 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
17971 					struct bpf_func_state *cur_frame;
17972 					struct bpf_reg_state *iter_state, *iter_reg;
17973 					int spi;
17974 
17975 					cur_frame = cur->frame[cur->curframe];
17976 					/* btf_check_iter_kfuncs() enforces that
17977 					 * iter state pointer is always the first arg
17978 					 */
17979 					iter_reg = &cur_frame->regs[BPF_REG_1];
17980 					/* current state is valid due to states_equal(),
17981 					 * so we can assume valid iter and reg state,
17982 					 * no need for extra (re-)validations
17983 					 */
17984 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
17985 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
17986 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
17987 						update_loop_entry(cur, &sl->state);
17988 						goto hit;
17989 					}
17990 				}
17991 				goto skip_inf_loop_check;
17992 			}
17993 			if (is_may_goto_insn_at(env, insn_idx)) {
17994 				if (sl->state.may_goto_depth != cur->may_goto_depth &&
17995 				    states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
17996 					update_loop_entry(cur, &sl->state);
17997 					goto hit;
17998 				}
17999 			}
18000 			if (calls_callback(env, insn_idx)) {
18001 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN))
18002 					goto hit;
18003 				goto skip_inf_loop_check;
18004 			}
18005 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
18006 			if (states_maybe_looping(&sl->state, cur) &&
18007 			    states_equal(env, &sl->state, cur, EXACT) &&
18008 			    !iter_active_depths_differ(&sl->state, cur) &&
18009 			    sl->state.may_goto_depth == cur->may_goto_depth &&
18010 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
18011 				verbose_linfo(env, insn_idx, "; ");
18012 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
18013 				verbose(env, "cur state:");
18014 				print_verifier_state(env, cur->frame[cur->curframe], true);
18015 				verbose(env, "old state:");
18016 				print_verifier_state(env, sl->state.frame[cur->curframe], true);
18017 				return -EINVAL;
18018 			}
18019 			/* if the verifier is processing a loop, avoid adding new state
18020 			 * too often, since different loop iterations have distinct
18021 			 * states and may not help future pruning.
18022 			 * This threshold shouldn't be too low to make sure that
18023 			 * a loop with large bound will be rejected quickly.
18024 			 * The most abusive loop will be:
18025 			 * r1 += 1
18026 			 * if r1 < 1000000 goto pc-2
18027 			 * 1M insn_procssed limit / 100 == 10k peak states.
18028 			 * This threshold shouldn't be too high either, since states
18029 			 * at the end of the loop are likely to be useful in pruning.
18030 			 */
18031 skip_inf_loop_check:
18032 			if (!force_new_state &&
18033 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
18034 			    env->insn_processed - env->prev_insn_processed < 100)
18035 				add_new_state = false;
18036 			goto miss;
18037 		}
18038 		/* If sl->state is a part of a loop and this loop's entry is a part of
18039 		 * current verification path then states have to be compared exactly.
18040 		 * 'force_exact' is needed to catch the following case:
18041 		 *
18042 		 *                initial     Here state 'succ' was processed first,
18043 		 *                  |         it was eventually tracked to produce a
18044 		 *                  V         state identical to 'hdr'.
18045 		 *     .---------> hdr        All branches from 'succ' had been explored
18046 		 *     |            |         and thus 'succ' has its .branches == 0.
18047 		 *     |            V
18048 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
18049 		 *     |    |       |         to the same instruction + callsites.
18050 		 *     |    V       V         In such case it is necessary to check
18051 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
18052 		 *     |    |       |         If 'succ' and 'cur' are a part of the
18053 		 *     |    V       V         same loop exact flag has to be set.
18054 		 *     |   succ <- cur        To check if that is the case, verify
18055 		 *     |    |                 if loop entry of 'succ' is in current
18056 		 *     |    V                 DFS path.
18057 		 *     |   ...
18058 		 *     |    |
18059 		 *     '----'
18060 		 *
18061 		 * Additional details are in the comment before get_loop_entry().
18062 		 */
18063 		loop_entry = get_loop_entry(&sl->state);
18064 		force_exact = loop_entry && loop_entry->branches > 0;
18065 		if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) {
18066 			if (force_exact)
18067 				update_loop_entry(cur, loop_entry);
18068 hit:
18069 			sl->hit_cnt++;
18070 			/* reached equivalent register/stack state,
18071 			 * prune the search.
18072 			 * Registers read by the continuation are read by us.
18073 			 * If we have any write marks in env->cur_state, they
18074 			 * will prevent corresponding reads in the continuation
18075 			 * from reaching our parent (an explored_state).  Our
18076 			 * own state will get the read marks recorded, but
18077 			 * they'll be immediately forgotten as we're pruning
18078 			 * this state and will pop a new one.
18079 			 */
18080 			err = propagate_liveness(env, &sl->state, cur);
18081 
18082 			/* if previous state reached the exit with precision and
18083 			 * current state is equivalent to it (except precision marks)
18084 			 * the precision needs to be propagated back in
18085 			 * the current state.
18086 			 */
18087 			if (is_jmp_point(env, env->insn_idx))
18088 				err = err ? : push_jmp_history(env, cur, 0, 0);
18089 			err = err ? : propagate_precision(env, &sl->state);
18090 			if (err)
18091 				return err;
18092 			return 1;
18093 		}
18094 miss:
18095 		/* when new state is not going to be added do not increase miss count.
18096 		 * Otherwise several loop iterations will remove the state
18097 		 * recorded earlier. The goal of these heuristics is to have
18098 		 * states from some iterations of the loop (some in the beginning
18099 		 * and some at the end) to help pruning.
18100 		 */
18101 		if (add_new_state)
18102 			sl->miss_cnt++;
18103 		/* heuristic to determine whether this state is beneficial
18104 		 * to keep checking from state equivalence point of view.
18105 		 * Higher numbers increase max_states_per_insn and verification time,
18106 		 * but do not meaningfully decrease insn_processed.
18107 		 * 'n' controls how many times state could miss before eviction.
18108 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
18109 		 * too early would hinder iterator convergence.
18110 		 */
18111 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
18112 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
18113 			/* the state is unlikely to be useful. Remove it to
18114 			 * speed up verification
18115 			 */
18116 			*pprev = sl->next;
18117 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
18118 			    !sl->state.used_as_loop_entry) {
18119 				u32 br = sl->state.branches;
18120 
18121 				WARN_ONCE(br,
18122 					  "BUG live_done but branches_to_explore %d\n",
18123 					  br);
18124 				free_verifier_state(&sl->state, false);
18125 				kfree(sl);
18126 				env->peak_states--;
18127 			} else {
18128 				/* cannot free this state, since parentage chain may
18129 				 * walk it later. Add it for free_list instead to
18130 				 * be freed at the end of verification
18131 				 */
18132 				sl->next = env->free_list;
18133 				env->free_list = sl;
18134 			}
18135 			sl = *pprev;
18136 			continue;
18137 		}
18138 next:
18139 		pprev = &sl->next;
18140 		sl = *pprev;
18141 	}
18142 
18143 	if (env->max_states_per_insn < states_cnt)
18144 		env->max_states_per_insn = states_cnt;
18145 
18146 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
18147 		return 0;
18148 
18149 	if (!add_new_state)
18150 		return 0;
18151 
18152 	/* There were no equivalent states, remember the current one.
18153 	 * Technically the current state is not proven to be safe yet,
18154 	 * but it will either reach outer most bpf_exit (which means it's safe)
18155 	 * or it will be rejected. When there are no loops the verifier won't be
18156 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
18157 	 * again on the way to bpf_exit.
18158 	 * When looping the sl->state.branches will be > 0 and this state
18159 	 * will not be considered for equivalence until branches == 0.
18160 	 */
18161 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
18162 	if (!new_sl)
18163 		return -ENOMEM;
18164 	env->total_states++;
18165 	env->peak_states++;
18166 	env->prev_jmps_processed = env->jmps_processed;
18167 	env->prev_insn_processed = env->insn_processed;
18168 
18169 	/* forget precise markings we inherited, see __mark_chain_precision */
18170 	if (env->bpf_capable)
18171 		mark_all_scalars_imprecise(env, cur);
18172 
18173 	/* add new state to the head of linked list */
18174 	new = &new_sl->state;
18175 	err = copy_verifier_state(new, cur);
18176 	if (err) {
18177 		free_verifier_state(new, false);
18178 		kfree(new_sl);
18179 		return err;
18180 	}
18181 	new->insn_idx = insn_idx;
18182 	WARN_ONCE(new->branches != 1,
18183 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
18184 
18185 	cur->parent = new;
18186 	cur->first_insn_idx = insn_idx;
18187 	cur->dfs_depth = new->dfs_depth + 1;
18188 	clear_jmp_history(cur);
18189 	new_sl->next = *explored_state(env, insn_idx);
18190 	*explored_state(env, insn_idx) = new_sl;
18191 	/* connect new state to parentage chain. Current frame needs all
18192 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
18193 	 * to the stack implicitly by JITs) so in callers' frames connect just
18194 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
18195 	 * the state of the call instruction (with WRITTEN set), and r0 comes
18196 	 * from callee with its full parentage chain, anyway.
18197 	 */
18198 	/* clear write marks in current state: the writes we did are not writes
18199 	 * our child did, so they don't screen off its reads from us.
18200 	 * (There are no read marks in current state, because reads always mark
18201 	 * their parent and current state never has children yet.  Only
18202 	 * explored_states can get read marks.)
18203 	 */
18204 	for (j = 0; j <= cur->curframe; j++) {
18205 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
18206 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
18207 		for (i = 0; i < BPF_REG_FP; i++)
18208 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
18209 	}
18210 
18211 	/* all stack frames are accessible from callee, clear them all */
18212 	for (j = 0; j <= cur->curframe; j++) {
18213 		struct bpf_func_state *frame = cur->frame[j];
18214 		struct bpf_func_state *newframe = new->frame[j];
18215 
18216 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
18217 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
18218 			frame->stack[i].spilled_ptr.parent =
18219 						&newframe->stack[i].spilled_ptr;
18220 		}
18221 	}
18222 	return 0;
18223 }
18224 
18225 /* Return true if it's OK to have the same insn return a different type. */
18226 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
18227 {
18228 	switch (base_type(type)) {
18229 	case PTR_TO_CTX:
18230 	case PTR_TO_SOCKET:
18231 	case PTR_TO_SOCK_COMMON:
18232 	case PTR_TO_TCP_SOCK:
18233 	case PTR_TO_XDP_SOCK:
18234 	case PTR_TO_BTF_ID:
18235 	case PTR_TO_ARENA:
18236 		return false;
18237 	default:
18238 		return true;
18239 	}
18240 }
18241 
18242 /* If an instruction was previously used with particular pointer types, then we
18243  * need to be careful to avoid cases such as the below, where it may be ok
18244  * for one branch accessing the pointer, but not ok for the other branch:
18245  *
18246  * R1 = sock_ptr
18247  * goto X;
18248  * ...
18249  * R1 = some_other_valid_ptr;
18250  * goto X;
18251  * ...
18252  * R2 = *(u32 *)(R1 + 0);
18253  */
18254 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
18255 {
18256 	return src != prev && (!reg_type_mismatch_ok(src) ||
18257 			       !reg_type_mismatch_ok(prev));
18258 }
18259 
18260 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
18261 			     bool allow_trust_mismatch)
18262 {
18263 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
18264 
18265 	if (*prev_type == NOT_INIT) {
18266 		/* Saw a valid insn
18267 		 * dst_reg = *(u32 *)(src_reg + off)
18268 		 * save type to validate intersecting paths
18269 		 */
18270 		*prev_type = type;
18271 	} else if (reg_type_mismatch(type, *prev_type)) {
18272 		/* Abuser program is trying to use the same insn
18273 		 * dst_reg = *(u32*) (src_reg + off)
18274 		 * with different pointer types:
18275 		 * src_reg == ctx in one branch and
18276 		 * src_reg == stack|map in some other branch.
18277 		 * Reject it.
18278 		 */
18279 		if (allow_trust_mismatch &&
18280 		    base_type(type) == PTR_TO_BTF_ID &&
18281 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
18282 			/*
18283 			 * Have to support a use case when one path through
18284 			 * the program yields TRUSTED pointer while another
18285 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
18286 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
18287 			 */
18288 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
18289 		} else {
18290 			verbose(env, "same insn cannot be used with different pointers\n");
18291 			return -EINVAL;
18292 		}
18293 	}
18294 
18295 	return 0;
18296 }
18297 
18298 static int do_check(struct bpf_verifier_env *env)
18299 {
18300 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
18301 	struct bpf_verifier_state *state = env->cur_state;
18302 	struct bpf_insn *insns = env->prog->insnsi;
18303 	struct bpf_reg_state *regs;
18304 	int insn_cnt = env->prog->len;
18305 	bool do_print_state = false;
18306 	int prev_insn_idx = -1;
18307 
18308 	for (;;) {
18309 		bool exception_exit = false;
18310 		struct bpf_insn *insn;
18311 		u8 class;
18312 		int err;
18313 
18314 		/* reset current history entry on each new instruction */
18315 		env->cur_hist_ent = NULL;
18316 
18317 		env->prev_insn_idx = prev_insn_idx;
18318 		if (env->insn_idx >= insn_cnt) {
18319 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
18320 				env->insn_idx, insn_cnt);
18321 			return -EFAULT;
18322 		}
18323 
18324 		insn = &insns[env->insn_idx];
18325 		class = BPF_CLASS(insn->code);
18326 
18327 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
18328 			verbose(env,
18329 				"BPF program is too large. Processed %d insn\n",
18330 				env->insn_processed);
18331 			return -E2BIG;
18332 		}
18333 
18334 		state->last_insn_idx = env->prev_insn_idx;
18335 
18336 		if (is_prune_point(env, env->insn_idx)) {
18337 			err = is_state_visited(env, env->insn_idx);
18338 			if (err < 0)
18339 				return err;
18340 			if (err == 1) {
18341 				/* found equivalent state, can prune the search */
18342 				if (env->log.level & BPF_LOG_LEVEL) {
18343 					if (do_print_state)
18344 						verbose(env, "\nfrom %d to %d%s: safe\n",
18345 							env->prev_insn_idx, env->insn_idx,
18346 							env->cur_state->speculative ?
18347 							" (speculative execution)" : "");
18348 					else
18349 						verbose(env, "%d: safe\n", env->insn_idx);
18350 				}
18351 				goto process_bpf_exit;
18352 			}
18353 		}
18354 
18355 		if (is_jmp_point(env, env->insn_idx)) {
18356 			err = push_jmp_history(env, state, 0, 0);
18357 			if (err)
18358 				return err;
18359 		}
18360 
18361 		if (signal_pending(current))
18362 			return -EAGAIN;
18363 
18364 		if (need_resched())
18365 			cond_resched();
18366 
18367 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
18368 			verbose(env, "\nfrom %d to %d%s:",
18369 				env->prev_insn_idx, env->insn_idx,
18370 				env->cur_state->speculative ?
18371 				" (speculative execution)" : "");
18372 			print_verifier_state(env, state->frame[state->curframe], true);
18373 			do_print_state = false;
18374 		}
18375 
18376 		if (env->log.level & BPF_LOG_LEVEL) {
18377 			const struct bpf_insn_cbs cbs = {
18378 				.cb_call	= disasm_kfunc_name,
18379 				.cb_print	= verbose,
18380 				.private_data	= env,
18381 			};
18382 
18383 			if (verifier_state_scratched(env))
18384 				print_insn_state(env, state->frame[state->curframe]);
18385 
18386 			verbose_linfo(env, env->insn_idx, "; ");
18387 			env->prev_log_pos = env->log.end_pos;
18388 			verbose(env, "%d: ", env->insn_idx);
18389 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
18390 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
18391 			env->prev_log_pos = env->log.end_pos;
18392 		}
18393 
18394 		if (bpf_prog_is_offloaded(env->prog->aux)) {
18395 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
18396 							   env->prev_insn_idx);
18397 			if (err)
18398 				return err;
18399 		}
18400 
18401 		regs = cur_regs(env);
18402 		sanitize_mark_insn_seen(env);
18403 		prev_insn_idx = env->insn_idx;
18404 
18405 		if (class == BPF_ALU || class == BPF_ALU64) {
18406 			err = check_alu_op(env, insn);
18407 			if (err)
18408 				return err;
18409 
18410 		} else if (class == BPF_LDX) {
18411 			enum bpf_reg_type src_reg_type;
18412 
18413 			/* check for reserved fields is already done */
18414 
18415 			/* check src operand */
18416 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
18417 			if (err)
18418 				return err;
18419 
18420 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
18421 			if (err)
18422 				return err;
18423 
18424 			src_reg_type = regs[insn->src_reg].type;
18425 
18426 			/* check that memory (src_reg + off) is readable,
18427 			 * the state of dst_reg will be updated by this func
18428 			 */
18429 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
18430 					       insn->off, BPF_SIZE(insn->code),
18431 					       BPF_READ, insn->dst_reg, false,
18432 					       BPF_MODE(insn->code) == BPF_MEMSX);
18433 			err = err ?: save_aux_ptr_type(env, src_reg_type, true);
18434 			err = err ?: reg_bounds_sanity_check(env, &regs[insn->dst_reg], "ldx");
18435 			if (err)
18436 				return err;
18437 		} else if (class == BPF_STX) {
18438 			enum bpf_reg_type dst_reg_type;
18439 
18440 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
18441 				err = check_atomic(env, env->insn_idx, insn);
18442 				if (err)
18443 					return err;
18444 				env->insn_idx++;
18445 				continue;
18446 			}
18447 
18448 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
18449 				verbose(env, "BPF_STX uses reserved fields\n");
18450 				return -EINVAL;
18451 			}
18452 
18453 			/* check src1 operand */
18454 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
18455 			if (err)
18456 				return err;
18457 			/* check src2 operand */
18458 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
18459 			if (err)
18460 				return err;
18461 
18462 			dst_reg_type = regs[insn->dst_reg].type;
18463 
18464 			/* check that memory (dst_reg + off) is writeable */
18465 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
18466 					       insn->off, BPF_SIZE(insn->code),
18467 					       BPF_WRITE, insn->src_reg, false, false);
18468 			if (err)
18469 				return err;
18470 
18471 			err = save_aux_ptr_type(env, dst_reg_type, false);
18472 			if (err)
18473 				return err;
18474 		} else if (class == BPF_ST) {
18475 			enum bpf_reg_type dst_reg_type;
18476 
18477 			if (BPF_MODE(insn->code) != BPF_MEM ||
18478 			    insn->src_reg != BPF_REG_0) {
18479 				verbose(env, "BPF_ST uses reserved fields\n");
18480 				return -EINVAL;
18481 			}
18482 			/* check src operand */
18483 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
18484 			if (err)
18485 				return err;
18486 
18487 			dst_reg_type = regs[insn->dst_reg].type;
18488 
18489 			/* check that memory (dst_reg + off) is writeable */
18490 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
18491 					       insn->off, BPF_SIZE(insn->code),
18492 					       BPF_WRITE, -1, false, false);
18493 			if (err)
18494 				return err;
18495 
18496 			err = save_aux_ptr_type(env, dst_reg_type, false);
18497 			if (err)
18498 				return err;
18499 		} else if (class == BPF_JMP || class == BPF_JMP32) {
18500 			u8 opcode = BPF_OP(insn->code);
18501 
18502 			env->jmps_processed++;
18503 			if (opcode == BPF_CALL) {
18504 				if (BPF_SRC(insn->code) != BPF_K ||
18505 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
18506 				     && insn->off != 0) ||
18507 				    (insn->src_reg != BPF_REG_0 &&
18508 				     insn->src_reg != BPF_PSEUDO_CALL &&
18509 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
18510 				    insn->dst_reg != BPF_REG_0 ||
18511 				    class == BPF_JMP32) {
18512 					verbose(env, "BPF_CALL uses reserved fields\n");
18513 					return -EINVAL;
18514 				}
18515 
18516 				if (env->cur_state->active_lock.ptr) {
18517 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
18518 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
18519 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
18520 						verbose(env, "function calls are not allowed while holding a lock\n");
18521 						return -EINVAL;
18522 					}
18523 				}
18524 				if (insn->src_reg == BPF_PSEUDO_CALL) {
18525 					err = check_func_call(env, insn, &env->insn_idx);
18526 				} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18527 					err = check_kfunc_call(env, insn, &env->insn_idx);
18528 					if (!err && is_bpf_throw_kfunc(insn)) {
18529 						exception_exit = true;
18530 						goto process_bpf_exit_full;
18531 					}
18532 				} else {
18533 					err = check_helper_call(env, insn, &env->insn_idx);
18534 				}
18535 				if (err)
18536 					return err;
18537 
18538 				mark_reg_scratched(env, BPF_REG_0);
18539 			} else if (opcode == BPF_JA) {
18540 				if (BPF_SRC(insn->code) != BPF_K ||
18541 				    insn->src_reg != BPF_REG_0 ||
18542 				    insn->dst_reg != BPF_REG_0 ||
18543 				    (class == BPF_JMP && insn->imm != 0) ||
18544 				    (class == BPF_JMP32 && insn->off != 0)) {
18545 					verbose(env, "BPF_JA uses reserved fields\n");
18546 					return -EINVAL;
18547 				}
18548 
18549 				if (class == BPF_JMP)
18550 					env->insn_idx += insn->off + 1;
18551 				else
18552 					env->insn_idx += insn->imm + 1;
18553 				continue;
18554 
18555 			} else if (opcode == BPF_EXIT) {
18556 				if (BPF_SRC(insn->code) != BPF_K ||
18557 				    insn->imm != 0 ||
18558 				    insn->src_reg != BPF_REG_0 ||
18559 				    insn->dst_reg != BPF_REG_0 ||
18560 				    class == BPF_JMP32) {
18561 					verbose(env, "BPF_EXIT uses reserved fields\n");
18562 					return -EINVAL;
18563 				}
18564 process_bpf_exit_full:
18565 				if (env->cur_state->active_lock.ptr && !env->cur_state->curframe) {
18566 					verbose(env, "bpf_spin_unlock is missing\n");
18567 					return -EINVAL;
18568 				}
18569 
18570 				if (env->cur_state->active_rcu_lock && !env->cur_state->curframe) {
18571 					verbose(env, "bpf_rcu_read_unlock is missing\n");
18572 					return -EINVAL;
18573 				}
18574 
18575 				if (env->cur_state->active_preempt_lock && !env->cur_state->curframe) {
18576 					verbose(env, "%d bpf_preempt_enable%s missing\n",
18577 						env->cur_state->active_preempt_lock,
18578 						env->cur_state->active_preempt_lock == 1 ? " is" : "(s) are");
18579 					return -EINVAL;
18580 				}
18581 
18582 				/* We must do check_reference_leak here before
18583 				 * prepare_func_exit to handle the case when
18584 				 * state->curframe > 0, it may be a callback
18585 				 * function, for which reference_state must
18586 				 * match caller reference state when it exits.
