xref: /linux/kernel/bpf/verifier.c (revision 7bb377107c72a40ab7505341f8626c8eb79a0cb7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 
25 #include "disasm.h"
26 
27 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
28 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
29 	[_id] = & _name ## _verifier_ops,
30 #define BPF_MAP_TYPE(_id, _ops)
31 #define BPF_LINK_TYPE(_id, _name)
32 #include <linux/bpf_types.h>
33 #undef BPF_PROG_TYPE
34 #undef BPF_MAP_TYPE
35 #undef BPF_LINK_TYPE
36 };
37 
38 /* bpf_check() is a static code analyzer that walks eBPF program
39  * instruction by instruction and updates register/stack state.
40  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41  *
42  * The first pass is depth-first-search to check that the program is a DAG.
43  * It rejects the following programs:
44  * - larger than BPF_MAXINSNS insns
45  * - if loop is present (detected via back-edge)
46  * - unreachable insns exist (shouldn't be a forest. program = one function)
47  * - out of bounds or malformed jumps
48  * The second pass is all possible path descent from the 1st insn.
49  * Since it's analyzing all pathes through the program, the length of the
50  * analysis is limited to 64k insn, which may be hit even if total number of
51  * insn is less then 4K, but there are too many branches that change stack/regs.
52  * Number of 'branches to be analyzed' is limited to 1k
53  *
54  * On entry to each instruction, each register has a type, and the instruction
55  * changes the types of the registers depending on instruction semantics.
56  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57  * copied to R1.
58  *
59  * All registers are 64-bit.
60  * R0 - return register
61  * R1-R5 argument passing registers
62  * R6-R9 callee saved registers
63  * R10 - frame pointer read-only
64  *
65  * At the start of BPF program the register R1 contains a pointer to bpf_context
66  * and has type PTR_TO_CTX.
67  *
68  * Verifier tracks arithmetic operations on pointers in case:
69  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71  * 1st insn copies R10 (which has FRAME_PTR) type into R1
72  * and 2nd arithmetic instruction is pattern matched to recognize
73  * that it wants to construct a pointer to some element within stack.
74  * So after 2nd insn, the register R1 has type PTR_TO_STACK
75  * (and -20 constant is saved for further stack bounds checking).
76  * Meaning that this reg is a pointer to stack plus known immediate constant.
77  *
78  * Most of the time the registers have SCALAR_VALUE type, which
79  * means the register has some value, but it's not a valid pointer.
80  * (like pointer plus pointer becomes SCALAR_VALUE type)
81  *
82  * When verifier sees load or store instructions the type of base register
83  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
84  * four pointer types recognized by check_mem_access() function.
85  *
86  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87  * and the range of [ptr, ptr + map's value_size) is accessible.
88  *
89  * registers used to pass values to function calls are checked against
90  * function argument constraints.
91  *
92  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93  * It means that the register type passed to this function must be
94  * PTR_TO_STACK and it will be used inside the function as
95  * 'pointer to map element key'
96  *
97  * For example the argument constraints for bpf_map_lookup_elem():
98  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99  *   .arg1_type = ARG_CONST_MAP_PTR,
100  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
101  *
102  * ret_type says that this function returns 'pointer to map elem value or null'
103  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104  * 2nd argument should be a pointer to stack, which will be used inside
105  * the helper function as a pointer to map element key.
106  *
107  * On the kernel side the helper function looks like:
108  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109  * {
110  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111  *    void *key = (void *) (unsigned long) r2;
112  *    void *value;
113  *
114  *    here kernel can access 'key' and 'map' pointers safely, knowing that
115  *    [key, key + map->key_size) bytes are valid and were initialized on
116  *    the stack of eBPF program.
117  * }
118  *
119  * Corresponding eBPF program may look like:
120  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
121  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
123  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124  * here verifier looks at prototype of map_lookup_elem() and sees:
125  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127  *
128  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130  * and were initialized prior to this call.
131  * If it's ok, then verifier allows this BPF_CALL insn and looks at
132  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134  * returns ether pointer to map value or NULL.
135  *
136  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137  * insn, the register holding that pointer in the true branch changes state to
138  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139  * branch. See check_cond_jmp_op().
140  *
141  * After the call R0 is set to return type of the function and registers R1-R5
142  * are set to NOT_INIT to indicate that they are no longer readable.
143  *
144  * The following reference types represent a potential reference to a kernel
145  * resource which, after first being allocated, must be checked and freed by
146  * the BPF program:
147  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
148  *
149  * When the verifier sees a helper call return a reference type, it allocates a
150  * pointer id for the reference and stores it in the current function state.
151  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
152  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
153  * passes through a NULL-check conditional. For the branch wherein the state is
154  * changed to CONST_IMM, the verifier releases the reference.
155  *
156  * For each helper function that allocates a reference, such as
157  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
158  * bpf_sk_release(). When a reference type passes into the release function,
159  * the verifier also releases the reference. If any unchecked or unreleased
160  * reference remains at the end of the program, the verifier rejects it.
161  */
162 
163 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
164 struct bpf_verifier_stack_elem {
165 	/* verifer state is 'st'
166 	 * before processing instruction 'insn_idx'
167 	 * and after processing instruction 'prev_insn_idx'
168 	 */
169 	struct bpf_verifier_state st;
170 	int insn_idx;
171 	int prev_insn_idx;
172 	struct bpf_verifier_stack_elem *next;
173 	/* length of verifier log at the time this state was pushed on stack */
174 	u32 log_pos;
175 };
176 
177 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
178 #define BPF_COMPLEXITY_LIMIT_STATES	64
179 
180 #define BPF_MAP_KEY_POISON	(1ULL << 63)
181 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
182 
183 #define BPF_MAP_PTR_UNPRIV	1UL
184 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
185 					  POISON_POINTER_DELTA))
186 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
187 
188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
189 {
190 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
191 }
192 
193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
194 {
195 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
196 }
197 
198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
199 			      const struct bpf_map *map, bool unpriv)
200 {
201 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
202 	unpriv |= bpf_map_ptr_unpriv(aux);
203 	aux->map_ptr_state = (unsigned long)map |
204 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
205 }
206 
207 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
208 {
209 	return aux->map_key_state & BPF_MAP_KEY_POISON;
210 }
211 
212 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
213 {
214 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
215 }
216 
217 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
218 {
219 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
220 }
221 
222 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
223 {
224 	bool poisoned = bpf_map_key_poisoned(aux);
225 
226 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
227 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
228 }
229 
230 struct bpf_call_arg_meta {
231 	struct bpf_map *map_ptr;
232 	bool raw_mode;
233 	bool pkt_access;
234 	int regno;
235 	int access_size;
236 	u64 msize_max_value;
237 	int ref_obj_id;
238 	int func_id;
239 	u32 btf_id;
240 };
241 
242 struct btf *btf_vmlinux;
243 
244 static DEFINE_MUTEX(bpf_verifier_lock);
245 
246 static const struct bpf_line_info *
247 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
248 {
249 	const struct bpf_line_info *linfo;
250 	const struct bpf_prog *prog;
251 	u32 i, nr_linfo;
252 
253 	prog = env->prog;
254 	nr_linfo = prog->aux->nr_linfo;
255 
256 	if (!nr_linfo || insn_off >= prog->len)
257 		return NULL;
258 
259 	linfo = prog->aux->linfo;
260 	for (i = 1; i < nr_linfo; i++)
261 		if (insn_off < linfo[i].insn_off)
262 			break;
263 
264 	return &linfo[i - 1];
265 }
266 
267 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
268 		       va_list args)
269 {
270 	unsigned int n;
271 
272 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
273 
274 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
275 		  "verifier log line truncated - local buffer too short\n");
276 
277 	n = min(log->len_total - log->len_used - 1, n);
278 	log->kbuf[n] = '\0';
279 
280 	if (log->level == BPF_LOG_KERNEL) {
281 		pr_err("BPF:%s\n", log->kbuf);
282 		return;
283 	}
284 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
285 		log->len_used += n;
286 	else
287 		log->ubuf = NULL;
288 }
289 
290 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
291 {
292 	char zero = 0;
293 
294 	if (!bpf_verifier_log_needed(log))
295 		return;
296 
297 	log->len_used = new_pos;
298 	if (put_user(zero, log->ubuf + new_pos))
299 		log->ubuf = NULL;
300 }
301 
302 /* log_level controls verbosity level of eBPF verifier.
303  * bpf_verifier_log_write() is used to dump the verification trace to the log,
304  * so the user can figure out what's wrong with the program
305  */
306 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
307 					   const char *fmt, ...)
308 {
309 	va_list args;
310 
311 	if (!bpf_verifier_log_needed(&env->log))
312 		return;
313 
314 	va_start(args, fmt);
315 	bpf_verifier_vlog(&env->log, fmt, args);
316 	va_end(args);
317 }
318 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
319 
320 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
321 {
322 	struct bpf_verifier_env *env = private_data;
323 	va_list args;
324 
325 	if (!bpf_verifier_log_needed(&env->log))
326 		return;
327 
328 	va_start(args, fmt);
329 	bpf_verifier_vlog(&env->log, fmt, args);
330 	va_end(args);
331 }
332 
333 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
334 			    const char *fmt, ...)
335 {
336 	va_list args;
337 
338 	if (!bpf_verifier_log_needed(log))
339 		return;
340 
341 	va_start(args, fmt);
342 	bpf_verifier_vlog(log, fmt, args);
343 	va_end(args);
344 }
345 
346 static const char *ltrim(const char *s)
347 {
348 	while (isspace(*s))
349 		s++;
350 
351 	return s;
352 }
353 
354 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
355 					 u32 insn_off,
356 					 const char *prefix_fmt, ...)
357 {
358 	const struct bpf_line_info *linfo;
359 
360 	if (!bpf_verifier_log_needed(&env->log))
361 		return;
362 
363 	linfo = find_linfo(env, insn_off);
364 	if (!linfo || linfo == env->prev_linfo)
365 		return;
366 
367 	if (prefix_fmt) {
368 		va_list args;
369 
370 		va_start(args, prefix_fmt);
371 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
372 		va_end(args);
373 	}
374 
375 	verbose(env, "%s\n",
376 		ltrim(btf_name_by_offset(env->prog->aux->btf,
377 					 linfo->line_off)));
378 
379 	env->prev_linfo = linfo;
380 }
381 
382 static bool type_is_pkt_pointer(enum bpf_reg_type type)
383 {
384 	return type == PTR_TO_PACKET ||
385 	       type == PTR_TO_PACKET_META;
386 }
387 
388 static bool type_is_sk_pointer(enum bpf_reg_type type)
389 {
390 	return type == PTR_TO_SOCKET ||
391 		type == PTR_TO_SOCK_COMMON ||
392 		type == PTR_TO_TCP_SOCK ||
393 		type == PTR_TO_XDP_SOCK;
394 }
395 
396 static bool reg_type_may_be_null(enum bpf_reg_type type)
397 {
398 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
399 	       type == PTR_TO_SOCKET_OR_NULL ||
400 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
401 	       type == PTR_TO_TCP_SOCK_OR_NULL;
402 }
403 
404 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
405 {
406 	return reg->type == PTR_TO_MAP_VALUE &&
407 		map_value_has_spin_lock(reg->map_ptr);
408 }
409 
410 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
411 {
412 	return type == PTR_TO_SOCKET ||
413 		type == PTR_TO_SOCKET_OR_NULL ||
414 		type == PTR_TO_TCP_SOCK ||
415 		type == PTR_TO_TCP_SOCK_OR_NULL;
416 }
417 
418 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
419 {
420 	return type == ARG_PTR_TO_SOCK_COMMON;
421 }
422 
423 /* Determine whether the function releases some resources allocated by another
424  * function call. The first reference type argument will be assumed to be
425  * released by release_reference().
426  */
427 static bool is_release_function(enum bpf_func_id func_id)
428 {
429 	return func_id == BPF_FUNC_sk_release;
430 }
431 
432 static bool may_be_acquire_function(enum bpf_func_id func_id)
433 {
434 	return func_id == BPF_FUNC_sk_lookup_tcp ||
435 		func_id == BPF_FUNC_sk_lookup_udp ||
436 		func_id == BPF_FUNC_skc_lookup_tcp ||
437 		func_id == BPF_FUNC_map_lookup_elem;
438 }
439 
440 static bool is_acquire_function(enum bpf_func_id func_id,
441 				const struct bpf_map *map)
442 {
443 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
444 
445 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
446 	    func_id == BPF_FUNC_sk_lookup_udp ||
447 	    func_id == BPF_FUNC_skc_lookup_tcp)
448 		return true;
449 
450 	if (func_id == BPF_FUNC_map_lookup_elem &&
451 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
452 	     map_type == BPF_MAP_TYPE_SOCKHASH))
453 		return true;
454 
455 	return false;
456 }
457 
458 static bool is_ptr_cast_function(enum bpf_func_id func_id)
459 {
460 	return func_id == BPF_FUNC_tcp_sock ||
461 		func_id == BPF_FUNC_sk_fullsock;
462 }
463 
464 /* string representation of 'enum bpf_reg_type' */
465 static const char * const reg_type_str[] = {
466 	[NOT_INIT]		= "?",
467 	[SCALAR_VALUE]		= "inv",
468 	[PTR_TO_CTX]		= "ctx",
469 	[CONST_PTR_TO_MAP]	= "map_ptr",
470 	[PTR_TO_MAP_VALUE]	= "map_value",
471 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
472 	[PTR_TO_STACK]		= "fp",
473 	[PTR_TO_PACKET]		= "pkt",
474 	[PTR_TO_PACKET_META]	= "pkt_meta",
475 	[PTR_TO_PACKET_END]	= "pkt_end",
476 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
477 	[PTR_TO_SOCKET]		= "sock",
478 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
479 	[PTR_TO_SOCK_COMMON]	= "sock_common",
480 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
481 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
482 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
483 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
484 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
485 	[PTR_TO_BTF_ID]		= "ptr_",
486 };
487 
488 static char slot_type_char[] = {
489 	[STACK_INVALID]	= '?',
490 	[STACK_SPILL]	= 'r',
491 	[STACK_MISC]	= 'm',
492 	[STACK_ZERO]	= '0',
493 };
494 
495 static void print_liveness(struct bpf_verifier_env *env,
496 			   enum bpf_reg_liveness live)
497 {
498 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
499 	    verbose(env, "_");
500 	if (live & REG_LIVE_READ)
501 		verbose(env, "r");
502 	if (live & REG_LIVE_WRITTEN)
503 		verbose(env, "w");
504 	if (live & REG_LIVE_DONE)
505 		verbose(env, "D");
506 }
507 
508 static struct bpf_func_state *func(struct bpf_verifier_env *env,
509 				   const struct bpf_reg_state *reg)
510 {
511 	struct bpf_verifier_state *cur = env->cur_state;
512 
513 	return cur->frame[reg->frameno];
514 }
515 
516 const char *kernel_type_name(u32 id)
517 {
518 	return btf_name_by_offset(btf_vmlinux,
519 				  btf_type_by_id(btf_vmlinux, id)->name_off);
520 }
521 
522 static void print_verifier_state(struct bpf_verifier_env *env,
523 				 const struct bpf_func_state *state)
524 {
525 	const struct bpf_reg_state *reg;
526 	enum bpf_reg_type t;
527 	int i;
528 
529 	if (state->frameno)
530 		verbose(env, " frame%d:", state->frameno);
531 	for (i = 0; i < MAX_BPF_REG; i++) {
532 		reg = &state->regs[i];
533 		t = reg->type;
534 		if (t == NOT_INIT)
535 			continue;
536 		verbose(env, " R%d", i);
537 		print_liveness(env, reg->live);
538 		verbose(env, "=%s", reg_type_str[t]);
539 		if (t == SCALAR_VALUE && reg->precise)
540 			verbose(env, "P");
541 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
542 		    tnum_is_const(reg->var_off)) {
543 			/* reg->off should be 0 for SCALAR_VALUE */
544 			verbose(env, "%lld", reg->var_off.value + reg->off);
545 		} else {
546 			if (t == PTR_TO_BTF_ID)
547 				verbose(env, "%s", kernel_type_name(reg->btf_id));
548 			verbose(env, "(id=%d", reg->id);
549 			if (reg_type_may_be_refcounted_or_null(t))
550 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
551 			if (t != SCALAR_VALUE)
552 				verbose(env, ",off=%d", reg->off);
553 			if (type_is_pkt_pointer(t))
554 				verbose(env, ",r=%d", reg->range);
555 			else if (t == CONST_PTR_TO_MAP ||
556 				 t == PTR_TO_MAP_VALUE ||
557 				 t == PTR_TO_MAP_VALUE_OR_NULL)
558 				verbose(env, ",ks=%d,vs=%d",
559 					reg->map_ptr->key_size,
560 					reg->map_ptr->value_size);
561 			if (tnum_is_const(reg->var_off)) {
562 				/* Typically an immediate SCALAR_VALUE, but
563 				 * could be a pointer whose offset is too big
564 				 * for reg->off
565 				 */
566 				verbose(env, ",imm=%llx", reg->var_off.value);
567 			} else {
568 				if (reg->smin_value != reg->umin_value &&
569 				    reg->smin_value != S64_MIN)
570 					verbose(env, ",smin_value=%lld",
571 						(long long)reg->smin_value);
572 				if (reg->smax_value != reg->umax_value &&
573 				    reg->smax_value != S64_MAX)
574 					verbose(env, ",smax_value=%lld",
575 						(long long)reg->smax_value);
576 				if (reg->umin_value != 0)
577 					verbose(env, ",umin_value=%llu",
578 						(unsigned long long)reg->umin_value);
579 				if (reg->umax_value != U64_MAX)
580 					verbose(env, ",umax_value=%llu",
581 						(unsigned long long)reg->umax_value);
582 				if (!tnum_is_unknown(reg->var_off)) {
583 					char tn_buf[48];
584 
585 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
586 					verbose(env, ",var_off=%s", tn_buf);
587 				}
588 				if (reg->s32_min_value != reg->smin_value &&
589 				    reg->s32_min_value != S32_MIN)
590 					verbose(env, ",s32_min_value=%d",
591 						(int)(reg->s32_min_value));
592 				if (reg->s32_max_value != reg->smax_value &&
593 				    reg->s32_max_value != S32_MAX)
594 					verbose(env, ",s32_max_value=%d",
595 						(int)(reg->s32_max_value));
596 				if (reg->u32_min_value != reg->umin_value &&
597 				    reg->u32_min_value != U32_MIN)
598 					verbose(env, ",u32_min_value=%d",
599 						(int)(reg->u32_min_value));
600 				if (reg->u32_max_value != reg->umax_value &&
601 				    reg->u32_max_value != U32_MAX)
602 					verbose(env, ",u32_max_value=%d",
603 						(int)(reg->u32_max_value));
604 			}
605 			verbose(env, ")");
606 		}
607 	}
608 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
609 		char types_buf[BPF_REG_SIZE + 1];
610 		bool valid = false;
611 		int j;
612 
613 		for (j = 0; j < BPF_REG_SIZE; j++) {
614 			if (state->stack[i].slot_type[j] != STACK_INVALID)
615 				valid = true;
616 			types_buf[j] = slot_type_char[
617 					state->stack[i].slot_type[j]];
618 		}
619 		types_buf[BPF_REG_SIZE] = 0;
620 		if (!valid)
621 			continue;
622 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
623 		print_liveness(env, state->stack[i].spilled_ptr.live);
624 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
625 			reg = &state->stack[i].spilled_ptr;
626 			t = reg->type;
627 			verbose(env, "=%s", reg_type_str[t]);
628 			if (t == SCALAR_VALUE && reg->precise)
629 				verbose(env, "P");
630 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
631 				verbose(env, "%lld", reg->var_off.value + reg->off);
632 		} else {
633 			verbose(env, "=%s", types_buf);
634 		}
635 	}
636 	if (state->acquired_refs && state->refs[0].id) {
637 		verbose(env, " refs=%d", state->refs[0].id);
638 		for (i = 1; i < state->acquired_refs; i++)
639 			if (state->refs[i].id)
640 				verbose(env, ",%d", state->refs[i].id);
641 	}
642 	verbose(env, "\n");
643 }
644 
645 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
646 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
647 			       const struct bpf_func_state *src)	\
648 {									\
649 	if (!src->FIELD)						\
650 		return 0;						\
651 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
652 		/* internal bug, make state invalid to reject the program */ \
653 		memset(dst, 0, sizeof(*dst));				\
654 		return -EFAULT;						\
655 	}								\
656 	memcpy(dst->FIELD, src->FIELD,					\
657 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
658 	return 0;							\
659 }
660 /* copy_reference_state() */
661 COPY_STATE_FN(reference, acquired_refs, refs, 1)
662 /* copy_stack_state() */
663 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
664 #undef COPY_STATE_FN
665 
666 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
667 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
668 				  bool copy_old)			\
669 {									\
670 	u32 old_size = state->COUNT;					\
671 	struct bpf_##NAME##_state *new_##FIELD;				\
672 	int slot = size / SIZE;						\
673 									\
674 	if (size <= old_size || !size) {				\
675 		if (copy_old)						\
676 			return 0;					\
677 		state->COUNT = slot * SIZE;				\
678 		if (!size && old_size) {				\
679 			kfree(state->FIELD);				\
680 			state->FIELD = NULL;				\
681 		}							\
682 		return 0;						\
683 	}								\
684 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
685 				    GFP_KERNEL);			\
686 	if (!new_##FIELD)						\
687 		return -ENOMEM;						\
688 	if (copy_old) {							\
689 		if (state->FIELD)					\
690 			memcpy(new_##FIELD, state->FIELD,		\
691 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
692 		memset(new_##FIELD + old_size / SIZE, 0,		\
693 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
694 	}								\
695 	state->COUNT = slot * SIZE;					\
696 	kfree(state->FIELD);						\
697 	state->FIELD = new_##FIELD;					\
698 	return 0;							\
699 }
700 /* realloc_reference_state() */
701 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
702 /* realloc_stack_state() */
703 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
704 #undef REALLOC_STATE_FN
705 
706 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
707  * make it consume minimal amount of memory. check_stack_write() access from
708  * the program calls into realloc_func_state() to grow the stack size.
709  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
710  * which realloc_stack_state() copies over. It points to previous
711  * bpf_verifier_state which is never reallocated.
712  */
713 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
714 			      int refs_size, bool copy_old)
715 {
716 	int err = realloc_reference_state(state, refs_size, copy_old);
717 	if (err)
718 		return err;
719 	return realloc_stack_state(state, stack_size, copy_old);
720 }
721 
722 /* Acquire a pointer id from the env and update the state->refs to include
723  * this new pointer reference.
724  * On success, returns a valid pointer id to associate with the register
725  * On failure, returns a negative errno.
726  */
727 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
728 {
729 	struct bpf_func_state *state = cur_func(env);
730 	int new_ofs = state->acquired_refs;
731 	int id, err;
732 
733 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
734 	if (err)
735 		return err;
736 	id = ++env->id_gen;
737 	state->refs[new_ofs].id = id;
738 	state->refs[new_ofs].insn_idx = insn_idx;
739 
740 	return id;
741 }
742 
743 /* release function corresponding to acquire_reference_state(). Idempotent. */
744 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
745 {
746 	int i, last_idx;
747 
748 	last_idx = state->acquired_refs - 1;
749 	for (i = 0; i < state->acquired_refs; i++) {
750 		if (state->refs[i].id == ptr_id) {
751 			if (last_idx && i != last_idx)
752 				memcpy(&state->refs[i], &state->refs[last_idx],
753 				       sizeof(*state->refs));
754 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
755 			state->acquired_refs--;
756 			return 0;
757 		}
758 	}
759 	return -EINVAL;
760 }
761 
762 static int transfer_reference_state(struct bpf_func_state *dst,
763 				    struct bpf_func_state *src)
764 {
765 	int err = realloc_reference_state(dst, src->acquired_refs, false);
766 	if (err)
767 		return err;
768 	err = copy_reference_state(dst, src);
769 	if (err)
770 		return err;
771 	return 0;
772 }
773 
774 static void free_func_state(struct bpf_func_state *state)
775 {
776 	if (!state)
777 		return;
778 	kfree(state->refs);
779 	kfree(state->stack);
780 	kfree(state);
781 }
782 
783 static void clear_jmp_history(struct bpf_verifier_state *state)
784 {
785 	kfree(state->jmp_history);
786 	state->jmp_history = NULL;
787 	state->jmp_history_cnt = 0;
788 }
789 
790 static void free_verifier_state(struct bpf_verifier_state *state,
791 				bool free_self)
792 {
793 	int i;
794 
795 	for (i = 0; i <= state->curframe; i++) {
796 		free_func_state(state->frame[i]);
797 		state->frame[i] = NULL;
798 	}
799 	clear_jmp_history(state);
800 	if (free_self)
801 		kfree(state);
802 }
803 
804 /* copy verifier state from src to dst growing dst stack space
805  * when necessary to accommodate larger src stack
806  */
807 static int copy_func_state(struct bpf_func_state *dst,
808 			   const struct bpf_func_state *src)
809 {
810 	int err;
811 
812 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
813 				 false);
814 	if (err)
815 		return err;
816 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
817 	err = copy_reference_state(dst, src);
818 	if (err)
819 		return err;
820 	return copy_stack_state(dst, src);
821 }
822 
823 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
824 			       const struct bpf_verifier_state *src)
825 {
826 	struct bpf_func_state *dst;
827 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
828 	int i, err;
829 
830 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
831 		kfree(dst_state->jmp_history);
832 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
833 		if (!dst_state->jmp_history)
834 			return -ENOMEM;
835 	}
836 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
837 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
838 
839 	/* if dst has more stack frames then src frame, free them */
840 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
841 		free_func_state(dst_state->frame[i]);
842 		dst_state->frame[i] = NULL;
843 	}
844 	dst_state->speculative = src->speculative;
845 	dst_state->curframe = src->curframe;
846 	dst_state->active_spin_lock = src->active_spin_lock;
847 	dst_state->branches = src->branches;
848 	dst_state->parent = src->parent;
849 	dst_state->first_insn_idx = src->first_insn_idx;
850 	dst_state->last_insn_idx = src->last_insn_idx;
851 	for (i = 0; i <= src->curframe; i++) {
852 		dst = dst_state->frame[i];
853 		if (!dst) {
854 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
855 			if (!dst)
856 				return -ENOMEM;
857 			dst_state->frame[i] = dst;
858 		}
859 		err = copy_func_state(dst, src->frame[i]);
860 		if (err)
861 			return err;
862 	}
863 	return 0;
864 }
865 
866 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
867 {
868 	while (st) {
869 		u32 br = --st->branches;
870 
871 		/* WARN_ON(br > 1) technically makes sense here,
872 		 * but see comment in push_stack(), hence:
873 		 */
874 		WARN_ONCE((int)br < 0,
875 			  "BUG update_branch_counts:branches_to_explore=%d\n",
876 			  br);
877 		if (br)
878 			break;
879 		st = st->parent;
880 	}
881 }
882 
883 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
884 		     int *insn_idx, bool pop_log)
885 {
886 	struct bpf_verifier_state *cur = env->cur_state;
887 	struct bpf_verifier_stack_elem *elem, *head = env->head;
888 	int err;
889 
890 	if (env->head == NULL)
891 		return -ENOENT;
892 
893 	if (cur) {
894 		err = copy_verifier_state(cur, &head->st);
895 		if (err)
896 			return err;
897 	}
898 	if (pop_log)
899 		bpf_vlog_reset(&env->log, head->log_pos);
900 	if (insn_idx)
901 		*insn_idx = head->insn_idx;
902 	if (prev_insn_idx)
903 		*prev_insn_idx = head->prev_insn_idx;
904 	elem = head->next;
905 	free_verifier_state(&head->st, false);
906 	kfree(head);
907 	env->head = elem;
908 	env->stack_size--;
909 	return 0;
910 }
911 
912 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
913 					     int insn_idx, int prev_insn_idx,
914 					     bool speculative)
915 {
916 	struct bpf_verifier_state *cur = env->cur_state;
917 	struct bpf_verifier_stack_elem *elem;
918 	int err;
919 
920 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
921 	if (!elem)
922 		goto err;
923 
924 	elem->insn_idx = insn_idx;
925 	elem->prev_insn_idx = prev_insn_idx;
926 	elem->next = env->head;
927 	elem->log_pos = env->log.len_used;
928 	env->head = elem;
929 	env->stack_size++;
930 	err = copy_verifier_state(&elem->st, cur);
931 	if (err)
932 		goto err;
933 	elem->st.speculative |= speculative;
934 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
935 		verbose(env, "The sequence of %d jumps is too complex.\n",
936 			env->stack_size);
937 		goto err;
938 	}
939 	if (elem->st.parent) {
940 		++elem->st.parent->branches;
941 		/* WARN_ON(branches > 2) technically makes sense here,
942 		 * but
943 		 * 1. speculative states will bump 'branches' for non-branch
944 		 * instructions
945 		 * 2. is_state_visited() heuristics may decide not to create
946 		 * a new state for a sequence of branches and all such current
947 		 * and cloned states will be pointing to a single parent state
948 		 * which might have large 'branches' count.
949 		 */
950 	}
951 	return &elem->st;
952 err:
953 	free_verifier_state(env->cur_state, true);
954 	env->cur_state = NULL;
955 	/* pop all elements and return */
956 	while (!pop_stack(env, NULL, NULL, false));
957 	return NULL;
958 }
959 
960 #define CALLER_SAVED_REGS 6
961 static const int caller_saved[CALLER_SAVED_REGS] = {
962 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
963 };
964 
965 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
966 				struct bpf_reg_state *reg);
967 
968 /* Mark the unknown part of a register (variable offset or scalar value) as
969  * known to have the value @imm.
970  */
971 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
972 {
973 	/* Clear id, off, and union(map_ptr, range) */
974 	memset(((u8 *)reg) + sizeof(reg->type), 0,
975 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
976 	reg->var_off = tnum_const(imm);
977 	reg->smin_value = (s64)imm;
978 	reg->smax_value = (s64)imm;
979 	reg->umin_value = imm;
980 	reg->umax_value = imm;
981 
982 	reg->s32_min_value = (s32)imm;
983 	reg->s32_max_value = (s32)imm;
984 	reg->u32_min_value = (u32)imm;
985 	reg->u32_max_value = (u32)imm;
986 }
987 
988 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
989 {
990 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
991 	reg->s32_min_value = (s32)imm;
992 	reg->s32_max_value = (s32)imm;
993 	reg->u32_min_value = (u32)imm;
994 	reg->u32_max_value = (u32)imm;
995 }
996 
997 /* Mark the 'variable offset' part of a register as zero.  This should be
998  * used only on registers holding a pointer type.
999  */
1000 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1001 {
1002 	__mark_reg_known(reg, 0);
1003 }
1004 
1005 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1006 {
1007 	__mark_reg_known(reg, 0);
1008 	reg->type = SCALAR_VALUE;
1009 }
1010 
1011 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1012 				struct bpf_reg_state *regs, u32 regno)
1013 {
1014 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1015 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1016 		/* Something bad happened, let's kill all regs */
1017 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1018 			__mark_reg_not_init(env, regs + regno);
1019 		return;
1020 	}
1021 	__mark_reg_known_zero(regs + regno);
1022 }
1023 
1024 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1025 {
1026 	return type_is_pkt_pointer(reg->type);
1027 }
1028 
1029 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1030 {
1031 	return reg_is_pkt_pointer(reg) ||
1032 	       reg->type == PTR_TO_PACKET_END;
1033 }
1034 
1035 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1036 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1037 				    enum bpf_reg_type which)
1038 {
1039 	/* The register can already have a range from prior markings.
1040 	 * This is fine as long as it hasn't been advanced from its
1041 	 * origin.
1042 	 */
1043 	return reg->type == which &&
1044 	       reg->id == 0 &&
1045 	       reg->off == 0 &&
1046 	       tnum_equals_const(reg->var_off, 0);
1047 }
1048 
1049 /* Reset the min/max bounds of a register */
1050 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1051 {
1052 	reg->smin_value = S64_MIN;
1053 	reg->smax_value = S64_MAX;
1054 	reg->umin_value = 0;
1055 	reg->umax_value = U64_MAX;
1056 
1057 	reg->s32_min_value = S32_MIN;
1058 	reg->s32_max_value = S32_MAX;
1059 	reg->u32_min_value = 0;
1060 	reg->u32_max_value = U32_MAX;
1061 }
1062 
1063 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1064 {
1065 	reg->smin_value = S64_MIN;
1066 	reg->smax_value = S64_MAX;
1067 	reg->umin_value = 0;
1068 	reg->umax_value = U64_MAX;
1069 }
1070 
1071 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1072 {
1073 	reg->s32_min_value = S32_MIN;
1074 	reg->s32_max_value = S32_MAX;
1075 	reg->u32_min_value = 0;
1076 	reg->u32_max_value = U32_MAX;
1077 }
1078 
1079 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1080 {
1081 	struct tnum var32_off = tnum_subreg(reg->var_off);
1082 
1083 	/* min signed is max(sign bit) | min(other bits) */
1084 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1085 			var32_off.value | (var32_off.mask & S32_MIN));
1086 	/* max signed is min(sign bit) | max(other bits) */
1087 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1088 			var32_off.value | (var32_off.mask & S32_MAX));
1089 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1090 	reg->u32_max_value = min(reg->u32_max_value,
1091 				 (u32)(var32_off.value | var32_off.mask));
1092 }
1093 
1094 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1095 {
1096 	/* min signed is max(sign bit) | min(other bits) */
1097 	reg->smin_value = max_t(s64, reg->smin_value,
1098 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1099 	/* max signed is min(sign bit) | max(other bits) */
1100 	reg->smax_value = min_t(s64, reg->smax_value,
1101 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1102 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1103 	reg->umax_value = min(reg->umax_value,
1104 			      reg->var_off.value | reg->var_off.mask);
1105 }
1106 
1107 static void __update_reg_bounds(struct bpf_reg_state *reg)
1108 {
1109 	__update_reg32_bounds(reg);
1110 	__update_reg64_bounds(reg);
1111 }
1112 
1113 /* Uses signed min/max values to inform unsigned, and vice-versa */
1114 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1115 {
1116 	/* Learn sign from signed bounds.
1117 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1118 	 * are the same, so combine.  This works even in the negative case, e.g.
1119 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1120 	 */
1121 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1122 		reg->s32_min_value = reg->u32_min_value =
1123 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1124 		reg->s32_max_value = reg->u32_max_value =
1125 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1126 		return;
1127 	}
1128 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1129 	 * boundary, so we must be careful.
1130 	 */
1131 	if ((s32)reg->u32_max_value >= 0) {
1132 		/* Positive.  We can't learn anything from the smin, but smax
1133 		 * is positive, hence safe.
1134 		 */
1135 		reg->s32_min_value = reg->u32_min_value;
1136 		reg->s32_max_value = reg->u32_max_value =
1137 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1138 	} else if ((s32)reg->u32_min_value < 0) {
1139 		/* Negative.  We can't learn anything from the smax, but smin
1140 		 * is negative, hence safe.
1141 		 */
1142 		reg->s32_min_value = reg->u32_min_value =
1143 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1144 		reg->s32_max_value = reg->u32_max_value;
1145 	}
1146 }
1147 
1148 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1149 {
1150 	/* Learn sign from signed bounds.
1151 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1152 	 * are the same, so combine.  This works even in the negative case, e.g.
1153 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1154 	 */
1155 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1156 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1157 							  reg->umin_value);
1158 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1159 							  reg->umax_value);
1160 		return;
1161 	}
1162 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1163 	 * boundary, so we must be careful.
1164 	 */
1165 	if ((s64)reg->umax_value >= 0) {
1166 		/* Positive.  We can't learn anything from the smin, but smax
1167 		 * is positive, hence safe.
1168 		 */
1169 		reg->smin_value = reg->umin_value;
1170 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1171 							  reg->umax_value);
1172 	} else if ((s64)reg->umin_value < 0) {
1173 		/* Negative.  We can't learn anything from the smax, but smin
1174 		 * is negative, hence safe.
1175 		 */
1176 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1177 							  reg->umin_value);
1178 		reg->smax_value = reg->umax_value;
1179 	}
1180 }
1181 
1182 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1183 {
1184 	__reg32_deduce_bounds(reg);
1185 	__reg64_deduce_bounds(reg);
1186 }
1187 
1188 /* Attempts to improve var_off based on unsigned min/max information */
1189 static void __reg_bound_offset(struct bpf_reg_state *reg)
1190 {
1191 	struct tnum var64_off = tnum_intersect(reg->var_off,
1192 					       tnum_range(reg->umin_value,
1193 							  reg->umax_value));
1194 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1195 						tnum_range(reg->u32_min_value,
1196 							   reg->u32_max_value));
1197 
1198 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1199 }
1200 
1201 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1202 {
1203 	reg->umin_value = reg->u32_min_value;
1204 	reg->umax_value = reg->u32_max_value;
1205 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1206 	 * but must be positive otherwise set to worse case bounds
1207 	 * and refine later from tnum.
1208 	 */
1209 	if (reg->s32_min_value > 0)
1210 		reg->smin_value = reg->s32_min_value;
1211 	else
1212 		reg->smin_value = 0;
1213 	if (reg->s32_max_value > 0)
1214 		reg->smax_value = reg->s32_max_value;
1215 	else
1216 		reg->smax_value = U32_MAX;
1217 }
1218 
1219 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1220 {
1221 	/* special case when 64-bit register has upper 32-bit register
1222 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1223 	 * allowing us to use 32-bit bounds directly,
1224 	 */
1225 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1226 		__reg_assign_32_into_64(reg);
1227 	} else {
1228 		/* Otherwise the best we can do is push lower 32bit known and
1229 		 * unknown bits into register (var_off set from jmp logic)
1230 		 * then learn as much as possible from the 64-bit tnum
1231 		 * known and unknown bits. The previous smin/smax bounds are
1232 		 * invalid here because of jmp32 compare so mark them unknown
1233 		 * so they do not impact tnum bounds calculation.
1234 		 */
1235 		__mark_reg64_unbounded(reg);
1236 		__update_reg_bounds(reg);
1237 	}
1238 
1239 	/* Intersecting with the old var_off might have improved our bounds
1240 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1241 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1242 	 */
1243 	__reg_deduce_bounds(reg);
1244 	__reg_bound_offset(reg);
1245 	__update_reg_bounds(reg);
1246 }
1247 
1248 static bool __reg64_bound_s32(s64 a)
1249 {
1250 	if (a > S32_MIN && a < S32_MAX)
1251 		return true;
1252 	return false;
1253 }
1254 
1255 static bool __reg64_bound_u32(u64 a)
1256 {
1257 	if (a > U32_MIN && a < U32_MAX)
1258 		return true;
1259 	return false;
1260 }
1261 
1262 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1263 {
1264 	__mark_reg32_unbounded(reg);
1265 
1266 	if (__reg64_bound_s32(reg->smin_value))
1267 		reg->s32_min_value = (s32)reg->smin_value;
1268 	if (__reg64_bound_s32(reg->smax_value))
1269 		reg->s32_max_value = (s32)reg->smax_value;
1270 	if (__reg64_bound_u32(reg->umin_value))
1271 		reg->u32_min_value = (u32)reg->umin_value;
1272 	if (__reg64_bound_u32(reg->umax_value))
1273 		reg->u32_max_value = (u32)reg->umax_value;
1274 
1275 	/* Intersecting with the old var_off might have improved our bounds
1276 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1277 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1278 	 */
1279 	__reg_deduce_bounds(reg);
1280 	__reg_bound_offset(reg);
1281 	__update_reg_bounds(reg);
1282 }
1283 
1284 /* Mark a register as having a completely unknown (scalar) value. */
1285 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1286 			       struct bpf_reg_state *reg)
1287 {
1288 	/*
1289 	 * Clear type, id, off, and union(map_ptr, range) and
1290 	 * padding between 'type' and union
1291 	 */
1292 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1293 	reg->type = SCALAR_VALUE;
1294 	reg->var_off = tnum_unknown;
1295 	reg->frameno = 0;
1296 	reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks;
1297 	__mark_reg_unbounded(reg);
1298 }
1299 
1300 static void mark_reg_unknown(struct bpf_verifier_env *env,
1301 			     struct bpf_reg_state *regs, u32 regno)
1302 {
1303 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1304 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1305 		/* Something bad happened, let's kill all regs except FP */
1306 		for (regno = 0; regno < BPF_REG_FP; regno++)
1307 			__mark_reg_not_init(env, regs + regno);
1308 		return;
1309 	}
1310 	__mark_reg_unknown(env, regs + regno);
1311 }
1312 
1313 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1314 				struct bpf_reg_state *reg)
1315 {
1316 	__mark_reg_unknown(env, reg);
1317 	reg->type = NOT_INIT;
1318 }
1319 
1320 static void mark_reg_not_init(struct bpf_verifier_env *env,
1321 			      struct bpf_reg_state *regs, u32 regno)
1322 {
1323 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1324 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1325 		/* Something bad happened, let's kill all regs except FP */
1326 		for (regno = 0; regno < BPF_REG_FP; regno++)
1327 			__mark_reg_not_init(env, regs + regno);
1328 		return;
1329 	}
1330 	__mark_reg_not_init(env, regs + regno);
1331 }
1332 
1333 #define DEF_NOT_SUBREG	(0)
1334 static void init_reg_state(struct bpf_verifier_env *env,
1335 			   struct bpf_func_state *state)
1336 {
1337 	struct bpf_reg_state *regs = state->regs;
1338 	int i;
1339 
1340 	for (i = 0; i < MAX_BPF_REG; i++) {
1341 		mark_reg_not_init(env, regs, i);
1342 		regs[i].live = REG_LIVE_NONE;
1343 		regs[i].parent = NULL;
1344 		regs[i].subreg_def = DEF_NOT_SUBREG;
1345 	}
1346 
1347 	/* frame pointer */
1348 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1349 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1350 	regs[BPF_REG_FP].frameno = state->frameno;
1351 }
1352 
1353 #define BPF_MAIN_FUNC (-1)
1354 static void init_func_state(struct bpf_verifier_env *env,
1355 			    struct bpf_func_state *state,
1356 			    int callsite, int frameno, int subprogno)
1357 {
1358 	state->callsite = callsite;
1359 	state->frameno = frameno;
1360 	state->subprogno = subprogno;
1361 	init_reg_state(env, state);
1362 }
1363 
1364 enum reg_arg_type {
1365 	SRC_OP,		/* register is used as source operand */
1366 	DST_OP,		/* register is used as destination operand */
1367 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1368 };
1369 
1370 static int cmp_subprogs(const void *a, const void *b)
1371 {
1372 	return ((struct bpf_subprog_info *)a)->start -
1373 	       ((struct bpf_subprog_info *)b)->start;
1374 }
1375 
1376 static int find_subprog(struct bpf_verifier_env *env, int off)
1377 {
1378 	struct bpf_subprog_info *p;
1379 
1380 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1381 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1382 	if (!p)
1383 		return -ENOENT;
1384 	return p - env->subprog_info;
1385 
1386 }
1387 
1388 static int add_subprog(struct bpf_verifier_env *env, int off)
1389 {
1390 	int insn_cnt = env->prog->len;
1391 	int ret;
1392 
1393 	if (off >= insn_cnt || off < 0) {
1394 		verbose(env, "call to invalid destination\n");
1395 		return -EINVAL;
1396 	}
1397 	ret = find_subprog(env, off);
1398 	if (ret >= 0)
1399 		return 0;
1400 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1401 		verbose(env, "too many subprograms\n");
1402 		return -E2BIG;
1403 	}
1404 	env->subprog_info[env->subprog_cnt++].start = off;
1405 	sort(env->subprog_info, env->subprog_cnt,
1406 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1407 	return 0;
1408 }
1409 
1410 static int check_subprogs(struct bpf_verifier_env *env)
1411 {
1412 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1413 	struct bpf_subprog_info *subprog = env->subprog_info;
1414 	struct bpf_insn *insn = env->prog->insnsi;
1415 	int insn_cnt = env->prog->len;
1416 
1417 	/* Add entry function. */
1418 	ret = add_subprog(env, 0);
1419 	if (ret < 0)
1420 		return ret;
1421 
1422 	/* determine subprog starts. The end is one before the next starts */
1423 	for (i = 0; i < insn_cnt; i++) {
1424 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1425 			continue;
1426 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1427 			continue;
1428 		if (!env->allow_ptr_leaks) {
1429 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1430 			return -EPERM;
1431 		}
1432 		ret = add_subprog(env, i + insn[i].imm + 1);
1433 		if (ret < 0)
1434 			return ret;
1435 	}
1436 
1437 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1438 	 * logic. 'subprog_cnt' should not be increased.
1439 	 */
1440 	subprog[env->subprog_cnt].start = insn_cnt;
1441 
1442 	if (env->log.level & BPF_LOG_LEVEL2)
1443 		for (i = 0; i < env->subprog_cnt; i++)
1444 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1445 
1446 	/* now check that all jumps are within the same subprog */
1447 	subprog_start = subprog[cur_subprog].start;
1448 	subprog_end = subprog[cur_subprog + 1].start;
1449 	for (i = 0; i < insn_cnt; i++) {
1450 		u8 code = insn[i].code;
1451 
1452 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1453 			goto next;
1454 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1455 			goto next;
1456 		off = i + insn[i].off + 1;
1457 		if (off < subprog_start || off >= subprog_end) {
1458 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1459 			return -EINVAL;
1460 		}
1461 next:
1462 		if (i == subprog_end - 1) {
1463 			/* to avoid fall-through from one subprog into another
1464 			 * the last insn of the subprog should be either exit
1465 			 * or unconditional jump back
1466 			 */
1467 			if (code != (BPF_JMP | BPF_EXIT) &&
1468 			    code != (BPF_JMP | BPF_JA)) {
1469 				verbose(env, "last insn is not an exit or jmp\n");
1470 				return -EINVAL;
1471 			}
1472 			subprog_start = subprog_end;
1473 			cur_subprog++;
1474 			if (cur_subprog < env->subprog_cnt)
1475 				subprog_end = subprog[cur_subprog + 1].start;
1476 		}
1477 	}
1478 	return 0;
1479 }
1480 
1481 /* Parentage chain of this register (or stack slot) should take care of all
1482  * issues like callee-saved registers, stack slot allocation time, etc.
