xref: /linux/kernel/bpf/verifier.c (revision 7cc9196675234d4de0e1e19b9da1a8b86ecfeedd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 
32 #include "disasm.h"
33 
34 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
35 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
36 	[_id] = & _name ## _verifier_ops,
37 #define BPF_MAP_TYPE(_id, _ops)
38 #define BPF_LINK_TYPE(_id, _name)
39 #include <linux/bpf_types.h>
40 #undef BPF_PROG_TYPE
41 #undef BPF_MAP_TYPE
42 #undef BPF_LINK_TYPE
43 };
44 
45 struct bpf_mem_alloc bpf_global_percpu_ma;
46 static bool bpf_global_percpu_ma_set;
47 
48 /* bpf_check() is a static code analyzer that walks eBPF program
49  * instruction by instruction and updates register/stack state.
50  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
51  *
52  * The first pass is depth-first-search to check that the program is a DAG.
53  * It rejects the following programs:
54  * - larger than BPF_MAXINSNS insns
55  * - if loop is present (detected via back-edge)
56  * - unreachable insns exist (shouldn't be a forest. program = one function)
57  * - out of bounds or malformed jumps
58  * The second pass is all possible path descent from the 1st insn.
59  * Since it's analyzing all paths through the program, the length of the
60  * analysis is limited to 64k insn, which may be hit even if total number of
61  * insn is less then 4K, but there are too many branches that change stack/regs.
62  * Number of 'branches to be analyzed' is limited to 1k
63  *
64  * On entry to each instruction, each register has a type, and the instruction
65  * changes the types of the registers depending on instruction semantics.
66  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
67  * copied to R1.
68  *
69  * All registers are 64-bit.
70  * R0 - return register
71  * R1-R5 argument passing registers
72  * R6-R9 callee saved registers
73  * R10 - frame pointer read-only
74  *
75  * At the start of BPF program the register R1 contains a pointer to bpf_context
76  * and has type PTR_TO_CTX.
77  *
78  * Verifier tracks arithmetic operations on pointers in case:
79  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
80  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
81  * 1st insn copies R10 (which has FRAME_PTR) type into R1
82  * and 2nd arithmetic instruction is pattern matched to recognize
83  * that it wants to construct a pointer to some element within stack.
84  * So after 2nd insn, the register R1 has type PTR_TO_STACK
85  * (and -20 constant is saved for further stack bounds checking).
86  * Meaning that this reg is a pointer to stack plus known immediate constant.
87  *
88  * Most of the time the registers have SCALAR_VALUE type, which
89  * means the register has some value, but it's not a valid pointer.
90  * (like pointer plus pointer becomes SCALAR_VALUE type)
91  *
92  * When verifier sees load or store instructions the type of base register
93  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
94  * four pointer types recognized by check_mem_access() function.
95  *
96  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
97  * and the range of [ptr, ptr + map's value_size) is accessible.
98  *
99  * registers used to pass values to function calls are checked against
100  * function argument constraints.
101  *
102  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
103  * It means that the register type passed to this function must be
104  * PTR_TO_STACK and it will be used inside the function as
105  * 'pointer to map element key'
106  *
107  * For example the argument constraints for bpf_map_lookup_elem():
108  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
109  *   .arg1_type = ARG_CONST_MAP_PTR,
110  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
111  *
112  * ret_type says that this function returns 'pointer to map elem value or null'
113  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
114  * 2nd argument should be a pointer to stack, which will be used inside
115  * the helper function as a pointer to map element key.
116  *
117  * On the kernel side the helper function looks like:
118  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
119  * {
120  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
121  *    void *key = (void *) (unsigned long) r2;
122  *    void *value;
123  *
124  *    here kernel can access 'key' and 'map' pointers safely, knowing that
125  *    [key, key + map->key_size) bytes are valid and were initialized on
126  *    the stack of eBPF program.
127  * }
128  *
129  * Corresponding eBPF program may look like:
130  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
131  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
132  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
133  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
134  * here verifier looks at prototype of map_lookup_elem() and sees:
135  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
136  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
137  *
138  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
139  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
140  * and were initialized prior to this call.
141  * If it's ok, then verifier allows this BPF_CALL insn and looks at
142  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
143  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
144  * returns either pointer to map value or NULL.
145  *
146  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
147  * insn, the register holding that pointer in the true branch changes state to
148  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
149  * branch. See check_cond_jmp_op().
150  *
151  * After the call R0 is set to return type of the function and registers R1-R5
152  * are set to NOT_INIT to indicate that they are no longer readable.
153  *
154  * The following reference types represent a potential reference to a kernel
155  * resource which, after first being allocated, must be checked and freed by
156  * the BPF program:
157  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
158  *
159  * When the verifier sees a helper call return a reference type, it allocates a
160  * pointer id for the reference and stores it in the current function state.
161  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
162  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
163  * passes through a NULL-check conditional. For the branch wherein the state is
164  * changed to CONST_IMM, the verifier releases the reference.
165  *
166  * For each helper function that allocates a reference, such as
167  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
168  * bpf_sk_release(). When a reference type passes into the release function,
169  * the verifier also releases the reference. If any unchecked or unreleased
170  * reference remains at the end of the program, the verifier rejects it.
171  */
172 
173 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
174 struct bpf_verifier_stack_elem {
175 	/* verifer state is 'st'
176 	 * before processing instruction 'insn_idx'
177 	 * and after processing instruction 'prev_insn_idx'
178 	 */
179 	struct bpf_verifier_state st;
180 	int insn_idx;
181 	int prev_insn_idx;
182 	struct bpf_verifier_stack_elem *next;
183 	/* length of verifier log at the time this state was pushed on stack */
184 	u32 log_pos;
185 };
186 
187 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
188 #define BPF_COMPLEXITY_LIMIT_STATES	64
189 
190 #define BPF_MAP_KEY_POISON	(1ULL << 63)
191 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
192 
193 #define BPF_MAP_PTR_UNPRIV	1UL
194 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
195 					  POISON_POINTER_DELTA))
196 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
197 
198 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE  512
199 
200 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
201 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
202 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
203 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
204 static int ref_set_non_owning(struct bpf_verifier_env *env,
205 			      struct bpf_reg_state *reg);
206 static void specialize_kfunc(struct bpf_verifier_env *env,
207 			     u32 func_id, u16 offset, unsigned long *addr);
208 static bool is_trusted_reg(const struct bpf_reg_state *reg);
209 
210 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
211 {
212 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
213 }
214 
215 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
216 {
217 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
218 }
219 
220 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
221 			      const struct bpf_map *map, bool unpriv)
222 {
223 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
224 	unpriv |= bpf_map_ptr_unpriv(aux);
225 	aux->map_ptr_state = (unsigned long)map |
226 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
227 }
228 
229 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
230 {
231 	return aux->map_key_state & BPF_MAP_KEY_POISON;
232 }
233 
234 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
235 {
236 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
237 }
238 
239 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
240 {
241 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
242 }
243 
244 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
245 {
246 	bool poisoned = bpf_map_key_poisoned(aux);
247 
248 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
249 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
250 }
251 
252 static bool bpf_helper_call(const struct bpf_insn *insn)
253 {
254 	return insn->code == (BPF_JMP | BPF_CALL) &&
255 	       insn->src_reg == 0;
256 }
257 
258 static bool bpf_pseudo_call(const struct bpf_insn *insn)
259 {
260 	return insn->code == (BPF_JMP | BPF_CALL) &&
261 	       insn->src_reg == BPF_PSEUDO_CALL;
262 }
263 
264 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
265 {
266 	return insn->code == (BPF_JMP | BPF_CALL) &&
267 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
268 }
269 
270 struct bpf_call_arg_meta {
271 	struct bpf_map *map_ptr;
272 	bool raw_mode;
273 	bool pkt_access;
274 	u8 release_regno;
275 	int regno;
276 	int access_size;
277 	int mem_size;
278 	u64 msize_max_value;
279 	int ref_obj_id;
280 	int dynptr_id;
281 	int map_uid;
282 	int func_id;
283 	struct btf *btf;
284 	u32 btf_id;
285 	struct btf *ret_btf;
286 	u32 ret_btf_id;
287 	u32 subprogno;
288 	struct btf_field *kptr_field;
289 };
290 
291 struct bpf_kfunc_call_arg_meta {
292 	/* In parameters */
293 	struct btf *btf;
294 	u32 func_id;
295 	u32 kfunc_flags;
296 	const struct btf_type *func_proto;
297 	const char *func_name;
298 	/* Out parameters */
299 	u32 ref_obj_id;
300 	u8 release_regno;
301 	bool r0_rdonly;
302 	u32 ret_btf_id;
303 	u64 r0_size;
304 	u32 subprogno;
305 	struct {
306 		u64 value;
307 		bool found;
308 	} arg_constant;
309 
310 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
311 	 * generally to pass info about user-defined local kptr types to later
312 	 * verification logic
313 	 *   bpf_obj_drop/bpf_percpu_obj_drop
314 	 *     Record the local kptr type to be drop'd
315 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
316 	 *     Record the local kptr type to be refcount_incr'd and use
317 	 *     arg_owning_ref to determine whether refcount_acquire should be
318 	 *     fallible
319 	 */
320 	struct btf *arg_btf;
321 	u32 arg_btf_id;
322 	bool arg_owning_ref;
323 
324 	struct {
325 		struct btf_field *field;
326 	} arg_list_head;
327 	struct {
328 		struct btf_field *field;
329 	} arg_rbtree_root;
330 	struct {
331 		enum bpf_dynptr_type type;
332 		u32 id;
333 		u32 ref_obj_id;
334 	} initialized_dynptr;
335 	struct {
336 		u8 spi;
337 		u8 frameno;
338 	} iter;
339 	u64 mem_size;
340 };
341 
342 struct btf *btf_vmlinux;
343 
344 static const char *btf_type_name(const struct btf *btf, u32 id)
345 {
346 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
347 }
348 
349 static DEFINE_MUTEX(bpf_verifier_lock);
350 static DEFINE_MUTEX(bpf_percpu_ma_lock);
351 
352 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
353 {
354 	struct bpf_verifier_env *env = private_data;
355 	va_list args;
356 
357 	if (!bpf_verifier_log_needed(&env->log))
358 		return;
359 
360 	va_start(args, fmt);
361 	bpf_verifier_vlog(&env->log, fmt, args);
362 	va_end(args);
363 }
364 
365 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
366 				   struct bpf_reg_state *reg,
367 				   struct bpf_retval_range range, const char *ctx,
368 				   const char *reg_name)
369 {
370 	bool unknown = true;
371 
372 	verbose(env, "%s the register %s has", ctx, reg_name);
373 	if (reg->smin_value > S64_MIN) {
374 		verbose(env, " smin=%lld", reg->smin_value);
375 		unknown = false;
376 	}
377 	if (reg->smax_value < S64_MAX) {
378 		verbose(env, " smax=%lld", reg->smax_value);
379 		unknown = false;
380 	}
381 	if (unknown)
382 		verbose(env, " unknown scalar value");
383 	verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
384 }
385 
386 static bool type_may_be_null(u32 type)
387 {
388 	return type & PTR_MAYBE_NULL;
389 }
390 
391 static bool reg_not_null(const struct bpf_reg_state *reg)
392 {
393 	enum bpf_reg_type type;
394 
395 	type = reg->type;
396 	if (type_may_be_null(type))
397 		return false;
398 
399 	type = base_type(type);
400 	return type == PTR_TO_SOCKET ||
401 		type == PTR_TO_TCP_SOCK ||
402 		type == PTR_TO_MAP_VALUE ||
403 		type == PTR_TO_MAP_KEY ||
404 		type == PTR_TO_SOCK_COMMON ||
405 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
406 		type == PTR_TO_MEM;
407 }
408 
409 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
410 {
411 	struct btf_record *rec = NULL;
412 	struct btf_struct_meta *meta;
413 
414 	if (reg->type == PTR_TO_MAP_VALUE) {
415 		rec = reg->map_ptr->record;
416 	} else if (type_is_ptr_alloc_obj(reg->type)) {
417 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
418 		if (meta)
419 			rec = meta->record;
420 	}
421 	return rec;
422 }
423 
424 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
425 {
426 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
427 
428 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
429 }
430 
431 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
432 {
433 	struct bpf_func_info *info;
434 
435 	if (!env->prog->aux->func_info)
436 		return "";
437 
438 	info = &env->prog->aux->func_info[subprog];
439 	return btf_type_name(env->prog->aux->btf, info->type_id);
440 }
441 
442 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog)
443 {
444 	struct bpf_subprog_info *info = subprog_info(env, subprog);
445 
446 	info->is_cb = true;
447 	info->is_async_cb = true;
448 	info->is_exception_cb = true;
449 }
450 
451 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
452 {
453 	return subprog_info(env, subprog)->is_exception_cb;
454 }
455 
456 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
457 {
458 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
459 }
460 
461 static bool type_is_rdonly_mem(u32 type)
462 {
463 	return type & MEM_RDONLY;
464 }
465 
466 static bool is_acquire_function(enum bpf_func_id func_id,
467 				const struct bpf_map *map)
468 {
469 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
470 
471 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
472 	    func_id == BPF_FUNC_sk_lookup_udp ||
473 	    func_id == BPF_FUNC_skc_lookup_tcp ||
474 	    func_id == BPF_FUNC_ringbuf_reserve ||
475 	    func_id == BPF_FUNC_kptr_xchg)
476 		return true;
477 
478 	if (func_id == BPF_FUNC_map_lookup_elem &&
479 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
480 	     map_type == BPF_MAP_TYPE_SOCKHASH))
481 		return true;
482 
483 	return false;
484 }
485 
486 static bool is_ptr_cast_function(enum bpf_func_id func_id)
487 {
488 	return func_id == BPF_FUNC_tcp_sock ||
489 		func_id == BPF_FUNC_sk_fullsock ||
490 		func_id == BPF_FUNC_skc_to_tcp_sock ||
491 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
492 		func_id == BPF_FUNC_skc_to_udp6_sock ||
493 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
494 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
495 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
496 }
497 
498 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
499 {
500 	return func_id == BPF_FUNC_dynptr_data;
501 }
502 
503 static bool is_sync_callback_calling_kfunc(u32 btf_id);
504 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
505 
506 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
507 {
508 	return func_id == BPF_FUNC_for_each_map_elem ||
509 	       func_id == BPF_FUNC_find_vma ||
510 	       func_id == BPF_FUNC_loop ||
511 	       func_id == BPF_FUNC_user_ringbuf_drain;
512 }
513 
514 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
515 {
516 	return func_id == BPF_FUNC_timer_set_callback;
517 }
518 
519 static bool is_callback_calling_function(enum bpf_func_id func_id)
520 {
521 	return is_sync_callback_calling_function(func_id) ||
522 	       is_async_callback_calling_function(func_id);
523 }
524 
525 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
526 {
527 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
528 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
529 }
530 
531 static bool is_storage_get_function(enum bpf_func_id func_id)
532 {
533 	return func_id == BPF_FUNC_sk_storage_get ||
534 	       func_id == BPF_FUNC_inode_storage_get ||
535 	       func_id == BPF_FUNC_task_storage_get ||
536 	       func_id == BPF_FUNC_cgrp_storage_get;
537 }
538 
539 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
540 					const struct bpf_map *map)
541 {
542 	int ref_obj_uses = 0;
543 
544 	if (is_ptr_cast_function(func_id))
545 		ref_obj_uses++;
546 	if (is_acquire_function(func_id, map))
547 		ref_obj_uses++;
548 	if (is_dynptr_ref_function(func_id))
549 		ref_obj_uses++;
550 
551 	return ref_obj_uses > 1;
552 }
553 
554 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
555 {
556 	return BPF_CLASS(insn->code) == BPF_STX &&
557 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
558 	       insn->imm == BPF_CMPXCHG;
559 }
560 
561 static int __get_spi(s32 off)
562 {
563 	return (-off - 1) / BPF_REG_SIZE;
564 }
565 
566 static struct bpf_func_state *func(struct bpf_verifier_env *env,
567 				   const struct bpf_reg_state *reg)
568 {
569 	struct bpf_verifier_state *cur = env->cur_state;
570 
571 	return cur->frame[reg->frameno];
572 }
573 
574 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
575 {
576        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
577 
578        /* We need to check that slots between [spi - nr_slots + 1, spi] are
579 	* within [0, allocated_stack).
580 	*
581 	* Please note that the spi grows downwards. For example, a dynptr
582 	* takes the size of two stack slots; the first slot will be at
583 	* spi and the second slot will be at spi - 1.
584 	*/
585        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
586 }
587 
588 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
589 			          const char *obj_kind, int nr_slots)
590 {
591 	int off, spi;
592 
593 	if (!tnum_is_const(reg->var_off)) {
594 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
595 		return -EINVAL;
596 	}
597 
598 	off = reg->off + reg->var_off.value;
599 	if (off % BPF_REG_SIZE) {
600 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
601 		return -EINVAL;
602 	}
603 
604 	spi = __get_spi(off);
605 	if (spi + 1 < nr_slots) {
606 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
607 		return -EINVAL;
608 	}
609 
610 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
611 		return -ERANGE;
612 	return spi;
613 }
614 
615 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
616 {
617 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
618 }
619 
620 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
621 {
622 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
623 }
624 
625 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
626 {
627 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
628 	case DYNPTR_TYPE_LOCAL:
629 		return BPF_DYNPTR_TYPE_LOCAL;
630 	case DYNPTR_TYPE_RINGBUF:
631 		return BPF_DYNPTR_TYPE_RINGBUF;
632 	case DYNPTR_TYPE_SKB:
633 		return BPF_DYNPTR_TYPE_SKB;
634 	case DYNPTR_TYPE_XDP:
635 		return BPF_DYNPTR_TYPE_XDP;
636 	default:
637 		return BPF_DYNPTR_TYPE_INVALID;
638 	}
639 }
640 
641 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
642 {
643 	switch (type) {
644 	case BPF_DYNPTR_TYPE_LOCAL:
645 		return DYNPTR_TYPE_LOCAL;
646 	case BPF_DYNPTR_TYPE_RINGBUF:
647 		return DYNPTR_TYPE_RINGBUF;
648 	case BPF_DYNPTR_TYPE_SKB:
649 		return DYNPTR_TYPE_SKB;
650 	case BPF_DYNPTR_TYPE_XDP:
651 		return DYNPTR_TYPE_XDP;
652 	default:
653 		return 0;
654 	}
655 }
656 
657 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
658 {
659 	return type == BPF_DYNPTR_TYPE_RINGBUF;
660 }
661 
662 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
663 			      enum bpf_dynptr_type type,
664 			      bool first_slot, int dynptr_id);
665 
666 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
667 				struct bpf_reg_state *reg);
668 
669 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
670 				   struct bpf_reg_state *sreg1,
671 				   struct bpf_reg_state *sreg2,
672 				   enum bpf_dynptr_type type)
673 {
674 	int id = ++env->id_gen;
675 
676 	__mark_dynptr_reg(sreg1, type, true, id);
677 	__mark_dynptr_reg(sreg2, type, false, id);
678 }
679 
680 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
681 			       struct bpf_reg_state *reg,
682 			       enum bpf_dynptr_type type)
683 {
684 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
685 }
686 
687 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
688 				        struct bpf_func_state *state, int spi);
689 
690 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
691 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
692 {
693 	struct bpf_func_state *state = func(env, reg);
694 	enum bpf_dynptr_type type;
695 	int spi, i, err;
696 
697 	spi = dynptr_get_spi(env, reg);
698 	if (spi < 0)
699 		return spi;
700 
701 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
702 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
703 	 * to ensure that for the following example:
704 	 *	[d1][d1][d2][d2]
705 	 * spi    3   2   1   0
706 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
707 	 * case they do belong to same dynptr, second call won't see slot_type
708 	 * as STACK_DYNPTR and will simply skip destruction.
709 	 */
710 	err = destroy_if_dynptr_stack_slot(env, state, spi);
711 	if (err)
712 		return err;
713 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
714 	if (err)
715 		return err;
716 
717 	for (i = 0; i < BPF_REG_SIZE; i++) {
718 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
719 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
720 	}
721 
722 	type = arg_to_dynptr_type(arg_type);
723 	if (type == BPF_DYNPTR_TYPE_INVALID)
724 		return -EINVAL;
725 
726 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
727 			       &state->stack[spi - 1].spilled_ptr, type);
728 
729 	if (dynptr_type_refcounted(type)) {
730 		/* The id is used to track proper releasing */
731 		int id;
732 
733 		if (clone_ref_obj_id)
734 			id = clone_ref_obj_id;
735 		else
736 			id = acquire_reference_state(env, insn_idx);
737 
738 		if (id < 0)
739 			return id;
740 
741 		state->stack[spi].spilled_ptr.ref_obj_id = id;
742 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
743 	}
744 
745 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
746 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
747 
748 	return 0;
749 }
750 
751 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
752 {
753 	int i;
754 
755 	for (i = 0; i < BPF_REG_SIZE; i++) {
756 		state->stack[spi].slot_type[i] = STACK_INVALID;
757 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
758 	}
759 
760 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
761 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
762 
763 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
764 	 *
765 	 * While we don't allow reading STACK_INVALID, it is still possible to
766 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
767 	 * helpers or insns can do partial read of that part without failing,
768 	 * but check_stack_range_initialized, check_stack_read_var_off, and
769 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
770 	 * the slot conservatively. Hence we need to prevent those liveness
771 	 * marking walks.
772 	 *
773 	 * This was not a problem before because STACK_INVALID is only set by
774 	 * default (where the default reg state has its reg->parent as NULL), or
775 	 * in clean_live_states after REG_LIVE_DONE (at which point
776 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
777 	 * verifier state exploration (like we did above). Hence, for our case
778 	 * parentage chain will still be live (i.e. reg->parent may be
779 	 * non-NULL), while earlier reg->parent was NULL, so we need
780 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
781 	 * done later on reads or by mark_dynptr_read as well to unnecessary
782 	 * mark registers in verifier state.
783 	 */
784 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
785 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
786 }
787 
788 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
789 {
790 	struct bpf_func_state *state = func(env, reg);
791 	int spi, ref_obj_id, i;
792 
793 	spi = dynptr_get_spi(env, reg);
794 	if (spi < 0)
795 		return spi;
796 
797 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
798 		invalidate_dynptr(env, state, spi);
799 		return 0;
800 	}
801 
802 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
803 
804 	/* If the dynptr has a ref_obj_id, then we need to invalidate
805 	 * two things:
806 	 *
807 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
808 	 * 2) Any slices derived from this dynptr.
809 	 */
810 
811 	/* Invalidate any slices associated with this dynptr */
812 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
813 
814 	/* Invalidate any dynptr clones */
815 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
816 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
817 			continue;
818 
819 		/* it should always be the case that if the ref obj id
820 		 * matches then the stack slot also belongs to a
821 		 * dynptr
822 		 */
823 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
824 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
825 			return -EFAULT;
826 		}
827 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
828 			invalidate_dynptr(env, state, i);
829 	}
830 
831 	return 0;
832 }
833 
834 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
835 			       struct bpf_reg_state *reg);
836 
837 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
838 {
839 	if (!env->allow_ptr_leaks)
840 		__mark_reg_not_init(env, reg);
841 	else
842 		__mark_reg_unknown(env, reg);
843 }
844 
845 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
846 				        struct bpf_func_state *state, int spi)
847 {
848 	struct bpf_func_state *fstate;
849 	struct bpf_reg_state *dreg;
850 	int i, dynptr_id;
851 
852 	/* We always ensure that STACK_DYNPTR is never set partially,
853 	 * hence just checking for slot_type[0] is enough. This is
854 	 * different for STACK_SPILL, where it may be only set for
855 	 * 1 byte, so code has to use is_spilled_reg.
856 	 */
857 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
858 		return 0;
859 
860 	/* Reposition spi to first slot */
861 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
862 		spi = spi + 1;
863 
864 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
865 		verbose(env, "cannot overwrite referenced dynptr\n");
866 		return -EINVAL;
867 	}
868 
869 	mark_stack_slot_scratched(env, spi);
870 	mark_stack_slot_scratched(env, spi - 1);
871 
872 	/* Writing partially to one dynptr stack slot destroys both. */
873 	for (i = 0; i < BPF_REG_SIZE; i++) {
874 		state->stack[spi].slot_type[i] = STACK_INVALID;
875 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
876 	}
877 
878 	dynptr_id = state->stack[spi].spilled_ptr.id;
879 	/* Invalidate any slices associated with this dynptr */
880 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
881 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
882 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
883 			continue;
884 		if (dreg->dynptr_id == dynptr_id)
885 			mark_reg_invalid(env, dreg);
886 	}));
887 
888 	/* Do not release reference state, we are destroying dynptr on stack,
889 	 * not using some helper to release it. Just reset register.
890 	 */
891 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
892 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
893 
894 	/* Same reason as unmark_stack_slots_dynptr above */
895 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
896 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
897 
898 	return 0;
899 }
900 
901 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
902 {
903 	int spi;
904 
905 	if (reg->type == CONST_PTR_TO_DYNPTR)
906 		return false;
907 
908 	spi = dynptr_get_spi(env, reg);
909 
910 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
911 	 * error because this just means the stack state hasn't been updated yet.
912 	 * We will do check_mem_access to check and update stack bounds later.
913 	 */
914 	if (spi < 0 && spi != -ERANGE)
915 		return false;
916 
917 	/* We don't need to check if the stack slots are marked by previous
918 	 * dynptr initializations because we allow overwriting existing unreferenced
919 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
920 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
921 	 * touching are completely destructed before we reinitialize them for a new
922 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
923 	 * instead of delaying it until the end where the user will get "Unreleased
924 	 * reference" error.
925 	 */
926 	return true;
927 }
928 
929 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
930 {
931 	struct bpf_func_state *state = func(env, reg);
932 	int i, spi;
933 
934 	/* This already represents first slot of initialized bpf_dynptr.
935 	 *
936 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
937 	 * check_func_arg_reg_off's logic, so we don't need to check its
938 	 * offset and alignment.
939 	 */
940 	if (reg->type == CONST_PTR_TO_DYNPTR)
941 		return true;
942 
943 	spi = dynptr_get_spi(env, reg);
944 	if (spi < 0)
945 		return false;
946 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
947 		return false;
948 
949 	for (i = 0; i < BPF_REG_SIZE; i++) {
950 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
951 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
952 			return false;
953 	}
954 
955 	return true;
956 }
957 
958 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
959 				    enum bpf_arg_type arg_type)
960 {
961 	struct bpf_func_state *state = func(env, reg);
962 	enum bpf_dynptr_type dynptr_type;
963 	int spi;
964 
965 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
966 	if (arg_type == ARG_PTR_TO_DYNPTR)
967 		return true;
968 
969 	dynptr_type = arg_to_dynptr_type(arg_type);
970 	if (reg->type == CONST_PTR_TO_DYNPTR) {
971 		return reg->dynptr.type == dynptr_type;
972 	} else {
973 		spi = dynptr_get_spi(env, reg);
974 		if (spi < 0)
975 			return false;
976 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
977 	}
978 }
979 
980 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
981 
982 static bool in_rcu_cs(struct bpf_verifier_env *env);
983 
984 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
985 
986 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
987 				 struct bpf_kfunc_call_arg_meta *meta,
988 				 struct bpf_reg_state *reg, int insn_idx,
989 				 struct btf *btf, u32 btf_id, int nr_slots)
990 {
991 	struct bpf_func_state *state = func(env, reg);
992 	int spi, i, j, id;
993 
994 	spi = iter_get_spi(env, reg, nr_slots);
995 	if (spi < 0)
996 		return spi;
997 
998 	id = acquire_reference_state(env, insn_idx);
999 	if (id < 0)
1000 		return id;
1001 
1002 	for (i = 0; i < nr_slots; i++) {
1003 		struct bpf_stack_state *slot = &state->stack[spi - i];
1004 		struct bpf_reg_state *st = &slot->spilled_ptr;
1005 
1006 		__mark_reg_known_zero(st);
1007 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1008 		if (is_kfunc_rcu_protected(meta)) {
1009 			if (in_rcu_cs(env))
1010 				st->type |= MEM_RCU;
1011 			else
1012 				st->type |= PTR_UNTRUSTED;
1013 		}
1014 		st->live |= REG_LIVE_WRITTEN;
1015 		st->ref_obj_id = i == 0 ? id : 0;
1016 		st->iter.btf = btf;
1017 		st->iter.btf_id = btf_id;
1018 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1019 		st->iter.depth = 0;
1020 
1021 		for (j = 0; j < BPF_REG_SIZE; j++)
1022 			slot->slot_type[j] = STACK_ITER;
1023 
1024 		mark_stack_slot_scratched(env, spi - i);
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1031 				   struct bpf_reg_state *reg, int nr_slots)
1032 {
1033 	struct bpf_func_state *state = func(env, reg);
1034 	int spi, i, j;
1035 
1036 	spi = iter_get_spi(env, reg, nr_slots);
1037 	if (spi < 0)
1038 		return spi;
1039 
1040 	for (i = 0; i < nr_slots; i++) {
1041 		struct bpf_stack_state *slot = &state->stack[spi - i];
1042 		struct bpf_reg_state *st = &slot->spilled_ptr;
1043 
1044 		if (i == 0)
1045 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1046 
1047 		__mark_reg_not_init(env, st);
1048 
1049 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1050 		st->live |= REG_LIVE_WRITTEN;
1051 
1052 		for (j = 0; j < BPF_REG_SIZE; j++)
1053 			slot->slot_type[j] = STACK_INVALID;
1054 
1055 		mark_stack_slot_scratched(env, spi - i);
1056 	}
1057 
1058 	return 0;
1059 }
1060 
1061 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1062 				     struct bpf_reg_state *reg, int nr_slots)
1063 {
1064 	struct bpf_func_state *state = func(env, reg);
1065 	int spi, i, j;
1066 
1067 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1068 	 * will do check_mem_access to check and update stack bounds later, so
1069 	 * return true for that case.
1070 	 */
1071 	spi = iter_get_spi(env, reg, nr_slots);
1072 	if (spi == -ERANGE)
1073 		return true;
1074 	if (spi < 0)
1075 		return false;
1076 
1077 	for (i = 0; i < nr_slots; i++) {
1078 		struct bpf_stack_state *slot = &state->stack[spi - i];
1079 
1080 		for (j = 0; j < BPF_REG_SIZE; j++)
1081 			if (slot->slot_type[j] == STACK_ITER)
1082 				return false;
1083 	}
1084 
1085 	return true;
1086 }
1087 
1088 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1089 				   struct btf *btf, u32 btf_id, int nr_slots)
1090 {
1091 	struct bpf_func_state *state = func(env, reg);
1092 	int spi, i, j;
1093 
1094 	spi = iter_get_spi(env, reg, nr_slots);
1095 	if (spi < 0)
1096 		return -EINVAL;
1097 
1098 	for (i = 0; i < nr_slots; i++) {
1099 		struct bpf_stack_state *slot = &state->stack[spi - i];
1100 		struct bpf_reg_state *st = &slot->spilled_ptr;
1101 
1102 		if (st->type & PTR_UNTRUSTED)
1103 			return -EPROTO;
1104 		/* only main (first) slot has ref_obj_id set */
1105 		if (i == 0 && !st->ref_obj_id)
1106 			return -EINVAL;
1107 		if (i != 0 && st->ref_obj_id)
1108 			return -EINVAL;
1109 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1110 			return -EINVAL;
1111 
1112 		for (j = 0; j < BPF_REG_SIZE; j++)
1113 			if (slot->slot_type[j] != STACK_ITER)
1114 				return -EINVAL;
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 /* Check if given stack slot is "special":
1121  *   - spilled register state (STACK_SPILL);
1122  *   - dynptr state (STACK_DYNPTR);
1123  *   - iter state (STACK_ITER).
1124  */
1125 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1126 {
1127 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1128 
1129 	switch (type) {
1130 	case STACK_SPILL:
1131 	case STACK_DYNPTR:
1132 	case STACK_ITER:
1133 		return true;
1134 	case STACK_INVALID:
1135 	case STACK_MISC:
1136 	case STACK_ZERO:
1137 		return false;
1138 	default:
1139 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1140 		return true;
1141 	}
1142 }
1143 
1144 /* The reg state of a pointer or a bounded scalar was saved when
1145  * it was spilled to the stack.
1146  */
1147 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1148 {
1149 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1150 }
1151 
1152 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1153 {
1154 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1155 	       stack->spilled_ptr.type == SCALAR_VALUE;
1156 }
1157 
1158 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
1159  * case they are equivalent, or it's STACK_ZERO, in which case we preserve
1160  * more precise STACK_ZERO.
1161  * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take
1162  * env->allow_ptr_leaks into account and force STACK_MISC, if necessary.
1163  */
1164 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
1165 {
1166 	if (*stype == STACK_ZERO)
1167 		return;
1168 	if (env->allow_ptr_leaks && *stype == STACK_INVALID)
1169 		return;
1170 	*stype = STACK_MISC;
1171 }
1172 
1173 static void scrub_spilled_slot(u8 *stype)
1174 {
1175 	if (*stype != STACK_INVALID)
1176 		*stype = STACK_MISC;
1177 }
1178 
1179 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1180  * small to hold src. This is different from krealloc since we don't want to preserve
1181  * the contents of dst.
1182  *
1183  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1184  * not be allocated.
1185  */
1186 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1187 {
1188 	size_t alloc_bytes;
1189 	void *orig = dst;
1190 	size_t bytes;
1191 
1192 	if (ZERO_OR_NULL_PTR(src))
1193 		goto out;
1194 
1195 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1196 		return NULL;
1197 
1198 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1199 	dst = krealloc(orig, alloc_bytes, flags);
1200 	if (!dst) {
1201 		kfree(orig);
1202 		return NULL;
1203 	}
1204 
1205 	memcpy(dst, src, bytes);
1206 out:
1207 	return dst ? dst : ZERO_SIZE_PTR;
1208 }
1209 
1210 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1211  * small to hold new_n items. new items are zeroed out if the array grows.
1212  *
1213  * Contrary to krealloc_array, does not free arr if new_n is zero.
1214  */
1215 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1216 {
1217 	size_t alloc_size;
1218 	void *new_arr;
1219 
1220 	if (!new_n || old_n == new_n)
1221 		goto out;
1222 
1223 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1224 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1225 	if (!new_arr) {
1226 		kfree(arr);
1227 		return NULL;
1228 	}
1229 	arr = new_arr;
1230 
1231 	if (new_n > old_n)
1232 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1233 
1234 out:
1235 	return arr ? arr : ZERO_SIZE_PTR;
1236 }
1237 
1238 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1239 {
1240 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1241 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1242 	if (!dst->refs)
1243 		return -ENOMEM;
1244 
1245 	dst->acquired_refs = src->acquired_refs;
1246 	return 0;
1247 }
1248 
1249 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1250 {
1251 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1252 
1253 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1254 				GFP_KERNEL);
1255 	if (!dst->stack)
1256 		return -ENOMEM;
1257 
1258 	dst->allocated_stack = src->allocated_stack;
1259 	return 0;
1260 }
1261 
1262 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1263 {
1264 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1265 				    sizeof(struct bpf_reference_state));
1266 	if (!state->refs)
1267 		return -ENOMEM;
1268 
1269 	state->acquired_refs = n;
1270 	return 0;
1271 }
1272 
1273 /* Possibly update state->allocated_stack to be at least size bytes. Also
1274  * possibly update the function's high-water mark in its bpf_subprog_info.
1275  */
1276 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1277 {
1278 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
1279 
1280 	/* The stack size is always a multiple of BPF_REG_SIZE. */
1281 	size = round_up(size, BPF_REG_SIZE);
1282 	n = size / BPF_REG_SIZE;
1283 
1284 	if (old_n >= n)
1285 		return 0;
1286 
1287 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1288 	if (!state->stack)
1289 		return -ENOMEM;
1290 
1291 	state->allocated_stack = size;
1292 
1293 	/* update known max for given subprogram */
1294 	if (env->subprog_info[state->subprogno].stack_depth < size)
1295 		env->subprog_info[state->subprogno].stack_depth = size;
1296 
1297 	return 0;
1298 }
1299 
1300 /* Acquire a pointer id from the env and update the state->refs to include
1301  * this new pointer reference.
1302  * On success, returns a valid pointer id to associate with the register
1303  * On failure, returns a negative errno.
1304  */
1305 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1306 {
1307 	struct bpf_func_state *state = cur_func(env);
1308 	int new_ofs = state->acquired_refs;
1309 	int id, err;
1310 
1311 	err = resize_reference_state(state, state->acquired_refs + 1);
1312 	if (err)
1313 		return err;
1314 	id = ++env->id_gen;
1315 	state->refs[new_ofs].id = id;
1316 	state->refs[new_ofs].insn_idx = insn_idx;
1317 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1318 
1319 	return id;
1320 }
1321 
1322 /* release function corresponding to acquire_reference_state(). Idempotent. */
1323 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1324 {
1325 	int i, last_idx;
1326 
1327 	last_idx = state->acquired_refs - 1;
1328 	for (i = 0; i < state->acquired_refs; i++) {
1329 		if (state->refs[i].id == ptr_id) {
1330 			/* Cannot release caller references in callbacks */
1331 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1332 				return -EINVAL;
1333 			if (last_idx && i != last_idx)
1334 				memcpy(&state->refs[i], &state->refs[last_idx],
1335 				       sizeof(*state->refs));
1336 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1337 			state->acquired_refs--;
1338 			return 0;
1339 		}
1340 	}
1341 	return -EINVAL;
1342 }
1343 
1344 static void free_func_state(struct bpf_func_state *state)
1345 {
1346 	if (!state)
1347 		return;
1348 	kfree(state->refs);
1349 	kfree(state->stack);
1350 	kfree(state);
1351 }
1352 
1353 static void clear_jmp_history(struct bpf_verifier_state *state)
1354 {
1355 	kfree(state->jmp_history);
1356 	state->jmp_history = NULL;
1357 	state->jmp_history_cnt = 0;
1358 }
1359 
1360 static void free_verifier_state(struct bpf_verifier_state *state,
1361 				bool free_self)
1362 {
1363 	int i;
1364 
1365 	for (i = 0; i <= state->curframe; i++) {
1366 		free_func_state(state->frame[i]);
1367 		state->frame[i] = NULL;
1368 	}
1369 	clear_jmp_history(state);
1370 	if (free_self)
1371 		kfree(state);
1372 }
1373 
1374 /* copy verifier state from src to dst growing dst stack space
1375  * when necessary to accommodate larger src stack
1376  */
1377 static int copy_func_state(struct bpf_func_state *dst,
1378 			   const struct bpf_func_state *src)
1379 {
1380 	int err;
1381 
1382 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1383 	err = copy_reference_state(dst, src);
1384 	if (err)
1385 		return err;
1386 	return copy_stack_state(dst, src);
1387 }
1388 
1389 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1390 			       const struct bpf_verifier_state *src)
1391 {
1392 	struct bpf_func_state *dst;
1393 	int i, err;
1394 
1395 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1396 					  src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
1397 					  GFP_USER);
1398 	if (!dst_state->jmp_history)
1399 		return -ENOMEM;
1400 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1401 
1402 	/* if dst has more stack frames then src frame, free them, this is also
1403 	 * necessary in case of exceptional exits using bpf_throw.
1404 	 */
1405 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1406 		free_func_state(dst_state->frame[i]);
1407 		dst_state->frame[i] = NULL;
1408 	}
1409 	dst_state->speculative = src->speculative;
1410 	dst_state->active_rcu_lock = src->active_rcu_lock;
1411 	dst_state->curframe = src->curframe;
1412 	dst_state->active_lock.ptr = src->active_lock.ptr;
1413 	dst_state->active_lock.id = src->active_lock.id;
1414 	dst_state->branches = src->branches;
1415 	dst_state->parent = src->parent;
1416 	dst_state->first_insn_idx = src->first_insn_idx;
1417 	dst_state->last_insn_idx = src->last_insn_idx;
1418 	dst_state->dfs_depth = src->dfs_depth;
1419 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1420 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1421 	for (i = 0; i <= src->curframe; i++) {
1422 		dst = dst_state->frame[i];
1423 		if (!dst) {
1424 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1425 			if (!dst)
1426 				return -ENOMEM;
1427 			dst_state->frame[i] = dst;
1428 		}
1429 		err = copy_func_state(dst, src->frame[i]);
1430 		if (err)
1431 			return err;
1432 	}
1433 	return 0;
1434 }
1435 
1436 static u32 state_htab_size(struct bpf_verifier_env *env)
1437 {
1438 	return env->prog->len;
1439 }
1440 
1441 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1442 {
1443 	struct bpf_verifier_state *cur = env->cur_state;
1444 	struct bpf_func_state *state = cur->frame[cur->curframe];
1445 
1446 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1447 }
1448 
1449 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1450 {
1451 	int fr;
1452 
1453 	if (a->curframe != b->curframe)
1454 		return false;
1455 
1456 	for (fr = a->curframe; fr >= 0; fr--)
1457 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1458 			return false;
1459 
1460 	return true;
1461 }
1462 
1463 /* Open coded iterators allow back-edges in the state graph in order to
1464  * check unbounded loops that iterators.
1465  *
1466  * In is_state_visited() it is necessary to know if explored states are
1467  * part of some loops in order to decide whether non-exact states
1468  * comparison could be used:
1469  * - non-exact states comparison establishes sub-state relation and uses
1470  *   read and precision marks to do so, these marks are propagated from
1471  *   children states and thus are not guaranteed to be final in a loop;
1472  * - exact states comparison just checks if current and explored states
1473  *   are identical (and thus form a back-edge).
1474  *
1475  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1476  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1477  * algorithm for loop structure detection and gives an overview of
1478  * relevant terminology. It also has helpful illustrations.
1479  *
1480  * [1] https://api.semanticscholar.org/CorpusID:15784067
1481  *
1482  * We use a similar algorithm but because loop nested structure is
1483  * irrelevant for verifier ours is significantly simpler and resembles
1484  * strongly connected components algorithm from Sedgewick's textbook.
1485  *
1486  * Define topmost loop entry as a first node of the loop traversed in a
1487  * depth first search starting from initial state. The goal of the loop
1488  * tracking algorithm is to associate topmost loop entries with states
1489  * derived from these entries.
1490  *
1491  * For each step in the DFS states traversal algorithm needs to identify
1492  * the following situations:
1493  *
1494  *          initial                     initial                   initial
1495  *            |                           |                         |
1496  *            V                           V                         V
1497  *           ...                         ...           .---------> hdr
1498  *            |                           |            |            |
1499  *            V                           V            |            V
1500  *           cur                     .-> succ          |    .------...
1501  *            |                      |    |            |    |       |
1502  *            V                      |    V            |    V       V
1503  *           succ                    '-- cur           |   ...     ...
1504  *                                                     |    |       |
1505  *                                                     |    V       V
1506  *                                                     |   succ <- cur
1507  *                                                     |    |
1508  *                                                     |    V
1509  *                                                     |   ...
1510  *                                                     |    |
1511  *                                                     '----'
1512  *
1513  *  (A) successor state of cur   (B) successor state of cur or it's entry
1514  *      not yet traversed            are in current DFS path, thus cur and succ
1515  *                                   are members of the same outermost loop
1516  *
1517  *                      initial                  initial
1518  *                        |                        |
1519  *                        V                        V
1520  *                       ...                      ...
1521  *                        |                        |
1522  *                        V                        V
1523  *                .------...               .------...
1524  *                |       |                |       |
1525  *                V       V                V       V
1526  *           .-> hdr     ...              ...     ...
1527  *           |    |       |                |       |
1528  *           |    V       V                V       V
1529  *           |   succ <- cur              succ <- cur
1530  *           |    |                        |
1531  *           |    V                        V
1532  *           |   ...                      ...
1533  *           |    |                        |
1534  *           '----'                       exit
1535  *
1536  * (C) successor state of cur is a part of some loop but this loop
1537  *     does not include cur or successor state is not in a loop at all.
1538  *
1539  * Algorithm could be described as the following python code:
1540  *
1541  *     traversed = set()   # Set of traversed nodes
1542  *     entries = {}        # Mapping from node to loop entry
1543  *     depths = {}         # Depth level assigned to graph node
1544  *     path = set()        # Current DFS path
1545  *
1546  *     # Find outermost loop entry known for n
1547  *     def get_loop_entry(n):
1548  *         h = entries.get(n, None)
1549  *         while h in entries and entries[h] != h:
1550  *             h = entries[h]
1551  *         return h
1552  *
1553  *     # Update n's loop entry if h's outermost entry comes
1554  *     # before n's outermost entry in current DFS path.
1555  *     def update_loop_entry(n, h):
1556  *         n1 = get_loop_entry(n) or n
1557  *         h1 = get_loop_entry(h) or h
1558  *         if h1 in path and depths[h1] <= depths[n1]:
1559  *             entries[n] = h1
1560  *
1561  *     def dfs(n, depth):
1562  *         traversed.add(n)
1563  *         path.add(n)
1564  *         depths[n] = depth
1565  *         for succ in G.successors(n):
1566  *             if succ not in traversed:
1567  *                 # Case A: explore succ and update cur's loop entry
1568  *                 #         only if succ's entry is in current DFS path.
1569  *                 dfs(succ, depth + 1)
1570  *                 h = get_loop_entry(succ)
1571  *                 update_loop_entry(n, h)
1572  *             else:
1573  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1574  *                 update_loop_entry(n, succ)
1575  *         path.remove(n)
1576  *
1577  * To adapt this algorithm for use with verifier:
1578  * - use st->branch == 0 as a signal that DFS of succ had been finished
1579  *   and cur's loop entry has to be updated (case A), handle this in
1580  *   update_branch_counts();
1581  * - use st->branch > 0 as a signal that st is in the current DFS path;
1582  * - handle cases B and C in is_state_visited();
1583  * - update topmost loop entry for intermediate states in get_loop_entry().
1584  */
1585 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1586 {
1587 	struct bpf_verifier_state *topmost = st->loop_entry, *old;
1588 
1589 	while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1590 		topmost = topmost->loop_entry;
1591 	/* Update loop entries for intermediate states to avoid this
1592 	 * traversal in future get_loop_entry() calls.
1593 	 */
1594 	while (st && st->loop_entry != topmost) {
1595 		old = st->loop_entry;
1596 		st->loop_entry = topmost;
1597 		st = old;
1598 	}
1599 	return topmost;
1600 }
1601 
1602 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1603 {
1604 	struct bpf_verifier_state *cur1, *hdr1;
1605 
1606 	cur1 = get_loop_entry(cur) ?: cur;
1607 	hdr1 = get_loop_entry(hdr) ?: hdr;
1608 	/* The head1->branches check decides between cases B and C in
1609 	 * comment for get_loop_entry(). If hdr1->branches == 0 then
1610 	 * head's topmost loop entry is not in current DFS path,
1611 	 * hence 'cur' and 'hdr' are not in the same loop and there is
1612 	 * no need to update cur->loop_entry.
1613 	 */
1614 	if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1615 		cur->loop_entry = hdr;
1616 		hdr->used_as_loop_entry = true;
1617 	}
1618 }
1619 
1620 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1621 {
1622 	while (st) {
1623 		u32 br = --st->branches;
1624 
1625 		/* br == 0 signals that DFS exploration for 'st' is finished,
1626 		 * thus it is necessary to update parent's loop entry if it
1627 		 * turned out that st is a part of some loop.
1628 		 * This is a part of 'case A' in get_loop_entry() comment.
1629 		 */
1630 		if (br == 0 && st->parent && st->loop_entry)
1631 			update_loop_entry(st->parent, st->loop_entry);
1632 
1633 		/* WARN_ON(br > 1) technically makes sense here,
1634 		 * but see comment in push_stack(), hence:
1635 		 */
1636 		WARN_ONCE((int)br < 0,
1637 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1638 			  br);
1639 		if (br)
1640 			break;
1641 		st = st->parent;
1642 	}
1643 }
1644 
1645 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1646 		     int *insn_idx, bool pop_log)
1647 {
1648 	struct bpf_verifier_state *cur = env->cur_state;
1649 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1650 	int err;
1651 
1652 	if (env->head == NULL)
1653 		return -ENOENT;
1654 
1655 	if (cur) {
1656 		err = copy_verifier_state(cur, &head->st);
1657 		if (err)
1658 			return err;
1659 	}
1660 	if (pop_log)
1661 		bpf_vlog_reset(&env->log, head->log_pos);
1662 	if (insn_idx)
1663 		*insn_idx = head->insn_idx;
1664 	if (prev_insn_idx)
1665 		*prev_insn_idx = head->prev_insn_idx;
1666 	elem = head->next;
1667 	free_verifier_state(&head->st, false);
1668 	kfree(head);
1669 	env->head = elem;
1670 	env->stack_size--;
1671 	return 0;
1672 }
1673 
1674 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1675 					     int insn_idx, int prev_insn_idx,
1676 					     bool speculative)
1677 {
1678 	struct bpf_verifier_state *cur = env->cur_state;
1679 	struct bpf_verifier_stack_elem *elem;
1680 	int err;
1681 
1682 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1683 	if (!elem)
1684 		goto err;
1685 
1686 	elem->insn_idx = insn_idx;
1687 	elem->prev_insn_idx = prev_insn_idx;
1688 	elem->next = env->head;
1689 	elem->log_pos = env->log.end_pos;
1690 	env->head = elem;
1691 	env->stack_size++;
1692 	err = copy_verifier_state(&elem->st, cur);
1693 	if (err)
1694 		goto err;
1695 	elem->st.speculative |= speculative;
1696 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1697 		verbose(env, "The sequence of %d jumps is too complex.\n",
1698 			env->stack_size);
1699 		goto err;
1700 	}
1701 	if (elem->st.parent) {
1702 		++elem->st.parent->branches;
1703 		/* WARN_ON(branches > 2) technically makes sense here,
1704 		 * but
1705 		 * 1. speculative states will bump 'branches' for non-branch
1706 		 * instructions
1707 		 * 2. is_state_visited() heuristics may decide not to create
1708 		 * a new state for a sequence of branches and all such current
1709 		 * and cloned states will be pointing to a single parent state
1710 		 * which might have large 'branches' count.
1711 		 */
1712 	}
1713 	return &elem->st;
1714 err:
1715 	free_verifier_state(env->cur_state, true);
1716 	env->cur_state = NULL;
1717 	/* pop all elements and return */
1718 	while (!pop_stack(env, NULL, NULL, false));
1719 	return NULL;
1720 }
1721 
1722 #define CALLER_SAVED_REGS 6
1723 static const int caller_saved[CALLER_SAVED_REGS] = {
1724 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1725 };
1726 
1727 /* This helper doesn't clear reg->id */
1728 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1729 {
1730 	reg->var_off = tnum_const(imm);
1731 	reg->smin_value = (s64)imm;
1732 	reg->smax_value = (s64)imm;
1733 	reg->umin_value = imm;
1734 	reg->umax_value = imm;
1735 
1736 	reg->s32_min_value = (s32)imm;
1737 	reg->s32_max_value = (s32)imm;
1738 	reg->u32_min_value = (u32)imm;
1739 	reg->u32_max_value = (u32)imm;
1740 }
1741 
1742 /* Mark the unknown part of a register (variable offset or scalar value) as
1743  * known to have the value @imm.
1744  */
1745 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1746 {
1747 	/* Clear off and union(map_ptr, range) */
1748 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1749 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1750 	reg->id = 0;
1751 	reg->ref_obj_id = 0;
1752 	___mark_reg_known(reg, imm);
1753 }
1754 
1755 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1756 {
1757 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1758 	reg->s32_min_value = (s32)imm;
1759 	reg->s32_max_value = (s32)imm;
1760 	reg->u32_min_value = (u32)imm;
1761 	reg->u32_max_value = (u32)imm;
1762 }
1763 
1764 /* Mark the 'variable offset' part of a register as zero.  This should be
1765  * used only on registers holding a pointer type.
1766  */
1767 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1768 {
1769 	__mark_reg_known(reg, 0);
1770 }
1771 
1772 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1773 {
1774 	__mark_reg_known(reg, 0);
1775 	reg->type = SCALAR_VALUE;
1776 	/* all scalars are assumed imprecise initially (unless unprivileged,
1777 	 * in which case everything is forced to be precise)
1778 	 */
1779 	reg->precise = !env->bpf_capable;
1780 }
1781 
1782 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1783 				struct bpf_reg_state *regs, u32 regno)
1784 {
1785 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1786 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1787 		/* Something bad happened, let's kill all regs */
1788 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1789 			__mark_reg_not_init(env, regs + regno);
1790 		return;
1791 	}
1792 	__mark_reg_known_zero(regs + regno);
1793 }
1794 
1795 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1796 			      bool first_slot, int dynptr_id)
1797 {
1798 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1799 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1800 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1801 	 */
1802 	__mark_reg_known_zero(reg);
1803 	reg->type = CONST_PTR_TO_DYNPTR;
1804 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1805 	reg->id = dynptr_id;
1806 	reg->dynptr.type = type;
1807 	reg->dynptr.first_slot = first_slot;
1808 }
1809 
1810 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1811 {
1812 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1813 		const struct bpf_map *map = reg->map_ptr;
1814 
1815 		if (map->inner_map_meta) {
1816 			reg->type = CONST_PTR_TO_MAP;
1817 			reg->map_ptr = map->inner_map_meta;
1818 			/* transfer reg's id which is unique for every map_lookup_elem
1819 			 * as UID of the inner map.
1820 			 */
1821 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1822 				reg->map_uid = reg->id;
1823 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1824 			reg->type = PTR_TO_XDP_SOCK;
1825 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1826 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1827 			reg->type = PTR_TO_SOCKET;
1828 		} else {
1829 			reg->type = PTR_TO_MAP_VALUE;
1830 		}
1831 		return;
1832 	}
1833 
1834 	reg->type &= ~PTR_MAYBE_NULL;
1835 }
1836 
1837 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1838 				struct btf_field_graph_root *ds_head)
1839 {
1840 	__mark_reg_known_zero(&regs[regno]);
1841 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1842 	regs[regno].btf = ds_head->btf;
1843 	regs[regno].btf_id = ds_head->value_btf_id;
1844 	regs[regno].off = ds_head->node_offset;
1845 }
1846 
1847 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1848 {
1849 	return type_is_pkt_pointer(reg->type);
1850 }
1851 
1852 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1853 {
1854 	return reg_is_pkt_pointer(reg) ||
1855 	       reg->type == PTR_TO_PACKET_END;
1856 }
1857 
1858 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1859 {
1860 	return base_type(reg->type) == PTR_TO_MEM &&
1861 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1862 }
1863 
1864 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1865 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1866 				    enum bpf_reg_type which)
1867 {
1868 	/* The register can already have a range from prior markings.
1869 	 * This is fine as long as it hasn't been advanced from its
1870 	 * origin.
1871 	 */
1872 	return reg->type == which &&
1873 	       reg->id == 0 &&
1874 	       reg->off == 0 &&
1875 	       tnum_equals_const(reg->var_off, 0);
1876 }
1877 
1878 /* Reset the min/max bounds of a register */
1879 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1880 {
1881 	reg->smin_value = S64_MIN;
1882 	reg->smax_value = S64_MAX;
1883 	reg->umin_value = 0;
1884 	reg->umax_value = U64_MAX;
1885 
1886 	reg->s32_min_value = S32_MIN;
1887 	reg->s32_max_value = S32_MAX;
1888 	reg->u32_min_value = 0;
1889 	reg->u32_max_value = U32_MAX;
1890 }
1891 
1892 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1893 {
1894 	reg->smin_value = S64_MIN;
1895 	reg->smax_value = S64_MAX;
1896 	reg->umin_value = 0;
1897 	reg->umax_value = U64_MAX;
1898 }
1899 
1900 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1901 {
1902 	reg->s32_min_value = S32_MIN;
1903 	reg->s32_max_value = S32_MAX;
1904 	reg->u32_min_value = 0;
1905 	reg->u32_max_value = U32_MAX;
1906 }
1907 
1908 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1909 {
1910 	struct tnum var32_off = tnum_subreg(reg->var_off);
1911 
1912 	/* min signed is max(sign bit) | min(other bits) */
1913 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1914 			var32_off.value | (var32_off.mask & S32_MIN));
1915 	/* max signed is min(sign bit) | max(other bits) */
1916 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1917 			var32_off.value | (var32_off.mask & S32_MAX));
1918 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1919 	reg->u32_max_value = min(reg->u32_max_value,
1920 				 (u32)(var32_off.value | var32_off.mask));
1921 }
1922 
1923 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1924 {
1925 	/* min signed is max(sign bit) | min(other bits) */
1926 	reg->smin_value = max_t(s64, reg->smin_value,
1927 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1928 	/* max signed is min(sign bit) | max(other bits) */
1929 	reg->smax_value = min_t(s64, reg->smax_value,
1930 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1931 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1932 	reg->umax_value = min(reg->umax_value,
1933 			      reg->var_off.value | reg->var_off.mask);
1934 }
1935 
1936 static void __update_reg_bounds(struct bpf_reg_state *reg)
1937 {
1938 	__update_reg32_bounds(reg);
1939 	__update_reg64_bounds(reg);
1940 }
1941 
1942 /* Uses signed min/max values to inform unsigned, and vice-versa */
1943 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1944 {
1945 	/* If upper 32 bits of u64/s64 range don't change, we can use lower 32
1946 	 * bits to improve our u32/s32 boundaries.
1947 	 *
1948 	 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
1949 	 * u64) is pretty trivial, it's obvious that in u32 we'll also have
1950 	 * [10, 20] range. But this property holds for any 64-bit range as
1951 	 * long as upper 32 bits in that entire range of values stay the same.
1952 	 *
1953 	 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
1954 	 * in decimal) has the same upper 32 bits throughout all the values in
1955 	 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
1956 	 * range.
1957 	 *
1958 	 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
1959 	 * following the rules outlined below about u64/s64 correspondence
1960 	 * (which equally applies to u32 vs s32 correspondence). In general it
1961 	 * depends on actual hexadecimal values of 32-bit range. They can form
1962 	 * only valid u32, or only valid s32 ranges in some cases.
1963 	 *
1964 	 * So we use all these insights to derive bounds for subregisters here.
1965 	 */
1966 	if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
1967 		/* u64 to u32 casting preserves validity of low 32 bits as
1968 		 * a range, if upper 32 bits are the same
1969 		 */
1970 		reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
1971 		reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
1972 
1973 		if ((s32)reg->umin_value <= (s32)reg->umax_value) {
1974 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
1975 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
1976 		}
1977 	}
1978 	if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
1979 		/* low 32 bits should form a proper u32 range */
1980 		if ((u32)reg->smin_value <= (u32)reg->smax_value) {
1981 			reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
1982 			reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
1983 		}
1984 		/* low 32 bits should form a proper s32 range */
1985 		if ((s32)reg->smin_value <= (s32)reg->smax_value) {
1986 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
1987 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
1988 		}
1989 	}
1990 	/* Special case where upper bits form a small sequence of two
1991 	 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
1992 	 * 0x00000000 is also valid), while lower bits form a proper s32 range
1993 	 * going from negative numbers to positive numbers. E.g., let's say we
1994 	 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
1995 	 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
1996 	 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
1997 	 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
1998 	 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
1999 	 * upper 32 bits. As a random example, s64 range
2000 	 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
2001 	 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
2002 	 */
2003 	if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
2004 	    (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
2005 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2006 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2007 	}
2008 	if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
2009 	    (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
2010 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2011 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2012 	}
2013 	/* if u32 range forms a valid s32 range (due to matching sign bit),
2014 	 * try to learn from that
2015 	 */
2016 	if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
2017 		reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
2018 		reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
2019 	}
2020 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2021 	 * are the same, so combine.  This works even in the negative case, e.g.
2022 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2023 	 */
2024 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2025 		reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
2026 		reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
2027 	}
2028 }
2029 
2030 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2031 {
2032 	/* If u64 range forms a valid s64 range (due to matching sign bit),
2033 	 * try to learn from that. Let's do a bit of ASCII art to see when
2034 	 * this is happening. Let's take u64 range first:
2035 	 *
2036 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2037 	 * |-------------------------------|--------------------------------|
2038 	 *
2039 	 * Valid u64 range is formed when umin and umax are anywhere in the
2040 	 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
2041 	 * straightforward. Let's see how s64 range maps onto the same range
2042 	 * of values, annotated below the line for comparison:
2043 	 *
2044 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2045 	 * |-------------------------------|--------------------------------|
2046 	 * 0                        S64_MAX S64_MIN                        -1
2047 	 *
2048 	 * So s64 values basically start in the middle and they are logically
2049 	 * contiguous to the right of it, wrapping around from -1 to 0, and
2050 	 * then finishing as S64_MAX (0x7fffffffffffffff) right before
2051 	 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
2052 	 * more visually as mapped to sign-agnostic range of hex values.
2053 	 *
2054 	 *  u64 start                                               u64 end
2055 	 *  _______________________________________________________________
2056 	 * /                                                               \
2057 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2058 	 * |-------------------------------|--------------------------------|
2059 	 * 0                        S64_MAX S64_MIN                        -1
2060 	 *                                / \
2061 	 * >------------------------------   ------------------------------->
2062 	 * s64 continues...        s64 end   s64 start          s64 "midpoint"
2063 	 *
2064 	 * What this means is that, in general, we can't always derive
2065 	 * something new about u64 from any random s64 range, and vice versa.
2066 	 *
2067 	 * But we can do that in two particular cases. One is when entire
2068 	 * u64/s64 range is *entirely* contained within left half of the above
2069 	 * diagram or when it is *entirely* contained in the right half. I.e.:
2070 	 *
2071 	 * |-------------------------------|--------------------------------|
2072 	 *     ^                   ^            ^                 ^
2073 	 *     A                   B            C                 D
2074 	 *
2075 	 * [A, B] and [C, D] are contained entirely in their respective halves
2076 	 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2077 	 * will be non-negative both as u64 and s64 (and in fact it will be
2078 	 * identical ranges no matter the signedness). [C, D] treated as s64
2079 	 * will be a range of negative values, while in u64 it will be
2080 	 * non-negative range of values larger than 0x8000000000000000.
2081 	 *
2082 	 * Now, any other range here can't be represented in both u64 and s64
2083 	 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2084 	 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2085 	 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2086 	 * for example. Similarly, valid s64 range [D, A] (going from negative
2087 	 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2088 	 * ranges as u64. Currently reg_state can't represent two segments per
2089 	 * numeric domain, so in such situations we can only derive maximal
2090 	 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2091 	 *
2092 	 * So we use these facts to derive umin/umax from smin/smax and vice
2093 	 * versa only if they stay within the same "half". This is equivalent
2094 	 * to checking sign bit: lower half will have sign bit as zero, upper
2095 	 * half have sign bit 1. Below in code we simplify this by just
2096 	 * casting umin/umax as smin/smax and checking if they form valid
2097 	 * range, and vice versa. Those are equivalent checks.
2098 	 */
2099 	if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2100 		reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2101 		reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2102 	}
2103 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2104 	 * are the same, so combine.  This works even in the negative case, e.g.
2105 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2106 	 */
2107 	if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2108 		reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2109 		reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2110 	}
2111 }
2112 
2113 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2114 {
2115 	/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2116 	 * values on both sides of 64-bit range in hope to have tigher range.
2117 	 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2118 	 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2119 	 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2120 	 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2121 	 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2122 	 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2123 	 * We just need to make sure that derived bounds we are intersecting
2124 	 * with are well-formed ranges in respecitve s64 or u64 domain, just
2125 	 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2126 	 */
2127 	__u64 new_umin, new_umax;
2128 	__s64 new_smin, new_smax;
2129 
2130 	/* u32 -> u64 tightening, it's always well-formed */
2131 	new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2132 	new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2133 	reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2134 	reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2135 	/* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2136 	new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2137 	new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2138 	reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2139 	reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2140 
2141 	/* if s32 can be treated as valid u32 range, we can use it as well */
2142 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2143 		/* s32 -> u64 tightening */
2144 		new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2145 		new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2146 		reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2147 		reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2148 		/* s32 -> s64 tightening */
2149 		new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2150 		new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2151 		reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2152 		reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2153 	}
2154 }
2155 
2156 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2157 {
2158 	__reg32_deduce_bounds(reg);
2159 	__reg64_deduce_bounds(reg);
2160 	__reg_deduce_mixed_bounds(reg);
2161 }
2162 
2163 /* Attempts to improve var_off based on unsigned min/max information */
2164 static void __reg_bound_offset(struct bpf_reg_state *reg)
2165 {
2166 	struct tnum var64_off = tnum_intersect(reg->var_off,
2167 					       tnum_range(reg->umin_value,
2168 							  reg->umax_value));
2169 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2170 					       tnum_range(reg->u32_min_value,
2171 							  reg->u32_max_value));
2172 
2173 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2174 }
2175 
2176 static void reg_bounds_sync(struct bpf_reg_state *reg)
2177 {
2178 	/* We might have learned new bounds from the var_off. */
2179 	__update_reg_bounds(reg);
2180 	/* We might have learned something about the sign bit. */
2181 	__reg_deduce_bounds(reg);
2182 	__reg_deduce_bounds(reg);
2183 	/* We might have learned some bits from the bounds. */
2184 	__reg_bound_offset(reg);
2185 	/* Intersecting with the old var_off might have improved our bounds
2186 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2187 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2188 	 */
2189 	__update_reg_bounds(reg);
2190 }
2191 
2192 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2193 				   struct bpf_reg_state *reg, const char *ctx)
2194 {
2195 	const char *msg;
2196 
2197 	if (reg->umin_value > reg->umax_value ||
2198 	    reg->smin_value > reg->smax_value ||
2199 	    reg->u32_min_value > reg->u32_max_value ||
2200 	    reg->s32_min_value > reg->s32_max_value) {
2201 		    msg = "range bounds violation";
2202 		    goto out;
2203 	}
2204 
2205 	if (tnum_is_const(reg->var_off)) {
2206 		u64 uval = reg->var_off.value;
2207 		s64 sval = (s64)uval;
2208 
2209 		if (reg->umin_value != uval || reg->umax_value != uval ||
2210 		    reg->smin_value != sval || reg->smax_value != sval) {
2211 			msg = "const tnum out of sync with range bounds";
2212 			goto out;
2213 		}
2214 	}
2215 
2216 	if (tnum_subreg_is_const(reg->var_off)) {
2217 		u32 uval32 = tnum_subreg(reg->var_off).value;
2218 		s32 sval32 = (s32)uval32;
2219 
2220 		if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2221 		    reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2222 			msg = "const subreg tnum out of sync with range bounds";
2223 			goto out;
2224 		}
2225 	}
2226 
2227 	return 0;
2228 out:
2229 	verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2230 		"s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n",
2231 		ctx, msg, reg->umin_value, reg->umax_value,
2232 		reg->smin_value, reg->smax_value,
2233 		reg->u32_min_value, reg->u32_max_value,
2234 		reg->s32_min_value, reg->s32_max_value,
2235 		reg->var_off.value, reg->var_off.mask);
2236 	if (env->test_reg_invariants)
2237 		return -EFAULT;
2238 	__mark_reg_unbounded(reg);
2239 	return 0;
2240 }
2241 
2242 static bool __reg32_bound_s64(s32 a)
2243 {
2244 	return a >= 0 && a <= S32_MAX;
2245 }
2246 
2247 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2248 {
2249 	reg->umin_value = reg->u32_min_value;
2250 	reg->umax_value = reg->u32_max_value;
2251 
2252 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2253 	 * be positive otherwise set to worse case bounds and refine later
2254 	 * from tnum.
2255 	 */
2256 	if (__reg32_bound_s64(reg->s32_min_value) &&
2257 	    __reg32_bound_s64(reg->s32_max_value)) {
2258 		reg->smin_value = reg->s32_min_value;
2259 		reg->smax_value = reg->s32_max_value;
2260 	} else {
2261 		reg->smin_value = 0;
2262 		reg->smax_value = U32_MAX;
2263 	}
2264 }
2265 
2266 /* Mark a register as having a completely unknown (scalar) value. */
2267 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2268 			       struct bpf_reg_state *reg)
2269 {
2270 	/*
2271 	 * Clear type, off, and union(map_ptr, range) and
2272 	 * padding between 'type' and union
2273 	 */
2274 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2275 	reg->type = SCALAR_VALUE;
2276 	reg->id = 0;
2277 	reg->ref_obj_id = 0;
2278 	reg->var_off = tnum_unknown;
2279 	reg->frameno = 0;
2280 	reg->precise = !env->bpf_capable;
2281 	__mark_reg_unbounded(reg);
2282 }
2283 
2284 static void mark_reg_unknown(struct bpf_verifier_env *env,
2285 			     struct bpf_reg_state *regs, u32 regno)
2286 {
2287 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2288 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2289 		/* Something bad happened, let's kill all regs except FP */
2290 		for (regno = 0; regno < BPF_REG_FP; regno++)
2291 			__mark_reg_not_init(env, regs + regno);
2292 		return;
2293 	}
2294 	__mark_reg_unknown(env, regs + regno);
2295 }
2296 
2297 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2298 				struct bpf_reg_state *reg)
2299 {
2300 	__mark_reg_unknown(env, reg);
2301 	reg->type = NOT_INIT;
2302 }
2303 
2304 static void mark_reg_not_init(struct bpf_verifier_env *env,
2305 			      struct bpf_reg_state *regs, u32 regno)
2306 {
2307 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2308 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2309 		/* Something bad happened, let's kill all regs except FP */
2310 		for (regno = 0; regno < BPF_REG_FP; regno++)
2311 			__mark_reg_not_init(env, regs + regno);
2312 		return;
2313 	}
2314 	__mark_reg_not_init(env, regs + regno);
2315 }
2316 
2317 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2318 			    struct bpf_reg_state *regs, u32 regno,
2319 			    enum bpf_reg_type reg_type,
2320 			    struct btf *btf, u32 btf_id,
2321 			    enum bpf_type_flag flag)
2322 {
2323 	if (reg_type == SCALAR_VALUE) {
2324 		mark_reg_unknown(env, regs, regno);
2325 		return;
2326 	}
2327 	mark_reg_known_zero(env, regs, regno);
2328 	regs[regno].type = PTR_TO_BTF_ID | flag;
2329 	regs[regno].btf = btf;
2330 	regs[regno].btf_id = btf_id;
2331 }
2332 
2333 #define DEF_NOT_SUBREG	(0)
2334 static void init_reg_state(struct bpf_verifier_env *env,
2335 			   struct bpf_func_state *state)
2336 {
2337 	struct bpf_reg_state *regs = state->regs;
2338 	int i;
2339 
2340 	for (i = 0; i < MAX_BPF_REG; i++) {
2341 		mark_reg_not_init(env, regs, i);
2342 		regs[i].live = REG_LIVE_NONE;
2343 		regs[i].parent = NULL;
2344 		regs[i].subreg_def = DEF_NOT_SUBREG;
2345 	}
2346 
2347 	/* frame pointer */
2348 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2349 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2350 	regs[BPF_REG_FP].frameno = state->frameno;
2351 }
2352 
2353 static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
2354 {
2355 	return (struct bpf_retval_range){ minval, maxval };
2356 }
2357 
2358 #define BPF_MAIN_FUNC (-1)
2359 static void init_func_state(struct bpf_verifier_env *env,
2360 			    struct bpf_func_state *state,
2361 			    int callsite, int frameno, int subprogno)
2362 {
2363 	state->callsite = callsite;
2364 	state->frameno = frameno;
2365 	state->subprogno = subprogno;
2366 	state->callback_ret_range = retval_range(0, 0);
2367 	init_reg_state(env, state);
2368 	mark_verifier_state_scratched(env);
2369 }
2370 
2371 /* Similar to push_stack(), but for async callbacks */
2372 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2373 						int insn_idx, int prev_insn_idx,
2374 						int subprog)
2375 {
2376 	struct bpf_verifier_stack_elem *elem;
2377 	struct bpf_func_state *frame;
2378 
2379 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2380 	if (!elem)
2381 		goto err;
2382 
2383 	elem->insn_idx = insn_idx;
2384 	elem->prev_insn_idx = prev_insn_idx;
2385 	elem->next = env->head;
2386 	elem->log_pos = env->log.end_pos;
2387 	env->head = elem;
2388 	env->stack_size++;
2389 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2390 		verbose(env,
2391 			"The sequence of %d jumps is too complex for async cb.\n",
2392 			env->stack_size);
2393 		goto err;
2394 	}
2395 	/* Unlike push_stack() do not copy_verifier_state().
2396 	 * The caller state doesn't matter.
2397 	 * This is async callback. It starts in a fresh stack.
2398 	 * Initialize it similar to do_check_common().
2399 	 */
2400 	elem->st.branches = 1;
2401 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2402 	if (!frame)
2403 		goto err;
2404 	init_func_state(env, frame,
2405 			BPF_MAIN_FUNC /* callsite */,
2406 			0 /* frameno within this callchain */,
2407 			subprog /* subprog number within this prog */);
2408 	elem->st.frame[0] = frame;
2409 	return &elem->st;
2410 err:
2411 	free_verifier_state(env->cur_state, true);
2412 	env->cur_state = NULL;
2413 	/* pop all elements and return */
2414 	while (!pop_stack(env, NULL, NULL, false));
2415 	return NULL;
2416 }
2417 
2418 
2419 enum reg_arg_type {
2420 	SRC_OP,		/* register is used as source operand */
2421 	DST_OP,		/* register is used as destination operand */
2422 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2423 };
2424 
2425 static int cmp_subprogs(const void *a, const void *b)
2426 {
2427 	return ((struct bpf_subprog_info *)a)->start -
2428 	       ((struct bpf_subprog_info *)b)->start;
2429 }
2430 
2431 static int find_subprog(struct bpf_verifier_env *env, int off)
2432 {
2433 	struct bpf_subprog_info *p;
2434 
2435 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2436 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2437 	if (!p)
2438 		return -ENOENT;
2439 	return p - env->subprog_info;
2440 
2441 }
2442 
2443 static int add_subprog(struct bpf_verifier_env *env, int off)
2444 {
2445 	int insn_cnt = env->prog->len;
2446 	int ret;
2447 
2448 	if (off >= insn_cnt || off < 0) {
2449 		verbose(env, "call to invalid destination\n");
2450 		return -EINVAL;
2451 	}
2452 	ret = find_subprog(env, off);
2453 	if (ret >= 0)
2454 		return ret;
2455 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2456 		verbose(env, "too many subprograms\n");
2457 		return -E2BIG;
2458 	}
2459 	/* determine subprog starts. The end is one before the next starts */
2460 	env->subprog_info[env->subprog_cnt++].start = off;
2461 	sort(env->subprog_info, env->subprog_cnt,
2462 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2463 	return env->subprog_cnt - 1;
2464 }
2465 
2466 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2467 {
2468 	struct bpf_prog_aux *aux = env->prog->aux;
2469 	struct btf *btf = aux->btf;
2470 	const struct btf_type *t;
2471 	u32 main_btf_id, id;
2472 	const char *name;
2473 	int ret, i;
2474 
2475 	/* Non-zero func_info_cnt implies valid btf */
2476 	if (!aux->func_info_cnt)
2477 		return 0;
2478 	main_btf_id = aux->func_info[0].type_id;
2479 
2480 	t = btf_type_by_id(btf, main_btf_id);
2481 	if (!t) {
2482 		verbose(env, "invalid btf id for main subprog in func_info\n");
2483 		return -EINVAL;
2484 	}
2485 
2486 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2487 	if (IS_ERR(name)) {
2488 		ret = PTR_ERR(name);
2489 		/* If there is no tag present, there is no exception callback */
2490 		if (ret == -ENOENT)
2491 			ret = 0;
2492 		else if (ret == -EEXIST)
2493 			verbose(env, "multiple exception callback tags for main subprog\n");
2494 		return ret;
2495 	}
2496 
2497 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2498 	if (ret < 0) {
2499 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2500 		return ret;
2501 	}
2502 	id = ret;
2503 	t = btf_type_by_id(btf, id);
2504 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2505 		verbose(env, "exception callback '%s' must have global linkage\n", name);
2506 		return -EINVAL;
2507 	}
2508 	ret = 0;
2509 	for (i = 0; i < aux->func_info_cnt; i++) {
2510 		if (aux->func_info[i].type_id != id)
2511 			continue;
2512 		ret = aux->func_info[i].insn_off;
2513 		/* Further func_info and subprog checks will also happen
2514 		 * later, so assume this is the right insn_off for now.
2515 		 */
2516 		if (!ret) {
2517 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2518 			ret = -EINVAL;
2519 		}
2520 	}
2521 	if (!ret) {
2522 		verbose(env, "exception callback type id not found in func_info\n");
2523 		ret = -EINVAL;
2524 	}
2525 	return ret;
2526 }
2527 
2528 #define MAX_KFUNC_DESCS 256
2529 #define MAX_KFUNC_BTFS	256
2530 
2531 struct bpf_kfunc_desc {
2532 	struct btf_func_model func_model;
2533 	u32 func_id;
2534 	s32 imm;
2535 	u16 offset;
2536 	unsigned long addr;
2537 };
2538 
2539 struct bpf_kfunc_btf {
2540 	struct btf *btf;
2541 	struct module *module;
2542 	u16 offset;
2543 };
2544 
2545 struct bpf_kfunc_desc_tab {
2546 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2547 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2548 	 * available, therefore at the end of verification do_misc_fixups()
2549 	 * sorts this by imm and offset.
2550 	 */
2551 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2552 	u32 nr_descs;
2553 };
2554 
2555 struct bpf_kfunc_btf_tab {
2556 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2557 	u32 nr_descs;
2558 };
2559 
2560 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2561 {
2562 	const struct bpf_kfunc_desc *d0 = a;
2563 	const struct bpf_kfunc_desc *d1 = b;
2564 
2565 	/* func_id is not greater than BTF_MAX_TYPE */
2566 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2567 }
2568 
2569 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2570 {
2571 	const struct bpf_kfunc_btf *d0 = a;
2572 	const struct bpf_kfunc_btf *d1 = b;
2573 
2574 	return d0->offset - d1->offset;
2575 }
2576 
2577 static const struct bpf_kfunc_desc *
2578 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2579 {
2580 	struct bpf_kfunc_desc desc = {
2581 		.func_id = func_id,
2582 		.offset = offset,
2583 	};
2584 	struct bpf_kfunc_desc_tab *tab;
2585 
2586 	tab = prog->aux->kfunc_tab;
2587 	return bsearch(&desc, tab->descs, tab->nr_descs,
2588 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2589 }
2590 
2591 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2592 		       u16 btf_fd_idx, u8 **func_addr)
2593 {
2594 	const struct bpf_kfunc_desc *desc;
2595 
2596 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2597 	if (!desc)
2598 		return -EFAULT;
2599 
2600 	*func_addr = (u8 *)desc->addr;
2601 	return 0;
2602 }
2603 
2604 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2605 					 s16 offset)
2606 {
2607 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2608 	struct bpf_kfunc_btf_tab *tab;
2609 	struct bpf_kfunc_btf *b;
2610 	struct module *mod;
2611 	struct btf *btf;
2612 	int btf_fd;
2613 
2614 	tab = env->prog->aux->kfunc_btf_tab;
2615 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2616 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2617 	if (!b) {
2618 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2619 			verbose(env, "too many different module BTFs\n");
2620 			return ERR_PTR(-E2BIG);
2621 		}
2622 
2623 		if (bpfptr_is_null(env->fd_array)) {
2624 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2625 			return ERR_PTR(-EPROTO);
2626 		}
2627 
2628 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2629 					    offset * sizeof(btf_fd),
2630 					    sizeof(btf_fd)))
2631 			return ERR_PTR(-EFAULT);
2632 
2633 		btf = btf_get_by_fd(btf_fd);
2634 		if (IS_ERR(btf)) {
2635 			verbose(env, "invalid module BTF fd specified\n");
2636 			return btf;
2637 		}
2638 
2639 		if (!btf_is_module(btf)) {
2640 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2641 			btf_put(btf);
2642 			return ERR_PTR(-EINVAL);
2643 		}
2644 
2645 		mod = btf_try_get_module(btf);
2646 		if (!mod) {
2647 			btf_put(btf);
2648 			return ERR_PTR(-ENXIO);
2649 		}
2650 
2651 		b = &tab->descs[tab->nr_descs++];
2652 		b->btf = btf;
2653 		b->module = mod;
2654 		b->offset = offset;
2655 
2656 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2657 		     kfunc_btf_cmp_by_off, NULL);
2658 	}
2659 	return b->btf;
2660 }
2661 
2662 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2663 {
2664 	if (!tab)
2665 		return;
2666 
2667 	while (tab->nr_descs--) {
2668 		module_put(tab->descs[tab->nr_descs].module);
2669 		btf_put(tab->descs[tab->nr_descs].btf);
2670 	}
2671 	kfree(tab);
2672 }
2673 
2674 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2675 {
2676 	if (offset) {
2677 		if (offset < 0) {
2678 			/* In the future, this can be allowed to increase limit
2679 			 * of fd index into fd_array, interpreted as u16.
2680 			 */
2681 			verbose(env, "negative offset disallowed for kernel module function call\n");
2682 			return ERR_PTR(-EINVAL);
2683 		}
2684 
2685 		return __find_kfunc_desc_btf(env, offset);
2686 	}
2687 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2688 }
2689 
2690 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2691 {
2692 	const struct btf_type *func, *func_proto;
2693 	struct bpf_kfunc_btf_tab *btf_tab;
2694 	struct bpf_kfunc_desc_tab *tab;
2695 	struct bpf_prog_aux *prog_aux;
2696 	struct bpf_kfunc_desc *desc;
2697 	const char *func_name;
2698 	struct btf *desc_btf;
2699 	unsigned long call_imm;
2700 	unsigned long addr;
2701 	int err;
2702 
2703 	prog_aux = env->prog->aux;
2704 	tab = prog_aux->kfunc_tab;
2705 	btf_tab = prog_aux->kfunc_btf_tab;
2706 	if (!tab) {
2707 		if (!btf_vmlinux) {
2708 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2709 			return -ENOTSUPP;
2710 		}
2711 
2712 		if (!env->prog->jit_requested) {
2713 			verbose(env, "JIT is required for calling kernel function\n");
2714 			return -ENOTSUPP;
2715 		}
2716 
2717 		if (!bpf_jit_supports_kfunc_call()) {
2718 			verbose(env, "JIT does not support calling kernel function\n");
2719 			return -ENOTSUPP;
2720 		}
2721 
2722 		if (!env->prog->gpl_compatible) {
2723 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2724 			return -EINVAL;
2725 		}
2726 
2727 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2728 		if (!tab)
2729 			return -ENOMEM;
2730 		prog_aux->kfunc_tab = tab;
2731 	}
2732 
2733 	/* func_id == 0 is always invalid, but instead of returning an error, be
2734 	 * conservative and wait until the code elimination pass before returning
2735 	 * error, so that invalid calls that get pruned out can be in BPF programs
2736 	 * loaded from userspace.  It is also required that offset be untouched
2737 	 * for such calls.