18587 				 */
18588 				err = check_reference_leak(env, exception_exit);
18589 				if (err)
18590 					return err;
18591 
18592 				/* The side effect of the prepare_func_exit
18593 				 * which is being skipped is that it frees
18594 				 * bpf_func_state. Typically, process_bpf_exit
18595 				 * will only be hit with outermost exit.
18596 				 * copy_verifier_state in pop_stack will handle
18597 				 * freeing of any extra bpf_func_state left over
18598 				 * from not processing all nested function
18599 				 * exits. We also skip return code checks as
18600 				 * they are not needed for exceptional exits.
18601 				 */
18602 				if (exception_exit)
18603 					goto process_bpf_exit;
18604 
18605 				if (state->curframe) {
18606 					/* exit from nested function */
18607 					err = prepare_func_exit(env, &env->insn_idx);
18608 					if (err)
18609 						return err;
18610 					do_print_state = true;
18611 					continue;
18612 				}
18613 
18614 				err = check_return_code(env, BPF_REG_0, "R0");
18615 				if (err)
18616 					return err;
18617 process_bpf_exit:
18618 				mark_verifier_state_scratched(env);
18619 				update_branch_counts(env, env->cur_state);
18620 				err = pop_stack(env, &prev_insn_idx,
18621 						&env->insn_idx, pop_log);
18622 				if (err < 0) {
18623 					if (err != -ENOENT)
18624 						return err;
18625 					break;
18626 				} else {
18627 					do_print_state = true;
18628 					continue;
18629 				}
18630 			} else {
18631 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
18632 				if (err)
18633 					return err;
18634 			}
18635 		} else if (class == BPF_LD) {
18636 			u8 mode = BPF_MODE(insn->code);
18637 
18638 			if (mode == BPF_ABS || mode == BPF_IND) {
18639 				err = check_ld_abs(env, insn);
18640 				if (err)
18641 					return err;
18642 
18643 			} else if (mode == BPF_IMM) {
18644 				err = check_ld_imm(env, insn);
18645 				if (err)
18646 					return err;
18647 
18648 				env->insn_idx++;
18649 				sanitize_mark_insn_seen(env);
18650 			} else {
18651 				verbose(env, "invalid BPF_LD mode\n");
18652 				return -EINVAL;
18653 			}
18654 		} else {
18655 			verbose(env, "unknown insn class %d\n", class);
18656 			return -EINVAL;
18657 		}
18658 
18659 		env->insn_idx++;
18660 	}
18661 
18662 	return 0;
18663 }
18664 
18665 static int find_btf_percpu_datasec(struct btf *btf)
18666 {
18667 	const struct btf_type *t;
18668 	const char *tname;
18669 	int i, n;
18670 
18671 	/*
18672 	 * Both vmlinux and module each have their own ".data..percpu"
18673 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
18674 	 * types to look at only module's own BTF types.
18675 	 */
18676 	n = btf_nr_types(btf);
18677 	if (btf_is_module(btf))
18678 		i = btf_nr_types(btf_vmlinux);
18679 	else
18680 		i = 1;
18681 
18682 	for(; i < n; i++) {
18683 		t = btf_type_by_id(btf, i);
18684 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
18685 			continue;
18686 
18687 		tname = btf_name_by_offset(btf, t->name_off);
18688 		if (!strcmp(tname, ".data..percpu"))
18689 			return i;
18690 	}
18691 
18692 	return -ENOENT;
18693 }
18694 
18695 /* replace pseudo btf_id with kernel symbol address */
18696 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
18697 			       struct bpf_insn *insn,
18698 			       struct bpf_insn_aux_data *aux)
18699 {
18700 	const struct btf_var_secinfo *vsi;
18701 	const struct btf_type *datasec;
18702 	struct btf_mod_pair *btf_mod;
18703 	const struct btf_type *t;
18704 	const char *sym_name;
18705 	bool percpu = false;
18706 	u32 type, id = insn->imm;
18707 	struct btf *btf;
18708 	s32 datasec_id;
18709 	u64 addr;
18710 	int i, btf_fd, err;
18711 
18712 	btf_fd = insn[1].imm;
18713 	if (btf_fd) {
18714 		btf = btf_get_by_fd(btf_fd);
18715 		if (IS_ERR(btf)) {
18716 			verbose(env, "invalid module BTF object FD specified.\n");
18717 			return -EINVAL;
18718 		}
18719 	} else {
18720 		if (!btf_vmlinux) {
18721 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
18722 			return -EINVAL;
18723 		}
18724 		btf = btf_vmlinux;
18725 		btf_get(btf);
18726 	}
18727 
18728 	t = btf_type_by_id(btf, id);
18729 	if (!t) {
18730 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
18731 		err = -ENOENT;
18732 		goto err_put;
18733 	}
18734 
18735 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
18736 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
18737 		err = -EINVAL;
18738 		goto err_put;
18739 	}
18740 
18741 	sym_name = btf_name_by_offset(btf, t->name_off);
18742 	addr = kallsyms_lookup_name(sym_name);
18743 	if (!addr) {
18744 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
18745 			sym_name);
18746 		err = -ENOENT;
18747 		goto err_put;
18748 	}
18749 	insn[0].imm = (u32)addr;
18750 	insn[1].imm = addr >> 32;
18751 
18752 	if (btf_type_is_func(t)) {
18753 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
18754 		aux->btf_var.mem_size = 0;
18755 		goto check_btf;
18756 	}
18757 
18758 	datasec_id = find_btf_percpu_datasec(btf);
18759 	if (datasec_id > 0) {
18760 		datasec = btf_type_by_id(btf, datasec_id);
18761 		for_each_vsi(i, datasec, vsi) {
18762 			if (vsi->type == id) {
18763 				percpu = true;
18764 				break;
18765 			}
18766 		}
18767 	}
18768 
18769 	type = t->type;
18770 	t = btf_type_skip_modifiers(btf, type, NULL);
18771 	if (percpu) {
18772 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
18773 		aux->btf_var.btf = btf;
18774 		aux->btf_var.btf_id = type;
18775 	} else if (!btf_type_is_struct(t)) {
18776 		const struct btf_type *ret;
18777 		const char *tname;
18778 		u32 tsize;
18779 
18780 		/* resolve the type size of ksym. */
18781 		ret = btf_resolve_size(btf, t, &tsize);
18782 		if (IS_ERR(ret)) {
18783 			tname = btf_name_by_offset(btf, t->name_off);
18784 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
18785 				tname, PTR_ERR(ret));
18786 			err = -EINVAL;
18787 			goto err_put;
18788 		}
18789 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
18790 		aux->btf_var.mem_size = tsize;
18791 	} else {
18792 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
18793 		aux->btf_var.btf = btf;
18794 		aux->btf_var.btf_id = type;
18795 	}
18796 check_btf:
18797 	/* check whether we recorded this BTF (and maybe module) already */
18798 	for (i = 0; i < env->used_btf_cnt; i++) {
18799 		if (env->used_btfs[i].btf == btf) {
18800 			btf_put(btf);
18801 			return 0;
18802 		}
18803 	}
18804 
18805 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
18806 		err = -E2BIG;
18807 		goto err_put;
18808 	}
18809 
18810 	btf_mod = &env->used_btfs[env->used_btf_cnt];
18811 	btf_mod->btf = btf;
18812 	btf_mod->module = NULL;
18813 
18814 	/* if we reference variables from kernel module, bump its refcount */
18815 	if (btf_is_module(btf)) {
18816 		btf_mod->module = btf_try_get_module(btf);
18817 		if (!btf_mod->module) {
18818 			err = -ENXIO;
18819 			goto err_put;
18820 		}
18821 	}
18822 
18823 	env->used_btf_cnt++;
18824 
18825 	return 0;
18826 err_put:
18827 	btf_put(btf);
18828 	return err;
18829 }
18830 
18831 static bool is_tracing_prog_type(enum bpf_prog_type type)
18832 {
18833 	switch (type) {
18834 	case BPF_PROG_TYPE_KPROBE:
18835 	case BPF_PROG_TYPE_TRACEPOINT:
18836 	case BPF_PROG_TYPE_PERF_EVENT:
18837 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
18838 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
18839 		return true;
18840 	default:
18841 		return false;
18842 	}
18843 }
18844 
18845 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
18846 					struct bpf_map *map,
18847 					struct bpf_prog *prog)
18848 
18849 {
18850 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
18851 
18852 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
18853 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
18854 		if (is_tracing_prog_type(prog_type)) {
18855 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
18856 			return -EINVAL;
18857 		}
18858 	}
18859 
18860 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
18861 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
18862 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
18863 			return -EINVAL;
18864 		}
18865 
18866 		if (is_tracing_prog_type(prog_type)) {
18867 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
18868 			return -EINVAL;
18869 		}
18870 	}
18871 
18872 	if (btf_record_has_field(map->record, BPF_TIMER)) {
18873 		if (is_tracing_prog_type(prog_type)) {
18874 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
18875 			return -EINVAL;
18876 		}
18877 	}
18878 
18879 	if (btf_record_has_field(map->record, BPF_WORKQUEUE)) {
18880 		if (is_tracing_prog_type(prog_type)) {
18881 			verbose(env, "tracing progs cannot use bpf_wq yet\n");
18882 			return -EINVAL;
18883 		}
18884 	}
18885 
18886 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
18887 	    !bpf_offload_prog_map_match(prog, map)) {
18888 		verbose(env, "offload device mismatch between prog and map\n");
18889 		return -EINVAL;
18890 	}
18891 
18892 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
18893 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
18894 		return -EINVAL;
18895 	}
18896 
18897 	if (prog->sleepable)
18898 		switch (map->map_type) {
18899 		case BPF_MAP_TYPE_HASH:
18900 		case BPF_MAP_TYPE_LRU_HASH:
18901 		case BPF_MAP_TYPE_ARRAY:
18902 		case BPF_MAP_TYPE_PERCPU_HASH:
18903 		case BPF_MAP_TYPE_PERCPU_ARRAY:
18904 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
18905 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
18906 		case BPF_MAP_TYPE_HASH_OF_MAPS:
18907 		case BPF_MAP_TYPE_RINGBUF:
18908 		case BPF_MAP_TYPE_USER_RINGBUF:
18909 		case BPF_MAP_TYPE_INODE_STORAGE:
18910 		case BPF_MAP_TYPE_SK_STORAGE:
18911 		case BPF_MAP_TYPE_TASK_STORAGE:
18912 		case BPF_MAP_TYPE_CGRP_STORAGE:
18913 		case BPF_MAP_TYPE_QUEUE:
18914 		case BPF_MAP_TYPE_STACK:
18915 		case BPF_MAP_TYPE_ARENA:
18916 			break;
18917 		default:
18918 			verbose(env,
18919 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
18920 			return -EINVAL;
18921 		}
18922 
18923 	return 0;
18924 }
18925 
18926 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
18927 {
18928 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
18929 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
18930 }
18931 
18932 /* Add map behind fd to used maps list, if it's not already there, and return
18933  * its index. Also set *reused to true if this map was already in the list of
18934  * used maps.
18935  * Returns <0 on error, or >= 0 index, on success.
18936  */
18937 static int add_used_map_from_fd(struct bpf_verifier_env *env, int fd, bool *reused)
18938 {
18939 	CLASS(fd, f)(fd);
18940 	struct bpf_map *map;
18941 	int i;
18942 
18943 	map = __bpf_map_get(f);
18944 	if (IS_ERR(map)) {
18945 		verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
18946 		return PTR_ERR(map);
18947 	}
18948 
18949 	/* check whether we recorded this map already */
18950 	for (i = 0; i < env->used_map_cnt; i++) {
18951 		if (env->used_maps[i] == map) {
18952 			*reused = true;
18953 			return i;
18954 		}
18955 	}
18956 
18957 	if (env->used_map_cnt >= MAX_USED_MAPS) {
18958 		verbose(env, "The total number of maps per program has reached the limit of %u\n",
18959 			MAX_USED_MAPS);
18960 		return -E2BIG;
18961 	}
18962 
18963 	if (env->prog->sleepable)
18964 		atomic64_inc(&map->sleepable_refcnt);
18965 
18966 	/* hold the map. If the program is rejected by verifier,
18967 	 * the map will be released by release_maps() or it
18968 	 * will be used by the valid program until it's unloaded
18969 	 * and all maps are released in bpf_free_used_maps()
18970 	 */
18971 	bpf_map_inc(map);
18972 
18973 	*reused = false;
18974 	env->used_maps[env->used_map_cnt++] = map;
18975 
18976 	return env->used_map_cnt - 1;
18977 }
18978 
18979 /* find and rewrite pseudo imm in ld_imm64 instructions:
18980  *
18981  * 1. if it accesses map FD, replace it with actual map pointer.
18982  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
18983  *
18984  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
18985  */
18986 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
18987 {
18988 	struct bpf_insn *insn = env->prog->insnsi;
18989 	int insn_cnt = env->prog->len;
18990 	int i, err;
18991 
18992 	err = bpf_prog_calc_tag(env->prog);
18993 	if (err)
18994 		return err;
18995 
18996 	for (i = 0; i < insn_cnt; i++, insn++) {
18997 		if (BPF_CLASS(insn->code) == BPF_LDX &&
18998 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
18999 		    insn->imm != 0)) {
19000 			verbose(env, "BPF_LDX uses reserved fields\n");
19001 			return -EINVAL;
19002 		}
19003 
19004 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
19005 			struct bpf_insn_aux_data *aux;
19006 			struct bpf_map *map;
19007 			int map_idx;
19008 			u64 addr;
19009 			u32 fd;
19010 			bool reused;
19011 
19012 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
19013 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
19014 			    insn[1].off != 0) {
19015 				verbose(env, "invalid bpf_ld_imm64 insn\n");
19016 				return -EINVAL;
19017 			}
19018 
19019 			if (insn[0].src_reg == 0)
19020 				/* valid generic load 64-bit imm */
19021 				goto next_insn;
19022 
19023 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
19024 				aux = &env->insn_aux_data[i];
19025 				err = check_pseudo_btf_id(env, insn, aux);
19026 				if (err)
19027 					return err;
19028 				goto next_insn;
19029 			}
19030 
19031 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
19032 				aux = &env->insn_aux_data[i];
19033 				aux->ptr_type = PTR_TO_FUNC;
19034 				goto next_insn;
19035 			}
19036 
19037 			/* In final convert_pseudo_ld_imm64() step, this is
19038 			 * converted into regular 64-bit imm load insn.
