1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 #include <linux/trace_events.h> 32 #include <linux/kallsyms.h> 33 34 #include "disasm.h" 35 36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 38 [_id] = & _name ## _verifier_ops, 39 #define BPF_MAP_TYPE(_id, _ops) 40 #define BPF_LINK_TYPE(_id, _name) 41 #include <linux/bpf_types.h> 42 #undef BPF_PROG_TYPE 43 #undef BPF_MAP_TYPE 44 #undef BPF_LINK_TYPE 45 }; 46 47 struct bpf_mem_alloc bpf_global_percpu_ma; 48 static bool bpf_global_percpu_ma_set; 49 50 /* bpf_check() is a static code analyzer that walks eBPF program 51 * instruction by instruction and updates register/stack state. 52 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 53 * 54 * The first pass is depth-first-search to check that the program is a DAG. 55 * It rejects the following programs: 56 * - larger than BPF_MAXINSNS insns 57 * - if loop is present (detected via back-edge) 58 * - unreachable insns exist (shouldn't be a forest. program = one function) 59 * - out of bounds or malformed jumps 60 * The second pass is all possible path descent from the 1st insn. 61 * Since it's analyzing all paths through the program, the length of the 62 * analysis is limited to 64k insn, which may be hit even if total number of 63 * insn is less then 4K, but there are too many branches that change stack/regs. 64 * Number of 'branches to be analyzed' is limited to 1k 65 * 66 * On entry to each instruction, each register has a type, and the instruction 67 * changes the types of the registers depending on instruction semantics. 68 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 69 * copied to R1. 70 * 71 * All registers are 64-bit. 72 * R0 - return register 73 * R1-R5 argument passing registers 74 * R6-R9 callee saved registers 75 * R10 - frame pointer read-only 76 * 77 * At the start of BPF program the register R1 contains a pointer to bpf_context 78 * and has type PTR_TO_CTX. 79 * 80 * Verifier tracks arithmetic operations on pointers in case: 81 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 82 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 83 * 1st insn copies R10 (which has FRAME_PTR) type into R1 84 * and 2nd arithmetic instruction is pattern matched to recognize 85 * that it wants to construct a pointer to some element within stack. 86 * So after 2nd insn, the register R1 has type PTR_TO_STACK 87 * (and -20 constant is saved for further stack bounds checking). 88 * Meaning that this reg is a pointer to stack plus known immediate constant. 89 * 90 * Most of the time the registers have SCALAR_VALUE type, which 91 * means the register has some value, but it's not a valid pointer. 92 * (like pointer plus pointer becomes SCALAR_VALUE type) 93 * 94 * When verifier sees load or store instructions the type of base register 95 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 96 * four pointer types recognized by check_mem_access() function. 97 * 98 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 99 * and the range of [ptr, ptr + map's value_size) is accessible. 100 * 101 * registers used to pass values to function calls are checked against 102 * function argument constraints. 103 * 104 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 105 * It means that the register type passed to this function must be 106 * PTR_TO_STACK and it will be used inside the function as 107 * 'pointer to map element key' 108 * 109 * For example the argument constraints for bpf_map_lookup_elem(): 110 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 111 * .arg1_type = ARG_CONST_MAP_PTR, 112 * .arg2_type = ARG_PTR_TO_MAP_KEY, 113 * 114 * ret_type says that this function returns 'pointer to map elem value or null' 115 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 116 * 2nd argument should be a pointer to stack, which will be used inside 117 * the helper function as a pointer to map element key. 118 * 119 * On the kernel side the helper function looks like: 120 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 121 * { 122 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 123 * void *key = (void *) (unsigned long) r2; 124 * void *value; 125 * 126 * here kernel can access 'key' and 'map' pointers safely, knowing that 127 * [key, key + map->key_size) bytes are valid and were initialized on 128 * the stack of eBPF program. 129 * } 130 * 131 * Corresponding eBPF program may look like: 132 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 133 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 134 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 135 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 136 * here verifier looks at prototype of map_lookup_elem() and sees: 137 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 138 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 139 * 140 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 141 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 142 * and were initialized prior to this call. 143 * If it's ok, then verifier allows this BPF_CALL insn and looks at 144 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 145 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 146 * returns either pointer to map value or NULL. 147 * 148 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 149 * insn, the register holding that pointer in the true branch changes state to 150 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 151 * branch. See check_cond_jmp_op(). 152 * 153 * After the call R0 is set to return type of the function and registers R1-R5 154 * are set to NOT_INIT to indicate that they are no longer readable. 155 * 156 * The following reference types represent a potential reference to a kernel 157 * resource which, after first being allocated, must be checked and freed by 158 * the BPF program: 159 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 160 * 161 * When the verifier sees a helper call return a reference type, it allocates a 162 * pointer id for the reference and stores it in the current function state. 163 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 164 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 165 * passes through a NULL-check conditional. For the branch wherein the state is 166 * changed to CONST_IMM, the verifier releases the reference. 167 * 168 * For each helper function that allocates a reference, such as 169 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 170 * bpf_sk_release(). When a reference type passes into the release function, 171 * the verifier also releases the reference. If any unchecked or unreleased 172 * reference remains at the end of the program, the verifier rejects it. 173 */ 174 175 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 176 struct bpf_verifier_stack_elem { 177 /* verifier state is 'st' 178 * before processing instruction 'insn_idx' 179 * and after processing instruction 'prev_insn_idx' 180 */ 181 struct bpf_verifier_state st; 182 int insn_idx; 183 int prev_insn_idx; 184 struct bpf_verifier_stack_elem *next; 185 /* length of verifier log at the time this state was pushed on stack */ 186 u32 log_pos; 187 }; 188 189 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 190 #define BPF_COMPLEXITY_LIMIT_STATES 64 191 192 #define BPF_MAP_KEY_POISON (1ULL << 63) 193 #define BPF_MAP_KEY_SEEN (1ULL << 62) 194 195 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 196 197 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 198 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 199 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 200 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 201 static int ref_set_non_owning(struct bpf_verifier_env *env, 202 struct bpf_reg_state *reg); 203 static void specialize_kfunc(struct bpf_verifier_env *env, 204 u32 func_id, u16 offset, unsigned long *addr); 205 static bool is_trusted_reg(const struct bpf_reg_state *reg); 206 207 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 208 { 209 return aux->map_ptr_state.poison; 210 } 211 212 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 213 { 214 return aux->map_ptr_state.unpriv; 215 } 216 217 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 218 struct bpf_map *map, 219 bool unpriv, bool poison) 220 { 221 unpriv |= bpf_map_ptr_unpriv(aux); 222 aux->map_ptr_state.unpriv = unpriv; 223 aux->map_ptr_state.poison = poison; 224 aux->map_ptr_state.map_ptr = map; 225 } 226 227 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 228 { 229 return aux->map_key_state & BPF_MAP_KEY_POISON; 230 } 231 232 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 233 { 234 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 235 } 236 237 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 238 { 239 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 240 } 241 242 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 243 { 244 bool poisoned = bpf_map_key_poisoned(aux); 245 246 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 247 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 248 } 249 250 static bool bpf_helper_call(const struct bpf_insn *insn) 251 { 252 return insn->code == (BPF_JMP | BPF_CALL) && 253 insn->src_reg == 0; 254 } 255 256 static bool bpf_pseudo_call(const struct bpf_insn *insn) 257 { 258 return insn->code == (BPF_JMP | BPF_CALL) && 259 insn->src_reg == BPF_PSEUDO_CALL; 260 } 261 262 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 263 { 264 return insn->code == (BPF_JMP | BPF_CALL) && 265 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 266 } 267 268 struct bpf_call_arg_meta { 269 struct bpf_map *map_ptr; 270 bool raw_mode; 271 bool pkt_access; 272 u8 release_regno; 273 int regno; 274 int access_size; 275 int mem_size; 276 u64 msize_max_value; 277 int ref_obj_id; 278 int dynptr_id; 279 int map_uid; 280 int func_id; 281 struct btf *btf; 282 u32 btf_id; 283 struct btf *ret_btf; 284 u32 ret_btf_id; 285 u32 subprogno; 286 struct btf_field *kptr_field; 287 }; 288 289 struct bpf_kfunc_call_arg_meta { 290 /* In parameters */ 291 struct btf *btf; 292 u32 func_id; 293 u32 kfunc_flags; 294 const struct btf_type *func_proto; 295 const char *func_name; 296 /* Out parameters */ 297 u32 ref_obj_id; 298 u8 release_regno; 299 bool r0_rdonly; 300 u32 ret_btf_id; 301 u64 r0_size; 302 u32 subprogno; 303 struct { 304 u64 value; 305 bool found; 306 } arg_constant; 307 308 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 309 * generally to pass info about user-defined local kptr types to later 310 * verification logic 311 * bpf_obj_drop/bpf_percpu_obj_drop 312 * Record the local kptr type to be drop'd 313 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 314 * Record the local kptr type to be refcount_incr'd and use 315 * arg_owning_ref to determine whether refcount_acquire should be 316 * fallible 317 */ 318 struct btf *arg_btf; 319 u32 arg_btf_id; 320 bool arg_owning_ref; 321 322 struct { 323 struct btf_field *field; 324 } arg_list_head; 325 struct { 326 struct btf_field *field; 327 } arg_rbtree_root; 328 struct { 329 enum bpf_dynptr_type type; 330 u32 id; 331 u32 ref_obj_id; 332 } initialized_dynptr; 333 struct { 334 u8 spi; 335 u8 frameno; 336 } iter; 337 struct { 338 struct bpf_map *ptr; 339 int uid; 340 } map; 341 u64 mem_size; 342 }; 343 344 struct btf *btf_vmlinux; 345 346 static const char *btf_type_name(const struct btf *btf, u32 id) 347 { 348 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 349 } 350 351 static DEFINE_MUTEX(bpf_verifier_lock); 352 static DEFINE_MUTEX(bpf_percpu_ma_lock); 353 354 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 355 { 356 struct bpf_verifier_env *env = private_data; 357 va_list args; 358 359 if (!bpf_verifier_log_needed(&env->log)) 360 return; 361 362 va_start(args, fmt); 363 bpf_verifier_vlog(&env->log, fmt, args); 364 va_end(args); 365 } 366 367 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 368 struct bpf_reg_state *reg, 369 struct bpf_retval_range range, const char *ctx, 370 const char *reg_name) 371 { 372 bool unknown = true; 373 374 verbose(env, "%s the register %s has", ctx, reg_name); 375 if (reg->smin_value > S64_MIN) { 376 verbose(env, " smin=%lld", reg->smin_value); 377 unknown = false; 378 } 379 if (reg->smax_value < S64_MAX) { 380 verbose(env, " smax=%lld", reg->smax_value); 381 unknown = false; 382 } 383 if (unknown) 384 verbose(env, " unknown scalar value"); 385 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); 386 } 387 388 static bool reg_not_null(const struct bpf_reg_state *reg) 389 { 390 enum bpf_reg_type type; 391 392 type = reg->type; 393 if (type_may_be_null(type)) 394 return false; 395 396 type = base_type(type); 397 return type == PTR_TO_SOCKET || 398 type == PTR_TO_TCP_SOCK || 399 type == PTR_TO_MAP_VALUE || 400 type == PTR_TO_MAP_KEY || 401 type == PTR_TO_SOCK_COMMON || 402 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 403 type == PTR_TO_MEM; 404 } 405 406 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 407 { 408 struct btf_record *rec = NULL; 409 struct btf_struct_meta *meta; 410 411 if (reg->type == PTR_TO_MAP_VALUE) { 412 rec = reg->map_ptr->record; 413 } else if (type_is_ptr_alloc_obj(reg->type)) { 414 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 415 if (meta) 416 rec = meta->record; 417 } 418 return rec; 419 } 420 421 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 422 { 423 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 424 425 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 426 } 427 428 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 429 { 430 struct bpf_func_info *info; 431 432 if (!env->prog->aux->func_info) 433 return ""; 434 435 info = &env->prog->aux->func_info[subprog]; 436 return btf_type_name(env->prog->aux->btf, info->type_id); 437 } 438 439 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) 440 { 441 struct bpf_subprog_info *info = subprog_info(env, subprog); 442 443 info->is_cb = true; 444 info->is_async_cb = true; 445 info->is_exception_cb = true; 446 } 447 448 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) 449 { 450 return subprog_info(env, subprog)->is_exception_cb; 451 } 452 453 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 454 { 455 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 456 } 457 458 static bool type_is_rdonly_mem(u32 type) 459 { 460 return type & MEM_RDONLY; 461 } 462 463 static bool is_acquire_function(enum bpf_func_id func_id, 464 const struct bpf_map *map) 465 { 466 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 467 468 if (func_id == BPF_FUNC_sk_lookup_tcp || 469 func_id == BPF_FUNC_sk_lookup_udp || 470 func_id == BPF_FUNC_skc_lookup_tcp || 471 func_id == BPF_FUNC_ringbuf_reserve || 472 func_id == BPF_FUNC_kptr_xchg) 473 return true; 474 475 if (func_id == BPF_FUNC_map_lookup_elem && 476 (map_type == BPF_MAP_TYPE_SOCKMAP || 477 map_type == BPF_MAP_TYPE_SOCKHASH)) 478 return true; 479 480 return false; 481 } 482 483 static bool is_ptr_cast_function(enum bpf_func_id func_id) 484 { 485 return func_id == BPF_FUNC_tcp_sock || 486 func_id == BPF_FUNC_sk_fullsock || 487 func_id == BPF_FUNC_skc_to_tcp_sock || 488 func_id == BPF_FUNC_skc_to_tcp6_sock || 489 func_id == BPF_FUNC_skc_to_udp6_sock || 490 func_id == BPF_FUNC_skc_to_mptcp_sock || 491 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 492 func_id == BPF_FUNC_skc_to_tcp_request_sock; 493 } 494 495 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 496 { 497 return func_id == BPF_FUNC_dynptr_data; 498 } 499 500 static bool is_sync_callback_calling_kfunc(u32 btf_id); 501 static bool is_async_callback_calling_kfunc(u32 btf_id); 502 static bool is_callback_calling_kfunc(u32 btf_id); 503 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 504 505 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id); 506 507 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 508 { 509 return func_id == BPF_FUNC_for_each_map_elem || 510 func_id == BPF_FUNC_find_vma || 511 func_id == BPF_FUNC_loop || 512 func_id == BPF_FUNC_user_ringbuf_drain; 513 } 514 515 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 516 { 517 return func_id == BPF_FUNC_timer_set_callback; 518 } 519 520 static bool is_callback_calling_function(enum bpf_func_id func_id) 521 { 522 return is_sync_callback_calling_function(func_id) || 523 is_async_callback_calling_function(func_id); 524 } 525 526 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 527 { 528 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 529 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 530 } 531 532 static bool is_async_callback_calling_insn(struct bpf_insn *insn) 533 { 534 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) || 535 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm)); 536 } 537 538 static bool is_may_goto_insn(struct bpf_insn *insn) 539 { 540 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; 541 } 542 543 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) 544 { 545 return is_may_goto_insn(&env->prog->insnsi[insn_idx]); 546 } 547 548 static bool is_storage_get_function(enum bpf_func_id func_id) 549 { 550 return func_id == BPF_FUNC_sk_storage_get || 551 func_id == BPF_FUNC_inode_storage_get || 552 func_id == BPF_FUNC_task_storage_get || 553 func_id == BPF_FUNC_cgrp_storage_get; 554 } 555 556 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 557 const struct bpf_map *map) 558 { 559 int ref_obj_uses = 0; 560 561 if (is_ptr_cast_function(func_id)) 562 ref_obj_uses++; 563 if (is_acquire_function(func_id, map)) 564 ref_obj_uses++; 565 if (is_dynptr_ref_function(func_id)) 566 ref_obj_uses++; 567 568 return ref_obj_uses > 1; 569 } 570 571 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 572 { 573 return BPF_CLASS(insn->code) == BPF_STX && 574 BPF_MODE(insn->code) == BPF_ATOMIC && 575 insn->imm == BPF_CMPXCHG; 576 } 577 578 static int __get_spi(s32 off) 579 { 580 return (-off - 1) / BPF_REG_SIZE; 581 } 582 583 static struct bpf_func_state *func(struct bpf_verifier_env *env, 584 const struct bpf_reg_state *reg) 585 { 586 struct bpf_verifier_state *cur = env->cur_state; 587 588 return cur->frame[reg->frameno]; 589 } 590 591 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 592 { 593 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 594 595 /* We need to check that slots between [spi - nr_slots + 1, spi] are 596 * within [0, allocated_stack). 597 * 598 * Please note that the spi grows downwards. For example, a dynptr 599 * takes the size of two stack slots; the first slot will be at 600 * spi and the second slot will be at spi - 1. 601 */ 602 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 603 } 604 605 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 606 const char *obj_kind, int nr_slots) 607 { 608 int off, spi; 609 610 if (!tnum_is_const(reg->var_off)) { 611 verbose(env, "%s has to be at a constant offset\n", obj_kind); 612 return -EINVAL; 613 } 614 615 off = reg->off + reg->var_off.value; 616 if (off % BPF_REG_SIZE) { 617 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 618 return -EINVAL; 619 } 620 621 spi = __get_spi(off); 622 if (spi + 1 < nr_slots) { 623 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 624 return -EINVAL; 625 } 626 627 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 628 return -ERANGE; 629 return spi; 630 } 631 632 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 633 { 634 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 635 } 636 637 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 638 { 639 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 640 } 641 642 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 643 { 644 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 645 case DYNPTR_TYPE_LOCAL: 646 return BPF_DYNPTR_TYPE_LOCAL; 647 case DYNPTR_TYPE_RINGBUF: 648 return BPF_DYNPTR_TYPE_RINGBUF; 649 case DYNPTR_TYPE_SKB: 650 return BPF_DYNPTR_TYPE_SKB; 651 case DYNPTR_TYPE_XDP: 652 return BPF_DYNPTR_TYPE_XDP; 653 default: 654 return BPF_DYNPTR_TYPE_INVALID; 655 } 656 } 657 658 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 659 { 660 switch (type) { 661 case BPF_DYNPTR_TYPE_LOCAL: 662 return DYNPTR_TYPE_LOCAL; 663 case BPF_DYNPTR_TYPE_RINGBUF: 664 return DYNPTR_TYPE_RINGBUF; 665 case BPF_DYNPTR_TYPE_SKB: 666 return DYNPTR_TYPE_SKB; 667 case BPF_DYNPTR_TYPE_XDP: 668 return DYNPTR_TYPE_XDP; 669 default: 670 return 0; 671 } 672 } 673 674 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 675 { 676 return type == BPF_DYNPTR_TYPE_RINGBUF; 677 } 678 679 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 680 enum bpf_dynptr_type type, 681 bool first_slot, int dynptr_id); 682 683 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 684 struct bpf_reg_state *reg); 685 686 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 687 struct bpf_reg_state *sreg1, 688 struct bpf_reg_state *sreg2, 689 enum bpf_dynptr_type type) 690 { 691 int id = ++env->id_gen; 692 693 __mark_dynptr_reg(sreg1, type, true, id); 694 __mark_dynptr_reg(sreg2, type, false, id); 695 } 696 697 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 698 struct bpf_reg_state *reg, 699 enum bpf_dynptr_type type) 700 { 701 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 702 } 703 704 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 705 struct bpf_func_state *state, int spi); 706 707 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 708 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 709 { 710 struct bpf_func_state *state = func(env, reg); 711 enum bpf_dynptr_type type; 712 int spi, i, err; 713 714 spi = dynptr_get_spi(env, reg); 715 if (spi < 0) 716 return spi; 717 718 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 719 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 720 * to ensure that for the following example: 721 * [d1][d1][d2][d2] 722 * spi 3 2 1 0 723 * So marking spi = 2 should lead to destruction of both d1 and d2. In 724 * case they do belong to same dynptr, second call won't see slot_type 725 * as STACK_DYNPTR and will simply skip destruction. 726 */ 727 err = destroy_if_dynptr_stack_slot(env, state, spi); 728 if (err) 729 return err; 730 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 731 if (err) 732 return err; 733 734 for (i = 0; i < BPF_REG_SIZE; i++) { 735 state->stack[spi].slot_type[i] = STACK_DYNPTR; 736 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 737 } 738 739 type = arg_to_dynptr_type(arg_type); 740 if (type == BPF_DYNPTR_TYPE_INVALID) 741 return -EINVAL; 742 743 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 744 &state->stack[spi - 1].spilled_ptr, type); 745 746 if (dynptr_type_refcounted(type)) { 747 /* The id is used to track proper releasing */ 748 int id; 749 750 if (clone_ref_obj_id) 751 id = clone_ref_obj_id; 752 else 753 id = acquire_reference_state(env, insn_idx); 754 755 if (id < 0) 756 return id; 757 758 state->stack[spi].spilled_ptr.ref_obj_id = id; 759 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 760 } 761 762 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 763 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 764 765 return 0; 766 } 767 768 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 769 { 770 int i; 771 772 for (i = 0; i < BPF_REG_SIZE; i++) { 773 state->stack[spi].slot_type[i] = STACK_INVALID; 774 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 775 } 776 777 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 778 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 779 780 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 781 * 782 * While we don't allow reading STACK_INVALID, it is still possible to 783 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 784 * helpers or insns can do partial read of that part without failing, 785 * but check_stack_range_initialized, check_stack_read_var_off, and 786 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 787 * the slot conservatively. Hence we need to prevent those liveness 788 * marking walks. 789 * 790 * This was not a problem before because STACK_INVALID is only set by 791 * default (where the default reg state has its reg->parent as NULL), or 792 * in clean_live_states after REG_LIVE_DONE (at which point 793 * mark_reg_read won't walk reg->parent chain), but not randomly during 794 * verifier state exploration (like we did above). Hence, for our case 795 * parentage chain will still be live (i.e. reg->parent may be 796 * non-NULL), while earlier reg->parent was NULL, so we need 797 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 798 * done later on reads or by mark_dynptr_read as well to unnecessary 799 * mark registers in verifier state. 800 */ 801 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 802 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 803 } 804 805 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 806 { 807 struct bpf_func_state *state = func(env, reg); 808 int spi, ref_obj_id, i; 809 810 spi = dynptr_get_spi(env, reg); 811 if (spi < 0) 812 return spi; 813 814 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 815 invalidate_dynptr(env, state, spi); 816 return 0; 817 } 818 819 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 820 821 /* If the dynptr has a ref_obj_id, then we need to invalidate 822 * two things: 823 * 824 * 1) Any dynptrs with a matching ref_obj_id (clones) 825 * 2) Any slices derived from this dynptr. 826 */ 827 828 /* Invalidate any slices associated with this dynptr */ 829 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 830 831 /* Invalidate any dynptr clones */ 832 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 833 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 834 continue; 835 836 /* it should always be the case that if the ref obj id 837 * matches then the stack slot also belongs to a 838 * dynptr 839 */ 840 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 841 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 842 return -EFAULT; 843 } 844 if (state->stack[i].spilled_ptr.dynptr.first_slot) 845 invalidate_dynptr(env, state, i); 846 } 847 848 return 0; 849 } 850 851 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 852 struct bpf_reg_state *reg); 853 854 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 855 { 856 if (!env->allow_ptr_leaks) 857 __mark_reg_not_init(env, reg); 858 else 859 __mark_reg_unknown(env, reg); 860 } 861 862 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 863 struct bpf_func_state *state, int spi) 864 { 865 struct bpf_func_state *fstate; 866 struct bpf_reg_state *dreg; 867 int i, dynptr_id; 868 869 /* We always ensure that STACK_DYNPTR is never set partially, 870 * hence just checking for slot_type[0] is enough. This is 871 * different for STACK_SPILL, where it may be only set for 872 * 1 byte, so code has to use is_spilled_reg. 873 */ 874 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 875 return 0; 876 877 /* Reposition spi to first slot */ 878 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 879 spi = spi + 1; 880 881 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 882 verbose(env, "cannot overwrite referenced dynptr\n"); 883 return -EINVAL; 884 } 885 886 mark_stack_slot_scratched(env, spi); 887 mark_stack_slot_scratched(env, spi - 1); 888 889 /* Writing partially to one dynptr stack slot destroys both. */ 890 for (i = 0; i < BPF_REG_SIZE; i++) { 891 state->stack[spi].slot_type[i] = STACK_INVALID; 892 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 893 } 894 895 dynptr_id = state->stack[spi].spilled_ptr.id; 896 /* Invalidate any slices associated with this dynptr */ 897 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 898 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 899 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 900 continue; 901 if (dreg->dynptr_id == dynptr_id) 902 mark_reg_invalid(env, dreg); 903 })); 904 905 /* Do not release reference state, we are destroying dynptr on stack, 906 * not using some helper to release it. Just reset register. 907 */ 908 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 909 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 910 911 /* Same reason as unmark_stack_slots_dynptr above */ 912 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 913 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 914 915 return 0; 916 } 917 918 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 919 { 920 int spi; 921 922 if (reg->type == CONST_PTR_TO_DYNPTR) 923 return false; 924 925 spi = dynptr_get_spi(env, reg); 926 927 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 928 * error because this just means the stack state hasn't been updated yet. 929 * We will do check_mem_access to check and update stack bounds later. 930 */ 931 if (spi < 0 && spi != -ERANGE) 932 return false; 933 934 /* We don't need to check if the stack slots are marked by previous 935 * dynptr initializations because we allow overwriting existing unreferenced 936 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 937 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 938 * touching are completely destructed before we reinitialize them for a new 939 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 940 * instead of delaying it until the end where the user will get "Unreleased 941 * reference" error. 942 */ 943 return true; 944 } 945 946 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 947 { 948 struct bpf_func_state *state = func(env, reg); 949 int i, spi; 950 951 /* This already represents first slot of initialized bpf_dynptr. 952 * 953 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 954 * check_func_arg_reg_off's logic, so we don't need to check its 955 * offset and alignment. 956 */ 957 if (reg->type == CONST_PTR_TO_DYNPTR) 958 return true; 959 960 spi = dynptr_get_spi(env, reg); 961 if (spi < 0) 962 return false; 963 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 964 return false; 965 966 for (i = 0; i < BPF_REG_SIZE; i++) { 967 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 968 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 969 return false; 970 } 971 972 return true; 973 } 974 975 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 976 enum bpf_arg_type arg_type) 977 { 978 struct bpf_func_state *state = func(env, reg); 979 enum bpf_dynptr_type dynptr_type; 980 int spi; 981 982 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 983 if (arg_type == ARG_PTR_TO_DYNPTR) 984 return true; 985 986 dynptr_type = arg_to_dynptr_type(arg_type); 987 if (reg->type == CONST_PTR_TO_DYNPTR) { 988 return reg->dynptr.type == dynptr_type; 989 } else { 990 spi = dynptr_get_spi(env, reg); 991 if (spi < 0) 992 return false; 993 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 994 } 995 } 996 997 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 998 999 static bool in_rcu_cs(struct bpf_verifier_env *env); 1000 1001 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 1002 1003 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1004 struct bpf_kfunc_call_arg_meta *meta, 1005 struct bpf_reg_state *reg, int insn_idx, 1006 struct btf *btf, u32 btf_id, int nr_slots) 1007 { 1008 struct bpf_func_state *state = func(env, reg); 1009 int spi, i, j, id; 1010 1011 spi = iter_get_spi(env, reg, nr_slots); 1012 if (spi < 0) 1013 return spi; 1014 1015 id = acquire_reference_state(env, insn_idx); 1016 if (id < 0) 1017 return id; 1018 1019 for (i = 0; i < nr_slots; i++) { 1020 struct bpf_stack_state *slot = &state->stack[spi - i]; 1021 struct bpf_reg_state *st = &slot->spilled_ptr; 1022 1023 __mark_reg_known_zero(st); 1024 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1025 if (is_kfunc_rcu_protected(meta)) { 1026 if (in_rcu_cs(env)) 1027 st->type |= MEM_RCU; 1028 else 1029 st->type |= PTR_UNTRUSTED; 1030 } 1031 st->live |= REG_LIVE_WRITTEN; 1032 st->ref_obj_id = i == 0 ? id : 0; 1033 st->iter.btf = btf; 1034 st->iter.btf_id = btf_id; 1035 st->iter.state = BPF_ITER_STATE_ACTIVE; 1036 st->iter.depth = 0; 1037 1038 for (j = 0; j < BPF_REG_SIZE; j++) 1039 slot->slot_type[j] = STACK_ITER; 1040 1041 mark_stack_slot_scratched(env, spi - i); 1042 } 1043 1044 return 0; 1045 } 1046 1047 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1048 struct bpf_reg_state *reg, int nr_slots) 1049 { 1050 struct bpf_func_state *state = func(env, reg); 1051 int spi, i, j; 1052 1053 spi = iter_get_spi(env, reg, nr_slots); 1054 if (spi < 0) 1055 return spi; 1056 1057 for (i = 0; i < nr_slots; i++) { 1058 struct bpf_stack_state *slot = &state->stack[spi - i]; 1059 struct bpf_reg_state *st = &slot->spilled_ptr; 1060 1061 if (i == 0) 1062 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1063 1064 __mark_reg_not_init(env, st); 1065 1066 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1067 st->live |= REG_LIVE_WRITTEN; 1068 1069 for (j = 0; j < BPF_REG_SIZE; j++) 1070 slot->slot_type[j] = STACK_INVALID; 1071 1072 mark_stack_slot_scratched(env, spi - i); 1073 } 1074 1075 return 0; 1076 } 1077 1078 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1079 struct bpf_reg_state *reg, int nr_slots) 1080 { 1081 struct bpf_func_state *state = func(env, reg); 1082 int spi, i, j; 1083 1084 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1085 * will do check_mem_access to check and update stack bounds later, so 1086 * return true for that case. 1087 */ 1088 spi = iter_get_spi(env, reg, nr_slots); 1089 if (spi == -ERANGE) 1090 return true; 1091 if (spi < 0) 1092 return false; 1093 1094 for (i = 0; i < nr_slots; i++) { 1095 struct bpf_stack_state *slot = &state->stack[spi - i]; 1096 1097 for (j = 0; j < BPF_REG_SIZE; j++) 1098 if (slot->slot_type[j] == STACK_ITER) 1099 return false; 1100 } 1101 1102 return true; 1103 } 1104 1105 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1106 struct btf *btf, u32 btf_id, int nr_slots) 1107 { 1108 struct bpf_func_state *state = func(env, reg); 1109 int spi, i, j; 1110 1111 spi = iter_get_spi(env, reg, nr_slots); 1112 if (spi < 0) 1113 return -EINVAL; 1114 1115 for (i = 0; i < nr_slots; i++) { 1116 struct bpf_stack_state *slot = &state->stack[spi - i]; 1117 struct bpf_reg_state *st = &slot->spilled_ptr; 1118 1119 if (st->type & PTR_UNTRUSTED) 1120 return -EPROTO; 1121 /* only main (first) slot has ref_obj_id set */ 1122 if (i == 0 && !st->ref_obj_id) 1123 return -EINVAL; 1124 if (i != 0 && st->ref_obj_id) 1125 return -EINVAL; 1126 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1127 return -EINVAL; 1128 1129 for (j = 0; j < BPF_REG_SIZE; j++) 1130 if (slot->slot_type[j] != STACK_ITER) 1131 return -EINVAL; 1132 } 1133 1134 return 0; 1135 } 1136 1137 /* Check if given stack slot is "special": 1138 * - spilled register state (STACK_SPILL); 1139 * - dynptr state (STACK_DYNPTR); 1140 * - iter state (STACK_ITER). 1141 */ 1142 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1143 { 1144 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1145 1146 switch (type) { 1147 case STACK_SPILL: 1148 case STACK_DYNPTR: 1149 case STACK_ITER: 1150 return true; 1151 case STACK_INVALID: 1152 case STACK_MISC: 1153 case STACK_ZERO: 1154 return false; 1155 default: 1156 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1157 return true; 1158 } 1159 } 1160 1161 /* The reg state of a pointer or a bounded scalar was saved when 1162 * it was spilled to the stack. 1163 */ 1164 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1165 { 1166 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1167 } 1168 1169 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1170 { 1171 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1172 stack->spilled_ptr.type == SCALAR_VALUE; 1173 } 1174 1175 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) 1176 { 1177 return stack->slot_type[0] == STACK_SPILL && 1178 stack->spilled_ptr.type == SCALAR_VALUE; 1179 } 1180 1181 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which 1182 * case they are equivalent, or it's STACK_ZERO, in which case we preserve 1183 * more precise STACK_ZERO. 1184 * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take 1185 * env->allow_ptr_leaks into account and force STACK_MISC, if necessary. 1186 */ 1187 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) 1188 { 1189 if (*stype == STACK_ZERO) 1190 return; 1191 if (env->allow_ptr_leaks && *stype == STACK_INVALID) 1192 return; 1193 *stype = STACK_MISC; 1194 } 1195 1196 static void scrub_spilled_slot(u8 *stype) 1197 { 1198 if (*stype != STACK_INVALID) 1199 *stype = STACK_MISC; 1200 } 1201 1202 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1203 * small to hold src. This is different from krealloc since we don't want to preserve 1204 * the contents of dst. 1205 * 1206 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1207 * not be allocated. 1208 */ 1209 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1210 { 1211 size_t alloc_bytes; 1212 void *orig = dst; 1213 size_t bytes; 1214 1215 if (ZERO_OR_NULL_PTR(src)) 1216 goto out; 1217 1218 if (unlikely(check_mul_overflow(n, size, &bytes))) 1219 return NULL; 1220 1221 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1222 dst = krealloc(orig, alloc_bytes, flags); 1223 if (!dst) { 1224 kfree(orig); 1225 return NULL; 1226 } 1227 1228 memcpy(dst, src, bytes); 1229 out: 1230 return dst ? dst : ZERO_SIZE_PTR; 1231 } 1232 1233 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1234 * small to hold new_n items. new items are zeroed out if the array grows. 1235 * 1236 * Contrary to krealloc_array, does not free arr if new_n is zero. 1237 */ 1238 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1239 { 1240 size_t alloc_size; 1241 void *new_arr; 1242 1243 if (!new_n || old_n == new_n) 1244 goto out; 1245 1246 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1247 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1248 if (!new_arr) { 1249 kfree(arr); 1250 return NULL; 1251 } 1252 arr = new_arr; 1253 1254 if (new_n > old_n) 1255 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1256 1257 out: 1258 return arr ? arr : ZERO_SIZE_PTR; 1259 } 1260 1261 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1262 { 1263 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1264 sizeof(struct bpf_reference_state), GFP_KERNEL); 1265 if (!dst->refs) 1266 return -ENOMEM; 1267 1268 dst->acquired_refs = src->acquired_refs; 1269 return 0; 1270 } 1271 1272 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1273 { 1274 size_t n = src->allocated_stack / BPF_REG_SIZE; 1275 1276 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1277 GFP_KERNEL); 1278 if (!dst->stack) 1279 return -ENOMEM; 1280 1281 dst->allocated_stack = src->allocated_stack; 1282 return 0; 1283 } 1284 1285 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1286 { 1287 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1288 sizeof(struct bpf_reference_state)); 1289 if (!state->refs) 1290 return -ENOMEM; 1291 1292 state->acquired_refs = n; 1293 return 0; 1294 } 1295 1296 /* Possibly update state->allocated_stack to be at least size bytes. Also 1297 * possibly update the function's high-water mark in its bpf_subprog_info. 1298 */ 1299 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1300 { 1301 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; 1302 1303 /* The stack size is always a multiple of BPF_REG_SIZE. */ 1304 size = round_up(size, BPF_REG_SIZE); 1305 n = size / BPF_REG_SIZE; 1306 1307 if (old_n >= n) 1308 return 0; 1309 1310 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1311 if (!state->stack) 1312 return -ENOMEM; 1313 1314 state->allocated_stack = size; 1315 1316 /* update known max for given subprogram */ 1317 if (env->subprog_info[state->subprogno].stack_depth < size) 1318 env->subprog_info[state->subprogno].stack_depth = size; 1319 1320 return 0; 1321 } 1322 1323 /* Acquire a pointer id from the env and update the state->refs to include 1324 * this new pointer reference. 1325 * On success, returns a valid pointer id to associate with the register 1326 * On failure, returns a negative errno. 1327 */ 1328 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1329 { 1330 struct bpf_func_state *state = cur_func(env); 1331 int new_ofs = state->acquired_refs; 1332 int id, err; 1333 1334 err = resize_reference_state(state, state->acquired_refs + 1); 1335 if (err) 1336 return err; 1337 id = ++env->id_gen; 1338 state->refs[new_ofs].id = id; 1339 state->refs[new_ofs].insn_idx = insn_idx; 1340 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1341 1342 return id; 1343 } 1344 1345 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1346 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1347 { 1348 int i, last_idx; 1349 1350 last_idx = state->acquired_refs - 1; 1351 for (i = 0; i < state->acquired_refs; i++) { 1352 if (state->refs[i].id == ptr_id) { 1353 /* Cannot release caller references in callbacks */ 1354 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1355 return -EINVAL; 1356 if (last_idx && i != last_idx) 1357 memcpy(&state->refs[i], &state->refs[last_idx], 1358 sizeof(*state->refs)); 1359 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1360 state->acquired_refs--; 1361 return 0; 1362 } 1363 } 1364 return -EINVAL; 1365 } 1366 1367 static void free_func_state(struct bpf_func_state *state) 1368 { 1369 if (!state) 1370 return; 1371 kfree(state->refs); 1372 kfree(state->stack); 1373 kfree(state); 1374 } 1375 1376 static void clear_jmp_history(struct bpf_verifier_state *state) 1377 { 1378 kfree(state->jmp_history); 1379 state->jmp_history = NULL; 1380 state->jmp_history_cnt = 0; 1381 } 1382 1383 static void free_verifier_state(struct bpf_verifier_state *state, 1384 bool free_self) 1385 { 1386 int i; 1387 1388 for (i = 0; i <= state->curframe; i++) { 1389 free_func_state(state->frame[i]); 1390 state->frame[i] = NULL; 1391 } 1392 clear_jmp_history(state); 1393 if (free_self) 1394 kfree(state); 1395 } 1396 1397 /* copy verifier state from src to dst growing dst stack space 1398 * when necessary to accommodate larger src stack 1399 */ 1400 static int copy_func_state(struct bpf_func_state *dst, 1401 const struct bpf_func_state *src) 1402 { 1403 int err; 1404 1405 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1406 err = copy_reference_state(dst, src); 1407 if (err) 1408 return err; 1409 return copy_stack_state(dst, src); 1410 } 1411 1412 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1413 const struct bpf_verifier_state *src) 1414 { 1415 struct bpf_func_state *dst; 1416 int i, err; 1417 1418 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1419 src->jmp_history_cnt, sizeof(*dst_state->jmp_history), 1420 GFP_USER); 1421 if (!dst_state->jmp_history) 1422 return -ENOMEM; 1423 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1424 1425 /* if dst has more stack frames then src frame, free them, this is also 1426 * necessary in case of exceptional exits using bpf_throw. 1427 */ 1428 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1429 free_func_state(dst_state->frame[i]); 1430 dst_state->frame[i] = NULL; 1431 } 1432 dst_state->speculative = src->speculative; 1433 dst_state->active_rcu_lock = src->active_rcu_lock; 1434 dst_state->active_preempt_lock = src->active_preempt_lock; 1435 dst_state->in_sleepable = src->in_sleepable; 1436 dst_state->curframe = src->curframe; 1437 dst_state->active_lock.ptr = src->active_lock.ptr; 1438 dst_state->active_lock.id = src->active_lock.id; 1439 dst_state->branches = src->branches; 1440 dst_state->parent = src->parent; 1441 dst_state->first_insn_idx = src->first_insn_idx; 1442 dst_state->last_insn_idx = src->last_insn_idx; 1443 dst_state->dfs_depth = src->dfs_depth; 1444 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1445 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1446 dst_state->may_goto_depth = src->may_goto_depth; 1447 for (i = 0; i <= src->curframe; i++) { 1448 dst = dst_state->frame[i]; 1449 if (!dst) { 1450 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1451 if (!dst) 1452 return -ENOMEM; 1453 dst_state->frame[i] = dst; 1454 } 1455 err = copy_func_state(dst, src->frame[i]); 1456 if (err) 1457 return err; 1458 } 1459 return 0; 1460 } 1461 1462 static u32 state_htab_size(struct bpf_verifier_env *env) 1463 { 1464 return env->prog->len; 1465 } 1466 1467 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1468 { 1469 struct bpf_verifier_state *cur = env->cur_state; 1470 struct bpf_func_state *state = cur->frame[cur->curframe]; 1471 1472 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1473 } 1474 1475 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1476 { 1477 int fr; 1478 1479 if (a->curframe != b->curframe) 1480 return false; 1481 1482 for (fr = a->curframe; fr >= 0; fr--) 1483 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1484 return false; 1485 1486 return true; 1487 } 1488 1489 /* Open coded iterators allow back-edges in the state graph in order to 1490 * check unbounded loops that iterators. 1491 * 1492 * In is_state_visited() it is necessary to know if explored states are 1493 * part of some loops in order to decide whether non-exact states 1494 * comparison could be used: 1495 * - non-exact states comparison establishes sub-state relation and uses 1496 * read and precision marks to do so, these marks are propagated from 1497 * children states and thus are not guaranteed to be final in a loop; 1498 * - exact states comparison just checks if current and explored states 1499 * are identical (and thus form a back-edge). 1500 * 1501 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1502 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1503 * algorithm for loop structure detection and gives an overview of 1504 * relevant terminology. It also has helpful illustrations. 1505 * 1506 * [1] https://api.semanticscholar.org/CorpusID:15784067 1507 * 1508 * We use a similar algorithm but because loop nested structure is 1509 * irrelevant for verifier ours is significantly simpler and resembles 1510 * strongly connected components algorithm from Sedgewick's textbook. 1511 * 1512 * Define topmost loop entry as a first node of the loop traversed in a 1513 * depth first search starting from initial state. The goal of the loop 1514 * tracking algorithm is to associate topmost loop entries with states 1515 * derived from these entries. 1516 * 1517 * For each step in the DFS states traversal algorithm needs to identify 1518 * the following situations: 1519 * 1520 * initial initial initial 1521 * | | | 1522 * V V V 1523 * ... ... .---------> hdr 1524 * | | | | 1525 * V V | V 1526 * cur .-> succ | .------... 1527 * | | | | | | 1528 * V | V | V V 1529 * succ '-- cur | ... ... 1530 * | | | 1531 * | V V 1532 * | succ <- cur 1533 * | | 1534 * | V 1535 * | ... 1536 * | | 1537 * '----' 1538 * 1539 * (A) successor state of cur (B) successor state of cur or it's entry 1540 * not yet traversed are in current DFS path, thus cur and succ 1541 * are members of the same outermost loop 1542 * 1543 * initial initial 1544 * | | 1545 * V V 1546 * ... ... 1547 * | | 1548 * V V 1549 * .------... .------... 1550 * | | | | 1551 * V V V V 1552 * .-> hdr ... ... ... 1553 * | | | | | 1554 * | V V V V 1555 * | succ <- cur succ <- cur 1556 * | | | 1557 * | V V 1558 * | ... ... 1559 * | | | 1560 * '----' exit 1561 * 1562 * (C) successor state of cur is a part of some loop but this loop 1563 * does not include cur or successor state is not in a loop at all. 1564 * 1565 * Algorithm could be described as the following python code: 1566 * 1567 * traversed = set() # Set of traversed nodes 1568 * entries = {} # Mapping from node to loop entry 1569 * depths = {} # Depth level assigned to graph node 1570 * path = set() # Current DFS path 1571 * 1572 * # Find outermost loop entry known for n 1573 * def get_loop_entry(n): 1574 * h = entries.get(n, None) 1575 * while h in entries and entries[h] != h: 1576 * h = entries[h] 1577 * return h 1578 * 1579 * # Update n's loop entry if h's outermost entry comes 1580 * # before n's outermost entry in current DFS path. 1581 * def update_loop_entry(n, h): 1582 * n1 = get_loop_entry(n) or n 1583 * h1 = get_loop_entry(h) or h 1584 * if h1 in path and depths[h1] <= depths[n1]: 1585 * entries[n] = h1 1586 * 1587 * def dfs(n, depth): 1588 * traversed.add(n) 1589 * path.add(n) 1590 * depths[n] = depth 1591 * for succ in G.successors(n): 1592 * if succ not in traversed: 1593 * # Case A: explore succ and update cur's loop entry 1594 * # only if succ's entry is in current DFS path. 1595 * dfs(succ, depth + 1) 1596 * h = get_loop_entry(succ) 1597 * update_loop_entry(n, h) 1598 * else: 1599 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1600 * update_loop_entry(n, succ) 1601 * path.remove(n) 1602 * 1603 * To adapt this algorithm for use with verifier: 1604 * - use st->branch == 0 as a signal that DFS of succ had been finished 1605 * and cur's loop entry has to be updated (case A), handle this in 1606 * update_branch_counts(); 1607 * - use st->branch > 0 as a signal that st is in the current DFS path; 1608 * - handle cases B and C in is_state_visited(); 1609 * - update topmost loop entry for intermediate states in get_loop_entry(). 1610 */ 1611 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1612 { 1613 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1614 1615 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1616 topmost = topmost->loop_entry; 1617 /* Update loop entries for intermediate states to avoid this 1618 * traversal in future get_loop_entry() calls. 1619 */ 1620 while (st && st->loop_entry != topmost) { 1621 old = st->loop_entry; 1622 st->loop_entry = topmost; 1623 st = old; 1624 } 1625 return topmost; 1626 } 1627 1628 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1629 { 1630 struct bpf_verifier_state *cur1, *hdr1; 1631 1632 cur1 = get_loop_entry(cur) ?: cur; 1633 hdr1 = get_loop_entry(hdr) ?: hdr; 1634 /* The head1->branches check decides between cases B and C in 1635 * comment for get_loop_entry(). If hdr1->branches == 0 then 1636 * head's topmost loop entry is not in current DFS path, 1637 * hence 'cur' and 'hdr' are not in the same loop and there is 1638 * no need to update cur->loop_entry. 1639 */ 1640 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1641 cur->loop_entry = hdr; 1642 hdr->used_as_loop_entry = true; 1643 } 1644 } 1645 1646 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1647 { 1648 while (st) { 1649 u32 br = --st->branches; 1650 1651 /* br == 0 signals that DFS exploration for 'st' is finished, 1652 * thus it is necessary to update parent's loop entry if it 1653 * turned out that st is a part of some loop. 1654 * This is a part of 'case A' in get_loop_entry() comment. 1655 */ 1656 if (br == 0 && st->parent && st->loop_entry) 1657 update_loop_entry(st->parent, st->loop_entry); 1658 1659 /* WARN_ON(br > 1) technically makes sense here, 1660 * but see comment in push_stack(), hence: 1661 */ 1662 WARN_ONCE((int)br < 0, 1663 "BUG update_branch_counts:branches_to_explore=%d\n", 1664 br); 1665 if (br) 1666 break; 1667 st = st->parent; 1668 } 1669 } 1670 1671 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1672 int *insn_idx, bool pop_log) 1673 { 1674 struct bpf_verifier_state *cur = env->cur_state; 1675 struct bpf_verifier_stack_elem *elem, *head = env->head; 1676 int err; 1677 1678 if (env->head == NULL) 1679 return -ENOENT; 1680 1681 if (cur) { 1682 err = copy_verifier_state(cur, &head->st); 1683 if (err) 1684 return err; 1685 } 1686 if (pop_log) 1687 bpf_vlog_reset(&env->log, head->log_pos); 1688 if (insn_idx) 1689 *insn_idx = head->insn_idx; 1690 if (prev_insn_idx) 1691 *prev_insn_idx = head->prev_insn_idx; 1692 elem = head->next; 1693 free_verifier_state(&head->st, false); 1694 kfree(head); 1695 env->head = elem; 1696 env->stack_size--; 1697 return 0; 1698 } 1699 1700 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1701 int insn_idx, int prev_insn_idx, 1702 bool speculative) 1703 { 1704 struct bpf_verifier_state *cur = env->cur_state; 1705 struct bpf_verifier_stack_elem *elem; 1706 int err; 1707 1708 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1709 if (!elem) 1710 goto err; 1711 1712 elem->insn_idx = insn_idx; 1713 elem->prev_insn_idx = prev_insn_idx; 1714 elem->next = env->head; 1715 elem->log_pos = env->log.end_pos; 1716 env->head = elem; 1717 env->stack_size++; 1718 err = copy_verifier_state(&elem->st, cur); 1719 if (err) 1720 goto err; 1721 elem->st.speculative |= speculative; 1722 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1723 verbose(env, "The sequence of %d jumps is too complex.\n", 1724 env->stack_size); 1725 goto err; 1726 } 1727 if (elem->st.parent) { 1728 ++elem->st.parent->branches; 1729 /* WARN_ON(branches > 2) technically makes sense here, 1730 * but 1731 * 1. speculative states will bump 'branches' for non-branch 1732 * instructions 1733 * 2. is_state_visited() heuristics may decide not to create 1734 * a new state for a sequence of branches and all such current 1735 * and cloned states will be pointing to a single parent state 1736 * which might have large 'branches' count. 1737 */ 1738 } 1739 return &elem->st; 1740 err: 1741 free_verifier_state(env->cur_state, true); 1742 env->cur_state = NULL; 1743 /* pop all elements and return */ 1744 while (!pop_stack(env, NULL, NULL, false)); 1745 return NULL; 1746 } 1747 1748 #define CALLER_SAVED_REGS 6 1749 static const int caller_saved[CALLER_SAVED_REGS] = { 1750 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1751 }; 1752 1753 /* This helper doesn't clear reg->id */ 1754 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1755 { 1756 reg->var_off = tnum_const(imm); 1757 reg->smin_value = (s64)imm; 1758 reg->smax_value = (s64)imm; 1759 reg->umin_value = imm; 1760 reg->umax_value = imm; 1761 1762 reg->s32_min_value = (s32)imm; 1763 reg->s32_max_value = (s32)imm; 1764 reg->u32_min_value = (u32)imm; 1765 reg->u32_max_value = (u32)imm; 1766 } 1767 1768 /* Mark the unknown part of a register (variable offset or scalar value) as 1769 * known to have the value @imm. 1770 */ 1771 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1772 { 1773 /* Clear off and union(map_ptr, range) */ 1774 memset(((u8 *)reg) + sizeof(reg->type), 0, 1775 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1776 reg->id = 0; 1777 reg->ref_obj_id = 0; 1778 ___mark_reg_known(reg, imm); 1779 } 1780 1781 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1782 { 1783 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1784 reg->s32_min_value = (s32)imm; 1785 reg->s32_max_value = (s32)imm; 1786 reg->u32_min_value = (u32)imm; 1787 reg->u32_max_value = (u32)imm; 1788 } 1789 1790 /* Mark the 'variable offset' part of a register as zero. This should be 1791 * used only on registers holding a pointer type. 1792 */ 1793 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1794 { 1795 __mark_reg_known(reg, 0); 1796 } 1797 1798 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1799 { 1800 __mark_reg_known(reg, 0); 1801 reg->type = SCALAR_VALUE; 1802 /* all scalars are assumed imprecise initially (unless unprivileged, 1803 * in which case everything is forced to be precise) 1804 */ 1805 reg->precise = !env->bpf_capable; 1806 } 1807 1808 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1809 struct bpf_reg_state *regs, u32 regno) 1810 { 1811 if (WARN_ON(regno >= MAX_BPF_REG)) { 1812 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1813 /* Something bad happened, let's kill all regs */ 1814 for (regno = 0; regno < MAX_BPF_REG; regno++) 1815 __mark_reg_not_init(env, regs + regno); 1816 return; 1817 } 1818 __mark_reg_known_zero(regs + regno); 1819 } 1820 1821 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1822 bool first_slot, int dynptr_id) 1823 { 1824 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1825 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1826 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1827 */ 1828 __mark_reg_known_zero(reg); 1829 reg->type = CONST_PTR_TO_DYNPTR; 1830 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1831 reg->id = dynptr_id; 1832 reg->dynptr.type = type; 1833 reg->dynptr.first_slot = first_slot; 1834 } 1835 1836 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1837 { 1838 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1839 const struct bpf_map *map = reg->map_ptr; 1840 1841 if (map->inner_map_meta) { 1842 reg->type = CONST_PTR_TO_MAP; 1843 reg->map_ptr = map->inner_map_meta; 1844 /* transfer reg's id which is unique for every map_lookup_elem 1845 * as UID of the inner map. 1846 */ 1847 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1848 reg->map_uid = reg->id; 1849 if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE)) 1850 reg->map_uid = reg->id; 1851 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1852 reg->type = PTR_TO_XDP_SOCK; 1853 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1854 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1855 reg->type = PTR_TO_SOCKET; 1856 } else { 1857 reg->type = PTR_TO_MAP_VALUE; 1858 } 1859 return; 1860 } 1861 1862 reg->type &= ~PTR_MAYBE_NULL; 1863 } 1864 1865 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1866 struct btf_field_graph_root *ds_head) 1867 { 1868 __mark_reg_known_zero(®s[regno]); 1869 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1870 regs[regno].btf = ds_head->btf; 1871 regs[regno].btf_id = ds_head->value_btf_id; 1872 regs[regno].off = ds_head->node_offset; 1873 } 1874 1875 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1876 { 1877 return type_is_pkt_pointer(reg->type); 1878 } 1879 1880 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1881 { 1882 return reg_is_pkt_pointer(reg) || 1883 reg->type == PTR_TO_PACKET_END; 1884 } 1885 1886 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 1887 { 1888 return base_type(reg->type) == PTR_TO_MEM && 1889 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 1890 } 1891 1892 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1893 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1894 enum bpf_reg_type which) 1895 { 1896 /* The register can already have a range from prior markings. 1897 * This is fine as long as it hasn't been advanced from its 1898 * origin. 1899 */ 1900 return reg->type == which && 1901 reg->id == 0 && 1902 reg->off == 0 && 1903 tnum_equals_const(reg->var_off, 0); 1904 } 1905 1906 /* Reset the min/max bounds of a register */ 1907 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1908 { 1909 reg->smin_value = S64_MIN; 1910 reg->smax_value = S64_MAX; 1911 reg->umin_value = 0; 1912 reg->umax_value = U64_MAX; 1913 1914 reg->s32_min_value = S32_MIN; 1915 reg->s32_max_value = S32_MAX; 1916 reg->u32_min_value = 0; 1917 reg->u32_max_value = U32_MAX; 1918 } 1919 1920 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1921 { 1922 reg->smin_value = S64_MIN; 1923 reg->smax_value = S64_MAX; 1924 reg->umin_value = 0; 1925 reg->umax_value = U64_MAX; 1926 } 1927 1928 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1929 { 1930 reg->s32_min_value = S32_MIN; 1931 reg->s32_max_value = S32_MAX; 1932 reg->u32_min_value = 0; 1933 reg->u32_max_value = U32_MAX; 1934 } 1935 1936 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1937 { 1938 struct tnum var32_off = tnum_subreg(reg->var_off); 1939 1940 /* min signed is max(sign bit) | min(other bits) */ 1941 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1942 var32_off.value | (var32_off.mask & S32_MIN)); 1943 /* max signed is min(sign bit) | max(other bits) */ 1944 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1945 var32_off.value | (var32_off.mask & S32_MAX)); 1946 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1947 reg->u32_max_value = min(reg->u32_max_value, 1948 (u32)(var32_off.value | var32_off.mask)); 1949 } 1950 1951 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1952 { 1953 /* min signed is max(sign bit) | min(other bits) */ 1954 reg->smin_value = max_t(s64, reg->smin_value, 1955 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1956 /* max signed is min(sign bit) | max(other bits) */ 1957 reg->smax_value = min_t(s64, reg->smax_value, 1958 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1959 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1960 reg->umax_value = min(reg->umax_value, 1961 reg->var_off.value | reg->var_off.mask); 1962 } 1963 1964 static void __update_reg_bounds(struct bpf_reg_state *reg) 1965 { 1966 __update_reg32_bounds(reg); 1967 __update_reg64_bounds(reg); 1968 } 1969 1970 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1971 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1972 { 1973 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 1974 * bits to improve our u32/s32 boundaries. 1975 * 1976 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 1977 * u64) is pretty trivial, it's obvious that in u32 we'll also have 1978 * [10, 20] range. But this property holds for any 64-bit range as 1979 * long as upper 32 bits in that entire range of values stay the same. 1980 * 1981 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 1982 * in decimal) has the same upper 32 bits throughout all the values in 1983 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 1984 * range. 1985 * 1986 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 1987 * following the rules outlined below about u64/s64 correspondence 1988 * (which equally applies to u32 vs s32 correspondence). In general it 1989 * depends on actual hexadecimal values of 32-bit range. They can form 1990 * only valid u32, or only valid s32 ranges in some cases. 1991 * 1992 * So we use all these insights to derive bounds for subregisters here. 1993 */ 1994 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 1995 /* u64 to u32 casting preserves validity of low 32 bits as 1996 * a range, if upper 32 bits are the same 1997 */ 1998 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 1999 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 2000 2001 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 2002 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2003 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2004 } 2005 } 2006 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 2007 /* low 32 bits should form a proper u32 range */ 2008 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 2009 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 2010 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 2011 } 2012 /* low 32 bits should form a proper s32 range */ 2013 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 2014 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2015 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2016 } 2017 } 2018 /* Special case where upper bits form a small sequence of two 2019 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 2020 * 0x00000000 is also valid), while lower bits form a proper s32 range 2021 * going from negative numbers to positive numbers. E.g., let's say we 2022 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 2023 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 2024 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 2025 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 2026 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 2027 * upper 32 bits. As a random example, s64 range 2028 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 2029 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 2030 */ 2031 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 2032 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 2033 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2034 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2035 } 2036 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 2037 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 2038 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2039 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2040 } 2041 /* if u32 range forms a valid s32 range (due to matching sign bit), 2042 * try to learn from that 2043 */ 2044 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 2045 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 2046 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 2047 } 2048 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2049 * are the same, so combine. This works even in the negative case, e.g. 2050 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2051 */ 2052 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2053 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 2054 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 2055 } 2056 } 2057 2058 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2059 { 2060 /* If u64 range forms a valid s64 range (due to matching sign bit), 2061 * try to learn from that. Let's do a bit of ASCII art to see when 2062 * this is happening. Let's take u64 range first: 2063 * 2064 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2065 * |-------------------------------|--------------------------------| 2066 * 2067 * Valid u64 range is formed when umin and umax are anywhere in the 2068 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 2069 * straightforward. Let's see how s64 range maps onto the same range 2070 * of values, annotated below the line for comparison: 2071 * 2072 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2073 * |-------------------------------|--------------------------------| 2074 * 0 S64_MAX S64_MIN -1 2075 * 2076 * So s64 values basically start in the middle and they are logically 2077 * contiguous to the right of it, wrapping around from -1 to 0, and 2078 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2079 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2080 * more visually as mapped to sign-agnostic range of hex values. 2081 * 2082 * u64 start u64 end 2083 * _______________________________________________________________ 2084 * / \ 2085 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2086 * |-------------------------------|--------------------------------| 2087 * 0 S64_MAX S64_MIN -1 2088 * / \ 2089 * >------------------------------ -------------------------------> 2090 * s64 continues... s64 end s64 start s64 "midpoint" 2091 * 2092 * What this means is that, in general, we can't always derive 2093 * something new about u64 from any random s64 range, and vice versa. 2094 * 2095 * But we can do that in two particular cases. One is when entire 2096 * u64/s64 range is *entirely* contained within left half of the above 2097 * diagram or when it is *entirely* contained in the right half. I.e.: 2098 * 2099 * |-------------------------------|--------------------------------| 2100 * ^ ^ ^ ^ 2101 * A B C D 2102 * 2103 * [A, B] and [C, D] are contained entirely in their respective halves 2104 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2105 * will be non-negative both as u64 and s64 (and in fact it will be 2106 * identical ranges no matter the signedness). [C, D] treated as s64 2107 * will be a range of negative values, while in u64 it will be 2108 * non-negative range of values larger than 0x8000000000000000. 2109 * 2110 * Now, any other range here can't be represented in both u64 and s64 2111 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2112 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2113 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2114 * for example. Similarly, valid s64 range [D, A] (going from negative 2115 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2116 * ranges as u64. Currently reg_state can't represent two segments per 2117 * numeric domain, so in such situations we can only derive maximal 2118 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2119 * 2120 * So we use these facts to derive umin/umax from smin/smax and vice 2121 * versa only if they stay within the same "half". This is equivalent 2122 * to checking sign bit: lower half will have sign bit as zero, upper 2123 * half have sign bit 1. Below in code we simplify this by just 2124 * casting umin/umax as smin/smax and checking if they form valid 2125 * range, and vice versa. Those are equivalent checks. 2126 */ 2127 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2128 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2129 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2130 } 2131 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2132 * are the same, so combine. This works even in the negative case, e.g. 2133 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2134 */ 2135 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2136 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2137 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2138 } 2139 } 2140 2141 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2142 { 2143 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2144 * values on both sides of 64-bit range in hope to have tighter range. 2145 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2146 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2147 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2148 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2149 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2150 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2151 * We just need to make sure that derived bounds we are intersecting 2152 * with are well-formed ranges in respective s64 or u64 domain, just 2153 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2154 */ 2155 __u64 new_umin, new_umax; 2156 __s64 new_smin, new_smax; 2157 2158 /* u32 -> u64 tightening, it's always well-formed */ 2159 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2160 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2161 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2162 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2163 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2164 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2165 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2166 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2167 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2168 2169 /* if s32 can be treated as valid u32 range, we can use it as well */ 2170 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2171 /* s32 -> u64 tightening */ 2172 new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2173 new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2174 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2175 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2176 /* s32 -> s64 tightening */ 2177 new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2178 new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2179 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2180 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2181 } 2182 2183 /* Here we would like to handle a special case after sign extending load, 2184 * when upper bits for a 64-bit range are all 1s or all 0s. 2185 * 2186 * Upper bits are all 1s when register is in a range: 2187 * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff] 2188 * Upper bits are all 0s when register is in a range: 2189 * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff] 2190 * Together this forms are continuous range: 2191 * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff] 2192 * 2193 * Now, suppose that register range is in fact tighter: 2194 * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R) 2195 * Also suppose that it's 32-bit range is positive, 2196 * meaning that lower 32-bits of the full 64-bit register 2197 * are in the range: 2198 * [0x0000_0000, 0x7fff_ffff] (W) 2199 * 2200 * If this happens, then any value in a range: 2201 * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff] 2202 * is smaller than a lowest bound of the range (R): 2203 * 0xffff_ffff_8000_0000 2204 * which means that upper bits of the full 64-bit register 2205 * can't be all 1s, when lower bits are in range (W). 2206 * 2207 * Note that: 2208 * - 0xffff_ffff_8000_0000 == (s64)S32_MIN 2209 * - 0x0000_0000_7fff_ffff == (s64)S32_MAX 2210 * These relations are used in the conditions below. 2211 */ 2212 if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) { 2213 reg->smin_value = reg->s32_min_value; 2214 reg->smax_value = reg->s32_max_value; 2215 reg->umin_value = reg->s32_min_value; 2216 reg->umax_value = reg->s32_max_value; 2217 reg->var_off = tnum_intersect(reg->var_off, 2218 tnum_range(reg->smin_value, reg->smax_value)); 2219 } 2220 } 2221 2222 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2223 { 2224 __reg32_deduce_bounds(reg); 2225 __reg64_deduce_bounds(reg); 2226 __reg_deduce_mixed_bounds(reg); 2227 } 2228 2229 /* Attempts to improve var_off based on unsigned min/max information */ 2230 static void __reg_bound_offset(struct bpf_reg_state *reg) 2231 { 2232 struct tnum var64_off = tnum_intersect(reg->var_off, 2233 tnum_range(reg->umin_value, 2234 reg->umax_value)); 2235 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2236 tnum_range(reg->u32_min_value, 2237 reg->u32_max_value)); 2238 2239 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2240 } 2241 2242 static void reg_bounds_sync(struct bpf_reg_state *reg) 2243 { 2244 /* We might have learned new bounds from the var_off. */ 2245 __update_reg_bounds(reg); 2246 /* We might have learned something about the sign bit. */ 2247 __reg_deduce_bounds(reg); 2248 __reg_deduce_bounds(reg); 2249 /* We might have learned some bits from the bounds. */ 2250 __reg_bound_offset(reg); 2251 /* Intersecting with the old var_off might have improved our bounds 2252 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2253 * then new var_off is (0; 0x7f...fc) which improves our umax. 2254 */ 2255 __update_reg_bounds(reg); 2256 } 2257 2258 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2259 struct bpf_reg_state *reg, const char *ctx) 2260 { 2261 const char *msg; 2262 2263 if (reg->umin_value > reg->umax_value || 2264 reg->smin_value > reg->smax_value || 2265 reg->u32_min_value > reg->u32_max_value || 2266 reg->s32_min_value > reg->s32_max_value) { 2267 msg = "range bounds violation"; 2268 goto out; 2269 } 2270 2271 if (tnum_is_const(reg->var_off)) { 2272 u64 uval = reg->var_off.value; 2273 s64 sval = (s64)uval; 2274 2275 if (reg->umin_value != uval || reg->umax_value != uval || 2276 reg->smin_value != sval || reg->smax_value != sval) { 2277 msg = "const tnum out of sync with range bounds"; 2278 goto out; 2279 } 2280 } 2281 2282 if (tnum_subreg_is_const(reg->var_off)) { 2283 u32 uval32 = tnum_subreg(reg->var_off).value; 2284 s32 sval32 = (s32)uval32; 2285 2286 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2287 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2288 msg = "const subreg tnum out of sync with range bounds"; 2289 goto out; 2290 } 2291 } 2292 2293 return 0; 2294 out: 2295 verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2296 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n", 2297 ctx, msg, reg->umin_value, reg->umax_value, 2298 reg->smin_value, reg->smax_value, 2299 reg->u32_min_value, reg->u32_max_value, 2300 reg->s32_min_value, reg->s32_max_value, 2301 reg->var_off.value, reg->var_off.mask); 2302 if (env->test_reg_invariants) 2303 return -EFAULT; 2304 __mark_reg_unbounded(reg); 2305 return 0; 2306 } 2307 2308 static bool __reg32_bound_s64(s32 a) 2309 { 2310 return a >= 0 && a <= S32_MAX; 2311 } 2312 2313 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2314 { 2315 reg->umin_value = reg->u32_min_value; 2316 reg->umax_value = reg->u32_max_value; 2317 2318 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2319 * be positive otherwise set to worse case bounds and refine later 2320 * from tnum. 2321 */ 2322 if (__reg32_bound_s64(reg->s32_min_value) && 2323 __reg32_bound_s64(reg->s32_max_value)) { 2324 reg->smin_value = reg->s32_min_value; 2325 reg->smax_value = reg->s32_max_value; 2326 } else { 2327 reg->smin_value = 0; 2328 reg->smax_value = U32_MAX; 2329 } 2330 } 2331 2332 /* Mark a register as having a completely unknown (scalar) value. */ 2333 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) 2334 { 2335 /* 2336 * Clear type, off, and union(map_ptr, range) and 2337 * padding between 'type' and union 2338 */ 2339 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2340 reg->type = SCALAR_VALUE; 2341 reg->id = 0; 2342 reg->ref_obj_id = 0; 2343 reg->var_off = tnum_unknown; 2344 reg->frameno = 0; 2345 reg->precise = false; 2346 __mark_reg_unbounded(reg); 2347 } 2348 2349 /* Mark a register as having a completely unknown (scalar) value, 2350 * initialize .precise as true when not bpf capable. 2351 */ 2352 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2353 struct bpf_reg_state *reg) 2354 { 2355 __mark_reg_unknown_imprecise(reg); 2356 reg->precise = !env->bpf_capable; 2357 } 2358 2359 static void mark_reg_unknown(struct bpf_verifier_env *env, 2360 struct bpf_reg_state *regs, u32 regno) 2361 { 2362 if (WARN_ON(regno >= MAX_BPF_REG)) { 2363 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2364 /* Something bad happened, let's kill all regs except FP */ 2365 for (regno = 0; regno < BPF_REG_FP; regno++) 2366 __mark_reg_not_init(env, regs + regno); 2367 return; 2368 } 2369 __mark_reg_unknown(env, regs + regno); 2370 } 2371 2372 static int __mark_reg_s32_range(struct bpf_verifier_env *env, 2373 struct bpf_reg_state *regs, 2374 u32 regno, 2375 s32 s32_min, 2376 s32 s32_max) 2377 { 2378 struct bpf_reg_state *reg = regs + regno; 2379 2380 reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min); 2381 reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max); 2382 2383 reg->smin_value = max_t(s64, reg->smin_value, s32_min); 2384 reg->smax_value = min_t(s64, reg->smax_value, s32_max); 2385 2386 reg_bounds_sync(reg); 2387 2388 return reg_bounds_sanity_check(env, reg, "s32_range"); 2389 } 2390 2391 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2392 struct bpf_reg_state *reg) 2393 { 2394 __mark_reg_unknown(env, reg); 2395 reg->type = NOT_INIT; 2396 } 2397 2398 static void mark_reg_not_init(struct bpf_verifier_env *env, 2399 struct bpf_reg_state *regs, u32 regno) 2400 { 2401 if (WARN_ON(regno >= MAX_BPF_REG)) { 2402 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2403 /* Something bad happened, let's kill all regs except FP */ 2404 for (regno = 0; regno < BPF_REG_FP; regno++) 2405 __mark_reg_not_init(env, regs + regno); 2406 return; 2407 } 2408 __mark_reg_not_init(env, regs + regno); 2409 } 2410 2411 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2412 struct bpf_reg_state *regs, u32 regno, 2413 enum bpf_reg_type reg_type, 2414 struct btf *btf, u32 btf_id, 2415 enum bpf_type_flag flag) 2416 { 2417 if (reg_type == SCALAR_VALUE) { 2418 mark_reg_unknown(env, regs, regno); 2419 return; 2420 } 2421 mark_reg_known_zero(env, regs, regno); 2422 regs[regno].type = PTR_TO_BTF_ID | flag; 2423 regs[regno].btf = btf; 2424 regs[regno].btf_id = btf_id; 2425 if (type_may_be_null(flag)) 2426 regs[regno].id = ++env->id_gen; 2427 } 2428 2429 #define DEF_NOT_SUBREG (0) 2430 static void init_reg_state(struct bpf_verifier_env *env, 2431 struct bpf_func_state *state) 2432 { 2433 struct bpf_reg_state *regs = state->regs; 2434 int i; 2435 2436 for (i = 0; i < MAX_BPF_REG; i++) { 2437 mark_reg_not_init(env, regs, i); 2438 regs[i].live = REG_LIVE_NONE; 2439 regs[i].parent = NULL; 2440 regs[i].subreg_def = DEF_NOT_SUBREG; 2441 } 2442 2443 /* frame pointer */ 2444 regs[BPF_REG_FP].type = PTR_TO_STACK; 2445 mark_reg_known_zero(env, regs, BPF_REG_FP); 2446 regs[BPF_REG_FP].frameno = state->frameno; 2447 } 2448 2449 static struct bpf_retval_range retval_range(s32 minval, s32 maxval) 2450 { 2451 return (struct bpf_retval_range){ minval, maxval }; 2452 } 2453 2454 #define BPF_MAIN_FUNC (-1) 2455 static void init_func_state(struct bpf_verifier_env *env, 2456 struct bpf_func_state *state, 2457 int callsite, int frameno, int subprogno) 2458 { 2459 state->callsite = callsite; 2460 state->frameno = frameno; 2461 state->subprogno = subprogno; 2462 state->callback_ret_range = retval_range(0, 0); 2463 init_reg_state(env, state); 2464 mark_verifier_state_scratched(env); 2465 } 2466 2467 /* Similar to push_stack(), but for async callbacks */ 2468 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2469 int insn_idx, int prev_insn_idx, 2470 int subprog, bool is_sleepable) 2471 { 2472 struct bpf_verifier_stack_elem *elem; 2473 struct bpf_func_state *frame; 2474 2475 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2476 if (!elem) 2477 goto err; 2478 2479 elem->insn_idx = insn_idx; 2480 elem->prev_insn_idx = prev_insn_idx; 2481 elem->next = env->head; 2482 elem->log_pos = env->log.end_pos; 2483 env->head = elem; 2484 env->stack_size++; 2485 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2486 verbose(env, 2487 "The sequence of %d jumps is too complex for async cb.\n", 2488 env->stack_size); 2489 goto err; 2490 } 2491 /* Unlike push_stack() do not copy_verifier_state(). 2492 * The caller state doesn't matter. 2493 * This is async callback. It starts in a fresh stack. 2494 * Initialize it similar to do_check_common(). 2495 */ 2496 elem->st.branches = 1; 2497 elem->st.in_sleepable = is_sleepable; 2498 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2499 if (!frame) 2500 goto err; 2501 init_func_state(env, frame, 2502 BPF_MAIN_FUNC /* callsite */, 2503 0 /* frameno within this callchain */, 2504 subprog /* subprog number within this prog */); 2505 elem->st.frame[0] = frame; 2506 return &elem->st; 2507 err: 2508 free_verifier_state(env->cur_state, true); 2509 env->cur_state = NULL; 2510 /* pop all elements and return */ 2511 while (!pop_stack(env, NULL, NULL, false)); 2512 return NULL; 2513 } 2514 2515 2516 enum reg_arg_type { 2517 SRC_OP, /* register is used as source operand */ 2518 DST_OP, /* register is used as destination operand */ 2519 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2520 }; 2521 2522 static int cmp_subprogs(const void *a, const void *b) 2523 { 2524 return ((struct bpf_subprog_info *)a)->start - 2525 ((struct bpf_subprog_info *)b)->start; 2526 } 2527 2528 static int find_subprog(struct bpf_verifier_env *env, int off) 2529 { 2530 struct bpf_subprog_info *p; 2531 2532 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2533 sizeof(env->subprog_info[0]), cmp_subprogs); 2534 if (!p) 2535 return -ENOENT; 2536 return p - env->subprog_info; 2537 2538 } 2539 2540 static int add_subprog(struct bpf_verifier_env *env, int off) 2541 { 2542 int insn_cnt = env->prog->len; 2543 int ret; 2544 2545 if (off >= insn_cnt || off < 0) { 2546 verbose(env, "call to invalid destination\n"); 2547 return -EINVAL; 2548 } 2549 ret = find_subprog(env, off); 2550 if (ret >= 0) 2551 return ret; 2552 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2553 verbose(env, "too many subprograms\n"); 2554 return -E2BIG; 2555 } 2556 /* determine subprog starts. The end is one before the next starts */ 2557 env->subprog_info[env->subprog_cnt++].start = off; 2558 sort(env->subprog_info, env->subprog_cnt, 2559 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2560 return env->subprog_cnt - 1; 2561 } 2562 2563 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 2564 { 2565 struct bpf_prog_aux *aux = env->prog->aux; 2566 struct btf *btf = aux->btf; 2567 const struct btf_type *t; 2568 u32 main_btf_id, id; 2569 const char *name; 2570 int ret, i; 2571 2572 /* Non-zero func_info_cnt implies valid btf */ 2573 if (!aux->func_info_cnt) 2574 return 0; 2575 main_btf_id = aux->func_info[0].type_id; 2576 2577 t = btf_type_by_id(btf, main_btf_id); 2578 if (!t) { 2579 verbose(env, "invalid btf id for main subprog in func_info\n"); 2580 return -EINVAL; 2581 } 2582 2583 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 2584 if (IS_ERR(name)) { 2585 ret = PTR_ERR(name); 2586 /* If there is no tag present, there is no exception callback */ 2587 if (ret == -ENOENT) 2588 ret = 0; 2589 else if (ret == -EEXIST) 2590 verbose(env, "multiple exception callback tags for main subprog\n"); 2591 return ret; 2592 } 2593 2594 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 2595 if (ret < 0) { 2596 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 2597 return ret; 2598 } 2599 id = ret; 2600 t = btf_type_by_id(btf, id); 2601 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 2602 verbose(env, "exception callback '%s' must have global linkage\n", name); 2603 return -EINVAL; 2604 } 2605 ret = 0; 2606 for (i = 0; i < aux->func_info_cnt; i++) { 2607 if (aux->func_info[i].type_id != id) 2608 continue; 2609 ret = aux->func_info[i].insn_off; 2610 /* Further func_info and subprog checks will also happen 2611 * later, so assume this is the right insn_off for now. 2612 */ 2613 if (!ret) { 2614 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 2615 ret = -EINVAL; 2616 } 2617 } 2618 if (!ret) { 2619 verbose(env, "exception callback type id not found in func_info\n"); 2620 ret = -EINVAL; 2621 } 2622 return ret; 2623 } 2624 2625 #define MAX_KFUNC_DESCS 256 2626 #define MAX_KFUNC_BTFS 256 2627 2628 struct bpf_kfunc_desc { 2629 struct btf_func_model func_model; 2630 u32 func_id; 2631 s32 imm; 2632 u16 offset; 2633 unsigned long addr; 2634 }; 2635 2636 struct bpf_kfunc_btf { 2637 struct btf *btf; 2638 struct module *module; 2639 u16 offset; 2640 }; 2641 2642 struct bpf_kfunc_desc_tab { 2643 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2644 * verification. JITs do lookups by bpf_insn, where func_id may not be 2645 * available, therefore at the end of verification do_misc_fixups() 2646 * sorts this by imm and offset. 2647 */ 2648 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2649 u32 nr_descs; 2650 }; 2651 2652 struct bpf_kfunc_btf_tab { 2653 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2654 u32 nr_descs; 2655 }; 2656 2657 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2658 { 2659 const struct bpf_kfunc_desc *d0 = a; 2660 const struct bpf_kfunc_desc *d1 = b; 2661 2662 /* func_id is not greater than BTF_MAX_TYPE */ 2663 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2664 } 2665 2666 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2667 { 2668 const struct bpf_kfunc_btf *d0 = a; 2669 const struct bpf_kfunc_btf *d1 = b; 2670 2671 return d0->offset - d1->offset; 2672 } 2673 2674 static const struct bpf_kfunc_desc * 2675 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2676 { 2677 struct bpf_kfunc_desc desc = { 2678 .func_id = func_id, 2679 .offset = offset, 2680 }; 2681 struct bpf_kfunc_desc_tab *tab; 2682 2683 tab = prog->aux->kfunc_tab; 2684 return bsearch(&desc, tab->descs, tab->nr_descs, 2685 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2686 } 2687 2688 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2689 u16 btf_fd_idx, u8 **func_addr) 2690 { 2691 const struct bpf_kfunc_desc *desc; 2692 2693 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2694 if (!desc) 2695 return -EFAULT; 2696 2697 *func_addr = (u8 *)desc->addr; 2698 return 0; 2699 } 2700 2701 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2702 s16 offset) 2703 { 2704 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2705 struct bpf_kfunc_btf_tab *tab; 2706 struct bpf_kfunc_btf *b; 2707 struct module *mod; 2708 struct btf *btf; 2709 int btf_fd; 2710 2711 tab = env->prog->aux->kfunc_btf_tab; 2712 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2713 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2714 if (!b) { 2715 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2716 verbose(env, "too many different module BTFs\n"); 2717 return ERR_PTR(-E2BIG); 2718 } 2719 2720 if (bpfptr_is_null(env->fd_array)) { 2721 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2722 return ERR_PTR(-EPROTO); 2723 } 2724 2725 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2726 offset * sizeof(btf_fd), 2727 sizeof(btf_fd))) 2728 return ERR_PTR(-EFAULT); 2729 2730 btf = btf_get_by_fd(btf_fd); 2731 if (IS_ERR(btf)) { 2732 verbose(env, "invalid module BTF fd specified\n"); 2733 return btf; 2734 } 2735 2736 if (!btf_is_module(btf)) { 2737 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2738 btf_put(btf); 2739 return ERR_PTR(-EINVAL); 2740 } 2741 2742 mod = btf_try_get_module(btf); 2743 if (!mod) { 2744 btf_put(btf); 2745 return ERR_PTR(-ENXIO); 2746 } 2747 2748 b = &tab->descs[tab->nr_descs++]; 2749 b->btf = btf; 2750 b->module = mod; 2751 b->offset = offset; 2752 2753 /* sort() reorders entries by value, so b may no longer point 2754 * to the right entry after this 2755 */ 2756 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2757 kfunc_btf_cmp_by_off, NULL); 2758 } else { 2759 btf = b->btf; 2760 } 2761 2762 return btf; 2763 } 2764 2765 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2766 { 2767 if (!tab) 2768 return; 2769 2770 while (tab->nr_descs--) { 2771 module_put(tab->descs[tab->nr_descs].module); 2772 btf_put(tab->descs[tab->nr_descs].btf); 2773 } 2774 kfree(tab); 2775 } 2776 2777 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2778 { 2779 if (offset) { 2780 if (offset < 0) { 2781 /* In the future, this can be allowed to increase limit 2782 * of fd index into fd_array, interpreted as u16. 2783 */ 2784 verbose(env, "negative offset disallowed for kernel module function call\n"); 2785 return ERR_PTR(-EINVAL); 2786 } 2787 2788 return __find_kfunc_desc_btf(env, offset); 2789 } 2790 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2791 } 2792 2793 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2794 { 2795 const struct btf_type *func, *func_proto; 2796 struct bpf_kfunc_btf_tab *btf_tab; 2797 struct bpf_kfunc_desc_tab *tab; 2798 struct bpf_prog_aux *prog_aux; 2799 struct bpf_kfunc_desc *desc; 2800 const char *func_name; 2801 struct btf *desc_btf; 2802 unsigned long call_imm; 2803 unsigned long addr; 2804 int err; 2805 2806 prog_aux = env->prog->aux; 2807 tab = prog_aux->kfunc_tab; 2808 btf_tab = prog_aux->kfunc_btf_tab; 2809 if (!tab) { 2810 if (!btf_vmlinux) { 2811 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2812 return -ENOTSUPP; 2813 } 2814 2815 if (!env->prog->jit_requested) { 2816 verbose(env, "JIT is required for calling kernel function\n"); 2817 return -ENOTSUPP; 2818 } 2819 2820 if (!bpf_jit_supports_kfunc_call()) { 2821 verbose(env, "JIT does not support calling kernel function\n"); 2822 return -ENOTSUPP; 2823 } 2824 2825 if (!env->prog->gpl_compatible) { 2826 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2827 return -EINVAL; 2828 } 2829 2830 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2831 if (!tab) 2832 return -ENOMEM; 2833 prog_aux->kfunc_tab = tab; 2834 } 2835 2836 /* func_id == 0 is always invalid, but instead of returning an error, be 2837 * conservative and wait until the code elimination pass before returning 2838 * error, so that invalid calls that get pruned out can be in BPF programs 2839 * loaded from userspace. It is also required that offset be untouched 2840 * for such calls. 