2738 	 */
2739 	if (!func_id && !offset)
2740 		return 0;
2741 
2742 	if (!btf_tab && offset) {
2743 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2744 		if (!btf_tab)
2745 			return -ENOMEM;
2746 		prog_aux->kfunc_btf_tab = btf_tab;
2747 	}
2748 
2749 	desc_btf = find_kfunc_desc_btf(env, offset);
2750 	if (IS_ERR(desc_btf)) {
2751 		verbose(env, "failed to find BTF for kernel function\n");
2752 		return PTR_ERR(desc_btf);
2753 	}
2754 
2755 	if (find_kfunc_desc(env->prog, func_id, offset))
2756 		return 0;
2757 
2758 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2759 		verbose(env, "too many different kernel function calls\n");
2760 		return -E2BIG;
2761 	}
2762 
2763 	func = btf_type_by_id(desc_btf, func_id);
2764 	if (!func || !btf_type_is_func(func)) {
2765 		verbose(env, "kernel btf_id %u is not a function\n",
2766 			func_id);
2767 		return -EINVAL;
2768 	}
2769 	func_proto = btf_type_by_id(desc_btf, func->type);
2770 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2771 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2772 			func_id);
2773 		return -EINVAL;
2774 	}
2775 
2776 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2777 	addr = kallsyms_lookup_name(func_name);
2778 	if (!addr) {
2779 		verbose(env, "cannot find address for kernel function %s\n",
2780 			func_name);
2781 		return -EINVAL;
2782 	}
2783 	specialize_kfunc(env, func_id, offset, &addr);
2784 
2785 	if (bpf_jit_supports_far_kfunc_call()) {
2786 		call_imm = func_id;
2787 	} else {
2788 		call_imm = BPF_CALL_IMM(addr);
2789 		/* Check whether the relative offset overflows desc->imm */
2790 		if ((unsigned long)(s32)call_imm != call_imm) {
2791 			verbose(env, "address of kernel function %s is out of range\n",
2792 				func_name);
2793 			return -EINVAL;
2794 		}
2795 	}
2796 
2797 	if (bpf_dev_bound_kfunc_id(func_id)) {
2798 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2799 		if (err)
2800 			return err;
2801 	}
2802 
2803 	desc = &tab->descs[tab->nr_descs++];
2804 	desc->func_id = func_id;
2805 	desc->imm = call_imm;
2806 	desc->offset = offset;
2807 	desc->addr = addr;
2808 	err = btf_distill_func_proto(&env->log, desc_btf,
2809 				     func_proto, func_name,
2810 				     &desc->func_model);
2811 	if (!err)
2812 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2813 		     kfunc_desc_cmp_by_id_off, NULL);
2814 	return err;
2815 }
2816 
2817 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2818 {
2819 	const struct bpf_kfunc_desc *d0 = a;
2820 	const struct bpf_kfunc_desc *d1 = b;
2821 
2822 	if (d0->imm != d1->imm)
2823 		return d0->imm < d1->imm ? -1 : 1;
2824 	if (d0->offset != d1->offset)
2825 		return d0->offset < d1->offset ? -1 : 1;
2826 	return 0;
2827 }
2828 
2829 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2830 {
2831 	struct bpf_kfunc_desc_tab *tab;
2832 
2833 	tab = prog->aux->kfunc_tab;
2834 	if (!tab)
2835 		return;
2836 
2837 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2838 	     kfunc_desc_cmp_by_imm_off, NULL);
2839 }
2840 
2841 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2842 {
2843 	return !!prog->aux->kfunc_tab;
2844 }
2845 
2846 const struct btf_func_model *
2847 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2848 			 const struct bpf_insn *insn)
2849 {
2850 	const struct bpf_kfunc_desc desc = {
2851 		.imm = insn->imm,
2852 		.offset = insn->off,
2853 	};
2854 	const struct bpf_kfunc_desc *res;
2855 	struct bpf_kfunc_desc_tab *tab;
2856 
2857 	tab = prog->aux->kfunc_tab;
2858 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2859 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2860 
2861 	return res ? &res->func_model : NULL;
2862 }
2863 
2864 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2865 {
2866 	struct bpf_subprog_info *subprog = env->subprog_info;
2867 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
2868 	struct bpf_insn *insn = env->prog->insnsi;
2869 
2870 	/* Add entry function. */
2871 	ret = add_subprog(env, 0);
2872 	if (ret)
2873 		return ret;
2874 
2875 	for (i = 0; i < insn_cnt; i++, insn++) {
2876 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2877 		    !bpf_pseudo_kfunc_call(insn))
2878 			continue;
2879 
2880 		if (!env->bpf_capable) {
2881 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2882 			return -EPERM;
2883 		}
2884 
2885 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2886 			ret = add_subprog(env, i + insn->imm + 1);
2887 		else
2888 			ret = add_kfunc_call(env, insn->imm, insn->off);
2889 
2890 		if (ret < 0)
2891 			return ret;
2892 	}
2893 
2894 	ret = bpf_find_exception_callback_insn_off(env);
2895 	if (ret < 0)
2896 		return ret;
2897 	ex_cb_insn = ret;
2898 
2899 	/* If ex_cb_insn > 0, this means that the main program has a subprog
2900 	 * marked using BTF decl tag to serve as the exception callback.
2901 	 */
2902 	if (ex_cb_insn) {
2903 		ret = add_subprog(env, ex_cb_insn);
2904 		if (ret < 0)
2905 			return ret;
2906 		for (i = 1; i < env->subprog_cnt; i++) {
2907 			if (env->subprog_info[i].start != ex_cb_insn)
2908 				continue;
2909 			env->exception_callback_subprog = i;
2910 			mark_subprog_exc_cb(env, i);
2911 			break;
2912 		}
2913 	}
2914 
2915 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2916 	 * logic. 'subprog_cnt' should not be increased.
2917 	 */
2918 	subprog[env->subprog_cnt].start = insn_cnt;
2919 
2920 	if (env->log.level & BPF_LOG_LEVEL2)
2921 		for (i = 0; i < env->subprog_cnt; i++)
2922 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2923 
2924 	return 0;
2925 }
2926 
2927 static int check_subprogs(struct bpf_verifier_env *env)
2928 {
2929 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2930 	struct bpf_subprog_info *subprog = env->subprog_info;
2931 	struct bpf_insn *insn = env->prog->insnsi;
2932 	int insn_cnt = env->prog->len;
2933 
2934 	/* now check that all jumps are within the same subprog */
2935 	subprog_start = subprog[cur_subprog].start;
2936 	subprog_end = subprog[cur_subprog + 1].start;
2937 	for (i = 0; i < insn_cnt; i++) {
2938 		u8 code = insn[i].code;
2939 
2940 		if (code == (BPF_JMP | BPF_CALL) &&
2941 		    insn[i].src_reg == 0 &&
2942 		    insn[i].imm == BPF_FUNC_tail_call)
2943 			subprog[cur_subprog].has_tail_call = true;
2944 		if (BPF_CLASS(code) == BPF_LD &&
2945 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2946 			subprog[cur_subprog].has_ld_abs = true;
2947 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2948 			goto next;
2949 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2950 			goto next;
2951 		if (code == (BPF_JMP32 | BPF_JA))
2952 			off = i + insn[i].imm + 1;
2953 		else
2954 			off = i + insn[i].off + 1;
2955 		if (off < subprog_start || off >= subprog_end) {
2956 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2957 			return -EINVAL;
2958 		}
2959 next:
2960 		if (i == subprog_end - 1) {
2961 			/* to avoid fall-through from one subprog into another
2962 			 * the last insn of the subprog should be either exit
2963 			 * or unconditional jump back or bpf_throw call
2964 			 */
2965 			if (code != (BPF_JMP | BPF_EXIT) &&
2966 			    code != (BPF_JMP32 | BPF_JA) &&
2967 			    code != (BPF_JMP | BPF_JA)) {
2968 				verbose(env, "last insn is not an exit or jmp\n");
2969 				return -EINVAL;
2970 			}
2971 			subprog_start = subprog_end;
2972 			cur_subprog++;
2973 			if (cur_subprog < env->subprog_cnt)
2974 				subprog_end = subprog[cur_subprog + 1].start;
2975 		}
2976 	}
2977 	return 0;
2978 }
2979 
2980 /* Parentage chain of this register (or stack slot) should take care of all
2981  * issues like callee-saved registers, stack slot allocation time, etc.
2982  */
2983 static int mark_reg_read(struct bpf_verifier_env *env,
2984 			 const struct bpf_reg_state *state,
2985 			 struct bpf_reg_state *parent, u8 flag)
2986 {
2987 	bool writes = parent == state->parent; /* Observe write marks */
2988 	int cnt = 0;
2989 
2990 	while (parent) {
2991 		/* if read wasn't screened by an earlier write ... */
2992 		if (writes && state->live & REG_LIVE_WRITTEN)
2993 			break;
2994 		if (parent->live & REG_LIVE_DONE) {
2995 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2996 				reg_type_str(env, parent->type),
2997 				parent->var_off.value, parent->off);
2998 			return -EFAULT;
2999 		}
3000 		/* The first condition is more likely to be true than the
3001 		 * second, checked it first.
3002 		 */
3003 		if ((parent->live & REG_LIVE_READ) == flag ||
3004 		    parent->live & REG_LIVE_READ64)
3005 			/* The parentage chain never changes and
3006 			 * this parent was already marked as LIVE_READ.
3007 			 * There is no need to keep walking the chain again and
3008 			 * keep re-marking all parents as LIVE_READ.
3009 			 * This case happens when the same register is read
3010 			 * multiple times without writes into it in-between.
3011 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3012 			 * then no need to set the weak REG_LIVE_READ32.
3013 			 */
3014 			break;
3015 		/* ... then we depend on parent's value */
3016 		parent->live |= flag;
3017 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3018 		if (flag == REG_LIVE_READ64)
3019 			parent->live &= ~REG_LIVE_READ32;
3020 		state = parent;
3021 		parent = state->parent;
3022 		writes = true;
3023 		cnt++;
3024 	}
3025 
3026 	if (env->longest_mark_read_walk < cnt)
3027 		env->longest_mark_read_walk = cnt;
3028 	return 0;
3029 }
3030 
3031 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3032 {
3033 	struct bpf_func_state *state = func(env, reg);
3034 	int spi, ret;
3035 
3036 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3037 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3038 	 * check_kfunc_call.
3039 	 */
3040 	if (reg->type == CONST_PTR_TO_DYNPTR)
3041 		return 0;
3042 	spi = dynptr_get_spi(env, reg);
3043 	if (spi < 0)
3044 		return spi;
3045 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3046 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3047 	 * read.
3048 	 */
3049 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3050 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3051 	if (ret)
3052 		return ret;
3053 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3054 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3055 }
3056 
3057 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3058 			  int spi, int nr_slots)
3059 {
3060 	struct bpf_func_state *state = func(env, reg);
3061 	int err, i;
3062 
3063 	for (i = 0; i < nr_slots; i++) {
3064 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3065 
3066 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3067 		if (err)
3068 			return err;
3069 
3070 		mark_stack_slot_scratched(env, spi - i);
3071 	}
3072 
3073 	return 0;
3074 }
3075 
3076 /* This function is supposed to be used by the following 32-bit optimization
3077  * code only. It returns TRUE if the source or destination register operates
3078  * on 64-bit, otherwise return FALSE.
3079  */
3080 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3081 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3082 {
3083 	u8 code, class, op;
3084 
3085 	code = insn->code;
3086 	class = BPF_CLASS(code);
3087 	op = BPF_OP(code);
3088 	if (class == BPF_JMP) {
3089 		/* BPF_EXIT for "main" will reach here. Return TRUE
3090 		 * conservatively.
3091 		 */
3092 		if (op == BPF_EXIT)
3093 			return true;
3094 		if (op == BPF_CALL) {
3095 			/* BPF to BPF call will reach here because of marking
3096 			 * caller saved clobber with DST_OP_NO_MARK for which we
3097 			 * don't care the register def because they are anyway
3098 			 * marked as NOT_INIT already.
3099 			 */
3100 			if (insn->src_reg == BPF_PSEUDO_CALL)
3101 				return false;
3102 			/* Helper call will reach here because of arg type
3103 			 * check, conservatively return TRUE.
3104 			 */
3105 			if (t == SRC_OP)
3106 				return true;
3107 
3108 			return false;
3109 		}
3110 	}
3111 
3112 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3113 		return false;
3114 
3115 	if (class == BPF_ALU64 || class == BPF_JMP ||
3116 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3117 		return true;
3118 
3119 	if (class == BPF_ALU || class == BPF_JMP32)
3120 		return false;
3121 
3122 	if (class == BPF_LDX) {
3123 		if (t != SRC_OP)
3124 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3125 		/* LDX source must be ptr. */
3126 		return true;
3127 	}
3128 
3129 	if (class == BPF_STX) {
3130 		/* BPF_STX (including atomic variants) has multiple source
3131 		 * operands, one of which is a ptr. Check whether the caller is
3132 		 * asking about it.
3133 		 */
3134 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3135 			return true;
3136 		return BPF_SIZE(code) == BPF_DW;
3137 	}
3138 
3139 	if (class == BPF_LD) {
3140 		u8 mode = BPF_MODE(code);
3141 
3142 		/* LD_IMM64 */
3143 		if (mode == BPF_IMM)
3144 			return true;
3145 
3146 		/* Both LD_IND and LD_ABS return 32-bit data. */
3147 		if (t != SRC_OP)
3148 			return  false;
3149 
3150 		/* Implicit ctx ptr. */
3151 		if (regno == BPF_REG_6)
3152 			return true;
3153 
3154 		/* Explicit source could be any width. */
3155 		return true;
3156 	}
3157 
3158 	if (class == BPF_ST)
3159 		/* The only source register for BPF_ST is a ptr. */
3160 		return true;
3161 
3162 	/* Conservatively return true at default. */
3163 	return true;
3164 }
3165 
3166 /* Return the regno defined by the insn, or -1. */
3167 static int insn_def_regno(const struct bpf_insn *insn)
3168 {
3169 	switch (BPF_CLASS(insn->code)) {
3170 	case BPF_JMP:
3171 	case BPF_JMP32:
3172 	case BPF_ST:
3173 		return -1;
3174 	case BPF_STX:
3175 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3176 		    (insn->imm & BPF_FETCH)) {
3177 			if (insn->imm == BPF_CMPXCHG)
3178 				return BPF_REG_0;
3179 			else
3180 				return insn->src_reg;
3181 		} else {
3182 			return -1;
3183 		}
3184 	default:
3185 		return insn->dst_reg;
3186 	}
3187 }
3188 
3189 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3190 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3191 {
3192 	int dst_reg = insn_def_regno(insn);
3193 
3194 	if (dst_reg == -1)
3195 		return false;
3196 
3197 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3198 }
3199 
3200 static void mark_insn_zext(struct bpf_verifier_env *env,
3201 			   struct bpf_reg_state *reg)
3202 {
3203 	s32 def_idx = reg->subreg_def;
3204 
3205 	if (def_idx == DEF_NOT_SUBREG)
3206 		return;
3207 
3208 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3209 	/* The dst will be zero extended, so won't be sub-register anymore. */
3210 	reg->subreg_def = DEF_NOT_SUBREG;
3211 }
3212 
3213 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3214 			   enum reg_arg_type t)
3215 {
3216 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3217 	struct bpf_reg_state *reg;
3218 	bool rw64;
3219 
3220 	if (regno >= MAX_BPF_REG) {
3221 		verbose(env, "R%d is invalid\n", regno);
3222 		return -EINVAL;
3223 	}
3224 
3225 	mark_reg_scratched(env, regno);
3226 
3227 	reg = &regs[regno];
3228 	rw64 = is_reg64(env, insn, regno, reg, t);
3229 	if (t == SRC_OP) {
3230 		/* check whether register used as source operand can be read */
3231 		if (reg->type == NOT_INIT) {
3232 			verbose(env, "R%d !read_ok\n", regno);
3233 			return -EACCES;
3234 		}
3235 		/* We don't need to worry about FP liveness because it's read-only */
3236 		if (regno == BPF_REG_FP)
3237 			return 0;
3238 
3239 		if (rw64)
3240 			mark_insn_zext(env, reg);
3241 
3242 		return mark_reg_read(env, reg, reg->parent,
3243 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3244 	} else {
3245 		/* check whether register used as dest operand can be written to */
3246 		if (regno == BPF_REG_FP) {
3247 			verbose(env, "frame pointer is read only\n");
3248 			return -EACCES;
3249 		}
3250 		reg->live |= REG_LIVE_WRITTEN;
3251 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3252 		if (t == DST_OP)
3253 			mark_reg_unknown(env, regs, regno);
3254 	}
3255 	return 0;
3256 }
3257 
3258 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3259 			 enum reg_arg_type t)
3260 {
3261 	struct bpf_verifier_state *vstate = env->cur_state;
3262 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3263 
3264 	return __check_reg_arg(env, state->regs, regno, t);
3265 }
3266 
3267 static int insn_stack_access_flags(int frameno, int spi)
3268 {
3269 	return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3270 }
3271 
3272 static int insn_stack_access_spi(int insn_flags)
3273 {
3274 	return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3275 }
3276 
3277 static int insn_stack_access_frameno(int insn_flags)
3278 {
3279 	return insn_flags & INSN_F_FRAMENO_MASK;
3280 }
3281 
3282 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3283 {
3284 	env->insn_aux_data[idx].jmp_point = true;
3285 }
3286 
3287 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3288 {
3289 	return env->insn_aux_data[insn_idx].jmp_point;
3290 }
3291 
3292 /* for any branch, call, exit record the history of jmps in the given state */
3293 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3294 			    int insn_flags)
3295 {
3296 	u32 cnt = cur->jmp_history_cnt;
3297 	struct bpf_jmp_history_entry *p;
3298 	size_t alloc_size;
3299 
3300 	/* combine instruction flags if we already recorded this instruction */
3301 	if (env->cur_hist_ent) {
3302 		/* atomic instructions push insn_flags twice, for READ and
3303 		 * WRITE sides, but they should agree on stack slot
3304 		 */
3305 		WARN_ONCE((env->cur_hist_ent->flags & insn_flags) &&
3306 			  (env->cur_hist_ent->flags & insn_flags) != insn_flags,
3307 			  "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n",
3308 			  env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3309 		env->cur_hist_ent->flags |= insn_flags;
3310 		return 0;
3311 	}
3312 
3313 	cnt++;
3314 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3315 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3316 	if (!p)
3317 		return -ENOMEM;
3318 	cur->jmp_history = p;
3319 
3320 	p = &cur->jmp_history[cnt - 1];
3321 	p->idx = env->insn_idx;
3322 	p->prev_idx = env->prev_insn_idx;
3323 	p->flags = insn_flags;
3324 	cur->jmp_history_cnt = cnt;
3325 	env->cur_hist_ent = p;
3326 
3327 	return 0;
3328 }
3329 
3330 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
3331 						        u32 hist_end, int insn_idx)
3332 {
3333 	if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
3334 		return &st->jmp_history[hist_end - 1];
3335 	return NULL;
3336 }
3337 
3338 /* Backtrack one insn at a time. If idx is not at the top of recorded
3339  * history then previous instruction came from straight line execution.
3340  * Return -ENOENT if we exhausted all instructions within given state.
3341  *
3342  * It's legal to have a bit of a looping with the same starting and ending
3343  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3344  * instruction index is the same as state's first_idx doesn't mean we are
3345  * done. If there is still some jump history left, we should keep going. We
3346  * need to take into account that we might have a jump history between given
3347  * state's parent and itself, due to checkpointing. In this case, we'll have
3348  * history entry recording a jump from last instruction of parent state and
3349  * first instruction of given state.
3350  */
3351 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3352 			     u32 *history)
3353 {
3354 	u32 cnt = *history;
3355 
3356 	if (i == st->first_insn_idx) {
3357 		if (cnt == 0)
3358 			return -ENOENT;
3359 		if (cnt == 1 && st->jmp_history[0].idx == i)
3360 			return -ENOENT;
3361 	}
3362 
3363 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3364 		i = st->jmp_history[cnt - 1].prev_idx;
3365 		(*history)--;
3366 	} else {
3367 		i--;
3368 	}
3369 	return i;
3370 }
3371 
3372 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3373 {
3374 	const struct btf_type *func;
3375 	struct btf *desc_btf;
3376 
3377 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3378 		return NULL;
3379 
3380 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3381 	if (IS_ERR(desc_btf))
3382 		return "<error>";
3383 
3384 	func = btf_type_by_id(desc_btf, insn->imm);
3385 	return btf_name_by_offset(desc_btf, func->name_off);
3386 }
3387 
3388 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3389 {
3390 	bt->frame = frame;
3391 }
3392 
3393 static inline void bt_reset(struct backtrack_state *bt)
3394 {
3395 	struct bpf_verifier_env *env = bt->env;
3396 
3397 	memset(bt, 0, sizeof(*bt));
3398 	bt->env = env;
3399 }
3400 
3401 static inline u32 bt_empty(struct backtrack_state *bt)
3402 {
3403 	u64 mask = 0;
3404 	int i;
3405 
3406 	for (i = 0; i <= bt->frame; i++)
3407 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3408 
3409 	return mask == 0;
3410 }
3411 
3412 static inline int bt_subprog_enter(struct backtrack_state *bt)
3413 {
3414 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3415 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3416 		WARN_ONCE(1, "verifier backtracking bug");
3417 		return -EFAULT;
3418 	}
3419 	bt->frame++;
3420 	return 0;
3421 }
3422 
3423 static inline int bt_subprog_exit(struct backtrack_state *bt)
3424 {
3425 	if (bt->frame == 0) {
3426 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3427 		WARN_ONCE(1, "verifier backtracking bug");
3428 		return -EFAULT;
3429 	}
3430 	bt->frame--;
3431 	return 0;
3432 }
3433 
3434 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3435 {
3436 	bt->reg_masks[frame] |= 1 << reg;
3437 }
3438 
3439 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3440 {
3441 	bt->reg_masks[frame] &= ~(1 << reg);
3442 }
3443 
3444 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3445 {
3446 	bt_set_frame_reg(bt, bt->frame, reg);
3447 }
3448 
3449 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3450 {
3451 	bt_clear_frame_reg(bt, bt->frame, reg);
3452 }
3453 
3454 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3455 {
3456 	bt->stack_masks[frame] |= 1ull << slot;
3457 }
3458 
3459 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3460 {
3461 	bt->stack_masks[frame] &= ~(1ull << slot);
3462 }
3463 
3464 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3465 {
3466 	return bt->reg_masks[frame];
3467 }
3468 
3469 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3470 {
3471 	return bt->reg_masks[bt->frame];
3472 }
3473 
3474 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3475 {
3476 	return bt->stack_masks[frame];
3477 }
3478 
3479 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3480 {
3481 	return bt->stack_masks[bt->frame];
3482 }
3483 
3484 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3485 {
3486 	return bt->reg_masks[bt->frame] & (1 << reg);
3487 }
3488 
3489 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
3490 {
3491 	return bt->stack_masks[frame] & (1ull << slot);
3492 }
3493 
3494 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3495 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3496 {
3497 	DECLARE_BITMAP(mask, 64);
3498 	bool first = true;
3499 	int i, n;
3500 
3501 	buf[0] = '\0';
3502 
3503 	bitmap_from_u64(mask, reg_mask);
3504 	for_each_set_bit(i, mask, 32) {
3505 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3506 		first = false;
3507 		buf += n;
3508 		buf_sz -= n;
3509 		if (buf_sz < 0)
3510 			break;
3511 	}
3512 }
3513 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3514 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3515 {
3516 	DECLARE_BITMAP(mask, 64);
3517 	bool first = true;
3518 	int i, n;
3519 
3520 	buf[0] = '\0';
3521 
3522 	bitmap_from_u64(mask, stack_mask);
3523 	for_each_set_bit(i, mask, 64) {
3524 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3525 		first = false;
3526 		buf += n;
3527 		buf_sz -= n;
3528 		if (buf_sz < 0)
3529 			break;
3530 	}
3531 }
3532 
3533 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3534 
3535 /* For given verifier state backtrack_insn() is called from the last insn to
3536  * the first insn. Its purpose is to compute a bitmask of registers and
3537  * stack slots that needs precision in the parent verifier state.
3538  *
3539  * @idx is an index of the instruction we are currently processing;
3540  * @subseq_idx is an index of the subsequent instruction that:
3541  *   - *would be* executed next, if jump history is viewed in forward order;
3542  *   - *was* processed previously during backtracking.
3543  */
3544 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3545 			  struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
3546 {
3547 	const struct bpf_insn_cbs cbs = {
3548 		.cb_call	= disasm_kfunc_name,
3549 		.cb_print	= verbose,
3550 		.private_data	= env,
3551 	};
3552 	struct bpf_insn *insn = env->prog->insnsi + idx;
3553 	u8 class = BPF_CLASS(insn->code);
3554 	u8 opcode = BPF_OP(insn->code);
3555 	u8 mode = BPF_MODE(insn->code);
3556 	u32 dreg = insn->dst_reg;
3557 	u32 sreg = insn->src_reg;
3558 	u32 spi, i, fr;
3559 
3560 	if (insn->code == 0)
3561 		return 0;
3562 	if (env->log.level & BPF_LOG_LEVEL2) {
3563 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3564 		verbose(env, "mark_precise: frame%d: regs=%s ",
3565 			bt->frame, env->tmp_str_buf);
3566 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3567 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3568 		verbose(env, "%d: ", idx);
3569 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3570 	}
3571 
3572 	if (class == BPF_ALU || class == BPF_ALU64) {
3573 		if (!bt_is_reg_set(bt, dreg))
3574 			return 0;
3575 		if (opcode == BPF_END || opcode == BPF_NEG) {
3576 			/* sreg is reserved and unused
3577 			 * dreg still need precision before this insn
3578 			 */
3579 			return 0;
3580 		} else if (opcode == BPF_MOV) {
3581 			if (BPF_SRC(insn->code) == BPF_X) {
3582 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3583 				 * dreg needs precision after this insn
3584 				 * sreg needs precision before this insn
3585 				 */
3586 				bt_clear_reg(bt, dreg);
3587 				bt_set_reg(bt, sreg);
3588 			} else {
3589 				/* dreg = K
3590 				 * dreg needs precision after this insn.
3591 				 * Corresponding register is already marked
3592 				 * as precise=true in this verifier state.
3593 				 * No further markings in parent are necessary
3594 				 */
3595 				bt_clear_reg(bt, dreg);
3596 			}
3597 		} else {
3598 			if (BPF_SRC(insn->code) == BPF_X) {
3599 				/* dreg += sreg
3600 				 * both dreg and sreg need precision
3601 				 * before this insn
3602 				 */
3603 				bt_set_reg(bt, sreg);
3604 			} /* else dreg += K
3605 			   * dreg still needs precision before this insn
3606 			   */
3607 		}
3608 	} else if (class == BPF_LDX) {
3609 		if (!bt_is_reg_set(bt, dreg))
3610 			return 0;
3611 		bt_clear_reg(bt, dreg);
3612 
3613 		/* scalars can only be spilled into stack w/o losing precision.
3614 		 * Load from any other memory can be zero extended.
3615 		 * The desire to keep that precision is already indicated
3616 		 * by 'precise' mark in corresponding register of this state.
3617 		 * No further tracking necessary.
3618 		 */
3619 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3620 			return 0;
3621 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3622 		 * that [fp - off] slot contains scalar that needs to be
3623 		 * tracked with precision
3624 		 */
3625 		spi = insn_stack_access_spi(hist->flags);
3626 		fr = insn_stack_access_frameno(hist->flags);
3627 		bt_set_frame_slot(bt, fr, spi);
3628 	} else if (class == BPF_STX || class == BPF_ST) {
3629 		if (bt_is_reg_set(bt, dreg))
3630 			/* stx & st shouldn't be using _scalar_ dst_reg
3631 			 * to access memory. It means backtracking
3632 			 * encountered a case of pointer subtraction.
3633 			 */
3634 			return -ENOTSUPP;
3635 		/* scalars can only be spilled into stack */
3636 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3637 			return 0;
3638 		spi = insn_stack_access_spi(hist->flags);
3639 		fr = insn_stack_access_frameno(hist->flags);
3640 		if (!bt_is_frame_slot_set(bt, fr, spi))
3641 			return 0;
3642 		bt_clear_frame_slot(bt, fr, spi);
3643 		if (class == BPF_STX)
3644 			bt_set_reg(bt, sreg);
3645 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3646 		if (bpf_pseudo_call(insn)) {
3647 			int subprog_insn_idx, subprog;
3648 
3649 			subprog_insn_idx = idx + insn->imm + 1;
3650 			subprog = find_subprog(env, subprog_insn_idx);
3651 			if (subprog < 0)
3652 				return -EFAULT;
3653 
3654 			if (subprog_is_global(env, subprog)) {
3655 				/* check that jump history doesn't have any
3656 				 * extra instructions from subprog; the next
3657 				 * instruction after call to global subprog
3658 				 * should be literally next instruction in
3659 				 * caller program
3660 				 */
3661 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3662 				/* r1-r5 are invalidated after subprog call,
3663 				 * so for global func call it shouldn't be set
3664 				 * anymore
3665 				 */
3666 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3667 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3668 					WARN_ONCE(1, "verifier backtracking bug");
3669 					return -EFAULT;
3670 				}
3671 				/* global subprog always sets R0 */
3672 				bt_clear_reg(bt, BPF_REG_0);
3673 				return 0;
3674 			} else {
3675 				/* static subprog call instruction, which
3676 				 * means that we are exiting current subprog,
3677 				 * so only r1-r5 could be still requested as
3678 				 * precise, r0 and r6-r10 or any stack slot in
3679 				 * the current frame should be zero by now
3680 				 */
3681 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3682 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3683 					WARN_ONCE(1, "verifier backtracking bug");
3684 					return -EFAULT;
3685 				}
3686 				/* we are now tracking register spills correctly,
3687 				 * so any instance of leftover slots is a bug
3688 				 */
3689 				if (bt_stack_mask(bt) != 0) {
3690 					verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3691 					WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)");
3692 					return -EFAULT;
3693 				}
3694 				/* propagate r1-r5 to the caller */
3695 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3696 					if (bt_is_reg_set(bt, i)) {
3697 						bt_clear_reg(bt, i);
3698 						bt_set_frame_reg(bt, bt->frame - 1, i);
3699 					}
3700 				}
3701 				if (bt_subprog_exit(bt))
3702 					return -EFAULT;
3703 				return 0;
3704 			}
3705 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
3706 			/* exit from callback subprog to callback-calling helper or
3707 			 * kfunc call. Use idx/subseq_idx check to discern it from
3708 			 * straight line code backtracking.
3709 			 * Unlike the subprog call handling above, we shouldn't
3710 			 * propagate precision of r1-r5 (if any requested), as they are
3711 			 * not actually arguments passed directly to callback subprogs
3712 			 */
3713 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3714 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3715 				WARN_ONCE(1, "verifier backtracking bug");
3716 				return -EFAULT;
3717 			}
3718 			if (bt_stack_mask(bt) != 0) {
3719 				verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3720 				WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)");
3721 				return -EFAULT;
3722 			}
3723 			/* clear r1-r5 in callback subprog's mask */
3724 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3725 				bt_clear_reg(bt, i);
3726 			if (bt_subprog_exit(bt))
3727 				return -EFAULT;
3728 			return 0;
3729 		} else if (opcode == BPF_CALL) {
3730 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3731 			 * catch this error later. Make backtracking conservative
3732 			 * with ENOTSUPP.
3733 			 */
3734 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3735 				return -ENOTSUPP;
3736 			/* regular helper call sets R0 */
3737 			bt_clear_reg(bt, BPF_REG_0);
3738 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3739 				/* if backtracing was looking for registers R1-R5
3740 				 * they should have been found already.
3741 				 */
3742 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3743 				WARN_ONCE(1, "verifier backtracking bug");
3744 				return -EFAULT;
3745 			}
3746 		} else if (opcode == BPF_EXIT) {
3747 			bool r0_precise;
3748 
3749 			/* Backtracking to a nested function call, 'idx' is a part of
3750 			 * the inner frame 'subseq_idx' is a part of the outer frame.
3751 			 * In case of a regular function call, instructions giving
3752 			 * precision to registers R1-R5 should have been found already.
3753 			 * In case of a callback, it is ok to have R1-R5 marked for
3754 			 * backtracking, as these registers are set by the function
3755 			 * invoking callback.
3756 			 */
3757 			if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
3758 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3759 					bt_clear_reg(bt, i);
3760 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3761 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3762 				WARN_ONCE(1, "verifier backtracking bug");
3763 				return -EFAULT;
3764 			}
3765 
3766 			/* BPF_EXIT in subprog or callback always returns
3767 			 * right after the call instruction, so by checking
3768 			 * whether the instruction at subseq_idx-1 is subprog
3769 			 * call or not we can distinguish actual exit from
3770 			 * *subprog* from exit from *callback*. In the former
3771 			 * case, we need to propagate r0 precision, if
3772 			 * necessary. In the former we never do that.
3773 			 */
3774 			r0_precise = subseq_idx - 1 >= 0 &&
3775 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3776 				     bt_is_reg_set(bt, BPF_REG_0);
3777 
3778 			bt_clear_reg(bt, BPF_REG_0);
3779 			if (bt_subprog_enter(bt))
3780 				return -EFAULT;
3781 
3782 			if (r0_precise)
3783 				bt_set_reg(bt, BPF_REG_0);
3784 			/* r6-r9 and stack slots will stay set in caller frame
3785 			 * bitmasks until we return back from callee(s)
3786 			 */
3787 			return 0;
3788 		} else if (BPF_SRC(insn->code) == BPF_X) {
3789 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3790 				return 0;
3791 			/* dreg <cond> sreg
3792 			 * Both dreg and sreg need precision before
3793 			 * this insn. If only sreg was marked precise
3794 			 * before it would be equally necessary to
3795 			 * propagate it to dreg.
3796 			 */
3797 			bt_set_reg(bt, dreg);
3798 			bt_set_reg(bt, sreg);
3799 			 /* else dreg <cond> K
3800 			  * Only dreg still needs precision before
3801 			  * this insn, so for the K-based conditional
3802 			  * there is nothing new to be marked.
3803 			  */
3804 		}
3805 	} else if (class == BPF_LD) {
3806 		if (!bt_is_reg_set(bt, dreg))
3807 			return 0;
3808 		bt_clear_reg(bt, dreg);
3809 		/* It's ld_imm64 or ld_abs or ld_ind.
3810 		 * For ld_imm64 no further tracking of precision
3811 		 * into parent is necessary
3812 		 */
3813 		if (mode == BPF_IND || mode == BPF_ABS)
3814 			/* to be analyzed */
3815 			return -ENOTSUPP;
3816 	}
3817 	return 0;
3818 }
3819 
3820 /* the scalar precision tracking algorithm:
3821  * . at the start all registers have precise=false.
3822  * . scalar ranges are tracked as normal through alu and jmp insns.
3823  * . once precise value of the scalar register is used in:
3824  *   .  ptr + scalar alu
3825  *   . if (scalar cond K|scalar)
3826  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3827  *   backtrack through the verifier states and mark all registers and
3828  *   stack slots with spilled constants that these scalar regisers
3829  *   should be precise.
3830  * . during state pruning two registers (or spilled stack slots)
3831  *   are equivalent if both are not precise.
3832  *
3833  * Note the verifier cannot simply walk register parentage chain,
3834  * since many different registers and stack slots could have been
3835  * used to compute single precise scalar.
3836  *
3837  * The approach of starting with precise=true for all registers and then
3838  * backtrack to mark a register as not precise when the verifier detects
3839  * that program doesn't care about specific value (e.g., when helper
3840  * takes register as ARG_ANYTHING parameter) is not safe.
3841  *
3842  * It's ok to walk single parentage chain of the verifier states.
3843  * It's possible that this backtracking will go all the way till 1st insn.
3844  * All other branches will be explored for needing precision later.
3845  *
3846  * The backtracking needs to deal with cases like:
3847  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3848  * r9 -= r8
3849  * r5 = r9
3850  * if r5 > 0x79f goto pc+7
3851  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3852  * r5 += 1
3853  * ...
3854  * call bpf_perf_event_output#25
3855  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3856  *
3857  * and this case:
3858  * r6 = 1
3859  * call foo // uses callee's r6 inside to compute r0
3860  * r0 += r6
3861  * if r0 == 0 goto
3862  *
3863  * to track above reg_mask/stack_mask needs to be independent for each frame.
3864  *
3865  * Also if parent's curframe > frame where backtracking started,
3866  * the verifier need to mark registers in both frames, otherwise callees
3867  * may incorrectly prune callers. This is similar to
3868  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3869  *
3870  * For now backtracking falls back into conservative marking.
3871  */
3872 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3873 				     struct bpf_verifier_state *st)
3874 {
3875 	struct bpf_func_state *func;
3876 	struct bpf_reg_state *reg;
3877 	int i, j;
3878 
3879 	if (env->log.level & BPF_LOG_LEVEL2) {
3880 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3881 			st->curframe);
3882 	}
3883 
3884 	/* big hammer: mark all scalars precise in this path.
3885 	 * pop_stack may still get !precise scalars.
3886 	 * We also skip current state and go straight to first parent state,
3887 	 * because precision markings in current non-checkpointed state are
3888 	 * not needed. See why in the comment in __mark_chain_precision below.
3889 	 */
3890 	for (st = st->parent; st; st = st->parent) {
3891 		for (i = 0; i <= st->curframe; i++) {
3892 			func = st->frame[i];
3893 			for (j = 0; j < BPF_REG_FP; j++) {
3894 				reg = &func->regs[j];
3895 				if (reg->type != SCALAR_VALUE || reg->precise)
3896 					continue;
3897 				reg->precise = true;
3898 				if (env->log.level & BPF_LOG_LEVEL2) {
3899 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3900 						i, j);
3901 				}
3902 			}
3903 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3904 				if (!is_spilled_reg(&func->stack[j]))
3905 					continue;
3906 				reg = &func->stack[j].spilled_ptr;
3907 				if (reg->type != SCALAR_VALUE || reg->precise)
3908 					continue;
3909 				reg->precise = true;
3910 				if (env->log.level & BPF_LOG_LEVEL2) {
3911 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3912 						i, -(j + 1) * 8);
3913 				}
3914 			}
3915 		}
3916 	}
3917 }
3918 
3919 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3920 {
3921 	struct bpf_func_state *func;
3922 	struct bpf_reg_state *reg;
3923 	int i, j;
3924 
3925 	for (i = 0; i <= st->curframe; i++) {
3926 		func = st->frame[i];
3927 		for (j = 0; j < BPF_REG_FP; j++) {
3928 			reg = &func->regs[j];
3929 			if (reg->type != SCALAR_VALUE)
3930 				continue;
3931 			reg->precise = false;
3932 		}
3933 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3934 			if (!is_spilled_reg(&func->stack[j]))
3935 				continue;
3936 			reg = &func->stack[j].spilled_ptr;
3937 			if (reg->type != SCALAR_VALUE)
3938 				continue;
3939 			reg->precise = false;
3940 		}
3941 	}
3942 }
3943 
3944 static bool idset_contains(struct bpf_idset *s, u32 id)
3945 {
3946 	u32 i;
3947 
3948 	for (i = 0; i < s->count; ++i)
3949 		if (s->ids[i] == id)
3950 			return true;
3951 
3952 	return false;
3953 }
3954 
3955 static int idset_push(struct bpf_idset *s, u32 id)
3956 {
3957 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
3958 		return -EFAULT;
3959 	s->ids[s->count++] = id;
3960 	return 0;
3961 }
3962 
3963 static void idset_reset(struct bpf_idset *s)
3964 {
3965 	s->count = 0;
3966 }
3967 
3968 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
3969  * Mark all registers with these IDs as precise.
3970  */
3971 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3972 {
3973 	struct bpf_idset *precise_ids = &env->idset_scratch;
3974 	struct backtrack_state *bt = &env->bt;
3975 	struct bpf_func_state *func;
3976 	struct bpf_reg_state *reg;
3977 	DECLARE_BITMAP(mask, 64);
3978 	int i, fr;
3979 
3980 	idset_reset(precise_ids);
3981 
3982 	for (fr = bt->frame; fr >= 0; fr--) {
3983 		func = st->frame[fr];
3984 
3985 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
3986 		for_each_set_bit(i, mask, 32) {
3987 			reg = &func->regs[i];
3988 			if (!reg->id || reg->type != SCALAR_VALUE)
3989 				continue;
3990 			if (idset_push(precise_ids, reg->id))
3991 				return -EFAULT;
3992 		}
3993 
3994 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
3995 		for_each_set_bit(i, mask, 64) {
3996 			if (i >= func->allocated_stack / BPF_REG_SIZE)
3997 				break;
3998 			if (!is_spilled_scalar_reg(&func->stack[i]))
3999 				continue;
4000 			reg = &func->stack[i].spilled_ptr;
4001 			if (!reg->id)
4002 				continue;
4003 			if (idset_push(precise_ids, reg->id))
4004 				return -EFAULT;
4005 		}
4006 	}
4007 
4008 	for (fr = 0; fr <= st->curframe; ++fr) {
4009 		func = st->frame[fr];
4010 
4011 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
4012 			reg = &func->regs[i];
4013 			if (!reg->id)
4014 				continue;
4015 			if (!idset_contains(precise_ids, reg->id))
4016 				continue;
4017 			bt_set_frame_reg(bt, fr, i);
4018 		}
4019 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
4020 			if (!is_spilled_scalar_reg(&func->stack[i]))
4021 				continue;
4022 			reg = &func->stack[i].spilled_ptr;
4023 			if (!reg->id)
4024 				continue;
4025 			if (!idset_contains(precise_ids, reg->id))
4026 				continue;
4027 			bt_set_frame_slot(bt, fr, i);
4028 		}
4029 	}
4030 
4031 	return 0;
4032 }
4033 
4034 /*
4035  * __mark_chain_precision() backtracks BPF program instruction sequence and
4036  * chain of verifier states making sure that register *regno* (if regno >= 0)
4037  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4038  * SCALARS, as well as any other registers and slots that contribute to
4039  * a tracked state of given registers/stack slots, depending on specific BPF
4040  * assembly instructions (see backtrack_insns() for exact instruction handling
4041  * logic). This backtracking relies on recorded jmp_history and is able to
4042  * traverse entire chain of parent states. This process ends only when all the
4043  * necessary registers/slots and their transitive dependencies are marked as
4044  * precise.
4045  *
4046  * One important and subtle aspect is that precise marks *do not matter* in
4047  * the currently verified state (current state). It is important to understand
4048  * why this is the case.
4049  *
4050  * First, note that current state is the state that is not yet "checkpointed",
4051  * i.e., it is not yet put into env->explored_states, and it has no children
4052  * states as well. It's ephemeral, and can end up either a) being discarded if
4053  * compatible explored state is found at some point or BPF_EXIT instruction is
4054  * reached or b) checkpointed and put into env->explored_states, branching out
4055  * into one or more children states.
4056  *
4057  * In the former case, precise markings in current state are completely
4058  * ignored by state comparison code (see regsafe() for details). Only
4059  * checkpointed ("old") state precise markings are important, and if old
4060  * state's register/slot is precise, regsafe() assumes current state's
4061  * register/slot as precise and checks value ranges exactly and precisely. If
4062  * states turn out to be compatible, current state's necessary precise
4063  * markings and any required parent states' precise markings are enforced
4064  * after the fact with propagate_precision() logic, after the fact. But it's
4065  * important to realize that in this case, even after marking current state
4066  * registers/slots as precise, we immediately discard current state. So what
4067  * actually matters is any of the precise markings propagated into current
4068  * state's parent states, which are always checkpointed (due to b) case above).
4069  * As such, for scenario a) it doesn't matter if current state has precise
4070  * markings set or not.
4071  *
4072  * Now, for the scenario b), checkpointing and forking into child(ren)
4073  * state(s). Note that before current state gets to checkpointing step, any
4074  * processed instruction always assumes precise SCALAR register/slot
4075  * knowledge: if precise value or range is useful to prune jump branch, BPF
4076  * verifier takes this opportunity enthusiastically. Similarly, when
4077  * register's value is used to calculate offset or memory address, exact
4078  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4079  * what we mentioned above about state comparison ignoring precise markings
4080  * during state comparison, BPF verifier ignores and also assumes precise
4081  * markings *at will* during instruction verification process. But as verifier
4082  * assumes precision, it also propagates any precision dependencies across
4083  * parent states, which are not yet finalized, so can be further restricted
4084  * based on new knowledge gained from restrictions enforced by their children
4085  * states. This is so that once those parent states are finalized, i.e., when
4086  * they have no more active children state, state comparison logic in
4087  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4088  * required for correctness.
4089  *
4090  * To build a bit more intuition, note also that once a state is checkpointed,
4091  * the path we took to get to that state is not important. This is crucial
4092  * property for state pruning. When state is checkpointed and finalized at
4093  * some instruction index, it can be correctly and safely used to "short
4094  * circuit" any *compatible* state that reaches exactly the same instruction
4095  * index. I.e., if we jumped to that instruction from a completely different
4096  * code path than original finalized state was derived from, it doesn't
4097  * matter, current state can be discarded because from that instruction
4098  * forward having a compatible state will ensure we will safely reach the
4099  * exit. States describe preconditions for further exploration, but completely
4100  * forget the history of how we got here.
4101  *
4102  * This also means that even if we needed precise SCALAR range to get to
4103  * finalized state, but from that point forward *that same* SCALAR register is
4104  * never used in a precise context (i.e., it's precise value is not needed for
4105  * correctness), it's correct and safe to mark such register as "imprecise"
4106  * (i.e., precise marking set to false). This is what we rely on when we do
4107  * not set precise marking in current state. If no child state requires
4108  * precision for any given SCALAR register, it's safe to dictate that it can
4109  * be imprecise. If any child state does require this register to be precise,
4110  * we'll mark it precise later retroactively during precise markings
4111  * propagation from child state to parent states.
4112  *
4113  * Skipping precise marking setting in current state is a mild version of
4114  * relying on the above observation. But we can utilize this property even
4115  * more aggressively by proactively forgetting any precise marking in the
4116  * current state (which we inherited from the parent state), right before we
4117  * checkpoint it and branch off into new child state. This is done by
4118  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4119  * finalized states which help in short circuiting more future states.
4120  */
4121 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4122 {
4123 	struct backtrack_state *bt = &env->bt;
4124 	struct bpf_verifier_state *st = env->cur_state;
4125 	int first_idx = st->first_insn_idx;
4126 	int last_idx = env->insn_idx;
4127 	int subseq_idx = -1;
4128 	struct bpf_func_state *func;
4129 	struct bpf_reg_state *reg;
4130 	bool skip_first = true;
4131 	int i, fr, err;
4132 
4133 	if (!env->bpf_capable)
4134 		return 0;
4135 
4136 	/* set frame number from which we are starting to backtrack */
4137 	bt_init(bt, env->cur_state->curframe);
4138 
4139 	/* Do sanity checks against current state of register and/or stack
4140 	 * slot, but don't set precise flag in current state, as precision
4141 	 * tracking in the current state is unnecessary.
4142 	 */
4143 	func = st->frame[bt->frame];
4144 	if (regno >= 0) {
4145 		reg = &func->regs[regno];
4146 		if (reg->type != SCALAR_VALUE) {
4147 			WARN_ONCE(1, "backtracing misuse");
4148 			return -EFAULT;
4149 		}
4150 		bt_set_reg(bt, regno);
4151 	}
4152 
4153 	if (bt_empty(bt))
4154 		return 0;
4155 
4156 	for (;;) {
4157 		DECLARE_BITMAP(mask, 64);
4158 		u32 history = st->jmp_history_cnt;
4159 		struct bpf_jmp_history_entry *hist;
4160 
4161 		if (env->log.level & BPF_LOG_LEVEL2) {
4162 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4163 				bt->frame, last_idx, first_idx, subseq_idx);
4164 		}
4165 
4166 		/* If some register with scalar ID is marked as precise,
4167 		 * make sure that all registers sharing this ID are also precise.
4168 		 * This is needed to estimate effect of find_equal_scalars().
4169 		 * Do this at the last instruction of each state,
4170 		 * bpf_reg_state::id fields are valid for these instructions.
4171 		 *
4172 		 * Allows to track precision in situation like below:
4173 		 *
4174 		 *     r2 = unknown value
4175 		 *     ...
4176 		 *   --- state #0 ---
4177 		 *     ...
4178 		 *     r1 = r2                 // r1 and r2 now share the same ID
4179 		 *     ...
4180 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4181 		 *     ...
4182 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4183 		 *     ...
4184 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4185 		 *     r3 = r10
4186 		 *     r3 += r1                // need to mark both r1 and r2
4187 		 */
4188 		if (mark_precise_scalar_ids(env, st))
4189 			return -EFAULT;
4190 
4191 		if (last_idx < 0) {
4192 			/* we are at the entry into subprog, which
4193 			 * is expected for global funcs, but only if
4194 			 * requested precise registers are R1-R5
4195 			 * (which are global func's input arguments)
4196 			 */
4197 			if (st->curframe == 0 &&
4198 			    st->frame[0]->subprogno > 0 &&
4199 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4200 			    bt_stack_mask(bt) == 0 &&
4201 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4202 				bitmap_from_u64(mask, bt_reg_mask(bt));
4203 				for_each_set_bit(i, mask, 32) {
4204 					reg = &st->frame[0]->regs[i];
4205 					bt_clear_reg(bt, i);
4206 					if (reg->type == SCALAR_VALUE)
4207 						reg->precise = true;
4208 				}
4209 				return 0;
4210 			}
4211 
4212 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4213 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4214 			WARN_ONCE(1, "verifier backtracking bug");
4215 			return -EFAULT;
4216 		}
4217 
4218 		for (i = last_idx;;) {
4219 			if (skip_first) {
4220 				err = 0;
4221 				skip_first = false;
4222 			} else {
4223 				hist = get_jmp_hist_entry(st, history, i);
4224 				err = backtrack_insn(env, i, subseq_idx, hist, bt);
4225 			}
4226 			if (err == -ENOTSUPP) {
4227 				mark_all_scalars_precise(env, env->cur_state);
4228 				bt_reset(bt);
4229 				return 0;
4230 			} else if (err) {
4231 				return err;
4232 			}
4233 			if (bt_empty(bt))
4234 				/* Found assignment(s) into tracked register in this state.
4235 				 * Since this state is already marked, just return.
4236 				 * Nothing to be tracked further in the parent state.
4237 				 */
4238 				return 0;
4239 			subseq_idx = i;
4240 			i = get_prev_insn_idx(st, i, &history);
4241 			if (i == -ENOENT)
4242 				break;
4243 			if (i >= env->prog->len) {
4244 				/* This can happen if backtracking reached insn 0
4245 				 * and there are still reg_mask or stack_mask
4246 				 * to backtrack.
4247 				 * It means the backtracking missed the spot where
4248 				 * particular register was initialized with a constant.
4249 				 */
4250 				verbose(env, "BUG backtracking idx %d\n", i);
4251 				WARN_ONCE(1, "verifier backtracking bug");
4252 				return -EFAULT;
4253 			}
4254 		}
4255 		st = st->parent;
4256 		if (!st)
4257 			break;
4258 
4259 		for (fr = bt->frame; fr >= 0; fr--) {
4260 			func = st->frame[fr];
4261 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4262 			for_each_set_bit(i, mask, 32) {
4263 				reg = &func->regs[i];
4264 				if (reg->type != SCALAR_VALUE) {
4265 					bt_clear_frame_reg(bt, fr, i);
4266 					continue;
4267 				}
4268 				if (reg->precise)
4269 					bt_clear_frame_reg(bt, fr, i);
4270 				else
4271 					reg->precise = true;
4272 			}
4273 
4274 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4275 			for_each_set_bit(i, mask, 64) {
4276 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4277 					verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n",
4278 						i, func->allocated_stack / BPF_REG_SIZE);
4279 					WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)");
4280 					return -EFAULT;
4281 				}
4282 
4283 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4284 					bt_clear_frame_slot(bt, fr, i);
4285 					continue;
4286 				}
4287 				reg = &func->stack[i].spilled_ptr;
4288 				if (reg->precise)
4289 					bt_clear_frame_slot(bt, fr, i);
4290 				else
4291 					reg->precise = true;
4292 			}
4293 			if (env->log.level & BPF_LOG_LEVEL2) {
4294 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4295 					     bt_frame_reg_mask(bt, fr));
4296 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4297 					fr, env->tmp_str_buf);
4298 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4299 					       bt_frame_stack_mask(bt, fr));
4300 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4301 				print_verifier_state(env, func, true);
4302 			}
4303 		}
4304 
4305 		if (bt_empty(bt))
4306 			return 0;
4307 
4308 		subseq_idx = first_idx;
4309 		last_idx = st->last_insn_idx;
4310 		first_idx = st->first_insn_idx;
4311 	}
4312 
4313 	/* if we still have requested precise regs or slots, we missed
4314 	 * something (e.g., stack access through non-r10 register), so
4315 	 * fallback to marking all precise
4316 	 */
4317 	if (!bt_empty(bt)) {
4318 		mark_all_scalars_precise(env, env->cur_state);
4319 		bt_reset(bt);
4320 	}
4321 
4322 	return 0;
4323 }
4324 
4325 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4326 {
4327 	return __mark_chain_precision(env, regno);
4328 }
4329 
4330 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4331  * desired reg and stack masks across all relevant frames
4332  */
4333 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4334 {
4335 	return __mark_chain_precision(env, -1);
4336 }
4337 
4338 static bool is_spillable_regtype(enum bpf_reg_type type)
4339 {
4340 	switch (base_type(type)) {
4341 	case PTR_TO_MAP_VALUE:
4342 	case PTR_TO_STACK:
4343 	case PTR_TO_CTX:
4344 	case PTR_TO_PACKET:
4345 	case PTR_TO_PACKET_META:
4346 	case PTR_TO_PACKET_END:
4347 	case PTR_TO_FLOW_KEYS:
4348 	case CONST_PTR_TO_MAP:
4349 	case PTR_TO_SOCKET:
4350 	case PTR_TO_SOCK_COMMON:
4351 	case PTR_TO_TCP_SOCK:
4352 	case PTR_TO_XDP_SOCK:
4353 	case PTR_TO_BTF_ID:
4354 	case PTR_TO_BUF:
4355 	case PTR_TO_MEM:
4356 	case PTR_TO_FUNC:
4357 	case PTR_TO_MAP_KEY:
4358 		return true;
4359 	default:
4360 		return false;
4361 	}
4362 }
4363 
4364 /* Does this register contain a constant zero? */
4365 static bool register_is_null(struct bpf_reg_state *reg)
4366 {
4367 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4368 }
4369 
4370 /* check if register is a constant scalar value */
4371 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
4372 {
4373 	return reg->type == SCALAR_VALUE &&
4374 	       tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
4375 }
4376 
4377 /* assuming is_reg_const() is true, return constant value of a register */
4378 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
4379 {
4380 	return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
4381 }
4382 
4383 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4384 {
4385 	return tnum_is_unknown(reg->var_off) &&
4386 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4387 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4388 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4389 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4390 }
4391 
4392 static bool register_is_bounded(struct bpf_reg_state *reg)
4393 {
4394 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4395 }
4396 
4397 static bool __is_pointer_value(bool allow_ptr_leaks,
4398 			       const struct bpf_reg_state *reg)
4399 {
4400 	if (allow_ptr_leaks)
4401 		return false;
4402 
4403 	return reg->type != SCALAR_VALUE;
4404 }
4405 
4406 /* Copy src state preserving dst->parent and dst->live fields */
4407 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4408 {
4409 	struct bpf_reg_state *parent = dst->parent;
4410 	enum bpf_reg_liveness live = dst->live;
4411 
4412 	*dst = *src;
4413 	dst->parent = parent;
4414 	dst->live = live;
4415 }
4416 
4417 static void save_register_state(struct bpf_verifier_env *env,
4418 				struct bpf_func_state *state,
4419 				int spi, struct bpf_reg_state *reg,
4420 				int size)
4421 {
4422 	int i;
4423 
4424 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4425 	if (size == BPF_REG_SIZE)
4426 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4427 
4428 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4429 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4430 
4431 	/* size < 8 bytes spill */
4432 	for (; i; i--)
4433 		mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
4434 }
4435 
4436 static bool is_bpf_st_mem(struct bpf_insn *insn)
4437 {
4438 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4439 }
4440 
4441 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4442  * stack boundary and alignment are checked in check_mem_access()
4443  */
4444 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4445 				       /* stack frame we're writing to */
4446 				       struct bpf_func_state *state,
4447 				       int off, int size, int value_regno,
4448 				       int insn_idx)
4449 {
4450 	struct bpf_func_state *cur; /* state of the current function */
4451 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4452 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4453 	struct bpf_reg_state *reg = NULL;
4454 	int insn_flags = insn_stack_access_flags(state->frameno, spi);
4455 
4456 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4457 	 * so it's aligned access and [off, off + size) are within stack limits
4458 	 */
4459 	if (!env->allow_ptr_leaks &&
4460 	    is_spilled_reg(&state->stack[spi]) &&
4461 	    size != BPF_REG_SIZE) {
4462 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4463 		return -EACCES;
4464 	}
4465 
4466 	cur = env->cur_state->frame[env->cur_state->curframe];
4467 	if (value_regno >= 0)
4468 		reg = &cur->regs[value_regno];
4469 	if (!env->bypass_spec_v4) {
4470 		bool sanitize = reg && is_spillable_regtype(reg->type);
4471 
4472 		for (i = 0; i < size; i++) {
4473 			u8 type = state->stack[spi].slot_type[i];
4474 
4475 			if (type != STACK_MISC && type != STACK_ZERO) {
4476 				sanitize = true;
4477 				break;
4478 			}
4479 		}
4480 
4481 		if (sanitize)
4482 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4483 	}
4484 
4485 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4486 	if (err)
4487 		return err;
4488 
4489 	mark_stack_slot_scratched(env, spi);
4490 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && env->bpf_capable) {
4491 		save_register_state(env, state, spi, reg, size);
4492 		/* Break the relation on a narrowing spill. */
4493 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4494 			state->stack[spi].spilled_ptr.id = 0;
4495 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4496 		   insn->imm != 0 && env->bpf_capable) {
4497 		struct bpf_reg_state fake_reg = {};
4498 
4499 		__mark_reg_known(&fake_reg, insn->imm);
4500 		fake_reg.type = SCALAR_VALUE;
4501 		save_register_state(env, state, spi, &fake_reg, size);
4502 	} else if (reg && is_spillable_regtype(reg->type)) {
4503 		/* register containing pointer is being spilled into stack */
4504 		if (size != BPF_REG_SIZE) {
4505 			verbose_linfo(env, insn_idx, "; ");
4506 			verbose(env, "invalid size of register spill\n");
4507 			return -EACCES;
4508 		}
4509 		if (state != cur && reg->type == PTR_TO_STACK) {
4510 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4511 			return -EINVAL;
4512 		}
4513 		save_register_state(env, state, spi, reg, size);
4514 	} else {
4515 		u8 type = STACK_MISC;
4516 
4517 		/* regular write of data into stack destroys any spilled ptr */
4518 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4519 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4520 		if (is_stack_slot_special(&state->stack[spi]))
4521 			for (i = 0; i < BPF_REG_SIZE; i++)
4522 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4523 
4524 		/* only mark the slot as written if all 8 bytes were written
4525 		 * otherwise read propagation may incorrectly stop too soon
4526 		 * when stack slots are partially written.
4527 		 * This heuristic means that read propagation will be
4528 		 * conservative, since it will add reg_live_read marks
4529 		 * to stack slots all the way to first state when programs
4530 		 * writes+reads less than 8 bytes
4531 		 */
4532 		if (size == BPF_REG_SIZE)
4533 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4534 
4535 		/* when we zero initialize stack slots mark them as such */
4536 		if ((reg && register_is_null(reg)) ||
4537 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4538 			/* STACK_ZERO case happened because register spill
4539 			 * wasn't properly aligned at the stack slot boundary,
4540 			 * so it's not a register spill anymore; force
4541 			 * originating register to be precise to make
4542 			 * STACK_ZERO correct for subsequent states
4543 			 */
4544 			err = mark_chain_precision(env, value_regno);
4545 			if (err)
4546 				return err;
4547 			type = STACK_ZERO;
4548 		}
4549 
4550 		/* Mark slots affected by this stack write. */
4551 		for (i = 0; i < size; i++)
4552 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
4553 		insn_flags = 0; /* not a register spill */
4554 	}
4555 
4556 	if (insn_flags)
4557 		return push_jmp_history(env, env->cur_state, insn_flags);
4558 	return 0;
4559 }
4560 
4561 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4562  * known to contain a variable offset.
4563  * This function checks whether the write is permitted and conservatively
4564  * tracks the effects of the write, considering that each stack slot in the
4565  * dynamic range is potentially written to.
4566  *
4567  * 'off' includes 'regno->off'.
4568  * 'value_regno' can be -1, meaning that an unknown value is being written to
4569  * the stack.
4570  *
4571  * Spilled pointers in range are not marked as written because we don't know
4572  * what's going to be actually written. This means that read propagation for
4573  * future reads cannot be terminated by this write.
4574  *
4575  * For privileged programs, uninitialized stack slots are considered
4576  * initialized by this write (even though we don't know exactly what offsets
4577  * are going to be written to). The idea is that we don't want the verifier to
4578  * reject future reads that access slots written to through variable offsets.
4579  */
4580 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4581 				     /* func where register points to */
4582 				     struct bpf_func_state *state,
4583 				     int ptr_regno, int off, int size,
4584 				     int value_regno, int insn_idx)
4585 {
4586 	struct bpf_func_state *cur; /* state of the current function */
4587 	int min_off, max_off;
4588 	int i, err;
4589 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4590 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4591 	bool writing_zero = false;
4592 	/* set if the fact that we're writing a zero is used to let any
4593 	 * stack slots remain STACK_ZERO
4594 	 */
4595 	bool zero_used = false;
4596 
4597 	cur = env->cur_state->frame[env->cur_state->curframe];
4598 	ptr_reg = &cur->regs[ptr_regno];
4599 	min_off = ptr_reg->smin_value + off;
4600 	max_off = ptr_reg->smax_value + off + size;
4601 	if (value_regno >= 0)
4602 		value_reg = &cur->regs[value_regno];
4603 	if ((value_reg && register_is_null(value_reg)) ||
4604 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4605 		writing_zero = true;
4606 
4607 	for (i = min_off; i < max_off; i++) {
4608 		int spi;
4609 
4610 		spi = __get_spi(i);
4611 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4612 		if (err)
4613 			return err;
4614 	}
4615 
4616 	/* Variable offset writes destroy any spilled pointers in range. */
4617 	for (i = min_off; i < max_off; i++) {
4618 		u8 new_type, *stype;
4619 		int slot, spi;
4620 
4621 		slot = -i - 1;
4622 		spi = slot / BPF_REG_SIZE;
4623 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4624 		mark_stack_slot_scratched(env, spi);
4625 
4626 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4627 			/* Reject the write if range we may write to has not
4628 			 * been initialized beforehand. If we didn't reject
4629 			 * here, the ptr status would be erased below (even
4630 			 * though not all slots are actually overwritten),
4631 			 * possibly opening the door to leaks.
4632 			 *
4633 			 * We do however catch STACK_INVALID case below, and
4634 			 * only allow reading possibly uninitialized memory
4635 			 * later for CAP_PERFMON, as the write may not happen to
4636 			 * that slot.
4637 			 */
4638 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4639 				insn_idx, i);
4640 			return -EINVAL;
4641 		}
4642 
4643 		/* Erase all spilled pointers. */
4644 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4645 
4646 		/* Update the slot type. */
4647 		new_type = STACK_MISC;
4648 		if (writing_zero && *stype == STACK_ZERO) {
4649 			new_type = STACK_ZERO;
4650 			zero_used = true;
4651 		}
4652 		/* If the slot is STACK_INVALID, we check whether it's OK to
4653 		 * pretend that it will be initialized by this write. The slot
4654 		 * might not actually be written to, and so if we mark it as
4655 		 * initialized future reads might leak uninitialized memory.
4656 		 * For privileged programs, we will accept such reads to slots
4657 		 * that may or may not be written because, if we're reject
4658 		 * them, the error would be too confusing.
4659 		 */
4660 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4661 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4662 					insn_idx, i);
4663 			return -EINVAL;
4664 		}
4665 		*stype = new_type;
4666 	}
4667 	if (zero_used) {
4668 		/* backtracking doesn't work for STACK_ZERO yet. */
4669 		err = mark_chain_precision(env, value_regno);
4670 		if (err)
4671 			return err;
4672 	}
4673 	return 0;
4674 }
4675 
4676 /* When register 'dst_regno' is assigned some values from stack[min_off,
4677  * max_off), we set the register's type according to the types of the
4678  * respective stack slots. If all the stack values are known to be zeros, then
4679  * so is the destination reg. Otherwise, the register is considered to be
4680  * SCALAR. This function does not deal with register filling; the caller must
4681  * ensure that all spilled registers in the stack range have been marked as
4682  * read.
4683  */
4684 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4685 				/* func where src register points to */
4686 				struct bpf_func_state *ptr_state,
4687 				int min_off, int max_off, int dst_regno)
4688 {
4689 	struct bpf_verifier_state *vstate = env->cur_state;
4690 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4691 	int i, slot, spi;
4692 	u8 *stype;
4693 	int zeros = 0;
4694 
4695 	for (i = min_off; i < max_off; i++) {
4696 		slot = -i - 1;
4697 		spi = slot / BPF_REG_SIZE;
4698 		mark_stack_slot_scratched(env, spi);
4699 		stype = ptr_state->stack[spi].slot_type;
4700 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4701 			break;
4702 		zeros++;
4703 	}
4704 	if (zeros == max_off - min_off) {
4705 		/* Any access_size read into register is zero extended,
4706 		 * so the whole register == const_zero.
4707 		 */
4708 		__mark_reg_const_zero(env, &state->regs[dst_regno]);
4709 	} else {
4710 		/* have read misc data from the stack */
4711 		mark_reg_unknown(env, state->regs, dst_regno);
4712 	}
4713 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4714 }
4715 
4716 /* Read the stack at 'off' and put the results into the register indicated by
4717  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4718  * spilled reg.
4719  *
4720  * 'dst_regno' can be -1, meaning that the read value is not going to a
4721  * register.
4722  *
4723  * The access is assumed to be within the current stack bounds.
4724  */
4725 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4726 				      /* func where src register points to */
4727 				      struct bpf_func_state *reg_state,
4728 				      int off, int size, int dst_regno)
4729 {
4730 	struct bpf_verifier_state *vstate = env->cur_state;
4731 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4732 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4733 	struct bpf_reg_state *reg;
4734 	u8 *stype, type;
4735 	int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
4736 
4737 	stype = reg_state->stack[spi].slot_type;
4738 	reg = &reg_state->stack[spi].spilled_ptr;
4739 
4740 	mark_stack_slot_scratched(env, spi);
4741 
4742 	if (is_spilled_reg(&reg_state->stack[spi])) {
4743 		u8 spill_size = 1;
4744 
4745 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4746 			spill_size++;
4747 
4748 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4749 			if (reg->type != SCALAR_VALUE) {
4750 				verbose_linfo(env, env->insn_idx, "; ");
4751 				verbose(env, "invalid size of register fill\n");
4752 				return -EACCES;
4753 			}
4754 
4755 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4756 			if (dst_regno < 0)
4757 				return 0;
4758 
4759 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4760 				/* The earlier check_reg_arg() has decided the
4761 				 * subreg_def for this insn.  Save it first.
4762 				 */
4763 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4764 
4765 				copy_register_state(&state->regs[dst_regno], reg);
4766 				state->regs[dst_regno].subreg_def = subreg_def;
4767 			} else {
4768 				int spill_cnt = 0, zero_cnt = 0;
4769 
4770 				for (i = 0; i < size; i++) {
4771 					type = stype[(slot - i) % BPF_REG_SIZE];
4772 					if (type == STACK_SPILL) {
4773 						spill_cnt++;
4774 						continue;
4775 					}
4776 					if (type == STACK_MISC)
4777 						continue;
4778 					if (type == STACK_ZERO) {
4779 						zero_cnt++;
4780 						continue;
4781 					}
4782 					if (type == STACK_INVALID && env->allow_uninit_stack)
4783 						continue;
4784 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4785 						off, i, size);
4786 					return -EACCES;
4787 				}
4788 
4789 				if (spill_cnt == size &&
4790 				    tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
4791 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
4792 					/* this IS register fill, so keep insn_flags */
4793 				} else if (zero_cnt == size) {
4794 					/* similarly to mark_reg_stack_read(), preserve zeroes */
4795 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
4796 					insn_flags = 0; /* not restoring original register state */
4797 				} else {
4798 					mark_reg_unknown(env, state->regs, dst_regno);
4799 					insn_flags = 0; /* not restoring original register state */
4800 				}
4801 			}
4802 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4803 		} else if (dst_regno >= 0) {
4804 			/* restore register state from stack */
4805 			copy_register_state(&state->regs[dst_regno], reg);
4806 			/* mark reg as written since spilled pointer state likely
4807 			 * has its liveness marks cleared by is_state_visited()
4808 			 * which resets stack/reg liveness for state transitions
4809 			 */
4810 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4811 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4812 			/* If dst_regno==-1, the caller is asking us whether
4813 			 * it is acceptable to use this value as a SCALAR_VALUE
4814 			 * (e.g. for XADD).
4815 			 * We must not allow unprivileged callers to do that
4816 			 * with spilled pointers.
4817 			 */
4818 			verbose(env, "leaking pointer from stack off %d\n",
4819 				off);
4820 			return -EACCES;
4821 		}
4822 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4823 	} else {
4824 		for (i = 0; i < size; i++) {
4825 			type = stype[(slot - i) % BPF_REG_SIZE];
4826 			if (type == STACK_MISC)
4827 				continue;
4828 			if (type == STACK_ZERO)
4829 				continue;
4830 			if (type == STACK_INVALID && env->allow_uninit_stack)
4831 				continue;
4832 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4833 				off, i, size);
4834 			return -EACCES;
4835 		}
4836 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4837 		if (dst_regno >= 0)
4838 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4839 		insn_flags = 0; /* we are not restoring spilled register */
4840 	}
4841 	if (insn_flags)
4842 		return push_jmp_history(env, env->cur_state, insn_flags);
4843 	return 0;
4844 }
4845 
4846 enum bpf_access_src {
4847 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4848 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4849 };
4850 
4851 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4852 					 int regno, int off, int access_size,
4853 					 bool zero_size_allowed,
4854 					 enum bpf_access_src type,
4855 					 struct bpf_call_arg_meta *meta);
4856 
4857 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4858 {
4859 	return cur_regs(env) + regno;
4860 }
4861 
4862 /* Read the stack at 'ptr_regno + off' and put the result into the register
4863  * 'dst_regno'.
4864  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4865  * but not its variable offset.
4866  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4867  *
4868  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4869  * filling registers (i.e. reads of spilled register cannot be detected when
4870  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4871  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4872  * offset; for a fixed offset check_stack_read_fixed_off should be used
4873  * instead.
4874  */
4875 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4876 				    int ptr_regno, int off, int size, int dst_regno)
4877 {
4878 	/* The state of the source register. */
4879 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4880 	struct bpf_func_state *ptr_state = func(env, reg);
4881 	int err;
4882 	int min_off, max_off;
4883 
4884 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4885 	 */
4886 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4887 					    false, ACCESS_DIRECT, NULL);
4888 	if (err)
4889 		return err;
4890 
4891 	min_off = reg->smin_value + off;
4892 	max_off = reg->smax_value + off;
4893 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4894 	return 0;
4895 }
4896 
4897 /* check_stack_read dispatches to check_stack_read_fixed_off or
4898  * check_stack_read_var_off.
4899  *
4900  * The caller must ensure that the offset falls within the allocated stack
4901  * bounds.
4902  *
4903  * 'dst_regno' is a register which will receive the value from the stack. It
4904  * can be -1, meaning that the read value is not going to a register.
4905  */
4906 static int check_stack_read(struct bpf_verifier_env *env,
4907 			    int ptr_regno, int off, int size,
4908 			    int dst_regno)
4909 {
4910 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4911 	struct bpf_func_state *state = func(env, reg);
4912 	int err;
4913 	/* Some accesses are only permitted with a static offset. */
4914 	bool var_off = !tnum_is_const(reg->var_off);
4915 
4916 	/* The offset is required to be static when reads don't go to a
4917 	 * register, in order to not leak pointers (see
4918 	 * check_stack_read_fixed_off).
4919 	 */
4920 	if (dst_regno < 0 && var_off) {
4921 		char tn_buf[48];
4922 
4923 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4924 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
4925 			tn_buf, off, size);
4926 		return -EACCES;
4927 	}
4928 	/* Variable offset is prohibited for unprivileged mode for simplicity
4929 	 * since it requires corresponding support in Spectre masking for stack
4930 	 * ALU. See also retrieve_ptr_limit(). The check in
4931 	 * check_stack_access_for_ptr_arithmetic() called by
4932 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4933 	 * with variable offsets, therefore no check is required here. Further,
4934 	 * just checking it here would be insufficient as speculative stack
4935 	 * writes could still lead to unsafe speculative behaviour.
4936 	 */
4937 	if (!var_off) {
4938 		off += reg->var_off.value;
4939 		err = check_stack_read_fixed_off(env, state, off, size,
4940 						 dst_regno);
4941 	} else {
4942 		/* Variable offset stack reads need more conservative handling
4943 		 * than fixed offset ones. Note that dst_regno >= 0 on this
4944 		 * branch.
4945 		 */
4946 		err = check_stack_read_var_off(env, ptr_regno, off, size,
4947 					       dst_regno);
4948 	}
4949 	return err;
4950 }
4951 
4952 
4953 /* check_stack_write dispatches to check_stack_write_fixed_off or
4954  * check_stack_write_var_off.
4955  *
4956  * 'ptr_regno' is the register used as a pointer into the stack.
4957  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4958  * 'value_regno' is the register whose value we're writing to the stack. It can
4959  * be -1, meaning that we're not writing from a register.
4960  *
4961  * The caller must ensure that the offset falls within the maximum stack size.
4962  */
4963 static int check_stack_write(struct bpf_verifier_env *env,
4964 			     int ptr_regno, int off, int size,
4965 			     int value_regno, int insn_idx)
4966 {
4967 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4968 	struct bpf_func_state *state = func(env, reg);
4969 	int err;
4970 
4971 	if (tnum_is_const(reg->var_off)) {
4972 		off += reg->var_off.value;
4973 		err = check_stack_write_fixed_off(env, state, off, size,
4974 						  value_regno, insn_idx);
4975 	} else {
4976 		/* Variable offset stack reads need more conservative handling
4977 		 * than fixed offset ones.
4978 		 */
4979 		err = check_stack_write_var_off(env, state,
4980 						ptr_regno, off, size,
4981 						value_regno, insn_idx);
4982 	}
4983 	return err;
4984 }
4985 
4986 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4987 				 int off, int size, enum bpf_access_type type)
4988 {
4989 	struct bpf_reg_state *regs = cur_regs(env);
4990 	struct bpf_map *map = regs[regno].map_ptr;
4991 	u32 cap = bpf_map_flags_to_cap(map);
4992 
4993 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4994 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4995 			map->value_size, off, size);
4996 		return -EACCES;
4997 	}
4998 
4999 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5000 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5001 			map->value_size, off, size);
5002 		return -EACCES;
5003 	}
5004 
5005 	return 0;
5006 }
5007 
5008 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5009 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5010 			      int off, int size, u32 mem_size,
5011 			      bool zero_size_allowed)
5012 {
5013 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5014 	struct bpf_reg_state *reg;
5015 
5016 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5017 		return 0;
5018 
5019 	reg = &cur_regs(env)[regno];
5020 	switch (reg->type) {
5021 	case PTR_TO_MAP_KEY:
5022 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5023 			mem_size, off, size);
5024 		break;
5025 	case PTR_TO_MAP_VALUE:
5026 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5027 			mem_size, off, size);
5028 		break;
5029 	case PTR_TO_PACKET:
5030 	case PTR_TO_PACKET_META:
5031 	case PTR_TO_PACKET_END:
5032 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5033 			off, size, regno, reg->id, off, mem_size);
5034 		break;
5035 	case PTR_TO_MEM:
5036 	default:
5037 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5038 			mem_size, off, size);
5039 	}
5040 
5041 	return -EACCES;
5042 }
5043 
5044 /* check read/write into a memory region with possible variable offset */
5045 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5046 				   int off, int size, u32 mem_size,
5047 				   bool zero_size_allowed)
5048 {
5049 	struct bpf_verifier_state *vstate = env->cur_state;
5050 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5051 	struct bpf_reg_state *reg = &state->regs[regno];
5052 	int err;
5053 
5054 	/* We may have adjusted the register pointing to memory region, so we
5055 	 * need to try adding each of min_value and max_value to off
5056 	 * to make sure our theoretical access will be safe.
5057 	 *
5058 	 * The minimum value is only important with signed
5059 	 * comparisons where we can't assume the floor of a
5060 	 * value is 0.  If we are using signed variables for our
5061 	 * index'es we need to make sure that whatever we use
5062 	 * will have a set floor within our range.
5063 	 */
5064 	if (reg->smin_value < 0 &&
5065 	    (reg->smin_value == S64_MIN ||
5066 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5067 	      reg->smin_value + off < 0)) {
5068 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5069 			regno);
5070 		return -EACCES;
5071 	}
5072 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5073 				 mem_size, zero_size_allowed);
5074 	if (err) {
5075 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5076 			regno);
5077 		return err;
5078 	}
5079 
5080 	/* If we haven't set a max value then we need to bail since we can't be
5081 	 * sure we won't do bad things.
5082 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5083 	 */
5084 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5085 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5086 			regno);
5087 		return -EACCES;
5088 	}
5089 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5090 				 mem_size, zero_size_allowed);
5091 	if (err) {
5092 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5093 			regno);
5094 		return err;
5095 	}
5096 
5097 	return 0;
5098 }
5099 
5100 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5101 			       const struct bpf_reg_state *reg, int regno,
5102 			       bool fixed_off_ok)
5103 {
5104 	/* Access to this pointer-typed register or passing it to a helper
5105 	 * is only allowed in its original, unmodified form.
5106 	 */
5107 
5108 	if (reg->off < 0) {
5109 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5110 			reg_type_str(env, reg->type), regno, reg->off);
5111 		return -EACCES;
5112 	}
5113 
5114 	if (!fixed_off_ok && reg->off) {
5115 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5116 			reg_type_str(env, reg->type), regno, reg->off);
5117 		return -EACCES;
5118 	}
5119 
5120 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5121 		char tn_buf[48];
5122 
5123 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5124 		verbose(env, "variable %s access var_off=%s disallowed\n",
5125 			reg_type_str(env, reg->type), tn_buf);
5126 		return -EACCES;
5127 	}
5128 
5129 	return 0;
5130 }
5131 
5132 static int check_ptr_off_reg(struct bpf_verifier_env *env,
5133 		             const struct bpf_reg_state *reg, int regno)
5134 {
5135 	return __check_ptr_off_reg(env, reg, regno, false);
5136 }
5137 
5138 static int map_kptr_match_type(struct bpf_verifier_env *env,
5139 			       struct btf_field *kptr_field,
5140 			       struct bpf_reg_state *reg, u32 regno)
5141 {
5142 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5143 	int perm_flags;
5144 	const char *reg_name = "";
5145 
5146 	if (btf_is_kernel(reg->btf)) {
5147 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5148 
5149 		/* Only unreferenced case accepts untrusted pointers */
5150 		if (kptr_field->type == BPF_KPTR_UNREF)
5151 			perm_flags |= PTR_UNTRUSTED;
5152 	} else {
5153 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5154 		if (kptr_field->type == BPF_KPTR_PERCPU)
5155 			perm_flags |= MEM_PERCPU;
5156 	}
5157 
5158 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5159 		goto bad_type;
5160 
5161 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5162 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5163 
5164 	/* For ref_ptr case, release function check should ensure we get one
5165 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5166 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5167 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5168 	 * reg->off and reg->ref_obj_id are not needed here.
5169 	 */
5170 	if (__check_ptr_off_reg(env, reg, regno, true))
5171 		return -EACCES;
5172 
5173 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5174 	 * we also need to take into account the reg->off.
5175 	 *
5176 	 * We want to support cases like:
5177 	 *
5178 	 * struct foo {
5179 	 *         struct bar br;
5180 	 *         struct baz bz;
5181 	 * };
5182 	 *
5183 	 * struct foo *v;
5184 	 * v = func();	      // PTR_TO_BTF_ID
5185 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5186 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5187 	 *                    // first member type of struct after comparison fails
5188 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5189 	 *                    // to match type
5190 	 *
5191 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5192 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5193 	 * the struct to match type against first member of struct, i.e. reject
5194 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5195 	 * strict mode to true for type match.
5196 	 */
5197 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5198 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5199 				  kptr_field->type != BPF_KPTR_UNREF))
5200 		goto bad_type;
5201 	return 0;
5202 bad_type:
5203 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5204 		reg_type_str(env, reg->type), reg_name);
5205 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5206 	if (kptr_field->type == BPF_KPTR_UNREF)
5207 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5208 			targ_name);
5209 	else
5210 		verbose(env, "\n");
5211 	return -EINVAL;
5212 }
5213 
5214 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5215  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5216  */
5217 static bool in_rcu_cs(struct bpf_verifier_env *env)
5218 {
5219 	return env->cur_state->active_rcu_lock ||
5220 	       env->cur_state->active_lock.ptr ||
5221 	       !env->prog->aux->sleepable;
5222 }
5223 
5224 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5225 BTF_SET_START(rcu_protected_types)
5226 BTF_ID(struct, prog_test_ref_kfunc)
5227 #ifdef CONFIG_CGROUPS
5228 BTF_ID(struct, cgroup)
5229 #endif
5230 #ifdef CONFIG_BPF_JIT
5231 BTF_ID(struct, bpf_cpumask)
5232 #endif
5233 BTF_ID(struct, task_struct)
5234 BTF_SET_END(rcu_protected_types)
5235 
5236 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5237 {
5238 	if (!btf_is_kernel(btf))
5239 		return true;
5240 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5241 }
5242 
5243 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
5244 {
5245 	struct btf_struct_meta *meta;
5246 
5247 	if (btf_is_kernel(kptr_field->kptr.btf))
5248 		return NULL;
5249 
5250 	meta = btf_find_struct_meta(kptr_field->kptr.btf,
5251 				    kptr_field->kptr.btf_id);
5252 
5253 	return meta ? meta->record : NULL;
5254 }
5255 
5256 static bool rcu_safe_kptr(const struct btf_field *field)
5257 {
5258 	const struct btf_field_kptr *kptr = &field->kptr;
5259 
5260 	return field->type == BPF_KPTR_PERCPU ||
5261 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5262 }
5263 
5264 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5265 {
5266 	struct btf_record *rec;
5267 	u32 ret;
5268 
5269 	ret = PTR_MAYBE_NULL;
5270 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5271 		ret |= MEM_RCU;
5272 		if (kptr_field->type == BPF_KPTR_PERCPU)
5273 			ret |= MEM_PERCPU;
5274 		else if (!btf_is_kernel(kptr_field->kptr.btf))
5275 			ret |= MEM_ALLOC;
5276 
5277 		rec = kptr_pointee_btf_record(kptr_field);
5278 		if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
5279 			ret |= NON_OWN_REF;
5280 	} else {
5281 		ret |= PTR_UNTRUSTED;
5282 	}
5283 
5284 	return ret;
5285 }
5286 
5287 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5288 				 int value_regno, int insn_idx,
5289 				 struct btf_field *kptr_field)
5290 {
5291 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5292 	int class = BPF_CLASS(insn->code);
5293 	struct bpf_reg_state *val_reg;
5294 
5295 	/* Things we already checked for in check_map_access and caller:
5296 	 *  - Reject cases where variable offset may touch kptr
5297 	 *  - size of access (must be BPF_DW)
5298 	 *  - tnum_is_const(reg->var_off)
5299 	 *  - kptr_field->offset == off + reg->var_off.value
5300 	 */
5301 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5302 	if (BPF_MODE(insn->code) != BPF_MEM) {
5303 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5304 		return -EACCES;
5305 	}
5306 
5307 	/* We only allow loading referenced kptr, since it will be marked as
5308 	 * untrusted, similar to unreferenced kptr.