19039 			 */
19040 			switch (insn[0].src_reg) {
19041 			case BPF_PSEUDO_MAP_VALUE:
19042 			case BPF_PSEUDO_MAP_IDX_VALUE:
19043 				break;
19044 			case BPF_PSEUDO_MAP_FD:
19045 			case BPF_PSEUDO_MAP_IDX:
19046 				if (insn[1].imm == 0)
19047 					break;
19048 				fallthrough;
19049 			default:
19050 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
19051 				return -EINVAL;
19052 			}
19053 
19054 			switch (insn[0].src_reg) {
19055 			case BPF_PSEUDO_MAP_IDX_VALUE:
19056 			case BPF_PSEUDO_MAP_IDX:
19057 				if (bpfptr_is_null(env->fd_array)) {
19058 					verbose(env, "fd_idx without fd_array is invalid\n");
19059 					return -EPROTO;
19060 				}
19061 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
19062 							    insn[0].imm * sizeof(fd),
19063 							    sizeof(fd)))
19064 					return -EFAULT;
19065 				break;
19066 			default:
19067 				fd = insn[0].imm;
19068 				break;
19069 			}
19070 
19071 			map_idx = add_used_map_from_fd(env, fd, &reused);
19072 			if (map_idx < 0)
19073 				return map_idx;
19074 			map = env->used_maps[map_idx];
19075 
19076 			aux = &env->insn_aux_data[i];
19077 			aux->map_index = map_idx;
19078 
19079 			err = check_map_prog_compatibility(env, map, env->prog);
19080 			if (err)
19081 				return err;
19082 
19083 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
19084 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
19085 				addr = (unsigned long)map;
19086 			} else {
19087 				u32 off = insn[1].imm;
19088 
19089 				if (off >= BPF_MAX_VAR_OFF) {
19090 					verbose(env, "direct value offset of %u is not allowed\n", off);
19091 					return -EINVAL;
19092 				}
19093 
19094 				if (!map->ops->map_direct_value_addr) {
19095 					verbose(env, "no direct value access support for this map type\n");
19096 					return -EINVAL;
19097 				}
19098 
19099 				err = map->ops->map_direct_value_addr(map, &addr, off);
19100 				if (err) {
19101 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
19102 						map->value_size, off);
19103 					return err;
19104 				}
19105 
19106 				aux->map_off = off;
19107 				addr += off;
19108 			}
19109 
19110 			insn[0].imm = (u32)addr;
19111 			insn[1].imm = addr >> 32;
19112 
19113 			/* proceed with extra checks only if its newly added used map */
19114 			if (reused)
19115 				goto next_insn;
19116 
19117 			if (bpf_map_is_cgroup_storage(map) &&
19118 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
19119 				verbose(env, "only one cgroup storage of each type is allowed\n");
19120 				return -EBUSY;
19121 			}
19122 			if (map->map_type == BPF_MAP_TYPE_ARENA) {
19123 				if (env->prog->aux->arena) {
19124 					verbose(env, "Only one arena per program\n");
19125 					return -EBUSY;
19126 				}
19127 				if (!env->allow_ptr_leaks || !env->bpf_capable) {
19128 					verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n");
19129 					return -EPERM;
19130 				}
19131 				if (!env->prog->jit_requested) {
19132 					verbose(env, "JIT is required to use arena\n");
19133 					return -EOPNOTSUPP;
19134 				}
19135 				if (!bpf_jit_supports_arena()) {
19136 					verbose(env, "JIT doesn't support arena\n");
19137 					return -EOPNOTSUPP;
19138 				}
19139 				env->prog->aux->arena = (void *)map;
19140 				if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) {
19141 					verbose(env, "arena's user address must be set via map_extra or mmap()\n");
19142 					return -EINVAL;
19143 				}
19144 			}
19145 
19146 next_insn:
19147 			insn++;
19148 			i++;
19149 			continue;
19150 		}
19151 
19152 		/* Basic sanity check before we invest more work here. */
19153 		if (!bpf_opcode_in_insntable(insn->code)) {
19154 			verbose(env, "unknown opcode %02x\n", insn->code);
19155 			return -EINVAL;
19156 		}
19157 	}
19158 
19159 	/* now all pseudo BPF_LD_IMM64 instructions load valid
19160 	 * 'struct bpf_map *' into a register instead of user map_fd.
19161 	 * These pointers will be used later by verifier to validate map access.
19162 	 */
19163 	return 0;
19164 }
19165 
19166 /* drop refcnt of maps used by the rejected program */
19167 static void release_maps(struct bpf_verifier_env *env)
19168 {
19169 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
19170 			     env->used_map_cnt);
19171 }
19172 
19173 /* drop refcnt of maps used by the rejected program */
19174 static void release_btfs(struct bpf_verifier_env *env)
19175 {
19176 	__bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt);
19177 }
19178 
19179 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
19180 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
19181 {
19182 	struct bpf_insn *insn = env->prog->insnsi;
19183 	int insn_cnt = env->prog->len;
19184 	int i;
19185 
19186 	for (i = 0; i < insn_cnt; i++, insn++) {
19187 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
19188 			continue;
19189 		if (insn->src_reg == BPF_PSEUDO_FUNC)
19190 			continue;
19191 		insn->src_reg = 0;
19192 	}
19193 }
19194 
19195 /* single env->prog->insni[off] instruction was replaced with the range
19196  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
19197  * [0, off) and [off, end) to new locations, so the patched range stays zero
19198  */
19199 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
19200 				 struct bpf_insn_aux_data *new_data,
19201 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
19202 {
19203 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
19204 	struct bpf_insn *insn = new_prog->insnsi;
19205 	u32 old_seen = old_data[off].seen;
19206 	u32 prog_len;
19207 	int i;
19208 
19209 	/* aux info at OFF always needs adjustment, no matter fast path
19210 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
19211 	 * original insn at old prog.
19212 	 */
19213 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
19214 
19215 	if (cnt == 1)
19216 		return;
19217 	prog_len = new_prog->len;
19218 
19219 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
19220 	memcpy(new_data + off + cnt - 1, old_data + off,
19221 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
19222 	for (i = off; i < off + cnt - 1; i++) {
19223 		/* Expand insni[off]'s seen count to the patched range. */
19224 		new_data[i].seen = old_seen;
19225 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
19226 	}
19227 	env->insn_aux_data = new_data;
19228 	vfree(old_data);
19229 }
19230 
19231 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
19232 {
19233 	int i;
19234 
19235 	if (len == 1)
19236 		return;
19237 	/* NOTE: fake 'exit' subprog should be updated as well. */
19238 	for (i = 0; i <= env->subprog_cnt; i++) {
19239 		if (env->subprog_info[i].start <= off)
19240 			continue;
19241 		env->subprog_info[i].start += len - 1;
19242 	}
19243 }
19244 
19245 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
19246 {
19247 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
19248 	int i, sz = prog->aux->size_poke_tab;
19249 	struct bpf_jit_poke_descriptor *desc;
19250 
19251 	for (i = 0; i < sz; i++) {
19252 		desc = &tab[i];
19253 		if (desc->insn_idx <= off)
19254 			continue;
19255 		desc->insn_idx += len - 1;
19256 	}
19257 }
19258 
19259 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
19260 					    const struct bpf_insn *patch, u32 len)
19261 {
19262 	struct bpf_prog *new_prog;
19263 	struct bpf_insn_aux_data *new_data = NULL;
19264 
19265 	if (len > 1) {
19266 		new_data = vzalloc(array_size(env->prog->len + len - 1,
19267 					      sizeof(struct bpf_insn_aux_data)));
19268 		if (!new_data)
19269 			return NULL;
19270 	}
19271 
19272 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
19273 	if (IS_ERR(new_prog)) {
19274 		if (PTR_ERR(new_prog) == -ERANGE)
19275 			verbose(env,
19276 				"insn %d cannot be patched due to 16-bit range\n",
19277 				env->insn_aux_data[off].orig_idx);
19278 		vfree(new_data);
19279 		return NULL;
19280 	}
19281 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
19282 	adjust_subprog_starts(env, off, len);
19283 	adjust_poke_descs(new_prog, off, len);
19284 	return new_prog;
19285 }
19286 
19287 /*
19288  * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the
19289  * jump offset by 'delta'.
19290  */
19291 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta)
19292 {
19293 	struct bpf_insn *insn = prog->insnsi;
19294 	u32 insn_cnt = prog->len, i;
19295 	s32 imm;
19296 	s16 off;
19297 
19298 	for (i = 0; i < insn_cnt; i++, insn++) {
19299 		u8 code = insn->code;
19300 
19301 		if (tgt_idx <= i && i < tgt_idx + delta)
19302 			continue;
19303 
19304 		if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) ||
19305 		    BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT)
19306 			continue;
19307 
19308 		if (insn->code == (BPF_JMP32 | BPF_JA)) {
19309 			if (i + 1 + insn->imm != tgt_idx)
19310 				continue;
19311 			if (check_add_overflow(insn->imm, delta, &imm))
19312 				return -ERANGE;
19313 			insn->imm = imm;
19314 		} else {
19315 			if (i + 1 + insn->off != tgt_idx)
19316 				continue;
19317 			if (check_add_overflow(insn->off, delta, &off))
19318 				return -ERANGE;
19319 			insn->off = off;
19320 		}
19321 	}
19322 	return 0;
19323 }
19324 
19325 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
19326 					      u32 off, u32 cnt)
19327 {
19328 	int i, j;
19329 
19330 	/* find first prog starting at or after off (first to remove) */
19331 	for (i = 0; i < env->subprog_cnt; i++)
19332 		if (env->subprog_info[i].start >= off)
19333 			break;
19334 	/* find first prog starting at or after off + cnt (first to stay) */
19335 	for (j = i; j < env->subprog_cnt; j++)
19336 		if (env->subprog_info[j].start >= off + cnt)
19337 			break;
19338 	/* if j doesn't start exactly at off + cnt, we are just removing
19339 	 * the front of previous prog
19340 	 */
19341 	if (env->subprog_info[j].start != off + cnt)
19342 		j--;
19343 
19344 	if (j > i) {
19345 		struct bpf_prog_aux *aux = env->prog->aux;
19346 		int move;
19347 
19348 		/* move fake 'exit' subprog as well */
19349 		move = env->subprog_cnt + 1 - j;
19350 
19351 		memmove(env->subprog_info + i,
19352 			env->subprog_info + j,
19353 			sizeof(*env->subprog_info) * move);
19354 		env->subprog_cnt -= j - i;
19355 
19356 		/* remove func_info */
19357 		if (aux->func_info) {
19358 			move = aux->func_info_cnt - j;
19359 
19360 			memmove(aux->func_info + i,
19361 				aux->func_info + j,
19362 				sizeof(*aux->func_info) * move);
19363 			aux->func_info_cnt -= j - i;
19364 			/* func_info->insn_off is set after all code rewrites,
19365 			 * in adjust_btf_func() - no need to adjust
19366 			 */
19367 		}
19368 	} else {
19369 		/* convert i from "first prog to remove" to "first to adjust" */
19370 		if (env->subprog_info[i].start == off)
19371 			i++;
19372 	}
19373 
19374 	/* update fake 'exit' subprog as well */
19375 	for (; i <= env->subprog_cnt; i++)
19376 		env->subprog_info[i].start -= cnt;
19377 
19378 	return 0;
19379 }
19380 
19381 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
19382 				      u32 cnt)
19383 {
19384 	struct bpf_prog *prog = env->prog;
19385 	u32 i, l_off, l_cnt, nr_linfo;
19386 	struct bpf_line_info *linfo;
19387 
19388 	nr_linfo = prog->aux->nr_linfo;
19389 	if (!nr_linfo)
19390 		return 0;
19391 
19392 	linfo = prog->aux->linfo;
19393 
19394 	/* find first line info to remove, count lines to be removed */
19395 	for (i = 0; i < nr_linfo; i++)
19396 		if (linfo[i].insn_off >= off)
19397 			break;
19398 
19399 	l_off = i;
19400 	l_cnt = 0;
19401 	for (; i < nr_linfo; i++)
19402 		if (linfo[i].insn_off < off + cnt)
19403 			l_cnt++;
19404 		else
19405 			break;
19406 
19407 	/* First live insn doesn't match first live linfo, it needs to "inherit"
19408 	 * last removed linfo.  prog is already modified, so prog->len == off
19409 	 * means no live instructions after (tail of the program was removed).
19410 	 */
19411 	if (prog->len != off && l_cnt &&
19412 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
19413 		l_cnt--;
19414 		linfo[--i].insn_off = off + cnt;
19415 	}
19416 
19417 	/* remove the line info which refer to the removed instructions */
19418 	if (l_cnt) {
19419 		memmove(linfo + l_off, linfo + i,
19420 			sizeof(*linfo) * (nr_linfo - i));
19421 
19422 		prog->aux->nr_linfo -= l_cnt;
19423 		nr_linfo = prog->aux->nr_linfo;
19424 	}
19425 
19426 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
19427 	for (i = l_off; i < nr_linfo; i++)
19428 		linfo[i].insn_off -= cnt;
19429 
19430 	/* fix up all subprogs (incl. 'exit') which start >= off */
19431 	for (i = 0; i <= env->subprog_cnt; i++)
19432 		if (env->subprog_info[i].linfo_idx > l_off) {
19433 			/* program may have started in the removed region but
19434 			 * may not be fully removed
19435 			 */
19436 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
19437 				env->subprog_info[i].linfo_idx -= l_cnt;
19438 			else
19439 				env->subprog_info[i].linfo_idx = l_off;
19440 		}
19441 
19442 	return 0;
19443 }
19444 
19445 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
19446 {
19447 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19448 	unsigned int orig_prog_len = env->prog->len;
19449 	int err;
19450 
19451 	if (bpf_prog_is_offloaded(env->prog->aux))
19452 		bpf_prog_offload_remove_insns(env, off, cnt);
19453 
19454 	err = bpf_remove_insns(env->prog, off, cnt);
19455 	if (err)
19456 		return err;
19457 
19458 	err = adjust_subprog_starts_after_remove(env, off, cnt);
19459 	if (err)
19460 		return err;
19461 
19462 	err = bpf_adj_linfo_after_remove(env, off, cnt);
19463 	if (err)
19464 		return err;
19465 
19466 	memmove(aux_data + off,	aux_data + off + cnt,
19467 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
19468 
19469 	return 0;
19470 }
19471 
19472 /* The verifier does more data flow analysis than llvm and will not
19473  * explore branches that are dead at run time. Malicious programs can
19474  * have dead code too. Therefore replace all dead at-run-time code
19475  * with 'ja -1'.
19476  *
19477  * Just nops are not optimal, e.g. if they would sit at the end of the
19478  * program and through another bug we would manage to jump there, then
19479  * we'd execute beyond program memory otherwise. Returning exception
19480  * code also wouldn't work since we can have subprogs where the dead
19481  * code could be located.
19482  */
19483 static void sanitize_dead_code(struct bpf_verifier_env *env)
19484 {
19485 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19486 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
19487 	struct bpf_insn *insn = env->prog->insnsi;
19488 	const int insn_cnt = env->prog->len;
19489 	int i;
19490 
19491 	for (i = 0; i < insn_cnt; i++) {
19492 		if (aux_data[i].seen)
19493 			continue;
19494 		memcpy(insn + i, &trap, sizeof(trap));
19495 		aux_data[i].zext_dst = false;
19496 	}
19497 }
19498 
19499 static bool insn_is_cond_jump(u8 code)
19500 {
19501 	u8 op;
19502 
19503 	op = BPF_OP(code);
19504 	if (BPF_CLASS(code) == BPF_JMP32)
19505 		return op != BPF_JA;
19506 
19507 	if (BPF_CLASS(code) != BPF_JMP)
19508 		return false;
19509 
19510 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
19511 }
19512 
19513 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
19514 {
19515 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19516 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
19517 	struct bpf_insn *insn = env->prog->insnsi;
19518 	const int insn_cnt = env->prog->len;
19519 	int i;
19520 
19521 	for (i = 0; i < insn_cnt; i++, insn++) {
19522 		if (!insn_is_cond_jump(insn->code))
19523 			continue;
19524 
19525 		if (!aux_data[i + 1].seen)
19526 			ja.off = insn->off;
19527 		else if (!aux_data[i + 1 + insn->off].seen)
19528 			ja.off = 0;
19529 		else
19530 			continue;
19531 
19532 		if (bpf_prog_is_offloaded(env->prog->aux))
19533 			bpf_prog_offload_replace_insn(env, i, &ja);
19534 
19535 		memcpy(insn, &ja, sizeof(ja));
19536 	}
19537 }
19538 
19539 static int opt_remove_dead_code(struct bpf_verifier_env *env)
19540 {
19541 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19542 	int insn_cnt = env->prog->len;
19543 	int i, err;
19544 
19545 	for (i = 0; i < insn_cnt; i++) {
19546 		int j;
19547 
19548 		j = 0;
19549 		while (i + j < insn_cnt && !aux_data[i + j].seen)
19550 			j++;
19551 		if (!j)
19552 			continue;
19553 
19554 		err = verifier_remove_insns(env, i, j);
19555 		if (err)
19556 			return err;
19557 		insn_cnt = env->prog->len;
19558 	}
19559 
19560 	return 0;
19561 }
19562 
19563 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
19564 
19565 static int opt_remove_nops(struct bpf_verifier_env *env)
19566 {
19567 	const struct bpf_insn ja = NOP;
19568 	struct bpf_insn *insn = env->prog->insnsi;
19569 	int insn_cnt = env->prog->len;
19570 	int i, err;
19571 
19572 	for (i = 0; i < insn_cnt; i++) {
19573 		if (memcmp(&insn[i], &ja, sizeof(ja)))
19574 			continue;
19575 
19576 		err = verifier_remove_insns(env, i, 1);
19577 		if (err)
19578 			return err;
19579 		insn_cnt--;
19580 		i--;
19581 	}
19582 
19583 	return 0;
19584 }
19585 
19586 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
19587 					 const union bpf_attr *attr)
19588 {
19589 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
19590 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
19591 	int i, patch_len, delta = 0, len = env->prog->len;
19592 	struct bpf_insn *insns = env->prog->insnsi;
19593 	struct bpf_prog *new_prog;
19594 	bool rnd_hi32;
19595 
19596 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
19597 	zext_patch[1] = BPF_ZEXT_REG(0);
19598 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
19599 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
19600 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
19601 	for (i = 0; i < len; i++) {
19602 		int adj_idx = i + delta;
19603 		struct bpf_insn insn;
19604 		int load_reg;
19605 
19606 		insn = insns[adj_idx];
19607 		load_reg = insn_def_regno(&insn);
19608 		if (!aux[adj_idx].zext_dst) {
19609 			u8 code, class;
19610 			u32 imm_rnd;
19611 
19612 			if (!rnd_hi32)
19613 				continue;
19614 
19615 			code = insn.code;
19616 			class = BPF_CLASS(code);
19617 			if (load_reg == -1)
19618 				continue;
19619 
19620 			/* NOTE: arg "reg" (the fourth one) is only used for
19621 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
19622 			 *       here.
19623 			 */
19624 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
19625 				if (class == BPF_LD &&
19626 				    BPF_MODE(code) == BPF_IMM)
19627 					i++;
19628 				continue;
19629 			}
19630 
19631 			/* ctx load could be transformed into wider load. */
19632 			if (class == BPF_LDX &&
19633 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
19634 				continue;
19635 
19636 			imm_rnd = get_random_u32();
19637 			rnd_hi32_patch[0] = insn;
19638 			rnd_hi32_patch[1].imm = imm_rnd;
19639 			rnd_hi32_patch[3].dst_reg = load_reg;
19640 			patch = rnd_hi32_patch;
19641 			patch_len = 4;
19642 			goto apply_patch_buffer;
19643 		}
19644 
19645 		/* Add in an zero-extend instruction if a) the JIT has requested
19646 		 * it or b) it's a CMPXCHG.