1483  */
1484 static int mark_reg_read(struct bpf_verifier_env *env,
1485 			 const struct bpf_reg_state *state,
1486 			 struct bpf_reg_state *parent, u8 flag)
1487 {
1488 	bool writes = parent == state->parent; /* Observe write marks */
1489 	int cnt = 0;
1490 
1491 	while (parent) {
1492 		/* if read wasn't screened by an earlier write ... */
1493 		if (writes && state->live & REG_LIVE_WRITTEN)
1494 			break;
1495 		if (parent->live & REG_LIVE_DONE) {
1496 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1497 				reg_type_str[parent->type],
1498 				parent->var_off.value, parent->off);
1499 			return -EFAULT;
1500 		}
1501 		/* The first condition is more likely to be true than the
1502 		 * second, checked it first.
1503 		 */
1504 		if ((parent->live & REG_LIVE_READ) == flag ||
1505 		    parent->live & REG_LIVE_READ64)
1506 			/* The parentage chain never changes and
1507 			 * this parent was already marked as LIVE_READ.
1508 			 * There is no need to keep walking the chain again and
1509 			 * keep re-marking all parents as LIVE_READ.
1510 			 * This case happens when the same register is read
1511 			 * multiple times without writes into it in-between.
1512 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1513 			 * then no need to set the weak REG_LIVE_READ32.
1514 			 */
1515 			break;
1516 		/* ... then we depend on parent's value */
1517 		parent->live |= flag;
1518 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1519 		if (flag == REG_LIVE_READ64)
1520 			parent->live &= ~REG_LIVE_READ32;
1521 		state = parent;
1522 		parent = state->parent;
1523 		writes = true;
1524 		cnt++;
1525 	}
1526 
1527 	if (env->longest_mark_read_walk < cnt)
1528 		env->longest_mark_read_walk = cnt;
1529 	return 0;
1530 }
1531 
1532 /* This function is supposed to be used by the following 32-bit optimization
1533  * code only. It returns TRUE if the source or destination register operates
1534  * on 64-bit, otherwise return FALSE.
1535  */
1536 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1537 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1538 {
1539 	u8 code, class, op;
1540 
1541 	code = insn->code;
1542 	class = BPF_CLASS(code);
1543 	op = BPF_OP(code);
1544 	if (class == BPF_JMP) {
1545 		/* BPF_EXIT for "main" will reach here. Return TRUE
1546 		 * conservatively.
1547 		 */
1548 		if (op == BPF_EXIT)
1549 			return true;
1550 		if (op == BPF_CALL) {
1551 			/* BPF to BPF call will reach here because of marking
1552 			 * caller saved clobber with DST_OP_NO_MARK for which we
1553 			 * don't care the register def because they are anyway
1554 			 * marked as NOT_INIT already.
1555 			 */
1556 			if (insn->src_reg == BPF_PSEUDO_CALL)
1557 				return false;
1558 			/* Helper call will reach here because of arg type
1559 			 * check, conservatively return TRUE.
1560 			 */
1561 			if (t == SRC_OP)
1562 				return true;
1563 
1564 			return false;
1565 		}
1566 	}
1567 
1568 	if (class == BPF_ALU64 || class == BPF_JMP ||
1569 	    /* BPF_END always use BPF_ALU class. */
1570 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1571 		return true;
1572 
1573 	if (class == BPF_ALU || class == BPF_JMP32)
1574 		return false;
1575 
1576 	if (class == BPF_LDX) {
1577 		if (t != SRC_OP)
1578 			return BPF_SIZE(code) == BPF_DW;
1579 		/* LDX source must be ptr. */
1580 		return true;
1581 	}
1582 
1583 	if (class == BPF_STX) {
1584 		if (reg->type != SCALAR_VALUE)
1585 			return true;
1586 		return BPF_SIZE(code) == BPF_DW;
1587 	}
1588 
1589 	if (class == BPF_LD) {
1590 		u8 mode = BPF_MODE(code);
1591 
1592 		/* LD_IMM64 */
1593 		if (mode == BPF_IMM)
1594 			return true;
1595 
1596 		/* Both LD_IND and LD_ABS return 32-bit data. */
1597 		if (t != SRC_OP)
1598 			return  false;
1599 
1600 		/* Implicit ctx ptr. */
1601 		if (regno == BPF_REG_6)
1602 			return true;
1603 
1604 		/* Explicit source could be any width. */
1605 		return true;
1606 	}
1607 
1608 	if (class == BPF_ST)
1609 		/* The only source register for BPF_ST is a ptr. */
1610 		return true;
1611 
1612 	/* Conservatively return true at default. */
1613 	return true;
1614 }
1615 
1616 /* Return TRUE if INSN doesn't have explicit value define. */
1617 static bool insn_no_def(struct bpf_insn *insn)
1618 {
1619 	u8 class = BPF_CLASS(insn->code);
1620 
1621 	return (class == BPF_JMP || class == BPF_JMP32 ||
1622 		class == BPF_STX || class == BPF_ST);
1623 }
1624 
1625 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1626 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1627 {
1628 	if (insn_no_def(insn))
1629 		return false;
1630 
1631 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1632 }
1633 
1634 static void mark_insn_zext(struct bpf_verifier_env *env,
1635 			   struct bpf_reg_state *reg)
1636 {
1637 	s32 def_idx = reg->subreg_def;
1638 
1639 	if (def_idx == DEF_NOT_SUBREG)
1640 		return;
1641 
1642 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1643 	/* The dst will be zero extended, so won't be sub-register anymore. */
1644 	reg->subreg_def = DEF_NOT_SUBREG;
1645 }
1646 
1647 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1648 			 enum reg_arg_type t)
1649 {
1650 	struct bpf_verifier_state *vstate = env->cur_state;
1651 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1652 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1653 	struct bpf_reg_state *reg, *regs = state->regs;
1654 	bool rw64;
1655 
1656 	if (regno >= MAX_BPF_REG) {
1657 		verbose(env, "R%d is invalid\n", regno);
1658 		return -EINVAL;
1659 	}
1660 
1661 	reg = &regs[regno];
1662 	rw64 = is_reg64(env, insn, regno, reg, t);
1663 	if (t == SRC_OP) {
1664 		/* check whether register used as source operand can be read */
1665 		if (reg->type == NOT_INIT) {
1666 			verbose(env, "R%d !read_ok\n", regno);
1667 			return -EACCES;
1668 		}
1669 		/* We don't need to worry about FP liveness because it's read-only */
1670 		if (regno == BPF_REG_FP)
1671 			return 0;
1672 
1673 		if (rw64)
1674 			mark_insn_zext(env, reg);
1675 
1676 		return mark_reg_read(env, reg, reg->parent,
1677 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1678 	} else {
1679 		/* check whether register used as dest operand can be written to */
1680 		if (regno == BPF_REG_FP) {
1681 			verbose(env, "frame pointer is read only\n");
1682 			return -EACCES;
1683 		}
1684 		reg->live |= REG_LIVE_WRITTEN;
1685 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1686 		if (t == DST_OP)
1687 			mark_reg_unknown(env, regs, regno);
1688 	}
1689 	return 0;
1690 }
1691 
1692 /* for any branch, call, exit record the history of jmps in the given state */
1693 static int push_jmp_history(struct bpf_verifier_env *env,
1694 			    struct bpf_verifier_state *cur)
1695 {
1696 	u32 cnt = cur->jmp_history_cnt;
1697 	struct bpf_idx_pair *p;
1698 
1699 	cnt++;
1700 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1701 	if (!p)
1702 		return -ENOMEM;
1703 	p[cnt - 1].idx = env->insn_idx;
1704 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1705 	cur->jmp_history = p;
1706 	cur->jmp_history_cnt = cnt;
1707 	return 0;
1708 }
1709 
1710 /* Backtrack one insn at a time. If idx is not at the top of recorded
1711  * history then previous instruction came from straight line execution.
1712  */
1713 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1714 			     u32 *history)
1715 {
1716 	u32 cnt = *history;
1717 
1718 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1719 		i = st->jmp_history[cnt - 1].prev_idx;
1720 		(*history)--;
1721 	} else {
1722 		i--;
1723 	}
1724 	return i;
1725 }
1726 
1727 /* For given verifier state backtrack_insn() is called from the last insn to
1728  * the first insn. Its purpose is to compute a bitmask of registers and
1729  * stack slots that needs precision in the parent verifier state.
1730  */
1731 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1732 			  u32 *reg_mask, u64 *stack_mask)
1733 {
1734 	const struct bpf_insn_cbs cbs = {
1735 		.cb_print	= verbose,
1736 		.private_data	= env,
1737 	};
1738 	struct bpf_insn *insn = env->prog->insnsi + idx;
1739 	u8 class = BPF_CLASS(insn->code);
1740 	u8 opcode = BPF_OP(insn->code);
1741 	u8 mode = BPF_MODE(insn->code);
1742 	u32 dreg = 1u << insn->dst_reg;
1743 	u32 sreg = 1u << insn->src_reg;
1744 	u32 spi;
1745 
1746 	if (insn->code == 0)
1747 		return 0;
1748 	if (env->log.level & BPF_LOG_LEVEL) {
1749 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1750 		verbose(env, "%d: ", idx);
1751 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1752 	}
1753 
1754 	if (class == BPF_ALU || class == BPF_ALU64) {
1755 		if (!(*reg_mask & dreg))
1756 			return 0;
1757 		if (opcode == BPF_MOV) {
1758 			if (BPF_SRC(insn->code) == BPF_X) {
1759 				/* dreg = sreg
1760 				 * dreg needs precision after this insn
1761 				 * sreg needs precision before this insn
1762 				 */
1763 				*reg_mask &= ~dreg;
1764 				*reg_mask |= sreg;
1765 			} else {
1766 				/* dreg = K
1767 				 * dreg needs precision after this insn.
1768 				 * Corresponding register is already marked
1769 				 * as precise=true in this verifier state.
1770 				 * No further markings in parent are necessary
1771 				 */
1772 				*reg_mask &= ~dreg;
1773 			}
1774 		} else {
1775 			if (BPF_SRC(insn->code) == BPF_X) {
1776 				/* dreg += sreg
1777 				 * both dreg and sreg need precision
1778 				 * before this insn
1779 				 */
1780 				*reg_mask |= sreg;
1781 			} /* else dreg += K
1782 			   * dreg still needs precision before this insn
1783 			   */
1784 		}
1785 	} else if (class == BPF_LDX) {
1786 		if (!(*reg_mask & dreg))
1787 			return 0;
1788 		*reg_mask &= ~dreg;
1789 
1790 		/* scalars can only be spilled into stack w/o losing precision.
1791 		 * Load from any other memory can be zero extended.
1792 		 * The desire to keep that precision is already indicated
1793 		 * by 'precise' mark in corresponding register of this state.
1794 		 * No further tracking necessary.
1795 		 */
1796 		if (insn->src_reg != BPF_REG_FP)
1797 			return 0;
1798 		if (BPF_SIZE(insn->code) != BPF_DW)
1799 			return 0;
1800 
1801 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1802 		 * that [fp - off] slot contains scalar that needs to be
1803 		 * tracked with precision
1804 		 */
1805 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1806 		if (spi >= 64) {
1807 			verbose(env, "BUG spi %d\n", spi);
1808 			WARN_ONCE(1, "verifier backtracking bug");
1809 			return -EFAULT;
1810 		}
1811 		*stack_mask |= 1ull << spi;
1812 	} else if (class == BPF_STX || class == BPF_ST) {
1813 		if (*reg_mask & dreg)
1814 			/* stx & st shouldn't be using _scalar_ dst_reg
1815 			 * to access memory. It means backtracking
1816 			 * encountered a case of pointer subtraction.
1817 			 */
1818 			return -ENOTSUPP;
1819 		/* scalars can only be spilled into stack */
1820 		if (insn->dst_reg != BPF_REG_FP)
1821 			return 0;
1822 		if (BPF_SIZE(insn->code) != BPF_DW)
1823 			return 0;
1824 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1825 		if (spi >= 64) {
1826 			verbose(env, "BUG spi %d\n", spi);
1827 			WARN_ONCE(1, "verifier backtracking bug");
1828 			return -EFAULT;
1829 		}
1830 		if (!(*stack_mask & (1ull << spi)))
1831 			return 0;
1832 		*stack_mask &= ~(1ull << spi);
1833 		if (class == BPF_STX)
1834 			*reg_mask |= sreg;
1835 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1836 		if (opcode == BPF_CALL) {
1837 			if (insn->src_reg == BPF_PSEUDO_CALL)
1838 				return -ENOTSUPP;
1839 			/* regular helper call sets R0 */
1840 			*reg_mask &= ~1;
1841 			if (*reg_mask & 0x3f) {
1842 				/* if backtracing was looking for registers R1-R5
1843 				 * they should have been found already.
1844 				 */
1845 				verbose(env, "BUG regs %x\n", *reg_mask);
1846 				WARN_ONCE(1, "verifier backtracking bug");
1847 				return -EFAULT;
1848 			}
1849 		} else if (opcode == BPF_EXIT) {
1850 			return -ENOTSUPP;
1851 		}
1852 	} else if (class == BPF_LD) {
1853 		if (!(*reg_mask & dreg))
1854 			return 0;
1855 		*reg_mask &= ~dreg;
1856 		/* It's ld_imm64 or ld_abs or ld_ind.
1857 		 * For ld_imm64 no further tracking of precision
1858 		 * into parent is necessary
1859 		 */
1860 		if (mode == BPF_IND || mode == BPF_ABS)
1861 			/* to be analyzed */
1862 			return -ENOTSUPP;
1863 	}
1864 	return 0;
1865 }
1866 
1867 /* the scalar precision tracking algorithm:
1868  * . at the start all registers have precise=false.
1869  * . scalar ranges are tracked as normal through alu and jmp insns.
1870  * . once precise value of the scalar register is used in:
1871  *   .  ptr + scalar alu
1872  *   . if (scalar cond K|scalar)
1873  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1874  *   backtrack through the verifier states and mark all registers and
1875  *   stack slots with spilled constants that these scalar regisers
1876  *   should be precise.
1877  * . during state pruning two registers (or spilled stack slots)
1878  *   are equivalent if both are not precise.
1879  *
1880  * Note the verifier cannot simply walk register parentage chain,
1881  * since many different registers and stack slots could have been
1882  * used to compute single precise scalar.
1883  *
1884  * The approach of starting with precise=true for all registers and then
1885  * backtrack to mark a register as not precise when the verifier detects
1886  * that program doesn't care about specific value (e.g., when helper
1887  * takes register as ARG_ANYTHING parameter) is not safe.
1888  *
1889  * It's ok to walk single parentage chain of the verifier states.
1890  * It's possible that this backtracking will go all the way till 1st insn.
1891  * All other branches will be explored for needing precision later.
1892  *
1893  * The backtracking needs to deal with cases like:
1894  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1895  * r9 -= r8
1896  * r5 = r9
1897  * if r5 > 0x79f goto pc+7
1898  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1899  * r5 += 1
1900  * ...
1901  * call bpf_perf_event_output#25
1902  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1903  *
1904  * and this case:
1905  * r6 = 1
1906  * call foo // uses callee's r6 inside to compute r0
1907  * r0 += r6
1908  * if r0 == 0 goto
1909  *
1910  * to track above reg_mask/stack_mask needs to be independent for each frame.
1911  *
1912  * Also if parent's curframe > frame where backtracking started,
1913  * the verifier need to mark registers in both frames, otherwise callees
1914  * may incorrectly prune callers. This is similar to
1915  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1916  *
1917  * For now backtracking falls back into conservative marking.
1918  */
1919 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1920 				     struct bpf_verifier_state *st)
1921 {
1922 	struct bpf_func_state *func;
1923 	struct bpf_reg_state *reg;
1924 	int i, j;
1925 
1926 	/* big hammer: mark all scalars precise in this path.
1927 	 * pop_stack may still get !precise scalars.
1928 	 */
1929 	for (; st; st = st->parent)
1930 		for (i = 0; i <= st->curframe; i++) {
1931 			func = st->frame[i];
1932 			for (j = 0; j < BPF_REG_FP; j++) {
1933 				reg = &func->regs[j];
1934 				if (reg->type != SCALAR_VALUE)
1935 					continue;
1936 				reg->precise = true;
1937 			}
1938 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1939 				if (func->stack[j].slot_type[0] != STACK_SPILL)
1940 					continue;
1941 				reg = &func->stack[j].spilled_ptr;
1942 				if (reg->type != SCALAR_VALUE)
1943 					continue;
1944 				reg->precise = true;
1945 			}
1946 		}
1947 }
1948 
1949 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1950 				  int spi)
1951 {
1952 	struct bpf_verifier_state *st = env->cur_state;
1953 	int first_idx = st->first_insn_idx;
1954 	int last_idx = env->insn_idx;
1955 	struct bpf_func_state *func;
1956 	struct bpf_reg_state *reg;
1957 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1958 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
1959 	bool skip_first = true;
1960 	bool new_marks = false;
1961 	int i, err;
1962 
1963 	if (!env->allow_ptr_leaks)
1964 		/* backtracking is root only for now */
1965 		return 0;
1966 
1967 	func = st->frame[st->curframe];
1968 	if (regno >= 0) {
1969 		reg = &func->regs[regno];
1970 		if (reg->type != SCALAR_VALUE) {
1971 			WARN_ONCE(1, "backtracing misuse");
1972 			return -EFAULT;
1973 		}
1974 		if (!reg->precise)
1975 			new_marks = true;
1976 		else
1977 			reg_mask = 0;
1978 		reg->precise = true;
1979 	}
1980 
1981 	while (spi >= 0) {
1982 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1983 			stack_mask = 0;
1984 			break;
1985 		}
1986 		reg = &func->stack[spi].spilled_ptr;
1987 		if (reg->type != SCALAR_VALUE) {
1988 			stack_mask = 0;
1989 			break;
1990 		}
1991 		if (!reg->precise)
1992 			new_marks = true;
1993 		else
1994 			stack_mask = 0;
1995 		reg->precise = true;
1996 		break;
1997 	}
1998 
1999 	if (!new_marks)
2000 		return 0;
2001 	if (!reg_mask && !stack_mask)
2002 		return 0;
2003 	for (;;) {
2004 		DECLARE_BITMAP(mask, 64);
2005 		u32 history = st->jmp_history_cnt;
2006 
2007 		if (env->log.level & BPF_LOG_LEVEL)
2008 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2009 		for (i = last_idx;;) {
2010 			if (skip_first) {
2011 				err = 0;
2012 				skip_first = false;
2013 			} else {
2014 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2015 			}
2016 			if (err == -ENOTSUPP) {
2017 				mark_all_scalars_precise(env, st);
2018 				return 0;
2019 			} else if (err) {
2020 				return err;
2021 			}
2022 			if (!reg_mask && !stack_mask)
2023 				/* Found assignment(s) into tracked register in this state.
2024 				 * Since this state is already marked, just return.
2025 				 * Nothing to be tracked further in the parent state.
2026 				 */
2027 				return 0;
2028 			if (i == first_idx)
2029 				break;
2030 			i = get_prev_insn_idx(st, i, &history);
2031 			if (i >= env->prog->len) {
2032 				/* This can happen if backtracking reached insn 0
2033 				 * and there are still reg_mask or stack_mask
2034 				 * to backtrack.
2035 				 * It means the backtracking missed the spot where
2036 				 * particular register was initialized with a constant.
2037 				 */
2038 				verbose(env, "BUG backtracking idx %d\n", i);
2039 				WARN_ONCE(1, "verifier backtracking bug");
2040 				return -EFAULT;
2041 			}
2042 		}
2043 		st = st->parent;
2044 		if (!st)
2045 			break;
2046 
2047 		new_marks = false;
2048 		func = st->frame[st->curframe];
2049 		bitmap_from_u64(mask, reg_mask);
2050 		for_each_set_bit(i, mask, 32) {
2051 			reg = &func->regs[i];
2052 			if (reg->type != SCALAR_VALUE) {
2053 				reg_mask &= ~(1u << i);
2054 				continue;
2055 			}
2056 			if (!reg->precise)
2057 				new_marks = true;
2058 			reg->precise = true;
2059 		}
2060 
2061 		bitmap_from_u64(mask, stack_mask);
2062 		for_each_set_bit(i, mask, 64) {
2063 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2064 				/* the sequence of instructions:
2065 				 * 2: (bf) r3 = r10
2066 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2067 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2068 				 * doesn't contain jmps. It's backtracked
2069 				 * as a single block.
2070 				 * During backtracking insn 3 is not recognized as
2071 				 * stack access, so at the end of backtracking
2072 				 * stack slot fp-8 is still marked in stack_mask.
2073 				 * However the parent state may not have accessed
2074 				 * fp-8 and it's "unallocated" stack space.
2075 				 * In such case fallback to conservative.
2076 				 */
2077 				mark_all_scalars_precise(env, st);
2078 				return 0;
2079 			}
2080 
2081 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2082 				stack_mask &= ~(1ull << i);
2083 				continue;
2084 			}
2085 			reg = &func->stack[i].spilled_ptr;
2086 			if (reg->type != SCALAR_VALUE) {
2087 				stack_mask &= ~(1ull << i);
2088 				continue;
2089 			}
2090 			if (!reg->precise)
2091 				new_marks = true;
2092 			reg->precise = true;
2093 		}
2094 		if (env->log.level & BPF_LOG_LEVEL) {
2095 			print_verifier_state(env, func);
2096 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2097 				new_marks ? "didn't have" : "already had",
2098 				reg_mask, stack_mask);
2099 		}
2100 
2101 		if (!reg_mask && !stack_mask)
2102 			break;
2103 		if (!new_marks)
2104 			break;
2105 
2106 		last_idx = st->last_insn_idx;
2107 		first_idx = st->first_insn_idx;
2108 	}
2109 	return 0;
2110 }
2111 
2112 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2113 {
2114 	return __mark_chain_precision(env, regno, -1);
2115 }
2116 
2117 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2118 {
2119 	return __mark_chain_precision(env, -1, spi);
2120 }
2121 
2122 static bool is_spillable_regtype(enum bpf_reg_type type)
2123 {
2124 	switch (type) {
2125 	case PTR_TO_MAP_VALUE:
2126 	case PTR_TO_MAP_VALUE_OR_NULL:
2127 	case PTR_TO_STACK:
2128 	case PTR_TO_CTX:
2129 	case PTR_TO_PACKET:
2130 	case PTR_TO_PACKET_META:
2131 	case PTR_TO_PACKET_END:
2132 	case PTR_TO_FLOW_KEYS:
2133 	case CONST_PTR_TO_MAP:
2134 	case PTR_TO_SOCKET:
2135 	case PTR_TO_SOCKET_OR_NULL:
2136 	case PTR_TO_SOCK_COMMON:
2137 	case PTR_TO_SOCK_COMMON_OR_NULL:
2138 	case PTR_TO_TCP_SOCK:
2139 	case PTR_TO_TCP_SOCK_OR_NULL:
2140 	case PTR_TO_XDP_SOCK:
2141 	case PTR_TO_BTF_ID:
2142 		return true;
2143 	default:
2144 		return false;
2145 	}
2146 }
2147 
2148 /* Does this register contain a constant zero? */
2149 static bool register_is_null(struct bpf_reg_state *reg)
2150 {
2151 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2152 }
2153 
2154 static bool register_is_const(struct bpf_reg_state *reg)
2155 {
2156 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2157 }
2158 
2159 static bool __is_pointer_value(bool allow_ptr_leaks,
2160 			       const struct bpf_reg_state *reg)
2161 {
2162 	if (allow_ptr_leaks)
2163 		return false;
2164 
2165 	return reg->type != SCALAR_VALUE;
2166 }
2167 
2168 static void save_register_state(struct bpf_func_state *state,
2169 				int spi, struct bpf_reg_state *reg)
2170 {
2171 	int i;
2172 
2173 	state->stack[spi].spilled_ptr = *reg;
2174 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2175 
2176 	for (i = 0; i < BPF_REG_SIZE; i++)
2177 		state->stack[spi].slot_type[i] = STACK_SPILL;
2178 }
2179 
2180 /* check_stack_read/write functions track spill/fill of registers,
2181  * stack boundary and alignment are checked in check_mem_access()
2182  */
2183 static int check_stack_write(struct bpf_verifier_env *env,
2184 			     struct bpf_func_state *state, /* func where register points to */
2185 			     int off, int size, int value_regno, int insn_idx)
2186 {
2187 	struct bpf_func_state *cur; /* state of the current function */
2188 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2189 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2190 	struct bpf_reg_state *reg = NULL;
2191 
2192 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2193 				 state->acquired_refs, true);
2194 	if (err)
2195 		return err;
2196 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2197 	 * so it's aligned access and [off, off + size) are within stack limits
2198 	 */
2199 	if (!env->allow_ptr_leaks &&
2200 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2201 	    size != BPF_REG_SIZE) {
2202 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2203 		return -EACCES;
2204 	}
2205 
2206 	cur = env->cur_state->frame[env->cur_state->curframe];
2207 	if (value_regno >= 0)
2208 		reg = &cur->regs[value_regno];
2209 
2210 	if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
2211 	    !register_is_null(reg) && env->allow_ptr_leaks) {
2212 		if (dst_reg != BPF_REG_FP) {
2213 			/* The backtracking logic can only recognize explicit
2214 			 * stack slot address like [fp - 8]. Other spill of
2215 			 * scalar via different register has to be conervative.
2216 			 * Backtrack from here and mark all registers as precise
2217 			 * that contributed into 'reg' being a constant.
2218 			 */
2219 			err = mark_chain_precision(env, value_regno);
2220 			if (err)
2221 				return err;
2222 		}
2223 		save_register_state(state, spi, reg);
2224 	} else if (reg && is_spillable_regtype(reg->type)) {
2225 		/* register containing pointer is being spilled into stack */
2226 		if (size != BPF_REG_SIZE) {
2227 			verbose_linfo(env, insn_idx, "; ");
2228 			verbose(env, "invalid size of register spill\n");
2229 			return -EACCES;
2230 		}
2231 
2232 		if (state != cur && reg->type == PTR_TO_STACK) {
2233 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2234 			return -EINVAL;
2235 		}
2236 
2237 		if (!env->allow_ptr_leaks) {
2238 			bool sanitize = false;
2239 
2240 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2241 			    register_is_const(&state->stack[spi].spilled_ptr))
2242 				sanitize = true;
2243 			for (i = 0; i < BPF_REG_SIZE; i++)
2244 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2245 					sanitize = true;
2246 					break;
2247 				}
2248 			if (sanitize) {
2249 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2250 				int soff = (-spi - 1) * BPF_REG_SIZE;
2251 
2252 				/* detected reuse of integer stack slot with a pointer
2253 				 * which means either llvm is reusing stack slot or
2254 				 * an attacker is trying to exploit CVE-2018-3639
2255 				 * (speculative store bypass)
2256 				 * Have to sanitize that slot with preemptive
2257 				 * store of zero.
2258 				 */
2259 				if (*poff && *poff != soff) {
2260 					/* disallow programs where single insn stores
2261 					 * into two different stack slots, since verifier
2262 					 * cannot sanitize them
2263 					 */
2264 					verbose(env,
2265 						"insn %d cannot access two stack slots fp%d and fp%d",
2266 						insn_idx, *poff, soff);
2267 					return -EINVAL;
2268 				}
2269 				*poff = soff;
2270 			}
2271 		}
2272 		save_register_state(state, spi, reg);
2273 	} else {
2274 		u8 type = STACK_MISC;
2275 
2276 		/* regular write of data into stack destroys any spilled ptr */
2277 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2278 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2279 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2280 			for (i = 0; i < BPF_REG_SIZE; i++)
2281 				state->stack[spi].slot_type[i] = STACK_MISC;
2282 
2283 		/* only mark the slot as written if all 8 bytes were written
2284 		 * otherwise read propagation may incorrectly stop too soon
2285 		 * when stack slots are partially written.
2286 		 * This heuristic means that read propagation will be
2287 		 * conservative, since it will add reg_live_read marks
2288 		 * to stack slots all the way to first state when programs
2289 		 * writes+reads less than 8 bytes
2290 		 */
2291 		if (size == BPF_REG_SIZE)
2292 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2293 
2294 		/* when we zero initialize stack slots mark them as such */
2295 		if (reg && register_is_null(reg)) {
2296 			/* backtracking doesn't work for STACK_ZERO yet. */
2297 			err = mark_chain_precision(env, value_regno);
2298 			if (err)
2299 				return err;
2300 			type = STACK_ZERO;
2301 		}
2302 
2303 		/* Mark slots affected by this stack write. */
2304 		for (i = 0; i < size; i++)
2305 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2306 				type;
2307 	}
2308 	return 0;
2309 }
2310 
2311 static int check_stack_read(struct bpf_verifier_env *env,
2312 			    struct bpf_func_state *reg_state /* func where register points to */,
2313 			    int off, int size, int value_regno)
2314 {
2315 	struct bpf_verifier_state *vstate = env->cur_state;
2316 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2317 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2318 	struct bpf_reg_state *reg;
2319 	u8 *stype;
2320 
2321 	if (reg_state->allocated_stack <= slot) {
2322 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2323 			off, size);
2324 		return -EACCES;
2325 	}
2326 	stype = reg_state->stack[spi].slot_type;
2327 	reg = &reg_state->stack[spi].spilled_ptr;
2328 
2329 	if (stype[0] == STACK_SPILL) {
2330 		if (size != BPF_REG_SIZE) {
2331 			if (reg->type != SCALAR_VALUE) {
2332 				verbose_linfo(env, env->insn_idx, "; ");
2333 				verbose(env, "invalid size of register fill\n");
2334 				return -EACCES;
2335 			}
2336 			if (value_regno >= 0) {
2337 				mark_reg_unknown(env, state->regs, value_regno);
2338 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2339 			}
2340 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2341 			return 0;
2342 		}
2343 		for (i = 1; i < BPF_REG_SIZE; i++) {
2344 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2345 				verbose(env, "corrupted spill memory\n");
2346 				return -EACCES;
2347 			}
2348 		}
2349 
2350 		if (value_regno >= 0) {
2351 			/* restore register state from stack */
2352 			state->regs[value_regno] = *reg;
2353 			/* mark reg as written since spilled pointer state likely
2354 			 * has its liveness marks cleared by is_state_visited()
2355 			 * which resets stack/reg liveness for state transitions
2356 			 */
2357 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2358 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2359 			/* If value_regno==-1, the caller is asking us whether
2360 			 * it is acceptable to use this value as a SCALAR_VALUE
2361 			 * (e.g. for XADD).
2362 			 * We must not allow unprivileged callers to do that
2363 			 * with spilled pointers.
2364 			 */
2365 			verbose(env, "leaking pointer from stack off %d\n",
2366 				off);
2367 			return -EACCES;
2368 		}
2369 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2370 	} else {
2371 		int zeros = 0;
2372 
2373 		for (i = 0; i < size; i++) {
2374 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2375 				continue;
2376 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2377 				zeros++;
2378 				continue;
2379 			}
2380 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2381 				off, i, size);
2382 			return -EACCES;
2383 		}
2384 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2385 		if (value_regno >= 0) {
2386 			if (zeros == size) {
2387 				/* any size read into register is zero extended,
2388 				 * so the whole register == const_zero
2389 				 */
2390 				__mark_reg_const_zero(&state->regs[value_regno]);
2391 				/* backtracking doesn't support STACK_ZERO yet,
2392 				 * so mark it precise here, so that later
2393 				 * backtracking can stop here.
2394 				 * Backtracking may not need this if this register
2395 				 * doesn't participate in pointer adjustment.
2396 				 * Forward propagation of precise flag is not
2397 				 * necessary either. This mark is only to stop
2398 				 * backtracking. Any register that contributed
2399 				 * to const 0 was marked precise before spill.
2400 				 */
2401 				state->regs[value_regno].precise = true;
2402 			} else {
2403 				/* have read misc data from the stack */
2404 				mark_reg_unknown(env, state->regs, value_regno);
2405 			}
2406 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2407 		}
2408 	}
2409 	return 0;
2410 }
2411 
2412 static int check_stack_access(struct bpf_verifier_env *env,
2413 			      const struct bpf_reg_state *reg,
2414 			      int off, int size)
2415 {
2416 	/* Stack accesses must be at a fixed offset, so that we
2417 	 * can determine what type of data were returned. See
2418 	 * check_stack_read().
2419 	 */
2420 	if (!tnum_is_const(reg->var_off)) {
2421 		char tn_buf[48];
2422 
2423 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2424 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2425 			tn_buf, off, size);
2426 		return -EACCES;
2427 	}
2428 
2429 	if (off >= 0 || off < -MAX_BPF_STACK) {
2430 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2431 		return -EACCES;
2432 	}
2433 
2434 	return 0;
2435 }
2436 
2437 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2438 				 int off, int size, enum bpf_access_type type)
2439 {
2440 	struct bpf_reg_state *regs = cur_regs(env);
2441 	struct bpf_map *map = regs[regno].map_ptr;
2442 	u32 cap = bpf_map_flags_to_cap(map);
2443 
2444 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2445 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2446 			map->value_size, off, size);
2447 		return -EACCES;
2448 	}
2449 
2450 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2451 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2452 			map->value_size, off, size);
2453 		return -EACCES;
2454 	}
2455 
2456 	return 0;
2457 }
2458 
2459 /* check read/write into map element returned by bpf_map_lookup_elem() */
2460 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
2461 			      int size, bool zero_size_allowed)
2462 {
2463 	struct bpf_reg_state *regs = cur_regs(env);
2464 	struct bpf_map *map = regs[regno].map_ptr;
2465 
2466 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2467 	    off + size > map->value_size) {
2468 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2469 			map->value_size, off, size);
2470 		return -EACCES;
2471 	}
2472 	return 0;
2473 }
2474 
2475 /* check read/write into a map element with possible variable offset */
2476 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2477 			    int off, int size, bool zero_size_allowed)
2478 {
2479 	struct bpf_verifier_state *vstate = env->cur_state;
2480 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2481 	struct bpf_reg_state *reg = &state->regs[regno];
2482 	int err;
2483 
2484 	/* We may have adjusted the register to this map value, so we
2485 	 * need to try adding each of min_value and max_value to off
2486 	 * to make sure our theoretical access will be safe.
2487 	 */
2488 	if (env->log.level & BPF_LOG_LEVEL)
2489 		print_verifier_state(env, state);
2490 
2491 	/* The minimum value is only important with signed
2492 	 * comparisons where we can't assume the floor of a
2493 	 * value is 0.  If we are using signed variables for our
2494 	 * index'es we need to make sure that whatever we use
2495 	 * will have a set floor within our range.
2496 	 */
2497 	if (reg->smin_value < 0 &&
2498 	    (reg->smin_value == S64_MIN ||
2499 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2500 	      reg->smin_value + off < 0)) {
2501 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2502 			regno);
2503 		return -EACCES;
2504 	}
2505 	err = __check_map_access(env, regno, reg->smin_value + off, size,
2506 				 zero_size_allowed);
2507 	if (err) {
2508 		verbose(env, "R%d min value is outside of the array range\n",
2509 			regno);
2510 		return err;
2511 	}
2512 
2513 	/* If we haven't set a max value then we need to bail since we can't be
2514 	 * sure we won't do bad things.
2515 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2516 	 */
2517 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2518 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
2519 			regno);
2520 		return -EACCES;
2521 	}
2522 	err = __check_map_access(env, regno, reg->umax_value + off, size,
2523 				 zero_size_allowed);
2524 	if (err)
2525 		verbose(env, "R%d max value is outside of the array range\n",
2526 			regno);
2527 
2528 	if (map_value_has_spin_lock(reg->map_ptr)) {
2529 		u32 lock = reg->map_ptr->spin_lock_off;
2530 
2531 		/* if any part of struct bpf_spin_lock can be touched by
2532 		 * load/store reject this program.
2533 		 * To check that [x1, x2) overlaps with [y1, y2)
2534 		 * it is sufficient to check x1 < y2 && y1 < x2.
2535 		 */
2536 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2537 		     lock < reg->umax_value + off + size) {
2538 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2539 			return -EACCES;
2540 		}
2541 	}
2542 	return err;
2543 }
2544 
2545 #define MAX_PACKET_OFF 0xffff
2546 
2547 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2548 				       const struct bpf_call_arg_meta *meta,
2549 				       enum bpf_access_type t)
2550 {
2551 	switch (env->prog->type) {
2552 	/* Program types only with direct read access go here! */
2553 	case BPF_PROG_TYPE_LWT_IN:
2554 	case BPF_PROG_TYPE_LWT_OUT:
2555 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2556 	case BPF_PROG_TYPE_SK_REUSEPORT:
2557 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2558 	case BPF_PROG_TYPE_CGROUP_SKB:
2559 		if (t == BPF_WRITE)
2560 			return false;
2561 		/* fallthrough */
2562 
2563 	/* Program types with direct read + write access go here! */
2564 	case BPF_PROG_TYPE_SCHED_CLS:
2565 	case BPF_PROG_TYPE_SCHED_ACT:
2566 	case BPF_PROG_TYPE_XDP:
2567 	case BPF_PROG_TYPE_LWT_XMIT:
2568 	case BPF_PROG_TYPE_SK_SKB:
2569 	case BPF_PROG_TYPE_SK_MSG:
2570 		if (meta)
2571 			return meta->pkt_access;
2572 
2573 		env->seen_direct_write = true;
2574 		return true;
2575 
2576 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2577 		if (t == BPF_WRITE)
2578 			env->seen_direct_write = true;
2579 
2580 		return true;
2581 
2582 	default:
2583 		return false;
2584 	}
2585 }
2586 
2587 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
2588 				 int off, int size, bool zero_size_allowed)
2589 {
2590 	struct bpf_reg_state *regs = cur_regs(env);
2591 	struct bpf_reg_state *reg = &regs[regno];
2592 
2593 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2594 	    (u64)off + size > reg->range) {
2595 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2596 			off, size, regno, reg->id, reg->off, reg->range);
2597 		return -EACCES;
2598 	}
2599 	return 0;
2600 }
2601 
2602 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2603 			       int size, bool zero_size_allowed)
2604 {
2605 	struct bpf_reg_state *regs = cur_regs(env);
2606 	struct bpf_reg_state *reg = &regs[regno];
2607 	int err;
2608 
2609 	/* We may have added a variable offset to the packet pointer; but any
2610 	 * reg->range we have comes after that.  We are only checking the fixed
2611 	 * offset.
2612 	 */
2613 
2614 	/* We don't allow negative numbers, because we aren't tracking enough
2615 	 * detail to prove they're safe.
2616 	 */
2617 	if (reg->smin_value < 0) {
2618 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2619 			regno);
2620 		return -EACCES;
2621 	}
2622 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
2623 	if (err) {
2624 		verbose(env, "R%d offset is outside of the packet\n", regno);
2625 		return err;
2626 	}
2627 
2628 	/* __check_packet_access has made sure "off + size - 1" is within u16.
2629 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2630 	 * otherwise find_good_pkt_pointers would have refused to set range info
2631 	 * that __check_packet_access would have rejected this pkt access.
2632 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2633 	 */
2634 	env->prog->aux->max_pkt_offset =
2635 		max_t(u32, env->prog->aux->max_pkt_offset,
2636 		      off + reg->umax_value + size - 1);
2637 
2638 	return err;
2639 }
2640 
2641 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2642 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2643 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
2644 			    u32 *btf_id)
2645 {
2646 	struct bpf_insn_access_aux info = {
2647 		.reg_type = *reg_type,
2648 		.log = &env->log,
2649 	};
2650 
2651 	if (env->ops->is_valid_access &&
2652 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2653 		/* A non zero info.ctx_field_size indicates that this field is a
2654 		 * candidate for later verifier transformation to load the whole
2655 		 * field and then apply a mask when accessed with a narrower
2656 		 * access than actual ctx access size. A zero info.ctx_field_size
2657 		 * will only allow for whole field access and rejects any other
2658 		 * type of narrower access.
2659 		 */
2660 		*reg_type = info.reg_type;
2661 
2662 		if (*reg_type == PTR_TO_BTF_ID)
2663 			*btf_id = info.btf_id;
2664 		else
2665 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2666 		/* remember the offset of last byte accessed in ctx */
2667 		if (env->prog->aux->max_ctx_offset < off + size)
2668 			env->prog->aux->max_ctx_offset = off + size;
2669 		return 0;
2670 	}
2671 
2672 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2673 	return -EACCES;
2674 }
2675 
2676 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2677 				  int size)
2678 {
2679 	if (size < 0 || off < 0 ||
2680 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2681 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2682 			off, size);
2683 		return -EACCES;
2684 	}
2685 	return 0;
2686 }
2687 
2688 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2689 			     u32 regno, int off, int size,
2690 			     enum bpf_access_type t)
2691 {
2692 	struct bpf_reg_state *regs = cur_regs(env);
2693 	struct bpf_reg_state *reg = &regs[regno];
2694 	struct bpf_insn_access_aux info = {};
2695 	bool valid;
2696 
2697 	if (reg->smin_value < 0) {
2698 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2699 			regno);
2700 		return -EACCES;
2701 	}
2702 
2703 	switch (reg->type) {
2704 	case PTR_TO_SOCK_COMMON:
2705 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2706 		break;
2707 	case PTR_TO_SOCKET:
2708 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2709 		break;
2710 	case PTR_TO_TCP_SOCK:
2711 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2712 		break;
2713 	case PTR_TO_XDP_SOCK:
2714 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2715 		break;
2716 	default:
2717 		valid = false;
2718 	}
2719 
2720 
2721 	if (valid) {
2722 		env->insn_aux_data[insn_idx].ctx_field_size =
2723 			info.ctx_field_size;
2724 		return 0;
2725 	}
2726 
2727 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2728 		regno, reg_type_str[reg->type], off, size);
2729 
2730 	return -EACCES;
2731 }
2732 
2733 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2734 {
2735 	return cur_regs(env) + regno;
2736 }
2737 
2738 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2739 {
2740 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2741 }
2742 
2743 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2744 {
2745 	const struct bpf_reg_state *reg = reg_state(env, regno);
2746 
2747 	return reg->type == PTR_TO_CTX;
2748 }
2749 
2750 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2751 {
2752 	const struct bpf_reg_state *reg = reg_state(env, regno);
2753 
2754 	return type_is_sk_pointer(reg->type);
2755 }
2756 
2757 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2758 {
2759 	const struct bpf_reg_state *reg = reg_state(env, regno);
2760 
2761 	return type_is_pkt_pointer(reg->type);
2762 }
2763 
2764 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2765 {
2766 	const struct bpf_reg_state *reg = reg_state(env, regno);
2767 
2768 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2769 	return reg->type == PTR_TO_FLOW_KEYS;
2770 }
2771 
2772 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2773 				   const struct bpf_reg_state *reg,
2774 				   int off, int size, bool strict)
2775 {
2776 	struct tnum reg_off;
2777 	int ip_align;
2778 
2779 	/* Byte size accesses are always allowed. */
2780 	if (!strict || size == 1)
2781 		return 0;
2782 
2783 	/* For platforms that do not have a Kconfig enabling
2784 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2785 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2786 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2787 	 * to this code only in strict mode where we want to emulate
2788 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2789 	 * unconditional IP align value of '2'.
2790 	 */
2791 	ip_align = 2;
2792 
2793 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2794 	if (!tnum_is_aligned(reg_off, size)) {
2795 		char tn_buf[48];
2796 
2797 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2798 		verbose(env,
2799 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2800 			ip_align, tn_buf, reg->off, off, size);
2801 		return -EACCES;
2802 	}
2803 
2804 	return 0;
2805 }
2806 
2807 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2808 				       const struct bpf_reg_state *reg,
2809 				       const char *pointer_desc,
2810 				       int off, int size, bool strict)
2811 {
2812 	struct tnum reg_off;
2813 
2814 	/* Byte size accesses are always allowed. */
2815 	if (!strict || size == 1)
2816 		return 0;
2817 
2818 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2819 	if (!tnum_is_aligned(reg_off, size)) {
2820 		char tn_buf[48];
2821 
2822 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2823 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2824 			pointer_desc, tn_buf, reg->off, off, size);
2825 		return -EACCES;
2826 	}
2827 
2828 	return 0;
2829 }
2830 
2831 static int check_ptr_alignment(struct bpf_verifier_env *env,
2832 			       const struct bpf_reg_state *reg, int off,
2833 			       int size, bool strict_alignment_once)
2834 {
2835 	bool strict = env->strict_alignment || strict_alignment_once;
2836 	const char *pointer_desc = "";
2837 
2838 	switch (reg->type) {
2839 	case PTR_TO_PACKET:
2840 	case PTR_TO_PACKET_META:
2841 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2842 		 * right in front, treat it the very same way.
2843 		 */
2844 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2845 	case PTR_TO_FLOW_KEYS:
2846 		pointer_desc = "flow keys ";
2847 		break;
2848 	case PTR_TO_MAP_VALUE:
2849 		pointer_desc = "value ";
2850 		break;
2851 	case PTR_TO_CTX:
2852 		pointer_desc = "context ";
2853 		break;
2854 	case PTR_TO_STACK:
2855 		pointer_desc = "stack ";
2856 		/* The stack spill tracking logic in check_stack_write()
2857 		 * and check_stack_read() relies on stack accesses being
2858 		 * aligned.