5309 	 */
5310 	if (class != BPF_LDX &&
5311 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5312 		verbose(env, "store to referenced kptr disallowed\n");
5313 		return -EACCES;
5314 	}
5315 
5316 	if (class == BPF_LDX) {
5317 		val_reg = reg_state(env, value_regno);
5318 		/* We can simply mark the value_regno receiving the pointer
5319 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5320 		 */
5321 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5322 				kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5323 		/* For mark_ptr_or_null_reg */
5324 		val_reg->id = ++env->id_gen;
5325 	} else if (class == BPF_STX) {
5326 		val_reg = reg_state(env, value_regno);
5327 		if (!register_is_null(val_reg) &&
5328 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5329 			return -EACCES;
5330 	} else if (class == BPF_ST) {
5331 		if (insn->imm) {
5332 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5333 				kptr_field->offset);
5334 			return -EACCES;
5335 		}
5336 	} else {
5337 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5338 		return -EACCES;
5339 	}
5340 	return 0;
5341 }
5342 
5343 /* check read/write into a map element with possible variable offset */
5344 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5345 			    int off, int size, bool zero_size_allowed,
5346 			    enum bpf_access_src src)
5347 {
5348 	struct bpf_verifier_state *vstate = env->cur_state;
5349 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5350 	struct bpf_reg_state *reg = &state->regs[regno];
5351 	struct bpf_map *map = reg->map_ptr;
5352 	struct btf_record *rec;
5353 	int err, i;
5354 
5355 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5356 				      zero_size_allowed);
5357 	if (err)
5358 		return err;
5359 
5360 	if (IS_ERR_OR_NULL(map->record))
5361 		return 0;
5362 	rec = map->record;
5363 	for (i = 0; i < rec->cnt; i++) {
5364 		struct btf_field *field = &rec->fields[i];
5365 		u32 p = field->offset;
5366 
5367 		/* If any part of a field  can be touched by load/store, reject
5368 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5369 		 * it is sufficient to check x1 < y2 && y1 < x2.
5370 		 */
5371 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5372 		    p < reg->umax_value + off + size) {
5373 			switch (field->type) {
5374 			case BPF_KPTR_UNREF:
5375 			case BPF_KPTR_REF:
5376 			case BPF_KPTR_PERCPU:
5377 				if (src != ACCESS_DIRECT) {
5378 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5379 					return -EACCES;
5380 				}
5381 				if (!tnum_is_const(reg->var_off)) {
5382 					verbose(env, "kptr access cannot have variable offset\n");
5383 					return -EACCES;
5384 				}
5385 				if (p != off + reg->var_off.value) {
5386 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5387 						p, off + reg->var_off.value);
5388 					return -EACCES;
5389 				}
5390 				if (size != bpf_size_to_bytes(BPF_DW)) {
5391 					verbose(env, "kptr access size must be BPF_DW\n");
5392 					return -EACCES;
5393 				}
5394 				break;
5395 			default:
5396 				verbose(env, "%s cannot be accessed directly by load/store\n",
5397 					btf_field_type_name(field->type));
5398 				return -EACCES;
5399 			}
5400 		}
5401 	}
5402 	return 0;
5403 }
5404 
5405 #define MAX_PACKET_OFF 0xffff
5406 
5407 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5408 				       const struct bpf_call_arg_meta *meta,
5409 				       enum bpf_access_type t)
5410 {
5411 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5412 
5413 	switch (prog_type) {
5414 	/* Program types only with direct read access go here! */
5415 	case BPF_PROG_TYPE_LWT_IN:
5416 	case BPF_PROG_TYPE_LWT_OUT:
5417 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5418 	case BPF_PROG_TYPE_SK_REUSEPORT:
5419 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5420 	case BPF_PROG_TYPE_CGROUP_SKB:
5421 		if (t == BPF_WRITE)
5422 			return false;
5423 		fallthrough;
5424 
5425 	/* Program types with direct read + write access go here! */
5426 	case BPF_PROG_TYPE_SCHED_CLS:
5427 	case BPF_PROG_TYPE_SCHED_ACT:
5428 	case BPF_PROG_TYPE_XDP:
5429 	case BPF_PROG_TYPE_LWT_XMIT:
5430 	case BPF_PROG_TYPE_SK_SKB:
5431 	case BPF_PROG_TYPE_SK_MSG:
5432 		if (meta)
5433 			return meta->pkt_access;
5434 
5435 		env->seen_direct_write = true;
5436 		return true;
5437 
5438 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5439 		if (t == BPF_WRITE)
5440 			env->seen_direct_write = true;
5441 
5442 		return true;
5443 
5444 	default:
5445 		return false;
5446 	}
5447 }
5448 
5449 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5450 			       int size, bool zero_size_allowed)
5451 {
5452 	struct bpf_reg_state *regs = cur_regs(env);
5453 	struct bpf_reg_state *reg = &regs[regno];
5454 	int err;
5455 
5456 	/* We may have added a variable offset to the packet pointer; but any
5457 	 * reg->range we have comes after that.  We are only checking the fixed
5458 	 * offset.
5459 	 */
5460 
5461 	/* We don't allow negative numbers, because we aren't tracking enough
5462 	 * detail to prove they're safe.
5463 	 */
5464 	if (reg->smin_value < 0) {
5465 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5466 			regno);
5467 		return -EACCES;
5468 	}
5469 
5470 	err = reg->range < 0 ? -EINVAL :
5471 	      __check_mem_access(env, regno, off, size, reg->range,
5472 				 zero_size_allowed);
5473 	if (err) {
5474 		verbose(env, "R%d offset is outside of the packet\n", regno);
5475 		return err;
5476 	}
5477 
5478 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5479 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5480 	 * otherwise find_good_pkt_pointers would have refused to set range info
5481 	 * that __check_mem_access would have rejected this pkt access.
5482 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5483 	 */
5484 	env->prog->aux->max_pkt_offset =
5485 		max_t(u32, env->prog->aux->max_pkt_offset,
5486 		      off + reg->umax_value + size - 1);
5487 
5488 	return err;
5489 }
5490 
5491 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5492 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5493 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5494 			    struct btf **btf, u32 *btf_id)
5495 {
5496 	struct bpf_insn_access_aux info = {
5497 		.reg_type = *reg_type,
5498 		.log = &env->log,
5499 	};
5500 
5501 	if (env->ops->is_valid_access &&
5502 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5503 		/* A non zero info.ctx_field_size indicates that this field is a
5504 		 * candidate for later verifier transformation to load the whole
5505 		 * field and then apply a mask when accessed with a narrower
5506 		 * access than actual ctx access size. A zero info.ctx_field_size
5507 		 * will only allow for whole field access and rejects any other
5508 		 * type of narrower access.
5509 		 */
5510 		*reg_type = info.reg_type;
5511 
5512 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5513 			*btf = info.btf;
5514 			*btf_id = info.btf_id;
5515 		} else {
5516 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5517 		}
5518 		/* remember the offset of last byte accessed in ctx */
5519 		if (env->prog->aux->max_ctx_offset < off + size)
5520 			env->prog->aux->max_ctx_offset = off + size;
5521 		return 0;
5522 	}
5523 
5524 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5525 	return -EACCES;
5526 }
5527 
5528 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5529 				  int size)
5530 {
5531 	if (size < 0 || off < 0 ||
5532 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5533 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5534 			off, size);
5535 		return -EACCES;
5536 	}
5537 	return 0;
5538 }
5539 
5540 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5541 			     u32 regno, int off, int size,
5542 			     enum bpf_access_type t)
5543 {
5544 	struct bpf_reg_state *regs = cur_regs(env);
5545 	struct bpf_reg_state *reg = &regs[regno];
5546 	struct bpf_insn_access_aux info = {};
5547 	bool valid;
5548 
5549 	if (reg->smin_value < 0) {
5550 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5551 			regno);
5552 		return -EACCES;
5553 	}
5554 
5555 	switch (reg->type) {
5556 	case PTR_TO_SOCK_COMMON:
5557 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5558 		break;
5559 	case PTR_TO_SOCKET:
5560 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5561 		break;
5562 	case PTR_TO_TCP_SOCK:
5563 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5564 		break;
5565 	case PTR_TO_XDP_SOCK:
5566 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5567 		break;
5568 	default:
5569 		valid = false;
5570 	}
5571 
5572 
5573 	if (valid) {
5574 		env->insn_aux_data[insn_idx].ctx_field_size =
5575 			info.ctx_field_size;
5576 		return 0;
5577 	}
5578 
5579 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5580 		regno, reg_type_str(env, reg->type), off, size);
5581 
5582 	return -EACCES;
5583 }
5584 
5585 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5586 {
5587 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5588 }
5589 
5590 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5591 {
5592 	const struct bpf_reg_state *reg = reg_state(env, regno);
5593 
5594 	return reg->type == PTR_TO_CTX;
5595 }
5596 
5597 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5598 {
5599 	const struct bpf_reg_state *reg = reg_state(env, regno);
5600 
5601 	return type_is_sk_pointer(reg->type);
5602 }
5603 
5604 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5605 {
5606 	const struct bpf_reg_state *reg = reg_state(env, regno);
5607 
5608 	return type_is_pkt_pointer(reg->type);
5609 }
5610 
5611 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5612 {
5613 	const struct bpf_reg_state *reg = reg_state(env, regno);
5614 
5615 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5616 	return reg->type == PTR_TO_FLOW_KEYS;
5617 }
5618 
5619 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5620 #ifdef CONFIG_NET
5621 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5622 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5623 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5624 #endif
5625 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5626 };
5627 
5628 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5629 {
5630 	/* A referenced register is always trusted. */
5631 	if (reg->ref_obj_id)
5632 		return true;
5633 
5634 	/* Types listed in the reg2btf_ids are always trusted */
5635 	if (reg2btf_ids[base_type(reg->type)])
5636 		return true;
5637 
5638 	/* If a register is not referenced, it is trusted if it has the
5639 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5640 	 * other type modifiers may be safe, but we elect to take an opt-in
5641 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5642 	 * not.
5643 	 *
5644 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5645 	 * for whether a register is trusted.
5646 	 */
5647 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5648 	       !bpf_type_has_unsafe_modifiers(reg->type);
5649 }
5650 
5651 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5652 {
5653 	return reg->type & MEM_RCU;
5654 }
5655 
5656 static void clear_trusted_flags(enum bpf_type_flag *flag)
5657 {
5658 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5659 }
5660 
5661 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5662 				   const struct bpf_reg_state *reg,
5663 				   int off, int size, bool strict)
5664 {
5665 	struct tnum reg_off;
5666 	int ip_align;
5667 
5668 	/* Byte size accesses are always allowed. */
5669 	if (!strict || size == 1)
5670 		return 0;
5671 
5672 	/* For platforms that do not have a Kconfig enabling
5673 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5674 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5675 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5676 	 * to this code only in strict mode where we want to emulate
5677 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5678 	 * unconditional IP align value of '2'.
5679 	 */
5680 	ip_align = 2;
5681 
5682 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5683 	if (!tnum_is_aligned(reg_off, size)) {
5684 		char tn_buf[48];
5685 
5686 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5687 		verbose(env,
5688 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5689 			ip_align, tn_buf, reg->off, off, size);
5690 		return -EACCES;
5691 	}
5692 
5693 	return 0;
5694 }
5695 
5696 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5697 				       const struct bpf_reg_state *reg,
5698 				       const char *pointer_desc,
5699 				       int off, int size, bool strict)
5700 {
5701 	struct tnum reg_off;
5702 
5703 	/* Byte size accesses are always allowed. */
5704 	if (!strict || size == 1)
5705 		return 0;
5706 
5707 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5708 	if (!tnum_is_aligned(reg_off, size)) {
5709 		char tn_buf[48];
5710 
5711 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5712 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5713 			pointer_desc, tn_buf, reg->off, off, size);
5714 		return -EACCES;
5715 	}
5716 
5717 	return 0;
5718 }
5719 
5720 static int check_ptr_alignment(struct bpf_verifier_env *env,
5721 			       const struct bpf_reg_state *reg, int off,
5722 			       int size, bool strict_alignment_once)
5723 {
5724 	bool strict = env->strict_alignment || strict_alignment_once;
5725 	const char *pointer_desc = "";
5726 
5727 	switch (reg->type) {
5728 	case PTR_TO_PACKET:
5729 	case PTR_TO_PACKET_META:
5730 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5731 		 * right in front, treat it the very same way.
5732 		 */
5733 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5734 	case PTR_TO_FLOW_KEYS:
5735 		pointer_desc = "flow keys ";
5736 		break;
5737 	case PTR_TO_MAP_KEY:
5738 		pointer_desc = "key ";
5739 		break;
5740 	case PTR_TO_MAP_VALUE:
5741 		pointer_desc = "value ";
5742 		break;
5743 	case PTR_TO_CTX:
5744 		pointer_desc = "context ";
5745 		break;
5746 	case PTR_TO_STACK:
5747 		pointer_desc = "stack ";
5748 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5749 		 * and check_stack_read_fixed_off() relies on stack accesses being
5750 		 * aligned.
5751 		 */
5752 		strict = true;
5753 		break;
5754 	case PTR_TO_SOCKET:
5755 		pointer_desc = "sock ";
5756 		break;
5757 	case PTR_TO_SOCK_COMMON:
5758 		pointer_desc = "sock_common ";
5759 		break;
5760 	case PTR_TO_TCP_SOCK:
5761 		pointer_desc = "tcp_sock ";
5762 		break;
5763 	case PTR_TO_XDP_SOCK:
5764 		pointer_desc = "xdp_sock ";
5765 		break;
5766 	default:
5767 		break;
5768 	}
5769 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5770 					   strict);
5771 }
5772 
5773 /* starting from main bpf function walk all instructions of the function
5774  * and recursively walk all callees that given function can call.
5775  * Ignore jump and exit insns.
5776  * Since recursion is prevented by check_cfg() this algorithm
5777  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5778  */
5779 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5780 {
5781 	struct bpf_subprog_info *subprog = env->subprog_info;
5782 	struct bpf_insn *insn = env->prog->insnsi;
5783 	int depth = 0, frame = 0, i, subprog_end;
5784 	bool tail_call_reachable = false;
5785 	int ret_insn[MAX_CALL_FRAMES];
5786 	int ret_prog[MAX_CALL_FRAMES];
5787 	int j;
5788 
5789 	i = subprog[idx].start;
5790 process_func:
5791 	/* protect against potential stack overflow that might happen when
5792 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5793 	 * depth for such case down to 256 so that the worst case scenario
5794 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5795 	 * 8k).
5796 	 *
5797 	 * To get the idea what might happen, see an example:
5798 	 * func1 -> sub rsp, 128
5799 	 *  subfunc1 -> sub rsp, 256
5800 	 *  tailcall1 -> add rsp, 256
5801 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5802 	 *   subfunc2 -> sub rsp, 64
5803 	 *   subfunc22 -> sub rsp, 128
5804 	 *   tailcall2 -> add rsp, 128
5805 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5806 	 *
5807 	 * tailcall will unwind the current stack frame but it will not get rid
5808 	 * of caller's stack as shown on the example above.
5809 	 */
5810 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5811 		verbose(env,
5812 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5813 			depth);
5814 		return -EACCES;
5815 	}
5816 	/* round up to 32-bytes, since this is granularity
5817 	 * of interpreter stack size
5818 	 */
5819 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5820 	if (depth > MAX_BPF_STACK) {
5821 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5822 			frame + 1, depth);
5823 		return -EACCES;
5824 	}
5825 continue_func:
5826 	subprog_end = subprog[idx + 1].start;
5827 	for (; i < subprog_end; i++) {
5828 		int next_insn, sidx;
5829 
5830 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
5831 			bool err = false;
5832 
5833 			if (!is_bpf_throw_kfunc(insn + i))
5834 				continue;
5835 			if (subprog[idx].is_cb)
5836 				err = true;
5837 			for (int c = 0; c < frame && !err; c++) {
5838 				if (subprog[ret_prog[c]].is_cb) {
5839 					err = true;
5840 					break;
5841 				}
5842 			}
5843 			if (!err)
5844 				continue;
5845 			verbose(env,
5846 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
5847 				i, idx);
5848 			return -EINVAL;
5849 		}
5850 
5851 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5852 			continue;
5853 		/* remember insn and function to return to */
5854 		ret_insn[frame] = i + 1;
5855 		ret_prog[frame] = idx;
5856 
5857 		/* find the callee */
5858 		next_insn = i + insn[i].imm + 1;
5859 		sidx = find_subprog(env, next_insn);
5860 		if (sidx < 0) {
5861 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5862 				  next_insn);
5863 			return -EFAULT;
5864 		}
5865 		if (subprog[sidx].is_async_cb) {
5866 			if (subprog[sidx].has_tail_call) {
5867 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5868 				return -EFAULT;
5869 			}
5870 			/* async callbacks don't increase bpf prog stack size unless called directly */
5871 			if (!bpf_pseudo_call(insn + i))
5872 				continue;
5873 			if (subprog[sidx].is_exception_cb) {
5874 				verbose(env, "insn %d cannot call exception cb directly\n", i);
5875 				return -EINVAL;
5876 			}
5877 		}
5878 		i = next_insn;
5879 		idx = sidx;
5880 
5881 		if (subprog[idx].has_tail_call)
5882 			tail_call_reachable = true;
5883 
5884 		frame++;
5885 		if (frame >= MAX_CALL_FRAMES) {
5886 			verbose(env, "the call stack of %d frames is too deep !\n",
5887 				frame);
5888 			return -E2BIG;
5889 		}
5890 		goto process_func;
5891 	}
5892 	/* if tail call got detected across bpf2bpf calls then mark each of the
5893 	 * currently present subprog frames as tail call reachable subprogs;
5894 	 * this info will be utilized by JIT so that we will be preserving the
5895 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5896 	 */
5897 	if (tail_call_reachable)
5898 		for (j = 0; j < frame; j++) {
5899 			if (subprog[ret_prog[j]].is_exception_cb) {
5900 				verbose(env, "cannot tail call within exception cb\n");
5901 				return -EINVAL;
5902 			}
5903 			subprog[ret_prog[j]].tail_call_reachable = true;
5904 		}
5905 	if (subprog[0].tail_call_reachable)
5906 		env->prog->aux->tail_call_reachable = true;
5907 
5908 	/* end of for() loop means the last insn of the 'subprog'
5909 	 * was reached. Doesn't matter whether it was JA or EXIT
5910 	 */
5911 	if (frame == 0)
5912 		return 0;
5913 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5914 	frame--;
5915 	i = ret_insn[frame];
5916 	idx = ret_prog[frame];
5917 	goto continue_func;
5918 }
5919 
5920 static int check_max_stack_depth(struct bpf_verifier_env *env)
5921 {
5922 	struct bpf_subprog_info *si = env->subprog_info;
5923 	int ret;
5924 
5925 	for (int i = 0; i < env->subprog_cnt; i++) {
5926 		if (!i || si[i].is_async_cb) {
5927 			ret = check_max_stack_depth_subprog(env, i);
5928 			if (ret < 0)
5929 				return ret;
5930 		}
5931 		continue;
5932 	}
5933 	return 0;
5934 }
5935 
5936 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5937 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5938 				  const struct bpf_insn *insn, int idx)
5939 {
5940 	int start = idx + insn->imm + 1, subprog;
5941 
5942 	subprog = find_subprog(env, start);
5943 	if (subprog < 0) {
5944 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5945 			  start);
5946 		return -EFAULT;
5947 	}
5948 	return env->subprog_info[subprog].stack_depth;
5949 }
5950 #endif
5951 
5952 static int __check_buffer_access(struct bpf_verifier_env *env,
5953 				 const char *buf_info,
5954 				 const struct bpf_reg_state *reg,
5955 				 int regno, int off, int size)
5956 {
5957 	if (off < 0) {
5958 		verbose(env,
5959 			"R%d invalid %s buffer access: off=%d, size=%d\n",
5960 			regno, buf_info, off, size);
5961 		return -EACCES;
5962 	}
5963 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5964 		char tn_buf[48];
5965 
5966 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5967 		verbose(env,
5968 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
5969 			regno, off, tn_buf);
5970 		return -EACCES;
5971 	}
5972 
5973 	return 0;
5974 }
5975 
5976 static int check_tp_buffer_access(struct bpf_verifier_env *env,
5977 				  const struct bpf_reg_state *reg,
5978 				  int regno, int off, int size)
5979 {
5980 	int err;
5981 
5982 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5983 	if (err)
5984 		return err;
5985 
5986 	if (off + size > env->prog->aux->max_tp_access)
5987 		env->prog->aux->max_tp_access = off + size;
5988 
5989 	return 0;
5990 }
5991 
5992 static int check_buffer_access(struct bpf_verifier_env *env,
5993 			       const struct bpf_reg_state *reg,
5994 			       int regno, int off, int size,
5995 			       bool zero_size_allowed,
5996 			       u32 *max_access)
5997 {
5998 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
5999 	int err;
6000 
6001 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6002 	if (err)
6003 		return err;
6004 
6005 	if (off + size > *max_access)
6006 		*max_access = off + size;
6007 
6008 	return 0;
6009 }
6010 
6011 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6012 static void zext_32_to_64(struct bpf_reg_state *reg)
6013 {
6014 	reg->var_off = tnum_subreg(reg->var_off);
6015 	__reg_assign_32_into_64(reg);
6016 }
6017 
6018 /* truncate register to smaller size (in bytes)
6019  * must be called with size < BPF_REG_SIZE
6020  */
6021 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6022 {
6023 	u64 mask;
6024 
6025 	/* clear high bits in bit representation */
6026 	reg->var_off = tnum_cast(reg->var_off, size);
6027 
6028 	/* fix arithmetic bounds */
6029 	mask = ((u64)1 << (size * 8)) - 1;
6030 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6031 		reg->umin_value &= mask;
6032 		reg->umax_value &= mask;
6033 	} else {
6034 		reg->umin_value = 0;
6035 		reg->umax_value = mask;
6036 	}
6037 	reg->smin_value = reg->umin_value;
6038 	reg->smax_value = reg->umax_value;
6039 
6040 	/* If size is smaller than 32bit register the 32bit register
6041 	 * values are also truncated so we push 64-bit bounds into
6042 	 * 32-bit bounds. Above were truncated < 32-bits already.
6043 	 */
6044 	if (size < 4) {
6045 		__mark_reg32_unbounded(reg);
6046 		reg_bounds_sync(reg);
6047 	}
6048 }
6049 
6050 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6051 {
6052 	if (size == 1) {
6053 		reg->smin_value = reg->s32_min_value = S8_MIN;
6054 		reg->smax_value = reg->s32_max_value = S8_MAX;
6055 	} else if (size == 2) {
6056 		reg->smin_value = reg->s32_min_value = S16_MIN;
6057 		reg->smax_value = reg->s32_max_value = S16_MAX;
6058 	} else {
6059 		/* size == 4 */
6060 		reg->smin_value = reg->s32_min_value = S32_MIN;
6061 		reg->smax_value = reg->s32_max_value = S32_MAX;
6062 	}
6063 	reg->umin_value = reg->u32_min_value = 0;
6064 	reg->umax_value = U64_MAX;
6065 	reg->u32_max_value = U32_MAX;
6066 	reg->var_off = tnum_unknown;
6067 }
6068 
6069 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6070 {
6071 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6072 	u64 top_smax_value, top_smin_value;
6073 	u64 num_bits = size * 8;
6074 
6075 	if (tnum_is_const(reg->var_off)) {
6076 		u64_cval = reg->var_off.value;
6077 		if (size == 1)
6078 			reg->var_off = tnum_const((s8)u64_cval);
6079 		else if (size == 2)
6080 			reg->var_off = tnum_const((s16)u64_cval);
6081 		else
6082 			/* size == 4 */
6083 			reg->var_off = tnum_const((s32)u64_cval);
6084 
6085 		u64_cval = reg->var_off.value;
6086 		reg->smax_value = reg->smin_value = u64_cval;
6087 		reg->umax_value = reg->umin_value = u64_cval;
6088 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6089 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6090 		return;
6091 	}
6092 
6093 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6094 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6095 
6096 	if (top_smax_value != top_smin_value)
6097 		goto out;
6098 
6099 	/* find the s64_min and s64_min after sign extension */
6100 	if (size == 1) {
6101 		init_s64_max = (s8)reg->smax_value;
6102 		init_s64_min = (s8)reg->smin_value;
6103 	} else if (size == 2) {
6104 		init_s64_max = (s16)reg->smax_value;
6105 		init_s64_min = (s16)reg->smin_value;
6106 	} else {
6107 		init_s64_max = (s32)reg->smax_value;
6108 		init_s64_min = (s32)reg->smin_value;
6109 	}
6110 
6111 	s64_max = max(init_s64_max, init_s64_min);
6112 	s64_min = min(init_s64_max, init_s64_min);
6113 
6114 	/* both of s64_max/s64_min positive or negative */
6115 	if ((s64_max >= 0) == (s64_min >= 0)) {
6116 		reg->smin_value = reg->s32_min_value = s64_min;
6117 		reg->smax_value = reg->s32_max_value = s64_max;
6118 		reg->umin_value = reg->u32_min_value = s64_min;
6119 		reg->umax_value = reg->u32_max_value = s64_max;
6120 		reg->var_off = tnum_range(s64_min, s64_max);
6121 		return;
6122 	}
6123 
6124 out:
6125 	set_sext64_default_val(reg, size);
6126 }
6127 
6128 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6129 {
6130 	if (size == 1) {
6131 		reg->s32_min_value = S8_MIN;
6132 		reg->s32_max_value = S8_MAX;
6133 	} else {
6134 		/* size == 2 */
6135 		reg->s32_min_value = S16_MIN;
6136 		reg->s32_max_value = S16_MAX;
6137 	}
6138 	reg->u32_min_value = 0;
6139 	reg->u32_max_value = U32_MAX;
6140 }
6141 
6142 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6143 {
6144 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6145 	u32 top_smax_value, top_smin_value;
6146 	u32 num_bits = size * 8;
6147 
6148 	if (tnum_is_const(reg->var_off)) {
6149 		u32_val = reg->var_off.value;
6150 		if (size == 1)
6151 			reg->var_off = tnum_const((s8)u32_val);
6152 		else
6153 			reg->var_off = tnum_const((s16)u32_val);
6154 
6155 		u32_val = reg->var_off.value;
6156 		reg->s32_min_value = reg->s32_max_value = u32_val;
6157 		reg->u32_min_value = reg->u32_max_value = u32_val;
6158 		return;
6159 	}
6160 
6161 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6162 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6163 
6164 	if (top_smax_value != top_smin_value)
6165 		goto out;
6166 
6167 	/* find the s32_min and s32_min after sign extension */
6168 	if (size == 1) {
6169 		init_s32_max = (s8)reg->s32_max_value;
6170 		init_s32_min = (s8)reg->s32_min_value;
6171 	} else {
6172 		/* size == 2 */
6173 		init_s32_max = (s16)reg->s32_max_value;
6174 		init_s32_min = (s16)reg->s32_min_value;
6175 	}
6176 	s32_max = max(init_s32_max, init_s32_min);
6177 	s32_min = min(init_s32_max, init_s32_min);
6178 
6179 	if ((s32_min >= 0) == (s32_max >= 0)) {
6180 		reg->s32_min_value = s32_min;
6181 		reg->s32_max_value = s32_max;
6182 		reg->u32_min_value = (u32)s32_min;
6183 		reg->u32_max_value = (u32)s32_max;
6184 		return;
6185 	}
6186 
6187 out:
6188 	set_sext32_default_val(reg, size);
6189 }
6190 
6191 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6192 {
6193 	/* A map is considered read-only if the following condition are true:
6194 	 *
6195 	 * 1) BPF program side cannot change any of the map content. The
6196 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6197 	 *    and was set at map creation time.
6198 	 * 2) The map value(s) have been initialized from user space by a
6199 	 *    loader and then "frozen", such that no new map update/delete
6200 	 *    operations from syscall side are possible for the rest of
6201 	 *    the map's lifetime from that point onwards.
6202 	 * 3) Any parallel/pending map update/delete operations from syscall
6203 	 *    side have been completed. Only after that point, it's safe to
6204 	 *    assume that map value(s) are immutable.
6205 	 */
6206 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6207 	       READ_ONCE(map->frozen) &&
6208 	       !bpf_map_write_active(map);
6209 }
6210 
6211 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6212 			       bool is_ldsx)
6213 {
6214 	void *ptr;
6215 	u64 addr;
6216 	int err;
6217 
6218 	err = map->ops->map_direct_value_addr(map, &addr, off);
6219 	if (err)
6220 		return err;
6221 	ptr = (void *)(long)addr + off;
6222 
6223 	switch (size) {
6224 	case sizeof(u8):
6225 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6226 		break;
6227 	case sizeof(u16):
6228 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6229 		break;
6230 	case sizeof(u32):
6231 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6232 		break;
6233 	case sizeof(u64):
6234 		*val = *(u64 *)ptr;
6235 		break;
6236 	default:
6237 		return -EINVAL;
6238 	}
6239 	return 0;
6240 }
6241 
6242 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6243 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6244 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6245 
6246 /*
6247  * Allow list few fields as RCU trusted or full trusted.
6248  * This logic doesn't allow mix tagging and will be removed once GCC supports
6249  * btf_type_tag.
6250  */
6251 
6252 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6253 BTF_TYPE_SAFE_RCU(struct task_struct) {
6254 	const cpumask_t *cpus_ptr;
6255 	struct css_set __rcu *cgroups;
6256 	struct task_struct __rcu *real_parent;
6257 	struct task_struct *group_leader;
6258 };
6259 
6260 BTF_TYPE_SAFE_RCU(struct cgroup) {
6261 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6262 	struct kernfs_node *kn;
6263 };
6264 
6265 BTF_TYPE_SAFE_RCU(struct css_set) {
6266 	struct cgroup *dfl_cgrp;
6267 };
6268 
6269 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6270 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6271 	struct file __rcu *exe_file;
6272 };
6273 
6274 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6275  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6276  */
6277 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6278 	struct sock *sk;
6279 };
6280 
6281 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6282 	struct sock *sk;
6283 };
6284 
6285 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6286 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6287 	struct seq_file *seq;
6288 };
6289 
6290 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6291 	struct bpf_iter_meta *meta;
6292 	struct task_struct *task;
6293 };
6294 
6295 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6296 	struct file *file;
6297 };
6298 
6299 BTF_TYPE_SAFE_TRUSTED(struct file) {
6300 	struct inode *f_inode;
6301 };
6302 
6303 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6304 	/* no negative dentry-s in places where bpf can see it */
6305 	struct inode *d_inode;
6306 };
6307 
6308 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6309 	struct sock *sk;
6310 };
6311 
6312 static bool type_is_rcu(struct bpf_verifier_env *env,
6313 			struct bpf_reg_state *reg,
6314 			const char *field_name, u32 btf_id)
6315 {
6316 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6317 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6318 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6319 
6320 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6321 }
6322 
6323 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6324 				struct bpf_reg_state *reg,
6325 				const char *field_name, u32 btf_id)
6326 {
6327 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6328 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6329 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6330 
6331 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6332 }
6333 
6334 static bool type_is_trusted(struct bpf_verifier_env *env,
6335 			    struct bpf_reg_state *reg,
6336 			    const char *field_name, u32 btf_id)
6337 {
6338 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6339 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6340 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6341 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6342 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6343 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6344 
6345 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6346 }
6347 
6348 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6349 				   struct bpf_reg_state *regs,
6350 				   int regno, int off, int size,
6351 				   enum bpf_access_type atype,
6352 				   int value_regno)
6353 {
6354 	struct bpf_reg_state *reg = regs + regno;
6355 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6356 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6357 	const char *field_name = NULL;
6358 	enum bpf_type_flag flag = 0;
6359 	u32 btf_id = 0;
6360 	int ret;
6361 
6362 	if (!env->allow_ptr_leaks) {
6363 		verbose(env,
6364 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6365 			tname);
6366 		return -EPERM;
6367 	}
6368 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6369 		verbose(env,
6370 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6371 			tname);
6372 		return -EINVAL;
6373 	}
6374 	if (off < 0) {
6375 		verbose(env,
6376 			"R%d is ptr_%s invalid negative access: off=%d\n",
6377 			regno, tname, off);
6378 		return -EACCES;
6379 	}
6380 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6381 		char tn_buf[48];
6382 
6383 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6384 		verbose(env,
6385 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6386 			regno, tname, off, tn_buf);
6387 		return -EACCES;
6388 	}
6389 
6390 	if (reg->type & MEM_USER) {
6391 		verbose(env,
6392 			"R%d is ptr_%s access user memory: off=%d\n",
6393 			regno, tname, off);
6394 		return -EACCES;
6395 	}
6396 
6397 	if (reg->type & MEM_PERCPU) {
6398 		verbose(env,
6399 			"R%d is ptr_%s access percpu memory: off=%d\n",
6400 			regno, tname, off);
6401 		return -EACCES;
6402 	}
6403 
6404 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6405 		if (!btf_is_kernel(reg->btf)) {
6406 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6407 			return -EFAULT;
6408 		}
6409 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6410 	} else {
6411 		/* Writes are permitted with default btf_struct_access for
6412 		 * program allocated objects (which always have ref_obj_id > 0),
6413 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6414 		 */
6415 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6416 			verbose(env, "only read is supported\n");
6417 			return -EACCES;
6418 		}
6419 
6420 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6421 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6422 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6423 			return -EFAULT;
6424 		}
6425 
6426 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6427 	}
6428 
6429 	if (ret < 0)
6430 		return ret;
6431 
6432 	if (ret != PTR_TO_BTF_ID) {
6433 		/* just mark; */
6434 
6435 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6436 		/* If this is an untrusted pointer, all pointers formed by walking it
6437 		 * also inherit the untrusted flag.
6438 		 */
6439 		flag = PTR_UNTRUSTED;
6440 
6441 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6442 		/* By default any pointer obtained from walking a trusted pointer is no
6443 		 * longer trusted, unless the field being accessed has explicitly been
6444 		 * marked as inheriting its parent's state of trust (either full or RCU).
6445 		 * For example:
6446 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6447 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6448 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6449 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6450 		 *
6451 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6452 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6453 		 */
6454 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6455 			flag |= PTR_TRUSTED;
6456 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6457 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6458 				/* ignore __rcu tag and mark it MEM_RCU */
6459 				flag |= MEM_RCU;
6460 			} else if (flag & MEM_RCU ||
6461 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6462 				/* __rcu tagged pointers can be NULL */
6463 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6464 
6465 				/* We always trust them */
6466 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6467 				    flag & PTR_UNTRUSTED)
6468 					flag &= ~PTR_UNTRUSTED;
6469 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6470 				/* keep as-is */
6471 			} else {
6472 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6473 				clear_trusted_flags(&flag);
6474 			}
6475 		} else {
6476 			/*
6477 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6478 			 * aggressively mark as untrusted otherwise such
6479 			 * pointers will be plain PTR_TO_BTF_ID without flags
6480 			 * and will be allowed to be passed into helpers for
6481 			 * compat reasons.
6482 			 */
6483 			flag = PTR_UNTRUSTED;
6484 		}
6485 	} else {
6486 		/* Old compat. Deprecated */
6487 		clear_trusted_flags(&flag);
6488 	}
6489 
6490 	if (atype == BPF_READ && value_regno >= 0)
6491 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6492 
6493 	return 0;
6494 }
6495 
6496 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6497 				   struct bpf_reg_state *regs,
6498 				   int regno, int off, int size,
6499 				   enum bpf_access_type atype,
6500 				   int value_regno)
6501 {
6502 	struct bpf_reg_state *reg = regs + regno;
6503 	struct bpf_map *map = reg->map_ptr;
6504 	struct bpf_reg_state map_reg;
6505 	enum bpf_type_flag flag = 0;
6506 	const struct btf_type *t;
6507 	const char *tname;
6508 	u32 btf_id;
6509 	int ret;
6510 
6511 	if (!btf_vmlinux) {
6512 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6513 		return -ENOTSUPP;
6514 	}
6515 
6516 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6517 		verbose(env, "map_ptr access not supported for map type %d\n",
6518 			map->map_type);
6519 		return -ENOTSUPP;
6520 	}
6521 
6522 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6523 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6524 
6525 	if (!env->allow_ptr_leaks) {
6526 		verbose(env,
6527 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6528 			tname);
6529 		return -EPERM;
6530 	}
6531 
6532 	if (off < 0) {
6533 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6534 			regno, tname, off);
6535 		return -EACCES;
6536 	}
6537 
6538 	if (atype != BPF_READ) {
6539 		verbose(env, "only read from %s is supported\n", tname);
6540 		return -EACCES;
6541 	}
6542 
6543 	/* Simulate access to a PTR_TO_BTF_ID */
6544 	memset(&map_reg, 0, sizeof(map_reg));
6545 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6546 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6547 	if (ret < 0)
6548 		return ret;
6549 
6550 	if (value_regno >= 0)
6551 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6552 
6553 	return 0;
6554 }
6555 
6556 /* Check that the stack access at the given offset is within bounds. The
6557  * maximum valid offset is -1.
6558  *
6559  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6560  * -state->allocated_stack for reads.
6561  */
6562 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6563                                           s64 off,
6564                                           struct bpf_func_state *state,
6565                                           enum bpf_access_type t)
6566 {
6567 	int min_valid_off;
6568 
6569 	if (t == BPF_WRITE || env->allow_uninit_stack)
6570 		min_valid_off = -MAX_BPF_STACK;
6571 	else
6572 		min_valid_off = -state->allocated_stack;
6573 
6574 	if (off < min_valid_off || off > -1)
6575 		return -EACCES;
6576 	return 0;
6577 }
6578 
6579 /* Check that the stack access at 'regno + off' falls within the maximum stack
6580  * bounds.
6581  *
6582  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6583  */
6584 static int check_stack_access_within_bounds(
6585 		struct bpf_verifier_env *env,
6586 		int regno, int off, int access_size,
6587 		enum bpf_access_src src, enum bpf_access_type type)
6588 {
6589 	struct bpf_reg_state *regs = cur_regs(env);
6590 	struct bpf_reg_state *reg = regs + regno;
6591 	struct bpf_func_state *state = func(env, reg);
6592 	s64 min_off, max_off;
6593 	int err;
6594 	char *err_extra;
6595 
6596 	if (src == ACCESS_HELPER)
6597 		/* We don't know if helpers are reading or writing (or both). */
6598 		err_extra = " indirect access to";
6599 	else if (type == BPF_READ)
6600 		err_extra = " read from";
6601 	else
6602 		err_extra = " write to";
6603 
6604 	if (tnum_is_const(reg->var_off)) {
6605 		min_off = (s64)reg->var_off.value + off;
6606 		max_off = min_off + access_size;
6607 	} else {
6608 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6609 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6610 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6611 				err_extra, regno);
6612 			return -EACCES;
6613 		}
6614 		min_off = reg->smin_value + off;
6615 		max_off = reg->smax_value + off + access_size;
6616 	}
6617 
6618 	err = check_stack_slot_within_bounds(env, min_off, state, type);
6619 	if (!err && max_off > 0)
6620 		err = -EINVAL; /* out of stack access into non-negative offsets */
6621 
6622 	if (err) {
6623 		if (tnum_is_const(reg->var_off)) {
6624 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6625 				err_extra, regno, off, access_size);
6626 		} else {
6627 			char tn_buf[48];
6628 
6629 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6630 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
6631 				err_extra, regno, tn_buf, off, access_size);
6632 		}
6633 		return err;
6634 	}
6635 
6636 	/* Note that there is no stack access with offset zero, so the needed stack
6637 	 * size is -min_off, not -min_off+1.
6638 	 */
6639 	return grow_stack_state(env, state, -min_off /* size */);
6640 }
6641 
6642 /* check whether memory at (regno + off) is accessible for t = (read | write)
6643  * if t==write, value_regno is a register which value is stored into memory
6644  * if t==read, value_regno is a register which will receive the value from memory
6645  * if t==write && value_regno==-1, some unknown value is stored into memory
6646  * if t==read && value_regno==-1, don't care what we read from memory
6647  */
6648 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6649 			    int off, int bpf_size, enum bpf_access_type t,
6650 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6651 {
6652 	struct bpf_reg_state *regs = cur_regs(env);
6653 	struct bpf_reg_state *reg = regs + regno;
6654 	int size, err = 0;
6655 
6656 	size = bpf_size_to_bytes(bpf_size);
6657 	if (size < 0)
6658 		return size;
6659 
6660 	/* alignment checks will add in reg->off themselves */
6661 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6662 	if (err)
6663 		return err;
6664 
6665 	/* for access checks, reg->off is just part of off */
6666 	off += reg->off;
6667 
6668 	if (reg->type == PTR_TO_MAP_KEY) {
6669 		if (t == BPF_WRITE) {
6670 			verbose(env, "write to change key R%d not allowed\n", regno);
6671 			return -EACCES;
6672 		}
6673 
6674 		err = check_mem_region_access(env, regno, off, size,
6675 					      reg->map_ptr->key_size, false);
6676 		if (err)
6677 			return err;
6678 		if (value_regno >= 0)
6679 			mark_reg_unknown(env, regs, value_regno);
6680 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6681 		struct btf_field *kptr_field = NULL;
6682 
6683 		if (t == BPF_WRITE && value_regno >= 0 &&
6684 		    is_pointer_value(env, value_regno)) {
6685 			verbose(env, "R%d leaks addr into map\n", value_regno);
6686 			return -EACCES;
6687 		}
6688 		err = check_map_access_type(env, regno, off, size, t);
6689 		if (err)
6690 			return err;
6691 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6692 		if (err)
6693 			return err;
6694 		if (tnum_is_const(reg->var_off))
6695 			kptr_field = btf_record_find(reg->map_ptr->record,
6696 						     off + reg->var_off.value, BPF_KPTR);
6697 		if (kptr_field) {
6698 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6699 		} else if (t == BPF_READ && value_regno >= 0) {
6700 			struct bpf_map *map = reg->map_ptr;
6701 
6702 			/* if map is read-only, track its contents as scalars */
6703 			if (tnum_is_const(reg->var_off) &&
6704 			    bpf_map_is_rdonly(map) &&
6705 			    map->ops->map_direct_value_addr) {
6706 				int map_off = off + reg->var_off.value;
6707 				u64 val = 0;
6708 
6709 				err = bpf_map_direct_read(map, map_off, size,
6710 							  &val, is_ldsx);
6711 				if (err)
6712 					return err;
6713 
6714 				regs[value_regno].type = SCALAR_VALUE;
6715 				__mark_reg_known(&regs[value_regno], val);
6716 			} else {
6717 				mark_reg_unknown(env, regs, value_regno);
6718 			}
6719 		}
6720 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6721 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6722 
6723 		if (type_may_be_null(reg->type)) {
6724 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6725 				reg_type_str(env, reg->type));
6726 			return -EACCES;
6727 		}
6728 
6729 		if (t == BPF_WRITE && rdonly_mem) {
6730 			verbose(env, "R%d cannot write into %s\n",
6731 				regno, reg_type_str(env, reg->type));
6732 			return -EACCES;
6733 		}
6734 
6735 		if (t == BPF_WRITE && value_regno >= 0 &&
6736 		    is_pointer_value(env, value_regno)) {
6737 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6738 			return -EACCES;
6739 		}
6740 
6741 		err = check_mem_region_access(env, regno, off, size,
6742 					      reg->mem_size, false);
6743 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6744 			mark_reg_unknown(env, regs, value_regno);
6745 	} else if (reg->type == PTR_TO_CTX) {
6746 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6747 		struct btf *btf = NULL;
6748 		u32 btf_id = 0;
6749 
6750 		if (t == BPF_WRITE && value_regno >= 0 &&
6751 		    is_pointer_value(env, value_regno)) {
6752 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6753 			return -EACCES;
6754 		}
6755 
6756 		err = check_ptr_off_reg(env, reg, regno);
6757 		if (err < 0)
6758 			return err;
6759 
6760 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6761 				       &btf_id);
6762 		if (err)
6763 			verbose_linfo(env, insn_idx, "; ");
6764 		if (!err && t == BPF_READ && value_regno >= 0) {
6765 			/* ctx access returns either a scalar, or a
6766 			 * PTR_TO_PACKET[_META,_END]. In the latter
6767 			 * case, we know the offset is zero.
6768 			 */
6769 			if (reg_type == SCALAR_VALUE) {
6770 				mark_reg_unknown(env, regs, value_regno);
6771 			} else {
6772 				mark_reg_known_zero(env, regs,
6773 						    value_regno);
6774 				if (type_may_be_null(reg_type))
6775 					regs[value_regno].id = ++env->id_gen;
6776 				/* A load of ctx field could have different
6777 				 * actual load size with the one encoded in the
6778 				 * insn. When the dst is PTR, it is for sure not
6779 				 * a sub-register.
6780 				 */
6781 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6782 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6783 					regs[value_regno].btf = btf;
6784 					regs[value_regno].btf_id = btf_id;
6785 				}
6786 			}
6787 			regs[value_regno].type = reg_type;
6788 		}
6789 
6790 	} else if (reg->type == PTR_TO_STACK) {
6791 		/* Basic bounds checks. */
6792 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6793 		if (err)
6794 			return err;
6795 
6796 		if (t == BPF_READ)
6797 			err = check_stack_read(env, regno, off, size,
6798 					       value_regno);
6799 		else
6800 			err = check_stack_write(env, regno, off, size,
6801 						value_regno, insn_idx);
6802 	} else if (reg_is_pkt_pointer(reg)) {
6803 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6804 			verbose(env, "cannot write into packet\n");
6805 			return -EACCES;
6806 		}
6807 		if (t == BPF_WRITE && value_regno >= 0 &&
6808 		    is_pointer_value(env, value_regno)) {
6809 			verbose(env, "R%d leaks addr into packet\n",
6810 				value_regno);
6811 			return -EACCES;
6812 		}
6813 		err = check_packet_access(env, regno, off, size, false);
6814 		if (!err && t == BPF_READ && value_regno >= 0)
6815 			mark_reg_unknown(env, regs, value_regno);
6816 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6817 		if (t == BPF_WRITE && value_regno >= 0 &&
6818 		    is_pointer_value(env, value_regno)) {
6819 			verbose(env, "R%d leaks addr into flow keys\n",
6820 				value_regno);
6821 			return -EACCES;
6822 		}
6823 
6824 		err = check_flow_keys_access(env, off, size);
6825 		if (!err && t == BPF_READ && value_regno >= 0)
6826 			mark_reg_unknown(env, regs, value_regno);
6827 	} else if (type_is_sk_pointer(reg->type)) {
6828 		if (t == BPF_WRITE) {
6829 			verbose(env, "R%d cannot write into %s\n",
6830 				regno, reg_type_str(env, reg->type));
6831 			return -EACCES;
6832 		}
6833 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6834 		if (!err && value_regno >= 0)
6835 			mark_reg_unknown(env, regs, value_regno);
6836 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6837 		err = check_tp_buffer_access(env, reg, regno, off, size);
6838 		if (!err && t == BPF_READ && value_regno >= 0)
6839 			mark_reg_unknown(env, regs, value_regno);
6840 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6841 		   !type_may_be_null(reg->type)) {
6842 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6843 					      value_regno);
6844 	} else if (reg->type == CONST_PTR_TO_MAP) {
6845 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6846 					      value_regno);
6847 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6848 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6849 		u32 *max_access;
6850 
6851 		if (rdonly_mem) {
6852 			if (t == BPF_WRITE) {
6853 				verbose(env, "R%d cannot write into %s\n",
6854 					regno, reg_type_str(env, reg->type));
6855 				return -EACCES;
6856 			}
6857 			max_access = &env->prog->aux->max_rdonly_access;
6858 		} else {
6859 			max_access = &env->prog->aux->max_rdwr_access;
6860 		}
6861 
6862 		err = check_buffer_access(env, reg, regno, off, size, false,
6863 					  max_access);
6864 
6865 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6866 			mark_reg_unknown(env, regs, value_regno);
6867 	} else {
6868 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6869 			reg_type_str(env, reg->type));
6870 		return -EACCES;
6871 	}
6872 
6873 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6874 	    regs[value_regno].type == SCALAR_VALUE) {
6875 		if (!is_ldsx)
6876 			/* b/h/w load zero-extends, mark upper bits as known 0 */
6877 			coerce_reg_to_size(&regs[value_regno], size);
6878 		else
6879 			coerce_reg_to_size_sx(&regs[value_regno], size);
6880 	}
6881 	return err;
6882 }
6883 
6884 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6885 {
6886 	int load_reg;
6887 	int err;
6888 
6889 	switch (insn->imm) {
6890 	case BPF_ADD:
6891 	case BPF_ADD | BPF_FETCH:
6892 	case BPF_AND:
6893 	case BPF_AND | BPF_FETCH:
6894 	case BPF_OR:
6895 	case BPF_OR | BPF_FETCH:
6896 	case BPF_XOR:
6897 	case BPF_XOR | BPF_FETCH:
6898 	case BPF_XCHG:
6899 	case BPF_CMPXCHG:
6900 		break;
6901 	default:
6902 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6903 		return -EINVAL;
6904 	}
6905 
6906 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6907 		verbose(env, "invalid atomic operand size\n");
6908 		return -EINVAL;
6909 	}
6910 
6911 	/* check src1 operand */
6912 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
6913 	if (err)
6914 		return err;
6915 
6916 	/* check src2 operand */
6917 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6918 	if (err)
6919 		return err;
6920 
6921 	if (insn->imm == BPF_CMPXCHG) {
6922 		/* Check comparison of R0 with memory location */
6923 		const u32 aux_reg = BPF_REG_0;
6924 
6925 		err = check_reg_arg(env, aux_reg, SRC_OP);
6926 		if (err)
6927 			return err;
6928 
6929 		if (is_pointer_value(env, aux_reg)) {
6930 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
6931 			return -EACCES;
6932 		}
6933 	}
6934 
6935 	if (is_pointer_value(env, insn->src_reg)) {
6936 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6937 		return -EACCES;
6938 	}
6939 
6940 	if (is_ctx_reg(env, insn->dst_reg) ||
6941 	    is_pkt_reg(env, insn->dst_reg) ||
6942 	    is_flow_key_reg(env, insn->dst_reg) ||
6943 	    is_sk_reg(env, insn->dst_reg)) {
6944 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6945 			insn->dst_reg,
6946 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6947 		return -EACCES;
6948 	}
6949 
6950 	if (insn->imm & BPF_FETCH) {
6951 		if (insn->imm == BPF_CMPXCHG)
6952 			load_reg = BPF_REG_0;
6953 		else
6954 			load_reg = insn->src_reg;
6955 
6956 		/* check and record load of old value */
6957 		err = check_reg_arg(env, load_reg, DST_OP);
6958 		if (err)
6959 			return err;
6960 	} else {
6961 		/* This instruction accesses a memory location but doesn't
6962 		 * actually load it into a register.
6963 		 */
6964 		load_reg = -1;
6965 	}
6966 
6967 	/* Check whether we can read the memory, with second call for fetch
6968 	 * case to simulate the register fill.
6969 	 */
6970 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6971 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
6972 	if (!err && load_reg >= 0)
6973 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6974 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
6975 				       true, false);
6976 	if (err)
6977 		return err;
6978 
6979 	/* Check whether we can write into the same memory. */
6980 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6981 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
6982 	if (err)
6983 		return err;
6984 	return 0;
6985 }
6986 
6987 /* When register 'regno' is used to read the stack (either directly or through
6988  * a helper function) make sure that it's within stack boundary and, depending
6989  * on the access type and privileges, that all elements of the stack are
6990  * initialized.
6991  *
6992  * 'off' includes 'regno->off', but not its dynamic part (if any).
6993  *
6994  * All registers that have been spilled on the stack in the slots within the
6995  * read offsets are marked as read.
6996  */
6997 static int check_stack_range_initialized(
6998 		struct bpf_verifier_env *env, int regno, int off,
6999 		int access_size, bool zero_size_allowed,
7000 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7001 {
7002 	struct bpf_reg_state *reg = reg_state(env, regno);
7003 	struct bpf_func_state *state = func(env, reg);
7004 	int err, min_off, max_off, i, j, slot, spi;
7005 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7006 	enum bpf_access_type bounds_check_type;
7007 	/* Some accesses can write anything into the stack, others are
7008 	 * read-only.
7009 	 */
7010 	bool clobber = false;
7011 
7012 	if (access_size == 0 && !zero_size_allowed) {
7013 		verbose(env, "invalid zero-sized read\n");
7014 		return -EACCES;
7015 	}
7016 
7017 	if (type == ACCESS_HELPER) {
7018 		/* The bounds checks for writes are more permissive than for
7019 		 * reads. However, if raw_mode is not set, we'll do extra
7020 		 * checks below.
7021 		 */
7022 		bounds_check_type = BPF_WRITE;
7023 		clobber = true;
7024 	} else {
7025 		bounds_check_type = BPF_READ;
7026 	}
7027 	err = check_stack_access_within_bounds(env, regno, off, access_size,
7028 					       type, bounds_check_type);
7029 	if (err)
7030 		return err;
7031 
7032 
7033 	if (tnum_is_const(reg->var_off)) {
7034 		min_off = max_off = reg->var_off.value + off;
7035 	} else {
7036 		/* Variable offset is prohibited for unprivileged mode for
7037 		 * simplicity since it requires corresponding support in
7038 		 * Spectre masking for stack ALU.
7039 		 * See also retrieve_ptr_limit().
7040 		 */
7041 		if (!env->bypass_spec_v1) {
7042 			char tn_buf[48];
7043 
7044 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7045 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7046 				regno, err_extra, tn_buf);
7047 			return -EACCES;
7048 		}
7049 		/* Only initialized buffer on stack is allowed to be accessed
7050 		 * with variable offset. With uninitialized buffer it's hard to
7051 		 * guarantee that whole memory is marked as initialized on
7052 		 * helper return since specific bounds are unknown what may
7053 		 * cause uninitialized stack leaking.
7054 		 */
7055 		if (meta && meta->raw_mode)
7056 			meta = NULL;
7057 
7058 		min_off = reg->smin_value + off;
7059 		max_off = reg->smax_value + off;
7060 	}
7061 
7062 	if (meta && meta->raw_mode) {
7063 		/* Ensure we won't be overwriting dynptrs when simulating byte
7064 		 * by byte access in check_helper_call using meta.access_size.
7065 		 * This would be a problem if we have a helper in the future
7066 		 * which takes:
7067 		 *
7068 		 *	helper(uninit_mem, len, dynptr)
7069 		 *
7070 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7071 		 * may end up writing to dynptr itself when touching memory from
7072 		 * arg 1. This can be relaxed on a case by case basis for known
7073 		 * safe cases, but reject due to the possibilitiy of aliasing by
7074 		 * default.
7075 		 */
7076 		for (i = min_off; i < max_off + access_size; i++) {
7077 			int stack_off = -i - 1;
7078 
7079 			spi = __get_spi(i);
7080 			/* raw_mode may write past allocated_stack */
7081 			if (state->allocated_stack <= stack_off)
7082 				continue;
7083 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7084 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7085 				return -EACCES;
7086 			}
7087 		}
7088 		meta->access_size = access_size;
7089 		meta->regno = regno;
7090 		return 0;
7091 	}
7092 
7093 	for (i = min_off; i < max_off + access_size; i++) {
7094 		u8 *stype;
7095 
7096 		slot = -i - 1;
7097 		spi = slot / BPF_REG_SIZE;
7098 		if (state->allocated_stack <= slot) {
7099 			verbose(env, "verifier bug: allocated_stack too small");
7100 			return -EFAULT;
7101 		}
7102 
7103 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7104 		if (*stype == STACK_MISC)
7105 			goto mark;
7106 		if ((*stype == STACK_ZERO) ||
7107 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7108 			if (clobber) {
7109 				/* helper can write anything into the stack */
7110 				*stype = STACK_MISC;
7111 			}
7112 			goto mark;
7113 		}
7114 
7115 		if (is_spilled_reg(&state->stack[spi]) &&
7116 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7117 		     env->allow_ptr_leaks)) {
7118 			if (clobber) {
7119 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7120 				for (j = 0; j < BPF_REG_SIZE; j++)
7121 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7122 			}
7123 			goto mark;
7124 		}
7125 
7126 		if (tnum_is_const(reg->var_off)) {
7127 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7128 				err_extra, regno, min_off, i - min_off, access_size);
7129 		} else {
7130 			char tn_buf[48];
7131 
7132 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7133 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7134 				err_extra, regno, tn_buf, i - min_off, access_size);
7135 		}
7136 		return -EACCES;
7137 mark:
7138 		/* reading any byte out of 8-byte 'spill_slot' will cause
7139 		 * the whole slot to be marked as 'read'
7140 		 */
7141 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7142 			      state->stack[spi].spilled_ptr.parent,
7143 			      REG_LIVE_READ64);
7144 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7145 		 * be sure that whether stack slot is written to or not. Hence,
7146 		 * we must still conservatively propagate reads upwards even if
7147 		 * helper may write to the entire memory range.
7148 		 */
7149 	}
7150 	return 0;
7151 }
7152 
7153 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7154 				   int access_size, bool zero_size_allowed,
7155 				   struct bpf_call_arg_meta *meta)
7156 {
7157 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7158 	u32 *max_access;
7159 
7160 	switch (base_type(reg->type)) {
7161 	case PTR_TO_PACKET:
7162 	case PTR_TO_PACKET_META:
7163 		return check_packet_access(env, regno, reg->off, access_size,
7164 					   zero_size_allowed);
7165 	case PTR_TO_MAP_KEY:
7166 		if (meta && meta->raw_mode) {
7167 			verbose(env, "R%d cannot write into %s\n", regno,
7168 				reg_type_str(env, reg->type));
7169 			return -EACCES;
7170 		}
7171 		return check_mem_region_access(env, regno, reg->off, access_size,
7172 					       reg->map_ptr->key_size, false);
7173 	case PTR_TO_MAP_VALUE:
7174 		if (check_map_access_type(env, regno, reg->off, access_size,
7175 					  meta && meta->raw_mode ? BPF_WRITE :
7176 					  BPF_READ))
7177 			return -EACCES;
7178 		return check_map_access(env, regno, reg->off, access_size,
7179 					zero_size_allowed, ACCESS_HELPER);
7180 	case PTR_TO_MEM:
7181 		if (type_is_rdonly_mem(reg->type)) {
7182 			if (meta && meta->raw_mode) {
7183 				verbose(env, "R%d cannot write into %s\n", regno,
7184 					reg_type_str(env, reg->type));
7185 				return -EACCES;
7186 			}
7187 		}
7188 		return check_mem_region_access(env, regno, reg->off,
7189 					       access_size, reg->mem_size,
7190 					       zero_size_allowed);
7191 	case PTR_TO_BUF:
7192 		if (type_is_rdonly_mem(reg->type)) {
7193 			if (meta && meta->raw_mode) {
7194 				verbose(env, "R%d cannot write into %s\n", regno,
7195 					reg_type_str(env, reg->type));
7196 				return -EACCES;
7197 			}
7198 
7199 			max_access = &env->prog->aux->max_rdonly_access;
7200 		} else {
7201 			max_access = &env->prog->aux->max_rdwr_access;
7202 		}
7203 		return check_buffer_access(env, reg, regno, reg->off,
7204 					   access_size, zero_size_allowed,
7205 					   max_access);
7206 	case PTR_TO_STACK:
7207 		return check_stack_range_initialized(
7208 				env,
7209 				regno, reg->off, access_size,
7210 				zero_size_allowed, ACCESS_HELPER, meta);
7211 	case PTR_TO_BTF_ID:
7212 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7213 					       access_size, BPF_READ, -1);
7214 	case PTR_TO_CTX:
7215 		/* in case the function doesn't know how to access the context,
7216 		 * (because we are in a program of type SYSCALL for example), we
7217 		 * can not statically check its size.
7218 		 * Dynamically check it now.
7219 		 */
7220 		if (!env->ops->convert_ctx_access) {
7221 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7222 			int offset = access_size - 1;
7223 
7224 			/* Allow zero-byte read from PTR_TO_CTX */
7225 			if (access_size == 0)
7226 				return zero_size_allowed ? 0 : -EACCES;
7227 
7228 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7229 						atype, -1, false, false);
7230 		}
7231 
7232 		fallthrough;
7233 	default: /* scalar_value or invalid ptr */
7234 		/* Allow zero-byte read from NULL, regardless of pointer type */
7235 		if (zero_size_allowed && access_size == 0 &&
7236 		    register_is_null(reg))
7237 			return 0;
7238 
7239 		verbose(env, "R%d type=%s ", regno,
7240 			reg_type_str(env, reg->type));
7241 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7242 		return -EACCES;
7243 	}
7244 }
7245 
7246 /* verify arguments to helpers or kfuncs consisting of a pointer and an access
7247  * size.
7248  *
7249  * @regno is the register containing the access size. regno-1 is the register
7250  * containing the pointer.
7251  */
7252 static int check_mem_size_reg(struct bpf_verifier_env *env,
7253 			      struct bpf_reg_state *reg, u32 regno,
7254 			      bool zero_size_allowed,
7255 			      struct bpf_call_arg_meta *meta)
7256 {
7257 	int err;
7258 
7259 	/* This is used to refine r0 return value bounds for helpers
7260 	 * that enforce this value as an upper bound on return values.
7261 	 * See do_refine_retval_range() for helpers that can refine
7262 	 * the return value. C type of helper is u32 so we pull register
7263 	 * bound from umax_value however, if negative verifier errors
7264 	 * out. Only upper bounds can be learned because retval is an
7265 	 * int type and negative retvals are allowed.
7266 	 */
7267 	meta->msize_max_value = reg->umax_value;
7268 
7269 	/* The register is SCALAR_VALUE; the access check
7270 	 * happens using its boundaries.
7271 	 */
7272 	if (!tnum_is_const(reg->var_off))
7273 		/* For unprivileged variable accesses, disable raw
7274 		 * mode so that the program is required to
7275 		 * initialize all the memory that the helper could
7276 		 * just partially fill up.
7277 		 */
7278 		meta = NULL;
7279 
7280 	if (reg->smin_value < 0) {
7281 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7282 			regno);
7283 		return -EACCES;
7284 	}
7285 
7286 	if (reg->umin_value == 0 && !zero_size_allowed) {
7287 		verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
7288 			regno, reg->umin_value, reg->umax_value);
7289 		return -EACCES;
7290 	}
7291 
7292 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7293 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7294 			regno);
7295 		return -EACCES;
7296 	}
7297 	err = check_helper_mem_access(env, regno - 1,
7298 				      reg->umax_value,
7299 				      zero_size_allowed, meta);
7300 	if (!err)
7301 		err = mark_chain_precision(env, regno);
7302 	return err;
7303 }
7304 
7305 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7306 			 u32 regno, u32 mem_size)
7307 {
7308 	bool may_be_null = type_may_be_null(reg->type);
7309 	struct bpf_reg_state saved_reg;
7310 	struct bpf_call_arg_meta meta;
7311 	int err;
7312 
7313 	if (register_is_null(reg))
7314 		return 0;
7315 
7316 	memset(&meta, 0, sizeof(meta));
7317 	/* Assuming that the register contains a value check if the memory
7318 	 * access is safe. Temporarily save and restore the register's state as
7319 	 * the conversion shouldn't be visible to a caller.
7320 	 */
7321 	if (may_be_null) {
7322 		saved_reg = *reg;
7323 		mark_ptr_not_null_reg(reg);
7324 	}
7325 
7326 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7327 	/* Check access for BPF_WRITE */
7328 	meta.raw_mode = true;
7329 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7330 
7331 	if (may_be_null)
7332 		*reg = saved_reg;
7333 
7334 	return err;
7335 }
7336 
7337 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7338 				    u32 regno)
7339 {
7340 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7341 	bool may_be_null = type_may_be_null(mem_reg->type);
7342 	struct bpf_reg_state saved_reg;
7343 	struct bpf_call_arg_meta meta;
7344 	int err;
7345 
7346 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7347 
7348 	memset(&meta, 0, sizeof(meta));
7349 
7350 	if (may_be_null) {
7351 		saved_reg = *mem_reg;
7352 		mark_ptr_not_null_reg(mem_reg);
7353 	}
7354 
7355 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7356 	/* Check access for BPF_WRITE */
7357 	meta.raw_mode = true;
7358 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7359 
7360 	if (may_be_null)
7361 		*mem_reg = saved_reg;
7362 	return err;
7363 }
7364 
7365 /* Implementation details:
7366  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7367  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7368  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7369  * Two separate bpf_obj_new will also have different reg->id.
7370  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7371  * clears reg->id after value_or_null->value transition, since the verifier only
7372  * cares about the range of access to valid map value pointer and doesn't care
7373  * about actual address of the map element.
7374  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7375  * reg->id > 0 after value_or_null->value transition. By doing so
7376  * two bpf_map_lookups will be considered two different pointers that
7377  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7378  * returned from bpf_obj_new.
7379  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7380  * dead-locks.
7381  * Since only one bpf_spin_lock is allowed the checks are simpler than
7382  * reg_is_refcounted() logic. The verifier needs to remember only
7383  * one spin_lock instead of array of acquired_refs.
7384  * cur_state->active_lock remembers which map value element or allocated
7385  * object got locked and clears it after bpf_spin_unlock.
7386  */
7387 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7388 			     bool is_lock)
7389 {
7390 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7391 	struct bpf_verifier_state *cur = env->cur_state;
7392 	bool is_const = tnum_is_const(reg->var_off);
7393 	u64 val = reg->var_off.value;
7394 	struct bpf_map *map = NULL;
7395 	struct btf *btf = NULL;
7396 	struct btf_record *rec;
7397 
7398 	if (!is_const) {
7399 		verbose(env,
7400 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7401 			regno);
7402 		return -EINVAL;
7403 	}
7404 	if (reg->type == PTR_TO_MAP_VALUE) {
7405 		map = reg->map_ptr;
7406 		if (!map->btf) {
7407 			verbose(env,
7408 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7409 				map->name);
7410 			return -EINVAL;
7411 		}
7412 	} else {
7413 		btf = reg->btf;
7414 	}
7415 
7416 	rec = reg_btf_record(reg);
7417 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7418 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7419 			map ? map->name : "kptr");
7420 		return -EINVAL;
7421 	}
7422 	if (rec->spin_lock_off != val + reg->off) {
7423 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7424 			val + reg->off, rec->spin_lock_off);
7425 		return -EINVAL;
7426 	}
7427 	if (is_lock) {
7428 		if (cur->active_lock.ptr) {
7429 			verbose(env,
7430 				"Locking two bpf_spin_locks are not allowed\n");
7431 			return -EINVAL;
7432 		}
7433 		if (map)
7434 			cur->active_lock.ptr = map;
7435 		else
7436 			cur->active_lock.ptr = btf;
7437 		cur->active_lock.id = reg->id;
7438 	} else {
7439 		void *ptr;
7440 
7441 		if (map)
7442 			ptr = map;
7443 		else
7444 			ptr = btf;
7445 
7446 		if (!cur->active_lock.ptr) {
7447 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7448 			return -EINVAL;
7449 		}
7450 		if (cur->active_lock.ptr != ptr ||
7451 		    cur->active_lock.id != reg->id) {
7452 			verbose(env, "bpf_spin_unlock of different lock\n");
7453 			return -EINVAL;
7454 		}
7455 
7456 		invalidate_non_owning_refs(env);
7457 
7458 		cur->active_lock.ptr = NULL;
7459 		cur->active_lock.id = 0;
7460 	}
7461 	return 0;
7462 }
7463 
7464 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7465 			      struct bpf_call_arg_meta *meta)
7466 {
7467 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7468 	bool is_const = tnum_is_const(reg->var_off);
7469 	struct bpf_map *map = reg->map_ptr;
7470 	u64 val = reg->var_off.value;
7471 
7472 	if (!is_const) {
7473 		verbose(env,
7474 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7475 			regno);
7476 		return -EINVAL;
7477 	}
7478 	if (!map->btf) {
7479 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7480 			map->name);
7481 		return -EINVAL;
7482 	}
7483 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7484 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7485 		return -EINVAL;
7486 	}
7487 	if (map->record->timer_off != val + reg->off) {
7488 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7489 			val + reg->off, map->record->timer_off);
7490 		return -EINVAL;
7491 	}
7492 	if (meta->map_ptr) {
7493 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7494 		return -EFAULT;
7495 	}
7496 	meta->map_uid = reg->map_uid;
7497 	meta->map_ptr = map;
7498 	return 0;
7499 }
7500 
7501 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7502 			     struct bpf_call_arg_meta *meta)
7503 {
7504 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7505 	struct bpf_map *map_ptr = reg->map_ptr;
7506 	struct btf_field *kptr_field;
7507 	u32 kptr_off;
7508 
7509 	if (!tnum_is_const(reg->var_off)) {
7510 		verbose(env,
7511 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7512 			regno);
7513 		return -EINVAL;
7514 	}
7515 	if (!map_ptr->btf) {
7516 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7517 			map_ptr->name);
7518 		return -EINVAL;
7519 	}
7520 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7521 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7522 		return -EINVAL;
7523 	}
7524 
7525 	meta->map_ptr = map_ptr;
7526 	kptr_off = reg->off + reg->var_off.value;
7527 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7528 	if (!kptr_field) {
7529 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7530 		return -EACCES;
7531 	}
7532 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
7533 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7534 		return -EACCES;
7535 	}
7536 	meta->kptr_field = kptr_field;
7537 	return 0;
7538 }
7539 
7540 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7541  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7542  *
7543  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7544  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7545  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7546  *
7547  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7548  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7549  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7550  * mutate the view of the dynptr and also possibly destroy it. In the latter
7551  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7552  * memory that dynptr points to.
7553  *
7554  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7555  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7556  * readonly dynptr view yet, hence only the first case is tracked and checked.
7557  *
7558  * This is consistent with how C applies the const modifier to a struct object,
7559  * where the pointer itself inside bpf_dynptr becomes const but not what it
7560  * points to.
7561  *
7562  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7563  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7564  */
7565 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7566 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7567 {
7568 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7569 	int err;
7570 
7571 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7572 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7573 	 */
7574 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7575 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7576 		return -EFAULT;
7577 	}
7578 
7579 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7580 	 *		 constructing a mutable bpf_dynptr object.
7581 	 *
7582 	 *		 Currently, this is only possible with PTR_TO_STACK
7583 	 *		 pointing to a region of at least 16 bytes which doesn't
7584 	 *		 contain an existing bpf_dynptr.
7585 	 *
7586 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7587 	 *		 mutated or destroyed. However, the memory it points to
7588 	 *		 may be mutated.
7589 	 *
7590 	 *  None       - Points to a initialized dynptr that can be mutated and
7591 	 *		 destroyed, including mutation of the memory it points
7592 	 *		 to.
7593 	 */
7594 	if (arg_type & MEM_UNINIT) {
7595 		int i;
7596 
7597 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7598 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7599 			return -EINVAL;
7600 		}
7601 
7602 		/* we write BPF_DW bits (8 bytes) at a time */
7603 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7604 			err = check_mem_access(env, insn_idx, regno,
7605 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7606 			if (err)
7607 				return err;
7608 		}
7609 
7610 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7611 	} else /* MEM_RDONLY and None case from above */ {
7612 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7613 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7614 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7615 			return -EINVAL;
7616 		}
7617 
7618 		if (!is_dynptr_reg_valid_init(env, reg)) {
7619 			verbose(env,
7620 				"Expected an initialized dynptr as arg #%d\n",
7621 				regno);
7622 			return -EINVAL;
7623 		}
7624 
7625 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7626 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7627 			verbose(env,
7628 				"Expected a dynptr of type %s as arg #%d\n",
7629 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7630 			return -EINVAL;
7631 		}
7632 
7633 		err = mark_dynptr_read(env, reg);
7634 	}
7635 	return err;
7636 }
7637 
7638 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7639 {
7640 	struct bpf_func_state *state = func(env, reg);
7641 
7642 	return state->stack[spi].spilled_ptr.ref_obj_id;
7643 }
7644 
7645 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7646 {
7647 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7648 }
7649 
7650 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7651 {
7652 	return meta->kfunc_flags & KF_ITER_NEW;
7653 }
7654 
7655 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7656 {
7657 	return meta->kfunc_flags & KF_ITER_NEXT;
7658 }
7659 
7660 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7661 {
7662 	return meta->kfunc_flags & KF_ITER_DESTROY;
7663 }
7664 
7665 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7666 {
7667 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7668 	 * kfunc is iter state pointer
7669 	 */
7670 	return arg == 0 && is_iter_kfunc(meta);
7671 }
7672 
7673 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7674 			    struct bpf_kfunc_call_arg_meta *meta)
7675 {
7676 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7677 	const struct btf_type *t;
7678 	const struct btf_param *arg;
7679 	int spi, err, i, nr_slots;
7680 	u32 btf_id;
7681 
7682 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7683 	arg = &btf_params(meta->func_proto)[0];
7684 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7685 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7686 	nr_slots = t->size / BPF_REG_SIZE;
7687 
7688 	if (is_iter_new_kfunc(meta)) {
7689 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7690 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7691 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7692 				iter_type_str(meta->btf, btf_id), regno);
7693 			return -EINVAL;
7694 		}
7695 
7696 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7697 			err = check_mem_access(env, insn_idx, regno,
7698 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7699 			if (err)
7700 				return err;
7701 		}
7702 
7703 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
7704 		if (err)
7705 			return err;
7706 	} else {
7707 		/* iter_next() or iter_destroy() expect initialized iter state*/
7708 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
7709 		switch (err) {
7710 		case 0:
7711 			break;
7712 		case -EINVAL:
7713 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7714 				iter_type_str(meta->btf, btf_id), regno);
7715 			return err;
7716 		case -EPROTO:
7717 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
7718 			return err;
7719 		default:
7720 			return err;
7721 		}
7722 
7723 		spi = iter_get_spi(env, reg, nr_slots);
7724 		if (spi < 0)
7725 			return spi;
7726 
7727 		err = mark_iter_read(env, reg, spi, nr_slots);
7728 		if (err)
7729 			return err;
7730 
7731 		/* remember meta->iter info for process_iter_next_call() */
7732 		meta->iter.spi = spi;
7733 		meta->iter.frameno = reg->frameno;
7734 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7735 
7736 		if (is_iter_destroy_kfunc(meta)) {
7737 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7738 			if (err)
7739 				return err;
7740 		}
7741 	}
7742 
7743 	return 0;
7744 }
7745 
7746 /* Look for a previous loop entry at insn_idx: nearest parent state
7747  * stopped at insn_idx with callsites matching those in cur->frame.
7748  */
7749 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7750 						  struct bpf_verifier_state *cur,
7751 						  int insn_idx)
7752 {
7753 	struct bpf_verifier_state_list *sl;
7754 	struct bpf_verifier_state *st;
7755 
7756 	/* Explored states are pushed in stack order, most recent states come first */
7757 	sl = *explored_state(env, insn_idx);
7758 	for (; sl; sl = sl->next) {
7759 		/* If st->branches != 0 state is a part of current DFS verification path,
7760 		 * hence cur & st for a loop.
7761 		 */
7762 		st = &sl->state;
7763 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7764 		    st->dfs_depth < cur->dfs_depth)
7765 			return st;
7766 	}
7767 
7768 	return NULL;
7769 }
7770 
7771 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7772 static bool regs_exact(const struct bpf_reg_state *rold,
7773 		       const struct bpf_reg_state *rcur,
7774 		       struct bpf_idmap *idmap);
7775 
7776 static void maybe_widen_reg(struct bpf_verifier_env *env,
7777 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7778 			    struct bpf_idmap *idmap)
7779 {
7780 	if (rold->type != SCALAR_VALUE)
7781 		return;
7782 	if (rold->type != rcur->type)
7783 		return;
7784 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7785 		return;
7786 	__mark_reg_unknown(env, rcur);
7787 }
7788 
7789 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7790 				   struct bpf_verifier_state *old,
7791 				   struct bpf_verifier_state *cur)
7792 {
7793 	struct bpf_func_state *fold, *fcur;
7794 	int i, fr;
7795 
7796 	reset_idmap_scratch(env);
7797 	for (fr = old->curframe; fr >= 0; fr--) {
7798 		fold = old->frame[fr];
7799 		fcur = cur->frame[fr];
7800 
7801 		for (i = 0; i < MAX_BPF_REG; i++)
7802 			maybe_widen_reg(env,
7803 					&fold->regs[i],
7804 					&fcur->regs[i],
7805 					&env->idmap_scratch);
7806 
7807 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
7808 			if (!is_spilled_reg(&fold->stack[i]) ||
7809 			    !is_spilled_reg(&fcur->stack[i]))
7810 				continue;
7811 
7812 			maybe_widen_reg(env,
7813 					&fold->stack[i].spilled_ptr,
7814 					&fcur->stack[i].spilled_ptr,
7815 					&env->idmap_scratch);
7816 		}
7817 	}
7818 	return 0;
7819 }
7820 
7821 /* process_iter_next_call() is called when verifier gets to iterator's next
7822  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7823  * to it as just "iter_next()" in comments below.
7824  *
7825  * BPF verifier relies on a crucial contract for any iter_next()
7826  * implementation: it should *eventually* return NULL, and once that happens
7827  * it should keep returning NULL. That is, once iterator exhausts elements to
7828  * iterate, it should never reset or spuriously return new elements.
7829  *
7830  * With the assumption of such contract, process_iter_next_call() simulates
7831  * a fork in the verifier state to validate loop logic correctness and safety
7832  * without having to simulate infinite amount of iterations.
7833  *
7834  * In current state, we first assume that iter_next() returned NULL and
7835  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7836  * conditions we should not form an infinite loop and should eventually reach
7837  * exit.
7838  *
7839  * Besides that, we also fork current state and enqueue it for later
7840  * verification. In a forked state we keep iterator state as ACTIVE
7841  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7842  * also bump iteration depth to prevent erroneous infinite loop detection
7843  * later on (see iter_active_depths_differ() comment for details). In this
7844  * state we assume that we'll eventually loop back to another iter_next()
7845  * calls (it could be in exactly same location or in some other instruction,
7846  * it doesn't matter, we don't make any unnecessary assumptions about this,
7847  * everything revolves around iterator state in a stack slot, not which
7848  * instruction is calling iter_next()). When that happens, we either will come
7849  * to iter_next() with equivalent state and can conclude that next iteration
7850  * will proceed in exactly the same way as we just verified, so it's safe to
7851  * assume that loop converges. If not, we'll go on another iteration
7852  * simulation with a different input state, until all possible starting states
7853  * are validated or we reach maximum number of instructions limit.
7854  *
7855  * This way, we will either exhaustively discover all possible input states
7856  * that iterator loop can start with and eventually will converge, or we'll
7857  * effectively regress into bounded loop simulation logic and either reach
7858  * maximum number of instructions if loop is not provably convergent, or there
7859  * is some statically known limit on number of iterations (e.g., if there is
7860  * an explicit `if n > 100 then break;` statement somewhere in the loop).
7861  *
7862  * Iteration convergence logic in is_state_visited() relies on exact
7863  * states comparison, which ignores read and precision marks.
7864  * This is necessary because read and precision marks are not finalized
7865  * while in the loop. Exact comparison might preclude convergence for
7866  * simple programs like below:
7867  *
7868  *     i = 0;
7869  *     while(iter_next(&it))
7870  *       i++;
7871  *
7872  * At each iteration step i++ would produce a new distinct state and
7873  * eventually instruction processing limit would be reached.
7874  *
7875  * To avoid such behavior speculatively forget (widen) range for
7876  * imprecise scalar registers, if those registers were not precise at the
7877  * end of the previous iteration and do not match exactly.
7878  *
7879  * This is a conservative heuristic that allows to verify wide range of programs,
7880  * however it precludes verification of programs that conjure an
7881  * imprecise value on the first loop iteration and use it as precise on a second.
7882  * For example, the following safe program would fail to verify:
7883  *
7884  *     struct bpf_num_iter it;
7885  *     int arr[10];
7886  *     int i = 0, a = 0;
7887  *     bpf_iter_num_new(&it, 0, 10);
7888  *     while (bpf_iter_num_next(&it)) {
7889  *       if (a == 0) {
7890  *         a = 1;
7891  *         i = 7; // Because i changed verifier would forget
7892  *                // it's range on second loop entry.
7893  *       } else {
7894  *         arr[i] = 42; // This would fail to verify.
7895  *       }
7896  *     }
7897  *     bpf_iter_num_destroy(&it);
7898  */
7899 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7900 				  struct bpf_kfunc_call_arg_meta *meta)
7901 {
7902 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
7903 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7904 	struct bpf_reg_state *cur_iter, *queued_iter;
7905 	int iter_frameno = meta->iter.frameno;
7906 	int iter_spi = meta->iter.spi;
7907 
7908 	BTF_TYPE_EMIT(struct bpf_iter);
7909 
7910 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7911 
7912 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7913 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7914 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7915 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7916 		return -EFAULT;
7917 	}
7918 
7919 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7920 		/* Because iter_next() call is a checkpoint is_state_visitied()
7921 		 * should guarantee parent state with same call sites and insn_idx.
7922 		 */
7923 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
7924 		    !same_callsites(cur_st->parent, cur_st)) {
7925 			verbose(env, "bug: bad parent state for iter next call");
7926 			return -EFAULT;
7927 		}
7928 		/* Note cur_st->parent in the call below, it is necessary to skip
7929 		 * checkpoint created for cur_st by is_state_visited()
7930 		 * right at this instruction.