19647 		 *
19648 		 * The latter is because: BPF_CMPXCHG always loads a value into
19649 		 * R0, therefore always zero-extends. However some archs'
19650 		 * equivalent instruction only does this load when the
19651 		 * comparison is successful. This detail of CMPXCHG is
19652 		 * orthogonal to the general zero-extension behaviour of the
19653 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
19654 		 */
19655 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
19656 			continue;
19657 
19658 		/* Zero-extension is done by the caller. */
19659 		if (bpf_pseudo_kfunc_call(&insn))
19660 			continue;
19661 
19662 		if (WARN_ON(load_reg == -1)) {
19663 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
19664 			return -EFAULT;
19665 		}
19666 
19667 		zext_patch[0] = insn;
19668 		zext_patch[1].dst_reg = load_reg;
19669 		zext_patch[1].src_reg = load_reg;
19670 		patch = zext_patch;
19671 		patch_len = 2;
19672 apply_patch_buffer:
19673 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
19674 		if (!new_prog)
19675 			return -ENOMEM;
19676 		env->prog = new_prog;
19677 		insns = new_prog->insnsi;
19678 		aux = env->insn_aux_data;
19679 		delta += patch_len - 1;
19680 	}
19681 
19682 	return 0;
19683 }
19684 
19685 /* convert load instructions that access fields of a context type into a
19686  * sequence of instructions that access fields of the underlying structure:
19687  *     struct __sk_buff    -> struct sk_buff
19688  *     struct bpf_sock_ops -> struct sock
19689  */
19690 static int convert_ctx_accesses(struct bpf_verifier_env *env)
19691 {
19692 	struct bpf_subprog_info *subprogs = env->subprog_info;
19693 	const struct bpf_verifier_ops *ops = env->ops;
19694 	int i, cnt, size, ctx_field_size, delta = 0, epilogue_cnt = 0;
19695 	const int insn_cnt = env->prog->len;
19696 	struct bpf_insn *epilogue_buf = env->epilogue_buf;
19697 	struct bpf_insn *insn_buf = env->insn_buf;
19698 	struct bpf_insn *insn;
19699 	u32 target_size, size_default, off;
19700 	struct bpf_prog *new_prog;
19701 	enum bpf_access_type type;
19702 	bool is_narrower_load;
19703 	int epilogue_idx = 0;
19704 
19705 	if (ops->gen_epilogue) {
19706 		epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog,
19707 						 -(subprogs[0].stack_depth + 8));
19708 		if (epilogue_cnt >= INSN_BUF_SIZE) {
19709 			verbose(env, "bpf verifier is misconfigured\n");
19710 			return -EINVAL;
19711 		} else if (epilogue_cnt) {
19712 			/* Save the ARG_PTR_TO_CTX for the epilogue to use */
19713 			cnt = 0;
19714 			subprogs[0].stack_depth += 8;
19715 			insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1,
19716 						      -subprogs[0].stack_depth);
19717 			insn_buf[cnt++] = env->prog->insnsi[0];
19718 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
19719 			if (!new_prog)
19720 				return -ENOMEM;
19721 			env->prog = new_prog;
19722 			delta += cnt - 1;
19723 		}
19724 	}
19725 
19726 	if (ops->gen_prologue || env->seen_direct_write) {
19727 		if (!ops->gen_prologue) {
19728 			verbose(env, "bpf verifier is misconfigured\n");
19729 			return -EINVAL;
19730 		}
19731 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
19732 					env->prog);
19733 		if (cnt >= INSN_BUF_SIZE) {
19734 			verbose(env, "bpf verifier is misconfigured\n");
19735 			return -EINVAL;
19736 		} else if (cnt) {
19737 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
19738 			if (!new_prog)
19739 				return -ENOMEM;
19740 
19741 			env->prog = new_prog;
19742 			delta += cnt - 1;
19743 		}
19744 	}
19745 
19746 	if (delta)
19747 		WARN_ON(adjust_jmp_off(env->prog, 0, delta));
19748 
19749 	if (bpf_prog_is_offloaded(env->prog->aux))
19750 		return 0;
19751 
19752 	insn = env->prog->insnsi + delta;
19753 
19754 	for (i = 0; i < insn_cnt; i++, insn++) {
19755 		bpf_convert_ctx_access_t convert_ctx_access;
19756 		u8 mode;
19757 
19758 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
19759 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
19760 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
19761 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
19762 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
19763 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
19764 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
19765 			type = BPF_READ;
19766 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
19767 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
19768 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
19769 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
19770 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
19771 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
19772 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
19773 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
19774 			type = BPF_WRITE;
19775 		} else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) ||
19776 			    insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) &&
19777 			   env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) {
19778 			insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code);
19779 			env->prog->aux->num_exentries++;
19780 			continue;
19781 		} else if (insn->code == (BPF_JMP | BPF_EXIT) &&
19782 			   epilogue_cnt &&
19783 			   i + delta < subprogs[1].start) {
19784 			/* Generate epilogue for the main prog */
19785 			if (epilogue_idx) {
19786 				/* jump back to the earlier generated epilogue */
19787 				insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1);
19788 				cnt = 1;
19789 			} else {
19790 				memcpy(insn_buf, epilogue_buf,
19791 				       epilogue_cnt * sizeof(*epilogue_buf));
19792 				cnt = epilogue_cnt;
19793 				/* epilogue_idx cannot be 0. It must have at
19794 				 * least one ctx ptr saving insn before the
19795 				 * epilogue.
19796 				 */
19797 				epilogue_idx = i + delta;
19798 			}
19799 			goto patch_insn_buf;
19800 		} else {
19801 			continue;
19802 		}
19803 
19804 		if (type == BPF_WRITE &&
19805 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
19806 			struct bpf_insn patch[] = {
19807 				*insn,
19808 				BPF_ST_NOSPEC(),
19809 			};
19810 
19811 			cnt = ARRAY_SIZE(patch);
19812 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
19813 			if (!new_prog)
19814 				return -ENOMEM;
19815 
19816 			delta    += cnt - 1;
19817 			env->prog = new_prog;
19818 			insn      = new_prog->insnsi + i + delta;
19819 			continue;
19820 		}
19821 
19822 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
19823 		case PTR_TO_CTX:
19824 			if (!ops->convert_ctx_access)
19825 				continue;
19826 			convert_ctx_access = ops->convert_ctx_access;
19827 			break;
19828 		case PTR_TO_SOCKET:
19829 		case PTR_TO_SOCK_COMMON:
19830 			convert_ctx_access = bpf_sock_convert_ctx_access;
19831 			break;
19832 		case PTR_TO_TCP_SOCK:
19833 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
19834 			break;
19835 		case PTR_TO_XDP_SOCK:
19836 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
19837 			break;
19838 		case PTR_TO_BTF_ID:
19839 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
19840 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
19841 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
19842 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
19843 		 * any faults for loads into such types. BPF_WRITE is disallowed
19844 		 * for this case.
19845 		 */
19846 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
19847 			if (type == BPF_READ) {
19848 				if (BPF_MODE(insn->code) == BPF_MEM)
19849 					insn->code = BPF_LDX | BPF_PROBE_MEM |
19850 						     BPF_SIZE((insn)->code);
19851 				else
19852 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
19853 						     BPF_SIZE((insn)->code);
19854 				env->prog->aux->num_exentries++;
19855 			}
19856 			continue;
19857 		case PTR_TO_ARENA:
19858 			if (BPF_MODE(insn->code) == BPF_MEMSX) {
19859 				verbose(env, "sign extending loads from arena are not supported yet\n");
19860 				return -EOPNOTSUPP;
19861 			}
19862 			insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code);
19863 			env->prog->aux->num_exentries++;
19864 			continue;
19865 		default:
19866 			continue;
19867 		}
19868 
19869 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
19870 		size = BPF_LDST_BYTES(insn);
19871 		mode = BPF_MODE(insn->code);
19872 
19873 		/* If the read access is a narrower load of the field,
19874 		 * convert to a 4/8-byte load, to minimum program type specific
19875 		 * convert_ctx_access changes. If conversion is successful,
19876 		 * we will apply proper mask to the result.
19877 		 */
19878 		is_narrower_load = size < ctx_field_size;
19879 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
19880 		off = insn->off;
19881 		if (is_narrower_load) {
19882 			u8 size_code;
19883 
19884 			if (type == BPF_WRITE) {
19885 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
19886 				return -EINVAL;
19887 			}
19888 
19889 			size_code = BPF_H;
19890 			if (ctx_field_size == 4)
19891 				size_code = BPF_W;
19892 			else if (ctx_field_size == 8)
19893 				size_code = BPF_DW;
19894 
19895 			insn->off = off & ~(size_default - 1);
19896 			insn->code = BPF_LDX | BPF_MEM | size_code;
19897 		}
19898 
19899 		target_size = 0;
19900 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
19901 					 &target_size);
19902 		if (cnt == 0 || cnt >= INSN_BUF_SIZE ||
19903 		    (ctx_field_size && !target_size)) {
19904 			verbose(env, "bpf verifier is misconfigured\n");
19905 			return -EINVAL;
19906 		}
19907 
19908 		if (is_narrower_load && size < target_size) {
19909 			u8 shift = bpf_ctx_narrow_access_offset(
19910 				off, size, size_default) * 8;
19911 			if (shift && cnt + 1 >= INSN_BUF_SIZE) {
19912 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
19913 				return -EINVAL;
19914 			}
19915 			if (ctx_field_size <= 4) {
19916 				if (shift)
19917 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
19918 									insn->dst_reg,
19919 									shift);
19920 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
19921 								(1 << size * 8) - 1);
19922 			} else {
19923 				if (shift)
19924 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
19925 									insn->dst_reg,
19926 									shift);
19927 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
19928 								(1ULL << size * 8) - 1);
19929 			}
19930 		}
19931 		if (mode == BPF_MEMSX)
19932 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
19933 						       insn->dst_reg, insn->dst_reg,
19934 						       size * 8, 0);
19935 
19936 patch_insn_buf:
19937 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19938 		if (!new_prog)
19939 			return -ENOMEM;
19940 
19941 		delta += cnt - 1;
19942 
19943 		/* keep walking new program and skip insns we just inserted */
19944 		env->prog = new_prog;
19945 		insn      = new_prog->insnsi + i + delta;
19946 	}
19947 
19948 	return 0;
19949 }
19950 
19951 static int jit_subprogs(struct bpf_verifier_env *env)
19952 {
19953 	struct bpf_prog *prog = env->prog, **func, *tmp;
19954 	int i, j, subprog_start, subprog_end = 0, len, subprog;
19955 	struct bpf_map *map_ptr;
19956 	struct bpf_insn *insn;
19957 	void *old_bpf_func;
19958 	int err, num_exentries;
19959 
19960 	if (env->subprog_cnt <= 1)
19961 		return 0;
19962 
19963 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
19964 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
19965 			continue;
19966 
19967 		/* Upon error here we cannot fall back to interpreter but
19968 		 * need a hard reject of the program. Thus -EFAULT is
19969 		 * propagated in any case.
19970 		 */
19971 		subprog = find_subprog(env, i + insn->imm + 1);
19972 		if (subprog < 0) {
19973 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
19974 				  i + insn->imm + 1);
19975 			return -EFAULT;
19976 		}
19977 		/* temporarily remember subprog id inside insn instead of
19978 		 * aux_data, since next loop will split up all insns into funcs
19979 		 */
19980 		insn->off = subprog;
19981 		/* remember original imm in case JIT fails and fallback
19982 		 * to interpreter will be needed
19983 		 */
19984 		env->insn_aux_data[i].call_imm = insn->imm;
19985 		/* point imm to __bpf_call_base+1 from JITs point of view */
19986 		insn->imm = 1;
19987 		if (bpf_pseudo_func(insn)) {
19988 #if defined(MODULES_VADDR)
19989 			u64 addr = MODULES_VADDR;
19990 #else
19991 			u64 addr = VMALLOC_START;
19992 #endif
19993 			/* jit (e.g. x86_64) may emit fewer instructions
19994 			 * if it learns a u32 imm is the same as a u64 imm.
19995 			 * Set close enough to possible prog address.
19996 			 */
19997 			insn[0].imm = (u32)addr;
19998 			insn[1].imm = addr >> 32;
19999 		}
20000 	}
20001 
20002 	err = bpf_prog_alloc_jited_linfo(prog);
20003 	if (err)
20004 		goto out_undo_insn;
20005 
20006 	err = -ENOMEM;
20007 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
20008 	if (!func)
20009 		goto out_undo_insn;
20010 
20011 	for (i = 0; i < env->subprog_cnt; i++) {
20012 		subprog_start = subprog_end;
20013 		subprog_end = env->subprog_info[i + 1].start;
20014 
20015 		len = subprog_end - subprog_start;
20016 		/* bpf_prog_run() doesn't call subprogs directly,
20017 		 * hence main prog stats include the runtime of subprogs.
20018 		 * subprogs don't have IDs and not reachable via prog_get_next_id
20019 		 * func[i]->stats will never be accessed and stays NULL
20020 		 */
20021 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
20022 		if (!func[i])
20023 			goto out_free;
20024 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
20025 		       len * sizeof(struct bpf_insn));
20026 		func[i]->type = prog->type;
20027 		func[i]->len = len;
20028 		if (bpf_prog_calc_tag(func[i]))
20029 			goto out_free;
20030 		func[i]->is_func = 1;
20031 		func[i]->sleepable = prog->sleepable;
20032 		func[i]->aux->func_idx = i;
20033 		/* Below members will be freed only at prog->aux */
20034 		func[i]->aux->btf = prog->aux->btf;
20035 		func[i]->aux->func_info = prog->aux->func_info;
20036 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
20037 		func[i]->aux->poke_tab = prog->aux->poke_tab;
20038 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
20039 
20040 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
20041 			struct bpf_jit_poke_descriptor *poke;
20042 
20043 			poke = &prog->aux->poke_tab[j];
20044 			if (poke->insn_idx < subprog_end &&
20045 			    poke->insn_idx >= subprog_start)
20046 				poke->aux = func[i]->aux;
20047 		}
20048 
20049 		func[i]->aux->name[0] = 'F';
20050 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
20051 		func[i]->jit_requested = 1;
20052 		func[i]->blinding_requested = prog->blinding_requested;
20053 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
20054 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
20055 		func[i]->aux->linfo = prog->aux->linfo;
20056 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
20057 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
20058 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
20059 		func[i]->aux->arena = prog->aux->arena;
20060 		num_exentries = 0;
20061 		insn = func[i]->insnsi;
20062 		for (j = 0; j < func[i]->len; j++, insn++) {
20063 			if (BPF_CLASS(insn->code) == BPF_LDX &&
20064 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
20065 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32 ||
20066 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
20067 				num_exentries++;
20068 			if ((BPF_CLASS(insn->code) == BPF_STX ||
20069 			     BPF_CLASS(insn->code) == BPF_ST) &&
20070 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32)
20071 				num_exentries++;
20072 			if (BPF_CLASS(insn->code) == BPF_STX &&
20073 			     BPF_MODE(insn->code) == BPF_PROBE_ATOMIC)
20074 				num_exentries++;
20075 		}
20076 		func[i]->aux->num_exentries = num_exentries;
20077 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
20078 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
20079 		if (!i)
20080 			func[i]->aux->exception_boundary = env->seen_exception;
20081 		func[i] = bpf_int_jit_compile(func[i]);
20082 		if (!func[i]->jited) {
20083 			err = -ENOTSUPP;
20084 			goto out_free;
20085 		}
20086 		cond_resched();
20087 	}
20088 
20089 	/* at this point all bpf functions were successfully JITed
20090 	 * now populate all bpf_calls with correct addresses and
20091 	 * run last pass of JIT
20092 	 */
20093 	for (i = 0; i < env->subprog_cnt; i++) {
20094 		insn = func[i]->insnsi;
20095 		for (j = 0; j < func[i]->len; j++, insn++) {
20096 			if (bpf_pseudo_func(insn)) {
20097 				subprog = insn->off;
20098 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
20099 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
20100 				continue;
20101 			}
20102 			if (!bpf_pseudo_call(insn))
20103 				continue;
20104 			subprog = insn->off;
20105 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
20106 		}
20107 
20108 		/* we use the aux data to keep a list of the start addresses
20109 		 * of the JITed images for each function in the program
20110 		 *
20111 		 * for some architectures, such as powerpc64, the imm field
20112 		 * might not be large enough to hold the offset of the start
20113 		 * address of the callee's JITed image from __bpf_call_base
20114 		 *
20115 		 * in such cases, we can lookup the start address of a callee
20116 		 * by using its subprog id, available from the off field of
20117 		 * the call instruction, as an index for this list
20118 		 */
20119 		func[i]->aux->func = func;
20120 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
20121 		func[i]->aux->real_func_cnt = env->subprog_cnt;
20122 	}
20123 	for (i = 0; i < env->subprog_cnt; i++) {
20124 		old_bpf_func = func[i]->bpf_func;
20125 		tmp = bpf_int_jit_compile(func[i]);
20126 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
20127 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
20128 			err = -ENOTSUPP;
20129 			goto out_free;
20130 		}
20131 		cond_resched();
20132 	}
20133 
20134 	/* finally lock prog and jit images for all functions and
20135 	 * populate kallsysm. Begin at the first subprogram, since
20136 	 * bpf_prog_load will add the kallsyms for the main program.
20137 	 */
20138 	for (i = 1; i < env->subprog_cnt; i++) {
20139 		err = bpf_prog_lock_ro(func[i]);
20140 		if (err)
20141 			goto out_free;
20142 	}
20143 
20144 	for (i = 1; i < env->subprog_cnt; i++)
20145 		bpf_prog_kallsyms_add(func[i]);
20146 
20147 	/* Last step: make now unused interpreter insns from main
20148 	 * prog consistent for later dump requests, so they can
20149 	 * later look the same as if they were interpreted only.
20150 	 */
20151 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
20152 		if (bpf_pseudo_func(insn)) {
20153 			insn[0].imm = env->insn_aux_data[i].call_imm;
20154 			insn[1].imm = insn->off;
20155 			insn->off = 0;
20156 			continue;
20157 		}
20158 		if (!bpf_pseudo_call(insn))
20159 			continue;
20160 		insn->off = env->insn_aux_data[i].call_imm;
20161 		subprog = find_subprog(env, i + insn->off + 1);
20162 		insn->imm = subprog;
20163 	}
20164 
20165 	prog->jited = 1;
20166 	prog->bpf_func = func[0]->bpf_func;
20167 	prog->jited_len = func[0]->jited_len;
20168 	prog->aux->extable = func[0]->aux->extable;
20169 	prog->aux->num_exentries = func[0]->aux->num_exentries;
20170 	prog->aux->func = func;
20171 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
20172 	prog->aux->real_func_cnt = env->subprog_cnt;
20173 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
20174 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
20175 	bpf_prog_jit_attempt_done(prog);
20176 	return 0;
20177 out_free:
20178 	/* We failed JIT'ing, so at this point we need to unregister poke
20179 	 * descriptors from subprogs, so that kernel is not attempting to
20180 	 * patch it anymore as we're freeing the subprog JIT memory.
20181 	 */
20182 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
20183 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
20184 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
20185 	}
20186 	/* At this point we're guaranteed that poke descriptors are not
20187 	 * live anymore. We can just unlink its descriptor table as it's
20188 	 * released with the main prog.
20189 	 */
20190 	for (i = 0; i < env->subprog_cnt; i++) {
20191 		if (!func[i])
20192 			continue;
20193 		func[i]->aux->poke_tab = NULL;
20194 		bpf_jit_free(func[i]);
20195 	}
20196 	kfree(func);
20197 out_undo_insn:
20198 	/* cleanup main prog to be interpreted */
20199 	prog->jit_requested = 0;
20200 	prog->blinding_requested = 0;
20201 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
20202 		if (!bpf_pseudo_call(insn))
20203 			continue;
20204 		insn->off = 0;
20205 		insn->imm = env->insn_aux_data[i].call_imm;
20206 	}
20207 	bpf_prog_jit_attempt_done(prog);
20208 	return err;
20209 }
20210 
20211 static int fixup_call_args(struct bpf_verifier_env *env)
20212 {
20213 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
20214 	struct bpf_prog *prog = env->prog;
20215 	struct bpf_insn *insn = prog->insnsi;
20216 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
20217 	int i, depth;
20218 #endif
20219 	int err = 0;
20220 
20221 	if (env->prog->jit_requested &&
20222 	    !bpf_prog_is_offloaded(env->prog->aux)) {
20223 		err = jit_subprogs(env);
20224 		if (err == 0)
20225 			return 0;
20226 		if (err == -EFAULT)
20227 			return err;
20228 	}
20229 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
20230 	if (has_kfunc_call) {
20231 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
20232 		return -EINVAL;
20233 	}
20234 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
20235 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
20236 		 * have to be rejected, since interpreter doesn't support them yet.
20237 		 */
20238 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
20239 		return -EINVAL;
20240 	}
20241 	for (i = 0; i < prog->len; i++, insn++) {
20242 		if (bpf_pseudo_func(insn)) {
20243 			/* When JIT fails the progs with callback calls
20244 			 * have to be rejected, since interpreter doesn't support them yet.