2859 		 */
2860 		strict = true;
2861 		break;
2862 	case PTR_TO_SOCKET:
2863 		pointer_desc = "sock ";
2864 		break;
2865 	case PTR_TO_SOCK_COMMON:
2866 		pointer_desc = "sock_common ";
2867 		break;
2868 	case PTR_TO_TCP_SOCK:
2869 		pointer_desc = "tcp_sock ";
2870 		break;
2871 	case PTR_TO_XDP_SOCK:
2872 		pointer_desc = "xdp_sock ";
2873 		break;
2874 	default:
2875 		break;
2876 	}
2877 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2878 					   strict);
2879 }
2880 
2881 static int update_stack_depth(struct bpf_verifier_env *env,
2882 			      const struct bpf_func_state *func,
2883 			      int off)
2884 {
2885 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
2886 
2887 	if (stack >= -off)
2888 		return 0;
2889 
2890 	/* update known max for given subprogram */
2891 	env->subprog_info[func->subprogno].stack_depth = -off;
2892 	return 0;
2893 }
2894 
2895 /* starting from main bpf function walk all instructions of the function
2896  * and recursively walk all callees that given function can call.
2897  * Ignore jump and exit insns.
2898  * Since recursion is prevented by check_cfg() this algorithm
2899  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2900  */
2901 static int check_max_stack_depth(struct bpf_verifier_env *env)
2902 {
2903 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2904 	struct bpf_subprog_info *subprog = env->subprog_info;
2905 	struct bpf_insn *insn = env->prog->insnsi;
2906 	int ret_insn[MAX_CALL_FRAMES];
2907 	int ret_prog[MAX_CALL_FRAMES];
2908 
2909 process_func:
2910 	/* round up to 32-bytes, since this is granularity
2911 	 * of interpreter stack size
2912 	 */
2913 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2914 	if (depth > MAX_BPF_STACK) {
2915 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
2916 			frame + 1, depth);
2917 		return -EACCES;
2918 	}
2919 continue_func:
2920 	subprog_end = subprog[idx + 1].start;
2921 	for (; i < subprog_end; i++) {
2922 		if (insn[i].code != (BPF_JMP | BPF_CALL))
2923 			continue;
2924 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
2925 			continue;
2926 		/* remember insn and function to return to */
2927 		ret_insn[frame] = i + 1;
2928 		ret_prog[frame] = idx;
2929 
2930 		/* find the callee */
2931 		i = i + insn[i].imm + 1;
2932 		idx = find_subprog(env, i);
2933 		if (idx < 0) {
2934 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2935 				  i);
2936 			return -EFAULT;
2937 		}
2938 		frame++;
2939 		if (frame >= MAX_CALL_FRAMES) {
2940 			verbose(env, "the call stack of %d frames is too deep !\n",
2941 				frame);
2942 			return -E2BIG;
2943 		}
2944 		goto process_func;
2945 	}
2946 	/* end of for() loop means the last insn of the 'subprog'
2947 	 * was reached. Doesn't matter whether it was JA or EXIT
2948 	 */
2949 	if (frame == 0)
2950 		return 0;
2951 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2952 	frame--;
2953 	i = ret_insn[frame];
2954 	idx = ret_prog[frame];
2955 	goto continue_func;
2956 }
2957 
2958 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2959 static int get_callee_stack_depth(struct bpf_verifier_env *env,
2960 				  const struct bpf_insn *insn, int idx)
2961 {
2962 	int start = idx + insn->imm + 1, subprog;
2963 
2964 	subprog = find_subprog(env, start);
2965 	if (subprog < 0) {
2966 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2967 			  start);
2968 		return -EFAULT;
2969 	}
2970 	return env->subprog_info[subprog].stack_depth;
2971 }
2972 #endif
2973 
2974 int check_ctx_reg(struct bpf_verifier_env *env,
2975 		  const struct bpf_reg_state *reg, int regno)
2976 {
2977 	/* Access to ctx or passing it to a helper is only allowed in
2978 	 * its original, unmodified form.
2979 	 */
2980 
2981 	if (reg->off) {
2982 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2983 			regno, reg->off);
2984 		return -EACCES;
2985 	}
2986 
2987 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2988 		char tn_buf[48];
2989 
2990 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2991 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2992 		return -EACCES;
2993 	}
2994 
2995 	return 0;
2996 }
2997 
2998 static int check_tp_buffer_access(struct bpf_verifier_env *env,
2999 				  const struct bpf_reg_state *reg,
3000 				  int regno, int off, int size)
3001 {
3002 	if (off < 0) {
3003 		verbose(env,
3004 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
3005 			regno, off, size);
3006 		return -EACCES;
3007 	}
3008 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3009 		char tn_buf[48];
3010 
3011 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3012 		verbose(env,
3013 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
3014 			regno, off, tn_buf);
3015 		return -EACCES;
3016 	}
3017 	if (off + size > env->prog->aux->max_tp_access)
3018 		env->prog->aux->max_tp_access = off + size;
3019 
3020 	return 0;
3021 }
3022 
3023 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3024 static void zext_32_to_64(struct bpf_reg_state *reg)
3025 {
3026 	reg->var_off = tnum_subreg(reg->var_off);
3027 	__reg_assign_32_into_64(reg);
3028 }
3029 
3030 /* truncate register to smaller size (in bytes)
3031  * must be called with size < BPF_REG_SIZE
3032  */
3033 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3034 {
3035 	u64 mask;
3036 
3037 	/* clear high bits in bit representation */
3038 	reg->var_off = tnum_cast(reg->var_off, size);
3039 
3040 	/* fix arithmetic bounds */
3041 	mask = ((u64)1 << (size * 8)) - 1;
3042 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3043 		reg->umin_value &= mask;
3044 		reg->umax_value &= mask;
3045 	} else {
3046 		reg->umin_value = 0;
3047 		reg->umax_value = mask;
3048 	}
3049 	reg->smin_value = reg->umin_value;
3050 	reg->smax_value = reg->umax_value;
3051 
3052 	/* If size is smaller than 32bit register the 32bit register
3053 	 * values are also truncated so we push 64-bit bounds into
3054 	 * 32-bit bounds. Above were truncated < 32-bits already.
3055 	 */
3056 	if (size >= 4)
3057 		return;
3058 	__reg_combine_64_into_32(reg);
3059 }
3060 
3061 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3062 {
3063 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3064 }
3065 
3066 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3067 {
3068 	void *ptr;
3069 	u64 addr;
3070 	int err;
3071 
3072 	err = map->ops->map_direct_value_addr(map, &addr, off);
3073 	if (err)
3074 		return err;
3075 	ptr = (void *)(long)addr + off;
3076 
3077 	switch (size) {
3078 	case sizeof(u8):
3079 		*val = (u64)*(u8 *)ptr;
3080 		break;
3081 	case sizeof(u16):
3082 		*val = (u64)*(u16 *)ptr;
3083 		break;
3084 	case sizeof(u32):
3085 		*val = (u64)*(u32 *)ptr;
3086 		break;
3087 	case sizeof(u64):
3088 		*val = *(u64 *)ptr;
3089 		break;
3090 	default:
3091 		return -EINVAL;
3092 	}
3093 	return 0;
3094 }
3095 
3096 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3097 				   struct bpf_reg_state *regs,
3098 				   int regno, int off, int size,
3099 				   enum bpf_access_type atype,
3100 				   int value_regno)
3101 {
3102 	struct bpf_reg_state *reg = regs + regno;
3103 	const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3104 	const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3105 	u32 btf_id;
3106 	int ret;
3107 
3108 	if (off < 0) {
3109 		verbose(env,
3110 			"R%d is ptr_%s invalid negative access: off=%d\n",
3111 			regno, tname, off);
3112 		return -EACCES;
3113 	}
3114 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3115 		char tn_buf[48];
3116 
3117 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3118 		verbose(env,
3119 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3120 			regno, tname, off, tn_buf);
3121 		return -EACCES;
3122 	}
3123 
3124 	if (env->ops->btf_struct_access) {
3125 		ret = env->ops->btf_struct_access(&env->log, t, off, size,
3126 						  atype, &btf_id);
3127 	} else {
3128 		if (atype != BPF_READ) {
3129 			verbose(env, "only read is supported\n");
3130 			return -EACCES;
3131 		}
3132 
3133 		ret = btf_struct_access(&env->log, t, off, size, atype,
3134 					&btf_id);
3135 	}
3136 
3137 	if (ret < 0)
3138 		return ret;
3139 
3140 	if (atype == BPF_READ && value_regno >= 0) {
3141 		if (ret == SCALAR_VALUE) {
3142 			mark_reg_unknown(env, regs, value_regno);
3143 			return 0;
3144 		}
3145 		mark_reg_known_zero(env, regs, value_regno);
3146 		regs[value_regno].type = PTR_TO_BTF_ID;
3147 		regs[value_regno].btf_id = btf_id;
3148 	}
3149 
3150 	return 0;
3151 }
3152 
3153 /* check whether memory at (regno + off) is accessible for t = (read | write)
3154  * if t==write, value_regno is a register which value is stored into memory
3155  * if t==read, value_regno is a register which will receive the value from memory
3156  * if t==write && value_regno==-1, some unknown value is stored into memory
3157  * if t==read && value_regno==-1, don't care what we read from memory
3158  */
3159 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3160 			    int off, int bpf_size, enum bpf_access_type t,
3161 			    int value_regno, bool strict_alignment_once)
3162 {
3163 	struct bpf_reg_state *regs = cur_regs(env);
3164 	struct bpf_reg_state *reg = regs + regno;
3165 	struct bpf_func_state *state;
3166 	int size, err = 0;
3167 
3168 	size = bpf_size_to_bytes(bpf_size);
3169 	if (size < 0)
3170 		return size;
3171 
3172 	/* alignment checks will add in reg->off themselves */
3173 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3174 	if (err)
3175 		return err;
3176 
3177 	/* for access checks, reg->off is just part of off */
3178 	off += reg->off;
3179 
3180 	if (reg->type == PTR_TO_MAP_VALUE) {
3181 		if (t == BPF_WRITE && value_regno >= 0 &&
3182 		    is_pointer_value(env, value_regno)) {
3183 			verbose(env, "R%d leaks addr into map\n", value_regno);
3184 			return -EACCES;
3185 		}
3186 		err = check_map_access_type(env, regno, off, size, t);
3187 		if (err)
3188 			return err;
3189 		err = check_map_access(env, regno, off, size, false);
3190 		if (!err && t == BPF_READ && value_regno >= 0) {
3191 			struct bpf_map *map = reg->map_ptr;
3192 
3193 			/* if map is read-only, track its contents as scalars */
3194 			if (tnum_is_const(reg->var_off) &&
3195 			    bpf_map_is_rdonly(map) &&
3196 			    map->ops->map_direct_value_addr) {
3197 				int map_off = off + reg->var_off.value;
3198 				u64 val = 0;
3199 
3200 				err = bpf_map_direct_read(map, map_off, size,
3201 							  &val);
3202 				if (err)
3203 					return err;
3204 
3205 				regs[value_regno].type = SCALAR_VALUE;
3206 				__mark_reg_known(&regs[value_regno], val);
3207 			} else {
3208 				mark_reg_unknown(env, regs, value_regno);
3209 			}
3210 		}
3211 	} else if (reg->type == PTR_TO_CTX) {
3212 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3213 		u32 btf_id = 0;
3214 
3215 		if (t == BPF_WRITE && value_regno >= 0 &&
3216 		    is_pointer_value(env, value_regno)) {
3217 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3218 			return -EACCES;
3219 		}
3220 
3221 		err = check_ctx_reg(env, reg, regno);
3222 		if (err < 0)
3223 			return err;
3224 
3225 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3226 		if (err)
3227 			verbose_linfo(env, insn_idx, "; ");
3228 		if (!err && t == BPF_READ && value_regno >= 0) {
3229 			/* ctx access returns either a scalar, or a
3230 			 * PTR_TO_PACKET[_META,_END]. In the latter
3231 			 * case, we know the offset is zero.
3232 			 */
3233 			if (reg_type == SCALAR_VALUE) {
3234 				mark_reg_unknown(env, regs, value_regno);
3235 			} else {
3236 				mark_reg_known_zero(env, regs,
3237 						    value_regno);
3238 				if (reg_type_may_be_null(reg_type))
3239 					regs[value_regno].id = ++env->id_gen;
3240 				/* A load of ctx field could have different
3241 				 * actual load size with the one encoded in the
3242 				 * insn. When the dst is PTR, it is for sure not
3243 				 * a sub-register.
3244 				 */
3245 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3246 				if (reg_type == PTR_TO_BTF_ID)
3247 					regs[value_regno].btf_id = btf_id;
3248 			}
3249 			regs[value_regno].type = reg_type;
3250 		}
3251 
3252 	} else if (reg->type == PTR_TO_STACK) {
3253 		off += reg->var_off.value;
3254 		err = check_stack_access(env, reg, off, size);
3255 		if (err)
3256 			return err;
3257 
3258 		state = func(env, reg);
3259 		err = update_stack_depth(env, state, off);
3260 		if (err)
3261 			return err;
3262 
3263 		if (t == BPF_WRITE)
3264 			err = check_stack_write(env, state, off, size,
3265 						value_regno, insn_idx);
3266 		else
3267 			err = check_stack_read(env, state, off, size,
3268 					       value_regno);
3269 	} else if (reg_is_pkt_pointer(reg)) {
3270 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3271 			verbose(env, "cannot write into packet\n");
3272 			return -EACCES;
3273 		}
3274 		if (t == BPF_WRITE && value_regno >= 0 &&
3275 		    is_pointer_value(env, value_regno)) {
3276 			verbose(env, "R%d leaks addr into packet\n",
3277 				value_regno);
3278 			return -EACCES;
3279 		}
3280 		err = check_packet_access(env, regno, off, size, false);
3281 		if (!err && t == BPF_READ && value_regno >= 0)
3282 			mark_reg_unknown(env, regs, value_regno);
3283 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3284 		if (t == BPF_WRITE && value_regno >= 0 &&
3285 		    is_pointer_value(env, value_regno)) {
3286 			verbose(env, "R%d leaks addr into flow keys\n",
3287 				value_regno);
3288 			return -EACCES;
3289 		}
3290 
3291 		err = check_flow_keys_access(env, off, size);
3292 		if (!err && t == BPF_READ && value_regno >= 0)
3293 			mark_reg_unknown(env, regs, value_regno);
3294 	} else if (type_is_sk_pointer(reg->type)) {
3295 		if (t == BPF_WRITE) {
3296 			verbose(env, "R%d cannot write into %s\n",
3297 				regno, reg_type_str[reg->type]);
3298 			return -EACCES;
3299 		}
3300 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3301 		if (!err && value_regno >= 0)
3302 			mark_reg_unknown(env, regs, value_regno);
3303 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3304 		err = check_tp_buffer_access(env, reg, regno, off, size);
3305 		if (!err && t == BPF_READ && value_regno >= 0)
3306 			mark_reg_unknown(env, regs, value_regno);
3307 	} else if (reg->type == PTR_TO_BTF_ID) {
3308 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3309 					      value_regno);
3310 	} else {
3311 		verbose(env, "R%d invalid mem access '%s'\n", regno,
3312 			reg_type_str[reg->type]);
3313 		return -EACCES;
3314 	}
3315 
3316 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3317 	    regs[value_regno].type == SCALAR_VALUE) {
3318 		/* b/h/w load zero-extends, mark upper bits as known 0 */
3319 		coerce_reg_to_size(&regs[value_regno], size);
3320 	}
3321 	return err;
3322 }
3323 
3324 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3325 {
3326 	int err;
3327 
3328 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3329 	    insn->imm != 0) {
3330 		verbose(env, "BPF_XADD uses reserved fields\n");
3331 		return -EINVAL;
3332 	}
3333 
3334 	/* check src1 operand */
3335 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
3336 	if (err)
3337 		return err;
3338 
3339 	/* check src2 operand */
3340 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3341 	if (err)
3342 		return err;
3343 
3344 	if (is_pointer_value(env, insn->src_reg)) {
3345 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3346 		return -EACCES;
3347 	}
3348 
3349 	if (is_ctx_reg(env, insn->dst_reg) ||
3350 	    is_pkt_reg(env, insn->dst_reg) ||
3351 	    is_flow_key_reg(env, insn->dst_reg) ||
3352 	    is_sk_reg(env, insn->dst_reg)) {
3353 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3354 			insn->dst_reg,
3355 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
3356 		return -EACCES;
3357 	}
3358 
3359 	/* check whether atomic_add can read the memory */
3360 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3361 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
3362 	if (err)
3363 		return err;
3364 
3365 	/* check whether atomic_add can write into the same memory */
3366 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3367 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3368 }
3369 
3370 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3371 				  int off, int access_size,
3372 				  bool zero_size_allowed)
3373 {
3374 	struct bpf_reg_state *reg = reg_state(env, regno);
3375 
3376 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3377 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3378 		if (tnum_is_const(reg->var_off)) {
3379 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3380 				regno, off, access_size);
3381 		} else {
3382 			char tn_buf[48];
3383 
3384 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3385 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3386 				regno, tn_buf, access_size);
3387 		}
3388 		return -EACCES;
3389 	}
3390 	return 0;
3391 }
3392 
3393 /* when register 'regno' is passed into function that will read 'access_size'
3394  * bytes from that pointer, make sure that it's within stack boundary
3395  * and all elements of stack are initialized.
3396  * Unlike most pointer bounds-checking functions, this one doesn't take an
3397  * 'off' argument, so it has to add in reg->off itself.
3398  */
3399 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3400 				int access_size, bool zero_size_allowed,
3401 				struct bpf_call_arg_meta *meta)
3402 {
3403 	struct bpf_reg_state *reg = reg_state(env, regno);
3404 	struct bpf_func_state *state = func(env, reg);
3405 	int err, min_off, max_off, i, j, slot, spi;
3406 
3407 	if (reg->type != PTR_TO_STACK) {
3408 		/* Allow zero-byte read from NULL, regardless of pointer type */
3409 		if (zero_size_allowed && access_size == 0 &&
3410 		    register_is_null(reg))
3411 			return 0;
3412 
3413 		verbose(env, "R%d type=%s expected=%s\n", regno,
3414 			reg_type_str[reg->type],
3415 			reg_type_str[PTR_TO_STACK]);
3416 		return -EACCES;
3417 	}
3418 
3419 	if (tnum_is_const(reg->var_off)) {
3420 		min_off = max_off = reg->var_off.value + reg->off;
3421 		err = __check_stack_boundary(env, regno, min_off, access_size,
3422 					     zero_size_allowed);
3423 		if (err)
3424 			return err;
3425 	} else {
3426 		/* Variable offset is prohibited for unprivileged mode for
3427 		 * simplicity since it requires corresponding support in
3428 		 * Spectre masking for stack ALU.
3429 		 * See also retrieve_ptr_limit().
3430 		 */
3431 		if (!env->allow_ptr_leaks) {
3432 			char tn_buf[48];
3433 
3434 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3435 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3436 				regno, tn_buf);
3437 			return -EACCES;
3438 		}
3439 		/* Only initialized buffer on stack is allowed to be accessed
3440 		 * with variable offset. With uninitialized buffer it's hard to
3441 		 * guarantee that whole memory is marked as initialized on
3442 		 * helper return since specific bounds are unknown what may
3443 		 * cause uninitialized stack leaking.
3444 		 */
3445 		if (meta && meta->raw_mode)
3446 			meta = NULL;
3447 
3448 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3449 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3450 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3451 				regno);
3452 			return -EACCES;
3453 		}
3454 		min_off = reg->smin_value + reg->off;
3455 		max_off = reg->smax_value + reg->off;
3456 		err = __check_stack_boundary(env, regno, min_off, access_size,
3457 					     zero_size_allowed);
3458 		if (err) {
3459 			verbose(env, "R%d min value is outside of stack bound\n",
3460 				regno);
3461 			return err;
3462 		}
3463 		err = __check_stack_boundary(env, regno, max_off, access_size,
3464 					     zero_size_allowed);
3465 		if (err) {
3466 			verbose(env, "R%d max value is outside of stack bound\n",
3467 				regno);
3468 			return err;
3469 		}
3470 	}
3471 
3472 	if (meta && meta->raw_mode) {
3473 		meta->access_size = access_size;
3474 		meta->regno = regno;
3475 		return 0;
3476 	}
3477 
3478 	for (i = min_off; i < max_off + access_size; i++) {
3479 		u8 *stype;
3480 
3481 		slot = -i - 1;
3482 		spi = slot / BPF_REG_SIZE;
3483 		if (state->allocated_stack <= slot)
3484 			goto err;
3485 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3486 		if (*stype == STACK_MISC)
3487 			goto mark;
3488 		if (*stype == STACK_ZERO) {
3489 			/* helper can write anything into the stack */
3490 			*stype = STACK_MISC;
3491 			goto mark;
3492 		}
3493 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3494 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3495 			__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3496 			for (j = 0; j < BPF_REG_SIZE; j++)
3497 				state->stack[spi].slot_type[j] = STACK_MISC;
3498 			goto mark;
3499 		}
3500 
3501 err:
3502 		if (tnum_is_const(reg->var_off)) {
3503 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3504 				min_off, i - min_off, access_size);
3505 		} else {
3506 			char tn_buf[48];
3507 
3508 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3509 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3510 				tn_buf, i - min_off, access_size);
3511 		}
3512 		return -EACCES;
3513 mark:
3514 		/* reading any byte out of 8-byte 'spill_slot' will cause
3515 		 * the whole slot to be marked as 'read'
3516 		 */
3517 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3518 			      state->stack[spi].spilled_ptr.parent,
3519 			      REG_LIVE_READ64);
3520 	}
3521 	return update_stack_depth(env, state, min_off);
3522 }
3523 
3524 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3525 				   int access_size, bool zero_size_allowed,
3526 				   struct bpf_call_arg_meta *meta)
3527 {
3528 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3529 
3530 	switch (reg->type) {
3531 	case PTR_TO_PACKET:
3532 	case PTR_TO_PACKET_META:
3533 		return check_packet_access(env, regno, reg->off, access_size,
3534 					   zero_size_allowed);
3535 	case PTR_TO_MAP_VALUE:
3536 		if (check_map_access_type(env, regno, reg->off, access_size,
3537 					  meta && meta->raw_mode ? BPF_WRITE :
3538 					  BPF_READ))
3539 			return -EACCES;
3540 		return check_map_access(env, regno, reg->off, access_size,
3541 					zero_size_allowed);
3542 	default: /* scalar_value|ptr_to_stack or invalid ptr */
3543 		return check_stack_boundary(env, regno, access_size,
3544 					    zero_size_allowed, meta);
3545 	}
3546 }
3547 
3548 /* Implementation details:
3549  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3550  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3551  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3552  * value_or_null->value transition, since the verifier only cares about
3553  * the range of access to valid map value pointer and doesn't care about actual
3554  * address of the map element.
3555  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3556  * reg->id > 0 after value_or_null->value transition. By doing so
3557  * two bpf_map_lookups will be considered two different pointers that
3558  * point to different bpf_spin_locks.
3559  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3560  * dead-locks.
3561  * Since only one bpf_spin_lock is allowed the checks are simpler than
3562  * reg_is_refcounted() logic. The verifier needs to remember only
3563  * one spin_lock instead of array of acquired_refs.
3564  * cur_state->active_spin_lock remembers which map value element got locked
3565  * and clears it after bpf_spin_unlock.
3566  */
3567 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3568 			     bool is_lock)
3569 {
3570 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3571 	struct bpf_verifier_state *cur = env->cur_state;
3572 	bool is_const = tnum_is_const(reg->var_off);
3573 	struct bpf_map *map = reg->map_ptr;
3574 	u64 val = reg->var_off.value;
3575 
3576 	if (reg->type != PTR_TO_MAP_VALUE) {
3577 		verbose(env, "R%d is not a pointer to map_value\n", regno);
3578 		return -EINVAL;
3579 	}
3580 	if (!is_const) {
3581 		verbose(env,
3582 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3583 			regno);
3584 		return -EINVAL;
3585 	}
3586 	if (!map->btf) {
3587 		verbose(env,
3588 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3589 			map->name);
3590 		return -EINVAL;
3591 	}
3592 	if (!map_value_has_spin_lock(map)) {
3593 		if (map->spin_lock_off == -E2BIG)
3594 			verbose(env,
3595 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3596 				map->name);
3597 		else if (map->spin_lock_off == -ENOENT)
3598 			verbose(env,
3599 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3600 				map->name);
3601 		else
3602 			verbose(env,
3603 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3604 				map->name);
3605 		return -EINVAL;
3606 	}
3607 	if (map->spin_lock_off != val + reg->off) {
3608 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3609 			val + reg->off);
3610 		return -EINVAL;
3611 	}
3612 	if (is_lock) {
3613 		if (cur->active_spin_lock) {
3614 			verbose(env,
3615 				"Locking two bpf_spin_locks are not allowed\n");
3616 			return -EINVAL;
3617 		}
3618 		cur->active_spin_lock = reg->id;
3619 	} else {
3620 		if (!cur->active_spin_lock) {
3621 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3622 			return -EINVAL;
3623 		}
3624 		if (cur->active_spin_lock != reg->id) {
3625 			verbose(env, "bpf_spin_unlock of different lock\n");
3626 			return -EINVAL;
3627 		}
3628 		cur->active_spin_lock = 0;
3629 	}
3630 	return 0;
3631 }
3632 
3633 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3634 {
3635 	return type == ARG_PTR_TO_MEM ||
3636 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3637 	       type == ARG_PTR_TO_UNINIT_MEM;
3638 }
3639 
3640 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3641 {
3642 	return type == ARG_CONST_SIZE ||
3643 	       type == ARG_CONST_SIZE_OR_ZERO;
3644 }
3645 
3646 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3647 {
3648 	return type == ARG_PTR_TO_INT ||
3649 	       type == ARG_PTR_TO_LONG;
3650 }
3651 
3652 static int int_ptr_type_to_size(enum bpf_arg_type type)
3653 {
3654 	if (type == ARG_PTR_TO_INT)
3655 		return sizeof(u32);
3656 	else if (type == ARG_PTR_TO_LONG)
3657 		return sizeof(u64);
3658 
3659 	return -EINVAL;
3660 }
3661 
3662 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
3663 			  enum bpf_arg_type arg_type,
3664 			  struct bpf_call_arg_meta *meta)
3665 {
3666 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3667 	enum bpf_reg_type expected_type, type = reg->type;
3668 	int err = 0;
3669 
3670 	if (arg_type == ARG_DONTCARE)
3671 		return 0;
3672 
3673 	err = check_reg_arg(env, regno, SRC_OP);
3674 	if (err)
3675 		return err;
3676 
3677 	if (arg_type == ARG_ANYTHING) {
3678 		if (is_pointer_value(env, regno)) {
3679 			verbose(env, "R%d leaks addr into helper function\n",
3680 				regno);
3681 			return -EACCES;
3682 		}
3683 		return 0;
3684 	}
3685 
3686 	if (type_is_pkt_pointer(type) &&
3687 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
3688 		verbose(env, "helper access to the packet is not allowed\n");
3689 		return -EACCES;
3690 	}
3691 
3692 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
3693 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
3694 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3695 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3696 		expected_type = PTR_TO_STACK;
3697 		if (register_is_null(reg) &&
3698 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3699 			/* final test in check_stack_boundary() */;
3700 		else if (!type_is_pkt_pointer(type) &&
3701 			 type != PTR_TO_MAP_VALUE &&
3702 			 type != expected_type)
3703 			goto err_type;
3704 	} else if (arg_type == ARG_CONST_SIZE ||
3705 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
3706 		expected_type = SCALAR_VALUE;
3707 		if (type != expected_type)
3708 			goto err_type;
3709 	} else if (arg_type == ARG_CONST_MAP_PTR) {
3710 		expected_type = CONST_PTR_TO_MAP;
3711 		if (type != expected_type)
3712 			goto err_type;
3713 	} else if (arg_type == ARG_PTR_TO_CTX ||
3714 		   arg_type == ARG_PTR_TO_CTX_OR_NULL) {
3715 		expected_type = PTR_TO_CTX;
3716 		if (!(register_is_null(reg) &&
3717 		      arg_type == ARG_PTR_TO_CTX_OR_NULL)) {
3718 			if (type != expected_type)
3719 				goto err_type;
3720 			err = check_ctx_reg(env, reg, regno);
3721 			if (err < 0)
3722 				return err;
3723 		}
3724 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3725 		expected_type = PTR_TO_SOCK_COMMON;
3726 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3727 		if (!type_is_sk_pointer(type))
3728 			goto err_type;
3729 		if (reg->ref_obj_id) {
3730 			if (meta->ref_obj_id) {
3731 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3732 					regno, reg->ref_obj_id,
3733 					meta->ref_obj_id);
3734 				return -EFAULT;
3735 			}
3736 			meta->ref_obj_id = reg->ref_obj_id;
3737 		}
3738 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
3739 		expected_type = PTR_TO_SOCKET;
3740 		if (type != expected_type)
3741 			goto err_type;
3742 	} else if (arg_type == ARG_PTR_TO_BTF_ID) {
3743 		expected_type = PTR_TO_BTF_ID;
3744 		if (type != expected_type)
3745 			goto err_type;
3746 		if (reg->btf_id != meta->btf_id) {
3747 			verbose(env, "Helper has type %s got %s in R%d\n",
3748 				kernel_type_name(meta->btf_id),
3749 				kernel_type_name(reg->btf_id), regno);
3750 
3751 			return -EACCES;
3752 		}
3753 		if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
3754 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
3755 				regno);
3756 			return -EACCES;
3757 		}
3758 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3759 		if (meta->func_id == BPF_FUNC_spin_lock) {
3760 			if (process_spin_lock(env, regno, true))
3761 				return -EACCES;
3762 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
3763 			if (process_spin_lock(env, regno, false))
3764 				return -EACCES;
3765 		} else {
3766 			verbose(env, "verifier internal error\n");
3767 			return -EFAULT;
3768 		}
3769 	} else if (arg_type_is_mem_ptr(arg_type)) {
3770 		expected_type = PTR_TO_STACK;
3771 		/* One exception here. In case function allows for NULL to be
3772 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
3773 		 * happens during stack boundary checking.
3774 		 */
3775 		if (register_is_null(reg) &&
3776 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
3777 			/* final test in check_stack_boundary() */;
3778 		else if (!type_is_pkt_pointer(type) &&
3779 			 type != PTR_TO_MAP_VALUE &&
3780 			 type != expected_type)
3781 			goto err_type;
3782 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
3783 	} else if (arg_type_is_int_ptr(arg_type)) {
3784 		expected_type = PTR_TO_STACK;
3785 		if (!type_is_pkt_pointer(type) &&
3786 		    type != PTR_TO_MAP_VALUE &&
3787 		    type != expected_type)
3788 			goto err_type;
3789 	} else {
3790 		verbose(env, "unsupported arg_type %d\n", arg_type);
3791 		return -EFAULT;
3792 	}
3793 
3794 	if (arg_type == ARG_CONST_MAP_PTR) {
3795 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3796 		meta->map_ptr = reg->map_ptr;
3797 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3798 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
3799 		 * check that [key, key + map->key_size) are within
3800 		 * stack limits and initialized
3801 		 */
3802 		if (!meta->map_ptr) {
3803 			/* in function declaration map_ptr must come before
3804 			 * map_key, so that it's verified and known before
3805 			 * we have to check map_key here. Otherwise it means
3806 			 * that kernel subsystem misconfigured verifier
3807 			 */
3808 			verbose(env, "invalid map_ptr to access map->key\n");
3809 			return -EACCES;
3810 		}
3811 		err = check_helper_mem_access(env, regno,
3812 					      meta->map_ptr->key_size, false,
3813 					      NULL);
3814 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3815 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3816 		    !register_is_null(reg)) ||
3817 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
3818 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
3819 		 * check [value, value + map->value_size) validity
3820 		 */
3821 		if (!meta->map_ptr) {
3822 			/* kernel subsystem misconfigured verifier */
3823 			verbose(env, "invalid map_ptr to access map->value\n");
3824 			return -EACCES;
3825 		}
3826 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
3827 		err = check_helper_mem_access(env, regno,
3828 					      meta->map_ptr->value_size, false,
3829 					      meta);
3830 	} else if (arg_type_is_mem_size(arg_type)) {
3831 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
3832 
3833 		/* This is used to refine r0 return value bounds for helpers
3834 		 * that enforce this value as an upper bound on return values.
3835 		 * See do_refine_retval_range() for helpers that can refine
3836 		 * the return value. C type of helper is u32 so we pull register
3837 		 * bound from umax_value however, if negative verifier errors
3838 		 * out. Only upper bounds can be learned because retval is an
3839 		 * int type and negative retvals are allowed.
3840 		 */
3841 		meta->msize_max_value = reg->umax_value;
3842 
3843 		/* The register is SCALAR_VALUE; the access check
3844 		 * happens using its boundaries.
3845 		 */
3846 		if (!tnum_is_const(reg->var_off))
3847 			/* For unprivileged variable accesses, disable raw
3848 			 * mode so that the program is required to
3849 			 * initialize all the memory that the helper could
3850 			 * just partially fill up.
3851 			 */
3852 			meta = NULL;
3853 
3854 		if (reg->smin_value < 0) {
3855 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
3856 				regno);
3857 			return -EACCES;
3858 		}
3859 
3860 		if (reg->umin_value == 0) {
3861 			err = check_helper_mem_access(env, regno - 1, 0,
3862 						      zero_size_allowed,
3863 						      meta);
3864 			if (err)
3865 				return err;
3866 		}
3867 
3868 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
3869 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
3870 				regno);
3871 			return -EACCES;
3872 		}
3873 		err = check_helper_mem_access(env, regno - 1,
3874 					      reg->umax_value,
3875 					      zero_size_allowed, meta);
3876 		if (!err)
3877 			err = mark_chain_precision(env, regno);
3878 	} else if (arg_type_is_int_ptr(arg_type)) {
3879 		int size = int_ptr_type_to_size(arg_type);
3880 
3881 		err = check_helper_mem_access(env, regno, size, false, meta);
3882 		if (err)
3883 			return err;
3884 		err = check_ptr_alignment(env, reg, 0, size, true);
3885 	}
3886 
3887 	return err;
3888 err_type:
3889 	verbose(env, "R%d type=%s expected=%s\n", regno,
3890 		reg_type_str[type], reg_type_str[expected_type]);
3891 	return -EACCES;
3892 }
3893 
3894 static int check_map_func_compatibility(struct bpf_verifier_env *env,
3895 					struct bpf_map *map, int func_id)
3896 {
3897 	if (!map)
3898 		return 0;
3899 
3900 	/* We need a two way check, first is from map perspective ... */
3901 	switch (map->map_type) {
3902 	case BPF_MAP_TYPE_PROG_ARRAY:
3903 		if (func_id != BPF_FUNC_tail_call)
3904 			goto error;
3905 		break;
3906 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3907 		if (func_id != BPF_FUNC_perf_event_read &&
3908 		    func_id != BPF_FUNC_perf_event_output &&
3909 		    func_id != BPF_FUNC_skb_output &&
3910 		    func_id != BPF_FUNC_perf_event_read_value &&
3911 		    func_id != BPF_FUNC_xdp_output)
3912 			goto error;
3913 		break;
3914 	case BPF_MAP_TYPE_STACK_TRACE:
3915 		if (func_id != BPF_FUNC_get_stackid)
3916 			goto error;
3917 		break;
3918 	case BPF_MAP_TYPE_CGROUP_ARRAY:
3919 		if (func_id != BPF_FUNC_skb_under_cgroup &&
3920 		    func_id != BPF_FUNC_current_task_under_cgroup)
3921 			goto error;
3922 		break;
3923 	case BPF_MAP_TYPE_CGROUP_STORAGE:
3924 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
3925 		if (func_id != BPF_FUNC_get_local_storage)
3926 			goto error;
3927 		break;
3928 	case BPF_MAP_TYPE_DEVMAP:
3929 	case BPF_MAP_TYPE_DEVMAP_HASH:
3930 		if (func_id != BPF_FUNC_redirect_map &&
3931 		    func_id != BPF_FUNC_map_lookup_elem)
3932 			goto error;
3933 		break;
3934 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
3935 	 * appear.
3936 	 */
3937 	case BPF_MAP_TYPE_CPUMAP:
3938 		if (func_id != BPF_FUNC_redirect_map)
3939 			goto error;
3940 		break;
3941 	case BPF_MAP_TYPE_XSKMAP:
3942 		if (func_id != BPF_FUNC_redirect_map &&
3943 		    func_id != BPF_FUNC_map_lookup_elem)
3944 			goto error;
3945 		break;
3946 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
3947 	case BPF_MAP_TYPE_HASH_OF_MAPS:
3948 		if (func_id != BPF_FUNC_map_lookup_elem)
3949 			goto error;
3950 		break;
3951 	case BPF_MAP_TYPE_SOCKMAP:
3952 		if (func_id != BPF_FUNC_sk_redirect_map &&
3953 		    func_id != BPF_FUNC_sock_map_update &&
3954 		    func_id != BPF_FUNC_map_delete_elem &&
3955 		    func_id != BPF_FUNC_msg_redirect_map &&
3956 		    func_id != BPF_FUNC_sk_select_reuseport &&
3957 		    func_id != BPF_FUNC_map_lookup_elem)
3958 			goto error;
3959 		break;
3960 	case BPF_MAP_TYPE_SOCKHASH:
3961 		if (func_id != BPF_FUNC_sk_redirect_hash &&
3962 		    func_id != BPF_FUNC_sock_hash_update &&
3963 		    func_id != BPF_FUNC_map_delete_elem &&
3964 		    func_id != BPF_FUNC_msg_redirect_hash &&
3965 		    func_id != BPF_FUNC_sk_select_reuseport &&
3966 		    func_id != BPF_FUNC_map_lookup_elem)
3967 			goto error;
3968 		break;
3969 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3970 		if (func_id != BPF_FUNC_sk_select_reuseport)
3971 			goto error;
3972 		break;
3973 	case BPF_MAP_TYPE_QUEUE:
3974 	case BPF_MAP_TYPE_STACK:
3975 		if (func_id != BPF_FUNC_map_peek_elem &&
3976 		    func_id != BPF_FUNC_map_pop_elem &&
3977 		    func_id != BPF_FUNC_map_push_elem)
3978 			goto error;
3979 		break;
3980 	case BPF_MAP_TYPE_SK_STORAGE:
3981 		if (func_id != BPF_FUNC_sk_storage_get &&
3982 		    func_id != BPF_FUNC_sk_storage_delete)
3983 			goto error;
3984 		break;
3985 	default:
3986 		break;
3987 	}
3988 
3989 	/* ... and second from the function itself. */
3990 	switch (func_id) {
3991 	case BPF_FUNC_tail_call:
3992 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3993 			goto error;
3994 		if (env->subprog_cnt > 1) {
3995 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3996 			return -EINVAL;
3997 		}
3998 		break;
3999 	case BPF_FUNC_perf_event_read:
4000 	case BPF_FUNC_perf_event_output:
4001 	case BPF_FUNC_perf_event_read_value:
4002 	case BPF_FUNC_skb_output:
4003 	case BPF_FUNC_xdp_output:
4004 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4005 			goto error;
4006 		break;
4007 	case BPF_FUNC_get_stackid:
4008 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4009 			goto error;
4010 		break;
4011 	case BPF_FUNC_current_task_under_cgroup:
4012 	case BPF_FUNC_skb_under_cgroup:
4013 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4014 			goto error;
4015 		break;
4016 	case BPF_FUNC_redirect_map:
4017 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4018 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4019 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
4020 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
4021 			goto error;
4022 		break;
4023 	case BPF_FUNC_sk_redirect_map:
4024 	case BPF_FUNC_msg_redirect_map:
4025 	case BPF_FUNC_sock_map_update:
4026 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4027 			goto error;
4028 		break;
4029 	case BPF_FUNC_sk_redirect_hash:
4030 	case BPF_FUNC_msg_redirect_hash:
4031 	case BPF_FUNC_sock_hash_update:
4032 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4033 			goto error;
4034 		break;
4035 	case BPF_FUNC_get_local_storage:
4036 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4037 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
4038 			goto error;
4039 		break;
4040 	case BPF_FUNC_sk_select_reuseport:
4041 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4042 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4043 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
4044 			goto error;
4045 		break;
4046 	case BPF_FUNC_map_peek_elem:
4047 	case BPF_FUNC_map_pop_elem:
4048 	case BPF_FUNC_map_push_elem:
4049 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4050 		    map->map_type != BPF_MAP_TYPE_STACK)
4051 			goto error;
4052 		break;
4053 	case BPF_FUNC_sk_storage_get:
4054 	case BPF_FUNC_sk_storage_delete:
4055 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4056 			goto error;
4057 		break;
4058 	default:
4059 		break;
4060 	}
4061 
4062 	return 0;
4063 error:
4064 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
4065 		map->map_type, func_id_name(func_id), func_id);
4066 	return -EINVAL;
4067 }
4068 
4069 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4070 {
4071 	int count = 0;
4072 
4073 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4074 		count++;
4075 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4076 		count++;
4077 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4078 		count++;
4079 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4080 		count++;
4081 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4082 		count++;
4083 
4084 	/* We only support one arg being in raw mode at the moment,
4085 	 * which is sufficient for the helper functions we have
4086 	 * right now.
4087 	 */
4088 	return count <= 1;
4089 }
4090 
4091 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4092 				    enum bpf_arg_type arg_next)
4093 {
4094 	return (arg_type_is_mem_ptr(arg_curr) &&
4095 	        !arg_type_is_mem_size(arg_next)) ||
4096 	       (!arg_type_is_mem_ptr(arg_curr) &&
4097 		arg_type_is_mem_size(arg_next));
4098 }
4099 
4100 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4101 {
4102 	/* bpf_xxx(..., buf, len) call will access 'len'
4103 	 * bytes from memory 'buf'. Both arg types need
4104 	 * to be paired, so make sure there's no buggy
4105 	 * helper function specification.
4106 	 */
4107 	if (arg_type_is_mem_size(fn->arg1_type) ||
4108 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
4109 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4110 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4111 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4112 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4113 		return false;
4114 
4115 	return true;
4116 }
4117 
4118 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4119 {
4120 	int count = 0;
4121 
4122 	if (arg_type_may_be_refcounted(fn->arg1_type))
4123 		count++;
4124 	if (arg_type_may_be_refcounted(fn->arg2_type))
4125 		count++;
4126 	if (arg_type_may_be_refcounted(fn->arg3_type))
4127 		count++;
4128 	if (arg_type_may_be_refcounted(fn->arg4_type))
4129 		count++;
4130 	if (arg_type_may_be_refcounted(fn->arg5_type))
4131 		count++;
4132 
4133 	/* A reference acquiring function cannot acquire
4134 	 * another refcounted ptr.
4135 	 */
4136 	if (may_be_acquire_function(func_id) && count)
4137 		return false;
4138 
4139 	/* We only support one arg being unreferenced at the moment,
4140 	 * which is sufficient for the helper functions we have right now.
4141 	 */
4142 	return count <= 1;
4143 }
4144 
4145 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
4146 {
4147 	return check_raw_mode_ok(fn) &&
4148 	       check_arg_pair_ok(fn) &&
4149 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
4150 }
4151 
4152 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4153  * are now invalid, so turn them into unknown SCALAR_VALUE.
4154  */
4155 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4156 				     struct bpf_func_state *state)
4157 {
4158 	struct bpf_reg_state *regs = state->regs, *reg;
4159 	int i;
4160 
4161 	for (i = 0; i < MAX_BPF_REG; i++)
4162 		if (reg_is_pkt_pointer_any(&regs[i]))
4163 			mark_reg_unknown(env, regs, i);
4164 
4165 	bpf_for_each_spilled_reg(i, state, reg) {
4166 		if (!reg)
4167 			continue;
4168 		if (reg_is_pkt_pointer_any(reg))
4169 			__mark_reg_unknown(env, reg);
4170 	}
4171 }
4172 
4173 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4174 {
4175 	struct bpf_verifier_state *vstate = env->cur_state;
4176 	int i;
4177 
4178 	for (i = 0; i <= vstate->curframe; i++)
4179 		__clear_all_pkt_pointers(env, vstate->frame[i]);
4180 }
4181 
4182 static void release_reg_references(struct bpf_verifier_env *env,
4183 				   struct bpf_func_state *state,
4184 				   int ref_obj_id)
4185 {
4186 	struct bpf_reg_state *regs = state->regs, *reg;
4187 	int i;
4188 
4189 	for (i = 0; i < MAX_BPF_REG; i++)
4190 		if (regs[i].ref_obj_id == ref_obj_id)
4191 			mark_reg_unknown(env, regs, i);
4192 
4193 	bpf_for_each_spilled_reg(i, state, reg) {
4194 		if (!reg)
4195 			continue;
4196 		if (reg->ref_obj_id == ref_obj_id)
4197 			__mark_reg_unknown(env, reg);
4198 	}
4199 }
4200 
4201 /* The pointer with the specified id has released its reference to kernel
4202  * resources. Identify all copies of the same pointer and clear the reference.