7931 		 */
7932 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
7933 		/* branch out active iter state */
7934 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7935 		if (!queued_st)
7936 			return -ENOMEM;
7937 
7938 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7939 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7940 		queued_iter->iter.depth++;
7941 		if (prev_st)
7942 			widen_imprecise_scalars(env, prev_st, queued_st);
7943 
7944 		queued_fr = queued_st->frame[queued_st->curframe];
7945 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7946 	}
7947 
7948 	/* switch to DRAINED state, but keep the depth unchanged */
7949 	/* mark current iter state as drained and assume returned NULL */
7950 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7951 	__mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]);
7952 
7953 	return 0;
7954 }
7955 
7956 static bool arg_type_is_mem_size(enum bpf_arg_type type)
7957 {
7958 	return type == ARG_CONST_SIZE ||
7959 	       type == ARG_CONST_SIZE_OR_ZERO;
7960 }
7961 
7962 static bool arg_type_is_release(enum bpf_arg_type type)
7963 {
7964 	return type & OBJ_RELEASE;
7965 }
7966 
7967 static bool arg_type_is_dynptr(enum bpf_arg_type type)
7968 {
7969 	return base_type(type) == ARG_PTR_TO_DYNPTR;
7970 }
7971 
7972 static int int_ptr_type_to_size(enum bpf_arg_type type)
7973 {
7974 	if (type == ARG_PTR_TO_INT)
7975 		return sizeof(u32);
7976 	else if (type == ARG_PTR_TO_LONG)
7977 		return sizeof(u64);
7978 
7979 	return -EINVAL;
7980 }
7981 
7982 static int resolve_map_arg_type(struct bpf_verifier_env *env,
7983 				 const struct bpf_call_arg_meta *meta,
7984 				 enum bpf_arg_type *arg_type)
7985 {
7986 	if (!meta->map_ptr) {
7987 		/* kernel subsystem misconfigured verifier */
7988 		verbose(env, "invalid map_ptr to access map->type\n");
7989 		return -EACCES;
7990 	}
7991 
7992 	switch (meta->map_ptr->map_type) {
7993 	case BPF_MAP_TYPE_SOCKMAP:
7994 	case BPF_MAP_TYPE_SOCKHASH:
7995 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
7996 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
7997 		} else {
7998 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
7999 			return -EINVAL;
8000 		}
8001 		break;
8002 	case BPF_MAP_TYPE_BLOOM_FILTER:
8003 		if (meta->func_id == BPF_FUNC_map_peek_elem)
8004 			*arg_type = ARG_PTR_TO_MAP_VALUE;
8005 		break;
8006 	default:
8007 		break;
8008 	}
8009 	return 0;
8010 }
8011 
8012 struct bpf_reg_types {
8013 	const enum bpf_reg_type types[10];
8014 	u32 *btf_id;
8015 };
8016 
8017 static const struct bpf_reg_types sock_types = {
8018 	.types = {
8019 		PTR_TO_SOCK_COMMON,
8020 		PTR_TO_SOCKET,
8021 		PTR_TO_TCP_SOCK,
8022 		PTR_TO_XDP_SOCK,
8023 	},
8024 };
8025 
8026 #ifdef CONFIG_NET
8027 static const struct bpf_reg_types btf_id_sock_common_types = {
8028 	.types = {
8029 		PTR_TO_SOCK_COMMON,
8030 		PTR_TO_SOCKET,
8031 		PTR_TO_TCP_SOCK,
8032 		PTR_TO_XDP_SOCK,
8033 		PTR_TO_BTF_ID,
8034 		PTR_TO_BTF_ID | PTR_TRUSTED,
8035 	},
8036 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8037 };
8038 #endif
8039 
8040 static const struct bpf_reg_types mem_types = {
8041 	.types = {
8042 		PTR_TO_STACK,
8043 		PTR_TO_PACKET,
8044 		PTR_TO_PACKET_META,
8045 		PTR_TO_MAP_KEY,
8046 		PTR_TO_MAP_VALUE,
8047 		PTR_TO_MEM,
8048 		PTR_TO_MEM | MEM_RINGBUF,
8049 		PTR_TO_BUF,
8050 		PTR_TO_BTF_ID | PTR_TRUSTED,
8051 	},
8052 };
8053 
8054 static const struct bpf_reg_types int_ptr_types = {
8055 	.types = {
8056 		PTR_TO_STACK,
8057 		PTR_TO_PACKET,
8058 		PTR_TO_PACKET_META,
8059 		PTR_TO_MAP_KEY,
8060 		PTR_TO_MAP_VALUE,
8061 	},
8062 };
8063 
8064 static const struct bpf_reg_types spin_lock_types = {
8065 	.types = {
8066 		PTR_TO_MAP_VALUE,
8067 		PTR_TO_BTF_ID | MEM_ALLOC,
8068 	}
8069 };
8070 
8071 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8072 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8073 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8074 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8075 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8076 static const struct bpf_reg_types btf_ptr_types = {
8077 	.types = {
8078 		PTR_TO_BTF_ID,
8079 		PTR_TO_BTF_ID | PTR_TRUSTED,
8080 		PTR_TO_BTF_ID | MEM_RCU,
8081 	},
8082 };
8083 static const struct bpf_reg_types percpu_btf_ptr_types = {
8084 	.types = {
8085 		PTR_TO_BTF_ID | MEM_PERCPU,
8086 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
8087 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8088 	}
8089 };
8090 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8091 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8092 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8093 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8094 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8095 static const struct bpf_reg_types dynptr_types = {
8096 	.types = {
8097 		PTR_TO_STACK,
8098 		CONST_PTR_TO_DYNPTR,
8099 	}
8100 };
8101 
8102 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8103 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
8104 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
8105 	[ARG_CONST_SIZE]		= &scalar_types,
8106 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
8107 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
8108 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
8109 	[ARG_PTR_TO_CTX]		= &context_types,
8110 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
8111 #ifdef CONFIG_NET
8112 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
8113 #endif
8114 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
8115 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
8116 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
8117 	[ARG_PTR_TO_MEM]		= &mem_types,
8118 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
8119 	[ARG_PTR_TO_INT]		= &int_ptr_types,
8120 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
8121 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
8122 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
8123 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
8124 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
8125 	[ARG_PTR_TO_TIMER]		= &timer_types,
8126 	[ARG_PTR_TO_KPTR]		= &kptr_types,
8127 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
8128 };
8129 
8130 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8131 			  enum bpf_arg_type arg_type,
8132 			  const u32 *arg_btf_id,
8133 			  struct bpf_call_arg_meta *meta)
8134 {
8135 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8136 	enum bpf_reg_type expected, type = reg->type;
8137 	const struct bpf_reg_types *compatible;
8138 	int i, j;
8139 
8140 	compatible = compatible_reg_types[base_type(arg_type)];
8141 	if (!compatible) {
8142 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8143 		return -EFAULT;
8144 	}
8145 
8146 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8147 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8148 	 *
8149 	 * Same for MAYBE_NULL:
8150 	 *
8151 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8152 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8153 	 *
8154 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8155 	 *
8156 	 * Therefore we fold these flags depending on the arg_type before comparison.
8157 	 */
8158 	if (arg_type & MEM_RDONLY)
8159 		type &= ~MEM_RDONLY;
8160 	if (arg_type & PTR_MAYBE_NULL)
8161 		type &= ~PTR_MAYBE_NULL;
8162 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
8163 		type &= ~DYNPTR_TYPE_FLAG_MASK;
8164 
8165 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) {
8166 		type &= ~MEM_ALLOC;
8167 		type &= ~MEM_PERCPU;
8168 	}
8169 
8170 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8171 		expected = compatible->types[i];
8172 		if (expected == NOT_INIT)
8173 			break;
8174 
8175 		if (type == expected)
8176 			goto found;
8177 	}
8178 
8179 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8180 	for (j = 0; j + 1 < i; j++)
8181 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8182 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8183 	return -EACCES;
8184 
8185 found:
8186 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8187 		return 0;
8188 
8189 	if (compatible == &mem_types) {
8190 		if (!(arg_type & MEM_RDONLY)) {
8191 			verbose(env,
8192 				"%s() may write into memory pointed by R%d type=%s\n",
8193 				func_id_name(meta->func_id),
8194 				regno, reg_type_str(env, reg->type));
8195 			return -EACCES;
8196 		}
8197 		return 0;
8198 	}
8199 
8200 	switch ((int)reg->type) {
8201 	case PTR_TO_BTF_ID:
8202 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8203 	case PTR_TO_BTF_ID | MEM_RCU:
8204 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8205 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8206 	{
8207 		/* For bpf_sk_release, it needs to match against first member
8208 		 * 'struct sock_common', hence make an exception for it. This
8209 		 * allows bpf_sk_release to work for multiple socket types.
8210 		 */
8211 		bool strict_type_match = arg_type_is_release(arg_type) &&
8212 					 meta->func_id != BPF_FUNC_sk_release;
8213 
8214 		if (type_may_be_null(reg->type) &&
8215 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8216 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8217 			return -EACCES;
8218 		}
8219 
8220 		if (!arg_btf_id) {
8221 			if (!compatible->btf_id) {
8222 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8223 				return -EFAULT;
8224 			}
8225 			arg_btf_id = compatible->btf_id;
8226 		}
8227 
8228 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8229 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8230 				return -EACCES;
8231 		} else {
8232 			if (arg_btf_id == BPF_PTR_POISON) {
8233 				verbose(env, "verifier internal error:");
8234 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8235 					regno);
8236 				return -EACCES;
8237 			}
8238 
8239 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8240 						  btf_vmlinux, *arg_btf_id,
8241 						  strict_type_match)) {
8242 				verbose(env, "R%d is of type %s but %s is expected\n",
8243 					regno, btf_type_name(reg->btf, reg->btf_id),
8244 					btf_type_name(btf_vmlinux, *arg_btf_id));
8245 				return -EACCES;
8246 			}
8247 		}
8248 		break;
8249 	}
8250 	case PTR_TO_BTF_ID | MEM_ALLOC:
8251 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8252 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8253 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8254 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8255 			return -EFAULT;
8256 		}
8257 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8258 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8259 				return -EACCES;
8260 		}
8261 		break;
8262 	case PTR_TO_BTF_ID | MEM_PERCPU:
8263 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8264 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8265 		/* Handled by helper specific checks */
8266 		break;
8267 	default:
8268 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8269 		return -EFAULT;
8270 	}
8271 	return 0;
8272 }
8273 
8274 static struct btf_field *
8275 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8276 {
8277 	struct btf_field *field;
8278 	struct btf_record *rec;
8279 
8280 	rec = reg_btf_record(reg);
8281 	if (!rec)
8282 		return NULL;
8283 
8284 	field = btf_record_find(rec, off, fields);
8285 	if (!field)
8286 		return NULL;
8287 
8288 	return field;
8289 }
8290 
8291 static int check_func_arg_reg_off(struct bpf_verifier_env *env,
8292 				  const struct bpf_reg_state *reg, int regno,
8293 				  enum bpf_arg_type arg_type)
8294 {
8295 	u32 type = reg->type;
8296 
8297 	/* When referenced register is passed to release function, its fixed
8298 	 * offset must be 0.
8299 	 *
8300 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8301 	 * meta->release_regno.
8302 	 */
8303 	if (arg_type_is_release(arg_type)) {
8304 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8305 		 * may not directly point to the object being released, but to
8306 		 * dynptr pointing to such object, which might be at some offset
8307 		 * on the stack. In that case, we simply to fallback to the
8308 		 * default handling.
8309 		 */
8310 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8311 			return 0;
8312 
8313 		/* Doing check_ptr_off_reg check for the offset will catch this
8314 		 * because fixed_off_ok is false, but checking here allows us
8315 		 * to give the user a better error message.
8316 		 */
8317 		if (reg->off) {
8318 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8319 				regno);
8320 			return -EINVAL;
8321 		}
8322 		return __check_ptr_off_reg(env, reg, regno, false);
8323 	}
8324 
8325 	switch (type) {
8326 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8327 	case PTR_TO_STACK:
8328 	case PTR_TO_PACKET:
8329 	case PTR_TO_PACKET_META:
8330 	case PTR_TO_MAP_KEY:
8331 	case PTR_TO_MAP_VALUE:
8332 	case PTR_TO_MEM:
8333 	case PTR_TO_MEM | MEM_RDONLY:
8334 	case PTR_TO_MEM | MEM_RINGBUF:
8335 	case PTR_TO_BUF:
8336 	case PTR_TO_BUF | MEM_RDONLY:
8337 	case SCALAR_VALUE:
8338 		return 0;
8339 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8340 	 * fixed offset.
8341 	 */
8342 	case PTR_TO_BTF_ID:
8343 	case PTR_TO_BTF_ID | MEM_ALLOC:
8344 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8345 	case PTR_TO_BTF_ID | MEM_RCU:
8346 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8347 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8348 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8349 		 * its fixed offset must be 0. In the other cases, fixed offset
8350 		 * can be non-zero. This was already checked above. So pass
8351 		 * fixed_off_ok as true to allow fixed offset for all other
8352 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8353 		 * still need to do checks instead of returning.
8354 		 */
8355 		return __check_ptr_off_reg(env, reg, regno, true);
8356 	default:
8357 		return __check_ptr_off_reg(env, reg, regno, false);
8358 	}
8359 }
8360 
8361 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8362 						const struct bpf_func_proto *fn,
8363 						struct bpf_reg_state *regs)
8364 {
8365 	struct bpf_reg_state *state = NULL;
8366 	int i;
8367 
8368 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8369 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8370 			if (state) {
8371 				verbose(env, "verifier internal error: multiple dynptr args\n");
8372 				return NULL;
8373 			}
8374 			state = &regs[BPF_REG_1 + i];
8375 		}
8376 
8377 	if (!state)
8378 		verbose(env, "verifier internal error: no dynptr arg found\n");
8379 
8380 	return state;
8381 }
8382 
8383 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8384 {
8385 	struct bpf_func_state *state = func(env, reg);
8386 	int spi;
8387 
8388 	if (reg->type == CONST_PTR_TO_DYNPTR)
8389 		return reg->id;
8390 	spi = dynptr_get_spi(env, reg);
8391 	if (spi < 0)
8392 		return spi;
8393 	return state->stack[spi].spilled_ptr.id;
8394 }
8395 
8396 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8397 {
8398 	struct bpf_func_state *state = func(env, reg);
8399 	int spi;
8400 
8401 	if (reg->type == CONST_PTR_TO_DYNPTR)
8402 		return reg->ref_obj_id;
8403 	spi = dynptr_get_spi(env, reg);
8404 	if (spi < 0)
8405 		return spi;
8406 	return state->stack[spi].spilled_ptr.ref_obj_id;
8407 }
8408 
8409 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8410 					    struct bpf_reg_state *reg)
8411 {
8412 	struct bpf_func_state *state = func(env, reg);
8413 	int spi;
8414 
8415 	if (reg->type == CONST_PTR_TO_DYNPTR)
8416 		return reg->dynptr.type;
8417 
8418 	spi = __get_spi(reg->off);
8419 	if (spi < 0) {
8420 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8421 		return BPF_DYNPTR_TYPE_INVALID;
8422 	}
8423 
8424 	return state->stack[spi].spilled_ptr.dynptr.type;
8425 }
8426 
8427 static int check_reg_const_str(struct bpf_verifier_env *env,
8428 			       struct bpf_reg_state *reg, u32 regno)
8429 {
8430 	struct bpf_map *map = reg->map_ptr;
8431 	int err;
8432 	int map_off;
8433 	u64 map_addr;
8434 	char *str_ptr;
8435 
8436 	if (reg->type != PTR_TO_MAP_VALUE)
8437 		return -EINVAL;
8438 
8439 	if (!bpf_map_is_rdonly(map)) {
8440 		verbose(env, "R%d does not point to a readonly map'\n", regno);
8441 		return -EACCES;
8442 	}
8443 
8444 	if (!tnum_is_const(reg->var_off)) {
8445 		verbose(env, "R%d is not a constant address'\n", regno);
8446 		return -EACCES;
8447 	}
8448 
8449 	if (!map->ops->map_direct_value_addr) {
8450 		verbose(env, "no direct value access support for this map type\n");
8451 		return -EACCES;
8452 	}
8453 
8454 	err = check_map_access(env, regno, reg->off,
8455 			       map->value_size - reg->off, false,
8456 			       ACCESS_HELPER);
8457 	if (err)
8458 		return err;
8459 
8460 	map_off = reg->off + reg->var_off.value;
8461 	err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8462 	if (err) {
8463 		verbose(env, "direct value access on string failed\n");
8464 		return err;
8465 	}
8466 
8467 	str_ptr = (char *)(long)(map_addr);
8468 	if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8469 		verbose(env, "string is not zero-terminated\n");
8470 		return -EINVAL;
8471 	}
8472 	return 0;
8473 }
8474 
8475 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8476 			  struct bpf_call_arg_meta *meta,
8477 			  const struct bpf_func_proto *fn,
8478 			  int insn_idx)
8479 {
8480 	u32 regno = BPF_REG_1 + arg;
8481 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8482 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8483 	enum bpf_reg_type type = reg->type;
8484 	u32 *arg_btf_id = NULL;
8485 	int err = 0;
8486 
8487 	if (arg_type == ARG_DONTCARE)
8488 		return 0;
8489 
8490 	err = check_reg_arg(env, regno, SRC_OP);
8491 	if (err)
8492 		return err;
8493 
8494 	if (arg_type == ARG_ANYTHING) {
8495 		if (is_pointer_value(env, regno)) {
8496 			verbose(env, "R%d leaks addr into helper function\n",
8497 				regno);
8498 			return -EACCES;
8499 		}
8500 		return 0;
8501 	}
8502 
8503 	if (type_is_pkt_pointer(type) &&
8504 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8505 		verbose(env, "helper access to the packet is not allowed\n");
8506 		return -EACCES;
8507 	}
8508 
8509 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8510 		err = resolve_map_arg_type(env, meta, &arg_type);
8511 		if (err)
8512 			return err;
8513 	}
8514 
8515 	if (register_is_null(reg) && type_may_be_null(arg_type))
8516 		/* A NULL register has a SCALAR_VALUE type, so skip
8517 		 * type checking.
8518 		 */
8519 		goto skip_type_check;
8520 
8521 	/* arg_btf_id and arg_size are in a union. */
8522 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8523 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8524 		arg_btf_id = fn->arg_btf_id[arg];
8525 
8526 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8527 	if (err)
8528 		return err;
8529 
8530 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8531 	if (err)
8532 		return err;
8533 
8534 skip_type_check:
8535 	if (arg_type_is_release(arg_type)) {
8536 		if (arg_type_is_dynptr(arg_type)) {
8537 			struct bpf_func_state *state = func(env, reg);
8538 			int spi;
8539 
8540 			/* Only dynptr created on stack can be released, thus
8541 			 * the get_spi and stack state checks for spilled_ptr
8542 			 * should only be done before process_dynptr_func for
8543 			 * PTR_TO_STACK.
8544 			 */
8545 			if (reg->type == PTR_TO_STACK) {
8546 				spi = dynptr_get_spi(env, reg);
8547 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8548 					verbose(env, "arg %d is an unacquired reference\n", regno);
8549 					return -EINVAL;
8550 				}
8551 			} else {
8552 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8553 				return -EINVAL;
8554 			}
8555 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8556 			verbose(env, "R%d must be referenced when passed to release function\n",
8557 				regno);
8558 			return -EINVAL;
8559 		}
8560 		if (meta->release_regno) {
8561 			verbose(env, "verifier internal error: more than one release argument\n");
8562 			return -EFAULT;
8563 		}
8564 		meta->release_regno = regno;
8565 	}
8566 
8567 	if (reg->ref_obj_id) {
8568 		if (meta->ref_obj_id) {
8569 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8570 				regno, reg->ref_obj_id,
8571 				meta->ref_obj_id);
8572 			return -EFAULT;
8573 		}
8574 		meta->ref_obj_id = reg->ref_obj_id;
8575 	}
8576 
8577 	switch (base_type(arg_type)) {
8578 	case ARG_CONST_MAP_PTR:
8579 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8580 		if (meta->map_ptr) {
8581 			/* Use map_uid (which is unique id of inner map) to reject:
8582 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8583 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8584 			 * if (inner_map1 && inner_map2) {
8585 			 *     timer = bpf_map_lookup_elem(inner_map1);
8586 			 *     if (timer)
8587 			 *         // mismatch would have been allowed
8588 			 *         bpf_timer_init(timer, inner_map2);
8589 			 * }
8590 			 *
8591 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8592 			 */
8593 			if (meta->map_ptr != reg->map_ptr ||
8594 			    meta->map_uid != reg->map_uid) {
8595 				verbose(env,
8596 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8597 					meta->map_uid, reg->map_uid);
8598 				return -EINVAL;
8599 			}
8600 		}
8601 		meta->map_ptr = reg->map_ptr;
8602 		meta->map_uid = reg->map_uid;
8603 		break;
8604 	case ARG_PTR_TO_MAP_KEY:
8605 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8606 		 * check that [key, key + map->key_size) are within
8607 		 * stack limits and initialized
8608 		 */
8609 		if (!meta->map_ptr) {
8610 			/* in function declaration map_ptr must come before
8611 			 * map_key, so that it's verified and known before
8612 			 * we have to check map_key here. Otherwise it means
8613 			 * that kernel subsystem misconfigured verifier
8614 			 */
8615 			verbose(env, "invalid map_ptr to access map->key\n");
8616 			return -EACCES;
8617 		}
8618 		err = check_helper_mem_access(env, regno,
8619 					      meta->map_ptr->key_size, false,
8620 					      NULL);
8621 		break;
8622 	case ARG_PTR_TO_MAP_VALUE:
8623 		if (type_may_be_null(arg_type) && register_is_null(reg))
8624 			return 0;
8625 
8626 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8627 		 * check [value, value + map->value_size) validity
8628 		 */
8629 		if (!meta->map_ptr) {
8630 			/* kernel subsystem misconfigured verifier */
8631 			verbose(env, "invalid map_ptr to access map->value\n");
8632 			return -EACCES;
8633 		}
8634 		meta->raw_mode = arg_type & MEM_UNINIT;
8635 		err = check_helper_mem_access(env, regno,
8636 					      meta->map_ptr->value_size, false,
8637 					      meta);
8638 		break;
8639 	case ARG_PTR_TO_PERCPU_BTF_ID:
8640 		if (!reg->btf_id) {
8641 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8642 			return -EACCES;
8643 		}
8644 		meta->ret_btf = reg->btf;
8645 		meta->ret_btf_id = reg->btf_id;
8646 		break;
8647 	case ARG_PTR_TO_SPIN_LOCK:
8648 		if (in_rbtree_lock_required_cb(env)) {
8649 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8650 			return -EACCES;
8651 		}
8652 		if (meta->func_id == BPF_FUNC_spin_lock) {
8653 			err = process_spin_lock(env, regno, true);
8654 			if (err)
8655 				return err;
8656 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8657 			err = process_spin_lock(env, regno, false);
8658 			if (err)
8659 				return err;
8660 		} else {
8661 			verbose(env, "verifier internal error\n");
8662 			return -EFAULT;
8663 		}
8664 		break;
8665 	case ARG_PTR_TO_TIMER:
8666 		err = process_timer_func(env, regno, meta);
8667 		if (err)
8668 			return err;
8669 		break;
8670 	case ARG_PTR_TO_FUNC:
8671 		meta->subprogno = reg->subprogno;
8672 		break;
8673 	case ARG_PTR_TO_MEM:
8674 		/* The access to this pointer is only checked when we hit the
8675 		 * next is_mem_size argument below.
8676 		 */
8677 		meta->raw_mode = arg_type & MEM_UNINIT;
8678 		if (arg_type & MEM_FIXED_SIZE) {
8679 			err = check_helper_mem_access(env, regno,
8680 						      fn->arg_size[arg], false,
8681 						      meta);
8682 		}
8683 		break;
8684 	case ARG_CONST_SIZE:
8685 		err = check_mem_size_reg(env, reg, regno, false, meta);
8686 		break;
8687 	case ARG_CONST_SIZE_OR_ZERO:
8688 		err = check_mem_size_reg(env, reg, regno, true, meta);
8689 		break;
8690 	case ARG_PTR_TO_DYNPTR:
8691 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8692 		if (err)
8693 			return err;
8694 		break;
8695 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8696 		if (!tnum_is_const(reg->var_off)) {
8697 			verbose(env, "R%d is not a known constant'\n",
8698 				regno);
8699 			return -EACCES;
8700 		}
8701 		meta->mem_size = reg->var_off.value;
8702 		err = mark_chain_precision(env, regno);
8703 		if (err)
8704 			return err;
8705 		break;
8706 	case ARG_PTR_TO_INT:
8707 	case ARG_PTR_TO_LONG:
8708 	{
8709 		int size = int_ptr_type_to_size(arg_type);
8710 
8711 		err = check_helper_mem_access(env, regno, size, false, meta);
8712 		if (err)
8713 			return err;
8714 		err = check_ptr_alignment(env, reg, 0, size, true);
8715 		break;
8716 	}
8717 	case ARG_PTR_TO_CONST_STR:
8718 	{
8719 		err = check_reg_const_str(env, reg, regno);
8720 		if (err)
8721 			return err;
8722 		break;
8723 	}
8724 	case ARG_PTR_TO_KPTR:
8725 		err = process_kptr_func(env, regno, meta);
8726 		if (err)
8727 			return err;
8728 		break;
8729 	}
8730 
8731 	return err;
8732 }
8733 
8734 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8735 {
8736 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8737 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8738 
8739 	if (func_id != BPF_FUNC_map_update_elem)
8740 		return false;
8741 
8742 	/* It's not possible to get access to a locked struct sock in these
8743 	 * contexts, so updating is safe.
8744 	 */
8745 	switch (type) {
8746 	case BPF_PROG_TYPE_TRACING:
8747 		if (eatype == BPF_TRACE_ITER)
8748 			return true;
8749 		break;
8750 	case BPF_PROG_TYPE_SOCKET_FILTER:
8751 	case BPF_PROG_TYPE_SCHED_CLS:
8752 	case BPF_PROG_TYPE_SCHED_ACT:
8753 	case BPF_PROG_TYPE_XDP:
8754 	case BPF_PROG_TYPE_SK_REUSEPORT:
8755 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8756 	case BPF_PROG_TYPE_SK_LOOKUP:
8757 		return true;
8758 	default:
8759 		break;
8760 	}
8761 
8762 	verbose(env, "cannot update sockmap in this context\n");
8763 	return false;
8764 }
8765 
8766 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8767 {
8768 	return env->prog->jit_requested &&
8769 	       bpf_jit_supports_subprog_tailcalls();
8770 }
8771 
8772 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8773 					struct bpf_map *map, int func_id)
8774 {
8775 	if (!map)
8776 		return 0;
8777 
8778 	/* We need a two way check, first is from map perspective ... */
8779 	switch (map->map_type) {
8780 	case BPF_MAP_TYPE_PROG_ARRAY:
8781 		if (func_id != BPF_FUNC_tail_call)
8782 			goto error;
8783 		break;
8784 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8785 		if (func_id != BPF_FUNC_perf_event_read &&
8786 		    func_id != BPF_FUNC_perf_event_output &&
8787 		    func_id != BPF_FUNC_skb_output &&
8788 		    func_id != BPF_FUNC_perf_event_read_value &&
8789 		    func_id != BPF_FUNC_xdp_output)
8790 			goto error;
8791 		break;
8792 	case BPF_MAP_TYPE_RINGBUF:
8793 		if (func_id != BPF_FUNC_ringbuf_output &&
8794 		    func_id != BPF_FUNC_ringbuf_reserve &&
8795 		    func_id != BPF_FUNC_ringbuf_query &&
8796 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8797 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8798 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8799 			goto error;
8800 		break;
8801 	case BPF_MAP_TYPE_USER_RINGBUF:
8802 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8803 			goto error;
8804 		break;
8805 	case BPF_MAP_TYPE_STACK_TRACE:
8806 		if (func_id != BPF_FUNC_get_stackid)
8807 			goto error;
8808 		break;
8809 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8810 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8811 		    func_id != BPF_FUNC_current_task_under_cgroup)
8812 			goto error;
8813 		break;
8814 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8815 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8816 		if (func_id != BPF_FUNC_get_local_storage)
8817 			goto error;
8818 		break;
8819 	case BPF_MAP_TYPE_DEVMAP:
8820 	case BPF_MAP_TYPE_DEVMAP_HASH:
8821 		if (func_id != BPF_FUNC_redirect_map &&
8822 		    func_id != BPF_FUNC_map_lookup_elem)
8823 			goto error;
8824 		break;
8825 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8826 	 * appear.
8827 	 */
8828 	case BPF_MAP_TYPE_CPUMAP:
8829 		if (func_id != BPF_FUNC_redirect_map)
8830 			goto error;
8831 		break;
8832 	case BPF_MAP_TYPE_XSKMAP:
8833 		if (func_id != BPF_FUNC_redirect_map &&
8834 		    func_id != BPF_FUNC_map_lookup_elem)
8835 			goto error;
8836 		break;
8837 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8838 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8839 		if (func_id != BPF_FUNC_map_lookup_elem)
8840 			goto error;
8841 		break;
8842 	case BPF_MAP_TYPE_SOCKMAP:
8843 		if (func_id != BPF_FUNC_sk_redirect_map &&
8844 		    func_id != BPF_FUNC_sock_map_update &&
8845 		    func_id != BPF_FUNC_map_delete_elem &&
8846 		    func_id != BPF_FUNC_msg_redirect_map &&
8847 		    func_id != BPF_FUNC_sk_select_reuseport &&
8848 		    func_id != BPF_FUNC_map_lookup_elem &&
8849 		    !may_update_sockmap(env, func_id))
8850 			goto error;
8851 		break;
8852 	case BPF_MAP_TYPE_SOCKHASH:
8853 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8854 		    func_id != BPF_FUNC_sock_hash_update &&
8855 		    func_id != BPF_FUNC_map_delete_elem &&
8856 		    func_id != BPF_FUNC_msg_redirect_hash &&
8857 		    func_id != BPF_FUNC_sk_select_reuseport &&
8858 		    func_id != BPF_FUNC_map_lookup_elem &&
8859 		    !may_update_sockmap(env, func_id))
8860 			goto error;
8861 		break;
8862 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8863 		if (func_id != BPF_FUNC_sk_select_reuseport)
8864 			goto error;
8865 		break;
8866 	case BPF_MAP_TYPE_QUEUE:
8867 	case BPF_MAP_TYPE_STACK:
8868 		if (func_id != BPF_FUNC_map_peek_elem &&
8869 		    func_id != BPF_FUNC_map_pop_elem &&
8870 		    func_id != BPF_FUNC_map_push_elem)
8871 			goto error;
8872 		break;
8873 	case BPF_MAP_TYPE_SK_STORAGE:
8874 		if (func_id != BPF_FUNC_sk_storage_get &&
8875 		    func_id != BPF_FUNC_sk_storage_delete &&
8876 		    func_id != BPF_FUNC_kptr_xchg)
8877 			goto error;
8878 		break;
8879 	case BPF_MAP_TYPE_INODE_STORAGE:
8880 		if (func_id != BPF_FUNC_inode_storage_get &&
8881 		    func_id != BPF_FUNC_inode_storage_delete &&
8882 		    func_id != BPF_FUNC_kptr_xchg)
8883 			goto error;
8884 		break;
8885 	case BPF_MAP_TYPE_TASK_STORAGE:
8886 		if (func_id != BPF_FUNC_task_storage_get &&
8887 		    func_id != BPF_FUNC_task_storage_delete &&
8888 		    func_id != BPF_FUNC_kptr_xchg)
8889 			goto error;
8890 		break;
8891 	case BPF_MAP_TYPE_CGRP_STORAGE:
8892 		if (func_id != BPF_FUNC_cgrp_storage_get &&
8893 		    func_id != BPF_FUNC_cgrp_storage_delete &&
8894 		    func_id != BPF_FUNC_kptr_xchg)
8895 			goto error;
8896 		break;
8897 	case BPF_MAP_TYPE_BLOOM_FILTER:
8898 		if (func_id != BPF_FUNC_map_peek_elem &&
8899 		    func_id != BPF_FUNC_map_push_elem)
8900 			goto error;
8901 		break;
8902 	default:
8903 		break;
8904 	}
8905 
8906 	/* ... and second from the function itself. */
8907 	switch (func_id) {
8908 	case BPF_FUNC_tail_call:
8909 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8910 			goto error;
8911 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8912 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8913 			return -EINVAL;
8914 		}
8915 		break;
8916 	case BPF_FUNC_perf_event_read:
8917 	case BPF_FUNC_perf_event_output:
8918 	case BPF_FUNC_perf_event_read_value:
8919 	case BPF_FUNC_skb_output:
8920 	case BPF_FUNC_xdp_output:
8921 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8922 			goto error;
8923 		break;
8924 	case BPF_FUNC_ringbuf_output:
8925 	case BPF_FUNC_ringbuf_reserve:
8926 	case BPF_FUNC_ringbuf_query:
8927 	case BPF_FUNC_ringbuf_reserve_dynptr:
8928 	case BPF_FUNC_ringbuf_submit_dynptr:
8929 	case BPF_FUNC_ringbuf_discard_dynptr:
8930 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8931 			goto error;
8932 		break;
8933 	case BPF_FUNC_user_ringbuf_drain:
8934 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8935 			goto error;
8936 		break;
8937 	case BPF_FUNC_get_stackid:
8938 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8939 			goto error;
8940 		break;
8941 	case BPF_FUNC_current_task_under_cgroup:
8942 	case BPF_FUNC_skb_under_cgroup:
8943 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8944 			goto error;
8945 		break;
8946 	case BPF_FUNC_redirect_map:
8947 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8948 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8949 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
8950 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
8951 			goto error;
8952 		break;
8953 	case BPF_FUNC_sk_redirect_map:
8954 	case BPF_FUNC_msg_redirect_map:
8955 	case BPF_FUNC_sock_map_update:
8956 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8957 			goto error;
8958 		break;
8959 	case BPF_FUNC_sk_redirect_hash:
8960 	case BPF_FUNC_msg_redirect_hash:
8961 	case BPF_FUNC_sock_hash_update:
8962 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8963 			goto error;
8964 		break;
8965 	case BPF_FUNC_get_local_storage:
8966 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8967 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8968 			goto error;
8969 		break;
8970 	case BPF_FUNC_sk_select_reuseport:
8971 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8972 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8973 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
8974 			goto error;
8975 		break;
8976 	case BPF_FUNC_map_pop_elem:
8977 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8978 		    map->map_type != BPF_MAP_TYPE_STACK)
8979 			goto error;
8980 		break;
8981 	case BPF_FUNC_map_peek_elem:
8982 	case BPF_FUNC_map_push_elem:
8983 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8984 		    map->map_type != BPF_MAP_TYPE_STACK &&
8985 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8986 			goto error;
8987 		break;
8988 	case BPF_FUNC_map_lookup_percpu_elem:
8989 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8990 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8991 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
8992 			goto error;
8993 		break;
8994 	case BPF_FUNC_sk_storage_get:
8995 	case BPF_FUNC_sk_storage_delete:
8996 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
8997 			goto error;
8998 		break;
8999 	case BPF_FUNC_inode_storage_get:
9000 	case BPF_FUNC_inode_storage_delete:
9001 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9002 			goto error;
9003 		break;
9004 	case BPF_FUNC_task_storage_get:
9005 	case BPF_FUNC_task_storage_delete:
9006 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9007 			goto error;
9008 		break;
9009 	case BPF_FUNC_cgrp_storage_get:
9010 	case BPF_FUNC_cgrp_storage_delete:
9011 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9012 			goto error;
9013 		break;
9014 	default:
9015 		break;
9016 	}
9017 
9018 	return 0;
9019 error:
9020 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
9021 		map->map_type, func_id_name(func_id), func_id);
9022 	return -EINVAL;
9023 }
9024 
9025 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9026 {
9027 	int count = 0;
9028 
9029 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
9030 		count++;
9031 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
9032 		count++;
9033 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
9034 		count++;
9035 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
9036 		count++;
9037 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
9038 		count++;
9039 
9040 	/* We only support one arg being in raw mode at the moment,
9041 	 * which is sufficient for the helper functions we have
9042 	 * right now.
9043 	 */
9044 	return count <= 1;
9045 }
9046 
9047 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9048 {
9049 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9050 	bool has_size = fn->arg_size[arg] != 0;
9051 	bool is_next_size = false;
9052 
9053 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9054 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9055 
9056 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9057 		return is_next_size;
9058 
9059 	return has_size == is_next_size || is_next_size == is_fixed;
9060 }
9061 
9062 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9063 {
9064 	/* bpf_xxx(..., buf, len) call will access 'len'
9065 	 * bytes from memory 'buf'. Both arg types need
9066 	 * to be paired, so make sure there's no buggy
9067 	 * helper function specification.
9068 	 */
9069 	if (arg_type_is_mem_size(fn->arg1_type) ||
9070 	    check_args_pair_invalid(fn, 0) ||
9071 	    check_args_pair_invalid(fn, 1) ||
9072 	    check_args_pair_invalid(fn, 2) ||
9073 	    check_args_pair_invalid(fn, 3) ||
9074 	    check_args_pair_invalid(fn, 4))
9075 		return false;
9076 
9077 	return true;
9078 }
9079 
9080 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9081 {
9082 	int i;
9083 
9084 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9085 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9086 			return !!fn->arg_btf_id[i];
9087 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9088 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
9089 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9090 		    /* arg_btf_id and arg_size are in a union. */
9091 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9092 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9093 			return false;
9094 	}
9095 
9096 	return true;
9097 }
9098 
9099 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9100 {
9101 	return check_raw_mode_ok(fn) &&
9102 	       check_arg_pair_ok(fn) &&
9103 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
9104 }
9105 
9106 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9107  * are now invalid, so turn them into unknown SCALAR_VALUE.
9108  *
9109  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9110  * since these slices point to packet data.
9111  */
9112 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9113 {
9114 	struct bpf_func_state *state;
9115 	struct bpf_reg_state *reg;
9116 
9117 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9118 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9119 			mark_reg_invalid(env, reg);
9120 	}));
9121 }
9122 
9123 enum {
9124 	AT_PKT_END = -1,
9125 	BEYOND_PKT_END = -2,
9126 };
9127 
9128 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9129 {
9130 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9131 	struct bpf_reg_state *reg = &state->regs[regn];
9132 
9133 	if (reg->type != PTR_TO_PACKET)
9134 		/* PTR_TO_PACKET_META is not supported yet */
9135 		return;
9136 
9137 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9138 	 * How far beyond pkt_end it goes is unknown.
9139 	 * if (!range_open) it's the case of pkt >= pkt_end
9140 	 * if (range_open) it's the case of pkt > pkt_end
9141 	 * hence this pointer is at least 1 byte bigger than pkt_end
9142 	 */
9143 	if (range_open)
9144 		reg->range = BEYOND_PKT_END;
9145 	else
9146 		reg->range = AT_PKT_END;
9147 }
9148 
9149 /* The pointer with the specified id has released its reference to kernel
9150  * resources. Identify all copies of the same pointer and clear the reference.
9151  */
9152 static int release_reference(struct bpf_verifier_env *env,
9153 			     int ref_obj_id)
9154 {
9155 	struct bpf_func_state *state;
9156 	struct bpf_reg_state *reg;
9157 	int err;
9158 
9159 	err = release_reference_state(cur_func(env), ref_obj_id);
9160 	if (err)
9161 		return err;
9162 
9163 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9164 		if (reg->ref_obj_id == ref_obj_id)
9165 			mark_reg_invalid(env, reg);
9166 	}));
9167 
9168 	return 0;
9169 }
9170 
9171 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9172 {
9173 	struct bpf_func_state *unused;
9174 	struct bpf_reg_state *reg;
9175 
9176 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9177 		if (type_is_non_owning_ref(reg->type))
9178 			mark_reg_invalid(env, reg);
9179 	}));
9180 }
9181 
9182 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9183 				    struct bpf_reg_state *regs)
9184 {
9185 	int i;
9186 
9187 	/* after the call registers r0 - r5 were scratched */
9188 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9189 		mark_reg_not_init(env, regs, caller_saved[i]);
9190 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9191 	}
9192 }
9193 
9194 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9195 				   struct bpf_func_state *caller,
9196 				   struct bpf_func_state *callee,
9197 				   int insn_idx);
9198 
9199 static int set_callee_state(struct bpf_verifier_env *env,
9200 			    struct bpf_func_state *caller,
9201 			    struct bpf_func_state *callee, int insn_idx);
9202 
9203 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9204 			    set_callee_state_fn set_callee_state_cb,
9205 			    struct bpf_verifier_state *state)
9206 {
9207 	struct bpf_func_state *caller, *callee;
9208 	int err;
9209 
9210 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9211 		verbose(env, "the call stack of %d frames is too deep\n",
9212 			state->curframe + 2);
9213 		return -E2BIG;
9214 	}
9215 
9216 	if (state->frame[state->curframe + 1]) {
9217 		verbose(env, "verifier bug. Frame %d already allocated\n",
9218 			state->curframe + 1);
9219 		return -EFAULT;
9220 	}
9221 
9222 	caller = state->frame[state->curframe];
9223 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9224 	if (!callee)
9225 		return -ENOMEM;
9226 	state->frame[state->curframe + 1] = callee;
9227 
9228 	/* callee cannot access r0, r6 - r9 for reading and has to write
9229 	 * into its own stack before reading from it.
9230 	 * callee can read/write into caller's stack
9231 	 */
9232 	init_func_state(env, callee,
9233 			/* remember the callsite, it will be used by bpf_exit */
9234 			callsite,
9235 			state->curframe + 1 /* frameno within this callchain */,
9236 			subprog /* subprog number within this prog */);
9237 	/* Transfer references to the callee */
9238 	err = copy_reference_state(callee, caller);
9239 	err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9240 	if (err)
9241 		goto err_out;
9242 
9243 	/* only increment it after check_reg_arg() finished */
9244 	state->curframe++;
9245 
9246 	return 0;
9247 
9248 err_out:
9249 	free_func_state(callee);
9250 	state->frame[state->curframe + 1] = NULL;
9251 	return err;
9252 }
9253 
9254 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
9255 				    const struct btf *btf,
9256 				    struct bpf_reg_state *regs)
9257 {
9258 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
9259 	struct bpf_verifier_log *log = &env->log;
9260 	u32 i;
9261 	int ret;
9262 
9263 	ret = btf_prepare_func_args(env, subprog);
9264 	if (ret)
9265 		return ret;
9266 
9267 	/* check that BTF function arguments match actual types that the
9268 	 * verifier sees.
9269 	 */
9270 	for (i = 0; i < sub->arg_cnt; i++) {
9271 		u32 regno = i + 1;
9272 		struct bpf_reg_state *reg = &regs[regno];
9273 		struct bpf_subprog_arg_info *arg = &sub->args[i];
9274 
9275 		if (arg->arg_type == ARG_ANYTHING) {
9276 			if (reg->type != SCALAR_VALUE) {
9277 				bpf_log(log, "R%d is not a scalar\n", regno);
9278 				return -EINVAL;
9279 			}
9280 		} else if (arg->arg_type == ARG_PTR_TO_CTX) {
9281 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9282 			if (ret < 0)
9283 				return ret;
9284 			/* If function expects ctx type in BTF check that caller
9285 			 * is passing PTR_TO_CTX.
9286 			 */
9287 			if (reg->type != PTR_TO_CTX) {
9288 				bpf_log(log, "arg#%d expects pointer to ctx\n", i);
9289 				return -EINVAL;
9290 			}
9291 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
9292 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9293 			if (ret < 0)
9294 				return ret;
9295 			if (check_mem_reg(env, reg, regno, arg->mem_size))
9296 				return -EINVAL;
9297 			if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) {
9298 				bpf_log(log, "arg#%d is expected to be non-NULL\n", i);
9299 				return -EINVAL;
9300 			}
9301 		} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
9302 			ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0);
9303 			if (ret)
9304 				return ret;
9305 		} else {
9306 			bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n",
9307 				i, arg->arg_type);
9308 			return -EFAULT;
9309 		}
9310 	}
9311 
9312 	return 0;
9313 }
9314 
9315 /* Compare BTF of a function call with given bpf_reg_state.
9316  * Returns:
9317  * EFAULT - there is a verifier bug. Abort verification.
9318  * EINVAL - there is a type mismatch or BTF is not available.
9319  * 0 - BTF matches with what bpf_reg_state expects.
9320  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
9321  */
9322 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
9323 				  struct bpf_reg_state *regs)
9324 {
9325 	struct bpf_prog *prog = env->prog;
9326 	struct btf *btf = prog->aux->btf;
9327 	u32 btf_id;
9328 	int err;
9329 
9330 	if (!prog->aux->func_info)
9331 		return -EINVAL;
9332 
9333 	btf_id = prog->aux->func_info[subprog].type_id;
9334 	if (!btf_id)
9335 		return -EFAULT;
9336 
9337 	if (prog->aux->func_info_aux[subprog].unreliable)
9338 		return -EINVAL;
9339 
9340 	err = btf_check_func_arg_match(env, subprog, btf, regs);
9341 	/* Compiler optimizations can remove arguments from static functions
9342 	 * or mismatched type can be passed into a global function.
9343 	 * In such cases mark the function as unreliable from BTF point of view.
9344 	 */
9345 	if (err)
9346 		prog->aux->func_info_aux[subprog].unreliable = true;
9347 	return err;
9348 }
9349 
9350 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9351 			      int insn_idx, int subprog,
9352 			      set_callee_state_fn set_callee_state_cb)
9353 {
9354 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
9355 	struct bpf_func_state *caller, *callee;
9356 	int err;
9357 
9358 	caller = state->frame[state->curframe];
9359 	err = btf_check_subprog_call(env, subprog, caller->regs);
9360 	if (err == -EFAULT)
9361 		return err;
9362 
9363 	/* set_callee_state is used for direct subprog calls, but we are
9364 	 * interested in validating only BPF helpers that can call subprogs as
9365 	 * callbacks
9366 	 */
9367 	env->subprog_info[subprog].is_cb = true;
9368 	if (bpf_pseudo_kfunc_call(insn) &&
9369 	    !is_sync_callback_calling_kfunc(insn->imm)) {
9370 		verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9371 			func_id_name(insn->imm), insn->imm);
9372 		return -EFAULT;
9373 	} else if (!bpf_pseudo_kfunc_call(insn) &&
9374 		   !is_callback_calling_function(insn->imm)) { /* helper */
9375 		verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9376 			func_id_name(insn->imm), insn->imm);
9377 		return -EFAULT;
9378 	}
9379 
9380 	if (insn->code == (BPF_JMP | BPF_CALL) &&
9381 	    insn->src_reg == 0 &&
9382 	    insn->imm == BPF_FUNC_timer_set_callback) {
9383 		struct bpf_verifier_state *async_cb;
9384 
9385 		/* there is no real recursion here. timer callbacks are async */
9386 		env->subprog_info[subprog].is_async_cb = true;
9387 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9388 					 insn_idx, subprog);
9389 		if (!async_cb)
9390 			return -EFAULT;
9391 		callee = async_cb->frame[0];
9392 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9393 
9394 		/* Convert bpf_timer_set_callback() args into timer callback args */
9395 		err = set_callee_state_cb(env, caller, callee, insn_idx);
9396 		if (err)
9397 			return err;
9398 
9399 		return 0;
9400 	}
9401 
9402 	/* for callback functions enqueue entry to callback and
9403 	 * proceed with next instruction within current frame.
9404 	 */
9405 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9406 	if (!callback_state)
9407 		return -ENOMEM;
9408 
9409 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9410 			       callback_state);
9411 	if (err)
9412 		return err;
9413 
9414 	callback_state->callback_unroll_depth++;
9415 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9416 	caller->callback_depth = 0;
9417 	return 0;
9418 }
9419 
9420 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9421 			   int *insn_idx)
9422 {
9423 	struct bpf_verifier_state *state = env->cur_state;
9424 	struct bpf_func_state *caller;
9425 	int err, subprog, target_insn;
9426 
9427 	target_insn = *insn_idx + insn->imm + 1;
9428 	subprog = find_subprog(env, target_insn);
9429 	if (subprog < 0) {
9430 		verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9431 		return -EFAULT;
9432 	}
9433 
9434 	caller = state->frame[state->curframe];
9435 	err = btf_check_subprog_call(env, subprog, caller->regs);
9436 	if (err == -EFAULT)
9437 		return err;
9438 	if (subprog_is_global(env, subprog)) {
9439 		const char *sub_name = subprog_name(env, subprog);
9440 
9441 		if (err) {
9442 			verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
9443 				subprog, sub_name);
9444 			return err;
9445 		}
9446 
9447 		verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
9448 			subprog, sub_name);
9449 		/* mark global subprog for verifying after main prog */
9450 		subprog_aux(env, subprog)->called = true;
9451 		clear_caller_saved_regs(env, caller->regs);
9452 
9453 		/* All global functions return a 64-bit SCALAR_VALUE */
9454 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
9455 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9456 
9457 		/* continue with next insn after call */
9458 		return 0;
9459 	}
9460 
9461 	/* for regular function entry setup new frame and continue
9462 	 * from that frame.
9463 	 */
9464 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
9465 	if (err)
9466 		return err;
9467 
9468 	clear_caller_saved_regs(env, caller->regs);
9469 
9470 	/* and go analyze first insn of the callee */
9471 	*insn_idx = env->subprog_info[subprog].start - 1;
9472 
9473 	if (env->log.level & BPF_LOG_LEVEL) {
9474 		verbose(env, "caller:\n");
9475 		print_verifier_state(env, caller, true);
9476 		verbose(env, "callee:\n");
9477 		print_verifier_state(env, state->frame[state->curframe], true);
9478 	}
9479 
9480 	return 0;
9481 }
9482 
9483 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9484 				   struct bpf_func_state *caller,
9485 				   struct bpf_func_state *callee)
9486 {
9487 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9488 	 *      void *callback_ctx, u64 flags);
9489 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9490 	 *      void *callback_ctx);
9491 	 */
9492 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9493 
9494 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9495 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9496 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9497 
9498 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9499 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9500 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9501 
9502 	/* pointer to stack or null */
9503 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9504 
9505 	/* unused */
9506 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9507 	return 0;
9508 }
9509 
9510 static int set_callee_state(struct bpf_verifier_env *env,
9511 			    struct bpf_func_state *caller,
9512 			    struct bpf_func_state *callee, int insn_idx)
9513 {
9514 	int i;
9515 
9516 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9517 	 * pointers, which connects us up to the liveness chain
9518 	 */
9519 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9520 		callee->regs[i] = caller->regs[i];
9521 	return 0;
9522 }
9523 
9524 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9525 				       struct bpf_func_state *caller,
9526 				       struct bpf_func_state *callee,
9527 				       int insn_idx)
9528 {
9529 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9530 	struct bpf_map *map;
9531 	int err;
9532 
9533 	if (bpf_map_ptr_poisoned(insn_aux)) {
9534 		verbose(env, "tail_call abusing map_ptr\n");
9535 		return -EINVAL;
9536 	}
9537 
9538 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9539 	if (!map->ops->map_set_for_each_callback_args ||
9540 	    !map->ops->map_for_each_callback) {
9541 		verbose(env, "callback function not allowed for map\n");
9542 		return -ENOTSUPP;
9543 	}
9544 
9545 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9546 	if (err)
9547 		return err;
9548 
9549 	callee->in_callback_fn = true;
9550 	callee->callback_ret_range = retval_range(0, 1);
9551 	return 0;
9552 }
9553 
9554 static int set_loop_callback_state(struct bpf_verifier_env *env,
9555 				   struct bpf_func_state *caller,
9556 				   struct bpf_func_state *callee,
9557 				   int insn_idx)
9558 {
9559 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9560 	 *	    u64 flags);
9561 	 * callback_fn(u32 index, void *callback_ctx);
9562 	 */
9563 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9564 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9565 
9566 	/* unused */
9567 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9568 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9569 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9570 
9571 	callee->in_callback_fn = true;
9572 	callee->callback_ret_range = retval_range(0, 1);
9573 	return 0;
9574 }
9575 
9576 static int set_timer_callback_state(struct bpf_verifier_env *env,
9577 				    struct bpf_func_state *caller,
9578 				    struct bpf_func_state *callee,
9579 				    int insn_idx)
9580 {
9581 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9582 
9583 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9584 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9585 	 */
9586 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9587 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9588 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9589 
9590 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9591 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9592 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9593 
9594 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9595 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9596 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9597 
9598 	/* unused */
9599 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9600 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9601 	callee->in_async_callback_fn = true;
9602 	callee->callback_ret_range = retval_range(0, 1);
9603 	return 0;
9604 }
9605 
9606 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9607 				       struct bpf_func_state *caller,
9608 				       struct bpf_func_state *callee,
9609 				       int insn_idx)
9610 {
9611 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9612 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9613 	 * (callback_fn)(struct task_struct *task,
9614 	 *               struct vm_area_struct *vma, void *callback_ctx);
9615 	 */
9616 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9617 
9618 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9619 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9620 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9621 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
9622 
9623 	/* pointer to stack or null */
9624 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9625 
9626 	/* unused */
9627 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9628 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9629 	callee->in_callback_fn = true;
9630 	callee->callback_ret_range = retval_range(0, 1);
9631 	return 0;
9632 }
9633 
9634 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9635 					   struct bpf_func_state *caller,
9636 					   struct bpf_func_state *callee,
9637 					   int insn_idx)
9638 {
9639 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9640 	 *			  callback_ctx, u64 flags);
9641 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9642 	 */
9643 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9644 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9645 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9646 
9647 	/* unused */
9648 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9649 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9650 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9651 
9652 	callee->in_callback_fn = true;
9653 	callee->callback_ret_range = retval_range(0, 1);
9654 	return 0;
9655 }
9656 
9657 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9658 					 struct bpf_func_state *caller,
9659 					 struct bpf_func_state *callee,
9660 					 int insn_idx)
9661 {
9662 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9663 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9664 	 *
9665 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9666 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9667 	 * by this point, so look at 'root'
9668 	 */
9669 	struct btf_field *field;
9670 
9671 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9672 				      BPF_RB_ROOT);
9673 	if (!field || !field->graph_root.value_btf_id)
9674 		return -EFAULT;
9675 
9676 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9677 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9678 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9679 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9680 
9681 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9682 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9683 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9684 	callee->in_callback_fn = true;
9685 	callee->callback_ret_range = retval_range(0, 1);
9686 	return 0;
9687 }
9688 
9689 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9690 
9691 /* Are we currently verifying the callback for a rbtree helper that must
9692  * be called with lock held? If so, no need to complain about unreleased
9693  * lock
9694  */
9695 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9696 {
9697 	struct bpf_verifier_state *state = env->cur_state;
9698 	struct bpf_insn *insn = env->prog->insnsi;
9699 	struct bpf_func_state *callee;
9700 	int kfunc_btf_id;
9701 
9702 	if (!state->curframe)
9703 		return false;
9704 
9705 	callee = state->frame[state->curframe];
9706 
9707 	if (!callee->in_callback_fn)
9708 		return false;
9709 
9710 	kfunc_btf_id = insn[callee->callsite].imm;
9711 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9712 }
9713 
9714 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg)
9715 {
9716 	return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
9717 }
9718 
9719 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9720 {
9721 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
9722 	struct bpf_func_state *caller, *callee;
9723 	struct bpf_reg_state *r0;
9724 	bool in_callback_fn;
9725 	int err;
9726 
9727 	callee = state->frame[state->curframe];
9728 	r0 = &callee->regs[BPF_REG_0];
9729 	if (r0->type == PTR_TO_STACK) {
9730 		/* technically it's ok to return caller's stack pointer
9731 		 * (or caller's caller's pointer) back to the caller,
9732 		 * since these pointers are valid. Only current stack
9733 		 * pointer will be invalid as soon as function exits,
9734 		 * but let's be conservative
9735 		 */
9736 		verbose(env, "cannot return stack pointer to the caller\n");
9737 		return -EINVAL;
9738 	}
9739 
9740 	caller = state->frame[state->curframe - 1];
9741 	if (callee->in_callback_fn) {
9742 		if (r0->type != SCALAR_VALUE) {
9743 			verbose(env, "R0 not a scalar value\n");
9744 			return -EACCES;
9745 		}
9746 
9747 		/* we are going to rely on register's precise value */
9748 		err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
9749 		err = err ?: mark_chain_precision(env, BPF_REG_0);
9750 		if (err)
9751 			return err;
9752 
9753 		/* enforce R0 return value range */
9754 		if (!retval_range_within(callee->callback_ret_range, r0)) {
9755 			verbose_invalid_scalar(env, r0, callee->callback_ret_range,
9756 					       "At callback return", "R0");
9757 			return -EINVAL;
9758 		}
9759 		if (!calls_callback(env, callee->callsite)) {
9760 			verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
9761 				*insn_idx, callee->callsite);
9762 			return -EFAULT;
9763 		}
9764 	} else {
9765 		/* return to the caller whatever r0 had in the callee */
9766 		caller->regs[BPF_REG_0] = *r0;
9767 	}
9768 
9769 	/* callback_fn frame should have released its own additions to parent's
9770 	 * reference state at this point, or check_reference_leak would
9771 	 * complain, hence it must be the same as the caller. There is no need
9772 	 * to copy it back.
9773 	 */
9774 	if (!callee->in_callback_fn) {
9775 		/* Transfer references to the caller */
9776 		err = copy_reference_state(caller, callee);
9777 		if (err)
9778 			return err;
9779 	}
9780 
9781 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
9782 	 * there function call logic would reschedule callback visit. If iteration
9783 	 * converges is_state_visited() would prune that visit eventually.
9784 	 */
9785 	in_callback_fn = callee->in_callback_fn;
9786 	if (in_callback_fn)
9787 		*insn_idx = callee->callsite;
9788 	else
9789 		*insn_idx = callee->callsite + 1;
9790 
9791 	if (env->log.level & BPF_LOG_LEVEL) {
9792 		verbose(env, "returning from callee:\n");
9793 		print_verifier_state(env, callee, true);
9794 		verbose(env, "to caller at %d:\n", *insn_idx);
9795 		print_verifier_state(env, caller, true);
9796 	}
9797 	/* clear everything in the callee. In case of exceptional exits using
9798 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
9799 	free_func_state(callee);
9800 	state->frame[state->curframe--] = NULL;
9801 
9802 	/* for callbacks widen imprecise scalars to make programs like below verify:
9803 	 *
9804 	 *   struct ctx { int i; }
9805 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
9806 	 *   ...
9807 	 *   struct ctx = { .i = 0; }
9808 	 *   bpf_loop(100, cb, &ctx, 0);
9809 	 *
9810 	 * This is similar to what is done in process_iter_next_call() for open
9811 	 * coded iterators.
9812 	 */
9813 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
9814 	if (prev_st) {
9815 		err = widen_imprecise_scalars(env, prev_st, state);
9816 		if (err)
9817 			return err;
9818 	}
9819 	return 0;
9820 }
9821 
9822 static int do_refine_retval_range(struct bpf_verifier_env *env,
9823 				  struct bpf_reg_state *regs, int ret_type,
9824 				  int func_id,
9825 				  struct bpf_call_arg_meta *meta)
9826 {
9827 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9828 
9829 	if (ret_type != RET_INTEGER)
9830 		return 0;
9831 
9832 	switch (func_id) {
9833 	case BPF_FUNC_get_stack:
9834 	case BPF_FUNC_get_task_stack:
9835 	case BPF_FUNC_probe_read_str:
9836 	case BPF_FUNC_probe_read_kernel_str:
9837 	case BPF_FUNC_probe_read_user_str:
9838 		ret_reg->smax_value = meta->msize_max_value;
9839 		ret_reg->s32_max_value = meta->msize_max_value;
9840 		ret_reg->smin_value = -MAX_ERRNO;
9841 		ret_reg->s32_min_value = -MAX_ERRNO;
9842 		reg_bounds_sync(ret_reg);
9843 		break;
9844 	case BPF_FUNC_get_smp_processor_id:
9845 		ret_reg->umax_value = nr_cpu_ids - 1;
9846 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9847 		ret_reg->smax_value = nr_cpu_ids - 1;
9848 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9849 		ret_reg->umin_value = 0;
9850 		ret_reg->u32_min_value = 0;
9851 		ret_reg->smin_value = 0;
9852 		ret_reg->s32_min_value = 0;
9853 		reg_bounds_sync(ret_reg);
9854 		break;
9855 	}
9856 
9857 	return reg_bounds_sanity_check(env, ret_reg, "retval");
9858 }
9859 
9860 static int
9861 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9862 		int func_id, int insn_idx)
9863 {
9864 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9865 	struct bpf_map *map = meta->map_ptr;
9866 
9867 	if (func_id != BPF_FUNC_tail_call &&
9868 	    func_id != BPF_FUNC_map_lookup_elem &&
9869 	    func_id != BPF_FUNC_map_update_elem &&
9870 	    func_id != BPF_FUNC_map_delete_elem &&
9871 	    func_id != BPF_FUNC_map_push_elem &&
9872 	    func_id != BPF_FUNC_map_pop_elem &&
9873 	    func_id != BPF_FUNC_map_peek_elem &&
9874 	    func_id != BPF_FUNC_for_each_map_elem &&
9875 	    func_id != BPF_FUNC_redirect_map &&
9876 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9877 		return 0;
9878 
9879 	if (map == NULL) {
9880 		verbose(env, "kernel subsystem misconfigured verifier\n");
9881 		return -EINVAL;
9882 	}
9883 
9884 	/* In case of read-only, some additional restrictions
9885 	 * need to be applied in order to prevent altering the
9886 	 * state of the map from program side.
9887 	 */
9888 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9889 	    (func_id == BPF_FUNC_map_delete_elem ||
9890 	     func_id == BPF_FUNC_map_update_elem ||
9891 	     func_id == BPF_FUNC_map_push_elem ||
9892 	     func_id == BPF_FUNC_map_pop_elem)) {
9893 		verbose(env, "write into map forbidden\n");
9894 		return -EACCES;
9895 	}
9896 
9897 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9898 		bpf_map_ptr_store(aux, meta->map_ptr,
9899 				  !meta->map_ptr->bypass_spec_v1);
9900 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9901 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9902 				  !meta->map_ptr->bypass_spec_v1);
9903 	return 0;
9904 }
9905 
9906 static int
9907 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9908 		int func_id, int insn_idx)
9909 {
9910 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9911 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9912 	struct bpf_map *map = meta->map_ptr;
9913 	u64 val, max;
9914 	int err;
9915 
9916 	if (func_id != BPF_FUNC_tail_call)
9917 		return 0;
9918 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9919 		verbose(env, "kernel subsystem misconfigured verifier\n");
9920 		return -EINVAL;
9921 	}
9922 
9923 	reg = &regs[BPF_REG_3];
9924 	val = reg->var_off.value;
9925 	max = map->max_entries;
9926 
9927 	if (!(is_reg_const(reg, false) && val < max)) {
9928 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9929 		return 0;
9930 	}
9931 
9932 	err = mark_chain_precision(env, BPF_REG_3);
9933 	if (err)
9934 		return err;
9935 	if (bpf_map_key_unseen(aux))
9936 		bpf_map_key_store(aux, val);
9937 	else if (!bpf_map_key_poisoned(aux) &&
9938 		  bpf_map_key_immediate(aux) != val)
9939 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9940 	return 0;
9941 }
9942 
9943 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
9944 {
9945 	struct bpf_func_state *state = cur_func(env);
9946 	bool refs_lingering = false;
9947 	int i;
9948 
9949 	if (!exception_exit && state->frameno && !state->in_callback_fn)
9950 		return 0;
9951 
9952 	for (i = 0; i < state->acquired_refs; i++) {
9953 		if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9954 			continue;
9955 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9956 			state->refs[i].id, state->refs[i].insn_idx);
9957 		refs_lingering = true;
9958 	}
9959 	return refs_lingering ? -EINVAL : 0;
9960 }
9961 
9962 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9963 				   struct bpf_reg_state *regs)
9964 {
9965 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9966 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9967 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
9968 	struct bpf_bprintf_data data = {};
9969 	int err, fmt_map_off, num_args;
9970 	u64 fmt_addr;
9971 	char *fmt;
9972 
9973 	/* data must be an array of u64 */
9974 	if (data_len_reg->var_off.value % 8)
9975 		return -EINVAL;
9976 	num_args = data_len_reg->var_off.value / 8;
9977 
9978 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9979 	 * and map_direct_value_addr is set.
9980 	 */
9981 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9982 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9983 						  fmt_map_off);
9984 	if (err) {
9985 		verbose(env, "verifier bug\n");
9986 		return -EFAULT;
9987 	}
9988 	fmt = (char *)(long)fmt_addr + fmt_map_off;
9989 
9990 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9991 	 * can focus on validating the format specifiers.
9992 	 */
9993 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9994 	if (err < 0)
9995 		verbose(env, "Invalid format string\n");
9996 
9997 	return err;
9998 }
9999 
10000 static int check_get_func_ip(struct bpf_verifier_env *env)
10001 {
10002 	enum bpf_prog_type type = resolve_prog_type(env->prog);
10003 	int func_id = BPF_FUNC_get_func_ip;
10004 
10005 	if (type == BPF_PROG_TYPE_TRACING) {
10006 		if (!bpf_prog_has_trampoline(env->prog)) {
10007 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
10008 				func_id_name(func_id), func_id);
10009 			return -ENOTSUPP;
10010 		}
10011 		return 0;
10012 	} else if (type == BPF_PROG_TYPE_KPROBE) {
10013 		return 0;
10014 	}
10015 
10016 	verbose(env, "func %s#%d not supported for program type %d\n",
10017 		func_id_name(func_id), func_id, type);
10018 	return -ENOTSUPP;
10019 }
10020 
10021 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
10022 {
10023 	return &env->insn_aux_data[env->insn_idx];
10024 }
10025 
10026 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
10027 {
10028 	struct bpf_reg_state *regs = cur_regs(env);
10029 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
10030 	bool reg_is_null = register_is_null(reg);
10031 
10032 	if (reg_is_null)
10033 		mark_chain_precision(env, BPF_REG_4);
10034 
10035 	return reg_is_null;
10036 }
10037 
10038 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
10039 {
10040 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
10041 
10042 	if (!state->initialized) {
10043 		state->initialized = 1;
10044 		state->fit_for_inline = loop_flag_is_zero(env);
10045 		state->callback_subprogno = subprogno;
10046 		return;
10047 	}
10048 
10049 	if (!state->fit_for_inline)
10050 		return;
10051 
10052 	state->fit_for_inline = (loop_flag_is_zero(env) &&
10053 				 state->callback_subprogno == subprogno);
10054 }
10055 
10056 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10057 			     int *insn_idx_p)
10058 {
10059 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10060 	bool returns_cpu_specific_alloc_ptr = false;
10061 	const struct bpf_func_proto *fn = NULL;
10062 	enum bpf_return_type ret_type;
10063 	enum bpf_type_flag ret_flag;
10064 	struct bpf_reg_state *regs;
10065 	struct bpf_call_arg_meta meta;
10066 	int insn_idx = *insn_idx_p;
10067 	bool changes_data;
10068 	int i, err, func_id;
10069 
10070 	/* find function prototype */
10071 	func_id = insn->imm;
10072 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
10073 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
10074 			func_id);
10075 		return -EINVAL;
10076 	}
10077 
10078 	if (env->ops->get_func_proto)
10079 		fn = env->ops->get_func_proto(func_id, env->prog);
10080 	if (!fn) {
10081 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
10082 			func_id);
10083 		return -EINVAL;
10084 	}
10085 
10086 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
10087 	if (!env->prog->gpl_compatible && fn->gpl_only) {
10088 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10089 		return -EINVAL;
10090 	}
10091 
10092 	if (fn->allowed && !fn->allowed(env->prog)) {
10093 		verbose(env, "helper call is not allowed in probe\n");
10094 		return -EINVAL;
10095 	}
10096 
10097 	if (!env->prog->aux->sleepable && fn->might_sleep) {
10098 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
10099 		return -EINVAL;
10100 	}
10101 
10102 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
10103 	changes_data = bpf_helper_changes_pkt_data(fn->func);
10104 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10105 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10106 			func_id_name(func_id), func_id);
10107 		return -EINVAL;
10108 	}
10109 
10110 	memset(&meta, 0, sizeof(meta));
10111 	meta.pkt_access = fn->pkt_access;
10112 
10113 	err = check_func_proto(fn, func_id);
10114 	if (err) {
10115 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10116 			func_id_name(func_id), func_id);
10117 		return err;
10118 	}
10119 
10120 	if (env->cur_state->active_rcu_lock) {
10121 		if (fn->might_sleep) {
10122 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10123 				func_id_name(func_id), func_id);
10124 			return -EINVAL;
10125 		}
10126 
10127 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
10128 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10129 	}
10130 
10131 	meta.func_id = func_id;
10132 	/* check args */
10133 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10134 		err = check_func_arg(env, i, &meta, fn, insn_idx);
10135 		if (err)
10136 			return err;
10137 	}
10138 
10139 	err = record_func_map(env, &meta, func_id, insn_idx);
10140 	if (err)
10141 		return err;
10142 
10143 	err = record_func_key(env, &meta, func_id, insn_idx);
10144 	if (err)
10145 		return err;
10146 
10147 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
10148 	 * is inferred from register state.
10149 	 */
10150 	for (i = 0; i < meta.access_size; i++) {
10151 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10152 				       BPF_WRITE, -1, false, false);
10153 		if (err)
10154 			return err;
10155 	}
10156 
10157 	regs = cur_regs(env);
10158 
10159 	if (meta.release_regno) {
10160 		err = -EINVAL;
10161 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10162 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10163 		 * is safe to do directly.
10164 		 */
10165 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10166 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10167 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10168 				return -EFAULT;
10169 			}
10170 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
10171 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
10172 			u32 ref_obj_id = meta.ref_obj_id;
10173 			bool in_rcu = in_rcu_cs(env);
10174 			struct bpf_func_state *state;
10175 			struct bpf_reg_state *reg;
10176 
10177 			err = release_reference_state(cur_func(env), ref_obj_id);
10178 			if (!err) {
10179 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10180 					if (reg->ref_obj_id == ref_obj_id) {
10181 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
10182 							reg->ref_obj_id = 0;
10183 							reg->type &= ~MEM_ALLOC;
10184 							reg->type |= MEM_RCU;
10185 						} else {
10186 							mark_reg_invalid(env, reg);
10187 						}
10188 					}
10189 				}));
10190 			}
10191 		} else if (meta.ref_obj_id) {
10192 			err = release_reference(env, meta.ref_obj_id);
10193 		} else if (register_is_null(&regs[meta.release_regno])) {
10194 			/* meta.ref_obj_id can only be 0 if register that is meant to be
10195 			 * released is NULL, which must be > R0.
10196 			 */
10197 			err = 0;
10198 		}
10199 		if (err) {
10200 			verbose(env, "func %s#%d reference has not been acquired before\n",
10201 				func_id_name(func_id), func_id);
10202 			return err;
10203 		}
10204 	}
10205 
10206 	switch (func_id) {
10207 	case BPF_FUNC_tail_call:
10208 		err = check_reference_leak(env, false);
10209 		if (err) {
10210 			verbose(env, "tail_call would lead to reference leak\n");
10211 			return err;
10212 		}
10213 		break;
10214 	case BPF_FUNC_get_local_storage:
10215 		/* check that flags argument in get_local_storage(map, flags) is 0,
10216 		 * this is required because get_local_storage() can't return an error.
10217 		 */
10218 		if (!register_is_null(&regs[BPF_REG_2])) {
10219 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10220 			return -EINVAL;
10221 		}
10222 		break;
10223 	case BPF_FUNC_for_each_map_elem:
10224 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10225 					 set_map_elem_callback_state);
10226 		break;
10227 	case BPF_FUNC_timer_set_callback:
10228 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10229 					 set_timer_callback_state);
10230 		break;
10231 	case BPF_FUNC_find_vma:
10232 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10233 					 set_find_vma_callback_state);
10234 		break;
10235 	case BPF_FUNC_snprintf:
10236 		err = check_bpf_snprintf_call(env, regs);
10237 		break;
10238 	case BPF_FUNC_loop:
10239 		update_loop_inline_state(env, meta.subprogno);
10240 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
10241 		 * is finished, thus mark it precise.
10242 		 */
10243 		err = mark_chain_precision(env, BPF_REG_1);
10244 		if (err)
10245 			return err;
10246 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10247 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10248 						 set_loop_callback_state);
10249 		} else {
10250 			cur_func(env)->callback_depth = 0;
10251 			if (env->log.level & BPF_LOG_LEVEL2)
10252 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
10253 					env->cur_state->curframe);
10254 		}
10255 		break;
10256 	case BPF_FUNC_dynptr_from_mem:
10257 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10258 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10259 				reg_type_str(env, regs[BPF_REG_1].type));
10260 			return -EACCES;
10261 		}
10262 		break;
10263 	case BPF_FUNC_set_retval:
10264 		if (prog_type == BPF_PROG_TYPE_LSM &&
10265 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10266 			if (!env->prog->aux->attach_func_proto->type) {
10267 				/* Make sure programs that attach to void
10268 				 * hooks don't try to modify return value.
10269 				 */
10270 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10271 				return -EINVAL;
10272 			}
10273 		}
10274 		break;
10275 	case BPF_FUNC_dynptr_data:
10276 	{
10277 		struct bpf_reg_state *reg;
10278 		int id, ref_obj_id;
10279 
10280 		reg = get_dynptr_arg_reg(env, fn, regs);
10281 		if (!reg)
10282 			return -EFAULT;
10283 
10284 
10285 		if (meta.dynptr_id) {
10286 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10287 			return -EFAULT;
10288 		}
10289 		if (meta.ref_obj_id) {
10290 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10291 			return -EFAULT;
10292 		}
10293 
10294 		id = dynptr_id(env, reg);
10295 		if (id < 0) {
10296 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10297 			return id;
10298 		}
10299 
10300 		ref_obj_id = dynptr_ref_obj_id(env, reg);
10301 		if (ref_obj_id < 0) {
10302 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10303 			return ref_obj_id;
10304 		}
10305 
10306 		meta.dynptr_id = id;
10307 		meta.ref_obj_id = ref_obj_id;
10308 
10309 		break;
10310 	}
10311 	case BPF_FUNC_dynptr_write:
10312 	{
10313 		enum bpf_dynptr_type dynptr_type;
10314 		struct bpf_reg_state *reg;
10315 
10316 		reg = get_dynptr_arg_reg(env, fn, regs);
10317 		if (!reg)
10318 			return -EFAULT;
10319 
10320 		dynptr_type = dynptr_get_type(env, reg);
10321 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10322 			return -EFAULT;
10323 
10324 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10325 			/* this will trigger clear_all_pkt_pointers(), which will
10326 			 * invalidate all dynptr slices associated with the skb
10327 			 */
10328 			changes_data = true;
10329 
10330 		break;
10331 	}
10332 	case BPF_FUNC_per_cpu_ptr:
10333 	case BPF_FUNC_this_cpu_ptr:
10334 	{
10335 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
10336 		const struct btf_type *type;
10337 
10338 		if (reg->type & MEM_RCU) {
10339 			type = btf_type_by_id(reg->btf, reg->btf_id);
10340 			if (!type || !btf_type_is_struct(type)) {
10341 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
10342 				return -EFAULT;
10343 			}
10344 			returns_cpu_specific_alloc_ptr = true;
10345 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
10346 		}
10347 		break;
10348 	}
10349 	case BPF_FUNC_user_ringbuf_drain:
10350 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10351 					 set_user_ringbuf_callback_state);
10352 		break;
10353 	}
10354 
10355 	if (err)
10356 		return err;
10357 
10358 	/* reset caller saved regs */
10359 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10360 		mark_reg_not_init(env, regs, caller_saved[i]);
10361 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10362 	}
10363 
10364 	/* helper call returns 64-bit value. */
10365 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10366 
10367 	/* update return register (already marked as written above) */
10368 	ret_type = fn->ret_type;
10369 	ret_flag = type_flag(ret_type);
10370 
10371 	switch (base_type(ret_type)) {
10372 	case RET_INTEGER:
10373 		/* sets type to SCALAR_VALUE */
10374 		mark_reg_unknown(env, regs, BPF_REG_0);
10375 		break;
10376 	case RET_VOID:
10377 		regs[BPF_REG_0].type = NOT_INIT;
10378 		break;
10379 	case RET_PTR_TO_MAP_VALUE:
10380 		/* There is no offset yet applied, variable or fixed */
10381 		mark_reg_known_zero(env, regs, BPF_REG_0);
10382 		/* remember map_ptr, so that check_map_access()
10383 		 * can check 'value_size' boundary of memory access
10384 		 * to map element returned from bpf_map_lookup_elem()
10385 		 */
10386 		if (meta.map_ptr == NULL) {
10387 			verbose(env,
10388 				"kernel subsystem misconfigured verifier\n");
10389 			return -EINVAL;
10390 		}
10391 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
10392 		regs[BPF_REG_0].map_uid = meta.map_uid;
10393 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10394 		if (!type_may_be_null(ret_type) &&
10395 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10396 			regs[BPF_REG_0].id = ++env->id_gen;
10397 		}
10398 		break;
10399 	case RET_PTR_TO_SOCKET:
10400 		mark_reg_known_zero(env, regs, BPF_REG_0);
10401 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10402 		break;
10403 	case RET_PTR_TO_SOCK_COMMON:
10404 		mark_reg_known_zero(env, regs, BPF_REG_0);
10405 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10406 		break;
10407 	case RET_PTR_TO_TCP_SOCK:
10408 		mark_reg_known_zero(env, regs, BPF_REG_0);
10409 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10410 		break;
10411 	case RET_PTR_TO_MEM:
10412 		mark_reg_known_zero(env, regs, BPF_REG_0);
10413 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10414 		regs[BPF_REG_0].mem_size = meta.mem_size;
10415 		break;
10416 	case RET_PTR_TO_MEM_OR_BTF_ID:
10417 	{
10418 		const struct btf_type *t;
10419 
10420 		mark_reg_known_zero(env, regs, BPF_REG_0);
10421 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10422 		if (!btf_type_is_struct(t)) {
10423 			u32 tsize;
10424 			const struct btf_type *ret;
10425 			const char *tname;
10426 
10427 			/* resolve the type size of ksym. */
10428 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10429 			if (IS_ERR(ret)) {
10430 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10431 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
10432 					tname, PTR_ERR(ret));
10433 				return -EINVAL;
10434 			}
10435 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10436 			regs[BPF_REG_0].mem_size = tsize;
10437 		} else {
10438 			if (returns_cpu_specific_alloc_ptr) {
10439 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
10440 			} else {
10441 				/* MEM_RDONLY may be carried from ret_flag, but it
10442 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10443 				 * it will confuse the check of PTR_TO_BTF_ID in
10444 				 * check_mem_access().
10445 				 */
10446 				ret_flag &= ~MEM_RDONLY;
10447 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10448 			}
10449 
10450 			regs[BPF_REG_0].btf = meta.ret_btf;
10451 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10452 		}
10453 		break;
10454 	}
10455 	case RET_PTR_TO_BTF_ID:
10456 	{
10457 		struct btf *ret_btf;
10458 		int ret_btf_id;
10459 
10460 		mark_reg_known_zero(env, regs, BPF_REG_0);
10461 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10462 		if (func_id == BPF_FUNC_kptr_xchg) {
10463 			ret_btf = meta.kptr_field->kptr.btf;
10464 			ret_btf_id = meta.kptr_field->kptr.btf_id;
10465 			if (!btf_is_kernel(ret_btf)) {
10466 				regs[BPF_REG_0].type |= MEM_ALLOC;
10467 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
10468 					regs[BPF_REG_0].type |= MEM_PERCPU;
10469 			}
10470 		} else {
10471 			if (fn->ret_btf_id == BPF_PTR_POISON) {
10472 				verbose(env, "verifier internal error:");
10473 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10474 					func_id_name(func_id));
10475 				return -EINVAL;
10476 			}
10477 			ret_btf = btf_vmlinux;
10478 			ret_btf_id = *fn->ret_btf_id;
10479 		}
10480 		if (ret_btf_id == 0) {
10481 			verbose(env, "invalid return type %u of func %s#%d\n",
10482 				base_type(ret_type), func_id_name(func_id),
10483 				func_id);
10484 			return -EINVAL;
10485 		}
10486 		regs[BPF_REG_0].btf = ret_btf;
10487 		regs[BPF_REG_0].btf_id = ret_btf_id;
10488 		break;
10489 	}
10490 	default:
10491 		verbose(env, "unknown return type %u of func %s#%d\n",
10492 			base_type(ret_type), func_id_name(func_id), func_id);
10493 		return -EINVAL;
10494 	}
10495 
10496 	if (type_may_be_null(regs[BPF_REG_0].type))
10497 		regs[BPF_REG_0].id = ++env->id_gen;
10498 
10499 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10500 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10501 			func_id_name(func_id), func_id);
10502 		return -EFAULT;
10503 	}
10504 
10505 	if (is_dynptr_ref_function(func_id))
10506 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10507 
10508 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10509 		/* For release_reference() */
10510 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10511 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
10512 		int id = acquire_reference_state(env, insn_idx);
10513 
10514 		if (id < 0)
10515 			return id;
10516 		/* For mark_ptr_or_null_reg() */
10517 		regs[BPF_REG_0].id = id;
10518 		/* For release_reference() */
10519 		regs[BPF_REG_0].ref_obj_id = id;
10520 	}
10521 
10522 	err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
10523 	if (err)
10524 		return err;
10525 
10526 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10527 	if (err)
10528 		return err;
10529 
10530 	if ((func_id == BPF_FUNC_get_stack ||
10531 	     func_id == BPF_FUNC_get_task_stack) &&
10532 	    !env->prog->has_callchain_buf) {
10533 		const char *err_str;
10534 
10535 #ifdef CONFIG_PERF_EVENTS
10536 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
10537 		err_str = "cannot get callchain buffer for func %s#%d\n";
10538 #else
10539 		err = -ENOTSUPP;
10540 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10541 #endif
10542 		if (err) {
10543 			verbose(env, err_str, func_id_name(func_id), func_id);
10544 			return err;
10545 		}
10546 
10547 		env->prog->has_callchain_buf = true;
10548 	}
10549 
10550 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10551 		env->prog->call_get_stack = true;
10552 
10553 	if (func_id == BPF_FUNC_get_func_ip) {
10554 		if (check_get_func_ip(env))
10555 			return -ENOTSUPP;
10556 		env->prog->call_get_func_ip = true;
10557 	}
10558 
10559 	if (changes_data)
10560 		clear_all_pkt_pointers(env);
10561 	return 0;
10562 }
10563 
10564 /* mark_btf_func_reg_size() is used when the reg size is determined by
10565  * the BTF func_proto's return value size and argument.
10566  */
10567 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10568 				   size_t reg_size)
10569 {
10570 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10571 
10572 	if (regno == BPF_REG_0) {
10573 		/* Function return value */
10574 		reg->live |= REG_LIVE_WRITTEN;
10575 		reg->subreg_def = reg_size == sizeof(u64) ?