2841 */ 2842 if (!func_id && !offset) 2843 return 0; 2844 2845 if (!btf_tab && offset) { 2846 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2847 if (!btf_tab) 2848 return -ENOMEM; 2849 prog_aux->kfunc_btf_tab = btf_tab; 2850 } 2851 2852 desc_btf = find_kfunc_desc_btf(env, offset); 2853 if (IS_ERR(desc_btf)) { 2854 verbose(env, "failed to find BTF for kernel function\n"); 2855 return PTR_ERR(desc_btf); 2856 } 2857 2858 if (find_kfunc_desc(env->prog, func_id, offset)) 2859 return 0; 2860 2861 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2862 verbose(env, "too many different kernel function calls\n"); 2863 return -E2BIG; 2864 } 2865 2866 func = btf_type_by_id(desc_btf, func_id); 2867 if (!func || !btf_type_is_func(func)) { 2868 verbose(env, "kernel btf_id %u is not a function\n", 2869 func_id); 2870 return -EINVAL; 2871 } 2872 func_proto = btf_type_by_id(desc_btf, func->type); 2873 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2874 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2875 func_id); 2876 return -EINVAL; 2877 } 2878 2879 func_name = btf_name_by_offset(desc_btf, func->name_off); 2880 addr = kallsyms_lookup_name(func_name); 2881 if (!addr) { 2882 verbose(env, "cannot find address for kernel function %s\n", 2883 func_name); 2884 return -EINVAL; 2885 } 2886 specialize_kfunc(env, func_id, offset, &addr); 2887 2888 if (bpf_jit_supports_far_kfunc_call()) { 2889 call_imm = func_id; 2890 } else { 2891 call_imm = BPF_CALL_IMM(addr); 2892 /* Check whether the relative offset overflows desc->imm */ 2893 if ((unsigned long)(s32)call_imm != call_imm) { 2894 verbose(env, "address of kernel function %s is out of range\n", 2895 func_name); 2896 return -EINVAL; 2897 } 2898 } 2899 2900 if (bpf_dev_bound_kfunc_id(func_id)) { 2901 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2902 if (err) 2903 return err; 2904 } 2905 2906 desc = &tab->descs[tab->nr_descs++]; 2907 desc->func_id = func_id; 2908 desc->imm = call_imm; 2909 desc->offset = offset; 2910 desc->addr = addr; 2911 err = btf_distill_func_proto(&env->log, desc_btf, 2912 func_proto, func_name, 2913 &desc->func_model); 2914 if (!err) 2915 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2916 kfunc_desc_cmp_by_id_off, NULL); 2917 return err; 2918 } 2919 2920 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2921 { 2922 const struct bpf_kfunc_desc *d0 = a; 2923 const struct bpf_kfunc_desc *d1 = b; 2924 2925 if (d0->imm != d1->imm) 2926 return d0->imm < d1->imm ? -1 : 1; 2927 if (d0->offset != d1->offset) 2928 return d0->offset < d1->offset ? -1 : 1; 2929 return 0; 2930 } 2931 2932 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2933 { 2934 struct bpf_kfunc_desc_tab *tab; 2935 2936 tab = prog->aux->kfunc_tab; 2937 if (!tab) 2938 return; 2939 2940 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2941 kfunc_desc_cmp_by_imm_off, NULL); 2942 } 2943 2944 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2945 { 2946 return !!prog->aux->kfunc_tab; 2947 } 2948 2949 const struct btf_func_model * 2950 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2951 const struct bpf_insn *insn) 2952 { 2953 const struct bpf_kfunc_desc desc = { 2954 .imm = insn->imm, 2955 .offset = insn->off, 2956 }; 2957 const struct bpf_kfunc_desc *res; 2958 struct bpf_kfunc_desc_tab *tab; 2959 2960 tab = prog->aux->kfunc_tab; 2961 res = bsearch(&desc, tab->descs, tab->nr_descs, 2962 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2963 2964 return res ? &res->func_model : NULL; 2965 } 2966 2967 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2968 { 2969 struct bpf_subprog_info *subprog = env->subprog_info; 2970 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 2971 struct bpf_insn *insn = env->prog->insnsi; 2972 2973 /* Add entry function. */ 2974 ret = add_subprog(env, 0); 2975 if (ret) 2976 return ret; 2977 2978 for (i = 0; i < insn_cnt; i++, insn++) { 2979 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2980 !bpf_pseudo_kfunc_call(insn)) 2981 continue; 2982 2983 if (!env->bpf_capable) { 2984 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2985 return -EPERM; 2986 } 2987 2988 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2989 ret = add_subprog(env, i + insn->imm + 1); 2990 else 2991 ret = add_kfunc_call(env, insn->imm, insn->off); 2992 2993 if (ret < 0) 2994 return ret; 2995 } 2996 2997 ret = bpf_find_exception_callback_insn_off(env); 2998 if (ret < 0) 2999 return ret; 3000 ex_cb_insn = ret; 3001 3002 /* If ex_cb_insn > 0, this means that the main program has a subprog 3003 * marked using BTF decl tag to serve as the exception callback. 3004 */ 3005 if (ex_cb_insn) { 3006 ret = add_subprog(env, ex_cb_insn); 3007 if (ret < 0) 3008 return ret; 3009 for (i = 1; i < env->subprog_cnt; i++) { 3010 if (env->subprog_info[i].start != ex_cb_insn) 3011 continue; 3012 env->exception_callback_subprog = i; 3013 mark_subprog_exc_cb(env, i); 3014 break; 3015 } 3016 } 3017 3018 /* Add a fake 'exit' subprog which could simplify subprog iteration 3019 * logic. 'subprog_cnt' should not be increased. 3020 */ 3021 subprog[env->subprog_cnt].start = insn_cnt; 3022 3023 if (env->log.level & BPF_LOG_LEVEL2) 3024 for (i = 0; i < env->subprog_cnt; i++) 3025 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3026 3027 return 0; 3028 } 3029 3030 static int check_subprogs(struct bpf_verifier_env *env) 3031 { 3032 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3033 struct bpf_subprog_info *subprog = env->subprog_info; 3034 struct bpf_insn *insn = env->prog->insnsi; 3035 int insn_cnt = env->prog->len; 3036 3037 /* now check that all jumps are within the same subprog */ 3038 subprog_start = subprog[cur_subprog].start; 3039 subprog_end = subprog[cur_subprog + 1].start; 3040 for (i = 0; i < insn_cnt; i++) { 3041 u8 code = insn[i].code; 3042 3043 if (code == (BPF_JMP | BPF_CALL) && 3044 insn[i].src_reg == 0 && 3045 insn[i].imm == BPF_FUNC_tail_call) { 3046 subprog[cur_subprog].has_tail_call = true; 3047 subprog[cur_subprog].tail_call_reachable = true; 3048 } 3049 if (BPF_CLASS(code) == BPF_LD && 3050 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3051 subprog[cur_subprog].has_ld_abs = true; 3052 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3053 goto next; 3054 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3055 goto next; 3056 if (code == (BPF_JMP32 | BPF_JA)) 3057 off = i + insn[i].imm + 1; 3058 else 3059 off = i + insn[i].off + 1; 3060 if (off < subprog_start || off >= subprog_end) { 3061 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3062 return -EINVAL; 3063 } 3064 next: 3065 if (i == subprog_end - 1) { 3066 /* to avoid fall-through from one subprog into another 3067 * the last insn of the subprog should be either exit 3068 * or unconditional jump back or bpf_throw call 3069 */ 3070 if (code != (BPF_JMP | BPF_EXIT) && 3071 code != (BPF_JMP32 | BPF_JA) && 3072 code != (BPF_JMP | BPF_JA)) { 3073 verbose(env, "last insn is not an exit or jmp\n"); 3074 return -EINVAL; 3075 } 3076 subprog_start = subprog_end; 3077 cur_subprog++; 3078 if (cur_subprog < env->subprog_cnt) 3079 subprog_end = subprog[cur_subprog + 1].start; 3080 } 3081 } 3082 return 0; 3083 } 3084 3085 /* Parentage chain of this register (or stack slot) should take care of all 3086 * issues like callee-saved registers, stack slot allocation time, etc. 3087 */ 3088 static int mark_reg_read(struct bpf_verifier_env *env, 3089 const struct bpf_reg_state *state, 3090 struct bpf_reg_state *parent, u8 flag) 3091 { 3092 bool writes = parent == state->parent; /* Observe write marks */ 3093 int cnt = 0; 3094 3095 while (parent) { 3096 /* if read wasn't screened by an earlier write ... */ 3097 if (writes && state->live & REG_LIVE_WRITTEN) 3098 break; 3099 if (parent->live & REG_LIVE_DONE) { 3100 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 3101 reg_type_str(env, parent->type), 3102 parent->var_off.value, parent->off); 3103 return -EFAULT; 3104 } 3105 /* The first condition is more likely to be true than the 3106 * second, checked it first. 3107 */ 3108 if ((parent->live & REG_LIVE_READ) == flag || 3109 parent->live & REG_LIVE_READ64) 3110 /* The parentage chain never changes and 3111 * this parent was already marked as LIVE_READ. 3112 * There is no need to keep walking the chain again and 3113 * keep re-marking all parents as LIVE_READ. 3114 * This case happens when the same register is read 3115 * multiple times without writes into it in-between. 3116 * Also, if parent has the stronger REG_LIVE_READ64 set, 3117 * then no need to set the weak REG_LIVE_READ32. 3118 */ 3119 break; 3120 /* ... then we depend on parent's value */ 3121 parent->live |= flag; 3122 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3123 if (flag == REG_LIVE_READ64) 3124 parent->live &= ~REG_LIVE_READ32; 3125 state = parent; 3126 parent = state->parent; 3127 writes = true; 3128 cnt++; 3129 } 3130 3131 if (env->longest_mark_read_walk < cnt) 3132 env->longest_mark_read_walk = cnt; 3133 return 0; 3134 } 3135 3136 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3137 { 3138 struct bpf_func_state *state = func(env, reg); 3139 int spi, ret; 3140 3141 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3142 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3143 * check_kfunc_call. 3144 */ 3145 if (reg->type == CONST_PTR_TO_DYNPTR) 3146 return 0; 3147 spi = dynptr_get_spi(env, reg); 3148 if (spi < 0) 3149 return spi; 3150 /* Caller ensures dynptr is valid and initialized, which means spi is in 3151 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3152 * read. 3153 */ 3154 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 3155 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 3156 if (ret) 3157 return ret; 3158 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 3159 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 3160 } 3161 3162 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3163 int spi, int nr_slots) 3164 { 3165 struct bpf_func_state *state = func(env, reg); 3166 int err, i; 3167 3168 for (i = 0; i < nr_slots; i++) { 3169 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3170 3171 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3172 if (err) 3173 return err; 3174 3175 mark_stack_slot_scratched(env, spi - i); 3176 } 3177 3178 return 0; 3179 } 3180 3181 /* This function is supposed to be used by the following 32-bit optimization 3182 * code only. It returns TRUE if the source or destination register operates 3183 * on 64-bit, otherwise return FALSE. 3184 */ 3185 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3186 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3187 { 3188 u8 code, class, op; 3189 3190 code = insn->code; 3191 class = BPF_CLASS(code); 3192 op = BPF_OP(code); 3193 if (class == BPF_JMP) { 3194 /* BPF_EXIT for "main" will reach here. Return TRUE 3195 * conservatively. 3196 */ 3197 if (op == BPF_EXIT) 3198 return true; 3199 if (op == BPF_CALL) { 3200 /* BPF to BPF call will reach here because of marking 3201 * caller saved clobber with DST_OP_NO_MARK for which we 3202 * don't care the register def because they are anyway 3203 * marked as NOT_INIT already. 3204 */ 3205 if (insn->src_reg == BPF_PSEUDO_CALL) 3206 return false; 3207 /* Helper call will reach here because of arg type 3208 * check, conservatively return TRUE. 3209 */ 3210 if (t == SRC_OP) 3211 return true; 3212 3213 return false; 3214 } 3215 } 3216 3217 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3218 return false; 3219 3220 if (class == BPF_ALU64 || class == BPF_JMP || 3221 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3222 return true; 3223 3224 if (class == BPF_ALU || class == BPF_JMP32) 3225 return false; 3226 3227 if (class == BPF_LDX) { 3228 if (t != SRC_OP) 3229 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3230 /* LDX source must be ptr. */ 3231 return true; 3232 } 3233 3234 if (class == BPF_STX) { 3235 /* BPF_STX (including atomic variants) has multiple source 3236 * operands, one of which is a ptr. Check whether the caller is 3237 * asking about it. 3238 */ 3239 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3240 return true; 3241 return BPF_SIZE(code) == BPF_DW; 3242 } 3243 3244 if (class == BPF_LD) { 3245 u8 mode = BPF_MODE(code); 3246 3247 /* LD_IMM64 */ 3248 if (mode == BPF_IMM) 3249 return true; 3250 3251 /* Both LD_IND and LD_ABS return 32-bit data. */ 3252 if (t != SRC_OP) 3253 return false; 3254 3255 /* Implicit ctx ptr. */ 3256 if (regno == BPF_REG_6) 3257 return true; 3258 3259 /* Explicit source could be any width. */ 3260 return true; 3261 } 3262 3263 if (class == BPF_ST) 3264 /* The only source register for BPF_ST is a ptr. */ 3265 return true; 3266 3267 /* Conservatively return true at default. */ 3268 return true; 3269 } 3270 3271 /* Return the regno defined by the insn, or -1. */ 3272 static int insn_def_regno(const struct bpf_insn *insn) 3273 { 3274 switch (BPF_CLASS(insn->code)) { 3275 case BPF_JMP: 3276 case BPF_JMP32: 3277 case BPF_ST: 3278 return -1; 3279 case BPF_STX: 3280 if ((BPF_MODE(insn->code) == BPF_ATOMIC || 3281 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) && 3282 (insn->imm & BPF_FETCH)) { 3283 if (insn->imm == BPF_CMPXCHG) 3284 return BPF_REG_0; 3285 else 3286 return insn->src_reg; 3287 } else { 3288 return -1; 3289 } 3290 default: 3291 return insn->dst_reg; 3292 } 3293 } 3294 3295 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3296 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3297 { 3298 int dst_reg = insn_def_regno(insn); 3299 3300 if (dst_reg == -1) 3301 return false; 3302 3303 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3304 } 3305 3306 static void mark_insn_zext(struct bpf_verifier_env *env, 3307 struct bpf_reg_state *reg) 3308 { 3309 s32 def_idx = reg->subreg_def; 3310 3311 if (def_idx == DEF_NOT_SUBREG) 3312 return; 3313 3314 env->insn_aux_data[def_idx - 1].zext_dst = true; 3315 /* The dst will be zero extended, so won't be sub-register anymore. */ 3316 reg->subreg_def = DEF_NOT_SUBREG; 3317 } 3318 3319 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3320 enum reg_arg_type t) 3321 { 3322 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3323 struct bpf_reg_state *reg; 3324 bool rw64; 3325 3326 if (regno >= MAX_BPF_REG) { 3327 verbose(env, "R%d is invalid\n", regno); 3328 return -EINVAL; 3329 } 3330 3331 mark_reg_scratched(env, regno); 3332 3333 reg = ®s[regno]; 3334 rw64 = is_reg64(env, insn, regno, reg, t); 3335 if (t == SRC_OP) { 3336 /* check whether register used as source operand can be read */ 3337 if (reg->type == NOT_INIT) { 3338 verbose(env, "R%d !read_ok\n", regno); 3339 return -EACCES; 3340 } 3341 /* We don't need to worry about FP liveness because it's read-only */ 3342 if (regno == BPF_REG_FP) 3343 return 0; 3344 3345 if (rw64) 3346 mark_insn_zext(env, reg); 3347 3348 return mark_reg_read(env, reg, reg->parent, 3349 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3350 } else { 3351 /* check whether register used as dest operand can be written to */ 3352 if (regno == BPF_REG_FP) { 3353 verbose(env, "frame pointer is read only\n"); 3354 return -EACCES; 3355 } 3356 reg->live |= REG_LIVE_WRITTEN; 3357 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3358 if (t == DST_OP) 3359 mark_reg_unknown(env, regs, regno); 3360 } 3361 return 0; 3362 } 3363 3364 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3365 enum reg_arg_type t) 3366 { 3367 struct bpf_verifier_state *vstate = env->cur_state; 3368 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3369 3370 return __check_reg_arg(env, state->regs, regno, t); 3371 } 3372 3373 static int insn_stack_access_flags(int frameno, int spi) 3374 { 3375 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; 3376 } 3377 3378 static int insn_stack_access_spi(int insn_flags) 3379 { 3380 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; 3381 } 3382 3383 static int insn_stack_access_frameno(int insn_flags) 3384 { 3385 return insn_flags & INSN_F_FRAMENO_MASK; 3386 } 3387 3388 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3389 { 3390 env->insn_aux_data[idx].jmp_point = true; 3391 } 3392 3393 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3394 { 3395 return env->insn_aux_data[insn_idx].jmp_point; 3396 } 3397 3398 #define LR_FRAMENO_BITS 3 3399 #define LR_SPI_BITS 6 3400 #define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1) 3401 #define LR_SIZE_BITS 4 3402 #define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1) 3403 #define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1) 3404 #define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1) 3405 #define LR_SPI_OFF LR_FRAMENO_BITS 3406 #define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS) 3407 #define LINKED_REGS_MAX 6 3408 3409 struct linked_reg { 3410 u8 frameno; 3411 union { 3412 u8 spi; 3413 u8 regno; 3414 }; 3415 bool is_reg; 3416 }; 3417 3418 struct linked_regs { 3419 int cnt; 3420 struct linked_reg entries[LINKED_REGS_MAX]; 3421 }; 3422 3423 static struct linked_reg *linked_regs_push(struct linked_regs *s) 3424 { 3425 if (s->cnt < LINKED_REGS_MAX) 3426 return &s->entries[s->cnt++]; 3427 3428 return NULL; 3429 } 3430 3431 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track 3432 * number of elements currently in stack. 3433 * Pack one history entry for linked registers as 10 bits in the following format: 3434 * - 3-bits frameno 3435 * - 6-bits spi_or_reg 3436 * - 1-bit is_reg 3437 */ 3438 static u64 linked_regs_pack(struct linked_regs *s) 3439 { 3440 u64 val = 0; 3441 int i; 3442 3443 for (i = 0; i < s->cnt; ++i) { 3444 struct linked_reg *e = &s->entries[i]; 3445 u64 tmp = 0; 3446 3447 tmp |= e->frameno; 3448 tmp |= e->spi << LR_SPI_OFF; 3449 tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF; 3450 3451 val <<= LR_ENTRY_BITS; 3452 val |= tmp; 3453 } 3454 val <<= LR_SIZE_BITS; 3455 val |= s->cnt; 3456 return val; 3457 } 3458 3459 static void linked_regs_unpack(u64 val, struct linked_regs *s) 3460 { 3461 int i; 3462 3463 s->cnt = val & LR_SIZE_MASK; 3464 val >>= LR_SIZE_BITS; 3465 3466 for (i = 0; i < s->cnt; ++i) { 3467 struct linked_reg *e = &s->entries[i]; 3468 3469 e->frameno = val & LR_FRAMENO_MASK; 3470 e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK; 3471 e->is_reg = (val >> LR_IS_REG_OFF) & 0x1; 3472 val >>= LR_ENTRY_BITS; 3473 } 3474 } 3475 3476 /* for any branch, call, exit record the history of jmps in the given state */ 3477 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, 3478 int insn_flags, u64 linked_regs) 3479 { 3480 u32 cnt = cur->jmp_history_cnt; 3481 struct bpf_jmp_history_entry *p; 3482 size_t alloc_size; 3483 3484 /* combine instruction flags if we already recorded this instruction */ 3485 if (env->cur_hist_ent) { 3486 /* atomic instructions push insn_flags twice, for READ and 3487 * WRITE sides, but they should agree on stack slot 3488 */ 3489 WARN_ONCE((env->cur_hist_ent->flags & insn_flags) && 3490 (env->cur_hist_ent->flags & insn_flags) != insn_flags, 3491 "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n", 3492 env->insn_idx, env->cur_hist_ent->flags, insn_flags); 3493 env->cur_hist_ent->flags |= insn_flags; 3494 WARN_ONCE(env->cur_hist_ent->linked_regs != 0, 3495 "verifier insn history bug: insn_idx %d linked_regs != 0: %#llx\n", 3496 env->insn_idx, env->cur_hist_ent->linked_regs); 3497 env->cur_hist_ent->linked_regs = linked_regs; 3498 return 0; 3499 } 3500 3501 cnt++; 3502 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3503 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3504 if (!p) 3505 return -ENOMEM; 3506 cur->jmp_history = p; 3507 3508 p = &cur->jmp_history[cnt - 1]; 3509 p->idx = env->insn_idx; 3510 p->prev_idx = env->prev_insn_idx; 3511 p->flags = insn_flags; 3512 p->linked_regs = linked_regs; 3513 cur->jmp_history_cnt = cnt; 3514 env->cur_hist_ent = p; 3515 3516 return 0; 3517 } 3518 3519 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st, 3520 u32 hist_end, int insn_idx) 3521 { 3522 if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx) 3523 return &st->jmp_history[hist_end - 1]; 3524 return NULL; 3525 } 3526 3527 /* Backtrack one insn at a time. If idx is not at the top of recorded 3528 * history then previous instruction came from straight line execution. 3529 * Return -ENOENT if we exhausted all instructions within given state. 3530 * 3531 * It's legal to have a bit of a looping with the same starting and ending 3532 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3533 * instruction index is the same as state's first_idx doesn't mean we are 3534 * done. If there is still some jump history left, we should keep going. We 3535 * need to take into account that we might have a jump history between given 3536 * state's parent and itself, due to checkpointing. In this case, we'll have 3537 * history entry recording a jump from last instruction of parent state and 3538 * first instruction of given state. 3539 */ 3540 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3541 u32 *history) 3542 { 3543 u32 cnt = *history; 3544 3545 if (i == st->first_insn_idx) { 3546 if (cnt == 0) 3547 return -ENOENT; 3548 if (cnt == 1 && st->jmp_history[0].idx == i) 3549 return -ENOENT; 3550 } 3551 3552 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3553 i = st->jmp_history[cnt - 1].prev_idx; 3554 (*history)--; 3555 } else { 3556 i--; 3557 } 3558 return i; 3559 } 3560 3561 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3562 { 3563 const struct btf_type *func; 3564 struct btf *desc_btf; 3565 3566 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3567 return NULL; 3568 3569 desc_btf = find_kfunc_desc_btf(data, insn->off); 3570 if (IS_ERR(desc_btf)) 3571 return "<error>"; 3572 3573 func = btf_type_by_id(desc_btf, insn->imm); 3574 return btf_name_by_offset(desc_btf, func->name_off); 3575 } 3576 3577 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3578 { 3579 bt->frame = frame; 3580 } 3581 3582 static inline void bt_reset(struct backtrack_state *bt) 3583 { 3584 struct bpf_verifier_env *env = bt->env; 3585 3586 memset(bt, 0, sizeof(*bt)); 3587 bt->env = env; 3588 } 3589 3590 static inline u32 bt_empty(struct backtrack_state *bt) 3591 { 3592 u64 mask = 0; 3593 int i; 3594 3595 for (i = 0; i <= bt->frame; i++) 3596 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3597 3598 return mask == 0; 3599 } 3600 3601 static inline int bt_subprog_enter(struct backtrack_state *bt) 3602 { 3603 if (bt->frame == MAX_CALL_FRAMES - 1) { 3604 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3605 WARN_ONCE(1, "verifier backtracking bug"); 3606 return -EFAULT; 3607 } 3608 bt->frame++; 3609 return 0; 3610 } 3611 3612 static inline int bt_subprog_exit(struct backtrack_state *bt) 3613 { 3614 if (bt->frame == 0) { 3615 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3616 WARN_ONCE(1, "verifier backtracking bug"); 3617 return -EFAULT; 3618 } 3619 bt->frame--; 3620 return 0; 3621 } 3622 3623 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3624 { 3625 bt->reg_masks[frame] |= 1 << reg; 3626 } 3627 3628 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3629 { 3630 bt->reg_masks[frame] &= ~(1 << reg); 3631 } 3632 3633 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3634 { 3635 bt_set_frame_reg(bt, bt->frame, reg); 3636 } 3637 3638 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3639 { 3640 bt_clear_frame_reg(bt, bt->frame, reg); 3641 } 3642 3643 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3644 { 3645 bt->stack_masks[frame] |= 1ull << slot; 3646 } 3647 3648 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3649 { 3650 bt->stack_masks[frame] &= ~(1ull << slot); 3651 } 3652 3653 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3654 { 3655 return bt->reg_masks[frame]; 3656 } 3657 3658 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3659 { 3660 return bt->reg_masks[bt->frame]; 3661 } 3662 3663 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3664 { 3665 return bt->stack_masks[frame]; 3666 } 3667 3668 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3669 { 3670 return bt->stack_masks[bt->frame]; 3671 } 3672 3673 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3674 { 3675 return bt->reg_masks[bt->frame] & (1 << reg); 3676 } 3677 3678 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg) 3679 { 3680 return bt->reg_masks[frame] & (1 << reg); 3681 } 3682 3683 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) 3684 { 3685 return bt->stack_masks[frame] & (1ull << slot); 3686 } 3687 3688 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3689 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3690 { 3691 DECLARE_BITMAP(mask, 64); 3692 bool first = true; 3693 int i, n; 3694 3695 buf[0] = '\0'; 3696 3697 bitmap_from_u64(mask, reg_mask); 3698 for_each_set_bit(i, mask, 32) { 3699 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3700 first = false; 3701 buf += n; 3702 buf_sz -= n; 3703 if (buf_sz < 0) 3704 break; 3705 } 3706 } 3707 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3708 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3709 { 3710 DECLARE_BITMAP(mask, 64); 3711 bool first = true; 3712 int i, n; 3713 3714 buf[0] = '\0'; 3715 3716 bitmap_from_u64(mask, stack_mask); 3717 for_each_set_bit(i, mask, 64) { 3718 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3719 first = false; 3720 buf += n; 3721 buf_sz -= n; 3722 if (buf_sz < 0) 3723 break; 3724 } 3725 } 3726 3727 /* If any register R in hist->linked_regs is marked as precise in bt, 3728 * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs. 3729 */ 3730 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist) 3731 { 3732 struct linked_regs linked_regs; 3733 bool some_precise = false; 3734 int i; 3735 3736 if (!hist || hist->linked_regs == 0) 3737 return; 3738 3739 linked_regs_unpack(hist->linked_regs, &linked_regs); 3740 for (i = 0; i < linked_regs.cnt; ++i) { 3741 struct linked_reg *e = &linked_regs.entries[i]; 3742 3743 if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) || 3744 (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) { 3745 some_precise = true; 3746 break; 3747 } 3748 } 3749 3750 if (!some_precise) 3751 return; 3752 3753 for (i = 0; i < linked_regs.cnt; ++i) { 3754 struct linked_reg *e = &linked_regs.entries[i]; 3755 3756 if (e->is_reg) 3757 bt_set_frame_reg(bt, e->frameno, e->regno); 3758 else 3759 bt_set_frame_slot(bt, e->frameno, e->spi); 3760 } 3761 } 3762 3763 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 3764 3765 /* For given verifier state backtrack_insn() is called from the last insn to 3766 * the first insn. Its purpose is to compute a bitmask of registers and 3767 * stack slots that needs precision in the parent verifier state. 3768 * 3769 * @idx is an index of the instruction we are currently processing; 3770 * @subseq_idx is an index of the subsequent instruction that: 3771 * - *would be* executed next, if jump history is viewed in forward order; 3772 * - *was* processed previously during backtracking. 3773 */ 3774 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3775 struct bpf_jmp_history_entry *hist, struct backtrack_state *bt) 3776 { 3777 const struct bpf_insn_cbs cbs = { 3778 .cb_call = disasm_kfunc_name, 3779 .cb_print = verbose, 3780 .private_data = env, 3781 }; 3782 struct bpf_insn *insn = env->prog->insnsi + idx; 3783 u8 class = BPF_CLASS(insn->code); 3784 u8 opcode = BPF_OP(insn->code); 3785 u8 mode = BPF_MODE(insn->code); 3786 u32 dreg = insn->dst_reg; 3787 u32 sreg = insn->src_reg; 3788 u32 spi, i, fr; 3789 3790 if (insn->code == 0) 3791 return 0; 3792 if (env->log.level & BPF_LOG_LEVEL2) { 3793 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3794 verbose(env, "mark_precise: frame%d: regs=%s ", 3795 bt->frame, env->tmp_str_buf); 3796 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3797 verbose(env, "stack=%s before ", env->tmp_str_buf); 3798 verbose(env, "%d: ", idx); 3799 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3800 } 3801 3802 /* If there is a history record that some registers gained range at this insn, 3803 * propagate precision marks to those registers, so that bt_is_reg_set() 3804 * accounts for these registers. 3805 */ 3806 bt_sync_linked_regs(bt, hist); 3807 3808 if (class == BPF_ALU || class == BPF_ALU64) { 3809 if (!bt_is_reg_set(bt, dreg)) 3810 return 0; 3811 if (opcode == BPF_END || opcode == BPF_NEG) { 3812 /* sreg is reserved and unused 3813 * dreg still need precision before this insn 3814 */ 3815 return 0; 3816 } else if (opcode == BPF_MOV) { 3817 if (BPF_SRC(insn->code) == BPF_X) { 3818 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3819 * dreg needs precision after this insn 3820 * sreg needs precision before this insn 3821 */ 3822 bt_clear_reg(bt, dreg); 3823 if (sreg != BPF_REG_FP) 3824 bt_set_reg(bt, sreg); 3825 } else { 3826 /* dreg = K 3827 * dreg needs precision after this insn. 3828 * Corresponding register is already marked 3829 * as precise=true in this verifier state. 3830 * No further markings in parent are necessary 3831 */ 3832 bt_clear_reg(bt, dreg); 3833 } 3834 } else { 3835 if (BPF_SRC(insn->code) == BPF_X) { 3836 /* dreg += sreg 3837 * both dreg and sreg need precision 3838 * before this insn 3839 */ 3840 if (sreg != BPF_REG_FP) 3841 bt_set_reg(bt, sreg); 3842 } /* else dreg += K 3843 * dreg still needs precision before this insn 3844 */ 3845 } 3846 } else if (class == BPF_LDX) { 3847 if (!bt_is_reg_set(bt, dreg)) 3848 return 0; 3849 bt_clear_reg(bt, dreg); 3850 3851 /* scalars can only be spilled into stack w/o losing precision. 3852 * Load from any other memory can be zero extended. 3853 * The desire to keep that precision is already indicated 3854 * by 'precise' mark in corresponding register of this state. 3855 * No further tracking necessary. 3856 */ 3857 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 3858 return 0; 3859 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3860 * that [fp - off] slot contains scalar that needs to be 3861 * tracked with precision 3862 */ 3863 spi = insn_stack_access_spi(hist->flags); 3864 fr = insn_stack_access_frameno(hist->flags); 3865 bt_set_frame_slot(bt, fr, spi); 3866 } else if (class == BPF_STX || class == BPF_ST) { 3867 if (bt_is_reg_set(bt, dreg)) 3868 /* stx & st shouldn't be using _scalar_ dst_reg 3869 * to access memory. It means backtracking 3870 * encountered a case of pointer subtraction. 3871 */ 3872 return -ENOTSUPP; 3873 /* scalars can only be spilled into stack */ 3874 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 3875 return 0; 3876 spi = insn_stack_access_spi(hist->flags); 3877 fr = insn_stack_access_frameno(hist->flags); 3878 if (!bt_is_frame_slot_set(bt, fr, spi)) 3879 return 0; 3880 bt_clear_frame_slot(bt, fr, spi); 3881 if (class == BPF_STX) 3882 bt_set_reg(bt, sreg); 3883 } else if (class == BPF_JMP || class == BPF_JMP32) { 3884 if (bpf_pseudo_call(insn)) { 3885 int subprog_insn_idx, subprog; 3886 3887 subprog_insn_idx = idx + insn->imm + 1; 3888 subprog = find_subprog(env, subprog_insn_idx); 3889 if (subprog < 0) 3890 return -EFAULT; 3891 3892 if (subprog_is_global(env, subprog)) { 3893 /* check that jump history doesn't have any 3894 * extra instructions from subprog; the next 3895 * instruction after call to global subprog 3896 * should be literally next instruction in 3897 * caller program 3898 */ 3899 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3900 /* r1-r5 are invalidated after subprog call, 3901 * so for global func call it shouldn't be set 3902 * anymore 3903 */ 3904 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3905 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3906 WARN_ONCE(1, "verifier backtracking bug"); 3907 return -EFAULT; 3908 } 3909 /* global subprog always sets R0 */ 3910 bt_clear_reg(bt, BPF_REG_0); 3911 return 0; 3912 } else { 3913 /* static subprog call instruction, which 3914 * means that we are exiting current subprog, 3915 * so only r1-r5 could be still requested as 3916 * precise, r0 and r6-r10 or any stack slot in 3917 * the current frame should be zero by now 3918 */ 3919 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3920 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3921 WARN_ONCE(1, "verifier backtracking bug"); 3922 return -EFAULT; 3923 } 3924 /* we are now tracking register spills correctly, 3925 * so any instance of leftover slots is a bug 3926 */ 3927 if (bt_stack_mask(bt) != 0) { 3928 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 3929 WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)"); 3930 return -EFAULT; 3931 } 3932 /* propagate r1-r5 to the caller */ 3933 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3934 if (bt_is_reg_set(bt, i)) { 3935 bt_clear_reg(bt, i); 3936 bt_set_frame_reg(bt, bt->frame - 1, i); 3937 } 3938 } 3939 if (bt_subprog_exit(bt)) 3940 return -EFAULT; 3941 return 0; 3942 } 3943 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 3944 /* exit from callback subprog to callback-calling helper or 3945 * kfunc call. Use idx/subseq_idx check to discern it from 3946 * straight line code backtracking. 3947 * Unlike the subprog call handling above, we shouldn't 3948 * propagate precision of r1-r5 (if any requested), as they are 3949 * not actually arguments passed directly to callback subprogs 3950 */ 3951 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3952 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3953 WARN_ONCE(1, "verifier backtracking bug"); 3954 return -EFAULT; 3955 } 3956 if (bt_stack_mask(bt) != 0) { 3957 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 3958 WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)"); 3959 return -EFAULT; 3960 } 3961 /* clear r1-r5 in callback subprog's mask */ 3962 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3963 bt_clear_reg(bt, i); 3964 if (bt_subprog_exit(bt)) 3965 return -EFAULT; 3966 return 0; 3967 } else if (opcode == BPF_CALL) { 3968 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3969 * catch this error later. Make backtracking conservative 3970 * with ENOTSUPP. 3971 */ 3972 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3973 return -ENOTSUPP; 3974 /* regular helper call sets R0 */ 3975 bt_clear_reg(bt, BPF_REG_0); 3976 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3977 /* if backtracing was looking for registers R1-R5 3978 * they should have been found already. 3979 */ 3980 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3981 WARN_ONCE(1, "verifier backtracking bug"); 3982 return -EFAULT; 3983 } 3984 } else if (opcode == BPF_EXIT) { 3985 bool r0_precise; 3986 3987 /* Backtracking to a nested function call, 'idx' is a part of 3988 * the inner frame 'subseq_idx' is a part of the outer frame. 3989 * In case of a regular function call, instructions giving 3990 * precision to registers R1-R5 should have been found already. 3991 * In case of a callback, it is ok to have R1-R5 marked for 3992 * backtracking, as these registers are set by the function 3993 * invoking callback. 3994 */ 3995 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 3996 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3997 bt_clear_reg(bt, i); 3998 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3999 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4000 WARN_ONCE(1, "verifier backtracking bug"); 4001 return -EFAULT; 4002 } 4003 4004 /* BPF_EXIT in subprog or callback always returns 4005 * right after the call instruction, so by checking 4006 * whether the instruction at subseq_idx-1 is subprog 4007 * call or not we can distinguish actual exit from 4008 * *subprog* from exit from *callback*. In the former 4009 * case, we need to propagate r0 precision, if 4010 * necessary. In the former we never do that. 4011 */ 4012 r0_precise = subseq_idx - 1 >= 0 && 4013 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 4014 bt_is_reg_set(bt, BPF_REG_0); 4015 4016 bt_clear_reg(bt, BPF_REG_0); 4017 if (bt_subprog_enter(bt)) 4018 return -EFAULT; 4019 4020 if (r0_precise) 4021 bt_set_reg(bt, BPF_REG_0); 4022 /* r6-r9 and stack slots will stay set in caller frame 4023 * bitmasks until we return back from callee(s) 4024 */ 4025 return 0; 4026 } else if (BPF_SRC(insn->code) == BPF_X) { 4027 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 4028 return 0; 4029 /* dreg <cond> sreg 4030 * Both dreg and sreg need precision before 4031 * this insn. If only sreg was marked precise 4032 * before it would be equally necessary to 4033 * propagate it to dreg. 4034 */ 4035 bt_set_reg(bt, dreg); 4036 bt_set_reg(bt, sreg); 4037 } else if (BPF_SRC(insn->code) == BPF_K) { 4038 /* dreg <cond> K 4039 * Only dreg still needs precision before 4040 * this insn, so for the K-based conditional 4041 * there is nothing new to be marked. 4042 */ 4043 } 4044 } else if (class == BPF_LD) { 4045 if (!bt_is_reg_set(bt, dreg)) 4046 return 0; 4047 bt_clear_reg(bt, dreg); 4048 /* It's ld_imm64 or ld_abs or ld_ind. 4049 * For ld_imm64 no further tracking of precision 4050 * into parent is necessary 4051 */ 4052 if (mode == BPF_IND || mode == BPF_ABS) 4053 /* to be analyzed */ 4054 return -ENOTSUPP; 4055 } 4056 /* Propagate precision marks to linked registers, to account for 4057 * registers marked as precise in this function. 4058 */ 4059 bt_sync_linked_regs(bt, hist); 4060 return 0; 4061 } 4062 4063 /* the scalar precision tracking algorithm: 4064 * . at the start all registers have precise=false. 4065 * . scalar ranges are tracked as normal through alu and jmp insns. 4066 * . once precise value of the scalar register is used in: 4067 * . ptr + scalar alu 4068 * . if (scalar cond K|scalar) 4069 * . helper_call(.., scalar, ...) where ARG_CONST is expected 4070 * backtrack through the verifier states and mark all registers and 4071 * stack slots with spilled constants that these scalar regisers 4072 * should be precise. 4073 * . during state pruning two registers (or spilled stack slots) 4074 * are equivalent if both are not precise. 4075 * 4076 * Note the verifier cannot simply walk register parentage chain, 4077 * since many different registers and stack slots could have been 4078 * used to compute single precise scalar. 4079 * 4080 * The approach of starting with precise=true for all registers and then 4081 * backtrack to mark a register as not precise when the verifier detects 4082 * that program doesn't care about specific value (e.g., when helper 4083 * takes register as ARG_ANYTHING parameter) is not safe. 4084 * 4085 * It's ok to walk single parentage chain of the verifier states. 4086 * It's possible that this backtracking will go all the way till 1st insn. 4087 * All other branches will be explored for needing precision later. 4088 * 4089 * The backtracking needs to deal with cases like: 4090 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 4091 * r9 -= r8 4092 * r5 = r9 4093 * if r5 > 0x79f goto pc+7 4094 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 4095 * r5 += 1 4096 * ... 4097 * call bpf_perf_event_output#25 4098 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 4099 * 4100 * and this case: 4101 * r6 = 1 4102 * call foo // uses callee's r6 inside to compute r0 4103 * r0 += r6 4104 * if r0 == 0 goto 4105 * 4106 * to track above reg_mask/stack_mask needs to be independent for each frame. 4107 * 4108 * Also if parent's curframe > frame where backtracking started, 4109 * the verifier need to mark registers in both frames, otherwise callees 4110 * may incorrectly prune callers. This is similar to 4111 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 4112 * 4113 * For now backtracking falls back into conservative marking. 4114 */ 4115 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 4116 struct bpf_verifier_state *st) 4117 { 4118 struct bpf_func_state *func; 4119 struct bpf_reg_state *reg; 4120 int i, j; 4121 4122 if (env->log.level & BPF_LOG_LEVEL2) { 4123 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 4124 st->curframe); 4125 } 4126 4127 /* big hammer: mark all scalars precise in this path. 4128 * pop_stack may still get !precise scalars. 4129 * We also skip current state and go straight to first parent state, 4130 * because precision markings in current non-checkpointed state are 4131 * not needed. See why in the comment in __mark_chain_precision below. 4132 */ 4133 for (st = st->parent; st; st = st->parent) { 4134 for (i = 0; i <= st->curframe; i++) { 4135 func = st->frame[i]; 4136 for (j = 0; j < BPF_REG_FP; j++) { 4137 reg = &func->regs[j]; 4138 if (reg->type != SCALAR_VALUE || reg->precise) 4139 continue; 4140 reg->precise = true; 4141 if (env->log.level & BPF_LOG_LEVEL2) { 4142 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 4143 i, j); 4144 } 4145 } 4146 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4147 if (!is_spilled_reg(&func->stack[j])) 4148 continue; 4149 reg = &func->stack[j].spilled_ptr; 4150 if (reg->type != SCALAR_VALUE || reg->precise) 4151 continue; 4152 reg->precise = true; 4153 if (env->log.level & BPF_LOG_LEVEL2) { 4154 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4155 i, -(j + 1) * 8); 4156 } 4157 } 4158 } 4159 } 4160 } 4161 4162 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4163 { 4164 struct bpf_func_state *func; 4165 struct bpf_reg_state *reg; 4166 int i, j; 4167 4168 for (i = 0; i <= st->curframe; i++) { 4169 func = st->frame[i]; 4170 for (j = 0; j < BPF_REG_FP; j++) { 4171 reg = &func->regs[j]; 4172 if (reg->type != SCALAR_VALUE) 4173 continue; 4174 reg->precise = false; 4175 } 4176 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4177 if (!is_spilled_reg(&func->stack[j])) 4178 continue; 4179 reg = &func->stack[j].spilled_ptr; 4180 if (reg->type != SCALAR_VALUE) 4181 continue; 4182 reg->precise = false; 4183 } 4184 } 4185 } 4186 4187 /* 4188 * __mark_chain_precision() backtracks BPF program instruction sequence and 4189 * chain of verifier states making sure that register *regno* (if regno >= 0) 4190 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4191 * SCALARS, as well as any other registers and slots that contribute to 4192 * a tracked state of given registers/stack slots, depending on specific BPF 4193 * assembly instructions (see backtrack_insns() for exact instruction handling 4194 * logic). This backtracking relies on recorded jmp_history and is able to 4195 * traverse entire chain of parent states. This process ends only when all the 4196 * necessary registers/slots and their transitive dependencies are marked as 4197 * precise. 4198 * 4199 * One important and subtle aspect is that precise marks *do not matter* in 4200 * the currently verified state (current state). It is important to understand 4201 * why this is the case. 4202 * 4203 * First, note that current state is the state that is not yet "checkpointed", 4204 * i.e., it is not yet put into env->explored_states, and it has no children 4205 * states as well. It's ephemeral, and can end up either a) being discarded if 4206 * compatible explored state is found at some point or BPF_EXIT instruction is 4207 * reached or b) checkpointed and put into env->explored_states, branching out 4208 * into one or more children states. 4209 * 4210 * In the former case, precise markings in current state are completely 4211 * ignored by state comparison code (see regsafe() for details). Only 4212 * checkpointed ("old") state precise markings are important, and if old 4213 * state's register/slot is precise, regsafe() assumes current state's 4214 * register/slot as precise and checks value ranges exactly and precisely. If 4215 * states turn out to be compatible, current state's necessary precise 4216 * markings and any required parent states' precise markings are enforced 4217 * after the fact with propagate_precision() logic, after the fact. But it's 4218 * important to realize that in this case, even after marking current state 4219 * registers/slots as precise, we immediately discard current state. So what 4220 * actually matters is any of the precise markings propagated into current 4221 * state's parent states, which are always checkpointed (due to b) case above). 4222 * As such, for scenario a) it doesn't matter if current state has precise 4223 * markings set or not. 4224 * 4225 * Now, for the scenario b), checkpointing and forking into child(ren) 4226 * state(s). Note that before current state gets to checkpointing step, any 4227 * processed instruction always assumes precise SCALAR register/slot 4228 * knowledge: if precise value or range is useful to prune jump branch, BPF 4229 * verifier takes this opportunity enthusiastically. Similarly, when 4230 * register's value is used to calculate offset or memory address, exact 4231 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4232 * what we mentioned above about state comparison ignoring precise markings 4233 * during state comparison, BPF verifier ignores and also assumes precise 4234 * markings *at will* during instruction verification process. But as verifier 4235 * assumes precision, it also propagates any precision dependencies across 4236 * parent states, which are not yet finalized, so can be further restricted 4237 * based on new knowledge gained from restrictions enforced by their children 4238 * states. This is so that once those parent states are finalized, i.e., when 4239 * they have no more active children state, state comparison logic in 4240 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4241 * required for correctness. 4242 * 4243 * To build a bit more intuition, note also that once a state is checkpointed, 4244 * the path we took to get to that state is not important. This is crucial 4245 * property for state pruning. When state is checkpointed and finalized at 4246 * some instruction index, it can be correctly and safely used to "short 4247 * circuit" any *compatible* state that reaches exactly the same instruction 4248 * index. I.e., if we jumped to that instruction from a completely different 4249 * code path than original finalized state was derived from, it doesn't 4250 * matter, current state can be discarded because from that instruction 4251 * forward having a compatible state will ensure we will safely reach the 4252 * exit. States describe preconditions for further exploration, but completely 4253 * forget the history of how we got here. 4254 * 4255 * This also means that even if we needed precise SCALAR range to get to 4256 * finalized state, but from that point forward *that same* SCALAR register is 4257 * never used in a precise context (i.e., it's precise value is not needed for 4258 * correctness), it's correct and safe to mark such register as "imprecise" 4259 * (i.e., precise marking set to false). This is what we rely on when we do 4260 * not set precise marking in current state. If no child state requires 4261 * precision for any given SCALAR register, it's safe to dictate that it can 4262 * be imprecise. If any child state does require this register to be precise, 4263 * we'll mark it precise later retroactively during precise markings 4264 * propagation from child state to parent states. 4265 * 4266 * Skipping precise marking setting in current state is a mild version of 4267 * relying on the above observation. But we can utilize this property even 4268 * more aggressively by proactively forgetting any precise marking in the 4269 * current state (which we inherited from the parent state), right before we 4270 * checkpoint it and branch off into new child state. This is done by 4271 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4272 * finalized states which help in short circuiting more future states. 4273 */ 4274 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4275 { 4276 struct backtrack_state *bt = &env->bt; 4277 struct bpf_verifier_state *st = env->cur_state; 4278 int first_idx = st->first_insn_idx; 4279 int last_idx = env->insn_idx; 4280 int subseq_idx = -1; 4281 struct bpf_func_state *func; 4282 struct bpf_reg_state *reg; 4283 bool skip_first = true; 4284 int i, fr, err; 4285 4286 if (!env->bpf_capable) 4287 return 0; 4288 4289 /* set frame number from which we are starting to backtrack */ 4290 bt_init(bt, env->cur_state->curframe); 4291 4292 /* Do sanity checks against current state of register and/or stack 4293 * slot, but don't set precise flag in current state, as precision 4294 * tracking in the current state is unnecessary. 4295 */ 4296 func = st->frame[bt->frame]; 4297 if (regno >= 0) { 4298 reg = &func->regs[regno]; 4299 if (reg->type != SCALAR_VALUE) { 4300 WARN_ONCE(1, "backtracing misuse"); 4301 return -EFAULT; 4302 } 4303 bt_set_reg(bt, regno); 4304 } 4305 4306 if (bt_empty(bt)) 4307 return 0; 4308 4309 for (;;) { 4310 DECLARE_BITMAP(mask, 64); 4311 u32 history = st->jmp_history_cnt; 4312 struct bpf_jmp_history_entry *hist; 4313 4314 if (env->log.level & BPF_LOG_LEVEL2) { 4315 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4316 bt->frame, last_idx, first_idx, subseq_idx); 4317 } 4318 4319 if (last_idx < 0) { 4320 /* we are at the entry into subprog, which 4321 * is expected for global funcs, but only if 4322 * requested precise registers are R1-R5 4323 * (which are global func's input arguments) 4324 */ 4325 if (st->curframe == 0 && 4326 st->frame[0]->subprogno > 0 && 4327 st->frame[0]->callsite == BPF_MAIN_FUNC && 4328 bt_stack_mask(bt) == 0 && 4329 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4330 bitmap_from_u64(mask, bt_reg_mask(bt)); 4331 for_each_set_bit(i, mask, 32) { 4332 reg = &st->frame[0]->regs[i]; 4333 bt_clear_reg(bt, i); 4334 if (reg->type == SCALAR_VALUE) 4335 reg->precise = true; 4336 } 4337 return 0; 4338 } 4339 4340 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4341 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4342 WARN_ONCE(1, "verifier backtracking bug"); 4343 return -EFAULT; 4344 } 4345 4346 for (i = last_idx;;) { 4347 if (skip_first) { 4348 err = 0; 4349 skip_first = false; 4350 } else { 4351 hist = get_jmp_hist_entry(st, history, i); 4352 err = backtrack_insn(env, i, subseq_idx, hist, bt); 4353 } 4354 if (err == -ENOTSUPP) { 4355 mark_all_scalars_precise(env, env->cur_state); 4356 bt_reset(bt); 4357 return 0; 4358 } else if (err) { 4359 return err; 4360 } 4361 if (bt_empty(bt)) 4362 /* Found assignment(s) into tracked register in this state. 4363 * Since this state is already marked, just return. 4364 * Nothing to be tracked further in the parent state. 4365 */ 4366 return 0; 4367 subseq_idx = i; 4368 i = get_prev_insn_idx(st, i, &history); 4369 if (i == -ENOENT) 4370 break; 4371 if (i >= env->prog->len) { 4372 /* This can happen if backtracking reached insn 0 4373 * and there are still reg_mask or stack_mask 4374 * to backtrack. 4375 * It means the backtracking missed the spot where 4376 * particular register was initialized with a constant. 4377 */ 4378 verbose(env, "BUG backtracking idx %d\n", i); 4379 WARN_ONCE(1, "verifier backtracking bug"); 4380 return -EFAULT; 4381 } 4382 } 4383 st = st->parent; 4384 if (!st) 4385 break; 4386 4387 for (fr = bt->frame; fr >= 0; fr--) { 4388 func = st->frame[fr]; 4389 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4390 for_each_set_bit(i, mask, 32) { 4391 reg = &func->regs[i]; 4392 if (reg->type != SCALAR_VALUE) { 4393 bt_clear_frame_reg(bt, fr, i); 4394 continue; 4395 } 4396 if (reg->precise) 4397 bt_clear_frame_reg(bt, fr, i); 4398 else 4399 reg->precise = true; 4400 } 4401 4402 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4403 for_each_set_bit(i, mask, 64) { 4404 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4405 verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n", 4406 i, func->allocated_stack / BPF_REG_SIZE); 4407 WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)"); 4408 return -EFAULT; 4409 } 4410 4411 if (!is_spilled_scalar_reg(&func->stack[i])) { 4412 bt_clear_frame_slot(bt, fr, i); 4413 continue; 4414 } 4415 reg = &func->stack[i].spilled_ptr; 4416 if (reg->precise) 4417 bt_clear_frame_slot(bt, fr, i); 4418 else 4419 reg->precise = true; 4420 } 4421 if (env->log.level & BPF_LOG_LEVEL2) { 4422 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4423 bt_frame_reg_mask(bt, fr)); 4424 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4425 fr, env->tmp_str_buf); 4426 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4427 bt_frame_stack_mask(bt, fr)); 4428 verbose(env, "stack=%s: ", env->tmp_str_buf); 4429 print_verifier_state(env, func, true); 4430 } 4431 } 4432 4433 if (bt_empty(bt)) 4434 return 0; 4435 4436 subseq_idx = first_idx; 4437 last_idx = st->last_insn_idx; 4438 first_idx = st->first_insn_idx; 4439 } 4440 4441 /* if we still have requested precise regs or slots, we missed 4442 * something (e.g., stack access through non-r10 register), so 4443 * fallback to marking all precise 4444 */ 4445 if (!bt_empty(bt)) { 4446 mark_all_scalars_precise(env, env->cur_state); 4447 bt_reset(bt); 4448 } 4449 4450 return 0; 4451 } 4452 4453 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4454 { 4455 return __mark_chain_precision(env, regno); 4456 } 4457 4458 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4459 * desired reg and stack masks across all relevant frames 4460 */ 4461 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4462 { 4463 return __mark_chain_precision(env, -1); 4464 } 4465 4466 static bool is_spillable_regtype(enum bpf_reg_type type) 4467 { 4468 switch (base_type(type)) { 4469 case PTR_TO_MAP_VALUE: 4470 case PTR_TO_STACK: 4471 case PTR_TO_CTX: 4472 case PTR_TO_PACKET: 4473 case PTR_TO_PACKET_META: 4474 case PTR_TO_PACKET_END: 4475 case PTR_TO_FLOW_KEYS: 4476 case CONST_PTR_TO_MAP: 4477 case PTR_TO_SOCKET: 4478 case PTR_TO_SOCK_COMMON: 4479 case PTR_TO_TCP_SOCK: 4480 case PTR_TO_XDP_SOCK: 4481 case PTR_TO_BTF_ID: 4482 case PTR_TO_BUF: 4483 case PTR_TO_MEM: 4484 case PTR_TO_FUNC: 4485 case PTR_TO_MAP_KEY: 4486 case PTR_TO_ARENA: 4487 return true; 4488 default: 4489 return false; 4490 } 4491 } 4492 4493 /* Does this register contain a constant zero? */ 4494 static bool register_is_null(struct bpf_reg_state *reg) 4495 { 4496 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4497 } 4498 4499 /* check if register is a constant scalar value */ 4500 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 4501 { 4502 return reg->type == SCALAR_VALUE && 4503 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 4504 } 4505 4506 /* assuming is_reg_const() is true, return constant value of a register */ 4507 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 4508 { 4509 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 4510 } 4511 4512 static bool __is_pointer_value(bool allow_ptr_leaks, 4513 const struct bpf_reg_state *reg) 4514 { 4515 if (allow_ptr_leaks) 4516 return false; 4517 4518 return reg->type != SCALAR_VALUE; 4519 } 4520 4521 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, 4522 struct bpf_reg_state *src_reg) 4523 { 4524 if (src_reg->type != SCALAR_VALUE) 4525 return; 4526 4527 if (src_reg->id & BPF_ADD_CONST) { 4528 /* 4529 * The verifier is processing rX = rY insn and 4530 * rY->id has special linked register already. 4531 * Cleared it, since multiple rX += const are not supported. 4532 */ 4533 src_reg->id = 0; 4534 src_reg->off = 0; 4535 } 4536 4537 if (!src_reg->id && !tnum_is_const(src_reg->var_off)) 4538 /* Ensure that src_reg has a valid ID that will be copied to 4539 * dst_reg and then will be used by sync_linked_regs() to 4540 * propagate min/max range. 4541 */ 4542 src_reg->id = ++env->id_gen; 4543 } 4544 4545 /* Copy src state preserving dst->parent and dst->live fields */ 4546 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4547 { 4548 struct bpf_reg_state *parent = dst->parent; 4549 enum bpf_reg_liveness live = dst->live; 4550 4551 *dst = *src; 4552 dst->parent = parent; 4553 dst->live = live; 4554 } 4555 4556 static void save_register_state(struct bpf_verifier_env *env, 4557 struct bpf_func_state *state, 4558 int spi, struct bpf_reg_state *reg, 4559 int size) 4560 { 4561 int i; 4562 4563 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4564 if (size == BPF_REG_SIZE) 4565 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4566 4567 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4568 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4569 4570 /* size < 8 bytes spill */ 4571 for (; i; i--) 4572 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); 4573 } 4574 4575 static bool is_bpf_st_mem(struct bpf_insn *insn) 4576 { 4577 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4578 } 4579 4580 static int get_reg_width(struct bpf_reg_state *reg) 4581 { 4582 return fls64(reg->umax_value); 4583 } 4584 4585 /* See comment for mark_fastcall_pattern_for_call() */ 4586 static void check_fastcall_stack_contract(struct bpf_verifier_env *env, 4587 struct bpf_func_state *state, int insn_idx, int off) 4588 { 4589 struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno]; 4590 struct bpf_insn_aux_data *aux = env->insn_aux_data; 4591 int i; 4592 4593 if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern) 4594 return; 4595 /* access to the region [max_stack_depth .. fastcall_stack_off) 4596 * from something that is not a part of the fastcall pattern, 4597 * disable fastcall rewrites for current subprogram by setting 4598 * fastcall_stack_off to a value smaller than any possible offset. 4599 */ 4600 subprog->fastcall_stack_off = S16_MIN; 4601 /* reset fastcall aux flags within subprogram, 4602 * happens at most once per subprogram 4603 */ 4604 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 4605 aux[i].fastcall_spills_num = 0; 4606 aux[i].fastcall_pattern = 0; 4607 } 4608 } 4609 4610 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4611 * stack boundary and alignment are checked in check_mem_access() 4612 */ 4613 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4614 /* stack frame we're writing to */ 4615 struct bpf_func_state *state, 4616 int off, int size, int value_regno, 4617 int insn_idx) 4618 { 4619 struct bpf_func_state *cur; /* state of the current function */ 4620 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4621 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4622 struct bpf_reg_state *reg = NULL; 4623 int insn_flags = insn_stack_access_flags(state->frameno, spi); 4624 4625 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4626 * so it's aligned access and [off, off + size) are within stack limits 4627 */ 4628 if (!env->allow_ptr_leaks && 4629 is_spilled_reg(&state->stack[spi]) && 4630 size != BPF_REG_SIZE) { 4631 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4632 return -EACCES; 4633 } 4634 4635 cur = env->cur_state->frame[env->cur_state->curframe]; 4636 if (value_regno >= 0) 4637 reg = &cur->regs[value_regno]; 4638 if (!env->bypass_spec_v4) { 4639 bool sanitize = reg && is_spillable_regtype(reg->type); 4640 4641 for (i = 0; i < size; i++) { 4642 u8 type = state->stack[spi].slot_type[i]; 4643 4644 if (type != STACK_MISC && type != STACK_ZERO) { 4645 sanitize = true; 4646 break; 4647 } 4648 } 4649 4650 if (sanitize) 4651 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4652 } 4653 4654 err = destroy_if_dynptr_stack_slot(env, state, spi); 4655 if (err) 4656 return err; 4657 4658 check_fastcall_stack_contract(env, state, insn_idx, off); 4659 mark_stack_slot_scratched(env, spi); 4660 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { 4661 bool reg_value_fits; 4662 4663 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; 4664 /* Make sure that reg had an ID to build a relation on spill. */ 4665 if (reg_value_fits) 4666 assign_scalar_id_before_mov(env, reg); 4667 save_register_state(env, state, spi, reg, size); 4668 /* Break the relation on a narrowing spill. */ 4669 if (!reg_value_fits) 4670 state->stack[spi].spilled_ptr.id = 0; 4671 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4672 env->bpf_capable) { 4673 struct bpf_reg_state *tmp_reg = &env->fake_reg[0]; 4674 4675 memset(tmp_reg, 0, sizeof(*tmp_reg)); 4676 __mark_reg_known(tmp_reg, insn->imm); 4677 tmp_reg->type = SCALAR_VALUE; 4678 save_register_state(env, state, spi, tmp_reg, size); 4679 } else if (reg && is_spillable_regtype(reg->type)) { 4680 /* register containing pointer is being spilled into stack */ 4681 if (size != BPF_REG_SIZE) { 4682 verbose_linfo(env, insn_idx, "; "); 4683 verbose(env, "invalid size of register spill\n"); 4684 return -EACCES; 4685 } 4686 if (state != cur && reg->type == PTR_TO_STACK) { 4687 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4688 return -EINVAL; 4689 } 4690 save_register_state(env, state, spi, reg, size); 4691 } else { 4692 u8 type = STACK_MISC; 4693 4694 /* regular write of data into stack destroys any spilled ptr */ 4695 state->stack[spi].spilled_ptr.type = NOT_INIT; 4696 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4697 if (is_stack_slot_special(&state->stack[spi])) 4698 for (i = 0; i < BPF_REG_SIZE; i++) 4699 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4700 4701 /* only mark the slot as written if all 8 bytes were written 4702 * otherwise read propagation may incorrectly stop too soon 4703 * when stack slots are partially written. 4704 * This heuristic means that read propagation will be 4705 * conservative, since it will add reg_live_read marks 4706 * to stack slots all the way to first state when programs 4707 * writes+reads less than 8 bytes 4708 */ 4709 if (size == BPF_REG_SIZE) 4710 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4711 4712 /* when we zero initialize stack slots mark them as such */ 4713 if ((reg && register_is_null(reg)) || 4714 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4715 /* STACK_ZERO case happened because register spill 4716 * wasn't properly aligned at the stack slot boundary, 4717 * so it's not a register spill anymore; force 4718 * originating register to be precise to make 4719 * STACK_ZERO correct for subsequent states 4720 */ 4721 err = mark_chain_precision(env, value_regno); 4722 if (err) 4723 return err; 4724 type = STACK_ZERO; 4725 } 4726 4727 /* Mark slots affected by this stack write. */ 4728 for (i = 0; i < size; i++) 4729 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 4730 insn_flags = 0; /* not a register spill */ 4731 } 4732 4733 if (insn_flags) 4734 return push_jmp_history(env, env->cur_state, insn_flags, 0); 4735 return 0; 4736 } 4737 4738 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4739 * known to contain a variable offset. 4740 * This function checks whether the write is permitted and conservatively 4741 * tracks the effects of the write, considering that each stack slot in the 4742 * dynamic range is potentially written to. 4743 * 4744 * 'off' includes 'regno->off'. 4745 * 'value_regno' can be -1, meaning that an unknown value is being written to 4746 * the stack. 4747 * 4748 * Spilled pointers in range are not marked as written because we don't know 4749 * what's going to be actually written. This means that read propagation for 4750 * future reads cannot be terminated by this write. 4751 * 4752 * For privileged programs, uninitialized stack slots are considered 4753 * initialized by this write (even though we don't know exactly what offsets 4754 * are going to be written to). The idea is that we don't want the verifier to 4755 * reject future reads that access slots written to through variable offsets. 4756 */ 4757 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4758 /* func where register points to */ 4759 struct bpf_func_state *state, 4760 int ptr_regno, int off, int size, 4761 int value_regno, int insn_idx) 4762 { 4763 struct bpf_func_state *cur; /* state of the current function */ 4764 int min_off, max_off; 4765 int i, err; 4766 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4767 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4768 bool writing_zero = false; 4769 /* set if the fact that we're writing a zero is used to let any 4770 * stack slots remain STACK_ZERO 4771 */ 4772 bool zero_used = false; 4773 4774 cur = env->cur_state->frame[env->cur_state->curframe]; 4775 ptr_reg = &cur->regs[ptr_regno]; 4776 min_off = ptr_reg->smin_value + off; 4777 max_off = ptr_reg->smax_value + off + size; 4778 if (value_regno >= 0) 4779 value_reg = &cur->regs[value_regno]; 4780 if ((value_reg && register_is_null(value_reg)) || 4781 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4782 writing_zero = true; 4783 4784 for (i = min_off; i < max_off; i++) { 4785 int spi; 4786 4787 spi = __get_spi(i); 4788 err = destroy_if_dynptr_stack_slot(env, state, spi); 4789 if (err) 4790 return err; 4791 } 4792 4793 check_fastcall_stack_contract(env, state, insn_idx, min_off); 4794 /* Variable offset writes destroy any spilled pointers in range. */ 4795 for (i = min_off; i < max_off; i++) { 4796 u8 new_type, *stype; 4797 int slot, spi; 4798 4799 slot = -i - 1; 4800 spi = slot / BPF_REG_SIZE; 4801 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4802 mark_stack_slot_scratched(env, spi); 4803 4804 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4805 /* Reject the write if range we may write to has not 4806 * been initialized beforehand. If we didn't reject 4807 * here, the ptr status would be erased below (even 4808 * though not all slots are actually overwritten), 4809 * possibly opening the door to leaks. 4810 * 4811 * We do however catch STACK_INVALID case below, and 4812 * only allow reading possibly uninitialized memory 4813 * later for CAP_PERFMON, as the write may not happen to 4814 * that slot. 4815 */ 4816 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4817 insn_idx, i); 4818 return -EINVAL; 4819 } 4820 4821 /* If writing_zero and the spi slot contains a spill of value 0, 4822 * maintain the spill type. 4823 */ 4824 if (writing_zero && *stype == STACK_SPILL && 4825 is_spilled_scalar_reg(&state->stack[spi])) { 4826 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; 4827 4828 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { 4829 zero_used = true; 4830 continue; 4831 } 4832 } 4833 4834 /* Erase all other spilled pointers. */ 4835 state->stack[spi].spilled_ptr.type = NOT_INIT; 4836 4837 /* Update the slot type. */ 4838 new_type = STACK_MISC; 4839 if (writing_zero && *stype == STACK_ZERO) { 4840 new_type = STACK_ZERO; 4841 zero_used = true; 4842 } 4843 /* If the slot is STACK_INVALID, we check whether it's OK to 4844 * pretend that it will be initialized by this write. The slot 4845 * might not actually be written to, and so if we mark it as 4846 * initialized future reads might leak uninitialized memory. 4847 * For privileged programs, we will accept such reads to slots 4848 * that may or may not be written because, if we're reject 4849 * them, the error would be too confusing. 4850 */ 4851 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4852 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4853 insn_idx, i); 4854 return -EINVAL; 4855 } 4856 *stype = new_type; 4857 } 4858 if (zero_used) { 4859 /* backtracking doesn't work for STACK_ZERO yet. */ 4860 err = mark_chain_precision(env, value_regno); 4861 if (err) 4862 return err; 4863 } 4864 return 0; 4865 } 4866 4867 /* When register 'dst_regno' is assigned some values from stack[min_off, 4868 * max_off), we set the register's type according to the types of the 4869 * respective stack slots. If all the stack values are known to be zeros, then 4870 * so is the destination reg. Otherwise, the register is considered to be 4871 * SCALAR. This function does not deal with register filling; the caller must 4872 * ensure that all spilled registers in the stack range have been marked as 4873 * read. 4874 */ 4875 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4876 /* func where src register points to */ 4877 struct bpf_func_state *ptr_state, 4878 int min_off, int max_off, int dst_regno) 4879 { 4880 struct bpf_verifier_state *vstate = env->cur_state; 4881 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4882 int i, slot, spi; 4883 u8 *stype; 4884 int zeros = 0; 4885 4886 for (i = min_off; i < max_off; i++) { 4887 slot = -i - 1; 4888 spi = slot / BPF_REG_SIZE; 4889 mark_stack_slot_scratched(env, spi); 4890 stype = ptr_state->stack[spi].slot_type; 4891 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4892 break; 4893 zeros++; 4894 } 4895 if (zeros == max_off - min_off) { 4896 /* Any access_size read into register is zero extended, 4897 * so the whole register == const_zero. 4898 */ 4899 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4900 } else { 4901 /* have read misc data from the stack */ 4902 mark_reg_unknown(env, state->regs, dst_regno); 4903 } 4904 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4905 } 4906 4907 /* Read the stack at 'off' and put the results into the register indicated by 4908 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4909 * spilled reg. 4910 * 4911 * 'dst_regno' can be -1, meaning that the read value is not going to a 4912 * register. 4913 * 4914 * The access is assumed to be within the current stack bounds. 4915 */ 4916 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4917 /* func where src register points to */ 4918 struct bpf_func_state *reg_state, 4919 int off, int size, int dst_regno) 4920 { 4921 struct bpf_verifier_state *vstate = env->cur_state; 4922 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4923 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4924 struct bpf_reg_state *reg; 4925 u8 *stype, type; 4926 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); 4927 4928 stype = reg_state->stack[spi].slot_type; 4929 reg = ®_state->stack[spi].spilled_ptr; 4930 4931 mark_stack_slot_scratched(env, spi); 4932 check_fastcall_stack_contract(env, state, env->insn_idx, off); 4933 4934 if (is_spilled_reg(®_state->stack[spi])) { 4935 u8 spill_size = 1; 4936 4937 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4938 spill_size++; 4939 4940 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4941 if (reg->type != SCALAR_VALUE) { 4942 verbose_linfo(env, env->insn_idx, "; "); 4943 verbose(env, "invalid size of register fill\n"); 4944 return -EACCES; 4945 } 4946 4947 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4948 if (dst_regno < 0) 4949 return 0; 4950 4951 if (size <= spill_size && 4952 bpf_stack_narrow_access_ok(off, size, spill_size)) { 4953 /* The earlier check_reg_arg() has decided the 4954 * subreg_def for this insn. Save it first. 4955 */ 4956 s32 subreg_def = state->regs[dst_regno].subreg_def; 4957 4958 copy_register_state(&state->regs[dst_regno], reg); 4959 state->regs[dst_regno].subreg_def = subreg_def; 4960 4961 /* Break the relation on a narrowing fill. 4962 * coerce_reg_to_size will adjust the boundaries. 4963 */ 4964 if (get_reg_width(reg) > size * BITS_PER_BYTE) 4965 state->regs[dst_regno].id = 0; 4966 } else { 4967 int spill_cnt = 0, zero_cnt = 0; 4968 4969 for (i = 0; i < size; i++) { 4970 type = stype[(slot - i) % BPF_REG_SIZE]; 4971 if (type == STACK_SPILL) { 4972 spill_cnt++; 4973 continue; 4974 } 4975 if (type == STACK_MISC) 4976 continue; 4977 if (type == STACK_ZERO) { 4978 zero_cnt++; 4979 continue; 4980 } 4981 if (type == STACK_INVALID && env->allow_uninit_stack) 4982 continue; 4983 verbose(env, "invalid read from stack off %d+%d size %d\n", 4984 off, i, size); 4985 return -EACCES; 4986 } 4987 4988 if (spill_cnt == size && 4989 tnum_is_const(reg->var_off) && reg->var_off.value == 0) { 4990 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4991 /* this IS register fill, so keep insn_flags */ 4992 } else if (zero_cnt == size) { 4993 /* similarly to mark_reg_stack_read(), preserve zeroes */ 4994 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4995 insn_flags = 0; /* not restoring original register state */ 4996 } else { 4997 mark_reg_unknown(env, state->regs, dst_regno); 4998 insn_flags = 0; /* not restoring original register state */ 4999 } 5000 } 5001 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5002 } else if (dst_regno >= 0) { 5003 /* restore register state from stack */ 5004 copy_register_state(&state->regs[dst_regno], reg); 5005 /* mark reg as written since spilled pointer state likely 5006 * has its liveness marks cleared by is_state_visited() 5007 * which resets stack/reg liveness for state transitions 5008 */ 5009 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5010 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 5011 /* If dst_regno==-1, the caller is asking us whether 5012 * it is acceptable to use this value as a SCALAR_VALUE 5013 * (e.g. for XADD). 5014 * We must not allow unprivileged callers to do that 5015 * with spilled pointers. 5016 */ 5017 verbose(env, "leaking pointer from stack off %d\n", 5018 off); 5019 return -EACCES; 5020 } 5021 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5022 } else { 5023 for (i = 0; i < size; i++) { 5024 type = stype[(slot - i) % BPF_REG_SIZE]; 5025 if (type == STACK_MISC) 5026 continue; 5027 if (type == STACK_ZERO) 5028 continue; 5029 if (type == STACK_INVALID && env->allow_uninit_stack) 5030 continue; 5031 verbose(env, "invalid read from stack off %d+%d size %d\n", 5032 off, i, size); 5033 return -EACCES; 5034 } 5035 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5036 if (dst_regno >= 0) 5037 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 5038 insn_flags = 0; /* we are not restoring spilled register */ 5039 } 5040 if (insn_flags) 5041 return push_jmp_history(env, env->cur_state, insn_flags, 0); 5042 return 0; 5043 } 5044 5045 enum bpf_access_src { 5046 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 5047 ACCESS_HELPER = 2, /* the access is performed by a helper */ 5048 }; 5049 5050 static int check_stack_range_initialized(struct bpf_verifier_env *env, 5051 int regno, int off, int access_size, 5052 bool zero_size_allowed, 5053 enum bpf_access_src type, 5054 struct bpf_call_arg_meta *meta); 5055 5056 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 5057 { 5058 return cur_regs(env) + regno; 5059 } 5060 5061 /* Read the stack at 'ptr_regno + off' and put the result into the register 5062 * 'dst_regno'. 5063 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 5064 * but not its variable offset. 5065 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 5066 * 5067 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 5068 * filling registers (i.e. reads of spilled register cannot be detected when 5069 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 5070 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 5071 * offset; for a fixed offset check_stack_read_fixed_off should be used 5072 * instead. 5073 */ 5074 static int check_stack_read_var_off(struct bpf_verifier_env *env, 5075 int ptr_regno, int off, int size, int dst_regno) 5076 { 5077 /* The state of the source register. */ 5078 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5079 struct bpf_func_state *ptr_state = func(env, reg); 5080 int err; 5081 int min_off, max_off; 5082 5083 /* Note that we pass a NULL meta, so raw access will not be permitted. 5084 */ 5085 err = check_stack_range_initialized(env, ptr_regno, off, size, 5086 false, ACCESS_DIRECT, NULL); 5087 if (err) 5088 return err; 5089 5090 min_off = reg->smin_value + off; 5091 max_off = reg->smax_value + off; 5092 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 5093 check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off); 5094 return 0; 5095 } 5096 5097 /* check_stack_read dispatches to check_stack_read_fixed_off or 5098 * check_stack_read_var_off. 5099 * 5100 * The caller must ensure that the offset falls within the allocated stack 5101 * bounds. 5102 * 5103 * 'dst_regno' is a register which will receive the value from the stack. It 5104 * can be -1, meaning that the read value is not going to a register. 5105 */ 5106 static int check_stack_read(struct bpf_verifier_env *env, 5107 int ptr_regno, int off, int size, 5108 int dst_regno) 5109 { 5110 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5111 struct bpf_func_state *state = func(env, reg); 5112 int err; 5113 /* Some accesses are only permitted with a static offset. */ 5114 bool var_off = !tnum_is_const(reg->var_off); 5115 5116 /* The offset is required to be static when reads don't go to a 5117 * register, in order to not leak pointers (see 5118 * check_stack_read_fixed_off). 5119 */ 5120 if (dst_regno < 0 && var_off) { 5121 char tn_buf[48]; 5122 5123 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5124 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5125 tn_buf, off, size); 5126 return -EACCES; 5127 } 5128 /* Variable offset is prohibited for unprivileged mode for simplicity 5129 * since it requires corresponding support in Spectre masking for stack 5130 * ALU. See also retrieve_ptr_limit(). The check in 5131 * check_stack_access_for_ptr_arithmetic() called by 5132 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5133 * with variable offsets, therefore no check is required here. Further, 5134 * just checking it here would be insufficient as speculative stack 5135 * writes could still lead to unsafe speculative behaviour. 5136 */ 5137 if (!var_off) { 5138 off += reg->var_off.value; 5139 err = check_stack_read_fixed_off(env, state, off, size, 5140 dst_regno); 5141 } else { 5142 /* Variable offset stack reads need more conservative handling 5143 * than fixed offset ones. Note that dst_regno >= 0 on this 5144 * branch. 5145 */ 5146 err = check_stack_read_var_off(env, ptr_regno, off, size, 5147 dst_regno); 5148 } 5149 return err; 5150 } 5151 5152 5153 /* check_stack_write dispatches to check_stack_write_fixed_off or 5154 * check_stack_write_var_off. 5155 * 5156 * 'ptr_regno' is the register used as a pointer into the stack. 5157 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5158 * 'value_regno' is the register whose value we're writing to the stack. It can 5159 * be -1, meaning that we're not writing from a register. 5160 * 5161 * The caller must ensure that the offset falls within the maximum stack size. 5162 */ 5163 static int check_stack_write(struct bpf_verifier_env *env, 5164 int ptr_regno, int off, int size, 5165 int value_regno, int insn_idx) 5166 { 5167 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5168 struct bpf_func_state *state = func(env, reg); 5169 int err; 5170 5171 if (tnum_is_const(reg->var_off)) { 5172 off += reg->var_off.value; 5173 err = check_stack_write_fixed_off(env, state, off, size, 5174 value_regno, insn_idx); 5175 } else { 5176 /* Variable offset stack reads need more conservative handling 5177 * than fixed offset ones. 5178 */ 5179 err = check_stack_write_var_off(env, state, 5180 ptr_regno, off, size, 5181 value_regno, insn_idx); 5182 } 5183 return err; 5184 } 5185 5186 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5187 int off, int size, enum bpf_access_type type) 5188 { 5189 struct bpf_reg_state *regs = cur_regs(env); 5190 struct bpf_map *map = regs[regno].map_ptr; 5191 u32 cap = bpf_map_flags_to_cap(map); 5192 5193 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5194 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5195 map->value_size, off, size); 5196 return -EACCES; 5197 } 5198 5199 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5200 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5201 map->value_size, off, size); 5202 return -EACCES; 5203 } 5204 5205 return 0; 5206 } 5207 5208 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5209 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5210 int off, int size, u32 mem_size, 5211 bool zero_size_allowed) 5212 { 5213 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5214 struct bpf_reg_state *reg; 5215 5216 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5217 return 0; 5218 5219 reg = &cur_regs(env)[regno]; 5220 switch (reg->type) { 5221 case PTR_TO_MAP_KEY: 5222 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5223 mem_size, off, size); 5224 break; 5225 case PTR_TO_MAP_VALUE: 5226 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5227 mem_size, off, size); 5228 break; 5229 case PTR_TO_PACKET: 5230 case PTR_TO_PACKET_META: 5231 case PTR_TO_PACKET_END: 5232 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5233 off, size, regno, reg->id, off, mem_size); 5234 break; 5235 case PTR_TO_MEM: 5236 default: 5237 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5238 mem_size, off, size); 5239 } 5240 5241 return -EACCES; 5242 } 5243 5244 /* check read/write into a memory region with possible variable offset */ 5245 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5246 int off, int size, u32 mem_size, 5247 bool zero_size_allowed) 5248 { 5249 struct bpf_verifier_state *vstate = env->cur_state; 5250 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5251 struct bpf_reg_state *reg = &state->regs[regno]; 5252 int err; 5253 5254 /* We may have adjusted the register pointing to memory region, so we 5255 * need to try adding each of min_value and max_value to off 5256 * to make sure our theoretical access will be safe. 5257 * 5258 * The minimum value is only important with signed 5259 * comparisons where we can't assume the floor of a 5260 * value is 0. If we are using signed variables for our 5261 * index'es we need to make sure that whatever we use 5262 * will have a set floor within our range. 5263 */ 5264 if (reg->smin_value < 0 && 5265 (reg->smin_value == S64_MIN || 5266 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5267 reg->smin_value + off < 0)) { 5268 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5269 regno); 5270 return -EACCES; 5271 } 5272 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5273 mem_size, zero_size_allowed); 5274 if (err) { 5275 verbose(env, "R%d min value is outside of the allowed memory range\n", 5276 regno); 5277 return err; 5278 } 5279 5280 /* If we haven't set a max value then we need to bail since we can't be 5281 * sure we won't do bad things. 5282 * If reg->umax_value + off could overflow, treat that as unbounded too. 5283 */ 5284 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5285 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5286 regno); 5287 return -EACCES; 5288 } 5289 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5290 mem_size, zero_size_allowed); 5291 if (err) { 5292 verbose(env, "R%d max value is outside of the allowed memory range\n", 5293 regno); 5294 return err; 5295 } 5296 5297 return 0; 5298 } 5299 5300 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5301 const struct bpf_reg_state *reg, int regno, 5302 bool fixed_off_ok) 5303 { 5304 /* Access to this pointer-typed register or passing it to a helper 5305 * is only allowed in its original, unmodified form. 5306 */ 5307 5308 if (reg->off < 0) { 5309 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5310 reg_type_str(env, reg->type), regno, reg->off); 5311 return -EACCES; 5312 } 5313 5314 if (!fixed_off_ok && reg->off) { 5315 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5316 reg_type_str(env, reg->type), regno, reg->off); 5317 return -EACCES; 5318 } 5319 5320 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5321 char tn_buf[48]; 5322 5323 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5324 verbose(env, "variable %s access var_off=%s disallowed\n", 5325 reg_type_str(env, reg->type), tn_buf); 5326 return -EACCES; 5327 } 5328 5329 return 0; 5330 } 5331 5332 static int check_ptr_off_reg(struct bpf_verifier_env *env, 5333 const struct bpf_reg_state *reg, int regno) 5334 { 5335 return __check_ptr_off_reg(env, reg, regno, false); 5336 } 5337 5338 static int map_kptr_match_type(struct bpf_verifier_env *env, 5339 struct btf_field *kptr_field, 5340 struct bpf_reg_state *reg, u32 regno) 5341 { 5342 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5343 int perm_flags; 5344 const char *reg_name = ""; 5345 5346 if (btf_is_kernel(reg->btf)) { 5347 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5348 5349 /* Only unreferenced case accepts untrusted pointers */ 5350 if (kptr_field->type == BPF_KPTR_UNREF) 5351 perm_flags |= PTR_UNTRUSTED; 5352 } else { 5353 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5354 if (kptr_field->type == BPF_KPTR_PERCPU) 5355 perm_flags |= MEM_PERCPU; 5356 } 5357 5358 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5359 goto bad_type; 5360 5361 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5362 reg_name = btf_type_name(reg->btf, reg->btf_id); 5363 5364 /* For ref_ptr case, release function check should ensure we get one 5365 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5366 * normal store of unreferenced kptr, we must ensure var_off is zero. 5367 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5368 * reg->off and reg->ref_obj_id are not needed here. 5369 */ 5370 if (__check_ptr_off_reg(env, reg, regno, true)) 5371 return -EACCES; 5372 5373 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5374 * we also need to take into account the reg->off. 5375 * 5376 * We want to support cases like: 5377 * 5378 * struct foo { 5379 * struct bar br; 5380 * struct baz bz; 5381 * }; 5382 * 5383 * struct foo *v; 5384 * v = func(); // PTR_TO_BTF_ID 5385 * val->foo = v; // reg->off is zero, btf and btf_id match type 5386 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5387 * // first member type of struct after comparison fails 5388 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5389 * // to match type 5390 * 5391 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5392 * is zero. We must also ensure that btf_struct_ids_match does not walk 5393 * the struct to match type against first member of struct, i.e. reject 5394 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5395 * strict mode to true for type match. 5396 */ 5397 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5398 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5399 kptr_field->type != BPF_KPTR_UNREF)) 5400 goto bad_type; 5401 return 0; 5402 bad_type: 5403 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5404 reg_type_str(env, reg->type), reg_name); 5405 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5406 if (kptr_field->type == BPF_KPTR_UNREF) 5407 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5408 targ_name); 5409 else 5410 verbose(env, "\n"); 5411 return -EINVAL; 5412 } 5413 5414 static bool in_sleepable(struct bpf_verifier_env *env) 5415 { 5416 return env->prog->sleepable || 5417 (env->cur_state && env->cur_state->in_sleepable); 5418 } 5419 5420 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5421 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5422 */ 5423 static bool in_rcu_cs(struct bpf_verifier_env *env) 5424 { 5425 return env->cur_state->active_rcu_lock || 5426 env->cur_state->active_lock.ptr || 5427 !in_sleepable(env); 5428 } 5429 5430 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5431 BTF_SET_START(rcu_protected_types) 5432 BTF_ID(struct, prog_test_ref_kfunc) 5433 #ifdef CONFIG_CGROUPS 5434 BTF_ID(struct, cgroup) 5435 #endif 5436 #ifdef CONFIG_BPF_JIT 5437 BTF_ID(struct, bpf_cpumask) 5438 #endif 5439 BTF_ID(struct, task_struct) 5440 BTF_ID(struct, bpf_crypto_ctx) 5441 BTF_SET_END(rcu_protected_types) 5442 5443 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5444 { 5445 if (!btf_is_kernel(btf)) 5446 return true; 5447 return btf_id_set_contains(&rcu_protected_types, btf_id); 5448 } 5449 5450 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 5451 { 5452 struct btf_struct_meta *meta; 5453 5454 if (btf_is_kernel(kptr_field->kptr.btf)) 5455 return NULL; 5456 5457 meta = btf_find_struct_meta(kptr_field->kptr.btf, 5458 kptr_field->kptr.btf_id); 5459 5460 return meta ? meta->record : NULL; 5461 } 5462 5463 static bool rcu_safe_kptr(const struct btf_field *field) 5464 { 5465 const struct btf_field_kptr *kptr = &field->kptr; 5466 5467 return field->type == BPF_KPTR_PERCPU || 5468 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5469 } 5470 5471 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5472 { 5473 struct btf_record *rec; 5474 u32 ret; 5475 5476 ret = PTR_MAYBE_NULL; 5477 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5478 ret |= MEM_RCU; 5479 if (kptr_field->type == BPF_KPTR_PERCPU) 5480 ret |= MEM_PERCPU; 5481 else if (!btf_is_kernel(kptr_field->kptr.btf)) 5482 ret |= MEM_ALLOC; 5483 5484 rec = kptr_pointee_btf_record(kptr_field); 5485 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 5486 ret |= NON_OWN_REF; 5487 } else { 5488 ret |= PTR_UNTRUSTED; 5489 } 5490 5491 return ret; 5492 } 5493 5494 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5495 int value_regno, int insn_idx, 5496 struct btf_field *kptr_field) 5497 { 5498 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5499 int class = BPF_CLASS(insn->code); 5500 struct bpf_reg_state *val_reg; 5501 5502 /* Things we already checked for in check_map_access and caller: 5503 * - Reject cases where variable offset may touch kptr 5504 * - size of access (must be BPF_DW) 5505 * - tnum_is_const(reg->var_off) 5506 * - kptr_field->offset == off + reg->var_off.value 5507 */ 5508 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5509 if (BPF_MODE(insn->code) != BPF_MEM) { 5510 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5511 return -EACCES; 5512 } 5513 5514 /* We only allow loading referenced kptr, since it will be marked as 5515 * untrusted, similar to unreferenced kptr. 5516 */ 5517 if (class != BPF_LDX && 5518 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 5519 verbose(env, "store to referenced kptr disallowed\n"); 5520 return -EACCES; 5521 } 5522 5523 if (class == BPF_LDX) { 5524 val_reg = reg_state(env, value_regno); 5525 /* We can simply mark the value_regno receiving the pointer 5526 * value from map as PTR_TO_BTF_ID, with the correct type. 5527 */ 5528 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5529 kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field)); 5530 } else if (class == BPF_STX) { 5531 val_reg = reg_state(env, value_regno); 5532 if (!register_is_null(val_reg) && 5533 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5534 return -EACCES; 5535 } else if (class == BPF_ST) { 5536 if (insn->imm) { 5537 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5538 kptr_field->offset); 5539 return -EACCES; 5540 } 5541 } else { 5542 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5543 return -EACCES; 5544 } 5545 return 0; 5546 } 5547 5548 /* check read/write into a map element with possible variable offset */ 5549 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5550 int off, int size, bool zero_size_allowed, 5551 enum bpf_access_src src) 5552 { 5553 struct bpf_verifier_state *vstate = env->cur_state; 5554 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5555 struct bpf_reg_state *reg = &state->regs[regno]; 5556 struct bpf_map *map = reg->map_ptr; 5557 struct btf_record *rec; 5558 int err, i; 5559 5560 err = check_mem_region_access(env, regno, off, size, map->value_size, 5561 zero_size_allowed); 5562 if (err) 5563 return err; 5564 5565 if (IS_ERR_OR_NULL(map->record)) 5566 return 0; 5567 rec = map->record; 5568 for (i = 0; i < rec->cnt; i++) { 5569 struct btf_field *field = &rec->fields[i]; 5570 u32 p = field->offset; 5571 5572 /* If any part of a field can be touched by load/store, reject 5573 * this program. To check that [x1, x2) overlaps with [y1, y2), 5574 * it is sufficient to check x1 < y2 && y1 < x2. 5575 */ 5576 if (reg->smin_value + off < p + field->size && 5577 p < reg->umax_value + off + size) { 5578 switch (field->type) { 5579 case BPF_KPTR_UNREF: 5580 case BPF_KPTR_REF: 5581 case BPF_KPTR_PERCPU: 5582 if (src != ACCESS_DIRECT) { 5583 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5584 return -EACCES; 5585 } 5586 if (!tnum_is_const(reg->var_off)) { 5587 verbose(env, "kptr access cannot have variable offset\n"); 5588 return -EACCES; 5589 } 5590 if (p != off + reg->var_off.value) { 5591 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5592 p, off + reg->var_off.value); 5593 return -EACCES; 5594 } 5595 if (size != bpf_size_to_bytes(BPF_DW)) { 5596 verbose(env, "kptr access size must be BPF_DW\n"); 5597 return -EACCES; 5598 } 5599 break; 5600 default: 5601 verbose(env, "%s cannot be accessed directly by load/store\n", 5602 btf_field_type_name(field->type)); 5603 return -EACCES; 5604 } 5605 } 5606 } 5607 return 0; 5608 } 5609 5610 #define MAX_PACKET_OFF 0xffff 5611 5612 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5613 const struct bpf_call_arg_meta *meta, 5614 enum bpf_access_type t) 5615 { 5616 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5617 5618 switch (prog_type) { 5619 /* Program types only with direct read access go here! */ 5620 case BPF_PROG_TYPE_LWT_IN: 5621 case BPF_PROG_TYPE_LWT_OUT: 5622 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5623 case BPF_PROG_TYPE_SK_REUSEPORT: 5624 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5625 case BPF_PROG_TYPE_CGROUP_SKB: 5626 if (t == BPF_WRITE) 5627 return false; 5628 fallthrough; 5629 5630 /* Program types with direct read + write access go here! */ 5631 case BPF_PROG_TYPE_SCHED_CLS: 5632 case BPF_PROG_TYPE_SCHED_ACT: 5633 case BPF_PROG_TYPE_XDP: 5634 case BPF_PROG_TYPE_LWT_XMIT: 5635 case BPF_PROG_TYPE_SK_SKB: 5636 case BPF_PROG_TYPE_SK_MSG: 5637 if (meta) 5638 return meta->pkt_access; 5639 5640 env->seen_direct_write = true; 5641 return true; 5642 5643 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5644 if (t == BPF_WRITE) 5645 env->seen_direct_write = true; 5646 5647 return true; 5648 5649 default: 5650 return false; 5651 } 5652 } 5653 5654 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5655 int size, bool zero_size_allowed) 5656 { 5657 struct bpf_reg_state *regs = cur_regs(env); 5658 struct bpf_reg_state *reg = ®s[regno]; 5659 int err; 5660 5661 /* We may have added a variable offset to the packet pointer; but any 5662 * reg->range we have comes after that. We are only checking the fixed 5663 * offset. 