4203  */
4204 static int release_reference(struct bpf_verifier_env *env,
4205 			     int ref_obj_id)
4206 {
4207 	struct bpf_verifier_state *vstate = env->cur_state;
4208 	int err;
4209 	int i;
4210 
4211 	err = release_reference_state(cur_func(env), ref_obj_id);
4212 	if (err)
4213 		return err;
4214 
4215 	for (i = 0; i <= vstate->curframe; i++)
4216 		release_reg_references(env, vstate->frame[i], ref_obj_id);
4217 
4218 	return 0;
4219 }
4220 
4221 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4222 				    struct bpf_reg_state *regs)
4223 {
4224 	int i;
4225 
4226 	/* after the call registers r0 - r5 were scratched */
4227 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4228 		mark_reg_not_init(env, regs, caller_saved[i]);
4229 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4230 	}
4231 }
4232 
4233 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4234 			   int *insn_idx)
4235 {
4236 	struct bpf_verifier_state *state = env->cur_state;
4237 	struct bpf_func_info_aux *func_info_aux;
4238 	struct bpf_func_state *caller, *callee;
4239 	int i, err, subprog, target_insn;
4240 	bool is_global = false;
4241 
4242 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
4243 		verbose(env, "the call stack of %d frames is too deep\n",
4244 			state->curframe + 2);
4245 		return -E2BIG;
4246 	}
4247 
4248 	target_insn = *insn_idx + insn->imm;
4249 	subprog = find_subprog(env, target_insn + 1);
4250 	if (subprog < 0) {
4251 		verbose(env, "verifier bug. No program starts at insn %d\n",
4252 			target_insn + 1);
4253 		return -EFAULT;
4254 	}
4255 
4256 	caller = state->frame[state->curframe];
4257 	if (state->frame[state->curframe + 1]) {
4258 		verbose(env, "verifier bug. Frame %d already allocated\n",
4259 			state->curframe + 1);
4260 		return -EFAULT;
4261 	}
4262 
4263 	func_info_aux = env->prog->aux->func_info_aux;
4264 	if (func_info_aux)
4265 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4266 	err = btf_check_func_arg_match(env, subprog, caller->regs);
4267 	if (err == -EFAULT)
4268 		return err;
4269 	if (is_global) {
4270 		if (err) {
4271 			verbose(env, "Caller passes invalid args into func#%d\n",
4272 				subprog);
4273 			return err;
4274 		} else {
4275 			if (env->log.level & BPF_LOG_LEVEL)
4276 				verbose(env,
4277 					"Func#%d is global and valid. Skipping.\n",
4278 					subprog);
4279 			clear_caller_saved_regs(env, caller->regs);
4280 
4281 			/* All global functions return SCALAR_VALUE */
4282 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
4283 
4284 			/* continue with next insn after call */
4285 			return 0;
4286 		}
4287 	}
4288 
4289 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4290 	if (!callee)
4291 		return -ENOMEM;
4292 	state->frame[state->curframe + 1] = callee;
4293 
4294 	/* callee cannot access r0, r6 - r9 for reading and has to write
4295 	 * into its own stack before reading from it.
4296 	 * callee can read/write into caller's stack
4297 	 */
4298 	init_func_state(env, callee,
4299 			/* remember the callsite, it will be used by bpf_exit */
4300 			*insn_idx /* callsite */,
4301 			state->curframe + 1 /* frameno within this callchain */,
4302 			subprog /* subprog number within this prog */);
4303 
4304 	/* Transfer references to the callee */
4305 	err = transfer_reference_state(callee, caller);
4306 	if (err)
4307 		return err;
4308 
4309 	/* copy r1 - r5 args that callee can access.  The copy includes parent
4310 	 * pointers, which connects us up to the liveness chain
4311 	 */
4312 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4313 		callee->regs[i] = caller->regs[i];
4314 
4315 	clear_caller_saved_regs(env, caller->regs);
4316 
4317 	/* only increment it after check_reg_arg() finished */
4318 	state->curframe++;
4319 
4320 	/* and go analyze first insn of the callee */
4321 	*insn_idx = target_insn;
4322 
4323 	if (env->log.level & BPF_LOG_LEVEL) {
4324 		verbose(env, "caller:\n");
4325 		print_verifier_state(env, caller);
4326 		verbose(env, "callee:\n");
4327 		print_verifier_state(env, callee);
4328 	}
4329 	return 0;
4330 }
4331 
4332 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4333 {
4334 	struct bpf_verifier_state *state = env->cur_state;
4335 	struct bpf_func_state *caller, *callee;
4336 	struct bpf_reg_state *r0;
4337 	int err;
4338 
4339 	callee = state->frame[state->curframe];
4340 	r0 = &callee->regs[BPF_REG_0];
4341 	if (r0->type == PTR_TO_STACK) {
4342 		/* technically it's ok to return caller's stack pointer
4343 		 * (or caller's caller's pointer) back to the caller,
4344 		 * since these pointers are valid. Only current stack
4345 		 * pointer will be invalid as soon as function exits,
4346 		 * but let's be conservative
4347 		 */
4348 		verbose(env, "cannot return stack pointer to the caller\n");
4349 		return -EINVAL;
4350 	}
4351 
4352 	state->curframe--;
4353 	caller = state->frame[state->curframe];
4354 	/* return to the caller whatever r0 had in the callee */
4355 	caller->regs[BPF_REG_0] = *r0;
4356 
4357 	/* Transfer references to the caller */
4358 	err = transfer_reference_state(caller, callee);
4359 	if (err)
4360 		return err;
4361 
4362 	*insn_idx = callee->callsite + 1;
4363 	if (env->log.level & BPF_LOG_LEVEL) {
4364 		verbose(env, "returning from callee:\n");
4365 		print_verifier_state(env, callee);
4366 		verbose(env, "to caller at %d:\n", *insn_idx);
4367 		print_verifier_state(env, caller);
4368 	}
4369 	/* clear everything in the callee */
4370 	free_func_state(callee);
4371 	state->frame[state->curframe + 1] = NULL;
4372 	return 0;
4373 }
4374 
4375 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4376 				   int func_id,
4377 				   struct bpf_call_arg_meta *meta)
4378 {
4379 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4380 
4381 	if (ret_type != RET_INTEGER ||
4382 	    (func_id != BPF_FUNC_get_stack &&
4383 	     func_id != BPF_FUNC_probe_read_str))
4384 		return;
4385 
4386 	ret_reg->smax_value = meta->msize_max_value;
4387 	ret_reg->s32_max_value = meta->msize_max_value;
4388 	__reg_deduce_bounds(ret_reg);
4389 	__reg_bound_offset(ret_reg);
4390 	__update_reg_bounds(ret_reg);
4391 }
4392 
4393 static int
4394 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4395 		int func_id, int insn_idx)
4396 {
4397 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4398 	struct bpf_map *map = meta->map_ptr;
4399 
4400 	if (func_id != BPF_FUNC_tail_call &&
4401 	    func_id != BPF_FUNC_map_lookup_elem &&
4402 	    func_id != BPF_FUNC_map_update_elem &&
4403 	    func_id != BPF_FUNC_map_delete_elem &&
4404 	    func_id != BPF_FUNC_map_push_elem &&
4405 	    func_id != BPF_FUNC_map_pop_elem &&
4406 	    func_id != BPF_FUNC_map_peek_elem)
4407 		return 0;
4408 
4409 	if (map == NULL) {
4410 		verbose(env, "kernel subsystem misconfigured verifier\n");
4411 		return -EINVAL;
4412 	}
4413 
4414 	/* In case of read-only, some additional restrictions
4415 	 * need to be applied in order to prevent altering the
4416 	 * state of the map from program side.
4417 	 */
4418 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4419 	    (func_id == BPF_FUNC_map_delete_elem ||
4420 	     func_id == BPF_FUNC_map_update_elem ||
4421 	     func_id == BPF_FUNC_map_push_elem ||
4422 	     func_id == BPF_FUNC_map_pop_elem)) {
4423 		verbose(env, "write into map forbidden\n");
4424 		return -EACCES;
4425 	}
4426 
4427 	if (!BPF_MAP_PTR(aux->map_ptr_state))
4428 		bpf_map_ptr_store(aux, meta->map_ptr,
4429 				  meta->map_ptr->unpriv_array);
4430 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4431 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4432 				  meta->map_ptr->unpriv_array);
4433 	return 0;
4434 }
4435 
4436 static int
4437 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4438 		int func_id, int insn_idx)
4439 {
4440 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4441 	struct bpf_reg_state *regs = cur_regs(env), *reg;
4442 	struct bpf_map *map = meta->map_ptr;
4443 	struct tnum range;
4444 	u64 val;
4445 	int err;
4446 
4447 	if (func_id != BPF_FUNC_tail_call)
4448 		return 0;
4449 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4450 		verbose(env, "kernel subsystem misconfigured verifier\n");
4451 		return -EINVAL;
4452 	}
4453 
4454 	range = tnum_range(0, map->max_entries - 1);
4455 	reg = &regs[BPF_REG_3];
4456 
4457 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4458 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4459 		return 0;
4460 	}
4461 
4462 	err = mark_chain_precision(env, BPF_REG_3);
4463 	if (err)
4464 		return err;
4465 
4466 	val = reg->var_off.value;
4467 	if (bpf_map_key_unseen(aux))
4468 		bpf_map_key_store(aux, val);
4469 	else if (!bpf_map_key_poisoned(aux) &&
4470 		  bpf_map_key_immediate(aux) != val)
4471 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4472 	return 0;
4473 }
4474 
4475 static int check_reference_leak(struct bpf_verifier_env *env)
4476 {
4477 	struct bpf_func_state *state = cur_func(env);
4478 	int i;
4479 
4480 	for (i = 0; i < state->acquired_refs; i++) {
4481 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4482 			state->refs[i].id, state->refs[i].insn_idx);
4483 	}
4484 	return state->acquired_refs ? -EINVAL : 0;
4485 }
4486 
4487 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
4488 {
4489 	const struct bpf_func_proto *fn = NULL;
4490 	struct bpf_reg_state *regs;
4491 	struct bpf_call_arg_meta meta;
4492 	bool changes_data;
4493 	int i, err;
4494 
4495 	/* find function prototype */
4496 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
4497 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4498 			func_id);
4499 		return -EINVAL;
4500 	}
4501 
4502 	if (env->ops->get_func_proto)
4503 		fn = env->ops->get_func_proto(func_id, env->prog);
4504 	if (!fn) {
4505 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4506 			func_id);
4507 		return -EINVAL;
4508 	}
4509 
4510 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
4511 	if (!env->prog->gpl_compatible && fn->gpl_only) {
4512 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
4513 		return -EINVAL;
4514 	}
4515 
4516 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
4517 	changes_data = bpf_helper_changes_pkt_data(fn->func);
4518 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4519 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4520 			func_id_name(func_id), func_id);
4521 		return -EINVAL;
4522 	}
4523 
4524 	memset(&meta, 0, sizeof(meta));
4525 	meta.pkt_access = fn->pkt_access;
4526 
4527 	err = check_func_proto(fn, func_id);
4528 	if (err) {
4529 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
4530 			func_id_name(func_id), func_id);
4531 		return err;
4532 	}
4533 
4534 	meta.func_id = func_id;
4535 	/* check args */
4536 	for (i = 0; i < 5; i++) {
4537 		err = btf_resolve_helper_id(&env->log, fn, i);
4538 		if (err > 0)
4539 			meta.btf_id = err;
4540 		err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta);
4541 		if (err)
4542 			return err;
4543 	}
4544 
4545 	err = record_func_map(env, &meta, func_id, insn_idx);
4546 	if (err)
4547 		return err;
4548 
4549 	err = record_func_key(env, &meta, func_id, insn_idx);
4550 	if (err)
4551 		return err;
4552 
4553 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
4554 	 * is inferred from register state.
4555 	 */
4556 	for (i = 0; i < meta.access_size; i++) {
4557 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4558 				       BPF_WRITE, -1, false);
4559 		if (err)
4560 			return err;
4561 	}
4562 
4563 	if (func_id == BPF_FUNC_tail_call) {
4564 		err = check_reference_leak(env);
4565 		if (err) {
4566 			verbose(env, "tail_call would lead to reference leak\n");
4567 			return err;
4568 		}
4569 	} else if (is_release_function(func_id)) {
4570 		err = release_reference(env, meta.ref_obj_id);
4571 		if (err) {
4572 			verbose(env, "func %s#%d reference has not been acquired before\n",
4573 				func_id_name(func_id), func_id);
4574 			return err;
4575 		}
4576 	}
4577 
4578 	regs = cur_regs(env);
4579 
4580 	/* check that flags argument in get_local_storage(map, flags) is 0,
4581 	 * this is required because get_local_storage() can't return an error.
4582 	 */
4583 	if (func_id == BPF_FUNC_get_local_storage &&
4584 	    !register_is_null(&regs[BPF_REG_2])) {
4585 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4586 		return -EINVAL;
4587 	}
4588 
4589 	/* reset caller saved regs */
4590 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4591 		mark_reg_not_init(env, regs, caller_saved[i]);
4592 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4593 	}
4594 
4595 	/* helper call returns 64-bit value. */
4596 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4597 
4598 	/* update return register (already marked as written above) */
4599 	if (fn->ret_type == RET_INTEGER) {
4600 		/* sets type to SCALAR_VALUE */
4601 		mark_reg_unknown(env, regs, BPF_REG_0);
4602 	} else if (fn->ret_type == RET_VOID) {
4603 		regs[BPF_REG_0].type = NOT_INIT;
4604 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4605 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4606 		/* There is no offset yet applied, variable or fixed */
4607 		mark_reg_known_zero(env, regs, BPF_REG_0);
4608 		/* remember map_ptr, so that check_map_access()
4609 		 * can check 'value_size' boundary of memory access
4610 		 * to map element returned from bpf_map_lookup_elem()
4611 		 */
4612 		if (meta.map_ptr == NULL) {
4613 			verbose(env,
4614 				"kernel subsystem misconfigured verifier\n");
4615 			return -EINVAL;
4616 		}
4617 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
4618 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4619 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
4620 			if (map_value_has_spin_lock(meta.map_ptr))
4621 				regs[BPF_REG_0].id = ++env->id_gen;
4622 		} else {
4623 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4624 			regs[BPF_REG_0].id = ++env->id_gen;
4625 		}
4626 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4627 		mark_reg_known_zero(env, regs, BPF_REG_0);
4628 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
4629 		regs[BPF_REG_0].id = ++env->id_gen;
4630 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4631 		mark_reg_known_zero(env, regs, BPF_REG_0);
4632 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4633 		regs[BPF_REG_0].id = ++env->id_gen;
4634 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4635 		mark_reg_known_zero(env, regs, BPF_REG_0);
4636 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4637 		regs[BPF_REG_0].id = ++env->id_gen;
4638 	} else {
4639 		verbose(env, "unknown return type %d of func %s#%d\n",
4640 			fn->ret_type, func_id_name(func_id), func_id);
4641 		return -EINVAL;
4642 	}
4643 
4644 	if (is_ptr_cast_function(func_id)) {
4645 		/* For release_reference() */
4646 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
4647 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
4648 		int id = acquire_reference_state(env, insn_idx);
4649 
4650 		if (id < 0)
4651 			return id;
4652 		/* For mark_ptr_or_null_reg() */
4653 		regs[BPF_REG_0].id = id;
4654 		/* For release_reference() */
4655 		regs[BPF_REG_0].ref_obj_id = id;
4656 	}
4657 
4658 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4659 
4660 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
4661 	if (err)
4662 		return err;
4663 
4664 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4665 		const char *err_str;
4666 
4667 #ifdef CONFIG_PERF_EVENTS
4668 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
4669 		err_str = "cannot get callchain buffer for func %s#%d\n";
4670 #else
4671 		err = -ENOTSUPP;
4672 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4673 #endif
4674 		if (err) {
4675 			verbose(env, err_str, func_id_name(func_id), func_id);
4676 			return err;
4677 		}
4678 
4679 		env->prog->has_callchain_buf = true;
4680 	}
4681 
4682 	if (changes_data)
4683 		clear_all_pkt_pointers(env);
4684 	return 0;
4685 }
4686 
4687 static bool signed_add_overflows(s64 a, s64 b)
4688 {
4689 	/* Do the add in u64, where overflow is well-defined */
4690 	s64 res = (s64)((u64)a + (u64)b);
4691 
4692 	if (b < 0)
4693 		return res > a;
4694 	return res < a;
4695 }
4696 
4697 static bool signed_add32_overflows(s64 a, s64 b)
4698 {
4699 	/* Do the add in u32, where overflow is well-defined */
4700 	s32 res = (s32)((u32)a + (u32)b);
4701 
4702 	if (b < 0)
4703 		return res > a;
4704 	return res < a;
4705 }
4706 
4707 static bool signed_sub_overflows(s32 a, s32 b)
4708 {
4709 	/* Do the sub in u64, where overflow is well-defined */
4710 	s64 res = (s64)((u64)a - (u64)b);
4711 
4712 	if (b < 0)
4713 		return res < a;
4714 	return res > a;
4715 }
4716 
4717 static bool signed_sub32_overflows(s32 a, s32 b)
4718 {
4719 	/* Do the sub in u64, where overflow is well-defined */
4720 	s32 res = (s32)((u32)a - (u32)b);
4721 
4722 	if (b < 0)
4723 		return res < a;
4724 	return res > a;
4725 }
4726 
4727 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4728 				  const struct bpf_reg_state *reg,
4729 				  enum bpf_reg_type type)
4730 {
4731 	bool known = tnum_is_const(reg->var_off);
4732 	s64 val = reg->var_off.value;
4733 	s64 smin = reg->smin_value;
4734 
4735 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4736 		verbose(env, "math between %s pointer and %lld is not allowed\n",
4737 			reg_type_str[type], val);
4738 		return false;
4739 	}
4740 
4741 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4742 		verbose(env, "%s pointer offset %d is not allowed\n",
4743 			reg_type_str[type], reg->off);
4744 		return false;
4745 	}
4746 
4747 	if (smin == S64_MIN) {
4748 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4749 			reg_type_str[type]);
4750 		return false;
4751 	}
4752 
4753 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4754 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
4755 			smin, reg_type_str[type]);
4756 		return false;
4757 	}
4758 
4759 	return true;
4760 }
4761 
4762 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4763 {
4764 	return &env->insn_aux_data[env->insn_idx];
4765 }
4766 
4767 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4768 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
4769 {
4770 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
4771 			    (opcode == BPF_SUB && !off_is_neg);
4772 	u32 off;
4773 
4774 	switch (ptr_reg->type) {
4775 	case PTR_TO_STACK:
4776 		/* Indirect variable offset stack access is prohibited in
4777 		 * unprivileged mode so it's not handled here.
4778 		 */
4779 		off = ptr_reg->off + ptr_reg->var_off.value;
4780 		if (mask_to_left)
4781 			*ptr_limit = MAX_BPF_STACK + off;
4782 		else
4783 			*ptr_limit = -off;
4784 		return 0;
4785 	case PTR_TO_MAP_VALUE:
4786 		if (mask_to_left) {
4787 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4788 		} else {
4789 			off = ptr_reg->smin_value + ptr_reg->off;
4790 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
4791 		}
4792 		return 0;
4793 	default:
4794 		return -EINVAL;
4795 	}
4796 }
4797 
4798 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4799 				    const struct bpf_insn *insn)
4800 {
4801 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4802 }
4803 
4804 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4805 				       u32 alu_state, u32 alu_limit)
4806 {
4807 	/* If we arrived here from different branches with different
4808 	 * state or limits to sanitize, then this won't work.
4809 	 */
4810 	if (aux->alu_state &&
4811 	    (aux->alu_state != alu_state ||
4812 	     aux->alu_limit != alu_limit))
4813 		return -EACCES;
4814 
4815 	/* Corresponding fixup done in fixup_bpf_calls(). */
4816 	aux->alu_state = alu_state;
4817 	aux->alu_limit = alu_limit;
4818 	return 0;
4819 }
4820 
4821 static int sanitize_val_alu(struct bpf_verifier_env *env,
4822 			    struct bpf_insn *insn)
4823 {
4824 	struct bpf_insn_aux_data *aux = cur_aux(env);
4825 
4826 	if (can_skip_alu_sanitation(env, insn))
4827 		return 0;
4828 
4829 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4830 }
4831 
4832 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4833 			    struct bpf_insn *insn,
4834 			    const struct bpf_reg_state *ptr_reg,
4835 			    struct bpf_reg_state *dst_reg,
4836 			    bool off_is_neg)
4837 {
4838 	struct bpf_verifier_state *vstate = env->cur_state;
4839 	struct bpf_insn_aux_data *aux = cur_aux(env);
4840 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
4841 	u8 opcode = BPF_OP(insn->code);
4842 	u32 alu_state, alu_limit;
4843 	struct bpf_reg_state tmp;
4844 	bool ret;
4845 
4846 	if (can_skip_alu_sanitation(env, insn))
4847 		return 0;
4848 
4849 	/* We already marked aux for masking from non-speculative
4850 	 * paths, thus we got here in the first place. We only care
4851 	 * to explore bad access from here.
4852 	 */
4853 	if (vstate->speculative)
4854 		goto do_sim;
4855 
4856 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4857 	alu_state |= ptr_is_dst_reg ?
4858 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4859 
4860 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4861 		return 0;
4862 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
4863 		return -EACCES;
4864 do_sim:
4865 	/* Simulate and find potential out-of-bounds access under
4866 	 * speculative execution from truncation as a result of
4867 	 * masking when off was not within expected range. If off
4868 	 * sits in dst, then we temporarily need to move ptr there
4869 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4870 	 * for cases where we use K-based arithmetic in one direction
4871 	 * and truncated reg-based in the other in order to explore
4872 	 * bad access.
4873 	 */
4874 	if (!ptr_is_dst_reg) {
4875 		tmp = *dst_reg;
4876 		*dst_reg = *ptr_reg;
4877 	}
4878 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
4879 	if (!ptr_is_dst_reg && ret)
4880 		*dst_reg = tmp;
4881 	return !ret ? -EFAULT : 0;
4882 }
4883 
4884 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
4885  * Caller should also handle BPF_MOV case separately.
4886  * If we return -EACCES, caller may want to try again treating pointer as a
4887  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
4888  */
4889 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4890 				   struct bpf_insn *insn,
4891 				   const struct bpf_reg_state *ptr_reg,
4892 				   const struct bpf_reg_state *off_reg)
4893 {
4894 	struct bpf_verifier_state *vstate = env->cur_state;
4895 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4896 	struct bpf_reg_state *regs = state->regs, *dst_reg;
4897 	bool known = tnum_is_const(off_reg->var_off);
4898 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4899 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4900 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4901 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
4902 	u32 dst = insn->dst_reg, src = insn->src_reg;
4903 	u8 opcode = BPF_OP(insn->code);
4904 	int ret;
4905 
4906 	dst_reg = &regs[dst];
4907 
4908 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4909 	    smin_val > smax_val || umin_val > umax_val) {
4910 		/* Taint dst register if offset had invalid bounds derived from
4911 		 * e.g. dead branches.
4912 		 */
4913 		__mark_reg_unknown(env, dst_reg);
4914 		return 0;
4915 	}
4916 
4917 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4918 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
4919 		verbose(env,
4920 			"R%d 32-bit pointer arithmetic prohibited\n",
4921 			dst);
4922 		return -EACCES;
4923 	}
4924 
4925 	switch (ptr_reg->type) {
4926 	case PTR_TO_MAP_VALUE_OR_NULL:
4927 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4928 			dst, reg_type_str[ptr_reg->type]);
4929 		return -EACCES;
4930 	case CONST_PTR_TO_MAP:
4931 	case PTR_TO_PACKET_END:
4932 	case PTR_TO_SOCKET:
4933 	case PTR_TO_SOCKET_OR_NULL:
4934 	case PTR_TO_SOCK_COMMON:
4935 	case PTR_TO_SOCK_COMMON_OR_NULL:
4936 	case PTR_TO_TCP_SOCK:
4937 	case PTR_TO_TCP_SOCK_OR_NULL:
4938 	case PTR_TO_XDP_SOCK:
4939 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4940 			dst, reg_type_str[ptr_reg->type]);
4941 		return -EACCES;
4942 	case PTR_TO_MAP_VALUE:
4943 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4944 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4945 				off_reg == dst_reg ? dst : src);
4946 			return -EACCES;
4947 		}
4948 		/* fall-through */
4949 	default:
4950 		break;
4951 	}
4952 
4953 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4954 	 * The id may be overwritten later if we create a new variable offset.
4955 	 */
4956 	dst_reg->type = ptr_reg->type;
4957 	dst_reg->id = ptr_reg->id;
4958 
4959 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4960 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4961 		return -EINVAL;
4962 
4963 	/* pointer types do not carry 32-bit bounds at the moment. */
4964 	__mark_reg32_unbounded(dst_reg);
4965 
4966 	switch (opcode) {
4967 	case BPF_ADD:
4968 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4969 		if (ret < 0) {
4970 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
4971 			return ret;
4972 		}
4973 		/* We can take a fixed offset as long as it doesn't overflow
4974 		 * the s32 'off' field
4975 		 */
4976 		if (known && (ptr_reg->off + smin_val ==
4977 			      (s64)(s32)(ptr_reg->off + smin_val))) {
4978 			/* pointer += K.  Accumulate it into fixed offset */
4979 			dst_reg->smin_value = smin_ptr;
4980 			dst_reg->smax_value = smax_ptr;
4981 			dst_reg->umin_value = umin_ptr;
4982 			dst_reg->umax_value = umax_ptr;
4983 			dst_reg->var_off = ptr_reg->var_off;
4984 			dst_reg->off = ptr_reg->off + smin_val;
4985 			dst_reg->raw = ptr_reg->raw;
4986 			break;
4987 		}
4988 		/* A new variable offset is created.  Note that off_reg->off
4989 		 * == 0, since it's a scalar.
4990 		 * dst_reg gets the pointer type and since some positive
4991 		 * integer value was added to the pointer, give it a new 'id'
4992 		 * if it's a PTR_TO_PACKET.
4993 		 * this creates a new 'base' pointer, off_reg (variable) gets
4994 		 * added into the variable offset, and we copy the fixed offset
4995 		 * from ptr_reg.
4996 		 */
4997 		if (signed_add_overflows(smin_ptr, smin_val) ||
4998 		    signed_add_overflows(smax_ptr, smax_val)) {
4999 			dst_reg->smin_value = S64_MIN;
5000 			dst_reg->smax_value = S64_MAX;
5001 		} else {
5002 			dst_reg->smin_value = smin_ptr + smin_val;
5003 			dst_reg->smax_value = smax_ptr + smax_val;
5004 		}
5005 		if (umin_ptr + umin_val < umin_ptr ||
5006 		    umax_ptr + umax_val < umax_ptr) {
5007 			dst_reg->umin_value = 0;
5008 			dst_reg->umax_value = U64_MAX;
5009 		} else {
5010 			dst_reg->umin_value = umin_ptr + umin_val;
5011 			dst_reg->umax_value = umax_ptr + umax_val;
5012 		}
5013 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5014 		dst_reg->off = ptr_reg->off;
5015 		dst_reg->raw = ptr_reg->raw;
5016 		if (reg_is_pkt_pointer(ptr_reg)) {
5017 			dst_reg->id = ++env->id_gen;
5018 			/* something was added to pkt_ptr, set range to zero */
5019 			dst_reg->raw = 0;
5020 		}
5021 		break;
5022 	case BPF_SUB:
5023 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5024 		if (ret < 0) {
5025 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5026 			return ret;
5027 		}
5028 		if (dst_reg == off_reg) {
5029 			/* scalar -= pointer.  Creates an unknown scalar */
5030 			verbose(env, "R%d tried to subtract pointer from scalar\n",
5031 				dst);
5032 			return -EACCES;
5033 		}
5034 		/* We don't allow subtraction from FP, because (according to
5035 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
5036 		 * be able to deal with it.
5037 		 */
5038 		if (ptr_reg->type == PTR_TO_STACK) {
5039 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
5040 				dst);
5041 			return -EACCES;
5042 		}
5043 		if (known && (ptr_reg->off - smin_val ==
5044 			      (s64)(s32)(ptr_reg->off - smin_val))) {
5045 			/* pointer -= K.  Subtract it from fixed offset */
5046 			dst_reg->smin_value = smin_ptr;
5047 			dst_reg->smax_value = smax_ptr;
5048 			dst_reg->umin_value = umin_ptr;
5049 			dst_reg->umax_value = umax_ptr;
5050 			dst_reg->var_off = ptr_reg->var_off;
5051 			dst_reg->id = ptr_reg->id;
5052 			dst_reg->off = ptr_reg->off - smin_val;
5053 			dst_reg->raw = ptr_reg->raw;
5054 			break;
5055 		}
5056 		/* A new variable offset is created.  If the subtrahend is known
5057 		 * nonnegative, then any reg->range we had before is still good.
5058 		 */
5059 		if (signed_sub_overflows(smin_ptr, smax_val) ||
5060 		    signed_sub_overflows(smax_ptr, smin_val)) {
5061 			/* Overflow possible, we know nothing */
5062 			dst_reg->smin_value = S64_MIN;
5063 			dst_reg->smax_value = S64_MAX;
5064 		} else {
5065 			dst_reg->smin_value = smin_ptr - smax_val;
5066 			dst_reg->smax_value = smax_ptr - smin_val;
5067 		}
5068 		if (umin_ptr < umax_val) {
5069 			/* Overflow possible, we know nothing */
5070 			dst_reg->umin_value = 0;
5071 			dst_reg->umax_value = U64_MAX;
5072 		} else {
5073 			/* Cannot overflow (as long as bounds are consistent) */
5074 			dst_reg->umin_value = umin_ptr - umax_val;
5075 			dst_reg->umax_value = umax_ptr - umin_val;
5076 		}
5077 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5078 		dst_reg->off = ptr_reg->off;
5079 		dst_reg->raw = ptr_reg->raw;
5080 		if (reg_is_pkt_pointer(ptr_reg)) {
5081 			dst_reg->id = ++env->id_gen;
5082 			/* something was added to pkt_ptr, set range to zero */
5083 			if (smin_val < 0)
5084 				dst_reg->raw = 0;
5085 		}
5086 		break;
5087 	case BPF_AND:
5088 	case BPF_OR:
5089 	case BPF_XOR:
5090 		/* bitwise ops on pointers are troublesome, prohibit. */
5091 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5092 			dst, bpf_alu_string[opcode >> 4]);
5093 		return -EACCES;
5094 	default:
5095 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
5096 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5097 			dst, bpf_alu_string[opcode >> 4]);
5098 		return -EACCES;
5099 	}
5100 
5101 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5102 		return -EINVAL;
5103 
5104 	__update_reg_bounds(dst_reg);
5105 	__reg_deduce_bounds(dst_reg);
5106 	__reg_bound_offset(dst_reg);
5107 
5108 	/* For unprivileged we require that resulting offset must be in bounds
5109 	 * in order to be able to sanitize access later on.
5110 	 */
5111 	if (!env->allow_ptr_leaks) {
5112 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
5113 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
5114 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5115 				"prohibited for !root\n", dst);
5116 			return -EACCES;
5117 		} else if (dst_reg->type == PTR_TO_STACK &&
5118 			   check_stack_access(env, dst_reg, dst_reg->off +
5119 					      dst_reg->var_off.value, 1)) {
5120 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
5121 				"prohibited for !root\n", dst);
5122 			return -EACCES;
5123 		}
5124 	}
5125 
5126 	return 0;
5127 }
5128 
5129 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5130 				 struct bpf_reg_state *src_reg)
5131 {
5132 	s32 smin_val = src_reg->s32_min_value;
5133 	s32 smax_val = src_reg->s32_max_value;
5134 	u32 umin_val = src_reg->u32_min_value;
5135 	u32 umax_val = src_reg->u32_max_value;
5136 
5137 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5138 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5139 		dst_reg->s32_min_value = S32_MIN;
5140 		dst_reg->s32_max_value = S32_MAX;
5141 	} else {
5142 		dst_reg->s32_min_value += smin_val;
5143 		dst_reg->s32_max_value += smax_val;
5144 	}
5145 	if (dst_reg->u32_min_value + umin_val < umin_val ||
5146 	    dst_reg->u32_max_value + umax_val < umax_val) {
5147 		dst_reg->u32_min_value = 0;
5148 		dst_reg->u32_max_value = U32_MAX;
5149 	} else {
5150 		dst_reg->u32_min_value += umin_val;
5151 		dst_reg->u32_max_value += umax_val;
5152 	}
5153 }
5154 
5155 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5156 			       struct bpf_reg_state *src_reg)
5157 {
5158 	s64 smin_val = src_reg->smin_value;
5159 	s64 smax_val = src_reg->smax_value;
5160 	u64 umin_val = src_reg->umin_value;
5161 	u64 umax_val = src_reg->umax_value;
5162 
5163 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5164 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
5165 		dst_reg->smin_value = S64_MIN;
5166 		dst_reg->smax_value = S64_MAX;
5167 	} else {
5168 		dst_reg->smin_value += smin_val;
5169 		dst_reg->smax_value += smax_val;
5170 	}
5171 	if (dst_reg->umin_value + umin_val < umin_val ||
5172 	    dst_reg->umax_value + umax_val < umax_val) {
5173 		dst_reg->umin_value = 0;
5174 		dst_reg->umax_value = U64_MAX;
5175 	} else {
5176 		dst_reg->umin_value += umin_val;
5177 		dst_reg->umax_value += umax_val;
5178 	}
5179 }
5180 
5181 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5182 				 struct bpf_reg_state *src_reg)
5183 {
5184 	s32 smin_val = src_reg->s32_min_value;
5185 	s32 smax_val = src_reg->s32_max_value;
5186 	u32 umin_val = src_reg->u32_min_value;
5187 	u32 umax_val = src_reg->u32_max_value;
5188 
5189 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5190 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5191 		/* Overflow possible, we know nothing */
5192 		dst_reg->s32_min_value = S32_MIN;
5193 		dst_reg->s32_max_value = S32_MAX;
5194 	} else {
5195 		dst_reg->s32_min_value -= smax_val;
5196 		dst_reg->s32_max_value -= smin_val;
5197 	}
5198 	if (dst_reg->u32_min_value < umax_val) {
5199 		/* Overflow possible, we know nothing */
5200 		dst_reg->u32_min_value = 0;
5201 		dst_reg->u32_max_value = U32_MAX;
5202 	} else {
5203 		/* Cannot overflow (as long as bounds are consistent) */
5204 		dst_reg->u32_min_value -= umax_val;
5205 		dst_reg->u32_max_value -= umin_val;
5206 	}
5207 }
5208 
5209 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5210 			       struct bpf_reg_state *src_reg)
5211 {
5212 	s64 smin_val = src_reg->smin_value;
5213 	s64 smax_val = src_reg->smax_value;
5214 	u64 umin_val = src_reg->umin_value;
5215 	u64 umax_val = src_reg->umax_value;
5216 
5217 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5218 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5219 		/* Overflow possible, we know nothing */
5220 		dst_reg->smin_value = S64_MIN;
5221 		dst_reg->smax_value = S64_MAX;
5222 	} else {
5223 		dst_reg->smin_value -= smax_val;
5224 		dst_reg->smax_value -= smin_val;
5225 	}
5226 	if (dst_reg->umin_value < umax_val) {
5227 		/* Overflow possible, we know nothing */
5228 		dst_reg->umin_value = 0;
5229 		dst_reg->umax_value = U64_MAX;
5230 	} else {
5231 		/* Cannot overflow (as long as bounds are consistent) */
5232 		dst_reg->umin_value -= umax_val;
5233 		dst_reg->umax_value -= umin_val;
5234 	}
5235 }
5236 
5237 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5238 				 struct bpf_reg_state *src_reg)
5239 {
5240 	s32 smin_val = src_reg->s32_min_value;
5241 	u32 umin_val = src_reg->u32_min_value;
5242 	u32 umax_val = src_reg->u32_max_value;
5243 
5244 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5245 		/* Ain't nobody got time to multiply that sign */
5246 		__mark_reg32_unbounded(dst_reg);
5247 		return;
5248 	}
5249 	/* Both values are positive, so we can work with unsigned and
5250 	 * copy the result to signed (unless it exceeds S32_MAX).
5251 	 */
5252 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5253 		/* Potential overflow, we know nothing */
5254 		__mark_reg32_unbounded(dst_reg);
5255 		return;
5256 	}
5257 	dst_reg->u32_min_value *= umin_val;
5258 	dst_reg->u32_max_value *= umax_val;
5259 	if (dst_reg->u32_max_value > S32_MAX) {
5260 		/* Overflow possible, we know nothing */
5261 		dst_reg->s32_min_value = S32_MIN;
5262 		dst_reg->s32_max_value = S32_MAX;
5263 	} else {
5264 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5265 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5266 	}
5267 }
5268 
5269 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5270 			       struct bpf_reg_state *src_reg)
5271 {
5272 	s64 smin_val = src_reg->smin_value;
5273 	u64 umin_val = src_reg->umin_value;
5274 	u64 umax_val = src_reg->umax_value;
5275 
5276 	if (smin_val < 0 || dst_reg->smin_value < 0) {
5277 		/* Ain't nobody got time to multiply that sign */
5278 		__mark_reg64_unbounded(dst_reg);
5279 		return;
5280 	}
5281 	/* Both values are positive, so we can work with unsigned and
5282 	 * copy the result to signed (unless it exceeds S64_MAX).
5283 	 */
5284 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5285 		/* Potential overflow, we know nothing */
5286 		__mark_reg64_unbounded(dst_reg);
5287 		return;
5288 	}
5289 	dst_reg->umin_value *= umin_val;
5290 	dst_reg->umax_value *= umax_val;
5291 	if (dst_reg->umax_value > S64_MAX) {
5292 		/* Overflow possible, we know nothing */
5293 		dst_reg->smin_value = S64_MIN;
5294 		dst_reg->smax_value = S64_MAX;
5295 	} else {
5296 		dst_reg->smin_value = dst_reg->umin_value;
5297 		dst_reg->smax_value = dst_reg->umax_value;
5298 	}
5299 }
5300 
5301 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5302 				 struct bpf_reg_state *src_reg)
5303 {
5304 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5305 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5306 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5307 	s32 smin_val = src_reg->s32_min_value;
5308 	u32 umax_val = src_reg->u32_max_value;
5309 
5310 	/* Assuming scalar64_min_max_and will be called so its safe
5311 	 * to skip updating register for known 32-bit case.
5312 	 */
5313 	if (src_known && dst_known)
5314 		return;
5315 
5316 	/* We get our minimum from the var_off, since that's inherently
5317 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5318 	 */
5319 	dst_reg->u32_min_value = var32_off.value;
5320 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5321 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5322 		/* Lose signed bounds when ANDing negative numbers,
5323 		 * ain't nobody got time for that.
5324 		 */
5325 		dst_reg->s32_min_value = S32_MIN;
5326 		dst_reg->s32_max_value = S32_MAX;
5327 	} else {
5328 		/* ANDing two positives gives a positive, so safe to
5329 		 * cast result into s64.
5330 		 */
5331 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5332 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5333 	}
5334 
5335 }
5336 
5337 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5338 			       struct bpf_reg_state *src_reg)
5339 {
5340 	bool src_known = tnum_is_const(src_reg->var_off);
5341 	bool dst_known = tnum_is_const(dst_reg->var_off);
5342 	s64 smin_val = src_reg->smin_value;
5343 	u64 umax_val = src_reg->umax_value;
5344 
5345 	if (src_known && dst_known) {
5346 		__mark_reg_known(dst_reg, dst_reg->var_off.value &
5347 					  src_reg->var_off.value);
5348 		return;
5349 	}
5350 
5351 	/* We get our minimum from the var_off, since that's inherently
5352 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5353 	 */
5354 	dst_reg->umin_value = dst_reg->var_off.value;
5355 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5356 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5357 		/* Lose signed bounds when ANDing negative numbers,
5358 		 * ain't nobody got time for that.
5359 		 */
5360 		dst_reg->smin_value = S64_MIN;
5361 		dst_reg->smax_value = S64_MAX;
5362 	} else {
5363 		/* ANDing two positives gives a positive, so safe to
5364 		 * cast result into s64.
5365 		 */
5366 		dst_reg->smin_value = dst_reg->umin_value;
5367 		dst_reg->smax_value = dst_reg->umax_value;
5368 	}
5369 	/* We may learn something more from the var_off */
5370 	__update_reg_bounds(dst_reg);
5371 }
5372 
5373 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5374 				struct bpf_reg_state *src_reg)
5375 {
5376 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5377 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5378 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5379 	s32 smin_val = src_reg->smin_value;
5380 	u32 umin_val = src_reg->umin_value;
5381 
5382 	/* Assuming scalar64_min_max_or will be called so it is safe
5383 	 * to skip updating register for known case.
5384 	 */
5385 	if (src_known && dst_known)
5386 		return;
5387 
5388 	/* We get our maximum from the var_off, and our minimum is the
5389 	 * maximum of the operands' minima
5390 	 */
5391 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
5392 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5393 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5394 		/* Lose signed bounds when ORing negative numbers,
5395 		 * ain't nobody got time for that.
5396 		 */
5397 		dst_reg->s32_min_value = S32_MIN;
5398 		dst_reg->s32_max_value = S32_MAX;
5399 	} else {
5400 		/* ORing two positives gives a positive, so safe to
5401 		 * cast result into s64.
5402 		 */
5403 		dst_reg->s32_min_value = dst_reg->umin_value;
5404 		dst_reg->s32_max_value = dst_reg->umax_value;
5405 	}
5406 }
5407 
5408 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
5409 			      struct bpf_reg_state *src_reg)
5410 {
5411 	bool src_known = tnum_is_const(src_reg->var_off);
5412 	bool dst_known = tnum_is_const(dst_reg->var_off);
5413 	s64 smin_val = src_reg->smin_value;
5414 	u64 umin_val = src_reg->umin_value;
5415 
5416 	if (src_known && dst_known) {
5417 		__mark_reg_known(dst_reg, dst_reg->var_off.value |
5418 					  src_reg->var_off.value);
5419 		return;
5420 	}
5421 
5422 	/* We get our maximum from the var_off, and our minimum is the
5423 	 * maximum of the operands' minima
5424 	 */
5425 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5426 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5427 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5428 		/* Lose signed bounds when ORing negative numbers,
5429 		 * ain't nobody got time for that.
5430 		 */
5431 		dst_reg->smin_value = S64_MIN;
5432 		dst_reg->smax_value = S64_MAX;
5433 	} else {
5434 		/* ORing two positives gives a positive, so safe to
5435 		 * cast result into s64.
5436 		 */
5437 		dst_reg->smin_value = dst_reg->umin_value;
5438 		dst_reg->smax_value = dst_reg->umax_value;
5439 	}
5440 	/* We may learn something more from the var_off */
5441 	__update_reg_bounds(dst_reg);
5442 }
5443 
5444 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5445 				   u64 umin_val, u64 umax_val)
5446 {
5447 	/* We lose all sign bit information (except what we can pick
5448 	 * up from var_off)
5449 	 */
5450 	dst_reg->s32_min_value = S32_MIN;
5451 	dst_reg->s32_max_value = S32_MAX;
5452 	/* If we might shift our top bit out, then we know nothing */
5453 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
5454 		dst_reg->u32_min_value = 0;
5455 		dst_reg->u32_max_value = U32_MAX;
5456 	} else {
5457 		dst_reg->u32_min_value <<= umin_val;
5458 		dst_reg->u32_max_value <<= umax_val;
5459 	}
5460 }
5461 
5462 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5463 				 struct bpf_reg_state *src_reg)
5464 {
5465 	u32 umax_val = src_reg->u32_max_value;
5466 	u32 umin_val = src_reg->u32_min_value;
5467 	/* u32 alu operation will zext upper bits */
5468 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
5469 
5470 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5471 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
5472 	/* Not required but being careful mark reg64 bounds as unknown so
5473 	 * that we are forced to pick them up from tnum and zext later and
5474 	 * if some path skips this step we are still safe.
5475 	 */
5476 	__mark_reg64_unbounded(dst_reg);
5477 	__update_reg32_bounds(dst_reg);
5478 }
5479 
5480 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
5481 				   u64 umin_val, u64 umax_val)
5482 {
5483 	/* Special case <<32 because it is a common compiler pattern to sign
5484 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
5485 	 * positive we know this shift will also be positive so we can track
5486 	 * bounds correctly. Otherwise we lose all sign bit information except
5487 	 * what we can pick up from var_off. Perhaps we can generalize this
5488 	 * later to shifts of any length.
5489 	 */
5490 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
5491 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
5492 	else
5493 		dst_reg->smax_value = S64_MAX;
5494 
5495 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
5496 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
5497 	else
5498 		dst_reg->smin_value = S64_MIN;
5499 
5500 	/* If we might shift our top bit out, then we know nothing */
5501 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5502 		dst_reg->umin_value = 0;
5503 		dst_reg->umax_value = U64_MAX;
5504 	} else {
5505 		dst_reg->umin_value <<= umin_val;
5506 		dst_reg->umax_value <<= umax_val;
5507 	}
5508 }
5509 
5510 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
5511 			       struct bpf_reg_state *src_reg)
5512 {
5513 	u64 umax_val = src_reg->umax_value;
5514 	u64 umin_val = src_reg->umin_value;
5515 
5516 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
5517 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
5518 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5519 
5520 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
5521 	/* We may learn something more from the var_off */
5522 	__update_reg_bounds(dst_reg);
5523 }
5524 
5525 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
5526 				 struct bpf_reg_state *src_reg)
5527 {
5528 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
5529 	u32 umax_val = src_reg->u32_max_value;
5530 	u32 umin_val = src_reg->u32_min_value;
5531 
5532 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5533 	 * be negative, then either:
5534 	 * 1) src_reg might be zero, so the sign bit of the result is
5535 	 *    unknown, so we lose our signed bounds
5536 	 * 2) it's known negative, thus the unsigned bounds capture the
5537 	 *    signed bounds
5538 	 * 3) the signed bounds cross zero, so they tell us nothing
5539 	 *    about the result
5540 	 * If the value in dst_reg is known nonnegative, then again the
5541 	 * unsigned bounts capture the signed bounds.