20245 			 */
20246 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
20247 			return -EINVAL;
20248 		}
20249 
20250 		if (!bpf_pseudo_call(insn))
20251 			continue;
20252 		depth = get_callee_stack_depth(env, insn, i);
20253 		if (depth < 0)
20254 			return depth;
20255 		bpf_patch_call_args(insn, depth);
20256 	}
20257 	err = 0;
20258 #endif
20259 	return err;
20260 }
20261 
20262 /* replace a generic kfunc with a specialized version if necessary */
20263 static void specialize_kfunc(struct bpf_verifier_env *env,
20264 			     u32 func_id, u16 offset, unsigned long *addr)
20265 {
20266 	struct bpf_prog *prog = env->prog;
20267 	bool seen_direct_write;
20268 	void *xdp_kfunc;
20269 	bool is_rdonly;
20270 
20271 	if (bpf_dev_bound_kfunc_id(func_id)) {
20272 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
20273 		if (xdp_kfunc) {
20274 			*addr = (unsigned long)xdp_kfunc;
20275 			return;
20276 		}
20277 		/* fallback to default kfunc when not supported by netdev */
20278 	}
20279 
20280 	if (offset)
20281 		return;
20282 
20283 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
20284 		seen_direct_write = env->seen_direct_write;
20285 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
20286 
20287 		if (is_rdonly)
20288 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
20289 
20290 		/* restore env->seen_direct_write to its original value, since
20291 		 * may_access_direct_pkt_data mutates it
20292 		 */
20293 		env->seen_direct_write = seen_direct_write;
20294 	}
20295 }
20296 
20297 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
20298 					    u16 struct_meta_reg,
20299 					    u16 node_offset_reg,
20300 					    struct bpf_insn *insn,
20301 					    struct bpf_insn *insn_buf,
20302 					    int *cnt)
20303 {
20304 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
20305 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
20306 
20307 	insn_buf[0] = addr[0];
20308 	insn_buf[1] = addr[1];
20309 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
20310 	insn_buf[3] = *insn;
20311 	*cnt = 4;
20312 }
20313 
20314 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
20315 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
20316 {
20317 	const struct bpf_kfunc_desc *desc;
20318 
20319 	if (!insn->imm) {
20320 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
20321 		return -EINVAL;
20322 	}
20323 
20324 	*cnt = 0;
20325 
20326 	/* insn->imm has the btf func_id. Replace it with an offset relative to
20327 	 * __bpf_call_base, unless the JIT needs to call functions that are
20328 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
20329 	 */
20330 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
20331 	if (!desc) {
20332 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
20333 			insn->imm);
20334 		return -EFAULT;
20335 	}
20336 
20337 	if (!bpf_jit_supports_far_kfunc_call())
20338 		insn->imm = BPF_CALL_IMM(desc->addr);
20339 	if (insn->off)
20340 		return 0;
20341 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
20342 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
20343 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
20344 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
20345 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
20346 
20347 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
20348 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
20349 				insn_idx);
20350 			return -EFAULT;
20351 		}
20352 
20353 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
20354 		insn_buf[1] = addr[0];
20355 		insn_buf[2] = addr[1];
20356 		insn_buf[3] = *insn;
20357 		*cnt = 4;
20358 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
20359 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
20360 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
20361 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
20362 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
20363 
20364 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
20365 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
20366 				insn_idx);
20367 			return -EFAULT;
20368 		}
20369 
20370 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
20371 		    !kptr_struct_meta) {
20372 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
20373 				insn_idx);
20374 			return -EFAULT;
20375 		}
20376 
20377 		insn_buf[0] = addr[0];
20378 		insn_buf[1] = addr[1];
20379 		insn_buf[2] = *insn;
20380 		*cnt = 3;
20381 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
20382 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
20383 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
20384 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
20385 		int struct_meta_reg = BPF_REG_3;
20386 		int node_offset_reg = BPF_REG_4;
20387 
20388 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
20389 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
20390 			struct_meta_reg = BPF_REG_4;
20391 			node_offset_reg = BPF_REG_5;
20392 		}
20393 
20394 		if (!kptr_struct_meta) {
20395 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
20396 				insn_idx);
20397 			return -EFAULT;
20398 		}
20399 
20400 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
20401 						node_offset_reg, insn, insn_buf, cnt);
20402 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
20403 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
20404 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
20405 		*cnt = 1;
20406 	} else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) {
20407 		struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) };
20408 
20409 		insn_buf[0] = ld_addrs[0];
20410 		insn_buf[1] = ld_addrs[1];
20411 		insn_buf[2] = *insn;
20412 		*cnt = 3;
20413 	}
20414 	return 0;
20415 }
20416 
20417 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
20418 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
20419 {
20420 	struct bpf_subprog_info *info = env->subprog_info;
20421 	int cnt = env->subprog_cnt;
20422 	struct bpf_prog *prog;
20423 
20424 	/* We only reserve one slot for hidden subprogs in subprog_info. */
20425 	if (env->hidden_subprog_cnt) {
20426 		verbose(env, "verifier internal error: only one hidden subprog supported\n");
20427 		return -EFAULT;
20428 	}
20429 	/* We're not patching any existing instruction, just appending the new
20430 	 * ones for the hidden subprog. Hence all of the adjustment operations
20431 	 * in bpf_patch_insn_data are no-ops.
20432 	 */
20433 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
20434 	if (!prog)
20435 		return -ENOMEM;
20436 	env->prog = prog;
20437 	info[cnt + 1].start = info[cnt].start;
20438 	info[cnt].start = prog->len - len + 1;
20439 	env->subprog_cnt++;
20440 	env->hidden_subprog_cnt++;
20441 	return 0;
20442 }
20443 
20444 /* Do various post-verification rewrites in a single program pass.
20445  * These rewrites simplify JIT and interpreter implementations.
20446  */
20447 static int do_misc_fixups(struct bpf_verifier_env *env)
20448 {
20449 	struct bpf_prog *prog = env->prog;
20450 	enum bpf_attach_type eatype = prog->expected_attach_type;
20451 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
20452 	struct bpf_insn *insn = prog->insnsi;
20453 	const struct bpf_func_proto *fn;
20454 	const int insn_cnt = prog->len;
20455 	const struct bpf_map_ops *ops;
20456 	struct bpf_insn_aux_data *aux;
20457 	struct bpf_insn *insn_buf = env->insn_buf;
20458 	struct bpf_prog *new_prog;
20459 	struct bpf_map *map_ptr;
20460 	int i, ret, cnt, delta = 0, cur_subprog = 0;
20461 	struct bpf_subprog_info *subprogs = env->subprog_info;
20462 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
20463 	u16 stack_depth_extra = 0;
20464 
20465 	if (env->seen_exception && !env->exception_callback_subprog) {
20466 		struct bpf_insn patch[] = {
20467 			env->prog->insnsi[insn_cnt - 1],
20468 			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
20469 			BPF_EXIT_INSN(),
20470 		};
20471 
20472 		ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
20473 		if (ret < 0)
20474 			return ret;
20475 		prog = env->prog;
20476 		insn = prog->insnsi;
20477 
20478 		env->exception_callback_subprog = env->subprog_cnt - 1;
20479 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
20480 		mark_subprog_exc_cb(env, env->exception_callback_subprog);
20481 	}
20482 
20483 	for (i = 0; i < insn_cnt;) {
20484 		if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) {
20485 			if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) ||
20486 			    (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) {
20487 				/* convert to 32-bit mov that clears upper 32-bit */
20488 				insn->code = BPF_ALU | BPF_MOV | BPF_X;
20489 				/* clear off and imm, so it's a normal 'wX = wY' from JIT pov */
20490 				insn->off = 0;
20491 				insn->imm = 0;
20492 			} /* cast from as(0) to as(1) should be handled by JIT */
20493 			goto next_insn;
20494 		}
20495 
20496 		if (env->insn_aux_data[i + delta].needs_zext)
20497 			/* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */
20498 			insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code);
20499 
20500 		/* Make sdiv/smod divide-by-minus-one exceptions impossible. */
20501 		if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) ||
20502 		     insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) ||
20503 		     insn->code == (BPF_ALU | BPF_MOD | BPF_K) ||
20504 		     insn->code == (BPF_ALU | BPF_DIV | BPF_K)) &&
20505 		    insn->off == 1 && insn->imm == -1) {
20506 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
20507 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
20508 			struct bpf_insn *patchlet;
20509 			struct bpf_insn chk_and_sdiv[] = {
20510 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20511 					     BPF_NEG | BPF_K, insn->dst_reg,
20512 					     0, 0, 0),
20513 			};
20514 			struct bpf_insn chk_and_smod[] = {
20515 				BPF_MOV32_IMM(insn->dst_reg, 0),
20516 			};
20517 
20518 			patchlet = isdiv ? chk_and_sdiv : chk_and_smod;
20519 			cnt = isdiv ? ARRAY_SIZE(chk_and_sdiv) : ARRAY_SIZE(chk_and_smod);
20520 
20521 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
20522 			if (!new_prog)
20523 				return -ENOMEM;
20524 
20525 			delta    += cnt - 1;
20526 			env->prog = prog = new_prog;
20527 			insn      = new_prog->insnsi + i + delta;
20528 			goto next_insn;
20529 		}
20530 
20531 		/* Make divide-by-zero and divide-by-minus-one exceptions impossible. */
20532 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
20533 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
20534 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
20535 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
20536 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
20537 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
20538 			bool is_sdiv = isdiv && insn->off == 1;
20539 			bool is_smod = !isdiv && insn->off == 1;
20540 			struct bpf_insn *patchlet;
20541 			struct bpf_insn chk_and_div[] = {
20542 				/* [R,W]x div 0 -> 0 */
20543 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20544 					     BPF_JNE | BPF_K, insn->src_reg,
20545 					     0, 2, 0),
20546 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
20547 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20548 				*insn,
20549 			};
20550 			struct bpf_insn chk_and_mod[] = {
20551 				/* [R,W]x mod 0 -> [R,W]x */
20552 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20553 					     BPF_JEQ | BPF_K, insn->src_reg,
20554 					     0, 1 + (is64 ? 0 : 1), 0),
20555 				*insn,
20556 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20557 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
20558 			};
20559 			struct bpf_insn chk_and_sdiv[] = {
20560 				/* [R,W]x sdiv 0 -> 0
20561 				 * LLONG_MIN sdiv -1 -> LLONG_MIN
20562 				 * INT_MIN sdiv -1 -> INT_MIN
20563 				 */
20564 				BPF_MOV64_REG(BPF_REG_AX, insn->src_reg),
20565 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20566 					     BPF_ADD | BPF_K, BPF_REG_AX,
20567 					     0, 0, 1),
20568 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20569 					     BPF_JGT | BPF_K, BPF_REG_AX,
20570 					     0, 4, 1),
20571 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20572 					     BPF_JEQ | BPF_K, BPF_REG_AX,
20573 					     0, 1, 0),
20574 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20575 					     BPF_MOV | BPF_K, insn->dst_reg,
20576 					     0, 0, 0),
20577 				/* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */
20578 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20579 					     BPF_NEG | BPF_K, insn->dst_reg,
20580 					     0, 0, 0),
20581 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20582 				*insn,
20583 			};
20584 			struct bpf_insn chk_and_smod[] = {
20585 				/* [R,W]x mod 0 -> [R,W]x */
20586 				/* [R,W]x mod -1 -> 0 */
20587 				BPF_MOV64_REG(BPF_REG_AX, insn->src_reg),
20588 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20589 					     BPF_ADD | BPF_K, BPF_REG_AX,
20590 					     0, 0, 1),
20591 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20592 					     BPF_JGT | BPF_K, BPF_REG_AX,
20593 					     0, 3, 1),
20594 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20595 					     BPF_JEQ | BPF_K, BPF_REG_AX,
20596 					     0, 3 + (is64 ? 0 : 1), 1),
20597 				BPF_MOV32_IMM(insn->dst_reg, 0),
20598 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20599 				*insn,
20600 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20601 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
20602 			};
20603 
20604 			if (is_sdiv) {
20605 				patchlet = chk_and_sdiv;
20606 				cnt = ARRAY_SIZE(chk_and_sdiv);
20607 			} else if (is_smod) {
20608 				patchlet = chk_and_smod;
20609 				cnt = ARRAY_SIZE(chk_and_smod) - (is64 ? 2 : 0);
20610 			} else {
20611 				patchlet = isdiv ? chk_and_div : chk_and_mod;
20612 				cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
20613 					      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
20614 			}
20615 
20616 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
20617 			if (!new_prog)
20618 				return -ENOMEM;
20619 
20620 			delta    += cnt - 1;
20621 			env->prog = prog = new_prog;
20622 			insn      = new_prog->insnsi + i + delta;
20623 			goto next_insn;
20624 		}
20625 
20626 		/* Make it impossible to de-reference a userspace address */
20627 		if (BPF_CLASS(insn->code) == BPF_LDX &&
20628 		    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
20629 		     BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) {
20630 			struct bpf_insn *patch = &insn_buf[0];
20631 			u64 uaddress_limit = bpf_arch_uaddress_limit();
20632 
20633 			if (!uaddress_limit)
20634 				goto next_insn;
20635 
20636 			*patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
20637 			if (insn->off)
20638 				*patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off);
20639 			*patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32);
20640 			*patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2);
20641 			*patch++ = *insn;
20642 			*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
20643 			*patch++ = BPF_MOV64_IMM(insn->dst_reg, 0);
20644 
20645 			cnt = patch - insn_buf;
20646 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20647 			if (!new_prog)
20648 				return -ENOMEM;
20649 
20650 			delta    += cnt - 1;
20651 			env->prog = prog = new_prog;
20652 			insn      = new_prog->insnsi + i + delta;
20653 			goto next_insn;
20654 		}
20655 
20656 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
20657 		if (BPF_CLASS(insn->code) == BPF_LD &&
20658 		    (BPF_MODE(insn->code) == BPF_ABS ||
20659 		     BPF_MODE(insn->code) == BPF_IND)) {
20660 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
20661 			if (cnt == 0 || cnt >= INSN_BUF_SIZE) {
20662 				verbose(env, "bpf verifier is misconfigured\n");
20663 				return -EINVAL;
20664 			}
20665 
20666 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20667 			if (!new_prog)
20668 				return -ENOMEM;
20669 
20670 			delta    += cnt - 1;
20671 			env->prog = prog = new_prog;
20672 			insn      = new_prog->insnsi + i + delta;
20673 			goto next_insn;
20674 		}
20675 
20676 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
20677 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
20678 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
20679 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
20680 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
20681 			struct bpf_insn *patch = &insn_buf[0];
20682 			bool issrc, isneg, isimm;
20683 			u32 off_reg;
20684 
20685 			aux = &env->insn_aux_data[i + delta];
20686 			if (!aux->alu_state ||
20687 			    aux->alu_state == BPF_ALU_NON_POINTER)
20688 				goto next_insn;
20689 
20690 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
20691 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
20692 				BPF_ALU_SANITIZE_SRC;
20693 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
20694 
20695 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
20696 			if (isimm) {
20697 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
20698 			} else {
20699 				if (isneg)
20700 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
20701 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
20702 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
20703 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
20704 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
20705 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
20706 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
20707 			}
20708 			if (!issrc)
20709 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
20710 			insn->src_reg = BPF_REG_AX;
20711 			if (isneg)
20712 				insn->code = insn->code == code_add ?
20713 					     code_sub : code_add;
20714 			*patch++ = *insn;
20715 			if (issrc && isneg && !isimm)
20716 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
20717 			cnt = patch - insn_buf;
20718 
20719 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20720 			if (!new_prog)
20721 				return -ENOMEM;
20722 
20723 			delta    += cnt - 1;
20724 			env->prog = prog = new_prog;
20725 			insn      = new_prog->insnsi + i + delta;
20726 			goto next_insn;
20727 		}
20728 
20729 		if (is_may_goto_insn(insn)) {
20730 			int stack_off = -stack_depth - 8;
20731 
20732 			stack_depth_extra = 8;
20733 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off);
20734 			if (insn->off >= 0)
20735 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2);
20736 			else
20737 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
20738 			insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
20739 			insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off);
20740 			cnt = 4;
20741 
20742 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20743 			if (!new_prog)
20744 				return -ENOMEM;
20745 
20746 			delta += cnt - 1;
20747 			env->prog = prog = new_prog;
20748 			insn = new_prog->insnsi + i + delta;
20749 			goto next_insn;
20750 		}
20751 
20752 		if (insn->code != (BPF_JMP | BPF_CALL))
20753 			goto next_insn;
20754 		if (insn->src_reg == BPF_PSEUDO_CALL)
20755 			goto next_insn;
20756 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
20757 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
20758 			if (ret)
20759 				return ret;
20760 			if (cnt == 0)
20761 				goto next_insn;
20762 
20763 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20764 			if (!new_prog)
20765 				return -ENOMEM;
20766 
20767 			delta	 += cnt - 1;
20768 			env->prog = prog = new_prog;
20769 			insn	  = new_prog->insnsi + i + delta;
20770 			goto next_insn;
20771 		}
20772 
20773 		/* Skip inlining the helper call if the JIT does it. */
20774 		if (bpf_jit_inlines_helper_call(insn->imm))
20775 			goto next_insn;
20776 
20777 		if (insn->imm == BPF_FUNC_get_route_realm)
20778 			prog->dst_needed = 1;
20779 		if (insn->imm == BPF_FUNC_get_prandom_u32)
20780 			bpf_user_rnd_init_once();
20781 		if (insn->imm == BPF_FUNC_override_return)
20782 			prog->kprobe_override = 1;
20783 		if (insn->imm == BPF_FUNC_tail_call) {
20784 			/* If we tail call into other programs, we
20785 			 * cannot make any assumptions since they can
20786 			 * be replaced dynamically during runtime in
20787 			 * the program array.
20788 			 */
20789 			prog->cb_access = 1;
20790 			if (!allow_tail_call_in_subprogs(env))
20791 				prog->aux->stack_depth = MAX_BPF_STACK;
20792 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
20793 
20794 			/* mark bpf_tail_call as different opcode to avoid
20795 			 * conditional branch in the interpreter for every normal
20796 			 * call and to prevent accidental JITing by JIT compiler
20797 			 * that doesn't support bpf_tail_call yet
20798 			 */
20799 			insn->imm = 0;
20800 			insn->code = BPF_JMP | BPF_TAIL_CALL;
20801 
20802 			aux = &env->insn_aux_data[i + delta];
20803 			if (env->bpf_capable && !prog->blinding_requested &&
20804 			    prog->jit_requested &&
20805 			    !bpf_map_key_poisoned(aux) &&
20806 			    !bpf_map_ptr_poisoned(aux) &&
20807 			    !bpf_map_ptr_unpriv(aux)) {
20808 				struct bpf_jit_poke_descriptor desc = {
20809 					.reason = BPF_POKE_REASON_TAIL_CALL,
20810 					.tail_call.map = aux->map_ptr_state.map_ptr,
20811 					.tail_call.key = bpf_map_key_immediate(aux),
20812 					.insn_idx = i + delta,
20813 				};
20814 
20815 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
20816 				if (ret < 0) {
20817 					verbose(env, "adding tail call poke descriptor failed\n");
20818 					return ret;
20819 				}
20820 
20821 				insn->imm = ret + 1;
20822 				goto next_insn;
20823 			}
20824 
20825 			if (!bpf_map_ptr_unpriv(aux))
20826 				goto next_insn;
20827 
20828 			/* instead of changing every JIT dealing with tail_call
20829 			 * emit two extra insns:
20830 			 * if (index >= max_entries) goto out;
20831 			 * index &= array->index_mask;
20832 			 * to avoid out-of-bounds cpu speculation
20833 			 */
20834 			if (bpf_map_ptr_poisoned(aux)) {
20835 				verbose(env, "tail_call abusing map_ptr\n");
20836 				return -EINVAL;
20837 			}
20838 
20839 			map_ptr = aux->map_ptr_state.map_ptr;
20840 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
20841 						  map_ptr->max_entries, 2);
20842 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
20843 						    container_of(map_ptr,
20844 								 struct bpf_array,
20845 								 map)->index_mask);
20846 			insn_buf[2] = *insn;
20847 			cnt = 3;
20848 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20849 			if (!new_prog)
20850 				return -ENOMEM;
20851 
20852 			delta    += cnt - 1;
20853 			env->prog = prog = new_prog;
20854 			insn      = new_prog->insnsi + i + delta;
20855 			goto next_insn;
20856 		}
20857 
20858 		if (insn->imm == BPF_FUNC_timer_set_callback) {
20859 			/* The verifier will process callback_fn as many times as necessary
20860 			 * with different maps and the register states prepared by
20861 			 * set_timer_callback_state will be accurate.