10576 			DEF_NOT_SUBREG : env->insn_idx + 1;
10577 	} else {
10578 		/* Function argument */
10579 		if (reg_size == sizeof(u64)) {
10580 			mark_insn_zext(env, reg);
10581 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10582 		} else {
10583 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10584 		}
10585 	}
10586 }
10587 
10588 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10589 {
10590 	return meta->kfunc_flags & KF_ACQUIRE;
10591 }
10592 
10593 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10594 {
10595 	return meta->kfunc_flags & KF_RELEASE;
10596 }
10597 
10598 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10599 {
10600 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10601 }
10602 
10603 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10604 {
10605 	return meta->kfunc_flags & KF_SLEEPABLE;
10606 }
10607 
10608 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10609 {
10610 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10611 }
10612 
10613 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10614 {
10615 	return meta->kfunc_flags & KF_RCU;
10616 }
10617 
10618 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
10619 {
10620 	return meta->kfunc_flags & KF_RCU_PROTECTED;
10621 }
10622 
10623 static bool __kfunc_param_match_suffix(const struct btf *btf,
10624 				       const struct btf_param *arg,
10625 				       const char *suffix)
10626 {
10627 	int suffix_len = strlen(suffix), len;
10628 	const char *param_name;
10629 
10630 	/* In the future, this can be ported to use BTF tagging */
10631 	param_name = btf_name_by_offset(btf, arg->name_off);
10632 	if (str_is_empty(param_name))
10633 		return false;
10634 	len = strlen(param_name);
10635 	if (len < suffix_len)
10636 		return false;
10637 	param_name += len - suffix_len;
10638 	return !strncmp(param_name, suffix, suffix_len);
10639 }
10640 
10641 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10642 				  const struct btf_param *arg,
10643 				  const struct bpf_reg_state *reg)
10644 {
10645 	const struct btf_type *t;
10646 
10647 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10648 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10649 		return false;
10650 
10651 	return __kfunc_param_match_suffix(btf, arg, "__sz");
10652 }
10653 
10654 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10655 					const struct btf_param *arg,
10656 					const struct bpf_reg_state *reg)
10657 {
10658 	const struct btf_type *t;
10659 
10660 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10661 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10662 		return false;
10663 
10664 	return __kfunc_param_match_suffix(btf, arg, "__szk");
10665 }
10666 
10667 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10668 {
10669 	return __kfunc_param_match_suffix(btf, arg, "__opt");
10670 }
10671 
10672 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10673 {
10674 	return __kfunc_param_match_suffix(btf, arg, "__k");
10675 }
10676 
10677 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10678 {
10679 	return __kfunc_param_match_suffix(btf, arg, "__ign");
10680 }
10681 
10682 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10683 {
10684 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
10685 }
10686 
10687 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10688 {
10689 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
10690 }
10691 
10692 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10693 {
10694 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10695 }
10696 
10697 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
10698 {
10699 	return __kfunc_param_match_suffix(btf, arg, "__nullable");
10700 }
10701 
10702 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
10703 {
10704 	return __kfunc_param_match_suffix(btf, arg, "__str");
10705 }
10706 
10707 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10708 					  const struct btf_param *arg,
10709 					  const char *name)
10710 {
10711 	int len, target_len = strlen(name);
10712 	const char *param_name;
10713 
10714 	param_name = btf_name_by_offset(btf, arg->name_off);
10715 	if (str_is_empty(param_name))
10716 		return false;
10717 	len = strlen(param_name);
10718 	if (len != target_len)
10719 		return false;
10720 	if (strcmp(param_name, name))
10721 		return false;
10722 
10723 	return true;
10724 }
10725 
10726 enum {
10727 	KF_ARG_DYNPTR_ID,
10728 	KF_ARG_LIST_HEAD_ID,
10729 	KF_ARG_LIST_NODE_ID,
10730 	KF_ARG_RB_ROOT_ID,
10731 	KF_ARG_RB_NODE_ID,
10732 };
10733 
10734 BTF_ID_LIST(kf_arg_btf_ids)
10735 BTF_ID(struct, bpf_dynptr_kern)
10736 BTF_ID(struct, bpf_list_head)
10737 BTF_ID(struct, bpf_list_node)
10738 BTF_ID(struct, bpf_rb_root)
10739 BTF_ID(struct, bpf_rb_node)
10740 
10741 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10742 				    const struct btf_param *arg, int type)
10743 {
10744 	const struct btf_type *t;
10745 	u32 res_id;
10746 
10747 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10748 	if (!t)
10749 		return false;
10750 	if (!btf_type_is_ptr(t))
10751 		return false;
10752 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10753 	if (!t)
10754 		return false;
10755 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10756 }
10757 
10758 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10759 {
10760 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10761 }
10762 
10763 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10764 {
10765 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10766 }
10767 
10768 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10769 {
10770 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10771 }
10772 
10773 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10774 {
10775 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10776 }
10777 
10778 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10779 {
10780 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10781 }
10782 
10783 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10784 				  const struct btf_param *arg)
10785 {
10786 	const struct btf_type *t;
10787 
10788 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10789 	if (!t)
10790 		return false;
10791 
10792 	return true;
10793 }
10794 
10795 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10796 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10797 					const struct btf *btf,
10798 					const struct btf_type *t, int rec)
10799 {
10800 	const struct btf_type *member_type;
10801 	const struct btf_member *member;
10802 	u32 i;
10803 
10804 	if (!btf_type_is_struct(t))
10805 		return false;
10806 
10807 	for_each_member(i, t, member) {
10808 		const struct btf_array *array;
10809 
10810 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10811 		if (btf_type_is_struct(member_type)) {
10812 			if (rec >= 3) {
10813 				verbose(env, "max struct nesting depth exceeded\n");
10814 				return false;
10815 			}
10816 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10817 				return false;
10818 			continue;
10819 		}
10820 		if (btf_type_is_array(member_type)) {
10821 			array = btf_array(member_type);
10822 			if (!array->nelems)
10823 				return false;
10824 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10825 			if (!btf_type_is_scalar(member_type))
10826 				return false;
10827 			continue;
10828 		}
10829 		if (!btf_type_is_scalar(member_type))
10830 			return false;
10831 	}
10832 	return true;
10833 }
10834 
10835 enum kfunc_ptr_arg_type {
10836 	KF_ARG_PTR_TO_CTX,
10837 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10838 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10839 	KF_ARG_PTR_TO_DYNPTR,
10840 	KF_ARG_PTR_TO_ITER,
10841 	KF_ARG_PTR_TO_LIST_HEAD,
10842 	KF_ARG_PTR_TO_LIST_NODE,
10843 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10844 	KF_ARG_PTR_TO_MEM,
10845 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10846 	KF_ARG_PTR_TO_CALLBACK,
10847 	KF_ARG_PTR_TO_RB_ROOT,
10848 	KF_ARG_PTR_TO_RB_NODE,
10849 	KF_ARG_PTR_TO_NULL,
10850 	KF_ARG_PTR_TO_CONST_STR,
10851 };
10852 
10853 enum special_kfunc_type {
10854 	KF_bpf_obj_new_impl,
10855 	KF_bpf_obj_drop_impl,
10856 	KF_bpf_refcount_acquire_impl,
10857 	KF_bpf_list_push_front_impl,
10858 	KF_bpf_list_push_back_impl,
10859 	KF_bpf_list_pop_front,
10860 	KF_bpf_list_pop_back,
10861 	KF_bpf_cast_to_kern_ctx,
10862 	KF_bpf_rdonly_cast,
10863 	KF_bpf_rcu_read_lock,
10864 	KF_bpf_rcu_read_unlock,
10865 	KF_bpf_rbtree_remove,
10866 	KF_bpf_rbtree_add_impl,
10867 	KF_bpf_rbtree_first,
10868 	KF_bpf_dynptr_from_skb,
10869 	KF_bpf_dynptr_from_xdp,
10870 	KF_bpf_dynptr_slice,
10871 	KF_bpf_dynptr_slice_rdwr,
10872 	KF_bpf_dynptr_clone,
10873 	KF_bpf_percpu_obj_new_impl,
10874 	KF_bpf_percpu_obj_drop_impl,
10875 	KF_bpf_throw,
10876 	KF_bpf_iter_css_task_new,
10877 };
10878 
10879 BTF_SET_START(special_kfunc_set)
10880 BTF_ID(func, bpf_obj_new_impl)
10881 BTF_ID(func, bpf_obj_drop_impl)
10882 BTF_ID(func, bpf_refcount_acquire_impl)
10883 BTF_ID(func, bpf_list_push_front_impl)
10884 BTF_ID(func, bpf_list_push_back_impl)
10885 BTF_ID(func, bpf_list_pop_front)
10886 BTF_ID(func, bpf_list_pop_back)
10887 BTF_ID(func, bpf_cast_to_kern_ctx)
10888 BTF_ID(func, bpf_rdonly_cast)
10889 BTF_ID(func, bpf_rbtree_remove)
10890 BTF_ID(func, bpf_rbtree_add_impl)
10891 BTF_ID(func, bpf_rbtree_first)
10892 BTF_ID(func, bpf_dynptr_from_skb)
10893 BTF_ID(func, bpf_dynptr_from_xdp)
10894 BTF_ID(func, bpf_dynptr_slice)
10895 BTF_ID(func, bpf_dynptr_slice_rdwr)
10896 BTF_ID(func, bpf_dynptr_clone)
10897 BTF_ID(func, bpf_percpu_obj_new_impl)
10898 BTF_ID(func, bpf_percpu_obj_drop_impl)
10899 BTF_ID(func, bpf_throw)
10900 #ifdef CONFIG_CGROUPS
10901 BTF_ID(func, bpf_iter_css_task_new)
10902 #endif
10903 BTF_SET_END(special_kfunc_set)
10904 
10905 BTF_ID_LIST(special_kfunc_list)
10906 BTF_ID(func, bpf_obj_new_impl)
10907 BTF_ID(func, bpf_obj_drop_impl)
10908 BTF_ID(func, bpf_refcount_acquire_impl)
10909 BTF_ID(func, bpf_list_push_front_impl)
10910 BTF_ID(func, bpf_list_push_back_impl)
10911 BTF_ID(func, bpf_list_pop_front)
10912 BTF_ID(func, bpf_list_pop_back)
10913 BTF_ID(func, bpf_cast_to_kern_ctx)
10914 BTF_ID(func, bpf_rdonly_cast)
10915 BTF_ID(func, bpf_rcu_read_lock)
10916 BTF_ID(func, bpf_rcu_read_unlock)
10917 BTF_ID(func, bpf_rbtree_remove)
10918 BTF_ID(func, bpf_rbtree_add_impl)
10919 BTF_ID(func, bpf_rbtree_first)
10920 BTF_ID(func, bpf_dynptr_from_skb)
10921 BTF_ID(func, bpf_dynptr_from_xdp)
10922 BTF_ID(func, bpf_dynptr_slice)
10923 BTF_ID(func, bpf_dynptr_slice_rdwr)
10924 BTF_ID(func, bpf_dynptr_clone)
10925 BTF_ID(func, bpf_percpu_obj_new_impl)
10926 BTF_ID(func, bpf_percpu_obj_drop_impl)
10927 BTF_ID(func, bpf_throw)
10928 #ifdef CONFIG_CGROUPS
10929 BTF_ID(func, bpf_iter_css_task_new)
10930 #else
10931 BTF_ID_UNUSED
10932 #endif
10933 
10934 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10935 {
10936 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10937 	    meta->arg_owning_ref) {
10938 		return false;
10939 	}
10940 
10941 	return meta->kfunc_flags & KF_RET_NULL;
10942 }
10943 
10944 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10945 {
10946 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10947 }
10948 
10949 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10950 {
10951 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10952 }
10953 
10954 static enum kfunc_ptr_arg_type
10955 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10956 		       struct bpf_kfunc_call_arg_meta *meta,
10957 		       const struct btf_type *t, const struct btf_type *ref_t,
10958 		       const char *ref_tname, const struct btf_param *args,
10959 		       int argno, int nargs)
10960 {
10961 	u32 regno = argno + 1;
10962 	struct bpf_reg_state *regs = cur_regs(env);
10963 	struct bpf_reg_state *reg = &regs[regno];
10964 	bool arg_mem_size = false;
10965 
10966 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10967 		return KF_ARG_PTR_TO_CTX;
10968 
10969 	/* In this function, we verify the kfunc's BTF as per the argument type,
10970 	 * leaving the rest of the verification with respect to the register
10971 	 * type to our caller. When a set of conditions hold in the BTF type of
10972 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10973 	 */
10974 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10975 		return KF_ARG_PTR_TO_CTX;
10976 
10977 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10978 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10979 
10980 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10981 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10982 
10983 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10984 		return KF_ARG_PTR_TO_DYNPTR;
10985 
10986 	if (is_kfunc_arg_iter(meta, argno))
10987 		return KF_ARG_PTR_TO_ITER;
10988 
10989 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10990 		return KF_ARG_PTR_TO_LIST_HEAD;
10991 
10992 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10993 		return KF_ARG_PTR_TO_LIST_NODE;
10994 
10995 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10996 		return KF_ARG_PTR_TO_RB_ROOT;
10997 
10998 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10999 		return KF_ARG_PTR_TO_RB_NODE;
11000 
11001 	if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
11002 		return KF_ARG_PTR_TO_CONST_STR;
11003 
11004 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
11005 		if (!btf_type_is_struct(ref_t)) {
11006 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
11007 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
11008 			return -EINVAL;
11009 		}
11010 		return KF_ARG_PTR_TO_BTF_ID;
11011 	}
11012 
11013 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
11014 		return KF_ARG_PTR_TO_CALLBACK;
11015 
11016 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
11017 		return KF_ARG_PTR_TO_NULL;
11018 
11019 	if (argno + 1 < nargs &&
11020 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
11021 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
11022 		arg_mem_size = true;
11023 
11024 	/* This is the catch all argument type of register types supported by
11025 	 * check_helper_mem_access. However, we only allow when argument type is
11026 	 * pointer to scalar, or struct composed (recursively) of scalars. When
11027 	 * arg_mem_size is true, the pointer can be void *.
11028 	 */
11029 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
11030 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
11031 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
11032 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
11033 		return -EINVAL;
11034 	}
11035 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
11036 }
11037 
11038 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
11039 					struct bpf_reg_state *reg,
11040 					const struct btf_type *ref_t,
11041 					const char *ref_tname, u32 ref_id,
11042 					struct bpf_kfunc_call_arg_meta *meta,
11043 					int argno)
11044 {
11045 	const struct btf_type *reg_ref_t;
11046 	bool strict_type_match = false;
11047 	const struct btf *reg_btf;
11048 	const char *reg_ref_tname;
11049 	u32 reg_ref_id;
11050 
11051 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
11052 		reg_btf = reg->btf;
11053 		reg_ref_id = reg->btf_id;
11054 	} else {
11055 		reg_btf = btf_vmlinux;
11056 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
11057 	}
11058 
11059 	/* Enforce strict type matching for calls to kfuncs that are acquiring
11060 	 * or releasing a reference, or are no-cast aliases. We do _not_
11061 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
11062 	 * as we want to enable BPF programs to pass types that are bitwise
11063 	 * equivalent without forcing them to explicitly cast with something
11064 	 * like bpf_cast_to_kern_ctx().
11065 	 *
11066 	 * For example, say we had a type like the following:
11067 	 *
11068 	 * struct bpf_cpumask {
11069 	 *	cpumask_t cpumask;
11070 	 *	refcount_t usage;
11071 	 * };
11072 	 *
11073 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
11074 	 * to a struct cpumask, so it would be safe to pass a struct
11075 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
11076 	 *
11077 	 * The philosophy here is similar to how we allow scalars of different
11078 	 * types to be passed to kfuncs as long as the size is the same. The
11079 	 * only difference here is that we're simply allowing
11080 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
11081 	 * resolve types.
11082 	 */
11083 	if (is_kfunc_acquire(meta) ||
11084 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
11085 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
11086 		strict_type_match = true;
11087 
11088 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
11089 
11090 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
11091 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
11092 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
11093 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
11094 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
11095 			btf_type_str(reg_ref_t), reg_ref_tname);
11096 		return -EINVAL;
11097 	}
11098 	return 0;
11099 }
11100 
11101 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11102 {
11103 	struct bpf_verifier_state *state = env->cur_state;
11104 	struct btf_record *rec = reg_btf_record(reg);
11105 
11106 	if (!state->active_lock.ptr) {
11107 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
11108 		return -EFAULT;
11109 	}
11110 
11111 	if (type_flag(reg->type) & NON_OWN_REF) {
11112 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
11113 		return -EFAULT;
11114 	}
11115 
11116 	reg->type |= NON_OWN_REF;
11117 	if (rec->refcount_off >= 0)
11118 		reg->type |= MEM_RCU;
11119 
11120 	return 0;
11121 }
11122 
11123 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
11124 {
11125 	struct bpf_func_state *state, *unused;
11126 	struct bpf_reg_state *reg;
11127 	int i;
11128 
11129 	state = cur_func(env);
11130 
11131 	if (!ref_obj_id) {
11132 		verbose(env, "verifier internal error: ref_obj_id is zero for "
11133 			     "owning -> non-owning conversion\n");
11134 		return -EFAULT;
11135 	}
11136 
11137 	for (i = 0; i < state->acquired_refs; i++) {
11138 		if (state->refs[i].id != ref_obj_id)
11139 			continue;
11140 
11141 		/* Clear ref_obj_id here so release_reference doesn't clobber
11142 		 * the whole reg
11143 		 */
11144 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
11145 			if (reg->ref_obj_id == ref_obj_id) {
11146 				reg->ref_obj_id = 0;
11147 				ref_set_non_owning(env, reg);
11148 			}
11149 		}));
11150 		return 0;
11151 	}
11152 
11153 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
11154 	return -EFAULT;
11155 }
11156 
11157 /* Implementation details:
11158  *
11159  * Each register points to some region of memory, which we define as an
11160  * allocation. Each allocation may embed a bpf_spin_lock which protects any
11161  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
11162  * allocation. The lock and the data it protects are colocated in the same
11163  * memory region.
11164  *
11165  * Hence, everytime a register holds a pointer value pointing to such
11166  * allocation, the verifier preserves a unique reg->id for it.
11167  *
11168  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
11169  * bpf_spin_lock is called.
11170  *
11171  * To enable this, lock state in the verifier captures two values:
11172  *	active_lock.ptr = Register's type specific pointer
11173  *	active_lock.id  = A unique ID for each register pointer value
11174  *
11175  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11176  * supported register types.
11177  *
11178  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11179  * allocated objects is the reg->btf pointer.
11180  *
11181  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11182  * can establish the provenance of the map value statically for each distinct
11183  * lookup into such maps. They always contain a single map value hence unique
11184  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11185  *
11186  * So, in case of global variables, they use array maps with max_entries = 1,
11187  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11188  * into the same map value as max_entries is 1, as described above).
11189  *
11190  * In case of inner map lookups, the inner map pointer has same map_ptr as the
11191  * outer map pointer (in verifier context), but each lookup into an inner map
11192  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11193  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11194  * will get different reg->id assigned to each lookup, hence different
11195  * active_lock.id.
11196  *
11197  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11198  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11199  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11200  */
11201 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11202 {
11203 	void *ptr;
11204 	u32 id;
11205 
11206 	switch ((int)reg->type) {
11207 	case PTR_TO_MAP_VALUE:
11208 		ptr = reg->map_ptr;
11209 		break;
11210 	case PTR_TO_BTF_ID | MEM_ALLOC:
11211 		ptr = reg->btf;
11212 		break;
11213 	default:
11214 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
11215 		return -EFAULT;
11216 	}
11217 	id = reg->id;
11218 
11219 	if (!env->cur_state->active_lock.ptr)
11220 		return -EINVAL;
11221 	if (env->cur_state->active_lock.ptr != ptr ||
11222 	    env->cur_state->active_lock.id != id) {
11223 		verbose(env, "held lock and object are not in the same allocation\n");
11224 		return -EINVAL;
11225 	}
11226 	return 0;
11227 }
11228 
11229 static bool is_bpf_list_api_kfunc(u32 btf_id)
11230 {
11231 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11232 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11233 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11234 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11235 }
11236 
11237 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11238 {
11239 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11240 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11241 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11242 }
11243 
11244 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11245 {
11246 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11247 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11248 }
11249 
11250 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11251 {
11252 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11253 }
11254 
11255 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
11256 {
11257 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
11258 	       insn->imm == special_kfunc_list[KF_bpf_throw];
11259 }
11260 
11261 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11262 {
11263 	return is_bpf_rbtree_api_kfunc(btf_id);
11264 }
11265 
11266 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11267 					  enum btf_field_type head_field_type,
11268 					  u32 kfunc_btf_id)
11269 {
11270 	bool ret;
11271 
11272 	switch (head_field_type) {
11273 	case BPF_LIST_HEAD:
11274 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11275 		break;
11276 	case BPF_RB_ROOT:
11277 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11278 		break;
11279 	default:
11280 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11281 			btf_field_type_name(head_field_type));
11282 		return false;
11283 	}
11284 
11285 	if (!ret)
11286 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11287 			btf_field_type_name(head_field_type));
11288 	return ret;
11289 }
11290 
11291 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11292 					  enum btf_field_type node_field_type,
11293 					  u32 kfunc_btf_id)
11294 {
11295 	bool ret;
11296 
11297 	switch (node_field_type) {
11298 	case BPF_LIST_NODE:
11299 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11300 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11301 		break;
11302 	case BPF_RB_NODE:
11303 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11304 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11305 		break;
11306 	default:
11307 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11308 			btf_field_type_name(node_field_type));
11309 		return false;
11310 	}
11311 
11312 	if (!ret)
11313 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11314 			btf_field_type_name(node_field_type));
11315 	return ret;
11316 }
11317 
11318 static int
11319 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11320 				   struct bpf_reg_state *reg, u32 regno,
11321 				   struct bpf_kfunc_call_arg_meta *meta,
11322 				   enum btf_field_type head_field_type,
11323 				   struct btf_field **head_field)
11324 {
11325 	const char *head_type_name;
11326 	struct btf_field *field;
11327 	struct btf_record *rec;
11328 	u32 head_off;
11329 
11330 	if (meta->btf != btf_vmlinux) {
11331 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11332 		return -EFAULT;
11333 	}
11334 
11335 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11336 		return -EFAULT;
11337 
11338 	head_type_name = btf_field_type_name(head_field_type);
11339 	if (!tnum_is_const(reg->var_off)) {
11340 		verbose(env,
11341 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11342 			regno, head_type_name);
11343 		return -EINVAL;
11344 	}
11345 
11346 	rec = reg_btf_record(reg);
11347 	head_off = reg->off + reg->var_off.value;
11348 	field = btf_record_find(rec, head_off, head_field_type);
11349 	if (!field) {
11350 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11351 		return -EINVAL;
11352 	}
11353 
11354 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11355 	if (check_reg_allocation_locked(env, reg)) {
11356 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11357 			rec->spin_lock_off, head_type_name);
11358 		return -EINVAL;
11359 	}
11360 
11361 	if (*head_field) {
11362 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11363 		return -EFAULT;
11364 	}
11365 	*head_field = field;
11366 	return 0;
11367 }
11368 
11369 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11370 					   struct bpf_reg_state *reg, u32 regno,
11371 					   struct bpf_kfunc_call_arg_meta *meta)
11372 {
11373 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11374 							  &meta->arg_list_head.field);
11375 }
11376 
11377 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11378 					     struct bpf_reg_state *reg, u32 regno,
11379 					     struct bpf_kfunc_call_arg_meta *meta)
11380 {
11381 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11382 							  &meta->arg_rbtree_root.field);
11383 }
11384 
11385 static int
11386 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11387 				   struct bpf_reg_state *reg, u32 regno,
11388 				   struct bpf_kfunc_call_arg_meta *meta,
11389 				   enum btf_field_type head_field_type,
11390 				   enum btf_field_type node_field_type,
11391 				   struct btf_field **node_field)
11392 {
11393 	const char *node_type_name;
11394 	const struct btf_type *et, *t;
11395 	struct btf_field *field;
11396 	u32 node_off;
11397 
11398 	if (meta->btf != btf_vmlinux) {
11399 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11400 		return -EFAULT;
11401 	}
11402 
11403 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11404 		return -EFAULT;
11405 
11406 	node_type_name = btf_field_type_name(node_field_type);
11407 	if (!tnum_is_const(reg->var_off)) {
11408 		verbose(env,
11409 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11410 			regno, node_type_name);
11411 		return -EINVAL;
11412 	}
11413 
11414 	node_off = reg->off + reg->var_off.value;
11415 	field = reg_find_field_offset(reg, node_off, node_field_type);
11416 	if (!field || field->offset != node_off) {
11417 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11418 		return -EINVAL;
11419 	}
11420 
11421 	field = *node_field;
11422 
11423 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11424 	t = btf_type_by_id(reg->btf, reg->btf_id);
11425 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11426 				  field->graph_root.value_btf_id, true)) {
11427 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11428 			"in struct %s, but arg is at offset=%d in struct %s\n",
11429 			btf_field_type_name(head_field_type),
11430 			btf_field_type_name(node_field_type),
11431 			field->graph_root.node_offset,
11432 			btf_name_by_offset(field->graph_root.btf, et->name_off),
11433 			node_off, btf_name_by_offset(reg->btf, t->name_off));
11434 		return -EINVAL;
11435 	}
11436 	meta->arg_btf = reg->btf;
11437 	meta->arg_btf_id = reg->btf_id;
11438 
11439 	if (node_off != field->graph_root.node_offset) {
11440 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11441 			node_off, btf_field_type_name(node_field_type),
11442 			field->graph_root.node_offset,
11443 			btf_name_by_offset(field->graph_root.btf, et->name_off));
11444 		return -EINVAL;
11445 	}
11446 
11447 	return 0;
11448 }
11449 
11450 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11451 					   struct bpf_reg_state *reg, u32 regno,
11452 					   struct bpf_kfunc_call_arg_meta *meta)
11453 {
11454 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11455 						  BPF_LIST_HEAD, BPF_LIST_NODE,
11456 						  &meta->arg_list_head.field);
11457 }
11458 
11459 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11460 					     struct bpf_reg_state *reg, u32 regno,
11461 					     struct bpf_kfunc_call_arg_meta *meta)
11462 {
11463 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11464 						  BPF_RB_ROOT, BPF_RB_NODE,
11465 						  &meta->arg_rbtree_root.field);
11466 }
11467 
11468 /*
11469  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
11470  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
11471  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
11472  * them can only be attached to some specific hook points.
11473  */
11474 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
11475 {
11476 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11477 
11478 	switch (prog_type) {
11479 	case BPF_PROG_TYPE_LSM:
11480 		return true;
11481 	case BPF_PROG_TYPE_TRACING:
11482 		if (env->prog->expected_attach_type == BPF_TRACE_ITER)
11483 			return true;
11484 		fallthrough;
11485 	default:
11486 		return env->prog->aux->sleepable;
11487 	}
11488 }
11489 
11490 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11491 			    int insn_idx)
11492 {
11493 	const char *func_name = meta->func_name, *ref_tname;
11494 	const struct btf *btf = meta->btf;
11495 	const struct btf_param *args;
11496 	struct btf_record *rec;
11497 	u32 i, nargs;
11498 	int ret;
11499 
11500 	args = (const struct btf_param *)(meta->func_proto + 1);
11501 	nargs = btf_type_vlen(meta->func_proto);
11502 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11503 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11504 			MAX_BPF_FUNC_REG_ARGS);
11505 		return -EINVAL;
11506 	}
11507 
11508 	/* Check that BTF function arguments match actual types that the
11509 	 * verifier sees.
11510 	 */
11511 	for (i = 0; i < nargs; i++) {
11512 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11513 		const struct btf_type *t, *ref_t, *resolve_ret;
11514 		enum bpf_arg_type arg_type = ARG_DONTCARE;
11515 		u32 regno = i + 1, ref_id, type_size;
11516 		bool is_ret_buf_sz = false;
11517 		int kf_arg_type;
11518 
11519 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11520 
11521 		if (is_kfunc_arg_ignore(btf, &args[i]))
11522 			continue;
11523 
11524 		if (btf_type_is_scalar(t)) {
11525 			if (reg->type != SCALAR_VALUE) {
11526 				verbose(env, "R%d is not a scalar\n", regno);
11527 				return -EINVAL;
11528 			}
11529 
11530 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11531 				if (meta->arg_constant.found) {
11532 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11533 					return -EFAULT;
11534 				}
11535 				if (!tnum_is_const(reg->var_off)) {
11536 					verbose(env, "R%d must be a known constant\n", regno);
11537 					return -EINVAL;
11538 				}
11539 				ret = mark_chain_precision(env, regno);
11540 				if (ret < 0)
11541 					return ret;
11542 				meta->arg_constant.found = true;
11543 				meta->arg_constant.value = reg->var_off.value;
11544 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11545 				meta->r0_rdonly = true;
11546 				is_ret_buf_sz = true;
11547 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11548 				is_ret_buf_sz = true;
11549 			}
11550 
11551 			if (is_ret_buf_sz) {
11552 				if (meta->r0_size) {
11553 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11554 					return -EINVAL;
11555 				}
11556 
11557 				if (!tnum_is_const(reg->var_off)) {
11558 					verbose(env, "R%d is not a const\n", regno);
11559 					return -EINVAL;
11560 				}
11561 
11562 				meta->r0_size = reg->var_off.value;
11563 				ret = mark_chain_precision(env, regno);
11564 				if (ret)
11565 					return ret;
11566 			}
11567 			continue;
11568 		}
11569 
11570 		if (!btf_type_is_ptr(t)) {
11571 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11572 			return -EINVAL;
11573 		}
11574 
11575 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11576 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
11577 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
11578 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11579 			return -EACCES;
11580 		}
11581 
11582 		if (reg->ref_obj_id) {
11583 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
11584 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11585 					regno, reg->ref_obj_id,
11586 					meta->ref_obj_id);
11587 				return -EFAULT;
11588 			}
11589 			meta->ref_obj_id = reg->ref_obj_id;
11590 			if (is_kfunc_release(meta))
11591 				meta->release_regno = regno;
11592 		}
11593 
11594 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11595 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11596 
11597 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11598 		if (kf_arg_type < 0)
11599 			return kf_arg_type;
11600 
11601 		switch (kf_arg_type) {
11602 		case KF_ARG_PTR_TO_NULL:
11603 			continue;
11604 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11605 		case KF_ARG_PTR_TO_BTF_ID:
11606 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11607 				break;
11608 
11609 			if (!is_trusted_reg(reg)) {
11610 				if (!is_kfunc_rcu(meta)) {
11611 					verbose(env, "R%d must be referenced or trusted\n", regno);
11612 					return -EINVAL;
11613 				}
11614 				if (!is_rcu_reg(reg)) {
11615 					verbose(env, "R%d must be a rcu pointer\n", regno);
11616 					return -EINVAL;
11617 				}
11618 			}
11619 
11620 			fallthrough;
11621 		case KF_ARG_PTR_TO_CTX:
11622 			/* Trusted arguments have the same offset checks as release arguments */
11623 			arg_type |= OBJ_RELEASE;
11624 			break;
11625 		case KF_ARG_PTR_TO_DYNPTR:
11626 		case KF_ARG_PTR_TO_ITER:
11627 		case KF_ARG_PTR_TO_LIST_HEAD:
11628 		case KF_ARG_PTR_TO_LIST_NODE:
11629 		case KF_ARG_PTR_TO_RB_ROOT:
11630 		case KF_ARG_PTR_TO_RB_NODE:
11631 		case KF_ARG_PTR_TO_MEM:
11632 		case KF_ARG_PTR_TO_MEM_SIZE:
11633 		case KF_ARG_PTR_TO_CALLBACK:
11634 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11635 		case KF_ARG_PTR_TO_CONST_STR:
11636 			/* Trusted by default */
11637 			break;
11638 		default:
11639 			WARN_ON_ONCE(1);
11640 			return -EFAULT;
11641 		}
11642 
11643 		if (is_kfunc_release(meta) && reg->ref_obj_id)
11644 			arg_type |= OBJ_RELEASE;
11645 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11646 		if (ret < 0)
11647 			return ret;
11648 
11649 		switch (kf_arg_type) {
11650 		case KF_ARG_PTR_TO_CTX:
11651 			if (reg->type != PTR_TO_CTX) {
11652 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11653 				return -EINVAL;
11654 			}
11655 
11656 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11657 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11658 				if (ret < 0)
11659 					return -EINVAL;
11660 				meta->ret_btf_id  = ret;
11661 			}
11662 			break;
11663 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11664 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
11665 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
11666 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
11667 					return -EINVAL;
11668 				}
11669 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
11670 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
11671 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
11672 					return -EINVAL;
11673 				}
11674 			} else {
11675 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11676 				return -EINVAL;
11677 			}
11678 			if (!reg->ref_obj_id) {
11679 				verbose(env, "allocated object must be referenced\n");
11680 				return -EINVAL;
11681 			}
11682 			if (meta->btf == btf_vmlinux) {
11683 				meta->arg_btf = reg->btf;
11684 				meta->arg_btf_id = reg->btf_id;
11685 			}
11686 			break;
11687 		case KF_ARG_PTR_TO_DYNPTR:
11688 		{
11689 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11690 			int clone_ref_obj_id = 0;
11691 
11692 			if (reg->type != PTR_TO_STACK &&
11693 			    reg->type != CONST_PTR_TO_DYNPTR) {
11694 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11695 				return -EINVAL;
11696 			}
11697 
11698 			if (reg->type == CONST_PTR_TO_DYNPTR)
11699 				dynptr_arg_type |= MEM_RDONLY;
11700 
11701 			if (is_kfunc_arg_uninit(btf, &args[i]))
11702 				dynptr_arg_type |= MEM_UNINIT;
11703 
11704 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11705 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11706 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11707 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11708 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11709 				   (dynptr_arg_type & MEM_UNINIT)) {
11710 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11711 
11712 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11713 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11714 					return -EFAULT;
11715 				}
11716 
11717 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11718 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11719 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11720 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11721 					return -EFAULT;
11722 				}
11723 			}
11724 
11725 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11726 			if (ret < 0)
11727 				return ret;
11728 
11729 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11730 				int id = dynptr_id(env, reg);
11731 
11732 				if (id < 0) {
11733 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11734 					return id;
11735 				}
11736 				meta->initialized_dynptr.id = id;
11737 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11738 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11739 			}
11740 
11741 			break;
11742 		}
11743 		case KF_ARG_PTR_TO_ITER:
11744 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
11745 				if (!check_css_task_iter_allowlist(env)) {
11746 					verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
11747 					return -EINVAL;
11748 				}
11749 			}
11750 			ret = process_iter_arg(env, regno, insn_idx, meta);
11751 			if (ret < 0)
11752 				return ret;
11753 			break;
11754 		case KF_ARG_PTR_TO_LIST_HEAD:
11755 			if (reg->type != PTR_TO_MAP_VALUE &&
11756 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11757 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11758 				return -EINVAL;
11759 			}
11760 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11761 				verbose(env, "allocated object must be referenced\n");
11762 				return -EINVAL;
11763 			}
11764 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11765 			if (ret < 0)
11766 				return ret;
11767 			break;
11768 		case KF_ARG_PTR_TO_RB_ROOT:
11769 			if (reg->type != PTR_TO_MAP_VALUE &&
11770 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11771 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11772 				return -EINVAL;
11773 			}
11774 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11775 				verbose(env, "allocated object must be referenced\n");
11776 				return -EINVAL;
11777 			}
11778 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11779 			if (ret < 0)
11780 				return ret;
11781 			break;
11782 		case KF_ARG_PTR_TO_LIST_NODE:
11783 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11784 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11785 				return -EINVAL;
11786 			}
11787 			if (!reg->ref_obj_id) {
11788 				verbose(env, "allocated object must be referenced\n");
11789 				return -EINVAL;
11790 			}
11791 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11792 			if (ret < 0)
11793 				return ret;
11794 			break;
11795 		case KF_ARG_PTR_TO_RB_NODE:
11796 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11797 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11798 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11799 					return -EINVAL;
11800 				}
11801 				if (in_rbtree_lock_required_cb(env)) {
11802 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11803 					return -EINVAL;
11804 				}
11805 			} else {
11806 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11807 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11808 					return -EINVAL;
11809 				}
11810 				if (!reg->ref_obj_id) {
11811 					verbose(env, "allocated object must be referenced\n");
11812 					return -EINVAL;
11813 				}
11814 			}
11815 
11816 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11817 			if (ret < 0)
11818 				return ret;
11819 			break;
11820 		case KF_ARG_PTR_TO_BTF_ID:
11821 			/* Only base_type is checked, further checks are done here */
11822 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11823 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11824 			    !reg2btf_ids[base_type(reg->type)]) {
11825 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11826 				verbose(env, "expected %s or socket\n",
11827 					reg_type_str(env, base_type(reg->type) |
11828 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11829 				return -EINVAL;
11830 			}
11831 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11832 			if (ret < 0)
11833 				return ret;
11834 			break;
11835 		case KF_ARG_PTR_TO_MEM:
11836 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11837 			if (IS_ERR(resolve_ret)) {
11838 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11839 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11840 				return -EINVAL;
11841 			}
11842 			ret = check_mem_reg(env, reg, regno, type_size);
11843 			if (ret < 0)
11844 				return ret;
11845 			break;
11846 		case KF_ARG_PTR_TO_MEM_SIZE:
11847 		{
11848 			struct bpf_reg_state *buff_reg = &regs[regno];
11849 			const struct btf_param *buff_arg = &args[i];
11850 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11851 			const struct btf_param *size_arg = &args[i + 1];
11852 
11853 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11854 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11855 				if (ret < 0) {
11856 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11857 					return ret;
11858 				}
11859 			}
11860 
11861 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11862 				if (meta->arg_constant.found) {
11863 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11864 					return -EFAULT;
11865 				}
11866 				if (!tnum_is_const(size_reg->var_off)) {
11867 					verbose(env, "R%d must be a known constant\n", regno + 1);
11868 					return -EINVAL;
11869 				}
11870 				meta->arg_constant.found = true;
11871 				meta->arg_constant.value = size_reg->var_off.value;
11872 			}
11873 
11874 			/* Skip next '__sz' or '__szk' argument */
11875 			i++;
11876 			break;
11877 		}
11878 		case KF_ARG_PTR_TO_CALLBACK:
11879 			if (reg->type != PTR_TO_FUNC) {
11880 				verbose(env, "arg%d expected pointer to func\n", i);
11881 				return -EINVAL;
11882 			}
11883 			meta->subprogno = reg->subprogno;
11884 			break;
11885 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11886 			if (!type_is_ptr_alloc_obj(reg->type)) {
11887 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11888 				return -EINVAL;
11889 			}
11890 			if (!type_is_non_owning_ref(reg->type))
11891 				meta->arg_owning_ref = true;
11892 
11893 			rec = reg_btf_record(reg);
11894 			if (!rec) {
11895 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11896 				return -EFAULT;
11897 			}
11898 
11899 			if (rec->refcount_off < 0) {
11900 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11901 				return -EINVAL;
11902 			}
11903 
11904 			meta->arg_btf = reg->btf;
11905 			meta->arg_btf_id = reg->btf_id;
11906 			break;
11907 		case KF_ARG_PTR_TO_CONST_STR:
11908 			if (reg->type != PTR_TO_MAP_VALUE) {
11909 				verbose(env, "arg#%d doesn't point to a const string\n", i);
11910 				return -EINVAL;
11911 			}
11912 			ret = check_reg_const_str(env, reg, regno);
11913 			if (ret)
11914 				return ret;
11915 			break;
11916 		}
11917 	}
11918 
11919 	if (is_kfunc_release(meta) && !meta->release_regno) {
11920 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11921 			func_name);
11922 		return -EINVAL;
11923 	}
11924 
11925 	return 0;
11926 }
11927 
11928 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11929 			    struct bpf_insn *insn,
11930 			    struct bpf_kfunc_call_arg_meta *meta,
11931 			    const char **kfunc_name)
11932 {
11933 	const struct btf_type *func, *func_proto;
11934 	u32 func_id, *kfunc_flags;
11935 	const char *func_name;
11936 	struct btf *desc_btf;
11937 
11938 	if (kfunc_name)
11939 		*kfunc_name = NULL;
11940 
11941 	if (!insn->imm)
11942 		return -EINVAL;
11943 
11944 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11945 	if (IS_ERR(desc_btf))
11946 		return PTR_ERR(desc_btf);
11947 
11948 	func_id = insn->imm;
11949 	func = btf_type_by_id(desc_btf, func_id);
11950 	func_name = btf_name_by_offset(desc_btf, func->name_off);
11951 	if (kfunc_name)
11952 		*kfunc_name = func_name;
11953 	func_proto = btf_type_by_id(desc_btf, func->type);
11954 
11955 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11956 	if (!kfunc_flags) {
11957 		return -EACCES;
11958 	}
11959 
11960 	memset(meta, 0, sizeof(*meta));
11961 	meta->btf = desc_btf;
11962 	meta->func_id = func_id;
11963 	meta->kfunc_flags = *kfunc_flags;
11964 	meta->func_proto = func_proto;
11965 	meta->func_name = func_name;
11966 
11967 	return 0;
11968 }
11969 
11970 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
11971 
11972 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11973 			    int *insn_idx_p)
11974 {
11975 	const struct btf_type *t, *ptr_type;
11976 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
11977 	struct bpf_reg_state *regs = cur_regs(env);
11978 	const char *func_name, *ptr_type_name;
11979 	bool sleepable, rcu_lock, rcu_unlock;
11980 	struct bpf_kfunc_call_arg_meta meta;
11981 	struct bpf_insn_aux_data *insn_aux;
11982 	int err, insn_idx = *insn_idx_p;
11983 	const struct btf_param *args;
11984 	const struct btf_type *ret_t;
11985 	struct btf *desc_btf;
11986 
11987 	/* skip for now, but return error when we find this in fixup_kfunc_call */
11988 	if (!insn->imm)
11989 		return 0;
11990 
11991 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11992 	if (err == -EACCES && func_name)
11993 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
11994 	if (err)
11995 		return err;
11996 	desc_btf = meta.btf;
11997 	insn_aux = &env->insn_aux_data[insn_idx];
11998 
11999 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
12000 
12001 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
12002 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
12003 		return -EACCES;
12004 	}
12005 
12006 	sleepable = is_kfunc_sleepable(&meta);
12007 	if (sleepable && !env->prog->aux->sleepable) {
12008 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
12009 		return -EACCES;
12010 	}
12011 
12012 	/* Check the arguments */
12013 	err = check_kfunc_args(env, &meta, insn_idx);
12014 	if (err < 0)
12015 		return err;
12016 
12017 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12018 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12019 					 set_rbtree_add_callback_state);
12020 		if (err) {
12021 			verbose(env, "kfunc %s#%d failed callback verification\n",
12022 				func_name, meta.func_id);
12023 			return err;
12024 		}
12025 	}
12026 
12027 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
12028 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
12029 
12030 	if (env->cur_state->active_rcu_lock) {
12031 		struct bpf_func_state *state;
12032 		struct bpf_reg_state *reg;
12033 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
12034 
12035 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
12036 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
12037 			return -EACCES;
12038 		}
12039 
12040 		if (rcu_lock) {
12041 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
12042 			return -EINVAL;
12043 		} else if (rcu_unlock) {
12044 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
12045 				if (reg->type & MEM_RCU) {
12046 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
12047 					reg->type |= PTR_UNTRUSTED;
12048 				}
12049 			}));
12050 			env->cur_state->active_rcu_lock = false;
12051 		} else if (sleepable) {
12052 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
12053 			return -EACCES;
12054 		}
12055 	} else if (rcu_lock) {
12056 		env->cur_state->active_rcu_lock = true;
12057 	} else if (rcu_unlock) {
12058 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
12059 		return -EINVAL;
12060 	}
12061 
12062 	/* In case of release function, we get register number of refcounted
12063 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
12064 	 */
12065 	if (meta.release_regno) {
12066 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
12067 		if (err) {
12068 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12069 				func_name, meta.func_id);
12070 			return err;
12071 		}
12072 	}
12073 
12074 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12075 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12076 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12077 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
12078 		insn_aux->insert_off = regs[BPF_REG_2].off;
12079 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
12080 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
12081 		if (err) {
12082 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
12083 				func_name, meta.func_id);
12084 			return err;
12085 		}
12086 
12087 		err = release_reference(env, release_ref_obj_id);
12088 		if (err) {
12089 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12090 				func_name, meta.func_id);
12091 			return err;
12092 		}
12093 	}
12094 
12095 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
12096 		if (!bpf_jit_supports_exceptions()) {
12097 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
12098 				func_name, meta.func_id);
12099 			return -ENOTSUPP;
12100 		}
12101 		env->seen_exception = true;
12102 
12103 		/* In the case of the default callback, the cookie value passed
12104 		 * to bpf_throw becomes the return value of the program.
12105 		 */
12106 		if (!env->exception_callback_subprog) {
12107 			err = check_return_code(env, BPF_REG_1, "R1");
12108 			if (err < 0)
12109 				return err;
12110 		}
12111 	}
12112 
12113 	for (i = 0; i < CALLER_SAVED_REGS; i++)
12114 		mark_reg_not_init(env, regs, caller_saved[i]);
12115 
12116 	/* Check return type */
12117 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
12118 
12119 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
12120 		/* Only exception is bpf_obj_new_impl */
12121 		if (meta.btf != btf_vmlinux ||
12122 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
12123 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
12124 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
12125 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
12126 			return -EINVAL;
12127 		}
12128 	}
12129 
12130 	if (btf_type_is_scalar(t)) {
12131 		mark_reg_unknown(env, regs, BPF_REG_0);
12132 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
12133 	} else if (btf_type_is_ptr(t)) {
12134 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
12135 
12136 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12137 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
12138 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12139 				struct btf_struct_meta *struct_meta;
12140 				struct btf *ret_btf;
12141 				u32 ret_btf_id;
12142 
12143 				if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
12144 					return -ENOMEM;
12145 
12146 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
12147 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
12148 					return -EINVAL;
12149 				}
12150 
12151 				ret_btf = env->prog->aux->btf;
12152 				ret_btf_id = meta.arg_constant.value;
12153 
12154 				/* This may be NULL due to user not supplying a BTF */
12155 				if (!ret_btf) {
12156 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
12157 					return -EINVAL;
12158 				}
12159 
12160 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
12161 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
12162 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
12163 					return -EINVAL;
12164 				}
12165 
12166 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12167 					if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
12168 						verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
12169 							ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
12170 						return -EINVAL;
12171 					}
12172 
12173 					if (!bpf_global_percpu_ma_set) {
12174 						mutex_lock(&bpf_percpu_ma_lock);
12175 						if (!bpf_global_percpu_ma_set) {
12176 							/* Charge memory allocated with bpf_global_percpu_ma to
12177 							 * root memcg. The obj_cgroup for root memcg is NULL.
12178 							 */
12179 							err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
12180 							if (!err)
12181 								bpf_global_percpu_ma_set = true;
12182 						}
12183 						mutex_unlock(&bpf_percpu_ma_lock);
12184 						if (err)
12185 							return err;
12186 					}
12187 
12188 					mutex_lock(&bpf_percpu_ma_lock);
12189 					err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
12190 					mutex_unlock(&bpf_percpu_ma_lock);
12191 					if (err)
12192 						return err;
12193 				}
12194 
12195 				struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
12196 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12197 					if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
12198 						verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
12199 						return -EINVAL;
12200 					}
12201 
12202 					if (struct_meta) {
12203 						verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
12204 						return -EINVAL;
12205 					}
12206 				}
12207 
12208 				mark_reg_known_zero(env, regs, BPF_REG_0);
12209 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12210 				regs[BPF_REG_0].btf = ret_btf;
12211 				regs[BPF_REG_0].btf_id = ret_btf_id;
12212 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
12213 					regs[BPF_REG_0].type |= MEM_PERCPU;
12214 
12215 				insn_aux->obj_new_size = ret_t->size;
12216 				insn_aux->kptr_struct_meta = struct_meta;
12217 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
12218 				mark_reg_known_zero(env, regs, BPF_REG_0);
12219 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12220 				regs[BPF_REG_0].btf = meta.arg_btf;
12221 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
12222 
12223 				insn_aux->kptr_struct_meta =
12224 					btf_find_struct_meta(meta.arg_btf,
12225 							     meta.arg_btf_id);
12226 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12227 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
12228 				struct btf_field *field = meta.arg_list_head.field;
12229 
12230 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12231 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12232 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12233 				struct btf_field *field = meta.arg_rbtree_root.field;
12234 
12235 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12236 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12237 				mark_reg_known_zero(env, regs, BPF_REG_0);
12238 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
12239 				regs[BPF_REG_0].btf = desc_btf;
12240 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
12241 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
12242 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
12243 				if (!ret_t || !btf_type_is_struct(ret_t)) {
12244 					verbose(env,
12245 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
12246 					return -EINVAL;
12247 				}
12248 
12249 				mark_reg_known_zero(env, regs, BPF_REG_0);
12250 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
12251 				regs[BPF_REG_0].btf = desc_btf;
12252 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
12253 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
12254 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
12255 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
12256 
12257 				mark_reg_known_zero(env, regs, BPF_REG_0);
12258 
12259 				if (!meta.arg_constant.found) {
12260 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
12261 					return -EFAULT;
12262 				}
12263 
12264 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
12265 
12266 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
12267 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
12268 
12269 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
12270 					regs[BPF_REG_0].type |= MEM_RDONLY;
12271 				} else {
12272 					/* this will set env->seen_direct_write to true */
12273 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
12274 						verbose(env, "the prog does not allow writes to packet data\n");
12275 						return -EINVAL;
12276 					}
12277 				}
12278 
12279 				if (!meta.initialized_dynptr.id) {
12280 					verbose(env, "verifier internal error: no dynptr id\n");
12281 					return -EFAULT;
12282 				}
12283 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
12284 
12285 				/* we don't need to set BPF_REG_0's ref obj id
12286 				 * because packet slices are not refcounted (see
12287 				 * dynptr_type_refcounted)
12288 				 */
12289 			} else {
12290 				verbose(env, "kernel function %s unhandled dynamic return type\n",
12291 					meta.func_name);
12292 				return -EFAULT;
12293 			}
12294 		} else if (!__btf_type_is_struct(ptr_type)) {
12295 			if (!meta.r0_size) {
12296 				__u32 sz;
12297 
12298 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
12299 					meta.r0_size = sz;
12300 					meta.r0_rdonly = true;
12301 				}
12302 			}
12303 			if (!meta.r0_size) {
12304 				ptr_type_name = btf_name_by_offset(desc_btf,
12305 								   ptr_type->name_off);
12306 				verbose(env,
12307 					"kernel function %s returns pointer type %s %s is not supported\n",
12308 					func_name,
12309 					btf_type_str(ptr_type),
12310 					ptr_type_name);
12311 				return -EINVAL;
12312 			}
12313 
12314 			mark_reg_known_zero(env, regs, BPF_REG_0);
12315 			regs[BPF_REG_0].type = PTR_TO_MEM;
12316 			regs[BPF_REG_0].mem_size = meta.r0_size;
12317 
12318 			if (meta.r0_rdonly)
12319 				regs[BPF_REG_0].type |= MEM_RDONLY;
12320 
12321 			/* Ensures we don't access the memory after a release_reference() */
12322 			if (meta.ref_obj_id)
12323 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12324 		} else {
12325 			mark_reg_known_zero(env, regs, BPF_REG_0);
12326 			regs[BPF_REG_0].btf = desc_btf;
12327 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12328 			regs[BPF_REG_0].btf_id = ptr_type_id;
12329 		}
12330 
12331 		if (is_kfunc_ret_null(&meta)) {
12332 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12333 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12334 			regs[BPF_REG_0].id = ++env->id_gen;
12335 		}
12336 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12337 		if (is_kfunc_acquire(&meta)) {
12338 			int id = acquire_reference_state(env, insn_idx);
12339 
12340 			if (id < 0)
12341 				return id;
12342 			if (is_kfunc_ret_null(&meta))
12343 				regs[BPF_REG_0].id = id;
12344 			regs[BPF_REG_0].ref_obj_id = id;
12345 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12346 			ref_set_non_owning(env, &regs[BPF_REG_0]);
12347 		}
12348 
12349 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
12350 			regs[BPF_REG_0].id = ++env->id_gen;
12351 	} else if (btf_type_is_void(t)) {
12352 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12353 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
12354 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12355 				insn_aux->kptr_struct_meta =
12356 					btf_find_struct_meta(meta.arg_btf,
12357 							     meta.arg_btf_id);
12358 			}
12359 		}
12360 	}
12361 
12362 	nargs = btf_type_vlen(meta.func_proto);
12363 	args = (const struct btf_param *)(meta.func_proto + 1);
12364 	for (i = 0; i < nargs; i++) {
12365 		u32 regno = i + 1;
12366 
12367 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12368 		if (btf_type_is_ptr(t))
12369 			mark_btf_func_reg_size(env, regno, sizeof(void *));
12370 		else
12371 			/* scalar. ensured by btf_check_kfunc_arg_match() */
12372 			mark_btf_func_reg_size(env, regno, t->size);
12373 	}
12374 
12375 	if (is_iter_next_kfunc(&meta)) {
12376 		err = process_iter_next_call(env, insn_idx, &meta);
12377 		if (err)
12378 			return err;
12379 	}
12380 
12381 	return 0;
12382 }
12383 
12384 static bool signed_add_overflows(s64 a, s64 b)
12385 {
12386 	/* Do the add in u64, where overflow is well-defined */
12387 	s64 res = (s64)((u64)a + (u64)b);
12388 
12389 	if (b < 0)
12390 		return res > a;
12391 	return res < a;
12392 }
12393 
12394 static bool signed_add32_overflows(s32 a, s32 b)
12395 {
12396 	/* Do the add in u32, where overflow is well-defined */
12397 	s32 res = (s32)((u32)a + (u32)b);
12398 
12399 	if (b < 0)
12400 		return res > a;
12401 	return res < a;
12402 }
12403 
12404 static bool signed_sub_overflows(s64 a, s64 b)
12405 {
12406 	/* Do the sub in u64, where overflow is well-defined */
12407 	s64 res = (s64)((u64)a - (u64)b);
12408 
12409 	if (b < 0)
12410 		return res < a;
12411 	return res > a;
12412 }
12413 
12414 static bool signed_sub32_overflows(s32 a, s32 b)
12415 {
12416 	/* Do the sub in u32, where overflow is well-defined */
12417 	s32 res = (s32)((u32)a - (u32)b);
12418 
12419 	if (b < 0)
12420 		return res < a;
12421 	return res > a;
12422 }
12423 
12424 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12425 				  const struct bpf_reg_state *reg,
12426 				  enum bpf_reg_type type)
12427 {
12428 	bool known = tnum_is_const(reg->var_off);
12429 	s64 val = reg->var_off.value;
12430 	s64 smin = reg->smin_value;
12431 
12432 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12433 		verbose(env, "math between %s pointer and %lld is not allowed\n",
12434 			reg_type_str(env, type), val);
12435 		return false;
12436 	}
12437 
12438 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12439 		verbose(env, "%s pointer offset %d is not allowed\n",
12440 			reg_type_str(env, type), reg->off);
12441 		return false;
12442 	}
12443 
12444 	if (smin == S64_MIN) {
12445 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12446 			reg_type_str(env, type));
12447 		return false;
12448 	}
12449 
12450 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12451 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
12452 			smin, reg_type_str(env, type));
12453 		return false;
12454 	}
12455 
12456 	return true;
12457 }
12458 
12459 enum {
12460 	REASON_BOUNDS	= -1,
12461 	REASON_TYPE	= -2,
12462 	REASON_PATHS	= -3,
12463 	REASON_LIMIT	= -4,
12464 	REASON_STACK	= -5,
12465 };
12466 
12467 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12468 			      u32 *alu_limit, bool mask_to_left)
12469 {
12470 	u32 max = 0, ptr_limit = 0;
12471 
12472 	switch (ptr_reg->type) {
12473 	case PTR_TO_STACK:
12474 		/* Offset 0 is out-of-bounds, but acceptable start for the
12475 		 * left direction, see BPF_REG_FP. Also, unknown scalar
12476 		 * offset where we would need to deal with min/max bounds is
12477 		 * currently prohibited for unprivileged.
12478 		 */
12479 		max = MAX_BPF_STACK + mask_to_left;
12480 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12481 		break;
12482 	case PTR_TO_MAP_VALUE:
12483 		max = ptr_reg->map_ptr->value_size;
12484 		ptr_limit = (mask_to_left ?
12485 			     ptr_reg->smin_value :
12486 			     ptr_reg->umax_value) + ptr_reg->off;
12487 		break;
12488 	default:
12489 		return REASON_TYPE;
12490 	}
12491 
12492 	if (ptr_limit >= max)
12493 		return REASON_LIMIT;
12494 	*alu_limit = ptr_limit;
12495 	return 0;
12496 }
12497 
12498 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12499 				    const struct bpf_insn *insn)
12500 {
12501 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12502 }
12503 
12504 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12505 				       u32 alu_state, u32 alu_limit)
12506 {
12507 	/* If we arrived here from different branches with different
12508 	 * state or limits to sanitize, then this won't work.
12509 	 */
12510 	if (aux->alu_state &&
12511 	    (aux->alu_state != alu_state ||
12512 	     aux->alu_limit != alu_limit))
12513 		return REASON_PATHS;
12514 
12515 	/* Corresponding fixup done in do_misc_fixups(). */
12516 	aux->alu_state = alu_state;
12517 	aux->alu_limit = alu_limit;
12518 	return 0;
12519 }
12520 
12521 static int sanitize_val_alu(struct bpf_verifier_env *env,
12522 			    struct bpf_insn *insn)
12523 {
12524 	struct bpf_insn_aux_data *aux = cur_aux(env);
12525 
12526 	if (can_skip_alu_sanitation(env, insn))
12527 		return 0;
12528 
12529 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12530 }
12531 
12532 static bool sanitize_needed(u8 opcode)
12533 {
12534 	return opcode == BPF_ADD || opcode == BPF_SUB;
12535 }
12536 
12537 struct bpf_sanitize_info {
12538 	struct bpf_insn_aux_data aux;
12539 	bool mask_to_left;
12540 };
12541 
12542 static struct bpf_verifier_state *
12543 sanitize_speculative_path(struct bpf_verifier_env *env,
12544 			  const struct bpf_insn *insn,
12545 			  u32 next_idx, u32 curr_idx)
12546 {
12547 	struct bpf_verifier_state *branch;
12548 	struct bpf_reg_state *regs;
12549 
12550 	branch = push_stack(env, next_idx, curr_idx, true);
12551 	if (branch && insn) {
12552 		regs = branch->frame[branch->curframe]->regs;
12553 		if (BPF_SRC(insn->code) == BPF_K) {
12554 			mark_reg_unknown(env, regs, insn->dst_reg);
12555 		} else if (BPF_SRC(insn->code) == BPF_X) {
12556 			mark_reg_unknown(env, regs, insn->dst_reg);
12557 			mark_reg_unknown(env, regs, insn->src_reg);
12558 		}
12559 	}
12560 	return branch;
12561 }
12562 
12563 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12564 			    struct bpf_insn *insn,
12565 			    const struct bpf_reg_state *ptr_reg,
12566 			    const struct bpf_reg_state *off_reg,
12567 			    struct bpf_reg_state *dst_reg,
12568 			    struct bpf_sanitize_info *info,
12569 			    const bool commit_window)
12570 {
12571 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12572 	struct bpf_verifier_state *vstate = env->cur_state;
12573 	bool off_is_imm = tnum_is_const(off_reg->var_off);
12574 	bool off_is_neg = off_reg->smin_value < 0;
12575 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
12576 	u8 opcode = BPF_OP(insn->code);
12577 	u32 alu_state, alu_limit;
12578 	struct bpf_reg_state tmp;
12579 	bool ret;
12580 	int err;
12581 
12582 	if (can_skip_alu_sanitation(env, insn))
12583 		return 0;
12584 
12585 	/* We already marked aux for masking from non-speculative
12586 	 * paths, thus we got here in the first place. We only care
12587 	 * to explore bad access from here.
12588 	 */
12589 	if (vstate->speculative)
12590 		goto do_sim;
12591 
12592 	if (!commit_window) {
12593 		if (!tnum_is_const(off_reg->var_off) &&
12594 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12595 			return REASON_BOUNDS;
12596 
12597 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
12598 				     (opcode == BPF_SUB && !off_is_neg);
12599 	}
12600 
12601 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12602 	if (err < 0)
12603 		return err;
12604 
12605 	if (commit_window) {
12606 		/* In commit phase we narrow the masking window based on
12607 		 * the observed pointer move after the simulated operation.
12608 		 */
12609 		alu_state = info->aux.alu_state;
12610 		alu_limit = abs(info->aux.alu_limit - alu_limit);
12611 	} else {
12612 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12613 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12614 		alu_state |= ptr_is_dst_reg ?
12615 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12616 
12617 		/* Limit pruning on unknown scalars to enable deep search for
12618 		 * potential masking differences from other program paths.
12619 		 */
12620 		if (!off_is_imm)
12621 			env->explore_alu_limits = true;
12622 	}
12623 
12624 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12625 	if (err < 0)
12626 		return err;
12627 do_sim:
12628 	/* If we're in commit phase, we're done here given we already
12629 	 * pushed the truncated dst_reg into the speculative verification
12630 	 * stack.
12631 	 *
12632 	 * Also, when register is a known constant, we rewrite register-based
12633 	 * operation to immediate-based, and thus do not need masking (and as
12634 	 * a consequence, do not need to simulate the zero-truncation either).
12635 	 */
12636 	if (commit_window || off_is_imm)
12637 		return 0;
12638 
12639 	/* Simulate and find potential out-of-bounds access under
12640 	 * speculative execution from truncation as a result of
12641 	 * masking when off was not within expected range. If off
12642 	 * sits in dst, then we temporarily need to move ptr there
12643 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12644 	 * for cases where we use K-based arithmetic in one direction
12645 	 * and truncated reg-based in the other in order to explore
12646 	 * bad access.
12647 	 */
12648 	if (!ptr_is_dst_reg) {
12649 		tmp = *dst_reg;
12650 		copy_register_state(dst_reg, ptr_reg);
12651 	}
12652 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12653 					env->insn_idx);
12654 	if (!ptr_is_dst_reg && ret)
12655 		*dst_reg = tmp;
12656 	return !ret ? REASON_STACK : 0;
12657 }
12658 
12659 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12660 {
12661 	struct bpf_verifier_state *vstate = env->cur_state;
12662 
12663 	/* If we simulate paths under speculation, we don't update the
12664 	 * insn as 'seen' such that when we verify unreachable paths in
12665 	 * the non-speculative domain, sanitize_dead_code() can still
12666 	 * rewrite/sanitize them.
12667 	 */
12668 	if (!vstate->speculative)
12669 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12670 }
12671 
12672 static int sanitize_err(struct bpf_verifier_env *env,
12673 			const struct bpf_insn *insn, int reason,
12674 			const struct bpf_reg_state *off_reg,
12675 			const struct bpf_reg_state *dst_reg)
12676 {
12677 	static const char *err = "pointer arithmetic with it prohibited for !root";
12678 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12679 	u32 dst = insn->dst_reg, src = insn->src_reg;
12680 
12681 	switch (reason) {
12682 	case REASON_BOUNDS:
12683 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12684 			off_reg == dst_reg ? dst : src, err);
12685 		break;
12686 	case REASON_TYPE:
12687 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12688 			off_reg == dst_reg ? src : dst, err);
12689 		break;
12690 	case REASON_PATHS:
12691 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12692 			dst, op, err);
12693 		break;
12694 	case REASON_LIMIT:
12695 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12696 			dst, op, err);
12697 		break;
12698 	case REASON_STACK:
12699 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12700 			dst, err);
12701 		break;
12702 	default:
12703 		verbose(env, "verifier internal error: unknown reason (%d)\n",
12704 			reason);
12705 		break;
12706 	}
12707 
12708 	return -EACCES;
12709 }
12710 
12711 /* check that stack access falls within stack limits and that 'reg' doesn't
12712  * have a variable offset.
12713  *
12714  * Variable offset is prohibited for unprivileged mode for simplicity since it
12715  * requires corresponding support in Spectre masking for stack ALU.  See also
12716  * retrieve_ptr_limit().
12717  *
12718  *
12719  * 'off' includes 'reg->off'.
12720  */
12721 static int check_stack_access_for_ptr_arithmetic(
12722 				struct bpf_verifier_env *env,
12723 				int regno,
12724 				const struct bpf_reg_state *reg,
12725 				int off)
12726 {
12727 	if (!tnum_is_const(reg->var_off)) {
12728 		char tn_buf[48];
12729 
12730 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12731 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12732 			regno, tn_buf, off);
12733 		return -EACCES;
12734 	}
12735 
12736 	if (off >= 0 || off < -MAX_BPF_STACK) {
12737 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
12738 			"prohibited for !root; off=%d\n", regno, off);
12739 		return -EACCES;
12740 	}
12741 
12742 	return 0;
12743 }
12744 
12745 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12746 				 const struct bpf_insn *insn,
12747 				 const struct bpf_reg_state *dst_reg)
12748 {
12749 	u32 dst = insn->dst_reg;
12750 
12751 	/* For unprivileged we require that resulting offset must be in bounds
12752 	 * in order to be able to sanitize access later on.
12753 	 */
12754 	if (env->bypass_spec_v1)
12755 		return 0;
12756 
12757 	switch (dst_reg->type) {
12758 	case PTR_TO_STACK:
12759 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12760 					dst_reg->off + dst_reg->var_off.value))
12761 			return -EACCES;
12762 		break;
12763 	case PTR_TO_MAP_VALUE:
12764 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12765 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12766 				"prohibited for !root\n", dst);
12767 			return -EACCES;
12768 		}
12769 		break;
12770 	default:
12771 		break;
12772 	}
12773 
12774 	return 0;
12775 }
12776 
12777 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12778  * Caller should also handle BPF_MOV case separately.
12779  * If we return -EACCES, caller may want to try again treating pointer as a
12780  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12781  */
12782 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12783 				   struct bpf_insn *insn,
12784 				   const struct bpf_reg_state *ptr_reg,
12785 				   const struct bpf_reg_state *off_reg)
12786 {
12787 	struct bpf_verifier_state *vstate = env->cur_state;
12788 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12789 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12790 	bool known = tnum_is_const(off_reg->var_off);
12791 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12792 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12793 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12794 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12795 	struct bpf_sanitize_info info = {};
12796 	u8 opcode = BPF_OP(insn->code);
12797 	u32 dst = insn->dst_reg;
12798 	int ret;
12799 
12800 	dst_reg = &regs[dst];
12801 
12802 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12803 	    smin_val > smax_val || umin_val > umax_val) {
12804 		/* Taint dst register if offset had invalid bounds derived from
12805 		 * e.g. dead branches.
12806 		 */
12807 		__mark_reg_unknown(env, dst_reg);
12808 		return 0;
12809 	}
12810 
12811 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12812 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12813 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12814 			__mark_reg_unknown(env, dst_reg);
12815 			return 0;
12816 		}
12817 
12818 		verbose(env,
12819 			"R%d 32-bit pointer arithmetic prohibited\n",
12820 			dst);
12821 		return -EACCES;
12822 	}
12823 
12824 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12825 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12826 			dst, reg_type_str(env, ptr_reg->type));
12827 		return -EACCES;
12828 	}
12829 
12830 	switch (base_type(ptr_reg->type)) {
12831 	case PTR_TO_FLOW_KEYS:
12832 		if (known)
12833 			break;
12834 		fallthrough;
12835 	case CONST_PTR_TO_MAP:
12836 		/* smin_val represents the known value */
12837 		if (known && smin_val == 0 && opcode == BPF_ADD)
12838 			break;
12839 		fallthrough;
12840 	case PTR_TO_PACKET_END:
12841 	case PTR_TO_SOCKET:
12842 	case PTR_TO_SOCK_COMMON:
12843 	case PTR_TO_TCP_SOCK:
12844 	case PTR_TO_XDP_SOCK:
12845 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12846 			dst, reg_type_str(env, ptr_reg->type));
12847 		return -EACCES;
12848 	default:
12849 		break;
12850 	}
12851 
12852 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12853 	 * The id may be overwritten later if we create a new variable offset.
12854 	 */
12855 	dst_reg->type = ptr_reg->type;
12856 	dst_reg->id = ptr_reg->id;
12857 
12858 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12859 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12860 		return -EINVAL;
12861 
12862 	/* pointer types do not carry 32-bit bounds at the moment. */
12863 	__mark_reg32_unbounded(dst_reg);
12864 
12865 	if (sanitize_needed(opcode)) {
12866 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12867 				       &info, false);
12868 		if (ret < 0)
12869 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12870 	}
12871 
12872 	switch (opcode) {
12873 	case BPF_ADD:
12874 		/* We can take a fixed offset as long as it doesn't overflow
12875 		 * the s32 'off' field
12876 		 */
12877 		if (known && (ptr_reg->off + smin_val ==
12878 			      (s64)(s32)(ptr_reg->off + smin_val))) {
12879 			/* pointer += K.  Accumulate it into fixed offset */
12880 			dst_reg->smin_value = smin_ptr;
12881 			dst_reg->smax_value = smax_ptr;
12882 			dst_reg->umin_value = umin_ptr;
12883 			dst_reg->umax_value = umax_ptr;
12884 			dst_reg->var_off = ptr_reg->var_off;
12885 			dst_reg->off = ptr_reg->off + smin_val;
12886 			dst_reg->raw = ptr_reg->raw;
12887 			break;
12888 		}
12889 		/* A new variable offset is created.  Note that off_reg->off
12890 		 * == 0, since it's a scalar.
12891 		 * dst_reg gets the pointer type and since some positive
12892 		 * integer value was added to the pointer, give it a new 'id'
12893 		 * if it's a PTR_TO_PACKET.
12894 		 * this creates a new 'base' pointer, off_reg (variable) gets
12895 		 * added into the variable offset, and we copy the fixed offset
12896 		 * from ptr_reg.
12897 		 */
12898 		if (signed_add_overflows(smin_ptr, smin_val) ||
12899 		    signed_add_overflows(smax_ptr, smax_val)) {
12900 			dst_reg->smin_value = S64_MIN;
12901 			dst_reg->smax_value = S64_MAX;
12902 		} else {
12903 			dst_reg->smin_value = smin_ptr + smin_val;
12904 			dst_reg->smax_value = smax_ptr + smax_val;
12905 		}
12906 		if (umin_ptr + umin_val < umin_ptr ||
12907 		    umax_ptr + umax_val < umax_ptr) {
12908 			dst_reg->umin_value = 0;
12909 			dst_reg->umax_value = U64_MAX;
12910 		} else {
12911 			dst_reg->umin_value = umin_ptr + umin_val;
12912 			dst_reg->umax_value = umax_ptr + umax_val;
12913 		}
12914 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12915 		dst_reg->off = ptr_reg->off;
12916 		dst_reg->raw = ptr_reg->raw;
12917 		if (reg_is_pkt_pointer(ptr_reg)) {
12918 			dst_reg->id = ++env->id_gen;
12919 			/* something was added to pkt_ptr, set range to zero */
12920 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12921 		}
12922 		break;
12923 	case BPF_SUB:
12924 		if (dst_reg == off_reg) {
12925 			/* scalar -= pointer.  Creates an unknown scalar */
12926 			verbose(env, "R%d tried to subtract pointer from scalar\n",
12927 				dst);
12928 			return -EACCES;
12929 		}
12930 		/* We don't allow subtraction from FP, because (according to
12931 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
12932 		 * be able to deal with it.
12933 		 */
12934 		if (ptr_reg->type == PTR_TO_STACK) {
12935 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
12936 				dst);
12937 			return -EACCES;
12938 		}
12939 		if (known && (ptr_reg->off - smin_val ==
12940 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12941 			/* pointer -= K.  Subtract it from fixed offset */
12942 			dst_reg->smin_value = smin_ptr;
12943 			dst_reg->smax_value = smax_ptr;
12944 			dst_reg->umin_value = umin_ptr;
12945 			dst_reg->umax_value = umax_ptr;
12946 			dst_reg->var_off = ptr_reg->var_off;
12947 			dst_reg->id = ptr_reg->id;
12948 			dst_reg->off = ptr_reg->off - smin_val;
12949 			dst_reg->raw = ptr_reg->raw;
12950 			break;
12951 		}
12952 		/* A new variable offset is created.  If the subtrahend is known
12953 		 * nonnegative, then any reg->range we had before is still good.
12954 		 */
12955 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12956 		    signed_sub_overflows(smax_ptr, smin_val)) {
12957 			/* Overflow possible, we know nothing */
12958 			dst_reg->smin_value = S64_MIN;
12959 			dst_reg->smax_value = S64_MAX;
12960 		} else {
12961 			dst_reg->smin_value = smin_ptr - smax_val;
12962 			dst_reg->smax_value = smax_ptr - smin_val;
12963 		}
12964 		if (umin_ptr < umax_val) {
12965 			/* Overflow possible, we know nothing */
12966 			dst_reg->umin_value = 0;
12967 			dst_reg->umax_value = U64_MAX;
12968 		} else {
12969 			/* Cannot overflow (as long as bounds are consistent) */
12970 			dst_reg->umin_value = umin_ptr - umax_val;
12971 			dst_reg->umax_value = umax_ptr - umin_val;
12972 		}
12973 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12974 		dst_reg->off = ptr_reg->off;
12975 		dst_reg->raw = ptr_reg->raw;
12976 		if (reg_is_pkt_pointer(ptr_reg)) {
12977 			dst_reg->id = ++env->id_gen;
12978 			/* something was added to pkt_ptr, set range to zero */
12979 			if (smin_val < 0)
12980 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12981 		}
12982 		break;
12983 	case BPF_AND:
12984 	case BPF_OR:
12985 	case BPF_XOR:
12986 		/* bitwise ops on pointers are troublesome, prohibit. */
12987 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12988 			dst, bpf_alu_string[opcode >> 4]);
12989 		return -EACCES;
12990 	default:
12991 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
12992 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12993 			dst, bpf_alu_string[opcode >> 4]);
12994 		return -EACCES;
12995 	}
12996 
12997 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12998 		return -EINVAL;
12999 	reg_bounds_sync(dst_reg);
13000 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
13001 		return -EACCES;
13002 	if (sanitize_needed(opcode)) {
13003 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
13004 				       &info, true);
13005 		if (ret < 0)
13006 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
13007 	}
13008 
13009 	return 0;
13010 }
13011 
13012 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
13013 				 struct bpf_reg_state *src_reg)
13014 {
13015 	s32 smin_val = src_reg->s32_min_value;
13016 	s32 smax_val = src_reg->s32_max_value;
13017 	u32 umin_val = src_reg->u32_min_value;
13018 	u32 umax_val = src_reg->u32_max_value;
13019 
13020 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
13021 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
13022 		dst_reg->s32_min_value = S32_MIN;
13023 		dst_reg->s32_max_value = S32_MAX;
13024 	} else {
13025 		dst_reg->s32_min_value += smin_val;
13026 		dst_reg->s32_max_value += smax_val;
13027 	}
13028 	if (dst_reg->u32_min_value + umin_val < umin_val ||
13029 	    dst_reg->u32_max_value + umax_val < umax_val) {
13030 		dst_reg->u32_min_value = 0;
13031 		dst_reg->u32_max_value = U32_MAX;
13032 	} else {
13033 		dst_reg->u32_min_value += umin_val;
13034 		dst_reg->u32_max_value += umax_val;
13035 	}
13036 }
13037 
13038 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
13039 			       struct bpf_reg_state *src_reg)
13040 {
13041 	s64 smin_val = src_reg->smin_value;
13042 	s64 smax_val = src_reg->smax_value;
13043 	u64 umin_val = src_reg->umin_value;
13044 	u64 umax_val = src_reg->umax_value;
13045 
13046 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
13047 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
13048 		dst_reg->smin_value = S64_MIN;
13049 		dst_reg->smax_value = S64_MAX;
13050 	} else {
13051 		dst_reg->smin_value += smin_val;
13052 		dst_reg->smax_value += smax_val;
13053 	}
13054 	if (dst_reg->umin_value + umin_val < umin_val ||
13055 	    dst_reg->umax_value + umax_val < umax_val) {
13056 		dst_reg->umin_value = 0;
13057 		dst_reg->umax_value = U64_MAX;
13058 	} else {
13059 		dst_reg->umin_value += umin_val;
13060 		dst_reg->umax_value += umax_val;
13061 	}
13062 }
13063 
13064 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
13065 				 struct bpf_reg_state *src_reg)
13066 {
13067 	s32 smin_val = src_reg->s32_min_value;
13068 	s32 smax_val = src_reg->s32_max_value;
13069 	u32 umin_val = src_reg->u32_min_value;
13070 	u32 umax_val = src_reg->u32_max_value;
13071 
13072 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
13073 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
13074 		/* Overflow possible, we know nothing */
13075 		dst_reg->s32_min_value = S32_MIN;
13076 		dst_reg->s32_max_value = S32_MAX;
13077 	} else {
13078 		dst_reg->s32_min_value -= smax_val;
13079 		dst_reg->s32_max_value -= smin_val;
13080 	}
13081 	if (dst_reg->u32_min_value < umax_val) {
13082 		/* Overflow possible, we know nothing */
13083 		dst_reg->u32_min_value = 0;
13084 		dst_reg->u32_max_value = U32_MAX;
13085 	} else {
13086 		/* Cannot overflow (as long as bounds are consistent) */
13087 		dst_reg->u32_min_value -= umax_val;
13088 		dst_reg->u32_max_value -= umin_val;
13089 	}
13090 }
13091 
13092 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
13093 			       struct bpf_reg_state *src_reg)
13094 {
13095 	s64 smin_val = src_reg->smin_value;
13096 	s64 smax_val = src_reg->smax_value;
13097 	u64 umin_val = src_reg->umin_value;
13098 	u64 umax_val = src_reg->umax_value;
13099 
13100 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
13101 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
13102 		/* Overflow possible, we know nothing */
13103 		dst_reg->smin_value = S64_MIN;
13104 		dst_reg->smax_value = S64_MAX;
13105 	} else {
13106 		dst_reg->smin_value -= smax_val;
13107 		dst_reg->smax_value -= smin_val;
13108 	}
13109 	if (dst_reg->umin_value < umax_val) {
13110 		/* Overflow possible, we know nothing */
13111 		dst_reg->umin_value = 0;
13112 		dst_reg->umax_value = U64_MAX;
13113 	} else {
13114 		/* Cannot overflow (as long as bounds are consistent) */
13115 		dst_reg->umin_value -= umax_val;
13116 		dst_reg->umax_value -= umin_val;
13117 	}
13118 }
13119 
13120 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
13121 				 struct bpf_reg_state *src_reg)
13122 {
13123 	s32 smin_val = src_reg->s32_min_value;
13124 	u32 umin_val = src_reg->u32_min_value;
13125 	u32 umax_val = src_reg->u32_max_value;
13126 
13127 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
13128 		/* Ain't nobody got time to multiply that sign */
13129 		__mark_reg32_unbounded(dst_reg);
13130 		return;
13131 	}
13132 	/* Both values are positive, so we can work with unsigned and
13133 	 * copy the result to signed (unless it exceeds S32_MAX).
13134 	 */
13135 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
13136 		/* Potential overflow, we know nothing */
13137 		__mark_reg32_unbounded(dst_reg);
13138 		return;
13139 	}
13140 	dst_reg->u32_min_value *= umin_val;
13141 	dst_reg->u32_max_value *= umax_val;
13142 	if (dst_reg->u32_max_value > S32_MAX) {
13143 		/* Overflow possible, we know nothing */
13144 		dst_reg->s32_min_value = S32_MIN;
13145 		dst_reg->s32_max_value = S32_MAX;
13146 	} else {
13147 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13148 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13149 	}
13150 }
13151 
13152 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
13153 			       struct bpf_reg_state *src_reg)
13154 {
13155 	s64 smin_val = src_reg->smin_value;
13156 	u64 umin_val = src_reg->umin_value;
13157 	u64 umax_val = src_reg->umax_value;
13158 
13159 	if (smin_val < 0 || dst_reg->smin_value < 0) {
13160 		/* Ain't nobody got time to multiply that sign */
13161 		__mark_reg64_unbounded(dst_reg);
13162 		return;
13163 	}
13164 	/* Both values are positive, so we can work with unsigned and
13165 	 * copy the result to signed (unless it exceeds S64_MAX).
13166 	 */
13167 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
13168 		/* Potential overflow, we know nothing */
13169 		__mark_reg64_unbounded(dst_reg);
13170 		return;
13171 	}
13172 	dst_reg->umin_value *= umin_val;
13173 	dst_reg->umax_value *= umax_val;
13174 	if (dst_reg->umax_value > S64_MAX) {
13175 		/* Overflow possible, we know nothing */
13176 		dst_reg->smin_value = S64_MIN;
13177 		dst_reg->smax_value = S64_MAX;
13178 	} else {
13179 		dst_reg->smin_value = dst_reg->umin_value;
13180 		dst_reg->smax_value = dst_reg->umax_value;
13181 	}
13182 }
13183 
13184 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
13185 				 struct bpf_reg_state *src_reg)
13186 {
13187 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13188 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13189 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13190 	s32 smin_val = src_reg->s32_min_value;
13191 	u32 umax_val = src_reg->u32_max_value;
13192 
13193 	if (src_known && dst_known) {
13194 		__mark_reg32_known(dst_reg, var32_off.value);
13195 		return;
13196 	}
13197 
13198 	/* We get our minimum from the var_off, since that's inherently
13199 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13200 	 */
13201 	dst_reg->u32_min_value = var32_off.value;
13202 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
13203 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13204 		/* Lose signed bounds when ANDing negative numbers,
13205 		 * ain't nobody got time for that.
13206 		 */
13207 		dst_reg->s32_min_value = S32_MIN;
13208 		dst_reg->s32_max_value = S32_MAX;
13209 	} else {
13210 		/* ANDing two positives gives a positive, so safe to
13211 		 * cast result into s64.
13212 		 */
13213 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13214 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13215 	}
13216 }
13217 
13218 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
13219 			       struct bpf_reg_state *src_reg)
13220 {
13221 	bool src_known = tnum_is_const(src_reg->var_off);
13222 	bool dst_known = tnum_is_const(dst_reg->var_off);
13223 	s64 smin_val = src_reg->smin_value;
13224 	u64 umax_val = src_reg->umax_value;
13225 
13226 	if (src_known && dst_known) {
13227 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13228 		return;
13229 	}
13230 
13231 	/* We get our minimum from the var_off, since that's inherently
13232 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13233 	 */
13234 	dst_reg->umin_value = dst_reg->var_off.value;
13235 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
13236 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13237 		/* Lose signed bounds when ANDing negative numbers,
13238 		 * ain't nobody got time for that.
13239 		 */
13240 		dst_reg->smin_value = S64_MIN;
13241 		dst_reg->smax_value = S64_MAX;
13242 	} else {
13243 		/* ANDing two positives gives a positive, so safe to
13244 		 * cast result into s64.
13245 		 */
13246 		dst_reg->smin_value = dst_reg->umin_value;
13247 		dst_reg->smax_value = dst_reg->umax_value;
13248 	}
13249 	/* We may learn something more from the var_off */
13250 	__update_reg_bounds(dst_reg);
13251 }
13252 
13253 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
13254 				struct bpf_reg_state *src_reg)
13255 {
13256 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13257 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13258 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13259 	s32 smin_val = src_reg->s32_min_value;
13260 	u32 umin_val = src_reg->u32_min_value;
13261 
13262 	if (src_known && dst_known) {
13263 		__mark_reg32_known(dst_reg, var32_off.value);
13264 		return;
13265 	}
13266 
13267 	/* We get our maximum from the var_off, and our minimum is the
13268 	 * maximum of the operands' minima
13269 	 */
13270 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
13271 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13272 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13273 		/* Lose signed bounds when ORing negative numbers,
13274 		 * ain't nobody got time for that.
13275 		 */
13276 		dst_reg->s32_min_value = S32_MIN;
13277 		dst_reg->s32_max_value = S32_MAX;
13278 	} else {
13279 		/* ORing two positives gives a positive, so safe to
13280 		 * cast result into s64.
13281 		 */
13282 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13283 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13284 	}
13285 }
13286 
13287 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13288 			      struct bpf_reg_state *src_reg)
13289 {
13290 	bool src_known = tnum_is_const(src_reg->var_off);
13291 	bool dst_known = tnum_is_const(dst_reg->var_off);
13292 	s64 smin_val = src_reg->smin_value;
13293 	u64 umin_val = src_reg->umin_value;
13294 
13295 	if (src_known && dst_known) {
13296 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13297 		return;
13298 	}
13299 
13300 	/* We get our maximum from the var_off, and our minimum is the
13301 	 * maximum of the operands' minima
13302 	 */
13303 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13304 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13305 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13306 		/* Lose signed bounds when ORing negative numbers,
13307 		 * ain't nobody got time for that.
13308 		 */
13309 		dst_reg->smin_value = S64_MIN;
13310 		dst_reg->smax_value = S64_MAX;
13311 	} else {
13312 		/* ORing two positives gives a positive, so safe to
13313 		 * cast result into s64.
13314 		 */
13315 		dst_reg->smin_value = dst_reg->umin_value;
13316 		dst_reg->smax_value = dst_reg->umax_value;
13317 	}
13318 	/* We may learn something more from the var_off */
13319 	__update_reg_bounds(dst_reg);
13320 }
13321 
13322 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13323 				 struct bpf_reg_state *src_reg)
13324 {
13325 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13326 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13327 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13328 	s32 smin_val = src_reg->s32_min_value;
13329 
13330 	if (src_known && dst_known) {
13331 		__mark_reg32_known(dst_reg, var32_off.value);
13332 		return;
13333 	}
13334 
13335 	/* We get both minimum and maximum from the var32_off. */
13336 	dst_reg->u32_min_value = var32_off.value;
13337 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13338 
13339 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
13340 		/* XORing two positive sign numbers gives a positive,
13341 		 * so safe to cast u32 result into s32.
13342 		 */
13343 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13344 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13345 	} else {
13346 		dst_reg->s32_min_value = S32_MIN;
13347 		dst_reg->s32_max_value = S32_MAX;
13348 	}
13349 }
13350 
13351 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13352 			       struct bpf_reg_state *src_reg)
13353 {
13354 	bool src_known = tnum_is_const(src_reg->var_off);
13355 	bool dst_known = tnum_is_const(dst_reg->var_off);
13356 	s64 smin_val = src_reg->smin_value;
13357 
13358 	if (src_known && dst_known) {
13359 		/* dst_reg->var_off.value has been updated earlier */
13360 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13361 		return;
13362 	}
13363 
13364 	/* We get both minimum and maximum from the var_off. */
13365 	dst_reg->umin_value = dst_reg->var_off.value;
13366 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13367 
13368 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
13369 		/* XORing two positive sign numbers gives a positive,
13370 		 * so safe to cast u64 result into s64.
13371 		 */
13372 		dst_reg->smin_value = dst_reg->umin_value;
13373 		dst_reg->smax_value = dst_reg->umax_value;
13374 	} else {
13375 		dst_reg->smin_value = S64_MIN;
13376 		dst_reg->smax_value = S64_MAX;
13377 	}
13378 
13379 	__update_reg_bounds(dst_reg);
13380 }
13381 
13382 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13383 				   u64 umin_val, u64 umax_val)
13384 {
13385 	/* We lose all sign bit information (except what we can pick
13386 	 * up from var_off)
13387 	 */
13388 	dst_reg->s32_min_value = S32_MIN;
13389 	dst_reg->s32_max_value = S32_MAX;
13390 	/* If we might shift our top bit out, then we know nothing */
13391 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13392 		dst_reg->u32_min_value = 0;
13393 		dst_reg->u32_max_value = U32_MAX;
13394 	} else {
13395 		dst_reg->u32_min_value <<= umin_val;
13396 		dst_reg->u32_max_value <<= umax_val;
13397 	}
13398 }
13399 
13400 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13401 				 struct bpf_reg_state *src_reg)
13402 {
13403 	u32 umax_val = src_reg->u32_max_value;
13404 	u32 umin_val = src_reg->u32_min_value;
13405 	/* u32 alu operation will zext upper bits */
13406 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13407 
13408 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13409 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13410 	/* Not required but being careful mark reg64 bounds as unknown so
13411 	 * that we are forced to pick them up from tnum and zext later and
13412 	 * if some path skips this step we are still safe.