5542 	 * Thus, in all cases it suffices to blow away our signed bounds
5543 	 * and rely on inferring new ones from the unsigned bounds and
5544 	 * var_off of the result.
5545 	 */
5546 	dst_reg->s32_min_value = S32_MIN;
5547 	dst_reg->s32_max_value = S32_MAX;
5548 
5549 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
5550 	dst_reg->u32_min_value >>= umax_val;
5551 	dst_reg->u32_max_value >>= umin_val;
5552 
5553 	__mark_reg64_unbounded(dst_reg);
5554 	__update_reg32_bounds(dst_reg);
5555 }
5556 
5557 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
5558 			       struct bpf_reg_state *src_reg)
5559 {
5560 	u64 umax_val = src_reg->umax_value;
5561 	u64 umin_val = src_reg->umin_value;
5562 
5563 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5564 	 * be negative, then either:
5565 	 * 1) src_reg might be zero, so the sign bit of the result is
5566 	 *    unknown, so we lose our signed bounds
5567 	 * 2) it's known negative, thus the unsigned bounds capture the
5568 	 *    signed bounds
5569 	 * 3) the signed bounds cross zero, so they tell us nothing
5570 	 *    about the result
5571 	 * If the value in dst_reg is known nonnegative, then again the
5572 	 * unsigned bounts capture the signed bounds.
5573 	 * Thus, in all cases it suffices to blow away our signed bounds
5574 	 * and rely on inferring new ones from the unsigned bounds and
5575 	 * var_off of the result.
5576 	 */
5577 	dst_reg->smin_value = S64_MIN;
5578 	dst_reg->smax_value = S64_MAX;
5579 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
5580 	dst_reg->umin_value >>= umax_val;
5581 	dst_reg->umax_value >>= umin_val;
5582 
5583 	/* Its not easy to operate on alu32 bounds here because it depends
5584 	 * on bits being shifted in. Take easy way out and mark unbounded
5585 	 * so we can recalculate later from tnum.
5586 	 */
5587 	__mark_reg32_unbounded(dst_reg);
5588 	__update_reg_bounds(dst_reg);
5589 }
5590 
5591 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
5592 				  struct bpf_reg_state *src_reg)
5593 {
5594 	u64 umin_val = src_reg->u32_min_value;
5595 
5596 	/* Upon reaching here, src_known is true and
5597 	 * umax_val is equal to umin_val.
5598 	 */
5599 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
5600 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
5601 
5602 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
5603 
5604 	/* blow away the dst_reg umin_value/umax_value and rely on
5605 	 * dst_reg var_off to refine the result.
5606 	 */
5607 	dst_reg->u32_min_value = 0;
5608 	dst_reg->u32_max_value = U32_MAX;
5609 
5610 	__mark_reg64_unbounded(dst_reg);
5611 	__update_reg32_bounds(dst_reg);
5612 }
5613 
5614 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
5615 				struct bpf_reg_state *src_reg)
5616 {
5617 	u64 umin_val = src_reg->umin_value;
5618 
5619 	/* Upon reaching here, src_known is true and umax_val is equal
5620 	 * to umin_val.
5621 	 */
5622 	dst_reg->smin_value >>= umin_val;
5623 	dst_reg->smax_value >>= umin_val;
5624 
5625 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
5626 
5627 	/* blow away the dst_reg umin_value/umax_value and rely on
5628 	 * dst_reg var_off to refine the result.
5629 	 */
5630 	dst_reg->umin_value = 0;
5631 	dst_reg->umax_value = U64_MAX;
5632 
5633 	/* Its not easy to operate on alu32 bounds here because it depends
5634 	 * on bits being shifted in from upper 32-bits. Take easy way out
5635 	 * and mark unbounded so we can recalculate later from tnum.
5636 	 */
5637 	__mark_reg32_unbounded(dst_reg);
5638 	__update_reg_bounds(dst_reg);
5639 }
5640 
5641 /* WARNING: This function does calculations on 64-bit values, but the actual
5642  * execution may occur on 32-bit values. Therefore, things like bitshifts
5643  * need extra checks in the 32-bit case.
5644  */
5645 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
5646 				      struct bpf_insn *insn,
5647 				      struct bpf_reg_state *dst_reg,
5648 				      struct bpf_reg_state src_reg)
5649 {
5650 	struct bpf_reg_state *regs = cur_regs(env);
5651 	u8 opcode = BPF_OP(insn->code);
5652 	bool src_known;
5653 	s64 smin_val, smax_val;
5654 	u64 umin_val, umax_val;
5655 	s32 s32_min_val, s32_max_val;
5656 	u32 u32_min_val, u32_max_val;
5657 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
5658 	u32 dst = insn->dst_reg;
5659 	int ret;
5660 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
5661 
5662 	smin_val = src_reg.smin_value;
5663 	smax_val = src_reg.smax_value;
5664 	umin_val = src_reg.umin_value;
5665 	umax_val = src_reg.umax_value;
5666 
5667 	s32_min_val = src_reg.s32_min_value;
5668 	s32_max_val = src_reg.s32_max_value;
5669 	u32_min_val = src_reg.u32_min_value;
5670 	u32_max_val = src_reg.u32_max_value;
5671 
5672 	if (alu32) {
5673 		src_known = tnum_subreg_is_const(src_reg.var_off);
5674 		if ((src_known &&
5675 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
5676 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
5677 			/* Taint dst register if offset had invalid bounds
5678 			 * derived from e.g. dead branches.
5679 			 */
5680 			__mark_reg_unknown(env, dst_reg);
5681 			return 0;
5682 		}
5683 	} else {
5684 		src_known = tnum_is_const(src_reg.var_off);
5685 		if ((src_known &&
5686 		     (smin_val != smax_val || umin_val != umax_val)) ||
5687 		    smin_val > smax_val || umin_val > umax_val) {
5688 			/* Taint dst register if offset had invalid bounds
5689 			 * derived from e.g. dead branches.
5690 			 */
5691 			__mark_reg_unknown(env, dst_reg);
5692 			return 0;
5693 		}
5694 	}
5695 
5696 	if (!src_known &&
5697 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
5698 		__mark_reg_unknown(env, dst_reg);
5699 		return 0;
5700 	}
5701 
5702 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
5703 	 * There are two classes of instructions: The first class we track both
5704 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
5705 	 * greatest amount of precision when alu operations are mixed with jmp32
5706 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
5707 	 * and BPF_OR. This is possible because these ops have fairly easy to
5708 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
5709 	 * See alu32 verifier tests for examples. The second class of
5710 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
5711 	 * with regards to tracking sign/unsigned bounds because the bits may
5712 	 * cross subreg boundaries in the alu64 case. When this happens we mark
5713 	 * the reg unbounded in the subreg bound space and use the resulting
5714 	 * tnum to calculate an approximation of the sign/unsigned bounds.
5715 	 */
5716 	switch (opcode) {
5717 	case BPF_ADD:
5718 		ret = sanitize_val_alu(env, insn);
5719 		if (ret < 0) {
5720 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
5721 			return ret;
5722 		}
5723 		scalar32_min_max_add(dst_reg, &src_reg);
5724 		scalar_min_max_add(dst_reg, &src_reg);
5725 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
5726 		break;
5727 	case BPF_SUB:
5728 		ret = sanitize_val_alu(env, insn);
5729 		if (ret < 0) {
5730 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
5731 			return ret;
5732 		}
5733 		scalar32_min_max_sub(dst_reg, &src_reg);
5734 		scalar_min_max_sub(dst_reg, &src_reg);
5735 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
5736 		break;
5737 	case BPF_MUL:
5738 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
5739 		scalar32_min_max_mul(dst_reg, &src_reg);
5740 		scalar_min_max_mul(dst_reg, &src_reg);
5741 		break;
5742 	case BPF_AND:
5743 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
5744 		scalar32_min_max_and(dst_reg, &src_reg);
5745 		scalar_min_max_and(dst_reg, &src_reg);
5746 		break;
5747 	case BPF_OR:
5748 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
5749 		scalar32_min_max_or(dst_reg, &src_reg);
5750 		scalar_min_max_or(dst_reg, &src_reg);
5751 		break;
5752 	case BPF_LSH:
5753 		if (umax_val >= insn_bitness) {
5754 			/* Shifts greater than 31 or 63 are undefined.
5755 			 * This includes shifts by a negative number.
5756 			 */
5757 			mark_reg_unknown(env, regs, insn->dst_reg);
5758 			break;
5759 		}
5760 		if (alu32)
5761 			scalar32_min_max_lsh(dst_reg, &src_reg);
5762 		else
5763 			scalar_min_max_lsh(dst_reg, &src_reg);
5764 		break;
5765 	case BPF_RSH:
5766 		if (umax_val >= insn_bitness) {
5767 			/* Shifts greater than 31 or 63 are undefined.
5768 			 * This includes shifts by a negative number.
5769 			 */
5770 			mark_reg_unknown(env, regs, insn->dst_reg);
5771 			break;
5772 		}
5773 		if (alu32)
5774 			scalar32_min_max_rsh(dst_reg, &src_reg);
5775 		else
5776 			scalar_min_max_rsh(dst_reg, &src_reg);
5777 		break;
5778 	case BPF_ARSH:
5779 		if (umax_val >= insn_bitness) {
5780 			/* Shifts greater than 31 or 63 are undefined.
5781 			 * This includes shifts by a negative number.
5782 			 */
5783 			mark_reg_unknown(env, regs, insn->dst_reg);
5784 			break;
5785 		}
5786 		if (alu32)
5787 			scalar32_min_max_arsh(dst_reg, &src_reg);
5788 		else
5789 			scalar_min_max_arsh(dst_reg, &src_reg);
5790 		break;
5791 	default:
5792 		mark_reg_unknown(env, regs, insn->dst_reg);
5793 		break;
5794 	}
5795 
5796 	/* ALU32 ops are zero extended into 64bit register */
5797 	if (alu32)
5798 		zext_32_to_64(dst_reg);
5799 
5800 	__update_reg_bounds(dst_reg);
5801 	__reg_deduce_bounds(dst_reg);
5802 	__reg_bound_offset(dst_reg);
5803 	return 0;
5804 }
5805 
5806 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
5807  * and var_off.
5808  */
5809 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
5810 				   struct bpf_insn *insn)
5811 {
5812 	struct bpf_verifier_state *vstate = env->cur_state;
5813 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5814 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
5815 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
5816 	u8 opcode = BPF_OP(insn->code);
5817 	int err;
5818 
5819 	dst_reg = &regs[insn->dst_reg];
5820 	src_reg = NULL;
5821 	if (dst_reg->type != SCALAR_VALUE)
5822 		ptr_reg = dst_reg;
5823 	if (BPF_SRC(insn->code) == BPF_X) {
5824 		src_reg = &regs[insn->src_reg];
5825 		if (src_reg->type != SCALAR_VALUE) {
5826 			if (dst_reg->type != SCALAR_VALUE) {
5827 				/* Combining two pointers by any ALU op yields
5828 				 * an arbitrary scalar. Disallow all math except
5829 				 * pointer subtraction
5830 				 */
5831 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5832 					mark_reg_unknown(env, regs, insn->dst_reg);
5833 					return 0;
5834 				}
5835 				verbose(env, "R%d pointer %s pointer prohibited\n",
5836 					insn->dst_reg,
5837 					bpf_alu_string[opcode >> 4]);
5838 				return -EACCES;
5839 			} else {
5840 				/* scalar += pointer
5841 				 * This is legal, but we have to reverse our
5842 				 * src/dest handling in computing the range
5843 				 */
5844 				err = mark_chain_precision(env, insn->dst_reg);
5845 				if (err)
5846 					return err;
5847 				return adjust_ptr_min_max_vals(env, insn,
5848 							       src_reg, dst_reg);
5849 			}
5850 		} else if (ptr_reg) {
5851 			/* pointer += scalar */
5852 			err = mark_chain_precision(env, insn->src_reg);
5853 			if (err)
5854 				return err;
5855 			return adjust_ptr_min_max_vals(env, insn,
5856 						       dst_reg, src_reg);
5857 		}
5858 	} else {
5859 		/* Pretend the src is a reg with a known value, since we only
5860 		 * need to be able to read from this state.
5861 		 */
5862 		off_reg.type = SCALAR_VALUE;
5863 		__mark_reg_known(&off_reg, insn->imm);
5864 		src_reg = &off_reg;
5865 		if (ptr_reg) /* pointer += K */
5866 			return adjust_ptr_min_max_vals(env, insn,
5867 						       ptr_reg, src_reg);
5868 	}
5869 
5870 	/* Got here implies adding two SCALAR_VALUEs */
5871 	if (WARN_ON_ONCE(ptr_reg)) {
5872 		print_verifier_state(env, state);
5873 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
5874 		return -EINVAL;
5875 	}
5876 	if (WARN_ON(!src_reg)) {
5877 		print_verifier_state(env, state);
5878 		verbose(env, "verifier internal error: no src_reg\n");
5879 		return -EINVAL;
5880 	}
5881 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
5882 }
5883 
5884 /* check validity of 32-bit and 64-bit arithmetic operations */
5885 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
5886 {
5887 	struct bpf_reg_state *regs = cur_regs(env);
5888 	u8 opcode = BPF_OP(insn->code);
5889 	int err;
5890 
5891 	if (opcode == BPF_END || opcode == BPF_NEG) {
5892 		if (opcode == BPF_NEG) {
5893 			if (BPF_SRC(insn->code) != 0 ||
5894 			    insn->src_reg != BPF_REG_0 ||
5895 			    insn->off != 0 || insn->imm != 0) {
5896 				verbose(env, "BPF_NEG uses reserved fields\n");
5897 				return -EINVAL;
5898 			}
5899 		} else {
5900 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
5901 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
5902 			    BPF_CLASS(insn->code) == BPF_ALU64) {
5903 				verbose(env, "BPF_END uses reserved fields\n");
5904 				return -EINVAL;
5905 			}
5906 		}
5907 
5908 		/* check src operand */
5909 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5910 		if (err)
5911 			return err;
5912 
5913 		if (is_pointer_value(env, insn->dst_reg)) {
5914 			verbose(env, "R%d pointer arithmetic prohibited\n",
5915 				insn->dst_reg);
5916 			return -EACCES;
5917 		}
5918 
5919 		/* check dest operand */
5920 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
5921 		if (err)
5922 			return err;
5923 
5924 	} else if (opcode == BPF_MOV) {
5925 
5926 		if (BPF_SRC(insn->code) == BPF_X) {
5927 			if (insn->imm != 0 || insn->off != 0) {
5928 				verbose(env, "BPF_MOV uses reserved fields\n");
5929 				return -EINVAL;
5930 			}
5931 
5932 			/* check src operand */
5933 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5934 			if (err)
5935 				return err;
5936 		} else {
5937 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5938 				verbose(env, "BPF_MOV uses reserved fields\n");
5939 				return -EINVAL;
5940 			}
5941 		}
5942 
5943 		/* check dest operand, mark as required later */
5944 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5945 		if (err)
5946 			return err;
5947 
5948 		if (BPF_SRC(insn->code) == BPF_X) {
5949 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
5950 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
5951 
5952 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5953 				/* case: R1 = R2
5954 				 * copy register state to dest reg
5955 				 */
5956 				*dst_reg = *src_reg;
5957 				dst_reg->live |= REG_LIVE_WRITTEN;
5958 				dst_reg->subreg_def = DEF_NOT_SUBREG;
5959 			} else {
5960 				/* R1 = (u32) R2 */
5961 				if (is_pointer_value(env, insn->src_reg)) {
5962 					verbose(env,
5963 						"R%d partial copy of pointer\n",
5964 						insn->src_reg);
5965 					return -EACCES;
5966 				} else if (src_reg->type == SCALAR_VALUE) {
5967 					*dst_reg = *src_reg;
5968 					dst_reg->live |= REG_LIVE_WRITTEN;
5969 					dst_reg->subreg_def = env->insn_idx + 1;
5970 				} else {
5971 					mark_reg_unknown(env, regs,
5972 							 insn->dst_reg);
5973 				}
5974 				zext_32_to_64(dst_reg);
5975 			}
5976 		} else {
5977 			/* case: R = imm
5978 			 * remember the value we stored into this reg
5979 			 */
5980 			/* clear any state __mark_reg_known doesn't set */
5981 			mark_reg_unknown(env, regs, insn->dst_reg);
5982 			regs[insn->dst_reg].type = SCALAR_VALUE;
5983 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5984 				__mark_reg_known(regs + insn->dst_reg,
5985 						 insn->imm);
5986 			} else {
5987 				__mark_reg_known(regs + insn->dst_reg,
5988 						 (u32)insn->imm);
5989 			}
5990 		}
5991 
5992 	} else if (opcode > BPF_END) {
5993 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
5994 		return -EINVAL;
5995 
5996 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
5997 
5998 		if (BPF_SRC(insn->code) == BPF_X) {
5999 			if (insn->imm != 0 || insn->off != 0) {
6000 				verbose(env, "BPF_ALU uses reserved fields\n");
6001 				return -EINVAL;
6002 			}
6003 			/* check src1 operand */
6004 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6005 			if (err)
6006 				return err;
6007 		} else {
6008 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6009 				verbose(env, "BPF_ALU uses reserved fields\n");
6010 				return -EINVAL;
6011 			}
6012 		}
6013 
6014 		/* check src2 operand */
6015 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6016 		if (err)
6017 			return err;
6018 
6019 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6020 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
6021 			verbose(env, "div by zero\n");
6022 			return -EINVAL;
6023 		}
6024 
6025 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6026 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6027 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6028 
6029 			if (insn->imm < 0 || insn->imm >= size) {
6030 				verbose(env, "invalid shift %d\n", insn->imm);
6031 				return -EINVAL;
6032 			}
6033 		}
6034 
6035 		/* check dest operand */
6036 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6037 		if (err)
6038 			return err;
6039 
6040 		return adjust_reg_min_max_vals(env, insn);
6041 	}
6042 
6043 	return 0;
6044 }
6045 
6046 static void __find_good_pkt_pointers(struct bpf_func_state *state,
6047 				     struct bpf_reg_state *dst_reg,
6048 				     enum bpf_reg_type type, u16 new_range)
6049 {
6050 	struct bpf_reg_state *reg;
6051 	int i;
6052 
6053 	for (i = 0; i < MAX_BPF_REG; i++) {
6054 		reg = &state->regs[i];
6055 		if (reg->type == type && reg->id == dst_reg->id)
6056 			/* keep the maximum range already checked */
6057 			reg->range = max(reg->range, new_range);
6058 	}
6059 
6060 	bpf_for_each_spilled_reg(i, state, reg) {
6061 		if (!reg)
6062 			continue;
6063 		if (reg->type == type && reg->id == dst_reg->id)
6064 			reg->range = max(reg->range, new_range);
6065 	}
6066 }
6067 
6068 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
6069 				   struct bpf_reg_state *dst_reg,
6070 				   enum bpf_reg_type type,
6071 				   bool range_right_open)
6072 {
6073 	u16 new_range;
6074 	int i;
6075 
6076 	if (dst_reg->off < 0 ||
6077 	    (dst_reg->off == 0 && range_right_open))
6078 		/* This doesn't give us any range */
6079 		return;
6080 
6081 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
6082 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
6083 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
6084 		 * than pkt_end, but that's because it's also less than pkt.
6085 		 */
6086 		return;
6087 
6088 	new_range = dst_reg->off;
6089 	if (range_right_open)
6090 		new_range--;
6091 
6092 	/* Examples for register markings:
6093 	 *
6094 	 * pkt_data in dst register:
6095 	 *
6096 	 *   r2 = r3;
6097 	 *   r2 += 8;
6098 	 *   if (r2 > pkt_end) goto <handle exception>
6099 	 *   <access okay>
6100 	 *
6101 	 *   r2 = r3;
6102 	 *   r2 += 8;
6103 	 *   if (r2 < pkt_end) goto <access okay>
6104 	 *   <handle exception>
6105 	 *
6106 	 *   Where:
6107 	 *     r2 == dst_reg, pkt_end == src_reg
6108 	 *     r2=pkt(id=n,off=8,r=0)
6109 	 *     r3=pkt(id=n,off=0,r=0)
6110 	 *
6111 	 * pkt_data in src register:
6112 	 *
6113 	 *   r2 = r3;
6114 	 *   r2 += 8;
6115 	 *   if (pkt_end >= r2) goto <access okay>
6116 	 *   <handle exception>
6117 	 *
6118 	 *   r2 = r3;
6119 	 *   r2 += 8;
6120 	 *   if (pkt_end <= r2) goto <handle exception>
6121 	 *   <access okay>
6122 	 *
6123 	 *   Where:
6124 	 *     pkt_end == dst_reg, r2 == src_reg
6125 	 *     r2=pkt(id=n,off=8,r=0)
6126 	 *     r3=pkt(id=n,off=0,r=0)
6127 	 *
6128 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
6129 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6130 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
6131 	 * the check.
6132 	 */
6133 
6134 	/* If our ids match, then we must have the same max_value.  And we
6135 	 * don't care about the other reg's fixed offset, since if it's too big
6136 	 * the range won't allow anything.
6137 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6138 	 */
6139 	for (i = 0; i <= vstate->curframe; i++)
6140 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6141 					 new_range);
6142 }
6143 
6144 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
6145 {
6146 	struct tnum subreg = tnum_subreg(reg->var_off);
6147 	s32 sval = (s32)val;
6148 
6149 	switch (opcode) {
6150 	case BPF_JEQ:
6151 		if (tnum_is_const(subreg))
6152 			return !!tnum_equals_const(subreg, val);
6153 		break;
6154 	case BPF_JNE:
6155 		if (tnum_is_const(subreg))
6156 			return !tnum_equals_const(subreg, val);
6157 		break;
6158 	case BPF_JSET:
6159 		if ((~subreg.mask & subreg.value) & val)
6160 			return 1;
6161 		if (!((subreg.mask | subreg.value) & val))
6162 			return 0;
6163 		break;
6164 	case BPF_JGT:
6165 		if (reg->u32_min_value > val)
6166 			return 1;
6167 		else if (reg->u32_max_value <= val)
6168 			return 0;
6169 		break;
6170 	case BPF_JSGT:
6171 		if (reg->s32_min_value > sval)
6172 			return 1;
6173 		else if (reg->s32_max_value < sval)
6174 			return 0;
6175 		break;
6176 	case BPF_JLT:
6177 		if (reg->u32_max_value < val)
6178 			return 1;
6179 		else if (reg->u32_min_value >= val)
6180 			return 0;
6181 		break;
6182 	case BPF_JSLT:
6183 		if (reg->s32_max_value < sval)
6184 			return 1;
6185 		else if (reg->s32_min_value >= sval)
6186 			return 0;
6187 		break;
6188 	case BPF_JGE:
6189 		if (reg->u32_min_value >= val)
6190 			return 1;
6191 		else if (reg->u32_max_value < val)
6192 			return 0;
6193 		break;
6194 	case BPF_JSGE:
6195 		if (reg->s32_min_value >= sval)
6196 			return 1;
6197 		else if (reg->s32_max_value < sval)
6198 			return 0;
6199 		break;
6200 	case BPF_JLE:
6201 		if (reg->u32_max_value <= val)
6202 			return 1;
6203 		else if (reg->u32_min_value > val)
6204 			return 0;
6205 		break;
6206 	case BPF_JSLE:
6207 		if (reg->s32_max_value <= sval)
6208 			return 1;
6209 		else if (reg->s32_min_value > sval)
6210 			return 0;
6211 		break;
6212 	}
6213 
6214 	return -1;
6215 }
6216 
6217 
6218 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6219 {
6220 	s64 sval = (s64)val;
6221 
6222 	switch (opcode) {
6223 	case BPF_JEQ:
6224 		if (tnum_is_const(reg->var_off))
6225 			return !!tnum_equals_const(reg->var_off, val);
6226 		break;
6227 	case BPF_JNE:
6228 		if (tnum_is_const(reg->var_off))
6229 			return !tnum_equals_const(reg->var_off, val);
6230 		break;
6231 	case BPF_JSET:
6232 		if ((~reg->var_off.mask & reg->var_off.value) & val)
6233 			return 1;
6234 		if (!((reg->var_off.mask | reg->var_off.value) & val))
6235 			return 0;
6236 		break;
6237 	case BPF_JGT:
6238 		if (reg->umin_value > val)
6239 			return 1;
6240 		else if (reg->umax_value <= val)
6241 			return 0;
6242 		break;
6243 	case BPF_JSGT:
6244 		if (reg->smin_value > sval)
6245 			return 1;
6246 		else if (reg->smax_value < sval)
6247 			return 0;
6248 		break;
6249 	case BPF_JLT:
6250 		if (reg->umax_value < val)
6251 			return 1;
6252 		else if (reg->umin_value >= val)
6253 			return 0;
6254 		break;
6255 	case BPF_JSLT:
6256 		if (reg->smax_value < sval)
6257 			return 1;
6258 		else if (reg->smin_value >= sval)
6259 			return 0;
6260 		break;
6261 	case BPF_JGE:
6262 		if (reg->umin_value >= val)
6263 			return 1;
6264 		else if (reg->umax_value < val)
6265 			return 0;
6266 		break;
6267 	case BPF_JSGE:
6268 		if (reg->smin_value >= sval)
6269 			return 1;
6270 		else if (reg->smax_value < sval)
6271 			return 0;
6272 		break;
6273 	case BPF_JLE:
6274 		if (reg->umax_value <= val)
6275 			return 1;
6276 		else if (reg->umin_value > val)
6277 			return 0;
6278 		break;
6279 	case BPF_JSLE:
6280 		if (reg->smax_value <= sval)
6281 			return 1;
6282 		else if (reg->smin_value > sval)
6283 			return 0;
6284 		break;
6285 	}
6286 
6287 	return -1;
6288 }
6289 
6290 /* compute branch direction of the expression "if (reg opcode val) goto target;"
6291  * and return:
6292  *  1 - branch will be taken and "goto target" will be executed
6293  *  0 - branch will not be taken and fall-through to next insn
6294  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
6295  *      range [0,10]
6296  */
6297 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
6298 			   bool is_jmp32)
6299 {
6300 	if (__is_pointer_value(false, reg))
6301 		return -1;
6302 
6303 	if (is_jmp32)
6304 		return is_branch32_taken(reg, val, opcode);
6305 	return is_branch64_taken(reg, val, opcode);
6306 }
6307 
6308 /* Adjusts the register min/max values in the case that the dst_reg is the
6309  * variable register that we are working on, and src_reg is a constant or we're
6310  * simply doing a BPF_K check.
6311  * In JEQ/JNE cases we also adjust the var_off values.
6312  */
6313 static void reg_set_min_max(struct bpf_reg_state *true_reg,
6314 			    struct bpf_reg_state *false_reg,
6315 			    u64 val, u32 val32,
6316 			    u8 opcode, bool is_jmp32)
6317 {
6318 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
6319 	struct tnum false_64off = false_reg->var_off;
6320 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
6321 	struct tnum true_64off = true_reg->var_off;
6322 	s64 sval = (s64)val;
6323 	s32 sval32 = (s32)val32;
6324 
6325 	/* If the dst_reg is a pointer, we can't learn anything about its
6326 	 * variable offset from the compare (unless src_reg were a pointer into
6327 	 * the same object, but we don't bother with that.
6328 	 * Since false_reg and true_reg have the same type by construction, we
6329 	 * only need to check one of them for pointerness.
6330 	 */
6331 	if (__is_pointer_value(false, false_reg))
6332 		return;
6333 
6334 	switch (opcode) {
6335 	case BPF_JEQ:
6336 	case BPF_JNE:
6337 	{
6338 		struct bpf_reg_state *reg =
6339 			opcode == BPF_JEQ ? true_reg : false_reg;
6340 
6341 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
6342 		 * if it is true we know the value for sure. Likewise for
6343 		 * BPF_JNE.
6344 		 */
6345 		if (is_jmp32)
6346 			__mark_reg32_known(reg, val32);
6347 		else
6348 			__mark_reg_known(reg, val);
6349 		break;
6350 	}
6351 	case BPF_JSET:
6352 		if (is_jmp32) {
6353 			false_32off = tnum_and(false_32off, tnum_const(~val32));
6354 			if (is_power_of_2(val32))
6355 				true_32off = tnum_or(true_32off,
6356 						     tnum_const(val32));
6357 		} else {
6358 			false_64off = tnum_and(false_64off, tnum_const(~val));
6359 			if (is_power_of_2(val))
6360 				true_64off = tnum_or(true_64off,
6361 						     tnum_const(val));
6362 		}
6363 		break;
6364 	case BPF_JGE:
6365 	case BPF_JGT:
6366 	{
6367 		if (is_jmp32) {
6368 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
6369 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
6370 
6371 			false_reg->u32_max_value = min(false_reg->u32_max_value,
6372 						       false_umax);
6373 			true_reg->u32_min_value = max(true_reg->u32_min_value,
6374 						      true_umin);
6375 		} else {
6376 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
6377 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
6378 
6379 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
6380 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
6381 		}
6382 		break;
6383 	}
6384 	case BPF_JSGE:
6385 	case BPF_JSGT:
6386 	{
6387 		if (is_jmp32) {
6388 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
6389 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
6390 
6391 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
6392 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
6393 		} else {
6394 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
6395 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
6396 
6397 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
6398 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
6399 		}
6400 		break;
6401 	}
6402 	case BPF_JLE:
6403 	case BPF_JLT:
6404 	{
6405 		if (is_jmp32) {
6406 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
6407 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
6408 
6409 			false_reg->u32_min_value = max(false_reg->u32_min_value,
6410 						       false_umin);
6411 			true_reg->u32_max_value = min(true_reg->u32_max_value,
6412 						      true_umax);
6413 		} else {
6414 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
6415 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
6416 
6417 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
6418 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
6419 		}
6420 		break;
6421 	}
6422 	case BPF_JSLE:
6423 	case BPF_JSLT:
6424 	{
6425 		if (is_jmp32) {
6426 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
6427 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
6428 
6429 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
6430 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
6431 		} else {
6432 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
6433 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
6434 
6435 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
6436 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
6437 		}
6438 		break;
6439 	}
6440 	default:
6441 		return;
6442 	}
6443 
6444 	if (is_jmp32) {
6445 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
6446 					     tnum_subreg(false_32off));
6447 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
6448 					    tnum_subreg(true_32off));
6449 		__reg_combine_32_into_64(false_reg);
6450 		__reg_combine_32_into_64(true_reg);
6451 	} else {
6452 		false_reg->var_off = false_64off;
6453 		true_reg->var_off = true_64off;
6454 		__reg_combine_64_into_32(false_reg);
6455 		__reg_combine_64_into_32(true_reg);
6456 	}
6457 }
6458 
6459 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
6460  * the variable reg.
6461  */
6462 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
6463 				struct bpf_reg_state *false_reg,
6464 				u64 val, u32 val32,
6465 				u8 opcode, bool is_jmp32)
6466 {
6467 	/* How can we transform "a <op> b" into "b <op> a"? */
6468 	static const u8 opcode_flip[16] = {
6469 		/* these stay the same */
6470 		[BPF_JEQ  >> 4] = BPF_JEQ,
6471 		[BPF_JNE  >> 4] = BPF_JNE,
6472 		[BPF_JSET >> 4] = BPF_JSET,
6473 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
6474 		[BPF_JGE  >> 4] = BPF_JLE,
6475 		[BPF_JGT  >> 4] = BPF_JLT,
6476 		[BPF_JLE  >> 4] = BPF_JGE,
6477 		[BPF_JLT  >> 4] = BPF_JGT,
6478 		[BPF_JSGE >> 4] = BPF_JSLE,
6479 		[BPF_JSGT >> 4] = BPF_JSLT,
6480 		[BPF_JSLE >> 4] = BPF_JSGE,
6481 		[BPF_JSLT >> 4] = BPF_JSGT
6482 	};
6483 	opcode = opcode_flip[opcode >> 4];
6484 	/* This uses zero as "not present in table"; luckily the zero opcode,
6485 	 * BPF_JA, can't get here.
6486 	 */
6487 	if (opcode)
6488 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
6489 }
6490 
6491 /* Regs are known to be equal, so intersect their min/max/var_off */
6492 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
6493 				  struct bpf_reg_state *dst_reg)
6494 {
6495 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
6496 							dst_reg->umin_value);
6497 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
6498 							dst_reg->umax_value);
6499 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
6500 							dst_reg->smin_value);
6501 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
6502 							dst_reg->smax_value);
6503 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
6504 							     dst_reg->var_off);
6505 	/* We might have learned new bounds from the var_off. */
6506 	__update_reg_bounds(src_reg);
6507 	__update_reg_bounds(dst_reg);
6508 	/* We might have learned something about the sign bit. */
6509 	__reg_deduce_bounds(src_reg);
6510 	__reg_deduce_bounds(dst_reg);
6511 	/* We might have learned some bits from the bounds. */
6512 	__reg_bound_offset(src_reg);
6513 	__reg_bound_offset(dst_reg);
6514 	/* Intersecting with the old var_off might have improved our bounds
6515 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
6516 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
6517 	 */
6518 	__update_reg_bounds(src_reg);
6519 	__update_reg_bounds(dst_reg);
6520 }
6521 
6522 static void reg_combine_min_max(struct bpf_reg_state *true_src,
6523 				struct bpf_reg_state *true_dst,
6524 				struct bpf_reg_state *false_src,
6525 				struct bpf_reg_state *false_dst,
6526 				u8 opcode)
6527 {
6528 	switch (opcode) {
6529 	case BPF_JEQ:
6530 		__reg_combine_min_max(true_src, true_dst);
6531 		break;
6532 	case BPF_JNE:
6533 		__reg_combine_min_max(false_src, false_dst);
6534 		break;
6535 	}
6536 }
6537 
6538 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
6539 				 struct bpf_reg_state *reg, u32 id,
6540 				 bool is_null)
6541 {
6542 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
6543 		/* Old offset (both fixed and variable parts) should
6544 		 * have been known-zero, because we don't allow pointer
6545 		 * arithmetic on pointers that might be NULL.
6546 		 */
6547 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
6548 				 !tnum_equals_const(reg->var_off, 0) ||
6549 				 reg->off)) {
6550 			__mark_reg_known_zero(reg);
6551 			reg->off = 0;
6552 		}
6553 		if (is_null) {
6554 			reg->type = SCALAR_VALUE;
6555 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
6556 			const struct bpf_map *map = reg->map_ptr;
6557 
6558 			if (map->inner_map_meta) {
6559 				reg->type = CONST_PTR_TO_MAP;
6560 				reg->map_ptr = map->inner_map_meta;
6561 			} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
6562 				reg->type = PTR_TO_XDP_SOCK;
6563 			} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
6564 				   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
6565 				reg->type = PTR_TO_SOCKET;
6566 			} else {
6567 				reg->type = PTR_TO_MAP_VALUE;
6568 			}
6569 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
6570 			reg->type = PTR_TO_SOCKET;
6571 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
6572 			reg->type = PTR_TO_SOCK_COMMON;
6573 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
6574 			reg->type = PTR_TO_TCP_SOCK;
6575 		}
6576 		if (is_null) {
6577 			/* We don't need id and ref_obj_id from this point
6578 			 * onwards anymore, thus we should better reset it,
6579 			 * so that state pruning has chances to take effect.
6580 			 */
6581 			reg->id = 0;
6582 			reg->ref_obj_id = 0;
6583 		} else if (!reg_may_point_to_spin_lock(reg)) {
6584 			/* For not-NULL ptr, reg->ref_obj_id will be reset
6585 			 * in release_reg_references().
6586 			 *
6587 			 * reg->id is still used by spin_lock ptr. Other
6588 			 * than spin_lock ptr type, reg->id can be reset.
6589 			 */
6590 			reg->id = 0;
6591 		}
6592 	}
6593 }
6594 
6595 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
6596 				    bool is_null)
6597 {
6598 	struct bpf_reg_state *reg;
6599 	int i;
6600 
6601 	for (i = 0; i < MAX_BPF_REG; i++)
6602 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
6603 
6604 	bpf_for_each_spilled_reg(i, state, reg) {
6605 		if (!reg)
6606 			continue;
6607 		mark_ptr_or_null_reg(state, reg, id, is_null);
6608 	}
6609 }
6610 
6611 /* The logic is similar to find_good_pkt_pointers(), both could eventually
6612  * be folded together at some point.
6613  */
6614 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
6615 				  bool is_null)
6616 {
6617 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6618 	struct bpf_reg_state *regs = state->regs;
6619 	u32 ref_obj_id = regs[regno].ref_obj_id;
6620 	u32 id = regs[regno].id;
6621 	int i;
6622 
6623 	if (ref_obj_id && ref_obj_id == id && is_null)
6624 		/* regs[regno] is in the " == NULL" branch.
6625 		 * No one could have freed the reference state before
6626 		 * doing the NULL check.
6627 		 */
6628 		WARN_ON_ONCE(release_reference_state(state, id));
6629 
6630 	for (i = 0; i <= vstate->curframe; i++)
6631 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
6632 }
6633 
6634 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
6635 				   struct bpf_reg_state *dst_reg,
6636 				   struct bpf_reg_state *src_reg,
6637 				   struct bpf_verifier_state *this_branch,
6638 				   struct bpf_verifier_state *other_branch)
6639 {
6640 	if (BPF_SRC(insn->code) != BPF_X)
6641 		return false;
6642 
6643 	/* Pointers are always 64-bit. */
6644 	if (BPF_CLASS(insn->code) == BPF_JMP32)
6645 		return false;
6646 
6647 	switch (BPF_OP(insn->code)) {
6648 	case BPF_JGT:
6649 		if ((dst_reg->type == PTR_TO_PACKET &&
6650 		     src_reg->type == PTR_TO_PACKET_END) ||
6651 		    (dst_reg->type == PTR_TO_PACKET_META &&
6652 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6653 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
6654 			find_good_pkt_pointers(this_branch, dst_reg,
6655 					       dst_reg->type, false);
6656 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6657 			    src_reg->type == PTR_TO_PACKET) ||
6658 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6659 			    src_reg->type == PTR_TO_PACKET_META)) {
6660 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
6661 			find_good_pkt_pointers(other_branch, src_reg,
6662 					       src_reg->type, true);
6663 		} else {
6664 			return false;
6665 		}
6666 		break;
6667 	case BPF_JLT:
6668 		if ((dst_reg->type == PTR_TO_PACKET &&
6669 		     src_reg->type == PTR_TO_PACKET_END) ||
6670 		    (dst_reg->type == PTR_TO_PACKET_META &&
6671 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6672 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
6673 			find_good_pkt_pointers(other_branch, dst_reg,
6674 					       dst_reg->type, true);
6675 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6676 			    src_reg->type == PTR_TO_PACKET) ||
6677 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6678 			    src_reg->type == PTR_TO_PACKET_META)) {
6679 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
6680 			find_good_pkt_pointers(this_branch, src_reg,
6681 					       src_reg->type, false);
6682 		} else {
6683 			return false;
6684 		}
6685 		break;
6686 	case BPF_JGE:
6687 		if ((dst_reg->type == PTR_TO_PACKET &&
6688 		     src_reg->type == PTR_TO_PACKET_END) ||
6689 		    (dst_reg->type == PTR_TO_PACKET_META &&
6690 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6691 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
6692 			find_good_pkt_pointers(this_branch, dst_reg,
6693 					       dst_reg->type, true);
6694 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6695 			    src_reg->type == PTR_TO_PACKET) ||
6696 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6697 			    src_reg->type == PTR_TO_PACKET_META)) {
6698 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
6699 			find_good_pkt_pointers(other_branch, src_reg,
6700 					       src_reg->type, false);
6701 		} else {
6702 			return false;
6703 		}
6704 		break;
6705 	case BPF_JLE:
6706 		if ((dst_reg->type == PTR_TO_PACKET &&
6707 		     src_reg->type == PTR_TO_PACKET_END) ||
6708 		    (dst_reg->type == PTR_TO_PACKET_META &&
6709 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6710 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
6711 			find_good_pkt_pointers(other_branch, dst_reg,
6712 					       dst_reg->type, false);
6713 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6714 			    src_reg->type == PTR_TO_PACKET) ||
6715 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6716 			    src_reg->type == PTR_TO_PACKET_META)) {
6717 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
6718 			find_good_pkt_pointers(this_branch, src_reg,
6719 					       src_reg->type, true);
6720 		} else {
6721 			return false;
6722 		}
6723 		break;
6724 	default:
6725 		return false;
6726 	}
6727 
6728 	return true;
6729 }
6730 
6731 static int check_cond_jmp_op(struct bpf_verifier_env *env,
6732 			     struct bpf_insn *insn, int *insn_idx)
6733 {
6734 	struct bpf_verifier_state *this_branch = env->cur_state;
6735 	struct bpf_verifier_state *other_branch;
6736 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
6737 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
6738 	u8 opcode = BPF_OP(insn->code);
6739 	bool is_jmp32;
6740 	int pred = -1;
6741 	int err;
6742 
6743 	/* Only conditional jumps are expected to reach here. */
6744 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
6745 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
6746 		return -EINVAL;
6747 	}
6748 
6749 	if (BPF_SRC(insn->code) == BPF_X) {
6750 		if (insn->imm != 0) {
6751 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6752 			return -EINVAL;
6753 		}
6754 
6755 		/* check src1 operand */
6756 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6757 		if (err)
6758 			return err;
6759 
6760 		if (is_pointer_value(env, insn->src_reg)) {
6761 			verbose(env, "R%d pointer comparison prohibited\n",
6762 				insn->src_reg);
6763 			return -EACCES;
6764 		}
6765 		src_reg = &regs[insn->src_reg];
6766 	} else {
6767 		if (insn->src_reg != BPF_REG_0) {
6768 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6769 			return -EINVAL;
6770 		}
6771 	}
6772 
6773 	/* check src2 operand */
6774 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6775 	if (err)
6776 		return err;
6777 
6778 	dst_reg = &regs[insn->dst_reg];
6779 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
6780 
6781 	if (BPF_SRC(insn->code) == BPF_K) {
6782 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
6783 	} else if (src_reg->type == SCALAR_VALUE &&
6784 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
6785 		pred = is_branch_taken(dst_reg,
6786 				       tnum_subreg(src_reg->var_off).value,
6787 				       opcode,
6788 				       is_jmp32);
6789 	} else if (src_reg->type == SCALAR_VALUE &&
6790 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
6791 		pred = is_branch_taken(dst_reg,
6792 				       src_reg->var_off.value,
6793 				       opcode,
6794 				       is_jmp32);
6795 	}
6796 
6797 	if (pred >= 0) {
6798 		err = mark_chain_precision(env, insn->dst_reg);
6799 		if (BPF_SRC(insn->code) == BPF_X && !err)
6800 			err = mark_chain_precision(env, insn->src_reg);
6801 		if (err)
6802 			return err;
6803 	}
6804 	if (pred == 1) {
6805 		/* only follow the goto, ignore fall-through */
6806 		*insn_idx += insn->off;
6807 		return 0;
6808 	} else if (pred == 0) {
6809 		/* only follow fall-through branch, since
6810 		 * that's where the program will go
6811 		 */
6812 		return 0;
6813 	}
6814 
6815 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
6816 				  false);
6817 	if (!other_branch)
6818 		return -EFAULT;
6819 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
6820 
6821 	/* detect if we are comparing against a constant value so we can adjust
6822 	 * our min/max values for our dst register.
6823 	 * this is only legit if both are scalars (or pointers to the same
6824 	 * object, I suppose, but we don't support that right now), because
6825 	 * otherwise the different base pointers mean the offsets aren't
6826 	 * comparable.
6827 	 */
6828 	if (BPF_SRC(insn->code) == BPF_X) {
6829 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
6830 
6831 		if (dst_reg->type == SCALAR_VALUE &&
6832 		    src_reg->type == SCALAR_VALUE) {
6833 			if (tnum_is_const(src_reg->var_off) ||
6834 			    (is_jmp32 &&
6835 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
6836 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
6837 						dst_reg,
6838 						src_reg->var_off.value,
6839 						tnum_subreg(src_reg->var_off).value,
6840 						opcode, is_jmp32);
6841 			else if (tnum_is_const(dst_reg->var_off) ||
6842 				 (is_jmp32 &&
6843 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
6844 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
6845 						    src_reg,
6846 						    dst_reg->var_off.value,
6847 						    tnum_subreg(dst_reg->var_off).value,
6848 						    opcode, is_jmp32);
6849 			else if (!is_jmp32 &&
6850 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
6851 				/* Comparing for equality, we can combine knowledge */
6852 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
6853 						    &other_branch_regs[insn->dst_reg],
6854 						    src_reg, dst_reg, opcode);
6855 		}
6856 	} else if (dst_reg->type == SCALAR_VALUE) {
6857 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
6858 					dst_reg, insn->imm, (u32)insn->imm,
6859 					opcode, is_jmp32);
6860 	}
6861 
6862 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
6863 	 * NOTE: these optimizations below are related with pointer comparison
6864 	 *       which will never be JMP32.
6865 	 */
6866 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
6867 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
6868 	    reg_type_may_be_null(dst_reg->type)) {
6869 		/* Mark all identical registers in each branch as either
6870 		 * safe or unknown depending R == 0 or R != 0 conditional.