5664 */ 5665 5666 /* We don't allow negative numbers, because we aren't tracking enough 5667 * detail to prove they're safe. 5668 */ 5669 if (reg->smin_value < 0) { 5670 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5671 regno); 5672 return -EACCES; 5673 } 5674 5675 err = reg->range < 0 ? -EINVAL : 5676 __check_mem_access(env, regno, off, size, reg->range, 5677 zero_size_allowed); 5678 if (err) { 5679 verbose(env, "R%d offset is outside of the packet\n", regno); 5680 return err; 5681 } 5682 5683 /* __check_mem_access has made sure "off + size - 1" is within u16. 5684 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5685 * otherwise find_good_pkt_pointers would have refused to set range info 5686 * that __check_mem_access would have rejected this pkt access. 5687 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5688 */ 5689 env->prog->aux->max_pkt_offset = 5690 max_t(u32, env->prog->aux->max_pkt_offset, 5691 off + reg->umax_value + size - 1); 5692 5693 return err; 5694 } 5695 5696 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5697 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5698 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5699 struct btf **btf, u32 *btf_id, bool *is_retval, bool is_ldsx) 5700 { 5701 struct bpf_insn_access_aux info = { 5702 .reg_type = *reg_type, 5703 .log = &env->log, 5704 .is_retval = false, 5705 .is_ldsx = is_ldsx, 5706 }; 5707 5708 if (env->ops->is_valid_access && 5709 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5710 /* A non zero info.ctx_field_size indicates that this field is a 5711 * candidate for later verifier transformation to load the whole 5712 * field and then apply a mask when accessed with a narrower 5713 * access than actual ctx access size. A zero info.ctx_field_size 5714 * will only allow for whole field access and rejects any other 5715 * type of narrower access. 5716 */ 5717 *reg_type = info.reg_type; 5718 *is_retval = info.is_retval; 5719 5720 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5721 *btf = info.btf; 5722 *btf_id = info.btf_id; 5723 } else { 5724 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5725 } 5726 /* remember the offset of last byte accessed in ctx */ 5727 if (env->prog->aux->max_ctx_offset < off + size) 5728 env->prog->aux->max_ctx_offset = off + size; 5729 return 0; 5730 } 5731 5732 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5733 return -EACCES; 5734 } 5735 5736 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5737 int size) 5738 { 5739 if (size < 0 || off < 0 || 5740 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5741 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5742 off, size); 5743 return -EACCES; 5744 } 5745 return 0; 5746 } 5747 5748 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5749 u32 regno, int off, int size, 5750 enum bpf_access_type t) 5751 { 5752 struct bpf_reg_state *regs = cur_regs(env); 5753 struct bpf_reg_state *reg = ®s[regno]; 5754 struct bpf_insn_access_aux info = {}; 5755 bool valid; 5756 5757 if (reg->smin_value < 0) { 5758 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5759 regno); 5760 return -EACCES; 5761 } 5762 5763 switch (reg->type) { 5764 case PTR_TO_SOCK_COMMON: 5765 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5766 break; 5767 case PTR_TO_SOCKET: 5768 valid = bpf_sock_is_valid_access(off, size, t, &info); 5769 break; 5770 case PTR_TO_TCP_SOCK: 5771 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5772 break; 5773 case PTR_TO_XDP_SOCK: 5774 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5775 break; 5776 default: 5777 valid = false; 5778 } 5779 5780 5781 if (valid) { 5782 env->insn_aux_data[insn_idx].ctx_field_size = 5783 info.ctx_field_size; 5784 return 0; 5785 } 5786 5787 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5788 regno, reg_type_str(env, reg->type), off, size); 5789 5790 return -EACCES; 5791 } 5792 5793 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5794 { 5795 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5796 } 5797 5798 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5799 { 5800 const struct bpf_reg_state *reg = reg_state(env, regno); 5801 5802 return reg->type == PTR_TO_CTX; 5803 } 5804 5805 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5806 { 5807 const struct bpf_reg_state *reg = reg_state(env, regno); 5808 5809 return type_is_sk_pointer(reg->type); 5810 } 5811 5812 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5813 { 5814 const struct bpf_reg_state *reg = reg_state(env, regno); 5815 5816 return type_is_pkt_pointer(reg->type); 5817 } 5818 5819 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5820 { 5821 const struct bpf_reg_state *reg = reg_state(env, regno); 5822 5823 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5824 return reg->type == PTR_TO_FLOW_KEYS; 5825 } 5826 5827 static bool is_arena_reg(struct bpf_verifier_env *env, int regno) 5828 { 5829 const struct bpf_reg_state *reg = reg_state(env, regno); 5830 5831 return reg->type == PTR_TO_ARENA; 5832 } 5833 5834 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5835 #ifdef CONFIG_NET 5836 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5837 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5838 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5839 #endif 5840 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5841 }; 5842 5843 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5844 { 5845 /* A referenced register is always trusted. */ 5846 if (reg->ref_obj_id) 5847 return true; 5848 5849 /* Types listed in the reg2btf_ids are always trusted */ 5850 if (reg2btf_ids[base_type(reg->type)] && 5851 !bpf_type_has_unsafe_modifiers(reg->type)) 5852 return true; 5853 5854 /* If a register is not referenced, it is trusted if it has the 5855 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5856 * other type modifiers may be safe, but we elect to take an opt-in 5857 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5858 * not. 5859 * 5860 * Eventually, we should make PTR_TRUSTED the single source of truth 5861 * for whether a register is trusted. 5862 */ 5863 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5864 !bpf_type_has_unsafe_modifiers(reg->type); 5865 } 5866 5867 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5868 { 5869 return reg->type & MEM_RCU; 5870 } 5871 5872 static void clear_trusted_flags(enum bpf_type_flag *flag) 5873 { 5874 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5875 } 5876 5877 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5878 const struct bpf_reg_state *reg, 5879 int off, int size, bool strict) 5880 { 5881 struct tnum reg_off; 5882 int ip_align; 5883 5884 /* Byte size accesses are always allowed. */ 5885 if (!strict || size == 1) 5886 return 0; 5887 5888 /* For platforms that do not have a Kconfig enabling 5889 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5890 * NET_IP_ALIGN is universally set to '2'. And on platforms 5891 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5892 * to this code only in strict mode where we want to emulate 5893 * the NET_IP_ALIGN==2 checking. Therefore use an 5894 * unconditional IP align value of '2'. 5895 */ 5896 ip_align = 2; 5897 5898 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5899 if (!tnum_is_aligned(reg_off, size)) { 5900 char tn_buf[48]; 5901 5902 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5903 verbose(env, 5904 "misaligned packet access off %d+%s+%d+%d size %d\n", 5905 ip_align, tn_buf, reg->off, off, size); 5906 return -EACCES; 5907 } 5908 5909 return 0; 5910 } 5911 5912 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5913 const struct bpf_reg_state *reg, 5914 const char *pointer_desc, 5915 int off, int size, bool strict) 5916 { 5917 struct tnum reg_off; 5918 5919 /* Byte size accesses are always allowed. */ 5920 if (!strict || size == 1) 5921 return 0; 5922 5923 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5924 if (!tnum_is_aligned(reg_off, size)) { 5925 char tn_buf[48]; 5926 5927 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5928 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5929 pointer_desc, tn_buf, reg->off, off, size); 5930 return -EACCES; 5931 } 5932 5933 return 0; 5934 } 5935 5936 static int check_ptr_alignment(struct bpf_verifier_env *env, 5937 const struct bpf_reg_state *reg, int off, 5938 int size, bool strict_alignment_once) 5939 { 5940 bool strict = env->strict_alignment || strict_alignment_once; 5941 const char *pointer_desc = ""; 5942 5943 switch (reg->type) { 5944 case PTR_TO_PACKET: 5945 case PTR_TO_PACKET_META: 5946 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5947 * right in front, treat it the very same way. 5948 */ 5949 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5950 case PTR_TO_FLOW_KEYS: 5951 pointer_desc = "flow keys "; 5952 break; 5953 case PTR_TO_MAP_KEY: 5954 pointer_desc = "key "; 5955 break; 5956 case PTR_TO_MAP_VALUE: 5957 pointer_desc = "value "; 5958 break; 5959 case PTR_TO_CTX: 5960 pointer_desc = "context "; 5961 break; 5962 case PTR_TO_STACK: 5963 pointer_desc = "stack "; 5964 /* The stack spill tracking logic in check_stack_write_fixed_off() 5965 * and check_stack_read_fixed_off() relies on stack accesses being 5966 * aligned. 5967 */ 5968 strict = true; 5969 break; 5970 case PTR_TO_SOCKET: 5971 pointer_desc = "sock "; 5972 break; 5973 case PTR_TO_SOCK_COMMON: 5974 pointer_desc = "sock_common "; 5975 break; 5976 case PTR_TO_TCP_SOCK: 5977 pointer_desc = "tcp_sock "; 5978 break; 5979 case PTR_TO_XDP_SOCK: 5980 pointer_desc = "xdp_sock "; 5981 break; 5982 case PTR_TO_ARENA: 5983 return 0; 5984 default: 5985 break; 5986 } 5987 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5988 strict); 5989 } 5990 5991 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) 5992 { 5993 if (env->prog->jit_requested) 5994 return round_up(stack_depth, 16); 5995 5996 /* round up to 32-bytes, since this is granularity 5997 * of interpreter stack size 5998 */ 5999 return round_up(max_t(u32, stack_depth, 1), 32); 6000 } 6001 6002 /* starting from main bpf function walk all instructions of the function 6003 * and recursively walk all callees that given function can call. 6004 * Ignore jump and exit insns. 6005 * Since recursion is prevented by check_cfg() this algorithm 6006 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 6007 */ 6008 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 6009 { 6010 struct bpf_subprog_info *subprog = env->subprog_info; 6011 struct bpf_insn *insn = env->prog->insnsi; 6012 int depth = 0, frame = 0, i, subprog_end; 6013 bool tail_call_reachable = false; 6014 int ret_insn[MAX_CALL_FRAMES]; 6015 int ret_prog[MAX_CALL_FRAMES]; 6016 int j; 6017 6018 i = subprog[idx].start; 6019 process_func: 6020 /* protect against potential stack overflow that might happen when 6021 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 6022 * depth for such case down to 256 so that the worst case scenario 6023 * would result in 8k stack size (32 which is tailcall limit * 256 = 6024 * 8k). 6025 * 6026 * To get the idea what might happen, see an example: 6027 * func1 -> sub rsp, 128 6028 * subfunc1 -> sub rsp, 256 6029 * tailcall1 -> add rsp, 256 6030 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 6031 * subfunc2 -> sub rsp, 64 6032 * subfunc22 -> sub rsp, 128 6033 * tailcall2 -> add rsp, 128 6034 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 6035 * 6036 * tailcall will unwind the current stack frame but it will not get rid 6037 * of caller's stack as shown on the example above. 6038 */ 6039 if (idx && subprog[idx].has_tail_call && depth >= 256) { 6040 verbose(env, 6041 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 6042 depth); 6043 return -EACCES; 6044 } 6045 depth += round_up_stack_depth(env, subprog[idx].stack_depth); 6046 if (depth > MAX_BPF_STACK) { 6047 verbose(env, "combined stack size of %d calls is %d. Too large\n", 6048 frame + 1, depth); 6049 return -EACCES; 6050 } 6051 continue_func: 6052 subprog_end = subprog[idx + 1].start; 6053 for (; i < subprog_end; i++) { 6054 int next_insn, sidx; 6055 6056 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 6057 bool err = false; 6058 6059 if (!is_bpf_throw_kfunc(insn + i)) 6060 continue; 6061 if (subprog[idx].is_cb) 6062 err = true; 6063 for (int c = 0; c < frame && !err; c++) { 6064 if (subprog[ret_prog[c]].is_cb) { 6065 err = true; 6066 break; 6067 } 6068 } 6069 if (!err) 6070 continue; 6071 verbose(env, 6072 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 6073 i, idx); 6074 return -EINVAL; 6075 } 6076 6077 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 6078 continue; 6079 /* remember insn and function to return to */ 6080 ret_insn[frame] = i + 1; 6081 ret_prog[frame] = idx; 6082 6083 /* find the callee */ 6084 next_insn = i + insn[i].imm + 1; 6085 sidx = find_subprog(env, next_insn); 6086 if (sidx < 0) { 6087 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6088 next_insn); 6089 return -EFAULT; 6090 } 6091 if (subprog[sidx].is_async_cb) { 6092 if (subprog[sidx].has_tail_call) { 6093 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 6094 return -EFAULT; 6095 } 6096 /* async callbacks don't increase bpf prog stack size unless called directly */ 6097 if (!bpf_pseudo_call(insn + i)) 6098 continue; 6099 if (subprog[sidx].is_exception_cb) { 6100 verbose(env, "insn %d cannot call exception cb directly\n", i); 6101 return -EINVAL; 6102 } 6103 } 6104 i = next_insn; 6105 idx = sidx; 6106 6107 if (subprog[idx].has_tail_call) 6108 tail_call_reachable = true; 6109 6110 frame++; 6111 if (frame >= MAX_CALL_FRAMES) { 6112 verbose(env, "the call stack of %d frames is too deep !\n", 6113 frame); 6114 return -E2BIG; 6115 } 6116 goto process_func; 6117 } 6118 /* if tail call got detected across bpf2bpf calls then mark each of the 6119 * currently present subprog frames as tail call reachable subprogs; 6120 * this info will be utilized by JIT so that we will be preserving the 6121 * tail call counter throughout bpf2bpf calls combined with tailcalls 6122 */ 6123 if (tail_call_reachable) 6124 for (j = 0; j < frame; j++) { 6125 if (subprog[ret_prog[j]].is_exception_cb) { 6126 verbose(env, "cannot tail call within exception cb\n"); 6127 return -EINVAL; 6128 } 6129 subprog[ret_prog[j]].tail_call_reachable = true; 6130 } 6131 if (subprog[0].tail_call_reachable) 6132 env->prog->aux->tail_call_reachable = true; 6133 6134 /* end of for() loop means the last insn of the 'subprog' 6135 * was reached. Doesn't matter whether it was JA or EXIT 6136 */ 6137 if (frame == 0) 6138 return 0; 6139 depth -= round_up_stack_depth(env, subprog[idx].stack_depth); 6140 frame--; 6141 i = ret_insn[frame]; 6142 idx = ret_prog[frame]; 6143 goto continue_func; 6144 } 6145 6146 static int check_max_stack_depth(struct bpf_verifier_env *env) 6147 { 6148 struct bpf_subprog_info *si = env->subprog_info; 6149 int ret; 6150 6151 for (int i = 0; i < env->subprog_cnt; i++) { 6152 if (!i || si[i].is_async_cb) { 6153 ret = check_max_stack_depth_subprog(env, i); 6154 if (ret < 0) 6155 return ret; 6156 } 6157 continue; 6158 } 6159 return 0; 6160 } 6161 6162 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6163 static int get_callee_stack_depth(struct bpf_verifier_env *env, 6164 const struct bpf_insn *insn, int idx) 6165 { 6166 int start = idx + insn->imm + 1, subprog; 6167 6168 subprog = find_subprog(env, start); 6169 if (subprog < 0) { 6170 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6171 start); 6172 return -EFAULT; 6173 } 6174 return env->subprog_info[subprog].stack_depth; 6175 } 6176 #endif 6177 6178 static int __check_buffer_access(struct bpf_verifier_env *env, 6179 const char *buf_info, 6180 const struct bpf_reg_state *reg, 6181 int regno, int off, int size) 6182 { 6183 if (off < 0) { 6184 verbose(env, 6185 "R%d invalid %s buffer access: off=%d, size=%d\n", 6186 regno, buf_info, off, size); 6187 return -EACCES; 6188 } 6189 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6190 char tn_buf[48]; 6191 6192 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6193 verbose(env, 6194 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6195 regno, off, tn_buf); 6196 return -EACCES; 6197 } 6198 6199 return 0; 6200 } 6201 6202 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6203 const struct bpf_reg_state *reg, 6204 int regno, int off, int size) 6205 { 6206 int err; 6207 6208 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6209 if (err) 6210 return err; 6211 6212 if (off + size > env->prog->aux->max_tp_access) 6213 env->prog->aux->max_tp_access = off + size; 6214 6215 return 0; 6216 } 6217 6218 static int check_buffer_access(struct bpf_verifier_env *env, 6219 const struct bpf_reg_state *reg, 6220 int regno, int off, int size, 6221 bool zero_size_allowed, 6222 u32 *max_access) 6223 { 6224 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6225 int err; 6226 6227 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6228 if (err) 6229 return err; 6230 6231 if (off + size > *max_access) 6232 *max_access = off + size; 6233 6234 return 0; 6235 } 6236 6237 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6238 static void zext_32_to_64(struct bpf_reg_state *reg) 6239 { 6240 reg->var_off = tnum_subreg(reg->var_off); 6241 __reg_assign_32_into_64(reg); 6242 } 6243 6244 /* truncate register to smaller size (in bytes) 6245 * must be called with size < BPF_REG_SIZE 6246 */ 6247 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6248 { 6249 u64 mask; 6250 6251 /* clear high bits in bit representation */ 6252 reg->var_off = tnum_cast(reg->var_off, size); 6253 6254 /* fix arithmetic bounds */ 6255 mask = ((u64)1 << (size * 8)) - 1; 6256 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6257 reg->umin_value &= mask; 6258 reg->umax_value &= mask; 6259 } else { 6260 reg->umin_value = 0; 6261 reg->umax_value = mask; 6262 } 6263 reg->smin_value = reg->umin_value; 6264 reg->smax_value = reg->umax_value; 6265 6266 /* If size is smaller than 32bit register the 32bit register 6267 * values are also truncated so we push 64-bit bounds into 6268 * 32-bit bounds. Above were truncated < 32-bits already. 6269 */ 6270 if (size < 4) 6271 __mark_reg32_unbounded(reg); 6272 6273 reg_bounds_sync(reg); 6274 } 6275 6276 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6277 { 6278 if (size == 1) { 6279 reg->smin_value = reg->s32_min_value = S8_MIN; 6280 reg->smax_value = reg->s32_max_value = S8_MAX; 6281 } else if (size == 2) { 6282 reg->smin_value = reg->s32_min_value = S16_MIN; 6283 reg->smax_value = reg->s32_max_value = S16_MAX; 6284 } else { 6285 /* size == 4 */ 6286 reg->smin_value = reg->s32_min_value = S32_MIN; 6287 reg->smax_value = reg->s32_max_value = S32_MAX; 6288 } 6289 reg->umin_value = reg->u32_min_value = 0; 6290 reg->umax_value = U64_MAX; 6291 reg->u32_max_value = U32_MAX; 6292 reg->var_off = tnum_unknown; 6293 } 6294 6295 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6296 { 6297 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6298 u64 top_smax_value, top_smin_value; 6299 u64 num_bits = size * 8; 6300 6301 if (tnum_is_const(reg->var_off)) { 6302 u64_cval = reg->var_off.value; 6303 if (size == 1) 6304 reg->var_off = tnum_const((s8)u64_cval); 6305 else if (size == 2) 6306 reg->var_off = tnum_const((s16)u64_cval); 6307 else 6308 /* size == 4 */ 6309 reg->var_off = tnum_const((s32)u64_cval); 6310 6311 u64_cval = reg->var_off.value; 6312 reg->smax_value = reg->smin_value = u64_cval; 6313 reg->umax_value = reg->umin_value = u64_cval; 6314 reg->s32_max_value = reg->s32_min_value = u64_cval; 6315 reg->u32_max_value = reg->u32_min_value = u64_cval; 6316 return; 6317 } 6318 6319 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6320 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6321 6322 if (top_smax_value != top_smin_value) 6323 goto out; 6324 6325 /* find the s64_min and s64_min after sign extension */ 6326 if (size == 1) { 6327 init_s64_max = (s8)reg->smax_value; 6328 init_s64_min = (s8)reg->smin_value; 6329 } else if (size == 2) { 6330 init_s64_max = (s16)reg->smax_value; 6331 init_s64_min = (s16)reg->smin_value; 6332 } else { 6333 init_s64_max = (s32)reg->smax_value; 6334 init_s64_min = (s32)reg->smin_value; 6335 } 6336 6337 s64_max = max(init_s64_max, init_s64_min); 6338 s64_min = min(init_s64_max, init_s64_min); 6339 6340 /* both of s64_max/s64_min positive or negative */ 6341 if ((s64_max >= 0) == (s64_min >= 0)) { 6342 reg->s32_min_value = reg->smin_value = s64_min; 6343 reg->s32_max_value = reg->smax_value = s64_max; 6344 reg->u32_min_value = reg->umin_value = s64_min; 6345 reg->u32_max_value = reg->umax_value = s64_max; 6346 reg->var_off = tnum_range(s64_min, s64_max); 6347 return; 6348 } 6349 6350 out: 6351 set_sext64_default_val(reg, size); 6352 } 6353 6354 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6355 { 6356 if (size == 1) { 6357 reg->s32_min_value = S8_MIN; 6358 reg->s32_max_value = S8_MAX; 6359 } else { 6360 /* size == 2 */ 6361 reg->s32_min_value = S16_MIN; 6362 reg->s32_max_value = S16_MAX; 6363 } 6364 reg->u32_min_value = 0; 6365 reg->u32_max_value = U32_MAX; 6366 reg->var_off = tnum_subreg(tnum_unknown); 6367 } 6368 6369 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6370 { 6371 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6372 u32 top_smax_value, top_smin_value; 6373 u32 num_bits = size * 8; 6374 6375 if (tnum_is_const(reg->var_off)) { 6376 u32_val = reg->var_off.value; 6377 if (size == 1) 6378 reg->var_off = tnum_const((s8)u32_val); 6379 else 6380 reg->var_off = tnum_const((s16)u32_val); 6381 6382 u32_val = reg->var_off.value; 6383 reg->s32_min_value = reg->s32_max_value = u32_val; 6384 reg->u32_min_value = reg->u32_max_value = u32_val; 6385 return; 6386 } 6387 6388 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6389 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6390 6391 if (top_smax_value != top_smin_value) 6392 goto out; 6393 6394 /* find the s32_min and s32_min after sign extension */ 6395 if (size == 1) { 6396 init_s32_max = (s8)reg->s32_max_value; 6397 init_s32_min = (s8)reg->s32_min_value; 6398 } else { 6399 /* size == 2 */ 6400 init_s32_max = (s16)reg->s32_max_value; 6401 init_s32_min = (s16)reg->s32_min_value; 6402 } 6403 s32_max = max(init_s32_max, init_s32_min); 6404 s32_min = min(init_s32_max, init_s32_min); 6405 6406 if ((s32_min >= 0) == (s32_max >= 0)) { 6407 reg->s32_min_value = s32_min; 6408 reg->s32_max_value = s32_max; 6409 reg->u32_min_value = (u32)s32_min; 6410 reg->u32_max_value = (u32)s32_max; 6411 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); 6412 return; 6413 } 6414 6415 out: 6416 set_sext32_default_val(reg, size); 6417 } 6418 6419 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6420 { 6421 /* A map is considered read-only if the following condition are true: 6422 * 6423 * 1) BPF program side cannot change any of the map content. The 6424 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6425 * and was set at map creation time. 6426 * 2) The map value(s) have been initialized from user space by a 6427 * loader and then "frozen", such that no new map update/delete 6428 * operations from syscall side are possible for the rest of 6429 * the map's lifetime from that point onwards. 6430 * 3) Any parallel/pending map update/delete operations from syscall 6431 * side have been completed. Only after that point, it's safe to 6432 * assume that map value(s) are immutable. 6433 */ 6434 return (map->map_flags & BPF_F_RDONLY_PROG) && 6435 READ_ONCE(map->frozen) && 6436 !bpf_map_write_active(map); 6437 } 6438 6439 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6440 bool is_ldsx) 6441 { 6442 void *ptr; 6443 u64 addr; 6444 int err; 6445 6446 err = map->ops->map_direct_value_addr(map, &addr, off); 6447 if (err) 6448 return err; 6449 ptr = (void *)(long)addr + off; 6450 6451 switch (size) { 6452 case sizeof(u8): 6453 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6454 break; 6455 case sizeof(u16): 6456 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6457 break; 6458 case sizeof(u32): 6459 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6460 break; 6461 case sizeof(u64): 6462 *val = *(u64 *)ptr; 6463 break; 6464 default: 6465 return -EINVAL; 6466 } 6467 return 0; 6468 } 6469 6470 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6471 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6472 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6473 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) 6474 6475 /* 6476 * Allow list few fields as RCU trusted or full trusted. 6477 * This logic doesn't allow mix tagging and will be removed once GCC supports 6478 * btf_type_tag. 6479 */ 6480 6481 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6482 BTF_TYPE_SAFE_RCU(struct task_struct) { 6483 const cpumask_t *cpus_ptr; 6484 struct css_set __rcu *cgroups; 6485 struct task_struct __rcu *real_parent; 6486 struct task_struct *group_leader; 6487 }; 6488 6489 BTF_TYPE_SAFE_RCU(struct cgroup) { 6490 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6491 struct kernfs_node *kn; 6492 }; 6493 6494 BTF_TYPE_SAFE_RCU(struct css_set) { 6495 struct cgroup *dfl_cgrp; 6496 }; 6497 6498 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6499 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6500 struct file __rcu *exe_file; 6501 }; 6502 6503 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6504 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6505 */ 6506 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6507 struct sock *sk; 6508 }; 6509 6510 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6511 struct sock *sk; 6512 }; 6513 6514 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6515 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6516 struct seq_file *seq; 6517 }; 6518 6519 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6520 struct bpf_iter_meta *meta; 6521 struct task_struct *task; 6522 }; 6523 6524 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6525 struct file *file; 6526 }; 6527 6528 BTF_TYPE_SAFE_TRUSTED(struct file) { 6529 struct inode *f_inode; 6530 }; 6531 6532 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6533 /* no negative dentry-s in places where bpf can see it */ 6534 struct inode *d_inode; 6535 }; 6536 6537 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { 6538 struct sock *sk; 6539 }; 6540 6541 static bool type_is_rcu(struct bpf_verifier_env *env, 6542 struct bpf_reg_state *reg, 6543 const char *field_name, u32 btf_id) 6544 { 6545 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6546 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6547 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6548 6549 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6550 } 6551 6552 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6553 struct bpf_reg_state *reg, 6554 const char *field_name, u32 btf_id) 6555 { 6556 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6557 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6558 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6559 6560 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6561 } 6562 6563 static bool type_is_trusted(struct bpf_verifier_env *env, 6564 struct bpf_reg_state *reg, 6565 const char *field_name, u32 btf_id) 6566 { 6567 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6568 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6569 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6570 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6571 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6572 6573 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6574 } 6575 6576 static bool type_is_trusted_or_null(struct bpf_verifier_env *env, 6577 struct bpf_reg_state *reg, 6578 const char *field_name, u32 btf_id) 6579 { 6580 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); 6581 6582 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, 6583 "__safe_trusted_or_null"); 6584 } 6585 6586 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6587 struct bpf_reg_state *regs, 6588 int regno, int off, int size, 6589 enum bpf_access_type atype, 6590 int value_regno) 6591 { 6592 struct bpf_reg_state *reg = regs + regno; 6593 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6594 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6595 const char *field_name = NULL; 6596 enum bpf_type_flag flag = 0; 6597 u32 btf_id = 0; 6598 int ret; 6599 6600 if (!env->allow_ptr_leaks) { 6601 verbose(env, 6602 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6603 tname); 6604 return -EPERM; 6605 } 6606 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6607 verbose(env, 6608 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6609 tname); 6610 return -EINVAL; 6611 } 6612 if (off < 0) { 6613 verbose(env, 6614 "R%d is ptr_%s invalid negative access: off=%d\n", 6615 regno, tname, off); 6616 return -EACCES; 6617 } 6618 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6619 char tn_buf[48]; 6620 6621 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6622 verbose(env, 6623 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6624 regno, tname, off, tn_buf); 6625 return -EACCES; 6626 } 6627 6628 if (reg->type & MEM_USER) { 6629 verbose(env, 6630 "R%d is ptr_%s access user memory: off=%d\n", 6631 regno, tname, off); 6632 return -EACCES; 6633 } 6634 6635 if (reg->type & MEM_PERCPU) { 6636 verbose(env, 6637 "R%d is ptr_%s access percpu memory: off=%d\n", 6638 regno, tname, off); 6639 return -EACCES; 6640 } 6641 6642 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6643 if (!btf_is_kernel(reg->btf)) { 6644 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6645 return -EFAULT; 6646 } 6647 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6648 } else { 6649 /* Writes are permitted with default btf_struct_access for 6650 * program allocated objects (which always have ref_obj_id > 0), 6651 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6652 */ 6653 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6654 verbose(env, "only read is supported\n"); 6655 return -EACCES; 6656 } 6657 6658 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6659 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 6660 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6661 return -EFAULT; 6662 } 6663 6664 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6665 } 6666 6667 if (ret < 0) 6668 return ret; 6669 6670 if (ret != PTR_TO_BTF_ID) { 6671 /* just mark; */ 6672 6673 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6674 /* If this is an untrusted pointer, all pointers formed by walking it 6675 * also inherit the untrusted flag. 6676 */ 6677 flag = PTR_UNTRUSTED; 6678 6679 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6680 /* By default any pointer obtained from walking a trusted pointer is no 6681 * longer trusted, unless the field being accessed has explicitly been 6682 * marked as inheriting its parent's state of trust (either full or RCU). 6683 * For example: 6684 * 'cgroups' pointer is untrusted if task->cgroups dereference 6685 * happened in a sleepable program outside of bpf_rcu_read_lock() 6686 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6687 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6688 * 6689 * A regular RCU-protected pointer with __rcu tag can also be deemed 6690 * trusted if we are in an RCU CS. Such pointer can be NULL. 6691 */ 6692 if (type_is_trusted(env, reg, field_name, btf_id)) { 6693 flag |= PTR_TRUSTED; 6694 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { 6695 flag |= PTR_TRUSTED | PTR_MAYBE_NULL; 6696 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6697 if (type_is_rcu(env, reg, field_name, btf_id)) { 6698 /* ignore __rcu tag and mark it MEM_RCU */ 6699 flag |= MEM_RCU; 6700 } else if (flag & MEM_RCU || 6701 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6702 /* __rcu tagged pointers can be NULL */ 6703 flag |= MEM_RCU | PTR_MAYBE_NULL; 6704 6705 /* We always trust them */ 6706 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6707 flag & PTR_UNTRUSTED) 6708 flag &= ~PTR_UNTRUSTED; 6709 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6710 /* keep as-is */ 6711 } else { 6712 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6713 clear_trusted_flags(&flag); 6714 } 6715 } else { 6716 /* 6717 * If not in RCU CS or MEM_RCU pointer can be NULL then 6718 * aggressively mark as untrusted otherwise such 6719 * pointers will be plain PTR_TO_BTF_ID without flags 6720 * and will be allowed to be passed into helpers for 6721 * compat reasons. 6722 */ 6723 flag = PTR_UNTRUSTED; 6724 } 6725 } else { 6726 /* Old compat. Deprecated */ 6727 clear_trusted_flags(&flag); 6728 } 6729 6730 if (atype == BPF_READ && value_regno >= 0) 6731 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6732 6733 return 0; 6734 } 6735 6736 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6737 struct bpf_reg_state *regs, 6738 int regno, int off, int size, 6739 enum bpf_access_type atype, 6740 int value_regno) 6741 { 6742 struct bpf_reg_state *reg = regs + regno; 6743 struct bpf_map *map = reg->map_ptr; 6744 struct bpf_reg_state map_reg; 6745 enum bpf_type_flag flag = 0; 6746 const struct btf_type *t; 6747 const char *tname; 6748 u32 btf_id; 6749 int ret; 6750 6751 if (!btf_vmlinux) { 6752 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6753 return -ENOTSUPP; 6754 } 6755 6756 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6757 verbose(env, "map_ptr access not supported for map type %d\n", 6758 map->map_type); 6759 return -ENOTSUPP; 6760 } 6761 6762 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6763 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6764 6765 if (!env->allow_ptr_leaks) { 6766 verbose(env, 6767 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6768 tname); 6769 return -EPERM; 6770 } 6771 6772 if (off < 0) { 6773 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6774 regno, tname, off); 6775 return -EACCES; 6776 } 6777 6778 if (atype != BPF_READ) { 6779 verbose(env, "only read from %s is supported\n", tname); 6780 return -EACCES; 6781 } 6782 6783 /* Simulate access to a PTR_TO_BTF_ID */ 6784 memset(&map_reg, 0, sizeof(map_reg)); 6785 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6786 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6787 if (ret < 0) 6788 return ret; 6789 6790 if (value_regno >= 0) 6791 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6792 6793 return 0; 6794 } 6795 6796 /* Check that the stack access at the given offset is within bounds. The 6797 * maximum valid offset is -1. 6798 * 6799 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6800 * -state->allocated_stack for reads. 6801 */ 6802 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 6803 s64 off, 6804 struct bpf_func_state *state, 6805 enum bpf_access_type t) 6806 { 6807 struct bpf_insn_aux_data *aux = &env->insn_aux_data[env->insn_idx]; 6808 int min_valid_off, max_bpf_stack; 6809 6810 /* If accessing instruction is a spill/fill from bpf_fastcall pattern, 6811 * add room for all caller saved registers below MAX_BPF_STACK. 6812 * In case if bpf_fastcall rewrite won't happen maximal stack depth 6813 * would be checked by check_max_stack_depth_subprog(). 6814 */ 6815 max_bpf_stack = MAX_BPF_STACK; 6816 if (aux->fastcall_pattern) 6817 max_bpf_stack += CALLER_SAVED_REGS * BPF_REG_SIZE; 6818 6819 if (t == BPF_WRITE || env->allow_uninit_stack) 6820 min_valid_off = -max_bpf_stack; 6821 else 6822 min_valid_off = -state->allocated_stack; 6823 6824 if (off < min_valid_off || off > -1) 6825 return -EACCES; 6826 return 0; 6827 } 6828 6829 /* Check that the stack access at 'regno + off' falls within the maximum stack 6830 * bounds. 6831 * 6832 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6833 */ 6834 static int check_stack_access_within_bounds( 6835 struct bpf_verifier_env *env, 6836 int regno, int off, int access_size, 6837 enum bpf_access_src src, enum bpf_access_type type) 6838 { 6839 struct bpf_reg_state *regs = cur_regs(env); 6840 struct bpf_reg_state *reg = regs + regno; 6841 struct bpf_func_state *state = func(env, reg); 6842 s64 min_off, max_off; 6843 int err; 6844 char *err_extra; 6845 6846 if (src == ACCESS_HELPER) 6847 /* We don't know if helpers are reading or writing (or both). */ 6848 err_extra = " indirect access to"; 6849 else if (type == BPF_READ) 6850 err_extra = " read from"; 6851 else 6852 err_extra = " write to"; 6853 6854 if (tnum_is_const(reg->var_off)) { 6855 min_off = (s64)reg->var_off.value + off; 6856 max_off = min_off + access_size; 6857 } else { 6858 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6859 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6860 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6861 err_extra, regno); 6862 return -EACCES; 6863 } 6864 min_off = reg->smin_value + off; 6865 max_off = reg->smax_value + off + access_size; 6866 } 6867 6868 err = check_stack_slot_within_bounds(env, min_off, state, type); 6869 if (!err && max_off > 0) 6870 err = -EINVAL; /* out of stack access into non-negative offsets */ 6871 if (!err && access_size < 0) 6872 /* access_size should not be negative (or overflow an int); others checks 6873 * along the way should have prevented such an access. 6874 */ 6875 err = -EFAULT; /* invalid negative access size; integer overflow? */ 6876 6877 if (err) { 6878 if (tnum_is_const(reg->var_off)) { 6879 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6880 err_extra, regno, off, access_size); 6881 } else { 6882 char tn_buf[48]; 6883 6884 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6885 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", 6886 err_extra, regno, tn_buf, off, access_size); 6887 } 6888 return err; 6889 } 6890 6891 /* Note that there is no stack access with offset zero, so the needed stack 6892 * size is -min_off, not -min_off+1. 6893 */ 6894 return grow_stack_state(env, state, -min_off /* size */); 6895 } 6896 6897 static bool get_func_retval_range(struct bpf_prog *prog, 6898 struct bpf_retval_range *range) 6899 { 6900 if (prog->type == BPF_PROG_TYPE_LSM && 6901 prog->expected_attach_type == BPF_LSM_MAC && 6902 !bpf_lsm_get_retval_range(prog, range)) { 6903 return true; 6904 } 6905 return false; 6906 } 6907 6908 /* check whether memory at (regno + off) is accessible for t = (read | write) 6909 * if t==write, value_regno is a register which value is stored into memory 6910 * if t==read, value_regno is a register which will receive the value from memory 6911 * if t==write && value_regno==-1, some unknown value is stored into memory 6912 * if t==read && value_regno==-1, don't care what we read from memory 6913 */ 6914 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6915 int off, int bpf_size, enum bpf_access_type t, 6916 int value_regno, bool strict_alignment_once, bool is_ldsx) 6917 { 6918 struct bpf_reg_state *regs = cur_regs(env); 6919 struct bpf_reg_state *reg = regs + regno; 6920 int size, err = 0; 6921 6922 size = bpf_size_to_bytes(bpf_size); 6923 if (size < 0) 6924 return size; 6925 6926 /* alignment checks will add in reg->off themselves */ 6927 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6928 if (err) 6929 return err; 6930 6931 /* for access checks, reg->off is just part of off */ 6932 off += reg->off; 6933 6934 if (reg->type == PTR_TO_MAP_KEY) { 6935 if (t == BPF_WRITE) { 6936 verbose(env, "write to change key R%d not allowed\n", regno); 6937 return -EACCES; 6938 } 6939 6940 err = check_mem_region_access(env, regno, off, size, 6941 reg->map_ptr->key_size, false); 6942 if (err) 6943 return err; 6944 if (value_regno >= 0) 6945 mark_reg_unknown(env, regs, value_regno); 6946 } else if (reg->type == PTR_TO_MAP_VALUE) { 6947 struct btf_field *kptr_field = NULL; 6948 6949 if (t == BPF_WRITE && value_regno >= 0 && 6950 is_pointer_value(env, value_regno)) { 6951 verbose(env, "R%d leaks addr into map\n", value_regno); 6952 return -EACCES; 6953 } 6954 err = check_map_access_type(env, regno, off, size, t); 6955 if (err) 6956 return err; 6957 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6958 if (err) 6959 return err; 6960 if (tnum_is_const(reg->var_off)) 6961 kptr_field = btf_record_find(reg->map_ptr->record, 6962 off + reg->var_off.value, BPF_KPTR); 6963 if (kptr_field) { 6964 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6965 } else if (t == BPF_READ && value_regno >= 0) { 6966 struct bpf_map *map = reg->map_ptr; 6967 6968 /* if map is read-only, track its contents as scalars */ 6969 if (tnum_is_const(reg->var_off) && 6970 bpf_map_is_rdonly(map) && 6971 map->ops->map_direct_value_addr) { 6972 int map_off = off + reg->var_off.value; 6973 u64 val = 0; 6974 6975 err = bpf_map_direct_read(map, map_off, size, 6976 &val, is_ldsx); 6977 if (err) 6978 return err; 6979 6980 regs[value_regno].type = SCALAR_VALUE; 6981 __mark_reg_known(®s[value_regno], val); 6982 } else { 6983 mark_reg_unknown(env, regs, value_regno); 6984 } 6985 } 6986 } else if (base_type(reg->type) == PTR_TO_MEM) { 6987 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6988 6989 if (type_may_be_null(reg->type)) { 6990 verbose(env, "R%d invalid mem access '%s'\n", regno, 6991 reg_type_str(env, reg->type)); 6992 return -EACCES; 6993 } 6994 6995 if (t == BPF_WRITE && rdonly_mem) { 6996 verbose(env, "R%d cannot write into %s\n", 6997 regno, reg_type_str(env, reg->type)); 6998 return -EACCES; 6999 } 7000 7001 if (t == BPF_WRITE && value_regno >= 0 && 7002 is_pointer_value(env, value_regno)) { 7003 verbose(env, "R%d leaks addr into mem\n", value_regno); 7004 return -EACCES; 7005 } 7006 7007 err = check_mem_region_access(env, regno, off, size, 7008 reg->mem_size, false); 7009 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 7010 mark_reg_unknown(env, regs, value_regno); 7011 } else if (reg->type == PTR_TO_CTX) { 7012 bool is_retval = false; 7013 struct bpf_retval_range range; 7014 enum bpf_reg_type reg_type = SCALAR_VALUE; 7015 struct btf *btf = NULL; 7016 u32 btf_id = 0; 7017 7018 if (t == BPF_WRITE && value_regno >= 0 && 7019 is_pointer_value(env, value_regno)) { 7020 verbose(env, "R%d leaks addr into ctx\n", value_regno); 7021 return -EACCES; 7022 } 7023 7024 err = check_ptr_off_reg(env, reg, regno); 7025 if (err < 0) 7026 return err; 7027 7028 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 7029 &btf_id, &is_retval, is_ldsx); 7030 if (err) 7031 verbose_linfo(env, insn_idx, "; "); 7032 if (!err && t == BPF_READ && value_regno >= 0) { 7033 /* ctx access returns either a scalar, or a 7034 * PTR_TO_PACKET[_META,_END]. In the latter 7035 * case, we know the offset is zero. 7036 */ 7037 if (reg_type == SCALAR_VALUE) { 7038 if (is_retval && get_func_retval_range(env->prog, &range)) { 7039 err = __mark_reg_s32_range(env, regs, value_regno, 7040 range.minval, range.maxval); 7041 if (err) 7042 return err; 7043 } else { 7044 mark_reg_unknown(env, regs, value_regno); 7045 } 7046 } else { 7047 mark_reg_known_zero(env, regs, 7048 value_regno); 7049 if (type_may_be_null(reg_type)) 7050 regs[value_regno].id = ++env->id_gen; 7051 /* A load of ctx field could have different 7052 * actual load size with the one encoded in the 7053 * insn. When the dst is PTR, it is for sure not 7054 * a sub-register. 7055 */ 7056 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 7057 if (base_type(reg_type) == PTR_TO_BTF_ID) { 7058 regs[value_regno].btf = btf; 7059 regs[value_regno].btf_id = btf_id; 7060 } 7061 } 7062 regs[value_regno].type = reg_type; 7063 } 7064 7065 } else if (reg->type == PTR_TO_STACK) { 7066 /* Basic bounds checks. */ 7067 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 7068 if (err) 7069 return err; 7070 7071 if (t == BPF_READ) 7072 err = check_stack_read(env, regno, off, size, 7073 value_regno); 7074 else 7075 err = check_stack_write(env, regno, off, size, 7076 value_regno, insn_idx); 7077 } else if (reg_is_pkt_pointer(reg)) { 7078 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 7079 verbose(env, "cannot write into packet\n"); 7080 return -EACCES; 7081 } 7082 if (t == BPF_WRITE && value_regno >= 0 && 7083 is_pointer_value(env, value_regno)) { 7084 verbose(env, "R%d leaks addr into packet\n", 7085 value_regno); 7086 return -EACCES; 7087 } 7088 err = check_packet_access(env, regno, off, size, false); 7089 if (!err && t == BPF_READ && value_regno >= 0) 7090 mark_reg_unknown(env, regs, value_regno); 7091 } else if (reg->type == PTR_TO_FLOW_KEYS) { 7092 if (t == BPF_WRITE && value_regno >= 0 && 7093 is_pointer_value(env, value_regno)) { 7094 verbose(env, "R%d leaks addr into flow keys\n", 7095 value_regno); 7096 return -EACCES; 7097 } 7098 7099 err = check_flow_keys_access(env, off, size); 7100 if (!err && t == BPF_READ && value_regno >= 0) 7101 mark_reg_unknown(env, regs, value_regno); 7102 } else if (type_is_sk_pointer(reg->type)) { 7103 if (t == BPF_WRITE) { 7104 verbose(env, "R%d cannot write into %s\n", 7105 regno, reg_type_str(env, reg->type)); 7106 return -EACCES; 7107 } 7108 err = check_sock_access(env, insn_idx, regno, off, size, t); 7109 if (!err && value_regno >= 0) 7110 mark_reg_unknown(env, regs, value_regno); 7111 } else if (reg->type == PTR_TO_TP_BUFFER) { 7112 err = check_tp_buffer_access(env, reg, regno, off, size); 7113 if (!err && t == BPF_READ && value_regno >= 0) 7114 mark_reg_unknown(env, regs, value_regno); 7115 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 7116 !type_may_be_null(reg->type)) { 7117 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 7118 value_regno); 7119 } else if (reg->type == CONST_PTR_TO_MAP) { 7120 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 7121 value_regno); 7122 } else if (base_type(reg->type) == PTR_TO_BUF) { 7123 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7124 u32 *max_access; 7125 7126 if (rdonly_mem) { 7127 if (t == BPF_WRITE) { 7128 verbose(env, "R%d cannot write into %s\n", 7129 regno, reg_type_str(env, reg->type)); 7130 return -EACCES; 7131 } 7132 max_access = &env->prog->aux->max_rdonly_access; 7133 } else { 7134 max_access = &env->prog->aux->max_rdwr_access; 7135 } 7136 7137 err = check_buffer_access(env, reg, regno, off, size, false, 7138 max_access); 7139 7140 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 7141 mark_reg_unknown(env, regs, value_regno); 7142 } else if (reg->type == PTR_TO_ARENA) { 7143 if (t == BPF_READ && value_regno >= 0) 7144 mark_reg_unknown(env, regs, value_regno); 7145 } else { 7146 verbose(env, "R%d invalid mem access '%s'\n", regno, 7147 reg_type_str(env, reg->type)); 7148 return -EACCES; 7149 } 7150 7151 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 7152 regs[value_regno].type == SCALAR_VALUE) { 7153 if (!is_ldsx) 7154 /* b/h/w load zero-extends, mark upper bits as known 0 */ 7155 coerce_reg_to_size(®s[value_regno], size); 7156 else 7157 coerce_reg_to_size_sx(®s[value_regno], size); 7158 } 7159 return err; 7160 } 7161 7162 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 7163 bool allow_trust_mismatch); 7164 7165 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 7166 { 7167 int load_reg; 7168 int err; 7169 7170 switch (insn->imm) { 7171 case BPF_ADD: 7172 case BPF_ADD | BPF_FETCH: 7173 case BPF_AND: 7174 case BPF_AND | BPF_FETCH: 7175 case BPF_OR: 7176 case BPF_OR | BPF_FETCH: 7177 case BPF_XOR: 7178 case BPF_XOR | BPF_FETCH: 7179 case BPF_XCHG: 7180 case BPF_CMPXCHG: 7181 break; 7182 default: 7183 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 7184 return -EINVAL; 7185 } 7186 7187 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 7188 verbose(env, "invalid atomic operand size\n"); 7189 return -EINVAL; 7190 } 7191 7192 /* check src1 operand */ 7193 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7194 if (err) 7195 return err; 7196 7197 /* check src2 operand */ 7198 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7199 if (err) 7200 return err; 7201 7202 if (insn->imm == BPF_CMPXCHG) { 7203 /* Check comparison of R0 with memory location */ 7204 const u32 aux_reg = BPF_REG_0; 7205 7206 err = check_reg_arg(env, aux_reg, SRC_OP); 7207 if (err) 7208 return err; 7209 7210 if (is_pointer_value(env, aux_reg)) { 7211 verbose(env, "R%d leaks addr into mem\n", aux_reg); 7212 return -EACCES; 7213 } 7214 } 7215 7216 if (is_pointer_value(env, insn->src_reg)) { 7217 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 7218 return -EACCES; 7219 } 7220 7221 if (is_ctx_reg(env, insn->dst_reg) || 7222 is_pkt_reg(env, insn->dst_reg) || 7223 is_flow_key_reg(env, insn->dst_reg) || 7224 is_sk_reg(env, insn->dst_reg) || 7225 (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) { 7226 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7227 insn->dst_reg, 7228 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7229 return -EACCES; 7230 } 7231 7232 if (insn->imm & BPF_FETCH) { 7233 if (insn->imm == BPF_CMPXCHG) 7234 load_reg = BPF_REG_0; 7235 else 7236 load_reg = insn->src_reg; 7237 7238 /* check and record load of old value */ 7239 err = check_reg_arg(env, load_reg, DST_OP); 7240 if (err) 7241 return err; 7242 } else { 7243 /* This instruction accesses a memory location but doesn't 7244 * actually load it into a register. 7245 */ 7246 load_reg = -1; 7247 } 7248 7249 /* Check whether we can read the memory, with second call for fetch 7250 * case to simulate the register fill. 7251 */ 7252 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7253 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7254 if (!err && load_reg >= 0) 7255 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7256 BPF_SIZE(insn->code), BPF_READ, load_reg, 7257 true, false); 7258 if (err) 7259 return err; 7260 7261 if (is_arena_reg(env, insn->dst_reg)) { 7262 err = save_aux_ptr_type(env, PTR_TO_ARENA, false); 7263 if (err) 7264 return err; 7265 } 7266 /* Check whether we can write into the same memory. */ 7267 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7268 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7269 if (err) 7270 return err; 7271 return 0; 7272 } 7273 7274 /* When register 'regno' is used to read the stack (either directly or through 7275 * a helper function) make sure that it's within stack boundary and, depending 7276 * on the access type and privileges, that all elements of the stack are 7277 * initialized. 7278 * 7279 * 'off' includes 'regno->off', but not its dynamic part (if any). 7280 * 7281 * All registers that have been spilled on the stack in the slots within the 7282 * read offsets are marked as read. 7283 */ 7284 static int check_stack_range_initialized( 7285 struct bpf_verifier_env *env, int regno, int off, 7286 int access_size, bool zero_size_allowed, 7287 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 7288 { 7289 struct bpf_reg_state *reg = reg_state(env, regno); 7290 struct bpf_func_state *state = func(env, reg); 7291 int err, min_off, max_off, i, j, slot, spi; 7292 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 7293 enum bpf_access_type bounds_check_type; 7294 /* Some accesses can write anything into the stack, others are 7295 * read-only. 7296 */ 7297 bool clobber = false; 7298 7299 if (access_size == 0 && !zero_size_allowed) { 7300 verbose(env, "invalid zero-sized read\n"); 7301 return -EACCES; 7302 } 7303 7304 if (type == ACCESS_HELPER) { 7305 /* The bounds checks for writes are more permissive than for 7306 * reads. However, if raw_mode is not set, we'll do extra 7307 * checks below. 7308 */ 7309 bounds_check_type = BPF_WRITE; 7310 clobber = true; 7311 } else { 7312 bounds_check_type = BPF_READ; 7313 } 7314 err = check_stack_access_within_bounds(env, regno, off, access_size, 7315 type, bounds_check_type); 7316 if (err) 7317 return err; 7318 7319 7320 if (tnum_is_const(reg->var_off)) { 7321 min_off = max_off = reg->var_off.value + off; 7322 } else { 7323 /* Variable offset is prohibited for unprivileged mode for 7324 * simplicity since it requires corresponding support in 7325 * Spectre masking for stack ALU. 7326 * See also retrieve_ptr_limit(). 7327 */ 7328 if (!env->bypass_spec_v1) { 7329 char tn_buf[48]; 7330 7331 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7332 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 7333 regno, err_extra, tn_buf); 7334 return -EACCES; 7335 } 7336 /* Only initialized buffer on stack is allowed to be accessed 7337 * with variable offset. With uninitialized buffer it's hard to 7338 * guarantee that whole memory is marked as initialized on 7339 * helper return since specific bounds are unknown what may 7340 * cause uninitialized stack leaking. 7341 */ 7342 if (meta && meta->raw_mode) 7343 meta = NULL; 7344 7345 min_off = reg->smin_value + off; 7346 max_off = reg->smax_value + off; 7347 } 7348 7349 if (meta && meta->raw_mode) { 7350 /* Ensure we won't be overwriting dynptrs when simulating byte 7351 * by byte access in check_helper_call using meta.access_size. 7352 * This would be a problem if we have a helper in the future 7353 * which takes: 7354 * 7355 * helper(uninit_mem, len, dynptr) 7356 * 7357 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7358 * may end up writing to dynptr itself when touching memory from 7359 * arg 1. This can be relaxed on a case by case basis for known 7360 * safe cases, but reject due to the possibilitiy of aliasing by 7361 * default. 7362 */ 7363 for (i = min_off; i < max_off + access_size; i++) { 7364 int stack_off = -i - 1; 7365 7366 spi = __get_spi(i); 7367 /* raw_mode may write past allocated_stack */ 7368 if (state->allocated_stack <= stack_off) 7369 continue; 7370 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7371 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7372 return -EACCES; 7373 } 7374 } 7375 meta->access_size = access_size; 7376 meta->regno = regno; 7377 return 0; 7378 } 7379 7380 for (i = min_off; i < max_off + access_size; i++) { 7381 u8 *stype; 7382 7383 slot = -i - 1; 7384 spi = slot / BPF_REG_SIZE; 7385 if (state->allocated_stack <= slot) { 7386 verbose(env, "verifier bug: allocated_stack too small"); 7387 return -EFAULT; 7388 } 7389 7390 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7391 if (*stype == STACK_MISC) 7392 goto mark; 7393 if ((*stype == STACK_ZERO) || 7394 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7395 if (clobber) { 7396 /* helper can write anything into the stack */ 7397 *stype = STACK_MISC; 7398 } 7399 goto mark; 7400 } 7401 7402 if (is_spilled_reg(&state->stack[spi]) && 7403 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7404 env->allow_ptr_leaks)) { 7405 if (clobber) { 7406 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7407 for (j = 0; j < BPF_REG_SIZE; j++) 7408 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7409 } 7410 goto mark; 7411 } 7412 7413 if (tnum_is_const(reg->var_off)) { 7414 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 7415 err_extra, regno, min_off, i - min_off, access_size); 7416 } else { 7417 char tn_buf[48]; 7418 7419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7420 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 7421 err_extra, regno, tn_buf, i - min_off, access_size); 7422 } 7423 return -EACCES; 7424 mark: 7425 /* reading any byte out of 8-byte 'spill_slot' will cause 7426 * the whole slot to be marked as 'read' 7427 */ 7428 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7429 state->stack[spi].spilled_ptr.parent, 7430 REG_LIVE_READ64); 7431 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7432 * be sure that whether stack slot is written to or not. Hence, 7433 * we must still conservatively propagate reads upwards even if 7434 * helper may write to the entire memory range. 7435 */ 7436 } 7437 return 0; 7438 } 7439 7440 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7441 int access_size, enum bpf_access_type access_type, 7442 bool zero_size_allowed, 7443 struct bpf_call_arg_meta *meta) 7444 { 7445 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7446 u32 *max_access; 7447 7448 switch (base_type(reg->type)) { 7449 case PTR_TO_PACKET: 7450 case PTR_TO_PACKET_META: 7451 return check_packet_access(env, regno, reg->off, access_size, 7452 zero_size_allowed); 7453 case PTR_TO_MAP_KEY: 7454 if (access_type == BPF_WRITE) { 7455 verbose(env, "R%d cannot write into %s\n", regno, 7456 reg_type_str(env, reg->type)); 7457 return -EACCES; 7458 } 7459 return check_mem_region_access(env, regno, reg->off, access_size, 7460 reg->map_ptr->key_size, false); 7461 case PTR_TO_MAP_VALUE: 7462 if (check_map_access_type(env, regno, reg->off, access_size, access_type)) 7463 return -EACCES; 7464 return check_map_access(env, regno, reg->off, access_size, 7465 zero_size_allowed, ACCESS_HELPER); 7466 case PTR_TO_MEM: 7467 if (type_is_rdonly_mem(reg->type)) { 7468 if (access_type == BPF_WRITE) { 7469 verbose(env, "R%d cannot write into %s\n", regno, 7470 reg_type_str(env, reg->type)); 7471 return -EACCES; 7472 } 7473 } 7474 return check_mem_region_access(env, regno, reg->off, 7475 access_size, reg->mem_size, 7476 zero_size_allowed); 7477 case PTR_TO_BUF: 7478 if (type_is_rdonly_mem(reg->type)) { 7479 if (access_type == BPF_WRITE) { 7480 verbose(env, "R%d cannot write into %s\n", regno, 7481 reg_type_str(env, reg->type)); 7482 return -EACCES; 7483 } 7484 7485 max_access = &env->prog->aux->max_rdonly_access; 7486 } else { 7487 max_access = &env->prog->aux->max_rdwr_access; 7488 } 7489 return check_buffer_access(env, reg, regno, reg->off, 7490 access_size, zero_size_allowed, 7491 max_access); 7492 case PTR_TO_STACK: 7493 return check_stack_range_initialized( 7494 env, 7495 regno, reg->off, access_size, 7496 zero_size_allowed, ACCESS_HELPER, meta); 7497 case PTR_TO_BTF_ID: 7498 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7499 access_size, BPF_READ, -1); 7500 case PTR_TO_CTX: 7501 /* in case the function doesn't know how to access the context, 7502 * (because we are in a program of type SYSCALL for example), we 7503 * can not statically check its size. 7504 * Dynamically check it now. 7505 */ 7506 if (!env->ops->convert_ctx_access) { 7507 int offset = access_size - 1; 7508 7509 /* Allow zero-byte read from PTR_TO_CTX */ 7510 if (access_size == 0) 7511 return zero_size_allowed ? 0 : -EACCES; 7512 7513 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7514 access_type, -1, false, false); 7515 } 7516 7517 fallthrough; 7518 default: /* scalar_value or invalid ptr */ 7519 /* Allow zero-byte read from NULL, regardless of pointer type */ 7520 if (zero_size_allowed && access_size == 0 && 7521 register_is_null(reg)) 7522 return 0; 7523 7524 verbose(env, "R%d type=%s ", regno, 7525 reg_type_str(env, reg->type)); 7526 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7527 return -EACCES; 7528 } 7529 } 7530 7531 /* verify arguments to helpers or kfuncs consisting of a pointer and an access 7532 * size. 7533 * 7534 * @regno is the register containing the access size. regno-1 is the register 7535 * containing the pointer. 7536 */ 7537 static int check_mem_size_reg(struct bpf_verifier_env *env, 7538 struct bpf_reg_state *reg, u32 regno, 7539 enum bpf_access_type access_type, 7540 bool zero_size_allowed, 7541 struct bpf_call_arg_meta *meta) 7542 { 7543 int err; 7544 7545 /* This is used to refine r0 return value bounds for helpers 7546 * that enforce this value as an upper bound on return values. 7547 * See do_refine_retval_range() for helpers that can refine 7548 * the return value. C type of helper is u32 so we pull register 7549 * bound from umax_value however, if negative verifier errors 7550 * out. Only upper bounds can be learned because retval is an 7551 * int type and negative retvals are allowed. 7552 */ 7553 meta->msize_max_value = reg->umax_value; 7554 7555 /* The register is SCALAR_VALUE; the access check happens using 7556 * its boundaries. For unprivileged variable accesses, disable 7557 * raw mode so that the program is required to initialize all 7558 * the memory that the helper could just partially fill up. 7559 */ 7560 if (!tnum_is_const(reg->var_off)) 7561 meta = NULL; 7562 7563 if (reg->smin_value < 0) { 7564 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7565 regno); 7566 return -EACCES; 7567 } 7568 7569 if (reg->umin_value == 0 && !zero_size_allowed) { 7570 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", 7571 regno, reg->umin_value, reg->umax_value); 7572 return -EACCES; 7573 } 7574 7575 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7576 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7577 regno); 7578 return -EACCES; 7579 } 7580 err = check_helper_mem_access(env, regno - 1, reg->umax_value, 7581 access_type, zero_size_allowed, meta); 7582 if (!err) 7583 err = mark_chain_precision(env, regno); 7584 return err; 7585 } 7586 7587 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7588 u32 regno, u32 mem_size) 7589 { 7590 bool may_be_null = type_may_be_null(reg->type); 7591 struct bpf_reg_state saved_reg; 7592 int err; 7593 7594 if (register_is_null(reg)) 7595 return 0; 7596 7597 /* Assuming that the register contains a value check if the memory 7598 * access is safe. Temporarily save and restore the register's state as 7599 * the conversion shouldn't be visible to a caller. 7600 */ 7601 if (may_be_null) { 7602 saved_reg = *reg; 7603 mark_ptr_not_null_reg(reg); 7604 } 7605 7606 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL); 7607 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL); 7608 7609 if (may_be_null) 7610 *reg = saved_reg; 7611 7612 return err; 7613 } 7614 7615 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7616 u32 regno) 7617 { 7618 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7619 bool may_be_null = type_may_be_null(mem_reg->type); 7620 struct bpf_reg_state saved_reg; 7621 struct bpf_call_arg_meta meta; 7622 int err; 7623 7624 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7625 7626 memset(&meta, 0, sizeof(meta)); 7627 7628 if (may_be_null) { 7629 saved_reg = *mem_reg; 7630 mark_ptr_not_null_reg(mem_reg); 7631 } 7632 7633 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta); 7634 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta); 7635 7636 if (may_be_null) 7637 *mem_reg = saved_reg; 7638 7639 return err; 7640 } 7641 7642 /* Implementation details: 7643 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7644 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7645 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7646 * Two separate bpf_obj_new will also have different reg->id. 7647 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7648 * clears reg->id after value_or_null->value transition, since the verifier only 7649 * cares about the range of access to valid map value pointer and doesn't care 7650 * about actual address of the map element. 7651 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7652 * reg->id > 0 after value_or_null->value transition. By doing so 7653 * two bpf_map_lookups will be considered two different pointers that 7654 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7655 * returned from bpf_obj_new. 7656 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7657 * dead-locks. 7658 * Since only one bpf_spin_lock is allowed the checks are simpler than 7659 * reg_is_refcounted() logic. The verifier needs to remember only 7660 * one spin_lock instead of array of acquired_refs. 7661 * cur_state->active_lock remembers which map value element or allocated 7662 * object got locked and clears it after bpf_spin_unlock. 7663 */ 7664 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7665 bool is_lock) 7666 { 7667 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7668 struct bpf_verifier_state *cur = env->cur_state; 7669 bool is_const = tnum_is_const(reg->var_off); 7670 u64 val = reg->var_off.value; 7671 struct bpf_map *map = NULL; 7672 struct btf *btf = NULL; 7673 struct btf_record *rec; 7674 7675 if (!is_const) { 7676 verbose(env, 7677 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7678 regno); 7679 return -EINVAL; 7680 } 7681 if (reg->type == PTR_TO_MAP_VALUE) { 7682 map = reg->map_ptr; 7683 if (!map->btf) { 7684 verbose(env, 7685 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7686 map->name); 7687 return -EINVAL; 7688 } 7689 } else { 7690 btf = reg->btf; 7691 } 7692 7693 rec = reg_btf_record(reg); 7694 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7695 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7696 map ? map->name : "kptr"); 7697 return -EINVAL; 7698 } 7699 if (rec->spin_lock_off != val + reg->off) { 7700 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7701 val + reg->off, rec->spin_lock_off); 7702 return -EINVAL; 7703 } 7704 if (is_lock) { 7705 if (cur->active_lock.ptr) { 7706 verbose(env, 7707 "Locking two bpf_spin_locks are not allowed\n"); 7708 return -EINVAL; 7709 } 7710 if (map) 7711 cur->active_lock.ptr = map; 7712 else 7713 cur->active_lock.ptr = btf; 7714 cur->active_lock.id = reg->id; 7715 } else { 7716 void *ptr; 7717 7718 if (map) 7719 ptr = map; 7720 else 7721 ptr = btf; 7722 7723 if (!cur->active_lock.ptr) { 7724 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7725 return -EINVAL; 7726 } 7727 if (cur->active_lock.ptr != ptr || 7728 cur->active_lock.id != reg->id) { 7729 verbose(env, "bpf_spin_unlock of different lock\n"); 7730 return -EINVAL; 7731 } 7732 7733 invalidate_non_owning_refs(env); 7734 7735 cur->active_lock.ptr = NULL; 7736 cur->active_lock.id = 0; 7737 } 7738 return 0; 7739 } 7740 7741 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7742 struct bpf_call_arg_meta *meta) 7743 { 7744 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7745 bool is_const = tnum_is_const(reg->var_off); 7746 struct bpf_map *map = reg->map_ptr; 7747 u64 val = reg->var_off.value; 7748 7749 if (!is_const) { 7750 verbose(env, 7751 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7752 regno); 7753 return -EINVAL; 7754 } 7755 if (!map->btf) { 7756 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7757 map->name); 7758 return -EINVAL; 7759 } 7760 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7761 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7762 return -EINVAL; 7763 } 7764 if (map->record->timer_off != val + reg->off) { 7765 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7766 val + reg->off, map->record->timer_off); 7767 return -EINVAL; 7768 } 7769 if (meta->map_ptr) { 7770 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7771 return -EFAULT; 7772 } 7773 meta->map_uid = reg->map_uid; 7774 meta->map_ptr = map; 7775 return 0; 7776 } 7777 7778 static int process_wq_func(struct bpf_verifier_env *env, int regno, 7779 struct bpf_kfunc_call_arg_meta *meta) 7780 { 7781 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7782 struct bpf_map *map = reg->map_ptr; 7783 u64 val = reg->var_off.value; 7784 7785 if (map->record->wq_off != val + reg->off) { 7786 verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n", 7787 val + reg->off, map->record->wq_off); 7788 return -EINVAL; 7789 } 7790 meta->map.uid = reg->map_uid; 7791 meta->map.ptr = map; 7792 return 0; 7793 } 7794 7795 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7796 struct bpf_call_arg_meta *meta) 7797 { 7798 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7799 struct btf_field *kptr_field; 7800 struct bpf_map *map_ptr; 7801 struct btf_record *rec; 7802 u32 kptr_off; 7803 7804 if (type_is_ptr_alloc_obj(reg->type)) { 7805 rec = reg_btf_record(reg); 7806 } else { /* PTR_TO_MAP_VALUE */ 7807 map_ptr = reg->map_ptr; 7808 if (!map_ptr->btf) { 7809 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7810 map_ptr->name); 7811 return -EINVAL; 7812 } 7813 rec = map_ptr->record; 7814 meta->map_ptr = map_ptr; 7815 } 7816 7817 if (!tnum_is_const(reg->var_off)) { 7818 verbose(env, 7819 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7820 regno); 7821 return -EINVAL; 7822 } 7823 7824 if (!btf_record_has_field(rec, BPF_KPTR)) { 7825 verbose(env, "R%d has no valid kptr\n", regno); 7826 return -EINVAL; 7827 } 7828 7829 kptr_off = reg->off + reg->var_off.value; 7830 kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR); 7831 if (!kptr_field) { 7832 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7833 return -EACCES; 7834 } 7835 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 7836 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7837 return -EACCES; 7838 } 7839 meta->kptr_field = kptr_field; 7840 return 0; 7841 } 7842 7843 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7844 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7845 * 7846 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7847 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7848 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7849 * 7850 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7851 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7852 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7853 * mutate the view of the dynptr and also possibly destroy it. In the latter 7854 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7855 * memory that dynptr points to. 7856 * 7857 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7858 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7859 * readonly dynptr view yet, hence only the first case is tracked and checked. 7860 * 7861 * This is consistent with how C applies the const modifier to a struct object, 7862 * where the pointer itself inside bpf_dynptr becomes const but not what it 7863 * points to. 7864 * 7865 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7866 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7867 */ 7868 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7869 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7870 { 7871 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7872 int err; 7873 7874 if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) { 7875 verbose(env, 7876 "arg#%d expected pointer to stack or const struct bpf_dynptr\n", 7877 regno); 7878 return -EINVAL; 7879 } 7880 7881 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7882 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7883 */ 7884 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7885 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7886 return -EFAULT; 7887 } 7888 7889 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7890 * constructing a mutable bpf_dynptr object. 7891 * 7892 * Currently, this is only possible with PTR_TO_STACK 7893 * pointing to a region of at least 16 bytes which doesn't 7894 * contain an existing bpf_dynptr. 7895 * 7896 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7897 * mutated or destroyed. However, the memory it points to 7898 * may be mutated. 7899 * 7900 * None - Points to a initialized dynptr that can be mutated and 7901 * destroyed, including mutation of the memory it points 7902 * to. 7903 */ 7904 if (arg_type & MEM_UNINIT) { 7905 int i; 7906 7907 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7908 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7909 return -EINVAL; 7910 } 7911 7912 /* we write BPF_DW bits (8 bytes) at a time */ 7913 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7914 err = check_mem_access(env, insn_idx, regno, 7915 i, BPF_DW, BPF_WRITE, -1, false, false); 7916 if (err) 7917 return err; 7918 } 7919 7920 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7921 } else /* MEM_RDONLY and None case from above */ { 7922 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7923 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7924 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7925 return -EINVAL; 7926 } 7927 7928 if (!is_dynptr_reg_valid_init(env, reg)) { 7929 verbose(env, 7930 "Expected an initialized dynptr as arg #%d\n", 7931 regno); 7932 return -EINVAL; 7933 } 7934 7935 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7936 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7937 verbose(env, 7938 "Expected a dynptr of type %s as arg #%d\n", 7939 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7940 return -EINVAL; 7941 } 7942 7943 err = mark_dynptr_read(env, reg); 7944 } 7945 return err; 7946 } 7947 7948 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7949 { 7950 struct bpf_func_state *state = func(env, reg); 7951 7952 return state->stack[spi].spilled_ptr.ref_obj_id; 7953 } 7954 7955 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7956 { 7957 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7958 } 7959 7960 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7961 { 7962 return meta->kfunc_flags & KF_ITER_NEW; 7963 } 7964 7965 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7966 { 7967 return meta->kfunc_flags & KF_ITER_NEXT; 7968 } 7969 7970 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7971 { 7972 return meta->kfunc_flags & KF_ITER_DESTROY; 7973 } 7974 7975 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx, 7976 const struct btf_param *arg) 7977 { 7978 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7979 * kfunc is iter state pointer 7980 */ 7981 if (is_iter_kfunc(meta)) 7982 return arg_idx == 0; 7983 7984 /* iter passed as an argument to a generic kfunc */ 7985 return btf_param_match_suffix(meta->btf, arg, "__iter"); 7986 } 7987 7988 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7989 struct bpf_kfunc_call_arg_meta *meta) 7990 { 7991 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7992 const struct btf_type *t; 7993 int spi, err, i, nr_slots, btf_id; 7994 7995 /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs() 7996 * ensures struct convention, so we wouldn't need to do any BTF 7997 * validation here. But given iter state can be passed as a parameter 7998 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more 7999 * conservative here. 8000 */ 8001 btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1); 8002 if (btf_id < 0) { 8003 verbose(env, "expected valid iter pointer as arg #%d\n", regno); 8004 return -EINVAL; 8005 } 8006 t = btf_type_by_id(meta->btf, btf_id); 8007 nr_slots = t->size / BPF_REG_SIZE; 8008 8009 if (is_iter_new_kfunc(meta)) { 8010 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 8011 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 8012 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 8013 iter_type_str(meta->btf, btf_id), regno); 8014 return -EINVAL; 8015 } 8016 8017 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 8018 err = check_mem_access(env, insn_idx, regno, 8019 i, BPF_DW, BPF_WRITE, -1, false, false); 8020 if (err) 8021 return err; 8022 } 8023 8024 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 8025 if (err) 8026 return err; 8027 } else { 8028 /* iter_next() or iter_destroy(), as well as any kfunc 8029 * accepting iter argument, expect initialized iter state 8030 */ 8031 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 8032 switch (err) { 8033 case 0: 8034 break; 8035 case -EINVAL: 8036 verbose(env, "expected an initialized iter_%s as arg #%d\n", 8037 iter_type_str(meta->btf, btf_id), regno); 8038 return err; 8039 case -EPROTO: 8040 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 8041 return err; 8042 default: 8043 return err; 8044 } 8045 8046 spi = iter_get_spi(env, reg, nr_slots); 8047 if (spi < 0) 8048 return spi; 8049 8050 err = mark_iter_read(env, reg, spi, nr_slots); 8051 if (err) 8052 return err; 8053 8054 /* remember meta->iter info for process_iter_next_call() */ 8055 meta->iter.spi = spi; 8056 meta->iter.frameno = reg->frameno; 8057 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 8058 8059 if (is_iter_destroy_kfunc(meta)) { 8060 err = unmark_stack_slots_iter(env, reg, nr_slots); 8061 if (err) 8062 return err; 8063 } 8064 } 8065 8066 return 0; 8067 } 8068 8069 /* Look for a previous loop entry at insn_idx: nearest parent state 8070 * stopped at insn_idx with callsites matching those in cur->frame. 8071 */ 8072 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 8073 struct bpf_verifier_state *cur, 8074 int insn_idx) 8075 { 8076 struct bpf_verifier_state_list *sl; 8077 struct bpf_verifier_state *st; 8078 8079 /* Explored states are pushed in stack order, most recent states come first */ 8080 sl = *explored_state(env, insn_idx); 8081 for (; sl; sl = sl->next) { 8082 /* If st->branches != 0 state is a part of current DFS verification path, 8083 * hence cur & st for a loop. 8084 */ 8085 st = &sl->state; 8086 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 8087 st->dfs_depth < cur->dfs_depth) 8088 return st; 8089 } 8090 8091 return NULL; 8092 } 8093 8094 static void reset_idmap_scratch(struct bpf_verifier_env *env); 8095 static bool regs_exact(const struct bpf_reg_state *rold, 8096 const struct bpf_reg_state *rcur, 8097 struct bpf_idmap *idmap); 8098 8099 static void maybe_widen_reg(struct bpf_verifier_env *env, 8100 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8101 struct bpf_idmap *idmap) 8102 { 8103 if (rold->type != SCALAR_VALUE) 8104 return; 8105 if (rold->type != rcur->type) 8106 return; 8107 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 8108 return; 8109 __mark_reg_unknown(env, rcur); 8110 } 8111 8112 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 8113 struct bpf_verifier_state *old, 8114 struct bpf_verifier_state *cur) 8115 { 8116 struct bpf_func_state *fold, *fcur; 8117 int i, fr; 8118 8119 reset_idmap_scratch(env); 8120 for (fr = old->curframe; fr >= 0; fr--) { 8121 fold = old->frame[fr]; 8122 fcur = cur->frame[fr]; 8123 8124 for (i = 0; i < MAX_BPF_REG; i++) 8125 maybe_widen_reg(env, 8126 &fold->regs[i], 8127 &fcur->regs[i], 8128 &env->idmap_scratch); 8129 8130 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 8131 if (!is_spilled_reg(&fold->stack[i]) || 8132 !is_spilled_reg(&fcur->stack[i])) 8133 continue; 8134 8135 maybe_widen_reg(env, 8136 &fold->stack[i].spilled_ptr, 8137 &fcur->stack[i].spilled_ptr, 8138 &env->idmap_scratch); 8139 } 8140 } 8141 return 0; 8142 } 8143 8144 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st, 8145 struct bpf_kfunc_call_arg_meta *meta) 8146 { 8147 int iter_frameno = meta->iter.frameno; 8148 int iter_spi = meta->iter.spi; 8149 8150 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 8151 } 8152 8153 /* process_iter_next_call() is called when verifier gets to iterator's next 8154 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 8155 * to it as just "iter_next()" in comments below. 8156 * 8157 * BPF verifier relies on a crucial contract for any iter_next() 8158 * implementation: it should *eventually* return NULL, and once that happens 8159 * it should keep returning NULL. That is, once iterator exhausts elements to 8160 * iterate, it should never reset or spuriously return new elements. 8161 * 8162 * With the assumption of such contract, process_iter_next_call() simulates 8163 * a fork in the verifier state to validate loop logic correctness and safety 8164 * without having to simulate infinite amount of iterations. 8165 * 8166 * In current state, we first assume that iter_next() returned NULL and 8167 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 8168 * conditions we should not form an infinite loop and should eventually reach 8169 * exit. 8170 * 8171 * Besides that, we also fork current state and enqueue it for later 8172 * verification. In a forked state we keep iterator state as ACTIVE 8173 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 8174 * also bump iteration depth to prevent erroneous infinite loop detection 8175 * later on (see iter_active_depths_differ() comment for details). In this 8176 * state we assume that we'll eventually loop back to another iter_next() 8177 * calls (it could be in exactly same location or in some other instruction, 8178 * it doesn't matter, we don't make any unnecessary assumptions about this, 8179 * everything revolves around iterator state in a stack slot, not which 8180 * instruction is calling iter_next()). When that happens, we either will come 8181 * to iter_next() with equivalent state and can conclude that next iteration 8182 * will proceed in exactly the same way as we just verified, so it's safe to 8183 * assume that loop converges. If not, we'll go on another iteration 8184 * simulation with a different input state, until all possible starting states 8185 * are validated or we reach maximum number of instructions limit. 8186 * 8187 * This way, we will either exhaustively discover all possible input states 8188 * that iterator loop can start with and eventually will converge, or we'll 8189 * effectively regress into bounded loop simulation logic and either reach 8190 * maximum number of instructions if loop is not provably convergent, or there 8191 * is some statically known limit on number of iterations (e.g., if there is 8192 * an explicit `if n > 100 then break;` statement somewhere in the loop). 8193 * 8194 * Iteration convergence logic in is_state_visited() relies on exact 8195 * states comparison, which ignores read and precision marks. 8196 * This is necessary because read and precision marks are not finalized 8197 * while in the loop. Exact comparison might preclude convergence for 8198 * simple programs like below: 8199 * 8200 * i = 0; 8201 * while(iter_next(&it)) 8202 * i++; 8203 * 8204 * At each iteration step i++ would produce a new distinct state and 8205 * eventually instruction processing limit would be reached. 8206 * 8207 * To avoid such behavior speculatively forget (widen) range for 8208 * imprecise scalar registers, if those registers were not precise at the 8209 * end of the previous iteration and do not match exactly. 8210 * 8211 * This is a conservative heuristic that allows to verify wide range of programs, 8212 * however it precludes verification of programs that conjure an 8213 * imprecise value on the first loop iteration and use it as precise on a second. 8214 * For example, the following safe program would fail to verify: 8215 * 8216 * struct bpf_num_iter it; 8217 * int arr[10]; 8218 * int i = 0, a = 0; 8219 * bpf_iter_num_new(&it, 0, 10); 8220 * while (bpf_iter_num_next(&it)) { 8221 * if (a == 0) { 8222 * a = 1; 8223 * i = 7; // Because i changed verifier would forget 8224 * // it's range on second loop entry. 8225 * } else { 8226 * arr[i] = 42; // This would fail to verify. 8227 * } 8228 * } 8229 * bpf_iter_num_destroy(&it); 8230 */ 8231 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 8232 struct bpf_kfunc_call_arg_meta *meta) 8233 { 8234 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 8235 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 8236 struct bpf_reg_state *cur_iter, *queued_iter; 8237 8238 BTF_TYPE_EMIT(struct bpf_iter); 8239 8240 cur_iter = get_iter_from_state(cur_st, meta); 8241 8242 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 8243 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 8244 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 8245 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 8246 return -EFAULT; 8247 } 8248 8249 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 8250 /* Because iter_next() call is a checkpoint is_state_visitied() 8251 * should guarantee parent state with same call sites and insn_idx. 8252 */ 8253 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 8254 !same_callsites(cur_st->parent, cur_st)) { 8255 verbose(env, "bug: bad parent state for iter next call"); 8256 return -EFAULT; 8257 } 8258 /* Note cur_st->parent in the call below, it is necessary to skip 8259 * checkpoint created for cur_st by is_state_visited() 8260 * right at this instruction. 8261 */ 8262 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 8263 /* branch out active iter state */ 8264 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 8265 if (!queued_st) 8266 return -ENOMEM; 8267 8268 queued_iter = get_iter_from_state(queued_st, meta); 8269 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 8270 queued_iter->iter.depth++; 8271 if (prev_st) 8272 widen_imprecise_scalars(env, prev_st, queued_st); 8273 8274 queued_fr = queued_st->frame[queued_st->curframe]; 8275 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 8276 } 8277 8278 /* switch to DRAINED state, but keep the depth unchanged */ 8279 /* mark current iter state as drained and assume returned NULL */ 8280 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 8281 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); 8282 8283 return 0; 8284 } 8285 8286 static bool arg_type_is_mem_size(enum bpf_arg_type type) 8287 { 8288 return type == ARG_CONST_SIZE || 8289 type == ARG_CONST_SIZE_OR_ZERO; 8290 } 8291 8292 static bool arg_type_is_raw_mem(enum bpf_arg_type type) 8293 { 8294 return base_type(type) == ARG_PTR_TO_MEM && 8295 type & MEM_UNINIT; 8296 } 8297 8298 static bool arg_type_is_release(enum bpf_arg_type type) 8299 { 8300 return type & OBJ_RELEASE; 8301 } 8302 8303 static bool arg_type_is_dynptr(enum bpf_arg_type type) 8304 { 8305 return base_type(type) == ARG_PTR_TO_DYNPTR; 8306 } 8307 8308 static int resolve_map_arg_type(struct bpf_verifier_env *env, 8309 const struct bpf_call_arg_meta *meta, 8310 enum bpf_arg_type *arg_type) 8311 { 8312 if (!meta->map_ptr) { 8313 /* kernel subsystem misconfigured verifier */ 8314 verbose(env, "invalid map_ptr to access map->type\n"); 8315 return -EACCES; 8316 } 8317 8318 switch (meta->map_ptr->map_type) { 8319 case BPF_MAP_TYPE_SOCKMAP: 8320 case BPF_MAP_TYPE_SOCKHASH: 8321 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8322 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8323 } else { 8324 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8325 return -EINVAL; 8326 } 8327 break; 8328 case BPF_MAP_TYPE_BLOOM_FILTER: 8329 if (meta->func_id == BPF_FUNC_map_peek_elem) 8330 *arg_type = ARG_PTR_TO_MAP_VALUE; 8331 break; 8332 default: 8333 break; 8334 } 8335 return 0; 8336 } 8337 8338 struct bpf_reg_types { 8339 const enum bpf_reg_type types[10]; 8340 u32 *btf_id; 8341 }; 8342 8343 static const struct bpf_reg_types sock_types = { 8344 .types = { 8345 PTR_TO_SOCK_COMMON, 8346 PTR_TO_SOCKET, 8347 PTR_TO_TCP_SOCK, 8348 PTR_TO_XDP_SOCK, 8349 }, 8350 }; 8351 8352 #ifdef CONFIG_NET 8353 static const struct bpf_reg_types btf_id_sock_common_types = { 8354 .types = { 8355 PTR_TO_SOCK_COMMON, 8356 PTR_TO_SOCKET, 8357 PTR_TO_TCP_SOCK, 8358 PTR_TO_XDP_SOCK, 8359 PTR_TO_BTF_ID, 8360 PTR_TO_BTF_ID | PTR_TRUSTED, 8361 }, 8362 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8363 }; 8364 #endif 8365 8366 static const struct bpf_reg_types mem_types = { 8367 .types = { 8368 PTR_TO_STACK, 8369 PTR_TO_PACKET, 8370 PTR_TO_PACKET_META, 8371 PTR_TO_MAP_KEY, 8372 PTR_TO_MAP_VALUE, 8373 PTR_TO_MEM, 8374 PTR_TO_MEM | MEM_RINGBUF, 8375 PTR_TO_BUF, 8376 PTR_TO_BTF_ID | PTR_TRUSTED, 8377 }, 8378 }; 8379 8380 static const struct bpf_reg_types spin_lock_types = { 8381 .types = { 8382 PTR_TO_MAP_VALUE, 8383 PTR_TO_BTF_ID | MEM_ALLOC, 8384 } 8385 }; 8386 8387 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8388 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8389 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8390 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8391 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8392 static const struct bpf_reg_types btf_ptr_types = { 8393 .types = { 8394 PTR_TO_BTF_ID, 8395 PTR_TO_BTF_ID | PTR_TRUSTED, 8396 PTR_TO_BTF_ID | MEM_RCU, 8397 }, 8398 }; 8399 static const struct bpf_reg_types percpu_btf_ptr_types = { 8400 .types = { 8401 PTR_TO_BTF_ID | MEM_PERCPU, 8402 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 8403 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8404 } 8405 }; 8406 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8407 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8408 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8409 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8410 static const struct bpf_reg_types kptr_xchg_dest_types = { 8411 .types = { 8412 PTR_TO_MAP_VALUE, 8413 PTR_TO_BTF_ID | MEM_ALLOC 8414 } 8415 }; 8416 static const struct bpf_reg_types dynptr_types = { 8417 .types = { 8418 PTR_TO_STACK, 8419 CONST_PTR_TO_DYNPTR, 8420 } 8421 }; 8422 8423 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8424 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8425 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8426 [ARG_CONST_SIZE] = &scalar_types, 8427 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8428 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8429 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8430 [ARG_PTR_TO_CTX] = &context_types, 8431 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8432 #ifdef CONFIG_NET 8433 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8434 #endif 8435 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8436 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8437 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8438 [ARG_PTR_TO_MEM] = &mem_types, 8439 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8440 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8441 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8442 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8443 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8444 [ARG_PTR_TO_TIMER] = &timer_types, 8445 [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types, 8446 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8447 }; 8448 8449 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8450 enum bpf_arg_type arg_type, 8451 const u32 *arg_btf_id, 8452 struct bpf_call_arg_meta *meta) 8453 { 8454 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8455 enum bpf_reg_type expected, type = reg->type; 8456 const struct bpf_reg_types *compatible; 8457 int i, j; 8458 8459 compatible = compatible_reg_types[base_type(arg_type)]; 8460 if (!compatible) { 8461 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8462 return -EFAULT; 8463 } 8464 8465 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8466 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8467 * 8468 * Same for MAYBE_NULL: 8469 * 8470 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8471 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8472 * 8473 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8474 * 8475 * Therefore we fold these flags depending on the arg_type before comparison. 8476 */ 8477 if (arg_type & MEM_RDONLY) 8478 type &= ~MEM_RDONLY; 8479 if (arg_type & PTR_MAYBE_NULL) 8480 type &= ~PTR_MAYBE_NULL; 8481 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8482 type &= ~DYNPTR_TYPE_FLAG_MASK; 8483 8484 /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */ 8485 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) { 8486 type &= ~MEM_ALLOC; 8487 type &= ~MEM_PERCPU; 8488 } 8489 8490 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8491 expected = compatible->types[i]; 8492 if (expected == NOT_INIT) 8493 break; 8494 8495 if (type == expected) 8496 goto found; 8497 } 8498 8499 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8500 for (j = 0; j + 1 < i; j++) 8501 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8502 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8503 return -EACCES; 8504 8505 found: 8506 if (base_type(reg->type) != PTR_TO_BTF_ID) 8507 return 0; 8508 8509 if (compatible == &mem_types) { 8510 if (!(arg_type & MEM_RDONLY)) { 8511 verbose(env, 8512 "%s() may write into memory pointed by R%d type=%s\n", 8513 func_id_name(meta->func_id), 8514 regno, reg_type_str(env, reg->type)); 8515 return -EACCES; 8516 } 8517 return 0; 8518 } 8519 8520 switch ((int)reg->type) { 8521 case PTR_TO_BTF_ID: 8522 case PTR_TO_BTF_ID | PTR_TRUSTED: 8523 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: 8524 case PTR_TO_BTF_ID | MEM_RCU: 8525 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8526 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8527 { 8528 /* For bpf_sk_release, it needs to match against first member 8529 * 'struct sock_common', hence make an exception for it. This 8530 * allows bpf_sk_release to work for multiple socket types. 