13413 	 */
13414 	__mark_reg64_unbounded(dst_reg);
13415 	__update_reg32_bounds(dst_reg);
13416 }
13417 
13418 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13419 				   u64 umin_val, u64 umax_val)
13420 {
13421 	/* Special case <<32 because it is a common compiler pattern to sign
13422 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13423 	 * positive we know this shift will also be positive so we can track
13424 	 * bounds correctly. Otherwise we lose all sign bit information except
13425 	 * what we can pick up from var_off. Perhaps we can generalize this
13426 	 * later to shifts of any length.
13427 	 */
13428 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13429 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13430 	else
13431 		dst_reg->smax_value = S64_MAX;
13432 
13433 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13434 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13435 	else
13436 		dst_reg->smin_value = S64_MIN;
13437 
13438 	/* If we might shift our top bit out, then we know nothing */
13439 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13440 		dst_reg->umin_value = 0;
13441 		dst_reg->umax_value = U64_MAX;
13442 	} else {
13443 		dst_reg->umin_value <<= umin_val;
13444 		dst_reg->umax_value <<= umax_val;
13445 	}
13446 }
13447 
13448 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13449 			       struct bpf_reg_state *src_reg)
13450 {
13451 	u64 umax_val = src_reg->umax_value;
13452 	u64 umin_val = src_reg->umin_value;
13453 
13454 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
13455 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13456 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13457 
13458 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13459 	/* We may learn something more from the var_off */
13460 	__update_reg_bounds(dst_reg);
13461 }
13462 
13463 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13464 				 struct bpf_reg_state *src_reg)
13465 {
13466 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13467 	u32 umax_val = src_reg->u32_max_value;
13468 	u32 umin_val = src_reg->u32_min_value;
13469 
13470 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13471 	 * be negative, then either:
13472 	 * 1) src_reg might be zero, so the sign bit of the result is
13473 	 *    unknown, so we lose our signed bounds
13474 	 * 2) it's known negative, thus the unsigned bounds capture the
13475 	 *    signed bounds
13476 	 * 3) the signed bounds cross zero, so they tell us nothing
13477 	 *    about the result
13478 	 * If the value in dst_reg is known nonnegative, then again the
13479 	 * unsigned bounds capture the signed bounds.
13480 	 * Thus, in all cases it suffices to blow away our signed bounds
13481 	 * and rely on inferring new ones from the unsigned bounds and
13482 	 * var_off of the result.
13483 	 */
13484 	dst_reg->s32_min_value = S32_MIN;
13485 	dst_reg->s32_max_value = S32_MAX;
13486 
13487 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
13488 	dst_reg->u32_min_value >>= umax_val;
13489 	dst_reg->u32_max_value >>= umin_val;
13490 
13491 	__mark_reg64_unbounded(dst_reg);
13492 	__update_reg32_bounds(dst_reg);
13493 }
13494 
13495 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13496 			       struct bpf_reg_state *src_reg)
13497 {
13498 	u64 umax_val = src_reg->umax_value;
13499 	u64 umin_val = src_reg->umin_value;
13500 
13501 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13502 	 * be negative, then either:
13503 	 * 1) src_reg might be zero, so the sign bit of the result is
13504 	 *    unknown, so we lose our signed bounds
13505 	 * 2) it's known negative, thus the unsigned bounds capture the
13506 	 *    signed bounds
13507 	 * 3) the signed bounds cross zero, so they tell us nothing
13508 	 *    about the result
13509 	 * If the value in dst_reg is known nonnegative, then again the
13510 	 * unsigned bounds capture the signed bounds.
13511 	 * Thus, in all cases it suffices to blow away our signed bounds
13512 	 * and rely on inferring new ones from the unsigned bounds and
13513 	 * var_off of the result.
13514 	 */
13515 	dst_reg->smin_value = S64_MIN;
13516 	dst_reg->smax_value = S64_MAX;
13517 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13518 	dst_reg->umin_value >>= umax_val;
13519 	dst_reg->umax_value >>= umin_val;
13520 
13521 	/* Its not easy to operate on alu32 bounds here because it depends
13522 	 * on bits being shifted in. Take easy way out and mark unbounded
13523 	 * so we can recalculate later from tnum.
13524 	 */
13525 	__mark_reg32_unbounded(dst_reg);
13526 	__update_reg_bounds(dst_reg);
13527 }
13528 
13529 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13530 				  struct bpf_reg_state *src_reg)
13531 {
13532 	u64 umin_val = src_reg->u32_min_value;
13533 
13534 	/* Upon reaching here, src_known is true and
13535 	 * umax_val is equal to umin_val.
13536 	 */
13537 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13538 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13539 
13540 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13541 
13542 	/* blow away the dst_reg umin_value/umax_value and rely on
13543 	 * dst_reg var_off to refine the result.
13544 	 */
13545 	dst_reg->u32_min_value = 0;
13546 	dst_reg->u32_max_value = U32_MAX;
13547 
13548 	__mark_reg64_unbounded(dst_reg);
13549 	__update_reg32_bounds(dst_reg);
13550 }
13551 
13552 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13553 				struct bpf_reg_state *src_reg)
13554 {
13555 	u64 umin_val = src_reg->umin_value;
13556 
13557 	/* Upon reaching here, src_known is true and umax_val is equal
13558 	 * to umin_val.
13559 	 */
13560 	dst_reg->smin_value >>= umin_val;
13561 	dst_reg->smax_value >>= umin_val;
13562 
13563 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13564 
13565 	/* blow away the dst_reg umin_value/umax_value and rely on
13566 	 * dst_reg var_off to refine the result.
13567 	 */
13568 	dst_reg->umin_value = 0;
13569 	dst_reg->umax_value = U64_MAX;
13570 
13571 	/* Its not easy to operate on alu32 bounds here because it depends
13572 	 * on bits being shifted in from upper 32-bits. Take easy way out
13573 	 * and mark unbounded so we can recalculate later from tnum.
13574 	 */
13575 	__mark_reg32_unbounded(dst_reg);
13576 	__update_reg_bounds(dst_reg);
13577 }
13578 
13579 /* WARNING: This function does calculations on 64-bit values, but the actual
13580  * execution may occur on 32-bit values. Therefore, things like bitshifts
13581  * need extra checks in the 32-bit case.
13582  */
13583 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13584 				      struct bpf_insn *insn,
13585 				      struct bpf_reg_state *dst_reg,
13586 				      struct bpf_reg_state src_reg)
13587 {
13588 	struct bpf_reg_state *regs = cur_regs(env);
13589 	u8 opcode = BPF_OP(insn->code);
13590 	bool src_known;
13591 	s64 smin_val, smax_val;
13592 	u64 umin_val, umax_val;
13593 	s32 s32_min_val, s32_max_val;
13594 	u32 u32_min_val, u32_max_val;
13595 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13596 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13597 	int ret;
13598 
13599 	smin_val = src_reg.smin_value;
13600 	smax_val = src_reg.smax_value;
13601 	umin_val = src_reg.umin_value;
13602 	umax_val = src_reg.umax_value;
13603 
13604 	s32_min_val = src_reg.s32_min_value;
13605 	s32_max_val = src_reg.s32_max_value;
13606 	u32_min_val = src_reg.u32_min_value;
13607 	u32_max_val = src_reg.u32_max_value;
13608 
13609 	if (alu32) {
13610 		src_known = tnum_subreg_is_const(src_reg.var_off);
13611 		if ((src_known &&
13612 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13613 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13614 			/* Taint dst register if offset had invalid bounds
13615 			 * derived from e.g. dead branches.
13616 			 */
13617 			__mark_reg_unknown(env, dst_reg);
13618 			return 0;
13619 		}
13620 	} else {
13621 		src_known = tnum_is_const(src_reg.var_off);
13622 		if ((src_known &&
13623 		     (smin_val != smax_val || umin_val != umax_val)) ||
13624 		    smin_val > smax_val || umin_val > umax_val) {
13625 			/* Taint dst register if offset had invalid bounds
13626 			 * derived from e.g. dead branches.
13627 			 */
13628 			__mark_reg_unknown(env, dst_reg);
13629 			return 0;
13630 		}
13631 	}
13632 
13633 	if (!src_known &&
13634 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13635 		__mark_reg_unknown(env, dst_reg);
13636 		return 0;
13637 	}
13638 
13639 	if (sanitize_needed(opcode)) {
13640 		ret = sanitize_val_alu(env, insn);
13641 		if (ret < 0)
13642 			return sanitize_err(env, insn, ret, NULL, NULL);
13643 	}
13644 
13645 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13646 	 * There are two classes of instructions: The first class we track both
13647 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
13648 	 * greatest amount of precision when alu operations are mixed with jmp32
13649 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13650 	 * and BPF_OR. This is possible because these ops have fairly easy to
13651 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13652 	 * See alu32 verifier tests for examples. The second class of
13653 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13654 	 * with regards to tracking sign/unsigned bounds because the bits may
13655 	 * cross subreg boundaries in the alu64 case. When this happens we mark
13656 	 * the reg unbounded in the subreg bound space and use the resulting
13657 	 * tnum to calculate an approximation of the sign/unsigned bounds.
13658 	 */
13659 	switch (opcode) {
13660 	case BPF_ADD:
13661 		scalar32_min_max_add(dst_reg, &src_reg);
13662 		scalar_min_max_add(dst_reg, &src_reg);
13663 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13664 		break;
13665 	case BPF_SUB:
13666 		scalar32_min_max_sub(dst_reg, &src_reg);
13667 		scalar_min_max_sub(dst_reg, &src_reg);
13668 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13669 		break;
13670 	case BPF_MUL:
13671 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13672 		scalar32_min_max_mul(dst_reg, &src_reg);
13673 		scalar_min_max_mul(dst_reg, &src_reg);
13674 		break;
13675 	case BPF_AND:
13676 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13677 		scalar32_min_max_and(dst_reg, &src_reg);
13678 		scalar_min_max_and(dst_reg, &src_reg);
13679 		break;
13680 	case BPF_OR:
13681 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13682 		scalar32_min_max_or(dst_reg, &src_reg);
13683 		scalar_min_max_or(dst_reg, &src_reg);
13684 		break;
13685 	case BPF_XOR:
13686 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13687 		scalar32_min_max_xor(dst_reg, &src_reg);
13688 		scalar_min_max_xor(dst_reg, &src_reg);
13689 		break;
13690 	case BPF_LSH:
13691 		if (umax_val >= insn_bitness) {
13692 			/* Shifts greater than 31 or 63 are undefined.
13693 			 * This includes shifts by a negative number.
13694 			 */
13695 			mark_reg_unknown(env, regs, insn->dst_reg);
13696 			break;
13697 		}
13698 		if (alu32)
13699 			scalar32_min_max_lsh(dst_reg, &src_reg);
13700 		else
13701 			scalar_min_max_lsh(dst_reg, &src_reg);
13702 		break;
13703 	case BPF_RSH:
13704 		if (umax_val >= insn_bitness) {
13705 			/* Shifts greater than 31 or 63 are undefined.
13706 			 * This includes shifts by a negative number.
13707 			 */
13708 			mark_reg_unknown(env, regs, insn->dst_reg);
13709 			break;
13710 		}
13711 		if (alu32)
13712 			scalar32_min_max_rsh(dst_reg, &src_reg);
13713 		else
13714 			scalar_min_max_rsh(dst_reg, &src_reg);
13715 		break;
13716 	case BPF_ARSH:
13717 		if (umax_val >= insn_bitness) {
13718 			/* Shifts greater than 31 or 63 are undefined.
13719 			 * This includes shifts by a negative number.
13720 			 */
13721 			mark_reg_unknown(env, regs, insn->dst_reg);
13722 			break;
13723 		}
13724 		if (alu32)
13725 			scalar32_min_max_arsh(dst_reg, &src_reg);
13726 		else
13727 			scalar_min_max_arsh(dst_reg, &src_reg);
13728 		break;
13729 	default:
13730 		mark_reg_unknown(env, regs, insn->dst_reg);
13731 		break;
13732 	}
13733 
13734 	/* ALU32 ops are zero extended into 64bit register */
13735 	if (alu32)
13736 		zext_32_to_64(dst_reg);
13737 	reg_bounds_sync(dst_reg);
13738 	return 0;
13739 }
13740 
13741 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13742  * and var_off.
13743  */
13744 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13745 				   struct bpf_insn *insn)
13746 {
13747 	struct bpf_verifier_state *vstate = env->cur_state;
13748 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13749 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13750 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13751 	u8 opcode = BPF_OP(insn->code);
13752 	int err;
13753 
13754 	dst_reg = &regs[insn->dst_reg];
13755 	src_reg = NULL;
13756 	if (dst_reg->type != SCALAR_VALUE)
13757 		ptr_reg = dst_reg;
13758 	else
13759 		/* Make sure ID is cleared otherwise dst_reg min/max could be
13760 		 * incorrectly propagated into other registers by find_equal_scalars()
13761 		 */
13762 		dst_reg->id = 0;
13763 	if (BPF_SRC(insn->code) == BPF_X) {
13764 		src_reg = &regs[insn->src_reg];
13765 		if (src_reg->type != SCALAR_VALUE) {
13766 			if (dst_reg->type != SCALAR_VALUE) {
13767 				/* Combining two pointers by any ALU op yields
13768 				 * an arbitrary scalar. Disallow all math except
13769 				 * pointer subtraction
13770 				 */
13771 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13772 					mark_reg_unknown(env, regs, insn->dst_reg);
13773 					return 0;
13774 				}
13775 				verbose(env, "R%d pointer %s pointer prohibited\n",
13776 					insn->dst_reg,
13777 					bpf_alu_string[opcode >> 4]);
13778 				return -EACCES;
13779 			} else {
13780 				/* scalar += pointer
13781 				 * This is legal, but we have to reverse our
13782 				 * src/dest handling in computing the range
13783 				 */
13784 				err = mark_chain_precision(env, insn->dst_reg);
13785 				if (err)
13786 					return err;
13787 				return adjust_ptr_min_max_vals(env, insn,
13788 							       src_reg, dst_reg);
13789 			}
13790 		} else if (ptr_reg) {
13791 			/* pointer += scalar */
13792 			err = mark_chain_precision(env, insn->src_reg);
13793 			if (err)
13794 				return err;
13795 			return adjust_ptr_min_max_vals(env, insn,
13796 						       dst_reg, src_reg);
13797 		} else if (dst_reg->precise) {
13798 			/* if dst_reg is precise, src_reg should be precise as well */
13799 			err = mark_chain_precision(env, insn->src_reg);
13800 			if (err)
13801 				return err;
13802 		}
13803 	} else {
13804 		/* Pretend the src is a reg with a known value, since we only
13805 		 * need to be able to read from this state.
13806 		 */
13807 		off_reg.type = SCALAR_VALUE;
13808 		__mark_reg_known(&off_reg, insn->imm);
13809 		src_reg = &off_reg;
13810 		if (ptr_reg) /* pointer += K */
13811 			return adjust_ptr_min_max_vals(env, insn,
13812 						       ptr_reg, src_reg);
13813 	}
13814 
13815 	/* Got here implies adding two SCALAR_VALUEs */
13816 	if (WARN_ON_ONCE(ptr_reg)) {
13817 		print_verifier_state(env, state, true);
13818 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13819 		return -EINVAL;
13820 	}
13821 	if (WARN_ON(!src_reg)) {
13822 		print_verifier_state(env, state, true);
13823 		verbose(env, "verifier internal error: no src_reg\n");
13824 		return -EINVAL;
13825 	}
13826 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13827 }
13828 
13829 /* check validity of 32-bit and 64-bit arithmetic operations */
13830 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13831 {
13832 	struct bpf_reg_state *regs = cur_regs(env);
13833 	u8 opcode = BPF_OP(insn->code);
13834 	int err;
13835 
13836 	if (opcode == BPF_END || opcode == BPF_NEG) {
13837 		if (opcode == BPF_NEG) {
13838 			if (BPF_SRC(insn->code) != BPF_K ||
13839 			    insn->src_reg != BPF_REG_0 ||
13840 			    insn->off != 0 || insn->imm != 0) {
13841 				verbose(env, "BPF_NEG uses reserved fields\n");
13842 				return -EINVAL;
13843 			}
13844 		} else {
13845 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13846 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13847 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13848 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13849 				verbose(env, "BPF_END uses reserved fields\n");
13850 				return -EINVAL;
13851 			}
13852 		}
13853 
13854 		/* check src operand */
13855 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13856 		if (err)
13857 			return err;
13858 
13859 		if (is_pointer_value(env, insn->dst_reg)) {
13860 			verbose(env, "R%d pointer arithmetic prohibited\n",
13861 				insn->dst_reg);
13862 			return -EACCES;
13863 		}
13864 
13865 		/* check dest operand */
13866 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
13867 		if (err)
13868 			return err;
13869 
13870 	} else if (opcode == BPF_MOV) {
13871 
13872 		if (BPF_SRC(insn->code) == BPF_X) {
13873 			if (insn->imm != 0) {
13874 				verbose(env, "BPF_MOV uses reserved fields\n");
13875 				return -EINVAL;
13876 			}
13877 
13878 			if (BPF_CLASS(insn->code) == BPF_ALU) {
13879 				if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13880 					verbose(env, "BPF_MOV uses reserved fields\n");
13881 					return -EINVAL;
13882 				}
13883 			} else {
13884 				if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13885 				    insn->off != 32) {
13886 					verbose(env, "BPF_MOV uses reserved fields\n");
13887 					return -EINVAL;
13888 				}
13889 			}
13890 
13891 			/* check src operand */
13892 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13893 			if (err)
13894 				return err;
13895 		} else {
13896 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13897 				verbose(env, "BPF_MOV uses reserved fields\n");
13898 				return -EINVAL;
13899 			}
13900 		}
13901 
13902 		/* check dest operand, mark as required later */
13903 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13904 		if (err)
13905 			return err;
13906 
13907 		if (BPF_SRC(insn->code) == BPF_X) {
13908 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
13909 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13910 			bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13911 				       !tnum_is_const(src_reg->var_off);
13912 
13913 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13914 				if (insn->off == 0) {
13915 					/* case: R1 = R2
13916 					 * copy register state to dest reg
13917 					 */
13918 					if (need_id)
13919 						/* Assign src and dst registers the same ID
13920 						 * that will be used by find_equal_scalars()
13921 						 * to propagate min/max range.
13922 						 */
13923 						src_reg->id = ++env->id_gen;
13924 					copy_register_state(dst_reg, src_reg);
13925 					dst_reg->live |= REG_LIVE_WRITTEN;
13926 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13927 				} else {
13928 					/* case: R1 = (s8, s16 s32)R2 */
13929 					if (is_pointer_value(env, insn->src_reg)) {
13930 						verbose(env,
13931 							"R%d sign-extension part of pointer\n",
13932 							insn->src_reg);
13933 						return -EACCES;
13934 					} else if (src_reg->type == SCALAR_VALUE) {
13935 						bool no_sext;
13936 
13937 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13938 						if (no_sext && need_id)
13939 							src_reg->id = ++env->id_gen;
13940 						copy_register_state(dst_reg, src_reg);
13941 						if (!no_sext)
13942 							dst_reg->id = 0;
13943 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13944 						dst_reg->live |= REG_LIVE_WRITTEN;
13945 						dst_reg->subreg_def = DEF_NOT_SUBREG;
13946 					} else {
13947 						mark_reg_unknown(env, regs, insn->dst_reg);
13948 					}
13949 				}
13950 			} else {
13951 				/* R1 = (u32) R2 */
13952 				if (is_pointer_value(env, insn->src_reg)) {
13953 					verbose(env,
13954 						"R%d partial copy of pointer\n",
13955 						insn->src_reg);
13956 					return -EACCES;
13957 				} else if (src_reg->type == SCALAR_VALUE) {
13958 					if (insn->off == 0) {
13959 						bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13960 
13961 						if (is_src_reg_u32 && need_id)
13962 							src_reg->id = ++env->id_gen;
13963 						copy_register_state(dst_reg, src_reg);
13964 						/* Make sure ID is cleared if src_reg is not in u32
13965 						 * range otherwise dst_reg min/max could be incorrectly
13966 						 * propagated into src_reg by find_equal_scalars()
13967 						 */
13968 						if (!is_src_reg_u32)
13969 							dst_reg->id = 0;
13970 						dst_reg->live |= REG_LIVE_WRITTEN;
13971 						dst_reg->subreg_def = env->insn_idx + 1;
13972 					} else {
13973 						/* case: W1 = (s8, s16)W2 */
13974 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13975 
13976 						if (no_sext && need_id)
13977 							src_reg->id = ++env->id_gen;
13978 						copy_register_state(dst_reg, src_reg);
13979 						if (!no_sext)
13980 							dst_reg->id = 0;
13981 						dst_reg->live |= REG_LIVE_WRITTEN;
13982 						dst_reg->subreg_def = env->insn_idx + 1;
13983 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13984 					}
13985 				} else {
13986 					mark_reg_unknown(env, regs,
13987 							 insn->dst_reg);
13988 				}
13989 				zext_32_to_64(dst_reg);
13990 				reg_bounds_sync(dst_reg);
13991 			}
13992 		} else {
13993 			/* case: R = imm
13994 			 * remember the value we stored into this reg
13995 			 */
13996 			/* clear any state __mark_reg_known doesn't set */
13997 			mark_reg_unknown(env, regs, insn->dst_reg);
13998 			regs[insn->dst_reg].type = SCALAR_VALUE;
13999 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
14000 				__mark_reg_known(regs + insn->dst_reg,
14001 						 insn->imm);
14002 			} else {
14003 				__mark_reg_known(regs + insn->dst_reg,
14004 						 (u32)insn->imm);
14005 			}
14006 		}
14007 
14008 	} else if (opcode > BPF_END) {
14009 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
14010 		return -EINVAL;
14011 
14012 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
14013 
14014 		if (BPF_SRC(insn->code) == BPF_X) {
14015 			if (insn->imm != 0 || insn->off > 1 ||
14016 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14017 				verbose(env, "BPF_ALU uses reserved fields\n");
14018 				return -EINVAL;
14019 			}
14020 			/* check src1 operand */
14021 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14022 			if (err)
14023 				return err;
14024 		} else {
14025 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
14026 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14027 				verbose(env, "BPF_ALU uses reserved fields\n");
14028 				return -EINVAL;
14029 			}
14030 		}
14031 
14032 		/* check src2 operand */
14033 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14034 		if (err)
14035 			return err;
14036 
14037 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
14038 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
14039 			verbose(env, "div by zero\n");
14040 			return -EINVAL;
14041 		}
14042 
14043 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
14044 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
14045 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
14046 
14047 			if (insn->imm < 0 || insn->imm >= size) {
14048 				verbose(env, "invalid shift %d\n", insn->imm);
14049 				return -EINVAL;
14050 			}
14051 		}
14052 
14053 		/* check dest operand */
14054 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14055 		err = err ?: adjust_reg_min_max_vals(env, insn);
14056 		if (err)
14057 			return err;
14058 	}
14059 
14060 	return reg_bounds_sanity_check(env, &regs[insn->dst_reg], "alu");
14061 }
14062 
14063 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
14064 				   struct bpf_reg_state *dst_reg,
14065 				   enum bpf_reg_type type,
14066 				   bool range_right_open)
14067 {
14068 	struct bpf_func_state *state;
14069 	struct bpf_reg_state *reg;
14070 	int new_range;
14071 
14072 	if (dst_reg->off < 0 ||
14073 	    (dst_reg->off == 0 && range_right_open))
14074 		/* This doesn't give us any range */
14075 		return;
14076 
14077 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
14078 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
14079 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
14080 		 * than pkt_end, but that's because it's also less than pkt.
14081 		 */
14082 		return;
14083 
14084 	new_range = dst_reg->off;
14085 	if (range_right_open)
14086 		new_range++;
14087 
14088 	/* Examples for register markings:
14089 	 *
14090 	 * pkt_data in dst register:
14091 	 *
14092 	 *   r2 = r3;
14093 	 *   r2 += 8;
14094 	 *   if (r2 > pkt_end) goto <handle exception>
14095 	 *   <access okay>
14096 	 *
14097 	 *   r2 = r3;
14098 	 *   r2 += 8;
14099 	 *   if (r2 < pkt_end) goto <access okay>
14100 	 *   <handle exception>
14101 	 *
14102 	 *   Where:
14103 	 *     r2 == dst_reg, pkt_end == src_reg
14104 	 *     r2=pkt(id=n,off=8,r=0)
14105 	 *     r3=pkt(id=n,off=0,r=0)
14106 	 *
14107 	 * pkt_data in src register:
14108 	 *
14109 	 *   r2 = r3;
14110 	 *   r2 += 8;
14111 	 *   if (pkt_end >= r2) goto <access okay>
14112 	 *   <handle exception>
14113 	 *
14114 	 *   r2 = r3;
14115 	 *   r2 += 8;
14116 	 *   if (pkt_end <= r2) goto <handle exception>
14117 	 *   <access okay>
14118 	 *
14119 	 *   Where:
14120 	 *     pkt_end == dst_reg, r2 == src_reg
14121 	 *     r2=pkt(id=n,off=8,r=0)
14122 	 *     r3=pkt(id=n,off=0,r=0)
14123 	 *
14124 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
14125 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
14126 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
14127 	 * the check.
14128 	 */
14129 
14130 	/* If our ids match, then we must have the same max_value.  And we
14131 	 * don't care about the other reg's fixed offset, since if it's too big
14132 	 * the range won't allow anything.
14133 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
14134 	 */
14135 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14136 		if (reg->type == type && reg->id == dst_reg->id)
14137 			/* keep the maximum range already checked */
14138 			reg->range = max(reg->range, new_range);
14139 	}));
14140 }
14141 
14142 /*
14143  * <reg1> <op> <reg2>, currently assuming reg2 is a constant
14144  */
14145 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14146 				  u8 opcode, bool is_jmp32)
14147 {
14148 	struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
14149 	struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
14150 	u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
14151 	u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
14152 	s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
14153 	s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
14154 	u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
14155 	u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
14156 	s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
14157 	s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
14158 
14159 	switch (opcode) {
14160 	case BPF_JEQ:
14161 		/* constants, umin/umax and smin/smax checks would be
14162 		 * redundant in this case because they all should match
14163 		 */
14164 		if (tnum_is_const(t1) && tnum_is_const(t2))
14165 			return t1.value == t2.value;
14166 		/* non-overlapping ranges */
14167 		if (umin1 > umax2 || umax1 < umin2)
14168 			return 0;
14169 		if (smin1 > smax2 || smax1 < smin2)
14170 			return 0;
14171 		if (!is_jmp32) {
14172 			/* if 64-bit ranges are inconclusive, see if we can
14173 			 * utilize 32-bit subrange knowledge to eliminate
14174 			 * branches that can't be taken a priori
14175 			 */
14176 			if (reg1->u32_min_value > reg2->u32_max_value ||
14177 			    reg1->u32_max_value < reg2->u32_min_value)
14178 				return 0;
14179 			if (reg1->s32_min_value > reg2->s32_max_value ||
14180 			    reg1->s32_max_value < reg2->s32_min_value)
14181 				return 0;
14182 		}
14183 		break;
14184 	case BPF_JNE:
14185 		/* constants, umin/umax and smin/smax checks would be
14186 		 * redundant in this case because they all should match
14187 		 */
14188 		if (tnum_is_const(t1) && tnum_is_const(t2))
14189 			return t1.value != t2.value;
14190 		/* non-overlapping ranges */
14191 		if (umin1 > umax2 || umax1 < umin2)
14192 			return 1;
14193 		if (smin1 > smax2 || smax1 < smin2)
14194 			return 1;
14195 		if (!is_jmp32) {
14196 			/* if 64-bit ranges are inconclusive, see if we can
14197 			 * utilize 32-bit subrange knowledge to eliminate
14198 			 * branches that can't be taken a priori
14199 			 */
14200 			if (reg1->u32_min_value > reg2->u32_max_value ||
14201 			    reg1->u32_max_value < reg2->u32_min_value)
14202 				return 1;
14203 			if (reg1->s32_min_value > reg2->s32_max_value ||
14204 			    reg1->s32_max_value < reg2->s32_min_value)
14205 				return 1;
14206 		}
14207 		break;
14208 	case BPF_JSET:
14209 		if (!is_reg_const(reg2, is_jmp32)) {
14210 			swap(reg1, reg2);
14211 			swap(t1, t2);
14212 		}
14213 		if (!is_reg_const(reg2, is_jmp32))
14214 			return -1;
14215 		if ((~t1.mask & t1.value) & t2.value)
14216 			return 1;
14217 		if (!((t1.mask | t1.value) & t2.value))
14218 			return 0;
14219 		break;
14220 	case BPF_JGT:
14221 		if (umin1 > umax2)
14222 			return 1;
14223 		else if (umax1 <= umin2)
14224 			return 0;
14225 		break;
14226 	case BPF_JSGT:
14227 		if (smin1 > smax2)
14228 			return 1;
14229 		else if (smax1 <= smin2)
14230 			return 0;
14231 		break;
14232 	case BPF_JLT:
14233 		if (umax1 < umin2)
14234 			return 1;
14235 		else if (umin1 >= umax2)
14236 			return 0;
14237 		break;
14238 	case BPF_JSLT:
14239 		if (smax1 < smin2)
14240 			return 1;
14241 		else if (smin1 >= smax2)
14242 			return 0;
14243 		break;
14244 	case BPF_JGE:
14245 		if (umin1 >= umax2)
14246 			return 1;
14247 		else if (umax1 < umin2)
14248 			return 0;
14249 		break;
14250 	case BPF_JSGE:
14251 		if (smin1 >= smax2)
14252 			return 1;
14253 		else if (smax1 < smin2)
14254 			return 0;
14255 		break;
14256 	case BPF_JLE:
14257 		if (umax1 <= umin2)
14258 			return 1;
14259 		else if (umin1 > umax2)
14260 			return 0;
14261 		break;
14262 	case BPF_JSLE:
14263 		if (smax1 <= smin2)
14264 			return 1;
14265 		else if (smin1 > smax2)
14266 			return 0;
14267 		break;
14268 	}
14269 
14270 	return -1;
14271 }
14272 
14273 static int flip_opcode(u32 opcode)
14274 {
14275 	/* How can we transform "a <op> b" into "b <op> a"? */
14276 	static const u8 opcode_flip[16] = {
14277 		/* these stay the same */
14278 		[BPF_JEQ  >> 4] = BPF_JEQ,
14279 		[BPF_JNE  >> 4] = BPF_JNE,
14280 		[BPF_JSET >> 4] = BPF_JSET,
14281 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
14282 		[BPF_JGE  >> 4] = BPF_JLE,
14283 		[BPF_JGT  >> 4] = BPF_JLT,
14284 		[BPF_JLE  >> 4] = BPF_JGE,
14285 		[BPF_JLT  >> 4] = BPF_JGT,
14286 		[BPF_JSGE >> 4] = BPF_JSLE,
14287 		[BPF_JSGT >> 4] = BPF_JSLT,
14288 		[BPF_JSLE >> 4] = BPF_JSGE,
14289 		[BPF_JSLT >> 4] = BPF_JSGT
14290 	};
14291 	return opcode_flip[opcode >> 4];
14292 }
14293 
14294 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14295 				   struct bpf_reg_state *src_reg,
14296 				   u8 opcode)
14297 {
14298 	struct bpf_reg_state *pkt;
14299 
14300 	if (src_reg->type == PTR_TO_PACKET_END) {
14301 		pkt = dst_reg;
14302 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
14303 		pkt = src_reg;
14304 		opcode = flip_opcode(opcode);
14305 	} else {
14306 		return -1;
14307 	}
14308 
14309 	if (pkt->range >= 0)
14310 		return -1;
14311 
14312 	switch (opcode) {
14313 	case BPF_JLE:
14314 		/* pkt <= pkt_end */
14315 		fallthrough;
14316 	case BPF_JGT:
14317 		/* pkt > pkt_end */
14318 		if (pkt->range == BEYOND_PKT_END)
14319 			/* pkt has at last one extra byte beyond pkt_end */
14320 			return opcode == BPF_JGT;
14321 		break;
14322 	case BPF_JLT:
14323 		/* pkt < pkt_end */
14324 		fallthrough;
14325 	case BPF_JGE:
14326 		/* pkt >= pkt_end */
14327 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14328 			return opcode == BPF_JGE;
14329 		break;
14330 	}
14331 	return -1;
14332 }
14333 
14334 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
14335  * and return:
14336  *  1 - branch will be taken and "goto target" will be executed
14337  *  0 - branch will not be taken and fall-through to next insn
14338  * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
14339  *      range [0,10]
14340  */
14341 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14342 			   u8 opcode, bool is_jmp32)
14343 {
14344 	if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
14345 		return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
14346 
14347 	if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
14348 		u64 val;
14349 
14350 		/* arrange that reg2 is a scalar, and reg1 is a pointer */
14351 		if (!is_reg_const(reg2, is_jmp32)) {
14352 			opcode = flip_opcode(opcode);
14353 			swap(reg1, reg2);
14354 		}
14355 		/* and ensure that reg2 is a constant */
14356 		if (!is_reg_const(reg2, is_jmp32))
14357 			return -1;
14358 
14359 		if (!reg_not_null(reg1))
14360 			return -1;
14361 
14362 		/* If pointer is valid tests against zero will fail so we can
14363 		 * use this to direct branch taken.
14364 		 */
14365 		val = reg_const_value(reg2, is_jmp32);
14366 		if (val != 0)
14367 			return -1;
14368 
14369 		switch (opcode) {
14370 		case BPF_JEQ:
14371 			return 0;
14372 		case BPF_JNE:
14373 			return 1;
14374 		default:
14375 			return -1;
14376 		}
14377 	}
14378 
14379 	/* now deal with two scalars, but not necessarily constants */
14380 	return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
14381 }
14382 
14383 /* Opcode that corresponds to a *false* branch condition.
14384  * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
14385  */
14386 static u8 rev_opcode(u8 opcode)
14387 {
14388 	switch (opcode) {
14389 	case BPF_JEQ:		return BPF_JNE;
14390 	case BPF_JNE:		return BPF_JEQ;
14391 	/* JSET doesn't have it's reverse opcode in BPF, so add
14392 	 * BPF_X flag to denote the reverse of that operation
14393 	 */
14394 	case BPF_JSET:		return BPF_JSET | BPF_X;
14395 	case BPF_JSET | BPF_X:	return BPF_JSET;
14396 	case BPF_JGE:		return BPF_JLT;
14397 	case BPF_JGT:		return BPF_JLE;
14398 	case BPF_JLE:		return BPF_JGT;
14399 	case BPF_JLT:		return BPF_JGE;
14400 	case BPF_JSGE:		return BPF_JSLT;
14401 	case BPF_JSGT:		return BPF_JSLE;
14402 	case BPF_JSLE:		return BPF_JSGT;
14403 	case BPF_JSLT:		return BPF_JSGE;
14404 	default:		return 0;
14405 	}
14406 }
14407 
14408 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
14409 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14410 				u8 opcode, bool is_jmp32)
14411 {
14412 	struct tnum t;
14413 	u64 val;
14414 
14415 again:
14416 	switch (opcode) {
14417 	case BPF_JEQ:
14418 		if (is_jmp32) {
14419 			reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
14420 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
14421 			reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
14422 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
14423 			reg2->u32_min_value = reg1->u32_min_value;
14424 			reg2->u32_max_value = reg1->u32_max_value;
14425 			reg2->s32_min_value = reg1->s32_min_value;
14426 			reg2->s32_max_value = reg1->s32_max_value;
14427 
14428 			t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
14429 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14430 			reg2->var_off = tnum_with_subreg(reg2->var_off, t);
14431 		} else {
14432 			reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
14433 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
14434 			reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
14435 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
14436 			reg2->umin_value = reg1->umin_value;
14437 			reg2->umax_value = reg1->umax_value;
14438 			reg2->smin_value = reg1->smin_value;
14439 			reg2->smax_value = reg1->smax_value;
14440 
14441 			reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
14442 			reg2->var_off = reg1->var_off;
14443 		}
14444 		break;
14445 	case BPF_JNE:
14446 		if (!is_reg_const(reg2, is_jmp32))
14447 			swap(reg1, reg2);
14448 		if (!is_reg_const(reg2, is_jmp32))
14449 			break;
14450 
14451 		/* try to recompute the bound of reg1 if reg2 is a const and
14452 		 * is exactly the edge of reg1.
14453 		 */
14454 		val = reg_const_value(reg2, is_jmp32);
14455 		if (is_jmp32) {
14456 			/* u32_min_value is not equal to 0xffffffff at this point,
14457 			 * because otherwise u32_max_value is 0xffffffff as well,
14458 			 * in such a case both reg1 and reg2 would be constants,
14459 			 * jump would be predicted and reg_set_min_max() won't
14460 			 * be called.
14461 			 *
14462 			 * Same reasoning works for all {u,s}{min,max}{32,64} cases
14463 			 * below.
14464 			 */
14465 			if (reg1->u32_min_value == (u32)val)
14466 				reg1->u32_min_value++;
14467 			if (reg1->u32_max_value == (u32)val)
14468 				reg1->u32_max_value--;
14469 			if (reg1->s32_min_value == (s32)val)
14470 				reg1->s32_min_value++;
14471 			if (reg1->s32_max_value == (s32)val)
14472 				reg1->s32_max_value--;
14473 		} else {
14474 			if (reg1->umin_value == (u64)val)
14475 				reg1->umin_value++;
14476 			if (reg1->umax_value == (u64)val)
14477 				reg1->umax_value--;
14478 			if (reg1->smin_value == (s64)val)
14479 				reg1->smin_value++;
14480 			if (reg1->smax_value == (s64)val)
14481 				reg1->smax_value--;
14482 		}
14483 		break;
14484 	case BPF_JSET:
14485 		if (!is_reg_const(reg2, is_jmp32))
14486 			swap(reg1, reg2);
14487 		if (!is_reg_const(reg2, is_jmp32))
14488 			break;
14489 		val = reg_const_value(reg2, is_jmp32);
14490 		/* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
14491 		 * requires single bit to learn something useful. E.g., if we
14492 		 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
14493 		 * are actually set? We can learn something definite only if
14494 		 * it's a single-bit value to begin with.
14495 		 *
14496 		 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
14497 		 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
14498 		 * bit 1 is set, which we can readily use in adjustments.
14499 		 */
14500 		if (!is_power_of_2(val))
14501 			break;
14502 		if (is_jmp32) {
14503 			t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
14504 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14505 		} else {
14506 			reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
14507 		}
14508 		break;
14509 	case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
14510 		if (!is_reg_const(reg2, is_jmp32))
14511 			swap(reg1, reg2);
14512 		if (!is_reg_const(reg2, is_jmp32))
14513 			break;
14514 		val = reg_const_value(reg2, is_jmp32);
14515 		if (is_jmp32) {
14516 			t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
14517 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14518 		} else {
14519 			reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
14520 		}
14521 		break;
14522 	case BPF_JLE:
14523 		if (is_jmp32) {
14524 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
14525 			reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
14526 		} else {
14527 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
14528 			reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
14529 		}
14530 		break;
14531 	case BPF_JLT:
14532 		if (is_jmp32) {
14533 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
14534 			reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
14535 		} else {
14536 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
14537 			reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
14538 		}
14539 		break;
14540 	case BPF_JSLE:
14541 		if (is_jmp32) {
14542 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
14543 			reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
14544 		} else {
14545 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
14546 			reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
14547 		}
14548 		break;
14549 	case BPF_JSLT:
14550 		if (is_jmp32) {
14551 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
14552 			reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
14553 		} else {
14554 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
14555 			reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
14556 		}
14557 		break;
14558 	case BPF_JGE:
14559 	case BPF_JGT:
14560 	case BPF_JSGE:
14561 	case BPF_JSGT:
14562 		/* just reuse LE/LT logic above */
14563 		opcode = flip_opcode(opcode);
14564 		swap(reg1, reg2);
14565 		goto again;
14566 	default:
14567 		return;
14568 	}
14569 }
14570 
14571 /* Adjusts the register min/max values in the case that the dst_reg and
14572  * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
14573  * check, in which case we havea fake SCALAR_VALUE representing insn->imm).
14574  * Technically we can do similar adjustments for pointers to the same object,
14575  * but we don't support that right now.
14576  */
14577 static int reg_set_min_max(struct bpf_verifier_env *env,
14578 			   struct bpf_reg_state *true_reg1,
14579 			   struct bpf_reg_state *true_reg2,
14580 			   struct bpf_reg_state *false_reg1,
14581 			   struct bpf_reg_state *false_reg2,
14582 			   u8 opcode, bool is_jmp32)
14583 {
14584 	int err;
14585 
14586 	/* If either register is a pointer, we can't learn anything about its
14587 	 * variable offset from the compare (unless they were a pointer into
14588 	 * the same object, but we don't bother with that).
14589 	 */
14590 	if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
14591 		return 0;
14592 
14593 	/* fallthrough (FALSE) branch */
14594 	regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
14595 	reg_bounds_sync(false_reg1);
14596 	reg_bounds_sync(false_reg2);
14597 
14598 	/* jump (TRUE) branch */
14599 	regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
14600 	reg_bounds_sync(true_reg1);
14601 	reg_bounds_sync(true_reg2);
14602 
14603 	err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
14604 	err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
14605 	err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
14606 	err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
14607 	return err;
14608 }
14609 
14610 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14611 				 struct bpf_reg_state *reg, u32 id,
14612 				 bool is_null)
14613 {
14614 	if (type_may_be_null(reg->type) && reg->id == id &&
14615 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14616 		/* Old offset (both fixed and variable parts) should have been
14617 		 * known-zero, because we don't allow pointer arithmetic on
14618 		 * pointers that might be NULL. If we see this happening, don't
14619 		 * convert the register.
14620 		 *
14621 		 * But in some cases, some helpers that return local kptrs
14622 		 * advance offset for the returned pointer. In those cases, it
14623 		 * is fine to expect to see reg->off.
14624 		 */
14625 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14626 			return;
14627 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14628 		    WARN_ON_ONCE(reg->off))
14629 			return;
14630 
14631 		if (is_null) {
14632 			reg->type = SCALAR_VALUE;
14633 			/* We don't need id and ref_obj_id from this point
14634 			 * onwards anymore, thus we should better reset it,
14635 			 * so that state pruning has chances to take effect.
14636 			 */
14637 			reg->id = 0;
14638 			reg->ref_obj_id = 0;
14639 
14640 			return;
14641 		}
14642 
14643 		mark_ptr_not_null_reg(reg);
14644 
14645 		if (!reg_may_point_to_spin_lock(reg)) {
14646 			/* For not-NULL ptr, reg->ref_obj_id will be reset
14647 			 * in release_reference().
14648 			 *
14649 			 * reg->id is still used by spin_lock ptr. Other
14650 			 * than spin_lock ptr type, reg->id can be reset.
14651 			 */
14652 			reg->id = 0;
14653 		}
14654 	}
14655 }
14656 
14657 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14658  * be folded together at some point.
14659  */
14660 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14661 				  bool is_null)
14662 {
14663 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14664 	struct bpf_reg_state *regs = state->regs, *reg;
14665 	u32 ref_obj_id = regs[regno].ref_obj_id;
14666 	u32 id = regs[regno].id;
14667 
14668 	if (ref_obj_id && ref_obj_id == id && is_null)
14669 		/* regs[regno] is in the " == NULL" branch.
14670 		 * No one could have freed the reference state before
14671 		 * doing the NULL check.
14672 		 */
14673 		WARN_ON_ONCE(release_reference_state(state, id));
14674 
14675 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14676 		mark_ptr_or_null_reg(state, reg, id, is_null);
14677 	}));
14678 }
14679 
14680 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14681 				   struct bpf_reg_state *dst_reg,
14682 				   struct bpf_reg_state *src_reg,
14683 				   struct bpf_verifier_state *this_branch,
14684 				   struct bpf_verifier_state *other_branch)
14685 {
14686 	if (BPF_SRC(insn->code) != BPF_X)
14687 		return false;
14688 
14689 	/* Pointers are always 64-bit. */
14690 	if (BPF_CLASS(insn->code) == BPF_JMP32)
14691 		return false;
14692 
14693 	switch (BPF_OP(insn->code)) {
14694 	case BPF_JGT:
14695 		if ((dst_reg->type == PTR_TO_PACKET &&
14696 		     src_reg->type == PTR_TO_PACKET_END) ||
14697 		    (dst_reg->type == PTR_TO_PACKET_META &&
14698 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14699 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14700 			find_good_pkt_pointers(this_branch, dst_reg,
14701 					       dst_reg->type, false);
14702 			mark_pkt_end(other_branch, insn->dst_reg, true);
14703 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14704 			    src_reg->type == PTR_TO_PACKET) ||
14705 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14706 			    src_reg->type == PTR_TO_PACKET_META)) {
14707 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
14708 			find_good_pkt_pointers(other_branch, src_reg,
14709 					       src_reg->type, true);
14710 			mark_pkt_end(this_branch, insn->src_reg, false);
14711 		} else {
14712 			return false;
14713 		}
14714 		break;
14715 	case BPF_JLT:
14716 		if ((dst_reg->type == PTR_TO_PACKET &&
14717 		     src_reg->type == PTR_TO_PACKET_END) ||
14718 		    (dst_reg->type == PTR_TO_PACKET_META &&
14719 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14720 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14721 			find_good_pkt_pointers(other_branch, dst_reg,
14722 					       dst_reg->type, true);
14723 			mark_pkt_end(this_branch, insn->dst_reg, false);
14724 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14725 			    src_reg->type == PTR_TO_PACKET) ||
14726 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14727 			    src_reg->type == PTR_TO_PACKET_META)) {
14728 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
14729 			find_good_pkt_pointers(this_branch, src_reg,
14730 					       src_reg->type, false);
14731 			mark_pkt_end(other_branch, insn->src_reg, true);
14732 		} else {
14733 			return false;
14734 		}
14735 		break;
14736 	case BPF_JGE:
14737 		if ((dst_reg->type == PTR_TO_PACKET &&
14738 		     src_reg->type == PTR_TO_PACKET_END) ||
14739 		    (dst_reg->type == PTR_TO_PACKET_META &&
14740 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14741 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14742 			find_good_pkt_pointers(this_branch, dst_reg,
14743 					       dst_reg->type, true);
14744 			mark_pkt_end(other_branch, insn->dst_reg, false);
14745 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14746 			    src_reg->type == PTR_TO_PACKET) ||
14747 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14748 			    src_reg->type == PTR_TO_PACKET_META)) {
14749 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14750 			find_good_pkt_pointers(other_branch, src_reg,
14751 					       src_reg->type, false);
14752 			mark_pkt_end(this_branch, insn->src_reg, true);
14753 		} else {
14754 			return false;
14755 		}
14756 		break;
14757 	case BPF_JLE:
14758 		if ((dst_reg->type == PTR_TO_PACKET &&
14759 		     src_reg->type == PTR_TO_PACKET_END) ||
14760 		    (dst_reg->type == PTR_TO_PACKET_META &&
14761 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14762 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14763 			find_good_pkt_pointers(other_branch, dst_reg,
14764 					       dst_reg->type, false);
14765 			mark_pkt_end(this_branch, insn->dst_reg, true);
14766 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14767 			    src_reg->type == PTR_TO_PACKET) ||
14768 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14769 			    src_reg->type == PTR_TO_PACKET_META)) {
14770 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14771 			find_good_pkt_pointers(this_branch, src_reg,
14772 					       src_reg->type, true);
14773 			mark_pkt_end(other_branch, insn->src_reg, false);
14774 		} else {
14775 			return false;
14776 		}
14777 		break;
14778 	default:
14779 		return false;
14780 	}
14781 
14782 	return true;
14783 }
14784 
14785 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14786 			       struct bpf_reg_state *known_reg)
14787 {
14788 	struct bpf_func_state *state;
14789 	struct bpf_reg_state *reg;
14790 
14791 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14792 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14793 			copy_register_state(reg, known_reg);
14794 	}));
14795 }
14796 
14797 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14798 			     struct bpf_insn *insn, int *insn_idx)
14799 {
14800 	struct bpf_verifier_state *this_branch = env->cur_state;
14801 	struct bpf_verifier_state *other_branch;
14802 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14803 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14804 	struct bpf_reg_state *eq_branch_regs;
14805 	struct bpf_reg_state fake_reg = {};
14806 	u8 opcode = BPF_OP(insn->code);
14807 	bool is_jmp32;
14808 	int pred = -1;
14809 	int err;
14810 
14811 	/* Only conditional jumps are expected to reach here. */
14812 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
14813 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14814 		return -EINVAL;
14815 	}
14816 
14817 	/* check src2 operand */
14818 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14819 	if (err)
14820 		return err;
14821 
14822 	dst_reg = &regs[insn->dst_reg];
14823 	if (BPF_SRC(insn->code) == BPF_X) {
14824 		if (insn->imm != 0) {
14825 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14826 			return -EINVAL;
14827 		}
14828 
14829 		/* check src1 operand */
14830 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14831 		if (err)
14832 			return err;
14833 
14834 		src_reg = &regs[insn->src_reg];
14835 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14836 		    is_pointer_value(env, insn->src_reg)) {
14837 			verbose(env, "R%d pointer comparison prohibited\n",
14838 				insn->src_reg);
14839 			return -EACCES;
14840 		}
14841 	} else {
14842 		if (insn->src_reg != BPF_REG_0) {
14843 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14844 			return -EINVAL;
14845 		}
14846 		src_reg = &fake_reg;
14847 		src_reg->type = SCALAR_VALUE;
14848 		__mark_reg_known(src_reg, insn->imm);
14849 	}
14850 
14851 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14852 	pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
14853 	if (pred >= 0) {
14854 		/* If we get here with a dst_reg pointer type it is because
14855 		 * above is_branch_taken() special cased the 0 comparison.
14856 		 */
14857 		if (!__is_pointer_value(false, dst_reg))
14858 			err = mark_chain_precision(env, insn->dst_reg);
14859 		if (BPF_SRC(insn->code) == BPF_X && !err &&
14860 		    !__is_pointer_value(false, src_reg))
14861 			err = mark_chain_precision(env, insn->src_reg);
14862 		if (err)
14863 			return err;
14864 	}
14865 
14866 	if (pred == 1) {
14867 		/* Only follow the goto, ignore fall-through. If needed, push
14868 		 * the fall-through branch for simulation under speculative
14869 		 * execution.
14870 		 */
14871 		if (!env->bypass_spec_v1 &&
14872 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
14873 					       *insn_idx))
14874 			return -EFAULT;
14875 		if (env->log.level & BPF_LOG_LEVEL)
14876 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14877 		*insn_idx += insn->off;
14878 		return 0;
14879 	} else if (pred == 0) {
14880 		/* Only follow the fall-through branch, since that's where the
14881 		 * program will go. If needed, push the goto branch for
14882 		 * simulation under speculative execution.
14883 		 */
14884 		if (!env->bypass_spec_v1 &&
14885 		    !sanitize_speculative_path(env, insn,
14886 					       *insn_idx + insn->off + 1,
14887 					       *insn_idx))
14888 			return -EFAULT;
14889 		if (env->log.level & BPF_LOG_LEVEL)
14890 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14891 		return 0;
14892 	}
14893 
14894 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14895 				  false);
14896 	if (!other_branch)
14897 		return -EFAULT;
14898 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14899 
14900 	if (BPF_SRC(insn->code) == BPF_X) {
14901 		err = reg_set_min_max(env,
14902 				      &other_branch_regs[insn->dst_reg],
14903 				      &other_branch_regs[insn->src_reg],
14904 				      dst_reg, src_reg, opcode, is_jmp32);
14905 	} else /* BPF_SRC(insn->code) == BPF_K */ {
14906 		err = reg_set_min_max(env,
14907 				      &other_branch_regs[insn->dst_reg],
14908 				      src_reg /* fake one */,
14909 				      dst_reg, src_reg /* same fake one */,
14910 				      opcode, is_jmp32);
14911 	}
14912 	if (err)
14913 		return err;
14914 
14915 	if (BPF_SRC(insn->code) == BPF_X &&
14916 	    src_reg->type == SCALAR_VALUE && src_reg->id &&
14917 	    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14918 		find_equal_scalars(this_branch, src_reg);
14919 		find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14920 	}
14921 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14922 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14923 		find_equal_scalars(this_branch, dst_reg);
14924 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14925 	}
14926 
14927 	/* if one pointer register is compared to another pointer
14928 	 * register check if PTR_MAYBE_NULL could be lifted.
14929 	 * E.g. register A - maybe null
14930 	 *      register B - not null
14931 	 * for JNE A, B, ... - A is not null in the false branch;
14932 	 * for JEQ A, B, ... - A is not null in the true branch.
14933 	 *
14934 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
14935 	 * not need to be null checked by the BPF program, i.e.,
14936 	 * could be null even without PTR_MAYBE_NULL marking, so
14937 	 * only propagate nullness when neither reg is that type.
14938 	 */
14939 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14940 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14941 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14942 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
14943 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14944 		eq_branch_regs = NULL;
14945 		switch (opcode) {
14946 		case BPF_JEQ:
14947 			eq_branch_regs = other_branch_regs;
14948 			break;
14949 		case BPF_JNE:
14950 			eq_branch_regs = regs;
14951 			break;
14952 		default:
14953 			/* do nothing */
14954 			break;
14955 		}
14956 		if (eq_branch_regs) {
14957 			if (type_may_be_null(src_reg->type))
14958 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14959 			else
14960 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14961 		}
14962 	}
14963 
14964 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14965 	 * NOTE: these optimizations below are related with pointer comparison
14966 	 *       which will never be JMP32.
14967 	 */
14968 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14969 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14970 	    type_may_be_null(dst_reg->type)) {
14971 		/* Mark all identical registers in each branch as either
14972 		 * safe or unknown depending R == 0 or R != 0 conditional.
14973 		 */
14974 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14975 				      opcode == BPF_JNE);
14976 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14977 				      opcode == BPF_JEQ);
14978 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14979 					   this_branch, other_branch) &&
14980 		   is_pointer_value(env, insn->dst_reg)) {
14981 		verbose(env, "R%d pointer comparison prohibited\n",
14982 			insn->dst_reg);
14983 		return -EACCES;
14984 	}
14985 	if (env->log.level & BPF_LOG_LEVEL)
14986 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
14987 	return 0;
14988 }
14989 
14990 /* verify BPF_LD_IMM64 instruction */
14991 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14992 {
14993 	struct bpf_insn_aux_data *aux = cur_aux(env);
14994 	struct bpf_reg_state *regs = cur_regs(env);
14995 	struct bpf_reg_state *dst_reg;
14996 	struct bpf_map *map;
14997 	int err;
14998 
14999 	if (BPF_SIZE(insn->code) != BPF_DW) {
15000 		verbose(env, "invalid BPF_LD_IMM insn\n");
15001 		return -EINVAL;
15002 	}
15003 	if (insn->off != 0) {
15004 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
15005 		return -EINVAL;
15006 	}
15007 
15008 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
15009 	if (err)
15010 		return err;
15011 
15012 	dst_reg = &regs[insn->dst_reg];
15013 	if (insn->src_reg == 0) {
15014 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
15015 
15016 		dst_reg->type = SCALAR_VALUE;
15017 		__mark_reg_known(&regs[insn->dst_reg], imm);
15018 		return 0;
15019 	}
15020 
15021 	/* All special src_reg cases are listed below. From this point onwards
15022 	 * we either succeed and assign a corresponding dst_reg->type after
15023 	 * zeroing the offset, or fail and reject the program.
15024 	 */
15025 	mark_reg_known_zero(env, regs, insn->dst_reg);
15026 
15027 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
15028 		dst_reg->type = aux->btf_var.reg_type;
15029 		switch (base_type(dst_reg->type)) {
15030 		case PTR_TO_MEM:
15031 			dst_reg->mem_size = aux->btf_var.mem_size;
15032 			break;
15033 		case PTR_TO_BTF_ID:
15034 			dst_reg->btf = aux->btf_var.btf;
15035 			dst_reg->btf_id = aux->btf_var.btf_id;
15036 			break;
15037 		default:
15038 			verbose(env, "bpf verifier is misconfigured\n");
15039 			return -EFAULT;
15040 		}
15041 		return 0;
15042 	}
15043 
15044 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
15045 		struct bpf_prog_aux *aux = env->prog->aux;
15046 		u32 subprogno = find_subprog(env,
15047 					     env->insn_idx + insn->imm + 1);
15048 
15049 		if (!aux->func_info) {
15050 			verbose(env, "missing btf func_info\n");
15051 			return -EINVAL;
15052 		}
15053 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
15054 			verbose(env, "callback function not static\n");
15055 			return -EINVAL;
15056 		}
15057 
15058 		dst_reg->type = PTR_TO_FUNC;
15059 		dst_reg->subprogno = subprogno;
15060 		return 0;
15061 	}
15062 
15063 	map = env->used_maps[aux->map_index];
15064 	dst_reg->map_ptr = map;
15065 
15066 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
15067 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
15068 		dst_reg->type = PTR_TO_MAP_VALUE;
15069 		dst_reg->off = aux->map_off;
15070 		WARN_ON_ONCE(map->max_entries != 1);
15071 		/* We want reg->id to be same (0) as map_value is not distinct */
15072 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
15073 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
15074 		dst_reg->type = CONST_PTR_TO_MAP;
15075 	} else {
15076 		verbose(env, "bpf verifier is misconfigured\n");
15077 		return -EINVAL;
15078 	}
15079 
15080 	return 0;
15081 }
15082 
15083 static bool may_access_skb(enum bpf_prog_type type)
15084 {
15085 	switch (type) {
15086 	case BPF_PROG_TYPE_SOCKET_FILTER:
15087 	case BPF_PROG_TYPE_SCHED_CLS:
15088 	case BPF_PROG_TYPE_SCHED_ACT:
15089 		return true;
15090 	default:
15091 		return false;
15092 	}
15093 }
15094 
15095 /* verify safety of LD_ABS|LD_IND instructions:
15096  * - they can only appear in the programs where ctx == skb
15097  * - since they are wrappers of function calls, they scratch R1-R5 registers,
15098  *   preserve R6-R9, and store return value into R0
15099  *
15100  * Implicit input:
15101  *   ctx == skb == R6 == CTX
15102  *
15103  * Explicit input:
15104  *   SRC == any register
15105  *   IMM == 32-bit immediate
15106  *
15107  * Output:
15108  *   R0 - 8/16/32-bit skb data converted to cpu endianness
15109  */
15110 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
15111 {
15112 	struct bpf_reg_state *regs = cur_regs(env);
15113 	static const int ctx_reg = BPF_REG_6;
15114 	u8 mode = BPF_MODE(insn->code);
15115 	int i, err;
15116 
15117 	if (!may_access_skb(resolve_prog_type(env->prog))) {
15118 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
15119 		return -EINVAL;
15120 	}
15121 
15122 	if (!env->ops->gen_ld_abs) {
15123 		verbose(env, "bpf verifier is misconfigured\n");
15124 		return -EINVAL;
15125 	}
15126 
15127 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
15128 	    BPF_SIZE(insn->code) == BPF_DW ||
15129 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
15130 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
15131 		return -EINVAL;
15132 	}
15133 
15134 	/* check whether implicit source operand (register R6) is readable */
15135 	err = check_reg_arg(env, ctx_reg, SRC_OP);
15136 	if (err)
15137 		return err;
15138 
15139 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
15140 	 * gen_ld_abs() may terminate the program at runtime, leading to
15141 	 * reference leak.
15142 	 */
15143 	err = check_reference_leak(env, false);
15144 	if (err) {
15145 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
15146 		return err;
15147 	}
15148 
15149 	if (env->cur_state->active_lock.ptr) {
15150 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
15151 		return -EINVAL;
15152 	}
15153 
15154 	if (env->cur_state->active_rcu_lock) {
15155 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
15156 		return -EINVAL;
15157 	}
15158 
15159 	if (regs[ctx_reg].type != PTR_TO_CTX) {
15160 		verbose(env,
15161 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
15162 		return -EINVAL;
15163 	}
15164 
15165 	if (mode == BPF_IND) {
15166 		/* check explicit source operand */
15167 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15168 		if (err)
15169 			return err;
15170 	}
15171 
15172 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
15173 	if (err < 0)
15174 		return err;
15175 
15176 	/* reset caller saved regs to unreadable */
15177 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
15178 		mark_reg_not_init(env, regs, caller_saved[i]);
15179 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
15180 	}
15181 
15182 	/* mark destination R0 register as readable, since it contains
15183 	 * the value fetched from the packet.
15184 	 * Already marked as written above.
15185 	 */
15186 	mark_reg_unknown(env, regs, BPF_REG_0);
15187 	/* ld_abs load up to 32-bit skb data. */
15188 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
15189 	return 0;
15190 }
15191 
15192 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
15193 {
15194 	const char *exit_ctx = "At program exit";
15195 	struct tnum enforce_attach_type_range = tnum_unknown;
15196 	const struct bpf_prog *prog = env->prog;
15197 	struct bpf_reg_state *reg;
15198 	struct bpf_retval_range range = retval_range(0, 1);
15199 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
15200 	int err;
15201 	struct bpf_func_state *frame = env->cur_state->frame[0];
15202 	const bool is_subprog = frame->subprogno;
15203 
15204 	/* LSM and struct_ops func-ptr's return type could be "void" */
15205 	if (!is_subprog || frame->in_exception_callback_fn) {
15206 		switch (prog_type) {
15207 		case BPF_PROG_TYPE_LSM:
15208 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
15209 				/* See below, can be 0 or 0-1 depending on hook. */
15210 				break;
15211 			fallthrough;
15212 		case BPF_PROG_TYPE_STRUCT_OPS:
15213 			if (!prog->aux->attach_func_proto->type)
15214 				return 0;
15215 			break;
15216 		default:
15217 			break;
15218 		}
15219 	}
15220 
15221 	/* eBPF calling convention is such that R0 is used
15222 	 * to return the value from eBPF program.
15223 	 * Make sure that it's readable at this time
15224 	 * of bpf_exit, which means that program wrote
15225 	 * something into it earlier
15226 	 */
15227 	err = check_reg_arg(env, regno, SRC_OP);
15228 	if (err)
15229 		return err;
15230 
15231 	if (is_pointer_value(env, regno)) {
15232 		verbose(env, "R%d leaks addr as return value\n", regno);
15233 		return -EACCES;
15234 	}
15235 
15236 	reg = cur_regs(env) + regno;
15237 
15238 	if (frame->in_async_callback_fn) {
15239 		/* enforce return zero from async callbacks like timer */
15240 		exit_ctx = "At async callback return";
15241 		range = retval_range(0, 0);
15242 		goto enforce_retval;
15243 	}
15244 
15245 	if (is_subprog && !frame->in_exception_callback_fn) {
15246 		if (reg->type != SCALAR_VALUE) {
15247 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
15248 				regno, reg_type_str(env, reg->type));
15249 			return -EINVAL;
15250 		}
15251 		return 0;
15252 	}
15253 
15254 	switch (prog_type) {
15255 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15256 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15257 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15258 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
15259 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15260 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15261 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
15262 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15263 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
15264 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
15265 			range = retval_range(1, 1);
15266 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15267 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15268 			range = retval_range(0, 3);
15269 		break;
15270 	case BPF_PROG_TYPE_CGROUP_SKB:
15271 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15272 			range = retval_range(0, 3);
15273 			enforce_attach_type_range = tnum_range(2, 3);
15274 		}
15275 		break;
15276 	case BPF_PROG_TYPE_CGROUP_SOCK:
15277 	case BPF_PROG_TYPE_SOCK_OPS:
15278 	case BPF_PROG_TYPE_CGROUP_DEVICE:
15279 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
15280 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15281 		break;
15282 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
15283 		if (!env->prog->aux->attach_btf_id)
15284 			return 0;
15285 		range = retval_range(0, 0);
15286 		break;
15287 	case BPF_PROG_TYPE_TRACING:
15288 		switch (env->prog->expected_attach_type) {
15289 		case BPF_TRACE_FENTRY:
15290 		case BPF_TRACE_FEXIT:
15291 			range = retval_range(0, 0);
15292 			break;
15293 		case BPF_TRACE_RAW_TP:
15294 		case BPF_MODIFY_RETURN:
15295 			return 0;
15296 		case BPF_TRACE_ITER:
15297 			break;
15298 		default:
15299 			return -ENOTSUPP;
15300 		}
15301 		break;
15302 	case BPF_PROG_TYPE_SK_LOOKUP:
15303 		range = retval_range(SK_DROP, SK_PASS);
15304 		break;
15305 
15306 	case BPF_PROG_TYPE_LSM:
15307 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15308 			/* Regular BPF_PROG_TYPE_LSM programs can return
15309 			 * any value.
15310 			 */
15311 			return 0;
15312 		}
15313 		if (!env->prog->aux->attach_func_proto->type) {
15314 			/* Make sure programs that attach to void
15315 			 * hooks don't try to modify return value.
15316 			 */
15317 			range = retval_range(1, 1);
15318 		}
15319 		break;
15320 
15321 	case BPF_PROG_TYPE_NETFILTER:
15322 		range = retval_range(NF_DROP, NF_ACCEPT);
15323 		break;
15324 	case BPF_PROG_TYPE_EXT:
15325 		/* freplace program can return anything as its return value
15326 		 * depends on the to-be-replaced kernel func or bpf program.
15327 		 */
15328 	default:
15329 		return 0;
15330 	}
15331 
15332 enforce_retval:
15333 	if (reg->type != SCALAR_VALUE) {
15334 		verbose(env, "%s the register R%d is not a known value (%s)\n",
15335 			exit_ctx, regno, reg_type_str(env, reg->type));
15336 		return -EINVAL;
15337 	}
15338 
15339 	err = mark_chain_precision(env, regno);
15340 	if (err)
15341 		return err;
15342 
15343 	if (!retval_range_within(range, reg)) {
15344 		verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
15345 		if (!is_subprog &&
15346 		    prog->expected_attach_type == BPF_LSM_CGROUP &&
15347 		    prog_type == BPF_PROG_TYPE_LSM &&
15348 		    !prog->aux->attach_func_proto->type)
15349 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15350 		return -EINVAL;
15351 	}
15352 
15353 	if (!tnum_is_unknown(enforce_attach_type_range) &&
15354 	    tnum_in(enforce_attach_type_range, reg->var_off))
15355 		env->prog->enforce_expected_attach_type = 1;
15356 	return 0;
15357 }
15358 
15359 /* non-recursive DFS pseudo code
15360  * 1  procedure DFS-iterative(G,v):
15361  * 2      label v as discovered
15362  * 3      let S be a stack
15363  * 4      S.push(v)
15364  * 5      while S is not empty
15365  * 6            t <- S.peek()
15366  * 7            if t is what we're looking for:
15367  * 8                return t
15368  * 9            for all edges e in G.adjacentEdges(t) do
15369  * 10               if edge e is already labelled
15370  * 11                   continue with the next edge
15371  * 12               w <- G.adjacentVertex(t,e)
15372  * 13               if vertex w is not discovered and not explored
15373  * 14                   label e as tree-edge
15374  * 15                   label w as discovered
15375  * 16                   S.push(w)
15376  * 17                   continue at 5
15377  * 18               else if vertex w is discovered
15378  * 19                   label e as back-edge
15379  * 20               else
15380  * 21                   // vertex w is explored
15381  * 22                   label e as forward- or cross-edge
15382  * 23           label t as explored
15383  * 24           S.pop()
15384  *
15385  * convention:
15386  * 0x10 - discovered
15387  * 0x11 - discovered and fall-through edge labelled
15388  * 0x12 - discovered and fall-through and branch edges labelled
15389  * 0x20 - explored
15390  */
15391 
15392 enum {
15393 	DISCOVERED = 0x10,
15394 	EXPLORED = 0x20,
15395 	FALLTHROUGH = 1,
15396 	BRANCH = 2,
15397 };
15398 
15399 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15400 {
15401 	env->insn_aux_data[idx].prune_point = true;
15402 }
15403 
15404 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15405 {
15406 	return env->insn_aux_data[insn_idx].prune_point;
15407 }
15408 
15409 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15410 {
15411 	env->insn_aux_data[idx].force_checkpoint = true;
15412 }
15413 
15414 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15415 {
15416 	return env->insn_aux_data[insn_idx].force_checkpoint;
15417 }
15418 
15419 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
15420 {
15421 	env->insn_aux_data[idx].calls_callback = true;
15422 }
15423 
15424 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
15425 {
15426 	return env->insn_aux_data[insn_idx].calls_callback;
15427 }
15428 
15429 enum {
15430 	DONE_EXPLORING = 0,
15431 	KEEP_EXPLORING = 1,
15432 };
15433 
15434 /* t, w, e - match pseudo-code above:
15435  * t - index of current instruction
15436  * w - next instruction
15437  * e - edge
15438  */
15439 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
15440 {
15441 	int *insn_stack = env->cfg.insn_stack;
15442 	int *insn_state = env->cfg.insn_state;
15443 
15444 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15445 		return DONE_EXPLORING;
15446 
15447 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15448 		return DONE_EXPLORING;
15449 
15450 	if (w < 0 || w >= env->prog->len) {
15451 		verbose_linfo(env, t, "%d: ", t);
15452 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
15453 		return -EINVAL;
15454 	}
15455 
15456 	if (e == BRANCH) {
15457 		/* mark branch target for state pruning */
15458 		mark_prune_point(env, w);
15459 		mark_jmp_point(env, w);
15460 	}
15461 
15462 	if (insn_state[w] == 0) {
15463 		/* tree-edge */
15464 		insn_state[t] = DISCOVERED | e;
15465 		insn_state[w] = DISCOVERED;
15466 		if (env->cfg.cur_stack >= env->prog->len)
15467 			return -E2BIG;
15468 		insn_stack[env->cfg.cur_stack++] = w;
15469 		return KEEP_EXPLORING;
15470 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15471 		if (env->bpf_capable)
15472 			return DONE_EXPLORING;
15473 		verbose_linfo(env, t, "%d: ", t);
15474 		verbose_linfo(env, w, "%d: ", w);
15475 		verbose(env, "back-edge from insn %d to %d\n", t, w);
15476 		return -EINVAL;
15477 	} else if (insn_state[w] == EXPLORED) {
15478 		/* forward- or cross-edge */
15479 		insn_state[t] = DISCOVERED | e;
15480 	} else {
15481 		verbose(env, "insn state internal bug\n");
15482 		return -EFAULT;
15483 	}
15484 	return DONE_EXPLORING;
15485 }
15486 
15487 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15488 				struct bpf_verifier_env *env,
15489 				bool visit_callee)
15490 {
15491 	int ret, insn_sz;
15492 
15493 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
15494 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
15495 	if (ret)
15496 		return ret;
15497 
15498 	mark_prune_point(env, t + insn_sz);
15499 	/* when we exit from subprog, we need to record non-linear history */
15500 	mark_jmp_point(env, t + insn_sz);
15501 
15502 	if (visit_callee) {
15503 		mark_prune_point(env, t);
15504 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
15505 	}
15506 	return ret;
15507 }
15508 
15509 /* Visits the instruction at index t and returns one of the following:
15510  *  < 0 - an error occurred
15511  *  DONE_EXPLORING - the instruction was fully explored
15512  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
15513  */
15514 static int visit_insn(int t, struct bpf_verifier_env *env)
15515 {
15516 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15517 	int ret, off, insn_sz;
15518 
15519 	if (bpf_pseudo_func(insn))
15520 		return visit_func_call_insn(t, insns, env, true);
15521 
15522 	/* All non-branch instructions have a single fall-through edge. */
15523 	if (BPF_CLASS(insn->code) != BPF_JMP &&
15524 	    BPF_CLASS(insn->code) != BPF_JMP32) {
15525 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
15526 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
15527 	}
15528 
15529 	switch (BPF_OP(insn->code)) {
15530 	case BPF_EXIT:
15531 		return DONE_EXPLORING;
15532 
15533 	case BPF_CALL:
15534 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
15535 			/* Mark this call insn as a prune point to trigger
15536 			 * is_state_visited() check before call itself is
15537 			 * processed by __check_func_call(). Otherwise new
15538 			 * async state will be pushed for further exploration.
15539 			 */
15540 			mark_prune_point(env, t);
15541 		/* For functions that invoke callbacks it is not known how many times
15542 		 * callback would be called. Verifier models callback calling functions
15543 		 * by repeatedly visiting callback bodies and returning to origin call
15544 		 * instruction.
15545 		 * In order to stop such iteration verifier needs to identify when a
15546 		 * state identical some state from a previous iteration is reached.
15547 		 * Check below forces creation of checkpoint before callback calling
15548 		 * instruction to allow search for such identical states.
15549 		 */
15550 		if (is_sync_callback_calling_insn(insn)) {
15551 			mark_calls_callback(env, t);
15552 			mark_force_checkpoint(env, t);
15553 			mark_prune_point(env, t);
15554 			mark_jmp_point(env, t);
15555 		}
15556 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15557 			struct bpf_kfunc_call_arg_meta meta;
15558 
15559 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15560 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
15561 				mark_prune_point(env, t);
15562 				/* Checking and saving state checkpoints at iter_next() call
15563 				 * is crucial for fast convergence of open-coded iterator loop
15564 				 * logic, so we need to force it. If we don't do that,
15565 				 * is_state_visited() might skip saving a checkpoint, causing
15566 				 * unnecessarily long sequence of not checkpointed
15567 				 * instructions and jumps, leading to exhaustion of jump
15568 				 * history buffer, and potentially other undesired outcomes.
15569 				 * It is expected that with correct open-coded iterators
15570 				 * convergence will happen quickly, so we don't run a risk of
15571 				 * exhausting memory.
15572 				 */
15573 				mark_force_checkpoint(env, t);
15574 			}
15575 		}
15576 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15577 
15578 	case BPF_JA:
15579 		if (BPF_SRC(insn->code) != BPF_K)
15580 			return -EINVAL;
15581 
15582 		if (BPF_CLASS(insn->code) == BPF_JMP)
15583 			off = insn->off;
15584 		else
15585 			off = insn->imm;
15586 
15587 		/* unconditional jump with single edge */
15588 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
15589 		if (ret)
15590 			return ret;
15591 
15592 		mark_prune_point(env, t + off + 1);
15593 		mark_jmp_point(env, t + off + 1);
15594 
15595 		return ret;
15596 
15597 	default:
15598 		/* conditional jump with two edges */
15599 		mark_prune_point(env, t);
15600 
15601 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
15602 		if (ret)
15603 			return ret;
15604 
15605 		return push_insn(t, t + insn->off + 1, BRANCH, env);
15606 	}
15607 }
15608 
15609 /* non-recursive depth-first-search to detect loops in BPF program
15610  * loop == back-edge in directed graph
15611  */
15612 static int check_cfg(struct bpf_verifier_env *env)
15613 {
15614 	int insn_cnt = env->prog->len;
15615 	int *insn_stack, *insn_state;
15616 	int ex_insn_beg, i, ret = 0;
15617 	bool ex_done = false;
15618 
15619 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15620 	if (!insn_state)
15621 		return -ENOMEM;
15622 
15623 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15624 	if (!insn_stack) {
15625 		kvfree(insn_state);
15626 		return -ENOMEM;
15627 	}
15628 
15629 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15630 	insn_stack[0] = 0; /* 0 is the first instruction */
15631 	env->cfg.cur_stack = 1;
15632 
15633 walk_cfg:
15634 	while (env->cfg.cur_stack > 0) {
15635 		int t = insn_stack[env->cfg.cur_stack - 1];
15636 
15637 		ret = visit_insn(t, env);
15638 		switch (ret) {
15639 		case DONE_EXPLORING:
15640 			insn_state[t] = EXPLORED;
15641 			env->cfg.cur_stack--;
15642 			break;
15643 		case KEEP_EXPLORING:
15644 			break;
15645 		default:
15646 			if (ret > 0) {
15647 				verbose(env, "visit_insn internal bug\n");
15648 				ret = -EFAULT;
15649 			}
15650 			goto err_free;
15651 		}
15652 	}
15653 
15654 	if (env->cfg.cur_stack < 0) {
15655 		verbose(env, "pop stack internal bug\n");
15656 		ret = -EFAULT;
15657 		goto err_free;
15658 	}
15659 
15660 	if (env->exception_callback_subprog && !ex_done) {
15661 		ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
15662 
15663 		insn_state[ex_insn_beg] = DISCOVERED;
15664 		insn_stack[0] = ex_insn_beg;
15665 		env->cfg.cur_stack = 1;
15666 		ex_done = true;
15667 		goto walk_cfg;
15668 	}
15669 
15670 	for (i = 0; i < insn_cnt; i++) {
15671 		struct bpf_insn *insn = &env->prog->insnsi[i];
15672 
15673 		if (insn_state[i] != EXPLORED) {
15674 			verbose(env, "unreachable insn %d\n", i);
15675 			ret = -EINVAL;
15676 			goto err_free;
15677 		}
15678 		if (bpf_is_ldimm64(insn)) {
15679 			if (insn_state[i + 1] != 0) {
15680 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
15681 				ret = -EINVAL;
15682 				goto err_free;
15683 			}
15684 			i++; /* skip second half of ldimm64 */
15685 		}
15686 	}
15687 	ret = 0; /* cfg looks good */
15688 
15689 err_free:
15690 	kvfree(insn_state);
15691 	kvfree(insn_stack);
15692 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
15693 	return ret;
15694 }
15695 
15696 static int check_abnormal_return(struct bpf_verifier_env *env)
15697 {
15698 	int i;
15699 
15700 	for (i = 1; i < env->subprog_cnt; i++) {
15701 		if (env->subprog_info[i].has_ld_abs) {
15702 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15703 			return -EINVAL;
15704 		}
15705 		if (env->subprog_info[i].has_tail_call) {
15706 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15707 			return -EINVAL;
15708 		}
15709 	}
15710 	return 0;
15711 }
15712 
15713 /* The minimum supported BTF func info size */
15714 #define MIN_BPF_FUNCINFO_SIZE	8
15715 #define MAX_FUNCINFO_REC_SIZE	252
15716 
15717 static int check_btf_func_early(struct bpf_verifier_env *env,
15718 				const union bpf_attr *attr,
15719 				bpfptr_t uattr)
15720 {
15721 	u32 krec_size = sizeof(struct bpf_func_info);
15722 	const struct btf_type *type, *func_proto;
15723 	u32 i, nfuncs, urec_size, min_size;
15724 	struct bpf_func_info *krecord;
15725 	struct bpf_prog *prog;
15726 	const struct btf *btf;
15727 	u32 prev_offset = 0;
15728 	bpfptr_t urecord;
15729 	int ret = -ENOMEM;
15730 
15731 	nfuncs = attr->func_info_cnt;
15732 	if (!nfuncs) {
15733 		if (check_abnormal_return(env))
15734 			return -EINVAL;
15735 		return 0;
15736 	}
15737 
15738 	urec_size = attr->func_info_rec_size;
15739 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15740 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
15741 	    urec_size % sizeof(u32)) {
15742 		verbose(env, "invalid func info rec size %u\n", urec_size);
15743 		return -EINVAL;
15744 	}
15745 
15746 	prog = env->prog;
15747 	btf = prog->aux->btf;
15748 
15749 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15750 	min_size = min_t(u32, krec_size, urec_size);
15751 
15752 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15753 	if (!krecord)
15754 		return -ENOMEM;
15755 
15756 	for (i = 0; i < nfuncs; i++) {
15757 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15758 		if (ret) {
15759 			if (ret == -E2BIG) {
15760 				verbose(env, "nonzero tailing record in func info");
15761 				/* set the size kernel expects so loader can zero
15762 				 * out the rest of the record.
15763 				 */
15764 				if (copy_to_bpfptr_offset(uattr,
15765 							  offsetof(union bpf_attr, func_info_rec_size),
15766 							  &min_size, sizeof(min_size)))
15767 					ret = -EFAULT;
15768 			}
15769 			goto err_free;
15770 		}
15771 
15772 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15773 			ret = -EFAULT;
15774 			goto err_free;
15775 		}
15776 
15777 		/* check insn_off */
15778 		ret = -EINVAL;
15779 		if (i == 0) {
15780 			if (krecord[i].insn_off) {
15781 				verbose(env,
15782 					"nonzero insn_off %u for the first func info record",
15783 					krecord[i].insn_off);
15784 				goto err_free;
15785 			}
15786 		} else if (krecord[i].insn_off <= prev_offset) {
15787 			verbose(env,
15788 				"same or smaller insn offset (%u) than previous func info record (%u)",
15789 				krecord[i].insn_off, prev_offset);
15790 			goto err_free;
15791 		}
15792 
15793 		/* check type_id */
15794 		type = btf_type_by_id(btf, krecord[i].type_id);
15795 		if (!type || !btf_type_is_func(type)) {
15796 			verbose(env, "invalid type id %d in func info",
15797 				krecord[i].type_id);
15798 			goto err_free;
15799 		}
15800 
15801 		func_proto = btf_type_by_id(btf, type->type);
15802 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15803 			/* btf_func_check() already verified it during BTF load */
15804 			goto err_free;
15805 
15806 		prev_offset = krecord[i].insn_off;
15807 		bpfptr_add(&urecord, urec_size);
15808 	}
15809 
15810 	prog->aux->func_info = krecord;
15811 	prog->aux->func_info_cnt = nfuncs;
15812 	return 0;
15813 
15814 err_free:
15815 	kvfree(krecord);
15816 	return ret;
15817 }
15818 
15819 static int check_btf_func(struct bpf_verifier_env *env,
15820 			  const union bpf_attr *attr,
15821 			  bpfptr_t uattr)
15822 {
15823 	const struct btf_type *type, *func_proto, *ret_type;
15824 	u32 i, nfuncs, urec_size;
15825 	struct bpf_func_info *krecord;
15826 	struct bpf_func_info_aux *info_aux = NULL;
15827 	struct bpf_prog *prog;
15828 	const struct btf *btf;
15829 	bpfptr_t urecord;
15830 	bool scalar_return;
15831 	int ret = -ENOMEM;
15832 
15833 	nfuncs = attr->func_info_cnt;
15834 	if (!nfuncs) {
15835 		if (check_abnormal_return(env))
15836 			return -EINVAL;
15837 		return 0;
15838 	}
15839 	if (nfuncs != env->subprog_cnt) {
15840 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15841 		return -EINVAL;
15842 	}
15843 
15844 	urec_size = attr->func_info_rec_size;
15845 
15846 	prog = env->prog;
15847 	btf = prog->aux->btf;
15848 
15849 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15850 
15851 	krecord = prog->aux->func_info;
15852 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15853 	if (!info_aux)
15854 		return -ENOMEM;
15855 
15856 	for (i = 0; i < nfuncs; i++) {
15857 		/* check insn_off */
15858 		ret = -EINVAL;
15859 
15860 		if (env->subprog_info[i].start != krecord[i].insn_off) {
15861 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15862 			goto err_free;
15863 		}
15864 
15865 		/* Already checked type_id */
15866 		type = btf_type_by_id(btf, krecord[i].type_id);
15867 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15868 		/* Already checked func_proto */
15869 		func_proto = btf_type_by_id(btf, type->type);
15870 
15871 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15872 		scalar_return =
15873 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15874 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15875 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15876 			goto err_free;
15877 		}
15878 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15879 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15880 			goto err_free;
15881 		}
15882 
15883 		bpfptr_add(&urecord, urec_size);
15884 	}
15885 
15886 	prog->aux->func_info_aux = info_aux;
15887 	return 0;
15888 
15889 err_free:
15890 	kfree(info_aux);
15891 	return ret;
15892 }
15893 
15894 static void adjust_btf_func(struct bpf_verifier_env *env)
15895 {
15896 	struct bpf_prog_aux *aux = env->prog->aux;
15897 	int i;
15898 
15899 	if (!aux->func_info)
15900 		return;
15901 
15902 	/* func_info is not available for hidden subprogs */
15903 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
15904 		aux->func_info[i].insn_off = env->subprog_info[i].start;
15905 }
15906 
15907 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
15908 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
15909 
15910 static int check_btf_line(struct bpf_verifier_env *env,
15911 			  const union bpf_attr *attr,
15912 			  bpfptr_t uattr)
15913 {
15914 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15915 	struct bpf_subprog_info *sub;
15916 	struct bpf_line_info *linfo;
15917 	struct bpf_prog *prog;
15918 	const struct btf *btf;
15919 	bpfptr_t ulinfo;
15920 	int err;
15921 
15922 	nr_linfo = attr->line_info_cnt;
15923 	if (!nr_linfo)
15924 		return 0;
15925 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15926 		return -EINVAL;
15927 
15928 	rec_size = attr->line_info_rec_size;
15929 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15930 	    rec_size > MAX_LINEINFO_REC_SIZE ||
15931 	    rec_size & (sizeof(u32) - 1))
15932 		return -EINVAL;
15933 
15934 	/* Need to zero it in case the userspace may
15935 	 * pass in a smaller bpf_line_info object.