20862 			 *
20863 			 * The following use case is valid:
20864 			 *   map1 is shared by prog1, prog2, prog3.
20865 			 *   prog1 calls bpf_timer_init for some map1 elements
20866 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
20867 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
20868 			 *   prog3 calls bpf_timer_start for some map1 elements.
20869 			 *     Those that were not both bpf_timer_init-ed and
20870 			 *     bpf_timer_set_callback-ed will return -EINVAL.
20871 			 */
20872 			struct bpf_insn ld_addrs[2] = {
20873 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
20874 			};
20875 
20876 			insn_buf[0] = ld_addrs[0];
20877 			insn_buf[1] = ld_addrs[1];
20878 			insn_buf[2] = *insn;
20879 			cnt = 3;
20880 
20881 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20882 			if (!new_prog)
20883 				return -ENOMEM;
20884 
20885 			delta    += cnt - 1;
20886 			env->prog = prog = new_prog;
20887 			insn      = new_prog->insnsi + i + delta;
20888 			goto patch_call_imm;
20889 		}
20890 
20891 		if (is_storage_get_function(insn->imm)) {
20892 			if (!in_sleepable(env) ||
20893 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
20894 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
20895 			else
20896 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
20897 			insn_buf[1] = *insn;
20898 			cnt = 2;
20899 
20900 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20901 			if (!new_prog)
20902 				return -ENOMEM;
20903 
20904 			delta += cnt - 1;
20905 			env->prog = prog = new_prog;
20906 			insn = new_prog->insnsi + i + delta;
20907 			goto patch_call_imm;
20908 		}
20909 
20910 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
20911 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
20912 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
20913 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
20914 			 */
20915 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
20916 			insn_buf[1] = *insn;
20917 			cnt = 2;
20918 
20919 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20920 			if (!new_prog)
20921 				return -ENOMEM;
20922 
20923 			delta += cnt - 1;
20924 			env->prog = prog = new_prog;
20925 			insn = new_prog->insnsi + i + delta;
20926 			goto patch_call_imm;
20927 		}
20928 
20929 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
20930 		 * and other inlining handlers are currently limited to 64 bit
20931 		 * only.
20932 		 */
20933 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
20934 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
20935 		     insn->imm == BPF_FUNC_map_update_elem ||
20936 		     insn->imm == BPF_FUNC_map_delete_elem ||
20937 		     insn->imm == BPF_FUNC_map_push_elem   ||
20938 		     insn->imm == BPF_FUNC_map_pop_elem    ||
20939 		     insn->imm == BPF_FUNC_map_peek_elem   ||
20940 		     insn->imm == BPF_FUNC_redirect_map    ||
20941 		     insn->imm == BPF_FUNC_for_each_map_elem ||
20942 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
20943 			aux = &env->insn_aux_data[i + delta];
20944 			if (bpf_map_ptr_poisoned(aux))
20945 				goto patch_call_imm;
20946 
20947 			map_ptr = aux->map_ptr_state.map_ptr;
20948 			ops = map_ptr->ops;
20949 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
20950 			    ops->map_gen_lookup) {
20951 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
20952 				if (cnt == -EOPNOTSUPP)
20953 					goto patch_map_ops_generic;
20954 				if (cnt <= 0 || cnt >= INSN_BUF_SIZE) {
20955 					verbose(env, "bpf verifier is misconfigured\n");
20956 					return -EINVAL;
20957 				}
20958 
20959 				new_prog = bpf_patch_insn_data(env, i + delta,
20960 							       insn_buf, cnt);
20961 				if (!new_prog)
20962 					return -ENOMEM;
20963 
20964 				delta    += cnt - 1;
20965 				env->prog = prog = new_prog;
20966 				insn      = new_prog->insnsi + i + delta;
20967 				goto next_insn;
20968 			}
20969 
20970 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
20971 				     (void *(*)(struct bpf_map *map, void *key))NULL));
20972 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
20973 				     (long (*)(struct bpf_map *map, void *key))NULL));
20974 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
20975 				     (long (*)(struct bpf_map *map, void *key, void *value,
20976 					      u64 flags))NULL));
20977 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
20978 				     (long (*)(struct bpf_map *map, void *value,
20979 					      u64 flags))NULL));
20980 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
20981 				     (long (*)(struct bpf_map *map, void *value))NULL));
20982 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
20983 				     (long (*)(struct bpf_map *map, void *value))NULL));
20984 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
20985 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
20986 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
20987 				     (long (*)(struct bpf_map *map,
20988 					      bpf_callback_t callback_fn,
20989 					      void *callback_ctx,
20990 					      u64 flags))NULL));
20991 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
20992 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
20993 
20994 patch_map_ops_generic:
20995 			switch (insn->imm) {
20996 			case BPF_FUNC_map_lookup_elem:
20997 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
20998 				goto next_insn;
20999 			case BPF_FUNC_map_update_elem:
21000 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
21001 				goto next_insn;
21002 			case BPF_FUNC_map_delete_elem:
21003 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
21004 				goto next_insn;
21005 			case BPF_FUNC_map_push_elem:
21006 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
21007 				goto next_insn;
21008 			case BPF_FUNC_map_pop_elem:
21009 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
21010 				goto next_insn;
21011 			case BPF_FUNC_map_peek_elem:
21012 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
21013 				goto next_insn;
21014 			case BPF_FUNC_redirect_map:
21015 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
21016 				goto next_insn;
21017 			case BPF_FUNC_for_each_map_elem:
21018 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
21019 				goto next_insn;
21020 			case BPF_FUNC_map_lookup_percpu_elem:
21021 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
21022 				goto next_insn;
21023 			}
21024 
21025 			goto patch_call_imm;
21026 		}
21027 
21028 		/* Implement bpf_jiffies64 inline. */
21029 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
21030 		    insn->imm == BPF_FUNC_jiffies64) {
21031 			struct bpf_insn ld_jiffies_addr[2] = {
21032 				BPF_LD_IMM64(BPF_REG_0,
21033 					     (unsigned long)&jiffies),
21034 			};
21035 
21036 			insn_buf[0] = ld_jiffies_addr[0];
21037 			insn_buf[1] = ld_jiffies_addr[1];
21038 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
21039 						  BPF_REG_0, 0);
21040 			cnt = 3;
21041 
21042 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
21043 						       cnt);
21044 			if (!new_prog)
21045 				return -ENOMEM;
21046 
21047 			delta    += cnt - 1;
21048 			env->prog = prog = new_prog;
21049 			insn      = new_prog->insnsi + i + delta;
21050 			goto next_insn;
21051 		}
21052 
21053 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
21054 		/* Implement bpf_get_smp_processor_id() inline. */
21055 		if (insn->imm == BPF_FUNC_get_smp_processor_id &&
21056 		    verifier_inlines_helper_call(env, insn->imm)) {
21057 			/* BPF_FUNC_get_smp_processor_id inlining is an
21058 			 * optimization, so if pcpu_hot.cpu_number is ever
21059 			 * changed in some incompatible and hard to support
21060 			 * way, it's fine to back out this inlining logic
21061 			 */
21062 			insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number);
21063 			insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
21064 			insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0);
21065 			cnt = 3;
21066 
21067 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21068 			if (!new_prog)
21069 				return -ENOMEM;
21070 
21071 			delta    += cnt - 1;
21072 			env->prog = prog = new_prog;
21073 			insn      = new_prog->insnsi + i + delta;
21074 			goto next_insn;
21075 		}
21076 #endif
21077 		/* Implement bpf_get_func_arg inline. */
21078 		if (prog_type == BPF_PROG_TYPE_TRACING &&
21079 		    insn->imm == BPF_FUNC_get_func_arg) {
21080 			/* Load nr_args from ctx - 8 */
21081 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
21082 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
21083 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
21084 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
21085 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
21086 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
21087 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
21088 			insn_buf[7] = BPF_JMP_A(1);
21089 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
21090 			cnt = 9;
21091 
21092 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21093 			if (!new_prog)
21094 				return -ENOMEM;
21095 
21096 			delta    += cnt - 1;
21097 			env->prog = prog = new_prog;
21098 			insn      = new_prog->insnsi + i + delta;
21099 			goto next_insn;
21100 		}
21101 
21102 		/* Implement bpf_get_func_ret inline. */
21103 		if (prog_type == BPF_PROG_TYPE_TRACING &&
21104 		    insn->imm == BPF_FUNC_get_func_ret) {
21105 			if (eatype == BPF_TRACE_FEXIT ||
21106 			    eatype == BPF_MODIFY_RETURN) {
21107 				/* Load nr_args from ctx - 8 */
21108 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
21109 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
21110 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
21111 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
21112 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
21113 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
21114 				cnt = 6;
21115 			} else {
21116 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
21117 				cnt = 1;
21118 			}
21119 
21120 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21121 			if (!new_prog)
21122 				return -ENOMEM;
21123 
21124 			delta    += cnt - 1;
21125 			env->prog = prog = new_prog;
21126 			insn      = new_prog->insnsi + i + delta;
21127 			goto next_insn;
21128 		}
21129 
21130 		/* Implement get_func_arg_cnt inline. */
21131 		if (prog_type == BPF_PROG_TYPE_TRACING &&
21132 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
21133 			/* Load nr_args from ctx - 8 */
21134 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
21135 
21136 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
21137 			if (!new_prog)
21138 				return -ENOMEM;
21139 
21140 			env->prog = prog = new_prog;
21141 			insn      = new_prog->insnsi + i + delta;
21142 			goto next_insn;
21143 		}
21144 
21145 		/* Implement bpf_get_func_ip inline. */
21146 		if (prog_type == BPF_PROG_TYPE_TRACING &&
21147 		    insn->imm == BPF_FUNC_get_func_ip) {
21148 			/* Load IP address from ctx - 16 */
21149 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
21150 
21151 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
21152 			if (!new_prog)
21153 				return -ENOMEM;
21154 
21155 			env->prog = prog = new_prog;
21156 			insn      = new_prog->insnsi + i + delta;
21157 			goto next_insn;
21158 		}
21159 
21160 		/* Implement bpf_get_branch_snapshot inline. */
21161 		if (IS_ENABLED(CONFIG_PERF_EVENTS) &&
21162 		    prog->jit_requested && BITS_PER_LONG == 64 &&
21163 		    insn->imm == BPF_FUNC_get_branch_snapshot) {
21164 			/* We are dealing with the following func protos:
21165 			 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags);
21166 			 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt);
21167 			 */
21168 			const u32 br_entry_size = sizeof(struct perf_branch_entry);
21169 
21170 			/* struct perf_branch_entry is part of UAPI and is
21171 			 * used as an array element, so extremely unlikely to
21172 			 * ever grow or shrink
21173 			 */
21174 			BUILD_BUG_ON(br_entry_size != 24);
21175 
21176 			/* if (unlikely(flags)) return -EINVAL */
21177 			insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7);
21178 
21179 			/* Transform size (bytes) into number of entries (cnt = size / 24).
21180 			 * But to avoid expensive division instruction, we implement
21181 			 * divide-by-3 through multiplication, followed by further
21182 			 * division by 8 through 3-bit right shift.
21183 			 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr.,
21184 			 * p. 227, chapter "Unsigned Division by 3" for details and proofs.
21185 			 *
21186 			 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab.
21187 			 */
21188 			insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab);
21189 			insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0);
21190 			insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36);
21191 
21192 			/* call perf_snapshot_branch_stack implementation */
21193 			insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack));
21194 			/* if (entry_cnt == 0) return -ENOENT */
21195 			insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4);
21196 			/* return entry_cnt * sizeof(struct perf_branch_entry) */
21197 			insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size);
21198 			insn_buf[7] = BPF_JMP_A(3);
21199 			/* return -EINVAL; */
21200 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
21201 			insn_buf[9] = BPF_JMP_A(1);
21202 			/* return -ENOENT; */
21203 			insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT);
21204 			cnt = 11;
21205 
21206 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21207 			if (!new_prog)
21208 				return -ENOMEM;
21209 
21210 			delta    += cnt - 1;
21211 			env->prog = prog = new_prog;
21212 			insn      = new_prog->insnsi + i + delta;
21213 			goto next_insn;
21214 		}
21215 
21216 		/* Implement bpf_kptr_xchg inline */
21217 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
21218 		    insn->imm == BPF_FUNC_kptr_xchg &&
21219 		    bpf_jit_supports_ptr_xchg()) {
21220 			insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2);
21221 			insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0);
21222 			cnt = 2;
21223 
21224 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21225 			if (!new_prog)
21226 				return -ENOMEM;
21227 
21228 			delta    += cnt - 1;
21229 			env->prog = prog = new_prog;
21230 			insn      = new_prog->insnsi + i + delta;
21231 			goto next_insn;
21232 		}
21233 patch_call_imm:
21234 		fn = env->ops->get_func_proto(insn->imm, env->prog);
21235 		/* all functions that have prototype and verifier allowed
21236 		 * programs to call them, must be real in-kernel functions
21237 		 */
21238 		if (!fn->func) {
21239 			verbose(env,
21240 				"kernel subsystem misconfigured func %s#%d\n",
21241 				func_id_name(insn->imm), insn->imm);
21242 			return -EFAULT;
21243 		}
21244 		insn->imm = fn->func - __bpf_call_base;
21245 next_insn:
21246 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
21247 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
21248 			subprogs[cur_subprog].stack_extra = stack_depth_extra;
21249 			cur_subprog++;
21250 			stack_depth = subprogs[cur_subprog].stack_depth;
21251 			stack_depth_extra = 0;
21252 		}
21253 		i++;
21254 		insn++;
21255 	}
21256 
21257 	env->prog->aux->stack_depth = subprogs[0].stack_depth;
21258 	for (i = 0; i < env->subprog_cnt; i++) {
21259 		int subprog_start = subprogs[i].start;
21260 		int stack_slots = subprogs[i].stack_extra / 8;
21261 
21262 		if (!stack_slots)
21263 			continue;
21264 		if (stack_slots > 1) {
21265 			verbose(env, "verifier bug: stack_slots supports may_goto only\n");
21266 			return -EFAULT;
21267 		}
21268 
21269 		/* Add ST insn to subprog prologue to init extra stack */
21270 		insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP,
21271 					 -subprogs[i].stack_depth, BPF_MAX_LOOPS);
21272 		/* Copy first actual insn to preserve it */
21273 		insn_buf[1] = env->prog->insnsi[subprog_start];
21274 
21275 		new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2);
21276 		if (!new_prog)
21277 			return -ENOMEM;
21278 		env->prog = prog = new_prog;
21279 		/*
21280 		 * If may_goto is a first insn of a prog there could be a jmp
21281 		 * insn that points to it, hence adjust all such jmps to point
21282 		 * to insn after BPF_ST that inits may_goto count.
21283 		 * Adjustment will succeed because bpf_patch_insn_data() didn't fail.
21284 		 */
21285 		WARN_ON(adjust_jmp_off(env->prog, subprog_start, 1));
21286 	}
21287 
21288 	/* Since poke tab is now finalized, publish aux to tracker. */
21289 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
21290 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
21291 		if (!map_ptr->ops->map_poke_track ||
21292 		    !map_ptr->ops->map_poke_untrack ||
21293 		    !map_ptr->ops->map_poke_run) {
21294 			verbose(env, "bpf verifier is misconfigured\n");
21295 			return -EINVAL;
21296 		}
21297 
21298 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
21299 		if (ret < 0) {
21300 			verbose(env, "tracking tail call prog failed\n");
21301 			return ret;
21302 		}
21303 	}
21304 
21305 	sort_kfunc_descs_by_imm_off(env->prog);
21306 
21307 	return 0;
21308 }
21309 
21310 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
21311 					int position,
21312 					s32 stack_base,
21313 					u32 callback_subprogno,
21314 					u32 *total_cnt)
21315 {
21316 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
21317 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
21318 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
21319 	int reg_loop_max = BPF_REG_6;
21320 	int reg_loop_cnt = BPF_REG_7;
21321 	int reg_loop_ctx = BPF_REG_8;
21322 
21323 	struct bpf_insn *insn_buf = env->insn_buf;
21324 	struct bpf_prog *new_prog;
21325 	u32 callback_start;
21326 	u32 call_insn_offset;
21327 	s32 callback_offset;
21328 	u32 cnt = 0;
21329 
21330 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
21331 	 * be careful to modify this code in sync.
21332 	 */
21333 
21334 	/* Return error and jump to the end of the patch if
21335 	 * expected number of iterations is too big.
21336 	 */
21337 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2);
21338 	insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG);
21339 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16);
21340 	/* spill R6, R7, R8 to use these as loop vars */
21341 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset);
21342 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset);
21343 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset);
21344 	/* initialize loop vars */
21345 	insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1);
21346 	insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0);
21347 	insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3);
21348 	/* loop header,
21349 	 * if reg_loop_cnt >= reg_loop_max skip the loop body
21350 	 */
21351 	insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5);
21352 	/* callback call,
21353 	 * correct callback offset would be set after patching
21354 	 */
21355 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt);
21356 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx);
21357 	insn_buf[cnt++] = BPF_CALL_REL(0);
21358 	/* increment loop counter */
21359 	insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1);
21360 	/* jump to loop header if callback returned 0 */
21361 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6);
21362 	/* return value of bpf_loop,
21363 	 * set R0 to the number of iterations
21364 	 */
21365 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt);
21366 	/* restore original values of R6, R7, R8 */
21367 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset);
21368 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset);
21369 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset);
21370 
21371 	*total_cnt = cnt;
21372 	new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt);
21373 	if (!new_prog)
21374 		return new_prog;
21375 
21376 	/* callback start is known only after patching */
21377 	callback_start = env->subprog_info[callback_subprogno].start;
21378 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
21379 	call_insn_offset = position + 12;
21380 	callback_offset = callback_start - call_insn_offset - 1;
21381 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
21382 
21383 	return new_prog;
21384 }
21385 
21386 static bool is_bpf_loop_call(struct bpf_insn *insn)
21387 {
21388 	return insn->code == (BPF_JMP | BPF_CALL) &&
21389 		insn->src_reg == 0 &&
21390 		insn->imm == BPF_FUNC_loop;
21391 }
21392 
21393 /* For all sub-programs in the program (including main) check
21394  * insn_aux_data to see if there are bpf_loop calls that require
21395  * inlining. If such calls are found the calls are replaced with a
21396  * sequence of instructions produced by `inline_bpf_loop` function and
21397  * subprog stack_depth is increased by the size of 3 registers.
21398  * This stack space is used to spill values of the R6, R7, R8.  These
21399  * registers are used to store the loop bound, counter and context
21400  * variables.