8531 */ 8532 bool strict_type_match = arg_type_is_release(arg_type) && 8533 meta->func_id != BPF_FUNC_sk_release; 8534 8535 if (type_may_be_null(reg->type) && 8536 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8537 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8538 return -EACCES; 8539 } 8540 8541 if (!arg_btf_id) { 8542 if (!compatible->btf_id) { 8543 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8544 return -EFAULT; 8545 } 8546 arg_btf_id = compatible->btf_id; 8547 } 8548 8549 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8550 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8551 return -EACCES; 8552 } else { 8553 if (arg_btf_id == BPF_PTR_POISON) { 8554 verbose(env, "verifier internal error:"); 8555 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8556 regno); 8557 return -EACCES; 8558 } 8559 8560 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8561 btf_vmlinux, *arg_btf_id, 8562 strict_type_match)) { 8563 verbose(env, "R%d is of type %s but %s is expected\n", 8564 regno, btf_type_name(reg->btf, reg->btf_id), 8565 btf_type_name(btf_vmlinux, *arg_btf_id)); 8566 return -EACCES; 8567 } 8568 } 8569 break; 8570 } 8571 case PTR_TO_BTF_ID | MEM_ALLOC: 8572 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 8573 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8574 meta->func_id != BPF_FUNC_kptr_xchg) { 8575 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8576 return -EFAULT; 8577 } 8578 /* Check if local kptr in src arg matches kptr in dst arg */ 8579 if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) { 8580 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8581 return -EACCES; 8582 } 8583 break; 8584 case PTR_TO_BTF_ID | MEM_PERCPU: 8585 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 8586 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8587 /* Handled by helper specific checks */ 8588 break; 8589 default: 8590 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8591 return -EFAULT; 8592 } 8593 return 0; 8594 } 8595 8596 static struct btf_field * 8597 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8598 { 8599 struct btf_field *field; 8600 struct btf_record *rec; 8601 8602 rec = reg_btf_record(reg); 8603 if (!rec) 8604 return NULL; 8605 8606 field = btf_record_find(rec, off, fields); 8607 if (!field) 8608 return NULL; 8609 8610 return field; 8611 } 8612 8613 static int check_func_arg_reg_off(struct bpf_verifier_env *env, 8614 const struct bpf_reg_state *reg, int regno, 8615 enum bpf_arg_type arg_type) 8616 { 8617 u32 type = reg->type; 8618 8619 /* When referenced register is passed to release function, its fixed 8620 * offset must be 0. 8621 * 8622 * We will check arg_type_is_release reg has ref_obj_id when storing 8623 * meta->release_regno. 8624 */ 8625 if (arg_type_is_release(arg_type)) { 8626 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8627 * may not directly point to the object being released, but to 8628 * dynptr pointing to such object, which might be at some offset 8629 * on the stack. In that case, we simply to fallback to the 8630 * default handling. 8631 */ 8632 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8633 return 0; 8634 8635 /* Doing check_ptr_off_reg check for the offset will catch this 8636 * because fixed_off_ok is false, but checking here allows us 8637 * to give the user a better error message. 8638 */ 8639 if (reg->off) { 8640 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8641 regno); 8642 return -EINVAL; 8643 } 8644 return __check_ptr_off_reg(env, reg, regno, false); 8645 } 8646 8647 switch (type) { 8648 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8649 case PTR_TO_STACK: 8650 case PTR_TO_PACKET: 8651 case PTR_TO_PACKET_META: 8652 case PTR_TO_MAP_KEY: 8653 case PTR_TO_MAP_VALUE: 8654 case PTR_TO_MEM: 8655 case PTR_TO_MEM | MEM_RDONLY: 8656 case PTR_TO_MEM | MEM_RINGBUF: 8657 case PTR_TO_BUF: 8658 case PTR_TO_BUF | MEM_RDONLY: 8659 case PTR_TO_ARENA: 8660 case SCALAR_VALUE: 8661 return 0; 8662 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8663 * fixed offset. 8664 */ 8665 case PTR_TO_BTF_ID: 8666 case PTR_TO_BTF_ID | MEM_ALLOC: 8667 case PTR_TO_BTF_ID | PTR_TRUSTED: 8668 case PTR_TO_BTF_ID | MEM_RCU: 8669 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8670 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8671 /* When referenced PTR_TO_BTF_ID is passed to release function, 8672 * its fixed offset must be 0. In the other cases, fixed offset 8673 * can be non-zero. This was already checked above. So pass 8674 * fixed_off_ok as true to allow fixed offset for all other 8675 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8676 * still need to do checks instead of returning. 8677 */ 8678 return __check_ptr_off_reg(env, reg, regno, true); 8679 default: 8680 return __check_ptr_off_reg(env, reg, regno, false); 8681 } 8682 } 8683 8684 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8685 const struct bpf_func_proto *fn, 8686 struct bpf_reg_state *regs) 8687 { 8688 struct bpf_reg_state *state = NULL; 8689 int i; 8690 8691 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8692 if (arg_type_is_dynptr(fn->arg_type[i])) { 8693 if (state) { 8694 verbose(env, "verifier internal error: multiple dynptr args\n"); 8695 return NULL; 8696 } 8697 state = ®s[BPF_REG_1 + i]; 8698 } 8699 8700 if (!state) 8701 verbose(env, "verifier internal error: no dynptr arg found\n"); 8702 8703 return state; 8704 } 8705 8706 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8707 { 8708 struct bpf_func_state *state = func(env, reg); 8709 int spi; 8710 8711 if (reg->type == CONST_PTR_TO_DYNPTR) 8712 return reg->id; 8713 spi = dynptr_get_spi(env, reg); 8714 if (spi < 0) 8715 return spi; 8716 return state->stack[spi].spilled_ptr.id; 8717 } 8718 8719 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8720 { 8721 struct bpf_func_state *state = func(env, reg); 8722 int spi; 8723 8724 if (reg->type == CONST_PTR_TO_DYNPTR) 8725 return reg->ref_obj_id; 8726 spi = dynptr_get_spi(env, reg); 8727 if (spi < 0) 8728 return spi; 8729 return state->stack[spi].spilled_ptr.ref_obj_id; 8730 } 8731 8732 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8733 struct bpf_reg_state *reg) 8734 { 8735 struct bpf_func_state *state = func(env, reg); 8736 int spi; 8737 8738 if (reg->type == CONST_PTR_TO_DYNPTR) 8739 return reg->dynptr.type; 8740 8741 spi = __get_spi(reg->off); 8742 if (spi < 0) { 8743 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8744 return BPF_DYNPTR_TYPE_INVALID; 8745 } 8746 8747 return state->stack[spi].spilled_ptr.dynptr.type; 8748 } 8749 8750 static int check_reg_const_str(struct bpf_verifier_env *env, 8751 struct bpf_reg_state *reg, u32 regno) 8752 { 8753 struct bpf_map *map = reg->map_ptr; 8754 int err; 8755 int map_off; 8756 u64 map_addr; 8757 char *str_ptr; 8758 8759 if (reg->type != PTR_TO_MAP_VALUE) 8760 return -EINVAL; 8761 8762 if (!bpf_map_is_rdonly(map)) { 8763 verbose(env, "R%d does not point to a readonly map'\n", regno); 8764 return -EACCES; 8765 } 8766 8767 if (!tnum_is_const(reg->var_off)) { 8768 verbose(env, "R%d is not a constant address'\n", regno); 8769 return -EACCES; 8770 } 8771 8772 if (!map->ops->map_direct_value_addr) { 8773 verbose(env, "no direct value access support for this map type\n"); 8774 return -EACCES; 8775 } 8776 8777 err = check_map_access(env, regno, reg->off, 8778 map->value_size - reg->off, false, 8779 ACCESS_HELPER); 8780 if (err) 8781 return err; 8782 8783 map_off = reg->off + reg->var_off.value; 8784 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8785 if (err) { 8786 verbose(env, "direct value access on string failed\n"); 8787 return err; 8788 } 8789 8790 str_ptr = (char *)(long)(map_addr); 8791 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8792 verbose(env, "string is not zero-terminated\n"); 8793 return -EINVAL; 8794 } 8795 return 0; 8796 } 8797 8798 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8799 struct bpf_call_arg_meta *meta, 8800 const struct bpf_func_proto *fn, 8801 int insn_idx) 8802 { 8803 u32 regno = BPF_REG_1 + arg; 8804 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8805 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8806 enum bpf_reg_type type = reg->type; 8807 u32 *arg_btf_id = NULL; 8808 int err = 0; 8809 8810 if (arg_type == ARG_DONTCARE) 8811 return 0; 8812 8813 err = check_reg_arg(env, regno, SRC_OP); 8814 if (err) 8815 return err; 8816 8817 if (arg_type == ARG_ANYTHING) { 8818 if (is_pointer_value(env, regno)) { 8819 verbose(env, "R%d leaks addr into helper function\n", 8820 regno); 8821 return -EACCES; 8822 } 8823 return 0; 8824 } 8825 8826 if (type_is_pkt_pointer(type) && 8827 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8828 verbose(env, "helper access to the packet is not allowed\n"); 8829 return -EACCES; 8830 } 8831 8832 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8833 err = resolve_map_arg_type(env, meta, &arg_type); 8834 if (err) 8835 return err; 8836 } 8837 8838 if (register_is_null(reg) && type_may_be_null(arg_type)) 8839 /* A NULL register has a SCALAR_VALUE type, so skip 8840 * type checking. 8841 */ 8842 goto skip_type_check; 8843 8844 /* arg_btf_id and arg_size are in a union. */ 8845 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8846 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8847 arg_btf_id = fn->arg_btf_id[arg]; 8848 8849 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8850 if (err) 8851 return err; 8852 8853 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8854 if (err) 8855 return err; 8856 8857 skip_type_check: 8858 if (arg_type_is_release(arg_type)) { 8859 if (arg_type_is_dynptr(arg_type)) { 8860 struct bpf_func_state *state = func(env, reg); 8861 int spi; 8862 8863 /* Only dynptr created on stack can be released, thus 8864 * the get_spi and stack state checks for spilled_ptr 8865 * should only be done before process_dynptr_func for 8866 * PTR_TO_STACK. 8867 */ 8868 if (reg->type == PTR_TO_STACK) { 8869 spi = dynptr_get_spi(env, reg); 8870 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8871 verbose(env, "arg %d is an unacquired reference\n", regno); 8872 return -EINVAL; 8873 } 8874 } else { 8875 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8876 return -EINVAL; 8877 } 8878 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8879 verbose(env, "R%d must be referenced when passed to release function\n", 8880 regno); 8881 return -EINVAL; 8882 } 8883 if (meta->release_regno) { 8884 verbose(env, "verifier internal error: more than one release argument\n"); 8885 return -EFAULT; 8886 } 8887 meta->release_regno = regno; 8888 } 8889 8890 if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) { 8891 if (meta->ref_obj_id) { 8892 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8893 regno, reg->ref_obj_id, 8894 meta->ref_obj_id); 8895 return -EFAULT; 8896 } 8897 meta->ref_obj_id = reg->ref_obj_id; 8898 } 8899 8900 switch (base_type(arg_type)) { 8901 case ARG_CONST_MAP_PTR: 8902 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8903 if (meta->map_ptr) { 8904 /* Use map_uid (which is unique id of inner map) to reject: 8905 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8906 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8907 * if (inner_map1 && inner_map2) { 8908 * timer = bpf_map_lookup_elem(inner_map1); 8909 * if (timer) 8910 * // mismatch would have been allowed 8911 * bpf_timer_init(timer, inner_map2); 8912 * } 8913 * 8914 * Comparing map_ptr is enough to distinguish normal and outer maps. 8915 */ 8916 if (meta->map_ptr != reg->map_ptr || 8917 meta->map_uid != reg->map_uid) { 8918 verbose(env, 8919 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8920 meta->map_uid, reg->map_uid); 8921 return -EINVAL; 8922 } 8923 } 8924 meta->map_ptr = reg->map_ptr; 8925 meta->map_uid = reg->map_uid; 8926 break; 8927 case ARG_PTR_TO_MAP_KEY: 8928 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8929 * check that [key, key + map->key_size) are within 8930 * stack limits and initialized 8931 */ 8932 if (!meta->map_ptr) { 8933 /* in function declaration map_ptr must come before 8934 * map_key, so that it's verified and known before 8935 * we have to check map_key here. Otherwise it means 8936 * that kernel subsystem misconfigured verifier 8937 */ 8938 verbose(env, "invalid map_ptr to access map->key\n"); 8939 return -EACCES; 8940 } 8941 err = check_helper_mem_access(env, regno, meta->map_ptr->key_size, 8942 BPF_READ, false, NULL); 8943 break; 8944 case ARG_PTR_TO_MAP_VALUE: 8945 if (type_may_be_null(arg_type) && register_is_null(reg)) 8946 return 0; 8947 8948 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8949 * check [value, value + map->value_size) validity 8950 */ 8951 if (!meta->map_ptr) { 8952 /* kernel subsystem misconfigured verifier */ 8953 verbose(env, "invalid map_ptr to access map->value\n"); 8954 return -EACCES; 8955 } 8956 meta->raw_mode = arg_type & MEM_UNINIT; 8957 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size, 8958 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 8959 false, meta); 8960 break; 8961 case ARG_PTR_TO_PERCPU_BTF_ID: 8962 if (!reg->btf_id) { 8963 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8964 return -EACCES; 8965 } 8966 meta->ret_btf = reg->btf; 8967 meta->ret_btf_id = reg->btf_id; 8968 break; 8969 case ARG_PTR_TO_SPIN_LOCK: 8970 if (in_rbtree_lock_required_cb(env)) { 8971 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8972 return -EACCES; 8973 } 8974 if (meta->func_id == BPF_FUNC_spin_lock) { 8975 err = process_spin_lock(env, regno, true); 8976 if (err) 8977 return err; 8978 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8979 err = process_spin_lock(env, regno, false); 8980 if (err) 8981 return err; 8982 } else { 8983 verbose(env, "verifier internal error\n"); 8984 return -EFAULT; 8985 } 8986 break; 8987 case ARG_PTR_TO_TIMER: 8988 err = process_timer_func(env, regno, meta); 8989 if (err) 8990 return err; 8991 break; 8992 case ARG_PTR_TO_FUNC: 8993 meta->subprogno = reg->subprogno; 8994 break; 8995 case ARG_PTR_TO_MEM: 8996 /* The access to this pointer is only checked when we hit the 8997 * next is_mem_size argument below. 8998 */ 8999 meta->raw_mode = arg_type & MEM_UNINIT; 9000 if (arg_type & MEM_FIXED_SIZE) { 9001 err = check_helper_mem_access(env, regno, fn->arg_size[arg], 9002 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9003 false, meta); 9004 if (err) 9005 return err; 9006 if (arg_type & MEM_ALIGNED) 9007 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true); 9008 } 9009 break; 9010 case ARG_CONST_SIZE: 9011 err = check_mem_size_reg(env, reg, regno, 9012 fn->arg_type[arg - 1] & MEM_WRITE ? 9013 BPF_WRITE : BPF_READ, 9014 false, meta); 9015 break; 9016 case ARG_CONST_SIZE_OR_ZERO: 9017 err = check_mem_size_reg(env, reg, regno, 9018 fn->arg_type[arg - 1] & MEM_WRITE ? 9019 BPF_WRITE : BPF_READ, 9020 true, meta); 9021 break; 9022 case ARG_PTR_TO_DYNPTR: 9023 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 9024 if (err) 9025 return err; 9026 break; 9027 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 9028 if (!tnum_is_const(reg->var_off)) { 9029 verbose(env, "R%d is not a known constant'\n", 9030 regno); 9031 return -EACCES; 9032 } 9033 meta->mem_size = reg->var_off.value; 9034 err = mark_chain_precision(env, regno); 9035 if (err) 9036 return err; 9037 break; 9038 case ARG_PTR_TO_CONST_STR: 9039 { 9040 err = check_reg_const_str(env, reg, regno); 9041 if (err) 9042 return err; 9043 break; 9044 } 9045 case ARG_KPTR_XCHG_DEST: 9046 err = process_kptr_func(env, regno, meta); 9047 if (err) 9048 return err; 9049 break; 9050 } 9051 9052 return err; 9053 } 9054 9055 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 9056 { 9057 enum bpf_attach_type eatype = env->prog->expected_attach_type; 9058 enum bpf_prog_type type = resolve_prog_type(env->prog); 9059 9060 if (func_id != BPF_FUNC_map_update_elem && 9061 func_id != BPF_FUNC_map_delete_elem) 9062 return false; 9063 9064 /* It's not possible to get access to a locked struct sock in these 9065 * contexts, so updating is safe. 9066 */ 9067 switch (type) { 9068 case BPF_PROG_TYPE_TRACING: 9069 if (eatype == BPF_TRACE_ITER) 9070 return true; 9071 break; 9072 case BPF_PROG_TYPE_SOCK_OPS: 9073 /* map_update allowed only via dedicated helpers with event type checks */ 9074 if (func_id == BPF_FUNC_map_delete_elem) 9075 return true; 9076 break; 9077 case BPF_PROG_TYPE_SOCKET_FILTER: 9078 case BPF_PROG_TYPE_SCHED_CLS: 9079 case BPF_PROG_TYPE_SCHED_ACT: 9080 case BPF_PROG_TYPE_XDP: 9081 case BPF_PROG_TYPE_SK_REUSEPORT: 9082 case BPF_PROG_TYPE_FLOW_DISSECTOR: 9083 case BPF_PROG_TYPE_SK_LOOKUP: 9084 return true; 9085 default: 9086 break; 9087 } 9088 9089 verbose(env, "cannot update sockmap in this context\n"); 9090 return false; 9091 } 9092 9093 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 9094 { 9095 return env->prog->jit_requested && 9096 bpf_jit_supports_subprog_tailcalls(); 9097 } 9098 9099 static int check_map_func_compatibility(struct bpf_verifier_env *env, 9100 struct bpf_map *map, int func_id) 9101 { 9102 if (!map) 9103 return 0; 9104 9105 /* We need a two way check, first is from map perspective ... */ 9106 switch (map->map_type) { 9107 case BPF_MAP_TYPE_PROG_ARRAY: 9108 if (func_id != BPF_FUNC_tail_call) 9109 goto error; 9110 break; 9111 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 9112 if (func_id != BPF_FUNC_perf_event_read && 9113 func_id != BPF_FUNC_perf_event_output && 9114 func_id != BPF_FUNC_skb_output && 9115 func_id != BPF_FUNC_perf_event_read_value && 9116 func_id != BPF_FUNC_xdp_output) 9117 goto error; 9118 break; 9119 case BPF_MAP_TYPE_RINGBUF: 9120 if (func_id != BPF_FUNC_ringbuf_output && 9121 func_id != BPF_FUNC_ringbuf_reserve && 9122 func_id != BPF_FUNC_ringbuf_query && 9123 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 9124 func_id != BPF_FUNC_ringbuf_submit_dynptr && 9125 func_id != BPF_FUNC_ringbuf_discard_dynptr) 9126 goto error; 9127 break; 9128 case BPF_MAP_TYPE_USER_RINGBUF: 9129 if (func_id != BPF_FUNC_user_ringbuf_drain) 9130 goto error; 9131 break; 9132 case BPF_MAP_TYPE_STACK_TRACE: 9133 if (func_id != BPF_FUNC_get_stackid) 9134 goto error; 9135 break; 9136 case BPF_MAP_TYPE_CGROUP_ARRAY: 9137 if (func_id != BPF_FUNC_skb_under_cgroup && 9138 func_id != BPF_FUNC_current_task_under_cgroup) 9139 goto error; 9140 break; 9141 case BPF_MAP_TYPE_CGROUP_STORAGE: 9142 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 9143 if (func_id != BPF_FUNC_get_local_storage) 9144 goto error; 9145 break; 9146 case BPF_MAP_TYPE_DEVMAP: 9147 case BPF_MAP_TYPE_DEVMAP_HASH: 9148 if (func_id != BPF_FUNC_redirect_map && 9149 func_id != BPF_FUNC_map_lookup_elem) 9150 goto error; 9151 break; 9152 /* Restrict bpf side of cpumap and xskmap, open when use-cases 9153 * appear. 9154 */ 9155 case BPF_MAP_TYPE_CPUMAP: 9156 if (func_id != BPF_FUNC_redirect_map) 9157 goto error; 9158 break; 9159 case BPF_MAP_TYPE_XSKMAP: 9160 if (func_id != BPF_FUNC_redirect_map && 9161 func_id != BPF_FUNC_map_lookup_elem) 9162 goto error; 9163 break; 9164 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 9165 case BPF_MAP_TYPE_HASH_OF_MAPS: 9166 if (func_id != BPF_FUNC_map_lookup_elem) 9167 goto error; 9168 break; 9169 case BPF_MAP_TYPE_SOCKMAP: 9170 if (func_id != BPF_FUNC_sk_redirect_map && 9171 func_id != BPF_FUNC_sock_map_update && 9172 func_id != BPF_FUNC_msg_redirect_map && 9173 func_id != BPF_FUNC_sk_select_reuseport && 9174 func_id != BPF_FUNC_map_lookup_elem && 9175 !may_update_sockmap(env, func_id)) 9176 goto error; 9177 break; 9178 case BPF_MAP_TYPE_SOCKHASH: 9179 if (func_id != BPF_FUNC_sk_redirect_hash && 9180 func_id != BPF_FUNC_sock_hash_update && 9181 func_id != BPF_FUNC_msg_redirect_hash && 9182 func_id != BPF_FUNC_sk_select_reuseport && 9183 func_id != BPF_FUNC_map_lookup_elem && 9184 !may_update_sockmap(env, func_id)) 9185 goto error; 9186 break; 9187 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 9188 if (func_id != BPF_FUNC_sk_select_reuseport) 9189 goto error; 9190 break; 9191 case BPF_MAP_TYPE_QUEUE: 9192 case BPF_MAP_TYPE_STACK: 9193 if (func_id != BPF_FUNC_map_peek_elem && 9194 func_id != BPF_FUNC_map_pop_elem && 9195 func_id != BPF_FUNC_map_push_elem) 9196 goto error; 9197 break; 9198 case BPF_MAP_TYPE_SK_STORAGE: 9199 if (func_id != BPF_FUNC_sk_storage_get && 9200 func_id != BPF_FUNC_sk_storage_delete && 9201 func_id != BPF_FUNC_kptr_xchg) 9202 goto error; 9203 break; 9204 case BPF_MAP_TYPE_INODE_STORAGE: 9205 if (func_id != BPF_FUNC_inode_storage_get && 9206 func_id != BPF_FUNC_inode_storage_delete && 9207 func_id != BPF_FUNC_kptr_xchg) 9208 goto error; 9209 break; 9210 case BPF_MAP_TYPE_TASK_STORAGE: 9211 if (func_id != BPF_FUNC_task_storage_get && 9212 func_id != BPF_FUNC_task_storage_delete && 9213 func_id != BPF_FUNC_kptr_xchg) 9214 goto error; 9215 break; 9216 case BPF_MAP_TYPE_CGRP_STORAGE: 9217 if (func_id != BPF_FUNC_cgrp_storage_get && 9218 func_id != BPF_FUNC_cgrp_storage_delete && 9219 func_id != BPF_FUNC_kptr_xchg) 9220 goto error; 9221 break; 9222 case BPF_MAP_TYPE_BLOOM_FILTER: 9223 if (func_id != BPF_FUNC_map_peek_elem && 9224 func_id != BPF_FUNC_map_push_elem) 9225 goto error; 9226 break; 9227 default: 9228 break; 9229 } 9230 9231 /* ... and second from the function itself. */ 9232 switch (func_id) { 9233 case BPF_FUNC_tail_call: 9234 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 9235 goto error; 9236 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 9237 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 9238 return -EINVAL; 9239 } 9240 break; 9241 case BPF_FUNC_perf_event_read: 9242 case BPF_FUNC_perf_event_output: 9243 case BPF_FUNC_perf_event_read_value: 9244 case BPF_FUNC_skb_output: 9245 case BPF_FUNC_xdp_output: 9246 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9247 goto error; 9248 break; 9249 case BPF_FUNC_ringbuf_output: 9250 case BPF_FUNC_ringbuf_reserve: 9251 case BPF_FUNC_ringbuf_query: 9252 case BPF_FUNC_ringbuf_reserve_dynptr: 9253 case BPF_FUNC_ringbuf_submit_dynptr: 9254 case BPF_FUNC_ringbuf_discard_dynptr: 9255 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 9256 goto error; 9257 break; 9258 case BPF_FUNC_user_ringbuf_drain: 9259 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 9260 goto error; 9261 break; 9262 case BPF_FUNC_get_stackid: 9263 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 9264 goto error; 9265 break; 9266 case BPF_FUNC_current_task_under_cgroup: 9267 case BPF_FUNC_skb_under_cgroup: 9268 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 9269 goto error; 9270 break; 9271 case BPF_FUNC_redirect_map: 9272 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 9273 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 9274 map->map_type != BPF_MAP_TYPE_CPUMAP && 9275 map->map_type != BPF_MAP_TYPE_XSKMAP) 9276 goto error; 9277 break; 9278 case BPF_FUNC_sk_redirect_map: 9279 case BPF_FUNC_msg_redirect_map: 9280 case BPF_FUNC_sock_map_update: 9281 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 9282 goto error; 9283 break; 9284 case BPF_FUNC_sk_redirect_hash: 9285 case BPF_FUNC_msg_redirect_hash: 9286 case BPF_FUNC_sock_hash_update: 9287 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 9288 goto error; 9289 break; 9290 case BPF_FUNC_get_local_storage: 9291 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 9292 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 9293 goto error; 9294 break; 9295 case BPF_FUNC_sk_select_reuseport: 9296 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 9297 map->map_type != BPF_MAP_TYPE_SOCKMAP && 9298 map->map_type != BPF_MAP_TYPE_SOCKHASH) 9299 goto error; 9300 break; 9301 case BPF_FUNC_map_pop_elem: 9302 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9303 map->map_type != BPF_MAP_TYPE_STACK) 9304 goto error; 9305 break; 9306 case BPF_FUNC_map_peek_elem: 9307 case BPF_FUNC_map_push_elem: 9308 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9309 map->map_type != BPF_MAP_TYPE_STACK && 9310 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 9311 goto error; 9312 break; 9313 case BPF_FUNC_map_lookup_percpu_elem: 9314 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 9315 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9316 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 9317 goto error; 9318 break; 9319 case BPF_FUNC_sk_storage_get: 9320 case BPF_FUNC_sk_storage_delete: 9321 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 9322 goto error; 9323 break; 9324 case BPF_FUNC_inode_storage_get: 9325 case BPF_FUNC_inode_storage_delete: 9326 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 9327 goto error; 9328 break; 9329 case BPF_FUNC_task_storage_get: 9330 case BPF_FUNC_task_storage_delete: 9331 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 9332 goto error; 9333 break; 9334 case BPF_FUNC_cgrp_storage_get: 9335 case BPF_FUNC_cgrp_storage_delete: 9336 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 9337 goto error; 9338 break; 9339 default: 9340 break; 9341 } 9342 9343 return 0; 9344 error: 9345 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9346 map->map_type, func_id_name(func_id), func_id); 9347 return -EINVAL; 9348 } 9349 9350 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9351 { 9352 int count = 0; 9353 9354 if (arg_type_is_raw_mem(fn->arg1_type)) 9355 count++; 9356 if (arg_type_is_raw_mem(fn->arg2_type)) 9357 count++; 9358 if (arg_type_is_raw_mem(fn->arg3_type)) 9359 count++; 9360 if (arg_type_is_raw_mem(fn->arg4_type)) 9361 count++; 9362 if (arg_type_is_raw_mem(fn->arg5_type)) 9363 count++; 9364 9365 /* We only support one arg being in raw mode at the moment, 9366 * which is sufficient for the helper functions we have 9367 * right now. 9368 */ 9369 return count <= 1; 9370 } 9371 9372 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9373 { 9374 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9375 bool has_size = fn->arg_size[arg] != 0; 9376 bool is_next_size = false; 9377 9378 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9379 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9380 9381 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9382 return is_next_size; 9383 9384 return has_size == is_next_size || is_next_size == is_fixed; 9385 } 9386 9387 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9388 { 9389 /* bpf_xxx(..., buf, len) call will access 'len' 9390 * bytes from memory 'buf'. Both arg types need 9391 * to be paired, so make sure there's no buggy 9392 * helper function specification. 9393 */ 9394 if (arg_type_is_mem_size(fn->arg1_type) || 9395 check_args_pair_invalid(fn, 0) || 9396 check_args_pair_invalid(fn, 1) || 9397 check_args_pair_invalid(fn, 2) || 9398 check_args_pair_invalid(fn, 3) || 9399 check_args_pair_invalid(fn, 4)) 9400 return false; 9401 9402 return true; 9403 } 9404 9405 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9406 { 9407 int i; 9408 9409 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9410 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9411 return !!fn->arg_btf_id[i]; 9412 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9413 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9414 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9415 /* arg_btf_id and arg_size are in a union. */ 9416 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9417 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9418 return false; 9419 } 9420 9421 return true; 9422 } 9423 9424 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9425 { 9426 return check_raw_mode_ok(fn) && 9427 check_arg_pair_ok(fn) && 9428 check_btf_id_ok(fn) ? 0 : -EINVAL; 9429 } 9430 9431 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9432 * are now invalid, so turn them into unknown SCALAR_VALUE. 9433 * 9434 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9435 * since these slices point to packet data. 9436 */ 9437 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9438 { 9439 struct bpf_func_state *state; 9440 struct bpf_reg_state *reg; 9441 9442 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9443 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9444 mark_reg_invalid(env, reg); 9445 })); 9446 } 9447 9448 enum { 9449 AT_PKT_END = -1, 9450 BEYOND_PKT_END = -2, 9451 }; 9452 9453 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9454 { 9455 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9456 struct bpf_reg_state *reg = &state->regs[regn]; 9457 9458 if (reg->type != PTR_TO_PACKET) 9459 /* PTR_TO_PACKET_META is not supported yet */ 9460 return; 9461 9462 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9463 * How far beyond pkt_end it goes is unknown. 9464 * if (!range_open) it's the case of pkt >= pkt_end 9465 * if (range_open) it's the case of pkt > pkt_end 9466 * hence this pointer is at least 1 byte bigger than pkt_end 9467 */ 9468 if (range_open) 9469 reg->range = BEYOND_PKT_END; 9470 else 9471 reg->range = AT_PKT_END; 9472 } 9473 9474 /* The pointer with the specified id has released its reference to kernel 9475 * resources. Identify all copies of the same pointer and clear the reference. 9476 */ 9477 static int release_reference(struct bpf_verifier_env *env, 9478 int ref_obj_id) 9479 { 9480 struct bpf_func_state *state; 9481 struct bpf_reg_state *reg; 9482 int err; 9483 9484 err = release_reference_state(cur_func(env), ref_obj_id); 9485 if (err) 9486 return err; 9487 9488 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9489 if (reg->ref_obj_id == ref_obj_id) 9490 mark_reg_invalid(env, reg); 9491 })); 9492 9493 return 0; 9494 } 9495 9496 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9497 { 9498 struct bpf_func_state *unused; 9499 struct bpf_reg_state *reg; 9500 9501 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9502 if (type_is_non_owning_ref(reg->type)) 9503 mark_reg_invalid(env, reg); 9504 })); 9505 } 9506 9507 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9508 struct bpf_reg_state *regs) 9509 { 9510 int i; 9511 9512 /* after the call registers r0 - r5 were scratched */ 9513 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9514 mark_reg_not_init(env, regs, caller_saved[i]); 9515 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9516 } 9517 } 9518 9519 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9520 struct bpf_func_state *caller, 9521 struct bpf_func_state *callee, 9522 int insn_idx); 9523 9524 static int set_callee_state(struct bpf_verifier_env *env, 9525 struct bpf_func_state *caller, 9526 struct bpf_func_state *callee, int insn_idx); 9527 9528 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9529 set_callee_state_fn set_callee_state_cb, 9530 struct bpf_verifier_state *state) 9531 { 9532 struct bpf_func_state *caller, *callee; 9533 int err; 9534 9535 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9536 verbose(env, "the call stack of %d frames is too deep\n", 9537 state->curframe + 2); 9538 return -E2BIG; 9539 } 9540 9541 if (state->frame[state->curframe + 1]) { 9542 verbose(env, "verifier bug. Frame %d already allocated\n", 9543 state->curframe + 1); 9544 return -EFAULT; 9545 } 9546 9547 caller = state->frame[state->curframe]; 9548 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9549 if (!callee) 9550 return -ENOMEM; 9551 state->frame[state->curframe + 1] = callee; 9552 9553 /* callee cannot access r0, r6 - r9 for reading and has to write 9554 * into its own stack before reading from it. 9555 * callee can read/write into caller's stack 9556 */ 9557 init_func_state(env, callee, 9558 /* remember the callsite, it will be used by bpf_exit */ 9559 callsite, 9560 state->curframe + 1 /* frameno within this callchain */, 9561 subprog /* subprog number within this prog */); 9562 /* Transfer references to the callee */ 9563 err = copy_reference_state(callee, caller); 9564 err = err ?: set_callee_state_cb(env, caller, callee, callsite); 9565 if (err) 9566 goto err_out; 9567 9568 /* only increment it after check_reg_arg() finished */ 9569 state->curframe++; 9570 9571 return 0; 9572 9573 err_out: 9574 free_func_state(callee); 9575 state->frame[state->curframe + 1] = NULL; 9576 return err; 9577 } 9578 9579 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 9580 const struct btf *btf, 9581 struct bpf_reg_state *regs) 9582 { 9583 struct bpf_subprog_info *sub = subprog_info(env, subprog); 9584 struct bpf_verifier_log *log = &env->log; 9585 u32 i; 9586 int ret; 9587 9588 ret = btf_prepare_func_args(env, subprog); 9589 if (ret) 9590 return ret; 9591 9592 /* check that BTF function arguments match actual types that the 9593 * verifier sees. 9594 */ 9595 for (i = 0; i < sub->arg_cnt; i++) { 9596 u32 regno = i + 1; 9597 struct bpf_reg_state *reg = ®s[regno]; 9598 struct bpf_subprog_arg_info *arg = &sub->args[i]; 9599 9600 if (arg->arg_type == ARG_ANYTHING) { 9601 if (reg->type != SCALAR_VALUE) { 9602 bpf_log(log, "R%d is not a scalar\n", regno); 9603 return -EINVAL; 9604 } 9605 } else if (arg->arg_type == ARG_PTR_TO_CTX) { 9606 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 9607 if (ret < 0) 9608 return ret; 9609 /* If function expects ctx type in BTF check that caller 9610 * is passing PTR_TO_CTX. 9611 */ 9612 if (reg->type != PTR_TO_CTX) { 9613 bpf_log(log, "arg#%d expects pointer to ctx\n", i); 9614 return -EINVAL; 9615 } 9616 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 9617 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 9618 if (ret < 0) 9619 return ret; 9620 if (check_mem_reg(env, reg, regno, arg->mem_size)) 9621 return -EINVAL; 9622 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { 9623 bpf_log(log, "arg#%d is expected to be non-NULL\n", i); 9624 return -EINVAL; 9625 } 9626 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 9627 /* 9628 * Can pass any value and the kernel won't crash, but 9629 * only PTR_TO_ARENA or SCALAR make sense. Everything 9630 * else is a bug in the bpf program. Point it out to 9631 * the user at the verification time instead of 9632 * run-time debug nightmare. 9633 */ 9634 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { 9635 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); 9636 return -EINVAL; 9637 } 9638 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 9639 ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR); 9640 if (ret) 9641 return ret; 9642 9643 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); 9644 if (ret) 9645 return ret; 9646 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 9647 struct bpf_call_arg_meta meta; 9648 int err; 9649 9650 if (register_is_null(reg) && type_may_be_null(arg->arg_type)) 9651 continue; 9652 9653 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ 9654 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); 9655 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); 9656 if (err) 9657 return err; 9658 } else { 9659 bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n", 9660 i, arg->arg_type); 9661 return -EFAULT; 9662 } 9663 } 9664 9665 return 0; 9666 } 9667 9668 /* Compare BTF of a function call with given bpf_reg_state. 9669 * Returns: 9670 * EFAULT - there is a verifier bug. Abort verification. 9671 * EINVAL - there is a type mismatch or BTF is not available. 9672 * 0 - BTF matches with what bpf_reg_state expects. 9673 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 9674 */ 9675 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 9676 struct bpf_reg_state *regs) 9677 { 9678 struct bpf_prog *prog = env->prog; 9679 struct btf *btf = prog->aux->btf; 9680 u32 btf_id; 9681 int err; 9682 9683 if (!prog->aux->func_info) 9684 return -EINVAL; 9685 9686 btf_id = prog->aux->func_info[subprog].type_id; 9687 if (!btf_id) 9688 return -EFAULT; 9689 9690 if (prog->aux->func_info_aux[subprog].unreliable) 9691 return -EINVAL; 9692 9693 err = btf_check_func_arg_match(env, subprog, btf, regs); 9694 /* Compiler optimizations can remove arguments from static functions 9695 * or mismatched type can be passed into a global function. 9696 * In such cases mark the function as unreliable from BTF point of view. 9697 */ 9698 if (err) 9699 prog->aux->func_info_aux[subprog].unreliable = true; 9700 return err; 9701 } 9702 9703 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9704 int insn_idx, int subprog, 9705 set_callee_state_fn set_callee_state_cb) 9706 { 9707 struct bpf_verifier_state *state = env->cur_state, *callback_state; 9708 struct bpf_func_state *caller, *callee; 9709 int err; 9710 9711 caller = state->frame[state->curframe]; 9712 err = btf_check_subprog_call(env, subprog, caller->regs); 9713 if (err == -EFAULT) 9714 return err; 9715 9716 /* set_callee_state is used for direct subprog calls, but we are 9717 * interested in validating only BPF helpers that can call subprogs as 9718 * callbacks 9719 */ 9720 env->subprog_info[subprog].is_cb = true; 9721 if (bpf_pseudo_kfunc_call(insn) && 9722 !is_callback_calling_kfunc(insn->imm)) { 9723 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 9724 func_id_name(insn->imm), insn->imm); 9725 return -EFAULT; 9726 } else if (!bpf_pseudo_kfunc_call(insn) && 9727 !is_callback_calling_function(insn->imm)) { /* helper */ 9728 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 9729 func_id_name(insn->imm), insn->imm); 9730 return -EFAULT; 9731 } 9732 9733 if (is_async_callback_calling_insn(insn)) { 9734 struct bpf_verifier_state *async_cb; 9735 9736 /* there is no real recursion here. timer and workqueue callbacks are async */ 9737 env->subprog_info[subprog].is_async_cb = true; 9738 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 9739 insn_idx, subprog, 9740 is_bpf_wq_set_callback_impl_kfunc(insn->imm)); 9741 if (!async_cb) 9742 return -EFAULT; 9743 callee = async_cb->frame[0]; 9744 callee->async_entry_cnt = caller->async_entry_cnt + 1; 9745 9746 /* Convert bpf_timer_set_callback() args into timer callback args */ 9747 err = set_callee_state_cb(env, caller, callee, insn_idx); 9748 if (err) 9749 return err; 9750 9751 return 0; 9752 } 9753 9754 /* for callback functions enqueue entry to callback and 9755 * proceed with next instruction within current frame. 9756 */ 9757 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 9758 if (!callback_state) 9759 return -ENOMEM; 9760 9761 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 9762 callback_state); 9763 if (err) 9764 return err; 9765 9766 callback_state->callback_unroll_depth++; 9767 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 9768 caller->callback_depth = 0; 9769 return 0; 9770 } 9771 9772 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9773 int *insn_idx) 9774 { 9775 struct bpf_verifier_state *state = env->cur_state; 9776 struct bpf_func_state *caller; 9777 int err, subprog, target_insn; 9778 9779 target_insn = *insn_idx + insn->imm + 1; 9780 subprog = find_subprog(env, target_insn); 9781 if (subprog < 0) { 9782 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 9783 return -EFAULT; 9784 } 9785 9786 caller = state->frame[state->curframe]; 9787 err = btf_check_subprog_call(env, subprog, caller->regs); 9788 if (err == -EFAULT) 9789 return err; 9790 if (subprog_is_global(env, subprog)) { 9791 const char *sub_name = subprog_name(env, subprog); 9792 9793 /* Only global subprogs cannot be called with a lock held. */ 9794 if (env->cur_state->active_lock.ptr) { 9795 verbose(env, "global function calls are not allowed while holding a lock,\n" 9796 "use static function instead\n"); 9797 return -EINVAL; 9798 } 9799 9800 /* Only global subprogs cannot be called with preemption disabled. */ 9801 if (env->cur_state->active_preempt_lock) { 9802 verbose(env, "global function calls are not allowed with preemption disabled,\n" 9803 "use static function instead\n"); 9804 return -EINVAL; 9805 } 9806 9807 if (err) { 9808 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 9809 subprog, sub_name); 9810 return err; 9811 } 9812 9813 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 9814 subprog, sub_name); 9815 /* mark global subprog for verifying after main prog */ 9816 subprog_aux(env, subprog)->called = true; 9817 clear_caller_saved_regs(env, caller->regs); 9818 9819 /* All global functions return a 64-bit SCALAR_VALUE */ 9820 mark_reg_unknown(env, caller->regs, BPF_REG_0); 9821 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9822 9823 /* continue with next insn after call */ 9824 return 0; 9825 } 9826 9827 /* for regular function entry setup new frame and continue 9828 * from that frame. 9829 */ 9830 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 9831 if (err) 9832 return err; 9833 9834 clear_caller_saved_regs(env, caller->regs); 9835 9836 /* and go analyze first insn of the callee */ 9837 *insn_idx = env->subprog_info[subprog].start - 1; 9838 9839 if (env->log.level & BPF_LOG_LEVEL) { 9840 verbose(env, "caller:\n"); 9841 print_verifier_state(env, caller, true); 9842 verbose(env, "callee:\n"); 9843 print_verifier_state(env, state->frame[state->curframe], true); 9844 } 9845 9846 return 0; 9847 } 9848 9849 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 9850 struct bpf_func_state *caller, 9851 struct bpf_func_state *callee) 9852 { 9853 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 9854 * void *callback_ctx, u64 flags); 9855 * callback_fn(struct bpf_map *map, void *key, void *value, 9856 * void *callback_ctx); 9857 */ 9858 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9859 9860 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9861 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9862 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9863 9864 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9865 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9866 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9867 9868 /* pointer to stack or null */ 9869 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9870 9871 /* unused */ 9872 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9873 return 0; 9874 } 9875 9876 static int set_callee_state(struct bpf_verifier_env *env, 9877 struct bpf_func_state *caller, 9878 struct bpf_func_state *callee, int insn_idx) 9879 { 9880 int i; 9881 9882 /* copy r1 - r5 args that callee can access. The copy includes parent 9883 * pointers, which connects us up to the liveness chain 9884 */ 9885 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9886 callee->regs[i] = caller->regs[i]; 9887 return 0; 9888 } 9889 9890 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9891 struct bpf_func_state *caller, 9892 struct bpf_func_state *callee, 9893 int insn_idx) 9894 { 9895 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9896 struct bpf_map *map; 9897 int err; 9898 9899 /* valid map_ptr and poison value does not matter */ 9900 map = insn_aux->map_ptr_state.map_ptr; 9901 if (!map->ops->map_set_for_each_callback_args || 9902 !map->ops->map_for_each_callback) { 9903 verbose(env, "callback function not allowed for map\n"); 9904 return -ENOTSUPP; 9905 } 9906 9907 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9908 if (err) 9909 return err; 9910 9911 callee->in_callback_fn = true; 9912 callee->callback_ret_range = retval_range(0, 1); 9913 return 0; 9914 } 9915 9916 static int set_loop_callback_state(struct bpf_verifier_env *env, 9917 struct bpf_func_state *caller, 9918 struct bpf_func_state *callee, 9919 int insn_idx) 9920 { 9921 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9922 * u64 flags); 9923 * callback_fn(u32 index, void *callback_ctx); 9924 */ 9925 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9926 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9927 9928 /* unused */ 9929 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9930 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9931 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9932 9933 callee->in_callback_fn = true; 9934 callee->callback_ret_range = retval_range(0, 1); 9935 return 0; 9936 } 9937 9938 static int set_timer_callback_state(struct bpf_verifier_env *env, 9939 struct bpf_func_state *caller, 9940 struct bpf_func_state *callee, 9941 int insn_idx) 9942 { 9943 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9944 9945 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9946 * callback_fn(struct bpf_map *map, void *key, void *value); 9947 */ 9948 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9949 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9950 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9951 9952 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9953 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9954 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9955 9956 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9957 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9958 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9959 9960 /* unused */ 9961 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9962 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9963 callee->in_async_callback_fn = true; 9964 callee->callback_ret_range = retval_range(0, 1); 9965 return 0; 9966 } 9967 9968 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9969 struct bpf_func_state *caller, 9970 struct bpf_func_state *callee, 9971 int insn_idx) 9972 { 9973 /* bpf_find_vma(struct task_struct *task, u64 addr, 9974 * void *callback_fn, void *callback_ctx, u64 flags) 9975 * (callback_fn)(struct task_struct *task, 9976 * struct vm_area_struct *vma, void *callback_ctx); 9977 */ 9978 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9979 9980 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9981 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9982 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9983 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; 9984 9985 /* pointer to stack or null */ 9986 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9987 9988 /* unused */ 9989 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9990 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9991 callee->in_callback_fn = true; 9992 callee->callback_ret_range = retval_range(0, 1); 9993 return 0; 9994 } 9995 9996 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9997 struct bpf_func_state *caller, 9998 struct bpf_func_state *callee, 9999 int insn_idx) 10000 { 10001 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 10002 * callback_ctx, u64 flags); 10003 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 10004 */ 10005 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 10006 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 10007 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10008 10009 /* unused */ 10010 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10011 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10012 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10013 10014 callee->in_callback_fn = true; 10015 callee->callback_ret_range = retval_range(0, 1); 10016 return 0; 10017 } 10018 10019 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 10020 struct bpf_func_state *caller, 10021 struct bpf_func_state *callee, 10022 int insn_idx) 10023 { 10024 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 10025 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 10026 * 10027 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 10028 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 10029 * by this point, so look at 'root' 10030 */ 10031 struct btf_field *field; 10032 10033 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 10034 BPF_RB_ROOT); 10035 if (!field || !field->graph_root.value_btf_id) 10036 return -EFAULT; 10037 10038 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 10039 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 10040 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 10041 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 10042 10043 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10044 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10045 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10046 callee->in_callback_fn = true; 10047 callee->callback_ret_range = retval_range(0, 1); 10048 return 0; 10049 } 10050 10051 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 10052 10053 /* Are we currently verifying the callback for a rbtree helper that must 10054 * be called with lock held? If so, no need to complain about unreleased 10055 * lock 10056 */ 10057 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 10058 { 10059 struct bpf_verifier_state *state = env->cur_state; 10060 struct bpf_insn *insn = env->prog->insnsi; 10061 struct bpf_func_state *callee; 10062 int kfunc_btf_id; 10063 10064 if (!state->curframe) 10065 return false; 10066 10067 callee = state->frame[state->curframe]; 10068 10069 if (!callee->in_callback_fn) 10070 return false; 10071 10072 kfunc_btf_id = insn[callee->callsite].imm; 10073 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 10074 } 10075 10076 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg, 10077 bool return_32bit) 10078 { 10079 if (return_32bit) 10080 return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval; 10081 else 10082 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; 10083 } 10084 10085 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 10086 { 10087 struct bpf_verifier_state *state = env->cur_state, *prev_st; 10088 struct bpf_func_state *caller, *callee; 10089 struct bpf_reg_state *r0; 10090 bool in_callback_fn; 10091 int err; 10092 10093 callee = state->frame[state->curframe]; 10094 r0 = &callee->regs[BPF_REG_0]; 10095 if (r0->type == PTR_TO_STACK) { 10096 /* technically it's ok to return caller's stack pointer 10097 * (or caller's caller's pointer) back to the caller, 10098 * since these pointers are valid. Only current stack 10099 * pointer will be invalid as soon as function exits, 10100 * but let's be conservative 10101 */ 10102 verbose(env, "cannot return stack pointer to the caller\n"); 10103 return -EINVAL; 10104 } 10105 10106 caller = state->frame[state->curframe - 1]; 10107 if (callee->in_callback_fn) { 10108 if (r0->type != SCALAR_VALUE) { 10109 verbose(env, "R0 not a scalar value\n"); 10110 return -EACCES; 10111 } 10112 10113 /* we are going to rely on register's precise value */ 10114 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 10115 err = err ?: mark_chain_precision(env, BPF_REG_0); 10116 if (err) 10117 return err; 10118 10119 /* enforce R0 return value range, and bpf_callback_t returns 64bit */ 10120 if (!retval_range_within(callee->callback_ret_range, r0, false)) { 10121 verbose_invalid_scalar(env, r0, callee->callback_ret_range, 10122 "At callback return", "R0"); 10123 return -EINVAL; 10124 } 10125 if (!calls_callback(env, callee->callsite)) { 10126 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 10127 *insn_idx, callee->callsite); 10128 return -EFAULT; 10129 } 10130 } else { 10131 /* return to the caller whatever r0 had in the callee */ 10132 caller->regs[BPF_REG_0] = *r0; 10133 } 10134 10135 /* callback_fn frame should have released its own additions to parent's 10136 * reference state at this point, or check_reference_leak would 10137 * complain, hence it must be the same as the caller. There is no need 10138 * to copy it back. 10139 */ 10140 if (!callee->in_callback_fn) { 10141 /* Transfer references to the caller */ 10142 err = copy_reference_state(caller, callee); 10143 if (err) 10144 return err; 10145 } 10146 10147 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 10148 * there function call logic would reschedule callback visit. If iteration 10149 * converges is_state_visited() would prune that visit eventually. 10150 */ 10151 in_callback_fn = callee->in_callback_fn; 10152 if (in_callback_fn) 10153 *insn_idx = callee->callsite; 10154 else 10155 *insn_idx = callee->callsite + 1; 10156 10157 if (env->log.level & BPF_LOG_LEVEL) { 10158 verbose(env, "returning from callee:\n"); 10159 print_verifier_state(env, callee, true); 10160 verbose(env, "to caller at %d:\n", *insn_idx); 10161 print_verifier_state(env, caller, true); 10162 } 10163 /* clear everything in the callee. In case of exceptional exits using 10164 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 10165 free_func_state(callee); 10166 state->frame[state->curframe--] = NULL; 10167 10168 /* for callbacks widen imprecise scalars to make programs like below verify: 10169 * 10170 * struct ctx { int i; } 10171 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 10172 * ... 10173 * struct ctx = { .i = 0; } 10174 * bpf_loop(100, cb, &ctx, 0); 10175 * 10176 * This is similar to what is done in process_iter_next_call() for open 10177 * coded iterators. 10178 */ 10179 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 10180 if (prev_st) { 10181 err = widen_imprecise_scalars(env, prev_st, state); 10182 if (err) 10183 return err; 10184 } 10185 return 0; 10186 } 10187 10188 static int do_refine_retval_range(struct bpf_verifier_env *env, 10189 struct bpf_reg_state *regs, int ret_type, 10190 int func_id, 10191 struct bpf_call_arg_meta *meta) 10192 { 10193 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 10194 10195 if (ret_type != RET_INTEGER) 10196 return 0; 10197 10198 switch (func_id) { 10199 case BPF_FUNC_get_stack: 10200 case BPF_FUNC_get_task_stack: 10201 case BPF_FUNC_probe_read_str: 10202 case BPF_FUNC_probe_read_kernel_str: 10203 case BPF_FUNC_probe_read_user_str: 10204 ret_reg->smax_value = meta->msize_max_value; 10205 ret_reg->s32_max_value = meta->msize_max_value; 10206 ret_reg->smin_value = -MAX_ERRNO; 10207 ret_reg->s32_min_value = -MAX_ERRNO; 10208 reg_bounds_sync(ret_reg); 10209 break; 10210 case BPF_FUNC_get_smp_processor_id: 10211 ret_reg->umax_value = nr_cpu_ids - 1; 10212 ret_reg->u32_max_value = nr_cpu_ids - 1; 10213 ret_reg->smax_value = nr_cpu_ids - 1; 10214 ret_reg->s32_max_value = nr_cpu_ids - 1; 10215 ret_reg->umin_value = 0; 10216 ret_reg->u32_min_value = 0; 10217 ret_reg->smin_value = 0; 10218 ret_reg->s32_min_value = 0; 10219 reg_bounds_sync(ret_reg); 10220 break; 10221 } 10222 10223 return reg_bounds_sanity_check(env, ret_reg, "retval"); 10224 } 10225 10226 static int 10227 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10228 int func_id, int insn_idx) 10229 { 10230 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10231 struct bpf_map *map = meta->map_ptr; 10232 10233 if (func_id != BPF_FUNC_tail_call && 10234 func_id != BPF_FUNC_map_lookup_elem && 10235 func_id != BPF_FUNC_map_update_elem && 10236 func_id != BPF_FUNC_map_delete_elem && 10237 func_id != BPF_FUNC_map_push_elem && 10238 func_id != BPF_FUNC_map_pop_elem && 10239 func_id != BPF_FUNC_map_peek_elem && 10240 func_id != BPF_FUNC_for_each_map_elem && 10241 func_id != BPF_FUNC_redirect_map && 10242 func_id != BPF_FUNC_map_lookup_percpu_elem) 10243 return 0; 10244 10245 if (map == NULL) { 10246 verbose(env, "kernel subsystem misconfigured verifier\n"); 10247 return -EINVAL; 10248 } 10249 10250 /* In case of read-only, some additional restrictions 10251 * need to be applied in order to prevent altering the 10252 * state of the map from program side. 10253 */ 10254 if ((map->map_flags & BPF_F_RDONLY_PROG) && 10255 (func_id == BPF_FUNC_map_delete_elem || 10256 func_id == BPF_FUNC_map_update_elem || 10257 func_id == BPF_FUNC_map_push_elem || 10258 func_id == BPF_FUNC_map_pop_elem)) { 10259 verbose(env, "write into map forbidden\n"); 10260 return -EACCES; 10261 } 10262 10263 if (!aux->map_ptr_state.map_ptr) 10264 bpf_map_ptr_store(aux, meta->map_ptr, 10265 !meta->map_ptr->bypass_spec_v1, false); 10266 else if (aux->map_ptr_state.map_ptr != meta->map_ptr) 10267 bpf_map_ptr_store(aux, meta->map_ptr, 10268 !meta->map_ptr->bypass_spec_v1, true); 10269 return 0; 10270 } 10271 10272 static int 10273 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10274 int func_id, int insn_idx) 10275 { 10276 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10277 struct bpf_reg_state *regs = cur_regs(env), *reg; 10278 struct bpf_map *map = meta->map_ptr; 10279 u64 val, max; 10280 int err; 10281 10282 if (func_id != BPF_FUNC_tail_call) 10283 return 0; 10284 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 10285 verbose(env, "kernel subsystem misconfigured verifier\n"); 10286 return -EINVAL; 10287 } 10288 10289 reg = ®s[BPF_REG_3]; 10290 val = reg->var_off.value; 10291 max = map->max_entries; 10292 10293 if (!(is_reg_const(reg, false) && val < max)) { 10294 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10295 return 0; 10296 } 10297 10298 err = mark_chain_precision(env, BPF_REG_3); 10299 if (err) 10300 return err; 10301 if (bpf_map_key_unseen(aux)) 10302 bpf_map_key_store(aux, val); 10303 else if (!bpf_map_key_poisoned(aux) && 10304 bpf_map_key_immediate(aux) != val) 10305 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10306 return 0; 10307 } 10308 10309 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 10310 { 10311 struct bpf_func_state *state = cur_func(env); 10312 bool refs_lingering = false; 10313 int i; 10314 10315 if (!exception_exit && state->frameno && !state->in_callback_fn) 10316 return 0; 10317 10318 for (i = 0; i < state->acquired_refs; i++) { 10319 if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 10320 continue; 10321 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 10322 state->refs[i].id, state->refs[i].insn_idx); 10323 refs_lingering = true; 10324 } 10325 return refs_lingering ? -EINVAL : 0; 10326 } 10327 10328 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 10329 struct bpf_reg_state *regs) 10330 { 10331 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 10332 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 10333 struct bpf_map *fmt_map = fmt_reg->map_ptr; 10334 struct bpf_bprintf_data data = {}; 10335 int err, fmt_map_off, num_args; 10336 u64 fmt_addr; 10337 char *fmt; 10338 10339 /* data must be an array of u64 */ 10340 if (data_len_reg->var_off.value % 8) 10341 return -EINVAL; 10342 num_args = data_len_reg->var_off.value / 8; 10343 10344 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 10345 * and map_direct_value_addr is set. 10346 */ 10347 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 10348 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 10349 fmt_map_off); 10350 if (err) { 10351 verbose(env, "verifier bug\n"); 10352 return -EFAULT; 10353 } 10354 fmt = (char *)(long)fmt_addr + fmt_map_off; 10355 10356 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 10357 * can focus on validating the format specifiers. 10358 */ 10359 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 10360 if (err < 0) 10361 verbose(env, "Invalid format string\n"); 10362 10363 return err; 10364 } 10365 10366 static int check_get_func_ip(struct bpf_verifier_env *env) 10367 { 10368 enum bpf_prog_type type = resolve_prog_type(env->prog); 10369 int func_id = BPF_FUNC_get_func_ip; 10370 10371 if (type == BPF_PROG_TYPE_TRACING) { 10372 if (!bpf_prog_has_trampoline(env->prog)) { 10373 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 10374 func_id_name(func_id), func_id); 10375 return -ENOTSUPP; 10376 } 10377 return 0; 10378 } else if (type == BPF_PROG_TYPE_KPROBE) { 10379 return 0; 10380 } 10381 10382 verbose(env, "func %s#%d not supported for program type %d\n", 10383 func_id_name(func_id), func_id, type); 10384 return -ENOTSUPP; 10385 } 10386 10387 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 10388 { 10389 return &env->insn_aux_data[env->insn_idx]; 10390 } 10391 10392 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 10393 { 10394 struct bpf_reg_state *regs = cur_regs(env); 10395 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 10396 bool reg_is_null = register_is_null(reg); 10397 10398 if (reg_is_null) 10399 mark_chain_precision(env, BPF_REG_4); 10400 10401 return reg_is_null; 10402 } 10403 10404 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 10405 { 10406 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 10407 10408 if (!state->initialized) { 10409 state->initialized = 1; 10410 state->fit_for_inline = loop_flag_is_zero(env); 10411 state->callback_subprogno = subprogno; 10412 return; 10413 } 10414 10415 if (!state->fit_for_inline) 10416 return; 10417 10418 state->fit_for_inline = (loop_flag_is_zero(env) && 10419 state->callback_subprogno == subprogno); 10420 } 10421 10422 static int get_helper_proto(struct bpf_verifier_env *env, int func_id, 10423 const struct bpf_func_proto **ptr) 10424 { 10425 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) 10426 return -ERANGE; 10427 10428 if (!env->ops->get_func_proto) 10429 return -EINVAL; 10430 10431 *ptr = env->ops->get_func_proto(func_id, env->prog); 10432 return *ptr ? 0 : -EINVAL; 10433 } 10434 10435 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10436 int *insn_idx_p) 10437 { 10438 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10439 bool returns_cpu_specific_alloc_ptr = false; 10440 const struct bpf_func_proto *fn = NULL; 10441 enum bpf_return_type ret_type; 10442 enum bpf_type_flag ret_flag; 10443 struct bpf_reg_state *regs; 10444 struct bpf_call_arg_meta meta; 10445 int insn_idx = *insn_idx_p; 10446 bool changes_data; 10447 int i, err, func_id; 10448 10449 /* find function prototype */ 10450 func_id = insn->imm; 10451 err = get_helper_proto(env, insn->imm, &fn); 10452 if (err == -ERANGE) { 10453 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id); 10454 return -EINVAL; 10455 } 10456 10457 if (err) { 10458 verbose(env, "program of this type cannot use helper %s#%d\n", 10459 func_id_name(func_id), func_id); 10460 return err; 10461 } 10462 10463 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 10464 if (!env->prog->gpl_compatible && fn->gpl_only) { 10465 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 10466 return -EINVAL; 10467 } 10468 10469 if (fn->allowed && !fn->allowed(env->prog)) { 10470 verbose(env, "helper call is not allowed in probe\n"); 10471 return -EINVAL; 10472 } 10473 10474 if (!in_sleepable(env) && fn->might_sleep) { 10475 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 10476 return -EINVAL; 10477 } 10478 10479 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 10480 changes_data = bpf_helper_changes_pkt_data(fn->func); 10481 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 10482 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 10483 func_id_name(func_id), func_id); 10484 return -EINVAL; 10485 } 10486 10487 memset(&meta, 0, sizeof(meta)); 10488 meta.pkt_access = fn->pkt_access; 10489 10490 err = check_func_proto(fn, func_id); 10491 if (err) { 10492 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 10493 func_id_name(func_id), func_id); 10494 return err; 10495 } 10496 10497 if (env->cur_state->active_rcu_lock) { 10498 if (fn->might_sleep) { 10499 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 10500 func_id_name(func_id), func_id); 10501 return -EINVAL; 10502 } 10503 10504 if (in_sleepable(env) && is_storage_get_function(func_id)) 10505 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10506 } 10507 10508 if (env->cur_state->active_preempt_lock) { 10509 if (fn->might_sleep) { 10510 verbose(env, "sleepable helper %s#%d in non-preemptible region\n", 10511 func_id_name(func_id), func_id); 10512 return -EINVAL; 10513 } 10514 10515 if (in_sleepable(env) && is_storage_get_function(func_id)) 10516 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10517 } 10518 10519 meta.func_id = func_id; 10520 /* check args */ 10521 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 10522 err = check_func_arg(env, i, &meta, fn, insn_idx); 10523 if (err) 10524 return err; 10525 } 10526 10527 err = record_func_map(env, &meta, func_id, insn_idx); 10528 if (err) 10529 return err; 10530 10531 err = record_func_key(env, &meta, func_id, insn_idx); 10532 if (err) 10533 return err; 10534 10535 /* Mark slots with STACK_MISC in case of raw mode, stack offset 10536 * is inferred from register state. 10537 */ 10538 for (i = 0; i < meta.access_size; i++) { 10539 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 10540 BPF_WRITE, -1, false, false); 10541 if (err) 10542 return err; 10543 } 10544 10545 regs = cur_regs(env); 10546 10547 if (meta.release_regno) { 10548 err = -EINVAL; 10549 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 10550 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 10551 * is safe to do directly. 10552 */ 10553 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 10554 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 10555 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 10556 return -EFAULT; 10557 } 10558 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 10559 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 10560 u32 ref_obj_id = meta.ref_obj_id; 10561 bool in_rcu = in_rcu_cs(env); 10562 struct bpf_func_state *state; 10563 struct bpf_reg_state *reg; 10564 10565 err = release_reference_state(cur_func(env), ref_obj_id); 10566 if (!err) { 10567 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10568 if (reg->ref_obj_id == ref_obj_id) { 10569 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 10570 reg->ref_obj_id = 0; 10571 reg->type &= ~MEM_ALLOC; 10572 reg->type |= MEM_RCU; 10573 } else { 10574 mark_reg_invalid(env, reg); 10575 } 10576 } 10577 })); 10578 } 10579 } else if (meta.ref_obj_id) { 10580 err = release_reference(env, meta.ref_obj_id); 10581 } else if (register_is_null(®s[meta.release_regno])) { 10582 /* meta.ref_obj_id can only be 0 if register that is meant to be 10583 * released is NULL, which must be > R0. 10584 */ 10585 err = 0; 10586 } 10587 if (err) { 10588 verbose(env, "func %s#%d reference has not been acquired before\n", 10589 func_id_name(func_id), func_id); 10590 return err; 10591 } 10592 } 10593 10594 switch (func_id) { 10595 case BPF_FUNC_tail_call: 10596 err = check_reference_leak(env, false); 10597 if (err) { 10598 verbose(env, "tail_call would lead to reference leak\n"); 10599 return err; 10600 } 10601 break; 10602 case BPF_FUNC_get_local_storage: 10603 /* check that flags argument in get_local_storage(map, flags) is 0, 10604 * this is required because get_local_storage() can't return an error. 10605 */ 10606 if (!register_is_null(®s[BPF_REG_2])) { 10607 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 10608 return -EINVAL; 10609 } 10610 break; 10611 case BPF_FUNC_for_each_map_elem: 10612 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10613 set_map_elem_callback_state); 10614 break; 10615 case BPF_FUNC_timer_set_callback: 10616 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10617 set_timer_callback_state); 10618 break; 10619 case BPF_FUNC_find_vma: 10620 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10621 set_find_vma_callback_state); 10622 break; 10623 case BPF_FUNC_snprintf: 10624 err = check_bpf_snprintf_call(env, regs); 10625 break; 10626 case BPF_FUNC_loop: 10627 update_loop_inline_state(env, meta.subprogno); 10628 /* Verifier relies on R1 value to determine if bpf_loop() iteration 10629 * is finished, thus mark it precise. 10630 */ 10631 err = mark_chain_precision(env, BPF_REG_1); 10632 if (err) 10633 return err; 10634 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 10635 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10636 set_loop_callback_state); 10637 } else { 10638 cur_func(env)->callback_depth = 0; 10639 if (env->log.level & BPF_LOG_LEVEL2) 10640 verbose(env, "frame%d bpf_loop iteration limit reached\n", 10641 env->cur_state->curframe); 10642 } 10643 break; 10644 case BPF_FUNC_dynptr_from_mem: 10645 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 10646 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 10647 reg_type_str(env, regs[BPF_REG_1].type)); 10648 return -EACCES; 10649 } 10650 break; 10651 case BPF_FUNC_set_retval: 10652 if (prog_type == BPF_PROG_TYPE_LSM && 10653 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 10654 if (!env->prog->aux->attach_func_proto->type) { 10655 /* Make sure programs that attach to void 10656 * hooks don't try to modify return value. 10657 */ 10658 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10659 return -EINVAL; 10660 } 10661 } 10662 break; 10663 case BPF_FUNC_dynptr_data: 10664 { 10665 struct bpf_reg_state *reg; 10666 int id, ref_obj_id; 10667 10668 reg = get_dynptr_arg_reg(env, fn, regs); 10669 if (!reg) 10670 return -EFAULT; 10671 10672 10673 if (meta.dynptr_id) { 10674 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 10675 return -EFAULT; 10676 } 10677 if (meta.ref_obj_id) { 10678 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 10679 return -EFAULT; 10680 } 10681 10682 id = dynptr_id(env, reg); 10683 if (id < 0) { 10684 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10685 return id; 10686 } 10687 10688 ref_obj_id = dynptr_ref_obj_id(env, reg); 10689 if (ref_obj_id < 0) { 10690 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 10691 return ref_obj_id; 10692 } 10693 10694 meta.dynptr_id = id; 10695 meta.ref_obj_id = ref_obj_id; 10696 10697 break; 10698 } 10699 case BPF_FUNC_dynptr_write: 10700 { 10701 enum bpf_dynptr_type dynptr_type; 10702 struct bpf_reg_state *reg; 10703 10704 reg = get_dynptr_arg_reg(env, fn, regs); 10705 if (!reg) 10706 return -EFAULT; 10707 10708 dynptr_type = dynptr_get_type(env, reg); 10709 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 10710 return -EFAULT; 10711 10712 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 10713 /* this will trigger clear_all_pkt_pointers(), which will 10714 * invalidate all dynptr slices associated with the skb 10715 */ 10716 changes_data = true; 10717 10718 break; 10719 } 10720 case BPF_FUNC_per_cpu_ptr: 10721 case BPF_FUNC_this_cpu_ptr: 10722 { 10723 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 10724 const struct btf_type *type; 10725 10726 if (reg->type & MEM_RCU) { 10727 type = btf_type_by_id(reg->btf, reg->btf_id); 10728 if (!type || !btf_type_is_struct(type)) { 10729 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 10730 return -EFAULT; 10731 } 10732 returns_cpu_specific_alloc_ptr = true; 10733 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 10734 } 10735 break; 10736 } 10737 case BPF_FUNC_user_ringbuf_drain: 10738 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10739 set_user_ringbuf_callback_state); 10740 break; 10741 } 10742 10743 if (err) 10744 return err; 10745 10746 /* reset caller saved regs */ 10747 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10748 mark_reg_not_init(env, regs, caller_saved[i]); 10749 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10750 } 10751 10752 /* helper call returns 64-bit value. */ 10753 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10754 10755 /* update return register (already marked as written above) */ 10756 ret_type = fn->ret_type; 10757 ret_flag = type_flag(ret_type); 10758 10759 switch (base_type(ret_type)) { 10760 case RET_INTEGER: 10761 /* sets type to SCALAR_VALUE */ 10762 mark_reg_unknown(env, regs, BPF_REG_0); 10763 break; 10764 case RET_VOID: 10765 regs[BPF_REG_0].type = NOT_INIT; 10766 break; 10767 case RET_PTR_TO_MAP_VALUE: 10768 /* There is no offset yet applied, variable or fixed */ 10769 mark_reg_known_zero(env, regs, BPF_REG_0); 10770 /* remember map_ptr, so that check_map_access() 10771 * can check 'value_size' boundary of memory access 10772 * to map element returned from bpf_map_lookup_elem() 10773 */ 10774 if (meta.map_ptr == NULL) { 10775 verbose(env, 10776 "kernel subsystem misconfigured verifier\n"); 10777 return -EINVAL; 10778 } 10779 regs[BPF_REG_0].map_ptr = meta.map_ptr; 10780 regs[BPF_REG_0].map_uid = meta.map_uid; 10781 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 10782 if (!type_may_be_null(ret_type) && 10783 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 10784 regs[BPF_REG_0].id = ++env->id_gen; 10785 } 10786 break; 10787 case RET_PTR_TO_SOCKET: 10788 mark_reg_known_zero(env, regs, BPF_REG_0); 10789 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 10790 break; 10791 case RET_PTR_TO_SOCK_COMMON: 10792 mark_reg_known_zero(env, regs, BPF_REG_0); 10793 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 10794 break; 10795 case RET_PTR_TO_TCP_SOCK: 10796 mark_reg_known_zero(env, regs, BPF_REG_0); 10797 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 10798 break; 10799 case RET_PTR_TO_MEM: 10800 mark_reg_known_zero(env, regs, BPF_REG_0); 10801 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10802 regs[BPF_REG_0].mem_size = meta.mem_size; 10803 break; 10804 case RET_PTR_TO_MEM_OR_BTF_ID: 10805 { 10806 const struct btf_type *t; 10807 10808 mark_reg_known_zero(env, regs, BPF_REG_0); 10809 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 10810 if (!btf_type_is_struct(t)) { 10811 u32 tsize; 10812 const struct btf_type *ret; 10813 const char *tname; 10814 10815 /* resolve the type size of ksym. */ 10816 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 10817 if (IS_ERR(ret)) { 10818 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 10819 verbose(env, "unable to resolve the size of type '%s': %ld\n", 10820 tname, PTR_ERR(ret)); 10821 return -EINVAL; 10822 } 10823 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10824 regs[BPF_REG_0].mem_size = tsize; 10825 } else { 10826 if (returns_cpu_specific_alloc_ptr) { 10827 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 10828 } else { 10829 /* MEM_RDONLY may be carried from ret_flag, but it 10830 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 10831 * it will confuse the check of PTR_TO_BTF_ID in 10832 * check_mem_access(). 10833 */ 10834 ret_flag &= ~MEM_RDONLY; 10835 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10836 } 10837 10838 regs[BPF_REG_0].btf = meta.ret_btf; 10839 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 10840 } 10841 break; 10842 } 10843 case RET_PTR_TO_BTF_ID: 10844 { 10845 struct btf *ret_btf; 10846 int ret_btf_id; 10847 10848 mark_reg_known_zero(env, regs, BPF_REG_0); 10849 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10850 if (func_id == BPF_FUNC_kptr_xchg) { 10851 ret_btf = meta.kptr_field->kptr.btf; 10852 ret_btf_id = meta.kptr_field->kptr.btf_id; 10853 if (!btf_is_kernel(ret_btf)) { 10854 regs[BPF_REG_0].type |= MEM_ALLOC; 10855 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 10856 regs[BPF_REG_0].type |= MEM_PERCPU; 10857 } 10858 } else { 10859 if (fn->ret_btf_id == BPF_PTR_POISON) { 10860 verbose(env, "verifier internal error:"); 10861 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 10862 func_id_name(func_id)); 10863 return -EINVAL; 10864 } 10865 ret_btf = btf_vmlinux; 10866 ret_btf_id = *fn->ret_btf_id; 10867 } 10868 if (ret_btf_id == 0) { 10869 verbose(env, "invalid return type %u of func %s#%d\n", 10870 base_type(ret_type), func_id_name(func_id), 10871 func_id); 10872 return -EINVAL; 10873 } 10874 regs[BPF_REG_0].btf = ret_btf; 10875 regs[BPF_REG_0].btf_id = ret_btf_id; 10876 break; 10877 } 10878 default: 10879 verbose(env, "unknown return type %u of func %s#%d\n", 10880 base_type(ret_type), func_id_name(func_id), func_id); 10881 return -EINVAL; 10882 } 10883 10884 if (type_may_be_null(regs[BPF_REG_0].type)) 10885 regs[BPF_REG_0].id = ++env->id_gen; 10886 10887 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 10888 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 10889 func_id_name(func_id), func_id); 10890 return -EFAULT; 10891 } 10892 10893 if (is_dynptr_ref_function(func_id)) 10894 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 10895 10896 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 10897 /* For release_reference() */ 10898 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10899 } else if (is_acquire_function(func_id, meta.map_ptr)) { 10900 int id = acquire_reference_state(env, insn_idx); 10901 10902 if (id < 0) 10903 return id; 10904 /* For mark_ptr_or_null_reg() */ 10905 regs[BPF_REG_0].id = id; 10906 /* For release_reference() */ 10907 regs[BPF_REG_0].ref_obj_id = id; 10908 } 10909 10910 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 10911 if (err) 10912 return err; 10913 10914 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 10915 if (err) 10916 return err; 10917 10918 if ((func_id == BPF_FUNC_get_stack || 10919 func_id == BPF_FUNC_get_task_stack) && 10920 !env->prog->has_callchain_buf) { 10921 const char *err_str; 10922 10923 #ifdef CONFIG_PERF_EVENTS 10924 err = get_callchain_buffers(sysctl_perf_event_max_stack); 10925 err_str = "cannot get callchain buffer for func %s#%d\n"; 10926 #else 10927 err = -ENOTSUPP; 10928 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 10929 #endif 10930 if (err) { 10931 verbose(env, err_str, func_id_name(func_id), func_id); 10932 return err; 10933 } 10934 10935 env->prog->has_callchain_buf = true; 10936 } 10937 10938 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 10939 env->prog->call_get_stack = true; 10940 10941 if (func_id == BPF_FUNC_get_func_ip) { 10942 if (check_get_func_ip(env)) 10943 return -ENOTSUPP; 10944 env->prog->call_get_func_ip = true; 10945 } 10946 10947 if (changes_data) 10948 clear_all_pkt_pointers(env); 10949 return 0; 10950 } 10951 10952 /* mark_btf_func_reg_size() is used when the reg size is determined by 10953 * the BTF func_proto's return value size and argument. 10954 */ 10955 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 10956 size_t reg_size) 10957 { 10958 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 10959 10960 if (regno == BPF_REG_0) { 10961 /* Function return value */ 10962 reg->live |= REG_LIVE_WRITTEN; 10963 reg->subreg_def = reg_size == sizeof(u64) ? 10964 DEF_NOT_SUBREG : env->insn_idx + 1; 10965 } else { 10966 /* Function argument */ 10967 if (reg_size == sizeof(u64)) { 10968 mark_insn_zext(env, reg); 10969 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10970 } else { 10971 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10972 } 10973 } 10974 } 10975 10976 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10977 { 10978 return meta->kfunc_flags & KF_ACQUIRE; 10979 } 10980 10981 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10982 { 10983 return meta->kfunc_flags & KF_RELEASE; 10984 } 10985 10986 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10987 { 10988 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10989 } 10990 10991 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10992 { 10993 return meta->kfunc_flags & KF_SLEEPABLE; 10994 } 10995 10996 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10997 { 10998 return meta->kfunc_flags & KF_DESTRUCTIVE; 10999 } 11000 11001 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 11002 { 11003 return meta->kfunc_flags & KF_RCU; 11004 } 11005 11006 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 11007 { 11008 return meta->kfunc_flags & KF_RCU_PROTECTED; 11009 } 11010 11011 static bool is_kfunc_arg_mem_size(const struct btf *btf, 11012 const struct btf_param *arg, 11013 const struct bpf_reg_state *reg) 11014 { 11015 const struct btf_type *t; 11016 11017 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11018 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11019 return false; 11020 11021 return btf_param_match_suffix(btf, arg, "__sz"); 11022 } 11023 11024 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 11025 const struct btf_param *arg, 11026 const struct bpf_reg_state *reg) 11027 { 11028 const struct btf_type *t; 11029 11030 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11031 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11032 return false; 11033 11034 return btf_param_match_suffix(btf, arg, "__szk"); 11035 } 11036 11037 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 11038 { 11039 return btf_param_match_suffix(btf, arg, "__opt"); 11040 } 11041 11042 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 11043 { 11044 return btf_param_match_suffix(btf, arg, "__k"); 11045 } 11046 11047 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 11048 { 11049 return btf_param_match_suffix(btf, arg, "__ign"); 11050 } 11051 11052 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) 11053 { 11054 return btf_param_match_suffix(btf, arg, "__map"); 11055 } 11056 11057 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 11058 { 11059 return btf_param_match_suffix(btf, arg, "__alloc"); 11060 } 11061 11062 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 11063 { 11064 return btf_param_match_suffix(btf, arg, "__uninit"); 11065 } 11066 11067 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 11068 { 11069 return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); 11070 } 11071 11072 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 11073 { 11074 return btf_param_match_suffix(btf, arg, "__nullable"); 11075 } 11076 11077 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 11078 { 11079 return btf_param_match_suffix(btf, arg, "__str"); 11080 } 11081 11082 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 11083 const struct btf_param *arg, 11084 const char *name) 11085 { 11086 int len, target_len = strlen(name); 11087 const char *param_name; 11088 11089 param_name = btf_name_by_offset(btf, arg->name_off); 11090 if (str_is_empty(param_name)) 11091 return false; 11092 len = strlen(param_name); 11093 if (len != target_len) 11094 return false; 11095 if (strcmp(param_name, name)) 11096 return false; 11097 11098 return true; 11099 } 11100 11101 enum { 11102 KF_ARG_DYNPTR_ID, 11103 KF_ARG_LIST_HEAD_ID, 11104 KF_ARG_LIST_NODE_ID, 11105 KF_ARG_RB_ROOT_ID, 11106 KF_ARG_RB_NODE_ID, 11107 KF_ARG_WORKQUEUE_ID, 11108 }; 11109 11110 BTF_ID_LIST(kf_arg_btf_ids) 11111 BTF_ID(struct, bpf_dynptr) 11112 BTF_ID(struct, bpf_list_head) 11113 BTF_ID(struct, bpf_list_node) 11114 BTF_ID(struct, bpf_rb_root) 11115 BTF_ID(struct, bpf_rb_node) 11116 BTF_ID(struct, bpf_wq) 11117 11118 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 11119 const struct btf_param *arg, int type) 11120 { 11121 const struct btf_type *t; 11122 u32 res_id; 11123 11124 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11125 if (!t) 11126 return false; 11127 if (!btf_type_is_ptr(t)) 11128 return false; 11129 t = btf_type_skip_modifiers(btf, t->type, &res_id); 11130 if (!t) 11131 return false; 11132 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 11133 } 11134 11135 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 11136 { 11137 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 11138 } 11139 11140 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 11141 { 11142 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 11143 } 11144 11145 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 11146 { 11147 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 11148 } 11149 11150 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 11151 { 11152 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 11153 } 11154 11155 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 11156 { 11157 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 11158 } 11159 11160 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) 11161 { 11162 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); 11163 } 11164 11165 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 11166 const struct btf_param *arg) 11167 { 11168 const struct btf_type *t; 11169 11170 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 11171 if (!t) 11172 return false; 11173 11174 return true; 11175 } 11176 11177 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 11178 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 11179 const struct btf *btf, 11180 const struct btf_type *t, int rec) 11181 { 11182 const struct btf_type *member_type; 11183 const struct btf_member *member; 11184 u32 i; 11185 11186 if (!btf_type_is_struct(t)) 11187 return false; 11188 11189 for_each_member(i, t, member) { 11190 const struct btf_array *array; 11191 11192 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 11193 if (btf_type_is_struct(member_type)) { 11194 if (rec >= 3) { 11195 verbose(env, "max struct nesting depth exceeded\n"); 11196 return false; 11197 } 11198 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 11199 return false; 11200 continue; 11201 } 11202 if (btf_type_is_array(member_type)) { 11203 array = btf_array(member_type); 11204 if (!array->nelems) 11205 return false; 11206 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 11207 if (!btf_type_is_scalar(member_type)) 11208 return false; 11209 continue; 11210 } 11211 if (!btf_type_is_scalar(member_type)) 11212 return false; 11213 } 11214 return true; 11215 } 11216 11217 enum kfunc_ptr_arg_type { 11218 KF_ARG_PTR_TO_CTX, 11219 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 11220 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 11221 KF_ARG_PTR_TO_DYNPTR, 11222 KF_ARG_PTR_TO_ITER, 11223 KF_ARG_PTR_TO_LIST_HEAD, 11224 KF_ARG_PTR_TO_LIST_NODE, 11225 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 11226 KF_ARG_PTR_TO_MEM, 11227 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 11228 KF_ARG_PTR_TO_CALLBACK, 11229 KF_ARG_PTR_TO_RB_ROOT, 11230 KF_ARG_PTR_TO_RB_NODE, 11231 KF_ARG_PTR_TO_NULL, 11232 KF_ARG_PTR_TO_CONST_STR, 11233 KF_ARG_PTR_TO_MAP, 11234 KF_ARG_PTR_TO_WORKQUEUE, 11235 }; 11236 11237 enum special_kfunc_type { 11238 KF_bpf_obj_new_impl, 11239 KF_bpf_obj_drop_impl, 11240 KF_bpf_refcount_acquire_impl, 11241 KF_bpf_list_push_front_impl, 11242 KF_bpf_list_push_back_impl, 11243 KF_bpf_list_pop_front, 11244 KF_bpf_list_pop_back, 11245 KF_bpf_cast_to_kern_ctx, 11246 KF_bpf_rdonly_cast, 11247 KF_bpf_rcu_read_lock, 11248 KF_bpf_rcu_read_unlock, 11249 KF_bpf_rbtree_remove, 11250 KF_bpf_rbtree_add_impl, 11251 KF_bpf_rbtree_first, 11252 KF_bpf_dynptr_from_skb, 11253 KF_bpf_dynptr_from_xdp, 11254 KF_bpf_dynptr_slice, 11255 KF_bpf_dynptr_slice_rdwr, 11256 KF_bpf_dynptr_clone, 11257 KF_bpf_percpu_obj_new_impl, 11258 KF_bpf_percpu_obj_drop_impl, 11259 KF_bpf_throw, 11260 KF_bpf_wq_set_callback_impl, 11261 KF_bpf_preempt_disable, 11262 KF_bpf_preempt_enable, 11263 KF_bpf_iter_css_task_new, 11264 KF_bpf_session_cookie, 11265 }; 11266 11267 BTF_SET_START(special_kfunc_set) 11268 BTF_ID(func, bpf_obj_new_impl) 11269 BTF_ID(func, bpf_obj_drop_impl) 11270 BTF_ID(func, bpf_refcount_acquire_impl) 11271 BTF_ID(func, bpf_list_push_front_impl) 11272 BTF_ID(func, bpf_list_push_back_impl) 11273 BTF_ID(func, bpf_list_pop_front) 11274 BTF_ID(func, bpf_list_pop_back) 11275 BTF_ID(func, bpf_cast_to_kern_ctx) 11276 BTF_ID(func, bpf_rdonly_cast) 11277 BTF_ID(func, bpf_rbtree_remove) 11278 BTF_ID(func, bpf_rbtree_add_impl) 11279 BTF_ID(func, bpf_rbtree_first) 11280 BTF_ID(func, bpf_dynptr_from_skb) 11281 BTF_ID(func, bpf_dynptr_from_xdp) 11282 BTF_ID(func, bpf_dynptr_slice) 11283 BTF_ID(func, bpf_dynptr_slice_rdwr) 11284 BTF_ID(func, bpf_dynptr_clone) 11285 BTF_ID(func, bpf_percpu_obj_new_impl) 11286 BTF_ID(func, bpf_percpu_obj_drop_impl) 11287 BTF_ID(func, bpf_throw) 11288 BTF_ID(func, bpf_wq_set_callback_impl) 11289 #ifdef CONFIG_CGROUPS 11290 BTF_ID(func, bpf_iter_css_task_new) 11291 #endif 11292 BTF_SET_END(special_kfunc_set) 11293 11294 BTF_ID_LIST(special_kfunc_list) 11295 BTF_ID(func, bpf_obj_new_impl) 11296 BTF_ID(func, bpf_obj_drop_impl) 11297 BTF_ID(func, bpf_refcount_acquire_impl) 11298 BTF_ID(func, bpf_list_push_front_impl) 11299 BTF_ID(func, bpf_list_push_back_impl) 11300 BTF_ID(func, bpf_list_pop_front) 11301 BTF_ID(func, bpf_list_pop_back) 11302 BTF_ID(func, bpf_cast_to_kern_ctx) 11303 BTF_ID(func, bpf_rdonly_cast) 11304 BTF_ID(func, bpf_rcu_read_lock) 11305 BTF_ID(func, bpf_rcu_read_unlock) 11306 BTF_ID(func, bpf_rbtree_remove) 11307 BTF_ID(func, bpf_rbtree_add_impl) 11308 BTF_ID(func, bpf_rbtree_first) 11309 BTF_ID(func, bpf_dynptr_from_skb) 11310 BTF_ID(func, bpf_dynptr_from_xdp) 11311 BTF_ID(func, bpf_dynptr_slice) 11312 BTF_ID(func, bpf_dynptr_slice_rdwr) 11313 BTF_ID(func, bpf_dynptr_clone) 11314 BTF_ID(func, bpf_percpu_obj_new_impl) 11315 BTF_ID(func, bpf_percpu_obj_drop_impl) 11316 BTF_ID(func, bpf_throw) 11317 BTF_ID(func, bpf_wq_set_callback_impl) 11318 BTF_ID(func, bpf_preempt_disable) 11319 BTF_ID(func, bpf_preempt_enable) 11320 #ifdef CONFIG_CGROUPS 11321 BTF_ID(func, bpf_iter_css_task_new) 11322 #else 11323 BTF_ID_UNUSED 11324 #endif 11325 #ifdef CONFIG_BPF_EVENTS 11326 BTF_ID(func, bpf_session_cookie) 11327 #else 11328 BTF_ID_UNUSED 11329 #endif 11330 11331 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 11332 { 11333 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 11334 meta->arg_owning_ref) { 11335 return false; 11336 } 11337 11338 return meta->kfunc_flags & KF_RET_NULL; 11339 } 11340 11341 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 11342 { 11343 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 11344 } 11345 11346 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 11347 { 11348 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 11349 } 11350 11351 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta) 11352 { 11353 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable]; 11354 } 11355 11356 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta) 11357 { 11358 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable]; 11359 } 11360 11361 static enum kfunc_ptr_arg_type 11362 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 11363 struct bpf_kfunc_call_arg_meta *meta, 11364 const struct btf_type *t, const struct btf_type *ref_t, 11365 const char *ref_tname, const struct btf_param *args, 11366 int argno, int nargs) 11367 { 11368 u32 regno = argno + 1; 11369 struct bpf_reg_state *regs = cur_regs(env); 11370 struct bpf_reg_state *reg = ®s[regno]; 11371 bool arg_mem_size = false; 11372 11373 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 11374 return KF_ARG_PTR_TO_CTX; 11375 11376 /* In this function, we verify the kfunc's BTF as per the argument type, 11377 * leaving the rest of the verification with respect to the register 11378 * type to our caller. When a set of conditions hold in the BTF type of 11379 * arguments, we resolve it to a known kfunc_ptr_arg_type. 11380 */ 11381 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 11382 return KF_ARG_PTR_TO_CTX; 11383 11384 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 11385 return KF_ARG_PTR_TO_NULL; 11386 11387 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 11388 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 11389 11390 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 11391 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 11392 11393 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 11394 return KF_ARG_PTR_TO_DYNPTR; 11395 11396 if (is_kfunc_arg_iter(meta, argno, &args[argno])) 11397 return KF_ARG_PTR_TO_ITER; 11398 11399 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 11400 return KF_ARG_PTR_TO_LIST_HEAD; 11401 11402 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 11403 return KF_ARG_PTR_TO_LIST_NODE; 11404 11405 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 11406 return KF_ARG_PTR_TO_RB_ROOT; 11407 11408 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 11409 return KF_ARG_PTR_TO_RB_NODE; 11410 11411 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 11412 return KF_ARG_PTR_TO_CONST_STR; 11413 11414 if (is_kfunc_arg_map(meta->btf, &args[argno])) 11415 return KF_ARG_PTR_TO_MAP; 11416 11417 if (is_kfunc_arg_wq(meta->btf, &args[argno])) 11418 return KF_ARG_PTR_TO_WORKQUEUE; 11419 11420 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 11421 if (!btf_type_is_struct(ref_t)) { 11422 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 11423 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 11424 return -EINVAL; 11425 } 11426 return KF_ARG_PTR_TO_BTF_ID; 11427 } 11428 11429 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 11430 return KF_ARG_PTR_TO_CALLBACK; 11431 11432 if (argno + 1 < nargs && 11433 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 11434 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 11435 arg_mem_size = true; 11436 11437 /* This is the catch all argument type of register types supported by 11438 * check_helper_mem_access. However, we only allow when argument type is 11439 * pointer to scalar, or struct composed (recursively) of scalars. When 11440 * arg_mem_size is true, the pointer can be void *. 