15936 	 */
15937 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15938 			 GFP_KERNEL | __GFP_NOWARN);
15939 	if (!linfo)
15940 		return -ENOMEM;
15941 
15942 	prog = env->prog;
15943 	btf = prog->aux->btf;
15944 
15945 	s = 0;
15946 	sub = env->subprog_info;
15947 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15948 	expected_size = sizeof(struct bpf_line_info);
15949 	ncopy = min_t(u32, expected_size, rec_size);
15950 	for (i = 0; i < nr_linfo; i++) {
15951 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15952 		if (err) {
15953 			if (err == -E2BIG) {
15954 				verbose(env, "nonzero tailing record in line_info");
15955 				if (copy_to_bpfptr_offset(uattr,
15956 							  offsetof(union bpf_attr, line_info_rec_size),
15957 							  &expected_size, sizeof(expected_size)))
15958 					err = -EFAULT;
15959 			}
15960 			goto err_free;
15961 		}
15962 
15963 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15964 			err = -EFAULT;
15965 			goto err_free;
15966 		}
15967 
15968 		/*
15969 		 * Check insn_off to ensure
15970 		 * 1) strictly increasing AND
15971 		 * 2) bounded by prog->len
15972 		 *
15973 		 * The linfo[0].insn_off == 0 check logically falls into
15974 		 * the later "missing bpf_line_info for func..." case
15975 		 * because the first linfo[0].insn_off must be the
15976 		 * first sub also and the first sub must have
15977 		 * subprog_info[0].start == 0.
15978 		 */
15979 		if ((i && linfo[i].insn_off <= prev_offset) ||
15980 		    linfo[i].insn_off >= prog->len) {
15981 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15982 				i, linfo[i].insn_off, prev_offset,
15983 				prog->len);
15984 			err = -EINVAL;
15985 			goto err_free;
15986 		}
15987 
15988 		if (!prog->insnsi[linfo[i].insn_off].code) {
15989 			verbose(env,
15990 				"Invalid insn code at line_info[%u].insn_off\n",
15991 				i);
15992 			err = -EINVAL;
15993 			goto err_free;
15994 		}
15995 
15996 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15997 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15998 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15999 			err = -EINVAL;
16000 			goto err_free;
16001 		}
16002 
16003 		if (s != env->subprog_cnt) {
16004 			if (linfo[i].insn_off == sub[s].start) {
16005 				sub[s].linfo_idx = i;
16006 				s++;
16007 			} else if (sub[s].start < linfo[i].insn_off) {
16008 				verbose(env, "missing bpf_line_info for func#%u\n", s);
16009 				err = -EINVAL;
16010 				goto err_free;
16011 			}
16012 		}
16013 
16014 		prev_offset = linfo[i].insn_off;
16015 		bpfptr_add(&ulinfo, rec_size);
16016 	}
16017 
16018 	if (s != env->subprog_cnt) {
16019 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
16020 			env->subprog_cnt - s, s);
16021 		err = -EINVAL;
16022 		goto err_free;
16023 	}
16024 
16025 	prog->aux->linfo = linfo;
16026 	prog->aux->nr_linfo = nr_linfo;
16027 
16028 	return 0;
16029 
16030 err_free:
16031 	kvfree(linfo);
16032 	return err;
16033 }
16034 
16035 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
16036 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
16037 
16038 static int check_core_relo(struct bpf_verifier_env *env,
16039 			   const union bpf_attr *attr,
16040 			   bpfptr_t uattr)
16041 {
16042 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
16043 	struct bpf_core_relo core_relo = {};
16044 	struct bpf_prog *prog = env->prog;
16045 	const struct btf *btf = prog->aux->btf;
16046 	struct bpf_core_ctx ctx = {
16047 		.log = &env->log,
16048 		.btf = btf,
16049 	};
16050 	bpfptr_t u_core_relo;
16051 	int err;
16052 
16053 	nr_core_relo = attr->core_relo_cnt;
16054 	if (!nr_core_relo)
16055 		return 0;
16056 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
16057 		return -EINVAL;
16058 
16059 	rec_size = attr->core_relo_rec_size;
16060 	if (rec_size < MIN_CORE_RELO_SIZE ||
16061 	    rec_size > MAX_CORE_RELO_SIZE ||
16062 	    rec_size % sizeof(u32))
16063 		return -EINVAL;
16064 
16065 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
16066 	expected_size = sizeof(struct bpf_core_relo);
16067 	ncopy = min_t(u32, expected_size, rec_size);
16068 
16069 	/* Unlike func_info and line_info, copy and apply each CO-RE
16070 	 * relocation record one at a time.
16071 	 */
16072 	for (i = 0; i < nr_core_relo; i++) {
16073 		/* future proofing when sizeof(bpf_core_relo) changes */
16074 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
16075 		if (err) {
16076 			if (err == -E2BIG) {
16077 				verbose(env, "nonzero tailing record in core_relo");
16078 				if (copy_to_bpfptr_offset(uattr,
16079 							  offsetof(union bpf_attr, core_relo_rec_size),
16080 							  &expected_size, sizeof(expected_size)))
16081 					err = -EFAULT;
16082 			}
16083 			break;
16084 		}
16085 
16086 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
16087 			err = -EFAULT;
16088 			break;
16089 		}
16090 
16091 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
16092 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
16093 				i, core_relo.insn_off, prog->len);
16094 			err = -EINVAL;
16095 			break;
16096 		}
16097 
16098 		err = bpf_core_apply(&ctx, &core_relo, i,
16099 				     &prog->insnsi[core_relo.insn_off / 8]);
16100 		if (err)
16101 			break;
16102 		bpfptr_add(&u_core_relo, rec_size);
16103 	}
16104 	return err;
16105 }
16106 
16107 static int check_btf_info_early(struct bpf_verifier_env *env,
16108 				const union bpf_attr *attr,
16109 				bpfptr_t uattr)
16110 {
16111 	struct btf *btf;
16112 	int err;
16113 
16114 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16115 		if (check_abnormal_return(env))
16116 			return -EINVAL;
16117 		return 0;
16118 	}
16119 
16120 	btf = btf_get_by_fd(attr->prog_btf_fd);
16121 	if (IS_ERR(btf))
16122 		return PTR_ERR(btf);
16123 	if (btf_is_kernel(btf)) {
16124 		btf_put(btf);
16125 		return -EACCES;
16126 	}
16127 	env->prog->aux->btf = btf;
16128 
16129 	err = check_btf_func_early(env, attr, uattr);
16130 	if (err)
16131 		return err;
16132 	return 0;
16133 }
16134 
16135 static int check_btf_info(struct bpf_verifier_env *env,
16136 			  const union bpf_attr *attr,
16137 			  bpfptr_t uattr)
16138 {
16139 	int err;
16140 
16141 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16142 		if (check_abnormal_return(env))
16143 			return -EINVAL;
16144 		return 0;
16145 	}
16146 
16147 	err = check_btf_func(env, attr, uattr);
16148 	if (err)
16149 		return err;
16150 
16151 	err = check_btf_line(env, attr, uattr);
16152 	if (err)
16153 		return err;
16154 
16155 	err = check_core_relo(env, attr, uattr);
16156 	if (err)
16157 		return err;
16158 
16159 	return 0;
16160 }
16161 
16162 /* check %cur's range satisfies %old's */
16163 static bool range_within(struct bpf_reg_state *old,
16164 			 struct bpf_reg_state *cur)
16165 {
16166 	return old->umin_value <= cur->umin_value &&
16167 	       old->umax_value >= cur->umax_value &&
16168 	       old->smin_value <= cur->smin_value &&
16169 	       old->smax_value >= cur->smax_value &&
16170 	       old->u32_min_value <= cur->u32_min_value &&
16171 	       old->u32_max_value >= cur->u32_max_value &&
16172 	       old->s32_min_value <= cur->s32_min_value &&
16173 	       old->s32_max_value >= cur->s32_max_value;
16174 }
16175 
16176 /* If in the old state two registers had the same id, then they need to have
16177  * the same id in the new state as well.  But that id could be different from
16178  * the old state, so we need to track the mapping from old to new ids.
16179  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
16180  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
16181  * regs with a different old id could still have new id 9, we don't care about
16182  * that.
16183  * So we look through our idmap to see if this old id has been seen before.  If
16184  * so, we require the new id to match; otherwise, we add the id pair to the map.
16185  */
16186 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16187 {
16188 	struct bpf_id_pair *map = idmap->map;
16189 	unsigned int i;
16190 
16191 	/* either both IDs should be set or both should be zero */
16192 	if (!!old_id != !!cur_id)
16193 		return false;
16194 
16195 	if (old_id == 0) /* cur_id == 0 as well */
16196 		return true;
16197 
16198 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
16199 		if (!map[i].old) {
16200 			/* Reached an empty slot; haven't seen this id before */
16201 			map[i].old = old_id;
16202 			map[i].cur = cur_id;
16203 			return true;
16204 		}
16205 		if (map[i].old == old_id)
16206 			return map[i].cur == cur_id;
16207 		if (map[i].cur == cur_id)
16208 			return false;
16209 	}
16210 	/* We ran out of idmap slots, which should be impossible */
16211 	WARN_ON_ONCE(1);
16212 	return false;
16213 }
16214 
16215 /* Similar to check_ids(), but allocate a unique temporary ID
16216  * for 'old_id' or 'cur_id' of zero.
16217  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
16218  */
16219 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16220 {
16221 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
16222 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
16223 
16224 	return check_ids(old_id, cur_id, idmap);
16225 }
16226 
16227 static void clean_func_state(struct bpf_verifier_env *env,
16228 			     struct bpf_func_state *st)
16229 {
16230 	enum bpf_reg_liveness live;
16231 	int i, j;
16232 
16233 	for (i = 0; i < BPF_REG_FP; i++) {
16234 		live = st->regs[i].live;
16235 		/* liveness must not touch this register anymore */
16236 		st->regs[i].live |= REG_LIVE_DONE;
16237 		if (!(live & REG_LIVE_READ))
16238 			/* since the register is unused, clear its state
16239 			 * to make further comparison simpler
16240 			 */
16241 			__mark_reg_not_init(env, &st->regs[i]);
16242 	}
16243 
16244 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
16245 		live = st->stack[i].spilled_ptr.live;
16246 		/* liveness must not touch this stack slot anymore */
16247 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
16248 		if (!(live & REG_LIVE_READ)) {
16249 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
16250 			for (j = 0; j < BPF_REG_SIZE; j++)
16251 				st->stack[i].slot_type[j] = STACK_INVALID;
16252 		}
16253 	}
16254 }
16255 
16256 static void clean_verifier_state(struct bpf_verifier_env *env,
16257 				 struct bpf_verifier_state *st)
16258 {
16259 	int i;
16260 
16261 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
16262 		/* all regs in this state in all frames were already marked */
16263 		return;
16264 
16265 	for (i = 0; i <= st->curframe; i++)
16266 		clean_func_state(env, st->frame[i]);
16267 }
16268 
16269 /* the parentage chains form a tree.
16270  * the verifier states are added to state lists at given insn and
16271  * pushed into state stack for future exploration.
16272  * when the verifier reaches bpf_exit insn some of the verifer states
16273  * stored in the state lists have their final liveness state already,
16274  * but a lot of states will get revised from liveness point of view when
16275  * the verifier explores other branches.
16276  * Example:
16277  * 1: r0 = 1
16278  * 2: if r1 == 100 goto pc+1
16279  * 3: r0 = 2
16280  * 4: exit
16281  * when the verifier reaches exit insn the register r0 in the state list of
16282  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
16283  * of insn 2 and goes exploring further. At the insn 4 it will walk the
16284  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
16285  *
16286  * Since the verifier pushes the branch states as it sees them while exploring
16287  * the program the condition of walking the branch instruction for the second
16288  * time means that all states below this branch were already explored and
16289  * their final liveness marks are already propagated.
16290  * Hence when the verifier completes the search of state list in is_state_visited()
16291  * we can call this clean_live_states() function to mark all liveness states
16292  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
16293  * will not be used.
16294  * This function also clears the registers and stack for states that !READ
16295  * to simplify state merging.
16296  *
16297  * Important note here that walking the same branch instruction in the callee
16298  * doesn't meant that the states are DONE. The verifier has to compare
16299  * the callsites
16300  */
16301 static void clean_live_states(struct bpf_verifier_env *env, int insn,
16302 			      struct bpf_verifier_state *cur)
16303 {
16304 	struct bpf_verifier_state_list *sl;
16305 
16306 	sl = *explored_state(env, insn);
16307 	while (sl) {
16308 		if (sl->state.branches)
16309 			goto next;
16310 		if (sl->state.insn_idx != insn ||
16311 		    !same_callsites(&sl->state, cur))
16312 			goto next;
16313 		clean_verifier_state(env, &sl->state);
16314 next:
16315 		sl = sl->next;
16316 	}
16317 }
16318 
16319 static bool regs_exact(const struct bpf_reg_state *rold,
16320 		       const struct bpf_reg_state *rcur,
16321 		       struct bpf_idmap *idmap)
16322 {
16323 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16324 	       check_ids(rold->id, rcur->id, idmap) &&
16325 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16326 }
16327 
16328 /* Returns true if (rold safe implies rcur safe) */
16329 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
16330 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact)
16331 {
16332 	if (exact)
16333 		return regs_exact(rold, rcur, idmap);
16334 
16335 	if (!(rold->live & REG_LIVE_READ))
16336 		/* explored state didn't use this */
16337 		return true;
16338 	if (rold->type == NOT_INIT)
16339 		/* explored state can't have used this */
16340 		return true;
16341 	if (rcur->type == NOT_INIT)
16342 		return false;
16343 
16344 	/* Enforce that register types have to match exactly, including their
16345 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
16346 	 * rule.
16347 	 *
16348 	 * One can make a point that using a pointer register as unbounded
16349 	 * SCALAR would be technically acceptable, but this could lead to
16350 	 * pointer leaks because scalars are allowed to leak while pointers
16351 	 * are not. We could make this safe in special cases if root is
16352 	 * calling us, but it's probably not worth the hassle.
16353 	 *
16354 	 * Also, register types that are *not* MAYBE_NULL could technically be
16355 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
16356 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
16357 	 * to the same map).
16358 	 * However, if the old MAYBE_NULL register then got NULL checked,
16359 	 * doing so could have affected others with the same id, and we can't
16360 	 * check for that because we lost the id when we converted to
16361 	 * a non-MAYBE_NULL variant.
16362 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
16363 	 * non-MAYBE_NULL registers as well.
16364 	 */
16365 	if (rold->type != rcur->type)
16366 		return false;
16367 
16368 	switch (base_type(rold->type)) {
16369 	case SCALAR_VALUE:
16370 		if (env->explore_alu_limits) {
16371 			/* explore_alu_limits disables tnum_in() and range_within()
16372 			 * logic and requires everything to be strict
16373 			 */
16374 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16375 			       check_scalar_ids(rold->id, rcur->id, idmap);
16376 		}
16377 		if (!rold->precise)
16378 			return true;
16379 		/* Why check_ids() for scalar registers?
16380 		 *
16381 		 * Consider the following BPF code:
16382 		 *   1: r6 = ... unbound scalar, ID=a ...
16383 		 *   2: r7 = ... unbound scalar, ID=b ...
16384 		 *   3: if (r6 > r7) goto +1
16385 		 *   4: r6 = r7
16386 		 *   5: if (r6 > X) goto ...
16387 		 *   6: ... memory operation using r7 ...
16388 		 *
16389 		 * First verification path is [1-6]:
16390 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16391 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16392 		 *   r7 <= X, because r6 and r7 share same id.
16393 		 * Next verification path is [1-4, 6].
16394 		 *
16395 		 * Instruction (6) would be reached in two states:
16396 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
16397 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16398 		 *
16399 		 * Use check_ids() to distinguish these states.
16400 		 * ---
16401 		 * Also verify that new value satisfies old value range knowledge.
16402 		 */
16403 		return range_within(rold, rcur) &&
16404 		       tnum_in(rold->var_off, rcur->var_off) &&
16405 		       check_scalar_ids(rold->id, rcur->id, idmap);
16406 	case PTR_TO_MAP_KEY:
16407 	case PTR_TO_MAP_VALUE:
16408 	case PTR_TO_MEM:
16409 	case PTR_TO_BUF:
16410 	case PTR_TO_TP_BUFFER:
16411 		/* If the new min/max/var_off satisfy the old ones and
16412 		 * everything else matches, we are OK.
16413 		 */
16414 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16415 		       range_within(rold, rcur) &&
16416 		       tnum_in(rold->var_off, rcur->var_off) &&
16417 		       check_ids(rold->id, rcur->id, idmap) &&
16418 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16419 	case PTR_TO_PACKET_META:
16420 	case PTR_TO_PACKET:
16421 		/* We must have at least as much range as the old ptr
16422 		 * did, so that any accesses which were safe before are
16423 		 * still safe.  This is true even if old range < old off,
16424 		 * since someone could have accessed through (ptr - k), or
16425 		 * even done ptr -= k in a register, to get a safe access.
16426 		 */
16427 		if (rold->range > rcur->range)
16428 			return false;
16429 		/* If the offsets don't match, we can't trust our alignment;
16430 		 * nor can we be sure that we won't fall out of range.
16431 		 */
16432 		if (rold->off != rcur->off)
16433 			return false;
16434 		/* id relations must be preserved */
16435 		if (!check_ids(rold->id, rcur->id, idmap))
16436 			return false;
16437 		/* new val must satisfy old val knowledge */
16438 		return range_within(rold, rcur) &&
16439 		       tnum_in(rold->var_off, rcur->var_off);
16440 	case PTR_TO_STACK:
16441 		/* two stack pointers are equal only if they're pointing to
16442 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
16443 		 */
16444 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16445 	default:
16446 		return regs_exact(rold, rcur, idmap);
16447 	}
16448 }
16449 
16450 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16451 		      struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact)
16452 {
16453 	int i, spi;
16454 
16455 	/* walk slots of the explored stack and ignore any additional
16456 	 * slots in the current stack, since explored(safe) state
16457 	 * didn't use them
16458 	 */
16459 	for (i = 0; i < old->allocated_stack; i++) {
16460 		struct bpf_reg_state *old_reg, *cur_reg;
16461 
16462 		spi = i / BPF_REG_SIZE;
16463 
16464 		if (exact &&
16465 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16466 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16467 			return false;
16468 
16469 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) {
16470 			i += BPF_REG_SIZE - 1;
16471 			/* explored state didn't use this */
16472 			continue;
16473 		}
16474 
16475 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16476 			continue;
16477 
16478 		if (env->allow_uninit_stack &&
16479 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16480 			continue;
16481 
16482 		/* explored stack has more populated slots than current stack
16483 		 * and these slots were used
16484 		 */
16485 		if (i >= cur->allocated_stack)
16486 			return false;
16487 
16488 		/* if old state was safe with misc data in the stack
16489 		 * it will be safe with zero-initialized stack.
16490 		 * The opposite is not true
16491 		 */
16492 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16493 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16494 			continue;
16495 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16496 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16497 			/* Ex: old explored (safe) state has STACK_SPILL in
16498 			 * this stack slot, but current has STACK_MISC ->
16499 			 * this verifier states are not equivalent,
16500 			 * return false to continue verification of this path
16501 			 */
16502 			return false;
16503 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16504 			continue;
16505 		/* Both old and cur are having same slot_type */
16506 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16507 		case STACK_SPILL:
16508 			/* when explored and current stack slot are both storing
16509 			 * spilled registers, check that stored pointers types
16510 			 * are the same as well.
16511 			 * Ex: explored safe path could have stored
16512 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16513 			 * but current path has stored:
16514 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16515 			 * such verifier states are not equivalent.
16516 			 * return false to continue verification of this path
16517 			 */
16518 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
16519 				     &cur->stack[spi].spilled_ptr, idmap, exact))
16520 				return false;
16521 			break;
16522 		case STACK_DYNPTR:
16523 			old_reg = &old->stack[spi].spilled_ptr;
16524 			cur_reg = &cur->stack[spi].spilled_ptr;
16525 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16526 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16527 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16528 				return false;
16529 			break;
16530 		case STACK_ITER:
16531 			old_reg = &old->stack[spi].spilled_ptr;
16532 			cur_reg = &cur->stack[spi].spilled_ptr;
16533 			/* iter.depth is not compared between states as it
16534 			 * doesn't matter for correctness and would otherwise
16535 			 * prevent convergence; we maintain it only to prevent
16536 			 * infinite loop check triggering, see
16537 			 * iter_active_depths_differ()
16538 			 */
16539 			if (old_reg->iter.btf != cur_reg->iter.btf ||
16540 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16541 			    old_reg->iter.state != cur_reg->iter.state ||
16542 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
16543 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16544 				return false;
16545 			break;
16546 		case STACK_MISC:
16547 		case STACK_ZERO:
16548 		case STACK_INVALID:
16549 			continue;
16550 		/* Ensure that new unhandled slot types return false by default */
16551 		default:
16552 			return false;
16553 		}
16554 	}
16555 	return true;
16556 }
16557 
16558 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16559 		    struct bpf_idmap *idmap)
16560 {
16561 	int i;
16562 
16563 	if (old->acquired_refs != cur->acquired_refs)
16564 		return false;
16565 
16566 	for (i = 0; i < old->acquired_refs; i++) {
16567 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16568 			return false;
16569 	}
16570 
16571 	return true;
16572 }
16573 
16574 /* compare two verifier states
16575  *
16576  * all states stored in state_list are known to be valid, since
16577  * verifier reached 'bpf_exit' instruction through them
16578  *
16579  * this function is called when verifier exploring different branches of
16580  * execution popped from the state stack. If it sees an old state that has
16581  * more strict register state and more strict stack state then this execution
16582  * branch doesn't need to be explored further, since verifier already
16583  * concluded that more strict state leads to valid finish.
16584  *
16585  * Therefore two states are equivalent if register state is more conservative
16586  * and explored stack state is more conservative than the current one.
16587  * Example:
16588  *       explored                   current
16589  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16590  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16591  *
16592  * In other words if current stack state (one being explored) has more
16593  * valid slots than old one that already passed validation, it means
16594  * the verifier can stop exploring and conclude that current state is valid too
16595  *
16596  * Similarly with registers. If explored state has register type as invalid
16597  * whereas register type in current state is meaningful, it means that
16598  * the current state will reach 'bpf_exit' instruction safely
16599  */
16600 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16601 			      struct bpf_func_state *cur, bool exact)
16602 {
16603 	int i;
16604 
16605 	for (i = 0; i < MAX_BPF_REG; i++)
16606 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
16607 			     &env->idmap_scratch, exact))
16608 			return false;
16609 
16610 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
16611 		return false;
16612 
16613 	if (!refsafe(old, cur, &env->idmap_scratch))
16614 		return false;
16615 
16616 	return true;
16617 }
16618 
16619 static void reset_idmap_scratch(struct bpf_verifier_env *env)
16620 {
16621 	env->idmap_scratch.tmp_id_gen = env->id_gen;
16622 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16623 }
16624 
16625 static bool states_equal(struct bpf_verifier_env *env,
16626 			 struct bpf_verifier_state *old,
16627 			 struct bpf_verifier_state *cur,
16628 			 bool exact)
16629 {
16630 	int i;
16631 
16632 	if (old->curframe != cur->curframe)
16633 		return false;
16634 
16635 	reset_idmap_scratch(env);
16636 
16637 	/* Verification state from speculative execution simulation
16638 	 * must never prune a non-speculative execution one.
16639 	 */
16640 	if (old->speculative && !cur->speculative)
16641 		return false;
16642 
16643 	if (old->active_lock.ptr != cur->active_lock.ptr)
16644 		return false;
16645 
16646 	/* Old and cur active_lock's have to be either both present
16647 	 * or both absent.
16648 	 */
16649 	if (!!old->active_lock.id != !!cur->active_lock.id)
16650 		return false;
16651 
16652 	if (old->active_lock.id &&
16653 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16654 		return false;
16655 
16656 	if (old->active_rcu_lock != cur->active_rcu_lock)
16657 		return false;
16658 
16659 	/* for states to be equal callsites have to be the same
16660 	 * and all frame states need to be equivalent
16661 	 */
16662 	for (i = 0; i <= old->curframe; i++) {
16663 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
16664 			return false;
16665 		if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
16666 			return false;
16667 	}
16668 	return true;
16669 }
16670 
16671 /* Return 0 if no propagation happened. Return negative error code if error
16672  * happened. Otherwise, return the propagated bit.
16673  */
16674 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16675 				  struct bpf_reg_state *reg,
16676 				  struct bpf_reg_state *parent_reg)
16677 {
16678 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16679 	u8 flag = reg->live & REG_LIVE_READ;
16680 	int err;
16681 
16682 	/* When comes here, read flags of PARENT_REG or REG could be any of
16683 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16684 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16685 	 */
16686 	if (parent_flag == REG_LIVE_READ64 ||
16687 	    /* Or if there is no read flag from REG. */
16688 	    !flag ||
16689 	    /* Or if the read flag from REG is the same as PARENT_REG. */
16690 	    parent_flag == flag)
16691 		return 0;
16692 
16693 	err = mark_reg_read(env, reg, parent_reg, flag);
16694 	if (err)
16695 		return err;
16696 
16697 	return flag;
16698 }
16699 
16700 /* A write screens off any subsequent reads; but write marks come from the
16701  * straight-line code between a state and its parent.  When we arrive at an
16702  * equivalent state (jump target or such) we didn't arrive by the straight-line
16703  * code, so read marks in the state must propagate to the parent regardless
16704  * of the state's write marks. That's what 'parent == state->parent' comparison
16705  * in mark_reg_read() is for.
16706  */
16707 static int propagate_liveness(struct bpf_verifier_env *env,
16708 			      const struct bpf_verifier_state *vstate,
16709 			      struct bpf_verifier_state *vparent)
16710 {
16711 	struct bpf_reg_state *state_reg, *parent_reg;
16712 	struct bpf_func_state *state, *parent;
16713 	int i, frame, err = 0;
16714 
16715 	if (vparent->curframe != vstate->curframe) {
16716 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
16717 		     vparent->curframe, vstate->curframe);
16718 		return -EFAULT;
16719 	}
16720 	/* Propagate read liveness of registers... */
16721 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16722 	for (frame = 0; frame <= vstate->curframe; frame++) {
16723 		parent = vparent->frame[frame];
16724 		state = vstate->frame[frame];
16725 		parent_reg = parent->regs;
16726 		state_reg = state->regs;
16727 		/* We don't need to worry about FP liveness, it's read-only */
16728 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16729 			err = propagate_liveness_reg(env, &state_reg[i],
16730 						     &parent_reg[i]);
16731 			if (err < 0)
16732 				return err;
16733 			if (err == REG_LIVE_READ64)
16734 				mark_insn_zext(env, &parent_reg[i]);
16735 		}
16736 
16737 		/* Propagate stack slots. */
16738 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16739 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16740 			parent_reg = &parent->stack[i].spilled_ptr;
16741 			state_reg = &state->stack[i].spilled_ptr;
16742 			err = propagate_liveness_reg(env, state_reg,
16743 						     parent_reg);
16744 			if (err < 0)
16745 				return err;
16746 		}
16747 	}
16748 	return 0;
16749 }
16750 
16751 /* find precise scalars in the previous equivalent state and
16752  * propagate them into the current state
16753  */
16754 static int propagate_precision(struct bpf_verifier_env *env,
16755 			       const struct bpf_verifier_state *old)
16756 {
16757 	struct bpf_reg_state *state_reg;
16758 	struct bpf_func_state *state;
16759 	int i, err = 0, fr;
16760 	bool first;
16761 
16762 	for (fr = old->curframe; fr >= 0; fr--) {
16763 		state = old->frame[fr];
16764 		state_reg = state->regs;
16765 		first = true;
16766 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
16767 			if (state_reg->type != SCALAR_VALUE ||
16768 			    !state_reg->precise ||
16769 			    !(state_reg->live & REG_LIVE_READ))
16770 				continue;
16771 			if (env->log.level & BPF_LOG_LEVEL2) {
16772 				if (first)
16773 					verbose(env, "frame %d: propagating r%d", fr, i);
16774 				else
16775 					verbose(env, ",r%d", i);
16776 			}
16777 			bt_set_frame_reg(&env->bt, fr, i);
16778 			first = false;
16779 		}
16780 
16781 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16782 			if (!is_spilled_reg(&state->stack[i]))
16783 				continue;
16784 			state_reg = &state->stack[i].spilled_ptr;
16785 			if (state_reg->type != SCALAR_VALUE ||
16786 			    !state_reg->precise ||
16787 			    !(state_reg->live & REG_LIVE_READ))
16788 				continue;
16789 			if (env->log.level & BPF_LOG_LEVEL2) {
16790 				if (first)
16791 					verbose(env, "frame %d: propagating fp%d",
16792 						fr, (-i - 1) * BPF_REG_SIZE);
16793 				else
16794 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16795 			}
16796 			bt_set_frame_slot(&env->bt, fr, i);
16797 			first = false;
16798 		}
16799 		if (!first)
16800 			verbose(env, "\n");
16801 	}
16802 
16803 	err = mark_chain_precision_batch(env);
16804 	if (err < 0)
16805 		return err;
16806 
16807 	return 0;
16808 }
16809 
16810 static bool states_maybe_looping(struct bpf_verifier_state *old,
16811 				 struct bpf_verifier_state *cur)
16812 {
16813 	struct bpf_func_state *fold, *fcur;
16814 	int i, fr = cur->curframe;
16815 
16816 	if (old->curframe != fr)
16817 		return false;
16818 
16819 	fold = old->frame[fr];
16820 	fcur = cur->frame[fr];
16821 	for (i = 0; i < MAX_BPF_REG; i++)
16822 		if (memcmp(&fold->regs[i], &fcur->regs[i],
16823 			   offsetof(struct bpf_reg_state, parent)))
16824 			return false;
16825 	return true;
16826 }
16827 
16828 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16829 {
16830 	return env->insn_aux_data[insn_idx].is_iter_next;
16831 }
16832 
16833 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16834  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16835  * states to match, which otherwise would look like an infinite loop. So while
16836  * iter_next() calls are taken care of, we still need to be careful and
16837  * prevent erroneous and too eager declaration of "ininite loop", when
16838  * iterators are involved.
16839  *
16840  * Here's a situation in pseudo-BPF assembly form:
16841  *
16842  *   0: again:                          ; set up iter_next() call args
16843  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16844  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16845  *   3:   if r0 == 0 goto done
16846  *   4:   ... something useful here ...
16847  *   5:   goto again                    ; another iteration
16848  *   6: done:
16849  *   7:   r1 = &it
16850  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16851  *   9:   exit
16852  *
16853  * This is a typical loop. Let's assume that we have a prune point at 1:,
16854  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16855  * again`, assuming other heuristics don't get in a way).
16856  *
16857  * When we first time come to 1:, let's say we have some state X. We proceed
16858  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16859  * Now we come back to validate that forked ACTIVE state. We proceed through
16860  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16861  * are converging. But the problem is that we don't know that yet, as this
16862  * convergence has to happen at iter_next() call site only. So if nothing is
16863  * done, at 1: verifier will use bounded loop logic and declare infinite
16864  * looping (and would be *technically* correct, if not for iterator's
16865  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16866  * don't want that. So what we do in process_iter_next_call() when we go on
16867  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16868  * a different iteration. So when we suspect an infinite loop, we additionally
16869  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16870  * pretend we are not looping and wait for next iter_next() call.
16871  *
16872  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16873  * loop, because that would actually mean infinite loop, as DRAINED state is
16874  * "sticky", and so we'll keep returning into the same instruction with the
16875  * same state (at least in one of possible code paths).
16876  *
16877  * This approach allows to keep infinite loop heuristic even in the face of
16878  * active iterator. E.g., C snippet below is and will be detected as
16879  * inifintely looping:
16880  *
16881  *   struct bpf_iter_num it;
16882  *   int *p, x;
16883  *
16884  *   bpf_iter_num_new(&it, 0, 10);
16885  *   while ((p = bpf_iter_num_next(&t))) {
16886  *       x = p;
16887  *       while (x--) {} // <<-- infinite loop here
16888  *   }
16889  *
16890  */
16891 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16892 {
16893 	struct bpf_reg_state *slot, *cur_slot;
16894 	struct bpf_func_state *state;
16895 	int i, fr;
16896 
16897 	for (fr = old->curframe; fr >= 0; fr--) {
16898 		state = old->frame[fr];
16899 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16900 			if (state->stack[i].slot_type[0] != STACK_ITER)
16901 				continue;
16902 
16903 			slot = &state->stack[i].spilled_ptr;
16904 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16905 				continue;
16906 
16907 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16908 			if (cur_slot->iter.depth != slot->iter.depth)
16909 				return true;
16910 		}
16911 	}
16912 	return false;
16913 }
16914 
16915 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16916 {
16917 	struct bpf_verifier_state_list *new_sl;
16918 	struct bpf_verifier_state_list *sl, **pprev;
16919 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
16920 	int i, j, n, err, states_cnt = 0;
16921 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16922 	bool add_new_state = force_new_state;
16923 	bool force_exact;
16924 
16925 	/* bpf progs typically have pruning point every 4 instructions
16926 	 * http://vger.kernel.org/bpfconf2019.html#session-1
16927 	 * Do not add new state for future pruning if the verifier hasn't seen
16928 	 * at least 2 jumps and at least 8 instructions.
16929 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16930 	 * In tests that amounts to up to 50% reduction into total verifier
16931 	 * memory consumption and 20% verifier time speedup.
16932 	 */
16933 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16934 	    env->insn_processed - env->prev_insn_processed >= 8)
16935 		add_new_state = true;
16936 
16937 	pprev = explored_state(env, insn_idx);
16938 	sl = *pprev;
16939 
16940 	clean_live_states(env, insn_idx, cur);
16941 
16942 	while (sl) {
16943 		states_cnt++;
16944 		if (sl->state.insn_idx != insn_idx)
16945 			goto next;
16946 
16947 		if (sl->state.branches) {
16948 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16949 
16950 			if (frame->in_async_callback_fn &&
16951 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16952 				/* Different async_entry_cnt means that the verifier is
16953 				 * processing another entry into async callback.
16954 				 * Seeing the same state is not an indication of infinite
16955 				 * loop or infinite recursion.
16956 				 * But finding the same state doesn't mean that it's safe
16957 				 * to stop processing the current state. The previous state
16958 				 * hasn't yet reached bpf_exit, since state.branches > 0.
16959 				 * Checking in_async_callback_fn alone is not enough either.
16960 				 * Since the verifier still needs to catch infinite loops
16961 				 * inside async callbacks.
16962 				 */
16963 				goto skip_inf_loop_check;
16964 			}
16965 			/* BPF open-coded iterators loop detection is special.
16966 			 * states_maybe_looping() logic is too simplistic in detecting
16967 			 * states that *might* be equivalent, because it doesn't know
16968 			 * about ID remapping, so don't even perform it.
16969 			 * See process_iter_next_call() and iter_active_depths_differ()
16970 			 * for overview of the logic. When current and one of parent
16971 			 * states are detected as equivalent, it's a good thing: we prove
16972 			 * convergence and can stop simulating further iterations.
16973 			 * It's safe to assume that iterator loop will finish, taking into
16974 			 * account iter_next() contract of eventually returning
16975 			 * sticky NULL result.
16976 			 *
16977 			 * Note, that states have to be compared exactly in this case because
16978 			 * read and precision marks might not be finalized inside the loop.
16979 			 * E.g. as in the program below:
16980 			 *
16981 			 *     1. r7 = -16
16982 			 *     2. r6 = bpf_get_prandom_u32()
16983 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
16984 			 *     4.   if (r6 != 42) {
16985 			 *     5.     r7 = -32
16986 			 *     6.     r6 = bpf_get_prandom_u32()
16987 			 *     7.     continue
16988 			 *     8.   }
16989 			 *     9.   r0 = r10
16990 			 *    10.   r0 += r7
16991 			 *    11.   r8 = *(u64 *)(r0 + 0)
16992 			 *    12.   r6 = bpf_get_prandom_u32()
16993 			 *    13. }
16994 			 *
16995 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
16996 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
16997 			 * not have read or precision mark for r7 yet, thus inexact states
16998 			 * comparison would discard current state with r7=-32
16999 			 * => unsafe memory access at 11 would not be caught.
17000 			 */
17001 			if (is_iter_next_insn(env, insn_idx)) {
17002 				if (states_equal(env, &sl->state, cur, true)) {
17003 					struct bpf_func_state *cur_frame;
17004 					struct bpf_reg_state *iter_state, *iter_reg;
17005 					int spi;
17006 
17007 					cur_frame = cur->frame[cur->curframe];
17008 					/* btf_check_iter_kfuncs() enforces that
17009 					 * iter state pointer is always the first arg
17010 					 */
17011 					iter_reg = &cur_frame->regs[BPF_REG_1];
17012 					/* current state is valid due to states_equal(),
17013 					 * so we can assume valid iter and reg state,
17014 					 * no need for extra (re-)validations
17015 					 */
17016 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
17017 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
17018 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
17019 						update_loop_entry(cur, &sl->state);
17020 						goto hit;
17021 					}
17022 				}
17023 				goto skip_inf_loop_check;
17024 			}
17025 			if (calls_callback(env, insn_idx)) {
17026 				if (states_equal(env, &sl->state, cur, true))
17027 					goto hit;
17028 				goto skip_inf_loop_check;
17029 			}
17030 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
17031 			if (states_maybe_looping(&sl->state, cur) &&
17032 			    states_equal(env, &sl->state, cur, false) &&
17033 			    !iter_active_depths_differ(&sl->state, cur) &&
17034 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
17035 				verbose_linfo(env, insn_idx, "; ");
17036 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
17037 				verbose(env, "cur state:");
17038 				print_verifier_state(env, cur->frame[cur->curframe], true);
17039 				verbose(env, "old state:");
17040 				print_verifier_state(env, sl->state.frame[cur->curframe], true);
17041 				return -EINVAL;
17042 			}
17043 			/* if the verifier is processing a loop, avoid adding new state
17044 			 * too often, since different loop iterations have distinct
17045 			 * states and may not help future pruning.
17046 			 * This threshold shouldn't be too low to make sure that
17047 			 * a loop with large bound will be rejected quickly.
17048 			 * The most abusive loop will be:
17049 			 * r1 += 1
17050 			 * if r1 < 1000000 goto pc-2
17051 			 * 1M insn_procssed limit / 100 == 10k peak states.
17052 			 * This threshold shouldn't be too high either, since states
17053 			 * at the end of the loop are likely to be useful in pruning.
17054 			 */
17055 skip_inf_loop_check:
17056 			if (!force_new_state &&
17057 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
17058 			    env->insn_processed - env->prev_insn_processed < 100)
17059 				add_new_state = false;
17060 			goto miss;
17061 		}
17062 		/* If sl->state is a part of a loop and this loop's entry is a part of
17063 		 * current verification path then states have to be compared exactly.
17064 		 * 'force_exact' is needed to catch the following case:
17065 		 *
17066 		 *                initial     Here state 'succ' was processed first,
17067 		 *                  |         it was eventually tracked to produce a
17068 		 *                  V         state identical to 'hdr'.
17069 		 *     .---------> hdr        All branches from 'succ' had been explored
17070 		 *     |            |         and thus 'succ' has its .branches == 0.
17071 		 *     |            V
17072 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
17073 		 *     |    |       |         to the same instruction + callsites.
17074 		 *     |    V       V         In such case it is necessary to check
17075 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
17076 		 *     |    |       |         If 'succ' and 'cur' are a part of the
17077 		 *     |    V       V         same loop exact flag has to be set.
17078 		 *     |   succ <- cur        To check if that is the case, verify
17079 		 *     |    |                 if loop entry of 'succ' is in current
17080 		 *     |    V                 DFS path.
17081 		 *     |   ...
17082 		 *     |    |
17083 		 *     '----'
17084 		 *
17085 		 * Additional details are in the comment before get_loop_entry().
17086 		 */
17087 		loop_entry = get_loop_entry(&sl->state);
17088 		force_exact = loop_entry && loop_entry->branches > 0;
17089 		if (states_equal(env, &sl->state, cur, force_exact)) {
17090 			if (force_exact)
17091 				update_loop_entry(cur, loop_entry);
17092 hit:
17093 			sl->hit_cnt++;
17094 			/* reached equivalent register/stack state,
17095 			 * prune the search.
17096 			 * Registers read by the continuation are read by us.
17097 			 * If we have any write marks in env->cur_state, they
17098 			 * will prevent corresponding reads in the continuation
17099 			 * from reaching our parent (an explored_state).  Our
17100 			 * own state will get the read marks recorded, but
17101 			 * they'll be immediately forgotten as we're pruning
17102 			 * this state and will pop a new one.
17103 			 */
17104 			err = propagate_liveness(env, &sl->state, cur);
17105 
17106 			/* if previous state reached the exit with precision and
17107 			 * current state is equivalent to it (except precsion marks)
17108 			 * the precision needs to be propagated back in
17109 			 * the current state.
17110 			 */
17111 			if (is_jmp_point(env, env->insn_idx))
17112 				err = err ? : push_jmp_history(env, cur, 0);
17113 			err = err ? : propagate_precision(env, &sl->state);
17114 			if (err)
17115 				return err;
17116 			return 1;
17117 		}
17118 miss:
17119 		/* when new state is not going to be added do not increase miss count.
17120 		 * Otherwise several loop iterations will remove the state
17121 		 * recorded earlier. The goal of these heuristics is to have
17122 		 * states from some iterations of the loop (some in the beginning
17123 		 * and some at the end) to help pruning.
17124 		 */
17125 		if (add_new_state)
17126 			sl->miss_cnt++;
17127 		/* heuristic to determine whether this state is beneficial
17128 		 * to keep checking from state equivalence point of view.
17129 		 * Higher numbers increase max_states_per_insn and verification time,
17130 		 * but do not meaningfully decrease insn_processed.
17131 		 * 'n' controls how many times state could miss before eviction.
17132 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
17133 		 * too early would hinder iterator convergence.
17134 		 */
17135 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
17136 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
17137 			/* the state is unlikely to be useful. Remove it to
17138 			 * speed up verification
17139 			 */
17140 			*pprev = sl->next;
17141 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
17142 			    !sl->state.used_as_loop_entry) {
17143 				u32 br = sl->state.branches;
17144 
17145 				WARN_ONCE(br,
17146 					  "BUG live_done but branches_to_explore %d\n",
17147 					  br);
17148 				free_verifier_state(&sl->state, false);
17149 				kfree(sl);
17150 				env->peak_states--;
17151 			} else {
17152 				/* cannot free this state, since parentage chain may
17153 				 * walk it later. Add it for free_list instead to
17154 				 * be freed at the end of verification
17155 				 */
17156 				sl->next = env->free_list;
17157 				env->free_list = sl;
17158 			}
17159 			sl = *pprev;
17160 			continue;
17161 		}
17162 next:
17163 		pprev = &sl->next;
17164 		sl = *pprev;
17165 	}
17166 
17167 	if (env->max_states_per_insn < states_cnt)
17168 		env->max_states_per_insn = states_cnt;
17169 
17170 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
17171 		return 0;
17172 
17173 	if (!add_new_state)
17174 		return 0;
17175 
17176 	/* There were no equivalent states, remember the current one.
17177 	 * Technically the current state is not proven to be safe yet,
17178 	 * but it will either reach outer most bpf_exit (which means it's safe)
17179 	 * or it will be rejected. When there are no loops the verifier won't be
17180 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
17181 	 * again on the way to bpf_exit.
17182 	 * When looping the sl->state.branches will be > 0 and this state
17183 	 * will not be considered for equivalence until branches == 0.
17184 	 */
17185 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
17186 	if (!new_sl)
17187 		return -ENOMEM;
17188 	env->total_states++;
17189 	env->peak_states++;
17190 	env->prev_jmps_processed = env->jmps_processed;
17191 	env->prev_insn_processed = env->insn_processed;
17192 
17193 	/* forget precise markings we inherited, see __mark_chain_precision */
17194 	if (env->bpf_capable)
17195 		mark_all_scalars_imprecise(env, cur);
17196 
17197 	/* add new state to the head of linked list */
17198 	new = &new_sl->state;
17199 	err = copy_verifier_state(new, cur);
17200 	if (err) {
17201 		free_verifier_state(new, false);
17202 		kfree(new_sl);
17203 		return err;
17204 	}
17205 	new->insn_idx = insn_idx;
17206 	WARN_ONCE(new->branches != 1,
17207 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
17208 
17209 	cur->parent = new;
17210 	cur->first_insn_idx = insn_idx;
17211 	cur->dfs_depth = new->dfs_depth + 1;
17212 	clear_jmp_history(cur);
17213 	new_sl->next = *explored_state(env, insn_idx);
17214 	*explored_state(env, insn_idx) = new_sl;
17215 	/* connect new state to parentage chain. Current frame needs all
17216 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
17217 	 * to the stack implicitly by JITs) so in callers' frames connect just
17218 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
17219 	 * the state of the call instruction (with WRITTEN set), and r0 comes
17220 	 * from callee with its full parentage chain, anyway.
17221 	 */
17222 	/* clear write marks in current state: the writes we did are not writes
17223 	 * our child did, so they don't screen off its reads from us.
17224 	 * (There are no read marks in current state, because reads always mark
17225 	 * their parent and current state never has children yet.  Only
17226 	 * explored_states can get read marks.)
17227 	 */
17228 	for (j = 0; j <= cur->curframe; j++) {
17229 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
17230 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
17231 		for (i = 0; i < BPF_REG_FP; i++)
17232 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
17233 	}
17234 
17235 	/* all stack frames are accessible from callee, clear them all */
17236 	for (j = 0; j <= cur->curframe; j++) {
17237 		struct bpf_func_state *frame = cur->frame[j];
17238 		struct bpf_func_state *newframe = new->frame[j];
17239 
17240 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
17241 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
17242 			frame->stack[i].spilled_ptr.parent =
17243 						&newframe->stack[i].spilled_ptr;
17244 		}
17245 	}
17246 	return 0;
17247 }
17248 
17249 /* Return true if it's OK to have the same insn return a different type. */
17250 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
17251 {
17252 	switch (base_type(type)) {
17253 	case PTR_TO_CTX:
17254 	case PTR_TO_SOCKET:
17255 	case PTR_TO_SOCK_COMMON:
17256 	case PTR_TO_TCP_SOCK:
17257 	case PTR_TO_XDP_SOCK:
17258 	case PTR_TO_BTF_ID:
17259 		return false;
17260 	default:
17261 		return true;
17262 	}
17263 }
17264 
17265 /* If an instruction was previously used with particular pointer types, then we
17266  * need to be careful to avoid cases such as the below, where it may be ok
17267  * for one branch accessing the pointer, but not ok for the other branch:
17268  *
17269  * R1 = sock_ptr
17270  * goto X;
17271  * ...
17272  * R1 = some_other_valid_ptr;
17273  * goto X;
17274  * ...
17275  * R2 = *(u32 *)(R1 + 0);
17276  */
17277 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
17278 {
17279 	return src != prev && (!reg_type_mismatch_ok(src) ||
17280 			       !reg_type_mismatch_ok(prev));
17281 }
17282 
17283 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
17284 			     bool allow_trust_missmatch)
17285 {
17286 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
17287 
17288 	if (*prev_type == NOT_INIT) {
17289 		/* Saw a valid insn
17290 		 * dst_reg = *(u32 *)(src_reg + off)
17291 		 * save type to validate intersecting paths
17292 		 */
17293 		*prev_type = type;
17294 	} else if (reg_type_mismatch(type, *prev_type)) {
17295 		/* Abuser program is trying to use the same insn
17296 		 * dst_reg = *(u32*) (src_reg + off)
17297 		 * with different pointer types:
17298 		 * src_reg == ctx in one branch and
17299 		 * src_reg == stack|map in some other branch.
17300 		 * Reject it.
17301 		 */
17302 		if (allow_trust_missmatch &&
17303 		    base_type(type) == PTR_TO_BTF_ID &&
17304 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
17305 			/*
17306 			 * Have to support a use case when one path through
17307 			 * the program yields TRUSTED pointer while another
17308 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
17309 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
17310 			 */
17311 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
17312 		} else {
17313 			verbose(env, "same insn cannot be used with different pointers\n");
17314 			return -EINVAL;
17315 		}
17316 	}
17317 
17318 	return 0;
17319 }
17320 
17321 static int do_check(struct bpf_verifier_env *env)
17322 {
17323 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
17324 	struct bpf_verifier_state *state = env->cur_state;
17325 	struct bpf_insn *insns = env->prog->insnsi;
17326 	struct bpf_reg_state *regs;
17327 	int insn_cnt = env->prog->len;
17328 	bool do_print_state = false;
17329 	int prev_insn_idx = -1;
17330 
17331 	for (;;) {
17332 		bool exception_exit = false;
17333 		struct bpf_insn *insn;
17334 		u8 class;
17335 		int err;
17336 
17337 		/* reset current history entry on each new instruction */
17338 		env->cur_hist_ent = NULL;
17339 
17340 		env->prev_insn_idx = prev_insn_idx;
17341 		if (env->insn_idx >= insn_cnt) {
17342 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
17343 				env->insn_idx, insn_cnt);
17344 			return -EFAULT;
17345 		}
17346 
17347 		insn = &insns[env->insn_idx];
17348 		class = BPF_CLASS(insn->code);
17349 
17350 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17351 			verbose(env,
17352 				"BPF program is too large. Processed %d insn\n",
17353 				env->insn_processed);
17354 			return -E2BIG;
17355 		}
17356 
17357 		state->last_insn_idx = env->prev_insn_idx;
17358 
17359 		if (is_prune_point(env, env->insn_idx)) {
17360 			err = is_state_visited(env, env->insn_idx);
17361 			if (err < 0)
17362 				return err;
17363 			if (err == 1) {
17364 				/* found equivalent state, can prune the search */
17365 				if (env->log.level & BPF_LOG_LEVEL) {
17366 					if (do_print_state)
17367 						verbose(env, "\nfrom %d to %d%s: safe\n",
17368 							env->prev_insn_idx, env->insn_idx,
17369 							env->cur_state->speculative ?
17370 							" (speculative execution)" : "");
17371 					else
17372 						verbose(env, "%d: safe\n", env->insn_idx);
17373 				}
17374 				goto process_bpf_exit;
17375 			}
17376 		}
17377 
17378 		if (is_jmp_point(env, env->insn_idx)) {
17379 			err = push_jmp_history(env, state, 0);
17380 			if (err)
17381 				return err;
17382 		}
17383 
17384 		if (signal_pending(current))
17385 			return -EAGAIN;
17386 
17387 		if (need_resched())
17388 			cond_resched();
17389 
17390 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17391 			verbose(env, "\nfrom %d to %d%s:",
17392 				env->prev_insn_idx, env->insn_idx,
17393 				env->cur_state->speculative ?
17394 				" (speculative execution)" : "");
17395 			print_verifier_state(env, state->frame[state->curframe], true);
17396 			do_print_state = false;
17397 		}
17398 
17399 		if (env->log.level & BPF_LOG_LEVEL) {
17400 			const struct bpf_insn_cbs cbs = {
17401 				.cb_call	= disasm_kfunc_name,
17402 				.cb_print	= verbose,
17403 				.private_data	= env,
17404 			};
17405 
17406 			if (verifier_state_scratched(env))
17407 				print_insn_state(env, state->frame[state->curframe]);
17408 
17409 			verbose_linfo(env, env->insn_idx, "; ");
17410 			env->prev_log_pos = env->log.end_pos;
17411 			verbose(env, "%d: ", env->insn_idx);
17412 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17413 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17414 			env->prev_log_pos = env->log.end_pos;
17415 		}
17416 
17417 		if (bpf_prog_is_offloaded(env->prog->aux)) {
17418 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17419 							   env->prev_insn_idx);
17420 			if (err)
17421 				return err;
17422 		}
17423 
17424 		regs = cur_regs(env);
17425 		sanitize_mark_insn_seen(env);
17426 		prev_insn_idx = env->insn_idx;
17427 
17428 		if (class == BPF_ALU || class == BPF_ALU64) {
17429 			err = check_alu_op(env, insn);
17430 			if (err)
17431 				return err;
17432 
17433 		} else if (class == BPF_LDX) {
17434 			enum bpf_reg_type src_reg_type;
17435 
17436 			/* check for reserved fields is already done */
17437 
17438 			/* check src operand */
17439 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17440 			if (err)
17441 				return err;
17442 
17443 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17444 			if (err)
17445 				return err;
17446 
17447 			src_reg_type = regs[insn->src_reg].type;
17448 
17449 			/* check that memory (src_reg + off) is readable,
17450 			 * the state of dst_reg will be updated by this func
17451 			 */
17452 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
17453 					       insn->off, BPF_SIZE(insn->code),
17454 					       BPF_READ, insn->dst_reg, false,
17455 					       BPF_MODE(insn->code) == BPF_MEMSX);
17456 			err = err ?: save_aux_ptr_type(env, src_reg_type, true);
17457 			err = err ?: reg_bounds_sanity_check(env, &regs[insn->dst_reg], "ldx");
17458 			if (err)
17459 				return err;
17460 		} else if (class == BPF_STX) {
17461 			enum bpf_reg_type dst_reg_type;
17462 
17463 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17464 				err = check_atomic(env, env->insn_idx, insn);
17465 				if (err)
17466 					return err;
17467 				env->insn_idx++;
17468 				continue;
17469 			}
17470 
17471 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17472 				verbose(env, "BPF_STX uses reserved fields\n");
17473 				return -EINVAL;
17474 			}
17475 
17476 			/* check src1 operand */
17477 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17478 			if (err)
17479 				return err;
17480 			/* check src2 operand */
17481 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17482 			if (err)
17483 				return err;
17484 
17485 			dst_reg_type = regs[insn->dst_reg].type;
17486 
17487 			/* check that memory (dst_reg + off) is writeable */
17488 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17489 					       insn->off, BPF_SIZE(insn->code),
17490 					       BPF_WRITE, insn->src_reg, false, false);
17491 			if (err)
17492 				return err;
17493 
17494 			err = save_aux_ptr_type(env, dst_reg_type, false);
17495 			if (err)
17496 				return err;
17497 		} else if (class == BPF_ST) {
17498 			enum bpf_reg_type dst_reg_type;
17499 
17500 			if (BPF_MODE(insn->code) != BPF_MEM ||
17501 			    insn->src_reg != BPF_REG_0) {
17502 				verbose(env, "BPF_ST uses reserved fields\n");
17503 				return -EINVAL;
17504 			}
17505 			/* check src operand */
17506 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17507 			if (err)
17508 				return err;
17509 
17510 			dst_reg_type = regs[insn->dst_reg].type;
17511 
17512 			/* check that memory (dst_reg + off) is writeable */
17513 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17514 					       insn->off, BPF_SIZE(insn->code),
17515 					       BPF_WRITE, -1, false, false);
17516 			if (err)
17517 				return err;
17518 
17519 			err = save_aux_ptr_type(env, dst_reg_type, false);
17520 			if (err)
17521 				return err;
17522 		} else if (class == BPF_JMP || class == BPF_JMP32) {
17523 			u8 opcode = BPF_OP(insn->code);
17524 
17525 			env->jmps_processed++;
17526 			if (opcode == BPF_CALL) {
17527 				if (BPF_SRC(insn->code) != BPF_K ||
17528 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17529 				     && insn->off != 0) ||
17530 				    (insn->src_reg != BPF_REG_0 &&
17531 				     insn->src_reg != BPF_PSEUDO_CALL &&
17532 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17533 				    insn->dst_reg != BPF_REG_0 ||
17534 				    class == BPF_JMP32) {
17535 					verbose(env, "BPF_CALL uses reserved fields\n");
17536 					return -EINVAL;
17537 				}
17538 
17539 				if (env->cur_state->active_lock.ptr) {
17540 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17541 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
17542 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17543 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17544 						verbose(env, "function calls are not allowed while holding a lock\n");
17545 						return -EINVAL;
17546 					}
17547 				}
17548 				if (insn->src_reg == BPF_PSEUDO_CALL) {
17549 					err = check_func_call(env, insn, &env->insn_idx);
17550 				} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17551 					err = check_kfunc_call(env, insn, &env->insn_idx);
17552 					if (!err && is_bpf_throw_kfunc(insn)) {
17553 						exception_exit = true;
17554 						goto process_bpf_exit_full;
17555 					}
17556 				} else {
17557 					err = check_helper_call(env, insn, &env->insn_idx);
17558 				}
17559 				if (err)
17560 					return err;
17561 
17562 				mark_reg_scratched(env, BPF_REG_0);
17563 			} else if (opcode == BPF_JA) {
17564 				if (BPF_SRC(insn->code) != BPF_K ||
17565 				    insn->src_reg != BPF_REG_0 ||
17566 				    insn->dst_reg != BPF_REG_0 ||
17567 				    (class == BPF_JMP && insn->imm != 0) ||
17568 				    (class == BPF_JMP32 && insn->off != 0)) {
17569 					verbose(env, "BPF_JA uses reserved fields\n");
17570 					return -EINVAL;
17571 				}
17572 
17573 				if (class == BPF_JMP)
17574 					env->insn_idx += insn->off + 1;
17575 				else
17576 					env->insn_idx += insn->imm + 1;
17577 				continue;
17578 
17579 			} else if (opcode == BPF_EXIT) {
17580 				if (BPF_SRC(insn->code) != BPF_K ||
17581 				    insn->imm != 0 ||
17582 				    insn->src_reg != BPF_REG_0 ||
17583 				    insn->dst_reg != BPF_REG_0 ||
17584 				    class == BPF_JMP32) {
17585 					verbose(env, "BPF_EXIT uses reserved fields\n");
17586 					return -EINVAL;
17587 				}
17588 process_bpf_exit_full:
17589 				if (env->cur_state->active_lock.ptr &&
17590 				    !in_rbtree_lock_required_cb(env)) {
17591 					verbose(env, "bpf_spin_unlock is missing\n");
17592 					return -EINVAL;
17593 				}
17594 
17595 				if (env->cur_state->active_rcu_lock &&
17596 				    !in_rbtree_lock_required_cb(env)) {
17597 					verbose(env, "bpf_rcu_read_unlock is missing\n");
17598 					return -EINVAL;
17599 				}
17600 
17601 				/* We must do check_reference_leak here before
17602 				 * prepare_func_exit to handle the case when
17603 				 * state->curframe > 0, it may be a callback
17604 				 * function, for which reference_state must
17605 				 * match caller reference state when it exits.
17606 				 */
17607 				err = check_reference_leak(env, exception_exit);
17608 				if (err)
17609 					return err;
17610 
17611 				/* The side effect of the prepare_func_exit
17612 				 * which is being skipped is that it frees
17613 				 * bpf_func_state. Typically, process_bpf_exit
17614 				 * will only be hit with outermost exit.
17615 				 * copy_verifier_state in pop_stack will handle
17616 				 * freeing of any extra bpf_func_state left over
17617 				 * from not processing all nested function
17618 				 * exits. We also skip return code checks as
17619 				 * they are not needed for exceptional exits.
17620 				 */
17621 				if (exception_exit)
17622 					goto process_bpf_exit;
17623 
17624 				if (state->curframe) {
17625 					/* exit from nested function */
17626 					err = prepare_func_exit(env, &env->insn_idx);
17627 					if (err)
17628 						return err;
17629 					do_print_state = true;
17630 					continue;
17631 				}
17632 
17633 				err = check_return_code(env, BPF_REG_0, "R0");
17634 				if (err)
17635 					return err;
17636 process_bpf_exit:
17637 				mark_verifier_state_scratched(env);
17638 				update_branch_counts(env, env->cur_state);
17639 				err = pop_stack(env, &prev_insn_idx,
17640 						&env->insn_idx, pop_log);
17641 				if (err < 0) {
17642 					if (err != -ENOENT)
17643 						return err;
17644 					break;
17645 				} else {
17646 					do_print_state = true;
17647 					continue;
17648 				}
17649 			} else {
17650 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
17651 				if (err)
17652 					return err;
17653 			}
17654 		} else if (class == BPF_LD) {
17655 			u8 mode = BPF_MODE(insn->code);
17656 
17657 			if (mode == BPF_ABS || mode == BPF_IND) {
17658 				err = check_ld_abs(env, insn);
17659 				if (err)
17660 					return err;
17661 
17662 			} else if (mode == BPF_IMM) {
17663 				err = check_ld_imm(env, insn);
17664 				if (err)
17665 					return err;
17666 
17667 				env->insn_idx++;
17668 				sanitize_mark_insn_seen(env);
17669 			} else {
17670 				verbose(env, "invalid BPF_LD mode\n");
17671 				return -EINVAL;
17672 			}
17673 		} else {
17674 			verbose(env, "unknown insn class %d\n", class);
17675 			return -EINVAL;
17676 		}
17677 
17678 		env->insn_idx++;
17679 	}
17680 
17681 	return 0;
17682 }
17683 
17684 static int find_btf_percpu_datasec(struct btf *btf)
17685 {
17686 	const struct btf_type *t;
17687 	const char *tname;
17688 	int i, n;
17689 
17690 	/*
17691 	 * Both vmlinux and module each have their own ".data..percpu"
17692 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17693 	 * types to look at only module's own BTF types.
17694 	 */
17695 	n = btf_nr_types(btf);
17696 	if (btf_is_module(btf))
17697 		i = btf_nr_types(btf_vmlinux);
17698 	else
17699 		i = 1;
17700 
17701 	for(; i < n; i++) {
17702 		t = btf_type_by_id(btf, i);
17703 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17704 			continue;
17705 
17706 		tname = btf_name_by_offset(btf, t->name_off);
17707 		if (!strcmp(tname, ".data..percpu"))
17708 			return i;
17709 	}
17710 
17711 	return -ENOENT;
17712 }
17713 
17714 /* replace pseudo btf_id with kernel symbol address */
17715 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17716 			       struct bpf_insn *insn,
17717 			       struct bpf_insn_aux_data *aux)
17718 {
17719 	const struct btf_var_secinfo *vsi;
17720 	const struct btf_type *datasec;
17721 	struct btf_mod_pair *btf_mod;
17722 	const struct btf_type *t;
17723 	const char *sym_name;
17724 	bool percpu = false;
17725 	u32 type, id = insn->imm;
17726 	struct btf *btf;
17727 	s32 datasec_id;
17728 	u64 addr;
17729 	int i, btf_fd, err;
17730 
17731 	btf_fd = insn[1].imm;
17732 	if (btf_fd) {
17733 		btf = btf_get_by_fd(btf_fd);
17734 		if (IS_ERR(btf)) {
17735 			verbose(env, "invalid module BTF object FD specified.\n");
17736 			return -EINVAL;
17737 		}
17738 	} else {
17739 		if (!btf_vmlinux) {
17740 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17741 			return -EINVAL;
17742 		}
17743 		btf = btf_vmlinux;
17744 		btf_get(btf);
17745 	}
17746 
17747 	t = btf_type_by_id(btf, id);
17748 	if (!t) {
17749 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
17750 		err = -ENOENT;
17751 		goto err_put;
17752 	}
17753 
17754 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
17755 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
17756 		err = -EINVAL;
17757 		goto err_put;
17758 	}
17759 
17760 	sym_name = btf_name_by_offset(btf, t->name_off);
17761 	addr = kallsyms_lookup_name(sym_name);
17762 	if (!addr) {
17763 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
17764 			sym_name);
17765 		err = -ENOENT;
17766 		goto err_put;
17767 	}
17768 	insn[0].imm = (u32)addr;
17769 	insn[1].imm = addr >> 32;
17770 
17771 	if (btf_type_is_func(t)) {
17772 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17773 		aux->btf_var.mem_size = 0;
17774 		goto check_btf;
17775 	}
17776 
17777 	datasec_id = find_btf_percpu_datasec(btf);
17778 	if (datasec_id > 0) {
17779 		datasec = btf_type_by_id(btf, datasec_id);
17780 		for_each_vsi(i, datasec, vsi) {
17781 			if (vsi->type == id) {
17782 				percpu = true;
17783 				break;
17784 			}
17785 		}
17786 	}
17787 
17788 	type = t->type;
17789 	t = btf_type_skip_modifiers(btf, type, NULL);
17790 	if (percpu) {
17791 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
17792 		aux->btf_var.btf = btf;
17793 		aux->btf_var.btf_id = type;
17794 	} else if (!btf_type_is_struct(t)) {
17795 		const struct btf_type *ret;
17796 		const char *tname;
17797 		u32 tsize;
17798 
17799 		/* resolve the type size of ksym. */
17800 		ret = btf_resolve_size(btf, t, &tsize);
17801 		if (IS_ERR(ret)) {
17802 			tname = btf_name_by_offset(btf, t->name_off);
17803 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
17804 				tname, PTR_ERR(ret));
17805 			err = -EINVAL;
17806 			goto err_put;
17807 		}
17808 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17809 		aux->btf_var.mem_size = tsize;
17810 	} else {
17811 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
17812 		aux->btf_var.btf = btf;
17813 		aux->btf_var.btf_id = type;
17814 	}
17815 check_btf:
17816 	/* check whether we recorded this BTF (and maybe module) already */
17817 	for (i = 0; i < env->used_btf_cnt; i++) {
17818 		if (env->used_btfs[i].btf == btf) {
17819 			btf_put(btf);
17820 			return 0;
17821 		}
17822 	}
17823 
17824 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
17825 		err = -E2BIG;
17826 		goto err_put;
17827 	}
17828 
17829 	btf_mod = &env->used_btfs[env->used_btf_cnt];
17830 	btf_mod->btf = btf;
17831 	btf_mod->module = NULL;
17832 
17833 	/* if we reference variables from kernel module, bump its refcount */
17834 	if (btf_is_module(btf)) {
17835 		btf_mod->module = btf_try_get_module(btf);
17836 		if (!btf_mod->module) {
17837 			err = -ENXIO;
17838 			goto err_put;
17839 		}
17840 	}
17841 
17842 	env->used_btf_cnt++;
17843 
17844 	return 0;
17845 err_put:
17846 	btf_put(btf);
17847 	return err;
17848 }
17849 
17850 static bool is_tracing_prog_type(enum bpf_prog_type type)
17851 {
17852 	switch (type) {
17853 	case BPF_PROG_TYPE_KPROBE:
17854 	case BPF_PROG_TYPE_TRACEPOINT:
17855 	case BPF_PROG_TYPE_PERF_EVENT:
17856 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
17857 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
17858 		return true;
17859 	default:
17860 		return false;
17861 	}
17862 }
17863 
17864 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
17865 					struct bpf_map *map,
17866 					struct bpf_prog *prog)
17867 
17868 {
17869 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
17870 
17871 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
17872 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
17873 		if (is_tracing_prog_type(prog_type)) {
17874 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17875 			return -EINVAL;
17876 		}
17877 	}
17878 
17879 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17880 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17881 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17882 			return -EINVAL;
17883 		}
17884 
17885 		if (is_tracing_prog_type(prog_type)) {
17886 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17887 			return -EINVAL;
17888 		}
17889 	}
17890 
17891 	if (btf_record_has_field(map->record, BPF_TIMER)) {
17892 		if (is_tracing_prog_type(prog_type)) {
17893 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
17894 			return -EINVAL;
17895 		}
17896 	}
17897 
17898 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17899 	    !bpf_offload_prog_map_match(prog, map)) {
17900 		verbose(env, "offload device mismatch between prog and map\n");
17901 		return -EINVAL;
17902 	}
17903 
17904 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17905 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17906 		return -EINVAL;
17907 	}
17908 
17909 	if (prog->aux->sleepable)
17910 		switch (map->map_type) {
17911 		case BPF_MAP_TYPE_HASH:
17912 		case BPF_MAP_TYPE_LRU_HASH:
17913 		case BPF_MAP_TYPE_ARRAY:
17914 		case BPF_MAP_TYPE_PERCPU_HASH:
17915 		case BPF_MAP_TYPE_PERCPU_ARRAY:
17916 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17917 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17918 		case BPF_MAP_TYPE_HASH_OF_MAPS:
17919 		case BPF_MAP_TYPE_RINGBUF:
17920 		case BPF_MAP_TYPE_USER_RINGBUF:
17921 		case BPF_MAP_TYPE_INODE_STORAGE:
17922 		case BPF_MAP_TYPE_SK_STORAGE:
17923 		case BPF_MAP_TYPE_TASK_STORAGE:
17924 		case BPF_MAP_TYPE_CGRP_STORAGE:
17925 			break;
17926 		default:
17927 			verbose(env,
17928 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17929 			return -EINVAL;
17930 		}
17931 
17932 	return 0;
17933 }
17934 
17935 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17936 {
17937 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17938 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17939 }
17940 
17941 /* find and rewrite pseudo imm in ld_imm64 instructions:
17942  *
17943  * 1. if it accesses map FD, replace it with actual map pointer.
17944  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17945  *
17946  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17947  */
17948 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17949 {
17950 	struct bpf_insn *insn = env->prog->insnsi;
17951 	int insn_cnt = env->prog->len;
17952 	int i, j, err;
17953 
17954 	err = bpf_prog_calc_tag(env->prog);
17955 	if (err)
17956 		return err;
17957 
17958 	for (i = 0; i < insn_cnt; i++, insn++) {
17959 		if (BPF_CLASS(insn->code) == BPF_LDX &&
17960 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17961 		    insn->imm != 0)) {
17962 			verbose(env, "BPF_LDX uses reserved fields\n");
17963 			return -EINVAL;
17964 		}
17965 
17966 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17967 			struct bpf_insn_aux_data *aux;
17968 			struct bpf_map *map;
17969 			struct fd f;
17970 			u64 addr;
17971 			u32 fd;
17972 
17973 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
17974 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17975 			    insn[1].off != 0) {
17976 				verbose(env, "invalid bpf_ld_imm64 insn\n");
17977 				return -EINVAL;
17978 			}
17979 
17980 			if (insn[0].src_reg == 0)
17981 				/* valid generic load 64-bit imm */
17982 				goto next_insn;
17983 
17984 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17985 				aux = &env->insn_aux_data[i];
17986 				err = check_pseudo_btf_id(env, insn, aux);
17987 				if (err)
17988 					return err;
17989 				goto next_insn;
17990 			}
17991 
17992 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17993 				aux = &env->insn_aux_data[i];
17994 				aux->ptr_type = PTR_TO_FUNC;
17995 				goto next_insn;
17996 			}
17997 
17998 			/* In final convert_pseudo_ld_imm64() step, this is
17999 			 * converted into regular 64-bit imm load insn.
18000 			 */
18001 			switch (insn[0].src_reg) {
18002 			case BPF_PSEUDO_MAP_VALUE:
18003 			case BPF_PSEUDO_MAP_IDX_VALUE:
18004 				break;
18005 			case BPF_PSEUDO_MAP_FD:
18006 			case BPF_PSEUDO_MAP_IDX:
18007 				if (insn[1].imm == 0)
18008 					break;
18009 				fallthrough;
18010 			default:
18011 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
18012 				return -EINVAL;
18013 			}
18014 
18015 			switch (insn[0].src_reg) {
18016 			case BPF_PSEUDO_MAP_IDX_VALUE:
18017 			case BPF_PSEUDO_MAP_IDX:
18018 				if (bpfptr_is_null(env->fd_array)) {
18019 					verbose(env, "fd_idx without fd_array is invalid\n");
18020 					return -EPROTO;
18021 				}
18022 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
18023 							    insn[0].imm * sizeof(fd),
18024 							    sizeof(fd)))
18025 					return -EFAULT;
18026 				break;
18027 			default:
18028 				fd = insn[0].imm;
18029 				break;
18030 			}
18031 
18032 			f = fdget(fd);
18033 			map = __bpf_map_get(f);
18034 			if (IS_ERR(map)) {
18035 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
18036 					insn[0].imm);
18037 				return PTR_ERR(map);
18038 			}
18039 
18040 			err = check_map_prog_compatibility(env, map, env->prog);
18041 			if (err) {
18042 				fdput(f);
18043 				return err;
18044 			}
18045 
18046 			aux = &env->insn_aux_data[i];
18047 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
18048 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
18049 				addr = (unsigned long)map;
18050 			} else {
18051 				u32 off = insn[1].imm;
18052 
18053 				if (off >= BPF_MAX_VAR_OFF) {
18054 					verbose(env, "direct value offset of %u is not allowed\n", off);
18055 					fdput(f);
18056 					return -EINVAL;
18057 				}
18058 
18059 				if (!map->ops->map_direct_value_addr) {
18060 					verbose(env, "no direct value access support for this map type\n");
18061 					fdput(f);
18062 					return -EINVAL;
18063 				}
18064 
18065 				err = map->ops->map_direct_value_addr(map, &addr, off);
18066 				if (err) {
18067 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
18068 						map->value_size, off);
18069 					fdput(f);
18070 					return err;
18071 				}
18072 
18073 				aux->map_off = off;
18074 				addr += off;
18075 			}
18076 
18077 			insn[0].imm = (u32)addr;
18078 			insn[1].imm = addr >> 32;
18079 
18080 			/* check whether we recorded this map already */
18081 			for (j = 0; j < env->used_map_cnt; j++) {
18082 				if (env->used_maps[j] == map) {
18083 					aux->map_index = j;
18084 					fdput(f);
18085 					goto next_insn;
18086 				}
18087 			}
18088 
18089 			if (env->used_map_cnt >= MAX_USED_MAPS) {
18090 				fdput(f);
18091 				return -E2BIG;
18092 			}
18093 
18094 			if (env->prog->aux->sleepable)
18095 				atomic64_inc(&map->sleepable_refcnt);
18096 			/* hold the map. If the program is rejected by verifier,
18097 			 * the map will be released by release_maps() or it
18098 			 * will be used by the valid program until it's unloaded
18099 			 * and all maps are released in bpf_free_used_maps()
18100 			 */
18101 			bpf_map_inc(map);
18102 
18103 			aux->map_index = env->used_map_cnt;
18104 			env->used_maps[env->used_map_cnt++] = map;
18105 
18106 			if (bpf_map_is_cgroup_storage(map) &&
18107 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
18108 				verbose(env, "only one cgroup storage of each type is allowed\n");
18109 				fdput(f);
18110 				return -EBUSY;
18111 			}
18112 
18113 			fdput(f);
18114 next_insn:
18115 			insn++;
18116 			i++;
18117 			continue;
18118 		}
18119 
18120 		/* Basic sanity check before we invest more work here. */
18121 		if (!bpf_opcode_in_insntable(insn->code)) {
18122 			verbose(env, "unknown opcode %02x\n", insn->code);
18123 			return -EINVAL;
18124 		}
18125 	}
18126 
18127 	/* now all pseudo BPF_LD_IMM64 instructions load valid
18128 	 * 'struct bpf_map *' into a register instead of user map_fd.
18129 	 * These pointers will be used later by verifier to validate map access.
18130 	 */
18131 	return 0;
18132 }
18133 
18134 /* drop refcnt of maps used by the rejected program */
18135 static void release_maps(struct bpf_verifier_env *env)
18136 {
18137 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
18138 			     env->used_map_cnt);
18139 }
18140 
18141 /* drop refcnt of maps used by the rejected program */
18142 static void release_btfs(struct bpf_verifier_env *env)
18143 {
18144 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
18145 			     env->used_btf_cnt);
18146 }
18147 
18148 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
18149 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
18150 {
18151 	struct bpf_insn *insn = env->prog->insnsi;
18152 	int insn_cnt = env->prog->len;
18153 	int i;
18154 
18155 	for (i = 0; i < insn_cnt; i++, insn++) {
18156 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
18157 			continue;
18158 		if (insn->src_reg == BPF_PSEUDO_FUNC)
18159 			continue;
18160 		insn->src_reg = 0;
18161 	}
18162 }
18163 
18164 /* single env->prog->insni[off] instruction was replaced with the range
18165  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
18166  * [0, off) and [off, end) to new locations, so the patched range stays zero
18167  */
18168 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
18169 				 struct bpf_insn_aux_data *new_data,
18170 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
18171 {
18172 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
18173 	struct bpf_insn *insn = new_prog->insnsi;
18174 	u32 old_seen = old_data[off].seen;
18175 	u32 prog_len;
18176 	int i;
18177 
18178 	/* aux info at OFF always needs adjustment, no matter fast path
18179 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
18180 	 * original insn at old prog.
18181 	 */
18182 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
18183 
18184 	if (cnt == 1)
18185 		return;
18186 	prog_len = new_prog->len;
18187 
18188 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
18189 	memcpy(new_data + off + cnt - 1, old_data + off,
18190 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
18191 	for (i = off; i < off + cnt - 1; i++) {
18192 		/* Expand insni[off]'s seen count to the patched range. */
18193 		new_data[i].seen = old_seen;
18194 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
18195 	}
18196 	env->insn_aux_data = new_data;
18197 	vfree(old_data);
18198 }
18199 
18200 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
18201 {
18202 	int i;
18203 
18204 	if (len == 1)
18205 		return;
18206 	/* NOTE: fake 'exit' subprog should be updated as well. */
18207 	for (i = 0; i <= env->subprog_cnt; i++) {
18208 		if (env->subprog_info[i].start <= off)
18209 			continue;
18210 		env->subprog_info[i].start += len - 1;
18211 	}
18212 }
18213 
18214 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
18215 {
18216 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
18217 	int i, sz = prog->aux->size_poke_tab;
18218 	struct bpf_jit_poke_descriptor *desc;
18219 
18220 	for (i = 0; i < sz; i++) {
18221 		desc = &tab[i];
18222 		if (desc->insn_idx <= off)
18223 			continue;
18224 		desc->insn_idx += len - 1;
18225 	}
18226 }
18227 
18228 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
18229 					    const struct bpf_insn *patch, u32 len)
18230 {
18231 	struct bpf_prog *new_prog;
18232 	struct bpf_insn_aux_data *new_data = NULL;
18233 
18234 	if (len > 1) {
18235 		new_data = vzalloc(array_size(env->prog->len + len - 1,
18236 					      sizeof(struct bpf_insn_aux_data)));
18237 		if (!new_data)
18238 			return NULL;
18239 	}
18240 
18241 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
18242 	if (IS_ERR(new_prog)) {
18243 		if (PTR_ERR(new_prog) == -ERANGE)
18244 			verbose(env,
18245 				"insn %d cannot be patched due to 16-bit range\n",
18246 				env->insn_aux_data[off].orig_idx);
18247 		vfree(new_data);
18248 		return NULL;
18249 	}
18250 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
18251 	adjust_subprog_starts(env, off, len);
18252 	adjust_poke_descs(new_prog, off, len);
18253 	return new_prog;
18254 }
18255 
18256 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
18257 					      u32 off, u32 cnt)
18258 {
18259 	int i, j;
18260 
18261 	/* find first prog starting at or after off (first to remove) */
18262 	for (i = 0; i < env->subprog_cnt; i++)
18263 		if (env->subprog_info[i].start >= off)
18264 			break;
18265 	/* find first prog starting at or after off + cnt (first to stay) */
18266 	for (j = i; j < env->subprog_cnt; j++)
18267 		if (env->subprog_info[j].start >= off + cnt)
18268 			break;
18269 	/* if j doesn't start exactly at off + cnt, we are just removing
18270 	 * the front of previous prog
18271 	 */
18272 	if (env->subprog_info[j].start != off + cnt)
18273 		j--;
18274 
18275 	if (j > i) {
18276 		struct bpf_prog_aux *aux = env->prog->aux;
18277 		int move;
18278 
18279 		/* move fake 'exit' subprog as well */
18280 		move = env->subprog_cnt + 1 - j;
18281 
18282 		memmove(env->subprog_info + i,
18283 			env->subprog_info + j,
18284 			sizeof(*env->subprog_info) * move);
18285 		env->subprog_cnt -= j - i;
18286 
18287 		/* remove func_info */
18288 		if (aux->func_info) {
18289 			move = aux->func_info_cnt - j;
18290 
18291 			memmove(aux->func_info + i,
18292 				aux->func_info + j,
18293 				sizeof(*aux->func_info) * move);
18294 			aux->func_info_cnt -= j - i;
18295 			/* func_info->insn_off is set after all code rewrites,
18296 			 * in adjust_btf_func() - no need to adjust
18297 			 */
18298 		}
18299 	} else {
18300 		/* convert i from "first prog to remove" to "first to adjust" */
18301 		if (env->subprog_info[i].start == off)
18302 			i++;
18303 	}
18304 
18305 	/* update fake 'exit' subprog as well */
18306 	for (; i <= env->subprog_cnt; i++)
18307 		env->subprog_info[i].start -= cnt;
18308 
18309 	return 0;
18310 }
18311 
18312 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
18313 				      u32 cnt)
18314 {
18315 	struct bpf_prog *prog = env->prog;
18316 	u32 i, l_off, l_cnt, nr_linfo;
18317 	struct bpf_line_info *linfo;
18318 
18319 	nr_linfo = prog->aux->nr_linfo;
18320 	if (!nr_linfo)
18321 		return 0;
18322 
18323 	linfo = prog->aux->linfo;
18324 
18325 	/* find first line info to remove, count lines to be removed */
18326 	for (i = 0; i < nr_linfo; i++)
18327 		if (linfo[i].insn_off >= off)
18328 			break;
18329 
18330 	l_off = i;
18331 	l_cnt = 0;
18332 	for (; i < nr_linfo; i++)
18333 		if (linfo[i].insn_off < off + cnt)
18334 			l_cnt++;
18335 		else
18336 			break;
18337 
18338 	/* First live insn doesn't match first live linfo, it needs to "inherit"
18339 	 * last removed linfo.  prog is already modified, so prog->len == off
18340 	 * means no live instructions after (tail of the program was removed).
18341 	 */
18342 	if (prog->len != off && l_cnt &&
18343 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
18344 		l_cnt--;
18345 		linfo[--i].insn_off = off + cnt;
18346 	}
18347 
18348 	/* remove the line info which refer to the removed instructions */
18349 	if (l_cnt) {
18350 		memmove(linfo + l_off, linfo + i,
18351 			sizeof(*linfo) * (nr_linfo - i));
18352 
18353 		prog->aux->nr_linfo -= l_cnt;
18354 		nr_linfo = prog->aux->nr_linfo;
18355 	}
18356 
18357 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
18358 	for (i = l_off; i < nr_linfo; i++)
18359 		linfo[i].insn_off -= cnt;
18360 
18361 	/* fix up all subprogs (incl. 'exit') which start >= off */
18362 	for (i = 0; i <= env->subprog_cnt; i++)
18363 		if (env->subprog_info[i].linfo_idx > l_off) {
18364 			/* program may have started in the removed region but
18365 			 * may not be fully removed
18366 			 */
18367 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
18368 				env->subprog_info[i].linfo_idx -= l_cnt;
18369 			else
18370 				env->subprog_info[i].linfo_idx = l_off;
18371 		}
18372 
18373 	return 0;
18374 }
18375 
18376 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
18377 {
18378 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18379 	unsigned int orig_prog_len = env->prog->len;
18380 	int err;
18381 
18382 	if (bpf_prog_is_offloaded(env->prog->aux))
18383 		bpf_prog_offload_remove_insns(env, off, cnt);
18384 
18385 	err = bpf_remove_insns(env->prog, off, cnt);
18386 	if (err)
18387 		return err;
18388 
18389 	err = adjust_subprog_starts_after_remove(env, off, cnt);
18390 	if (err)
18391 		return err;
18392 
18393 	err = bpf_adj_linfo_after_remove(env, off, cnt);
18394 	if (err)
18395 		return err;
18396 
18397 	memmove(aux_data + off,	aux_data + off + cnt,
18398 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
18399 
18400 	return 0;
18401 }
18402 
18403 /* The verifier does more data flow analysis than llvm and will not
18404  * explore branches that are dead at run time. Malicious programs can
18405  * have dead code too. Therefore replace all dead at-run-time code
18406  * with 'ja -1'.