21401  */
21402 static int optimize_bpf_loop(struct bpf_verifier_env *env)
21403 {
21404 	struct bpf_subprog_info *subprogs = env->subprog_info;
21405 	int i, cur_subprog = 0, cnt, delta = 0;
21406 	struct bpf_insn *insn = env->prog->insnsi;
21407 	int insn_cnt = env->prog->len;
21408 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
21409 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
21410 	u16 stack_depth_extra = 0;
21411 
21412 	for (i = 0; i < insn_cnt; i++, insn++) {
21413 		struct bpf_loop_inline_state *inline_state =
21414 			&env->insn_aux_data[i + delta].loop_inline_state;
21415 
21416 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
21417 			struct bpf_prog *new_prog;
21418 
21419 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
21420 			new_prog = inline_bpf_loop(env,
21421 						   i + delta,
21422 						   -(stack_depth + stack_depth_extra),
21423 						   inline_state->callback_subprogno,
21424 						   &cnt);
21425 			if (!new_prog)
21426 				return -ENOMEM;
21427 
21428 			delta     += cnt - 1;
21429 			env->prog  = new_prog;
21430 			insn       = new_prog->insnsi + i + delta;
21431 		}
21432 
21433 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
21434 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
21435 			cur_subprog++;
21436 			stack_depth = subprogs[cur_subprog].stack_depth;
21437 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
21438 			stack_depth_extra = 0;
21439 		}
21440 	}
21441 
21442 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
21443 
21444 	return 0;
21445 }
21446 
21447 /* Remove unnecessary spill/fill pairs, members of fastcall pattern,
21448  * adjust subprograms stack depth when possible.
21449  */
21450 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env)
21451 {
21452 	struct bpf_subprog_info *subprog = env->subprog_info;
21453 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
21454 	struct bpf_insn *insn = env->prog->insnsi;
21455 	int insn_cnt = env->prog->len;
21456 	u32 spills_num;
21457 	bool modified = false;
21458 	int i, j;
21459 
21460 	for (i = 0; i < insn_cnt; i++, insn++) {
21461 		if (aux[i].fastcall_spills_num > 0) {
21462 			spills_num = aux[i].fastcall_spills_num;
21463 			/* NOPs would be removed by opt_remove_nops() */
21464 			for (j = 1; j <= spills_num; ++j) {
21465 				*(insn - j) = NOP;
21466 				*(insn + j) = NOP;
21467 			}
21468 			modified = true;
21469 		}
21470 		if ((subprog + 1)->start == i + 1) {
21471 			if (modified && !subprog->keep_fastcall_stack)
21472 				subprog->stack_depth = -subprog->fastcall_stack_off;
21473 			subprog++;
21474 			modified = false;
21475 		}
21476 	}
21477 
21478 	return 0;
21479 }
21480 
21481 static void free_states(struct bpf_verifier_env *env)
21482 {
21483 	struct bpf_verifier_state_list *sl, *sln;
21484 	int i;
21485 
21486 	sl = env->free_list;
21487 	while (sl) {
21488 		sln = sl->next;
21489 		free_verifier_state(&sl->state, false);
21490 		kfree(sl);
21491 		sl = sln;
21492 	}
21493 	env->free_list = NULL;
21494 
21495 	if (!env->explored_states)
21496 		return;
21497 
21498 	for (i = 0; i < state_htab_size(env); i++) {
21499 		sl = env->explored_states[i];
21500 
21501 		while (sl) {
21502 			sln = sl->next;
21503 			free_verifier_state(&sl->state, false);
21504 			kfree(sl);
21505 			sl = sln;
21506 		}
21507 		env->explored_states[i] = NULL;
21508 	}
21509 }
21510 
21511 static int do_check_common(struct bpf_verifier_env *env, int subprog)
21512 {
21513 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
21514 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
21515 	struct bpf_verifier_state *state;
21516 	struct bpf_reg_state *regs;
21517 	int ret, i;
21518 
21519 	env->prev_linfo = NULL;
21520 	env->pass_cnt++;
21521 
21522 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
21523 	if (!state)
21524 		return -ENOMEM;
21525 	state->curframe = 0;
21526 	state->speculative = false;
21527 	state->branches = 1;
21528 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
21529 	if (!state->frame[0]) {
21530 		kfree(state);
21531 		return -ENOMEM;
21532 	}
21533 	env->cur_state = state;
21534 	init_func_state(env, state->frame[0],
21535 			BPF_MAIN_FUNC /* callsite */,
21536 			0 /* frameno */,
21537 			subprog);
21538 	state->first_insn_idx = env->subprog_info[subprog].start;
21539 	state->last_insn_idx = -1;
21540 
21541 	regs = state->frame[state->curframe]->regs;
21542 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
21543 		const char *sub_name = subprog_name(env, subprog);
21544 		struct bpf_subprog_arg_info *arg;
21545 		struct bpf_reg_state *reg;
21546 
21547 		verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
21548 		ret = btf_prepare_func_args(env, subprog);
21549 		if (ret)
21550 			goto out;
21551 
21552 		if (subprog_is_exc_cb(env, subprog)) {
21553 			state->frame[0]->in_exception_callback_fn = true;
21554 			/* We have already ensured that the callback returns an integer, just
21555 			 * like all global subprogs. We need to determine it only has a single
21556 			 * scalar argument.
21557 			 */
21558 			if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) {
21559 				verbose(env, "exception cb only supports single integer argument\n");
21560 				ret = -EINVAL;
21561 				goto out;
21562 			}
21563 		}
21564 		for (i = BPF_REG_1; i <= sub->arg_cnt; i++) {
21565 			arg = &sub->args[i - BPF_REG_1];
21566 			reg = &regs[i];
21567 
21568 			if (arg->arg_type == ARG_PTR_TO_CTX) {
21569 				reg->type = PTR_TO_CTX;
21570 				mark_reg_known_zero(env, regs, i);
21571 			} else if (arg->arg_type == ARG_ANYTHING) {
21572 				reg->type = SCALAR_VALUE;
21573 				mark_reg_unknown(env, regs, i);
21574 			} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
21575 				/* assume unspecial LOCAL dynptr type */
21576 				__mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen);
21577 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
21578 				reg->type = PTR_TO_MEM;
21579 				if (arg->arg_type & PTR_MAYBE_NULL)
21580 					reg->type |= PTR_MAYBE_NULL;
21581 				mark_reg_known_zero(env, regs, i);
21582 				reg->mem_size = arg->mem_size;
21583 				reg->id = ++env->id_gen;
21584 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
21585 				reg->type = PTR_TO_BTF_ID;
21586 				if (arg->arg_type & PTR_MAYBE_NULL)
21587 					reg->type |= PTR_MAYBE_NULL;
21588 				if (arg->arg_type & PTR_UNTRUSTED)
21589 					reg->type |= PTR_UNTRUSTED;
21590 				if (arg->arg_type & PTR_TRUSTED)
21591 					reg->type |= PTR_TRUSTED;
21592 				mark_reg_known_zero(env, regs, i);
21593 				reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */
21594 				reg->btf_id = arg->btf_id;
21595 				reg->id = ++env->id_gen;
21596 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
21597 				/* caller can pass either PTR_TO_ARENA or SCALAR */
21598 				mark_reg_unknown(env, regs, i);
21599 			} else {
21600 				WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n",
21601 					  i - BPF_REG_1, arg->arg_type);
21602 				ret = -EFAULT;
21603 				goto out;
21604 			}
21605 		}
21606 	} else {
21607 		/* if main BPF program has associated BTF info, validate that
21608 		 * it's matching expected signature, and otherwise mark BTF
21609 		 * info for main program as unreliable
21610 		 */
21611 		if (env->prog->aux->func_info_aux) {
21612 			ret = btf_prepare_func_args(env, 0);
21613 			if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX)
21614 				env->prog->aux->func_info_aux[0].unreliable = true;
21615 		}
21616 
21617 		/* 1st arg to a function */
21618 		regs[BPF_REG_1].type = PTR_TO_CTX;
21619 		mark_reg_known_zero(env, regs, BPF_REG_1);
21620 	}
21621 
21622 	ret = do_check(env);
21623 out:
21624 	/* check for NULL is necessary, since cur_state can be freed inside
21625 	 * do_check() under memory pressure.
21626 	 */
21627 	if (env->cur_state) {
21628 		free_verifier_state(env->cur_state, true);
21629 		env->cur_state = NULL;
21630 	}
21631 	while (!pop_stack(env, NULL, NULL, false));
21632 	if (!ret && pop_log)
21633 		bpf_vlog_reset(&env->log, 0);
21634 	free_states(env);
21635 	return ret;
21636 }
21637 
21638 /* Lazily verify all global functions based on their BTF, if they are called
21639  * from main BPF program or any of subprograms transitively.
21640  * BPF global subprogs called from dead code are not validated.
21641  * All callable global functions must pass verification.
21642  * Otherwise the whole program is rejected.
21643  * Consider:
21644  * int bar(int);
21645  * int foo(int f)
21646  * {
21647  *    return bar(f);
21648  * }
21649  * int bar(int b)
21650  * {
21651  *    ...
21652  * }
21653  * foo() will be verified first for R1=any_scalar_value. During verification it
21654  * will be assumed that bar() already verified successfully and call to bar()
21655  * from foo() will be checked for type match only. Later bar() will be verified
21656  * independently to check that it's safe for R1=any_scalar_value.
21657  */
21658 static int do_check_subprogs(struct bpf_verifier_env *env)
21659 {
21660 	struct bpf_prog_aux *aux = env->prog->aux;
21661 	struct bpf_func_info_aux *sub_aux;
21662 	int i, ret, new_cnt;
21663 
21664 	if (!aux->func_info)
21665 		return 0;
21666 
21667 	/* exception callback is presumed to be always called */
21668 	if (env->exception_callback_subprog)
21669 		subprog_aux(env, env->exception_callback_subprog)->called = true;
21670 
21671 again:
21672 	new_cnt = 0;
21673 	for (i = 1; i < env->subprog_cnt; i++) {
21674 		if (!subprog_is_global(env, i))
21675 			continue;
21676 
21677 		sub_aux = subprog_aux(env, i);
21678 		if (!sub_aux->called || sub_aux->verified)
21679 			continue;
21680 
21681 		env->insn_idx = env->subprog_info[i].start;
21682 		WARN_ON_ONCE(env->insn_idx == 0);
21683 		ret = do_check_common(env, i);
21684 		if (ret) {
21685 			return ret;
21686 		} else if (env->log.level & BPF_LOG_LEVEL) {
21687 			verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
21688 				i, subprog_name(env, i));
21689 		}
21690 
21691 		/* We verified new global subprog, it might have called some
21692 		 * more global subprogs that we haven't verified yet, so we
21693 		 * need to do another pass over subprogs to verify those.
21694 		 */
21695 		sub_aux->verified = true;
21696 		new_cnt++;
21697 	}
21698 
21699 	/* We can't loop forever as we verify at least one global subprog on
21700 	 * each pass.
21701 	 */
21702 	if (new_cnt)
21703 		goto again;
21704 
21705 	return 0;
21706 }
21707 
21708 static int do_check_main(struct bpf_verifier_env *env)
21709 {
21710 	int ret;
21711 
21712 	env->insn_idx = 0;
21713 	ret = do_check_common(env, 0);
21714 	if (!ret)
21715 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
21716 	return ret;
21717 }
21718 
21719 
21720 static void print_verification_stats(struct bpf_verifier_env *env)
21721 {
21722 	int i;
21723 
21724 	if (env->log.level & BPF_LOG_STATS) {
21725 		verbose(env, "verification time %lld usec\n",
21726 			div_u64(env->verification_time, 1000));
21727 		verbose(env, "stack depth ");
21728 		for (i = 0; i < env->subprog_cnt; i++) {
21729 			u32 depth = env->subprog_info[i].stack_depth;
21730 
21731 			verbose(env, "%d", depth);
21732 			if (i + 1 < env->subprog_cnt)
21733 				verbose(env, "+");
21734 		}
21735 		verbose(env, "\n");
21736 	}
21737 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
21738 		"total_states %d peak_states %d mark_read %d\n",
21739 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
21740 		env->max_states_per_insn, env->total_states,
21741 		env->peak_states, env->longest_mark_read_walk);
21742 }
21743 
21744 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
21745 {
21746 	const struct btf_type *t, *func_proto;
21747 	const struct bpf_struct_ops_desc *st_ops_desc;
21748 	const struct bpf_struct_ops *st_ops;
21749 	const struct btf_member *member;
21750 	struct bpf_prog *prog = env->prog;
21751 	u32 btf_id, member_idx;
21752 	struct btf *btf;
21753 	const char *mname;
21754 	int err;
21755 
21756 	if (!prog->gpl_compatible) {
21757 		verbose(env, "struct ops programs must have a GPL compatible license\n");
21758 		return -EINVAL;
21759 	}
21760 
21761 	if (!prog->aux->attach_btf_id)
21762 		return -ENOTSUPP;
21763 
21764 	btf = prog->aux->attach_btf;
21765 	if (btf_is_module(btf)) {
21766 		/* Make sure st_ops is valid through the lifetime of env */
21767 		env->attach_btf_mod = btf_try_get_module(btf);
21768 		if (!env->attach_btf_mod) {
21769 			verbose(env, "struct_ops module %s is not found\n",
21770 				btf_get_name(btf));
21771 			return -ENOTSUPP;
21772 		}
21773 	}
21774 
21775 	btf_id = prog->aux->attach_btf_id;
21776 	st_ops_desc = bpf_struct_ops_find(btf, btf_id);
21777 	if (!st_ops_desc) {
21778 		verbose(env, "attach_btf_id %u is not a supported struct\n",
21779 			btf_id);
21780 		return -ENOTSUPP;
21781 	}
21782 	st_ops = st_ops_desc->st_ops;
21783 
21784 	t = st_ops_desc->type;
21785 	member_idx = prog->expected_attach_type;
21786 	if (member_idx >= btf_type_vlen(t)) {
21787 		verbose(env, "attach to invalid member idx %u of struct %s\n",
21788 			member_idx, st_ops->name);
21789 		return -EINVAL;
21790 	}
21791 
21792 	member = &btf_type_member(t)[member_idx];
21793 	mname = btf_name_by_offset(btf, member->name_off);
21794 	func_proto = btf_type_resolve_func_ptr(btf, member->type,
21795 					       NULL);
21796 	if (!func_proto) {
21797 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
21798 			mname, member_idx, st_ops->name);
21799 		return -EINVAL;
21800 	}
21801 
21802 	err = bpf_struct_ops_supported(st_ops, __btf_member_bit_offset(t, member) / 8);
21803 	if (err) {
21804 		verbose(env, "attach to unsupported member %s of struct %s\n",
21805 			mname, st_ops->name);
21806 		return err;
21807 	}
21808 
21809 	if (st_ops->check_member) {
21810 		err = st_ops->check_member(t, member, prog);
21811 
21812 		if (err) {
21813 			verbose(env, "attach to unsupported member %s of struct %s\n",
21814 				mname, st_ops->name);
21815 			return err;
21816 		}
21817 	}
21818 
21819 	/* btf_ctx_access() used this to provide argument type info */
21820 	prog->aux->ctx_arg_info =
21821 		st_ops_desc->arg_info[member_idx].info;
21822 	prog->aux->ctx_arg_info_size =
21823 		st_ops_desc->arg_info[member_idx].cnt;
21824 
21825 	prog->aux->attach_func_proto = func_proto;
21826 	prog->aux->attach_func_name = mname;
21827 	env->ops = st_ops->verifier_ops;
21828 
21829 	return 0;
21830 }
21831 #define SECURITY_PREFIX "security_"
21832 
21833 static int check_attach_modify_return(unsigned long addr, const char *func_name)
21834 {
21835 	if (within_error_injection_list(addr) ||
21836 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
21837 		return 0;
21838 
21839 	return -EINVAL;
21840 }
21841 
21842 /* list of non-sleepable functions that are otherwise on
21843  * ALLOW_ERROR_INJECTION list
21844  */
21845 BTF_SET_START(btf_non_sleepable_error_inject)
21846 /* Three functions below can be called from sleepable and non-sleepable context.
21847  * Assume non-sleepable from bpf safety point of view.
21848  */
21849 BTF_ID(func, __filemap_add_folio)
21850 #ifdef CONFIG_FAIL_PAGE_ALLOC
21851 BTF_ID(func, should_fail_alloc_page)
21852 #endif
21853 #ifdef CONFIG_FAILSLAB
21854 BTF_ID(func, should_failslab)
21855 #endif
21856 BTF_SET_END(btf_non_sleepable_error_inject)
21857 
21858 static int check_non_sleepable_error_inject(u32 btf_id)
21859 {
21860 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
21861 }
21862 
21863 int bpf_check_attach_target(struct bpf_verifier_log *log,
21864 			    const struct bpf_prog *prog,
21865 			    const struct bpf_prog *tgt_prog,
21866 			    u32 btf_id,
21867 			    struct bpf_attach_target_info *tgt_info)
21868 {
21869 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
21870 	bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING;
21871 	char trace_symbol[KSYM_SYMBOL_LEN];
21872 	const char prefix[] = "btf_trace_";
21873 	struct bpf_raw_event_map *btp;
21874 	int ret = 0, subprog = -1, i;
21875 	const struct btf_type *t;
21876 	bool conservative = true;
21877 	const char *tname, *fname;
21878 	struct btf *btf;
21879 	long addr = 0;
21880 	struct module *mod = NULL;
21881 
21882 	if (!btf_id) {
21883 		bpf_log(log, "Tracing programs must provide btf_id\n");
21884 		return -EINVAL;
21885 	}
21886 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
21887 	if (!btf) {
21888 		bpf_log(log,
21889 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
21890 		return -EINVAL;
21891 	}
21892 	t = btf_type_by_id(btf, btf_id);
21893 	if (!t) {
21894 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
21895 		return -EINVAL;
21896 	}
21897 	tname = btf_name_by_offset(btf, t->name_off);
21898 	if (!tname) {
21899 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
21900 		return -EINVAL;
21901 	}
21902 	if (tgt_prog) {
21903 		struct bpf_prog_aux *aux = tgt_prog->aux;
21904 
21905 		if (bpf_prog_is_dev_bound(prog->aux) &&
21906 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
21907 			bpf_log(log, "Target program bound device mismatch");
21908 			return -EINVAL;
21909 		}
21910 
21911 		for (i = 0; i < aux->func_info_cnt; i++)
21912 			if (aux->func_info[i].type_id == btf_id) {
21913 				subprog = i;
21914 				break;
21915 			}
21916 		if (subprog == -1) {
21917 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
21918 			return -EINVAL;
21919 		}
21920 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
21921 			bpf_log(log,
21922 				"%s programs cannot attach to exception callback\n",
21923 				prog_extension ? "Extension" : "FENTRY/FEXIT");
21924 			return -EINVAL;
21925 		}
21926 		conservative = aux->func_info_aux[subprog].unreliable;
21927 		if (prog_extension) {
21928 			if (conservative) {
21929 				bpf_log(log,
21930 					"Cannot replace static functions\n");
21931 				return -EINVAL;
21932 			}
21933 			if (!prog->jit_requested) {
21934 				bpf_log(log,
21935 					"Extension programs should be JITed\n");
21936 				return -EINVAL;
21937 			}
21938 		}
21939 		if (!tgt_prog->jited) {
21940 			bpf_log(log, "Can attach to only JITed progs\n");
21941 			return -EINVAL;
21942 		}
21943 		if (prog_tracing) {
21944 			if (aux->attach_tracing_prog) {
21945 				/*
21946 				 * Target program is an fentry/fexit which is already attached
21947 				 * to another tracing program. More levels of nesting
21948 				 * attachment are not allowed.
21949 				 */
21950 				bpf_log(log, "Cannot nest tracing program attach more than once\n");
21951 				return -EINVAL;
21952 			}
21953 		} else if (tgt_prog->type == prog->type) {
21954 			/*
21955 			 * To avoid potential call chain cycles, prevent attaching of a
21956 			 * program extension to another extension. It's ok to attach
21957 			 * fentry/fexit to extension program.