6871 		 */
6872 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
6873 				      opcode == BPF_JNE);
6874 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
6875 				      opcode == BPF_JEQ);
6876 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
6877 					   this_branch, other_branch) &&
6878 		   is_pointer_value(env, insn->dst_reg)) {
6879 		verbose(env, "R%d pointer comparison prohibited\n",
6880 			insn->dst_reg);
6881 		return -EACCES;
6882 	}
6883 	if (env->log.level & BPF_LOG_LEVEL)
6884 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
6885 	return 0;
6886 }
6887 
6888 /* verify BPF_LD_IMM64 instruction */
6889 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
6890 {
6891 	struct bpf_insn_aux_data *aux = cur_aux(env);
6892 	struct bpf_reg_state *regs = cur_regs(env);
6893 	struct bpf_map *map;
6894 	int err;
6895 
6896 	if (BPF_SIZE(insn->code) != BPF_DW) {
6897 		verbose(env, "invalid BPF_LD_IMM insn\n");
6898 		return -EINVAL;
6899 	}
6900 	if (insn->off != 0) {
6901 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
6902 		return -EINVAL;
6903 	}
6904 
6905 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
6906 	if (err)
6907 		return err;
6908 
6909 	if (insn->src_reg == 0) {
6910 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
6911 
6912 		regs[insn->dst_reg].type = SCALAR_VALUE;
6913 		__mark_reg_known(&regs[insn->dst_reg], imm);
6914 		return 0;
6915 	}
6916 
6917 	map = env->used_maps[aux->map_index];
6918 	mark_reg_known_zero(env, regs, insn->dst_reg);
6919 	regs[insn->dst_reg].map_ptr = map;
6920 
6921 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
6922 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
6923 		regs[insn->dst_reg].off = aux->map_off;
6924 		if (map_value_has_spin_lock(map))
6925 			regs[insn->dst_reg].id = ++env->id_gen;
6926 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6927 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
6928 	} else {
6929 		verbose(env, "bpf verifier is misconfigured\n");
6930 		return -EINVAL;
6931 	}
6932 
6933 	return 0;
6934 }
6935 
6936 static bool may_access_skb(enum bpf_prog_type type)
6937 {
6938 	switch (type) {
6939 	case BPF_PROG_TYPE_SOCKET_FILTER:
6940 	case BPF_PROG_TYPE_SCHED_CLS:
6941 	case BPF_PROG_TYPE_SCHED_ACT:
6942 		return true;
6943 	default:
6944 		return false;
6945 	}
6946 }
6947 
6948 /* verify safety of LD_ABS|LD_IND instructions:
6949  * - they can only appear in the programs where ctx == skb
6950  * - since they are wrappers of function calls, they scratch R1-R5 registers,
6951  *   preserve R6-R9, and store return value into R0
6952  *
6953  * Implicit input:
6954  *   ctx == skb == R6 == CTX
6955  *
6956  * Explicit input:
6957  *   SRC == any register
6958  *   IMM == 32-bit immediate
6959  *
6960  * Output:
6961  *   R0 - 8/16/32-bit skb data converted to cpu endianness
6962  */
6963 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
6964 {
6965 	struct bpf_reg_state *regs = cur_regs(env);
6966 	static const int ctx_reg = BPF_REG_6;
6967 	u8 mode = BPF_MODE(insn->code);
6968 	int i, err;
6969 
6970 	if (!may_access_skb(env->prog->type)) {
6971 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
6972 		return -EINVAL;
6973 	}
6974 
6975 	if (!env->ops->gen_ld_abs) {
6976 		verbose(env, "bpf verifier is misconfigured\n");
6977 		return -EINVAL;
6978 	}
6979 
6980 	if (env->subprog_cnt > 1) {
6981 		/* when program has LD_ABS insn JITs and interpreter assume
6982 		 * that r1 == ctx == skb which is not the case for callees
6983 		 * that can have arbitrary arguments. It's problematic
6984 		 * for main prog as well since JITs would need to analyze
6985 		 * all functions in order to make proper register save/restore
6986 		 * decisions in the main prog. Hence disallow LD_ABS with calls
6987 		 */
6988 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6989 		return -EINVAL;
6990 	}
6991 
6992 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
6993 	    BPF_SIZE(insn->code) == BPF_DW ||
6994 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
6995 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
6996 		return -EINVAL;
6997 	}
6998 
6999 	/* check whether implicit source operand (register R6) is readable */
7000 	err = check_reg_arg(env, ctx_reg, SRC_OP);
7001 	if (err)
7002 		return err;
7003 
7004 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7005 	 * gen_ld_abs() may terminate the program at runtime, leading to
7006 	 * reference leak.
7007 	 */
7008 	err = check_reference_leak(env);
7009 	if (err) {
7010 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7011 		return err;
7012 	}
7013 
7014 	if (env->cur_state->active_spin_lock) {
7015 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7016 		return -EINVAL;
7017 	}
7018 
7019 	if (regs[ctx_reg].type != PTR_TO_CTX) {
7020 		verbose(env,
7021 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
7022 		return -EINVAL;
7023 	}
7024 
7025 	if (mode == BPF_IND) {
7026 		/* check explicit source operand */
7027 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
7028 		if (err)
7029 			return err;
7030 	}
7031 
7032 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7033 	if (err < 0)
7034 		return err;
7035 
7036 	/* reset caller saved regs to unreadable */
7037 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7038 		mark_reg_not_init(env, regs, caller_saved[i]);
7039 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7040 	}
7041 
7042 	/* mark destination R0 register as readable, since it contains
7043 	 * the value fetched from the packet.
7044 	 * Already marked as written above.
7045 	 */
7046 	mark_reg_unknown(env, regs, BPF_REG_0);
7047 	/* ld_abs load up to 32-bit skb data. */
7048 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
7049 	return 0;
7050 }
7051 
7052 static int check_return_code(struct bpf_verifier_env *env)
7053 {
7054 	struct tnum enforce_attach_type_range = tnum_unknown;
7055 	const struct bpf_prog *prog = env->prog;
7056 	struct bpf_reg_state *reg;
7057 	struct tnum range = tnum_range(0, 1);
7058 	int err;
7059 
7060 	/* LSM and struct_ops func-ptr's return type could be "void" */
7061 	if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
7062 	     env->prog->type == BPF_PROG_TYPE_LSM) &&
7063 	    !prog->aux->attach_func_proto->type)
7064 		return 0;
7065 
7066 	/* eBPF calling convetion is such that R0 is used
7067 	 * to return the value from eBPF program.
7068 	 * Make sure that it's readable at this time
7069 	 * of bpf_exit, which means that program wrote
7070 	 * something into it earlier
7071 	 */
7072 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7073 	if (err)
7074 		return err;
7075 
7076 	if (is_pointer_value(env, BPF_REG_0)) {
7077 		verbose(env, "R0 leaks addr as return value\n");
7078 		return -EACCES;
7079 	}
7080 
7081 	switch (env->prog->type) {
7082 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7083 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
7084 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
7085 			range = tnum_range(1, 1);
7086 		break;
7087 	case BPF_PROG_TYPE_CGROUP_SKB:
7088 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7089 			range = tnum_range(0, 3);
7090 			enforce_attach_type_range = tnum_range(2, 3);
7091 		}
7092 		break;
7093 	case BPF_PROG_TYPE_CGROUP_SOCK:
7094 	case BPF_PROG_TYPE_SOCK_OPS:
7095 	case BPF_PROG_TYPE_CGROUP_DEVICE:
7096 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
7097 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
7098 		break;
7099 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
7100 		if (!env->prog->aux->attach_btf_id)
7101 			return 0;
7102 		range = tnum_const(0);
7103 		break;
7104 	default:
7105 		return 0;
7106 	}
7107 
7108 	reg = cur_regs(env) + BPF_REG_0;
7109 	if (reg->type != SCALAR_VALUE) {
7110 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
7111 			reg_type_str[reg->type]);
7112 		return -EINVAL;
7113 	}
7114 
7115 	if (!tnum_in(range, reg->var_off)) {
7116 		char tn_buf[48];
7117 
7118 		verbose(env, "At program exit the register R0 ");
7119 		if (!tnum_is_unknown(reg->var_off)) {
7120 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7121 			verbose(env, "has value %s", tn_buf);
7122 		} else {
7123 			verbose(env, "has unknown scalar value");
7124 		}
7125 		tnum_strn(tn_buf, sizeof(tn_buf), range);
7126 		verbose(env, " should have been in %s\n", tn_buf);
7127 		return -EINVAL;
7128 	}
7129 
7130 	if (!tnum_is_unknown(enforce_attach_type_range) &&
7131 	    tnum_in(enforce_attach_type_range, reg->var_off))
7132 		env->prog->enforce_expected_attach_type = 1;
7133 	return 0;
7134 }
7135 
7136 /* non-recursive DFS pseudo code
7137  * 1  procedure DFS-iterative(G,v):
7138  * 2      label v as discovered
7139  * 3      let S be a stack
7140  * 4      S.push(v)
7141  * 5      while S is not empty
7142  * 6            t <- S.pop()
7143  * 7            if t is what we're looking for:
7144  * 8                return t
7145  * 9            for all edges e in G.adjacentEdges(t) do
7146  * 10               if edge e is already labelled
7147  * 11                   continue with the next edge
7148  * 12               w <- G.adjacentVertex(t,e)
7149  * 13               if vertex w is not discovered and not explored
7150  * 14                   label e as tree-edge
7151  * 15                   label w as discovered
7152  * 16                   S.push(w)
7153  * 17                   continue at 5
7154  * 18               else if vertex w is discovered
7155  * 19                   label e as back-edge
7156  * 20               else
7157  * 21                   // vertex w is explored
7158  * 22                   label e as forward- or cross-edge
7159  * 23           label t as explored
7160  * 24           S.pop()
7161  *
7162  * convention:
7163  * 0x10 - discovered
7164  * 0x11 - discovered and fall-through edge labelled
7165  * 0x12 - discovered and fall-through and branch edges labelled
7166  * 0x20 - explored
7167  */
7168 
7169 enum {
7170 	DISCOVERED = 0x10,
7171 	EXPLORED = 0x20,
7172 	FALLTHROUGH = 1,
7173 	BRANCH = 2,
7174 };
7175 
7176 static u32 state_htab_size(struct bpf_verifier_env *env)
7177 {
7178 	return env->prog->len;
7179 }
7180 
7181 static struct bpf_verifier_state_list **explored_state(
7182 					struct bpf_verifier_env *env,
7183 					int idx)
7184 {
7185 	struct bpf_verifier_state *cur = env->cur_state;
7186 	struct bpf_func_state *state = cur->frame[cur->curframe];
7187 
7188 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
7189 }
7190 
7191 static void init_explored_state(struct bpf_verifier_env *env, int idx)
7192 {
7193 	env->insn_aux_data[idx].prune_point = true;
7194 }
7195 
7196 /* t, w, e - match pseudo-code above:
7197  * t - index of current instruction
7198  * w - next instruction
7199  * e - edge
7200  */
7201 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
7202 		     bool loop_ok)
7203 {
7204 	int *insn_stack = env->cfg.insn_stack;
7205 	int *insn_state = env->cfg.insn_state;
7206 
7207 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
7208 		return 0;
7209 
7210 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
7211 		return 0;
7212 
7213 	if (w < 0 || w >= env->prog->len) {
7214 		verbose_linfo(env, t, "%d: ", t);
7215 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
7216 		return -EINVAL;
7217 	}
7218 
7219 	if (e == BRANCH)
7220 		/* mark branch target for state pruning */
7221 		init_explored_state(env, w);
7222 
7223 	if (insn_state[w] == 0) {
7224 		/* tree-edge */
7225 		insn_state[t] = DISCOVERED | e;
7226 		insn_state[w] = DISCOVERED;
7227 		if (env->cfg.cur_stack >= env->prog->len)
7228 			return -E2BIG;
7229 		insn_stack[env->cfg.cur_stack++] = w;
7230 		return 1;
7231 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
7232 		if (loop_ok && env->allow_ptr_leaks)
7233 			return 0;
7234 		verbose_linfo(env, t, "%d: ", t);
7235 		verbose_linfo(env, w, "%d: ", w);
7236 		verbose(env, "back-edge from insn %d to %d\n", t, w);
7237 		return -EINVAL;
7238 	} else if (insn_state[w] == EXPLORED) {
7239 		/* forward- or cross-edge */
7240 		insn_state[t] = DISCOVERED | e;
7241 	} else {
7242 		verbose(env, "insn state internal bug\n");
7243 		return -EFAULT;
7244 	}
7245 	return 0;
7246 }
7247 
7248 /* non-recursive depth-first-search to detect loops in BPF program
7249  * loop == back-edge in directed graph
7250  */
7251 static int check_cfg(struct bpf_verifier_env *env)
7252 {
7253 	struct bpf_insn *insns = env->prog->insnsi;
7254 	int insn_cnt = env->prog->len;
7255 	int *insn_stack, *insn_state;
7256 	int ret = 0;
7257 	int i, t;
7258 
7259 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
7260 	if (!insn_state)
7261 		return -ENOMEM;
7262 
7263 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
7264 	if (!insn_stack) {
7265 		kvfree(insn_state);
7266 		return -ENOMEM;
7267 	}
7268 
7269 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
7270 	insn_stack[0] = 0; /* 0 is the first instruction */
7271 	env->cfg.cur_stack = 1;
7272 
7273 peek_stack:
7274 	if (env->cfg.cur_stack == 0)
7275 		goto check_state;
7276 	t = insn_stack[env->cfg.cur_stack - 1];
7277 
7278 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
7279 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
7280 		u8 opcode = BPF_OP(insns[t].code);
7281 
7282 		if (opcode == BPF_EXIT) {
7283 			goto mark_explored;
7284 		} else if (opcode == BPF_CALL) {
7285 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
7286 			if (ret == 1)
7287 				goto peek_stack;
7288 			else if (ret < 0)
7289 				goto err_free;
7290 			if (t + 1 < insn_cnt)
7291 				init_explored_state(env, t + 1);
7292 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
7293 				init_explored_state(env, t);
7294 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
7295 						env, false);
7296 				if (ret == 1)
7297 					goto peek_stack;
7298 				else if (ret < 0)
7299 					goto err_free;
7300 			}
7301 		} else if (opcode == BPF_JA) {
7302 			if (BPF_SRC(insns[t].code) != BPF_K) {
7303 				ret = -EINVAL;
7304 				goto err_free;
7305 			}
7306 			/* unconditional jump with single edge */
7307 			ret = push_insn(t, t + insns[t].off + 1,
7308 					FALLTHROUGH, env, true);
7309 			if (ret == 1)
7310 				goto peek_stack;
7311 			else if (ret < 0)
7312 				goto err_free;
7313 			/* unconditional jmp is not a good pruning point,
7314 			 * but it's marked, since backtracking needs
7315 			 * to record jmp history in is_state_visited().
7316 			 */
7317 			init_explored_state(env, t + insns[t].off + 1);
7318 			/* tell verifier to check for equivalent states
7319 			 * after every call and jump
7320 			 */
7321 			if (t + 1 < insn_cnt)
7322 				init_explored_state(env, t + 1);
7323 		} else {
7324 			/* conditional jump with two edges */
7325 			init_explored_state(env, t);
7326 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
7327 			if (ret == 1)
7328 				goto peek_stack;
7329 			else if (ret < 0)
7330 				goto err_free;
7331 
7332 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
7333 			if (ret == 1)
7334 				goto peek_stack;
7335 			else if (ret < 0)
7336 				goto err_free;
7337 		}
7338 	} else {
7339 		/* all other non-branch instructions with single
7340 		 * fall-through edge
7341 		 */
7342 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
7343 		if (ret == 1)
7344 			goto peek_stack;
7345 		else if (ret < 0)
7346 			goto err_free;
7347 	}
7348 
7349 mark_explored:
7350 	insn_state[t] = EXPLORED;
7351 	if (env->cfg.cur_stack-- <= 0) {
7352 		verbose(env, "pop stack internal bug\n");
7353 		ret = -EFAULT;
7354 		goto err_free;
7355 	}
7356 	goto peek_stack;
7357 
7358 check_state:
7359 	for (i = 0; i < insn_cnt; i++) {
7360 		if (insn_state[i] != EXPLORED) {
7361 			verbose(env, "unreachable insn %d\n", i);
7362 			ret = -EINVAL;
7363 			goto err_free;
7364 		}
7365 	}
7366 	ret = 0; /* cfg looks good */
7367 
7368 err_free:
7369 	kvfree(insn_state);
7370 	kvfree(insn_stack);
7371 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
7372 	return ret;
7373 }
7374 
7375 /* The minimum supported BTF func info size */
7376 #define MIN_BPF_FUNCINFO_SIZE	8
7377 #define MAX_FUNCINFO_REC_SIZE	252
7378 
7379 static int check_btf_func(struct bpf_verifier_env *env,
7380 			  const union bpf_attr *attr,
7381 			  union bpf_attr __user *uattr)
7382 {
7383 	u32 i, nfuncs, urec_size, min_size;
7384 	u32 krec_size = sizeof(struct bpf_func_info);
7385 	struct bpf_func_info *krecord;
7386 	struct bpf_func_info_aux *info_aux = NULL;
7387 	const struct btf_type *type;
7388 	struct bpf_prog *prog;
7389 	const struct btf *btf;
7390 	void __user *urecord;
7391 	u32 prev_offset = 0;
7392 	int ret = 0;
7393 
7394 	nfuncs = attr->func_info_cnt;
7395 	if (!nfuncs)
7396 		return 0;
7397 
7398 	if (nfuncs != env->subprog_cnt) {
7399 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
7400 		return -EINVAL;
7401 	}
7402 
7403 	urec_size = attr->func_info_rec_size;
7404 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
7405 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
7406 	    urec_size % sizeof(u32)) {
7407 		verbose(env, "invalid func info rec size %u\n", urec_size);
7408 		return -EINVAL;
7409 	}
7410 
7411 	prog = env->prog;
7412 	btf = prog->aux->btf;
7413 
7414 	urecord = u64_to_user_ptr(attr->func_info);
7415 	min_size = min_t(u32, krec_size, urec_size);
7416 
7417 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
7418 	if (!krecord)
7419 		return -ENOMEM;
7420 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
7421 	if (!info_aux)
7422 		goto err_free;
7423 
7424 	for (i = 0; i < nfuncs; i++) {
7425 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
7426 		if (ret) {
7427 			if (ret == -E2BIG) {
7428 				verbose(env, "nonzero tailing record in func info");
7429 				/* set the size kernel expects so loader can zero
7430 				 * out the rest of the record.
7431 				 */
7432 				if (put_user(min_size, &uattr->func_info_rec_size))
7433 					ret = -EFAULT;
7434 			}
7435 			goto err_free;
7436 		}
7437 
7438 		if (copy_from_user(&krecord[i], urecord, min_size)) {
7439 			ret = -EFAULT;
7440 			goto err_free;
7441 		}
7442 
7443 		/* check insn_off */
7444 		if (i == 0) {
7445 			if (krecord[i].insn_off) {
7446 				verbose(env,
7447 					"nonzero insn_off %u for the first func info record",
7448 					krecord[i].insn_off);
7449 				ret = -EINVAL;
7450 				goto err_free;
7451 			}
7452 		} else if (krecord[i].insn_off <= prev_offset) {
7453 			verbose(env,
7454 				"same or smaller insn offset (%u) than previous func info record (%u)",
7455 				krecord[i].insn_off, prev_offset);
7456 			ret = -EINVAL;
7457 			goto err_free;
7458 		}
7459 
7460 		if (env->subprog_info[i].start != krecord[i].insn_off) {
7461 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
7462 			ret = -EINVAL;
7463 			goto err_free;
7464 		}
7465 
7466 		/* check type_id */
7467 		type = btf_type_by_id(btf, krecord[i].type_id);
7468 		if (!type || !btf_type_is_func(type)) {
7469 			verbose(env, "invalid type id %d in func info",
7470 				krecord[i].type_id);
7471 			ret = -EINVAL;
7472 			goto err_free;
7473 		}
7474 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
7475 		prev_offset = krecord[i].insn_off;
7476 		urecord += urec_size;
7477 	}
7478 
7479 	prog->aux->func_info = krecord;
7480 	prog->aux->func_info_cnt = nfuncs;
7481 	prog->aux->func_info_aux = info_aux;
7482 	return 0;
7483 
7484 err_free:
7485 	kvfree(krecord);
7486 	kfree(info_aux);
7487 	return ret;
7488 }
7489 
7490 static void adjust_btf_func(struct bpf_verifier_env *env)
7491 {
7492 	struct bpf_prog_aux *aux = env->prog->aux;
7493 	int i;
7494 
7495 	if (!aux->func_info)
7496 		return;
7497 
7498 	for (i = 0; i < env->subprog_cnt; i++)
7499 		aux->func_info[i].insn_off = env->subprog_info[i].start;
7500 }
7501 
7502 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
7503 		sizeof(((struct bpf_line_info *)(0))->line_col))
7504 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
7505 
7506 static int check_btf_line(struct bpf_verifier_env *env,
7507 			  const union bpf_attr *attr,
7508 			  union bpf_attr __user *uattr)
7509 {
7510 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
7511 	struct bpf_subprog_info *sub;
7512 	struct bpf_line_info *linfo;
7513 	struct bpf_prog *prog;
7514 	const struct btf *btf;
7515 	void __user *ulinfo;
7516 	int err;
7517 
7518 	nr_linfo = attr->line_info_cnt;
7519 	if (!nr_linfo)
7520 		return 0;
7521 
7522 	rec_size = attr->line_info_rec_size;
7523 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
7524 	    rec_size > MAX_LINEINFO_REC_SIZE ||
7525 	    rec_size & (sizeof(u32) - 1))
7526 		return -EINVAL;
7527 
7528 	/* Need to zero it in case the userspace may
7529 	 * pass in a smaller bpf_line_info object.
7530 	 */
7531 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
7532 			 GFP_KERNEL | __GFP_NOWARN);
7533 	if (!linfo)
7534 		return -ENOMEM;
7535 
7536 	prog = env->prog;
7537 	btf = prog->aux->btf;
7538 
7539 	s = 0;
7540 	sub = env->subprog_info;
7541 	ulinfo = u64_to_user_ptr(attr->line_info);
7542 	expected_size = sizeof(struct bpf_line_info);
7543 	ncopy = min_t(u32, expected_size, rec_size);
7544 	for (i = 0; i < nr_linfo; i++) {
7545 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
7546 		if (err) {
7547 			if (err == -E2BIG) {
7548 				verbose(env, "nonzero tailing record in line_info");
7549 				if (put_user(expected_size,
7550 					     &uattr->line_info_rec_size))
7551 					err = -EFAULT;
7552 			}
7553 			goto err_free;
7554 		}
7555 
7556 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
7557 			err = -EFAULT;
7558 			goto err_free;
7559 		}
7560 
7561 		/*
7562 		 * Check insn_off to ensure
7563 		 * 1) strictly increasing AND
7564 		 * 2) bounded by prog->len
7565 		 *
7566 		 * The linfo[0].insn_off == 0 check logically falls into
7567 		 * the later "missing bpf_line_info for func..." case
7568 		 * because the first linfo[0].insn_off must be the
7569 		 * first sub also and the first sub must have
7570 		 * subprog_info[0].start == 0.
7571 		 */
7572 		if ((i && linfo[i].insn_off <= prev_offset) ||
7573 		    linfo[i].insn_off >= prog->len) {
7574 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
7575 				i, linfo[i].insn_off, prev_offset,
7576 				prog->len);
7577 			err = -EINVAL;
7578 			goto err_free;
7579 		}
7580 
7581 		if (!prog->insnsi[linfo[i].insn_off].code) {
7582 			verbose(env,
7583 				"Invalid insn code at line_info[%u].insn_off\n",
7584 				i);
7585 			err = -EINVAL;
7586 			goto err_free;
7587 		}
7588 
7589 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
7590 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
7591 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
7592 			err = -EINVAL;
7593 			goto err_free;
7594 		}
7595 
7596 		if (s != env->subprog_cnt) {
7597 			if (linfo[i].insn_off == sub[s].start) {
7598 				sub[s].linfo_idx = i;
7599 				s++;
7600 			} else if (sub[s].start < linfo[i].insn_off) {
7601 				verbose(env, "missing bpf_line_info for func#%u\n", s);
7602 				err = -EINVAL;
7603 				goto err_free;
7604 			}
7605 		}
7606 
7607 		prev_offset = linfo[i].insn_off;
7608 		ulinfo += rec_size;
7609 	}
7610 
7611 	if (s != env->subprog_cnt) {
7612 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
7613 			env->subprog_cnt - s, s);
7614 		err = -EINVAL;
7615 		goto err_free;
7616 	}
7617 
7618 	prog->aux->linfo = linfo;
7619 	prog->aux->nr_linfo = nr_linfo;
7620 
7621 	return 0;
7622 
7623 err_free:
7624 	kvfree(linfo);
7625 	return err;
7626 }
7627 
7628 static int check_btf_info(struct bpf_verifier_env *env,
7629 			  const union bpf_attr *attr,
7630 			  union bpf_attr __user *uattr)
7631 {
7632 	struct btf *btf;
7633 	int err;
7634 
7635 	if (!attr->func_info_cnt && !attr->line_info_cnt)
7636 		return 0;
7637 
7638 	btf = btf_get_by_fd(attr->prog_btf_fd);
7639 	if (IS_ERR(btf))
7640 		return PTR_ERR(btf);
7641 	env->prog->aux->btf = btf;
7642 
7643 	err = check_btf_func(env, attr, uattr);
7644 	if (err)
7645 		return err;
7646 
7647 	err = check_btf_line(env, attr, uattr);
7648 	if (err)
7649 		return err;
7650 
7651 	return 0;
7652 }
7653 
7654 /* check %cur's range satisfies %old's */
7655 static bool range_within(struct bpf_reg_state *old,
7656 			 struct bpf_reg_state *cur)
7657 {
7658 	return old->umin_value <= cur->umin_value &&
7659 	       old->umax_value >= cur->umax_value &&
7660 	       old->smin_value <= cur->smin_value &&
7661 	       old->smax_value >= cur->smax_value;
7662 }
7663 
7664 /* Maximum number of register states that can exist at once */
7665 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
7666 struct idpair {
7667 	u32 old;
7668 	u32 cur;
7669 };
7670 
7671 /* If in the old state two registers had the same id, then they need to have
7672  * the same id in the new state as well.  But that id could be different from
7673  * the old state, so we need to track the mapping from old to new ids.
7674  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
7675  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
7676  * regs with a different old id could still have new id 9, we don't care about
7677  * that.
7678  * So we look through our idmap to see if this old id has been seen before.  If
7679  * so, we require the new id to match; otherwise, we add the id pair to the map.
7680  */
7681 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
7682 {
7683 	unsigned int i;
7684 
7685 	for (i = 0; i < ID_MAP_SIZE; i++) {
7686 		if (!idmap[i].old) {
7687 			/* Reached an empty slot; haven't seen this id before */
7688 			idmap[i].old = old_id;
7689 			idmap[i].cur = cur_id;
7690 			return true;
7691 		}
7692 		if (idmap[i].old == old_id)
7693 			return idmap[i].cur == cur_id;
7694 	}
7695 	/* We ran out of idmap slots, which should be impossible */
7696 	WARN_ON_ONCE(1);
7697 	return false;
7698 }
7699 
7700 static void clean_func_state(struct bpf_verifier_env *env,
7701 			     struct bpf_func_state *st)
7702 {
7703 	enum bpf_reg_liveness live;
7704 	int i, j;
7705 
7706 	for (i = 0; i < BPF_REG_FP; i++) {
7707 		live = st->regs[i].live;
7708 		/* liveness must not touch this register anymore */
7709 		st->regs[i].live |= REG_LIVE_DONE;
7710 		if (!(live & REG_LIVE_READ))
7711 			/* since the register is unused, clear its state
7712 			 * to make further comparison simpler
7713 			 */
7714 			__mark_reg_not_init(env, &st->regs[i]);
7715 	}
7716 
7717 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
7718 		live = st->stack[i].spilled_ptr.live;
7719 		/* liveness must not touch this stack slot anymore */
7720 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
7721 		if (!(live & REG_LIVE_READ)) {
7722 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
7723 			for (j = 0; j < BPF_REG_SIZE; j++)
7724 				st->stack[i].slot_type[j] = STACK_INVALID;
7725 		}
7726 	}
7727 }
7728 
7729 static void clean_verifier_state(struct bpf_verifier_env *env,
7730 				 struct bpf_verifier_state *st)
7731 {
7732 	int i;
7733 
7734 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
7735 		/* all regs in this state in all frames were already marked */
7736 		return;
7737 
7738 	for (i = 0; i <= st->curframe; i++)
7739 		clean_func_state(env, st->frame[i]);
7740 }
7741 
7742 /* the parentage chains form a tree.
7743  * the verifier states are added to state lists at given insn and
7744  * pushed into state stack for future exploration.
7745  * when the verifier reaches bpf_exit insn some of the verifer states
7746  * stored in the state lists have their final liveness state already,
7747  * but a lot of states will get revised from liveness point of view when
7748  * the verifier explores other branches.
7749  * Example:
7750  * 1: r0 = 1
7751  * 2: if r1 == 100 goto pc+1
7752  * 3: r0 = 2
7753  * 4: exit
7754  * when the verifier reaches exit insn the register r0 in the state list of
7755  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
7756  * of insn 2 and goes exploring further. At the insn 4 it will walk the
7757  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
7758  *
7759  * Since the verifier pushes the branch states as it sees them while exploring
7760  * the program the condition of walking the branch instruction for the second
7761  * time means that all states below this branch were already explored and
7762  * their final liveness markes are already propagated.
7763  * Hence when the verifier completes the search of state list in is_state_visited()
7764  * we can call this clean_live_states() function to mark all liveness states
7765  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
7766  * will not be used.
7767  * This function also clears the registers and stack for states that !READ
7768  * to simplify state merging.
7769  *
7770  * Important note here that walking the same branch instruction in the callee
7771  * doesn't meant that the states are DONE. The verifier has to compare
7772  * the callsites
7773  */
7774 static void clean_live_states(struct bpf_verifier_env *env, int insn,
7775 			      struct bpf_verifier_state *cur)
7776 {
7777 	struct bpf_verifier_state_list *sl;
7778 	int i;
7779 
7780 	sl = *explored_state(env, insn);
7781 	while (sl) {
7782 		if (sl->state.branches)
7783 			goto next;
7784 		if (sl->state.insn_idx != insn ||
7785 		    sl->state.curframe != cur->curframe)
7786 			goto next;
7787 		for (i = 0; i <= cur->curframe; i++)
7788 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
7789 				goto next;
7790 		clean_verifier_state(env, &sl->state);
7791 next:
7792 		sl = sl->next;
7793 	}
7794 }
7795 
7796 /* Returns true if (rold safe implies rcur safe) */
7797 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7798 		    struct idpair *idmap)
7799 {
7800 	bool equal;
7801 
7802 	if (!(rold->live & REG_LIVE_READ))
7803 		/* explored state didn't use this */
7804 		return true;
7805 
7806 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
7807 
7808 	if (rold->type == PTR_TO_STACK)
7809 		/* two stack pointers are equal only if they're pointing to
7810 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
7811 		 */
7812 		return equal && rold->frameno == rcur->frameno;
7813 
7814 	if (equal)
7815 		return true;
7816 
7817 	if (rold->type == NOT_INIT)
7818 		/* explored state can't have used this */
7819 		return true;
7820 	if (rcur->type == NOT_INIT)
7821 		return false;
7822 	switch (rold->type) {
7823 	case SCALAR_VALUE:
7824 		if (rcur->type == SCALAR_VALUE) {
7825 			if (!rold->precise && !rcur->precise)
7826 				return true;
7827 			/* new val must satisfy old val knowledge */
7828 			return range_within(rold, rcur) &&
7829 			       tnum_in(rold->var_off, rcur->var_off);
7830 		} else {
7831 			/* We're trying to use a pointer in place of a scalar.
7832 			 * Even if the scalar was unbounded, this could lead to
7833 			 * pointer leaks because scalars are allowed to leak
7834 			 * while pointers are not. We could make this safe in
7835 			 * special cases if root is calling us, but it's
7836 			 * probably not worth the hassle.
7837 			 */
7838 			return false;
7839 		}
7840 	case PTR_TO_MAP_VALUE:
7841 		/* If the new min/max/var_off satisfy the old ones and
7842 		 * everything else matches, we are OK.
7843 		 * 'id' is not compared, since it's only used for maps with
7844 		 * bpf_spin_lock inside map element and in such cases if
7845 		 * the rest of the prog is valid for one map element then
7846 		 * it's valid for all map elements regardless of the key
7847 		 * used in bpf_map_lookup()
7848 		 */
7849 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
7850 		       range_within(rold, rcur) &&
7851 		       tnum_in(rold->var_off, rcur->var_off);
7852 	case PTR_TO_MAP_VALUE_OR_NULL:
7853 		/* a PTR_TO_MAP_VALUE could be safe to use as a
7854 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
7855 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
7856 		 * checked, doing so could have affected others with the same
7857 		 * id, and we can't check for that because we lost the id when
7858 		 * we converted to a PTR_TO_MAP_VALUE.
7859 		 */
7860 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
7861 			return false;
7862 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
7863 			return false;
7864 		/* Check our ids match any regs they're supposed to */
7865 		return check_ids(rold->id, rcur->id, idmap);
7866 	case PTR_TO_PACKET_META:
7867 	case PTR_TO_PACKET:
7868 		if (rcur->type != rold->type)
7869 			return false;
7870 		/* We must have at least as much range as the old ptr
7871 		 * did, so that any accesses which were safe before are
7872 		 * still safe.  This is true even if old range < old off,
7873 		 * since someone could have accessed through (ptr - k), or
7874 		 * even done ptr -= k in a register, to get a safe access.
7875 		 */
7876 		if (rold->range > rcur->range)
7877 			return false;
7878 		/* If the offsets don't match, we can't trust our alignment;
7879 		 * nor can we be sure that we won't fall out of range.
7880 		 */
7881 		if (rold->off != rcur->off)
7882 			return false;
7883 		/* id relations must be preserved */
7884 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
7885 			return false;
7886 		/* new val must satisfy old val knowledge */
7887 		return range_within(rold, rcur) &&
7888 		       tnum_in(rold->var_off, rcur->var_off);
7889 	case PTR_TO_CTX:
7890 	case CONST_PTR_TO_MAP:
7891 	case PTR_TO_PACKET_END:
7892 	case PTR_TO_FLOW_KEYS:
7893 	case PTR_TO_SOCKET:
7894 	case PTR_TO_SOCKET_OR_NULL:
7895 	case PTR_TO_SOCK_COMMON:
7896 	case PTR_TO_SOCK_COMMON_OR_NULL:
7897 	case PTR_TO_TCP_SOCK:
7898 	case PTR_TO_TCP_SOCK_OR_NULL:
7899 	case PTR_TO_XDP_SOCK:
7900 		/* Only valid matches are exact, which memcmp() above
7901 		 * would have accepted
7902 		 */
7903 	default:
7904 		/* Don't know what's going on, just say it's not safe */
7905 		return false;
7906 	}
7907 
7908 	/* Shouldn't get here; if we do, say it's not safe */
7909 	WARN_ON_ONCE(1);
7910 	return false;
7911 }
7912 
7913 static bool stacksafe(struct bpf_func_state *old,
7914 		      struct bpf_func_state *cur,
7915 		      struct idpair *idmap)
7916 {
7917 	int i, spi;
7918 
7919 	/* walk slots of the explored stack and ignore any additional
7920 	 * slots in the current stack, since explored(safe) state
7921 	 * didn't use them
7922 	 */
7923 	for (i = 0; i < old->allocated_stack; i++) {
7924 		spi = i / BPF_REG_SIZE;
7925 
7926 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
7927 			i += BPF_REG_SIZE - 1;
7928 			/* explored state didn't use this */
7929 			continue;
7930 		}
7931 
7932 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
7933 			continue;
7934 
7935 		/* explored stack has more populated slots than current stack
7936 		 * and these slots were used
7937 		 */
7938 		if (i >= cur->allocated_stack)
7939 			return false;
7940 
7941 		/* if old state was safe with misc data in the stack
7942 		 * it will be safe with zero-initialized stack.
7943 		 * The opposite is not true
7944 		 */
7945 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
7946 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
7947 			continue;
7948 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
7949 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
7950 			/* Ex: old explored (safe) state has STACK_SPILL in
7951 			 * this stack slot, but current has has STACK_MISC ->
7952 			 * this verifier states are not equivalent,
7953 			 * return false to continue verification of this path
7954 			 */
7955 			return false;
7956 		if (i % BPF_REG_SIZE)
7957 			continue;
7958 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
7959 			continue;
7960 		if (!regsafe(&old->stack[spi].spilled_ptr,
7961 			     &cur->stack[spi].spilled_ptr,
7962 			     idmap))
7963 			/* when explored and current stack slot are both storing
7964 			 * spilled registers, check that stored pointers types
7965 			 * are the same as well.
7966 			 * Ex: explored safe path could have stored
7967 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
7968 			 * but current path has stored:
7969 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
7970 			 * such verifier states are not equivalent.
7971 			 * return false to continue verification of this path
7972 			 */
7973 			return false;
7974 	}
7975 	return true;
7976 }
7977 
7978 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
7979 {
7980 	if (old->acquired_refs != cur->acquired_refs)
7981 		return false;
7982 	return !memcmp(old->refs, cur->refs,
7983 		       sizeof(*old->refs) * old->acquired_refs);
7984 }
7985 
7986 /* compare two verifier states
7987  *
7988  * all states stored in state_list are known to be valid, since
7989  * verifier reached 'bpf_exit' instruction through them
7990  *
7991  * this function is called when verifier exploring different branches of
7992  * execution popped from the state stack. If it sees an old state that has
7993  * more strict register state and more strict stack state then this execution
7994  * branch doesn't need to be explored further, since verifier already
7995  * concluded that more strict state leads to valid finish.
7996  *
7997  * Therefore two states are equivalent if register state is more conservative
7998  * and explored stack state is more conservative than the current one.
7999  * Example:
8000  *       explored                   current
8001  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8002  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8003  *
8004  * In other words if current stack state (one being explored) has more
8005  * valid slots than old one that already passed validation, it means
8006  * the verifier can stop exploring and conclude that current state is valid too
8007  *
8008  * Similarly with registers. If explored state has register type as invalid
8009  * whereas register type in current state is meaningful, it means that
8010  * the current state will reach 'bpf_exit' instruction safely
8011  */
8012 static bool func_states_equal(struct bpf_func_state *old,
8013 			      struct bpf_func_state *cur)
8014 {
8015 	struct idpair *idmap;
8016 	bool ret = false;
8017 	int i;
8018 
8019 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8020 	/* If we failed to allocate the idmap, just say it's not safe */
8021 	if (!idmap)
8022 		return false;
8023 
8024 	for (i = 0; i < MAX_BPF_REG; i++) {
8025 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
8026 			goto out_free;
8027 	}
8028 
8029 	if (!stacksafe(old, cur, idmap))
8030 		goto out_free;
8031 
8032 	if (!refsafe(old, cur))
8033 		goto out_free;
8034 	ret = true;
8035 out_free:
8036 	kfree(idmap);
8037 	return ret;
8038 }
8039 
8040 static bool states_equal(struct bpf_verifier_env *env,
8041 			 struct bpf_verifier_state *old,
8042 			 struct bpf_verifier_state *cur)
8043 {
8044 	int i;
8045 
8046 	if (old->curframe != cur->curframe)
8047 		return false;
8048 
8049 	/* Verification state from speculative execution simulation
8050 	 * must never prune a non-speculative execution one.
8051 	 */
8052 	if (old->speculative && !cur->speculative)
8053 		return false;
8054 
8055 	if (old->active_spin_lock != cur->active_spin_lock)
8056 		return false;
8057 
8058 	/* for states to be equal callsites have to be the same
8059 	 * and all frame states need to be equivalent
8060 	 */
8061 	for (i = 0; i <= old->curframe; i++) {
8062 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
8063 			return false;
8064 		if (!func_states_equal(old->frame[i], cur->frame[i]))
8065 			return false;
8066 	}
8067 	return true;
8068 }
8069 
8070 /* Return 0 if no propagation happened. Return negative error code if error
8071  * happened. Otherwise, return the propagated bit.
8072  */
8073 static int propagate_liveness_reg(struct bpf_verifier_env *env,
8074 				  struct bpf_reg_state *reg,
8075 				  struct bpf_reg_state *parent_reg)
8076 {
8077 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
8078 	u8 flag = reg->live & REG_LIVE_READ;
8079 	int err;
8080 
8081 	/* When comes here, read flags of PARENT_REG or REG could be any of
8082 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
8083 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
8084 	 */
8085 	if (parent_flag == REG_LIVE_READ64 ||
8086 	    /* Or if there is no read flag from REG. */
8087 	    !flag ||
8088 	    /* Or if the read flag from REG is the same as PARENT_REG. */
8089 	    parent_flag == flag)
8090 		return 0;
8091 
8092 	err = mark_reg_read(env, reg, parent_reg, flag);
8093 	if (err)
8094 		return err;
8095 
8096 	return flag;
8097 }
8098 
8099 /* A write screens off any subsequent reads; but write marks come from the
8100  * straight-line code between a state and its parent.  When we arrive at an
8101  * equivalent state (jump target or such) we didn't arrive by the straight-line
8102  * code, so read marks in the state must propagate to the parent regardless
8103  * of the state's write marks. That's what 'parent == state->parent' comparison
8104  * in mark_reg_read() is for.
8105  */
8106 static int propagate_liveness(struct bpf_verifier_env *env,
8107 			      const struct bpf_verifier_state *vstate,
8108 			      struct bpf_verifier_state *vparent)
8109 {
8110 	struct bpf_reg_state *state_reg, *parent_reg;
8111 	struct bpf_func_state *state, *parent;
8112 	int i, frame, err = 0;
8113 
8114 	if (vparent->curframe != vstate->curframe) {
8115 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
8116 		     vparent->curframe, vstate->curframe);
8117 		return -EFAULT;
8118 	}
8119 	/* Propagate read liveness of registers... */
8120 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
8121 	for (frame = 0; frame <= vstate->curframe; frame++) {
8122 		parent = vparent->frame[frame];
8123 		state = vstate->frame[frame];
8124 		parent_reg = parent->regs;
8125 		state_reg = state->regs;
8126 		/* We don't need to worry about FP liveness, it's read-only */
8127 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
8128 			err = propagate_liveness_reg(env, &state_reg[i],
8129 						     &parent_reg[i]);
8130 			if (err < 0)
8131 				return err;
8132 			if (err == REG_LIVE_READ64)
8133 				mark_insn_zext(env, &parent_reg[i]);
8134 		}
8135 
8136 		/* Propagate stack slots. */
8137 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
8138 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
8139 			parent_reg = &parent->stack[i].spilled_ptr;
8140 			state_reg = &state->stack[i].spilled_ptr;
8141 			err = propagate_liveness_reg(env, state_reg,
8142 						     parent_reg);
8143 			if (err < 0)
8144 				return err;
8145 		}
8146 	}
8147 	return 0;
8148 }
8149 
8150 /* find precise scalars in the previous equivalent state and
8151  * propagate them into the current state
8152  */
8153 static int propagate_precision(struct bpf_verifier_env *env,
8154 			       const struct bpf_verifier_state *old)
8155 {
8156 	struct bpf_reg_state *state_reg;
8157 	struct bpf_func_state *state;
8158 	int i, err = 0;
8159 
8160 	state = old->frame[old->curframe];
8161 	state_reg = state->regs;
8162 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
8163 		if (state_reg->type != SCALAR_VALUE ||
8164 		    !state_reg->precise)
8165 			continue;
8166 		if (env->log.level & BPF_LOG_LEVEL2)
8167 			verbose(env, "propagating r%d\n", i);
8168 		err = mark_chain_precision(env, i);
8169 		if (err < 0)
8170 			return err;
8171 	}
8172 
8173 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8174 		if (state->stack[i].slot_type[0] != STACK_SPILL)
8175 			continue;
8176 		state_reg = &state->stack[i].spilled_ptr;
8177 		if (state_reg->type != SCALAR_VALUE ||
8178 		    !state_reg->precise)
8179 			continue;
8180 		if (env->log.level & BPF_LOG_LEVEL2)
8181 			verbose(env, "propagating fp%d\n",
8182 				(-i - 1) * BPF_REG_SIZE);
8183 		err = mark_chain_precision_stack(env, i);
8184 		if (err < 0)
8185 			return err;
8186 	}
8187 	return 0;
8188 }
8189 
8190 static bool states_maybe_looping(struct bpf_verifier_state *old,
8191 				 struct bpf_verifier_state *cur)
8192 {
8193 	struct bpf_func_state *fold, *fcur;
8194 	int i, fr = cur->curframe;
8195 
8196 	if (old->curframe != fr)
8197 		return false;
8198 
8199 	fold = old->frame[fr];
8200 	fcur = cur->frame[fr];
8201 	for (i = 0; i < MAX_BPF_REG; i++)
8202 		if (memcmp(&fold->regs[i], &fcur->regs[i],
8203 			   offsetof(struct bpf_reg_state, parent)))
8204 			return false;
8205 	return true;
8206 }
8207 
8208 
8209 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
8210 {
8211 	struct bpf_verifier_state_list *new_sl;
8212 	struct bpf_verifier_state_list *sl, **pprev;
8213 	struct bpf_verifier_state *cur = env->cur_state, *new;
8214 	int i, j, err, states_cnt = 0;
8215 	bool add_new_state = env->test_state_freq ? true : false;
8216 
8217 	cur->last_insn_idx = env->prev_insn_idx;
8218 	if (!env->insn_aux_data[insn_idx].prune_point)
8219 		/* this 'insn_idx' instruction wasn't marked, so we will not
8220 		 * be doing state search here
8221 		 */
8222 		return 0;
8223 
8224 	/* bpf progs typically have pruning point every 4 instructions
8225 	 * http://vger.kernel.org/bpfconf2019.html#session-1
8226 	 * Do not add new state for future pruning if the verifier hasn't seen
8227 	 * at least 2 jumps and at least 8 instructions.