18407  *
18408  * Just nops are not optimal, e.g. if they would sit at the end of the
18409  * program and through another bug we would manage to jump there, then
18410  * we'd execute beyond program memory otherwise. Returning exception
18411  * code also wouldn't work since we can have subprogs where the dead
18412  * code could be located.
18413  */
18414 static void sanitize_dead_code(struct bpf_verifier_env *env)
18415 {
18416 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18417 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18418 	struct bpf_insn *insn = env->prog->insnsi;
18419 	const int insn_cnt = env->prog->len;
18420 	int i;
18421 
18422 	for (i = 0; i < insn_cnt; i++) {
18423 		if (aux_data[i].seen)
18424 			continue;
18425 		memcpy(insn + i, &trap, sizeof(trap));
18426 		aux_data[i].zext_dst = false;
18427 	}
18428 }
18429 
18430 static bool insn_is_cond_jump(u8 code)
18431 {
18432 	u8 op;
18433 
18434 	op = BPF_OP(code);
18435 	if (BPF_CLASS(code) == BPF_JMP32)
18436 		return op != BPF_JA;
18437 
18438 	if (BPF_CLASS(code) != BPF_JMP)
18439 		return false;
18440 
18441 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18442 }
18443 
18444 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18445 {
18446 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18447 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18448 	struct bpf_insn *insn = env->prog->insnsi;
18449 	const int insn_cnt = env->prog->len;
18450 	int i;
18451 
18452 	for (i = 0; i < insn_cnt; i++, insn++) {
18453 		if (!insn_is_cond_jump(insn->code))
18454 			continue;
18455 
18456 		if (!aux_data[i + 1].seen)
18457 			ja.off = insn->off;
18458 		else if (!aux_data[i + 1 + insn->off].seen)
18459 			ja.off = 0;
18460 		else
18461 			continue;
18462 
18463 		if (bpf_prog_is_offloaded(env->prog->aux))
18464 			bpf_prog_offload_replace_insn(env, i, &ja);
18465 
18466 		memcpy(insn, &ja, sizeof(ja));
18467 	}
18468 }
18469 
18470 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18471 {
18472 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18473 	int insn_cnt = env->prog->len;
18474 	int i, err;
18475 
18476 	for (i = 0; i < insn_cnt; i++) {
18477 		int j;
18478 
18479 		j = 0;
18480 		while (i + j < insn_cnt && !aux_data[i + j].seen)
18481 			j++;
18482 		if (!j)
18483 			continue;
18484 
18485 		err = verifier_remove_insns(env, i, j);
18486 		if (err)
18487 			return err;
18488 		insn_cnt = env->prog->len;
18489 	}
18490 
18491 	return 0;
18492 }
18493 
18494 static int opt_remove_nops(struct bpf_verifier_env *env)
18495 {
18496 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18497 	struct bpf_insn *insn = env->prog->insnsi;
18498 	int insn_cnt = env->prog->len;
18499 	int i, err;
18500 
18501 	for (i = 0; i < insn_cnt; i++) {
18502 		if (memcmp(&insn[i], &ja, sizeof(ja)))
18503 			continue;
18504 
18505 		err = verifier_remove_insns(env, i, 1);
18506 		if (err)
18507 			return err;
18508 		insn_cnt--;
18509 		i--;
18510 	}
18511 
18512 	return 0;
18513 }
18514 
18515 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
18516 					 const union bpf_attr *attr)
18517 {
18518 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
18519 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
18520 	int i, patch_len, delta = 0, len = env->prog->len;
18521 	struct bpf_insn *insns = env->prog->insnsi;
18522 	struct bpf_prog *new_prog;
18523 	bool rnd_hi32;
18524 
18525 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
18526 	zext_patch[1] = BPF_ZEXT_REG(0);
18527 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
18528 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
18529 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
18530 	for (i = 0; i < len; i++) {
18531 		int adj_idx = i + delta;
18532 		struct bpf_insn insn;
18533 		int load_reg;
18534 
18535 		insn = insns[adj_idx];
18536 		load_reg = insn_def_regno(&insn);
18537 		if (!aux[adj_idx].zext_dst) {
18538 			u8 code, class;
18539 			u32 imm_rnd;
18540 
18541 			if (!rnd_hi32)
18542 				continue;
18543 
18544 			code = insn.code;
18545 			class = BPF_CLASS(code);
18546 			if (load_reg == -1)
18547 				continue;
18548 
18549 			/* NOTE: arg "reg" (the fourth one) is only used for
18550 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
18551 			 *       here.
18552 			 */
18553 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
18554 				if (class == BPF_LD &&
18555 				    BPF_MODE(code) == BPF_IMM)
18556 					i++;
18557 				continue;
18558 			}
18559 
18560 			/* ctx load could be transformed into wider load. */
18561 			if (class == BPF_LDX &&
18562 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
18563 				continue;
18564 
18565 			imm_rnd = get_random_u32();
18566 			rnd_hi32_patch[0] = insn;
18567 			rnd_hi32_patch[1].imm = imm_rnd;
18568 			rnd_hi32_patch[3].dst_reg = load_reg;
18569 			patch = rnd_hi32_patch;
18570 			patch_len = 4;
18571 			goto apply_patch_buffer;
18572 		}
18573 
18574 		/* Add in an zero-extend instruction if a) the JIT has requested
18575 		 * it or b) it's a CMPXCHG.
18576 		 *
18577 		 * The latter is because: BPF_CMPXCHG always loads a value into
18578 		 * R0, therefore always zero-extends. However some archs'
18579 		 * equivalent instruction only does this load when the
18580 		 * comparison is successful. This detail of CMPXCHG is
18581 		 * orthogonal to the general zero-extension behaviour of the
18582 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
18583 		 */
18584 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18585 			continue;
18586 
18587 		/* Zero-extension is done by the caller. */
18588 		if (bpf_pseudo_kfunc_call(&insn))
18589 			continue;
18590 
18591 		if (WARN_ON(load_reg == -1)) {
18592 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18593 			return -EFAULT;
18594 		}
18595 
18596 		zext_patch[0] = insn;
18597 		zext_patch[1].dst_reg = load_reg;
18598 		zext_patch[1].src_reg = load_reg;
18599 		patch = zext_patch;
18600 		patch_len = 2;
18601 apply_patch_buffer:
18602 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18603 		if (!new_prog)
18604 			return -ENOMEM;
18605 		env->prog = new_prog;
18606 		insns = new_prog->insnsi;
18607 		aux = env->insn_aux_data;
18608 		delta += patch_len - 1;
18609 	}
18610 
18611 	return 0;
18612 }
18613 
18614 /* convert load instructions that access fields of a context type into a
18615  * sequence of instructions that access fields of the underlying structure:
18616  *     struct __sk_buff    -> struct sk_buff
18617  *     struct bpf_sock_ops -> struct sock
18618  */
18619 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18620 {
18621 	const struct bpf_verifier_ops *ops = env->ops;
18622 	int i, cnt, size, ctx_field_size, delta = 0;
18623 	const int insn_cnt = env->prog->len;
18624 	struct bpf_insn insn_buf[16], *insn;
18625 	u32 target_size, size_default, off;
18626 	struct bpf_prog *new_prog;
18627 	enum bpf_access_type type;
18628 	bool is_narrower_load;
18629 
18630 	if (ops->gen_prologue || env->seen_direct_write) {
18631 		if (!ops->gen_prologue) {
18632 			verbose(env, "bpf verifier is misconfigured\n");
18633 			return -EINVAL;
18634 		}
18635 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18636 					env->prog);
18637 		if (cnt >= ARRAY_SIZE(insn_buf)) {
18638 			verbose(env, "bpf verifier is misconfigured\n");
18639 			return -EINVAL;
18640 		} else if (cnt) {
18641 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18642 			if (!new_prog)
18643 				return -ENOMEM;
18644 
18645 			env->prog = new_prog;
18646 			delta += cnt - 1;
18647 		}
18648 	}
18649 
18650 	if (bpf_prog_is_offloaded(env->prog->aux))
18651 		return 0;
18652 
18653 	insn = env->prog->insnsi + delta;
18654 
18655 	for (i = 0; i < insn_cnt; i++, insn++) {
18656 		bpf_convert_ctx_access_t convert_ctx_access;
18657 		u8 mode;
18658 
18659 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18660 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18661 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18662 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18663 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18664 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18665 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18666 			type = BPF_READ;
18667 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18668 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18669 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18670 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18671 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18672 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18673 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18674 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18675 			type = BPF_WRITE;
18676 		} else {
18677 			continue;
18678 		}
18679 
18680 		if (type == BPF_WRITE &&
18681 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
18682 			struct bpf_insn patch[] = {
18683 				*insn,
18684 				BPF_ST_NOSPEC(),
18685 			};
18686 
18687 			cnt = ARRAY_SIZE(patch);
18688 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18689 			if (!new_prog)
18690 				return -ENOMEM;
18691 
18692 			delta    += cnt - 1;
18693 			env->prog = new_prog;
18694 			insn      = new_prog->insnsi + i + delta;
18695 			continue;
18696 		}
18697 
18698 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18699 		case PTR_TO_CTX:
18700 			if (!ops->convert_ctx_access)
18701 				continue;
18702 			convert_ctx_access = ops->convert_ctx_access;
18703 			break;
18704 		case PTR_TO_SOCKET:
18705 		case PTR_TO_SOCK_COMMON:
18706 			convert_ctx_access = bpf_sock_convert_ctx_access;
18707 			break;
18708 		case PTR_TO_TCP_SOCK:
18709 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18710 			break;
18711 		case PTR_TO_XDP_SOCK:
18712 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18713 			break;
18714 		case PTR_TO_BTF_ID:
18715 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18716 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18717 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
18718 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
18719 		 * any faults for loads into such types. BPF_WRITE is disallowed
18720 		 * for this case.
18721 		 */
18722 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
18723 			if (type == BPF_READ) {
18724 				if (BPF_MODE(insn->code) == BPF_MEM)
18725 					insn->code = BPF_LDX | BPF_PROBE_MEM |
18726 						     BPF_SIZE((insn)->code);
18727 				else
18728 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
18729 						     BPF_SIZE((insn)->code);
18730 				env->prog->aux->num_exentries++;
18731 			}
18732 			continue;
18733 		default:
18734 			continue;
18735 		}
18736 
18737 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
18738 		size = BPF_LDST_BYTES(insn);
18739 		mode = BPF_MODE(insn->code);
18740 
18741 		/* If the read access is a narrower load of the field,
18742 		 * convert to a 4/8-byte load, to minimum program type specific
18743 		 * convert_ctx_access changes. If conversion is successful,
18744 		 * we will apply proper mask to the result.
18745 		 */
18746 		is_narrower_load = size < ctx_field_size;
18747 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
18748 		off = insn->off;
18749 		if (is_narrower_load) {
18750 			u8 size_code;
18751 
18752 			if (type == BPF_WRITE) {
18753 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
18754 				return -EINVAL;
18755 			}
18756 
18757 			size_code = BPF_H;
18758 			if (ctx_field_size == 4)
18759 				size_code = BPF_W;
18760 			else if (ctx_field_size == 8)
18761 				size_code = BPF_DW;
18762 
18763 			insn->off = off & ~(size_default - 1);
18764 			insn->code = BPF_LDX | BPF_MEM | size_code;
18765 		}
18766 
18767 		target_size = 0;
18768 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
18769 					 &target_size);
18770 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
18771 		    (ctx_field_size && !target_size)) {
18772 			verbose(env, "bpf verifier is misconfigured\n");
18773 			return -EINVAL;
18774 		}
18775 
18776 		if (is_narrower_load && size < target_size) {
18777 			u8 shift = bpf_ctx_narrow_access_offset(
18778 				off, size, size_default) * 8;
18779 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
18780 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
18781 				return -EINVAL;
18782 			}
18783 			if (ctx_field_size <= 4) {
18784 				if (shift)
18785 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
18786 									insn->dst_reg,
18787 									shift);
18788 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18789 								(1 << size * 8) - 1);
18790 			} else {
18791 				if (shift)
18792 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
18793 									insn->dst_reg,
18794 									shift);
18795 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18796 								(1ULL << size * 8) - 1);
18797 			}
18798 		}
18799 		if (mode == BPF_MEMSX)
18800 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
18801 						       insn->dst_reg, insn->dst_reg,
18802 						       size * 8, 0);
18803 
18804 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18805 		if (!new_prog)
18806 			return -ENOMEM;
18807 
18808 		delta += cnt - 1;
18809 
18810 		/* keep walking new program and skip insns we just inserted */
18811 		env->prog = new_prog;
18812 		insn      = new_prog->insnsi + i + delta;
18813 	}
18814 
18815 	return 0;
18816 }
18817 
18818 static int jit_subprogs(struct bpf_verifier_env *env)
18819 {
18820 	struct bpf_prog *prog = env->prog, **func, *tmp;
18821 	int i, j, subprog_start, subprog_end = 0, len, subprog;
18822 	struct bpf_map *map_ptr;
18823 	struct bpf_insn *insn;
18824 	void *old_bpf_func;
18825 	int err, num_exentries;
18826 
18827 	if (env->subprog_cnt <= 1)
18828 		return 0;
18829 
18830 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18831 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
18832 			continue;
18833 
18834 		/* Upon error here we cannot fall back to interpreter but
18835 		 * need a hard reject of the program. Thus -EFAULT is
18836 		 * propagated in any case.
18837 		 */
18838 		subprog = find_subprog(env, i + insn->imm + 1);
18839 		if (subprog < 0) {
18840 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
18841 				  i + insn->imm + 1);
18842 			return -EFAULT;
18843 		}
18844 		/* temporarily remember subprog id inside insn instead of
18845 		 * aux_data, since next loop will split up all insns into funcs
18846 		 */
18847 		insn->off = subprog;
18848 		/* remember original imm in case JIT fails and fallback
18849 		 * to interpreter will be needed
18850 		 */
18851 		env->insn_aux_data[i].call_imm = insn->imm;
18852 		/* point imm to __bpf_call_base+1 from JITs point of view */
18853 		insn->imm = 1;
18854 		if (bpf_pseudo_func(insn))
18855 			/* jit (e.g. x86_64) may emit fewer instructions
18856 			 * if it learns a u32 imm is the same as a u64 imm.
18857 			 * Force a non zero here.
18858 			 */
18859 			insn[1].imm = 1;
18860 	}
18861 
18862 	err = bpf_prog_alloc_jited_linfo(prog);
18863 	if (err)
18864 		goto out_undo_insn;
18865 
18866 	err = -ENOMEM;
18867 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
18868 	if (!func)
18869 		goto out_undo_insn;
18870 
18871 	for (i = 0; i < env->subprog_cnt; i++) {
18872 		subprog_start = subprog_end;
18873 		subprog_end = env->subprog_info[i + 1].start;
18874 
18875 		len = subprog_end - subprog_start;
18876 		/* bpf_prog_run() doesn't call subprogs directly,
18877 		 * hence main prog stats include the runtime of subprogs.
18878 		 * subprogs don't have IDs and not reachable via prog_get_next_id
18879 		 * func[i]->stats will never be accessed and stays NULL
18880 		 */
18881 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18882 		if (!func[i])
18883 			goto out_free;
18884 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18885 		       len * sizeof(struct bpf_insn));
18886 		func[i]->type = prog->type;
18887 		func[i]->len = len;
18888 		if (bpf_prog_calc_tag(func[i]))
18889 			goto out_free;
18890 		func[i]->is_func = 1;
18891 		func[i]->aux->func_idx = i;
18892 		/* Below members will be freed only at prog->aux */
18893 		func[i]->aux->btf = prog->aux->btf;
18894 		func[i]->aux->func_info = prog->aux->func_info;
18895 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18896 		func[i]->aux->poke_tab = prog->aux->poke_tab;
18897 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18898 
18899 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
18900 			struct bpf_jit_poke_descriptor *poke;
18901 
18902 			poke = &prog->aux->poke_tab[j];
18903 			if (poke->insn_idx < subprog_end &&
18904 			    poke->insn_idx >= subprog_start)
18905 				poke->aux = func[i]->aux;
18906 		}
18907 
18908 		func[i]->aux->name[0] = 'F';
18909 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18910 		func[i]->jit_requested = 1;
18911 		func[i]->blinding_requested = prog->blinding_requested;
18912 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18913 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18914 		func[i]->aux->linfo = prog->aux->linfo;
18915 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18916 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18917 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18918 		num_exentries = 0;
18919 		insn = func[i]->insnsi;
18920 		for (j = 0; j < func[i]->len; j++, insn++) {
18921 			if (BPF_CLASS(insn->code) == BPF_LDX &&
18922 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18923 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18924 				num_exentries++;
18925 		}
18926 		func[i]->aux->num_exentries = num_exentries;
18927 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18928 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
18929 		if (!i)
18930 			func[i]->aux->exception_boundary = env->seen_exception;
18931 		func[i] = bpf_int_jit_compile(func[i]);
18932 		if (!func[i]->jited) {
18933 			err = -ENOTSUPP;
18934 			goto out_free;
18935 		}
18936 		cond_resched();
18937 	}
18938 
18939 	/* at this point all bpf functions were successfully JITed
18940 	 * now populate all bpf_calls with correct addresses and
18941 	 * run last pass of JIT
18942 	 */
18943 	for (i = 0; i < env->subprog_cnt; i++) {
18944 		insn = func[i]->insnsi;
18945 		for (j = 0; j < func[i]->len; j++, insn++) {
18946 			if (bpf_pseudo_func(insn)) {
18947 				subprog = insn->off;
18948 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18949 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18950 				continue;
18951 			}
18952 			if (!bpf_pseudo_call(insn))
18953 				continue;
18954 			subprog = insn->off;
18955 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18956 		}
18957 
18958 		/* we use the aux data to keep a list of the start addresses
18959 		 * of the JITed images for each function in the program
18960 		 *
18961 		 * for some architectures, such as powerpc64, the imm field
18962 		 * might not be large enough to hold the offset of the start
18963 		 * address of the callee's JITed image from __bpf_call_base
18964 		 *
18965 		 * in such cases, we can lookup the start address of a callee
18966 		 * by using its subprog id, available from the off field of
18967 		 * the call instruction, as an index for this list
18968 		 */
18969 		func[i]->aux->func = func;
18970 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
18971 		func[i]->aux->real_func_cnt = env->subprog_cnt;
18972 	}
18973 	for (i = 0; i < env->subprog_cnt; i++) {
18974 		old_bpf_func = func[i]->bpf_func;
18975 		tmp = bpf_int_jit_compile(func[i]);
18976 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18977 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18978 			err = -ENOTSUPP;
18979 			goto out_free;
18980 		}
18981 		cond_resched();
18982 	}
18983 
18984 	/* finally lock prog and jit images for all functions and
18985 	 * populate kallsysm. Begin at the first subprogram, since
18986 	 * bpf_prog_load will add the kallsyms for the main program.
18987 	 */
18988 	for (i = 1; i < env->subprog_cnt; i++) {
18989 		bpf_prog_lock_ro(func[i]);
18990 		bpf_prog_kallsyms_add(func[i]);
18991 	}
18992 
18993 	/* Last step: make now unused interpreter insns from main
18994 	 * prog consistent for later dump requests, so they can
18995 	 * later look the same as if they were interpreted only.
18996 	 */
18997 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18998 		if (bpf_pseudo_func(insn)) {
18999 			insn[0].imm = env->insn_aux_data[i].call_imm;
19000 			insn[1].imm = insn->off;
19001 			insn->off = 0;
19002 			continue;
19003 		}
19004 		if (!bpf_pseudo_call(insn))
19005 			continue;
19006 		insn->off = env->insn_aux_data[i].call_imm;
19007 		subprog = find_subprog(env, i + insn->off + 1);
19008 		insn->imm = subprog;
19009 	}
19010 
19011 	prog->jited = 1;
19012 	prog->bpf_func = func[0]->bpf_func;
19013 	prog->jited_len = func[0]->jited_len;
19014 	prog->aux->extable = func[0]->aux->extable;
19015 	prog->aux->num_exentries = func[0]->aux->num_exentries;
19016 	prog->aux->func = func;
19017 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
19018 	prog->aux->real_func_cnt = env->subprog_cnt;
19019 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
19020 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
19021 	bpf_prog_jit_attempt_done(prog);
19022 	return 0;
19023 out_free:
19024 	/* We failed JIT'ing, so at this point we need to unregister poke
19025 	 * descriptors from subprogs, so that kernel is not attempting to
19026 	 * patch it anymore as we're freeing the subprog JIT memory.
19027 	 */
19028 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19029 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19030 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
19031 	}
19032 	/* At this point we're guaranteed that poke descriptors are not
19033 	 * live anymore. We can just unlink its descriptor table as it's
19034 	 * released with the main prog.
19035 	 */
19036 	for (i = 0; i < env->subprog_cnt; i++) {
19037 		if (!func[i])
19038 			continue;
19039 		func[i]->aux->poke_tab = NULL;
19040 		bpf_jit_free(func[i]);
19041 	}
19042 	kfree(func);
19043 out_undo_insn:
19044 	/* cleanup main prog to be interpreted */
19045 	prog->jit_requested = 0;
19046 	prog->blinding_requested = 0;
19047 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
19048 		if (!bpf_pseudo_call(insn))
19049 			continue;
19050 		insn->off = 0;
19051 		insn->imm = env->insn_aux_data[i].call_imm;
19052 	}
19053 	bpf_prog_jit_attempt_done(prog);
19054 	return err;
19055 }
19056 
19057 static int fixup_call_args(struct bpf_verifier_env *env)
19058 {
19059 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
19060 	struct bpf_prog *prog = env->prog;
19061 	struct bpf_insn *insn = prog->insnsi;
19062 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
19063 	int i, depth;
19064 #endif
19065 	int err = 0;
19066 
19067 	if (env->prog->jit_requested &&
19068 	    !bpf_prog_is_offloaded(env->prog->aux)) {
19069 		err = jit_subprogs(env);
19070 		if (err == 0)
19071 			return 0;
19072 		if (err == -EFAULT)
19073 			return err;
19074 	}
19075 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
19076 	if (has_kfunc_call) {
19077 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
19078 		return -EINVAL;
19079 	}
19080 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
19081 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
19082 		 * have to be rejected, since interpreter doesn't support them yet.
19083 		 */
19084 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
19085 		return -EINVAL;
19086 	}
19087 	for (i = 0; i < prog->len; i++, insn++) {
19088 		if (bpf_pseudo_func(insn)) {
19089 			/* When JIT fails the progs with callback calls
19090 			 * have to be rejected, since interpreter doesn't support them yet.
19091 			 */
19092 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
19093 			return -EINVAL;
19094 		}
19095 
19096 		if (!bpf_pseudo_call(insn))
19097 			continue;
19098 		depth = get_callee_stack_depth(env, insn, i);
19099 		if (depth < 0)
19100 			return depth;
19101 		bpf_patch_call_args(insn, depth);
19102 	}
19103 	err = 0;
19104 #endif
19105 	return err;
19106 }
19107 
19108 /* replace a generic kfunc with a specialized version if necessary */
19109 static void specialize_kfunc(struct bpf_verifier_env *env,
19110 			     u32 func_id, u16 offset, unsigned long *addr)
19111 {
19112 	struct bpf_prog *prog = env->prog;
19113 	bool seen_direct_write;
19114 	void *xdp_kfunc;
19115 	bool is_rdonly;
19116 
19117 	if (bpf_dev_bound_kfunc_id(func_id)) {
19118 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
19119 		if (xdp_kfunc) {
19120 			*addr = (unsigned long)xdp_kfunc;
19121 			return;
19122 		}
19123 		/* fallback to default kfunc when not supported by netdev */
19124 	}
19125 
19126 	if (offset)
19127 		return;
19128 
19129 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
19130 		seen_direct_write = env->seen_direct_write;
19131 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
19132 
19133 		if (is_rdonly)
19134 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
19135 
19136 		/* restore env->seen_direct_write to its original value, since
19137 		 * may_access_direct_pkt_data mutates it
19138 		 */
19139 		env->seen_direct_write = seen_direct_write;
19140 	}
19141 }
19142 
19143 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
19144 					    u16 struct_meta_reg,
19145 					    u16 node_offset_reg,
19146 					    struct bpf_insn *insn,
19147 					    struct bpf_insn *insn_buf,
19148 					    int *cnt)
19149 {
19150 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
19151 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
19152 
19153 	insn_buf[0] = addr[0];
19154 	insn_buf[1] = addr[1];
19155 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
19156 	insn_buf[3] = *insn;
19157 	*cnt = 4;
19158 }
19159 
19160 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
19161 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
19162 {
19163 	const struct bpf_kfunc_desc *desc;
19164 
19165 	if (!insn->imm) {
19166 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
19167 		return -EINVAL;
19168 	}
19169 
19170 	*cnt = 0;
19171 
19172 	/* insn->imm has the btf func_id. Replace it with an offset relative to
19173 	 * __bpf_call_base, unless the JIT needs to call functions that are
19174 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
19175 	 */
19176 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
19177 	if (!desc) {
19178 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
19179 			insn->imm);
19180 		return -EFAULT;
19181 	}
19182 
19183 	if (!bpf_jit_supports_far_kfunc_call())
19184 		insn->imm = BPF_CALL_IMM(desc->addr);
19185 	if (insn->off)
19186 		return 0;
19187 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
19188 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
19189 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19190 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19191 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
19192 
19193 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
19194 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19195 				insn_idx);
19196 			return -EFAULT;
19197 		}
19198 
19199 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
19200 		insn_buf[1] = addr[0];
19201 		insn_buf[2] = addr[1];
19202 		insn_buf[3] = *insn;
19203 		*cnt = 4;
19204 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
19205 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
19206 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
19207 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19208 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19209 
19210 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
19211 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19212 				insn_idx);
19213 			return -EFAULT;
19214 		}
19215 
19216 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
19217 		    !kptr_struct_meta) {
19218 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19219 				insn_idx);
19220 			return -EFAULT;
19221 		}
19222 
19223 		insn_buf[0] = addr[0];
19224 		insn_buf[1] = addr[1];
19225 		insn_buf[2] = *insn;
19226 		*cnt = 3;
19227 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
19228 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
19229 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19230 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19231 		int struct_meta_reg = BPF_REG_3;
19232 		int node_offset_reg = BPF_REG_4;
19233 
19234 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
19235 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19236 			struct_meta_reg = BPF_REG_4;
19237 			node_offset_reg = BPF_REG_5;
19238 		}
19239 
19240 		if (!kptr_struct_meta) {
19241 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19242 				insn_idx);
19243 			return -EFAULT;
19244 		}
19245 
19246 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
19247 						node_offset_reg, insn, insn_buf, cnt);
19248 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
19249 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
19250 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
19251 		*cnt = 1;
19252 	}
19253 	return 0;
19254 }
19255 
19256 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
19257 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
19258 {
19259 	struct bpf_subprog_info *info = env->subprog_info;
19260 	int cnt = env->subprog_cnt;
19261 	struct bpf_prog *prog;
19262 
19263 	/* We only reserve one slot for hidden subprogs in subprog_info. */
19264 	if (env->hidden_subprog_cnt) {
19265 		verbose(env, "verifier internal error: only one hidden subprog supported\n");
19266 		return -EFAULT;
19267 	}
19268 	/* We're not patching any existing instruction, just appending the new
19269 	 * ones for the hidden subprog. Hence all of the adjustment operations
19270 	 * in bpf_patch_insn_data are no-ops.
19271 	 */
19272 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
19273 	if (!prog)
19274 		return -ENOMEM;
19275 	env->prog = prog;
19276 	info[cnt + 1].start = info[cnt].start;
19277 	info[cnt].start = prog->len - len + 1;
19278 	env->subprog_cnt++;
19279 	env->hidden_subprog_cnt++;
19280 	return 0;
19281 }
19282 
19283 /* Do various post-verification rewrites in a single program pass.
19284  * These rewrites simplify JIT and interpreter implementations.
19285  */
19286 static int do_misc_fixups(struct bpf_verifier_env *env)
19287 {
19288 	struct bpf_prog *prog = env->prog;
19289 	enum bpf_attach_type eatype = prog->expected_attach_type;
19290 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
19291 	struct bpf_insn *insn = prog->insnsi;
19292 	const struct bpf_func_proto *fn;
19293 	const int insn_cnt = prog->len;
19294 	const struct bpf_map_ops *ops;
19295 	struct bpf_insn_aux_data *aux;
19296 	struct bpf_insn insn_buf[16];
19297 	struct bpf_prog *new_prog;
19298 	struct bpf_map *map_ptr;
19299 	int i, ret, cnt, delta = 0;
19300 
19301 	if (env->seen_exception && !env->exception_callback_subprog) {
19302 		struct bpf_insn patch[] = {
19303 			env->prog->insnsi[insn_cnt - 1],
19304 			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
19305 			BPF_EXIT_INSN(),
19306 		};
19307 
19308 		ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
19309 		if (ret < 0)
19310 			return ret;
19311 		prog = env->prog;
19312 		insn = prog->insnsi;
19313 
19314 		env->exception_callback_subprog = env->subprog_cnt - 1;
19315 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
19316 		mark_subprog_exc_cb(env, env->exception_callback_subprog);
19317 	}
19318 
19319 	for (i = 0; i < insn_cnt; i++, insn++) {
19320 		/* Make divide-by-zero exceptions impossible. */
19321 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
19322 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
19323 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
19324 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
19325 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
19326 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
19327 			struct bpf_insn *patchlet;
19328 			struct bpf_insn chk_and_div[] = {
19329 				/* [R,W]x div 0 -> 0 */
19330 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19331 					     BPF_JNE | BPF_K, insn->src_reg,
19332 					     0, 2, 0),
19333 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
19334 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19335 				*insn,
19336 			};
19337 			struct bpf_insn chk_and_mod[] = {
19338 				/* [R,W]x mod 0 -> [R,W]x */
19339 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19340 					     BPF_JEQ | BPF_K, insn->src_reg,
19341 					     0, 1 + (is64 ? 0 : 1), 0),
19342 				*insn,
19343 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19344 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
19345 			};
19346 
19347 			patchlet = isdiv ? chk_and_div : chk_and_mod;
19348 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
19349 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
19350 
19351 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
19352 			if (!new_prog)
19353 				return -ENOMEM;
19354 
19355 			delta    += cnt - 1;
19356 			env->prog = prog = new_prog;
19357 			insn      = new_prog->insnsi + i + delta;
19358 			continue;
19359 		}
19360 
19361 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
19362 		if (BPF_CLASS(insn->code) == BPF_LD &&
19363 		    (BPF_MODE(insn->code) == BPF_ABS ||
19364 		     BPF_MODE(insn->code) == BPF_IND)) {
19365 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
19366 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19367 				verbose(env, "bpf verifier is misconfigured\n");
19368 				return -EINVAL;
19369 			}
19370 
19371 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19372 			if (!new_prog)
19373 				return -ENOMEM;
19374 
19375 			delta    += cnt - 1;
19376 			env->prog = prog = new_prog;
19377 			insn      = new_prog->insnsi + i + delta;
19378 			continue;
19379 		}
19380 
19381 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
19382 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
19383 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
19384 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
19385 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
19386 			struct bpf_insn *patch = &insn_buf[0];
19387 			bool issrc, isneg, isimm;
19388 			u32 off_reg;
19389 
19390 			aux = &env->insn_aux_data[i + delta];
19391 			if (!aux->alu_state ||
19392 			    aux->alu_state == BPF_ALU_NON_POINTER)
19393 				continue;
19394 
19395 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
19396 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
19397 				BPF_ALU_SANITIZE_SRC;
19398 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
19399 
19400 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
19401 			if (isimm) {
19402 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19403 			} else {
19404 				if (isneg)
19405 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19406 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19407 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
19408 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
19409 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
19410 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
19411 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
19412 			}
19413 			if (!issrc)
19414 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
19415 			insn->src_reg = BPF_REG_AX;
19416 			if (isneg)
19417 				insn->code = insn->code == code_add ?
19418 					     code_sub : code_add;
19419 			*patch++ = *insn;
19420 			if (issrc && isneg && !isimm)
19421 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19422 			cnt = patch - insn_buf;
19423 
19424 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19425 			if (!new_prog)
19426 				return -ENOMEM;
19427 
19428 			delta    += cnt - 1;
19429 			env->prog = prog = new_prog;
19430 			insn      = new_prog->insnsi + i + delta;
19431 			continue;
19432 		}
19433 
19434 		if (insn->code != (BPF_JMP | BPF_CALL))
19435 			continue;
19436 		if (insn->src_reg == BPF_PSEUDO_CALL)
19437 			continue;
19438 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19439 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
19440 			if (ret)
19441 				return ret;
19442 			if (cnt == 0)
19443 				continue;
19444 
19445 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19446 			if (!new_prog)
19447 				return -ENOMEM;
19448 
19449 			delta	 += cnt - 1;
19450 			env->prog = prog = new_prog;
19451 			insn	  = new_prog->insnsi + i + delta;
19452 			continue;
19453 		}
19454 
19455 		if (insn->imm == BPF_FUNC_get_route_realm)
19456 			prog->dst_needed = 1;
19457 		if (insn->imm == BPF_FUNC_get_prandom_u32)
19458 			bpf_user_rnd_init_once();
19459 		if (insn->imm == BPF_FUNC_override_return)
19460 			prog->kprobe_override = 1;
19461 		if (insn->imm == BPF_FUNC_tail_call) {
19462 			/* If we tail call into other programs, we
19463 			 * cannot make any assumptions since they can
19464 			 * be replaced dynamically during runtime in
19465 			 * the program array.
19466 			 */
19467 			prog->cb_access = 1;
19468 			if (!allow_tail_call_in_subprogs(env))
19469 				prog->aux->stack_depth = MAX_BPF_STACK;
19470 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
19471 
19472 			/* mark bpf_tail_call as different opcode to avoid
19473 			 * conditional branch in the interpreter for every normal
19474 			 * call and to prevent accidental JITing by JIT compiler
19475 			 * that doesn't support bpf_tail_call yet
19476 			 */
19477 			insn->imm = 0;
19478 			insn->code = BPF_JMP | BPF_TAIL_CALL;
19479 
19480 			aux = &env->insn_aux_data[i + delta];
19481 			if (env->bpf_capable && !prog->blinding_requested &&
19482 			    prog->jit_requested &&
19483 			    !bpf_map_key_poisoned(aux) &&
19484 			    !bpf_map_ptr_poisoned(aux) &&
19485 			    !bpf_map_ptr_unpriv(aux)) {
19486 				struct bpf_jit_poke_descriptor desc = {
19487 					.reason = BPF_POKE_REASON_TAIL_CALL,
19488 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
19489 					.tail_call.key = bpf_map_key_immediate(aux),
19490 					.insn_idx = i + delta,
19491 				};
19492 
19493 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
19494 				if (ret < 0) {
19495 					verbose(env, "adding tail call poke descriptor failed\n");
19496 					return ret;
19497 				}
19498 
19499 				insn->imm = ret + 1;
19500 				continue;
19501 			}
19502 
19503 			if (!bpf_map_ptr_unpriv(aux))
19504 				continue;
19505 
19506 			/* instead of changing every JIT dealing with tail_call
19507 			 * emit two extra insns:
19508 			 * if (index >= max_entries) goto out;
19509 			 * index &= array->index_mask;
19510 			 * to avoid out-of-bounds cpu speculation
19511 			 */
19512 			if (bpf_map_ptr_poisoned(aux)) {
19513 				verbose(env, "tail_call abusing map_ptr\n");
19514 				return -EINVAL;
19515 			}
19516 
19517 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19518 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
19519 						  map_ptr->max_entries, 2);
19520 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
19521 						    container_of(map_ptr,
19522 								 struct bpf_array,
19523 								 map)->index_mask);
19524 			insn_buf[2] = *insn;
19525 			cnt = 3;
19526 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19527 			if (!new_prog)
19528 				return -ENOMEM;
19529 
19530 			delta    += cnt - 1;
19531 			env->prog = prog = new_prog;
19532 			insn      = new_prog->insnsi + i + delta;
19533 			continue;
19534 		}
19535 
19536 		if (insn->imm == BPF_FUNC_timer_set_callback) {
19537 			/* The verifier will process callback_fn as many times as necessary
19538 			 * with different maps and the register states prepared by
19539 			 * set_timer_callback_state will be accurate.
19540 			 *
19541 			 * The following use case is valid:
19542 			 *   map1 is shared by prog1, prog2, prog3.
19543 			 *   prog1 calls bpf_timer_init for some map1 elements
19544 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
19545 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
19546 			 *   prog3 calls bpf_timer_start for some map1 elements.
19547 			 *     Those that were not both bpf_timer_init-ed and
19548 			 *     bpf_timer_set_callback-ed will return -EINVAL.
19549 			 */
19550 			struct bpf_insn ld_addrs[2] = {
19551 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
19552 			};
19553 
19554 			insn_buf[0] = ld_addrs[0];
19555 			insn_buf[1] = ld_addrs[1];
19556 			insn_buf[2] = *insn;
19557 			cnt = 3;
19558 
19559 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19560 			if (!new_prog)
19561 				return -ENOMEM;
19562 
19563 			delta    += cnt - 1;
19564 			env->prog = prog = new_prog;
19565 			insn      = new_prog->insnsi + i + delta;
19566 			goto patch_call_imm;
19567 		}
19568 
19569 		if (is_storage_get_function(insn->imm)) {
19570 			if (!env->prog->aux->sleepable ||
19571 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
19572 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19573 			else
19574 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19575 			insn_buf[1] = *insn;
19576 			cnt = 2;
19577 
19578 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19579 			if (!new_prog)
19580 				return -ENOMEM;
19581 
19582 			delta += cnt - 1;
19583 			env->prog = prog = new_prog;
19584 			insn = new_prog->insnsi + i + delta;
19585 			goto patch_call_imm;
19586 		}
19587 
19588 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
19589 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
19590 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
19591 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
19592 			 */
19593 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
19594 			insn_buf[1] = *insn;
19595 			cnt = 2;
19596 
19597 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19598 			if (!new_prog)
19599 				return -ENOMEM;
19600 
19601 			delta += cnt - 1;
19602 			env->prog = prog = new_prog;
19603 			insn = new_prog->insnsi + i + delta;
19604 			goto patch_call_imm;
19605 		}
19606 
19607 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19608 		 * and other inlining handlers are currently limited to 64 bit
19609 		 * only.
19610 		 */
19611 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19612 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
19613 		     insn->imm == BPF_FUNC_map_update_elem ||
19614 		     insn->imm == BPF_FUNC_map_delete_elem ||
19615 		     insn->imm == BPF_FUNC_map_push_elem   ||
19616 		     insn->imm == BPF_FUNC_map_pop_elem    ||
19617 		     insn->imm == BPF_FUNC_map_peek_elem   ||
19618 		     insn->imm == BPF_FUNC_redirect_map    ||
19619 		     insn->imm == BPF_FUNC_for_each_map_elem ||
19620 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19621 			aux = &env->insn_aux_data[i + delta];
19622 			if (bpf_map_ptr_poisoned(aux))
19623 				goto patch_call_imm;
19624 
19625 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19626 			ops = map_ptr->ops;
19627 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
19628 			    ops->map_gen_lookup) {
19629 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19630 				if (cnt == -EOPNOTSUPP)
19631 					goto patch_map_ops_generic;
19632 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19633 					verbose(env, "bpf verifier is misconfigured\n");
19634 					return -EINVAL;
19635 				}
19636 
19637 				new_prog = bpf_patch_insn_data(env, i + delta,
19638 							       insn_buf, cnt);
19639 				if (!new_prog)
19640 					return -ENOMEM;
19641 
19642 				delta    += cnt - 1;
19643 				env->prog = prog = new_prog;
19644 				insn      = new_prog->insnsi + i + delta;
19645 				continue;
19646 			}
19647 
19648 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19649 				     (void *(*)(struct bpf_map *map, void *key))NULL));
19650 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19651 				     (long (*)(struct bpf_map *map, void *key))NULL));
19652 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19653 				     (long (*)(struct bpf_map *map, void *key, void *value,
19654 					      u64 flags))NULL));
19655 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19656 				     (long (*)(struct bpf_map *map, void *value,
19657 					      u64 flags))NULL));
19658 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19659 				     (long (*)(struct bpf_map *map, void *value))NULL));
19660 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19661 				     (long (*)(struct bpf_map *map, void *value))NULL));
19662 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
19663 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19664 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
19665 				     (long (*)(struct bpf_map *map,
19666 					      bpf_callback_t callback_fn,
19667 					      void *callback_ctx,
19668 					      u64 flags))NULL));
19669 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
19670 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
19671 
19672 patch_map_ops_generic:
19673 			switch (insn->imm) {
19674 			case BPF_FUNC_map_lookup_elem:
19675 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
19676 				continue;
19677 			case BPF_FUNC_map_update_elem:
19678 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
19679 				continue;
19680 			case BPF_FUNC_map_delete_elem:
19681 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
19682 				continue;
19683 			case BPF_FUNC_map_push_elem:
19684 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
19685 				continue;
19686 			case BPF_FUNC_map_pop_elem:
19687 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
19688 				continue;
19689 			case BPF_FUNC_map_peek_elem:
19690 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
19691 				continue;
19692 			case BPF_FUNC_redirect_map:
19693 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
19694 				continue;
19695 			case BPF_FUNC_for_each_map_elem:
19696 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
19697 				continue;
19698 			case BPF_FUNC_map_lookup_percpu_elem:
19699 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
19700 				continue;
19701 			}
19702 
19703 			goto patch_call_imm;
19704 		}
19705 
19706 		/* Implement bpf_jiffies64 inline. */
19707 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19708 		    insn->imm == BPF_FUNC_jiffies64) {
19709 			struct bpf_insn ld_jiffies_addr[2] = {
19710 				BPF_LD_IMM64(BPF_REG_0,
19711 					     (unsigned long)&jiffies),
19712 			};
19713 
19714 			insn_buf[0] = ld_jiffies_addr[0];
19715 			insn_buf[1] = ld_jiffies_addr[1];
19716 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
19717 						  BPF_REG_0, 0);
19718 			cnt = 3;
19719 
19720 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
19721 						       cnt);
19722 			if (!new_prog)
19723 				return -ENOMEM;
19724 
19725 			delta    += cnt - 1;
19726 			env->prog = prog = new_prog;
19727 			insn      = new_prog->insnsi + i + delta;
19728 			continue;
19729 		}
19730 
19731 		/* Implement bpf_get_func_arg inline. */
19732 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19733 		    insn->imm == BPF_FUNC_get_func_arg) {
19734 			/* Load nr_args from ctx - 8 */
19735 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19736 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
19737 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
19738 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
19739 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
19740 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19741 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
19742 			insn_buf[7] = BPF_JMP_A(1);
19743 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
19744 			cnt = 9;
19745 
19746 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19747 			if (!new_prog)
19748 				return -ENOMEM;
19749 
19750 			delta    += cnt - 1;
19751 			env->prog = prog = new_prog;
19752 			insn      = new_prog->insnsi + i + delta;
19753 			continue;
19754 		}
19755 
19756 		/* Implement bpf_get_func_ret inline. */
19757 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19758 		    insn->imm == BPF_FUNC_get_func_ret) {
19759 			if (eatype == BPF_TRACE_FEXIT ||
19760 			    eatype == BPF_MODIFY_RETURN) {
19761 				/* Load nr_args from ctx - 8 */
19762 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19763 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
19764 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
19765 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19766 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
19767 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
19768 				cnt = 6;
19769 			} else {
19770 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
19771 				cnt = 1;
19772 			}
19773 
19774 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19775 			if (!new_prog)
19776 				return -ENOMEM;
19777 
19778 			delta    += cnt - 1;
19779 			env->prog = prog = new_prog;
19780 			insn      = new_prog->insnsi + i + delta;
19781 			continue;
19782 		}
19783 
19784 		/* Implement get_func_arg_cnt inline. */
19785 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19786 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
19787 			/* Load nr_args from ctx - 8 */
19788 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19789 
19790 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19791 			if (!new_prog)
19792 				return -ENOMEM;
19793 
19794 			env->prog = prog = new_prog;
19795 			insn      = new_prog->insnsi + i + delta;
19796 			continue;
19797 		}
19798 
19799 		/* Implement bpf_get_func_ip inline. */
19800 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19801 		    insn->imm == BPF_FUNC_get_func_ip) {
19802 			/* Load IP address from ctx - 16 */
19803 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
19804 
19805 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19806 			if (!new_prog)
19807 				return -ENOMEM;
19808 
19809 			env->prog = prog = new_prog;
19810 			insn      = new_prog->insnsi + i + delta;
19811 			continue;
19812 		}
19813 
19814 patch_call_imm:
19815 		fn = env->ops->get_func_proto(insn->imm, env->prog);
19816 		/* all functions that have prototype and verifier allowed
19817 		 * programs to call them, must be real in-kernel functions
19818 		 */
19819 		if (!fn->func) {
19820 			verbose(env,
19821 				"kernel subsystem misconfigured func %s#%d\n",
19822 				func_id_name(insn->imm), insn->imm);
19823 			return -EFAULT;
19824 		}
19825 		insn->imm = fn->func - __bpf_call_base;
19826 	}
19827 
19828 	/* Since poke tab is now finalized, publish aux to tracker. */
19829 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19830 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19831 		if (!map_ptr->ops->map_poke_track ||
19832 		    !map_ptr->ops->map_poke_untrack ||
19833 		    !map_ptr->ops->map_poke_run) {
19834 			verbose(env, "bpf verifier is misconfigured\n");
19835 			return -EINVAL;
19836 		}
19837 
19838 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
19839 		if (ret < 0) {
19840 			verbose(env, "tracking tail call prog failed\n");
19841 			return ret;
19842 		}
19843 	}
19844 
19845 	sort_kfunc_descs_by_imm_off(env->prog);
19846 
19847 	return 0;
19848 }
19849 
19850 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
19851 					int position,
19852 					s32 stack_base,
19853 					u32 callback_subprogno,
19854 					u32 *cnt)
19855 {
19856 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
19857 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
19858 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
19859 	int reg_loop_max = BPF_REG_6;
19860 	int reg_loop_cnt = BPF_REG_7;
19861 	int reg_loop_ctx = BPF_REG_8;
19862 
19863 	struct bpf_prog *new_prog;
19864 	u32 callback_start;
19865 	u32 call_insn_offset;
19866 	s32 callback_offset;
19867 
19868 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
19869 	 * be careful to modify this code in sync.
19870 	 */
19871 	struct bpf_insn insn_buf[] = {
19872 		/* Return error and jump to the end of the patch if
19873 		 * expected number of iterations is too big.
19874 		 */
19875 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
19876 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
19877 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
19878 		/* spill R6, R7, R8 to use these as loop vars */
19879 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
19880 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
19881 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
19882 		/* initialize loop vars */
19883 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
19884 		BPF_MOV32_IMM(reg_loop_cnt, 0),
19885 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
19886 		/* loop header,
19887 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
19888 		 */
19889 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
19890 		/* callback call,
19891 		 * correct callback offset would be set after patching
19892 		 */
19893 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
19894 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
19895 		BPF_CALL_REL(0),
19896 		/* increment loop counter */
19897 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
19898 		/* jump to loop header if callback returned 0 */
19899 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
19900 		/* return value of bpf_loop,
19901 		 * set R0 to the number of iterations
19902 		 */
19903 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
19904 		/* restore original values of R6, R7, R8 */
19905 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
19906 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
19907 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
19908 	};
19909 
19910 	*cnt = ARRAY_SIZE(insn_buf);
19911 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
19912 	if (!new_prog)
19913 		return new_prog;
19914 
19915 	/* callback start is known only after patching */
19916 	callback_start = env->subprog_info[callback_subprogno].start;
19917 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
19918 	call_insn_offset = position + 12;
19919 	callback_offset = callback_start - call_insn_offset - 1;
19920 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
19921 
19922 	return new_prog;
19923 }
19924 
19925 static bool is_bpf_loop_call(struct bpf_insn *insn)
19926 {
19927 	return insn->code == (BPF_JMP | BPF_CALL) &&
19928 		insn->src_reg == 0 &&
19929 		insn->imm == BPF_FUNC_loop;
19930 }
19931 
19932 /* For all sub-programs in the program (including main) check
19933  * insn_aux_data to see if there are bpf_loop calls that require
19934  * inlining. If such calls are found the calls are replaced with a
19935  * sequence of instructions produced by `inline_bpf_loop` function and
19936  * subprog stack_depth is increased by the size of 3 registers.
19937  * This stack space is used to spill values of the R6, R7, R8.  These
19938  * registers are used to store the loop bound, counter and context
19939  * variables.
19940  */
19941 static int optimize_bpf_loop(struct bpf_verifier_env *env)
19942 {
19943 	struct bpf_subprog_info *subprogs = env->subprog_info;
19944 	int i, cur_subprog = 0, cnt, delta = 0;
19945 	struct bpf_insn *insn = env->prog->insnsi;
19946 	int insn_cnt = env->prog->len;
19947 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
19948 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19949 	u16 stack_depth_extra = 0;
19950 
19951 	for (i = 0; i < insn_cnt; i++, insn++) {
19952 		struct bpf_loop_inline_state *inline_state =
19953 			&env->insn_aux_data[i + delta].loop_inline_state;
19954 
19955 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
19956 			struct bpf_prog *new_prog;
19957 
19958 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
19959 			new_prog = inline_bpf_loop(env,
19960 						   i + delta,
19961 						   -(stack_depth + stack_depth_extra),
19962 						   inline_state->callback_subprogno,
19963 						   &cnt);
19964 			if (!new_prog)
19965 				return -ENOMEM;
19966 
19967 			delta     += cnt - 1;
19968 			env->prog  = new_prog;
19969 			insn       = new_prog->insnsi + i + delta;
19970 		}
19971 
19972 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19973 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
19974 			cur_subprog++;
19975 			stack_depth = subprogs[cur_subprog].stack_depth;
19976 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19977 			stack_depth_extra = 0;
19978 		}
19979 	}
19980 
19981 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19982 
19983 	return 0;
19984 }
19985 
19986 static void free_states(struct bpf_verifier_env *env)
19987 {
19988 	struct bpf_verifier_state_list *sl, *sln;
19989 	int i;
19990 
19991 	sl = env->free_list;
19992 	while (sl) {
19993 		sln = sl->next;
19994 		free_verifier_state(&sl->state, false);
19995 		kfree(sl);
19996 		sl = sln;
19997 	}
19998 	env->free_list = NULL;
19999 
20000 	if (!env->explored_states)
20001 		return;
20002 
20003 	for (i = 0; i < state_htab_size(env); i++) {
20004 		sl = env->explored_states[i];
20005 
20006 		while (sl) {
20007 			sln = sl->next;
20008 			free_verifier_state(&sl->state, false);
20009 			kfree(sl);
20010 			sl = sln;
20011 		}
20012 		env->explored_states[i] = NULL;
20013 	}
20014 }
20015 
20016 static int do_check_common(struct bpf_verifier_env *env, int subprog)
20017 {
20018 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
20019 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
20020 	struct bpf_verifier_state *state;
20021 	struct bpf_reg_state *regs;
20022 	int ret, i;
20023 
20024 	env->prev_linfo = NULL;
20025 	env->pass_cnt++;
20026 
20027 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
20028 	if (!state)
20029 		return -ENOMEM;
20030 	state->curframe = 0;
20031 	state->speculative = false;
20032 	state->branches = 1;
20033 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
20034 	if (!state->frame[0]) {
20035 		kfree(state);
20036 		return -ENOMEM;
20037 	}
20038 	env->cur_state = state;
20039 	init_func_state(env, state->frame[0],
20040 			BPF_MAIN_FUNC /* callsite */,
20041 			0 /* frameno */,
20042 			subprog);
20043 	state->first_insn_idx = env->subprog_info[subprog].start;
20044 	state->last_insn_idx = -1;
20045 
20046 
20047 	regs = state->frame[state->curframe]->regs;
20048 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
20049 		const char *sub_name = subprog_name(env, subprog);
20050 		struct bpf_subprog_arg_info *arg;
20051 		struct bpf_reg_state *reg;
20052 
20053 		verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
20054 		ret = btf_prepare_func_args(env, subprog);
20055 		if (ret)
20056 			goto out;
20057 
20058 		if (subprog_is_exc_cb(env, subprog)) {
20059 			state->frame[0]->in_exception_callback_fn = true;
20060 			/* We have already ensured that the callback returns an integer, just
20061 			 * like all global subprogs. We need to determine it only has a single
20062 			 * scalar argument.
20063 			 */
20064 			if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) {
20065 				verbose(env, "exception cb only supports single integer argument\n");
20066 				ret = -EINVAL;
20067 				goto out;
20068 			}
20069 		}
20070 		for (i = BPF_REG_1; i <= sub->arg_cnt; i++) {
20071 			arg = &sub->args[i - BPF_REG_1];
20072 			reg = &regs[i];
20073 
20074 			if (arg->arg_type == ARG_PTR_TO_CTX) {
20075 				reg->type = PTR_TO_CTX;
20076 				mark_reg_known_zero(env, regs, i);
20077 			} else if (arg->arg_type == ARG_ANYTHING) {
20078 				reg->type = SCALAR_VALUE;
20079 				mark_reg_unknown(env, regs, i);
20080 			} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
20081 				/* assume unspecial LOCAL dynptr type */
20082 				__mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen);
20083 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
20084 				reg->type = PTR_TO_MEM;
20085 				if (arg->arg_type & PTR_MAYBE_NULL)
20086 					reg->type |= PTR_MAYBE_NULL;
20087 				mark_reg_known_zero(env, regs, i);
20088 				reg->mem_size = arg->mem_size;
20089 				reg->id = ++env->id_gen;
20090 			} else {
20091 				WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n",
20092 					  i - BPF_REG_1, arg->arg_type);
20093 				ret = -EFAULT;
20094 				goto out;
20095 			}
20096 		}
20097 	} else {
20098 		/* if main BPF program has associated BTF info, validate that
20099 		 * it's matching expected signature, and otherwise mark BTF
20100 		 * info for main program as unreliable
20101 		 */
20102 		if (env->prog->aux->func_info_aux) {
20103 			ret = btf_prepare_func_args(env, 0);
20104 			if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX)
20105 				env->prog->aux->func_info_aux[0].unreliable = true;
20106 		}
20107 
20108 		/* 1st arg to a function */
20109 		regs[BPF_REG_1].type = PTR_TO_CTX;
20110 		mark_reg_known_zero(env, regs, BPF_REG_1);
20111 	}
20112 
20113 	ret = do_check(env);
20114 out:
20115 	/* check for NULL is necessary, since cur_state can be freed inside
20116 	 * do_check() under memory pressure.
20117 	 */
20118 	if (env->cur_state) {
20119 		free_verifier_state(env->cur_state, true);
20120 		env->cur_state = NULL;
20121 	}
20122 	while (!pop_stack(env, NULL, NULL, false));
20123 	if (!ret && pop_log)
20124 		bpf_vlog_reset(&env->log, 0);
20125 	free_states(env);
20126 	return ret;
20127 }
20128 
20129 /* Lazily verify all global functions based on their BTF, if they are called
20130  * from main BPF program or any of subprograms transitively.
20131  * BPF global subprogs called from dead code are not validated.
20132  * All callable global functions must pass verification.
20133  * Otherwise the whole program is rejected.
20134  * Consider:
20135  * int bar(int);
20136  * int foo(int f)
20137  * {
20138  *    return bar(f);
20139  * }
20140  * int bar(int b)
20141  * {
20142  *    ...
20143  * }
20144  * foo() will be verified first for R1=any_scalar_value. During verification it
20145  * will be assumed that bar() already verified successfully and call to bar()
20146  * from foo() will be checked for type match only. Later bar() will be verified
20147  * independently to check that it's safe for R1=any_scalar_value.
20148  */
20149 static int do_check_subprogs(struct bpf_verifier_env *env)
20150 {
20151 	struct bpf_prog_aux *aux = env->prog->aux;
20152 	struct bpf_func_info_aux *sub_aux;
20153 	int i, ret, new_cnt;
20154 
20155 	if (!aux->func_info)
20156 		return 0;
20157 
20158 	/* exception callback is presumed to be always called */
20159 	if (env->exception_callback_subprog)
20160 		subprog_aux(env, env->exception_callback_subprog)->called = true;
20161 
20162 again:
20163 	new_cnt = 0;
20164 	for (i = 1; i < env->subprog_cnt; i++) {
20165 		if (!subprog_is_global(env, i))
20166 			continue;
20167 
20168 		sub_aux = subprog_aux(env, i);
20169 		if (!sub_aux->called || sub_aux->verified)
20170 			continue;
20171 
20172 		env->insn_idx = env->subprog_info[i].start;
20173 		WARN_ON_ONCE(env->insn_idx == 0);
20174 		ret = do_check_common(env, i);
20175 		if (ret) {
20176 			return ret;
20177 		} else if (env->log.level & BPF_LOG_LEVEL) {
20178 			verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
20179 				i, subprog_name(env, i));
20180 		}
20181 
20182 		/* We verified new global subprog, it might have called some
20183 		 * more global subprogs that we haven't verified yet, so we
20184 		 * need to do another pass over subprogs to verify those.
20185 		 */
20186 		sub_aux->verified = true;
20187 		new_cnt++;
20188 	}
20189 
20190 	/* We can't loop forever as we verify at least one global subprog on
20191 	 * each pass.
20192 	 */
20193 	if (new_cnt)
20194 		goto again;
20195 
20196 	return 0;
20197 }
20198 
20199 static int do_check_main(struct bpf_verifier_env *env)
20200 {
20201 	int ret;
20202 
20203 	env->insn_idx = 0;
20204 	ret = do_check_common(env, 0);
20205 	if (!ret)
20206 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
20207 	return ret;
20208 }
20209 
20210 
20211 static void print_verification_stats(struct bpf_verifier_env *env)
20212 {
20213 	int i;
20214 
20215 	if (env->log.level & BPF_LOG_STATS) {
20216 		verbose(env, "verification time %lld usec\n",
20217 			div_u64(env->verification_time, 1000));
20218 		verbose(env, "stack depth ");
20219 		for (i = 0; i < env->subprog_cnt; i++) {
20220 			u32 depth = env->subprog_info[i].stack_depth;
20221 
20222 			verbose(env, "%d", depth);
20223 			if (i + 1 < env->subprog_cnt)
20224 				verbose(env, "+");
20225 		}
20226 		verbose(env, "\n");
20227 	}
20228 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
20229 		"total_states %d peak_states %d mark_read %d\n",
20230 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
20231 		env->max_states_per_insn, env->total_states,
20232 		env->peak_states, env->longest_mark_read_walk);
20233 }
20234 
20235 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
20236 {
20237 	const struct btf_type *t, *func_proto;
20238 	const struct bpf_struct_ops *st_ops;
20239 	const struct btf_member *member;
20240 	struct bpf_prog *prog = env->prog;
20241 	u32 btf_id, member_idx;
20242 	const char *mname;
20243 
20244 	if (!prog->gpl_compatible) {
20245 		verbose(env, "struct ops programs must have a GPL compatible license\n");
20246 		return -EINVAL;
20247 	}
20248 
20249 	btf_id = prog->aux->attach_btf_id;
20250 	st_ops = bpf_struct_ops_find(btf_id);
20251 	if (!st_ops) {
20252 		verbose(env, "attach_btf_id %u is not a supported struct\n",
20253 			btf_id);
20254 		return -ENOTSUPP;
20255 	}
20256 
20257 	t = st_ops->type;
20258 	member_idx = prog->expected_attach_type;
20259 	if (member_idx >= btf_type_vlen(t)) {
20260 		verbose(env, "attach to invalid member idx %u of struct %s\n",
20261 			member_idx, st_ops->name);
20262 		return -EINVAL;
20263 	}
20264 
20265 	member = &btf_type_member(t)[member_idx];
20266 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
20267 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
20268 					       NULL);
20269 	if (!func_proto) {
20270 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
20271 			mname, member_idx, st_ops->name);
20272 		return -EINVAL;
20273 	}
20274 
20275 	if (st_ops->check_member) {
20276 		int err = st_ops->check_member(t, member, prog);
20277 
20278 		if (err) {
20279 			verbose(env, "attach to unsupported member %s of struct %s\n",
20280 				mname, st_ops->name);
20281 			return err;
20282 		}
20283 	}
20284 
20285 	prog->aux->attach_func_proto = func_proto;
20286 	prog->aux->attach_func_name = mname;
20287 	env->ops = st_ops->verifier_ops;
20288 
20289 	return 0;
20290 }
20291 #define SECURITY_PREFIX "security_"
20292 
20293 static int check_attach_modify_return(unsigned long addr, const char *func_name)
20294 {
20295 	if (within_error_injection_list(addr) ||
20296 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
20297 		return 0;
20298 
20299 	return -EINVAL;
20300 }
20301 
20302 /* list of non-sleepable functions that are otherwise on
20303  * ALLOW_ERROR_INJECTION list
20304  */
20305 BTF_SET_START(btf_non_sleepable_error_inject)
20306 /* Three functions below can be called from sleepable and non-sleepable context.
20307  * Assume non-sleepable from bpf safety point of view.
20308  */
20309 BTF_ID(func, __filemap_add_folio)
20310 BTF_ID(func, should_fail_alloc_page)
20311 BTF_ID(func, should_failslab)
20312 BTF_SET_END(btf_non_sleepable_error_inject)
20313 
20314 static int check_non_sleepable_error_inject(u32 btf_id)
20315 {
20316 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
20317 }
20318 
20319 int bpf_check_attach_target(struct bpf_verifier_log *log,
20320 			    const struct bpf_prog *prog,
20321 			    const struct bpf_prog *tgt_prog,
20322 			    u32 btf_id,
20323 			    struct bpf_attach_target_info *tgt_info)
20324 {
20325 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
20326 	bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING;
20327 	const char prefix[] = "btf_trace_";
20328 	int ret = 0, subprog = -1, i;
20329 	const struct btf_type *t;
20330 	bool conservative = true;
20331 	const char *tname;
20332 	struct btf *btf;
20333 	long addr = 0;
20334 	struct module *mod = NULL;
20335 
20336 	if (!btf_id) {
20337 		bpf_log(log, "Tracing programs must provide btf_id\n");
20338 		return -EINVAL;
20339 	}
20340 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
20341 	if (!btf) {
20342 		bpf_log(log,
20343 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
20344 		return -EINVAL;
20345 	}
20346 	t = btf_type_by_id(btf, btf_id);
20347 	if (!t) {
20348 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
20349 		return -EINVAL;
20350 	}
20351 	tname = btf_name_by_offset(btf, t->name_off);
20352 	if (!tname) {
20353 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
20354 		return -EINVAL;
20355 	}
20356 	if (tgt_prog) {
20357 		struct bpf_prog_aux *aux = tgt_prog->aux;
20358 
20359 		if (bpf_prog_is_dev_bound(prog->aux) &&
20360 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
20361 			bpf_log(log, "Target program bound device mismatch");
20362 			return -EINVAL;
20363 		}
20364 
20365 		for (i = 0; i < aux->func_info_cnt; i++)
20366 			if (aux->func_info[i].type_id == btf_id) {
20367 				subprog = i;
20368 				break;
20369 			}
20370 		if (subprog == -1) {
20371 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
20372 			return -EINVAL;
20373 		}
20374 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
20375 			bpf_log(log,
20376 				"%s programs cannot attach to exception callback\n",
20377 				prog_extension ? "Extension" : "FENTRY/FEXIT");
20378 			return -EINVAL;
20379 		}
20380 		conservative = aux->func_info_aux[subprog].unreliable;
20381 		if (prog_extension) {
20382 			if (conservative) {
20383 				bpf_log(log,
20384 					"Cannot replace static functions\n");
20385 				return -EINVAL;
20386 			}
20387 			if (!prog->jit_requested) {
20388 				bpf_log(log,
20389 					"Extension programs should be JITed\n");
20390 				return -EINVAL;
20391 			}
20392 		}
20393 		if (!tgt_prog->jited) {
20394 			bpf_log(log, "Can attach to only JITed progs\n");
20395 			return -EINVAL;
20396 		}
20397 		if (prog_tracing) {
20398 			if (aux->attach_tracing_prog) {
20399 				/*
20400 				 * Target program is an fentry/fexit which is already attached
20401 				 * to another tracing program. More levels of nesting
20402 				 * attachment are not allowed.
20403 				 */
20404 				bpf_log(log, "Cannot nest tracing program attach more than once\n");
20405 				return -EINVAL;
20406 			}
20407 		} else if (tgt_prog->type == prog->type) {
20408 			/*
20409 			 * To avoid potential call chain cycles, prevent attaching of a
20410 			 * program extension to another extension. It's ok to attach
20411 			 * fentry/fexit to extension program.
20412 			 */
20413 			bpf_log(log, "Cannot recursively attach\n");
20414 			return -EINVAL;
20415 		}
20416 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
20417 		    prog_extension &&
20418 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
20419 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
20420 			/* Program extensions can extend all program types
20421 			 * except fentry/fexit. The reason is the following.
20422 			 * The fentry/fexit programs are used for performance
20423 			 * analysis, stats and can be attached to any program
20424 			 * type. When extension program is replacing XDP function
20425 			 * it is necessary to allow performance analysis of all
20426 			 * functions. Both original XDP program and its program
20427 			 * extension. Hence attaching fentry/fexit to
20428 			 * BPF_PROG_TYPE_EXT is allowed. If extending of
20429 			 * fentry/fexit was allowed it would be possible to create
20430 			 * long call chain fentry->extension->fentry->extension
20431 			 * beyond reasonable stack size. Hence extending fentry
20432 			 * is not allowed.
20433 			 */
20434 			bpf_log(log, "Cannot extend fentry/fexit\n");
20435 			return -EINVAL;
20436 		}
20437 	} else {
20438 		if (prog_extension) {
20439 			bpf_log(log, "Cannot replace kernel functions\n");
20440 			return -EINVAL;
20441 		}
20442 	}
20443 
20444 	switch (prog->expected_attach_type) {
20445 	case BPF_TRACE_RAW_TP:
20446 		if (tgt_prog) {
20447 			bpf_log(log,
20448 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
20449 			return -EINVAL;
20450 		}
20451 		if (!btf_type_is_typedef(t)) {
20452 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
20453 				btf_id);
20454 			return -EINVAL;
20455 		}
20456 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
20457 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
20458 				btf_id, tname);
20459 			return -EINVAL;
20460 		}
20461 		tname += sizeof(prefix) - 1;
20462 		t = btf_type_by_id(btf, t->type);
20463 		if (!btf_type_is_ptr(t))
20464 			/* should never happen in valid vmlinux build */
20465 			return -EINVAL;
20466 		t = btf_type_by_id(btf, t->type);
20467 		if (!btf_type_is_func_proto(t))
20468 			/* should never happen in valid vmlinux build */
20469 			return -EINVAL;
20470 
20471 		break;
20472 	case BPF_TRACE_ITER:
20473 		if (!btf_type_is_func(t)) {
20474 			bpf_log(log, "attach_btf_id %u is not a function\n",
20475 				btf_id);
20476 			return -EINVAL;
20477 		}
20478 		t = btf_type_by_id(btf, t->type);
20479 		if (!btf_type_is_func_proto(t))
20480 			return -EINVAL;
20481 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20482 		if (ret)
20483 			return ret;
20484 		break;
20485 	default:
20486 		if (!prog_extension)
20487 			return -EINVAL;
20488 		fallthrough;
20489 	case BPF_MODIFY_RETURN:
20490 	case BPF_LSM_MAC:
20491 	case BPF_LSM_CGROUP:
20492 	case BPF_TRACE_FENTRY:
20493 	case BPF_TRACE_FEXIT:
20494 		if (!btf_type_is_func(t)) {
20495 			bpf_log(log, "attach_btf_id %u is not a function\n",
20496 				btf_id);
20497 			return -EINVAL;
20498 		}
20499 		if (prog_extension &&
20500 		    btf_check_type_match(log, prog, btf, t))
20501 			return -EINVAL;
20502 		t = btf_type_by_id(btf, t->type);
20503 		if (!btf_type_is_func_proto(t))
20504 			return -EINVAL;
20505 
20506 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
20507 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
20508 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
20509 			return -EINVAL;
20510 
20511 		if (tgt_prog && conservative)
20512 			t = NULL;
20513 
20514 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20515 		if (ret < 0)
20516 			return ret;
20517 
20518 		if (tgt_prog) {
20519 			if (subprog == 0)
20520 				addr = (long) tgt_prog->bpf_func;
20521 			else
20522 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
20523 		} else {
20524 			if (btf_is_module(btf)) {
20525 				mod = btf_try_get_module(btf);
20526 				if (mod)
20527 					addr = find_kallsyms_symbol_value(mod, tname);
20528 				else
20529 					addr = 0;
20530 			} else {
20531 				addr = kallsyms_lookup_name(tname);
20532 			}
20533 			if (!addr) {
20534 				module_put(mod);
20535 				bpf_log(log,
20536 					"The address of function %s cannot be found\n",
20537 					tname);
20538 				return -ENOENT;
20539 			}
20540 		}
20541 
20542 		if (prog->aux->sleepable) {
20543 			ret = -EINVAL;
20544 			switch (prog->type) {
20545 			case BPF_PROG_TYPE_TRACING:
20546 
20547 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
20548 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
20549 				 */
20550 				if (!check_non_sleepable_error_inject(btf_id) &&
20551 				    within_error_injection_list(addr))
20552 					ret = 0;
20553 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
20554 				 * in the fmodret id set with the KF_SLEEPABLE flag.
20555 				 */
20556 				else {
20557 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
20558 										prog);
20559 
20560 					if (flags && (*flags & KF_SLEEPABLE))
20561 						ret = 0;
20562 				}
20563 				break;
20564 			case BPF_PROG_TYPE_LSM:
20565 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
20566 				 * Only some of them are sleepable.
20567 				 */
20568 				if (bpf_lsm_is_sleepable_hook(btf_id))
20569 					ret = 0;
20570 				break;
20571 			default:
20572 				break;
20573 			}
20574 			if (ret) {
20575 				module_put(mod);
20576 				bpf_log(log, "%s is not sleepable\n", tname);
20577 				return ret;
20578 			}
20579 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
20580 			if (tgt_prog) {
20581 				module_put(mod);
20582 				bpf_log(log, "can't modify return codes of BPF programs\n");
20583 				return -EINVAL;
20584 			}
20585 			ret = -EINVAL;
20586 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
20587 			    !check_attach_modify_return(addr, tname))
20588 				ret = 0;
20589 			if (ret) {
20590 				module_put(mod);
20591 				bpf_log(log, "%s() is not modifiable\n", tname);
20592 				return ret;
20593 			}
20594 		}
20595 
20596 		break;
20597 	}
20598 	tgt_info->tgt_addr = addr;
20599 	tgt_info->tgt_name = tname;
20600 	tgt_info->tgt_type = t;
20601 	tgt_info->tgt_mod = mod;
20602 	return 0;
20603 }
20604 
20605 BTF_SET_START(btf_id_deny)
20606 BTF_ID_UNUSED
20607 #ifdef CONFIG_SMP
20608 BTF_ID(func, migrate_disable)
20609 BTF_ID(func, migrate_enable)
20610 #endif
20611 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
20612 BTF_ID(func, rcu_read_unlock_strict)
20613 #endif
20614 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
20615 BTF_ID(func, preempt_count_add)
20616 BTF_ID(func, preempt_count_sub)
20617 #endif
20618 #ifdef CONFIG_PREEMPT_RCU
20619 BTF_ID(func, __rcu_read_lock)
20620 BTF_ID(func, __rcu_read_unlock)
20621 #endif
20622 BTF_SET_END(btf_id_deny)
20623 
20624 static bool can_be_sleepable(struct bpf_prog *prog)
20625 {
20626 	if (prog->type == BPF_PROG_TYPE_TRACING) {
20627 		switch (prog->expected_attach_type) {
20628 		case BPF_TRACE_FENTRY:
20629 		case BPF_TRACE_FEXIT:
20630 		case BPF_MODIFY_RETURN:
20631 		case BPF_TRACE_ITER:
20632 			return true;
20633 		default:
20634 			return false;
20635 		}
20636 	}
20637 	return prog->type == BPF_PROG_TYPE_LSM ||
20638 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
20639 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
20640 }
20641 
20642 static int check_attach_btf_id(struct bpf_verifier_env *env)
20643 {
20644 	struct bpf_prog *prog = env->prog;
20645 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
20646 	struct bpf_attach_target_info tgt_info = {};
20647 	u32 btf_id = prog->aux->attach_btf_id;
20648 	struct bpf_trampoline *tr;
20649 	int ret;
20650 	u64 key;
20651 
20652 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
20653 		if (prog->aux->sleepable)
20654 			/* attach_btf_id checked to be zero already */
20655 			return 0;
20656 		verbose(env, "Syscall programs can only be sleepable\n");
20657 		return -EINVAL;
20658 	}
20659 
20660 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
20661 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
20662 		return -EINVAL;
20663 	}
20664 
20665 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
20666 		return check_struct_ops_btf_id(env);
20667 
20668 	if (prog->type != BPF_PROG_TYPE_TRACING &&
20669 	    prog->type != BPF_PROG_TYPE_LSM &&
20670 	    prog->type != BPF_PROG_TYPE_EXT)
20671 		return 0;
20672 
20673 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
20674 	if (ret)
20675 		return ret;
20676 
20677 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
20678 		/* to make freplace equivalent to their targets, they need to
20679 		 * inherit env->ops and expected_attach_type for the rest of the
20680 		 * verification
20681 		 */
20682 		env->ops = bpf_verifier_ops[tgt_prog->type];
20683 		prog->expected_attach_type = tgt_prog->expected_attach_type;
20684 	}
20685 
20686 	/* store info about the attachment target that will be used later */
20687 	prog->aux->attach_func_proto = tgt_info.tgt_type;
20688 	prog->aux->attach_func_name = tgt_info.tgt_name;
20689 	prog->aux->mod = tgt_info.tgt_mod;
20690 
20691 	if (tgt_prog) {
20692 		prog->aux->saved_dst_prog_type = tgt_prog->type;
20693 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
20694 	}
20695 
20696 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
20697 		prog->aux->attach_btf_trace = true;
20698 		return 0;
20699 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
20700 		if (!bpf_iter_prog_supported(prog))
20701 			return -EINVAL;
20702 		return 0;
20703 	}
20704 
20705 	if (prog->type == BPF_PROG_TYPE_LSM) {
20706 		ret = bpf_lsm_verify_prog(&env->log, prog);
20707 		if (ret < 0)
20708 			return ret;
20709 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
20710 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
20711 		return -EINVAL;
20712 	}
20713 
20714 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
20715 	tr = bpf_trampoline_get(key, &tgt_info);
20716 	if (!tr)
20717 		return -ENOMEM;
20718 
20719 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
20720 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
20721 
20722 	prog->aux->dst_trampoline = tr;
20723 	return 0;
20724 }
20725 
20726 struct btf *bpf_get_btf_vmlinux(void)
20727 {
20728 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
20729 		mutex_lock(&bpf_verifier_lock);
20730 		if (!btf_vmlinux)
20731 			btf_vmlinux = btf_parse_vmlinux();
20732 		mutex_unlock(&bpf_verifier_lock);
20733 	}
20734 	return btf_vmlinux;
20735 }
20736 
20737 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
20738 {
20739 	u64 start_time = ktime_get_ns();
20740 	struct bpf_verifier_env *env;
20741 	int i, len, ret = -EINVAL, err;
20742 	u32 log_true_size;
20743 	bool is_priv;
20744 
20745 	/* no program is valid */
20746 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
20747 		return -EINVAL;
20748 
20749 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
20750 	 * allocate/free it every time bpf_check() is called
20751 	 */
20752 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
20753 	if (!env)
20754 		return -ENOMEM;
20755 
20756 	env->bt.env = env;
20757 
20758 	len = (*prog)->len;
20759 	env->insn_aux_data =
20760 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
20761 	ret = -ENOMEM;
20762 	if (!env->insn_aux_data)
20763 		goto err_free_env;
20764 	for (i = 0; i < len; i++)
20765 		env->insn_aux_data[i].orig_idx = i;
20766 	env->prog = *prog;
20767 	env->ops = bpf_verifier_ops[env->prog->type];
20768 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
20769 	is_priv = bpf_capable();
20770 
20771 	bpf_get_btf_vmlinux();
20772 
20773 	/* grab the mutex to protect few globals used by verifier */
20774 	if (!is_priv)
20775 		mutex_lock(&bpf_verifier_lock);
20776 
20777 	/* user could have requested verbose verifier output
20778 	 * and supplied buffer to store the verification trace
20779 	 */
20780 	ret = bpf_vlog_init(&env->log, attr->log_level,
20781 			    (char __user *) (unsigned long) attr->log_buf,
20782 			    attr->log_size);
20783 	if (ret)
20784 		goto err_unlock;
20785 
20786 	mark_verifier_state_clean(env);
20787 
20788 	if (IS_ERR(btf_vmlinux)) {
20789 		/* Either gcc or pahole or kernel are broken. */
20790 		verbose(env, "in-kernel BTF is malformed\n");
20791 		ret = PTR_ERR(btf_vmlinux);
20792 		goto skip_full_check;
20793 	}
20794 
20795 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
20796 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
20797 		env->strict_alignment = true;
20798 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
20799 		env->strict_alignment = false;
20800 
20801 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
20802 	env->allow_uninit_stack = bpf_allow_uninit_stack();
20803 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
20804 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
20805 	env->bpf_capable = bpf_capable();
20806 
20807 	if (is_priv)
20808 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
20809 	env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
20810 
20811 	env->explored_states = kvcalloc(state_htab_size(env),
20812 				       sizeof(struct bpf_verifier_state_list *),
20813 				       GFP_USER);
20814 	ret = -ENOMEM;
20815 	if (!env->explored_states)
20816 		goto skip_full_check;
20817 
20818 	ret = check_btf_info_early(env, attr, uattr);
20819 	if (ret < 0)
20820 		goto skip_full_check;
20821 
20822 	ret = add_subprog_and_kfunc(env);
20823 	if (ret < 0)
20824 		goto skip_full_check;
20825 
20826 	ret = check_subprogs(env);
20827 	if (ret < 0)
20828 		goto skip_full_check;
20829 
20830 	ret = check_btf_info(env, attr, uattr);
20831 	if (ret < 0)
20832 		goto skip_full_check;
20833 
20834 	ret = check_attach_btf_id(env);
20835 	if (ret)
20836 		goto skip_full_check;
20837 
20838 	ret = resolve_pseudo_ldimm64(env);
20839 	if (ret < 0)
20840 		goto skip_full_check;
20841 
20842 	if (bpf_prog_is_offloaded(env->prog->aux)) {
20843 		ret = bpf_prog_offload_verifier_prep(env->prog);
20844 		if (ret)
20845 			goto skip_full_check;
20846 	}
20847 
20848 	ret = check_cfg(env);
20849 	if (ret < 0)
20850 		goto skip_full_check;
20851 
20852 	ret = do_check_main(env);
20853 	ret = ret ?: do_check_subprogs(env);
20854 
20855 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
20856 		ret = bpf_prog_offload_finalize(env);
20857 
20858 skip_full_check:
20859 	kvfree(env->explored_states);
20860 
20861 	if (ret == 0)
20862 		ret = check_max_stack_depth(env);
20863 
20864 	/* instruction rewrites happen after this point */
20865 	if (ret == 0)
20866 		ret = optimize_bpf_loop(env);
20867 
20868 	if (is_priv) {
20869 		if (ret == 0)
20870 			opt_hard_wire_dead_code_branches(env);
20871 		if (ret == 0)
20872 			ret = opt_remove_dead_code(env);
20873 		if (ret == 0)
20874 			ret = opt_remove_nops(env);
20875 	} else {
20876 		if (ret == 0)
20877 			sanitize_dead_code(env);
20878 	}
20879 
20880 	if (ret == 0)
20881 		/* program is valid, convert *(u32*)(ctx + off) accesses */
20882 		ret = convert_ctx_accesses(env);
20883 
20884 	if (ret == 0)
20885 		ret = do_misc_fixups(env);
20886 
20887 	/* do 32-bit optimization after insn patching has done so those patched
20888 	 * insns could be handled correctly.
20889 	 */
20890 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
20891 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
20892 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
20893 								     : false;
20894 	}
20895 
20896 	if (ret == 0)
20897 		ret = fixup_call_args(env);
20898 
20899 	env->verification_time = ktime_get_ns() - start_time;
20900 	print_verification_stats(env);
20901 	env->prog->aux->verified_insns = env->insn_processed;
20902 
20903 	/* preserve original error even if log finalization is successful */
20904 	err = bpf_vlog_finalize(&env->log, &log_true_size);
20905 	if (err)
20906 		ret = err;
20907 
20908 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
20909 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
20910 				  &log_true_size, sizeof(log_true_size))) {
20911 		ret = -EFAULT;
20912 		goto err_release_maps;
20913 	}
20914 
20915 	if (ret)
20916 		goto err_release_maps;
20917 
20918 	if (env->used_map_cnt) {
20919 		/* if program passed verifier, update used_maps in bpf_prog_info */
20920 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
20921 							  sizeof(env->used_maps[0]),
20922 							  GFP_KERNEL);
20923 
20924 		if (!env->prog->aux->used_maps) {
20925 			ret = -ENOMEM;
20926 			goto err_release_maps;
20927 		}
20928 
20929 		memcpy(env->prog->aux->used_maps, env->used_maps,
20930 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
20931 		env->prog->aux->used_map_cnt = env->used_map_cnt;
20932 	}
20933 	if (env->used_btf_cnt) {
20934 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
20935 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
20936 							  sizeof(env->used_btfs[0]),
20937 							  GFP_KERNEL);
20938 		if (!env->prog->aux->used_btfs) {
20939 			ret = -ENOMEM;
20940 			goto err_release_maps;
20941 		}
20942 
20943 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
20944 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
20945 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
20946 	}
20947 	if (env->used_map_cnt || env->used_btf_cnt) {
20948 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
20949 		 * bpf_ld_imm64 instructions
20950 		 */
20951 		convert_pseudo_ld_imm64(env);
20952 	}
20953 
20954 	adjust_btf_func(env);
20955 
20956 err_release_maps:
20957 	if (!env->prog->aux->used_maps)
20958 		/* if we didn't copy map pointers into bpf_prog_info, release
20959 		 * them now. Otherwise free_used_maps() will release them.
20960 		 */
20961 		release_maps(env);
20962 	if (!env->prog->aux->used_btfs)
20963 		release_btfs(env);
20964 
20965 	/* extension progs temporarily inherit the attach_type of their targets
20966 	   for verification purposes, so set it back to zero before returning
20967 	 */
20968 	if (env->prog->type == BPF_PROG_TYPE_EXT)
20969 		env->prog->expected_attach_type = 0;
20970 
20971 	*prog = env->prog;
20972 err_unlock:
20973 	if (!is_priv)
20974 		mutex_unlock(&bpf_verifier_lock);
20975 	vfree(env->insn_aux_data);
20976 err_free_env:
20977 	kfree(env);
20978 	return ret;
20979 }
20980