11441 */ 11442 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 11443 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 11444 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 11445 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 11446 return -EINVAL; 11447 } 11448 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 11449 } 11450 11451 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 11452 struct bpf_reg_state *reg, 11453 const struct btf_type *ref_t, 11454 const char *ref_tname, u32 ref_id, 11455 struct bpf_kfunc_call_arg_meta *meta, 11456 int argno) 11457 { 11458 const struct btf_type *reg_ref_t; 11459 bool strict_type_match = false; 11460 const struct btf *reg_btf; 11461 const char *reg_ref_tname; 11462 bool taking_projection; 11463 bool struct_same; 11464 u32 reg_ref_id; 11465 11466 if (base_type(reg->type) == PTR_TO_BTF_ID) { 11467 reg_btf = reg->btf; 11468 reg_ref_id = reg->btf_id; 11469 } else { 11470 reg_btf = btf_vmlinux; 11471 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 11472 } 11473 11474 /* Enforce strict type matching for calls to kfuncs that are acquiring 11475 * or releasing a reference, or are no-cast aliases. We do _not_ 11476 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 11477 * as we want to enable BPF programs to pass types that are bitwise 11478 * equivalent without forcing them to explicitly cast with something 11479 * like bpf_cast_to_kern_ctx(). 11480 * 11481 * For example, say we had a type like the following: 11482 * 11483 * struct bpf_cpumask { 11484 * cpumask_t cpumask; 11485 * refcount_t usage; 11486 * }; 11487 * 11488 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 11489 * to a struct cpumask, so it would be safe to pass a struct 11490 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 11491 * 11492 * The philosophy here is similar to how we allow scalars of different 11493 * types to be passed to kfuncs as long as the size is the same. The 11494 * only difference here is that we're simply allowing 11495 * btf_struct_ids_match() to walk the struct at the 0th offset, and 11496 * resolve types. 11497 */ 11498 if ((is_kfunc_release(meta) && reg->ref_obj_id) || 11499 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 11500 strict_type_match = true; 11501 11502 WARN_ON_ONCE(is_kfunc_release(meta) && 11503 (reg->off || !tnum_is_const(reg->var_off) || 11504 reg->var_off.value)); 11505 11506 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 11507 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 11508 struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match); 11509 /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot 11510 * actually use it -- it must cast to the underlying type. So we allow 11511 * caller to pass in the underlying type. 11512 */ 11513 taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname); 11514 if (!taking_projection && !struct_same) { 11515 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 11516 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 11517 btf_type_str(reg_ref_t), reg_ref_tname); 11518 return -EINVAL; 11519 } 11520 return 0; 11521 } 11522 11523 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11524 { 11525 struct bpf_verifier_state *state = env->cur_state; 11526 struct btf_record *rec = reg_btf_record(reg); 11527 11528 if (!state->active_lock.ptr) { 11529 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 11530 return -EFAULT; 11531 } 11532 11533 if (type_flag(reg->type) & NON_OWN_REF) { 11534 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 11535 return -EFAULT; 11536 } 11537 11538 reg->type |= NON_OWN_REF; 11539 if (rec->refcount_off >= 0) 11540 reg->type |= MEM_RCU; 11541 11542 return 0; 11543 } 11544 11545 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 11546 { 11547 struct bpf_func_state *state, *unused; 11548 struct bpf_reg_state *reg; 11549 int i; 11550 11551 state = cur_func(env); 11552 11553 if (!ref_obj_id) { 11554 verbose(env, "verifier internal error: ref_obj_id is zero for " 11555 "owning -> non-owning conversion\n"); 11556 return -EFAULT; 11557 } 11558 11559 for (i = 0; i < state->acquired_refs; i++) { 11560 if (state->refs[i].id != ref_obj_id) 11561 continue; 11562 11563 /* Clear ref_obj_id here so release_reference doesn't clobber 11564 * the whole reg 11565 */ 11566 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 11567 if (reg->ref_obj_id == ref_obj_id) { 11568 reg->ref_obj_id = 0; 11569 ref_set_non_owning(env, reg); 11570 } 11571 })); 11572 return 0; 11573 } 11574 11575 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 11576 return -EFAULT; 11577 } 11578 11579 /* Implementation details: 11580 * 11581 * Each register points to some region of memory, which we define as an 11582 * allocation. Each allocation may embed a bpf_spin_lock which protects any 11583 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 11584 * allocation. The lock and the data it protects are colocated in the same 11585 * memory region. 11586 * 11587 * Hence, everytime a register holds a pointer value pointing to such 11588 * allocation, the verifier preserves a unique reg->id for it. 11589 * 11590 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 11591 * bpf_spin_lock is called. 11592 * 11593 * To enable this, lock state in the verifier captures two values: 11594 * active_lock.ptr = Register's type specific pointer 11595 * active_lock.id = A unique ID for each register pointer value 11596 * 11597 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 11598 * supported register types. 11599 * 11600 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 11601 * allocated objects is the reg->btf pointer. 11602 * 11603 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 11604 * can establish the provenance of the map value statically for each distinct 11605 * lookup into such maps. They always contain a single map value hence unique 11606 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 11607 * 11608 * So, in case of global variables, they use array maps with max_entries = 1, 11609 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 11610 * into the same map value as max_entries is 1, as described above). 11611 * 11612 * In case of inner map lookups, the inner map pointer has same map_ptr as the 11613 * outer map pointer (in verifier context), but each lookup into an inner map 11614 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 11615 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 11616 * will get different reg->id assigned to each lookup, hence different 11617 * active_lock.id. 11618 * 11619 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 11620 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 11621 * returned from bpf_obj_new. Each allocation receives a new reg->id. 11622 */ 11623 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11624 { 11625 void *ptr; 11626 u32 id; 11627 11628 switch ((int)reg->type) { 11629 case PTR_TO_MAP_VALUE: 11630 ptr = reg->map_ptr; 11631 break; 11632 case PTR_TO_BTF_ID | MEM_ALLOC: 11633 ptr = reg->btf; 11634 break; 11635 default: 11636 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 11637 return -EFAULT; 11638 } 11639 id = reg->id; 11640 11641 if (!env->cur_state->active_lock.ptr) 11642 return -EINVAL; 11643 if (env->cur_state->active_lock.ptr != ptr || 11644 env->cur_state->active_lock.id != id) { 11645 verbose(env, "held lock and object are not in the same allocation\n"); 11646 return -EINVAL; 11647 } 11648 return 0; 11649 } 11650 11651 static bool is_bpf_list_api_kfunc(u32 btf_id) 11652 { 11653 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11654 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11655 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 11656 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 11657 } 11658 11659 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 11660 { 11661 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 11662 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11663 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 11664 } 11665 11666 static bool is_bpf_graph_api_kfunc(u32 btf_id) 11667 { 11668 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 11669 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 11670 } 11671 11672 static bool is_sync_callback_calling_kfunc(u32 btf_id) 11673 { 11674 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 11675 } 11676 11677 static bool is_async_callback_calling_kfunc(u32 btf_id) 11678 { 11679 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 11680 } 11681 11682 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 11683 { 11684 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 11685 insn->imm == special_kfunc_list[KF_bpf_throw]; 11686 } 11687 11688 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id) 11689 { 11690 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 11691 } 11692 11693 static bool is_callback_calling_kfunc(u32 btf_id) 11694 { 11695 return is_sync_callback_calling_kfunc(btf_id) || 11696 is_async_callback_calling_kfunc(btf_id); 11697 } 11698 11699 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 11700 { 11701 return is_bpf_rbtree_api_kfunc(btf_id); 11702 } 11703 11704 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 11705 enum btf_field_type head_field_type, 11706 u32 kfunc_btf_id) 11707 { 11708 bool ret; 11709 11710 switch (head_field_type) { 11711 case BPF_LIST_HEAD: 11712 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 11713 break; 11714 case BPF_RB_ROOT: 11715 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 11716 break; 11717 default: 11718 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 11719 btf_field_type_name(head_field_type)); 11720 return false; 11721 } 11722 11723 if (!ret) 11724 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 11725 btf_field_type_name(head_field_type)); 11726 return ret; 11727 } 11728 11729 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 11730 enum btf_field_type node_field_type, 11731 u32 kfunc_btf_id) 11732 { 11733 bool ret; 11734 11735 switch (node_field_type) { 11736 case BPF_LIST_NODE: 11737 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11738 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 11739 break; 11740 case BPF_RB_NODE: 11741 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11742 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 11743 break; 11744 default: 11745 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 11746 btf_field_type_name(node_field_type)); 11747 return false; 11748 } 11749 11750 if (!ret) 11751 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 11752 btf_field_type_name(node_field_type)); 11753 return ret; 11754 } 11755 11756 static int 11757 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 11758 struct bpf_reg_state *reg, u32 regno, 11759 struct bpf_kfunc_call_arg_meta *meta, 11760 enum btf_field_type head_field_type, 11761 struct btf_field **head_field) 11762 { 11763 const char *head_type_name; 11764 struct btf_field *field; 11765 struct btf_record *rec; 11766 u32 head_off; 11767 11768 if (meta->btf != btf_vmlinux) { 11769 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11770 return -EFAULT; 11771 } 11772 11773 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 11774 return -EFAULT; 11775 11776 head_type_name = btf_field_type_name(head_field_type); 11777 if (!tnum_is_const(reg->var_off)) { 11778 verbose(env, 11779 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11780 regno, head_type_name); 11781 return -EINVAL; 11782 } 11783 11784 rec = reg_btf_record(reg); 11785 head_off = reg->off + reg->var_off.value; 11786 field = btf_record_find(rec, head_off, head_field_type); 11787 if (!field) { 11788 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 11789 return -EINVAL; 11790 } 11791 11792 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 11793 if (check_reg_allocation_locked(env, reg)) { 11794 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 11795 rec->spin_lock_off, head_type_name); 11796 return -EINVAL; 11797 } 11798 11799 if (*head_field) { 11800 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 11801 return -EFAULT; 11802 } 11803 *head_field = field; 11804 return 0; 11805 } 11806 11807 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 11808 struct bpf_reg_state *reg, u32 regno, 11809 struct bpf_kfunc_call_arg_meta *meta) 11810 { 11811 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 11812 &meta->arg_list_head.field); 11813 } 11814 11815 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 11816 struct bpf_reg_state *reg, u32 regno, 11817 struct bpf_kfunc_call_arg_meta *meta) 11818 { 11819 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 11820 &meta->arg_rbtree_root.field); 11821 } 11822 11823 static int 11824 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 11825 struct bpf_reg_state *reg, u32 regno, 11826 struct bpf_kfunc_call_arg_meta *meta, 11827 enum btf_field_type head_field_type, 11828 enum btf_field_type node_field_type, 11829 struct btf_field **node_field) 11830 { 11831 const char *node_type_name; 11832 const struct btf_type *et, *t; 11833 struct btf_field *field; 11834 u32 node_off; 11835 11836 if (meta->btf != btf_vmlinux) { 11837 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11838 return -EFAULT; 11839 } 11840 11841 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 11842 return -EFAULT; 11843 11844 node_type_name = btf_field_type_name(node_field_type); 11845 if (!tnum_is_const(reg->var_off)) { 11846 verbose(env, 11847 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11848 regno, node_type_name); 11849 return -EINVAL; 11850 } 11851 11852 node_off = reg->off + reg->var_off.value; 11853 field = reg_find_field_offset(reg, node_off, node_field_type); 11854 if (!field) { 11855 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 11856 return -EINVAL; 11857 } 11858 11859 field = *node_field; 11860 11861 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 11862 t = btf_type_by_id(reg->btf, reg->btf_id); 11863 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 11864 field->graph_root.value_btf_id, true)) { 11865 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 11866 "in struct %s, but arg is at offset=%d in struct %s\n", 11867 btf_field_type_name(head_field_type), 11868 btf_field_type_name(node_field_type), 11869 field->graph_root.node_offset, 11870 btf_name_by_offset(field->graph_root.btf, et->name_off), 11871 node_off, btf_name_by_offset(reg->btf, t->name_off)); 11872 return -EINVAL; 11873 } 11874 meta->arg_btf = reg->btf; 11875 meta->arg_btf_id = reg->btf_id; 11876 11877 if (node_off != field->graph_root.node_offset) { 11878 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 11879 node_off, btf_field_type_name(node_field_type), 11880 field->graph_root.node_offset, 11881 btf_name_by_offset(field->graph_root.btf, et->name_off)); 11882 return -EINVAL; 11883 } 11884 11885 return 0; 11886 } 11887 11888 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 11889 struct bpf_reg_state *reg, u32 regno, 11890 struct bpf_kfunc_call_arg_meta *meta) 11891 { 11892 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11893 BPF_LIST_HEAD, BPF_LIST_NODE, 11894 &meta->arg_list_head.field); 11895 } 11896 11897 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 11898 struct bpf_reg_state *reg, u32 regno, 11899 struct bpf_kfunc_call_arg_meta *meta) 11900 { 11901 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11902 BPF_RB_ROOT, BPF_RB_NODE, 11903 &meta->arg_rbtree_root.field); 11904 } 11905 11906 /* 11907 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 11908 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 11909 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 11910 * them can only be attached to some specific hook points. 11911 */ 11912 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 11913 { 11914 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 11915 11916 switch (prog_type) { 11917 case BPF_PROG_TYPE_LSM: 11918 return true; 11919 case BPF_PROG_TYPE_TRACING: 11920 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 11921 return true; 11922 fallthrough; 11923 default: 11924 return in_sleepable(env); 11925 } 11926 } 11927 11928 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 11929 int insn_idx) 11930 { 11931 const char *func_name = meta->func_name, *ref_tname; 11932 const struct btf *btf = meta->btf; 11933 const struct btf_param *args; 11934 struct btf_record *rec; 11935 u32 i, nargs; 11936 int ret; 11937 11938 args = (const struct btf_param *)(meta->func_proto + 1); 11939 nargs = btf_type_vlen(meta->func_proto); 11940 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 11941 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 11942 MAX_BPF_FUNC_REG_ARGS); 11943 return -EINVAL; 11944 } 11945 11946 /* Check that BTF function arguments match actual types that the 11947 * verifier sees. 11948 */ 11949 for (i = 0; i < nargs; i++) { 11950 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 11951 const struct btf_type *t, *ref_t, *resolve_ret; 11952 enum bpf_arg_type arg_type = ARG_DONTCARE; 11953 u32 regno = i + 1, ref_id, type_size; 11954 bool is_ret_buf_sz = false; 11955 int kf_arg_type; 11956 11957 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 11958 11959 if (is_kfunc_arg_ignore(btf, &args[i])) 11960 continue; 11961 11962 if (btf_type_is_scalar(t)) { 11963 if (reg->type != SCALAR_VALUE) { 11964 verbose(env, "R%d is not a scalar\n", regno); 11965 return -EINVAL; 11966 } 11967 11968 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 11969 if (meta->arg_constant.found) { 11970 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11971 return -EFAULT; 11972 } 11973 if (!tnum_is_const(reg->var_off)) { 11974 verbose(env, "R%d must be a known constant\n", regno); 11975 return -EINVAL; 11976 } 11977 ret = mark_chain_precision(env, regno); 11978 if (ret < 0) 11979 return ret; 11980 meta->arg_constant.found = true; 11981 meta->arg_constant.value = reg->var_off.value; 11982 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 11983 meta->r0_rdonly = true; 11984 is_ret_buf_sz = true; 11985 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 11986 is_ret_buf_sz = true; 11987 } 11988 11989 if (is_ret_buf_sz) { 11990 if (meta->r0_size) { 11991 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 11992 return -EINVAL; 11993 } 11994 11995 if (!tnum_is_const(reg->var_off)) { 11996 verbose(env, "R%d is not a const\n", regno); 11997 return -EINVAL; 11998 } 11999 12000 meta->r0_size = reg->var_off.value; 12001 ret = mark_chain_precision(env, regno); 12002 if (ret) 12003 return ret; 12004 } 12005 continue; 12006 } 12007 12008 if (!btf_type_is_ptr(t)) { 12009 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 12010 return -EINVAL; 12011 } 12012 12013 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 12014 (register_is_null(reg) || type_may_be_null(reg->type)) && 12015 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 12016 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 12017 return -EACCES; 12018 } 12019 12020 if (reg->ref_obj_id) { 12021 if (is_kfunc_release(meta) && meta->ref_obj_id) { 12022 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 12023 regno, reg->ref_obj_id, 12024 meta->ref_obj_id); 12025 return -EFAULT; 12026 } 12027 meta->ref_obj_id = reg->ref_obj_id; 12028 if (is_kfunc_release(meta)) 12029 meta->release_regno = regno; 12030 } 12031 12032 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 12033 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 12034 12035 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 12036 if (kf_arg_type < 0) 12037 return kf_arg_type; 12038 12039 switch (kf_arg_type) { 12040 case KF_ARG_PTR_TO_NULL: 12041 continue; 12042 case KF_ARG_PTR_TO_MAP: 12043 if (!reg->map_ptr) { 12044 verbose(env, "pointer in R%d isn't map pointer\n", regno); 12045 return -EINVAL; 12046 } 12047 if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) { 12048 /* Use map_uid (which is unique id of inner map) to reject: 12049 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 12050 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 12051 * if (inner_map1 && inner_map2) { 12052 * wq = bpf_map_lookup_elem(inner_map1); 12053 * if (wq) 12054 * // mismatch would have been allowed 12055 * bpf_wq_init(wq, inner_map2); 12056 * } 12057 * 12058 * Comparing map_ptr is enough to distinguish normal and outer maps. 12059 */ 12060 if (meta->map.ptr != reg->map_ptr || 12061 meta->map.uid != reg->map_uid) { 12062 verbose(env, 12063 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 12064 meta->map.uid, reg->map_uid); 12065 return -EINVAL; 12066 } 12067 } 12068 meta->map.ptr = reg->map_ptr; 12069 meta->map.uid = reg->map_uid; 12070 fallthrough; 12071 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 12072 case KF_ARG_PTR_TO_BTF_ID: 12073 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 12074 break; 12075 12076 if (!is_trusted_reg(reg)) { 12077 if (!is_kfunc_rcu(meta)) { 12078 verbose(env, "R%d must be referenced or trusted\n", regno); 12079 return -EINVAL; 12080 } 12081 if (!is_rcu_reg(reg)) { 12082 verbose(env, "R%d must be a rcu pointer\n", regno); 12083 return -EINVAL; 12084 } 12085 } 12086 fallthrough; 12087 case KF_ARG_PTR_TO_CTX: 12088 case KF_ARG_PTR_TO_DYNPTR: 12089 case KF_ARG_PTR_TO_ITER: 12090 case KF_ARG_PTR_TO_LIST_HEAD: 12091 case KF_ARG_PTR_TO_LIST_NODE: 12092 case KF_ARG_PTR_TO_RB_ROOT: 12093 case KF_ARG_PTR_TO_RB_NODE: 12094 case KF_ARG_PTR_TO_MEM: 12095 case KF_ARG_PTR_TO_MEM_SIZE: 12096 case KF_ARG_PTR_TO_CALLBACK: 12097 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 12098 case KF_ARG_PTR_TO_CONST_STR: 12099 case KF_ARG_PTR_TO_WORKQUEUE: 12100 break; 12101 default: 12102 WARN_ON_ONCE(1); 12103 return -EFAULT; 12104 } 12105 12106 if (is_kfunc_release(meta) && reg->ref_obj_id) 12107 arg_type |= OBJ_RELEASE; 12108 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 12109 if (ret < 0) 12110 return ret; 12111 12112 switch (kf_arg_type) { 12113 case KF_ARG_PTR_TO_CTX: 12114 if (reg->type != PTR_TO_CTX) { 12115 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", 12116 i, reg_type_str(env, reg->type)); 12117 return -EINVAL; 12118 } 12119 12120 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 12121 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 12122 if (ret < 0) 12123 return -EINVAL; 12124 meta->ret_btf_id = ret; 12125 } 12126 break; 12127 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 12128 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 12129 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 12130 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 12131 return -EINVAL; 12132 } 12133 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 12134 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 12135 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 12136 return -EINVAL; 12137 } 12138 } else { 12139 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12140 return -EINVAL; 12141 } 12142 if (!reg->ref_obj_id) { 12143 verbose(env, "allocated object must be referenced\n"); 12144 return -EINVAL; 12145 } 12146 if (meta->btf == btf_vmlinux) { 12147 meta->arg_btf = reg->btf; 12148 meta->arg_btf_id = reg->btf_id; 12149 } 12150 break; 12151 case KF_ARG_PTR_TO_DYNPTR: 12152 { 12153 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 12154 int clone_ref_obj_id = 0; 12155 12156 if (reg->type == CONST_PTR_TO_DYNPTR) 12157 dynptr_arg_type |= MEM_RDONLY; 12158 12159 if (is_kfunc_arg_uninit(btf, &args[i])) 12160 dynptr_arg_type |= MEM_UNINIT; 12161 12162 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 12163 dynptr_arg_type |= DYNPTR_TYPE_SKB; 12164 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 12165 dynptr_arg_type |= DYNPTR_TYPE_XDP; 12166 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 12167 (dynptr_arg_type & MEM_UNINIT)) { 12168 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 12169 12170 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 12171 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 12172 return -EFAULT; 12173 } 12174 12175 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 12176 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 12177 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 12178 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 12179 return -EFAULT; 12180 } 12181 } 12182 12183 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 12184 if (ret < 0) 12185 return ret; 12186 12187 if (!(dynptr_arg_type & MEM_UNINIT)) { 12188 int id = dynptr_id(env, reg); 12189 12190 if (id < 0) { 12191 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 12192 return id; 12193 } 12194 meta->initialized_dynptr.id = id; 12195 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 12196 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 12197 } 12198 12199 break; 12200 } 12201 case KF_ARG_PTR_TO_ITER: 12202 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 12203 if (!check_css_task_iter_allowlist(env)) { 12204 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 12205 return -EINVAL; 12206 } 12207 } 12208 ret = process_iter_arg(env, regno, insn_idx, meta); 12209 if (ret < 0) 12210 return ret; 12211 break; 12212 case KF_ARG_PTR_TO_LIST_HEAD: 12213 if (reg->type != PTR_TO_MAP_VALUE && 12214 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12215 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 12216 return -EINVAL; 12217 } 12218 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 12219 verbose(env, "allocated object must be referenced\n"); 12220 return -EINVAL; 12221 } 12222 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 12223 if (ret < 0) 12224 return ret; 12225 break; 12226 case KF_ARG_PTR_TO_RB_ROOT: 12227 if (reg->type != PTR_TO_MAP_VALUE && 12228 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12229 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 12230 return -EINVAL; 12231 } 12232 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 12233 verbose(env, "allocated object must be referenced\n"); 12234 return -EINVAL; 12235 } 12236 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 12237 if (ret < 0) 12238 return ret; 12239 break; 12240 case KF_ARG_PTR_TO_LIST_NODE: 12241 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12242 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12243 return -EINVAL; 12244 } 12245 if (!reg->ref_obj_id) { 12246 verbose(env, "allocated object must be referenced\n"); 12247 return -EINVAL; 12248 } 12249 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 12250 if (ret < 0) 12251 return ret; 12252 break; 12253 case KF_ARG_PTR_TO_RB_NODE: 12254 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 12255 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 12256 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 12257 return -EINVAL; 12258 } 12259 if (in_rbtree_lock_required_cb(env)) { 12260 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 12261 return -EINVAL; 12262 } 12263 } else { 12264 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12265 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12266 return -EINVAL; 12267 } 12268 if (!reg->ref_obj_id) { 12269 verbose(env, "allocated object must be referenced\n"); 12270 return -EINVAL; 12271 } 12272 } 12273 12274 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 12275 if (ret < 0) 12276 return ret; 12277 break; 12278 case KF_ARG_PTR_TO_MAP: 12279 /* If argument has '__map' suffix expect 'struct bpf_map *' */ 12280 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; 12281 ref_t = btf_type_by_id(btf_vmlinux, ref_id); 12282 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 12283 fallthrough; 12284 case KF_ARG_PTR_TO_BTF_ID: 12285 /* Only base_type is checked, further checks are done here */ 12286 if ((base_type(reg->type) != PTR_TO_BTF_ID || 12287 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 12288 !reg2btf_ids[base_type(reg->type)]) { 12289 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 12290 verbose(env, "expected %s or socket\n", 12291 reg_type_str(env, base_type(reg->type) | 12292 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 12293 return -EINVAL; 12294 } 12295 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 12296 if (ret < 0) 12297 return ret; 12298 break; 12299 case KF_ARG_PTR_TO_MEM: 12300 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 12301 if (IS_ERR(resolve_ret)) { 12302 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 12303 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 12304 return -EINVAL; 12305 } 12306 ret = check_mem_reg(env, reg, regno, type_size); 12307 if (ret < 0) 12308 return ret; 12309 break; 12310 case KF_ARG_PTR_TO_MEM_SIZE: 12311 { 12312 struct bpf_reg_state *buff_reg = ®s[regno]; 12313 const struct btf_param *buff_arg = &args[i]; 12314 struct bpf_reg_state *size_reg = ®s[regno + 1]; 12315 const struct btf_param *size_arg = &args[i + 1]; 12316 12317 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 12318 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 12319 if (ret < 0) { 12320 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 12321 return ret; 12322 } 12323 } 12324 12325 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 12326 if (meta->arg_constant.found) { 12327 verbose(env, "verifier internal error: only one constant argument permitted\n"); 12328 return -EFAULT; 12329 } 12330 if (!tnum_is_const(size_reg->var_off)) { 12331 verbose(env, "R%d must be a known constant\n", regno + 1); 12332 return -EINVAL; 12333 } 12334 meta->arg_constant.found = true; 12335 meta->arg_constant.value = size_reg->var_off.value; 12336 } 12337 12338 /* Skip next '__sz' or '__szk' argument */ 12339 i++; 12340 break; 12341 } 12342 case KF_ARG_PTR_TO_CALLBACK: 12343 if (reg->type != PTR_TO_FUNC) { 12344 verbose(env, "arg%d expected pointer to func\n", i); 12345 return -EINVAL; 12346 } 12347 meta->subprogno = reg->subprogno; 12348 break; 12349 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 12350 if (!type_is_ptr_alloc_obj(reg->type)) { 12351 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 12352 return -EINVAL; 12353 } 12354 if (!type_is_non_owning_ref(reg->type)) 12355 meta->arg_owning_ref = true; 12356 12357 rec = reg_btf_record(reg); 12358 if (!rec) { 12359 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 12360 return -EFAULT; 12361 } 12362 12363 if (rec->refcount_off < 0) { 12364 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 12365 return -EINVAL; 12366 } 12367 12368 meta->arg_btf = reg->btf; 12369 meta->arg_btf_id = reg->btf_id; 12370 break; 12371 case KF_ARG_PTR_TO_CONST_STR: 12372 if (reg->type != PTR_TO_MAP_VALUE) { 12373 verbose(env, "arg#%d doesn't point to a const string\n", i); 12374 return -EINVAL; 12375 } 12376 ret = check_reg_const_str(env, reg, regno); 12377 if (ret) 12378 return ret; 12379 break; 12380 case KF_ARG_PTR_TO_WORKQUEUE: 12381 if (reg->type != PTR_TO_MAP_VALUE) { 12382 verbose(env, "arg#%d doesn't point to a map value\n", i); 12383 return -EINVAL; 12384 } 12385 ret = process_wq_func(env, regno, meta); 12386 if (ret < 0) 12387 return ret; 12388 break; 12389 } 12390 } 12391 12392 if (is_kfunc_release(meta) && !meta->release_regno) { 12393 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 12394 func_name); 12395 return -EINVAL; 12396 } 12397 12398 return 0; 12399 } 12400 12401 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 12402 struct bpf_insn *insn, 12403 struct bpf_kfunc_call_arg_meta *meta, 12404 const char **kfunc_name) 12405 { 12406 const struct btf_type *func, *func_proto; 12407 u32 func_id, *kfunc_flags; 12408 const char *func_name; 12409 struct btf *desc_btf; 12410 12411 if (kfunc_name) 12412 *kfunc_name = NULL; 12413 12414 if (!insn->imm) 12415 return -EINVAL; 12416 12417 desc_btf = find_kfunc_desc_btf(env, insn->off); 12418 if (IS_ERR(desc_btf)) 12419 return PTR_ERR(desc_btf); 12420 12421 func_id = insn->imm; 12422 func = btf_type_by_id(desc_btf, func_id); 12423 func_name = btf_name_by_offset(desc_btf, func->name_off); 12424 if (kfunc_name) 12425 *kfunc_name = func_name; 12426 func_proto = btf_type_by_id(desc_btf, func->type); 12427 12428 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 12429 if (!kfunc_flags) { 12430 return -EACCES; 12431 } 12432 12433 memset(meta, 0, sizeof(*meta)); 12434 meta->btf = desc_btf; 12435 meta->func_id = func_id; 12436 meta->kfunc_flags = *kfunc_flags; 12437 meta->func_proto = func_proto; 12438 meta->func_name = func_name; 12439 12440 return 0; 12441 } 12442 12443 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); 12444 12445 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 12446 int *insn_idx_p) 12447 { 12448 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable; 12449 u32 i, nargs, ptr_type_id, release_ref_obj_id; 12450 struct bpf_reg_state *regs = cur_regs(env); 12451 const char *func_name, *ptr_type_name; 12452 const struct btf_type *t, *ptr_type; 12453 struct bpf_kfunc_call_arg_meta meta; 12454 struct bpf_insn_aux_data *insn_aux; 12455 int err, insn_idx = *insn_idx_p; 12456 const struct btf_param *args; 12457 const struct btf_type *ret_t; 12458 struct btf *desc_btf; 12459 12460 /* skip for now, but return error when we find this in fixup_kfunc_call */ 12461 if (!insn->imm) 12462 return 0; 12463 12464 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 12465 if (err == -EACCES && func_name) 12466 verbose(env, "calling kernel function %s is not allowed\n", func_name); 12467 if (err) 12468 return err; 12469 desc_btf = meta.btf; 12470 insn_aux = &env->insn_aux_data[insn_idx]; 12471 12472 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 12473 12474 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 12475 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 12476 return -EACCES; 12477 } 12478 12479 sleepable = is_kfunc_sleepable(&meta); 12480 if (sleepable && !in_sleepable(env)) { 12481 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 12482 return -EACCES; 12483 } 12484 12485 /* Check the arguments */ 12486 err = check_kfunc_args(env, &meta, insn_idx); 12487 if (err < 0) 12488 return err; 12489 12490 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12491 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 12492 set_rbtree_add_callback_state); 12493 if (err) { 12494 verbose(env, "kfunc %s#%d failed callback verification\n", 12495 func_name, meta.func_id); 12496 return err; 12497 } 12498 } 12499 12500 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) { 12501 meta.r0_size = sizeof(u64); 12502 meta.r0_rdonly = false; 12503 } 12504 12505 if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) { 12506 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 12507 set_timer_callback_state); 12508 if (err) { 12509 verbose(env, "kfunc %s#%d failed callback verification\n", 12510 func_name, meta.func_id); 12511 return err; 12512 } 12513 } 12514 12515 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 12516 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 12517 12518 preempt_disable = is_kfunc_bpf_preempt_disable(&meta); 12519 preempt_enable = is_kfunc_bpf_preempt_enable(&meta); 12520 12521 if (env->cur_state->active_rcu_lock) { 12522 struct bpf_func_state *state; 12523 struct bpf_reg_state *reg; 12524 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 12525 12526 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 12527 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 12528 return -EACCES; 12529 } 12530 12531 if (rcu_lock) { 12532 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 12533 return -EINVAL; 12534 } else if (rcu_unlock) { 12535 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 12536 if (reg->type & MEM_RCU) { 12537 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 12538 reg->type |= PTR_UNTRUSTED; 12539 } 12540 })); 12541 env->cur_state->active_rcu_lock = false; 12542 } else if (sleepable) { 12543 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 12544 return -EACCES; 12545 } 12546 } else if (rcu_lock) { 12547 env->cur_state->active_rcu_lock = true; 12548 } else if (rcu_unlock) { 12549 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 12550 return -EINVAL; 12551 } 12552 12553 if (env->cur_state->active_preempt_lock) { 12554 if (preempt_disable) { 12555 env->cur_state->active_preempt_lock++; 12556 } else if (preempt_enable) { 12557 env->cur_state->active_preempt_lock--; 12558 } else if (sleepable) { 12559 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name); 12560 return -EACCES; 12561 } 12562 } else if (preempt_disable) { 12563 env->cur_state->active_preempt_lock++; 12564 } else if (preempt_enable) { 12565 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name); 12566 return -EINVAL; 12567 } 12568 12569 /* In case of release function, we get register number of refcounted 12570 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 12571 */ 12572 if (meta.release_regno) { 12573 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 12574 if (err) { 12575 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12576 func_name, meta.func_id); 12577 return err; 12578 } 12579 } 12580 12581 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12582 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12583 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12584 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 12585 insn_aux->insert_off = regs[BPF_REG_2].off; 12586 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 12587 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 12588 if (err) { 12589 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 12590 func_name, meta.func_id); 12591 return err; 12592 } 12593 12594 err = release_reference(env, release_ref_obj_id); 12595 if (err) { 12596 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12597 func_name, meta.func_id); 12598 return err; 12599 } 12600 } 12601 12602 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 12603 if (!bpf_jit_supports_exceptions()) { 12604 verbose(env, "JIT does not support calling kfunc %s#%d\n", 12605 func_name, meta.func_id); 12606 return -ENOTSUPP; 12607 } 12608 env->seen_exception = true; 12609 12610 /* In the case of the default callback, the cookie value passed 12611 * to bpf_throw becomes the return value of the program. 12612 */ 12613 if (!env->exception_callback_subprog) { 12614 err = check_return_code(env, BPF_REG_1, "R1"); 12615 if (err < 0) 12616 return err; 12617 } 12618 } 12619 12620 for (i = 0; i < CALLER_SAVED_REGS; i++) 12621 mark_reg_not_init(env, regs, caller_saved[i]); 12622 12623 /* Check return type */ 12624 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 12625 12626 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 12627 /* Only exception is bpf_obj_new_impl */ 12628 if (meta.btf != btf_vmlinux || 12629 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 12630 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 12631 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 12632 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 12633 return -EINVAL; 12634 } 12635 } 12636 12637 if (btf_type_is_scalar(t)) { 12638 mark_reg_unknown(env, regs, BPF_REG_0); 12639 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 12640 } else if (btf_type_is_ptr(t)) { 12641 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 12642 12643 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12644 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 12645 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12646 struct btf_struct_meta *struct_meta; 12647 struct btf *ret_btf; 12648 u32 ret_btf_id; 12649 12650 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 12651 return -ENOMEM; 12652 12653 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 12654 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 12655 return -EINVAL; 12656 } 12657 12658 ret_btf = env->prog->aux->btf; 12659 ret_btf_id = meta.arg_constant.value; 12660 12661 /* This may be NULL due to user not supplying a BTF */ 12662 if (!ret_btf) { 12663 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 12664 return -EINVAL; 12665 } 12666 12667 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 12668 if (!ret_t || !__btf_type_is_struct(ret_t)) { 12669 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 12670 return -EINVAL; 12671 } 12672 12673 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12674 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { 12675 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", 12676 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); 12677 return -EINVAL; 12678 } 12679 12680 if (!bpf_global_percpu_ma_set) { 12681 mutex_lock(&bpf_percpu_ma_lock); 12682 if (!bpf_global_percpu_ma_set) { 12683 /* Charge memory allocated with bpf_global_percpu_ma to 12684 * root memcg. The obj_cgroup for root memcg is NULL. 12685 */ 12686 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); 12687 if (!err) 12688 bpf_global_percpu_ma_set = true; 12689 } 12690 mutex_unlock(&bpf_percpu_ma_lock); 12691 if (err) 12692 return err; 12693 } 12694 12695 mutex_lock(&bpf_percpu_ma_lock); 12696 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); 12697 mutex_unlock(&bpf_percpu_ma_lock); 12698 if (err) 12699 return err; 12700 } 12701 12702 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 12703 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12704 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 12705 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 12706 return -EINVAL; 12707 } 12708 12709 if (struct_meta) { 12710 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 12711 return -EINVAL; 12712 } 12713 } 12714 12715 mark_reg_known_zero(env, regs, BPF_REG_0); 12716 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12717 regs[BPF_REG_0].btf = ret_btf; 12718 regs[BPF_REG_0].btf_id = ret_btf_id; 12719 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 12720 regs[BPF_REG_0].type |= MEM_PERCPU; 12721 12722 insn_aux->obj_new_size = ret_t->size; 12723 insn_aux->kptr_struct_meta = struct_meta; 12724 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 12725 mark_reg_known_zero(env, regs, BPF_REG_0); 12726 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12727 regs[BPF_REG_0].btf = meta.arg_btf; 12728 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 12729 12730 insn_aux->kptr_struct_meta = 12731 btf_find_struct_meta(meta.arg_btf, 12732 meta.arg_btf_id); 12733 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 12734 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 12735 struct btf_field *field = meta.arg_list_head.field; 12736 12737 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12738 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12739 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12740 struct btf_field *field = meta.arg_rbtree_root.field; 12741 12742 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12743 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 12744 mark_reg_known_zero(env, regs, BPF_REG_0); 12745 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 12746 regs[BPF_REG_0].btf = desc_btf; 12747 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 12748 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 12749 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 12750 if (!ret_t || !btf_type_is_struct(ret_t)) { 12751 verbose(env, 12752 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 12753 return -EINVAL; 12754 } 12755 12756 mark_reg_known_zero(env, regs, BPF_REG_0); 12757 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 12758 regs[BPF_REG_0].btf = desc_btf; 12759 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 12760 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 12761 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 12762 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 12763 12764 mark_reg_known_zero(env, regs, BPF_REG_0); 12765 12766 if (!meta.arg_constant.found) { 12767 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 12768 return -EFAULT; 12769 } 12770 12771 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 12772 12773 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 12774 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 12775 12776 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 12777 regs[BPF_REG_0].type |= MEM_RDONLY; 12778 } else { 12779 /* this will set env->seen_direct_write to true */ 12780 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 12781 verbose(env, "the prog does not allow writes to packet data\n"); 12782 return -EINVAL; 12783 } 12784 } 12785 12786 if (!meta.initialized_dynptr.id) { 12787 verbose(env, "verifier internal error: no dynptr id\n"); 12788 return -EFAULT; 12789 } 12790 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 12791 12792 /* we don't need to set BPF_REG_0's ref obj id 12793 * because packet slices are not refcounted (see 12794 * dynptr_type_refcounted) 12795 */ 12796 } else { 12797 verbose(env, "kernel function %s unhandled dynamic return type\n", 12798 meta.func_name); 12799 return -EFAULT; 12800 } 12801 } else if (btf_type_is_void(ptr_type)) { 12802 /* kfunc returning 'void *' is equivalent to returning scalar */ 12803 mark_reg_unknown(env, regs, BPF_REG_0); 12804 } else if (!__btf_type_is_struct(ptr_type)) { 12805 if (!meta.r0_size) { 12806 __u32 sz; 12807 12808 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 12809 meta.r0_size = sz; 12810 meta.r0_rdonly = true; 12811 } 12812 } 12813 if (!meta.r0_size) { 12814 ptr_type_name = btf_name_by_offset(desc_btf, 12815 ptr_type->name_off); 12816 verbose(env, 12817 "kernel function %s returns pointer type %s %s is not supported\n", 12818 func_name, 12819 btf_type_str(ptr_type), 12820 ptr_type_name); 12821 return -EINVAL; 12822 } 12823 12824 mark_reg_known_zero(env, regs, BPF_REG_0); 12825 regs[BPF_REG_0].type = PTR_TO_MEM; 12826 regs[BPF_REG_0].mem_size = meta.r0_size; 12827 12828 if (meta.r0_rdonly) 12829 regs[BPF_REG_0].type |= MEM_RDONLY; 12830 12831 /* Ensures we don't access the memory after a release_reference() */ 12832 if (meta.ref_obj_id) 12833 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 12834 } else { 12835 mark_reg_known_zero(env, regs, BPF_REG_0); 12836 regs[BPF_REG_0].btf = desc_btf; 12837 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 12838 regs[BPF_REG_0].btf_id = ptr_type_id; 12839 12840 if (is_iter_next_kfunc(&meta)) { 12841 struct bpf_reg_state *cur_iter; 12842 12843 cur_iter = get_iter_from_state(env->cur_state, &meta); 12844 12845 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */ 12846 regs[BPF_REG_0].type |= MEM_RCU; 12847 else 12848 regs[BPF_REG_0].type |= PTR_TRUSTED; 12849 } 12850 } 12851 12852 if (is_kfunc_ret_null(&meta)) { 12853 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 12854 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 12855 regs[BPF_REG_0].id = ++env->id_gen; 12856 } 12857 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 12858 if (is_kfunc_acquire(&meta)) { 12859 int id = acquire_reference_state(env, insn_idx); 12860 12861 if (id < 0) 12862 return id; 12863 if (is_kfunc_ret_null(&meta)) 12864 regs[BPF_REG_0].id = id; 12865 regs[BPF_REG_0].ref_obj_id = id; 12866 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12867 ref_set_non_owning(env, ®s[BPF_REG_0]); 12868 } 12869 12870 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 12871 regs[BPF_REG_0].id = ++env->id_gen; 12872 } else if (btf_type_is_void(t)) { 12873 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12874 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 12875 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 12876 insn_aux->kptr_struct_meta = 12877 btf_find_struct_meta(meta.arg_btf, 12878 meta.arg_btf_id); 12879 } 12880 } 12881 } 12882 12883 nargs = btf_type_vlen(meta.func_proto); 12884 args = (const struct btf_param *)(meta.func_proto + 1); 12885 for (i = 0; i < nargs; i++) { 12886 u32 regno = i + 1; 12887 12888 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 12889 if (btf_type_is_ptr(t)) 12890 mark_btf_func_reg_size(env, regno, sizeof(void *)); 12891 else 12892 /* scalar. ensured by btf_check_kfunc_arg_match() */ 12893 mark_btf_func_reg_size(env, regno, t->size); 12894 } 12895 12896 if (is_iter_next_kfunc(&meta)) { 12897 err = process_iter_next_call(env, insn_idx, &meta); 12898 if (err) 12899 return err; 12900 } 12901 12902 return 0; 12903 } 12904 12905 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 12906 const struct bpf_reg_state *reg, 12907 enum bpf_reg_type type) 12908 { 12909 bool known = tnum_is_const(reg->var_off); 12910 s64 val = reg->var_off.value; 12911 s64 smin = reg->smin_value; 12912 12913 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 12914 verbose(env, "math between %s pointer and %lld is not allowed\n", 12915 reg_type_str(env, type), val); 12916 return false; 12917 } 12918 12919 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 12920 verbose(env, "%s pointer offset %d is not allowed\n", 12921 reg_type_str(env, type), reg->off); 12922 return false; 12923 } 12924 12925 if (smin == S64_MIN) { 12926 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 12927 reg_type_str(env, type)); 12928 return false; 12929 } 12930 12931 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 12932 verbose(env, "value %lld makes %s pointer be out of bounds\n", 12933 smin, reg_type_str(env, type)); 12934 return false; 12935 } 12936 12937 return true; 12938 } 12939 12940 enum { 12941 REASON_BOUNDS = -1, 12942 REASON_TYPE = -2, 12943 REASON_PATHS = -3, 12944 REASON_LIMIT = -4, 12945 REASON_STACK = -5, 12946 }; 12947 12948 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 12949 u32 *alu_limit, bool mask_to_left) 12950 { 12951 u32 max = 0, ptr_limit = 0; 12952 12953 switch (ptr_reg->type) { 12954 case PTR_TO_STACK: 12955 /* Offset 0 is out-of-bounds, but acceptable start for the 12956 * left direction, see BPF_REG_FP. Also, unknown scalar 12957 * offset where we would need to deal with min/max bounds is 12958 * currently prohibited for unprivileged. 12959 */ 12960 max = MAX_BPF_STACK + mask_to_left; 12961 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 12962 break; 12963 case PTR_TO_MAP_VALUE: 12964 max = ptr_reg->map_ptr->value_size; 12965 ptr_limit = (mask_to_left ? 12966 ptr_reg->smin_value : 12967 ptr_reg->umax_value) + ptr_reg->off; 12968 break; 12969 default: 12970 return REASON_TYPE; 12971 } 12972 12973 if (ptr_limit >= max) 12974 return REASON_LIMIT; 12975 *alu_limit = ptr_limit; 12976 return 0; 12977 } 12978 12979 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 12980 const struct bpf_insn *insn) 12981 { 12982 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 12983 } 12984 12985 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 12986 u32 alu_state, u32 alu_limit) 12987 { 12988 /* If we arrived here from different branches with different 12989 * state or limits to sanitize, then this won't work. 12990 */ 12991 if (aux->alu_state && 12992 (aux->alu_state != alu_state || 12993 aux->alu_limit != alu_limit)) 12994 return REASON_PATHS; 12995 12996 /* Corresponding fixup done in do_misc_fixups(). */ 12997 aux->alu_state = alu_state; 12998 aux->alu_limit = alu_limit; 12999 return 0; 13000 } 13001 13002 static int sanitize_val_alu(struct bpf_verifier_env *env, 13003 struct bpf_insn *insn) 13004 { 13005 struct bpf_insn_aux_data *aux = cur_aux(env); 13006 13007 if (can_skip_alu_sanitation(env, insn)) 13008 return 0; 13009 13010 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 13011 } 13012 13013 static bool sanitize_needed(u8 opcode) 13014 { 13015 return opcode == BPF_ADD || opcode == BPF_SUB; 13016 } 13017 13018 struct bpf_sanitize_info { 13019 struct bpf_insn_aux_data aux; 13020 bool mask_to_left; 13021 }; 13022 13023 static struct bpf_verifier_state * 13024 sanitize_speculative_path(struct bpf_verifier_env *env, 13025 const struct bpf_insn *insn, 13026 u32 next_idx, u32 curr_idx) 13027 { 13028 struct bpf_verifier_state *branch; 13029 struct bpf_reg_state *regs; 13030 13031 branch = push_stack(env, next_idx, curr_idx, true); 13032 if (branch && insn) { 13033 regs = branch->frame[branch->curframe]->regs; 13034 if (BPF_SRC(insn->code) == BPF_K) { 13035 mark_reg_unknown(env, regs, insn->dst_reg); 13036 } else if (BPF_SRC(insn->code) == BPF_X) { 13037 mark_reg_unknown(env, regs, insn->dst_reg); 13038 mark_reg_unknown(env, regs, insn->src_reg); 13039 } 13040 } 13041 return branch; 13042 } 13043 13044 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 13045 struct bpf_insn *insn, 13046 const struct bpf_reg_state *ptr_reg, 13047 const struct bpf_reg_state *off_reg, 13048 struct bpf_reg_state *dst_reg, 13049 struct bpf_sanitize_info *info, 13050 const bool commit_window) 13051 { 13052 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 13053 struct bpf_verifier_state *vstate = env->cur_state; 13054 bool off_is_imm = tnum_is_const(off_reg->var_off); 13055 bool off_is_neg = off_reg->smin_value < 0; 13056 bool ptr_is_dst_reg = ptr_reg == dst_reg; 13057 u8 opcode = BPF_OP(insn->code); 13058 u32 alu_state, alu_limit; 13059 struct bpf_reg_state tmp; 13060 bool ret; 13061 int err; 13062 13063 if (can_skip_alu_sanitation(env, insn)) 13064 return 0; 13065 13066 /* We already marked aux for masking from non-speculative 13067 * paths, thus we got here in the first place. We only care 13068 * to explore bad access from here. 13069 */ 13070 if (vstate->speculative) 13071 goto do_sim; 13072 13073 if (!commit_window) { 13074 if (!tnum_is_const(off_reg->var_off) && 13075 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 13076 return REASON_BOUNDS; 13077 13078 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 13079 (opcode == BPF_SUB && !off_is_neg); 13080 } 13081 13082 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 13083 if (err < 0) 13084 return err; 13085 13086 if (commit_window) { 13087 /* In commit phase we narrow the masking window based on 13088 * the observed pointer move after the simulated operation. 13089 */ 13090 alu_state = info->aux.alu_state; 13091 alu_limit = abs(info->aux.alu_limit - alu_limit); 13092 } else { 13093 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 13094 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 13095 alu_state |= ptr_is_dst_reg ? 13096 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 13097 13098 /* Limit pruning on unknown scalars to enable deep search for 13099 * potential masking differences from other program paths. 13100 */ 13101 if (!off_is_imm) 13102 env->explore_alu_limits = true; 13103 } 13104 13105 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 13106 if (err < 0) 13107 return err; 13108 do_sim: 13109 /* If we're in commit phase, we're done here given we already 13110 * pushed the truncated dst_reg into the speculative verification 13111 * stack. 13112 * 13113 * Also, when register is a known constant, we rewrite register-based 13114 * operation to immediate-based, and thus do not need masking (and as 13115 * a consequence, do not need to simulate the zero-truncation either). 13116 */ 13117 if (commit_window || off_is_imm) 13118 return 0; 13119 13120 /* Simulate and find potential out-of-bounds access under 13121 * speculative execution from truncation as a result of 13122 * masking when off was not within expected range. If off 13123 * sits in dst, then we temporarily need to move ptr there 13124 * to simulate dst (== 0) +/-= ptr. Needed, for example, 13125 * for cases where we use K-based arithmetic in one direction 13126 * and truncated reg-based in the other in order to explore 13127 * bad access. 13128 */ 13129 if (!ptr_is_dst_reg) { 13130 tmp = *dst_reg; 13131 copy_register_state(dst_reg, ptr_reg); 13132 } 13133 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 13134 env->insn_idx); 13135 if (!ptr_is_dst_reg && ret) 13136 *dst_reg = tmp; 13137 return !ret ? REASON_STACK : 0; 13138 } 13139 13140 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 13141 { 13142 struct bpf_verifier_state *vstate = env->cur_state; 13143 13144 /* If we simulate paths under speculation, we don't update the 13145 * insn as 'seen' such that when we verify unreachable paths in 13146 * the non-speculative domain, sanitize_dead_code() can still 13147 * rewrite/sanitize them. 13148 */ 13149 if (!vstate->speculative) 13150 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 13151 } 13152 13153 static int sanitize_err(struct bpf_verifier_env *env, 13154 const struct bpf_insn *insn, int reason, 13155 const struct bpf_reg_state *off_reg, 13156 const struct bpf_reg_state *dst_reg) 13157 { 13158 static const char *err = "pointer arithmetic with it prohibited for !root"; 13159 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 13160 u32 dst = insn->dst_reg, src = insn->src_reg; 13161 13162 switch (reason) { 13163 case REASON_BOUNDS: 13164 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 13165 off_reg == dst_reg ? dst : src, err); 13166 break; 13167 case REASON_TYPE: 13168 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 13169 off_reg == dst_reg ? src : dst, err); 13170 break; 13171 case REASON_PATHS: 13172 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 13173 dst, op, err); 13174 break; 13175 case REASON_LIMIT: 13176 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 13177 dst, op, err); 13178 break; 13179 case REASON_STACK: 13180 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 13181 dst, err); 13182 break; 13183 default: 13184 verbose(env, "verifier internal error: unknown reason (%d)\n", 13185 reason); 13186 break; 13187 } 13188 13189 return -EACCES; 13190 } 13191 13192 /* check that stack access falls within stack limits and that 'reg' doesn't 13193 * have a variable offset. 13194 * 13195 * Variable offset is prohibited for unprivileged mode for simplicity since it 13196 * requires corresponding support in Spectre masking for stack ALU. See also 13197 * retrieve_ptr_limit(). 13198 * 13199 * 13200 * 'off' includes 'reg->off'. 13201 */ 13202 static int check_stack_access_for_ptr_arithmetic( 13203 struct bpf_verifier_env *env, 13204 int regno, 13205 const struct bpf_reg_state *reg, 13206 int off) 13207 { 13208 if (!tnum_is_const(reg->var_off)) { 13209 char tn_buf[48]; 13210 13211 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 13212 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 13213 regno, tn_buf, off); 13214 return -EACCES; 13215 } 13216 13217 if (off >= 0 || off < -MAX_BPF_STACK) { 13218 verbose(env, "R%d stack pointer arithmetic goes out of range, " 13219 "prohibited for !root; off=%d\n", regno, off); 13220 return -EACCES; 13221 } 13222 13223 return 0; 13224 } 13225 13226 static int sanitize_check_bounds(struct bpf_verifier_env *env, 13227 const struct bpf_insn *insn, 13228 const struct bpf_reg_state *dst_reg) 13229 { 13230 u32 dst = insn->dst_reg; 13231 13232 /* For unprivileged we require that resulting offset must be in bounds 13233 * in order to be able to sanitize access later on. 13234 */ 13235 if (env->bypass_spec_v1) 13236 return 0; 13237 13238 switch (dst_reg->type) { 13239 case PTR_TO_STACK: 13240 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 13241 dst_reg->off + dst_reg->var_off.value)) 13242 return -EACCES; 13243 break; 13244 case PTR_TO_MAP_VALUE: 13245 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 13246 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 13247 "prohibited for !root\n", dst); 13248 return -EACCES; 13249 } 13250 break; 13251 default: 13252 break; 13253 } 13254 13255 return 0; 13256 } 13257 13258 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 13259 * Caller should also handle BPF_MOV case separately. 13260 * If we return -EACCES, caller may want to try again treating pointer as a 13261 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 13262 */ 13263 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 13264 struct bpf_insn *insn, 13265 const struct bpf_reg_state *ptr_reg, 13266 const struct bpf_reg_state *off_reg) 13267 { 13268 struct bpf_verifier_state *vstate = env->cur_state; 13269 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13270 struct bpf_reg_state *regs = state->regs, *dst_reg; 13271 bool known = tnum_is_const(off_reg->var_off); 13272 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 13273 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 13274 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 13275 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 13276 struct bpf_sanitize_info info = {}; 13277 u8 opcode = BPF_OP(insn->code); 13278 u32 dst = insn->dst_reg; 13279 int ret; 13280 13281 dst_reg = ®s[dst]; 13282 13283 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 13284 smin_val > smax_val || umin_val > umax_val) { 13285 /* Taint dst register if offset had invalid bounds derived from 13286 * e.g. dead branches. 13287 */ 13288 __mark_reg_unknown(env, dst_reg); 13289 return 0; 13290 } 13291 13292 if (BPF_CLASS(insn->code) != BPF_ALU64) { 13293 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 13294 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13295 __mark_reg_unknown(env, dst_reg); 13296 return 0; 13297 } 13298 13299 verbose(env, 13300 "R%d 32-bit pointer arithmetic prohibited\n", 13301 dst); 13302 return -EACCES; 13303 } 13304 13305 if (ptr_reg->type & PTR_MAYBE_NULL) { 13306 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 13307 dst, reg_type_str(env, ptr_reg->type)); 13308 return -EACCES; 13309 } 13310 13311 switch (base_type(ptr_reg->type)) { 13312 case PTR_TO_CTX: 13313 case PTR_TO_MAP_VALUE: 13314 case PTR_TO_MAP_KEY: 13315 case PTR_TO_STACK: 13316 case PTR_TO_PACKET_META: 13317 case PTR_TO_PACKET: 13318 case PTR_TO_TP_BUFFER: 13319 case PTR_TO_BTF_ID: 13320 case PTR_TO_MEM: 13321 case PTR_TO_BUF: 13322 case PTR_TO_FUNC: 13323 case CONST_PTR_TO_DYNPTR: 13324 break; 13325 case PTR_TO_FLOW_KEYS: 13326 if (known) 13327 break; 13328 fallthrough; 13329 case CONST_PTR_TO_MAP: 13330 /* smin_val represents the known value */ 13331 if (known && smin_val == 0 && opcode == BPF_ADD) 13332 break; 13333 fallthrough; 13334 default: 13335 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 13336 dst, reg_type_str(env, ptr_reg->type)); 13337 return -EACCES; 13338 } 13339 13340 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 13341 * The id may be overwritten later if we create a new variable offset. 13342 */ 13343 dst_reg->type = ptr_reg->type; 13344 dst_reg->id = ptr_reg->id; 13345 13346 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 13347 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 13348 return -EINVAL; 13349 13350 /* pointer types do not carry 32-bit bounds at the moment. */ 13351 __mark_reg32_unbounded(dst_reg); 13352 13353 if (sanitize_needed(opcode)) { 13354 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 13355 &info, false); 13356 if (ret < 0) 13357 return sanitize_err(env, insn, ret, off_reg, dst_reg); 13358 } 13359 13360 switch (opcode) { 13361 case BPF_ADD: 13362 /* We can take a fixed offset as long as it doesn't overflow 13363 * the s32 'off' field 13364 */ 13365 if (known && (ptr_reg->off + smin_val == 13366 (s64)(s32)(ptr_reg->off + smin_val))) { 13367 /* pointer += K. Accumulate it into fixed offset */ 13368 dst_reg->smin_value = smin_ptr; 13369 dst_reg->smax_value = smax_ptr; 13370 dst_reg->umin_value = umin_ptr; 13371 dst_reg->umax_value = umax_ptr; 13372 dst_reg->var_off = ptr_reg->var_off; 13373 dst_reg->off = ptr_reg->off + smin_val; 13374 dst_reg->raw = ptr_reg->raw; 13375 break; 13376 } 13377 /* A new variable offset is created. Note that off_reg->off 13378 * == 0, since it's a scalar. 13379 * dst_reg gets the pointer type and since some positive 13380 * integer value was added to the pointer, give it a new 'id' 13381 * if it's a PTR_TO_PACKET. 13382 * this creates a new 'base' pointer, off_reg (variable) gets 13383 * added into the variable offset, and we copy the fixed offset 13384 * from ptr_reg. 13385 */ 13386 if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) || 13387 check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) { 13388 dst_reg->smin_value = S64_MIN; 13389 dst_reg->smax_value = S64_MAX; 13390 } 13391 if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) || 13392 check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) { 13393 dst_reg->umin_value = 0; 13394 dst_reg->umax_value = U64_MAX; 13395 } 13396 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 13397 dst_reg->off = ptr_reg->off; 13398 dst_reg->raw = ptr_reg->raw; 13399 if (reg_is_pkt_pointer(ptr_reg)) { 13400 dst_reg->id = ++env->id_gen; 13401 /* something was added to pkt_ptr, set range to zero */ 13402 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 13403 } 13404 break; 13405 case BPF_SUB: 13406 if (dst_reg == off_reg) { 13407 /* scalar -= pointer. Creates an unknown scalar */ 13408 verbose(env, "R%d tried to subtract pointer from scalar\n", 13409 dst); 13410 return -EACCES; 13411 } 13412 /* We don't allow subtraction from FP, because (according to 13413 * test_verifier.c test "invalid fp arithmetic", JITs might not 13414 * be able to deal with it. 13415 */ 13416 if (ptr_reg->type == PTR_TO_STACK) { 13417 verbose(env, "R%d subtraction from stack pointer prohibited\n", 13418 dst); 13419 return -EACCES; 13420 } 13421 if (known && (ptr_reg->off - smin_val == 13422 (s64)(s32)(ptr_reg->off - smin_val))) { 13423 /* pointer -= K. Subtract it from fixed offset */ 13424 dst_reg->smin_value = smin_ptr; 13425 dst_reg->smax_value = smax_ptr; 13426 dst_reg->umin_value = umin_ptr; 13427 dst_reg->umax_value = umax_ptr; 13428 dst_reg->var_off = ptr_reg->var_off; 13429 dst_reg->id = ptr_reg->id; 13430 dst_reg->off = ptr_reg->off - smin_val; 13431 dst_reg->raw = ptr_reg->raw; 13432 break; 13433 } 13434 /* A new variable offset is created. If the subtrahend is known 13435 * nonnegative, then any reg->range we had before is still good. 13436 */ 13437 if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) || 13438 check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) { 13439 /* Overflow possible, we know nothing */ 13440 dst_reg->smin_value = S64_MIN; 13441 dst_reg->smax_value = S64_MAX; 13442 } 13443 if (umin_ptr < umax_val) { 13444 /* Overflow possible, we know nothing */ 13445 dst_reg->umin_value = 0; 13446 dst_reg->umax_value = U64_MAX; 13447 } else { 13448 /* Cannot overflow (as long as bounds are consistent) */ 13449 dst_reg->umin_value = umin_ptr - umax_val; 13450 dst_reg->umax_value = umax_ptr - umin_val; 13451 } 13452 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 13453 dst_reg->off = ptr_reg->off; 13454 dst_reg->raw = ptr_reg->raw; 13455 if (reg_is_pkt_pointer(ptr_reg)) { 13456 dst_reg->id = ++env->id_gen; 13457 /* something was added to pkt_ptr, set range to zero */ 13458 if (smin_val < 0) 13459 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 13460 } 13461 break; 13462 case BPF_AND: 13463 case BPF_OR: 13464 case BPF_XOR: 13465 /* bitwise ops on pointers are troublesome, prohibit. */ 13466 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 13467 dst, bpf_alu_string[opcode >> 4]); 13468 return -EACCES; 13469 default: 13470 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 13471 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 13472 dst, bpf_alu_string[opcode >> 4]); 13473 return -EACCES; 13474 } 13475 13476 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 13477 return -EINVAL; 13478 reg_bounds_sync(dst_reg); 13479 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 13480 return -EACCES; 13481 if (sanitize_needed(opcode)) { 13482 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 13483 &info, true); 13484 if (ret < 0) 13485 return sanitize_err(env, insn, ret, off_reg, dst_reg); 13486 } 13487 13488 return 0; 13489 } 13490 13491 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 13492 struct bpf_reg_state *src_reg) 13493 { 13494 s32 *dst_smin = &dst_reg->s32_min_value; 13495 s32 *dst_smax = &dst_reg->s32_max_value; 13496 u32 *dst_umin = &dst_reg->u32_min_value; 13497 u32 *dst_umax = &dst_reg->u32_max_value; 13498 13499 if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) || 13500 check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) { 13501 *dst_smin = S32_MIN; 13502 *dst_smax = S32_MAX; 13503 } 13504 if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) || 13505 check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) { 13506 *dst_umin = 0; 13507 *dst_umax = U32_MAX; 13508 } 13509 } 13510 13511 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 13512 struct bpf_reg_state *src_reg) 13513 { 13514 s64 *dst_smin = &dst_reg->smin_value; 13515 s64 *dst_smax = &dst_reg->smax_value; 13516 u64 *dst_umin = &dst_reg->umin_value; 13517 u64 *dst_umax = &dst_reg->umax_value; 13518 13519 if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) || 13520 check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) { 13521 *dst_smin = S64_MIN; 13522 *dst_smax = S64_MAX; 13523 } 13524 if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) || 13525 check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) { 13526 *dst_umin = 0; 13527 *dst_umax = U64_MAX; 13528 } 13529 } 13530 13531 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 13532 struct bpf_reg_state *src_reg) 13533 { 13534 s32 *dst_smin = &dst_reg->s32_min_value; 13535 s32 *dst_smax = &dst_reg->s32_max_value; 13536 u32 umin_val = src_reg->u32_min_value; 13537 u32 umax_val = src_reg->u32_max_value; 13538 13539 if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) || 13540 check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) { 13541 /* Overflow possible, we know nothing */ 13542 *dst_smin = S32_MIN; 13543 *dst_smax = S32_MAX; 13544 } 13545 if (dst_reg->u32_min_value < umax_val) { 13546 /* Overflow possible, we know nothing */ 13547 dst_reg->u32_min_value = 0; 13548 dst_reg->u32_max_value = U32_MAX; 13549 } else { 13550 /* Cannot overflow (as long as bounds are consistent) */ 13551 dst_reg->u32_min_value -= umax_val; 13552 dst_reg->u32_max_value -= umin_val; 13553 } 13554 } 13555 13556 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 13557 struct bpf_reg_state *src_reg) 13558 { 13559 s64 *dst_smin = &dst_reg->smin_value; 13560 s64 *dst_smax = &dst_reg->smax_value; 13561 u64 umin_val = src_reg->umin_value; 13562 u64 umax_val = src_reg->umax_value; 13563 13564 if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) || 13565 check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) { 13566 /* Overflow possible, we know nothing */ 13567 *dst_smin = S64_MIN; 13568 *dst_smax = S64_MAX; 13569 } 13570 if (dst_reg->umin_value < umax_val) { 13571 /* Overflow possible, we know nothing */ 13572 dst_reg->umin_value = 0; 13573 dst_reg->umax_value = U64_MAX; 13574 } else { 13575 /* Cannot overflow (as long as bounds are consistent) */ 13576 dst_reg->umin_value -= umax_val; 13577 dst_reg->umax_value -= umin_val; 13578 } 13579 } 13580 13581 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 13582 struct bpf_reg_state *src_reg) 13583 { 13584 s32 smin_val = src_reg->s32_min_value; 13585 u32 umin_val = src_reg->u32_min_value; 13586 u32 umax_val = src_reg->u32_max_value; 13587 13588 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 13589 /* Ain't nobody got time to multiply that sign */ 13590 __mark_reg32_unbounded(dst_reg); 13591 return; 13592 } 13593 /* Both values are positive, so we can work with unsigned and 13594 * copy the result to signed (unless it exceeds S32_MAX). 13595 */ 13596 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 13597 /* Potential overflow, we know nothing */ 13598 __mark_reg32_unbounded(dst_reg); 13599 return; 13600 } 13601 dst_reg->u32_min_value *= umin_val; 13602 dst_reg->u32_max_value *= umax_val; 13603 if (dst_reg->u32_max_value > S32_MAX) { 13604 /* Overflow possible, we know nothing */ 13605 dst_reg->s32_min_value = S32_MIN; 13606 dst_reg->s32_max_value = S32_MAX; 13607 } else { 13608 dst_reg->s32_min_value = dst_reg->u32_min_value; 13609 dst_reg->s32_max_value = dst_reg->u32_max_value; 13610 } 13611 } 13612 13613 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 13614 struct bpf_reg_state *src_reg) 13615 { 13616 s64 smin_val = src_reg->smin_value; 13617 u64 umin_val = src_reg->umin_value; 13618 u64 umax_val = src_reg->umax_value; 13619 13620 if (smin_val < 0 || dst_reg->smin_value < 0) { 13621 /* Ain't nobody got time to multiply that sign */ 13622 __mark_reg64_unbounded(dst_reg); 13623 return; 13624 } 13625 /* Both values are positive, so we can work with unsigned and 13626 * copy the result to signed (unless it exceeds S64_MAX). 13627 */ 13628 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 13629 /* Potential overflow, we know nothing */ 13630 __mark_reg64_unbounded(dst_reg); 13631 return; 13632 } 13633 dst_reg->umin_value *= umin_val; 13634 dst_reg->umax_value *= umax_val; 13635 if (dst_reg->umax_value > S64_MAX) { 13636 /* Overflow possible, we know nothing */ 13637 dst_reg->smin_value = S64_MIN; 13638 dst_reg->smax_value = S64_MAX; 13639 } else { 13640 dst_reg->smin_value = dst_reg->umin_value; 13641 dst_reg->smax_value = dst_reg->umax_value; 13642 } 13643 } 13644 13645 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 13646 struct bpf_reg_state *src_reg) 13647 { 13648 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13649 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13650 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13651 u32 umax_val = src_reg->u32_max_value; 13652 13653 if (src_known && dst_known) { 13654 __mark_reg32_known(dst_reg, var32_off.value); 13655 return; 13656 } 13657 13658 /* We get our minimum from the var_off, since that's inherently 13659 * bitwise. Our maximum is the minimum of the operands' maxima. 13660 */ 13661 dst_reg->u32_min_value = var32_off.value; 13662 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 13663 13664 /* Safe to set s32 bounds by casting u32 result into s32 when u32 13665 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 13666 */ 13667 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 13668 dst_reg->s32_min_value = dst_reg->u32_min_value; 13669 dst_reg->s32_max_value = dst_reg->u32_max_value; 13670 } else { 13671 dst_reg->s32_min_value = S32_MIN; 13672 dst_reg->s32_max_value = S32_MAX; 13673 } 13674 } 13675 13676 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 13677 struct bpf_reg_state *src_reg) 13678 { 13679 bool src_known = tnum_is_const(src_reg->var_off); 13680 bool dst_known = tnum_is_const(dst_reg->var_off); 13681 u64 umax_val = src_reg->umax_value; 13682 13683 if (src_known && dst_known) { 13684 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13685 return; 13686 } 13687 13688 /* We get our minimum from the var_off, since that's inherently 13689 * bitwise. Our maximum is the minimum of the operands' maxima. 13690 */ 13691 dst_reg->umin_value = dst_reg->var_off.value; 13692 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 13693 13694 /* Safe to set s64 bounds by casting u64 result into s64 when u64 13695 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 13696 */ 13697 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 13698 dst_reg->smin_value = dst_reg->umin_value; 13699 dst_reg->smax_value = dst_reg->umax_value; 13700 } else { 13701 dst_reg->smin_value = S64_MIN; 13702 dst_reg->smax_value = S64_MAX; 13703 } 13704 /* We may learn something more from the var_off */ 13705 __update_reg_bounds(dst_reg); 13706 } 13707 13708 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 13709 struct bpf_reg_state *src_reg) 13710 { 13711 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13712 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13713 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13714 u32 umin_val = src_reg->u32_min_value; 13715 13716 if (src_known && dst_known) { 13717 __mark_reg32_known(dst_reg, var32_off.value); 13718 return; 13719 } 13720 13721 /* We get our maximum from the var_off, and our minimum is the 13722 * maximum of the operands' minima 13723 */ 13724 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 13725 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13726 13727 /* Safe to set s32 bounds by casting u32 result into s32 when u32 13728 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 13729 */ 13730 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 13731 dst_reg->s32_min_value = dst_reg->u32_min_value; 13732 dst_reg->s32_max_value = dst_reg->u32_max_value; 13733 } else { 13734 dst_reg->s32_min_value = S32_MIN; 13735 dst_reg->s32_max_value = S32_MAX; 13736 } 13737 } 13738 13739 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 13740 struct bpf_reg_state *src_reg) 13741 { 13742 bool src_known = tnum_is_const(src_reg->var_off); 13743 bool dst_known = tnum_is_const(dst_reg->var_off); 13744 u64 umin_val = src_reg->umin_value; 13745 13746 if (src_known && dst_known) { 13747 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13748 return; 13749 } 13750 13751 /* We get our maximum from the var_off, and our minimum is the 13752 * maximum of the operands' minima 13753 */ 13754 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 13755 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13756 13757 /* Safe to set s64 bounds by casting u64 result into s64 when u64 13758 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 13759 */ 13760 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 13761 dst_reg->smin_value = dst_reg->umin_value; 13762 dst_reg->smax_value = dst_reg->umax_value; 13763 } else { 13764 dst_reg->smin_value = S64_MIN; 13765 dst_reg->smax_value = S64_MAX; 13766 } 13767 /* We may learn something more from the var_off */ 13768 __update_reg_bounds(dst_reg); 13769 } 13770 13771 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 13772 struct bpf_reg_state *src_reg) 13773 { 13774 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13775 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13776 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13777 13778 if (src_known && dst_known) { 13779 __mark_reg32_known(dst_reg, var32_off.value); 13780 return; 13781 } 13782 13783 /* We get both minimum and maximum from the var32_off. */ 13784 dst_reg->u32_min_value = var32_off.value; 13785 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13786 13787 /* Safe to set s32 bounds by casting u32 result into s32 when u32 13788 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 13789 */ 13790 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 13791 dst_reg->s32_min_value = dst_reg->u32_min_value; 13792 dst_reg->s32_max_value = dst_reg->u32_max_value; 13793 } else { 13794 dst_reg->s32_min_value = S32_MIN; 13795 dst_reg->s32_max_value = S32_MAX; 13796 } 13797 } 13798 13799 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 13800 struct bpf_reg_state *src_reg) 13801 { 13802 bool src_known = tnum_is_const(src_reg->var_off); 13803 bool dst_known = tnum_is_const(dst_reg->var_off); 13804 13805 if (src_known && dst_known) { 13806 /* dst_reg->var_off.value has been updated earlier */ 13807 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13808 return; 13809 } 13810 13811 /* We get both minimum and maximum from the var_off. */ 13812 dst_reg->umin_value = dst_reg->var_off.value; 13813 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13814 13815 /* Safe to set s64 bounds by casting u64 result into s64 when u64 13816 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 13817 */ 13818 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 13819 dst_reg->smin_value = dst_reg->umin_value; 13820 dst_reg->smax_value = dst_reg->umax_value; 13821 } else { 13822 dst_reg->smin_value = S64_MIN; 13823 dst_reg->smax_value = S64_MAX; 13824 } 13825 13826 __update_reg_bounds(dst_reg); 13827 } 13828 13829 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13830 u64 umin_val, u64 umax_val) 13831 { 13832 /* We lose all sign bit information (except what we can pick 13833 * up from var_off) 13834 */ 13835 dst_reg->s32_min_value = S32_MIN; 13836 dst_reg->s32_max_value = S32_MAX; 13837 /* If we might shift our top bit out, then we know nothing */ 13838 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 13839 dst_reg->u32_min_value = 0; 13840 dst_reg->u32_max_value = U32_MAX; 13841 } else { 13842 dst_reg->u32_min_value <<= umin_val; 13843 dst_reg->u32_max_value <<= umax_val; 13844 } 13845 } 13846 13847 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13848 struct bpf_reg_state *src_reg) 13849 { 13850 u32 umax_val = src_reg->u32_max_value; 13851 u32 umin_val = src_reg->u32_min_value; 13852 /* u32 alu operation will zext upper bits */ 13853 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13854 13855 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13856 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 13857 /* Not required but being careful mark reg64 bounds as unknown so 13858 * that we are forced to pick them up from tnum and zext later and 13859 * if some path skips this step we are still safe. 13860 */ 13861 __mark_reg64_unbounded(dst_reg); 13862 __update_reg32_bounds(dst_reg); 13863 } 13864 13865 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 13866 u64 umin_val, u64 umax_val) 13867 { 13868 /* Special case <<32 because it is a common compiler pattern to sign 13869 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 13870 * positive we know this shift will also be positive so we can track 13871 * bounds correctly. Otherwise we lose all sign bit information except 13872 * what we can pick up from var_off. Perhaps we can generalize this 13873 * later to shifts of any length. 13874 */ 13875 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 13876 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 13877 else 13878 dst_reg->smax_value = S64_MAX; 13879 13880 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 13881 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 13882 else 13883 dst_reg->smin_value = S64_MIN; 13884 13885 /* If we might shift our top bit out, then we know nothing */ 13886 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 13887 dst_reg->umin_value = 0; 13888 dst_reg->umax_value = U64_MAX; 13889 } else { 13890 dst_reg->umin_value <<= umin_val; 13891 dst_reg->umax_value <<= umax_val; 13892 } 13893 } 13894 13895 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 13896 struct bpf_reg_state *src_reg) 13897 { 13898 u64 umax_val = src_reg->umax_value; 13899 u64 umin_val = src_reg->umin_value; 13900 13901 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 13902 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 13903 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13904 13905 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 13906 /* We may learn something more from the var_off */ 13907 __update_reg_bounds(dst_reg); 13908 } 13909 13910 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 13911 struct bpf_reg_state *src_reg) 13912 { 13913 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13914 u32 umax_val = src_reg->u32_max_value; 13915 u32 umin_val = src_reg->u32_min_value; 13916 13917 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13918 * be negative, then either: 13919 * 1) src_reg might be zero, so the sign bit of the result is 13920 * unknown, so we lose our signed bounds 13921 * 2) it's known negative, thus the unsigned bounds capture the 13922 * signed bounds 13923 * 3) the signed bounds cross zero, so they tell us nothing 13924 * about the result 13925 * If the value in dst_reg is known nonnegative, then again the 13926 * unsigned bounds capture the signed bounds. 13927 * Thus, in all cases it suffices to blow away our signed bounds 13928 * and rely on inferring new ones from the unsigned bounds and 13929 * var_off of the result. 13930 */ 13931 dst_reg->s32_min_value = S32_MIN; 13932 dst_reg->s32_max_value = S32_MAX; 13933 13934 dst_reg->var_off = tnum_rshift(subreg, umin_val); 13935 dst_reg->u32_min_value >>= umax_val; 13936 dst_reg->u32_max_value >>= umin_val; 13937 13938 __mark_reg64_unbounded(dst_reg); 13939 __update_reg32_bounds(dst_reg); 13940 } 13941 13942 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 13943 struct bpf_reg_state *src_reg) 13944 { 13945 u64 umax_val = src_reg->umax_value; 13946 u64 umin_val = src_reg->umin_value; 13947 13948 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13949 * be negative, then either: 13950 * 1) src_reg might be zero, so the sign bit of the result is 13951 * unknown, so we lose our signed bounds 13952 * 2) it's known negative, thus the unsigned bounds capture the 13953 * signed bounds 13954 * 3) the signed bounds cross zero, so they tell us nothing 13955 * about the result 13956 * If the value in dst_reg is known nonnegative, then again the 13957 * unsigned bounds capture the signed bounds. 13958 * Thus, in all cases it suffices to blow away our signed bounds 13959 * and rely on inferring new ones from the unsigned bounds and 13960 * var_off of the result. 13961 */ 13962 dst_reg->smin_value = S64_MIN; 13963 dst_reg->smax_value = S64_MAX; 13964 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 13965 dst_reg->umin_value >>= umax_val; 13966 dst_reg->umax_value >>= umin_val; 13967 13968 /* Its not easy to operate on alu32 bounds here because it depends 13969 * on bits being shifted in. Take easy way out and mark unbounded 13970 * so we can recalculate later from tnum. 13971 */ 13972 __mark_reg32_unbounded(dst_reg); 13973 __update_reg_bounds(dst_reg); 13974 } 13975 13976 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 13977 struct bpf_reg_state *src_reg) 13978 { 13979 u64 umin_val = src_reg->u32_min_value; 13980 13981 /* Upon reaching here, src_known is true and 13982 * umax_val is equal to umin_val. 13983 */ 13984 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 13985 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 13986 13987 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 13988 13989 /* blow away the dst_reg umin_value/umax_value and rely on 13990 * dst_reg var_off to refine the result. 13991 */ 13992 dst_reg->u32_min_value = 0; 13993 dst_reg->u32_max_value = U32_MAX; 13994 13995 __mark_reg64_unbounded(dst_reg); 13996 __update_reg32_bounds(dst_reg); 13997 } 13998 13999 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 14000 struct bpf_reg_state *src_reg) 14001 { 14002 u64 umin_val = src_reg->umin_value; 14003 14004 /* Upon reaching here, src_known is true and umax_val is equal 14005 * to umin_val. 14006 */ 14007 dst_reg->smin_value >>= umin_val; 14008 dst_reg->smax_value >>= umin_val; 14009 14010 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 14011 14012 /* blow away the dst_reg umin_value/umax_value and rely on 14013 * dst_reg var_off to refine the result. 14014 */ 14015 dst_reg->umin_value = 0; 14016 dst_reg->umax_value = U64_MAX; 14017 14018 /* Its not easy to operate on alu32 bounds here because it depends 14019 * on bits being shifted in from upper 32-bits. Take easy way out 14020 * and mark unbounded so we can recalculate later from tnum. 14021 */ 14022 __mark_reg32_unbounded(dst_reg); 14023 __update_reg_bounds(dst_reg); 14024 } 14025 14026 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn, 14027 const struct bpf_reg_state *src_reg) 14028 { 14029 bool src_is_const = false; 14030 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 14031 14032 if (insn_bitness == 32) { 14033 if (tnum_subreg_is_const(src_reg->var_off) 14034 && src_reg->s32_min_value == src_reg->s32_max_value 14035 && src_reg->u32_min_value == src_reg->u32_max_value) 14036 src_is_const = true; 14037 } else { 14038 if (tnum_is_const(src_reg->var_off) 14039 && src_reg->smin_value == src_reg->smax_value 14040 && src_reg->umin_value == src_reg->umax_value) 14041 src_is_const = true; 14042 } 14043 14044 switch (BPF_OP(insn->code)) { 14045 case BPF_ADD: 14046 case BPF_SUB: 14047 case BPF_AND: 14048 case BPF_XOR: 14049 case BPF_OR: 14050 case BPF_MUL: 14051 return true; 14052 14053 /* Shift operators range is only computable if shift dimension operand 14054 * is a constant. Shifts greater than 31 or 63 are undefined. This 14055 * includes shifts by a negative number. 14056 */ 14057 case BPF_LSH: 14058 case BPF_RSH: 14059 case BPF_ARSH: 14060 return (src_is_const && src_reg->umax_value < insn_bitness); 14061 default: 14062 return false; 14063 } 14064 } 14065 14066 /* WARNING: This function does calculations on 64-bit values, but the actual 14067 * execution may occur on 32-bit values. Therefore, things like bitshifts 14068 * need extra checks in the 32-bit case. 14069 */ 14070 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 14071 struct bpf_insn *insn, 14072 struct bpf_reg_state *dst_reg, 14073 struct bpf_reg_state src_reg) 14074 { 14075 u8 opcode = BPF_OP(insn->code); 14076 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 14077 int ret; 14078 14079 if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) { 14080 __mark_reg_unknown(env, dst_reg); 14081 return 0; 14082 } 14083 14084 if (sanitize_needed(opcode)) { 14085 ret = sanitize_val_alu(env, insn); 14086 if (ret < 0) 14087 return sanitize_err(env, insn, ret, NULL, NULL); 14088 } 14089 14090 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 14091 * There are two classes of instructions: The first class we track both 14092 * alu32 and alu64 sign/unsigned bounds independently this provides the 14093 * greatest amount of precision when alu operations are mixed with jmp32 14094 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 14095 * and BPF_OR. This is possible because these ops have fairly easy to 14096 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 14097 * See alu32 verifier tests for examples. The second class of 14098 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 14099 * with regards to tracking sign/unsigned bounds because the bits may 14100 * cross subreg boundaries in the alu64 case. When this happens we mark 14101 * the reg unbounded in the subreg bound space and use the resulting 14102 * tnum to calculate an approximation of the sign/unsigned bounds. 14103 */ 14104 switch (opcode) { 14105 case BPF_ADD: 14106 scalar32_min_max_add(dst_reg, &src_reg); 14107 scalar_min_max_add(dst_reg, &src_reg); 14108 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 14109 break; 14110 case BPF_SUB: 14111 scalar32_min_max_sub(dst_reg, &src_reg); 14112 scalar_min_max_sub(dst_reg, &src_reg); 14113 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 14114 break; 14115 case BPF_MUL: 14116 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 14117 scalar32_min_max_mul(dst_reg, &src_reg); 14118 scalar_min_max_mul(dst_reg, &src_reg); 14119 break; 14120 case BPF_AND: 14121 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 14122 scalar32_min_max_and(dst_reg, &src_reg); 14123 scalar_min_max_and(dst_reg, &src_reg); 14124 break; 14125 case BPF_OR: 14126 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 14127 scalar32_min_max_or(dst_reg, &src_reg); 14128 scalar_min_max_or(dst_reg, &src_reg); 14129 break; 14130 case BPF_XOR: 14131 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 14132 scalar32_min_max_xor(dst_reg, &src_reg); 14133 scalar_min_max_xor(dst_reg, &src_reg); 14134 break; 14135 case BPF_LSH: 14136 if (alu32) 14137 scalar32_min_max_lsh(dst_reg, &src_reg); 14138 else 14139 scalar_min_max_lsh(dst_reg, &src_reg); 14140 break; 14141 case BPF_RSH: 14142 if (alu32) 14143 scalar32_min_max_rsh(dst_reg, &src_reg); 14144 else 14145 scalar_min_max_rsh(dst_reg, &src_reg); 14146 break; 14147 case BPF_ARSH: 14148 if (alu32) 14149 scalar32_min_max_arsh(dst_reg, &src_reg); 14150 else 14151 scalar_min_max_arsh(dst_reg, &src_reg); 14152 break; 14153 default: 14154 break; 14155 } 14156 14157 /* ALU32 ops are zero extended into 64bit register */ 14158 if (alu32) 14159 zext_32_to_64(dst_reg); 14160 reg_bounds_sync(dst_reg); 14161 return 0; 14162 } 14163 14164 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 14165 * and var_off. 14166 */ 14167 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 14168 struct bpf_insn *insn) 14169 { 14170 struct bpf_verifier_state *vstate = env->cur_state; 14171 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14172 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 14173 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 14174 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 14175 u8 opcode = BPF_OP(insn->code); 14176 int err; 14177 14178 dst_reg = ®s[insn->dst_reg]; 14179 src_reg = NULL; 14180 14181 if (dst_reg->type == PTR_TO_ARENA) { 14182 struct bpf_insn_aux_data *aux = cur_aux(env); 14183 14184 if (BPF_CLASS(insn->code) == BPF_ALU64) 14185 /* 14186 * 32-bit operations zero upper bits automatically. 