8228 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
8229 	 * In tests that amounts to up to 50% reduction into total verifier
8230 	 * memory consumption and 20% verifier time speedup.
8231 	 */
8232 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
8233 	    env->insn_processed - env->prev_insn_processed >= 8)
8234 		add_new_state = true;
8235 
8236 	pprev = explored_state(env, insn_idx);
8237 	sl = *pprev;
8238 
8239 	clean_live_states(env, insn_idx, cur);
8240 
8241 	while (sl) {
8242 		states_cnt++;
8243 		if (sl->state.insn_idx != insn_idx)
8244 			goto next;
8245 		if (sl->state.branches) {
8246 			if (states_maybe_looping(&sl->state, cur) &&
8247 			    states_equal(env, &sl->state, cur)) {
8248 				verbose_linfo(env, insn_idx, "; ");
8249 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
8250 				return -EINVAL;
8251 			}
8252 			/* if the verifier is processing a loop, avoid adding new state
8253 			 * too often, since different loop iterations have distinct
8254 			 * states and may not help future pruning.
8255 			 * This threshold shouldn't be too low to make sure that
8256 			 * a loop with large bound will be rejected quickly.
8257 			 * The most abusive loop will be:
8258 			 * r1 += 1
8259 			 * if r1 < 1000000 goto pc-2
8260 			 * 1M insn_procssed limit / 100 == 10k peak states.
8261 			 * This threshold shouldn't be too high either, since states
8262 			 * at the end of the loop are likely to be useful in pruning.
8263 			 */
8264 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
8265 			    env->insn_processed - env->prev_insn_processed < 100)
8266 				add_new_state = false;
8267 			goto miss;
8268 		}
8269 		if (states_equal(env, &sl->state, cur)) {
8270 			sl->hit_cnt++;
8271 			/* reached equivalent register/stack state,
8272 			 * prune the search.
8273 			 * Registers read by the continuation are read by us.
8274 			 * If we have any write marks in env->cur_state, they
8275 			 * will prevent corresponding reads in the continuation
8276 			 * from reaching our parent (an explored_state).  Our
8277 			 * own state will get the read marks recorded, but
8278 			 * they'll be immediately forgotten as we're pruning
8279 			 * this state and will pop a new one.
8280 			 */
8281 			err = propagate_liveness(env, &sl->state, cur);
8282 
8283 			/* if previous state reached the exit with precision and
8284 			 * current state is equivalent to it (except precsion marks)
8285 			 * the precision needs to be propagated back in
8286 			 * the current state.
8287 			 */
8288 			err = err ? : push_jmp_history(env, cur);
8289 			err = err ? : propagate_precision(env, &sl->state);
8290 			if (err)
8291 				return err;
8292 			return 1;
8293 		}
8294 miss:
8295 		/* when new state is not going to be added do not increase miss count.
8296 		 * Otherwise several loop iterations will remove the state
8297 		 * recorded earlier. The goal of these heuristics is to have
8298 		 * states from some iterations of the loop (some in the beginning
8299 		 * and some at the end) to help pruning.
8300 		 */
8301 		if (add_new_state)
8302 			sl->miss_cnt++;
8303 		/* heuristic to determine whether this state is beneficial
8304 		 * to keep checking from state equivalence point of view.
8305 		 * Higher numbers increase max_states_per_insn and verification time,
8306 		 * but do not meaningfully decrease insn_processed.
8307 		 */
8308 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
8309 			/* the state is unlikely to be useful. Remove it to
8310 			 * speed up verification
8311 			 */
8312 			*pprev = sl->next;
8313 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
8314 				u32 br = sl->state.branches;
8315 
8316 				WARN_ONCE(br,
8317 					  "BUG live_done but branches_to_explore %d\n",
8318 					  br);
8319 				free_verifier_state(&sl->state, false);
8320 				kfree(sl);
8321 				env->peak_states--;
8322 			} else {
8323 				/* cannot free this state, since parentage chain may
8324 				 * walk it later. Add it for free_list instead to
8325 				 * be freed at the end of verification
8326 				 */
8327 				sl->next = env->free_list;
8328 				env->free_list = sl;
8329 			}
8330 			sl = *pprev;
8331 			continue;
8332 		}
8333 next:
8334 		pprev = &sl->next;
8335 		sl = *pprev;
8336 	}
8337 
8338 	if (env->max_states_per_insn < states_cnt)
8339 		env->max_states_per_insn = states_cnt;
8340 
8341 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
8342 		return push_jmp_history(env, cur);
8343 
8344 	if (!add_new_state)
8345 		return push_jmp_history(env, cur);
8346 
8347 	/* There were no equivalent states, remember the current one.
8348 	 * Technically the current state is not proven to be safe yet,
8349 	 * but it will either reach outer most bpf_exit (which means it's safe)
8350 	 * or it will be rejected. When there are no loops the verifier won't be
8351 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
8352 	 * again on the way to bpf_exit.
8353 	 * When looping the sl->state.branches will be > 0 and this state
8354 	 * will not be considered for equivalence until branches == 0.
8355 	 */
8356 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
8357 	if (!new_sl)
8358 		return -ENOMEM;
8359 	env->total_states++;
8360 	env->peak_states++;
8361 	env->prev_jmps_processed = env->jmps_processed;
8362 	env->prev_insn_processed = env->insn_processed;
8363 
8364 	/* add new state to the head of linked list */
8365 	new = &new_sl->state;
8366 	err = copy_verifier_state(new, cur);
8367 	if (err) {
8368 		free_verifier_state(new, false);
8369 		kfree(new_sl);
8370 		return err;
8371 	}
8372 	new->insn_idx = insn_idx;
8373 	WARN_ONCE(new->branches != 1,
8374 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
8375 
8376 	cur->parent = new;
8377 	cur->first_insn_idx = insn_idx;
8378 	clear_jmp_history(cur);
8379 	new_sl->next = *explored_state(env, insn_idx);
8380 	*explored_state(env, insn_idx) = new_sl;
8381 	/* connect new state to parentage chain. Current frame needs all
8382 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
8383 	 * to the stack implicitly by JITs) so in callers' frames connect just
8384 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
8385 	 * the state of the call instruction (with WRITTEN set), and r0 comes
8386 	 * from callee with its full parentage chain, anyway.
8387 	 */
8388 	/* clear write marks in current state: the writes we did are not writes
8389 	 * our child did, so they don't screen off its reads from us.
8390 	 * (There are no read marks in current state, because reads always mark
8391 	 * their parent and current state never has children yet.  Only
8392 	 * explored_states can get read marks.)
8393 	 */
8394 	for (j = 0; j <= cur->curframe; j++) {
8395 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
8396 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
8397 		for (i = 0; i < BPF_REG_FP; i++)
8398 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
8399 	}
8400 
8401 	/* all stack frames are accessible from callee, clear them all */
8402 	for (j = 0; j <= cur->curframe; j++) {
8403 		struct bpf_func_state *frame = cur->frame[j];
8404 		struct bpf_func_state *newframe = new->frame[j];
8405 
8406 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
8407 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
8408 			frame->stack[i].spilled_ptr.parent =
8409 						&newframe->stack[i].spilled_ptr;
8410 		}
8411 	}
8412 	return 0;
8413 }
8414 
8415 /* Return true if it's OK to have the same insn return a different type. */
8416 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
8417 {
8418 	switch (type) {
8419 	case PTR_TO_CTX:
8420 	case PTR_TO_SOCKET:
8421 	case PTR_TO_SOCKET_OR_NULL:
8422 	case PTR_TO_SOCK_COMMON:
8423 	case PTR_TO_SOCK_COMMON_OR_NULL:
8424 	case PTR_TO_TCP_SOCK:
8425 	case PTR_TO_TCP_SOCK_OR_NULL:
8426 	case PTR_TO_XDP_SOCK:
8427 	case PTR_TO_BTF_ID:
8428 		return false;
8429 	default:
8430 		return true;
8431 	}
8432 }
8433 
8434 /* If an instruction was previously used with particular pointer types, then we
8435  * need to be careful to avoid cases such as the below, where it may be ok
8436  * for one branch accessing the pointer, but not ok for the other branch:
8437  *
8438  * R1 = sock_ptr
8439  * goto X;
8440  * ...
8441  * R1 = some_other_valid_ptr;
8442  * goto X;
8443  * ...
8444  * R2 = *(u32 *)(R1 + 0);
8445  */
8446 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
8447 {
8448 	return src != prev && (!reg_type_mismatch_ok(src) ||
8449 			       !reg_type_mismatch_ok(prev));
8450 }
8451 
8452 static int do_check(struct bpf_verifier_env *env)
8453 {
8454 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
8455 	struct bpf_verifier_state *state = env->cur_state;
8456 	struct bpf_insn *insns = env->prog->insnsi;
8457 	struct bpf_reg_state *regs;
8458 	int insn_cnt = env->prog->len;
8459 	bool do_print_state = false;
8460 	int prev_insn_idx = -1;
8461 
8462 	for (;;) {
8463 		struct bpf_insn *insn;
8464 		u8 class;
8465 		int err;
8466 
8467 		env->prev_insn_idx = prev_insn_idx;
8468 		if (env->insn_idx >= insn_cnt) {
8469 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
8470 				env->insn_idx, insn_cnt);
8471 			return -EFAULT;
8472 		}
8473 
8474 		insn = &insns[env->insn_idx];
8475 		class = BPF_CLASS(insn->code);
8476 
8477 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
8478 			verbose(env,
8479 				"BPF program is too large. Processed %d insn\n",
8480 				env->insn_processed);
8481 			return -E2BIG;
8482 		}
8483 
8484 		err = is_state_visited(env, env->insn_idx);
8485 		if (err < 0)
8486 			return err;
8487 		if (err == 1) {
8488 			/* found equivalent state, can prune the search */
8489 			if (env->log.level & BPF_LOG_LEVEL) {
8490 				if (do_print_state)
8491 					verbose(env, "\nfrom %d to %d%s: safe\n",
8492 						env->prev_insn_idx, env->insn_idx,
8493 						env->cur_state->speculative ?
8494 						" (speculative execution)" : "");
8495 				else
8496 					verbose(env, "%d: safe\n", env->insn_idx);
8497 			}
8498 			goto process_bpf_exit;
8499 		}
8500 
8501 		if (signal_pending(current))
8502 			return -EAGAIN;
8503 
8504 		if (need_resched())
8505 			cond_resched();
8506 
8507 		if (env->log.level & BPF_LOG_LEVEL2 ||
8508 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
8509 			if (env->log.level & BPF_LOG_LEVEL2)
8510 				verbose(env, "%d:", env->insn_idx);
8511 			else
8512 				verbose(env, "\nfrom %d to %d%s:",
8513 					env->prev_insn_idx, env->insn_idx,
8514 					env->cur_state->speculative ?
8515 					" (speculative execution)" : "");
8516 			print_verifier_state(env, state->frame[state->curframe]);
8517 			do_print_state = false;
8518 		}
8519 
8520 		if (env->log.level & BPF_LOG_LEVEL) {
8521 			const struct bpf_insn_cbs cbs = {
8522 				.cb_print	= verbose,
8523 				.private_data	= env,
8524 			};
8525 
8526 			verbose_linfo(env, env->insn_idx, "; ");
8527 			verbose(env, "%d: ", env->insn_idx);
8528 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
8529 		}
8530 
8531 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
8532 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
8533 							   env->prev_insn_idx);
8534 			if (err)
8535 				return err;
8536 		}
8537 
8538 		regs = cur_regs(env);
8539 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8540 		prev_insn_idx = env->insn_idx;
8541 
8542 		if (class == BPF_ALU || class == BPF_ALU64) {
8543 			err = check_alu_op(env, insn);
8544 			if (err)
8545 				return err;
8546 
8547 		} else if (class == BPF_LDX) {
8548 			enum bpf_reg_type *prev_src_type, src_reg_type;
8549 
8550 			/* check for reserved fields is already done */
8551 
8552 			/* check src operand */
8553 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8554 			if (err)
8555 				return err;
8556 
8557 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8558 			if (err)
8559 				return err;
8560 
8561 			src_reg_type = regs[insn->src_reg].type;
8562 
8563 			/* check that memory (src_reg + off) is readable,
8564 			 * the state of dst_reg will be updated by this func
8565 			 */
8566 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
8567 					       insn->off, BPF_SIZE(insn->code),
8568 					       BPF_READ, insn->dst_reg, false);
8569 			if (err)
8570 				return err;
8571 
8572 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
8573 
8574 			if (*prev_src_type == NOT_INIT) {
8575 				/* saw a valid insn
8576 				 * dst_reg = *(u32 *)(src_reg + off)
8577 				 * save type to validate intersecting paths
8578 				 */
8579 				*prev_src_type = src_reg_type;
8580 
8581 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
8582 				/* ABuser program is trying to use the same insn
8583 				 * dst_reg = *(u32*) (src_reg + off)
8584 				 * with different pointer types:
8585 				 * src_reg == ctx in one branch and
8586 				 * src_reg == stack|map in some other branch.
8587 				 * Reject it.
8588 				 */
8589 				verbose(env, "same insn cannot be used with different pointers\n");
8590 				return -EINVAL;
8591 			}
8592 
8593 		} else if (class == BPF_STX) {
8594 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
8595 
8596 			if (BPF_MODE(insn->code) == BPF_XADD) {
8597 				err = check_xadd(env, env->insn_idx, insn);
8598 				if (err)
8599 					return err;
8600 				env->insn_idx++;
8601 				continue;
8602 			}
8603 
8604 			/* check src1 operand */
8605 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8606 			if (err)
8607 				return err;
8608 			/* check src2 operand */
8609 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8610 			if (err)
8611 				return err;
8612 
8613 			dst_reg_type = regs[insn->dst_reg].type;
8614 
8615 			/* check that memory (dst_reg + off) is writeable */
8616 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8617 					       insn->off, BPF_SIZE(insn->code),
8618 					       BPF_WRITE, insn->src_reg, false);
8619 			if (err)
8620 				return err;
8621 
8622 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
8623 
8624 			if (*prev_dst_type == NOT_INIT) {
8625 				*prev_dst_type = dst_reg_type;
8626 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
8627 				verbose(env, "same insn cannot be used with different pointers\n");
8628 				return -EINVAL;
8629 			}
8630 
8631 		} else if (class == BPF_ST) {
8632 			if (BPF_MODE(insn->code) != BPF_MEM ||
8633 			    insn->src_reg != BPF_REG_0) {
8634 				verbose(env, "BPF_ST uses reserved fields\n");
8635 				return -EINVAL;
8636 			}
8637 			/* check src operand */
8638 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8639 			if (err)
8640 				return err;
8641 
8642 			if (is_ctx_reg(env, insn->dst_reg)) {
8643 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
8644 					insn->dst_reg,
8645 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
8646 				return -EACCES;
8647 			}
8648 
8649 			/* check that memory (dst_reg + off) is writeable */
8650 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8651 					       insn->off, BPF_SIZE(insn->code),
8652 					       BPF_WRITE, -1, false);
8653 			if (err)
8654 				return err;
8655 
8656 		} else if (class == BPF_JMP || class == BPF_JMP32) {
8657 			u8 opcode = BPF_OP(insn->code);
8658 
8659 			env->jmps_processed++;
8660 			if (opcode == BPF_CALL) {
8661 				if (BPF_SRC(insn->code) != BPF_K ||
8662 				    insn->off != 0 ||
8663 				    (insn->src_reg != BPF_REG_0 &&
8664 				     insn->src_reg != BPF_PSEUDO_CALL) ||
8665 				    insn->dst_reg != BPF_REG_0 ||
8666 				    class == BPF_JMP32) {
8667 					verbose(env, "BPF_CALL uses reserved fields\n");
8668 					return -EINVAL;
8669 				}
8670 
8671 				if (env->cur_state->active_spin_lock &&
8672 				    (insn->src_reg == BPF_PSEUDO_CALL ||
8673 				     insn->imm != BPF_FUNC_spin_unlock)) {
8674 					verbose(env, "function calls are not allowed while holding a lock\n");
8675 					return -EINVAL;
8676 				}
8677 				if (insn->src_reg == BPF_PSEUDO_CALL)
8678 					err = check_func_call(env, insn, &env->insn_idx);
8679 				else
8680 					err = check_helper_call(env, insn->imm, env->insn_idx);
8681 				if (err)
8682 					return err;
8683 
8684 			} else if (opcode == BPF_JA) {
8685 				if (BPF_SRC(insn->code) != BPF_K ||
8686 				    insn->imm != 0 ||
8687 				    insn->src_reg != BPF_REG_0 ||
8688 				    insn->dst_reg != BPF_REG_0 ||
8689 				    class == BPF_JMP32) {
8690 					verbose(env, "BPF_JA uses reserved fields\n");
8691 					return -EINVAL;
8692 				}
8693 
8694 				env->insn_idx += insn->off + 1;
8695 				continue;
8696 
8697 			} else if (opcode == BPF_EXIT) {
8698 				if (BPF_SRC(insn->code) != BPF_K ||
8699 				    insn->imm != 0 ||
8700 				    insn->src_reg != BPF_REG_0 ||
8701 				    insn->dst_reg != BPF_REG_0 ||
8702 				    class == BPF_JMP32) {
8703 					verbose(env, "BPF_EXIT uses reserved fields\n");
8704 					return -EINVAL;
8705 				}
8706 
8707 				if (env->cur_state->active_spin_lock) {
8708 					verbose(env, "bpf_spin_unlock is missing\n");
8709 					return -EINVAL;
8710 				}
8711 
8712 				if (state->curframe) {
8713 					/* exit from nested function */
8714 					err = prepare_func_exit(env, &env->insn_idx);
8715 					if (err)
8716 						return err;
8717 					do_print_state = true;
8718 					continue;
8719 				}
8720 
8721 				err = check_reference_leak(env);
8722 				if (err)
8723 					return err;
8724 
8725 				err = check_return_code(env);
8726 				if (err)
8727 					return err;
8728 process_bpf_exit:
8729 				update_branch_counts(env, env->cur_state);
8730 				err = pop_stack(env, &prev_insn_idx,
8731 						&env->insn_idx, pop_log);
8732 				if (err < 0) {
8733 					if (err != -ENOENT)
8734 						return err;
8735 					break;
8736 				} else {
8737 					do_print_state = true;
8738 					continue;
8739 				}
8740 			} else {
8741 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
8742 				if (err)
8743 					return err;
8744 			}
8745 		} else if (class == BPF_LD) {
8746 			u8 mode = BPF_MODE(insn->code);
8747 
8748 			if (mode == BPF_ABS || mode == BPF_IND) {
8749 				err = check_ld_abs(env, insn);
8750 				if (err)
8751 					return err;
8752 
8753 			} else if (mode == BPF_IMM) {
8754 				err = check_ld_imm(env, insn);
8755 				if (err)
8756 					return err;
8757 
8758 				env->insn_idx++;
8759 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8760 			} else {
8761 				verbose(env, "invalid BPF_LD mode\n");
8762 				return -EINVAL;
8763 			}
8764 		} else {
8765 			verbose(env, "unknown insn class %d\n", class);
8766 			return -EINVAL;
8767 		}
8768 
8769 		env->insn_idx++;
8770 	}
8771 
8772 	return 0;
8773 }
8774 
8775 static int check_map_prealloc(struct bpf_map *map)
8776 {
8777 	return (map->map_type != BPF_MAP_TYPE_HASH &&
8778 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8779 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
8780 		!(map->map_flags & BPF_F_NO_PREALLOC);
8781 }
8782 
8783 static bool is_tracing_prog_type(enum bpf_prog_type type)
8784 {
8785 	switch (type) {
8786 	case BPF_PROG_TYPE_KPROBE:
8787 	case BPF_PROG_TYPE_TRACEPOINT:
8788 	case BPF_PROG_TYPE_PERF_EVENT:
8789 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8790 		return true;
8791 	default:
8792 		return false;
8793 	}
8794 }
8795 
8796 static bool is_preallocated_map(struct bpf_map *map)
8797 {
8798 	if (!check_map_prealloc(map))
8799 		return false;
8800 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
8801 		return false;
8802 	return true;
8803 }
8804 
8805 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
8806 					struct bpf_map *map,
8807 					struct bpf_prog *prog)
8808 
8809 {
8810 	/*
8811 	 * Validate that trace type programs use preallocated hash maps.
8812 	 *
8813 	 * For programs attached to PERF events this is mandatory as the
8814 	 * perf NMI can hit any arbitrary code sequence.
8815 	 *
8816 	 * All other trace types using preallocated hash maps are unsafe as
8817 	 * well because tracepoint or kprobes can be inside locked regions
8818 	 * of the memory allocator or at a place where a recursion into the
8819 	 * memory allocator would see inconsistent state.
8820 	 *
8821 	 * On RT enabled kernels run-time allocation of all trace type
8822 	 * programs is strictly prohibited due to lock type constraints. On
8823 	 * !RT kernels it is allowed for backwards compatibility reasons for
8824 	 * now, but warnings are emitted so developers are made aware of
8825 	 * the unsafety and can fix their programs before this is enforced.
8826 	 */
8827 	if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) {
8828 		if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
8829 			verbose(env, "perf_event programs can only use preallocated hash map\n");
8830 			return -EINVAL;
8831 		}
8832 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
8833 			verbose(env, "trace type programs can only use preallocated hash map\n");
8834 			return -EINVAL;
8835 		}
8836 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
8837 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
8838 	}
8839 
8840 	if ((is_tracing_prog_type(prog->type) ||
8841 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
8842 	    map_value_has_spin_lock(map)) {
8843 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
8844 		return -EINVAL;
8845 	}
8846 
8847 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
8848 	    !bpf_offload_prog_map_match(prog, map)) {
8849 		verbose(env, "offload device mismatch between prog and map\n");
8850 		return -EINVAL;
8851 	}
8852 
8853 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
8854 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
8855 		return -EINVAL;
8856 	}
8857 
8858 	return 0;
8859 }
8860 
8861 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
8862 {
8863 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
8864 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
8865 }
8866 
8867 /* look for pseudo eBPF instructions that access map FDs and
8868  * replace them with actual map pointers
8869  */
8870 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
8871 {
8872 	struct bpf_insn *insn = env->prog->insnsi;
8873 	int insn_cnt = env->prog->len;
8874 	int i, j, err;
8875 
8876 	err = bpf_prog_calc_tag(env->prog);
8877 	if (err)
8878 		return err;
8879 
8880 	for (i = 0; i < insn_cnt; i++, insn++) {
8881 		if (BPF_CLASS(insn->code) == BPF_LDX &&
8882 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
8883 			verbose(env, "BPF_LDX uses reserved fields\n");
8884 			return -EINVAL;
8885 		}
8886 
8887 		if (BPF_CLASS(insn->code) == BPF_STX &&
8888 		    ((BPF_MODE(insn->code) != BPF_MEM &&
8889 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
8890 			verbose(env, "BPF_STX uses reserved fields\n");
8891 			return -EINVAL;
8892 		}
8893 
8894 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
8895 			struct bpf_insn_aux_data *aux;
8896 			struct bpf_map *map;
8897 			struct fd f;
8898 			u64 addr;
8899 
8900 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
8901 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
8902 			    insn[1].off != 0) {
8903 				verbose(env, "invalid bpf_ld_imm64 insn\n");
8904 				return -EINVAL;
8905 			}
8906 
8907 			if (insn[0].src_reg == 0)
8908 				/* valid generic load 64-bit imm */
8909 				goto next_insn;
8910 
8911 			/* In final convert_pseudo_ld_imm64() step, this is
8912 			 * converted into regular 64-bit imm load insn.
8913 			 */
8914 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
8915 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
8916 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
8917 			     insn[1].imm != 0)) {
8918 				verbose(env,
8919 					"unrecognized bpf_ld_imm64 insn\n");
8920 				return -EINVAL;
8921 			}
8922 
8923 			f = fdget(insn[0].imm);
8924 			map = __bpf_map_get(f);
8925 			if (IS_ERR(map)) {
8926 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
8927 					insn[0].imm);
8928 				return PTR_ERR(map);
8929 			}
8930 
8931 			err = check_map_prog_compatibility(env, map, env->prog);
8932 			if (err) {
8933 				fdput(f);
8934 				return err;
8935 			}
8936 
8937 			aux = &env->insn_aux_data[i];
8938 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8939 				addr = (unsigned long)map;
8940 			} else {
8941 				u32 off = insn[1].imm;
8942 
8943 				if (off >= BPF_MAX_VAR_OFF) {
8944 					verbose(env, "direct value offset of %u is not allowed\n", off);
8945 					fdput(f);
8946 					return -EINVAL;
8947 				}
8948 
8949 				if (!map->ops->map_direct_value_addr) {
8950 					verbose(env, "no direct value access support for this map type\n");
8951 					fdput(f);
8952 					return -EINVAL;
8953 				}
8954 
8955 				err = map->ops->map_direct_value_addr(map, &addr, off);
8956 				if (err) {
8957 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
8958 						map->value_size, off);
8959 					fdput(f);
8960 					return err;
8961 				}
8962 
8963 				aux->map_off = off;
8964 				addr += off;
8965 			}
8966 
8967 			insn[0].imm = (u32)addr;
8968 			insn[1].imm = addr >> 32;
8969 
8970 			/* check whether we recorded this map already */
8971 			for (j = 0; j < env->used_map_cnt; j++) {
8972 				if (env->used_maps[j] == map) {
8973 					aux->map_index = j;
8974 					fdput(f);
8975 					goto next_insn;
8976 				}
8977 			}
8978 
8979 			if (env->used_map_cnt >= MAX_USED_MAPS) {
8980 				fdput(f);
8981 				return -E2BIG;
8982 			}
8983 
8984 			/* hold the map. If the program is rejected by verifier,
8985 			 * the map will be released by release_maps() or it
8986 			 * will be used by the valid program until it's unloaded
8987 			 * and all maps are released in free_used_maps()
8988 			 */
8989 			bpf_map_inc(map);
8990 
8991 			aux->map_index = env->used_map_cnt;
8992 			env->used_maps[env->used_map_cnt++] = map;
8993 
8994 			if (bpf_map_is_cgroup_storage(map) &&
8995 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
8996 				verbose(env, "only one cgroup storage of each type is allowed\n");
8997 				fdput(f);
8998 				return -EBUSY;
8999 			}
9000 
9001 			fdput(f);
9002 next_insn:
9003 			insn++;
9004 			i++;
9005 			continue;
9006 		}
9007 
9008 		/* Basic sanity check before we invest more work here. */
9009 		if (!bpf_opcode_in_insntable(insn->code)) {
9010 			verbose(env, "unknown opcode %02x\n", insn->code);
9011 			return -EINVAL;
9012 		}
9013 	}
9014 
9015 	/* now all pseudo BPF_LD_IMM64 instructions load valid
9016 	 * 'struct bpf_map *' into a register instead of user map_fd.
9017 	 * These pointers will be used later by verifier to validate map access.
9018 	 */
9019 	return 0;
9020 }
9021 
9022 /* drop refcnt of maps used by the rejected program */
9023 static void release_maps(struct bpf_verifier_env *env)
9024 {
9025 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
9026 			     env->used_map_cnt);
9027 }
9028 
9029 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
9030 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
9031 {
9032 	struct bpf_insn *insn = env->prog->insnsi;
9033 	int insn_cnt = env->prog->len;
9034 	int i;
9035 
9036 	for (i = 0; i < insn_cnt; i++, insn++)
9037 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
9038 			insn->src_reg = 0;
9039 }
9040 
9041 /* single env->prog->insni[off] instruction was replaced with the range
9042  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
9043  * [0, off) and [off, end) to new locations, so the patched range stays zero
9044  */
9045 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
9046 				struct bpf_prog *new_prog, u32 off, u32 cnt)
9047 {
9048 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
9049 	struct bpf_insn *insn = new_prog->insnsi;
9050 	u32 prog_len;
9051 	int i;
9052 
9053 	/* aux info at OFF always needs adjustment, no matter fast path
9054 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
9055 	 * original insn at old prog.
9056 	 */
9057 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
9058 
9059 	if (cnt == 1)
9060 		return 0;
9061 	prog_len = new_prog->len;
9062 	new_data = vzalloc(array_size(prog_len,
9063 				      sizeof(struct bpf_insn_aux_data)));
9064 	if (!new_data)
9065 		return -ENOMEM;
9066 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
9067 	memcpy(new_data + off + cnt - 1, old_data + off,
9068 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
9069 	for (i = off; i < off + cnt - 1; i++) {
9070 		new_data[i].seen = env->pass_cnt;
9071 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
9072 	}
9073 	env->insn_aux_data = new_data;
9074 	vfree(old_data);
9075 	return 0;
9076 }
9077 
9078 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
9079 {
9080 	int i;
9081 
9082 	if (len == 1)
9083 		return;
9084 	/* NOTE: fake 'exit' subprog should be updated as well. */
9085 	for (i = 0; i <= env->subprog_cnt; i++) {
9086 		if (env->subprog_info[i].start <= off)
9087 			continue;
9088 		env->subprog_info[i].start += len - 1;
9089 	}
9090 }
9091 
9092 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
9093 					    const struct bpf_insn *patch, u32 len)
9094 {
9095 	struct bpf_prog *new_prog;
9096 
9097 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
9098 	if (IS_ERR(new_prog)) {
9099 		if (PTR_ERR(new_prog) == -ERANGE)
9100 			verbose(env,
9101 				"insn %d cannot be patched due to 16-bit range\n",
9102 				env->insn_aux_data[off].orig_idx);
9103 		return NULL;
9104 	}
9105 	if (adjust_insn_aux_data(env, new_prog, off, len))
9106 		return NULL;
9107 	adjust_subprog_starts(env, off, len);
9108 	return new_prog;
9109 }
9110 
9111 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
9112 					      u32 off, u32 cnt)
9113 {
9114 	int i, j;
9115 
9116 	/* find first prog starting at or after off (first to remove) */
9117 	for (i = 0; i < env->subprog_cnt; i++)
9118 		if (env->subprog_info[i].start >= off)
9119 			break;
9120 	/* find first prog starting at or after off + cnt (first to stay) */
9121 	for (j = i; j < env->subprog_cnt; j++)
9122 		if (env->subprog_info[j].start >= off + cnt)
9123 			break;
9124 	/* if j doesn't start exactly at off + cnt, we are just removing
9125 	 * the front of previous prog
9126 	 */
9127 	if (env->subprog_info[j].start != off + cnt)
9128 		j--;
9129 
9130 	if (j > i) {
9131 		struct bpf_prog_aux *aux = env->prog->aux;
9132 		int move;
9133 
9134 		/* move fake 'exit' subprog as well */
9135 		move = env->subprog_cnt + 1 - j;
9136 
9137 		memmove(env->subprog_info + i,
9138 			env->subprog_info + j,
9139 			sizeof(*env->subprog_info) * move);
9140 		env->subprog_cnt -= j - i;
9141 
9142 		/* remove func_info */
9143 		if (aux->func_info) {
9144 			move = aux->func_info_cnt - j;
9145 
9146 			memmove(aux->func_info + i,
9147 				aux->func_info + j,
9148 				sizeof(*aux->func_info) * move);
9149 			aux->func_info_cnt -= j - i;
9150 			/* func_info->insn_off is set after all code rewrites,
9151 			 * in adjust_btf_func() - no need to adjust
9152 			 */
9153 		}
9154 	} else {
9155 		/* convert i from "first prog to remove" to "first to adjust" */
9156 		if (env->subprog_info[i].start == off)
9157 			i++;
9158 	}
9159 
9160 	/* update fake 'exit' subprog as well */
9161 	for (; i <= env->subprog_cnt; i++)
9162 		env->subprog_info[i].start -= cnt;
9163 
9164 	return 0;
9165 }
9166 
9167 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
9168 				      u32 cnt)
9169 {
9170 	struct bpf_prog *prog = env->prog;
9171 	u32 i, l_off, l_cnt, nr_linfo;
9172 	struct bpf_line_info *linfo;
9173 
9174 	nr_linfo = prog->aux->nr_linfo;
9175 	if (!nr_linfo)
9176 		return 0;
9177 
9178 	linfo = prog->aux->linfo;
9179 
9180 	/* find first line info to remove, count lines to be removed */
9181 	for (i = 0; i < nr_linfo; i++)
9182 		if (linfo[i].insn_off >= off)
9183 			break;
9184 
9185 	l_off = i;
9186 	l_cnt = 0;
9187 	for (; i < nr_linfo; i++)
9188 		if (linfo[i].insn_off < off + cnt)
9189 			l_cnt++;
9190 		else
9191 			break;
9192 
9193 	/* First live insn doesn't match first live linfo, it needs to "inherit"
9194 	 * last removed linfo.  prog is already modified, so prog->len == off
9195 	 * means no live instructions after (tail of the program was removed).
9196 	 */
9197 	if (prog->len != off && l_cnt &&
9198 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
9199 		l_cnt--;
9200 		linfo[--i].insn_off = off + cnt;
9201 	}
9202 
9203 	/* remove the line info which refer to the removed instructions */
9204 	if (l_cnt) {
9205 		memmove(linfo + l_off, linfo + i,
9206 			sizeof(*linfo) * (nr_linfo - i));
9207 
9208 		prog->aux->nr_linfo -= l_cnt;
9209 		nr_linfo = prog->aux->nr_linfo;
9210 	}
9211 
9212 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
9213 	for (i = l_off; i < nr_linfo; i++)
9214 		linfo[i].insn_off -= cnt;
9215 
9216 	/* fix up all subprogs (incl. 'exit') which start >= off */
9217 	for (i = 0; i <= env->subprog_cnt; i++)
9218 		if (env->subprog_info[i].linfo_idx > l_off) {
9219 			/* program may have started in the removed region but
9220 			 * may not be fully removed
9221 			 */
9222 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
9223 				env->subprog_info[i].linfo_idx -= l_cnt;
9224 			else
9225 				env->subprog_info[i].linfo_idx = l_off;
9226 		}
9227 
9228 	return 0;
9229 }
9230 
9231 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
9232 {
9233 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9234 	unsigned int orig_prog_len = env->prog->len;
9235 	int err;
9236 
9237 	if (bpf_prog_is_dev_bound(env->prog->aux))
9238 		bpf_prog_offload_remove_insns(env, off, cnt);
9239 
9240 	err = bpf_remove_insns(env->prog, off, cnt);
9241 	if (err)
9242 		return err;
9243 
9244 	err = adjust_subprog_starts_after_remove(env, off, cnt);
9245 	if (err)
9246 		return err;
9247 
9248 	err = bpf_adj_linfo_after_remove(env, off, cnt);
9249 	if (err)
9250 		return err;
9251 
9252 	memmove(aux_data + off,	aux_data + off + cnt,
9253 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
9254 
9255 	return 0;
9256 }
9257 
9258 /* The verifier does more data flow analysis than llvm and will not
9259  * explore branches that are dead at run time. Malicious programs can
9260  * have dead code too. Therefore replace all dead at-run-time code
9261  * with 'ja -1'.
9262  *
9263  * Just nops are not optimal, e.g. if they would sit at the end of the
9264  * program and through another bug we would manage to jump there, then
9265  * we'd execute beyond program memory otherwise. Returning exception
9266  * code also wouldn't work since we can have subprogs where the dead
9267  * code could be located.
9268  */
9269 static void sanitize_dead_code(struct bpf_verifier_env *env)
9270 {
9271 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9272 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
9273 	struct bpf_insn *insn = env->prog->insnsi;
9274 	const int insn_cnt = env->prog->len;
9275 	int i;
9276 
9277 	for (i = 0; i < insn_cnt; i++) {
9278 		if (aux_data[i].seen)
9279 			continue;
9280 		memcpy(insn + i, &trap, sizeof(trap));
9281 	}
9282 }
9283 
9284 static bool insn_is_cond_jump(u8 code)
9285 {
9286 	u8 op;
9287 
9288 	if (BPF_CLASS(code) == BPF_JMP32)
9289 		return true;
9290 
9291 	if (BPF_CLASS(code) != BPF_JMP)
9292 		return false;
9293 
9294 	op = BPF_OP(code);
9295 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
9296 }
9297 
9298 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
9299 {
9300 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9301 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9302 	struct bpf_insn *insn = env->prog->insnsi;
9303 	const int insn_cnt = env->prog->len;
9304 	int i;
9305 
9306 	for (i = 0; i < insn_cnt; i++, insn++) {
9307 		if (!insn_is_cond_jump(insn->code))
9308 			continue;
9309 
9310 		if (!aux_data[i + 1].seen)
9311 			ja.off = insn->off;
9312 		else if (!aux_data[i + 1 + insn->off].seen)
9313 			ja.off = 0;
9314 		else
9315 			continue;
9316 
9317 		if (bpf_prog_is_dev_bound(env->prog->aux))
9318 			bpf_prog_offload_replace_insn(env, i, &ja);
9319 
9320 		memcpy(insn, &ja, sizeof(ja));
9321 	}
9322 }
9323 
9324 static int opt_remove_dead_code(struct bpf_verifier_env *env)
9325 {
9326 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9327 	int insn_cnt = env->prog->len;
9328 	int i, err;
9329 
9330 	for (i = 0; i < insn_cnt; i++) {
9331 		int j;
9332 
9333 		j = 0;
9334 		while (i + j < insn_cnt && !aux_data[i + j].seen)
9335 			j++;
9336 		if (!j)
9337 			continue;
9338 
9339 		err = verifier_remove_insns(env, i, j);
9340 		if (err)
9341 			return err;
9342 		insn_cnt = env->prog->len;
9343 	}
9344 
9345 	return 0;
9346 }
9347 
9348 static int opt_remove_nops(struct bpf_verifier_env *env)
9349 {
9350 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9351 	struct bpf_insn *insn = env->prog->insnsi;
9352 	int insn_cnt = env->prog->len;
9353 	int i, err;
9354 
9355 	for (i = 0; i < insn_cnt; i++) {
9356 		if (memcmp(&insn[i], &ja, sizeof(ja)))
9357 			continue;
9358 
9359 		err = verifier_remove_insns(env, i, 1);
9360 		if (err)
9361 			return err;
9362 		insn_cnt--;
9363 		i--;
9364 	}
9365 
9366 	return 0;
9367 }
9368 
9369 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
9370 					 const union bpf_attr *attr)
9371 {
9372 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
9373 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
9374 	int i, patch_len, delta = 0, len = env->prog->len;
9375 	struct bpf_insn *insns = env->prog->insnsi;
9376 	struct bpf_prog *new_prog;
9377 	bool rnd_hi32;
9378 
9379 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
9380 	zext_patch[1] = BPF_ZEXT_REG(0);
9381 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
9382 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
9383 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
9384 	for (i = 0; i < len; i++) {
9385 		int adj_idx = i + delta;
9386 		struct bpf_insn insn;
9387 
9388 		insn = insns[adj_idx];
9389 		if (!aux[adj_idx].zext_dst) {
9390 			u8 code, class;
9391 			u32 imm_rnd;
9392 
9393 			if (!rnd_hi32)
9394 				continue;
9395 
9396 			code = insn.code;
9397 			class = BPF_CLASS(code);
9398 			if (insn_no_def(&insn))
9399 				continue;
9400 
9401 			/* NOTE: arg "reg" (the fourth one) is only used for
9402 			 *       BPF_STX which has been ruled out in above
9403 			 *       check, it is safe to pass NULL here.
9404 			 */
9405 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
9406 				if (class == BPF_LD &&
9407 				    BPF_MODE(code) == BPF_IMM)
9408 					i++;
9409 				continue;
9410 			}
9411 
9412 			/* ctx load could be transformed into wider load. */
9413 			if (class == BPF_LDX &&
9414 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
9415 				continue;
9416 
9417 			imm_rnd = get_random_int();
9418 			rnd_hi32_patch[0] = insn;
9419 			rnd_hi32_patch[1].imm = imm_rnd;
9420 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
9421 			patch = rnd_hi32_patch;
9422 			patch_len = 4;
9423 			goto apply_patch_buffer;
9424 		}
9425 
9426 		if (!bpf_jit_needs_zext())
9427 			continue;
9428 
9429 		zext_patch[0] = insn;
9430 		zext_patch[1].dst_reg = insn.dst_reg;
9431 		zext_patch[1].src_reg = insn.dst_reg;
9432 		patch = zext_patch;
9433 		patch_len = 2;
9434 apply_patch_buffer:
9435 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
9436 		if (!new_prog)
9437 			return -ENOMEM;
9438 		env->prog = new_prog;
9439 		insns = new_prog->insnsi;
9440 		aux = env->insn_aux_data;
9441 		delta += patch_len - 1;
9442 	}
9443 
9444 	return 0;
9445 }
9446 
9447 /* convert load instructions that access fields of a context type into a
9448  * sequence of instructions that access fields of the underlying structure:
9449  *     struct __sk_buff    -> struct sk_buff
9450  *     struct bpf_sock_ops -> struct sock
9451  */
9452 static int convert_ctx_accesses(struct bpf_verifier_env *env)
9453 {
9454 	const struct bpf_verifier_ops *ops = env->ops;
9455 	int i, cnt, size, ctx_field_size, delta = 0;
9456 	const int insn_cnt = env->prog->len;
9457 	struct bpf_insn insn_buf[16], *insn;
9458 	u32 target_size, size_default, off;
9459 	struct bpf_prog *new_prog;
9460 	enum bpf_access_type type;
9461 	bool is_narrower_load;
9462 
9463 	if (ops->gen_prologue || env->seen_direct_write) {
9464 		if (!ops->gen_prologue) {
9465 			verbose(env, "bpf verifier is misconfigured\n");
9466 			return -EINVAL;
9467 		}
9468 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
9469 					env->prog);
9470 		if (cnt >= ARRAY_SIZE(insn_buf)) {
9471 			verbose(env, "bpf verifier is misconfigured\n");
9472 			return -EINVAL;
9473 		} else if (cnt) {
9474 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
9475 			if (!new_prog)
9476 				return -ENOMEM;
9477 
9478 			env->prog = new_prog;
9479 			delta += cnt - 1;
9480 		}
9481 	}
9482 
9483 	if (bpf_prog_is_dev_bound(env->prog->aux))
9484 		return 0;
9485 
9486 	insn = env->prog->insnsi + delta;
9487 
9488 	for (i = 0; i < insn_cnt; i++, insn++) {
9489 		bpf_convert_ctx_access_t convert_ctx_access;
9490 
9491 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
9492 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
9493 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
9494 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
9495 			type = BPF_READ;
9496 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
9497 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
9498 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
9499 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
9500 			type = BPF_WRITE;
9501 		else
9502 			continue;
9503 
9504 		if (type == BPF_WRITE &&
9505 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
9506 			struct bpf_insn patch[] = {
9507 				/* Sanitize suspicious stack slot with zero.
9508 				 * There are no memory dependencies for this store,
9509 				 * since it's only using frame pointer and immediate
9510 				 * constant of zero
9511 				 */
9512 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
9513 					   env->insn_aux_data[i + delta].sanitize_stack_off,
9514 					   0),
9515 				/* the original STX instruction will immediately
9516 				 * overwrite the same stack slot with appropriate value
9517 				 */
9518 				*insn,
9519 			};
9520 
9521 			cnt = ARRAY_SIZE(patch);
9522 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
9523 			if (!new_prog)
9524 				return -ENOMEM;
9525 
9526 			delta    += cnt - 1;
9527 			env->prog = new_prog;
9528 			insn      = new_prog->insnsi + i + delta;
9529 			continue;
9530 		}
9531 
9532 		switch (env->insn_aux_data[i + delta].ptr_type) {
9533 		case PTR_TO_CTX:
9534 			if (!ops->convert_ctx_access)
9535 				continue;
9536 			convert_ctx_access = ops->convert_ctx_access;
9537 			break;
9538 		case PTR_TO_SOCKET:
9539 		case PTR_TO_SOCK_COMMON:
9540 			convert_ctx_access = bpf_sock_convert_ctx_access;
9541 			break;
9542 		case PTR_TO_TCP_SOCK:
9543 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
9544 			break;
9545 		case PTR_TO_XDP_SOCK:
9546 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
9547 			break;
9548 		case PTR_TO_BTF_ID:
9549 			if (type == BPF_READ) {
9550 				insn->code = BPF_LDX | BPF_PROBE_MEM |
9551 					BPF_SIZE((insn)->code);
9552 				env->prog->aux->num_exentries++;
9553 			} else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9554 				verbose(env, "Writes through BTF pointers are not allowed\n");
9555 				return -EINVAL;
9556 			}
9557 			continue;
9558 		default:
9559 			continue;
9560 		}
9561 
9562 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
9563 		size = BPF_LDST_BYTES(insn);
9564 
9565 		/* If the read access is a narrower load of the field,
9566 		 * convert to a 4/8-byte load, to minimum program type specific
9567 		 * convert_ctx_access changes. If conversion is successful,
9568 		 * we will apply proper mask to the result.