21958 			 */
21959 			bpf_log(log, "Cannot recursively attach\n");
21960 			return -EINVAL;
21961 		}
21962 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
21963 		    prog_extension &&
21964 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
21965 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
21966 			/* Program extensions can extend all program types
21967 			 * except fentry/fexit. The reason is the following.
21968 			 * The fentry/fexit programs are used for performance
21969 			 * analysis, stats and can be attached to any program
21970 			 * type. When extension program is replacing XDP function
21971 			 * it is necessary to allow performance analysis of all
21972 			 * functions. Both original XDP program and its program
21973 			 * extension. Hence attaching fentry/fexit to
21974 			 * BPF_PROG_TYPE_EXT is allowed. If extending of
21975 			 * fentry/fexit was allowed it would be possible to create
21976 			 * long call chain fentry->extension->fentry->extension
21977 			 * beyond reasonable stack size. Hence extending fentry
21978 			 * is not allowed.
21979 			 */
21980 			bpf_log(log, "Cannot extend fentry/fexit\n");
21981 			return -EINVAL;
21982 		}
21983 	} else {
21984 		if (prog_extension) {
21985 			bpf_log(log, "Cannot replace kernel functions\n");
21986 			return -EINVAL;
21987 		}
21988 	}
21989 
21990 	switch (prog->expected_attach_type) {
21991 	case BPF_TRACE_RAW_TP:
21992 		if (tgt_prog) {
21993 			bpf_log(log,
21994 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
21995 			return -EINVAL;
21996 		}
21997 		if (!btf_type_is_typedef(t)) {
21998 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
21999 				btf_id);
22000 			return -EINVAL;
22001 		}
22002 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
22003 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
22004 				btf_id, tname);
22005 			return -EINVAL;
22006 		}
22007 		tname += sizeof(prefix) - 1;
22008 
22009 		/* The func_proto of "btf_trace_##tname" is generated from typedef without argument
22010 		 * names. Thus using bpf_raw_event_map to get argument names.
22011 		 */
22012 		btp = bpf_get_raw_tracepoint(tname);
22013 		if (!btp)
22014 			return -EINVAL;
22015 		fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL,
22016 					trace_symbol);
22017 		bpf_put_raw_tracepoint(btp);
22018 
22019 		if (fname)
22020 			ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC);
22021 
22022 		if (!fname || ret < 0) {
22023 			bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n",
22024 				prefix, tname);
22025 			t = btf_type_by_id(btf, t->type);
22026 			if (!btf_type_is_ptr(t))
22027 				/* should never happen in valid vmlinux build */
22028 				return -EINVAL;
22029 		} else {
22030 			t = btf_type_by_id(btf, ret);
22031 			if (!btf_type_is_func(t))
22032 				/* should never happen in valid vmlinux build */
22033 				return -EINVAL;
22034 		}
22035 
22036 		t = btf_type_by_id(btf, t->type);
22037 		if (!btf_type_is_func_proto(t))
22038 			/* should never happen in valid vmlinux build */
22039 			return -EINVAL;
22040 
22041 		break;
22042 	case BPF_TRACE_ITER:
22043 		if (!btf_type_is_func(t)) {
22044 			bpf_log(log, "attach_btf_id %u is not a function\n",
22045 				btf_id);
22046 			return -EINVAL;
22047 		}
22048 		t = btf_type_by_id(btf, t->type);
22049 		if (!btf_type_is_func_proto(t))
22050 			return -EINVAL;
22051 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
22052 		if (ret)
22053 			return ret;
22054 		break;
22055 	default:
22056 		if (!prog_extension)
22057 			return -EINVAL;
22058 		fallthrough;
22059 	case BPF_MODIFY_RETURN:
22060 	case BPF_LSM_MAC:
22061 	case BPF_LSM_CGROUP:
22062 	case BPF_TRACE_FENTRY:
22063 	case BPF_TRACE_FEXIT:
22064 		if (!btf_type_is_func(t)) {
22065 			bpf_log(log, "attach_btf_id %u is not a function\n",
22066 				btf_id);
22067 			return -EINVAL;
22068 		}
22069 		if (prog_extension &&
22070 		    btf_check_type_match(log, prog, btf, t))
22071 			return -EINVAL;
22072 		t = btf_type_by_id(btf, t->type);
22073 		if (!btf_type_is_func_proto(t))
22074 			return -EINVAL;
22075 
22076 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
22077 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
22078 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
22079 			return -EINVAL;
22080 
22081 		if (tgt_prog && conservative)
22082 			t = NULL;
22083 
22084 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
22085 		if (ret < 0)
22086 			return ret;
22087 
22088 		if (tgt_prog) {
22089 			if (subprog == 0)
22090 				addr = (long) tgt_prog->bpf_func;
22091 			else
22092 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
22093 		} else {
22094 			if (btf_is_module(btf)) {
22095 				mod = btf_try_get_module(btf);
22096 				if (mod)
22097 					addr = find_kallsyms_symbol_value(mod, tname);
22098 				else
22099 					addr = 0;
22100 			} else {
22101 				addr = kallsyms_lookup_name(tname);
22102 			}
22103 			if (!addr) {
22104 				module_put(mod);
22105 				bpf_log(log,
22106 					"The address of function %s cannot be found\n",
22107 					tname);
22108 				return -ENOENT;
22109 			}
22110 		}
22111 
22112 		if (prog->sleepable) {
22113 			ret = -EINVAL;
22114 			switch (prog->type) {
22115 			case BPF_PROG_TYPE_TRACING:
22116 
22117 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
22118 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
22119 				 */
22120 				if (!check_non_sleepable_error_inject(btf_id) &&
22121 				    within_error_injection_list(addr))
22122 					ret = 0;
22123 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
22124 				 * in the fmodret id set with the KF_SLEEPABLE flag.
22125 				 */
22126 				else {
22127 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
22128 										prog);
22129 
22130 					if (flags && (*flags & KF_SLEEPABLE))
22131 						ret = 0;
22132 				}
22133 				break;
22134 			case BPF_PROG_TYPE_LSM:
22135 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
22136 				 * Only some of them are sleepable.
22137 				 */
22138 				if (bpf_lsm_is_sleepable_hook(btf_id))
22139 					ret = 0;
22140 				break;
22141 			default:
22142 				break;
22143 			}
22144 			if (ret) {
22145 				module_put(mod);
22146 				bpf_log(log, "%s is not sleepable\n", tname);
22147 				return ret;
22148 			}
22149 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
22150 			if (tgt_prog) {
22151 				module_put(mod);
22152 				bpf_log(log, "can't modify return codes of BPF programs\n");
22153 				return -EINVAL;
22154 			}
22155 			ret = -EINVAL;
22156 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
22157 			    !check_attach_modify_return(addr, tname))
22158 				ret = 0;
22159 			if (ret) {
22160 				module_put(mod);
22161 				bpf_log(log, "%s() is not modifiable\n", tname);
22162 				return ret;
22163 			}
22164 		}
22165 
22166 		break;
22167 	}
22168 	tgt_info->tgt_addr = addr;
22169 	tgt_info->tgt_name = tname;
22170 	tgt_info->tgt_type = t;
22171 	tgt_info->tgt_mod = mod;
22172 	return 0;
22173 }
22174 
22175 BTF_SET_START(btf_id_deny)
22176 BTF_ID_UNUSED
22177 #ifdef CONFIG_SMP
22178 BTF_ID(func, migrate_disable)
22179 BTF_ID(func, migrate_enable)
22180 #endif
22181 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
22182 BTF_ID(func, rcu_read_unlock_strict)
22183 #endif
22184 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
22185 BTF_ID(func, preempt_count_add)
22186 BTF_ID(func, preempt_count_sub)
22187 #endif
22188 #ifdef CONFIG_PREEMPT_RCU
22189 BTF_ID(func, __rcu_read_lock)
22190 BTF_ID(func, __rcu_read_unlock)
22191 #endif
22192 BTF_SET_END(btf_id_deny)
22193 
22194 static bool can_be_sleepable(struct bpf_prog *prog)
22195 {
22196 	if (prog->type == BPF_PROG_TYPE_TRACING) {
22197 		switch (prog->expected_attach_type) {
22198 		case BPF_TRACE_FENTRY:
22199 		case BPF_TRACE_FEXIT:
22200 		case BPF_MODIFY_RETURN:
22201 		case BPF_TRACE_ITER:
22202 			return true;
22203 		default:
22204 			return false;
22205 		}
22206 	}
22207 	return prog->type == BPF_PROG_TYPE_LSM ||
22208 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
22209 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
22210 }
22211 
22212 static int check_attach_btf_id(struct bpf_verifier_env *env)
22213 {
22214 	struct bpf_prog *prog = env->prog;
22215 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
22216 	struct bpf_attach_target_info tgt_info = {};
22217 	u32 btf_id = prog->aux->attach_btf_id;
22218 	struct bpf_trampoline *tr;
22219 	int ret;
22220 	u64 key;
22221 
22222 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
22223 		if (prog->sleepable)
22224 			/* attach_btf_id checked to be zero already */
22225 			return 0;
22226 		verbose(env, "Syscall programs can only be sleepable\n");
22227 		return -EINVAL;
22228 	}
22229 
22230 	if (prog->sleepable && !can_be_sleepable(prog)) {
22231 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
22232 		return -EINVAL;
22233 	}
22234 
22235 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
22236 		return check_struct_ops_btf_id(env);
22237 
22238 	if (prog->type != BPF_PROG_TYPE_TRACING &&
22239 	    prog->type != BPF_PROG_TYPE_LSM &&
22240 	    prog->type != BPF_PROG_TYPE_EXT)
22241 		return 0;
22242 
22243 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
22244 	if (ret)
22245 		return ret;
22246 
22247 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
22248 		/* to make freplace equivalent to their targets, they need to
22249 		 * inherit env->ops and expected_attach_type for the rest of the
22250 		 * verification
22251 		 */
22252 		env->ops = bpf_verifier_ops[tgt_prog->type];
22253 		prog->expected_attach_type = tgt_prog->expected_attach_type;
22254 	}
22255 
22256 	/* store info about the attachment target that will be used later */
22257 	prog->aux->attach_func_proto = tgt_info.tgt_type;
22258 	prog->aux->attach_func_name = tgt_info.tgt_name;
22259 	prog->aux->mod = tgt_info.tgt_mod;
22260 
22261 	if (tgt_prog) {
22262 		prog->aux->saved_dst_prog_type = tgt_prog->type;
22263 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
22264 	}
22265 
22266 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
22267 		prog->aux->attach_btf_trace = true;
22268 		return 0;
22269 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
22270 		if (!bpf_iter_prog_supported(prog))
22271 			return -EINVAL;
22272 		return 0;
22273 	}
22274 
22275 	if (prog->type == BPF_PROG_TYPE_LSM) {
22276 		ret = bpf_lsm_verify_prog(&env->log, prog);
22277 		if (ret < 0)
22278 			return ret;
22279 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
22280 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
22281 		return -EINVAL;
22282 	}
22283 
22284 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
22285 	tr = bpf_trampoline_get(key, &tgt_info);
22286 	if (!tr)
22287 		return -ENOMEM;
22288 
22289 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
22290 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
22291 
22292 	prog->aux->dst_trampoline = tr;
22293 	return 0;
22294 }
22295 
22296 struct btf *bpf_get_btf_vmlinux(void)
22297 {
22298 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
22299 		mutex_lock(&bpf_verifier_lock);
22300 		if (!btf_vmlinux)
22301 			btf_vmlinux = btf_parse_vmlinux();
22302 		mutex_unlock(&bpf_verifier_lock);
22303 	}
22304 	return btf_vmlinux;
22305 }
22306 
22307 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
22308 {
22309 	u64 start_time = ktime_get_ns();
22310 	struct bpf_verifier_env *env;
22311 	int i, len, ret = -EINVAL, err;
22312 	u32 log_true_size;
22313 	bool is_priv;
22314 
22315 	/* no program is valid */
22316 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
22317 		return -EINVAL;
22318 
22319 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
22320 	 * allocate/free it every time bpf_check() is called
22321 	 */
22322 	env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
22323 	if (!env)
22324 		return -ENOMEM;
22325 
22326 	env->bt.env = env;
22327 
22328 	len = (*prog)->len;
22329 	env->insn_aux_data =
22330 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
22331 	ret = -ENOMEM;
22332 	if (!env->insn_aux_data)
22333 		goto err_free_env;
22334 	for (i = 0; i < len; i++)
22335 		env->insn_aux_data[i].orig_idx = i;
22336 	env->prog = *prog;
22337 	env->ops = bpf_verifier_ops[env->prog->type];
22338 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
22339 
22340 	env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token);
22341 	env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token);
22342 	env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token);
22343 	env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token);
22344 	env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF);
22345 
22346 	bpf_get_btf_vmlinux();
22347 
22348 	/* grab the mutex to protect few globals used by verifier */
22349 	if (!is_priv)
22350 		mutex_lock(&bpf_verifier_lock);
22351 
22352 	/* user could have requested verbose verifier output
22353 	 * and supplied buffer to store the verification trace
22354 	 */
22355 	ret = bpf_vlog_init(&env->log, attr->log_level,
22356 			    (char __user *) (unsigned long) attr->log_buf,
22357 			    attr->log_size);
22358 	if (ret)
22359 		goto err_unlock;
22360 
22361 	mark_verifier_state_clean(env);
22362 
22363 	if (IS_ERR(btf_vmlinux)) {
22364 		/* Either gcc or pahole or kernel are broken. */
22365 		verbose(env, "in-kernel BTF is malformed\n");
22366 		ret = PTR_ERR(btf_vmlinux);
22367 		goto skip_full_check;
22368 	}
22369 
22370 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
22371 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
22372 		env->strict_alignment = true;
22373 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
22374 		env->strict_alignment = false;
22375 
22376 	if (is_priv)
22377 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
22378 	env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
22379 
22380 	env->explored_states = kvcalloc(state_htab_size(env),
22381 				       sizeof(struct bpf_verifier_state_list *),
22382 				       GFP_USER);
22383 	ret = -ENOMEM;
22384 	if (!env->explored_states)
22385 		goto skip_full_check;
22386 
22387 	ret = check_btf_info_early(env, attr, uattr);
22388 	if (ret < 0)
22389 		goto skip_full_check;
22390 
22391 	ret = add_subprog_and_kfunc(env);
22392 	if (ret < 0)
22393 		goto skip_full_check;
22394 
22395 	ret = check_subprogs(env);
22396 	if (ret < 0)
22397 		goto skip_full_check;
22398 
22399 	ret = check_btf_info(env, attr, uattr);
22400 	if (ret < 0)
22401 		goto skip_full_check;
22402 
22403 	ret = check_attach_btf_id(env);
22404 	if (ret)
22405 		goto skip_full_check;
22406 
22407 	ret = resolve_pseudo_ldimm64(env);
22408 	if (ret < 0)
22409 		goto skip_full_check;
22410 
22411 	if (bpf_prog_is_offloaded(env->prog->aux)) {
22412 		ret = bpf_prog_offload_verifier_prep(env->prog);
22413 		if (ret)
22414 			goto skip_full_check;
22415 	}
22416 
22417 	ret = check_cfg(env);
22418 	if (ret < 0)
22419 		goto skip_full_check;
22420 
22421 	ret = mark_fastcall_patterns(env);
22422 	if (ret < 0)
22423 		goto skip_full_check;
22424 
22425 	ret = do_check_main(env);
22426 	ret = ret ?: do_check_subprogs(env);
22427 
22428 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
22429 		ret = bpf_prog_offload_finalize(env);
22430 
22431 skip_full_check:
22432 	kvfree(env->explored_states);
22433 
22434 	/* might decrease stack depth, keep it before passes that
22435 	 * allocate additional slots.
22436 	 */
22437 	if (ret == 0)
22438 		ret = remove_fastcall_spills_fills(env);
22439 
22440 	if (ret == 0)
22441 		ret = check_max_stack_depth(env);
22442 
22443 	/* instruction rewrites happen after this point */
22444 	if (ret == 0)
22445 		ret = optimize_bpf_loop(env);
22446 
22447 	if (is_priv) {
22448 		if (ret == 0)
22449 			opt_hard_wire_dead_code_branches(env);
22450 		if (ret == 0)
22451 			ret = opt_remove_dead_code(env);
22452 		if (ret == 0)
22453 			ret = opt_remove_nops(env);
22454 	} else {
22455 		if (ret == 0)
22456 			sanitize_dead_code(env);
22457 	}
22458 
22459 	if (ret == 0)
22460 		/* program is valid, convert *(u32*)(ctx + off) accesses */
22461 		ret = convert_ctx_accesses(env);
22462 
22463 	if (ret == 0)
22464 		ret = do_misc_fixups(env);
22465 
22466 	/* do 32-bit optimization after insn patching has done so those patched
22467 	 * insns could be handled correctly.
22468 	 */
22469 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
22470 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
22471 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
22472 								     : false;
22473 	}
22474 
22475 	if (ret == 0)
22476 		ret = fixup_call_args(env);
22477 
22478 	env->verification_time = ktime_get_ns() - start_time;
22479 	print_verification_stats(env);
22480 	env->prog->aux->verified_insns = env->insn_processed;
22481 
22482 	/* preserve original error even if log finalization is successful */
22483 	err = bpf_vlog_finalize(&env->log, &log_true_size);
22484 	if (err)
22485 		ret = err;
22486 
22487 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
22488 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
22489 				  &log_true_size, sizeof(log_true_size))) {
22490 		ret = -EFAULT;
22491 		goto err_release_maps;
22492 	}
22493 
22494 	if (ret)
22495 		goto err_release_maps;
22496 
22497 	if (env->used_map_cnt) {
22498 		/* if program passed verifier, update used_maps in bpf_prog_info */
22499 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
22500 							  sizeof(env->used_maps[0]),
22501 							  GFP_KERNEL);
22502 
22503 		if (!env->prog->aux->used_maps) {
22504 			ret = -ENOMEM;
22505 			goto err_release_maps;
22506 		}
22507 
22508 		memcpy(env->prog->aux->used_maps, env->used_maps,
22509 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
22510 		env->prog->aux->used_map_cnt = env->used_map_cnt;
22511 	}
22512 	if (env->used_btf_cnt) {
22513 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
22514 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
22515 							  sizeof(env->used_btfs[0]),
22516 							  GFP_KERNEL);
22517 		if (!env->prog->aux->used_btfs) {
22518 			ret = -ENOMEM;
22519 			goto err_release_maps;
22520 		}
22521 
22522 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
22523 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
22524 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
22525 	}
22526 	if (env->used_map_cnt || env->used_btf_cnt) {
22527 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
22528 		 * bpf_ld_imm64 instructions
22529 		 */
22530 		convert_pseudo_ld_imm64(env);
22531 	}
22532 
22533 	adjust_btf_func(env);
22534 
22535 err_release_maps:
22536 	if (!env->prog->aux->used_maps)
22537 		/* if we didn't copy map pointers into bpf_prog_info, release
22538 		 * them now. Otherwise free_used_maps() will release them.
22539 		 */
22540 		release_maps(env);
22541 	if (!env->prog->aux->used_btfs)
22542 		release_btfs(env);
22543 
22544 	/* extension progs temporarily inherit the attach_type of their targets
22545 	   for verification purposes, so set it back to zero before returning
22546 	 */
22547 	if (env->prog->type == BPF_PROG_TYPE_EXT)
22548 		env->prog->expected_attach_type = 0;
22549 
22550 	*prog = env->prog;
22551 
22552 	module_put(env->attach_btf_mod);
22553 err_unlock:
22554 	if (!is_priv)
22555 		mutex_unlock(&bpf_verifier_lock);
22556 	vfree(env->insn_aux_data);
22557 err_free_env:
22558 	kvfree(env);
22559 	return ret;
22560 }
22561