14187 * 64-bit operations need to be converted to 32. 14188 */ 14189 aux->needs_zext = true; 14190 14191 /* Any arithmetic operations are allowed on arena pointers */ 14192 return 0; 14193 } 14194 14195 if (dst_reg->type != SCALAR_VALUE) 14196 ptr_reg = dst_reg; 14197 14198 if (BPF_SRC(insn->code) == BPF_X) { 14199 src_reg = ®s[insn->src_reg]; 14200 if (src_reg->type != SCALAR_VALUE) { 14201 if (dst_reg->type != SCALAR_VALUE) { 14202 /* Combining two pointers by any ALU op yields 14203 * an arbitrary scalar. Disallow all math except 14204 * pointer subtraction 14205 */ 14206 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 14207 mark_reg_unknown(env, regs, insn->dst_reg); 14208 return 0; 14209 } 14210 verbose(env, "R%d pointer %s pointer prohibited\n", 14211 insn->dst_reg, 14212 bpf_alu_string[opcode >> 4]); 14213 return -EACCES; 14214 } else { 14215 /* scalar += pointer 14216 * This is legal, but we have to reverse our 14217 * src/dest handling in computing the range 14218 */ 14219 err = mark_chain_precision(env, insn->dst_reg); 14220 if (err) 14221 return err; 14222 return adjust_ptr_min_max_vals(env, insn, 14223 src_reg, dst_reg); 14224 } 14225 } else if (ptr_reg) { 14226 /* pointer += scalar */ 14227 err = mark_chain_precision(env, insn->src_reg); 14228 if (err) 14229 return err; 14230 return adjust_ptr_min_max_vals(env, insn, 14231 dst_reg, src_reg); 14232 } else if (dst_reg->precise) { 14233 /* if dst_reg is precise, src_reg should be precise as well */ 14234 err = mark_chain_precision(env, insn->src_reg); 14235 if (err) 14236 return err; 14237 } 14238 } else { 14239 /* Pretend the src is a reg with a known value, since we only 14240 * need to be able to read from this state. 14241 */ 14242 off_reg.type = SCALAR_VALUE; 14243 __mark_reg_known(&off_reg, insn->imm); 14244 src_reg = &off_reg; 14245 if (ptr_reg) /* pointer += K */ 14246 return adjust_ptr_min_max_vals(env, insn, 14247 ptr_reg, src_reg); 14248 } 14249 14250 /* Got here implies adding two SCALAR_VALUEs */ 14251 if (WARN_ON_ONCE(ptr_reg)) { 14252 print_verifier_state(env, state, true); 14253 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 14254 return -EINVAL; 14255 } 14256 if (WARN_ON(!src_reg)) { 14257 print_verifier_state(env, state, true); 14258 verbose(env, "verifier internal error: no src_reg\n"); 14259 return -EINVAL; 14260 } 14261 err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 14262 if (err) 14263 return err; 14264 /* 14265 * Compilers can generate the code 14266 * r1 = r2 14267 * r1 += 0x1 14268 * if r2 < 1000 goto ... 14269 * use r1 in memory access 14270 * So for 64-bit alu remember constant delta between r2 and r1 and 14271 * update r1 after 'if' condition. 14272 */ 14273 if (env->bpf_capable && 14274 BPF_OP(insn->code) == BPF_ADD && !alu32 && 14275 dst_reg->id && is_reg_const(src_reg, false)) { 14276 u64 val = reg_const_value(src_reg, false); 14277 14278 if ((dst_reg->id & BPF_ADD_CONST) || 14279 /* prevent overflow in sync_linked_regs() later */ 14280 val > (u32)S32_MAX) { 14281 /* 14282 * If the register already went through rX += val 14283 * we cannot accumulate another val into rx->off. 14284 */ 14285 dst_reg->off = 0; 14286 dst_reg->id = 0; 14287 } else { 14288 dst_reg->id |= BPF_ADD_CONST; 14289 dst_reg->off = val; 14290 } 14291 } else { 14292 /* 14293 * Make sure ID is cleared otherwise dst_reg min/max could be 14294 * incorrectly propagated into other registers by sync_linked_regs() 14295 */ 14296 dst_reg->id = 0; 14297 } 14298 return 0; 14299 } 14300 14301 /* check validity of 32-bit and 64-bit arithmetic operations */ 14302 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 14303 { 14304 struct bpf_reg_state *regs = cur_regs(env); 14305 u8 opcode = BPF_OP(insn->code); 14306 int err; 14307 14308 if (opcode == BPF_END || opcode == BPF_NEG) { 14309 if (opcode == BPF_NEG) { 14310 if (BPF_SRC(insn->code) != BPF_K || 14311 insn->src_reg != BPF_REG_0 || 14312 insn->off != 0 || insn->imm != 0) { 14313 verbose(env, "BPF_NEG uses reserved fields\n"); 14314 return -EINVAL; 14315 } 14316 } else { 14317 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 14318 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 14319 (BPF_CLASS(insn->code) == BPF_ALU64 && 14320 BPF_SRC(insn->code) != BPF_TO_LE)) { 14321 verbose(env, "BPF_END uses reserved fields\n"); 14322 return -EINVAL; 14323 } 14324 } 14325 14326 /* check src operand */ 14327 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14328 if (err) 14329 return err; 14330 14331 if (is_pointer_value(env, insn->dst_reg)) { 14332 verbose(env, "R%d pointer arithmetic prohibited\n", 14333 insn->dst_reg); 14334 return -EACCES; 14335 } 14336 14337 /* check dest operand */ 14338 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14339 if (err) 14340 return err; 14341 14342 } else if (opcode == BPF_MOV) { 14343 14344 if (BPF_SRC(insn->code) == BPF_X) { 14345 if (BPF_CLASS(insn->code) == BPF_ALU) { 14346 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || 14347 insn->imm) { 14348 verbose(env, "BPF_MOV uses reserved fields\n"); 14349 return -EINVAL; 14350 } 14351 } else if (insn->off == BPF_ADDR_SPACE_CAST) { 14352 if (insn->imm != 1 && insn->imm != 1u << 16) { 14353 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); 14354 return -EINVAL; 14355 } 14356 if (!env->prog->aux->arena) { 14357 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n"); 14358 return -EINVAL; 14359 } 14360 } else { 14361 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && 14362 insn->off != 32) || insn->imm) { 14363 verbose(env, "BPF_MOV uses reserved fields\n"); 14364 return -EINVAL; 14365 } 14366 } 14367 14368 /* check src operand */ 14369 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14370 if (err) 14371 return err; 14372 } else { 14373 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 14374 verbose(env, "BPF_MOV uses reserved fields\n"); 14375 return -EINVAL; 14376 } 14377 } 14378 14379 /* check dest operand, mark as required later */ 14380 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14381 if (err) 14382 return err; 14383 14384 if (BPF_SRC(insn->code) == BPF_X) { 14385 struct bpf_reg_state *src_reg = regs + insn->src_reg; 14386 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 14387 14388 if (BPF_CLASS(insn->code) == BPF_ALU64) { 14389 if (insn->imm) { 14390 /* off == BPF_ADDR_SPACE_CAST */ 14391 mark_reg_unknown(env, regs, insn->dst_reg); 14392 if (insn->imm == 1) { /* cast from as(1) to as(0) */ 14393 dst_reg->type = PTR_TO_ARENA; 14394 /* PTR_TO_ARENA is 32-bit */ 14395 dst_reg->subreg_def = env->insn_idx + 1; 14396 } 14397 } else if (insn->off == 0) { 14398 /* case: R1 = R2 14399 * copy register state to dest reg 14400 */ 14401 assign_scalar_id_before_mov(env, src_reg); 14402 copy_register_state(dst_reg, src_reg); 14403 dst_reg->live |= REG_LIVE_WRITTEN; 14404 dst_reg->subreg_def = DEF_NOT_SUBREG; 14405 } else { 14406 /* case: R1 = (s8, s16 s32)R2 */ 14407 if (is_pointer_value(env, insn->src_reg)) { 14408 verbose(env, 14409 "R%d sign-extension part of pointer\n", 14410 insn->src_reg); 14411 return -EACCES; 14412 } else if (src_reg->type == SCALAR_VALUE) { 14413 bool no_sext; 14414 14415 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 14416 if (no_sext) 14417 assign_scalar_id_before_mov(env, src_reg); 14418 copy_register_state(dst_reg, src_reg); 14419 if (!no_sext) 14420 dst_reg->id = 0; 14421 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 14422 dst_reg->live |= REG_LIVE_WRITTEN; 14423 dst_reg->subreg_def = DEF_NOT_SUBREG; 14424 } else { 14425 mark_reg_unknown(env, regs, insn->dst_reg); 14426 } 14427 } 14428 } else { 14429 /* R1 = (u32) R2 */ 14430 if (is_pointer_value(env, insn->src_reg)) { 14431 verbose(env, 14432 "R%d partial copy of pointer\n", 14433 insn->src_reg); 14434 return -EACCES; 14435 } else if (src_reg->type == SCALAR_VALUE) { 14436 if (insn->off == 0) { 14437 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; 14438 14439 if (is_src_reg_u32) 14440 assign_scalar_id_before_mov(env, src_reg); 14441 copy_register_state(dst_reg, src_reg); 14442 /* Make sure ID is cleared if src_reg is not in u32 14443 * range otherwise dst_reg min/max could be incorrectly 14444 * propagated into src_reg by sync_linked_regs() 14445 */ 14446 if (!is_src_reg_u32) 14447 dst_reg->id = 0; 14448 dst_reg->live |= REG_LIVE_WRITTEN; 14449 dst_reg->subreg_def = env->insn_idx + 1; 14450 } else { 14451 /* case: W1 = (s8, s16)W2 */ 14452 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 14453 14454 if (no_sext) 14455 assign_scalar_id_before_mov(env, src_reg); 14456 copy_register_state(dst_reg, src_reg); 14457 if (!no_sext) 14458 dst_reg->id = 0; 14459 dst_reg->live |= REG_LIVE_WRITTEN; 14460 dst_reg->subreg_def = env->insn_idx + 1; 14461 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 14462 } 14463 } else { 14464 mark_reg_unknown(env, regs, 14465 insn->dst_reg); 14466 } 14467 zext_32_to_64(dst_reg); 14468 reg_bounds_sync(dst_reg); 14469 } 14470 } else { 14471 /* case: R = imm 14472 * remember the value we stored into this reg 14473 */ 14474 /* clear any state __mark_reg_known doesn't set */ 14475 mark_reg_unknown(env, regs, insn->dst_reg); 14476 regs[insn->dst_reg].type = SCALAR_VALUE; 14477 if (BPF_CLASS(insn->code) == BPF_ALU64) { 14478 __mark_reg_known(regs + insn->dst_reg, 14479 insn->imm); 14480 } else { 14481 __mark_reg_known(regs + insn->dst_reg, 14482 (u32)insn->imm); 14483 } 14484 } 14485 14486 } else if (opcode > BPF_END) { 14487 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 14488 return -EINVAL; 14489 14490 } else { /* all other ALU ops: and, sub, xor, add, ... */ 14491 14492 if (BPF_SRC(insn->code) == BPF_X) { 14493 if (insn->imm != 0 || insn->off > 1 || 14494 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14495 verbose(env, "BPF_ALU uses reserved fields\n"); 14496 return -EINVAL; 14497 } 14498 /* check src1 operand */ 14499 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14500 if (err) 14501 return err; 14502 } else { 14503 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 14504 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14505 verbose(env, "BPF_ALU uses reserved fields\n"); 14506 return -EINVAL; 14507 } 14508 } 14509 14510 /* check src2 operand */ 14511 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14512 if (err) 14513 return err; 14514 14515 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 14516 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 14517 verbose(env, "div by zero\n"); 14518 return -EINVAL; 14519 } 14520 14521 if ((opcode == BPF_LSH || opcode == BPF_RSH || 14522 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 14523 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 14524 14525 if (insn->imm < 0 || insn->imm >= size) { 14526 verbose(env, "invalid shift %d\n", insn->imm); 14527 return -EINVAL; 14528 } 14529 } 14530 14531 /* check dest operand */ 14532 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14533 err = err ?: adjust_reg_min_max_vals(env, insn); 14534 if (err) 14535 return err; 14536 } 14537 14538 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 14539 } 14540 14541 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 14542 struct bpf_reg_state *dst_reg, 14543 enum bpf_reg_type type, 14544 bool range_right_open) 14545 { 14546 struct bpf_func_state *state; 14547 struct bpf_reg_state *reg; 14548 int new_range; 14549 14550 if (dst_reg->off < 0 || 14551 (dst_reg->off == 0 && range_right_open)) 14552 /* This doesn't give us any range */ 14553 return; 14554 14555 if (dst_reg->umax_value > MAX_PACKET_OFF || 14556 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 14557 /* Risk of overflow. For instance, ptr + (1<<63) may be less 14558 * than pkt_end, but that's because it's also less than pkt. 14559 */ 14560 return; 14561 14562 new_range = dst_reg->off; 14563 if (range_right_open) 14564 new_range++; 14565 14566 /* Examples for register markings: 14567 * 14568 * pkt_data in dst register: 14569 * 14570 * r2 = r3; 14571 * r2 += 8; 14572 * if (r2 > pkt_end) goto <handle exception> 14573 * <access okay> 14574 * 14575 * r2 = r3; 14576 * r2 += 8; 14577 * if (r2 < pkt_end) goto <access okay> 14578 * <handle exception> 14579 * 14580 * Where: 14581 * r2 == dst_reg, pkt_end == src_reg 14582 * r2=pkt(id=n,off=8,r=0) 14583 * r3=pkt(id=n,off=0,r=0) 14584 * 14585 * pkt_data in src register: 14586 * 14587 * r2 = r3; 14588 * r2 += 8; 14589 * if (pkt_end >= r2) goto <access okay> 14590 * <handle exception> 14591 * 14592 * r2 = r3; 14593 * r2 += 8; 14594 * if (pkt_end <= r2) goto <handle exception> 14595 * <access okay> 14596 * 14597 * Where: 14598 * pkt_end == dst_reg, r2 == src_reg 14599 * r2=pkt(id=n,off=8,r=0) 14600 * r3=pkt(id=n,off=0,r=0) 14601 * 14602 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 14603 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 14604 * and [r3, r3 + 8-1) respectively is safe to access depending on 14605 * the check. 14606 */ 14607 14608 /* If our ids match, then we must have the same max_value. And we 14609 * don't care about the other reg's fixed offset, since if it's too big 14610 * the range won't allow anything. 14611 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 14612 */ 14613 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14614 if (reg->type == type && reg->id == dst_reg->id) 14615 /* keep the maximum range already checked */ 14616 reg->range = max(reg->range, new_range); 14617 })); 14618 } 14619 14620 /* 14621 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 14622 */ 14623 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14624 u8 opcode, bool is_jmp32) 14625 { 14626 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 14627 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 14628 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 14629 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 14630 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 14631 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 14632 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 14633 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 14634 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 14635 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 14636 14637 switch (opcode) { 14638 case BPF_JEQ: 14639 /* constants, umin/umax and smin/smax checks would be 14640 * redundant in this case because they all should match 14641 */ 14642 if (tnum_is_const(t1) && tnum_is_const(t2)) 14643 return t1.value == t2.value; 14644 /* non-overlapping ranges */ 14645 if (umin1 > umax2 || umax1 < umin2) 14646 return 0; 14647 if (smin1 > smax2 || smax1 < smin2) 14648 return 0; 14649 if (!is_jmp32) { 14650 /* if 64-bit ranges are inconclusive, see if we can 14651 * utilize 32-bit subrange knowledge to eliminate 14652 * branches that can't be taken a priori 14653 */ 14654 if (reg1->u32_min_value > reg2->u32_max_value || 14655 reg1->u32_max_value < reg2->u32_min_value) 14656 return 0; 14657 if (reg1->s32_min_value > reg2->s32_max_value || 14658 reg1->s32_max_value < reg2->s32_min_value) 14659 return 0; 14660 } 14661 break; 14662 case BPF_JNE: 14663 /* constants, umin/umax and smin/smax checks would be 14664 * redundant in this case because they all should match 14665 */ 14666 if (tnum_is_const(t1) && tnum_is_const(t2)) 14667 return t1.value != t2.value; 14668 /* non-overlapping ranges */ 14669 if (umin1 > umax2 || umax1 < umin2) 14670 return 1; 14671 if (smin1 > smax2 || smax1 < smin2) 14672 return 1; 14673 if (!is_jmp32) { 14674 /* if 64-bit ranges are inconclusive, see if we can 14675 * utilize 32-bit subrange knowledge to eliminate 14676 * branches that can't be taken a priori 14677 */ 14678 if (reg1->u32_min_value > reg2->u32_max_value || 14679 reg1->u32_max_value < reg2->u32_min_value) 14680 return 1; 14681 if (reg1->s32_min_value > reg2->s32_max_value || 14682 reg1->s32_max_value < reg2->s32_min_value) 14683 return 1; 14684 } 14685 break; 14686 case BPF_JSET: 14687 if (!is_reg_const(reg2, is_jmp32)) { 14688 swap(reg1, reg2); 14689 swap(t1, t2); 14690 } 14691 if (!is_reg_const(reg2, is_jmp32)) 14692 return -1; 14693 if ((~t1.mask & t1.value) & t2.value) 14694 return 1; 14695 if (!((t1.mask | t1.value) & t2.value)) 14696 return 0; 14697 break; 14698 case BPF_JGT: 14699 if (umin1 > umax2) 14700 return 1; 14701 else if (umax1 <= umin2) 14702 return 0; 14703 break; 14704 case BPF_JSGT: 14705 if (smin1 > smax2) 14706 return 1; 14707 else if (smax1 <= smin2) 14708 return 0; 14709 break; 14710 case BPF_JLT: 14711 if (umax1 < umin2) 14712 return 1; 14713 else if (umin1 >= umax2) 14714 return 0; 14715 break; 14716 case BPF_JSLT: 14717 if (smax1 < smin2) 14718 return 1; 14719 else if (smin1 >= smax2) 14720 return 0; 14721 break; 14722 case BPF_JGE: 14723 if (umin1 >= umax2) 14724 return 1; 14725 else if (umax1 < umin2) 14726 return 0; 14727 break; 14728 case BPF_JSGE: 14729 if (smin1 >= smax2) 14730 return 1; 14731 else if (smax1 < smin2) 14732 return 0; 14733 break; 14734 case BPF_JLE: 14735 if (umax1 <= umin2) 14736 return 1; 14737 else if (umin1 > umax2) 14738 return 0; 14739 break; 14740 case BPF_JSLE: 14741 if (smax1 <= smin2) 14742 return 1; 14743 else if (smin1 > smax2) 14744 return 0; 14745 break; 14746 } 14747 14748 return -1; 14749 } 14750 14751 static int flip_opcode(u32 opcode) 14752 { 14753 /* How can we transform "a <op> b" into "b <op> a"? */ 14754 static const u8 opcode_flip[16] = { 14755 /* these stay the same */ 14756 [BPF_JEQ >> 4] = BPF_JEQ, 14757 [BPF_JNE >> 4] = BPF_JNE, 14758 [BPF_JSET >> 4] = BPF_JSET, 14759 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 14760 [BPF_JGE >> 4] = BPF_JLE, 14761 [BPF_JGT >> 4] = BPF_JLT, 14762 [BPF_JLE >> 4] = BPF_JGE, 14763 [BPF_JLT >> 4] = BPF_JGT, 14764 [BPF_JSGE >> 4] = BPF_JSLE, 14765 [BPF_JSGT >> 4] = BPF_JSLT, 14766 [BPF_JSLE >> 4] = BPF_JSGE, 14767 [BPF_JSLT >> 4] = BPF_JSGT 14768 }; 14769 return opcode_flip[opcode >> 4]; 14770 } 14771 14772 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 14773 struct bpf_reg_state *src_reg, 14774 u8 opcode) 14775 { 14776 struct bpf_reg_state *pkt; 14777 14778 if (src_reg->type == PTR_TO_PACKET_END) { 14779 pkt = dst_reg; 14780 } else if (dst_reg->type == PTR_TO_PACKET_END) { 14781 pkt = src_reg; 14782 opcode = flip_opcode(opcode); 14783 } else { 14784 return -1; 14785 } 14786 14787 if (pkt->range >= 0) 14788 return -1; 14789 14790 switch (opcode) { 14791 case BPF_JLE: 14792 /* pkt <= pkt_end */ 14793 fallthrough; 14794 case BPF_JGT: 14795 /* pkt > pkt_end */ 14796 if (pkt->range == BEYOND_PKT_END) 14797 /* pkt has at last one extra byte beyond pkt_end */ 14798 return opcode == BPF_JGT; 14799 break; 14800 case BPF_JLT: 14801 /* pkt < pkt_end */ 14802 fallthrough; 14803 case BPF_JGE: 14804 /* pkt >= pkt_end */ 14805 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 14806 return opcode == BPF_JGE; 14807 break; 14808 } 14809 return -1; 14810 } 14811 14812 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 14813 * and return: 14814 * 1 - branch will be taken and "goto target" will be executed 14815 * 0 - branch will not be taken and fall-through to next insn 14816 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 14817 * range [0,10] 14818 */ 14819 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14820 u8 opcode, bool is_jmp32) 14821 { 14822 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 14823 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 14824 14825 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 14826 u64 val; 14827 14828 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 14829 if (!is_reg_const(reg2, is_jmp32)) { 14830 opcode = flip_opcode(opcode); 14831 swap(reg1, reg2); 14832 } 14833 /* and ensure that reg2 is a constant */ 14834 if (!is_reg_const(reg2, is_jmp32)) 14835 return -1; 14836 14837 if (!reg_not_null(reg1)) 14838 return -1; 14839 14840 /* If pointer is valid tests against zero will fail so we can 14841 * use this to direct branch taken. 14842 */ 14843 val = reg_const_value(reg2, is_jmp32); 14844 if (val != 0) 14845 return -1; 14846 14847 switch (opcode) { 14848 case BPF_JEQ: 14849 return 0; 14850 case BPF_JNE: 14851 return 1; 14852 default: 14853 return -1; 14854 } 14855 } 14856 14857 /* now deal with two scalars, but not necessarily constants */ 14858 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 14859 } 14860 14861 /* Opcode that corresponds to a *false* branch condition. 14862 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 14863 */ 14864 static u8 rev_opcode(u8 opcode) 14865 { 14866 switch (opcode) { 14867 case BPF_JEQ: return BPF_JNE; 14868 case BPF_JNE: return BPF_JEQ; 14869 /* JSET doesn't have it's reverse opcode in BPF, so add 14870 * BPF_X flag to denote the reverse of that operation 14871 */ 14872 case BPF_JSET: return BPF_JSET | BPF_X; 14873 case BPF_JSET | BPF_X: return BPF_JSET; 14874 case BPF_JGE: return BPF_JLT; 14875 case BPF_JGT: return BPF_JLE; 14876 case BPF_JLE: return BPF_JGT; 14877 case BPF_JLT: return BPF_JGE; 14878 case BPF_JSGE: return BPF_JSLT; 14879 case BPF_JSGT: return BPF_JSLE; 14880 case BPF_JSLE: return BPF_JSGT; 14881 case BPF_JSLT: return BPF_JSGE; 14882 default: return 0; 14883 } 14884 } 14885 14886 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 14887 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14888 u8 opcode, bool is_jmp32) 14889 { 14890 struct tnum t; 14891 u64 val; 14892 14893 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */ 14894 switch (opcode) { 14895 case BPF_JGE: 14896 case BPF_JGT: 14897 case BPF_JSGE: 14898 case BPF_JSGT: 14899 opcode = flip_opcode(opcode); 14900 swap(reg1, reg2); 14901 break; 14902 default: 14903 break; 14904 } 14905 14906 switch (opcode) { 14907 case BPF_JEQ: 14908 if (is_jmp32) { 14909 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 14910 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 14911 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 14912 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 14913 reg2->u32_min_value = reg1->u32_min_value; 14914 reg2->u32_max_value = reg1->u32_max_value; 14915 reg2->s32_min_value = reg1->s32_min_value; 14916 reg2->s32_max_value = reg1->s32_max_value; 14917 14918 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 14919 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14920 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 14921 } else { 14922 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 14923 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 14924 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 14925 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 14926 reg2->umin_value = reg1->umin_value; 14927 reg2->umax_value = reg1->umax_value; 14928 reg2->smin_value = reg1->smin_value; 14929 reg2->smax_value = reg1->smax_value; 14930 14931 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 14932 reg2->var_off = reg1->var_off; 14933 } 14934 break; 14935 case BPF_JNE: 14936 if (!is_reg_const(reg2, is_jmp32)) 14937 swap(reg1, reg2); 14938 if (!is_reg_const(reg2, is_jmp32)) 14939 break; 14940 14941 /* try to recompute the bound of reg1 if reg2 is a const and 14942 * is exactly the edge of reg1. 14943 */ 14944 val = reg_const_value(reg2, is_jmp32); 14945 if (is_jmp32) { 14946 /* u32_min_value is not equal to 0xffffffff at this point, 14947 * because otherwise u32_max_value is 0xffffffff as well, 14948 * in such a case both reg1 and reg2 would be constants, 14949 * jump would be predicted and reg_set_min_max() won't 14950 * be called. 14951 * 14952 * Same reasoning works for all {u,s}{min,max}{32,64} cases 14953 * below. 14954 */ 14955 if (reg1->u32_min_value == (u32)val) 14956 reg1->u32_min_value++; 14957 if (reg1->u32_max_value == (u32)val) 14958 reg1->u32_max_value--; 14959 if (reg1->s32_min_value == (s32)val) 14960 reg1->s32_min_value++; 14961 if (reg1->s32_max_value == (s32)val) 14962 reg1->s32_max_value--; 14963 } else { 14964 if (reg1->umin_value == (u64)val) 14965 reg1->umin_value++; 14966 if (reg1->umax_value == (u64)val) 14967 reg1->umax_value--; 14968 if (reg1->smin_value == (s64)val) 14969 reg1->smin_value++; 14970 if (reg1->smax_value == (s64)val) 14971 reg1->smax_value--; 14972 } 14973 break; 14974 case BPF_JSET: 14975 if (!is_reg_const(reg2, is_jmp32)) 14976 swap(reg1, reg2); 14977 if (!is_reg_const(reg2, is_jmp32)) 14978 break; 14979 val = reg_const_value(reg2, is_jmp32); 14980 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 14981 * requires single bit to learn something useful. E.g., if we 14982 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 14983 * are actually set? We can learn something definite only if 14984 * it's a single-bit value to begin with. 14985 * 14986 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 14987 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 14988 * bit 1 is set, which we can readily use in adjustments. 14989 */ 14990 if (!is_power_of_2(val)) 14991 break; 14992 if (is_jmp32) { 14993 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 14994 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14995 } else { 14996 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 14997 } 14998 break; 14999 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 15000 if (!is_reg_const(reg2, is_jmp32)) 15001 swap(reg1, reg2); 15002 if (!is_reg_const(reg2, is_jmp32)) 15003 break; 15004 val = reg_const_value(reg2, is_jmp32); 15005 if (is_jmp32) { 15006 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 15007 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 15008 } else { 15009 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 15010 } 15011 break; 15012 case BPF_JLE: 15013 if (is_jmp32) { 15014 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 15015 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 15016 } else { 15017 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 15018 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 15019 } 15020 break; 15021 case BPF_JLT: 15022 if (is_jmp32) { 15023 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 15024 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 15025 } else { 15026 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 15027 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 15028 } 15029 break; 15030 case BPF_JSLE: 15031 if (is_jmp32) { 15032 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 15033 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 15034 } else { 15035 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 15036 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 15037 } 15038 break; 15039 case BPF_JSLT: 15040 if (is_jmp32) { 15041 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 15042 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 15043 } else { 15044 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 15045 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 15046 } 15047 break; 15048 default: 15049 return; 15050 } 15051 } 15052 15053 /* Adjusts the register min/max values in the case that the dst_reg and 15054 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 15055 * check, in which case we have a fake SCALAR_VALUE representing insn->imm). 15056 * Technically we can do similar adjustments for pointers to the same object, 15057 * but we don't support that right now. 15058 */ 15059 static int reg_set_min_max(struct bpf_verifier_env *env, 15060 struct bpf_reg_state *true_reg1, 15061 struct bpf_reg_state *true_reg2, 15062 struct bpf_reg_state *false_reg1, 15063 struct bpf_reg_state *false_reg2, 15064 u8 opcode, bool is_jmp32) 15065 { 15066 int err; 15067 15068 /* If either register is a pointer, we can't learn anything about its 15069 * variable offset from the compare (unless they were a pointer into 15070 * the same object, but we don't bother with that). 15071 */ 15072 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 15073 return 0; 15074 15075 /* fallthrough (FALSE) branch */ 15076 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 15077 reg_bounds_sync(false_reg1); 15078 reg_bounds_sync(false_reg2); 15079 15080 /* jump (TRUE) branch */ 15081 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 15082 reg_bounds_sync(true_reg1); 15083 reg_bounds_sync(true_reg2); 15084 15085 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 15086 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 15087 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 15088 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 15089 return err; 15090 } 15091 15092 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 15093 struct bpf_reg_state *reg, u32 id, 15094 bool is_null) 15095 { 15096 if (type_may_be_null(reg->type) && reg->id == id && 15097 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 15098 /* Old offset (both fixed and variable parts) should have been 15099 * known-zero, because we don't allow pointer arithmetic on 15100 * pointers that might be NULL. If we see this happening, don't 15101 * convert the register. 15102 * 15103 * But in some cases, some helpers that return local kptrs 15104 * advance offset for the returned pointer. In those cases, it 15105 * is fine to expect to see reg->off. 15106 */ 15107 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 15108 return; 15109 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 15110 WARN_ON_ONCE(reg->off)) 15111 return; 15112 15113 if (is_null) { 15114 reg->type = SCALAR_VALUE; 15115 /* We don't need id and ref_obj_id from this point 15116 * onwards anymore, thus we should better reset it, 15117 * so that state pruning has chances to take effect. 15118 */ 15119 reg->id = 0; 15120 reg->ref_obj_id = 0; 15121 15122 return; 15123 } 15124 15125 mark_ptr_not_null_reg(reg); 15126 15127 if (!reg_may_point_to_spin_lock(reg)) { 15128 /* For not-NULL ptr, reg->ref_obj_id will be reset 15129 * in release_reference(). 15130 * 15131 * reg->id is still used by spin_lock ptr. Other 15132 * than spin_lock ptr type, reg->id can be reset. 15133 */ 15134 reg->id = 0; 15135 } 15136 } 15137 } 15138 15139 /* The logic is similar to find_good_pkt_pointers(), both could eventually 15140 * be folded together at some point. 15141 */ 15142 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 15143 bool is_null) 15144 { 15145 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 15146 struct bpf_reg_state *regs = state->regs, *reg; 15147 u32 ref_obj_id = regs[regno].ref_obj_id; 15148 u32 id = regs[regno].id; 15149 15150 if (ref_obj_id && ref_obj_id == id && is_null) 15151 /* regs[regno] is in the " == NULL" branch. 15152 * No one could have freed the reference state before 15153 * doing the NULL check. 15154 */ 15155 WARN_ON_ONCE(release_reference_state(state, id)); 15156 15157 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 15158 mark_ptr_or_null_reg(state, reg, id, is_null); 15159 })); 15160 } 15161 15162 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 15163 struct bpf_reg_state *dst_reg, 15164 struct bpf_reg_state *src_reg, 15165 struct bpf_verifier_state *this_branch, 15166 struct bpf_verifier_state *other_branch) 15167 { 15168 if (BPF_SRC(insn->code) != BPF_X) 15169 return false; 15170 15171 /* Pointers are always 64-bit. */ 15172 if (BPF_CLASS(insn->code) == BPF_JMP32) 15173 return false; 15174 15175 switch (BPF_OP(insn->code)) { 15176 case BPF_JGT: 15177 if ((dst_reg->type == PTR_TO_PACKET && 15178 src_reg->type == PTR_TO_PACKET_END) || 15179 (dst_reg->type == PTR_TO_PACKET_META && 15180 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15181 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 15182 find_good_pkt_pointers(this_branch, dst_reg, 15183 dst_reg->type, false); 15184 mark_pkt_end(other_branch, insn->dst_reg, true); 15185 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15186 src_reg->type == PTR_TO_PACKET) || 15187 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15188 src_reg->type == PTR_TO_PACKET_META)) { 15189 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 15190 find_good_pkt_pointers(other_branch, src_reg, 15191 src_reg->type, true); 15192 mark_pkt_end(this_branch, insn->src_reg, false); 15193 } else { 15194 return false; 15195 } 15196 break; 15197 case BPF_JLT: 15198 if ((dst_reg->type == PTR_TO_PACKET && 15199 src_reg->type == PTR_TO_PACKET_END) || 15200 (dst_reg->type == PTR_TO_PACKET_META && 15201 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15202 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 15203 find_good_pkt_pointers(other_branch, dst_reg, 15204 dst_reg->type, true); 15205 mark_pkt_end(this_branch, insn->dst_reg, false); 15206 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15207 src_reg->type == PTR_TO_PACKET) || 15208 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15209 src_reg->type == PTR_TO_PACKET_META)) { 15210 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 15211 find_good_pkt_pointers(this_branch, src_reg, 15212 src_reg->type, false); 15213 mark_pkt_end(other_branch, insn->src_reg, true); 15214 } else { 15215 return false; 15216 } 15217 break; 15218 case BPF_JGE: 15219 if ((dst_reg->type == PTR_TO_PACKET && 15220 src_reg->type == PTR_TO_PACKET_END) || 15221 (dst_reg->type == PTR_TO_PACKET_META && 15222 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15223 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 15224 find_good_pkt_pointers(this_branch, dst_reg, 15225 dst_reg->type, true); 15226 mark_pkt_end(other_branch, insn->dst_reg, false); 15227 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15228 src_reg->type == PTR_TO_PACKET) || 15229 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15230 src_reg->type == PTR_TO_PACKET_META)) { 15231 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 15232 find_good_pkt_pointers(other_branch, src_reg, 15233 src_reg->type, false); 15234 mark_pkt_end(this_branch, insn->src_reg, true); 15235 } else { 15236 return false; 15237 } 15238 break; 15239 case BPF_JLE: 15240 if ((dst_reg->type == PTR_TO_PACKET && 15241 src_reg->type == PTR_TO_PACKET_END) || 15242 (dst_reg->type == PTR_TO_PACKET_META && 15243 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15244 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 15245 find_good_pkt_pointers(other_branch, dst_reg, 15246 dst_reg->type, false); 15247 mark_pkt_end(this_branch, insn->dst_reg, true); 15248 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15249 src_reg->type == PTR_TO_PACKET) || 15250 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15251 src_reg->type == PTR_TO_PACKET_META)) { 15252 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 15253 find_good_pkt_pointers(this_branch, src_reg, 15254 src_reg->type, true); 15255 mark_pkt_end(other_branch, insn->src_reg, false); 15256 } else { 15257 return false; 15258 } 15259 break; 15260 default: 15261 return false; 15262 } 15263 15264 return true; 15265 } 15266 15267 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg, 15268 u32 id, u32 frameno, u32 spi_or_reg, bool is_reg) 15269 { 15270 struct linked_reg *e; 15271 15272 if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id) 15273 return; 15274 15275 e = linked_regs_push(reg_set); 15276 if (e) { 15277 e->frameno = frameno; 15278 e->is_reg = is_reg; 15279 e->regno = spi_or_reg; 15280 } else { 15281 reg->id = 0; 15282 } 15283 } 15284 15285 /* For all R being scalar registers or spilled scalar registers 15286 * in verifier state, save R in linked_regs if R->id == id. 15287 * If there are too many Rs sharing same id, reset id for leftover Rs. 15288 */ 15289 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id, 15290 struct linked_regs *linked_regs) 15291 { 15292 struct bpf_func_state *func; 15293 struct bpf_reg_state *reg; 15294 int i, j; 15295 15296 id = id & ~BPF_ADD_CONST; 15297 for (i = vstate->curframe; i >= 0; i--) { 15298 func = vstate->frame[i]; 15299 for (j = 0; j < BPF_REG_FP; j++) { 15300 reg = &func->regs[j]; 15301 __collect_linked_regs(linked_regs, reg, id, i, j, true); 15302 } 15303 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 15304 if (!is_spilled_reg(&func->stack[j])) 15305 continue; 15306 reg = &func->stack[j].spilled_ptr; 15307 __collect_linked_regs(linked_regs, reg, id, i, j, false); 15308 } 15309 } 15310 } 15311 15312 /* For all R in linked_regs, copy known_reg range into R 15313 * if R->id == known_reg->id. 15314 */ 15315 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg, 15316 struct linked_regs *linked_regs) 15317 { 15318 struct bpf_reg_state fake_reg; 15319 struct bpf_reg_state *reg; 15320 struct linked_reg *e; 15321 int i; 15322 15323 for (i = 0; i < linked_regs->cnt; ++i) { 15324 e = &linked_regs->entries[i]; 15325 reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno] 15326 : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr; 15327 if (reg->type != SCALAR_VALUE || reg == known_reg) 15328 continue; 15329 if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST)) 15330 continue; 15331 if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) || 15332 reg->off == known_reg->off) { 15333 s32 saved_subreg_def = reg->subreg_def; 15334 15335 copy_register_state(reg, known_reg); 15336 reg->subreg_def = saved_subreg_def; 15337 } else { 15338 s32 saved_subreg_def = reg->subreg_def; 15339 s32 saved_off = reg->off; 15340 15341 fake_reg.type = SCALAR_VALUE; 15342 __mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off); 15343 15344 /* reg = known_reg; reg += delta */ 15345 copy_register_state(reg, known_reg); 15346 /* 15347 * Must preserve off, id and add_const flag, 15348 * otherwise another sync_linked_regs() will be incorrect. 15349 */ 15350 reg->off = saved_off; 15351 reg->subreg_def = saved_subreg_def; 15352 15353 scalar32_min_max_add(reg, &fake_reg); 15354 scalar_min_max_add(reg, &fake_reg); 15355 reg->var_off = tnum_add(reg->var_off, fake_reg.var_off); 15356 } 15357 } 15358 } 15359 15360 static int check_cond_jmp_op(struct bpf_verifier_env *env, 15361 struct bpf_insn *insn, int *insn_idx) 15362 { 15363 struct bpf_verifier_state *this_branch = env->cur_state; 15364 struct bpf_verifier_state *other_branch; 15365 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 15366 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 15367 struct bpf_reg_state *eq_branch_regs; 15368 struct linked_regs linked_regs = {}; 15369 u8 opcode = BPF_OP(insn->code); 15370 bool is_jmp32; 15371 int pred = -1; 15372 int err; 15373 15374 /* Only conditional jumps are expected to reach here. */ 15375 if (opcode == BPF_JA || opcode > BPF_JCOND) { 15376 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 15377 return -EINVAL; 15378 } 15379 15380 if (opcode == BPF_JCOND) { 15381 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 15382 int idx = *insn_idx; 15383 15384 if (insn->code != (BPF_JMP | BPF_JCOND) || 15385 insn->src_reg != BPF_MAY_GOTO || 15386 insn->dst_reg || insn->imm || insn->off == 0) { 15387 verbose(env, "invalid may_goto off %d imm %d\n", 15388 insn->off, insn->imm); 15389 return -EINVAL; 15390 } 15391 prev_st = find_prev_entry(env, cur_st->parent, idx); 15392 15393 /* branch out 'fallthrough' insn as a new state to explore */ 15394 queued_st = push_stack(env, idx + 1, idx, false); 15395 if (!queued_st) 15396 return -ENOMEM; 15397 15398 queued_st->may_goto_depth++; 15399 if (prev_st) 15400 widen_imprecise_scalars(env, prev_st, queued_st); 15401 *insn_idx += insn->off; 15402 return 0; 15403 } 15404 15405 /* check src2 operand */ 15406 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15407 if (err) 15408 return err; 15409 15410 dst_reg = ®s[insn->dst_reg]; 15411 if (BPF_SRC(insn->code) == BPF_X) { 15412 if (insn->imm != 0) { 15413 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 15414 return -EINVAL; 15415 } 15416 15417 /* check src1 operand */ 15418 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15419 if (err) 15420 return err; 15421 15422 src_reg = ®s[insn->src_reg]; 15423 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 15424 is_pointer_value(env, insn->src_reg)) { 15425 verbose(env, "R%d pointer comparison prohibited\n", 15426 insn->src_reg); 15427 return -EACCES; 15428 } 15429 } else { 15430 if (insn->src_reg != BPF_REG_0) { 15431 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 15432 return -EINVAL; 15433 } 15434 src_reg = &env->fake_reg[0]; 15435 memset(src_reg, 0, sizeof(*src_reg)); 15436 src_reg->type = SCALAR_VALUE; 15437 __mark_reg_known(src_reg, insn->imm); 15438 } 15439 15440 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 15441 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 15442 if (pred >= 0) { 15443 /* If we get here with a dst_reg pointer type it is because 15444 * above is_branch_taken() special cased the 0 comparison. 15445 */ 15446 if (!__is_pointer_value(false, dst_reg)) 15447 err = mark_chain_precision(env, insn->dst_reg); 15448 if (BPF_SRC(insn->code) == BPF_X && !err && 15449 !__is_pointer_value(false, src_reg)) 15450 err = mark_chain_precision(env, insn->src_reg); 15451 if (err) 15452 return err; 15453 } 15454 15455 if (pred == 1) { 15456 /* Only follow the goto, ignore fall-through. If needed, push 15457 * the fall-through branch for simulation under speculative 15458 * execution. 15459 */ 15460 if (!env->bypass_spec_v1 && 15461 !sanitize_speculative_path(env, insn, *insn_idx + 1, 15462 *insn_idx)) 15463 return -EFAULT; 15464 if (env->log.level & BPF_LOG_LEVEL) 15465 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15466 *insn_idx += insn->off; 15467 return 0; 15468 } else if (pred == 0) { 15469 /* Only follow the fall-through branch, since that's where the 15470 * program will go. If needed, push the goto branch for 15471 * simulation under speculative execution. 15472 */ 15473 if (!env->bypass_spec_v1 && 15474 !sanitize_speculative_path(env, insn, 15475 *insn_idx + insn->off + 1, 15476 *insn_idx)) 15477 return -EFAULT; 15478 if (env->log.level & BPF_LOG_LEVEL) 15479 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15480 return 0; 15481 } 15482 15483 /* Push scalar registers sharing same ID to jump history, 15484 * do this before creating 'other_branch', so that both 15485 * 'this_branch' and 'other_branch' share this history 15486 * if parent state is created. 15487 */ 15488 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id) 15489 collect_linked_regs(this_branch, src_reg->id, &linked_regs); 15490 if (dst_reg->type == SCALAR_VALUE && dst_reg->id) 15491 collect_linked_regs(this_branch, dst_reg->id, &linked_regs); 15492 if (linked_regs.cnt > 1) { 15493 err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs)); 15494 if (err) 15495 return err; 15496 } 15497 15498 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 15499 false); 15500 if (!other_branch) 15501 return -EFAULT; 15502 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 15503 15504 if (BPF_SRC(insn->code) == BPF_X) { 15505 err = reg_set_min_max(env, 15506 &other_branch_regs[insn->dst_reg], 15507 &other_branch_regs[insn->src_reg], 15508 dst_reg, src_reg, opcode, is_jmp32); 15509 } else /* BPF_SRC(insn->code) == BPF_K */ { 15510 /* reg_set_min_max() can mangle the fake_reg. Make a copy 15511 * so that these are two different memory locations. The 15512 * src_reg is not used beyond here in context of K. 15513 */ 15514 memcpy(&env->fake_reg[1], &env->fake_reg[0], 15515 sizeof(env->fake_reg[0])); 15516 err = reg_set_min_max(env, 15517 &other_branch_regs[insn->dst_reg], 15518 &env->fake_reg[0], 15519 dst_reg, &env->fake_reg[1], 15520 opcode, is_jmp32); 15521 } 15522 if (err) 15523 return err; 15524 15525 if (BPF_SRC(insn->code) == BPF_X && 15526 src_reg->type == SCALAR_VALUE && src_reg->id && 15527 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 15528 sync_linked_regs(this_branch, src_reg, &linked_regs); 15529 sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs); 15530 } 15531 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 15532 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 15533 sync_linked_regs(this_branch, dst_reg, &linked_regs); 15534 sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs); 15535 } 15536 15537 /* if one pointer register is compared to another pointer 15538 * register check if PTR_MAYBE_NULL could be lifted. 15539 * E.g. register A - maybe null 15540 * register B - not null 15541 * for JNE A, B, ... - A is not null in the false branch; 15542 * for JEQ A, B, ... - A is not null in the true branch. 15543 * 15544 * Since PTR_TO_BTF_ID points to a kernel struct that does 15545 * not need to be null checked by the BPF program, i.e., 15546 * could be null even without PTR_MAYBE_NULL marking, so 15547 * only propagate nullness when neither reg is that type. 15548 */ 15549 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 15550 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 15551 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 15552 base_type(src_reg->type) != PTR_TO_BTF_ID && 15553 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 15554 eq_branch_regs = NULL; 15555 switch (opcode) { 15556 case BPF_JEQ: 15557 eq_branch_regs = other_branch_regs; 15558 break; 15559 case BPF_JNE: 15560 eq_branch_regs = regs; 15561 break; 15562 default: 15563 /* do nothing */ 15564 break; 15565 } 15566 if (eq_branch_regs) { 15567 if (type_may_be_null(src_reg->type)) 15568 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 15569 else 15570 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 15571 } 15572 } 15573 15574 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 15575 * NOTE: these optimizations below are related with pointer comparison 15576 * which will never be JMP32. 15577 */ 15578 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 15579 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 15580 type_may_be_null(dst_reg->type)) { 15581 /* Mark all identical registers in each branch as either 15582 * safe or unknown depending R == 0 or R != 0 conditional. 15583 */ 15584 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 15585 opcode == BPF_JNE); 15586 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 15587 opcode == BPF_JEQ); 15588 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 15589 this_branch, other_branch) && 15590 is_pointer_value(env, insn->dst_reg)) { 15591 verbose(env, "R%d pointer comparison prohibited\n", 15592 insn->dst_reg); 15593 return -EACCES; 15594 } 15595 if (env->log.level & BPF_LOG_LEVEL) 15596 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15597 return 0; 15598 } 15599 15600 /* verify BPF_LD_IMM64 instruction */ 15601 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 15602 { 15603 struct bpf_insn_aux_data *aux = cur_aux(env); 15604 struct bpf_reg_state *regs = cur_regs(env); 15605 struct bpf_reg_state *dst_reg; 15606 struct bpf_map *map; 15607 int err; 15608 15609 if (BPF_SIZE(insn->code) != BPF_DW) { 15610 verbose(env, "invalid BPF_LD_IMM insn\n"); 15611 return -EINVAL; 15612 } 15613 if (insn->off != 0) { 15614 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 15615 return -EINVAL; 15616 } 15617 15618 err = check_reg_arg(env, insn->dst_reg, DST_OP); 15619 if (err) 15620 return err; 15621 15622 dst_reg = ®s[insn->dst_reg]; 15623 if (insn->src_reg == 0) { 15624 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 15625 15626 dst_reg->type = SCALAR_VALUE; 15627 __mark_reg_known(®s[insn->dst_reg], imm); 15628 return 0; 15629 } 15630 15631 /* All special src_reg cases are listed below. From this point onwards 15632 * we either succeed and assign a corresponding dst_reg->type after 15633 * zeroing the offset, or fail and reject the program. 15634 */ 15635 mark_reg_known_zero(env, regs, insn->dst_reg); 15636 15637 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 15638 dst_reg->type = aux->btf_var.reg_type; 15639 switch (base_type(dst_reg->type)) { 15640 case PTR_TO_MEM: 15641 dst_reg->mem_size = aux->btf_var.mem_size; 15642 break; 15643 case PTR_TO_BTF_ID: 15644 dst_reg->btf = aux->btf_var.btf; 15645 dst_reg->btf_id = aux->btf_var.btf_id; 15646 break; 15647 default: 15648 verbose(env, "bpf verifier is misconfigured\n"); 15649 return -EFAULT; 15650 } 15651 return 0; 15652 } 15653 15654 if (insn->src_reg == BPF_PSEUDO_FUNC) { 15655 struct bpf_prog_aux *aux = env->prog->aux; 15656 u32 subprogno = find_subprog(env, 15657 env->insn_idx + insn->imm + 1); 15658 15659 if (!aux->func_info) { 15660 verbose(env, "missing btf func_info\n"); 15661 return -EINVAL; 15662 } 15663 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 15664 verbose(env, "callback function not static\n"); 15665 return -EINVAL; 15666 } 15667 15668 dst_reg->type = PTR_TO_FUNC; 15669 dst_reg->subprogno = subprogno; 15670 return 0; 15671 } 15672 15673 map = env->used_maps[aux->map_index]; 15674 dst_reg->map_ptr = map; 15675 15676 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 15677 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 15678 if (map->map_type == BPF_MAP_TYPE_ARENA) { 15679 __mark_reg_unknown(env, dst_reg); 15680 return 0; 15681 } 15682 dst_reg->type = PTR_TO_MAP_VALUE; 15683 dst_reg->off = aux->map_off; 15684 WARN_ON_ONCE(map->max_entries != 1); 15685 /* We want reg->id to be same (0) as map_value is not distinct */ 15686 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 15687 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 15688 dst_reg->type = CONST_PTR_TO_MAP; 15689 } else { 15690 verbose(env, "bpf verifier is misconfigured\n"); 15691 return -EINVAL; 15692 } 15693 15694 return 0; 15695 } 15696 15697 static bool may_access_skb(enum bpf_prog_type type) 15698 { 15699 switch (type) { 15700 case BPF_PROG_TYPE_SOCKET_FILTER: 15701 case BPF_PROG_TYPE_SCHED_CLS: 15702 case BPF_PROG_TYPE_SCHED_ACT: 15703 return true; 15704 default: 15705 return false; 15706 } 15707 } 15708 15709 /* verify safety of LD_ABS|LD_IND instructions: 15710 * - they can only appear in the programs where ctx == skb 15711 * - since they are wrappers of function calls, they scratch R1-R5 registers, 15712 * preserve R6-R9, and store return value into R0 15713 * 15714 * Implicit input: 15715 * ctx == skb == R6 == CTX 15716 * 15717 * Explicit input: 15718 * SRC == any register 15719 * IMM == 32-bit immediate 15720 * 15721 * Output: 15722 * R0 - 8/16/32-bit skb data converted to cpu endianness 15723 */ 15724 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 15725 { 15726 struct bpf_reg_state *regs = cur_regs(env); 15727 static const int ctx_reg = BPF_REG_6; 15728 u8 mode = BPF_MODE(insn->code); 15729 int i, err; 15730 15731 if (!may_access_skb(resolve_prog_type(env->prog))) { 15732 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 15733 return -EINVAL; 15734 } 15735 15736 if (!env->ops->gen_ld_abs) { 15737 verbose(env, "bpf verifier is misconfigured\n"); 15738 return -EINVAL; 15739 } 15740 15741 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 15742 BPF_SIZE(insn->code) == BPF_DW || 15743 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 15744 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 15745 return -EINVAL; 15746 } 15747 15748 /* check whether implicit source operand (register R6) is readable */ 15749 err = check_reg_arg(env, ctx_reg, SRC_OP); 15750 if (err) 15751 return err; 15752 15753 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 15754 * gen_ld_abs() may terminate the program at runtime, leading to 15755 * reference leak. 15756 */ 15757 err = check_reference_leak(env, false); 15758 if (err) { 15759 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 15760 return err; 15761 } 15762 15763 if (env->cur_state->active_lock.ptr) { 15764 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 15765 return -EINVAL; 15766 } 15767 15768 if (env->cur_state->active_rcu_lock) { 15769 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 15770 return -EINVAL; 15771 } 15772 15773 if (env->cur_state->active_preempt_lock) { 15774 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_preempt_disable-ed region\n"); 15775 return -EINVAL; 15776 } 15777 15778 if (regs[ctx_reg].type != PTR_TO_CTX) { 15779 verbose(env, 15780 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 15781 return -EINVAL; 15782 } 15783 15784 if (mode == BPF_IND) { 15785 /* check explicit source operand */ 15786 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15787 if (err) 15788 return err; 15789 } 15790 15791 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 15792 if (err < 0) 15793 return err; 15794 15795 /* reset caller saved regs to unreadable */ 15796 for (i = 0; i < CALLER_SAVED_REGS; i++) { 15797 mark_reg_not_init(env, regs, caller_saved[i]); 15798 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 15799 } 15800 15801 /* mark destination R0 register as readable, since it contains 15802 * the value fetched from the packet. 15803 * Already marked as written above. 15804 */ 15805 mark_reg_unknown(env, regs, BPF_REG_0); 15806 /* ld_abs load up to 32-bit skb data. */ 15807 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 15808 return 0; 15809 } 15810 15811 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) 15812 { 15813 const char *exit_ctx = "At program exit"; 15814 struct tnum enforce_attach_type_range = tnum_unknown; 15815 const struct bpf_prog *prog = env->prog; 15816 struct bpf_reg_state *reg; 15817 struct bpf_retval_range range = retval_range(0, 1); 15818 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 15819 int err; 15820 struct bpf_func_state *frame = env->cur_state->frame[0]; 15821 const bool is_subprog = frame->subprogno; 15822 bool return_32bit = false; 15823 15824 /* LSM and struct_ops func-ptr's return type could be "void" */ 15825 if (!is_subprog || frame->in_exception_callback_fn) { 15826 switch (prog_type) { 15827 case BPF_PROG_TYPE_LSM: 15828 if (prog->expected_attach_type == BPF_LSM_CGROUP) 15829 /* See below, can be 0 or 0-1 depending on hook. */ 15830 break; 15831 fallthrough; 15832 case BPF_PROG_TYPE_STRUCT_OPS: 15833 if (!prog->aux->attach_func_proto->type) 15834 return 0; 15835 break; 15836 default: 15837 break; 15838 } 15839 } 15840 15841 /* eBPF calling convention is such that R0 is used 15842 * to return the value from eBPF program. 15843 * Make sure that it's readable at this time 15844 * of bpf_exit, which means that program wrote 15845 * something into it earlier 15846 */ 15847 err = check_reg_arg(env, regno, SRC_OP); 15848 if (err) 15849 return err; 15850 15851 if (is_pointer_value(env, regno)) { 15852 verbose(env, "R%d leaks addr as return value\n", regno); 15853 return -EACCES; 15854 } 15855 15856 reg = cur_regs(env) + regno; 15857 15858 if (frame->in_async_callback_fn) { 15859 /* enforce return zero from async callbacks like timer */ 15860 exit_ctx = "At async callback return"; 15861 range = retval_range(0, 0); 15862 goto enforce_retval; 15863 } 15864 15865 if (is_subprog && !frame->in_exception_callback_fn) { 15866 if (reg->type != SCALAR_VALUE) { 15867 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 15868 regno, reg_type_str(env, reg->type)); 15869 return -EINVAL; 15870 } 15871 return 0; 15872 } 15873 15874 switch (prog_type) { 15875 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 15876 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 15877 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 15878 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 15879 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 15880 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 15881 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 15882 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 15883 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 15884 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 15885 range = retval_range(1, 1); 15886 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 15887 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 15888 range = retval_range(0, 3); 15889 break; 15890 case BPF_PROG_TYPE_CGROUP_SKB: 15891 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 15892 range = retval_range(0, 3); 15893 enforce_attach_type_range = tnum_range(2, 3); 15894 } 15895 break; 15896 case BPF_PROG_TYPE_CGROUP_SOCK: 15897 case BPF_PROG_TYPE_SOCK_OPS: 15898 case BPF_PROG_TYPE_CGROUP_DEVICE: 15899 case BPF_PROG_TYPE_CGROUP_SYSCTL: 15900 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 15901 break; 15902 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15903 if (!env->prog->aux->attach_btf_id) 15904 return 0; 15905 range = retval_range(0, 0); 15906 break; 15907 case BPF_PROG_TYPE_TRACING: 15908 switch (env->prog->expected_attach_type) { 15909 case BPF_TRACE_FENTRY: 15910 case BPF_TRACE_FEXIT: 15911 range = retval_range(0, 0); 15912 break; 15913 case BPF_TRACE_RAW_TP: 15914 case BPF_MODIFY_RETURN: 15915 return 0; 15916 case BPF_TRACE_ITER: 15917 break; 15918 default: 15919 return -ENOTSUPP; 15920 } 15921 break; 15922 case BPF_PROG_TYPE_SK_LOOKUP: 15923 range = retval_range(SK_DROP, SK_PASS); 15924 break; 15925 15926 case BPF_PROG_TYPE_LSM: 15927 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 15928 /* no range found, any return value is allowed */ 15929 if (!get_func_retval_range(env->prog, &range)) 15930 return 0; 15931 /* no restricted range, any return value is allowed */ 15932 if (range.minval == S32_MIN && range.maxval == S32_MAX) 15933 return 0; 15934 return_32bit = true; 15935 } else if (!env->prog->aux->attach_func_proto->type) { 15936 /* Make sure programs that attach to void 15937 * hooks don't try to modify return value. 15938 */ 15939 range = retval_range(1, 1); 15940 } 15941 break; 15942 15943 case BPF_PROG_TYPE_NETFILTER: 15944 range = retval_range(NF_DROP, NF_ACCEPT); 15945 break; 15946 case BPF_PROG_TYPE_EXT: 15947 /* freplace program can return anything as its return value 15948 * depends on the to-be-replaced kernel func or bpf program. 15949 */ 15950 default: 15951 return 0; 15952 } 15953 15954 enforce_retval: 15955 if (reg->type != SCALAR_VALUE) { 15956 verbose(env, "%s the register R%d is not a known value (%s)\n", 15957 exit_ctx, regno, reg_type_str(env, reg->type)); 15958 return -EINVAL; 15959 } 15960 15961 err = mark_chain_precision(env, regno); 15962 if (err) 15963 return err; 15964 15965 if (!retval_range_within(range, reg, return_32bit)) { 15966 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); 15967 if (!is_subprog && 15968 prog->expected_attach_type == BPF_LSM_CGROUP && 15969 prog_type == BPF_PROG_TYPE_LSM && 15970 !prog->aux->attach_func_proto->type) 15971 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 15972 return -EINVAL; 15973 } 15974 15975 if (!tnum_is_unknown(enforce_attach_type_range) && 15976 tnum_in(enforce_attach_type_range, reg->var_off)) 15977 env->prog->enforce_expected_attach_type = 1; 15978 return 0; 15979 } 15980 15981 /* non-recursive DFS pseudo code 15982 * 1 procedure DFS-iterative(G,v): 15983 * 2 label v as discovered 15984 * 3 let S be a stack 15985 * 4 S.push(v) 15986 * 5 while S is not empty 15987 * 6 t <- S.peek() 15988 * 7 if t is what we're looking for: 15989 * 8 return t 15990 * 9 for all edges e in G.adjacentEdges(t) do 15991 * 10 if edge e is already labelled 15992 * 11 continue with the next edge 15993 * 12 w <- G.adjacentVertex(t,e) 15994 * 13 if vertex w is not discovered and not explored 15995 * 14 label e as tree-edge 15996 * 15 label w as discovered 15997 * 16 S.push(w) 15998 * 17 continue at 5 15999 * 18 else if vertex w is discovered 16000 * 19 label e as back-edge 16001 * 20 else 16002 * 21 // vertex w is explored 16003 * 22 label e as forward- or cross-edge 16004 * 23 label t as explored 16005 * 24 S.pop() 16006 * 16007 * convention: 16008 * 0x10 - discovered 16009 * 0x11 - discovered and fall-through edge labelled 16010 * 0x12 - discovered and fall-through and branch edges labelled 16011 * 0x20 - explored 16012 */ 16013 16014 enum { 16015 DISCOVERED = 0x10, 16016 EXPLORED = 0x20, 16017 FALLTHROUGH = 1, 16018 BRANCH = 2, 16019 }; 16020 16021 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 16022 { 16023 env->insn_aux_data[idx].prune_point = true; 16024 } 16025 16026 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 16027 { 16028 return env->insn_aux_data[insn_idx].prune_point; 16029 } 16030 16031 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 16032 { 16033 env->insn_aux_data[idx].force_checkpoint = true; 16034 } 16035 16036 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 16037 { 16038 return env->insn_aux_data[insn_idx].force_checkpoint; 16039 } 16040 16041 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 16042 { 16043 env->insn_aux_data[idx].calls_callback = true; 16044 } 16045 16046 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 16047 { 16048 return env->insn_aux_data[insn_idx].calls_callback; 16049 } 16050 16051 enum { 16052 DONE_EXPLORING = 0, 16053 KEEP_EXPLORING = 1, 16054 }; 16055 16056 /* t, w, e - match pseudo-code above: 16057 * t - index of current instruction 16058 * w - next instruction 16059 * e - edge 16060 */ 16061 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 16062 { 16063 int *insn_stack = env->cfg.insn_stack; 16064 int *insn_state = env->cfg.insn_state; 16065 16066 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 16067 return DONE_EXPLORING; 16068 16069 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 16070 return DONE_EXPLORING; 16071 16072 if (w < 0 || w >= env->prog->len) { 16073 verbose_linfo(env, t, "%d: ", t); 16074 verbose(env, "jump out of range from insn %d to %d\n", t, w); 16075 return -EINVAL; 16076 } 16077 16078 if (e == BRANCH) { 16079 /* mark branch target for state pruning */ 16080 mark_prune_point(env, w); 16081 mark_jmp_point(env, w); 16082 } 16083 16084 if (insn_state[w] == 0) { 16085 /* tree-edge */ 16086 insn_state[t] = DISCOVERED | e; 16087 insn_state[w] = DISCOVERED; 16088 if (env->cfg.cur_stack >= env->prog->len) 16089 return -E2BIG; 16090 insn_stack[env->cfg.cur_stack++] = w; 16091 return KEEP_EXPLORING; 16092 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 16093 if (env->bpf_capable) 16094 return DONE_EXPLORING; 16095 verbose_linfo(env, t, "%d: ", t); 16096 verbose_linfo(env, w, "%d: ", w); 16097 verbose(env, "back-edge from insn %d to %d\n", t, w); 16098 return -EINVAL; 16099 } else if (insn_state[w] == EXPLORED) { 16100 /* forward- or cross-edge */ 16101 insn_state[t] = DISCOVERED | e; 16102 } else { 16103 verbose(env, "insn state internal bug\n"); 16104 return -EFAULT; 16105 } 16106 return DONE_EXPLORING; 16107 } 16108 16109 static int visit_func_call_insn(int t, struct bpf_insn *insns, 16110 struct bpf_verifier_env *env, 16111 bool visit_callee) 16112 { 16113 int ret, insn_sz; 16114 16115 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 16116 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 16117 if (ret) 16118 return ret; 16119 16120 mark_prune_point(env, t + insn_sz); 16121 /* when we exit from subprog, we need to record non-linear history */ 16122 mark_jmp_point(env, t + insn_sz); 16123 16124 if (visit_callee) { 16125 mark_prune_point(env, t); 16126 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 16127 } 16128 return ret; 16129 } 16130 16131 /* Bitmask with 1s for all caller saved registers */ 16132 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 16133 16134 /* Return a bitmask specifying which caller saved registers are 16135 * clobbered by a call to a helper *as if* this helper follows 16136 * bpf_fastcall contract: 16137 * - includes R0 if function is non-void; 16138 * - includes R1-R5 if corresponding parameter has is described 16139 * in the function prototype. 16140 */ 16141 static u32 helper_fastcall_clobber_mask(const struct bpf_func_proto *fn) 16142 { 16143 u32 mask; 16144 int i; 16145 16146 mask = 0; 16147 if (fn->ret_type != RET_VOID) 16148 mask |= BIT(BPF_REG_0); 16149 for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) 16150 if (fn->arg_type[i] != ARG_DONTCARE) 16151 mask |= BIT(BPF_REG_1 + i); 16152 return mask; 16153 } 16154 16155 /* True if do_misc_fixups() replaces calls to helper number 'imm', 16156 * replacement patch is presumed to follow bpf_fastcall contract 16157 * (see mark_fastcall_pattern_for_call() below). 16158 */ 16159 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm) 16160 { 16161 switch (imm) { 16162 #ifdef CONFIG_X86_64 16163 case BPF_FUNC_get_smp_processor_id: 16164 return env->prog->jit_requested && bpf_jit_supports_percpu_insn(); 16165 #endif 16166 default: 16167 return false; 16168 } 16169 } 16170 16171 /* Same as helper_fastcall_clobber_mask() but for kfuncs, see comment above */ 16172 static u32 kfunc_fastcall_clobber_mask(struct bpf_kfunc_call_arg_meta *meta) 16173 { 16174 u32 vlen, i, mask; 16175 16176 vlen = btf_type_vlen(meta->func_proto); 16177 mask = 0; 16178 if (!btf_type_is_void(btf_type_by_id(meta->btf, meta->func_proto->type))) 16179 mask |= BIT(BPF_REG_0); 16180 for (i = 0; i < vlen; ++i) 16181 mask |= BIT(BPF_REG_1 + i); 16182 return mask; 16183 } 16184 16185 /* Same as verifier_inlines_helper_call() but for kfuncs, see comment above */ 16186 static bool is_fastcall_kfunc_call(struct bpf_kfunc_call_arg_meta *meta) 16187 { 16188 if (meta->btf == btf_vmlinux) 16189 return meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 16190 meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]; 16191 return false; 16192 } 16193 16194 /* LLVM define a bpf_fastcall function attribute. 16195 * This attribute means that function scratches only some of 16196 * the caller saved registers defined by ABI. 16197 * For BPF the set of such registers could be defined as follows: 16198 * - R0 is scratched only if function is non-void; 16199 * - R1-R5 are scratched only if corresponding parameter type is defined 16200 * in the function prototype. 16201 * 16202 * The contract between kernel and clang allows to simultaneously use 16203 * such functions and maintain backwards compatibility with old 16204 * kernels that don't understand bpf_fastcall calls: 16205 * 16206 * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5 16207 * registers are not scratched by the call; 16208 * 16209 * - as a post-processing step, clang visits each bpf_fastcall call and adds 16210 * spill/fill for every live r0-r5; 16211 * 16212 * - stack offsets used for the spill/fill are allocated as lowest 16213 * stack offsets in whole function and are not used for any other 16214 * purposes; 16215 * 16216 * - when kernel loads a program, it looks for such patterns 16217 * (bpf_fastcall function surrounded by spills/fills) and checks if 16218 * spill/fill stack offsets are used exclusively in fastcall patterns; 16219 * 16220 * - if so, and if verifier or current JIT inlines the call to the 16221 * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary 16222 * spill/fill pairs; 16223 * 16224 * - when old kernel loads a program, presence of spill/fill pairs 16225 * keeps BPF program valid, albeit slightly less efficient. 16226 * 16227 * For example: 16228 * 16229 * r1 = 1; 16230 * r2 = 2; 16231 * *(u64 *)(r10 - 8) = r1; r1 = 1; 16232 * *(u64 *)(r10 - 16) = r2; r2 = 2; 16233 * call %[to_be_inlined] --> call %[to_be_inlined] 16234 * r2 = *(u64 *)(r10 - 16); r0 = r1; 16235 * r1 = *(u64 *)(r10 - 8); r0 += r2; 16236 * r0 = r1; exit; 16237 * r0 += r2; 16238 * exit; 16239 * 16240 * The purpose of mark_fastcall_pattern_for_call is to: 16241 * - look for such patterns; 16242 * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern; 16243 * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction; 16244 * - update env->subprog_info[*]->fastcall_stack_off to find an offset 16245 * at which bpf_fastcall spill/fill stack slots start; 16246 * - update env->subprog_info[*]->keep_fastcall_stack. 16247 * 16248 * The .fastcall_pattern and .fastcall_stack_off are used by 16249 * check_fastcall_stack_contract() to check if every stack access to 16250 * fastcall spill/fill stack slot originates from spill/fill 16251 * instructions, members of fastcall patterns. 16252 * 16253 * If such condition holds true for a subprogram, fastcall patterns could 16254 * be rewritten by remove_fastcall_spills_fills(). 16255 * Otherwise bpf_fastcall patterns are not changed in the subprogram 16256 * (code, presumably, generated by an older clang version). 16257 * 16258 * For example, it is *not* safe to remove spill/fill below: 16259 * 16260 * r1 = 1; 16261 * *(u64 *)(r10 - 8) = r1; r1 = 1; 16262 * call %[to_be_inlined] --> call %[to_be_inlined] 16263 * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!! 16264 * r0 = *(u64 *)(r10 - 8); r0 += r1; 16265 * r0 += r1; exit; 16266 * exit; 16267 */ 16268 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env, 16269 struct bpf_subprog_info *subprog, 16270 int insn_idx, s16 lowest_off) 16271 { 16272 struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx; 16273 struct bpf_insn *call = &env->prog->insnsi[insn_idx]; 16274 const struct bpf_func_proto *fn; 16275 u32 clobbered_regs_mask = ALL_CALLER_SAVED_REGS; 16276 u32 expected_regs_mask; 16277 bool can_be_inlined = false; 16278 s16 off; 16279 int i; 16280 16281 if (bpf_helper_call(call)) { 16282 if (get_helper_proto(env, call->imm, &fn) < 0) 16283 /* error would be reported later */ 16284 return; 16285 clobbered_regs_mask = helper_fastcall_clobber_mask(fn); 16286 can_be_inlined = fn->allow_fastcall && 16287 (verifier_inlines_helper_call(env, call->imm) || 16288 bpf_jit_inlines_helper_call(call->imm)); 16289 } 16290 16291 if (bpf_pseudo_kfunc_call(call)) { 16292 struct bpf_kfunc_call_arg_meta meta; 16293 int err; 16294 16295 err = fetch_kfunc_meta(env, call, &meta, NULL); 16296 if (err < 0) 16297 /* error would be reported later */ 16298 return; 16299 16300 clobbered_regs_mask = kfunc_fastcall_clobber_mask(&meta); 16301 can_be_inlined = is_fastcall_kfunc_call(&meta); 16302 } 16303 16304 if (clobbered_regs_mask == ALL_CALLER_SAVED_REGS) 16305 return; 16306 16307 /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */ 16308 expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS; 16309 16310 /* match pairs of form: 16311 * 16312 * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0) 16313 * ... 16314 * call %[to_be_inlined] 16315 * ... 16316 * rX = *(u64 *)(r10 - Y) 16317 */ 16318 for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) { 16319 if (insn_idx - i < 0 || insn_idx + i >= env->prog->len) 16320 break; 16321 stx = &insns[insn_idx - i]; 16322 ldx = &insns[insn_idx + i]; 16323 /* must be a stack spill/fill pair */ 16324 if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) || 16325 ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) || 16326 stx->dst_reg != BPF_REG_10 || 16327 ldx->src_reg != BPF_REG_10) 16328 break; 16329 /* must be a spill/fill for the same reg */ 16330 if (stx->src_reg != ldx->dst_reg) 16331 break; 16332 /* must be one of the previously unseen registers */ 16333 if ((BIT(stx->src_reg) & expected_regs_mask) == 0) 16334 break; 16335 /* must be a spill/fill for the same expected offset, 16336 * no need to check offset alignment, BPF_DW stack access 16337 * is always 8-byte aligned. 16338 */ 16339 if (stx->off != off || ldx->off != off) 16340 break; 16341 expected_regs_mask &= ~BIT(stx->src_reg); 16342 env->insn_aux_data[insn_idx - i].fastcall_pattern = 1; 16343 env->insn_aux_data[insn_idx + i].fastcall_pattern = 1; 16344 } 16345 if (i == 1) 16346 return; 16347 16348 /* Conditionally set 'fastcall_spills_num' to allow forward 16349 * compatibility when more helper functions are marked as 16350 * bpf_fastcall at compile time than current kernel supports, e.g: 16351 * 16352 * 1: *(u64 *)(r10 - 8) = r1 16353 * 2: call A ;; assume A is bpf_fastcall for current kernel 16354 * 3: r1 = *(u64 *)(r10 - 8) 16355 * 4: *(u64 *)(r10 - 8) = r1 16356 * 5: call B ;; assume B is not bpf_fastcall for current kernel 16357 * 6: r1 = *(u64 *)(r10 - 8) 16358 * 16359 * There is no need to block bpf_fastcall rewrite for such program. 16360 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy, 16361 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills() 16362 * does not remove spill/fill pair {4,6}. 16363 */ 16364 if (can_be_inlined) 16365 env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1; 16366 else 16367 subprog->keep_fastcall_stack = 1; 16368 subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off); 16369 } 16370 16371 static int mark_fastcall_patterns(struct bpf_verifier_env *env) 16372 { 16373 struct bpf_subprog_info *subprog = env->subprog_info; 16374 struct bpf_insn *insn; 16375 s16 lowest_off; 16376 int s, i; 16377 16378 for (s = 0; s < env->subprog_cnt; ++s, ++subprog) { 16379 /* find lowest stack spill offset used in this subprog */ 16380 lowest_off = 0; 16381 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 16382 insn = env->prog->insnsi + i; 16383 if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) || 16384 insn->dst_reg != BPF_REG_10) 16385 continue; 16386 lowest_off = min(lowest_off, insn->off); 16387 } 16388 /* use this offset to find fastcall patterns */ 16389 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 16390 insn = env->prog->insnsi + i; 16391 if (insn->code != (BPF_JMP | BPF_CALL)) 16392 continue; 16393 mark_fastcall_pattern_for_call(env, subprog, i, lowest_off); 16394 } 16395 } 16396 return 0; 16397 } 16398 16399 /* Visits the instruction at index t and returns one of the following: 16400 * < 0 - an error occurred 16401 * DONE_EXPLORING - the instruction was fully explored 16402 * KEEP_EXPLORING - there is still work to be done before it is fully explored 16403 */ 16404 static int visit_insn(int t, struct bpf_verifier_env *env) 16405 { 16406 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 16407 int ret, off, insn_sz; 16408 16409 if (bpf_pseudo_func(insn)) 16410 return visit_func_call_insn(t, insns, env, true); 16411 16412 /* All non-branch instructions have a single fall-through edge. */ 16413 if (BPF_CLASS(insn->code) != BPF_JMP && 16414 BPF_CLASS(insn->code) != BPF_JMP32) { 16415 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 16416 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 16417 } 16418 16419 switch (BPF_OP(insn->code)) { 16420 case BPF_EXIT: 16421 return DONE_EXPLORING; 16422 16423 case BPF_CALL: 16424 if (is_async_callback_calling_insn(insn)) 16425 /* Mark this call insn as a prune point to trigger 16426 * is_state_visited() check before call itself is 16427 * processed by __check_func_call(). Otherwise new 16428 * async state will be pushed for further exploration. 16429 */ 16430 mark_prune_point(env, t); 16431 /* For functions that invoke callbacks it is not known how many times 16432 * callback would be called. Verifier models callback calling functions 16433 * by repeatedly visiting callback bodies and returning to origin call 16434 * instruction. 16435 * In order to stop such iteration verifier needs to identify when a 16436 * state identical some state from a previous iteration is reached. 16437 * Check below forces creation of checkpoint before callback calling 16438 * instruction to allow search for such identical states. 16439 */ 16440 if (is_sync_callback_calling_insn(insn)) { 16441 mark_calls_callback(env, t); 16442 mark_force_checkpoint(env, t); 16443 mark_prune_point(env, t); 16444 mark_jmp_point(env, t); 16445 } 16446 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 16447 struct bpf_kfunc_call_arg_meta meta; 16448 16449 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 16450 if (ret == 0 && is_iter_next_kfunc(&meta)) { 16451 mark_prune_point(env, t); 16452 /* Checking and saving state checkpoints at iter_next() call 16453 * is crucial for fast convergence of open-coded iterator loop 16454 * logic, so we need to force it. If we don't do that, 16455 * is_state_visited() might skip saving a checkpoint, causing 16456 * unnecessarily long sequence of not checkpointed 16457 * instructions and jumps, leading to exhaustion of jump 16458 * history buffer, and potentially other undesired outcomes. 16459 * It is expected that with correct open-coded iterators 16460 * convergence will happen quickly, so we don't run a risk of 16461 * exhausting memory. 16462 */ 16463 mark_force_checkpoint(env, t); 16464 } 16465 } 16466 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 16467 16468 case BPF_JA: 16469 if (BPF_SRC(insn->code) != BPF_K) 16470 return -EINVAL; 16471 16472 if (BPF_CLASS(insn->code) == BPF_JMP) 16473 off = insn->off; 16474 else 16475 off = insn->imm; 16476 16477 /* unconditional jump with single edge */ 16478 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 16479 if (ret) 16480 return ret; 16481 16482 mark_prune_point(env, t + off + 1); 16483 mark_jmp_point(env, t + off + 1); 16484 16485 return ret; 16486 16487 default: 16488 /* conditional jump with two edges */ 16489 mark_prune_point(env, t); 16490 if (is_may_goto_insn(insn)) 16491 mark_force_checkpoint(env, t); 16492 16493 ret = push_insn(t, t + 1, FALLTHROUGH, env); 16494 if (ret) 16495 return ret; 16496 16497 return push_insn(t, t + insn->off + 1, BRANCH, env); 16498 } 16499 } 16500 16501 /* non-recursive depth-first-search to detect loops in BPF program 16502 * loop == back-edge in directed graph 16503 */ 16504 static int check_cfg(struct bpf_verifier_env *env) 16505 { 16506 int insn_cnt = env->prog->len; 16507 int *insn_stack, *insn_state; 16508 int ex_insn_beg, i, ret = 0; 16509 bool ex_done = false; 16510 16511 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 16512 if (!insn_state) 16513 return -ENOMEM; 16514 16515 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 16516 if (!insn_stack) { 16517 kvfree(insn_state); 16518 return -ENOMEM; 16519 } 16520 16521 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 16522 insn_stack[0] = 0; /* 0 is the first instruction */ 16523 env->cfg.cur_stack = 1; 16524 16525 walk_cfg: 16526 while (env->cfg.cur_stack > 0) { 16527 int t = insn_stack[env->cfg.cur_stack - 1]; 16528 16529 ret = visit_insn(t, env); 16530 switch (ret) { 16531 case DONE_EXPLORING: 16532 insn_state[t] = EXPLORED; 16533 env->cfg.cur_stack--; 16534 break; 16535 case KEEP_EXPLORING: 16536 break; 16537 default: 16538 if (ret > 0) { 16539 verbose(env, "visit_insn internal bug\n"); 16540 ret = -EFAULT; 16541 } 16542 goto err_free; 16543 } 16544 } 16545 16546 if (env->cfg.cur_stack < 0) { 16547 verbose(env, "pop stack internal bug\n"); 16548 ret = -EFAULT; 16549 goto err_free; 16550 } 16551 16552 if (env->exception_callback_subprog && !ex_done) { 16553 ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start; 16554 16555 insn_state[ex_insn_beg] = DISCOVERED; 16556 insn_stack[0] = ex_insn_beg; 16557 env->cfg.cur_stack = 1; 16558 ex_done = true; 16559 goto walk_cfg; 16560 } 16561 16562 for (i = 0; i < insn_cnt; i++) { 16563 struct bpf_insn *insn = &env->prog->insnsi[i]; 16564 16565 if (insn_state[i] != EXPLORED) { 16566 verbose(env, "unreachable insn %d\n", i); 16567 ret = -EINVAL; 16568 goto err_free; 16569 } 16570 if (bpf_is_ldimm64(insn)) { 16571 if (insn_state[i + 1] != 0) { 16572 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 16573 ret = -EINVAL; 16574 goto err_free; 16575 } 16576 i++; /* skip second half of ldimm64 */ 16577 } 16578 } 16579 ret = 0; /* cfg looks good */ 16580 16581 err_free: 16582 kvfree(insn_state); 16583 kvfree(insn_stack); 16584 env->cfg.insn_state = env->cfg.insn_stack = NULL; 16585 return ret; 16586 } 16587 16588 static int check_abnormal_return(struct bpf_verifier_env *env) 16589 { 16590 int i; 16591 16592 for (i = 1; i < env->subprog_cnt; i++) { 16593 if (env->subprog_info[i].has_ld_abs) { 16594 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 16595 return -EINVAL; 16596 } 16597 if (env->subprog_info[i].has_tail_call) { 16598 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 16599 return -EINVAL; 16600 } 16601 } 16602 return 0; 16603 } 16604 16605 /* The minimum supported BTF func info size */ 16606 #define MIN_BPF_FUNCINFO_SIZE 8 16607 #define MAX_FUNCINFO_REC_SIZE 252 16608 16609 static int check_btf_func_early(struct bpf_verifier_env *env, 16610 const union bpf_attr *attr, 16611 bpfptr_t uattr) 16612 { 16613 u32 krec_size = sizeof(struct bpf_func_info); 16614 const struct btf_type *type, *func_proto; 16615 u32 i, nfuncs, urec_size, min_size; 16616 struct bpf_func_info *krecord; 16617 struct bpf_prog *prog; 16618 const struct btf *btf; 16619 u32 prev_offset = 0; 16620 bpfptr_t urecord; 16621 int ret = -ENOMEM; 16622 16623 nfuncs = attr->func_info_cnt; 16624 if (!nfuncs) { 16625 if (check_abnormal_return(env)) 16626 return -EINVAL; 16627 return 0; 16628 } 16629 16630 urec_size = attr->func_info_rec_size; 16631 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 16632 urec_size > MAX_FUNCINFO_REC_SIZE || 16633 urec_size % sizeof(u32)) { 16634 verbose(env, "invalid func info rec size %u\n", urec_size); 16635 return -EINVAL; 16636 } 16637 16638 prog = env->prog; 16639 btf = prog->aux->btf; 16640 16641 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 16642 min_size = min_t(u32, krec_size, urec_size); 16643 16644 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 16645 if (!krecord) 16646 return -ENOMEM; 16647 16648 for (i = 0; i < nfuncs; i++) { 16649 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 16650 if (ret) { 16651 if (ret == -E2BIG) { 16652 verbose(env, "nonzero tailing record in func info"); 16653 /* set the size kernel expects so loader can zero 16654 * out the rest of the record. 16655 */ 16656 if (copy_to_bpfptr_offset(uattr, 16657 offsetof(union bpf_attr, func_info_rec_size), 16658 &min_size, sizeof(min_size))) 16659 ret = -EFAULT; 16660 } 16661 goto err_free; 16662 } 16663 16664 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 16665 ret = -EFAULT; 16666 goto err_free; 16667 } 16668 16669 /* check insn_off */ 16670 ret = -EINVAL; 16671 if (i == 0) { 16672 if (krecord[i].insn_off) { 16673 verbose(env, 16674 "nonzero insn_off %u for the first func info record", 16675 krecord[i].insn_off); 16676 goto err_free; 16677 } 16678 } else if (krecord[i].insn_off <= prev_offset) { 16679 verbose(env, 16680 "same or smaller insn offset (%u) than previous func info record (%u)", 16681 krecord[i].insn_off, prev_offset); 16682 goto err_free; 16683 } 16684 16685 /* check type_id */ 16686 type = btf_type_by_id(btf, krecord[i].type_id); 16687 if (!type || !btf_type_is_func(type)) { 16688 verbose(env, "invalid type id %d in func info", 16689 krecord[i].type_id); 16690 goto err_free; 16691 } 16692 16693 func_proto = btf_type_by_id(btf, type->type); 16694 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 16695 /* btf_func_check() already verified it during BTF load */ 16696 goto err_free; 16697 16698 prev_offset = krecord[i].insn_off; 16699 bpfptr_add(&urecord, urec_size); 16700 } 16701 16702 prog->aux->func_info = krecord; 16703 prog->aux->func_info_cnt = nfuncs; 16704 return 0; 16705 16706 err_free: 16707 kvfree(krecord); 16708 return ret; 16709 } 16710 16711 static int check_btf_func(struct bpf_verifier_env *env, 16712 const union bpf_attr *attr, 16713 bpfptr_t uattr) 16714 { 16715 const struct btf_type *type, *func_proto, *ret_type; 16716 u32 i, nfuncs, urec_size; 16717 struct bpf_func_info *krecord; 16718 struct bpf_func_info_aux *info_aux = NULL; 16719 struct bpf_prog *prog; 16720 const struct btf *btf; 16721 bpfptr_t urecord; 16722 bool scalar_return; 16723 int ret = -ENOMEM; 16724 16725 nfuncs = attr->func_info_cnt; 16726 if (!nfuncs) { 16727 if (check_abnormal_return(env)) 16728 return -EINVAL; 16729 return 0; 16730 } 16731 if (nfuncs != env->subprog_cnt) { 16732 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 16733 return -EINVAL; 16734 } 16735 16736 urec_size = attr->func_info_rec_size; 16737 16738 prog = env->prog; 16739 btf = prog->aux->btf; 16740 16741 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 16742 16743 krecord = prog->aux->func_info; 16744 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 16745 if (!info_aux) 16746 return -ENOMEM; 16747 16748 for (i = 0; i < nfuncs; i++) { 16749 /* check insn_off */ 16750 ret = -EINVAL; 16751 16752 if (env->subprog_info[i].start != krecord[i].insn_off) { 16753 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 16754 goto err_free; 16755 } 16756 16757 /* Already checked type_id */ 16758 type = btf_type_by_id(btf, krecord[i].type_id); 16759 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 16760 /* Already checked func_proto */ 16761 func_proto = btf_type_by_id(btf, type->type); 16762 16763 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 16764 scalar_return = 16765 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 16766 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 16767 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 16768 goto err_free; 16769 } 16770 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 16771 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 16772 goto err_free; 16773 } 16774 16775 bpfptr_add(&urecord, urec_size); 16776 } 16777 16778 prog->aux->func_info_aux = info_aux; 16779 return 0; 16780 16781 err_free: 16782 kfree(info_aux); 16783 return ret; 16784 } 16785 16786 static void adjust_btf_func(struct bpf_verifier_env *env) 16787 { 16788 struct bpf_prog_aux *aux = env->prog->aux; 16789 int i; 16790 16791 if (!aux->func_info) 16792 return; 16793 16794 /* func_info is not available for hidden subprogs */ 16795 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 16796 aux->func_info[i].insn_off = env->subprog_info[i].start; 16797 } 16798 16799 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 16800 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 16801 16802 static int check_btf_line(struct bpf_verifier_env *env, 16803 const union bpf_attr *attr, 16804 bpfptr_t uattr) 16805 { 16806 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 16807 struct bpf_subprog_info *sub; 16808 struct bpf_line_info *linfo; 16809 struct bpf_prog *prog; 16810 const struct btf *btf; 16811 bpfptr_t ulinfo; 16812 int err; 16813 16814 nr_linfo = attr->line_info_cnt; 16815 if (!nr_linfo) 16816 return 0; 16817 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 16818 return -EINVAL; 16819 16820 rec_size = attr->line_info_rec_size; 16821 if (rec_size < MIN_BPF_LINEINFO_SIZE || 16822 rec_size > MAX_LINEINFO_REC_SIZE || 16823 rec_size & (sizeof(u32) - 1)) 16824 return -EINVAL; 16825 16826 /* Need to zero it in case the userspace may 16827 * pass in a smaller bpf_line_info object. 16828 */ 16829 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 16830 GFP_KERNEL | __GFP_NOWARN); 16831 if (!linfo) 16832 return -ENOMEM; 16833 16834 prog = env->prog; 16835 btf = prog->aux->btf; 16836 16837 s = 0; 16838 sub = env->subprog_info; 16839 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 16840 expected_size = sizeof(struct bpf_line_info); 16841 ncopy = min_t(u32, expected_size, rec_size); 16842 for (i = 0; i < nr_linfo; i++) { 16843 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 16844 if (err) { 16845 if (err == -E2BIG) { 16846 verbose(env, "nonzero tailing record in line_info"); 16847 if (copy_to_bpfptr_offset(uattr, 16848 offsetof(union bpf_attr, line_info_rec_size), 16849 &expected_size, sizeof(expected_size))) 16850 err = -EFAULT; 16851 } 16852 goto err_free; 16853 } 16854 16855 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 16856 err = -EFAULT; 16857 goto err_free; 16858 } 16859 16860 /* 16861 * Check insn_off to ensure 16862 * 1) strictly increasing AND 16863 * 2) bounded by prog->len 16864 * 16865 * The linfo[0].insn_off == 0 check logically falls into 16866 * the later "missing bpf_line_info for func..." case 16867 * because the first linfo[0].insn_off must be the 16868 * first sub also and the first sub must have 16869 * subprog_info[0].start == 0. 16870 */ 16871 if ((i && linfo[i].insn_off <= prev_offset) || 16872 linfo[i].insn_off >= prog->len) { 16873 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 16874 i, linfo[i].insn_off, prev_offset, 16875 prog->len); 16876 err = -EINVAL; 16877 goto err_free; 16878 } 16879 16880 if (!prog->insnsi[linfo[i].insn_off].code) { 16881 verbose(env, 16882 "Invalid insn code at line_info[%u].insn_off\n", 16883 i); 16884 err = -EINVAL; 16885 goto err_free; 16886 } 16887 16888 if (!btf_name_by_offset(btf, linfo[i].line_off) || 16889 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 16890 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 16891 err = -EINVAL; 16892 goto err_free; 16893 } 16894 16895 if (s != env->subprog_cnt) { 16896 if (linfo[i].insn_off == sub[s].start) { 16897 sub[s].linfo_idx = i; 16898 s++; 16899 } else if (sub[s].start < linfo[i].insn_off) { 16900 verbose(env, "missing bpf_line_info for func#%u\n", s); 16901 err = -EINVAL; 16902 goto err_free; 16903 } 16904 } 16905 16906 prev_offset = linfo[i].insn_off; 16907 bpfptr_add(&ulinfo, rec_size); 16908 } 16909 16910 if (s != env->subprog_cnt) { 16911 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 16912 env->subprog_cnt - s, s); 16913 err = -EINVAL; 16914 goto err_free; 16915 } 16916 16917 prog->aux->linfo = linfo; 16918 prog->aux->nr_linfo = nr_linfo; 16919 16920 return 0; 16921 16922 err_free: 16923 kvfree(linfo); 16924 return err; 16925 } 16926 16927 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 16928 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 16929 16930 static int check_core_relo(struct bpf_verifier_env *env, 16931 const union bpf_attr *attr, 16932 bpfptr_t uattr) 16933 { 16934 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 16935 struct bpf_core_relo core_relo = {}; 16936 struct bpf_prog *prog = env->prog; 16937 const struct btf *btf = prog->aux->btf; 16938 struct bpf_core_ctx ctx = { 16939 .log = &env->log, 16940 .btf = btf, 16941 }; 16942 bpfptr_t u_core_relo; 16943 int err; 16944 16945 nr_core_relo = attr->core_relo_cnt; 16946 if (!nr_core_relo) 16947 return 0; 16948 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 16949 return -EINVAL; 16950 16951 rec_size = attr->core_relo_rec_size; 16952 if (rec_size < MIN_CORE_RELO_SIZE || 16953 rec_size > MAX_CORE_RELO_SIZE || 16954 rec_size % sizeof(u32)) 16955 return -EINVAL; 16956 16957 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 16958 expected_size = sizeof(struct bpf_core_relo); 16959 ncopy = min_t(u32, expected_size, rec_size); 16960 16961 /* Unlike func_info and line_info, copy and apply each CO-RE 16962 * relocation record one at a time. 16963 */ 16964 for (i = 0; i < nr_core_relo; i++) { 16965 /* future proofing when sizeof(bpf_core_relo) changes */ 16966 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 16967 if (err) { 16968 if (err == -E2BIG) { 16969 verbose(env, "nonzero tailing record in core_relo"); 16970 if (copy_to_bpfptr_offset(uattr, 16971 offsetof(union bpf_attr, core_relo_rec_size), 16972 &expected_size, sizeof(expected_size))) 16973 err = -EFAULT; 16974 } 16975 break; 16976 } 16977 16978 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 16979 err = -EFAULT; 16980 break; 16981 } 16982 16983 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 16984 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 16985 i, core_relo.insn_off, prog->len); 16986 err = -EINVAL; 16987 break; 16988 } 16989 16990 err = bpf_core_apply(&ctx, &core_relo, i, 16991 &prog->insnsi[core_relo.insn_off / 8]); 16992 if (err) 16993 break; 16994 bpfptr_add(&u_core_relo, rec_size); 16995 } 16996 return err; 16997 } 16998 16999 static int check_btf_info_early(struct bpf_verifier_env *env, 17000 const union bpf_attr *attr, 17001 bpfptr_t uattr) 17002 { 17003 struct btf *btf; 17004 int err; 17005 17006 if (!attr->func_info_cnt && !attr->line_info_cnt) { 17007 if (check_abnormal_return(env)) 17008 return -EINVAL; 17009 return 0; 17010 } 17011 17012 btf = btf_get_by_fd(attr->prog_btf_fd); 17013 if (IS_ERR(btf)) 17014 return PTR_ERR(btf); 17015 if (btf_is_kernel(btf)) { 17016 btf_put(btf); 17017 return -EACCES; 17018 } 17019 env->prog->aux->btf = btf; 17020 17021 err = check_btf_func_early(env, attr, uattr); 17022 if (err) 17023 return err; 17024 return 0; 17025 } 17026 17027 static int check_btf_info(struct bpf_verifier_env *env, 17028 const union bpf_attr *attr, 17029 bpfptr_t uattr) 17030 { 17031 int err; 17032 17033 if (!attr->func_info_cnt && !attr->line_info_cnt) { 17034 if (check_abnormal_return(env)) 17035 return -EINVAL; 17036 return 0; 17037 } 17038 17039 err = check_btf_func(env, attr, uattr); 17040 if (err) 17041 return err; 17042 17043 err = check_btf_line(env, attr, uattr); 17044 if (err) 17045 return err; 17046 17047 err = check_core_relo(env, attr, uattr); 17048 if (err) 17049 return err; 17050 17051 return 0; 17052 } 17053 17054 /* check %cur's range satisfies %old's */ 17055 static bool range_within(const struct bpf_reg_state *old, 17056 const struct bpf_reg_state *cur) 17057 { 17058 return old->umin_value <= cur->umin_value && 17059 old->umax_value >= cur->umax_value && 17060 old->smin_value <= cur->smin_value && 17061 old->smax_value >= cur->smax_value && 17062 old->u32_min_value <= cur->u32_min_value && 17063 old->u32_max_value >= cur->u32_max_value && 17064 old->s32_min_value <= cur->s32_min_value && 17065 old->s32_max_value >= cur->s32_max_value; 17066 } 17067 17068 /* If in the old state two registers had the same id, then they need to have 17069 * the same id in the new state as well. But that id could be different from 17070 * the old state, so we need to track the mapping from old to new ids. 17071 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 17072 * regs with old id 5 must also have new id 9 for the new state to be safe. But 17073 * regs with a different old id could still have new id 9, we don't care about 17074 * that. 17075 * So we look through our idmap to see if this old id has been seen before. If 17076 * so, we require the new id to match; otherwise, we add the id pair to the map. 17077 */ 17078 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 17079 { 17080 struct bpf_id_pair *map = idmap->map; 17081 unsigned int i; 17082 17083 /* either both IDs should be set or both should be zero */ 17084 if (!!old_id != !!cur_id) 17085 return false; 17086 17087 if (old_id == 0) /* cur_id == 0 as well */ 17088 return true; 17089 17090 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 17091 if (!map[i].old) { 17092 /* Reached an empty slot; haven't seen this id before */ 17093 map[i].old = old_id; 17094 map[i].cur = cur_id; 17095 return true; 17096 } 17097 if (map[i].old == old_id) 17098 return map[i].cur == cur_id; 17099 if (map[i].cur == cur_id) 17100 return false; 17101 } 17102 /* We ran out of idmap slots, which should be impossible */ 17103 WARN_ON_ONCE(1); 17104 return false; 17105 } 17106 17107 /* Similar to check_ids(), but allocate a unique temporary ID 17108 * for 'old_id' or 'cur_id' of zero. 17109 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 17110 */ 17111 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 17112 { 17113 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 17114 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 17115 17116 return check_ids(old_id, cur_id, idmap); 17117 } 17118 17119 static void clean_func_state(struct bpf_verifier_env *env, 17120 struct bpf_func_state *st) 17121 { 17122 enum bpf_reg_liveness live; 17123 int i, j; 17124 17125 for (i = 0; i < BPF_REG_FP; i++) { 17126 live = st->regs[i].live; 17127 /* liveness must not touch this register anymore */ 17128 st->regs[i].live |= REG_LIVE_DONE; 17129 if (!