9569 		 */
9570 		is_narrower_load = size < ctx_field_size;
9571 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
9572 		off = insn->off;
9573 		if (is_narrower_load) {
9574 			u8 size_code;
9575 
9576 			if (type == BPF_WRITE) {
9577 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
9578 				return -EINVAL;
9579 			}
9580 
9581 			size_code = BPF_H;
9582 			if (ctx_field_size == 4)
9583 				size_code = BPF_W;
9584 			else if (ctx_field_size == 8)
9585 				size_code = BPF_DW;
9586 
9587 			insn->off = off & ~(size_default - 1);
9588 			insn->code = BPF_LDX | BPF_MEM | size_code;
9589 		}
9590 
9591 		target_size = 0;
9592 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
9593 					 &target_size);
9594 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
9595 		    (ctx_field_size && !target_size)) {
9596 			verbose(env, "bpf verifier is misconfigured\n");
9597 			return -EINVAL;
9598 		}
9599 
9600 		if (is_narrower_load && size < target_size) {
9601 			u8 shift = bpf_ctx_narrow_access_offset(
9602 				off, size, size_default) * 8;
9603 			if (ctx_field_size <= 4) {
9604 				if (shift)
9605 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
9606 									insn->dst_reg,
9607 									shift);
9608 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
9609 								(1 << size * 8) - 1);
9610 			} else {
9611 				if (shift)
9612 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
9613 									insn->dst_reg,
9614 									shift);
9615 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
9616 								(1ULL << size * 8) - 1);
9617 			}
9618 		}
9619 
9620 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9621 		if (!new_prog)
9622 			return -ENOMEM;
9623 
9624 		delta += cnt - 1;
9625 
9626 		/* keep walking new program and skip insns we just inserted */
9627 		env->prog = new_prog;
9628 		insn      = new_prog->insnsi + i + delta;
9629 	}
9630 
9631 	return 0;
9632 }
9633 
9634 static int jit_subprogs(struct bpf_verifier_env *env)
9635 {
9636 	struct bpf_prog *prog = env->prog, **func, *tmp;
9637 	int i, j, subprog_start, subprog_end = 0, len, subprog;
9638 	struct bpf_insn *insn;
9639 	void *old_bpf_func;
9640 	int err;
9641 
9642 	if (env->subprog_cnt <= 1)
9643 		return 0;
9644 
9645 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9646 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9647 		    insn->src_reg != BPF_PSEUDO_CALL)
9648 			continue;
9649 		/* Upon error here we cannot fall back to interpreter but
9650 		 * need a hard reject of the program. Thus -EFAULT is
9651 		 * propagated in any case.
9652 		 */
9653 		subprog = find_subprog(env, i + insn->imm + 1);
9654 		if (subprog < 0) {
9655 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
9656 				  i + insn->imm + 1);
9657 			return -EFAULT;
9658 		}
9659 		/* temporarily remember subprog id inside insn instead of
9660 		 * aux_data, since next loop will split up all insns into funcs
9661 		 */
9662 		insn->off = subprog;
9663 		/* remember original imm in case JIT fails and fallback
9664 		 * to interpreter will be needed
9665 		 */
9666 		env->insn_aux_data[i].call_imm = insn->imm;
9667 		/* point imm to __bpf_call_base+1 from JITs point of view */
9668 		insn->imm = 1;
9669 	}
9670 
9671 	err = bpf_prog_alloc_jited_linfo(prog);
9672 	if (err)
9673 		goto out_undo_insn;
9674 
9675 	err = -ENOMEM;
9676 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
9677 	if (!func)
9678 		goto out_undo_insn;
9679 
9680 	for (i = 0; i < env->subprog_cnt; i++) {
9681 		subprog_start = subprog_end;
9682 		subprog_end = env->subprog_info[i + 1].start;
9683 
9684 		len = subprog_end - subprog_start;
9685 		/* BPF_PROG_RUN doesn't call subprogs directly,
9686 		 * hence main prog stats include the runtime of subprogs.
9687 		 * subprogs don't have IDs and not reachable via prog_get_next_id
9688 		 * func[i]->aux->stats will never be accessed and stays NULL
9689 		 */
9690 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
9691 		if (!func[i])
9692 			goto out_free;
9693 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
9694 		       len * sizeof(struct bpf_insn));
9695 		func[i]->type = prog->type;
9696 		func[i]->len = len;
9697 		if (bpf_prog_calc_tag(func[i]))
9698 			goto out_free;
9699 		func[i]->is_func = 1;
9700 		func[i]->aux->func_idx = i;
9701 		/* the btf and func_info will be freed only at prog->aux */
9702 		func[i]->aux->btf = prog->aux->btf;
9703 		func[i]->aux->func_info = prog->aux->func_info;
9704 
9705 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
9706 		 * Long term would need debug info to populate names
9707 		 */
9708 		func[i]->aux->name[0] = 'F';
9709 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
9710 		func[i]->jit_requested = 1;
9711 		func[i]->aux->linfo = prog->aux->linfo;
9712 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
9713 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
9714 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
9715 		func[i] = bpf_int_jit_compile(func[i]);
9716 		if (!func[i]->jited) {
9717 			err = -ENOTSUPP;
9718 			goto out_free;
9719 		}
9720 		cond_resched();
9721 	}
9722 	/* at this point all bpf functions were successfully JITed
9723 	 * now populate all bpf_calls with correct addresses and
9724 	 * run last pass of JIT
9725 	 */
9726 	for (i = 0; i < env->subprog_cnt; i++) {
9727 		insn = func[i]->insnsi;
9728 		for (j = 0; j < func[i]->len; j++, insn++) {
9729 			if (insn->code != (BPF_JMP | BPF_CALL) ||
9730 			    insn->src_reg != BPF_PSEUDO_CALL)
9731 				continue;
9732 			subprog = insn->off;
9733 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
9734 				    __bpf_call_base;
9735 		}
9736 
9737 		/* we use the aux data to keep a list of the start addresses
9738 		 * of the JITed images for each function in the program
9739 		 *
9740 		 * for some architectures, such as powerpc64, the imm field
9741 		 * might not be large enough to hold the offset of the start
9742 		 * address of the callee's JITed image from __bpf_call_base
9743 		 *
9744 		 * in such cases, we can lookup the start address of a callee
9745 		 * by using its subprog id, available from the off field of
9746 		 * the call instruction, as an index for this list
9747 		 */
9748 		func[i]->aux->func = func;
9749 		func[i]->aux->func_cnt = env->subprog_cnt;
9750 	}
9751 	for (i = 0; i < env->subprog_cnt; i++) {
9752 		old_bpf_func = func[i]->bpf_func;
9753 		tmp = bpf_int_jit_compile(func[i]);
9754 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
9755 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
9756 			err = -ENOTSUPP;
9757 			goto out_free;
9758 		}
9759 		cond_resched();
9760 	}
9761 
9762 	/* finally lock prog and jit images for all functions and
9763 	 * populate kallsysm
9764 	 */
9765 	for (i = 0; i < env->subprog_cnt; i++) {
9766 		bpf_prog_lock_ro(func[i]);
9767 		bpf_prog_kallsyms_add(func[i]);
9768 	}
9769 
9770 	/* Last step: make now unused interpreter insns from main
9771 	 * prog consistent for later dump requests, so they can
9772 	 * later look the same as if they were interpreted only.
9773 	 */
9774 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9775 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9776 		    insn->src_reg != BPF_PSEUDO_CALL)
9777 			continue;
9778 		insn->off = env->insn_aux_data[i].call_imm;
9779 		subprog = find_subprog(env, i + insn->off + 1);
9780 		insn->imm = subprog;
9781 	}
9782 
9783 	prog->jited = 1;
9784 	prog->bpf_func = func[0]->bpf_func;
9785 	prog->aux->func = func;
9786 	prog->aux->func_cnt = env->subprog_cnt;
9787 	bpf_prog_free_unused_jited_linfo(prog);
9788 	return 0;
9789 out_free:
9790 	for (i = 0; i < env->subprog_cnt; i++)
9791 		if (func[i])
9792 			bpf_jit_free(func[i]);
9793 	kfree(func);
9794 out_undo_insn:
9795 	/* cleanup main prog to be interpreted */
9796 	prog->jit_requested = 0;
9797 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9798 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9799 		    insn->src_reg != BPF_PSEUDO_CALL)
9800 			continue;
9801 		insn->off = 0;
9802 		insn->imm = env->insn_aux_data[i].call_imm;
9803 	}
9804 	bpf_prog_free_jited_linfo(prog);
9805 	return err;
9806 }
9807 
9808 static int fixup_call_args(struct bpf_verifier_env *env)
9809 {
9810 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9811 	struct bpf_prog *prog = env->prog;
9812 	struct bpf_insn *insn = prog->insnsi;
9813 	int i, depth;
9814 #endif
9815 	int err = 0;
9816 
9817 	if (env->prog->jit_requested &&
9818 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
9819 		err = jit_subprogs(env);
9820 		if (err == 0)
9821 			return 0;
9822 		if (err == -EFAULT)
9823 			return err;
9824 	}
9825 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9826 	for (i = 0; i < prog->len; i++, insn++) {
9827 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9828 		    insn->src_reg != BPF_PSEUDO_CALL)
9829 			continue;
9830 		depth = get_callee_stack_depth(env, insn, i);
9831 		if (depth < 0)
9832 			return depth;
9833 		bpf_patch_call_args(insn, depth);
9834 	}
9835 	err = 0;
9836 #endif
9837 	return err;
9838 }
9839 
9840 /* fixup insn->imm field of bpf_call instructions
9841  * and inline eligible helpers as explicit sequence of BPF instructions
9842  *
9843  * this function is called after eBPF program passed verification
9844  */
9845 static int fixup_bpf_calls(struct bpf_verifier_env *env)
9846 {
9847 	struct bpf_prog *prog = env->prog;
9848 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
9849 	struct bpf_insn *insn = prog->insnsi;
9850 	const struct bpf_func_proto *fn;
9851 	const int insn_cnt = prog->len;
9852 	const struct bpf_map_ops *ops;
9853 	struct bpf_insn_aux_data *aux;
9854 	struct bpf_insn insn_buf[16];
9855 	struct bpf_prog *new_prog;
9856 	struct bpf_map *map_ptr;
9857 	int i, ret, cnt, delta = 0;
9858 
9859 	for (i = 0; i < insn_cnt; i++, insn++) {
9860 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
9861 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9862 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
9863 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9864 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
9865 			struct bpf_insn mask_and_div[] = {
9866 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9867 				/* Rx div 0 -> 0 */
9868 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
9869 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
9870 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
9871 				*insn,
9872 			};
9873 			struct bpf_insn mask_and_mod[] = {
9874 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9875 				/* Rx mod 0 -> Rx */
9876 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
9877 				*insn,
9878 			};
9879 			struct bpf_insn *patchlet;
9880 
9881 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9882 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9883 				patchlet = mask_and_div + (is64 ? 1 : 0);
9884 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
9885 			} else {
9886 				patchlet = mask_and_mod + (is64 ? 1 : 0);
9887 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
9888 			}
9889 
9890 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
9891 			if (!new_prog)
9892 				return -ENOMEM;
9893 
9894 			delta    += cnt - 1;
9895 			env->prog = prog = new_prog;
9896 			insn      = new_prog->insnsi + i + delta;
9897 			continue;
9898 		}
9899 
9900 		if (BPF_CLASS(insn->code) == BPF_LD &&
9901 		    (BPF_MODE(insn->code) == BPF_ABS ||
9902 		     BPF_MODE(insn->code) == BPF_IND)) {
9903 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
9904 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9905 				verbose(env, "bpf verifier is misconfigured\n");
9906 				return -EINVAL;
9907 			}
9908 
9909 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9910 			if (!new_prog)
9911 				return -ENOMEM;
9912 
9913 			delta    += cnt - 1;
9914 			env->prog = prog = new_prog;
9915 			insn      = new_prog->insnsi + i + delta;
9916 			continue;
9917 		}
9918 
9919 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
9920 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
9921 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
9922 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
9923 			struct bpf_insn insn_buf[16];
9924 			struct bpf_insn *patch = &insn_buf[0];
9925 			bool issrc, isneg;
9926 			u32 off_reg;
9927 
9928 			aux = &env->insn_aux_data[i + delta];
9929 			if (!aux->alu_state ||
9930 			    aux->alu_state == BPF_ALU_NON_POINTER)
9931 				continue;
9932 
9933 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
9934 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
9935 				BPF_ALU_SANITIZE_SRC;
9936 
9937 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
9938 			if (isneg)
9939 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9940 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
9941 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
9942 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
9943 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
9944 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
9945 			if (issrc) {
9946 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
9947 							 off_reg);
9948 				insn->src_reg = BPF_REG_AX;
9949 			} else {
9950 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
9951 							 BPF_REG_AX);
9952 			}
9953 			if (isneg)
9954 				insn->code = insn->code == code_add ?
9955 					     code_sub : code_add;
9956 			*patch++ = *insn;
9957 			if (issrc && isneg)
9958 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9959 			cnt = patch - insn_buf;
9960 
9961 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9962 			if (!new_prog)
9963 				return -ENOMEM;
9964 
9965 			delta    += cnt - 1;
9966 			env->prog = prog = new_prog;
9967 			insn      = new_prog->insnsi + i + delta;
9968 			continue;
9969 		}
9970 
9971 		if (insn->code != (BPF_JMP | BPF_CALL))
9972 			continue;
9973 		if (insn->src_reg == BPF_PSEUDO_CALL)
9974 			continue;
9975 
9976 		if (insn->imm == BPF_FUNC_get_route_realm)
9977 			prog->dst_needed = 1;
9978 		if (insn->imm == BPF_FUNC_get_prandom_u32)
9979 			bpf_user_rnd_init_once();
9980 		if (insn->imm == BPF_FUNC_override_return)
9981 			prog->kprobe_override = 1;
9982 		if (insn->imm == BPF_FUNC_tail_call) {
9983 			/* If we tail call into other programs, we
9984 			 * cannot make any assumptions since they can
9985 			 * be replaced dynamically during runtime in
9986 			 * the program array.
9987 			 */
9988 			prog->cb_access = 1;
9989 			env->prog->aux->stack_depth = MAX_BPF_STACK;
9990 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
9991 
9992 			/* mark bpf_tail_call as different opcode to avoid
9993 			 * conditional branch in the interpeter for every normal
9994 			 * call and to prevent accidental JITing by JIT compiler
9995 			 * that doesn't support bpf_tail_call yet
9996 			 */
9997 			insn->imm = 0;
9998 			insn->code = BPF_JMP | BPF_TAIL_CALL;
9999 
10000 			aux = &env->insn_aux_data[i + delta];
10001 			if (env->allow_ptr_leaks && !expect_blinding &&
10002 			    prog->jit_requested &&
10003 			    !bpf_map_key_poisoned(aux) &&
10004 			    !bpf_map_ptr_poisoned(aux) &&
10005 			    !bpf_map_ptr_unpriv(aux)) {
10006 				struct bpf_jit_poke_descriptor desc = {
10007 					.reason = BPF_POKE_REASON_TAIL_CALL,
10008 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
10009 					.tail_call.key = bpf_map_key_immediate(aux),
10010 				};
10011 
10012 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
10013 				if (ret < 0) {
10014 					verbose(env, "adding tail call poke descriptor failed\n");
10015 					return ret;
10016 				}
10017 
10018 				insn->imm = ret + 1;
10019 				continue;
10020 			}
10021 
10022 			if (!bpf_map_ptr_unpriv(aux))
10023 				continue;
10024 
10025 			/* instead of changing every JIT dealing with tail_call
10026 			 * emit two extra insns:
10027 			 * if (index >= max_entries) goto out;
10028 			 * index &= array->index_mask;
10029 			 * to avoid out-of-bounds cpu speculation
10030 			 */
10031 			if (bpf_map_ptr_poisoned(aux)) {
10032 				verbose(env, "tail_call abusing map_ptr\n");
10033 				return -EINVAL;
10034 			}
10035 
10036 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
10037 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
10038 						  map_ptr->max_entries, 2);
10039 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
10040 						    container_of(map_ptr,
10041 								 struct bpf_array,
10042 								 map)->index_mask);
10043 			insn_buf[2] = *insn;
10044 			cnt = 3;
10045 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10046 			if (!new_prog)
10047 				return -ENOMEM;
10048 
10049 			delta    += cnt - 1;
10050 			env->prog = prog = new_prog;
10051 			insn      = new_prog->insnsi + i + delta;
10052 			continue;
10053 		}
10054 
10055 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
10056 		 * and other inlining handlers are currently limited to 64 bit
10057 		 * only.
10058 		 */
10059 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
10060 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
10061 		     insn->imm == BPF_FUNC_map_update_elem ||
10062 		     insn->imm == BPF_FUNC_map_delete_elem ||
10063 		     insn->imm == BPF_FUNC_map_push_elem   ||
10064 		     insn->imm == BPF_FUNC_map_pop_elem    ||
10065 		     insn->imm == BPF_FUNC_map_peek_elem)) {
10066 			aux = &env->insn_aux_data[i + delta];
10067 			if (bpf_map_ptr_poisoned(aux))
10068 				goto patch_call_imm;
10069 
10070 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
10071 			ops = map_ptr->ops;
10072 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
10073 			    ops->map_gen_lookup) {
10074 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
10075 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10076 					verbose(env, "bpf verifier is misconfigured\n");
10077 					return -EINVAL;
10078 				}
10079 
10080 				new_prog = bpf_patch_insn_data(env, i + delta,
10081 							       insn_buf, cnt);
10082 				if (!new_prog)
10083 					return -ENOMEM;
10084 
10085 				delta    += cnt - 1;
10086 				env->prog = prog = new_prog;
10087 				insn      = new_prog->insnsi + i + delta;
10088 				continue;
10089 			}
10090 
10091 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
10092 				     (void *(*)(struct bpf_map *map, void *key))NULL));
10093 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
10094 				     (int (*)(struct bpf_map *map, void *key))NULL));
10095 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
10096 				     (int (*)(struct bpf_map *map, void *key, void *value,
10097 					      u64 flags))NULL));
10098 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
10099 				     (int (*)(struct bpf_map *map, void *value,
10100 					      u64 flags))NULL));
10101 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
10102 				     (int (*)(struct bpf_map *map, void *value))NULL));
10103 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
10104 				     (int (*)(struct bpf_map *map, void *value))NULL));
10105 
10106 			switch (insn->imm) {
10107 			case BPF_FUNC_map_lookup_elem:
10108 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
10109 					    __bpf_call_base;
10110 				continue;
10111 			case BPF_FUNC_map_update_elem:
10112 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
10113 					    __bpf_call_base;
10114 				continue;
10115 			case BPF_FUNC_map_delete_elem:
10116 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
10117 					    __bpf_call_base;
10118 				continue;
10119 			case BPF_FUNC_map_push_elem:
10120 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
10121 					    __bpf_call_base;
10122 				continue;
10123 			case BPF_FUNC_map_pop_elem:
10124 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
10125 					    __bpf_call_base;
10126 				continue;
10127 			case BPF_FUNC_map_peek_elem:
10128 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
10129 					    __bpf_call_base;
10130 				continue;
10131 			}
10132 
10133 			goto patch_call_imm;
10134 		}
10135 
10136 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
10137 		    insn->imm == BPF_FUNC_jiffies64) {
10138 			struct bpf_insn ld_jiffies_addr[2] = {
10139 				BPF_LD_IMM64(BPF_REG_0,
10140 					     (unsigned long)&jiffies),
10141 			};
10142 
10143 			insn_buf[0] = ld_jiffies_addr[0];
10144 			insn_buf[1] = ld_jiffies_addr[1];
10145 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
10146 						  BPF_REG_0, 0);
10147 			cnt = 3;
10148 
10149 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
10150 						       cnt);
10151 			if (!new_prog)
10152 				return -ENOMEM;
10153 
10154 			delta    += cnt - 1;
10155 			env->prog = prog = new_prog;
10156 			insn      = new_prog->insnsi + i + delta;
10157 			continue;
10158 		}
10159 
10160 patch_call_imm:
10161 		fn = env->ops->get_func_proto(insn->imm, env->prog);
10162 		/* all functions that have prototype and verifier allowed
10163 		 * programs to call them, must be real in-kernel functions
10164 		 */
10165 		if (!fn->func) {
10166 			verbose(env,
10167 				"kernel subsystem misconfigured func %s#%d\n",
10168 				func_id_name(insn->imm), insn->imm);
10169 			return -EFAULT;
10170 		}
10171 		insn->imm = fn->func - __bpf_call_base;
10172 	}
10173 
10174 	/* Since poke tab is now finalized, publish aux to tracker. */
10175 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
10176 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
10177 		if (!map_ptr->ops->map_poke_track ||
10178 		    !map_ptr->ops->map_poke_untrack ||
10179 		    !map_ptr->ops->map_poke_run) {
10180 			verbose(env, "bpf verifier is misconfigured\n");
10181 			return -EINVAL;
10182 		}
10183 
10184 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
10185 		if (ret < 0) {
10186 			verbose(env, "tracking tail call prog failed\n");
10187 			return ret;
10188 		}
10189 	}
10190 
10191 	return 0;
10192 }
10193 
10194 static void free_states(struct bpf_verifier_env *env)
10195 {
10196 	struct bpf_verifier_state_list *sl, *sln;
10197 	int i;
10198 
10199 	sl = env->free_list;
10200 	while (sl) {
10201 		sln = sl->next;
10202 		free_verifier_state(&sl->state, false);
10203 		kfree(sl);
10204 		sl = sln;
10205 	}
10206 	env->free_list = NULL;
10207 
10208 	if (!env->explored_states)
10209 		return;
10210 
10211 	for (i = 0; i < state_htab_size(env); i++) {
10212 		sl = env->explored_states[i];
10213 
10214 		while (sl) {
10215 			sln = sl->next;
10216 			free_verifier_state(&sl->state, false);
10217 			kfree(sl);
10218 			sl = sln;
10219 		}
10220 		env->explored_states[i] = NULL;
10221 	}
10222 }
10223 
10224 /* The verifier is using insn_aux_data[] to store temporary data during
10225  * verification and to store information for passes that run after the
10226  * verification like dead code sanitization. do_check_common() for subprogram N
10227  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
10228  * temporary data after do_check_common() finds that subprogram N cannot be
10229  * verified independently. pass_cnt counts the number of times
10230  * do_check_common() was run and insn->aux->seen tells the pass number
10231  * insn_aux_data was touched. These variables are compared to clear temporary
10232  * data from failed pass. For testing and experiments do_check_common() can be
10233  * run multiple times even when prior attempt to verify is unsuccessful.
10234  */
10235 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
10236 {
10237 	struct bpf_insn *insn = env->prog->insnsi;
10238 	struct bpf_insn_aux_data *aux;
10239 	int i, class;
10240 
10241 	for (i = 0; i < env->prog->len; i++) {
10242 		class = BPF_CLASS(insn[i].code);
10243 		if (class != BPF_LDX && class != BPF_STX)
10244 			continue;
10245 		aux = &env->insn_aux_data[i];
10246 		if (aux->seen != env->pass_cnt)
10247 			continue;
10248 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
10249 	}
10250 }
10251 
10252 static int do_check_common(struct bpf_verifier_env *env, int subprog)
10253 {
10254 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10255 	struct bpf_verifier_state *state;
10256 	struct bpf_reg_state *regs;
10257 	int ret, i;
10258 
10259 	env->prev_linfo = NULL;
10260 	env->pass_cnt++;
10261 
10262 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
10263 	if (!state)
10264 		return -ENOMEM;
10265 	state->curframe = 0;
10266 	state->speculative = false;
10267 	state->branches = 1;
10268 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
10269 	if (!state->frame[0]) {
10270 		kfree(state);
10271 		return -ENOMEM;
10272 	}
10273 	env->cur_state = state;
10274 	init_func_state(env, state->frame[0],
10275 			BPF_MAIN_FUNC /* callsite */,
10276 			0 /* frameno */,
10277 			subprog);
10278 
10279 	regs = state->frame[state->curframe]->regs;
10280 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
10281 		ret = btf_prepare_func_args(env, subprog, regs);
10282 		if (ret)
10283 			goto out;
10284 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
10285 			if (regs[i].type == PTR_TO_CTX)
10286 				mark_reg_known_zero(env, regs, i);
10287 			else if (regs[i].type == SCALAR_VALUE)
10288 				mark_reg_unknown(env, regs, i);
10289 		}
10290 	} else {
10291 		/* 1st arg to a function */
10292 		regs[BPF_REG_1].type = PTR_TO_CTX;
10293 		mark_reg_known_zero(env, regs, BPF_REG_1);
10294 		ret = btf_check_func_arg_match(env, subprog, regs);
10295 		if (ret == -EFAULT)
10296 			/* unlikely verifier bug. abort.
10297 			 * ret == 0 and ret < 0 are sadly acceptable for
10298 			 * main() function due to backward compatibility.
10299 			 * Like socket filter program may be written as:
10300 			 * int bpf_prog(struct pt_regs *ctx)
10301 			 * and never dereference that ctx in the program.
10302 			 * 'struct pt_regs' is a type mismatch for socket
10303 			 * filter that should be using 'struct __sk_buff'.
10304 			 */
10305 			goto out;
10306 	}
10307 
10308 	ret = do_check(env);
10309 out:
10310 	/* check for NULL is necessary, since cur_state can be freed inside
10311 	 * do_check() under memory pressure.
10312 	 */
10313 	if (env->cur_state) {
10314 		free_verifier_state(env->cur_state, true);
10315 		env->cur_state = NULL;
10316 	}
10317 	while (!pop_stack(env, NULL, NULL, false));
10318 	if (!ret && pop_log)
10319 		bpf_vlog_reset(&env->log, 0);
10320 	free_states(env);
10321 	if (ret)
10322 		/* clean aux data in case subprog was rejected */
10323 		sanitize_insn_aux_data(env);
10324 	return ret;
10325 }
10326 
10327 /* Verify all global functions in a BPF program one by one based on their BTF.
10328  * All global functions must pass verification. Otherwise the whole program is rejected.
10329  * Consider:
10330  * int bar(int);
10331  * int foo(int f)
10332  * {
10333  *    return bar(f);
10334  * }
10335  * int bar(int b)
10336  * {
10337  *    ...
10338  * }
10339  * foo() will be verified first for R1=any_scalar_value. During verification it
10340  * will be assumed that bar() already verified successfully and call to bar()
10341  * from foo() will be checked for type match only. Later bar() will be verified
10342  * independently to check that it's safe for R1=any_scalar_value.
10343  */
10344 static int do_check_subprogs(struct bpf_verifier_env *env)
10345 {
10346 	struct bpf_prog_aux *aux = env->prog->aux;
10347 	int i, ret;
10348 
10349 	if (!aux->func_info)
10350 		return 0;
10351 
10352 	for (i = 1; i < env->subprog_cnt; i++) {
10353 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
10354 			continue;
10355 		env->insn_idx = env->subprog_info[i].start;
10356 		WARN_ON_ONCE(env->insn_idx == 0);
10357 		ret = do_check_common(env, i);
10358 		if (ret) {
10359 			return ret;
10360 		} else if (env->log.level & BPF_LOG_LEVEL) {
10361 			verbose(env,
10362 				"Func#%d is safe for any args that match its prototype\n",
10363 				i);
10364 		}
10365 	}
10366 	return 0;
10367 }
10368 
10369 static int do_check_main(struct bpf_verifier_env *env)
10370 {
10371 	int ret;
10372 
10373 	env->insn_idx = 0;
10374 	ret = do_check_common(env, 0);
10375 	if (!ret)
10376 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
10377 	return ret;
10378 }
10379 
10380 
10381 static void print_verification_stats(struct bpf_verifier_env *env)
10382 {
10383 	int i;
10384 
10385 	if (env->log.level & BPF_LOG_STATS) {
10386 		verbose(env, "verification time %lld usec\n",
10387 			div_u64(env->verification_time, 1000));
10388 		verbose(env, "stack depth ");
10389 		for (i = 0; i < env->subprog_cnt; i++) {
10390 			u32 depth = env->subprog_info[i].stack_depth;
10391 
10392 			verbose(env, "%d", depth);
10393 			if (i + 1 < env->subprog_cnt)
10394 				verbose(env, "+");
10395 		}
10396 		verbose(env, "\n");
10397 	}
10398 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
10399 		"total_states %d peak_states %d mark_read %d\n",
10400 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
10401 		env->max_states_per_insn, env->total_states,
10402 		env->peak_states, env->longest_mark_read_walk);
10403 }
10404 
10405 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
10406 {
10407 	const struct btf_type *t, *func_proto;
10408 	const struct bpf_struct_ops *st_ops;
10409 	const struct btf_member *member;
10410 	struct bpf_prog *prog = env->prog;
10411 	u32 btf_id, member_idx;
10412 	const char *mname;
10413 
10414 	btf_id = prog->aux->attach_btf_id;
10415 	st_ops = bpf_struct_ops_find(btf_id);
10416 	if (!st_ops) {
10417 		verbose(env, "attach_btf_id %u is not a supported struct\n",
10418 			btf_id);
10419 		return -ENOTSUPP;
10420 	}
10421 
10422 	t = st_ops->type;
10423 	member_idx = prog->expected_attach_type;
10424 	if (member_idx >= btf_type_vlen(t)) {
10425 		verbose(env, "attach to invalid member idx %u of struct %s\n",
10426 			member_idx, st_ops->name);
10427 		return -EINVAL;
10428 	}
10429 
10430 	member = &btf_type_member(t)[member_idx];
10431 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
10432 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
10433 					       NULL);
10434 	if (!func_proto) {
10435 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
10436 			mname, member_idx, st_ops->name);
10437 		return -EINVAL;
10438 	}
10439 
10440 	if (st_ops->check_member) {
10441 		int err = st_ops->check_member(t, member);
10442 
10443 		if (err) {
10444 			verbose(env, "attach to unsupported member %s of struct %s\n",
10445 				mname, st_ops->name);
10446 			return err;
10447 		}
10448 	}
10449 
10450 	prog->aux->attach_func_proto = func_proto;
10451 	prog->aux->attach_func_name = mname;
10452 	env->ops = st_ops->verifier_ops;
10453 
10454 	return 0;
10455 }
10456 #define SECURITY_PREFIX "security_"
10457 
10458 static int check_attach_modify_return(struct bpf_verifier_env *env)
10459 {
10460 	struct bpf_prog *prog = env->prog;
10461 	unsigned long addr = (unsigned long) prog->aux->trampoline->func.addr;
10462 
10463 	/* This is expected to be cleaned up in the future with the KRSI effort
10464 	 * introducing the LSM_HOOK macro for cleaning up lsm_hooks.h.
10465 	 */
10466 	if (within_error_injection_list(addr) ||
10467 	    !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name,
10468 		     sizeof(SECURITY_PREFIX) - 1))
10469 		return 0;
10470 
10471 	verbose(env, "fmod_ret attach_btf_id %u (%s) is not modifiable\n",
10472 		prog->aux->attach_btf_id, prog->aux->attach_func_name);
10473 
10474 	return -EINVAL;
10475 }
10476 
10477 static int check_attach_btf_id(struct bpf_verifier_env *env)
10478 {
10479 	struct bpf_prog *prog = env->prog;
10480 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
10481 	struct bpf_prog *tgt_prog = prog->aux->linked_prog;
10482 	u32 btf_id = prog->aux->attach_btf_id;
10483 	const char prefix[] = "btf_trace_";
10484 	int ret = 0, subprog = -1, i;
10485 	struct bpf_trampoline *tr;
10486 	const struct btf_type *t;
10487 	bool conservative = true;
10488 	const char *tname;
10489 	struct btf *btf;
10490 	long addr;
10491 	u64 key;
10492 
10493 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
10494 		return check_struct_ops_btf_id(env);
10495 
10496 	if (prog->type != BPF_PROG_TYPE_TRACING &&
10497 	    prog->type != BPF_PROG_TYPE_LSM &&
10498 	    !prog_extension)
10499 		return 0;
10500 
10501 	if (!btf_id) {
10502 		verbose(env, "Tracing programs must provide btf_id\n");
10503 		return -EINVAL;
10504 	}
10505 	btf = bpf_prog_get_target_btf(prog);
10506 	if (!btf) {
10507 		verbose(env,
10508 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
10509 		return -EINVAL;
10510 	}
10511 	t = btf_type_by_id(btf, btf_id);
10512 	if (!t) {
10513 		verbose(env, "attach_btf_id %u is invalid\n", btf_id);
10514 		return -EINVAL;
10515 	}
10516 	tname = btf_name_by_offset(btf, t->name_off);
10517 	if (!tname) {
10518 		verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
10519 		return -EINVAL;
10520 	}
10521 	if (tgt_prog) {
10522 		struct bpf_prog_aux *aux = tgt_prog->aux;
10523 
10524 		for (i = 0; i < aux->func_info_cnt; i++)
10525 			if (aux->func_info[i].type_id == btf_id) {
10526 				subprog = i;
10527 				break;
10528 			}
10529 		if (subprog == -1) {
10530 			verbose(env, "Subprog %s doesn't exist\n", tname);
10531 			return -EINVAL;
10532 		}
10533 		conservative = aux->func_info_aux[subprog].unreliable;
10534 		if (prog_extension) {
10535 			if (conservative) {
10536 				verbose(env,
10537 					"Cannot replace static functions\n");
10538 				return -EINVAL;
10539 			}
10540 			if (!prog->jit_requested) {
10541 				verbose(env,
10542 					"Extension programs should be JITed\n");
10543 				return -EINVAL;
10544 			}
10545 			env->ops = bpf_verifier_ops[tgt_prog->type];
10546 			prog->expected_attach_type = tgt_prog->expected_attach_type;
10547 		}
10548 		if (!tgt_prog->jited) {
10549 			verbose(env, "Can attach to only JITed progs\n");
10550 			return -EINVAL;
10551 		}
10552 		if (tgt_prog->type == prog->type) {
10553 			/* Cannot fentry/fexit another fentry/fexit program.
10554 			 * Cannot attach program extension to another extension.
10555 			 * It's ok to attach fentry/fexit to extension program.
10556 			 */
10557 			verbose(env, "Cannot recursively attach\n");
10558 			return -EINVAL;
10559 		}
10560 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
10561 		    prog_extension &&
10562 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
10563 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
10564 			/* Program extensions can extend all program types
10565 			 * except fentry/fexit. The reason is the following.
10566 			 * The fentry/fexit programs are used for performance
10567 			 * analysis, stats and can be attached to any program
10568 			 * type except themselves. When extension program is
10569 			 * replacing XDP function it is necessary to allow
10570 			 * performance analysis of all functions. Both original
10571 			 * XDP program and its program extension. Hence
10572 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
10573 			 * allowed. If extending of fentry/fexit was allowed it
10574 			 * would be possible to create long call chain
10575 			 * fentry->extension->fentry->extension beyond
10576 			 * reasonable stack size. Hence extending fentry is not
10577 			 * allowed.
10578 			 */
10579 			verbose(env, "Cannot extend fentry/fexit\n");
10580 			return -EINVAL;
10581 		}
10582 		key = ((u64)aux->id) << 32 | btf_id;
10583 	} else {
10584 		if (prog_extension) {
10585 			verbose(env, "Cannot replace kernel functions\n");
10586 			return -EINVAL;
10587 		}
10588 		key = btf_id;
10589 	}
10590 
10591 	switch (prog->expected_attach_type) {
10592 	case BPF_TRACE_RAW_TP:
10593 		if (tgt_prog) {
10594 			verbose(env,
10595 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
10596 			return -EINVAL;
10597 		}
10598 		if (!btf_type_is_typedef(t)) {
10599 			verbose(env, "attach_btf_id %u is not a typedef\n",
10600 				btf_id);
10601 			return -EINVAL;
10602 		}
10603 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
10604 			verbose(env, "attach_btf_id %u points to wrong type name %s\n",
10605 				btf_id, tname);
10606 			return -EINVAL;
10607 		}
10608 		tname += sizeof(prefix) - 1;
10609 		t = btf_type_by_id(btf, t->type);
10610 		if (!btf_type_is_ptr(t))
10611 			/* should never happen in valid vmlinux build */
10612 			return -EINVAL;
10613 		t = btf_type_by_id(btf, t->type);
10614 		if (!btf_type_is_func_proto(t))
10615 			/* should never happen in valid vmlinux build */
10616 			return -EINVAL;
10617 
10618 		/* remember two read only pointers that are valid for
10619 		 * the life time of the kernel
10620 		 */
10621 		prog->aux->attach_func_name = tname;
10622 		prog->aux->attach_func_proto = t;
10623 		prog->aux->attach_btf_trace = true;
10624 		return 0;
10625 	default:
10626 		if (!prog_extension)
10627 			return -EINVAL;
10628 		/* fallthrough */
10629 	case BPF_MODIFY_RETURN:
10630 	case BPF_LSM_MAC:
10631 	case BPF_TRACE_FENTRY:
10632 	case BPF_TRACE_FEXIT:
10633 		prog->aux->attach_func_name = tname;
10634 		if (prog->type == BPF_PROG_TYPE_LSM) {
10635 			ret = bpf_lsm_verify_prog(&env->log, prog);
10636 			if (ret < 0)
10637 				return ret;
10638 		}
10639 
10640 		if (!btf_type_is_func(t)) {
10641 			verbose(env, "attach_btf_id %u is not a function\n",
10642 				btf_id);
10643 			return -EINVAL;
10644 		}
10645 		if (prog_extension &&
10646 		    btf_check_type_match(env, prog, btf, t))
10647 			return -EINVAL;
10648 		t = btf_type_by_id(btf, t->type);
10649 		if (!btf_type_is_func_proto(t))
10650 			return -EINVAL;
10651 		tr = bpf_trampoline_lookup(key);
10652 		if (!tr)
10653 			return -ENOMEM;
10654 		/* t is either vmlinux type or another program's type */
10655 		prog->aux->attach_func_proto = t;
10656 		mutex_lock(&tr->mutex);
10657 		if (tr->func.addr) {
10658 			prog->aux->trampoline = tr;
10659 			goto out;
10660 		}
10661 		if (tgt_prog && conservative) {
10662 			prog->aux->attach_func_proto = NULL;
10663 			t = NULL;
10664 		}
10665 		ret = btf_distill_func_proto(&env->log, btf, t,
10666 					     tname, &tr->func.model);
10667 		if (ret < 0)
10668 			goto out;
10669 		if (tgt_prog) {
10670 			if (subprog == 0)
10671 				addr = (long) tgt_prog->bpf_func;
10672 			else
10673 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
10674 		} else {
10675 			addr = kallsyms_lookup_name(tname);
10676 			if (!addr) {
10677 				verbose(env,
10678 					"The address of function %s cannot be found\n",
10679 					tname);
10680 				ret = -ENOENT;
10681 				goto out;
10682 			}
10683 		}
10684 		tr->func.addr = (void *)addr;
10685 		prog->aux->trampoline = tr;
10686 
10687 		if (prog->expected_attach_type == BPF_MODIFY_RETURN)
10688 			ret = check_attach_modify_return(env);
10689 out:
10690 		mutex_unlock(&tr->mutex);
10691 		if (ret)
10692 			bpf_trampoline_put(tr);
10693 		return ret;
10694 	}
10695 }
10696 
10697 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
10698 	      union bpf_attr __user *uattr)
10699 {
10700 	u64 start_time = ktime_get_ns();
10701 	struct bpf_verifier_env *env;
10702 	struct bpf_verifier_log *log;
10703 	int i, len, ret = -EINVAL;
10704 	bool is_priv;
10705 
10706 	/* no program is valid */
10707 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
10708 		return -EINVAL;
10709 
10710 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
10711 	 * allocate/free it every time bpf_check() is called
10712 	 */
10713 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
10714 	if (!env)
10715 		return -ENOMEM;
10716 	log = &env->log;
10717 
10718 	len = (*prog)->len;
10719 	env->insn_aux_data =
10720 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
10721 	ret = -ENOMEM;
10722 	if (!env->insn_aux_data)
10723 		goto err_free_env;
10724 	for (i = 0; i < len; i++)
10725 		env->insn_aux_data[i].orig_idx = i;
10726 	env->prog = *prog;
10727 	env->ops = bpf_verifier_ops[env->prog->type];
10728 	is_priv = capable(CAP_SYS_ADMIN);
10729 
10730 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
10731 		mutex_lock(&bpf_verifier_lock);
10732 		if (!btf_vmlinux)
10733 			btf_vmlinux = btf_parse_vmlinux();
10734 		mutex_unlock(&bpf_verifier_lock);
10735 	}
10736 
10737 	/* grab the mutex to protect few globals used by verifier */
10738 	if (!is_priv)
10739 		mutex_lock(&bpf_verifier_lock);
10740 
10741 	if (attr->log_level || attr->log_buf || attr->log_size) {
10742 		/* user requested verbose verifier output
10743 		 * and supplied buffer to store the verification trace
10744 		 */
10745 		log->level = attr->log_level;
10746 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
10747 		log->len_total = attr->log_size;
10748 
10749 		ret = -EINVAL;
10750 		/* log attributes have to be sane */
10751 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
10752 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
10753 			goto err_unlock;
10754 	}
10755 
10756 	if (IS_ERR(btf_vmlinux)) {
10757 		/* Either gcc or pahole or kernel are broken. */
10758 		verbose(env, "in-kernel BTF is malformed\n");
10759 		ret = PTR_ERR(btf_vmlinux);
10760 		goto skip_full_check;
10761 	}
10762 
10763 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
10764 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
10765 		env->strict_alignment = true;
10766 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
10767 		env->strict_alignment = false;
10768 
10769 	env->allow_ptr_leaks = is_priv;
10770 
10771 	if (is_priv)
10772 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
10773 
10774 	ret = replace_map_fd_with_map_ptr(env);
10775 	if (ret < 0)
10776 		goto skip_full_check;
10777 
10778 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
10779 		ret = bpf_prog_offload_verifier_prep(env->prog);
10780 		if (ret)
10781 			goto skip_full_check;
10782 	}
10783 
10784 	env->explored_states = kvcalloc(state_htab_size(env),
10785 				       sizeof(struct bpf_verifier_state_list *),
10786 				       GFP_USER);
10787 	ret = -ENOMEM;
10788 	if (!env->explored_states)
10789 		goto skip_full_check;
10790 
10791 	ret = check_subprogs(env);
10792 	if (ret < 0)
10793 		goto skip_full_check;
10794 
10795 	ret = check_btf_info(env, attr, uattr);
10796 	if (ret < 0)
10797 		goto skip_full_check;
10798 
10799 	ret = check_attach_btf_id(env);
10800 	if (ret)
10801 		goto skip_full_check;
10802 
10803 	ret = check_cfg(env);
10804 	if (ret < 0)
10805 		goto skip_full_check;
10806 
10807 	ret = do_check_subprogs(env);
10808 	ret = ret ?: do_check_main(env);
10809 
10810 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
10811 		ret = bpf_prog_offload_finalize(env);
10812 
10813 skip_full_check:
10814 	kvfree(env->explored_states);
10815 
10816 	if (ret == 0)
10817 		ret = check_max_stack_depth(env);
10818 
10819 	/* instruction rewrites happen after this point */
10820 	if (is_priv) {
10821 		if (ret == 0)
10822 			opt_hard_wire_dead_code_branches(env);
10823 		if (ret == 0)
10824 			ret = opt_remove_dead_code(env);
10825 		if (ret == 0)
10826 			ret = opt_remove_nops(env);
10827 	} else {
10828 		if (ret == 0)
10829 			sanitize_dead_code(env);
10830 	}
10831 
10832 	if (ret == 0)
10833 		/* program is valid, convert *(u32*)(ctx + off) accesses */
10834 		ret = convert_ctx_accesses(env);
10835 
10836 	if (ret == 0)
10837 		ret = fixup_bpf_calls(env);
10838 
10839 	/* do 32-bit optimization after insn patching has done so those patched
10840 	 * insns could be handled correctly.
10841 	 */
10842 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
10843 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
10844 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
10845 								     : false;
10846 	}
10847 
10848 	if (ret == 0)
10849 		ret = fixup_call_args(env);
10850 
10851 	env->verification_time = ktime_get_ns() - start_time;
10852 	print_verification_stats(env);
10853 
10854 	if (log->level && bpf_verifier_log_full(log))
10855 		ret = -ENOSPC;
10856 	if (log->level && !log->ubuf) {
10857 		ret = -EFAULT;
10858 		goto err_release_maps;
10859 	}
10860 
10861 	if (ret == 0 && env->used_map_cnt) {
10862 		/* if program passed verifier, update used_maps in bpf_prog_info */
10863 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
10864 							  sizeof(env->used_maps[0]),
10865 							  GFP_KERNEL);
10866 
10867 		if (!env->prog->aux->used_maps) {
10868 			ret = -ENOMEM;
10869 			goto err_release_maps;
10870 		}
10871 
10872 		memcpy(env->prog->aux->used_maps, env->used_maps,
10873 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
10874 		env->prog->aux->used_map_cnt = env->used_map_cnt;
10875 
10876 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
10877 		 * bpf_ld_imm64 instructions
10878 		 */
10879 		convert_pseudo_ld_imm64(env);
10880 	}
10881 
10882 	if (ret == 0)
10883 		adjust_btf_func(env);
10884 
10885 err_release_maps:
10886 	if (!env->prog->aux->used_maps)
10887 		/* if we didn't copy map pointers into bpf_prog_info, release
10888 		 * them now. Otherwise free_used_maps() will release them.
10889 		 */
10890 		release_maps(env);
10891 
10892 	/* extension progs temporarily inherit the attach_type of their targets
10893 	   for verification purposes, so set it back to zero before returning
10894 	 */
10895 	if (env->prog->type == BPF_PROG_TYPE_EXT)
10896 		env->prog->expected_attach_type = 0;
10897 
10898 	*prog = env->prog;
10899 err_unlock:
10900 	if (!is_priv)
10901 		mutex_unlock(&bpf_verifier_lock);
10902 	vfree(env->insn_aux_data);
10903 err_free_env:
10904 	kfree(env);
10905 	return ret;
10906 }
10907