(live & REG_LIVE_READ)) 17130 /* since the register is unused, clear its state 17131 * to make further comparison simpler 17132 */ 17133 __mark_reg_not_init(env, &st->regs[i]); 17134 } 17135 17136 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 17137 live = st->stack[i].spilled_ptr.live; 17138 /* liveness must not touch this stack slot anymore */ 17139 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 17140 if (!(live & REG_LIVE_READ)) { 17141 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 17142 for (j = 0; j < BPF_REG_SIZE; j++) 17143 st->stack[i].slot_type[j] = STACK_INVALID; 17144 } 17145 } 17146 } 17147 17148 static void clean_verifier_state(struct bpf_verifier_env *env, 17149 struct bpf_verifier_state *st) 17150 { 17151 int i; 17152 17153 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 17154 /* all regs in this state in all frames were already marked */ 17155 return; 17156 17157 for (i = 0; i <= st->curframe; i++) 17158 clean_func_state(env, st->frame[i]); 17159 } 17160 17161 /* the parentage chains form a tree. 17162 * the verifier states are added to state lists at given insn and 17163 * pushed into state stack for future exploration. 17164 * when the verifier reaches bpf_exit insn some of the verifer states 17165 * stored in the state lists have their final liveness state already, 17166 * but a lot of states will get revised from liveness point of view when 17167 * the verifier explores other branches. 17168 * Example: 17169 * 1: r0 = 1 17170 * 2: if r1 == 100 goto pc+1 17171 * 3: r0 = 2 17172 * 4: exit 17173 * when the verifier reaches exit insn the register r0 in the state list of 17174 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 17175 * of insn 2 and goes exploring further. At the insn 4 it will walk the 17176 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 17177 * 17178 * Since the verifier pushes the branch states as it sees them while exploring 17179 * the program the condition of walking the branch instruction for the second 17180 * time means that all states below this branch were already explored and 17181 * their final liveness marks are already propagated. 17182 * Hence when the verifier completes the search of state list in is_state_visited() 17183 * we can call this clean_live_states() function to mark all liveness states 17184 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 17185 * will not be used. 17186 * This function also clears the registers and stack for states that !READ 17187 * to simplify state merging. 17188 * 17189 * Important note here that walking the same branch instruction in the callee 17190 * doesn't meant that the states are DONE. The verifier has to compare 17191 * the callsites 17192 */ 17193 static void clean_live_states(struct bpf_verifier_env *env, int insn, 17194 struct bpf_verifier_state *cur) 17195 { 17196 struct bpf_verifier_state_list *sl; 17197 17198 sl = *explored_state(env, insn); 17199 while (sl) { 17200 if (sl->state.branches) 17201 goto next; 17202 if (sl->state.insn_idx != insn || 17203 !same_callsites(&sl->state, cur)) 17204 goto next; 17205 clean_verifier_state(env, &sl->state); 17206 next: 17207 sl = sl->next; 17208 } 17209 } 17210 17211 static bool regs_exact(const struct bpf_reg_state *rold, 17212 const struct bpf_reg_state *rcur, 17213 struct bpf_idmap *idmap) 17214 { 17215 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 17216 check_ids(rold->id, rcur->id, idmap) && 17217 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 17218 } 17219 17220 enum exact_level { 17221 NOT_EXACT, 17222 EXACT, 17223 RANGE_WITHIN 17224 }; 17225 17226 /* Returns true if (rold safe implies rcur safe) */ 17227 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 17228 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, 17229 enum exact_level exact) 17230 { 17231 if (exact == EXACT) 17232 return regs_exact(rold, rcur, idmap); 17233 17234 if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT) 17235 /* explored state didn't use this */ 17236 return true; 17237 if (rold->type == NOT_INIT) { 17238 if (exact == NOT_EXACT || rcur->type == NOT_INIT) 17239 /* explored state can't have used this */ 17240 return true; 17241 } 17242 17243 /* Enforce that register types have to match exactly, including their 17244 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 17245 * rule. 17246 * 17247 * One can make a point that using a pointer register as unbounded 17248 * SCALAR would be technically acceptable, but this could lead to 17249 * pointer leaks because scalars are allowed to leak while pointers 17250 * are not. We could make this safe in special cases if root is 17251 * calling us, but it's probably not worth the hassle. 17252 * 17253 * Also, register types that are *not* MAYBE_NULL could technically be 17254 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 17255 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 17256 * to the same map). 17257 * However, if the old MAYBE_NULL register then got NULL checked, 17258 * doing so could have affected others with the same id, and we can't 17259 * check for that because we lost the id when we converted to 17260 * a non-MAYBE_NULL variant. 17261 * So, as a general rule we don't allow mixing MAYBE_NULL and 17262 * non-MAYBE_NULL registers as well. 17263 */ 17264 if (rold->type != rcur->type) 17265 return false; 17266 17267 switch (base_type(rold->type)) { 17268 case SCALAR_VALUE: 17269 if (env->explore_alu_limits) { 17270 /* explore_alu_limits disables tnum_in() and range_within() 17271 * logic and requires everything to be strict 17272 */ 17273 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 17274 check_scalar_ids(rold->id, rcur->id, idmap); 17275 } 17276 if (!rold->precise && exact == NOT_EXACT) 17277 return true; 17278 if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST)) 17279 return false; 17280 if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off)) 17281 return false; 17282 /* Why check_ids() for scalar registers? 17283 * 17284 * Consider the following BPF code: 17285 * 1: r6 = ... unbound scalar, ID=a ... 17286 * 2: r7 = ... unbound scalar, ID=b ... 17287 * 3: if (r6 > r7) goto +1 17288 * 4: r6 = r7 17289 * 5: if (r6 > X) goto ... 17290 * 6: ... memory operation using r7 ... 17291 * 17292 * First verification path is [1-6]: 17293 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 17294 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark 17295 * r7 <= X, because r6 and r7 share same id. 17296 * Next verification path is [1-4, 6]. 17297 * 17298 * Instruction (6) would be reached in two states: 17299 * I. r6{.id=b}, r7{.id=b} via path 1-6; 17300 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 17301 * 17302 * Use check_ids() to distinguish these states. 17303 * --- 17304 * Also verify that new value satisfies old value range knowledge. 17305 */ 17306 return range_within(rold, rcur) && 17307 tnum_in(rold->var_off, rcur->var_off) && 17308 check_scalar_ids(rold->id, rcur->id, idmap); 17309 case PTR_TO_MAP_KEY: 17310 case PTR_TO_MAP_VALUE: 17311 case PTR_TO_MEM: 17312 case PTR_TO_BUF: 17313 case PTR_TO_TP_BUFFER: 17314 /* If the new min/max/var_off satisfy the old ones and 17315 * everything else matches, we are OK. 17316 */ 17317 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 17318 range_within(rold, rcur) && 17319 tnum_in(rold->var_off, rcur->var_off) && 17320 check_ids(rold->id, rcur->id, idmap) && 17321 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 17322 case PTR_TO_PACKET_META: 17323 case PTR_TO_PACKET: 17324 /* We must have at least as much range as the old ptr 17325 * did, so that any accesses which were safe before are 17326 * still safe. This is true even if old range < old off, 17327 * since someone could have accessed through (ptr - k), or 17328 * even done ptr -= k in a register, to get a safe access. 17329 */ 17330 if (rold->range > rcur->range) 17331 return false; 17332 /* If the offsets don't match, we can't trust our alignment; 17333 * nor can we be sure that we won't fall out of range. 17334 */ 17335 if (rold->off != rcur->off) 17336 return false; 17337 /* id relations must be preserved */ 17338 if (!check_ids(rold->id, rcur->id, idmap)) 17339 return false; 17340 /* new val must satisfy old val knowledge */ 17341 return range_within(rold, rcur) && 17342 tnum_in(rold->var_off, rcur->var_off); 17343 case PTR_TO_STACK: 17344 /* two stack pointers are equal only if they're pointing to 17345 * the same stack frame, since fp-8 in foo != fp-8 in bar 17346 */ 17347 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 17348 case PTR_TO_ARENA: 17349 return true; 17350 default: 17351 return regs_exact(rold, rcur, idmap); 17352 } 17353 } 17354 17355 static struct bpf_reg_state unbound_reg; 17356 17357 static __init int unbound_reg_init(void) 17358 { 17359 __mark_reg_unknown_imprecise(&unbound_reg); 17360 unbound_reg.live |= REG_LIVE_READ; 17361 return 0; 17362 } 17363 late_initcall(unbound_reg_init); 17364 17365 static bool is_stack_all_misc(struct bpf_verifier_env *env, 17366 struct bpf_stack_state *stack) 17367 { 17368 u32 i; 17369 17370 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { 17371 if ((stack->slot_type[i] == STACK_MISC) || 17372 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) 17373 continue; 17374 return false; 17375 } 17376 17377 return true; 17378 } 17379 17380 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, 17381 struct bpf_stack_state *stack) 17382 { 17383 if (is_spilled_scalar_reg64(stack)) 17384 return &stack->spilled_ptr; 17385 17386 if (is_stack_all_misc(env, stack)) 17387 return &unbound_reg; 17388 17389 return NULL; 17390 } 17391 17392 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 17393 struct bpf_func_state *cur, struct bpf_idmap *idmap, 17394 enum exact_level exact) 17395 { 17396 int i, spi; 17397 17398 /* walk slots of the explored stack and ignore any additional 17399 * slots in the current stack, since explored(safe) state 17400 * didn't use them 17401 */ 17402 for (i = 0; i < old->allocated_stack; i++) { 17403 struct bpf_reg_state *old_reg, *cur_reg; 17404 17405 spi = i / BPF_REG_SIZE; 17406 17407 if (exact != NOT_EXACT && 17408 (i >= cur->allocated_stack || 17409 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 17410 cur->stack[spi].slot_type[i % BPF_REG_SIZE])) 17411 return false; 17412 17413 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) 17414 && exact == NOT_EXACT) { 17415 i += BPF_REG_SIZE - 1; 17416 /* explored state didn't use this */ 17417 continue; 17418 } 17419 17420 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 17421 continue; 17422 17423 if (env->allow_uninit_stack && 17424 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 17425 continue; 17426 17427 /* explored stack has more populated slots than current stack 17428 * and these slots were used 17429 */ 17430 if (i >= cur->allocated_stack) 17431 return false; 17432 17433 /* 64-bit scalar spill vs all slots MISC and vice versa. 17434 * Load from all slots MISC produces unbound scalar. 17435 * Construct a fake register for such stack and call 17436 * regsafe() to ensure scalar ids are compared. 17437 */ 17438 old_reg = scalar_reg_for_stack(env, &old->stack[spi]); 17439 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); 17440 if (old_reg && cur_reg) { 17441 if (!regsafe(env, old_reg, cur_reg, idmap, exact)) 17442 return false; 17443 i += BPF_REG_SIZE - 1; 17444 continue; 17445 } 17446 17447 /* if old state was safe with misc data in the stack 17448 * it will be safe with zero-initialized stack. 17449 * The opposite is not true 17450 */ 17451 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 17452 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 17453 continue; 17454 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 17455 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 17456 /* Ex: old explored (safe) state has STACK_SPILL in 17457 * this stack slot, but current has STACK_MISC -> 17458 * this verifier states are not equivalent, 17459 * return false to continue verification of this path 17460 */ 17461 return false; 17462 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 17463 continue; 17464 /* Both old and cur are having same slot_type */ 17465 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 17466 case STACK_SPILL: 17467 /* when explored and current stack slot are both storing 17468 * spilled registers, check that stored pointers types 17469 * are the same as well. 17470 * Ex: explored safe path could have stored 17471 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 17472 * but current path has stored: 17473 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 17474 * such verifier states are not equivalent. 17475 * return false to continue verification of this path 17476 */ 17477 if (!regsafe(env, &old->stack[spi].spilled_ptr, 17478 &cur->stack[spi].spilled_ptr, idmap, exact)) 17479 return false; 17480 break; 17481 case STACK_DYNPTR: 17482 old_reg = &old->stack[spi].spilled_ptr; 17483 cur_reg = &cur->stack[spi].spilled_ptr; 17484 if (old_reg->dynptr.type != cur_reg->dynptr.type || 17485 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 17486 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 17487 return false; 17488 break; 17489 case STACK_ITER: 17490 old_reg = &old->stack[spi].spilled_ptr; 17491 cur_reg = &cur->stack[spi].spilled_ptr; 17492 /* iter.depth is not compared between states as it 17493 * doesn't matter for correctness and would otherwise 17494 * prevent convergence; we maintain it only to prevent 17495 * infinite loop check triggering, see 17496 * iter_active_depths_differ() 17497 */ 17498 if (old_reg->iter.btf != cur_reg->iter.btf || 17499 old_reg->iter.btf_id != cur_reg->iter.btf_id || 17500 old_reg->iter.state != cur_reg->iter.state || 17501 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 17502 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 17503 return false; 17504 break; 17505 case STACK_MISC: 17506 case STACK_ZERO: 17507 case STACK_INVALID: 17508 continue; 17509 /* Ensure that new unhandled slot types return false by default */ 17510 default: 17511 return false; 17512 } 17513 } 17514 return true; 17515 } 17516 17517 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 17518 struct bpf_idmap *idmap) 17519 { 17520 int i; 17521 17522 if (old->acquired_refs != cur->acquired_refs) 17523 return false; 17524 17525 for (i = 0; i < old->acquired_refs; i++) { 17526 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 17527 return false; 17528 } 17529 17530 return true; 17531 } 17532 17533 /* compare two verifier states 17534 * 17535 * all states stored in state_list are known to be valid, since 17536 * verifier reached 'bpf_exit' instruction through them 17537 * 17538 * this function is called when verifier exploring different branches of 17539 * execution popped from the state stack. If it sees an old state that has 17540 * more strict register state and more strict stack state then this execution 17541 * branch doesn't need to be explored further, since verifier already 17542 * concluded that more strict state leads to valid finish. 17543 * 17544 * Therefore two states are equivalent if register state is more conservative 17545 * and explored stack state is more conservative than the current one. 17546 * Example: 17547 * explored current 17548 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 17549 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 17550 * 17551 * In other words if current stack state (one being explored) has more 17552 * valid slots than old one that already passed validation, it means 17553 * the verifier can stop exploring and conclude that current state is valid too 17554 * 17555 * Similarly with registers. If explored state has register type as invalid 17556 * whereas register type in current state is meaningful, it means that 17557 * the current state will reach 'bpf_exit' instruction safely 17558 */ 17559 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 17560 struct bpf_func_state *cur, enum exact_level exact) 17561 { 17562 int i; 17563 17564 if (old->callback_depth > cur->callback_depth) 17565 return false; 17566 17567 for (i = 0; i < MAX_BPF_REG; i++) 17568 if (!regsafe(env, &old->regs[i], &cur->regs[i], 17569 &env->idmap_scratch, exact)) 17570 return false; 17571 17572 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 17573 return false; 17574 17575 if (!refsafe(old, cur, &env->idmap_scratch)) 17576 return false; 17577 17578 return true; 17579 } 17580 17581 static void reset_idmap_scratch(struct bpf_verifier_env *env) 17582 { 17583 env->idmap_scratch.tmp_id_gen = env->id_gen; 17584 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 17585 } 17586 17587 static bool states_equal(struct bpf_verifier_env *env, 17588 struct bpf_verifier_state *old, 17589 struct bpf_verifier_state *cur, 17590 enum exact_level exact) 17591 { 17592 int i; 17593 17594 if (old->curframe != cur->curframe) 17595 return false; 17596 17597 reset_idmap_scratch(env); 17598 17599 /* Verification state from speculative execution simulation 17600 * must never prune a non-speculative execution one. 17601 */ 17602 if (old->speculative && !cur->speculative) 17603 return false; 17604 17605 if (old->active_lock.ptr != cur->active_lock.ptr) 17606 return false; 17607 17608 /* Old and cur active_lock's have to be either both present 17609 * or both absent. 17610 */ 17611 if (!!old->active_lock.id != !!cur->active_lock.id) 17612 return false; 17613 17614 if (old->active_lock.id && 17615 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 17616 return false; 17617 17618 if (old->active_rcu_lock != cur->active_rcu_lock) 17619 return false; 17620 17621 if (old->active_preempt_lock != cur->active_preempt_lock) 17622 return false; 17623 17624 if (old->in_sleepable != cur->in_sleepable) 17625 return false; 17626 17627 /* for states to be equal callsites have to be the same 17628 * and all frame states need to be equivalent 17629 */ 17630 for (i = 0; i <= old->curframe; i++) { 17631 if (old->frame[i]->callsite != cur->frame[i]->callsite) 17632 return false; 17633 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 17634 return false; 17635 } 17636 return true; 17637 } 17638 17639 /* Return 0 if no propagation happened. Return negative error code if error 17640 * happened. Otherwise, return the propagated bit. 17641 */ 17642 static int propagate_liveness_reg(struct bpf_verifier_env *env, 17643 struct bpf_reg_state *reg, 17644 struct bpf_reg_state *parent_reg) 17645 { 17646 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 17647 u8 flag = reg->live & REG_LIVE_READ; 17648 int err; 17649 17650 /* When comes here, read flags of PARENT_REG or REG could be any of 17651 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 17652 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 17653 */ 17654 if (parent_flag == REG_LIVE_READ64 || 17655 /* Or if there is no read flag from REG. */ 17656 !flag || 17657 /* Or if the read flag from REG is the same as PARENT_REG. */ 17658 parent_flag == flag) 17659 return 0; 17660 17661 err = mark_reg_read(env, reg, parent_reg, flag); 17662 if (err) 17663 return err; 17664 17665 return flag; 17666 } 17667 17668 /* A write screens off any subsequent reads; but write marks come from the 17669 * straight-line code between a state and its parent. When we arrive at an 17670 * equivalent state (jump target or such) we didn't arrive by the straight-line 17671 * code, so read marks in the state must propagate to the parent regardless 17672 * of the state's write marks. That's what 'parent == state->parent' comparison 17673 * in mark_reg_read() is for. 17674 */ 17675 static int propagate_liveness(struct bpf_verifier_env *env, 17676 const struct bpf_verifier_state *vstate, 17677 struct bpf_verifier_state *vparent) 17678 { 17679 struct bpf_reg_state *state_reg, *parent_reg; 17680 struct bpf_func_state *state, *parent; 17681 int i, frame, err = 0; 17682 17683 if (vparent->curframe != vstate->curframe) { 17684 WARN(1, "propagate_live: parent frame %d current frame %d\n", 17685 vparent->curframe, vstate->curframe); 17686 return -EFAULT; 17687 } 17688 /* Propagate read liveness of registers... */ 17689 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 17690 for (frame = 0; frame <= vstate->curframe; frame++) { 17691 parent = vparent->frame[frame]; 17692 state = vstate->frame[frame]; 17693 parent_reg = parent->regs; 17694 state_reg = state->regs; 17695 /* We don't need to worry about FP liveness, it's read-only */ 17696 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 17697 err = propagate_liveness_reg(env, &state_reg[i], 17698 &parent_reg[i]); 17699 if (err < 0) 17700 return err; 17701 if (err == REG_LIVE_READ64) 17702 mark_insn_zext(env, &parent_reg[i]); 17703 } 17704 17705 /* Propagate stack slots. */ 17706 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 17707 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 17708 parent_reg = &parent->stack[i].spilled_ptr; 17709 state_reg = &state->stack[i].spilled_ptr; 17710 err = propagate_liveness_reg(env, state_reg, 17711 parent_reg); 17712 if (err < 0) 17713 return err; 17714 } 17715 } 17716 return 0; 17717 } 17718 17719 /* find precise scalars in the previous equivalent state and 17720 * propagate them into the current state 17721 */ 17722 static int propagate_precision(struct bpf_verifier_env *env, 17723 const struct bpf_verifier_state *old) 17724 { 17725 struct bpf_reg_state *state_reg; 17726 struct bpf_func_state *state; 17727 int i, err = 0, fr; 17728 bool first; 17729 17730 for (fr = old->curframe; fr >= 0; fr--) { 17731 state = old->frame[fr]; 17732 state_reg = state->regs; 17733 first = true; 17734 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 17735 if (state_reg->type != SCALAR_VALUE || 17736 !state_reg->precise || 17737 !(state_reg->live & REG_LIVE_READ)) 17738 continue; 17739 if (env->log.level & BPF_LOG_LEVEL2) { 17740 if (first) 17741 verbose(env, "frame %d: propagating r%d", fr, i); 17742 else 17743 verbose(env, ",r%d", i); 17744 } 17745 bt_set_frame_reg(&env->bt, fr, i); 17746 first = false; 17747 } 17748 17749 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 17750 if (!is_spilled_reg(&state->stack[i])) 17751 continue; 17752 state_reg = &state->stack[i].spilled_ptr; 17753 if (state_reg->type != SCALAR_VALUE || 17754 !state_reg->precise || 17755 !(state_reg->live & REG_LIVE_READ)) 17756 continue; 17757 if (env->log.level & BPF_LOG_LEVEL2) { 17758 if (first) 17759 verbose(env, "frame %d: propagating fp%d", 17760 fr, (-i - 1) * BPF_REG_SIZE); 17761 else 17762 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 17763 } 17764 bt_set_frame_slot(&env->bt, fr, i); 17765 first = false; 17766 } 17767 if (!first) 17768 verbose(env, "\n"); 17769 } 17770 17771 err = mark_chain_precision_batch(env); 17772 if (err < 0) 17773 return err; 17774 17775 return 0; 17776 } 17777 17778 static bool states_maybe_looping(struct bpf_verifier_state *old, 17779 struct bpf_verifier_state *cur) 17780 { 17781 struct bpf_func_state *fold, *fcur; 17782 int i, fr = cur->curframe; 17783 17784 if (old->curframe != fr) 17785 return false; 17786 17787 fold = old->frame[fr]; 17788 fcur = cur->frame[fr]; 17789 for (i = 0; i < MAX_BPF_REG; i++) 17790 if (memcmp(&fold->regs[i], &fcur->regs[i], 17791 offsetof(struct bpf_reg_state, parent))) 17792 return false; 17793 return true; 17794 } 17795 17796 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 17797 { 17798 return env->insn_aux_data[insn_idx].is_iter_next; 17799 } 17800 17801 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 17802 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 17803 * states to match, which otherwise would look like an infinite loop. So while 17804 * iter_next() calls are taken care of, we still need to be careful and 17805 * prevent erroneous and too eager declaration of "ininite loop", when 17806 * iterators are involved. 17807 * 17808 * Here's a situation in pseudo-BPF assembly form: 17809 * 17810 * 0: again: ; set up iter_next() call args 17811 * 1: r1 = &it ; <CHECKPOINT HERE> 17812 * 2: call bpf_iter_num_next ; this is iter_next() call 17813 * 3: if r0 == 0 goto done 17814 * 4: ... something useful here ... 17815 * 5: goto again ; another iteration 17816 * 6: done: 17817 * 7: r1 = &it 17818 * 8: call bpf_iter_num_destroy ; clean up iter state 17819 * 9: exit 17820 * 17821 * This is a typical loop. Let's assume that we have a prune point at 1:, 17822 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 17823 * again`, assuming other heuristics don't get in a way). 17824 * 17825 * When we first time come to 1:, let's say we have some state X. We proceed 17826 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 17827 * Now we come back to validate that forked ACTIVE state. We proceed through 17828 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 17829 * are converging. But the problem is that we don't know that yet, as this 17830 * convergence has to happen at iter_next() call site only. So if nothing is 17831 * done, at 1: verifier will use bounded loop logic and declare infinite 17832 * looping (and would be *technically* correct, if not for iterator's 17833 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 17834 * don't want that. So what we do in process_iter_next_call() when we go on 17835 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 17836 * a different iteration. So when we suspect an infinite loop, we additionally 17837 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 17838 * pretend we are not looping and wait for next iter_next() call. 17839 * 17840 * This only applies to ACTIVE state. In DRAINED state we don't expect to 17841 * loop, because that would actually mean infinite loop, as DRAINED state is 17842 * "sticky", and so we'll keep returning into the same instruction with the 17843 * same state (at least in one of possible code paths). 17844 * 17845 * This approach allows to keep infinite loop heuristic even in the face of 17846 * active iterator. E.g., C snippet below is and will be detected as 17847 * inifintely looping: 17848 * 17849 * struct bpf_iter_num it; 17850 * int *p, x; 17851 * 17852 * bpf_iter_num_new(&it, 0, 10); 17853 * while ((p = bpf_iter_num_next(&t))) { 17854 * x = p; 17855 * while (x--) {} // <<-- infinite loop here 17856 * } 17857 * 17858 */ 17859 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 17860 { 17861 struct bpf_reg_state *slot, *cur_slot; 17862 struct bpf_func_state *state; 17863 int i, fr; 17864 17865 for (fr = old->curframe; fr >= 0; fr--) { 17866 state = old->frame[fr]; 17867 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 17868 if (state->stack[i].slot_type[0] != STACK_ITER) 17869 continue; 17870 17871 slot = &state->stack[i].spilled_ptr; 17872 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 17873 continue; 17874 17875 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 17876 if (cur_slot->iter.depth != slot->iter.depth) 17877 return true; 17878 } 17879 } 17880 return false; 17881 } 17882 17883 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 17884 { 17885 struct bpf_verifier_state_list *new_sl; 17886 struct bpf_verifier_state_list *sl, **pprev; 17887 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 17888 int i, j, n, err, states_cnt = 0; 17889 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 17890 bool add_new_state = force_new_state; 17891 bool force_exact; 17892 17893 /* bpf progs typically have pruning point every 4 instructions 17894 * http://vger.kernel.org/bpfconf2019.html#session-1 17895 * Do not add new state for future pruning if the verifier hasn't seen 17896 * at least 2 jumps and at least 8 instructions. 17897 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 17898 * In tests that amounts to up to 50% reduction into total verifier 17899 * memory consumption and 20% verifier time speedup. 17900 */ 17901 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 17902 env->insn_processed - env->prev_insn_processed >= 8) 17903 add_new_state = true; 17904 17905 pprev = explored_state(env, insn_idx); 17906 sl = *pprev; 17907 17908 clean_live_states(env, insn_idx, cur); 17909 17910 while (sl) { 17911 states_cnt++; 17912 if (sl->state.insn_idx != insn_idx) 17913 goto next; 17914 17915 if (sl->state.branches) { 17916 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 17917 17918 if (frame->in_async_callback_fn && 17919 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 17920 /* Different async_entry_cnt means that the verifier is 17921 * processing another entry into async callback. 17922 * Seeing the same state is not an indication of infinite 17923 * loop or infinite recursion. 17924 * But finding the same state doesn't mean that it's safe 17925 * to stop processing the current state. The previous state 17926 * hasn't yet reached bpf_exit, since state.branches > 0. 17927 * Checking in_async_callback_fn alone is not enough either. 17928 * Since the verifier still needs to catch infinite loops 17929 * inside async callbacks. 17930 */ 17931 goto skip_inf_loop_check; 17932 } 17933 /* BPF open-coded iterators loop detection is special. 17934 * states_maybe_looping() logic is too simplistic in detecting 17935 * states that *might* be equivalent, because it doesn't know 17936 * about ID remapping, so don't even perform it. 17937 * See process_iter_next_call() and iter_active_depths_differ() 17938 * for overview of the logic. When current and one of parent 17939 * states are detected as equivalent, it's a good thing: we prove 17940 * convergence and can stop simulating further iterations. 17941 * It's safe to assume that iterator loop will finish, taking into 17942 * account iter_next() contract of eventually returning 17943 * sticky NULL result. 17944 * 17945 * Note, that states have to be compared exactly in this case because 17946 * read and precision marks might not be finalized inside the loop. 17947 * E.g. as in the program below: 17948 * 17949 * 1. r7 = -16 17950 * 2. r6 = bpf_get_prandom_u32() 17951 * 3. while (bpf_iter_num_next(&fp[-8])) { 17952 * 4. if (r6 != 42) { 17953 * 5. r7 = -32 17954 * 6. r6 = bpf_get_prandom_u32() 17955 * 7. continue 17956 * 8. } 17957 * 9. r0 = r10 17958 * 10. r0 += r7 17959 * 11. r8 = *(u64 *)(r0 + 0) 17960 * 12. r6 = bpf_get_prandom_u32() 17961 * 13. } 17962 * 17963 * Here verifier would first visit path 1-3, create a checkpoint at 3 17964 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 17965 * not have read or precision mark for r7 yet, thus inexact states 17966 * comparison would discard current state with r7=-32 17967 * => unsafe memory access at 11 would not be caught. 17968 */ 17969 if (is_iter_next_insn(env, insn_idx)) { 17970 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 17971 struct bpf_func_state *cur_frame; 17972 struct bpf_reg_state *iter_state, *iter_reg; 17973 int spi; 17974 17975 cur_frame = cur->frame[cur->curframe]; 17976 /* btf_check_iter_kfuncs() enforces that 17977 * iter state pointer is always the first arg 17978 */ 17979 iter_reg = &cur_frame->regs[BPF_REG_1]; 17980 /* current state is valid due to states_equal(), 17981 * so we can assume valid iter and reg state, 17982 * no need for extra (re-)validations 17983 */ 17984 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 17985 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 17986 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 17987 update_loop_entry(cur, &sl->state); 17988 goto hit; 17989 } 17990 } 17991 goto skip_inf_loop_check; 17992 } 17993 if (is_may_goto_insn_at(env, insn_idx)) { 17994 if (sl->state.may_goto_depth != cur->may_goto_depth && 17995 states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 17996 update_loop_entry(cur, &sl->state); 17997 goto hit; 17998 } 17999 } 18000 if (calls_callback(env, insn_idx)) { 18001 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) 18002 goto hit; 18003 goto skip_inf_loop_check; 18004 } 18005 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 18006 if (states_maybe_looping(&sl->state, cur) && 18007 states_equal(env, &sl->state, cur, EXACT) && 18008 !iter_active_depths_differ(&sl->state, cur) && 18009 sl->state.may_goto_depth == cur->may_goto_depth && 18010 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 18011 verbose_linfo(env, insn_idx, "; "); 18012 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 18013 verbose(env, "cur state:"); 18014 print_verifier_state(env, cur->frame[cur->curframe], true); 18015 verbose(env, "old state:"); 18016 print_verifier_state(env, sl->state.frame[cur->curframe], true); 18017 return -EINVAL; 18018 } 18019 /* if the verifier is processing a loop, avoid adding new state 18020 * too often, since different loop iterations have distinct 18021 * states and may not help future pruning. 18022 * This threshold shouldn't be too low to make sure that 18023 * a loop with large bound will be rejected quickly. 18024 * The most abusive loop will be: 18025 * r1 += 1 18026 * if r1 < 1000000 goto pc-2 18027 * 1M insn_procssed limit / 100 == 10k peak states. 18028 * This threshold shouldn't be too high either, since states 18029 * at the end of the loop are likely to be useful in pruning. 18030 */ 18031 skip_inf_loop_check: 18032 if (!force_new_state && 18033 env->jmps_processed - env->prev_jmps_processed < 20 && 18034 env->insn_processed - env->prev_insn_processed < 100) 18035 add_new_state = false; 18036 goto miss; 18037 } 18038 /* If sl->state is a part of a loop and this loop's entry is a part of 18039 * current verification path then states have to be compared exactly. 18040 * 'force_exact' is needed to catch the following case: 18041 * 18042 * initial Here state 'succ' was processed first, 18043 * | it was eventually tracked to produce a 18044 * V state identical to 'hdr'. 18045 * .---------> hdr All branches from 'succ' had been explored 18046 * | | and thus 'succ' has its .branches == 0. 18047 * | V 18048 * | .------... Suppose states 'cur' and 'succ' correspond 18049 * | | | to the same instruction + callsites. 18050 * | V V In such case it is necessary to check 18051 * | ... ... if 'succ' and 'cur' are states_equal(). 18052 * | | | If 'succ' and 'cur' are a part of the 18053 * | V V same loop exact flag has to be set. 18054 * | succ <- cur To check if that is the case, verify 18055 * | | if loop entry of 'succ' is in current 18056 * | V DFS path. 18057 * | ... 18058 * | | 18059 * '----' 18060 * 18061 * Additional details are in the comment before get_loop_entry(). 18062 */ 18063 loop_entry = get_loop_entry(&sl->state); 18064 force_exact = loop_entry && loop_entry->branches > 0; 18065 if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) { 18066 if (force_exact) 18067 update_loop_entry(cur, loop_entry); 18068 hit: 18069 sl->hit_cnt++; 18070 /* reached equivalent register/stack state, 18071 * prune the search. 18072 * Registers read by the continuation are read by us. 18073 * If we have any write marks in env->cur_state, they 18074 * will prevent corresponding reads in the continuation 18075 * from reaching our parent (an explored_state). Our 18076 * own state will get the read marks recorded, but 18077 * they'll be immediately forgotten as we're pruning 18078 * this state and will pop a new one. 18079 */ 18080 err = propagate_liveness(env, &sl->state, cur); 18081 18082 /* if previous state reached the exit with precision and 18083 * current state is equivalent to it (except precision marks) 18084 * the precision needs to be propagated back in 18085 * the current state. 18086 */ 18087 if (is_jmp_point(env, env->insn_idx)) 18088 err = err ? : push_jmp_history(env, cur, 0, 0); 18089 err = err ? : propagate_precision(env, &sl->state); 18090 if (err) 18091 return err; 18092 return 1; 18093 } 18094 miss: 18095 /* when new state is not going to be added do not increase miss count. 18096 * Otherwise several loop iterations will remove the state 18097 * recorded earlier. The goal of these heuristics is to have 18098 * states from some iterations of the loop (some in the beginning 18099 * and some at the end) to help pruning. 18100 */ 18101 if (add_new_state) 18102 sl->miss_cnt++; 18103 /* heuristic to determine whether this state is beneficial 18104 * to keep checking from state equivalence point of view. 18105 * Higher numbers increase max_states_per_insn and verification time, 18106 * but do not meaningfully decrease insn_processed. 18107 * 'n' controls how many times state could miss before eviction. 18108 * Use bigger 'n' for checkpoints because evicting checkpoint states 18109 * too early would hinder iterator convergence. 18110 */ 18111 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 18112 if (sl->miss_cnt > sl->hit_cnt * n + n) { 18113 /* the state is unlikely to be useful. Remove it to 18114 * speed up verification 18115 */ 18116 *pprev = sl->next; 18117 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 18118 !sl->state.used_as_loop_entry) { 18119 u32 br = sl->state.branches; 18120 18121 WARN_ONCE(br, 18122 "BUG live_done but branches_to_explore %d\n", 18123 br); 18124 free_verifier_state(&sl->state, false); 18125 kfree(sl); 18126 env->peak_states--; 18127 } else { 18128 /* cannot free this state, since parentage chain may 18129 * walk it later. Add it for free_list instead to 18130 * be freed at the end of verification 18131 */ 18132 sl->next = env->free_list; 18133 env->free_list = sl; 18134 } 18135 sl = *pprev; 18136 continue; 18137 } 18138 next: 18139 pprev = &sl->next; 18140 sl = *pprev; 18141 } 18142 18143 if (env->max_states_per_insn < states_cnt) 18144 env->max_states_per_insn = states_cnt; 18145 18146 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 18147 return 0; 18148 18149 if (!add_new_state) 18150 return 0; 18151 18152 /* There were no equivalent states, remember the current one. 18153 * Technically the current state is not proven to be safe yet, 18154 * but it will either reach outer most bpf_exit (which means it's safe) 18155 * or it will be rejected. When there are no loops the verifier won't be 18156 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 18157 * again on the way to bpf_exit. 18158 * When looping the sl->state.branches will be > 0 and this state 18159 * will not be considered for equivalence until branches == 0. 18160 */ 18161 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 18162 if (!new_sl) 18163 return -ENOMEM; 18164 env->total_states++; 18165 env->peak_states++; 18166 env->prev_jmps_processed = env->jmps_processed; 18167 env->prev_insn_processed = env->insn_processed; 18168 18169 /* forget precise markings we inherited, see __mark_chain_precision */ 18170 if (env->bpf_capable) 18171 mark_all_scalars_imprecise(env, cur); 18172 18173 /* add new state to the head of linked list */ 18174 new = &new_sl->state; 18175 err = copy_verifier_state(new, cur); 18176 if (err) { 18177 free_verifier_state(new, false); 18178 kfree(new_sl); 18179 return err; 18180 } 18181 new->insn_idx = insn_idx; 18182 WARN_ONCE(new->branches != 1, 18183 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 18184 18185 cur->parent = new; 18186 cur->first_insn_idx = insn_idx; 18187 cur->dfs_depth = new->dfs_depth + 1; 18188 clear_jmp_history(cur); 18189 new_sl->next = *explored_state(env, insn_idx); 18190 *explored_state(env, insn_idx) = new_sl; 18191 /* connect new state to parentage chain. Current frame needs all 18192 * registers connected. Only r6 - r9 of the callers are alive (pushed 18193 * to the stack implicitly by JITs) so in callers' frames connect just 18194 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 18195 * the state of the call instruction (with WRITTEN set), and r0 comes 18196 * from callee with its full parentage chain, anyway. 18197 */ 18198 /* clear write marks in current state: the writes we did are not writes 18199 * our child did, so they don't screen off its reads from us. 18200 * (There are no read marks in current state, because reads always mark 18201 * their parent and current state never has children yet. Only 18202 * explored_states can get read marks.) 18203 */ 18204 for (j = 0; j <= cur->curframe; j++) { 18205 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 18206 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 18207 for (i = 0; i < BPF_REG_FP; i++) 18208 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 18209 } 18210 18211 /* all stack frames are accessible from callee, clear them all */ 18212 for (j = 0; j <= cur->curframe; j++) { 18213 struct bpf_func_state *frame = cur->frame[j]; 18214 struct bpf_func_state *newframe = new->frame[j]; 18215 18216 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 18217 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 18218 frame->stack[i].spilled_ptr.parent = 18219 &newframe->stack[i].spilled_ptr; 18220 } 18221 } 18222 return 0; 18223 } 18224 18225 /* Return true if it's OK to have the same insn return a different type. */ 18226 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 18227 { 18228 switch (base_type(type)) { 18229 case PTR_TO_CTX: 18230 case PTR_TO_SOCKET: 18231 case PTR_TO_SOCK_COMMON: 18232 case PTR_TO_TCP_SOCK: 18233 case PTR_TO_XDP_SOCK: 18234 case PTR_TO_BTF_ID: 18235 case PTR_TO_ARENA: 18236 return false; 18237 default: 18238 return true; 18239 } 18240 } 18241 18242 /* If an instruction was previously used with particular pointer types, then we 18243 * need to be careful to avoid cases such as the below, where it may be ok 18244 * for one branch accessing the pointer, but not ok for the other branch: 18245 * 18246 * R1 = sock_ptr 18247 * goto X; 18248 * ... 18249 * R1 = some_other_valid_ptr; 18250 * goto X; 18251 * ... 18252 * R2 = *(u32 *)(R1 + 0); 18253 */ 18254 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 18255 { 18256 return src != prev && (!reg_type_mismatch_ok(src) || 18257 !reg_type_mismatch_ok(prev)); 18258 } 18259 18260 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 18261 bool allow_trust_mismatch) 18262 { 18263 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 18264 18265 if (*prev_type == NOT_INIT) { 18266 /* Saw a valid insn 18267 * dst_reg = *(u32 *)(src_reg + off) 18268 * save type to validate intersecting paths 18269 */ 18270 *prev_type = type; 18271 } else if (reg_type_mismatch(type, *prev_type)) { 18272 /* Abuser program is trying to use the same insn 18273 * dst_reg = *(u32*) (src_reg + off) 18274 * with different pointer types: 18275 * src_reg == ctx in one branch and 18276 * src_reg == stack|map in some other branch. 18277 * Reject it. 18278 */ 18279 if (allow_trust_mismatch && 18280 base_type(type) == PTR_TO_BTF_ID && 18281 base_type(*prev_type) == PTR_TO_BTF_ID) { 18282 /* 18283 * Have to support a use case when one path through 18284 * the program yields TRUSTED pointer while another 18285 * is UNTRUSTED. Fallback to UNTRUSTED to generate 18286 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 18287 */ 18288 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 18289 } else { 18290 verbose(env, "same insn cannot be used with different pointers\n"); 18291 return -EINVAL; 18292 } 18293 } 18294 18295 return 0; 18296 } 18297 18298 static int do_check(struct bpf_verifier_env *env) 18299 { 18300 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 18301 struct bpf_verifier_state *state = env->cur_state; 18302 struct bpf_insn *insns = env->prog->insnsi; 18303 struct bpf_reg_state *regs; 18304 int insn_cnt = env->prog->len; 18305 bool do_print_state = false; 18306 int prev_insn_idx = -1; 18307 18308 for (;;) { 18309 bool exception_exit = false; 18310 struct bpf_insn *insn; 18311 u8 class; 18312 int err; 18313 18314 /* reset current history entry on each new instruction */ 18315 env->cur_hist_ent = NULL; 18316 18317 env->prev_insn_idx = prev_insn_idx; 18318 if (env->insn_idx >= insn_cnt) { 18319 verbose(env, "invalid insn idx %d insn_cnt %d\n", 18320 env->insn_idx, insn_cnt); 18321 return -EFAULT; 18322 } 18323 18324 insn = &insns[env->insn_idx]; 18325 class = BPF_CLASS(insn->code); 18326 18327 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 18328 verbose(env, 18329 "BPF program is too large. Processed %d insn\n", 18330 env->insn_processed); 18331 return -E2BIG; 18332 } 18333 18334 state->last_insn_idx = env->prev_insn_idx; 18335 18336 if (is_prune_point(env, env->insn_idx)) { 18337 err = is_state_visited(env, env->insn_idx); 18338 if (err < 0) 18339 return err; 18340 if (err == 1) { 18341 /* found equivalent state, can prune the search */ 18342 if (env->log.level & BPF_LOG_LEVEL) { 18343 if (do_print_state) 18344 verbose(env, "\nfrom %d to %d%s: safe\n", 18345 env->prev_insn_idx, env->insn_idx, 18346 env->cur_state->speculative ? 18347 " (speculative execution)" : ""); 18348 else 18349 verbose(env, "%d: safe\n", env->insn_idx); 18350 } 18351 goto process_bpf_exit; 18352 } 18353 } 18354 18355 if (is_jmp_point(env, env->insn_idx)) { 18356 err = push_jmp_history(env, state, 0, 0); 18357 if (err) 18358 return err; 18359 } 18360 18361 if (signal_pending(current)) 18362 return -EAGAIN; 18363 18364 if (need_resched()) 18365 cond_resched(); 18366 18367 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 18368 verbose(env, "\nfrom %d to %d%s:", 18369 env->prev_insn_idx, env->insn_idx, 18370 env->cur_state->speculative ? 18371 " (speculative execution)" : ""); 18372 print_verifier_state(env, state->frame[state->curframe], true); 18373 do_print_state = false; 18374 } 18375 18376 if (env->log.level & BPF_LOG_LEVEL) { 18377 const struct bpf_insn_cbs cbs = { 18378 .cb_call = disasm_kfunc_name, 18379 .cb_print = verbose, 18380 .private_data = env, 18381 }; 18382 18383 if (verifier_state_scratched(env)) 18384 print_insn_state(env, state->frame[state->curframe]); 18385 18386 verbose_linfo(env, env->insn_idx, "; "); 18387 env->prev_log_pos = env->log.end_pos; 18388 verbose(env, "%d: ", env->insn_idx); 18389 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 18390 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 18391 env->prev_log_pos = env->log.end_pos; 18392 } 18393 18394 if (bpf_prog_is_offloaded(env->prog->aux)) { 18395 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 18396 env->prev_insn_idx); 18397 if (err) 18398 return err; 18399 } 18400 18401 regs = cur_regs(env); 18402 sanitize_mark_insn_seen(env); 18403 prev_insn_idx = env->insn_idx; 18404 18405 if (class == BPF_ALU || class == BPF_ALU64) { 18406 err = check_alu_op(env, insn); 18407 if (err) 18408 return err; 18409 18410 } else if (class == BPF_LDX) { 18411 enum bpf_reg_type src_reg_type; 18412 18413 /* check for reserved fields is already done */ 18414 18415 /* check src operand */ 18416 err = check_reg_arg(env, insn->src_reg, SRC_OP); 18417 if (err) 18418 return err; 18419 18420 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 18421 if (err) 18422 return err; 18423 18424 src_reg_type = regs[insn->src_reg].type; 18425 18426 /* check that memory (src_reg + off) is readable, 18427 * the state of dst_reg will be updated by this func 18428 */ 18429 err = check_mem_access(env, env->insn_idx, insn->src_reg, 18430 insn->off, BPF_SIZE(insn->code), 18431 BPF_READ, insn->dst_reg, false, 18432 BPF_MODE(insn->code) == BPF_MEMSX); 18433 err = err ?: save_aux_ptr_type(env, src_reg_type, true); 18434 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], "ldx"); 18435 if (err) 18436 return err; 18437 } else if (class == BPF_STX) { 18438 enum bpf_reg_type dst_reg_type; 18439 18440 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 18441 err = check_atomic(env, env->insn_idx, insn); 18442 if (err) 18443 return err; 18444 env->insn_idx++; 18445 continue; 18446 } 18447 18448 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 18449 verbose(env, "BPF_STX uses reserved fields\n"); 18450 return -EINVAL; 18451 } 18452 18453 /* check src1 operand */ 18454 err = check_reg_arg(env, insn->src_reg, SRC_OP); 18455 if (err) 18456 return err; 18457 /* check src2 operand */ 18458 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 18459 if (err) 18460 return err; 18461 18462 dst_reg_type = regs[insn->dst_reg].type; 18463 18464 /* check that memory (dst_reg + off) is writeable */ 18465 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 18466 insn->off, BPF_SIZE(insn->code), 18467 BPF_WRITE, insn->src_reg, false, false); 18468 if (err) 18469 return err; 18470 18471 err = save_aux_ptr_type(env, dst_reg_type, false); 18472 if (err) 18473 return err; 18474 } else if (class == BPF_ST) { 18475 enum bpf_reg_type dst_reg_type; 18476 18477 if (BPF_MODE(insn->code) != BPF_MEM || 18478 insn->src_reg != BPF_REG_0) { 18479 verbose(env, "BPF_ST uses reserved fields\n"); 18480 return -EINVAL; 18481 } 18482 /* check src operand */ 18483 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 18484 if (err) 18485 return err; 18486 18487 dst_reg_type = regs[insn->dst_reg].type; 18488 18489 /* check that memory (dst_reg + off) is writeable */ 18490 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 18491 insn->off, BPF_SIZE(insn->code), 18492 BPF_WRITE, -1, false, false); 18493 if (err) 18494 return err; 18495 18496 err = save_aux_ptr_type(env, dst_reg_type, false); 18497 if (err) 18498 return err; 18499 } else if (class == BPF_JMP || class == BPF_JMP32) { 18500 u8 opcode = BPF_OP(insn->code); 18501 18502 env->jmps_processed++; 18503 if (opcode == BPF_CALL) { 18504 if (BPF_SRC(insn->code) != BPF_K || 18505 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 18506 && insn->off != 0) || 18507 (insn->src_reg != BPF_REG_0 && 18508 insn->src_reg != BPF_PSEUDO_CALL && 18509 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 18510 insn->dst_reg != BPF_REG_0 || 18511 class == BPF_JMP32) { 18512 verbose(env, "BPF_CALL uses reserved fields\n"); 18513 return -EINVAL; 18514 } 18515 18516 if (env->cur_state->active_lock.ptr) { 18517 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 18518 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 18519 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 18520 verbose(env, "function calls are not allowed while holding a lock\n"); 18521 return -EINVAL; 18522 } 18523 } 18524 if (insn->src_reg == BPF_PSEUDO_CALL) { 18525 err = check_func_call(env, insn, &env->insn_idx); 18526 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 18527 err = check_kfunc_call(env, insn, &env->insn_idx); 18528 if (!err && is_bpf_throw_kfunc(insn)) { 18529 exception_exit = true; 18530 goto process_bpf_exit_full; 18531 } 18532 } else { 18533 err = check_helper_call(env, insn, &env->insn_idx); 18534 } 18535 if (err) 18536 return err; 18537 18538 mark_reg_scratched(env, BPF_REG_0); 18539 } else if (opcode == BPF_JA) { 18540 if (BPF_SRC(insn->code) != BPF_K || 18541 insn->src_reg != BPF_REG_0 || 18542 insn->dst_reg != BPF_REG_0 || 18543 (class == BPF_JMP && insn->imm != 0) || 18544 (class == BPF_JMP32 && insn->off != 0)) { 18545 verbose(env, "BPF_JA uses reserved fields\n"); 18546 return -EINVAL; 18547 } 18548 18549 if (class == BPF_JMP) 18550 env->insn_idx += insn->off + 1; 18551 else 18552 env->insn_idx += insn->imm + 1; 18553 continue; 18554 18555 } else if (opcode == BPF_EXIT) { 18556 if (BPF_SRC(insn->code) != BPF_K || 18557 insn->imm != 0 || 18558 insn->src_reg != BPF_REG_0 || 18559 insn->dst_reg != BPF_REG_0 || 18560 class == BPF_JMP32) { 18561 verbose(env, "BPF_EXIT uses reserved fields\n"); 18562 return -EINVAL; 18563 } 18564 process_bpf_exit_full: 18565 if (env->cur_state->active_lock.ptr && !env->cur_state->curframe) { 18566 verbose(env, "bpf_spin_unlock is missing\n"); 18567 return -EINVAL; 18568 } 18569 18570 if (env->cur_state->active_rcu_lock && !env->cur_state->curframe) { 18571 verbose(env, "bpf_rcu_read_unlock is missing\n"); 18572 return -EINVAL; 18573 } 18574 18575 if (env->cur_state->active_preempt_lock && !env->cur_state->curframe) { 18576 verbose(env, "%d bpf_preempt_enable%s missing\n", 18577 env->cur_state->active_preempt_lock, 18578 env->cur_state->active_preempt_lock == 1 ? " is" : "(s) are"); 18579 return -EINVAL; 18580 } 18581 18582 /* We must do check_reference_leak here before 18583 * prepare_func_exit to handle the case when 18584 * state->curframe > 0, it may be a callback 18585 * function, for which reference_state must 18586 * match caller reference state when it exits. 18587 */ 18588 err = check_reference_leak(env, exception_exit); 18589 if (err) 18590 return err; 18591 18592 /* The side effect of the prepare_func_exit 18593 * which is being skipped is that it frees 18594 * bpf_func_state. Typically, process_bpf_exit 18595 * will only be hit with outermost exit. 18596 * copy_verifier_state in pop_stack will handle 18597 * freeing of any extra bpf_func_state left over 18598 * from not processing all nested function 18599 * exits. We also skip return code checks as 18600 * they are not needed for exceptional exits. 18601 */ 18602 if (exception_exit) 18603 goto process_bpf_exit; 18604 18605 if (state->curframe) { 18606 /* exit from nested function */ 18607 err = prepare_func_exit(env, &env->insn_idx); 18608 if (err) 18609 return err; 18610 do_print_state = true; 18611 continue; 18612 } 18613 18614 err = check_return_code(env, BPF_REG_0, "R0"); 18615 if (err) 18616 return err; 18617 process_bpf_exit: 18618 mark_verifier_state_scratched(env); 18619 update_branch_counts(env, env->cur_state); 18620 err = pop_stack(env, &prev_insn_idx, 18621 &env->insn_idx, pop_log); 18622 if (err < 0) { 18623 if (err != -ENOENT) 18624 return err; 18625 break; 18626 } else { 18627 do_print_state = true; 18628 continue; 18629 } 18630 } else { 18631 err = check_cond_jmp_op(env, insn, &env->insn_idx); 18632 if (err) 18633 return err; 18634 } 18635 } else if (class == BPF_LD) { 18636 u8 mode = BPF_MODE(insn->code); 18637 18638 if (mode == BPF_ABS || mode == BPF_IND) { 18639 err = check_ld_abs(env, insn); 18640 if (err) 18641 return err; 18642 18643 } else if (mode == BPF_IMM) { 18644 err = check_ld_imm(env, insn); 18645 if (err) 18646 return err; 18647 18648 env->insn_idx++; 18649 sanitize_mark_insn_seen(env); 18650 } else { 18651 verbose(env, "invalid BPF_LD mode\n"); 18652 return -EINVAL; 18653 } 18654 } else { 18655 verbose(env, "unknown insn class %d\n", class); 18656 return -EINVAL; 18657 } 18658 18659 env->insn_idx++; 18660 } 18661 18662 return 0; 18663 } 18664 18665 static int find_btf_percpu_datasec(struct btf *btf) 18666 { 18667 const struct btf_type *t; 18668 const char *tname; 18669 int i, n; 18670 18671 /* 18672 * Both vmlinux and module each have their own ".data..percpu" 18673 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 18674 * types to look at only module's own BTF types. 18675 */ 18676 n = btf_nr_types(btf); 18677 if (btf_is_module(btf)) 18678 i = btf_nr_types(btf_vmlinux); 18679 else 18680 i = 1; 18681 18682 for(; i < n; i++) { 18683 t = btf_type_by_id(btf, i); 18684 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 18685 continue; 18686 18687 tname = btf_name_by_offset(btf, t->name_off); 18688 if (!strcmp(tname, ".data..percpu")) 18689 return i; 18690 } 18691 18692 return -ENOENT; 18693 } 18694 18695 /* replace pseudo btf_id with kernel symbol address */ 18696 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 18697 struct bpf_insn *insn, 18698 struct bpf_insn_aux_data *aux) 18699 { 18700 const struct btf_var_secinfo *vsi; 18701 const struct btf_type *datasec; 18702 struct btf_mod_pair *btf_mod; 18703 const struct btf_type *t; 18704 const char *sym_name; 18705 bool percpu = false; 18706 u32 type, id = insn->imm; 18707 struct btf *btf; 18708 s32 datasec_id; 18709 u64 addr; 18710 int i, btf_fd, err; 18711 18712 btf_fd = insn[1].imm; 18713 if (btf_fd) { 18714 btf = btf_get_by_fd(btf_fd); 18715 if (IS_ERR(btf)) { 18716 verbose(env, "invalid module BTF object FD specified.\n"); 18717 return -EINVAL; 18718 } 18719 } else { 18720 if (!btf_vmlinux) { 18721 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 18722 return -EINVAL; 18723 } 18724 btf = btf_vmlinux; 18725 btf_get(btf); 18726 } 18727 18728 t = btf_type_by_id(btf, id); 18729 if (!t) { 18730 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 18731 err = -ENOENT; 18732 goto err_put; 18733 } 18734 18735 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 18736 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 18737 err = -EINVAL; 18738 goto err_put; 18739 } 18740 18741 sym_name = btf_name_by_offset(btf, t->name_off); 18742 addr = kallsyms_lookup_name(sym_name); 18743 if (!addr) { 18744 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 18745 sym_name); 18746 err = -ENOENT; 18747 goto err_put; 18748 } 18749 insn[0].imm = (u32)addr; 18750 insn[1].imm = addr >> 32; 18751 18752 if (btf_type_is_func(t)) { 18753 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 18754 aux->btf_var.mem_size = 0; 18755 goto check_btf; 18756 } 18757 18758 datasec_id = find_btf_percpu_datasec(btf); 18759 if (datasec_id > 0) { 18760 datasec = btf_type_by_id(btf, datasec_id); 18761 for_each_vsi(i, datasec, vsi) { 18762 if (vsi->type == id) { 18763 percpu = true; 18764 break; 18765 } 18766 } 18767 } 18768 18769 type = t->type; 18770 t = btf_type_skip_modifiers(btf, type, NULL); 18771 if (percpu) { 18772 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 18773 aux->btf_var.btf = btf; 18774 aux->btf_var.btf_id = type; 18775 } else if (!btf_type_is_struct(t)) { 18776 const struct btf_type *ret; 18777 const char *tname; 18778 u32 tsize; 18779 18780 /* resolve the type size of ksym. */ 18781 ret = btf_resolve_size(btf, t, &tsize); 18782 if (IS_ERR(ret)) { 18783 tname = btf_name_by_offset(btf, t->name_off); 18784 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 18785 tname, PTR_ERR(ret)); 18786 err = -EINVAL; 18787 goto err_put; 18788 } 18789 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 18790 aux->btf_var.mem_size = tsize; 18791 } else { 18792 aux->btf_var.reg_type = PTR_TO_BTF_ID; 18793 aux->btf_var.btf = btf; 18794 aux->btf_var.btf_id = type; 18795 } 18796 check_btf: 18797 /* check whether we recorded this BTF (and maybe module) already */ 18798 for (i = 0; i < env->used_btf_cnt; i++) { 18799 if (env->used_btfs[i].btf == btf) { 18800 btf_put(btf); 18801 return 0; 18802 } 18803 } 18804 18805 if (env->used_btf_cnt >= MAX_USED_BTFS) { 18806 err = -E2BIG; 18807 goto err_put; 18808 } 18809 18810 btf_mod = &env->used_btfs[env->used_btf_cnt]; 18811 btf_mod->btf = btf; 18812 btf_mod->module = NULL; 18813 18814 /* if we reference variables from kernel module, bump its refcount */ 18815 if (btf_is_module(btf)) { 18816 btf_mod->module = btf_try_get_module(btf); 18817 if (!btf_mod->module) { 18818 err = -ENXIO; 18819 goto err_put; 18820 } 18821 } 18822 18823 env->used_btf_cnt++; 18824 18825 return 0; 18826 err_put: 18827 btf_put(btf); 18828 return err; 18829 } 18830 18831 static bool is_tracing_prog_type(enum bpf_prog_type type) 18832 { 18833 switch (type) { 18834 case BPF_PROG_TYPE_KPROBE: 18835 case BPF_PROG_TYPE_TRACEPOINT: 18836 case BPF_PROG_TYPE_PERF_EVENT: 18837 case BPF_PROG_TYPE_RAW_TRACEPOINT: 18838 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 18839 return true; 18840 default: 18841 return false; 18842 } 18843 } 18844 18845 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 18846 struct bpf_map *map, 18847 struct bpf_prog *prog) 18848 18849 { 18850 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18851 18852 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 18853 btf_record_has_field(map->record, BPF_RB_ROOT)) { 18854 if (is_tracing_prog_type(prog_type)) { 18855 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 18856 return -EINVAL; 18857 } 18858 } 18859 18860 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 18861 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 18862 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 18863 return -EINVAL; 18864 } 18865 18866 if (is_tracing_prog_type(prog_type)) { 18867 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 18868 return -EINVAL; 18869 } 18870 } 18871 18872 if (btf_record_has_field(map->record, BPF_TIMER)) { 18873 if (is_tracing_prog_type(prog_type)) { 18874 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 18875 return -EINVAL; 18876 } 18877 } 18878 18879 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) { 18880 if (is_tracing_prog_type(prog_type)) { 18881 verbose(env, "tracing progs cannot use bpf_wq yet\n"); 18882 return -EINVAL; 18883 } 18884 } 18885 18886 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 18887 !bpf_offload_prog_map_match(prog, map)) { 18888 verbose(env, "offload device mismatch between prog and map\n"); 18889 return -EINVAL; 18890 } 18891 18892 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 18893 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 18894 return -EINVAL; 18895 } 18896 18897 if (prog->sleepable) 18898 switch (map->map_type) { 18899 case BPF_MAP_TYPE_HASH: 18900 case BPF_MAP_TYPE_LRU_HASH: 18901 case BPF_MAP_TYPE_ARRAY: 18902 case BPF_MAP_TYPE_PERCPU_HASH: 18903 case BPF_MAP_TYPE_PERCPU_ARRAY: 18904 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 18905 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 18906 case BPF_MAP_TYPE_HASH_OF_MAPS: 18907 case BPF_MAP_TYPE_RINGBUF: 18908 case BPF_MAP_TYPE_USER_RINGBUF: 18909 case BPF_MAP_TYPE_INODE_STORAGE: 18910 case BPF_MAP_TYPE_SK_STORAGE: 18911 case BPF_MAP_TYPE_TASK_STORAGE: 18912 case BPF_MAP_TYPE_CGRP_STORAGE: 18913 case BPF_MAP_TYPE_QUEUE: 18914 case BPF_MAP_TYPE_STACK: 18915 case BPF_MAP_TYPE_ARENA: 18916 break; 18917 default: 18918 verbose(env, 18919 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 18920 return -EINVAL; 18921 } 18922 18923 return 0; 18924 } 18925 18926 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 18927 { 18928 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 18929 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 18930 } 18931 18932 /* Add map behind fd to used maps list, if it's not already there, and return 18933 * its index. Also set *reused to true if this map was already in the list of 18934 * used maps. 18935 * Returns <0 on error, or >= 0 index, on success. 18936 */ 18937 static int add_used_map_from_fd(struct bpf_verifier_env *env, int fd, bool *reused) 18938 { 18939 CLASS(fd, f)(fd); 18940 struct bpf_map *map; 18941 int i; 18942 18943 map = __bpf_map_get(f); 18944 if (IS_ERR(map)) { 18945 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 18946 return PTR_ERR(map); 18947 } 18948 18949 /* check whether we recorded this map already */ 18950 for (i = 0; i < env->used_map_cnt; i++) { 18951 if (env->used_maps[i] == map) { 18952 *reused = true; 18953 return i; 18954 } 18955 } 18956 18957 if (env->used_map_cnt >= MAX_USED_MAPS) { 18958 verbose(env, "The total number of maps per program has reached the limit of %u\n", 18959 MAX_USED_MAPS); 18960 return -E2BIG; 18961 } 18962 18963 if (env->prog->sleepable) 18964 atomic64_inc(&map->sleepable_refcnt); 18965 18966 /* hold the map. If the program is rejected by verifier, 18967 * the map will be released by release_maps() or it 18968 * will be used by the valid program until it's unloaded 18969 * and all maps are released in bpf_free_used_maps() 18970 */ 18971 bpf_map_inc(map); 18972 18973 *reused = false; 18974 env->used_maps[env->used_map_cnt++] = map; 18975 18976 return env->used_map_cnt - 1; 18977 } 18978 18979 /* find and rewrite pseudo imm in ld_imm64 instructions: 18980 * 18981 * 1. if it accesses map FD, replace it with actual map pointer. 18982 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 18983 * 18984 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 18985 */ 18986 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 18987 { 18988 struct bpf_insn *insn = env->prog->insnsi; 18989 int insn_cnt = env->prog->len; 18990 int i, err; 18991 18992 err = bpf_prog_calc_tag(env->prog); 18993 if (err) 18994 return err; 18995 18996 for (i = 0; i < insn_cnt; i++, insn++) { 18997 if (BPF_CLASS(insn->code) == BPF_LDX && 18998 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 18999 insn->imm != 0)) { 19000 verbose(env, "BPF_LDX uses reserved fields\n"); 19001 return -EINVAL; 19002 } 19003 19004 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 19005 struct bpf_insn_aux_data *aux; 19006 struct bpf_map *map; 19007 int map_idx; 19008 u64 addr; 19009 u32 fd; 19010 bool reused; 19011 19012 if (i == insn_cnt - 1 || insn[1].code != 0 || 19013 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 19014 insn[1].off != 0) { 19015 verbose(env, "invalid bpf_ld_imm64 insn\n"); 19016 return -EINVAL; 19017 } 19018 19019 if (insn[0].src_reg == 0) 19020 /* valid generic load 64-bit imm */ 19021 goto next_insn; 19022 19023 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 19024 aux = &env->insn_aux_data[i]; 19025 err = check_pseudo_btf_id(env, insn, aux); 19026 if (err) 19027 return err; 19028 goto next_insn; 19029 } 19030 19031 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 19032 aux = &env->insn_aux_data[i]; 19033 aux->ptr_type = PTR_TO_FUNC; 19034 goto next_insn; 19035 } 19036 19037 /* In final convert_pseudo_ld_imm64() step, this is 19038 * converted into regular 64-bit imm load insn. 19039 */ 19040 switch (insn[0].src_reg) { 19041 case BPF_PSEUDO_MAP_VALUE: 19042 case BPF_PSEUDO_MAP_IDX_VALUE: 19043 break; 19044 case BPF_PSEUDO_MAP_FD: 19045 case BPF_PSEUDO_MAP_IDX: 19046 if (insn[1].imm == 0) 19047 break; 19048 fallthrough; 19049 default: 19050 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 19051 return -EINVAL; 19052 } 19053 19054 switch (insn[0].src_reg) { 19055 case BPF_PSEUDO_MAP_IDX_VALUE: 19056 case BPF_PSEUDO_MAP_IDX: 19057 if (bpfptr_is_null(env->fd_array)) { 19058 verbose(env, "fd_idx without fd_array is invalid\n"); 19059 return -EPROTO; 19060 } 19061 if (copy_from_bpfptr_offset(&fd, env->fd_array, 19062 insn[0].imm * sizeof(fd), 19063 sizeof(fd))) 19064 return -EFAULT; 19065 break; 19066 default: 19067 fd = insn[0].imm; 19068 break; 19069 } 19070 19071 map_idx = add_used_map_from_fd(env, fd, &reused); 19072 if (map_idx < 0) 19073 return map_idx; 19074 map = env->used_maps[map_idx]; 19075 19076 aux = &env->insn_aux_data[i]; 19077 aux->map_index = map_idx; 19078 19079 err = check_map_prog_compatibility(env, map, env->prog); 19080 if (err) 19081 return err; 19082 19083 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 19084 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 19085 addr = (unsigned long)map; 19086 } else { 19087 u32 off = insn[1].imm; 19088 19089 if (off >= BPF_MAX_VAR_OFF) { 19090 verbose(env, "direct value offset of %u is not allowed\n", off); 19091 return -EINVAL; 19092 } 19093 19094 if (!map->ops->map_direct_value_addr) { 19095 verbose(env, "no direct value access support for this map type\n"); 19096 return -EINVAL; 19097 } 19098 19099 err = map->ops->map_direct_value_addr(map, &addr, off); 19100 if (err) { 19101 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 19102 map->value_size, off); 19103 return err; 19104 } 19105 19106 aux->map_off = off; 19107 addr += off; 19108 } 19109 19110 insn[0].imm = (u32)addr; 19111 insn[1].imm = addr >> 32; 19112 19113 /* proceed with extra checks only if its newly added used map */ 19114 if (reused) 19115 goto next_insn; 19116 19117 if (bpf_map_is_cgroup_storage(map) && 19118 bpf_cgroup_storage_assign(env->prog->aux, map)) { 19119 verbose(env, "only one cgroup storage of each type is allowed\n"); 19120 return -EBUSY; 19121 } 19122 if (map->map_type == BPF_MAP_TYPE_ARENA) { 19123 if (env->prog->aux->arena) { 19124 verbose(env, "Only one arena per program\n"); 19125 return -EBUSY; 19126 } 19127 if (!env->allow_ptr_leaks || !env->bpf_capable) { 19128 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); 19129 return -EPERM; 19130 } 19131 if (!env->prog->jit_requested) { 19132 verbose(env, "JIT is required to use arena\n"); 19133 return -EOPNOTSUPP; 19134 } 19135 if (!bpf_jit_supports_arena()) { 19136 verbose(env, "JIT doesn't support arena\n"); 19137 return -EOPNOTSUPP; 19138 } 19139 env->prog->aux->arena = (void *)map; 19140 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { 19141 verbose(env, "arena's user address must be set via map_extra or mmap()\n"); 19142 return -EINVAL; 19143 } 19144 } 19145 19146 next_insn: 19147 insn++; 19148 i++; 19149 continue; 19150 } 19151 19152 /* Basic sanity check before we invest more work here. */ 19153 if (!bpf_opcode_in_insntable(insn->code)) { 19154 verbose(env, "unknown opcode %02x\n", insn->code); 19155 return -EINVAL; 19156 } 19157 } 19158 19159 /* now all pseudo BPF_LD_IMM64 instructions load valid 19160 * 'struct bpf_map *' into a register instead of user map_fd. 19161 * These pointers will be used later by verifier to validate map access. 19162 */ 19163 return 0; 19164 } 19165 19166 /* drop refcnt of maps used by the rejected program */ 19167 static void release_maps(struct bpf_verifier_env *env) 19168 { 19169 __bpf_free_used_maps(env->prog->aux, env->used_maps, 19170 env->used_map_cnt); 19171 } 19172 19173 /* drop refcnt of maps used by the rejected program */ 19174 static void release_btfs(struct bpf_verifier_env *env) 19175 { 19176 __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt); 19177 } 19178 19179 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 19180 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 19181 { 19182 struct bpf_insn *insn = env->prog->insnsi; 19183 int insn_cnt = env->prog->len; 19184 int i; 19185 19186 for (i = 0; i < insn_cnt; i++, insn++) { 19187 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 19188 continue; 19189 if (insn->src_reg == BPF_PSEUDO_FUNC) 19190 continue; 19191 insn->src_reg = 0; 19192 } 19193 } 19194 19195 /* single env->prog->insni[off] instruction was replaced with the range 19196 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 19197 * [0, off) and [off, end) to new locations, so the patched range stays zero 19198 */ 19199 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 19200 struct bpf_insn_aux_data *new_data, 19201 struct bpf_prog *new_prog, u32 off, u32 cnt) 19202 { 19203 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 19204 struct bpf_insn *insn = new_prog->insnsi; 19205 u32 old_seen = old_data[off].seen; 19206 u32 prog_len; 19207 int i; 19208 19209 /* aux info at OFF always needs adjustment, no matter fast path 19210 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 19211 * original insn at old prog. 19212 */ 19213 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 19214 19215 if (cnt == 1) 19216 return; 19217 prog_len = new_prog->len; 19218 19219 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 19220 memcpy(new_data + off + cnt - 1, old_data + off, 19221 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 19222 for (i = off; i < off + cnt - 1; i++) { 19223 /* Expand insni[off]'s seen count to the patched range. */ 19224 new_data[i].seen = old_seen; 19225 new_data[i].zext_dst = insn_has_def32(env, insn + i); 19226 } 19227 env->insn_aux_data = new_data; 19228 vfree(old_data); 19229 } 19230 19231 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 19232 { 19233 int i; 19234 19235 if (len == 1) 19236 return; 19237 /* NOTE: fake 'exit' subprog should be updated as well. */ 19238 for (i = 0; i <= env->subprog_cnt; i++) { 19239 if (env->subprog_info[i].start <= off) 19240 continue; 19241 env->subprog_info[i].start += len - 1; 19242 } 19243 } 19244 19245 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 19246 { 19247 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 19248 int i, sz = prog->aux->size_poke_tab; 19249 struct bpf_jit_poke_descriptor *desc; 19250 19251 for (i = 0; i < sz; i++) { 19252 desc = &tab[i]; 19253 if (desc->insn_idx <= off) 19254 continue; 19255 desc->insn_idx += len - 1; 19256 } 19257 } 19258 19259 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 19260 const struct bpf_insn *patch, u32 len) 19261 { 19262 struct bpf_prog *new_prog; 19263 struct bpf_insn_aux_data *new_data = NULL; 19264 19265 if (len > 1) { 19266 new_data = vzalloc(array_size(env->prog->len + len - 1, 19267 sizeof(struct bpf_insn_aux_data))); 19268 if (!new_data) 19269 return NULL; 19270 } 19271 19272 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 19273 if (IS_ERR(new_prog)) { 19274 if (PTR_ERR(new_prog) == -ERANGE) 19275 verbose(env, 19276 "insn %d cannot be patched due to 16-bit range\n", 19277 env->insn_aux_data[off].orig_idx); 19278 vfree(new_data); 19279 return NULL; 19280 } 19281 adjust_insn_aux_data(env, new_data, new_prog, off, len); 19282 adjust_subprog_starts(env, off, len); 19283 adjust_poke_descs(new_prog, off, len); 19284 return new_prog; 19285 } 19286 19287 /* 19288 * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the 19289 * jump offset by 'delta'. 19290 */ 19291 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta) 19292 { 19293 struct bpf_insn *insn = prog->insnsi; 19294 u32 insn_cnt = prog->len, i; 19295 s32 imm; 19296 s16 off; 19297 19298 for (i = 0; i < insn_cnt; i++, insn++) { 19299 u8 code = insn->code; 19300 19301 if (tgt_idx <= i && i < tgt_idx + delta) 19302 continue; 19303 19304 if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || 19305 BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT) 19306 continue; 19307 19308 if (insn->code == (BPF_JMP32 | BPF_JA)) { 19309 if (i + 1 + insn->imm != tgt_idx) 19310 continue; 19311 if (check_add_overflow(insn->imm, delta, &imm)) 19312 return -ERANGE; 19313 insn->imm = imm; 19314 } else { 19315 if (i + 1 + insn->off != tgt_idx) 19316 continue; 19317 if (check_add_overflow(insn->off, delta, &off)) 19318 return -ERANGE; 19319 insn->off = off; 19320 } 19321 } 19322 return 0; 19323 } 19324 19325 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 19326 u32 off, u32 cnt) 19327 { 19328 int i, j; 19329 19330 /* find first prog starting at or after off (first to remove) */ 19331 for (i = 0; i < env->subprog_cnt; i++) 19332 if (env->subprog_info[i].start >= off) 19333 break; 19334 /* find first prog starting at or after off + cnt (first to stay) */ 19335 for (j = i; j < env->subprog_cnt; j++) 19336 if (env->subprog_info[j].start >= off + cnt) 19337 break; 19338 /* if j doesn't start exactly at off + cnt, we are just removing 19339 * the front of previous prog 19340 */ 19341 if (env->subprog_info[j].start != off + cnt) 19342 j--; 19343 19344 if (j > i) { 19345 struct bpf_prog_aux *aux = env->prog->aux; 19346 int move; 19347 19348 /* move fake 'exit' subprog as well */ 19349 move = env->subprog_cnt + 1 - j; 19350 19351 memmove(env->subprog_info + i, 19352 env->subprog_info + j, 19353 sizeof(*env->subprog_info) * move); 19354 env->subprog_cnt -= j - i; 19355 19356 /* remove func_info */ 19357 if (aux->func_info) { 19358 move = aux->func_info_cnt - j; 19359 19360 memmove(aux->func_info + i, 19361 aux->func_info + j, 19362 sizeof(*aux->func_info) * move); 19363 aux->func_info_cnt -= j - i; 19364 /* func_info->insn_off is set after all code rewrites, 19365 * in adjust_btf_func() - no need to adjust 19366 */ 19367 } 19368 } else { 19369 /* convert i from "first prog to remove" to "first to adjust" */ 19370 if (env->subprog_info[i].start == off) 19371 i++; 19372 } 19373 19374 /* update fake 'exit' subprog as well */ 19375 for (; i <= env->subprog_cnt; i++) 19376 env->subprog_info[i].start -= cnt; 19377 19378 return 0; 19379 } 19380 19381 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 19382 u32 cnt) 19383 { 19384 struct bpf_prog *prog = env->prog; 19385 u32 i, l_off, l_cnt, nr_linfo; 19386 struct bpf_line_info *linfo; 19387 19388 nr_linfo = prog->aux->nr_linfo; 19389 if (!nr_linfo) 19390 return 0; 19391 19392 linfo = prog->aux->linfo; 19393 19394 /* find first line info to remove, count lines to be removed */ 19395 for (i = 0; i < nr_linfo; i++) 19396 if (linfo[i].insn_off >= off) 19397 break; 19398 19399 l_off = i; 19400 l_cnt = 0; 19401 for (; i < nr_linfo; i++) 19402 if (linfo[i].insn_off < off + cnt) 19403 l_cnt++; 19404 else 19405 break; 19406 19407 /* First live insn doesn't match first live linfo, it needs to "inherit" 19408 * last removed linfo. prog is already modified, so prog->len == off 19409 * means no live instructions after (tail of the program was removed). 19410 */ 19411 if (prog->len != off && l_cnt && 19412 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 19413 l_cnt--; 19414 linfo[--i].insn_off = off + cnt; 19415 } 19416 19417 /* remove the line info which refer to the removed instructions */ 19418 if (l_cnt) { 19419 memmove(linfo + l_off, linfo + i, 19420 sizeof(*linfo) * (nr_linfo - i)); 19421 19422 prog->aux->nr_linfo -= l_cnt; 19423 nr_linfo = prog->aux->nr_linfo; 19424 } 19425 19426 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 19427 for (i = l_off; i < nr_linfo; i++) 19428 linfo[i].insn_off -= cnt; 19429 19430 /* fix up all subprogs (incl. 'exit') which start >= off */ 19431 for (i = 0; i <= env->subprog_cnt; i++) 19432 if (env->subprog_info[i].linfo_idx > l_off) { 19433 /* program may have started in the removed region but 19434 * may not be fully removed 19435 */ 19436 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 19437 env->subprog_info[i].linfo_idx -= l_cnt; 19438 else 19439 env->subprog_info[i].linfo_idx = l_off; 19440 } 19441 19442 return 0; 19443 } 19444 19445 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 19446 { 19447 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 19448 unsigned int orig_prog_len = env->prog->len; 19449 int err; 19450 19451 if (bpf_prog_is_offloaded(env->prog->aux)) 19452 bpf_prog_offload_remove_insns(env, off, cnt); 19453 19454 err = bpf_remove_insns(env->prog, off, cnt); 19455 if (err) 19456 return err; 19457 19458 err = adjust_subprog_starts_after_remove(env, off, cnt); 19459 if (err) 19460 return err; 19461 19462 err = bpf_adj_linfo_after_remove(env, off, cnt); 19463 if (err) 19464 return err; 19465 19466 memmove(aux_data + off, aux_data + off + cnt, 19467 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 19468 19469 return 0; 19470 } 19471 19472 /* The verifier does more data flow analysis than llvm and will not 19473 * explore branches that are dead at run time. Malicious programs can 19474 * have dead code too. Therefore replace all dead at-run-time code 19475 * with 'ja -1'. 19476 * 19477 * Just nops are not optimal, e.g. if they would sit at the end of the 19478 * program and through another bug we would manage to jump there, then 19479 * we'd execute beyond program memory otherwise. Returning exception 19480 * code also wouldn't work since we can have subprogs where the dead 19481 * code could be located. 19482 */ 19483 static void sanitize_dead_code(struct bpf_verifier_env *env) 19484 { 19485 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 19486 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 19487 struct bpf_insn *insn = env->prog->insnsi; 19488 const int insn_cnt = env->prog->len; 19489 int i; 19490 19491 for (i = 0; i < insn_cnt; i++) { 19492 if (aux_data[i].seen) 19493 continue; 19494 memcpy(insn + i, &trap, sizeof(trap)); 19495 aux_data[i].zext_dst = false; 19496 } 19497 } 19498 19499 static bool insn_is_cond_jump(u8 code) 19500 { 19501 u8 op; 19502 19503 op = BPF_OP(code); 19504 if (BPF_CLASS(code) == BPF_JMP32) 19505 return op != BPF_JA; 19506 19507 if (BPF_CLASS(code) != BPF_JMP) 19508 return false; 19509 19510 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 19511 } 19512 19513 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 19514 { 19515 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 19516 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 19517 struct bpf_insn *insn = env->prog->insnsi; 19518 const int insn_cnt = env->prog->len; 19519 int i; 19520 19521 for (i = 0; i < insn_cnt; i++, insn++) { 19522 if (!insn_is_cond_jump(insn->code)) 19523 continue; 19524 19525 if (!aux_data[i + 1].seen) 19526 ja.off = insn->off; 19527 else if (!aux_data[i + 1 + insn->off].seen) 19528 ja.off = 0; 19529 else 19530 continue; 19531 19532 if (bpf_prog_is_offloaded(env->prog->aux)) 19533 bpf_prog_offload_replace_insn(env, i, &ja); 19534 19535 memcpy(insn, &ja, sizeof(ja)); 19536 } 19537 } 19538 19539 static int opt_remove_dead_code(struct bpf_verifier_env *env) 19540 { 19541 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 19542 int insn_cnt = env->prog->len; 19543 int i, err; 19544 19545 for (i = 0; i < insn_cnt; i++) { 19546 int j; 19547 19548 j = 0; 19549 while (i + j < insn_cnt && !aux_data[i + j].seen) 19550 j++; 19551 if (!j) 19552 continue; 19553 19554 err = verifier_remove_insns(env, i, j); 19555 if (err) 19556 return err; 19557 insn_cnt = env->prog->len; 19558 } 19559 19560 return 0; 19561 } 19562 19563 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 19564 19565 static int opt_remove_nops(struct bpf_verifier_env *env) 19566 { 19567 const struct bpf_insn ja = NOP; 19568 struct bpf_insn *insn = env->prog->insnsi; 19569 int insn_cnt = env->prog->len; 19570 int i, err; 19571 19572 for (i = 0; i < insn_cnt; i++) { 19573 if (memcmp(&insn[i], &ja, sizeof(ja))) 19574 continue; 19575 19576 err = verifier_remove_insns(env, i, 1); 19577 if (err) 19578 return err; 19579 insn_cnt--; 19580 i--; 19581 } 19582 19583 return 0; 19584 } 19585 19586 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 19587 const union bpf_attr *attr) 19588 { 19589 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 19590 struct bpf_insn_aux_data *aux = env->insn_aux_data; 19591 int i, patch_len, delta = 0, len = env->prog->len; 19592 struct bpf_insn *insns = env->prog->insnsi; 19593 struct bpf_prog *new_prog; 19594 bool rnd_hi32; 19595 19596 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 19597 zext_patch[1] = BPF_ZEXT_REG(0); 19598 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 19599 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 19600 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 19601 for (i = 0; i < len; i++) { 19602 int adj_idx = i + delta; 19603 struct bpf_insn insn; 19604 int load_reg; 19605 19606 insn = insns[adj_idx]; 19607 load_reg = insn_def_regno(&insn); 19608 if (!aux[adj_idx].zext_dst) { 19609 u8 code, class; 19610 u32 imm_rnd; 19611 19612 if (!rnd_hi32) 19613 continue; 19614 19615 code = insn.code; 19616 class = BPF_CLASS(code); 19617 if (load_reg == -1) 19618 continue; 19619 19620 /* NOTE: arg "reg" (the fourth one) is only used for 19621 * BPF_STX + SRC_OP, so it is safe to pass NULL 19622 * here. 19623 */ 19624 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 19625 if (class == BPF_LD && 19626 BPF_MODE(code) == BPF_IMM) 19627 i++; 19628 continue; 19629 } 19630 19631 /* ctx load could be transformed into wider load. */ 19632 if (class == BPF_LDX && 19633 aux[adj_idx].ptr_type == PTR_TO_CTX) 19634 continue; 19635 19636 imm_rnd = get_random_u32(); 19637 rnd_hi32_patch[0] = insn; 19638 rnd_hi32_patch[1].imm = imm_rnd; 19639 rnd_hi32_patch[3].dst_reg = load_reg; 19640 patch = rnd_hi32_patch; 19641 patch_len = 4; 19642 goto apply_patch_buffer; 19643 } 19644 19645 /* Add in an zero-extend instruction if a) the JIT has requested 19646 * it or b) it's a CMPXCHG. 19647 * 19648 * The latter is because: BPF_CMPXCHG always loads a value into 19649 * R0, therefore always zero-extends. However some archs' 19650 * equivalent instruction only does this load when the 19651 * comparison is successful. This detail of CMPXCHG is 19652 * orthogonal to the general zero-extension behaviour of the 19653 * CPU, so it's treated independently of bpf_jit_needs_zext. 19654 */ 19655 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 19656 continue; 19657 19658 /* Zero-extension is done by the caller. */ 19659 if (bpf_pseudo_kfunc_call(&insn)) 19660 continue; 19661 19662 if (WARN_ON(load_reg == -1)) { 19663 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 19664 return -EFAULT; 19665 } 19666 19667 zext_patch[0] = insn; 19668 zext_patch[1].dst_reg = load_reg; 19669 zext_patch[1].src_reg = load_reg; 19670 patch = zext_patch; 19671 patch_len = 2; 19672 apply_patch_buffer: 19673 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 19674 if (!new_prog) 19675 return -ENOMEM; 19676 env->prog = new_prog; 19677 insns = new_prog->insnsi; 19678 aux = env->insn_aux_data; 19679 delta += patch_len - 1; 19680 } 19681 19682 return 0; 19683 } 19684 19685 /* convert load instructions that access fields of a context type into a 19686 * sequence of instructions that access fields of the underlying structure: 19687 * struct __sk_buff -> struct sk_buff 19688 * struct bpf_sock_ops -> struct sock 19689 */ 19690 static int convert_ctx_accesses(struct bpf_verifier_env *env) 19691 { 19692 struct bpf_subprog_info *subprogs = env->subprog_info; 19693 const struct bpf_verifier_ops *ops = env->ops; 19694 int i, cnt, size, ctx_field_size, delta = 0, epilogue_cnt = 0; 19695 const int insn_cnt = env->prog->len; 19696 struct bpf_insn *epilogue_buf = env->epilogue_buf; 19697 struct bpf_insn *insn_buf = env->insn_buf; 19698 struct bpf_insn *insn; 19699 u32 target_size, size_default, off; 19700 struct bpf_prog *new_prog; 19701 enum bpf_access_type type; 19702 bool is_narrower_load; 19703 int epilogue_idx = 0; 19704 19705 if (ops->gen_epilogue) { 19706 epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog, 19707 -(subprogs[0].stack_depth + 8)); 19708 if (epilogue_cnt >= INSN_BUF_SIZE) { 19709 verbose(env, "bpf verifier is misconfigured\n"); 19710 return -EINVAL; 19711 } else if (epilogue_cnt) { 19712 /* Save the ARG_PTR_TO_CTX for the epilogue to use */ 19713 cnt = 0; 19714 subprogs[0].stack_depth += 8; 19715 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1, 19716 -subprogs[0].stack_depth); 19717 insn_buf[cnt++] = env->prog->insnsi[0]; 19718 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 19719 if (!new_prog) 19720 return -ENOMEM; 19721 env->prog = new_prog; 19722 delta += cnt - 1; 19723 } 19724 } 19725 19726 if (ops->gen_prologue || env->seen_direct_write) { 19727 if (!ops->gen_prologue) { 19728 verbose(env, "bpf verifier is misconfigured\n"); 19729 return -EINVAL; 19730 } 19731 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 19732 env->prog); 19733 if (cnt >= INSN_BUF_SIZE) { 19734 verbose(env, "bpf verifier is misconfigured\n"); 19735 return -EINVAL; 19736 } else if (cnt) { 19737 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 19738 if (!new_prog) 19739 return -ENOMEM; 19740 19741 env->prog = new_prog; 19742 delta += cnt - 1; 19743 } 19744 } 19745 19746 if (delta) 19747 WARN_ON(adjust_jmp_off(env->prog, 0, delta)); 19748 19749 if (bpf_prog_is_offloaded(env->prog->aux)) 19750 return 0; 19751 19752 insn = env->prog->insnsi + delta; 19753 19754 for (i = 0; i < insn_cnt; i++, insn++) { 19755 bpf_convert_ctx_access_t convert_ctx_access; 19756 u8 mode; 19757 19758 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 19759 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 19760 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 19761 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 19762 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 19763 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 19764 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 19765 type = BPF_READ; 19766 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 19767 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 19768 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 19769 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 19770 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 19771 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 19772 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 19773 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 19774 type = BPF_WRITE; 19775 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) || 19776 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) && 19777 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) { 19778 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code); 19779 env->prog->aux->num_exentries++; 19780 continue; 19781 } else if (insn->code == (BPF_JMP | BPF_EXIT) && 19782 epilogue_cnt && 19783 i + delta < subprogs[1].start) { 19784 /* Generate epilogue for the main prog */ 19785 if (epilogue_idx) { 19786 /* jump back to the earlier generated epilogue */ 19787 insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1); 19788 cnt = 1; 19789 } else { 19790 memcpy(insn_buf, epilogue_buf, 19791 epilogue_cnt * sizeof(*epilogue_buf)); 19792 cnt = epilogue_cnt; 19793 /* epilogue_idx cannot be 0. It must have at 19794 * least one ctx ptr saving insn before the 19795 * epilogue. 19796 */ 19797 epilogue_idx = i + delta; 19798 } 19799 goto patch_insn_buf; 19800 } else { 19801 continue; 19802 } 19803 19804 if (type == BPF_WRITE && 19805 env->insn_aux_data[i + delta].sanitize_stack_spill) { 19806 struct bpf_insn patch[] = { 19807 *insn, 19808 BPF_ST_NOSPEC(), 19809 }; 19810 19811 cnt = ARRAY_SIZE(patch); 19812 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 19813 if (!new_prog) 19814 return -ENOMEM; 19815 19816 delta += cnt - 1; 19817 env->prog = new_prog; 19818 insn = new_prog->insnsi + i + delta; 19819 continue; 19820 } 19821 19822 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 19823 case PTR_TO_CTX: 19824 if (!ops->convert_ctx_access) 19825 continue; 19826 convert_ctx_access = ops->convert_ctx_access; 19827 break; 19828 case PTR_TO_SOCKET: 19829 case PTR_TO_SOCK_COMMON: 19830 convert_ctx_access = bpf_sock_convert_ctx_access; 19831 break; 19832 case PTR_TO_TCP_SOCK: 19833 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 19834 break; 19835 case PTR_TO_XDP_SOCK: 19836 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 19837 break; 19838 case PTR_TO_BTF_ID: 19839 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 19840 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 19841 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 19842 * be said once it is marked PTR_UNTRUSTED, hence we must handle 19843 * any faults for loads into such types. BPF_WRITE is disallowed 19844 * for this case. 19845 */ 19846 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 19847 if (type == BPF_READ) { 19848 if (BPF_MODE(insn->code) == BPF_MEM) 19849 insn->code = BPF_LDX | BPF_PROBE_MEM | 19850 BPF_SIZE((insn)->code); 19851 else 19852 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 19853 BPF_SIZE((insn)->code); 19854 env->prog->aux->num_exentries++; 19855 } 19856 continue; 19857 case PTR_TO_ARENA: 19858 if (BPF_MODE(insn->code) == BPF_MEMSX) { 19859 verbose(env, "sign extending loads from arena are not supported yet\n"); 19860 return -EOPNOTSUPP; 19861 } 19862 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); 19863 env->prog->aux->num_exentries++; 19864 continue; 19865 default: 19866 continue; 19867 } 19868 19869 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 19870 size = BPF_LDST_BYTES(insn); 19871 mode = BPF_MODE(insn->code); 19872 19873 /* If the read access is a narrower load of the field, 19874 * convert to a 4/8-byte load, to minimum program type specific 19875 * convert_ctx_access changes. If conversion is successful, 19876 * we will apply proper mask to the result. 19877 */ 19878 is_narrower_load = size < ctx_field_size; 19879 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 19880 off = insn->off; 19881 if (is_narrower_load) { 19882 u8 size_code; 19883 19884 if (type == BPF_WRITE) { 19885 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 19886 return -EINVAL; 19887 } 19888 19889 size_code = BPF_H; 19890 if (ctx_field_size == 4) 19891 size_code = BPF_W; 19892 else if (ctx_field_size == 8) 19893 size_code = BPF_DW; 19894 19895 insn->off = off & ~(size_default - 1); 19896 insn->code = BPF_LDX | BPF_MEM | size_code; 19897 } 19898 19899 target_size = 0; 19900 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 19901 &target_size); 19902 if (cnt == 0 || cnt >= INSN_BUF_SIZE || 19903 (ctx_field_size && !target_size)) { 19904 verbose(env, "bpf verifier is misconfigured\n"); 19905 return -EINVAL; 19906 } 19907 19908 if (is_narrower_load && size < target_size) { 19909 u8 shift = bpf_ctx_narrow_access_offset( 19910 off, size, size_default) * 8; 19911 if (shift && cnt + 1 >= INSN_BUF_SIZE) { 19912 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 19913 return -EINVAL; 19914 } 19915 if (ctx_field_size <= 4) { 19916 if (shift) 19917 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 19918 insn->dst_reg, 19919 shift); 19920 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 19921 (1 << size * 8) - 1); 19922 } else { 19923 if (shift) 19924 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 19925 insn->dst_reg, 19926 shift); 19927 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 19928 (1ULL << size * 8) - 1); 19929 } 19930 } 19931 if (mode == BPF_MEMSX) 19932 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 19933 insn->dst_reg, insn->dst_reg, 19934 size * 8, 0); 19935 19936 patch_insn_buf: 19937 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19938 if (!new_prog) 19939 return -ENOMEM; 19940 19941 delta += cnt - 1; 19942 19943 /* keep walking new program and skip insns we just inserted */ 19944 env->prog = new_prog; 19945 insn = new_prog->insnsi + i + delta; 19946 } 19947 19948 return 0; 19949 } 19950 19951 static int jit_subprogs(struct bpf_verifier_env *env) 19952 { 19953 struct bpf_prog *prog = env->prog, **func, *tmp; 19954 int i, j, subprog_start, subprog_end = 0, len, subprog; 19955 struct bpf_map *map_ptr; 19956 struct bpf_insn *insn; 19957 void *old_bpf_func; 19958 int err, num_exentries; 19959 19960 if (env->subprog_cnt <= 1) 19961 return 0; 19962 19963 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 19964 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 19965 continue; 19966 19967 /* Upon error here we cannot fall back to interpreter but 19968 * need a hard reject of the program. Thus -EFAULT is 19969 * propagated in any case. 19970 */ 19971 subprog = find_subprog(env, i + insn->imm + 1); 19972 if (subprog < 0) { 19973 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 19974 i + insn->imm + 1); 19975 return -EFAULT; 19976 } 19977 /* temporarily remember subprog id inside insn instead of 19978 * aux_data, since next loop will split up all insns into funcs 19979 */ 19980 insn->off = subprog; 19981 /* remember original imm in case JIT fails and fallback 19982 * to interpreter will be needed 19983 */ 19984 env->insn_aux_data[i].call_imm = insn->imm; 19985 /* point imm to __bpf_call_base+1 from JITs point of view */ 19986 insn->imm = 1; 19987 if (bpf_pseudo_func(insn)) { 19988 #if defined(MODULES_VADDR) 19989 u64 addr = MODULES_VADDR; 19990 #else 19991 u64 addr = VMALLOC_START; 19992 #endif 19993 /* jit (e.g. x86_64) may emit fewer instructions 19994 * if it learns a u32 imm is the same as a u64 imm. 19995 * Set close enough to possible prog address. 19996 */ 19997 insn[0].imm = (u32)addr; 19998 insn[1].imm = addr >> 32; 19999 } 20000 } 20001 20002 err = bpf_prog_alloc_jited_linfo(prog); 20003 if (err) 20004 goto out_undo_insn; 20005 20006 err = -ENOMEM; 20007 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 20008 if (!func) 20009 goto out_undo_insn; 20010 20011 for (i = 0; i < env->subprog_cnt; i++) { 20012 subprog_start = subprog_end; 20013 subprog_end = env->subprog_info[i + 1].start; 20014 20015 len = subprog_end - subprog_start; 20016 /* bpf_prog_run() doesn't call subprogs directly, 20017 * hence main prog stats include the runtime of subprogs. 20018 * subprogs don't have IDs and not reachable via prog_get_next_id 20019 * func[i]->stats will never be accessed and stays NULL 20020 */ 20021 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 20022 if (!func[i]) 20023 goto out_free; 20024 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 20025 len * sizeof(struct bpf_insn)); 20026 func[i]->type = prog->type; 20027 func[i]->len = len; 20028 if (bpf_prog_calc_tag(func[i])) 20029 goto out_free; 20030 func[i]->is_func = 1; 20031 func[i]->sleepable = prog->sleepable; 20032 func[i]->aux->func_idx = i; 20033 /* Below members will be freed only at prog->aux */ 20034 func[i]->aux->btf = prog->aux->btf; 20035 func[i]->aux->func_info = prog->aux->func_info; 20036 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 20037 func[i]->aux->poke_tab = prog->aux->poke_tab; 20038 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 20039 20040 for (j = 0; j < prog->aux->size_poke_tab; j++) { 20041 struct bpf_jit_poke_descriptor *poke; 20042 20043 poke = &prog->aux->poke_tab[j]; 20044 if (poke->insn_idx < subprog_end && 20045 poke->insn_idx >= subprog_start) 20046 poke->aux = func[i]->aux; 20047 } 20048 20049 func[i]->aux->name[0] = 'F'; 20050 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 20051 func[i]->jit_requested = 1; 20052 func[i]->blinding_requested = prog->blinding_requested; 20053 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 20054 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 20055 func[i]->aux->linfo = prog->aux->linfo; 20056 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 20057 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 20058 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 20059 func[i]->aux->arena = prog->aux->arena; 20060 num_exentries = 0; 20061 insn = func[i]->insnsi; 20062 for (j = 0; j < func[i]->len; j++, insn++) { 20063 if (BPF_CLASS(insn->code) == BPF_LDX && 20064 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 20065 BPF_MODE(insn->code) == BPF_PROBE_MEM32 || 20066 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 20067 num_exentries++; 20068 if ((BPF_CLASS(insn->code) == BPF_STX || 20069 BPF_CLASS(insn->code) == BPF_ST) && 20070 BPF_MODE(insn->code) == BPF_PROBE_MEM32) 20071 num_exentries++; 20072 if (BPF_CLASS(insn->code) == BPF_STX && 20073 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) 20074 num_exentries++; 20075 } 20076 func[i]->aux->num_exentries = num_exentries; 20077 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 20078 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 20079 if (!i) 20080 func[i]->aux->exception_boundary = env->seen_exception; 20081 func[i] = bpf_int_jit_compile(func[i]); 20082 if (!func[i]->jited) { 20083 err = -ENOTSUPP; 20084 goto out_free; 20085 } 20086 cond_resched(); 20087 } 20088 20089 /* at this point all bpf functions were successfully JITed 20090 * now populate all bpf_calls with correct addresses and 20091 * run last pass of JIT 20092 */ 20093 for (i = 0; i < env->subprog_cnt; i++) { 20094 insn = func[i]->insnsi; 20095 for (j = 0; j < func[i]->len; j++, insn++) { 20096 if (bpf_pseudo_func(insn)) { 20097 subprog = insn->off; 20098 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 20099 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 20100 continue; 20101 } 20102 if (!bpf_pseudo_call(insn)) 20103 continue; 20104 subprog = insn->off; 20105 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 20106 } 20107 20108 /* we use the aux data to keep a list of the start addresses 20109 * of the JITed images for each function in the program 20110 * 20111 * for some architectures, such as powerpc64, the imm field 20112 * might not be large enough to hold the offset of the start 20113 * address of the callee's JITed image from __bpf_call_base 20114 * 20115 * in such cases, we can lookup the start address of a callee 20116 * by using its subprog id, available from the off field of 20117 * the call instruction, as an index for this list 20118 */ 20119 func[i]->aux->func = func; 20120 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 20121 func[i]->aux->real_func_cnt = env->subprog_cnt; 20122 } 20123 for (i = 0; i < env->subprog_cnt; i++) { 20124 old_bpf_func = func[i]->bpf_func; 20125 tmp = bpf_int_jit_compile(func[i]); 20126 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 20127 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 20128 err = -ENOTSUPP; 20129 goto out_free; 20130 } 20131 cond_resched(); 20132 } 20133 20134 /* finally lock prog and jit images for all functions and 20135 * populate kallsysm. Begin at the first subprogram, since 20136 * bpf_prog_load will add the kallsyms for the main program. 20137 */ 20138 for (i = 1; i < env->subprog_cnt; i++) { 20139 err = bpf_prog_lock_ro(func[i]); 20140 if (err) 20141 goto out_free; 20142 } 20143 20144 for (i = 1; i < env->subprog_cnt; i++) 20145 bpf_prog_kallsyms_add(func[i]); 20146 20147 /* Last step: make now unused interpreter insns from main 20148 * prog consistent for later dump requests, so they can 20149 * later look the same as if they were interpreted only. 20150 */ 20151 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 20152 if (bpf_pseudo_func(insn)) { 20153 insn[0].imm = env->insn_aux_data[i].call_imm; 20154 insn[1].imm = insn->off; 20155 insn->off = 0; 20156 continue; 20157 } 20158 if (!bpf_pseudo_call(insn)) 20159 continue; 20160 insn->off = env->insn_aux_data[i].call_imm; 20161 subprog = find_subprog(env, i + insn->off + 1); 20162 insn->imm = subprog; 20163 } 20164 20165 prog->jited = 1; 20166 prog->bpf_func = func[0]->bpf_func; 20167 prog->jited_len = func[0]->jited_len; 20168 prog->aux->extable = func[0]->aux->extable; 20169 prog->aux->num_exentries = func[0]->aux->num_exentries; 20170 prog->aux->func = func; 20171 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 20172 prog->aux->real_func_cnt = env->subprog_cnt; 20173 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 20174 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 20175 bpf_prog_jit_attempt_done(prog); 20176 return 0; 20177 out_free: 20178 /* We failed JIT'ing, so at this point we need to unregister poke 20179 * descriptors from subprogs, so that kernel is not attempting to 20180 * patch it anymore as we're freeing the subprog JIT memory. 20181 */ 20182 for (i = 0; i < prog->aux->size_poke_tab; i++) { 20183 map_ptr = prog->aux->poke_tab[i].tail_call.map; 20184 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 20185 } 20186 /* At this point we're guaranteed that poke descriptors are not 20187 * live anymore. We can just unlink its descriptor table as it's 20188 * released with the main prog. 20189 */ 20190 for (i = 0; i < env->subprog_cnt; i++) { 20191 if (!func[i]) 20192 continue; 20193 func[i]->aux->poke_tab = NULL; 20194 bpf_jit_free(func[i]); 20195 } 20196 kfree(func); 20197 out_undo_insn: 20198 /* cleanup main prog to be interpreted */ 20199 prog->jit_requested = 0; 20200 prog->blinding_requested = 0; 20201 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 20202 if (!bpf_pseudo_call(insn)) 20203 continue; 20204 insn->off = 0; 20205 insn->imm = env->insn_aux_data[i].call_imm; 20206 } 20207 bpf_prog_jit_attempt_done(prog); 20208 return err; 20209 } 20210 20211 static int fixup_call_args(struct bpf_verifier_env *env) 20212 { 20213 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 20214 struct bpf_prog *prog = env->prog; 20215 struct bpf_insn *insn = prog->insnsi; 20216 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 20217 int i, depth; 20218 #endif 20219 int err = 0; 20220 20221 if (env->prog->jit_requested && 20222 !bpf_prog_is_offloaded(env->prog->aux)) { 20223 err = jit_subprogs(env); 20224 if (err == 0) 20225 return 0; 20226 if (err == -EFAULT) 20227 return err; 20228 } 20229 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 20230 if (has_kfunc_call) { 20231 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 20232 return -EINVAL; 20233 } 20234 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 20235 /* When JIT fails the progs with bpf2bpf calls and tail_calls 20236 * have to be rejected, since interpreter doesn't support them yet. 20237 */ 20238 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 20239 return -EINVAL; 20240 } 20241 for (i = 0; i < prog->len; i++, insn++) { 20242 if (bpf_pseudo_func(insn)) { 20243 /* When JIT fails the progs with callback calls 20244 * have to be rejected, since interpreter doesn't support them yet. 20245 */ 20246 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 20247 return -EINVAL; 20248 } 20249 20250 if (!bpf_pseudo_call(insn)) 20251 continue; 20252 depth = get_callee_stack_depth(env, insn, i); 20253 if (depth < 0) 20254 return depth; 20255 bpf_patch_call_args(insn, depth); 20256 } 20257 err = 0; 20258 #endif 20259 return err; 20260 } 20261 20262 /* replace a generic kfunc with a specialized version if necessary */ 20263 static void specialize_kfunc(struct bpf_verifier_env *env, 20264 u32 func_id, u16 offset, unsigned long *addr) 20265 { 20266 struct bpf_prog *prog = env->prog; 20267 bool seen_direct_write; 20268 void *xdp_kfunc; 20269 bool is_rdonly; 20270 20271 if (bpf_dev_bound_kfunc_id(func_id)) { 20272 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 20273 if (xdp_kfunc) { 20274 *addr = (unsigned long)xdp_kfunc; 20275 return; 20276 } 20277 /* fallback to default kfunc when not supported by netdev */ 20278 } 20279 20280 if (offset) 20281 return; 20282 20283 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 20284 seen_direct_write = env->seen_direct_write; 20285 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 20286 20287 if (is_rdonly) 20288 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 20289 20290 /* restore env->seen_direct_write to its original value, since 20291 * may_access_direct_pkt_data mutates it 20292 */ 20293 env->seen_direct_write = seen_direct_write; 20294 } 20295 } 20296 20297 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 20298 u16 struct_meta_reg, 20299 u16 node_offset_reg, 20300 struct bpf_insn *insn, 20301 struct bpf_insn *insn_buf, 20302 int *cnt) 20303 { 20304 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 20305 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 20306 20307 insn_buf[0] = addr[0]; 20308 insn_buf[1] = addr[1]; 20309 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 20310 insn_buf[3] = *insn; 20311 *cnt = 4; 20312 } 20313 20314 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 20315 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 20316 { 20317 const struct bpf_kfunc_desc *desc; 20318 20319 if (!insn->imm) { 20320 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 20321 return -EINVAL; 20322 } 20323 20324 *cnt = 0; 20325 20326 /* insn->imm has the btf func_id. Replace it with an offset relative to 20327 * __bpf_call_base, unless the JIT needs to call functions that are 20328 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 20329 */ 20330 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 20331 if (!desc) { 20332 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 20333 insn->imm); 20334 return -EFAULT; 20335 } 20336 20337 if (!bpf_jit_supports_far_kfunc_call()) 20338 insn->imm = BPF_CALL_IMM(desc->addr); 20339 if (insn->off) 20340 return 0; 20341 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 20342 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 20343 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 20344 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 20345 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 20346 20347 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 20348 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 20349 insn_idx); 20350 return -EFAULT; 20351 } 20352 20353 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 20354 insn_buf[1] = addr[0]; 20355 insn_buf[2] = addr[1]; 20356 insn_buf[3] = *insn; 20357 *cnt = 4; 20358 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 20359 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 20360 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 20361 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 20362 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 20363 20364 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 20365 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 20366 insn_idx); 20367 return -EFAULT; 20368 } 20369 20370 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 20371 !kptr_struct_meta) { 20372 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 20373 insn_idx); 20374 return -EFAULT; 20375 } 20376 20377 insn_buf[0] = addr[0]; 20378 insn_buf[1] = addr[1]; 20379 insn_buf[2] = *insn; 20380 *cnt = 3; 20381 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 20382 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 20383 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 20384 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 20385 int struct_meta_reg = BPF_REG_3; 20386 int node_offset_reg = BPF_REG_4; 20387 20388 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 20389 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 20390 struct_meta_reg = BPF_REG_4; 20391 node_offset_reg = BPF_REG_5; 20392 } 20393 20394 if (!kptr_struct_meta) { 20395 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 20396 insn_idx); 20397 return -EFAULT; 20398 } 20399 20400 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 20401 node_offset_reg, insn, insn_buf, cnt); 20402 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 20403 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 20404 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 20405 *cnt = 1; 20406 } else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) { 20407 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) }; 20408 20409 insn_buf[0] = ld_addrs[0]; 20410 insn_buf[1] = ld_addrs[1]; 20411 insn_buf[2] = *insn; 20412 *cnt = 3; 20413 } 20414 return 0; 20415 } 20416 20417 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 20418 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 20419 { 20420 struct bpf_subprog_info *info = env->subprog_info; 20421 int cnt = env->subprog_cnt; 20422 struct bpf_prog *prog; 20423 20424 /* We only reserve one slot for hidden subprogs in subprog_info. */ 20425 if (env->hidden_subprog_cnt) { 20426 verbose(env, "verifier internal error: only one hidden subprog supported\n"); 20427 return -EFAULT; 20428 } 20429 /* We're not patching any existing instruction, just appending the new 20430 * ones for the hidden subprog. Hence all of the adjustment operations 20431 * in bpf_patch_insn_data are no-ops. 20432 */ 20433 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 20434 if (!prog) 20435 return -ENOMEM; 20436 env->prog = prog; 20437 info[cnt + 1].start = info[cnt].start; 20438 info[cnt].start = prog->len - len + 1; 20439 env->subprog_cnt++; 20440 env->hidden_subprog_cnt++; 20441 return 0; 20442 } 20443 20444 /* Do various post-verification rewrites in a single program pass. 20445 * These rewrites simplify JIT and interpreter implementations. 20446 */ 20447 static int do_misc_fixups(struct bpf_verifier_env *env) 20448 { 20449 struct bpf_prog *prog = env->prog; 20450 enum bpf_attach_type eatype = prog->expected_attach_type; 20451 enum bpf_prog_type prog_type = resolve_prog_type(prog); 20452 struct bpf_insn *insn = prog->insnsi; 20453 const struct bpf_func_proto *fn; 20454 const int insn_cnt = prog->len; 20455 const struct bpf_map_ops *ops; 20456 struct bpf_insn_aux_data *aux; 20457 struct bpf_insn *insn_buf = env->insn_buf; 20458 struct bpf_prog *new_prog; 20459 struct bpf_map *map_ptr; 20460 int i, ret, cnt, delta = 0, cur_subprog = 0; 20461 struct bpf_subprog_info *subprogs = env->subprog_info; 20462 u16 stack_depth = subprogs[cur_subprog].stack_depth; 20463 u16 stack_depth_extra = 0; 20464 20465 if (env->seen_exception && !env->exception_callback_subprog) { 20466 struct bpf_insn patch[] = { 20467 env->prog->insnsi[insn_cnt - 1], 20468 BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), 20469 BPF_EXIT_INSN(), 20470 }; 20471 20472 ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch)); 20473 if (ret < 0) 20474 return ret; 20475 prog = env->prog; 20476 insn = prog->insnsi; 20477 20478 env->exception_callback_subprog = env->subprog_cnt - 1; 20479 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 20480 mark_subprog_exc_cb(env, env->exception_callback_subprog); 20481 } 20482 20483 for (i = 0; i < insn_cnt;) { 20484 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { 20485 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || 20486 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { 20487 /* convert to 32-bit mov that clears upper 32-bit */ 20488 insn->code = BPF_ALU | BPF_MOV | BPF_X; 20489 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */ 20490 insn->off = 0; 20491 insn->imm = 0; 20492 } /* cast from as(0) to as(1) should be handled by JIT */ 20493 goto next_insn; 20494 } 20495 20496 if (env->insn_aux_data[i + delta].needs_zext) 20497 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ 20498 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); 20499 20500 /* Make sdiv/smod divide-by-minus-one exceptions impossible. */ 20501 if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) || 20502 insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) || 20503 insn->code == (BPF_ALU | BPF_MOD | BPF_K) || 20504 insn->code == (BPF_ALU | BPF_DIV | BPF_K)) && 20505 insn->off == 1 && insn->imm == -1) { 20506 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 20507 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 20508 struct bpf_insn *patchlet; 20509 struct bpf_insn chk_and_sdiv[] = { 20510 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20511 BPF_NEG | BPF_K, insn->dst_reg, 20512 0, 0, 0), 20513 }; 20514 struct bpf_insn chk_and_smod[] = { 20515 BPF_MOV32_IMM(insn->dst_reg, 0), 20516 }; 20517 20518 patchlet = isdiv ? chk_and_sdiv : chk_and_smod; 20519 cnt = isdiv ? ARRAY_SIZE(chk_and_sdiv) : ARRAY_SIZE(chk_and_smod); 20520 20521 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 20522 if (!new_prog) 20523 return -ENOMEM; 20524 20525 delta += cnt - 1; 20526 env->prog = prog = new_prog; 20527 insn = new_prog->insnsi + i + delta; 20528 goto next_insn; 20529 } 20530 20531 /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */ 20532 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 20533 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 20534 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 20535 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 20536 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 20537 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 20538 bool is_sdiv = isdiv && insn->off == 1; 20539 bool is_smod = !isdiv && insn->off == 1; 20540 struct bpf_insn *patchlet; 20541 struct bpf_insn chk_and_div[] = { 20542 /* [R,W]x div 0 -> 0 */ 20543 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20544 BPF_JNE | BPF_K, insn->src_reg, 20545 0, 2, 0), 20546 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 20547 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20548 *insn, 20549 }; 20550 struct bpf_insn chk_and_mod[] = { 20551 /* [R,W]x mod 0 -> [R,W]x */ 20552 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20553 BPF_JEQ | BPF_K, insn->src_reg, 20554 0, 1 + (is64 ? 0 : 1), 0), 20555 *insn, 20556 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20557 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 20558 }; 20559 struct bpf_insn chk_and_sdiv[] = { 20560 /* [R,W]x sdiv 0 -> 0 20561 * LLONG_MIN sdiv -1 -> LLONG_MIN 20562 * INT_MIN sdiv -1 -> INT_MIN 20563 */ 20564 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), 20565 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20566 BPF_ADD | BPF_K, BPF_REG_AX, 20567 0, 0, 1), 20568 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20569 BPF_JGT | BPF_K, BPF_REG_AX, 20570 0, 4, 1), 20571 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20572 BPF_JEQ | BPF_K, BPF_REG_AX, 20573 0, 1, 0), 20574 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20575 BPF_MOV | BPF_K, insn->dst_reg, 20576 0, 0, 0), 20577 /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */ 20578 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20579 BPF_NEG | BPF_K, insn->dst_reg, 20580 0, 0, 0), 20581 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20582 *insn, 20583 }; 20584 struct bpf_insn chk_and_smod[] = { 20585 /* [R,W]x mod 0 -> [R,W]x */ 20586 /* [R,W]x mod -1 -> 0 */ 20587 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), 20588 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20589 BPF_ADD | BPF_K, BPF_REG_AX, 20590 0, 0, 1), 20591 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20592 BPF_JGT | BPF_K, BPF_REG_AX, 20593 0, 3, 1), 20594 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20595 BPF_JEQ | BPF_K, BPF_REG_AX, 20596 0, 3 + (is64 ? 0 : 1), 1), 20597 BPF_MOV32_IMM(insn->dst_reg, 0), 20598 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20599 *insn, 20600 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20601 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 20602 }; 20603 20604 if (is_sdiv) { 20605 patchlet = chk_and_sdiv; 20606 cnt = ARRAY_SIZE(chk_and_sdiv); 20607 } else if (is_smod) { 20608 patchlet = chk_and_smod; 20609 cnt = ARRAY_SIZE(chk_and_smod) - (is64 ? 2 : 0); 20610 } else { 20611 patchlet = isdiv ? chk_and_div : chk_and_mod; 20612 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 20613 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 20614 } 20615 20616 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 20617 if (!new_prog) 20618 return -ENOMEM; 20619 20620 delta += cnt - 1; 20621 env->prog = prog = new_prog; 20622 insn = new_prog->insnsi + i + delta; 20623 goto next_insn; 20624 } 20625 20626 /* Make it impossible to de-reference a userspace address */ 20627 if (BPF_CLASS(insn->code) == BPF_LDX && 20628 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 20629 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { 20630 struct bpf_insn *patch = &insn_buf[0]; 20631 u64 uaddress_limit = bpf_arch_uaddress_limit(); 20632 20633 if (!uaddress_limit) 20634 goto next_insn; 20635 20636 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 20637 if (insn->off) 20638 *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); 20639 *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); 20640 *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); 20641 *patch++ = *insn; 20642 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 20643 *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); 20644 20645 cnt = patch - insn_buf; 20646 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20647 if (!new_prog) 20648 return -ENOMEM; 20649 20650 delta += cnt - 1; 20651 env->prog = prog = new_prog; 20652 insn = new_prog->insnsi + i + delta; 20653 goto next_insn; 20654 } 20655 20656 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 20657 if (BPF_CLASS(insn->code) == BPF_LD && 20658 (BPF_MODE(insn->code) == BPF_ABS || 20659 BPF_MODE(insn->code) == BPF_IND)) { 20660 cnt = env->ops->gen_ld_abs(insn, insn_buf); 20661 if (cnt == 0 || cnt >= INSN_BUF_SIZE) { 20662 verbose(env, "bpf verifier is misconfigured\n"); 20663 return -EINVAL; 20664 } 20665 20666 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20667 if (!new_prog) 20668 return -ENOMEM; 20669 20670 delta += cnt - 1; 20671 env->prog = prog = new_prog; 20672 insn = new_prog->insnsi + i + delta; 20673 goto next_insn; 20674 } 20675 20676 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 20677 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 20678 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 20679 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 20680 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 20681 struct bpf_insn *patch = &insn_buf[0]; 20682 bool issrc, isneg, isimm; 20683 u32 off_reg; 20684 20685 aux = &env->insn_aux_data[i + delta]; 20686 if (!aux->alu_state || 20687 aux->alu_state == BPF_ALU_NON_POINTER) 20688 goto next_insn; 20689 20690 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 20691 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 20692 BPF_ALU_SANITIZE_SRC; 20693 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 20694 20695 off_reg = issrc ? insn->src_reg : insn->dst_reg; 20696 if (isimm) { 20697 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 20698 } else { 20699 if (isneg) 20700 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 20701 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 20702 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 20703 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 20704 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 20705 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 20706 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 20707 } 20708 if (!issrc) 20709 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 20710 insn->src_reg = BPF_REG_AX; 20711 if (isneg) 20712 insn->code = insn->code == code_add ? 20713 code_sub : code_add; 20714 *patch++ = *insn; 20715 if (issrc && isneg && !isimm) 20716 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 20717 cnt = patch - insn_buf; 20718 20719 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20720 if (!new_prog) 20721 return -ENOMEM; 20722 20723 delta += cnt - 1; 20724 env->prog = prog = new_prog; 20725 insn = new_prog->insnsi + i + delta; 20726 goto next_insn; 20727 } 20728 20729 if (is_may_goto_insn(insn)) { 20730 int stack_off = -stack_depth - 8; 20731 20732 stack_depth_extra = 8; 20733 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); 20734 if (insn->off >= 0) 20735 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); 20736 else 20737 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 20738 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 20739 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); 20740 cnt = 4; 20741 20742 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20743 if (!new_prog) 20744 return -ENOMEM; 20745 20746 delta += cnt - 1; 20747 env->prog = prog = new_prog; 20748 insn = new_prog->insnsi + i + delta; 20749 goto next_insn; 20750 } 20751 20752 if (insn->code != (BPF_JMP | BPF_CALL)) 20753 goto next_insn; 20754 if (insn->src_reg == BPF_PSEUDO_CALL) 20755 goto next_insn; 20756 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 20757 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 20758 if (ret) 20759 return ret; 20760 if (cnt == 0) 20761 goto next_insn; 20762 20763 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20764 if (!new_prog) 20765 return -ENOMEM; 20766 20767 delta += cnt - 1; 20768 env->prog = prog = new_prog; 20769 insn = new_prog->insnsi + i + delta; 20770 goto next_insn; 20771 } 20772 20773 /* Skip inlining the helper call if the JIT does it. */ 20774 if (bpf_jit_inlines_helper_call(insn->imm)) 20775 goto next_insn; 20776 20777 if (insn->imm == BPF_FUNC_get_route_realm) 20778 prog->dst_needed = 1; 20779 if (insn->imm == BPF_FUNC_get_prandom_u32) 20780 bpf_user_rnd_init_once(); 20781 if (insn->imm == BPF_FUNC_override_return) 20782 prog->kprobe_override = 1; 20783 if (insn->imm == BPF_FUNC_tail_call) { 20784 /* If we tail call into other programs, we 20785 * cannot make any assumptions since they can 20786 * be replaced dynamically during runtime in 20787 * the program array. 20788 */ 20789 prog->cb_access = 1; 20790 if (!allow_tail_call_in_subprogs(env)) 20791 prog->aux->stack_depth = MAX_BPF_STACK; 20792 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 20793 20794 /* mark bpf_tail_call as different opcode to avoid 20795 * conditional branch in the interpreter for every normal 20796 * call and to prevent accidental JITing by JIT compiler 20797 * that doesn't support bpf_tail_call yet 20798 */ 20799 insn->imm = 0; 20800 insn->code = BPF_JMP | BPF_TAIL_CALL; 20801 20802 aux = &env->insn_aux_data[i + delta]; 20803 if (env->bpf_capable && !prog->blinding_requested && 20804 prog->jit_requested && 20805 !bpf_map_key_poisoned(aux) && 20806 !bpf_map_ptr_poisoned(aux) && 20807 !bpf_map_ptr_unpriv(aux)) { 20808 struct bpf_jit_poke_descriptor desc = { 20809 .reason = BPF_POKE_REASON_TAIL_CALL, 20810 .tail_call.map = aux->map_ptr_state.map_ptr, 20811 .tail_call.key = bpf_map_key_immediate(aux), 20812 .insn_idx = i + delta, 20813 }; 20814 20815 ret = bpf_jit_add_poke_descriptor(prog, &desc); 20816 if (ret < 0) { 20817 verbose(env, "adding tail call poke descriptor failed\n"); 20818 return ret; 20819 } 20820 20821 insn->imm = ret + 1; 20822 goto next_insn; 20823 } 20824 20825 if (!bpf_map_ptr_unpriv(aux)) 20826 goto next_insn; 20827 20828 /* instead of changing every JIT dealing with tail_call 20829 * emit two extra insns: 20830 * if (index >= max_entries) goto out; 20831 * index &= array->index_mask; 20832 * to avoid out-of-bounds cpu speculation 20833 */ 20834 if (bpf_map_ptr_poisoned(aux)) { 20835 verbose(env, "tail_call abusing map_ptr\n"); 20836 return -EINVAL; 20837 } 20838 20839 map_ptr = aux->map_ptr_state.map_ptr; 20840 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 20841 map_ptr->max_entries, 2); 20842 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 20843 container_of(map_ptr, 20844 struct bpf_array, 20845 map)->index_mask); 20846 insn_buf[2] = *insn; 20847 cnt = 3; 20848 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20849 if (!new_prog) 20850 return -ENOMEM; 20851 20852 delta += cnt - 1; 20853 env->prog = prog = new_prog; 20854 insn = new_prog->insnsi + i + delta; 20855 goto next_insn; 20856 } 20857 20858 if (insn->imm == BPF_FUNC_timer_set_callback) { 20859 /* The verifier will process callback_fn as many times as necessary 20860 * with different maps and the register states prepared by 20861 * set_timer_callback_state will be accurate. 20862 * 20863 * The following use case is valid: 20864 * map1 is shared by prog1, prog2, prog3. 20865 * prog1 calls bpf_timer_init for some map1 elements 20866 * prog2 calls bpf_timer_set_callback for some map1 elements. 20867 * Those that were not bpf_timer_init-ed will return -EINVAL. 20868 * prog3 calls bpf_timer_start for some map1 elements. 20869 * Those that were not both bpf_timer_init-ed and 20870 * bpf_timer_set_callback-ed will return -EINVAL. 20871 */ 20872 struct bpf_insn ld_addrs[2] = { 20873 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 20874 }; 20875 20876 insn_buf[0] = ld_addrs[0]; 20877 insn_buf[1] = ld_addrs[1]; 20878 insn_buf[2] = *insn; 20879 cnt = 3; 20880 20881 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20882 if (!new_prog) 20883 return -ENOMEM; 20884 20885 delta += cnt - 1; 20886 env->prog = prog = new_prog; 20887 insn = new_prog->insnsi + i + delta; 20888 goto patch_call_imm; 20889 } 20890 20891 if (is_storage_get_function(insn->imm)) { 20892 if (!in_sleepable(env) || 20893 env->insn_aux_data[i + delta].storage_get_func_atomic) 20894 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 20895 else 20896 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 20897 insn_buf[1] = *insn; 20898 cnt = 2; 20899 20900 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20901 if (!new_prog) 20902 return -ENOMEM; 20903 20904 delta += cnt - 1; 20905 env->prog = prog = new_prog; 20906 insn = new_prog->insnsi + i + delta; 20907 goto patch_call_imm; 20908 } 20909 20910 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 20911 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 20912 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 20913 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 20914 */ 20915 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 20916 insn_buf[1] = *insn; 20917 cnt = 2; 20918 20919 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20920 if (!new_prog) 20921 return -ENOMEM; 20922 20923 delta += cnt - 1; 20924 env->prog = prog = new_prog; 20925 insn = new_prog->insnsi + i + delta; 20926 goto patch_call_imm; 20927 } 20928 20929 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 20930 * and other inlining handlers are currently limited to 64 bit 20931 * only. 20932 */ 20933 if (prog->jit_requested && BITS_PER_LONG == 64 && 20934 (insn->imm == BPF_FUNC_map_lookup_elem || 20935 insn->imm == BPF_FUNC_map_update_elem || 20936 insn->imm == BPF_FUNC_map_delete_elem || 20937 insn->imm == BPF_FUNC_map_push_elem || 20938 insn->imm == BPF_FUNC_map_pop_elem || 20939 insn->imm == BPF_FUNC_map_peek_elem || 20940 insn->imm == BPF_FUNC_redirect_map || 20941 insn->imm == BPF_FUNC_for_each_map_elem || 20942 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 20943 aux = &env->insn_aux_data[i + delta]; 20944 if (bpf_map_ptr_poisoned(aux)) 20945 goto patch_call_imm; 20946 20947 map_ptr = aux->map_ptr_state.map_ptr; 20948 ops = map_ptr->ops; 20949 if (insn->imm == BPF_FUNC_map_lookup_elem && 20950 ops->map_gen_lookup) { 20951 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 20952 if (cnt == -EOPNOTSUPP) 20953 goto patch_map_ops_generic; 20954 if (cnt <= 0 || cnt >= INSN_BUF_SIZE) { 20955 verbose(env, "bpf verifier is misconfigured\n"); 20956 return -EINVAL; 20957 } 20958 20959 new_prog = bpf_patch_insn_data(env, i + delta, 20960 insn_buf, cnt); 20961 if (!new_prog) 20962 return -ENOMEM; 20963 20964 delta += cnt - 1; 20965 env->prog = prog = new_prog; 20966 insn = new_prog->insnsi + i + delta; 20967 goto next_insn; 20968 } 20969 20970 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 20971 (void *(*)(struct bpf_map *map, void *key))NULL)); 20972 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 20973 (long (*)(struct bpf_map *map, void *key))NULL)); 20974 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 20975 (long (*)(struct bpf_map *map, void *key, void *value, 20976 u64 flags))NULL)); 20977 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 20978 (long (*)(struct bpf_map *map, void *value, 20979 u64 flags))NULL)); 20980 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 20981 (long (*)(struct bpf_map *map, void *value))NULL)); 20982 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 20983 (long (*)(struct bpf_map *map, void *value))NULL)); 20984 BUILD_BUG_ON(!__same_type(ops->map_redirect, 20985 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 20986 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 20987 (long (*)(struct bpf_map *map, 20988 bpf_callback_t callback_fn, 20989 void *callback_ctx, 20990 u64 flags))NULL)); 20991 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 20992 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 20993 20994 patch_map_ops_generic: 20995 switch (insn->imm) { 20996 case BPF_FUNC_map_lookup_elem: 20997 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 20998 goto next_insn; 20999 case BPF_FUNC_map_update_elem: 21000 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 21001 goto next_insn; 21002 case BPF_FUNC_map_delete_elem: 21003 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 21004 goto next_insn; 21005 case BPF_FUNC_map_push_elem: 21006 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 21007 goto next_insn; 21008 case BPF_FUNC_map_pop_elem: 21009 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 21010 goto next_insn; 21011 case BPF_FUNC_map_peek_elem: 21012 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 21013 goto next_insn; 21014 case BPF_FUNC_redirect_map: 21015 insn->imm = BPF_CALL_IMM(ops->map_redirect); 21016 goto next_insn; 21017 case BPF_FUNC_for_each_map_elem: 21018 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 21019 goto next_insn; 21020 case BPF_FUNC_map_lookup_percpu_elem: 21021 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 21022 goto next_insn; 21023 } 21024 21025 goto patch_call_imm; 21026 } 21027 21028 /* Implement bpf_jiffies64 inline. */ 21029 if (prog->jit_requested && BITS_PER_LONG == 64 && 21030 insn->imm == BPF_FUNC_jiffies64) { 21031 struct bpf_insn ld_jiffies_addr[2] = { 21032 BPF_LD_IMM64(BPF_REG_0, 21033 (unsigned long)&jiffies), 21034 }; 21035 21036 insn_buf[0] = ld_jiffies_addr[0]; 21037 insn_buf[1] = ld_jiffies_addr[1]; 21038 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 21039 BPF_REG_0, 0); 21040 cnt = 3; 21041 21042 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 21043 cnt); 21044 if (!new_prog) 21045 return -ENOMEM; 21046 21047 delta += cnt - 1; 21048 env->prog = prog = new_prog; 21049 insn = new_prog->insnsi + i + delta; 21050 goto next_insn; 21051 } 21052 21053 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML) 21054 /* Implement bpf_get_smp_processor_id() inline. */ 21055 if (insn->imm == BPF_FUNC_get_smp_processor_id && 21056 verifier_inlines_helper_call(env, insn->imm)) { 21057 /* BPF_FUNC_get_smp_processor_id inlining is an 21058 * optimization, so if pcpu_hot.cpu_number is ever 21059 * changed in some incompatible and hard to support 21060 * way, it's fine to back out this inlining logic 21061 */ 21062 insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number); 21063 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 21064 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0); 21065 cnt = 3; 21066 21067 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21068 if (!new_prog) 21069 return -ENOMEM; 21070 21071 delta += cnt - 1; 21072 env->prog = prog = new_prog; 21073 insn = new_prog->insnsi + i + delta; 21074 goto next_insn; 21075 } 21076 #endif 21077 /* Implement bpf_get_func_arg inline. */ 21078 if (prog_type == BPF_PROG_TYPE_TRACING && 21079 insn->imm == BPF_FUNC_get_func_arg) { 21080 /* Load nr_args from ctx - 8 */ 21081 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 21082 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 21083 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 21084 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 21085 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 21086 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 21087 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 21088 insn_buf[7] = BPF_JMP_A(1); 21089 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 21090 cnt = 9; 21091 21092 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21093 if (!new_prog) 21094 return -ENOMEM; 21095 21096 delta += cnt - 1; 21097 env->prog = prog = new_prog; 21098 insn = new_prog->insnsi + i + delta; 21099 goto next_insn; 21100 } 21101 21102 /* Implement bpf_get_func_ret inline. */ 21103 if (prog_type == BPF_PROG_TYPE_TRACING && 21104 insn->imm == BPF_FUNC_get_func_ret) { 21105 if (eatype == BPF_TRACE_FEXIT || 21106 eatype == BPF_MODIFY_RETURN) { 21107 /* Load nr_args from ctx - 8 */ 21108 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 21109 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 21110 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 21111 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 21112 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 21113 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 21114 cnt = 6; 21115 } else { 21116 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 21117 cnt = 1; 21118 } 21119 21120 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21121 if (!new_prog) 21122 return -ENOMEM; 21123 21124 delta += cnt - 1; 21125 env->prog = prog = new_prog; 21126 insn = new_prog->insnsi + i + delta; 21127 goto next_insn; 21128 } 21129 21130 /* Implement get_func_arg_cnt inline. */ 21131 if (prog_type == BPF_PROG_TYPE_TRACING && 21132 insn->imm == BPF_FUNC_get_func_arg_cnt) { 21133 /* Load nr_args from ctx - 8 */ 21134 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 21135 21136 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 21137 if (!new_prog) 21138 return -ENOMEM; 21139 21140 env->prog = prog = new_prog; 21141 insn = new_prog->insnsi + i + delta; 21142 goto next_insn; 21143 } 21144 21145 /* Implement bpf_get_func_ip inline. */ 21146 if (prog_type == BPF_PROG_TYPE_TRACING && 21147 insn->imm == BPF_FUNC_get_func_ip) { 21148 /* Load IP address from ctx - 16 */ 21149 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 21150 21151 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 21152 if (!new_prog) 21153 return -ENOMEM; 21154 21155 env->prog = prog = new_prog; 21156 insn = new_prog->insnsi + i + delta; 21157 goto next_insn; 21158 } 21159 21160 /* Implement bpf_get_branch_snapshot inline. */ 21161 if (IS_ENABLED(CONFIG_PERF_EVENTS) && 21162 prog->jit_requested && BITS_PER_LONG == 64 && 21163 insn->imm == BPF_FUNC_get_branch_snapshot) { 21164 /* We are dealing with the following func protos: 21165 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags); 21166 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt); 21167 */ 21168 const u32 br_entry_size = sizeof(struct perf_branch_entry); 21169 21170 /* struct perf_branch_entry is part of UAPI and is 21171 * used as an array element, so extremely unlikely to 21172 * ever grow or shrink 21173 */ 21174 BUILD_BUG_ON(br_entry_size != 24); 21175 21176 /* if (unlikely(flags)) return -EINVAL */ 21177 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7); 21178 21179 /* Transform size (bytes) into number of entries (cnt = size / 24). 21180 * But to avoid expensive division instruction, we implement 21181 * divide-by-3 through multiplication, followed by further 21182 * division by 8 through 3-bit right shift. 21183 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr., 21184 * p. 227, chapter "Unsigned Division by 3" for details and proofs. 21185 * 21186 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab. 21187 */ 21188 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab); 21189 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0); 21190 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36); 21191 21192 /* call perf_snapshot_branch_stack implementation */ 21193 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack)); 21194 /* if (entry_cnt == 0) return -ENOENT */ 21195 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4); 21196 /* return entry_cnt * sizeof(struct perf_branch_entry) */ 21197 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size); 21198 insn_buf[7] = BPF_JMP_A(3); 21199 /* return -EINVAL; */ 21200 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 21201 insn_buf[9] = BPF_JMP_A(1); 21202 /* return -ENOENT; */ 21203 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT); 21204 cnt = 11; 21205 21206 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21207 if (!new_prog) 21208 return -ENOMEM; 21209 21210 delta += cnt - 1; 21211 env->prog = prog = new_prog; 21212 insn = new_prog->insnsi + i + delta; 21213 goto next_insn; 21214 } 21215 21216 /* Implement bpf_kptr_xchg inline */ 21217 if (prog->jit_requested && BITS_PER_LONG == 64 && 21218 insn->imm == BPF_FUNC_kptr_xchg && 21219 bpf_jit_supports_ptr_xchg()) { 21220 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); 21221 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); 21222 cnt = 2; 21223 21224 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21225 if (!new_prog) 21226 return -ENOMEM; 21227 21228 delta += cnt - 1; 21229 env->prog = prog = new_prog; 21230 insn = new_prog->insnsi + i + delta; 21231 goto next_insn; 21232 } 21233 patch_call_imm: 21234 fn = env->ops->get_func_proto(insn->imm, env->prog); 21235 /* all functions that have prototype and verifier allowed 21236 * programs to call them, must be real in-kernel functions 21237 */ 21238 if (!fn->func) { 21239 verbose(env, 21240 "kernel subsystem misconfigured func %s#%d\n", 21241 func_id_name(insn->imm), insn->imm); 21242 return -EFAULT; 21243 } 21244 insn->imm = fn->func - __bpf_call_base; 21245 next_insn: 21246 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 21247 subprogs[cur_subprog].stack_depth += stack_depth_extra; 21248 subprogs[cur_subprog].stack_extra = stack_depth_extra; 21249 cur_subprog++; 21250 stack_depth = subprogs[cur_subprog].stack_depth; 21251 stack_depth_extra = 0; 21252 } 21253 i++; 21254 insn++; 21255 } 21256 21257 env->prog->aux->stack_depth = subprogs[0].stack_depth; 21258 for (i = 0; i < env->subprog_cnt; i++) { 21259 int subprog_start = subprogs[i].start; 21260 int stack_slots = subprogs[i].stack_extra / 8; 21261 21262 if (!stack_slots) 21263 continue; 21264 if (stack_slots > 1) { 21265 verbose(env, "verifier bug: stack_slots supports may_goto only\n"); 21266 return -EFAULT; 21267 } 21268 21269 /* Add ST insn to subprog prologue to init extra stack */ 21270 insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, 21271 -subprogs[i].stack_depth, BPF_MAX_LOOPS); 21272 /* Copy first actual insn to preserve it */ 21273 insn_buf[1] = env->prog->insnsi[subprog_start]; 21274 21275 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2); 21276 if (!new_prog) 21277 return -ENOMEM; 21278 env->prog = prog = new_prog; 21279 /* 21280 * If may_goto is a first insn of a prog there could be a jmp 21281 * insn that points to it, hence adjust all such jmps to point 21282 * to insn after BPF_ST that inits may_goto count. 21283 * Adjustment will succeed because bpf_patch_insn_data() didn't fail. 21284 */ 21285 WARN_ON(adjust_jmp_off(env->prog, subprog_start, 1)); 21286 } 21287 21288 /* Since poke tab is now finalized, publish aux to tracker. */ 21289 for (i = 0; i < prog->aux->size_poke_tab; i++) { 21290 map_ptr = prog->aux->poke_tab[i].tail_call.map; 21291 if (!map_ptr->ops->map_poke_track || 21292 !map_ptr->ops->map_poke_untrack || 21293 !map_ptr->ops->map_poke_run) { 21294 verbose(env, "bpf verifier is misconfigured\n"); 21295 return -EINVAL; 21296 } 21297 21298 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 21299 if (ret < 0) { 21300 verbose(env, "tracking tail call prog failed\n"); 21301 return ret; 21302 } 21303 } 21304 21305 sort_kfunc_descs_by_imm_off(env->prog); 21306 21307 return 0; 21308 } 21309 21310 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 21311 int position, 21312 s32 stack_base, 21313 u32 callback_subprogno, 21314 u32 *total_cnt) 21315 { 21316 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 21317 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 21318 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 21319 int reg_loop_max = BPF_REG_6; 21320 int reg_loop_cnt = BPF_REG_7; 21321 int reg_loop_ctx = BPF_REG_8; 21322 21323 struct bpf_insn *insn_buf = env->insn_buf; 21324 struct bpf_prog *new_prog; 21325 u32 callback_start; 21326 u32 call_insn_offset; 21327 s32 callback_offset; 21328 u32 cnt = 0; 21329 21330 /* This represents an inlined version of bpf_iter.c:bpf_loop, 21331 * be careful to modify this code in sync. 21332 */ 21333 21334 /* Return error and jump to the end of the patch if 21335 * expected number of iterations is too big. 21336 */ 21337 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2); 21338 insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG); 21339 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16); 21340 /* spill R6, R7, R8 to use these as loop vars */ 21341 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset); 21342 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset); 21343 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset); 21344 /* initialize loop vars */ 21345 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1); 21346 insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0); 21347 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3); 21348 /* loop header, 21349 * if reg_loop_cnt >= reg_loop_max skip the loop body 21350 */ 21351 insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5); 21352 /* callback call, 21353 * correct callback offset would be set after patching 21354 */ 21355 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt); 21356 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx); 21357 insn_buf[cnt++] = BPF_CALL_REL(0); 21358 /* increment loop counter */ 21359 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1); 21360 /* jump to loop header if callback returned 0 */ 21361 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6); 21362 /* return value of bpf_loop, 21363 * set R0 to the number of iterations 21364 */ 21365 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt); 21366 /* restore original values of R6, R7, R8 */ 21367 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset); 21368 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset); 21369 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset); 21370 21371 *total_cnt = cnt; 21372 new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt); 21373 if (!new_prog) 21374 return new_prog; 21375 21376 /* callback start is known only after patching */ 21377 callback_start = env->subprog_info[callback_subprogno].start; 21378 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 21379 call_insn_offset = position + 12; 21380 callback_offset = callback_start - call_insn_offset - 1; 21381 new_prog->insnsi[call_insn_offset].imm = callback_offset; 21382 21383 return new_prog; 21384 } 21385 21386 static bool is_bpf_loop_call(struct bpf_insn *insn) 21387 { 21388 return insn->code == (BPF_JMP | BPF_CALL) && 21389 insn->src_reg == 0 && 21390 insn->imm == BPF_FUNC_loop; 21391 } 21392 21393 /* For all sub-programs in the program (including main) check 21394 * insn_aux_data to see if there are bpf_loop calls that require 21395 * inlining. If such calls are found the calls are replaced with a 21396 * sequence of instructions produced by `inline_bpf_loop` function and 21397 * subprog stack_depth is increased by the size of 3 registers. 21398 * This stack space is used to spill values of the R6, R7, R8. These 21399 * registers are used to store the loop bound, counter and context 21400 * variables. 21401 */ 21402 static int optimize_bpf_loop(struct bpf_verifier_env *env) 21403 { 21404 struct bpf_subprog_info *subprogs = env->subprog_info; 21405 int i, cur_subprog = 0, cnt, delta = 0; 21406 struct bpf_insn *insn = env->prog->insnsi; 21407 int insn_cnt = env->prog->len; 21408 u16 stack_depth = subprogs[cur_subprog].stack_depth; 21409 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 21410 u16 stack_depth_extra = 0; 21411 21412 for (i = 0; i < insn_cnt; i++, insn++) { 21413 struct bpf_loop_inline_state *inline_state = 21414 &env->insn_aux_data[i + delta].loop_inline_state; 21415 21416 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 21417 struct bpf_prog *new_prog; 21418 21419 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 21420 new_prog = inline_bpf_loop(env, 21421 i + delta, 21422 -(stack_depth + stack_depth_extra), 21423 inline_state->callback_subprogno, 21424 &cnt); 21425 if (!new_prog) 21426 return -ENOMEM; 21427 21428 delta += cnt - 1; 21429 env->prog = new_prog; 21430 insn = new_prog->insnsi + i + delta; 21431 } 21432 21433 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 21434 subprogs[cur_subprog].stack_depth += stack_depth_extra; 21435 cur_subprog++; 21436 stack_depth = subprogs[cur_subprog].stack_depth; 21437 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 21438 stack_depth_extra = 0; 21439 } 21440 } 21441 21442 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 21443 21444 return 0; 21445 } 21446 21447 /* Remove unnecessary spill/fill pairs, members of fastcall pattern, 21448 * adjust subprograms stack depth when possible. 21449 */ 21450 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env) 21451 { 21452 struct bpf_subprog_info *subprog = env->subprog_info; 21453 struct bpf_insn_aux_data *aux = env->insn_aux_data; 21454 struct bpf_insn *insn = env->prog->insnsi; 21455 int insn_cnt = env->prog->len; 21456 u32 spills_num; 21457 bool modified = false; 21458 int i, j; 21459 21460 for (i = 0; i < insn_cnt; i++, insn++) { 21461 if (aux[i].fastcall_spills_num > 0) { 21462 spills_num = aux[i].fastcall_spills_num; 21463 /* NOPs would be removed by opt_remove_nops() */ 21464 for (j = 1; j <= spills_num; ++j) { 21465 *(insn - j) = NOP; 21466 *(insn + j) = NOP; 21467 } 21468 modified = true; 21469 } 21470 if ((subprog + 1)->start == i + 1) { 21471 if (modified && !subprog->keep_fastcall_stack) 21472 subprog->stack_depth = -subprog->fastcall_stack_off; 21473 subprog++; 21474 modified = false; 21475 } 21476 } 21477 21478 return 0; 21479 } 21480 21481 static void free_states(struct bpf_verifier_env *env) 21482 { 21483 struct bpf_verifier_state_list *sl, *sln; 21484 int i; 21485 21486 sl = env->free_list; 21487 while (sl) { 21488 sln = sl->next; 21489 free_verifier_state(&sl->state, false); 21490 kfree(sl); 21491 sl = sln; 21492 } 21493 env->free_list = NULL; 21494 21495 if (!env->explored_states) 21496 return; 21497 21498 for (i = 0; i < state_htab_size(env); i++) { 21499 sl = env->explored_states[i]; 21500 21501 while (sl) { 21502 sln = sl->next; 21503 free_verifier_state(&sl->state, false); 21504 kfree(sl); 21505 sl = sln; 21506 } 21507 env->explored_states[i] = NULL; 21508 } 21509 } 21510 21511 static int do_check_common(struct bpf_verifier_env *env, int subprog) 21512 { 21513 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 21514 struct bpf_subprog_info *sub = subprog_info(env, subprog); 21515 struct bpf_verifier_state *state; 21516 struct bpf_reg_state *regs; 21517 int ret, i; 21518 21519 env->prev_linfo = NULL; 21520 env->pass_cnt++; 21521 21522 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 21523 if (!state) 21524 return -ENOMEM; 21525 state->curframe = 0; 21526 state->speculative = false; 21527 state->branches = 1; 21528 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 21529 if (!state->frame[0]) { 21530 kfree(state); 21531 return -ENOMEM; 21532 } 21533 env->cur_state = state; 21534 init_func_state(env, state->frame[0], 21535 BPF_MAIN_FUNC /* callsite */, 21536 0 /* frameno */, 21537 subprog); 21538 state->first_insn_idx = env->subprog_info[subprog].start; 21539 state->last_insn_idx = -1; 21540 21541 regs = state->frame[state->curframe]->regs; 21542 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 21543 const char *sub_name = subprog_name(env, subprog); 21544 struct bpf_subprog_arg_info *arg; 21545 struct bpf_reg_state *reg; 21546 21547 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); 21548 ret = btf_prepare_func_args(env, subprog); 21549 if (ret) 21550 goto out; 21551 21552 if (subprog_is_exc_cb(env, subprog)) { 21553 state->frame[0]->in_exception_callback_fn = true; 21554 /* We have already ensured that the callback returns an integer, just 21555 * like all global subprogs. We need to determine it only has a single 21556 * scalar argument. 21557 */ 21558 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { 21559 verbose(env, "exception cb only supports single integer argument\n"); 21560 ret = -EINVAL; 21561 goto out; 21562 } 21563 } 21564 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { 21565 arg = &sub->args[i - BPF_REG_1]; 21566 reg = ®s[i]; 21567 21568 if (arg->arg_type == ARG_PTR_TO_CTX) { 21569 reg->type = PTR_TO_CTX; 21570 mark_reg_known_zero(env, regs, i); 21571 } else if (arg->arg_type == ARG_ANYTHING) { 21572 reg->type = SCALAR_VALUE; 21573 mark_reg_unknown(env, regs, i); 21574 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 21575 /* assume unspecial LOCAL dynptr type */ 21576 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); 21577 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 21578 reg->type = PTR_TO_MEM; 21579 if (arg->arg_type & PTR_MAYBE_NULL) 21580 reg->type |= PTR_MAYBE_NULL; 21581 mark_reg_known_zero(env, regs, i); 21582 reg->mem_size = arg->mem_size; 21583 reg->id = ++env->id_gen; 21584 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 21585 reg->type = PTR_TO_BTF_ID; 21586 if (arg->arg_type & PTR_MAYBE_NULL) 21587 reg->type |= PTR_MAYBE_NULL; 21588 if (arg->arg_type & PTR_UNTRUSTED) 21589 reg->type |= PTR_UNTRUSTED; 21590 if (arg->arg_type & PTR_TRUSTED) 21591 reg->type |= PTR_TRUSTED; 21592 mark_reg_known_zero(env, regs, i); 21593 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ 21594 reg->btf_id = arg->btf_id; 21595 reg->id = ++env->id_gen; 21596 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 21597 /* caller can pass either PTR_TO_ARENA or SCALAR */ 21598 mark_reg_unknown(env, regs, i); 21599 } else { 21600 WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n", 21601 i - BPF_REG_1, arg->arg_type); 21602 ret = -EFAULT; 21603 goto out; 21604 } 21605 } 21606 } else { 21607 /* if main BPF program has associated BTF info, validate that 21608 * it's matching expected signature, and otherwise mark BTF 21609 * info for main program as unreliable 21610 */ 21611 if (env->prog->aux->func_info_aux) { 21612 ret = btf_prepare_func_args(env, 0); 21613 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) 21614 env->prog->aux->func_info_aux[0].unreliable = true; 21615 } 21616 21617 /* 1st arg to a function */ 21618 regs[BPF_REG_1].type = PTR_TO_CTX; 21619 mark_reg_known_zero(env, regs, BPF_REG_1); 21620 } 21621 21622 ret = do_check(env); 21623 out: 21624 /* check for NULL is necessary, since cur_state can be freed inside 21625 * do_check() under memory pressure. 21626 */ 21627 if (env->cur_state) { 21628 free_verifier_state(env->cur_state, true); 21629 env->cur_state = NULL; 21630 } 21631 while (!pop_stack(env, NULL, NULL, false)); 21632 if (!ret && pop_log) 21633 bpf_vlog_reset(&env->log, 0); 21634 free_states(env); 21635 return ret; 21636 } 21637 21638 /* Lazily verify all global functions based on their BTF, if they are called 21639 * from main BPF program or any of subprograms transitively. 21640 * BPF global subprogs called from dead code are not validated. 21641 * All callable global functions must pass verification. 21642 * Otherwise the whole program is rejected. 21643 * Consider: 21644 * int bar(int); 21645 * int foo(int f) 21646 * { 21647 * return bar(f); 21648 * } 21649 * int bar(int b) 21650 * { 21651 * ... 21652 * } 21653 * foo() will be verified first for R1=any_scalar_value. During verification it 21654 * will be assumed that bar() already verified successfully and call to bar() 21655 * from foo() will be checked for type match only. Later bar() will be verified 21656 * independently to check that it's safe for R1=any_scalar_value. 21657 */ 21658 static int do_check_subprogs(struct bpf_verifier_env *env) 21659 { 21660 struct bpf_prog_aux *aux = env->prog->aux; 21661 struct bpf_func_info_aux *sub_aux; 21662 int i, ret, new_cnt; 21663 21664 if (!aux->func_info) 21665 return 0; 21666 21667 /* exception callback is presumed to be always called */ 21668 if (env->exception_callback_subprog) 21669 subprog_aux(env, env->exception_callback_subprog)->called = true; 21670 21671 again: 21672 new_cnt = 0; 21673 for (i = 1; i < env->subprog_cnt; i++) { 21674 if (!subprog_is_global(env, i)) 21675 continue; 21676 21677 sub_aux = subprog_aux(env, i); 21678 if (!sub_aux->called || sub_aux->verified) 21679 continue; 21680 21681 env->insn_idx = env->subprog_info[i].start; 21682 WARN_ON_ONCE(env->insn_idx == 0); 21683 ret = do_check_common(env, i); 21684 if (ret) { 21685 return ret; 21686 } else if (env->log.level & BPF_LOG_LEVEL) { 21687 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 21688 i, subprog_name(env, i)); 21689 } 21690 21691 /* We verified new global subprog, it might have called some 21692 * more global subprogs that we haven't verified yet, so we 21693 * need to do another pass over subprogs to verify those. 21694 */ 21695 sub_aux->verified = true; 21696 new_cnt++; 21697 } 21698 21699 /* We can't loop forever as we verify at least one global subprog on 21700 * each pass. 21701 */ 21702 if (new_cnt) 21703 goto again; 21704 21705 return 0; 21706 } 21707 21708 static int do_check_main(struct bpf_verifier_env *env) 21709 { 21710 int ret; 21711 21712 env->insn_idx = 0; 21713 ret = do_check_common(env, 0); 21714 if (!ret) 21715 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 21716 return ret; 21717 } 21718 21719 21720 static void print_verification_stats(struct bpf_verifier_env *env) 21721 { 21722 int i; 21723 21724 if (env->log.level & BPF_LOG_STATS) { 21725 verbose(env, "verification time %lld usec\n", 21726 div_u64(env->verification_time, 1000)); 21727 verbose(env, "stack depth "); 21728 for (i = 0; i < env->subprog_cnt; i++) { 21729 u32 depth = env->subprog_info[i].stack_depth; 21730 21731 verbose(env, "%d", depth); 21732 if (i + 1 < env->subprog_cnt) 21733 verbose(env, "+"); 21734 } 21735 verbose(env, "\n"); 21736 } 21737 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 21738 "total_states %d peak_states %d mark_read %d\n", 21739 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 21740 env->max_states_per_insn, env->total_states, 21741 env->peak_states, env->longest_mark_read_walk); 21742 } 21743 21744 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 21745 { 21746 const struct btf_type *t, *func_proto; 21747 const struct bpf_struct_ops_desc *st_ops_desc; 21748 const struct bpf_struct_ops *st_ops; 21749 const struct btf_member *member; 21750 struct bpf_prog *prog = env->prog; 21751 u32 btf_id, member_idx; 21752 struct btf *btf; 21753 const char *mname; 21754 int err; 21755 21756 if (!prog->gpl_compatible) { 21757 verbose(env, "struct ops programs must have a GPL compatible license\n"); 21758 return -EINVAL; 21759 } 21760 21761 if (!prog->aux->attach_btf_id) 21762 return -ENOTSUPP; 21763 21764 btf = prog->aux->attach_btf; 21765 if (btf_is_module(btf)) { 21766 /* Make sure st_ops is valid through the lifetime of env */ 21767 env->attach_btf_mod = btf_try_get_module(btf); 21768 if (!env->attach_btf_mod) { 21769 verbose(env, "struct_ops module %s is not found\n", 21770 btf_get_name(btf)); 21771 return -ENOTSUPP; 21772 } 21773 } 21774 21775 btf_id = prog->aux->attach_btf_id; 21776 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 21777 if (!st_ops_desc) { 21778 verbose(env, "attach_btf_id %u is not a supported struct\n", 21779 btf_id); 21780 return -ENOTSUPP; 21781 } 21782 st_ops = st_ops_desc->st_ops; 21783 21784 t = st_ops_desc->type; 21785 member_idx = prog->expected_attach_type; 21786 if (member_idx >= btf_type_vlen(t)) { 21787 verbose(env, "attach to invalid member idx %u of struct %s\n", 21788 member_idx, st_ops->name); 21789 return -EINVAL; 21790 } 21791 21792 member = &btf_type_member(t)[member_idx]; 21793 mname = btf_name_by_offset(btf, member->name_off); 21794 func_proto = btf_type_resolve_func_ptr(btf, member->type, 21795 NULL); 21796 if (!func_proto) { 21797 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 21798 mname, member_idx, st_ops->name); 21799 return -EINVAL; 21800 } 21801 21802 err = bpf_struct_ops_supported(st_ops, __btf_member_bit_offset(t, member) / 8); 21803 if (err) { 21804 verbose(env, "attach to unsupported member %s of struct %s\n", 21805 mname, st_ops->name); 21806 return err; 21807 } 21808 21809 if (st_ops->check_member) { 21810 err = st_ops->check_member(t, member, prog); 21811 21812 if (err) { 21813 verbose(env, "attach to unsupported member %s of struct %s\n", 21814 mname, st_ops->name); 21815 return err; 21816 } 21817 } 21818 21819 /* btf_ctx_access() used this to provide argument type info */ 21820 prog->aux->ctx_arg_info = 21821 st_ops_desc->arg_info[member_idx].info; 21822 prog->aux->ctx_arg_info_size = 21823 st_ops_desc->arg_info[member_idx].cnt; 21824 21825 prog->aux->attach_func_proto = func_proto; 21826 prog->aux->attach_func_name = mname; 21827 env->ops = st_ops->verifier_ops; 21828 21829 return 0; 21830 } 21831 #define SECURITY_PREFIX "security_" 21832 21833 static int check_attach_modify_return(unsigned long addr, const char *func_name) 21834 { 21835 if (within_error_injection_list(addr) || 21836 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 21837 return 0; 21838 21839 return -EINVAL; 21840 } 21841 21842 /* list of non-sleepable functions that are otherwise on 21843 * ALLOW_ERROR_INJECTION list 21844 */ 21845 BTF_SET_START(btf_non_sleepable_error_inject) 21846 /* Three functions below can be called from sleepable and non-sleepable context. 21847 * Assume non-sleepable from bpf safety point of view. 21848 */ 21849 BTF_ID(func, __filemap_add_folio) 21850 #ifdef CONFIG_FAIL_PAGE_ALLOC 21851 BTF_ID(func, should_fail_alloc_page) 21852 #endif 21853 #ifdef CONFIG_FAILSLAB 21854 BTF_ID(func, should_failslab) 21855 #endif 21856 BTF_SET_END(btf_non_sleepable_error_inject) 21857 21858 static int check_non_sleepable_error_inject(u32 btf_id) 21859 { 21860 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 21861 } 21862 21863 int bpf_check_attach_target(struct bpf_verifier_log *log, 21864 const struct bpf_prog *prog, 21865 const struct bpf_prog *tgt_prog, 21866 u32 btf_id, 21867 struct bpf_attach_target_info *tgt_info) 21868 { 21869 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 21870 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; 21871 char trace_symbol[KSYM_SYMBOL_LEN]; 21872 const char prefix[] = "btf_trace_"; 21873 struct bpf_raw_event_map *btp; 21874 int ret = 0, subprog = -1, i; 21875 const struct btf_type *t; 21876 bool conservative = true; 21877 const char *tname, *fname; 21878 struct btf *btf; 21879 long addr = 0; 21880 struct module *mod = NULL; 21881 21882 if (!btf_id) { 21883 bpf_log(log, "Tracing programs must provide btf_id\n"); 21884 return -EINVAL; 21885 } 21886 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 21887 if (!btf) { 21888 bpf_log(log, 21889 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 21890 return -EINVAL; 21891 } 21892 t = btf_type_by_id(btf, btf_id); 21893 if (!t) { 21894 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 21895 return -EINVAL; 21896 } 21897 tname = btf_name_by_offset(btf, t->name_off); 21898 if (!tname) { 21899 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 21900 return -EINVAL; 21901 } 21902 if (tgt_prog) { 21903 struct bpf_prog_aux *aux = tgt_prog->aux; 21904 21905 if (bpf_prog_is_dev_bound(prog->aux) && 21906 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 21907 bpf_log(log, "Target program bound device mismatch"); 21908 return -EINVAL; 21909 } 21910 21911 for (i = 0; i < aux->func_info_cnt; i++) 21912 if (aux->func_info[i].type_id == btf_id) { 21913 subprog = i; 21914 break; 21915 } 21916 if (subprog == -1) { 21917 bpf_log(log, "Subprog %s doesn't exist\n", tname); 21918 return -EINVAL; 21919 } 21920 if (aux->func && aux->func[subprog]->aux->exception_cb) { 21921 bpf_log(log, 21922 "%s programs cannot attach to exception callback\n", 21923 prog_extension ? "Extension" : "FENTRY/FEXIT"); 21924 return -EINVAL; 21925 } 21926 conservative = aux->func_info_aux[subprog].unreliable; 21927 if (prog_extension) { 21928 if (conservative) { 21929 bpf_log(log, 21930 "Cannot replace static functions\n"); 21931 return -EINVAL; 21932 } 21933 if (!prog->jit_requested) { 21934 bpf_log(log, 21935 "Extension programs should be JITed\n"); 21936 return -EINVAL; 21937 } 21938 } 21939 if (!tgt_prog->jited) { 21940 bpf_log(log, "Can attach to only JITed progs\n"); 21941 return -EINVAL; 21942 } 21943 if (prog_tracing) { 21944 if (aux->attach_tracing_prog) { 21945 /* 21946 * Target program is an fentry/fexit which is already attached 21947 * to another tracing program. More levels of nesting 21948 * attachment are not allowed. 21949 */ 21950 bpf_log(log, "Cannot nest tracing program attach more than once\n"); 21951 return -EINVAL; 21952 } 21953 } else if (tgt_prog->type == prog->type) { 21954 /* 21955 * To avoid potential call chain cycles, prevent attaching of a 21956 * program extension to another extension. It's ok to attach 21957 * fentry/fexit to extension program. 21958 */ 21959 bpf_log(log, "Cannot recursively attach\n"); 21960 return -EINVAL; 21961 } 21962 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 21963 prog_extension && 21964 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 21965 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 21966 /* Program extensions can extend all program types 21967 * except fentry/fexit. The reason is the following. 21968 * The fentry/fexit programs are used for performance 21969 * analysis, stats and can be attached to any program 21970 * type. When extension program is replacing XDP function 21971 * it is necessary to allow performance analysis of all 21972 * functions. Both original XDP program and its program 21973 * extension. Hence attaching fentry/fexit to 21974 * BPF_PROG_TYPE_EXT is allowed. If extending of 21975 * fentry/fexit was allowed it would be possible to create 21976 * long call chain fentry->extension->fentry->extension 21977 * beyond reasonable stack size. Hence extending fentry 21978 * is not allowed. 21979 */ 21980 bpf_log(log, "Cannot extend fentry/fexit\n"); 21981 return -EINVAL; 21982 } 21983 } else { 21984 if (prog_extension) { 21985 bpf_log(log, "Cannot replace kernel functions\n"); 21986 return -EINVAL; 21987 } 21988 } 21989 21990 switch (prog->expected_attach_type) { 21991 case BPF_TRACE_RAW_TP: 21992 if (tgt_prog) { 21993 bpf_log(log, 21994 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 21995 return -EINVAL; 21996 } 21997 if (!btf_type_is_typedef(t)) { 21998 bpf_log(log, "attach_btf_id %u is not a typedef\n", 21999 btf_id); 22000 return -EINVAL; 22001 } 22002 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 22003 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 22004 btf_id, tname); 22005 return -EINVAL; 22006 } 22007 tname += sizeof(prefix) - 1; 22008 22009 /* The func_proto of "btf_trace_##tname" is generated from typedef without argument 22010 * names. Thus using bpf_raw_event_map to get argument names. 22011 */ 22012 btp = bpf_get_raw_tracepoint(tname); 22013 if (!btp) 22014 return -EINVAL; 22015 fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL, 22016 trace_symbol); 22017 bpf_put_raw_tracepoint(btp); 22018 22019 if (fname) 22020 ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC); 22021 22022 if (!fname || ret < 0) { 22023 bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n", 22024 prefix, tname); 22025 t = btf_type_by_id(btf, t->type); 22026 if (!btf_type_is_ptr(t)) 22027 /* should never happen in valid vmlinux build */ 22028 return -EINVAL; 22029 } else { 22030 t = btf_type_by_id(btf, ret); 22031 if (!btf_type_is_func(t)) 22032 /* should never happen in valid vmlinux build */ 22033 return -EINVAL; 22034 } 22035 22036 t = btf_type_by_id(btf, t->type); 22037 if (!btf_type_is_func_proto(t)) 22038 /* should never happen in valid vmlinux build */ 22039 return -EINVAL; 22040 22041 break; 22042 case BPF_TRACE_ITER: 22043 if (!btf_type_is_func(t)) { 22044 bpf_log(log, "attach_btf_id %u is not a function\n", 22045 btf_id); 22046 return -EINVAL; 22047 } 22048 t = btf_type_by_id(btf, t->type); 22049 if (!btf_type_is_func_proto(t)) 22050 return -EINVAL; 22051 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 22052 if (ret) 22053 return ret; 22054 break; 22055 default: 22056 if (!prog_extension) 22057 return -EINVAL; 22058 fallthrough; 22059 case BPF_MODIFY_RETURN: 22060 case BPF_LSM_MAC: 22061 case BPF_LSM_CGROUP: 22062 case BPF_TRACE_FENTRY: 22063 case BPF_TRACE_FEXIT: 22064 if (!btf_type_is_func(t)) { 22065 bpf_log(log, "attach_btf_id %u is not a function\n", 22066 btf_id); 22067 return -EINVAL; 22068 } 22069 if (prog_extension && 22070 btf_check_type_match(log, prog, btf, t)) 22071 return -EINVAL; 22072 t = btf_type_by_id(btf, t->type); 22073 if (!btf_type_is_func_proto(t)) 22074 return -EINVAL; 22075 22076 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 22077 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 22078 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 22079 return -EINVAL; 22080 22081 if (tgt_prog && conservative) 22082 t = NULL; 22083 22084 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 22085 if (ret < 0) 22086 return ret; 22087 22088 if (tgt_prog) { 22089 if (subprog == 0) 22090 addr = (long) tgt_prog->bpf_func; 22091 else 22092 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 22093 } else { 22094 if (btf_is_module(btf)) { 22095 mod = btf_try_get_module(btf); 22096 if (mod) 22097 addr = find_kallsyms_symbol_value(mod, tname); 22098 else 22099 addr = 0; 22100 } else { 22101 addr = kallsyms_lookup_name(tname); 22102 } 22103 if (!addr) { 22104 module_put(mod); 22105 bpf_log(log, 22106 "The address of function %s cannot be found\n", 22107 tname); 22108 return -ENOENT; 22109 } 22110 } 22111 22112 if (prog->sleepable) { 22113 ret = -EINVAL; 22114 switch (prog->type) { 22115 case BPF_PROG_TYPE_TRACING: 22116 22117 /* fentry/fexit/fmod_ret progs can be sleepable if they are 22118 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 22119 */ 22120 if (!check_non_sleepable_error_inject(btf_id) && 22121 within_error_injection_list(addr)) 22122 ret = 0; 22123 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 22124 * in the fmodret id set with the KF_SLEEPABLE flag. 22125 */ 22126 else { 22127 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 22128 prog); 22129 22130 if (flags && (*flags & KF_SLEEPABLE)) 22131 ret = 0; 22132 } 22133 break; 22134 case BPF_PROG_TYPE_LSM: 22135 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 22136 * Only some of them are sleepable. 22137 */ 22138 if (bpf_lsm_is_sleepable_hook(btf_id)) 22139 ret = 0; 22140 break; 22141 default: 22142 break; 22143 } 22144 if (ret) { 22145 module_put(mod); 22146 bpf_log(log, "%s is not sleepable\n", tname); 22147 return ret; 22148 } 22149 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 22150 if (tgt_prog) { 22151 module_put(mod); 22152 bpf_log(log, "can't modify return codes of BPF programs\n"); 22153 return -EINVAL; 22154 } 22155 ret = -EINVAL; 22156 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 22157 !check_attach_modify_return(addr, tname)) 22158 ret = 0; 22159 if (ret) { 22160 module_put(mod); 22161 bpf_log(log, "%s() is not modifiable\n", tname); 22162 return ret; 22163 } 22164 } 22165 22166 break; 22167 } 22168 tgt_info->tgt_addr = addr; 22169 tgt_info->tgt_name = tname; 22170 tgt_info->tgt_type = t; 22171 tgt_info->tgt_mod = mod; 22172 return 0; 22173 } 22174 22175 BTF_SET_START(btf_id_deny) 22176 BTF_ID_UNUSED 22177 #ifdef CONFIG_SMP 22178 BTF_ID(func, migrate_disable) 22179 BTF_ID(func, migrate_enable) 22180 #endif 22181 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 22182 BTF_ID(func, rcu_read_unlock_strict) 22183 #endif 22184 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 22185 BTF_ID(func, preempt_count_add) 22186 BTF_ID(func, preempt_count_sub) 22187 #endif 22188 #ifdef CONFIG_PREEMPT_RCU 22189 BTF_ID(func, __rcu_read_lock) 22190 BTF_ID(func, __rcu_read_unlock) 22191 #endif 22192 BTF_SET_END(btf_id_deny) 22193 22194 static bool can_be_sleepable(struct bpf_prog *prog) 22195 { 22196 if (prog->type == BPF_PROG_TYPE_TRACING) { 22197 switch (prog->expected_attach_type) { 22198 case BPF_TRACE_FENTRY: 22199 case BPF_TRACE_FEXIT: 22200 case BPF_MODIFY_RETURN: 22201 case BPF_TRACE_ITER: 22202 return true; 22203 default: 22204 return false; 22205 } 22206 } 22207 return prog->type == BPF_PROG_TYPE_LSM || 22208 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 22209 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 22210 } 22211 22212 static int check_attach_btf_id(struct bpf_verifier_env *env) 22213 { 22214 struct bpf_prog *prog = env->prog; 22215 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 22216 struct bpf_attach_target_info tgt_info = {}; 22217 u32 btf_id = prog->aux->attach_btf_id; 22218 struct bpf_trampoline *tr; 22219 int ret; 22220 u64 key; 22221 22222 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 22223 if (prog->sleepable) 22224 /* attach_btf_id checked to be zero already */ 22225 return 0; 22226 verbose(env, "Syscall programs can only be sleepable\n"); 22227 return -EINVAL; 22228 } 22229 22230 if (prog->sleepable && !can_be_sleepable(prog)) { 22231 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 22232 return -EINVAL; 22233 } 22234 22235 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 22236 return check_struct_ops_btf_id(env); 22237 22238 if (prog->type != BPF_PROG_TYPE_TRACING && 22239 prog->type != BPF_PROG_TYPE_LSM && 22240 prog->type != BPF_PROG_TYPE_EXT) 22241 return 0; 22242 22243 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 22244 if (ret) 22245 return ret; 22246 22247 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 22248 /* to make freplace equivalent to their targets, they need to 22249 * inherit env->ops and expected_attach_type for the rest of the 22250 * verification 22251 */ 22252 env->ops = bpf_verifier_ops[tgt_prog->type]; 22253 prog->expected_attach_type = tgt_prog->expected_attach_type; 22254 } 22255 22256 /* store info about the attachment target that will be used later */ 22257 prog->aux->attach_func_proto = tgt_info.tgt_type; 22258 prog->aux->attach_func_name = tgt_info.tgt_name; 22259 prog->aux->mod = tgt_info.tgt_mod; 22260 22261 if (tgt_prog) { 22262 prog->aux->saved_dst_prog_type = tgt_prog->type; 22263 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 22264 } 22265 22266 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 22267 prog->aux->attach_btf_trace = true; 22268 return 0; 22269 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 22270 if (!bpf_iter_prog_supported(prog)) 22271 return -EINVAL; 22272 return 0; 22273 } 22274 22275 if (prog->type == BPF_PROG_TYPE_LSM) { 22276 ret = bpf_lsm_verify_prog(&env->log, prog); 22277 if (ret < 0) 22278 return ret; 22279 } else if (prog->type == BPF_PROG_TYPE_TRACING && 22280 btf_id_set_contains(&btf_id_deny, btf_id)) { 22281 return -EINVAL; 22282 } 22283 22284 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 22285 tr = bpf_trampoline_get(key, &tgt_info); 22286 if (!tr) 22287 return -ENOMEM; 22288 22289 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 22290 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 22291 22292 prog->aux->dst_trampoline = tr; 22293 return 0; 22294 } 22295 22296 struct btf *bpf_get_btf_vmlinux(void) 22297 { 22298 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 22299 mutex_lock(&bpf_verifier_lock); 22300 if (!btf_vmlinux) 22301 btf_vmlinux = btf_parse_vmlinux(); 22302 mutex_unlock(&bpf_verifier_lock); 22303 } 22304 return btf_vmlinux; 22305 } 22306 22307 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 22308 { 22309 u64 start_time = ktime_get_ns(); 22310 struct bpf_verifier_env *env; 22311 int i, len, ret = -EINVAL, err; 22312 u32 log_true_size; 22313 bool is_priv; 22314 22315 /* no program is valid */ 22316 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 22317 return -EINVAL; 22318 22319 /* 'struct bpf_verifier_env' can be global, but since it's not small, 22320 * allocate/free it every time bpf_check() is called 22321 */ 22322 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 22323 if (!env) 22324 return -ENOMEM; 22325 22326 env->bt.env = env; 22327 22328 len = (*prog)->len; 22329 env->insn_aux_data = 22330 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 22331 ret = -ENOMEM; 22332 if (!env->insn_aux_data) 22333 goto err_free_env; 22334 for (i = 0; i < len; i++) 22335 env->insn_aux_data[i].orig_idx = i; 22336 env->prog = *prog; 22337 env->ops = bpf_verifier_ops[env->prog->type]; 22338 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 22339 22340 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); 22341 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); 22342 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); 22343 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); 22344 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); 22345 22346 bpf_get_btf_vmlinux(); 22347 22348 /* grab the mutex to protect few globals used by verifier */ 22349 if (!is_priv) 22350 mutex_lock(&bpf_verifier_lock); 22351 22352 /* user could have requested verbose verifier output 22353 * and supplied buffer to store the verification trace 22354 */ 22355 ret = bpf_vlog_init(&env->log, attr->log_level, 22356 (char __user *) (unsigned long) attr->log_buf, 22357 attr->log_size); 22358 if (ret) 22359 goto err_unlock; 22360 22361 mark_verifier_state_clean(env); 22362 22363 if (IS_ERR(btf_vmlinux)) { 22364 /* Either gcc or pahole or kernel are broken. */ 22365 verbose(env, "in-kernel BTF is malformed\n"); 22366 ret = PTR_ERR(btf_vmlinux); 22367 goto skip_full_check; 22368 } 22369 22370 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 22371 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 22372 env->strict_alignment = true; 22373 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 22374 env->strict_alignment = false; 22375 22376 if (is_priv) 22377 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 22378 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 22379 22380 env->explored_states = kvcalloc(state_htab_size(env), 22381 sizeof(struct bpf_verifier_state_list *), 22382 GFP_USER); 22383 ret = -ENOMEM; 22384 if (!env->explored_states) 22385 goto skip_full_check; 22386 22387 ret = check_btf_info_early(env, attr, uattr); 22388 if (ret < 0) 22389 goto skip_full_check; 22390 22391 ret = add_subprog_and_kfunc(env); 22392 if (ret < 0) 22393 goto skip_full_check; 22394 22395 ret = check_subprogs(env); 22396 if (ret < 0) 22397 goto skip_full_check; 22398 22399 ret = check_btf_info(env, attr, uattr); 22400 if (ret < 0) 22401 goto skip_full_check; 22402 22403 ret = check_attach_btf_id(env); 22404 if (ret) 22405 goto skip_full_check; 22406 22407 ret = resolve_pseudo_ldimm64(env); 22408 if (ret < 0) 22409 goto skip_full_check; 22410 22411 if (bpf_prog_is_offloaded(env->prog->aux)) { 22412 ret = bpf_prog_offload_verifier_prep(env->prog); 22413 if (ret) 22414 goto skip_full_check; 22415 } 22416 22417 ret = check_cfg(env); 22418 if (ret < 0) 22419 goto skip_full_check; 22420 22421 ret = mark_fastcall_patterns(env); 22422 if (ret < 0) 22423 goto skip_full_check; 22424 22425 ret = do_check_main(env); 22426 ret = ret ?: do_check_subprogs(env); 22427 22428 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 22429 ret = bpf_prog_offload_finalize(env); 22430 22431 skip_full_check: 22432 kvfree(env->explored_states); 22433 22434 /* might decrease stack depth, keep it before passes that 22435 * allocate additional slots. 22436 */ 22437 if (ret == 0) 22438 ret = remove_fastcall_spills_fills(env); 22439 22440 if (ret == 0) 22441 ret = check_max_stack_depth(env); 22442 22443 /* instruction rewrites happen after this point */ 22444 if (ret == 0) 22445 ret = optimize_bpf_loop(env); 22446 22447 if (is_priv) { 22448 if (ret == 0) 22449 opt_hard_wire_dead_code_branches(env); 22450 if (ret == 0) 22451 ret = opt_remove_dead_code(env); 22452 if (ret == 0) 22453 ret = opt_remove_nops(env); 22454 } else { 22455 if (ret == 0) 22456 sanitize_dead_code(env); 22457 } 22458 22459 if (ret == 0) 22460 /* program is valid, convert *(u32*)(ctx + off) accesses */ 22461 ret = convert_ctx_accesses(env); 22462 22463 if (ret == 0) 22464 ret = do_misc_fixups(env); 22465 22466 /* do 32-bit optimization after insn patching has done so those patched 22467 * insns could be handled correctly. 22468 */ 22469 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 22470 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 22471 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 22472 : false; 22473 } 22474 22475 if (ret == 0) 22476 ret = fixup_call_args(env); 22477 22478 env->verification_time = ktime_get_ns() - start_time; 22479 print_verification_stats(env); 22480 env->prog->aux->verified_insns = env->insn_processed; 22481 22482 /* preserve original error even if log finalization is successful */ 22483 err = bpf_vlog_finalize(&env->log, &log_true_size); 22484 if (err) 22485 ret = err; 22486 22487 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 22488 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 22489 &log_true_size, sizeof(log_true_size))) { 22490 ret = -EFAULT; 22491 goto err_release_maps; 22492 } 22493 22494 if (ret) 22495 goto err_release_maps; 22496 22497 if (env->used_map_cnt) { 22498 /* if program passed verifier, update used_maps in bpf_prog_info */ 22499 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 22500 sizeof(env->used_maps[0]), 22501 GFP_KERNEL); 22502 22503 if (!env->prog->aux->used_maps) { 22504 ret = -ENOMEM; 22505 goto err_release_maps; 22506 } 22507 22508 memcpy(env->prog->aux->used_maps, env->used_maps, 22509 sizeof(env->used_maps[0]) * env->used_map_cnt); 22510 env->prog->aux->used_map_cnt = env->used_map_cnt; 22511 } 22512 if (env->used_btf_cnt) { 22513 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 22514 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 22515 sizeof(env->used_btfs[0]), 22516 GFP_KERNEL); 22517 if (!env->prog->aux->used_btfs) { 22518 ret = -ENOMEM; 22519 goto err_release_maps; 22520 } 22521 22522 memcpy(env->prog->aux->used_btfs, env->used_btfs, 22523 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 22524 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 22525 } 22526 if (env->used_map_cnt || env->used_btf_cnt) { 22527 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 22528 * bpf_ld_imm64 instructions 22529 */ 22530 convert_pseudo_ld_imm64(env); 22531 } 22532 22533 adjust_btf_func(env); 22534 22535 err_release_maps: 22536 if (!env->prog->aux->used_maps) 22537 /* if we didn't copy map pointers into bpf_prog_info, release 22538 * them now. Otherwise free_used_maps() will release them. 22539 */ 22540 release_maps(env); 22541 if (!env->prog->aux->used_btfs) 22542 release_btfs(env); 22543 22544 /* extension progs temporarily inherit the attach_type of their targets 22545 for verification purposes, so set it back to zero before returning 22546 */ 22547 if (env->prog->type == BPF_PROG_TYPE_EXT) 22548 env->prog->expected_attach_type = 0; 22549 22550 *prog = env->prog; 22551 22552 module_put(env->attach_btf_mod); 22553 err_unlock: 22554 if (!is_priv) 22555 mutex_unlock(&bpf_verifier_lock); 22556 vfree(env->insn_aux_data); 22557 err_free_env: 22558 kvfree(env); 22559 return ret; 22560 } 22561