1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 #include <linux/trace_events.h> 32 #include <linux/kallsyms.h> 33 34 #include "disasm.h" 35 36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 38 [_id] = & _name ## _verifier_ops, 39 #define BPF_MAP_TYPE(_id, _ops) 40 #define BPF_LINK_TYPE(_id, _name) 41 #include <linux/bpf_types.h> 42 #undef BPF_PROG_TYPE 43 #undef BPF_MAP_TYPE 44 #undef BPF_LINK_TYPE 45 }; 46 47 struct bpf_mem_alloc bpf_global_percpu_ma; 48 static bool bpf_global_percpu_ma_set; 49 50 /* bpf_check() is a static code analyzer that walks eBPF program 51 * instruction by instruction and updates register/stack state. 52 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 53 * 54 * The first pass is depth-first-search to check that the program is a DAG. 55 * It rejects the following programs: 56 * - larger than BPF_MAXINSNS insns 57 * - if loop is present (detected via back-edge) 58 * - unreachable insns exist (shouldn't be a forest. program = one function) 59 * - out of bounds or malformed jumps 60 * The second pass is all possible path descent from the 1st insn. 61 * Since it's analyzing all paths through the program, the length of the 62 * analysis is limited to 64k insn, which may be hit even if total number of 63 * insn is less then 4K, but there are too many branches that change stack/regs. 64 * Number of 'branches to be analyzed' is limited to 1k 65 * 66 * On entry to each instruction, each register has a type, and the instruction 67 * changes the types of the registers depending on instruction semantics. 68 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 69 * copied to R1. 70 * 71 * All registers are 64-bit. 72 * R0 - return register 73 * R1-R5 argument passing registers 74 * R6-R9 callee saved registers 75 * R10 - frame pointer read-only 76 * 77 * At the start of BPF program the register R1 contains a pointer to bpf_context 78 * and has type PTR_TO_CTX. 79 * 80 * Verifier tracks arithmetic operations on pointers in case: 81 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 82 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 83 * 1st insn copies R10 (which has FRAME_PTR) type into R1 84 * and 2nd arithmetic instruction is pattern matched to recognize 85 * that it wants to construct a pointer to some element within stack. 86 * So after 2nd insn, the register R1 has type PTR_TO_STACK 87 * (and -20 constant is saved for further stack bounds checking). 88 * Meaning that this reg is a pointer to stack plus known immediate constant. 89 * 90 * Most of the time the registers have SCALAR_VALUE type, which 91 * means the register has some value, but it's not a valid pointer. 92 * (like pointer plus pointer becomes SCALAR_VALUE type) 93 * 94 * When verifier sees load or store instructions the type of base register 95 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 96 * four pointer types recognized by check_mem_access() function. 97 * 98 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 99 * and the range of [ptr, ptr + map's value_size) is accessible. 100 * 101 * registers used to pass values to function calls are checked against 102 * function argument constraints. 103 * 104 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 105 * It means that the register type passed to this function must be 106 * PTR_TO_STACK and it will be used inside the function as 107 * 'pointer to map element key' 108 * 109 * For example the argument constraints for bpf_map_lookup_elem(): 110 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 111 * .arg1_type = ARG_CONST_MAP_PTR, 112 * .arg2_type = ARG_PTR_TO_MAP_KEY, 113 * 114 * ret_type says that this function returns 'pointer to map elem value or null' 115 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 116 * 2nd argument should be a pointer to stack, which will be used inside 117 * the helper function as a pointer to map element key. 118 * 119 * On the kernel side the helper function looks like: 120 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 121 * { 122 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 123 * void *key = (void *) (unsigned long) r2; 124 * void *value; 125 * 126 * here kernel can access 'key' and 'map' pointers safely, knowing that 127 * [key, key + map->key_size) bytes are valid and were initialized on 128 * the stack of eBPF program. 129 * } 130 * 131 * Corresponding eBPF program may look like: 132 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 133 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 134 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 135 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 136 * here verifier looks at prototype of map_lookup_elem() and sees: 137 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 138 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 139 * 140 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 141 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 142 * and were initialized prior to this call. 143 * If it's ok, then verifier allows this BPF_CALL insn and looks at 144 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 145 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 146 * returns either pointer to map value or NULL. 147 * 148 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 149 * insn, the register holding that pointer in the true branch changes state to 150 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 151 * branch. See check_cond_jmp_op(). 152 * 153 * After the call R0 is set to return type of the function and registers R1-R5 154 * are set to NOT_INIT to indicate that they are no longer readable. 155 * 156 * The following reference types represent a potential reference to a kernel 157 * resource which, after first being allocated, must be checked and freed by 158 * the BPF program: 159 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 160 * 161 * When the verifier sees a helper call return a reference type, it allocates a 162 * pointer id for the reference and stores it in the current function state. 163 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 164 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 165 * passes through a NULL-check conditional. For the branch wherein the state is 166 * changed to CONST_IMM, the verifier releases the reference. 167 * 168 * For each helper function that allocates a reference, such as 169 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 170 * bpf_sk_release(). When a reference type passes into the release function, 171 * the verifier also releases the reference. If any unchecked or unreleased 172 * reference remains at the end of the program, the verifier rejects it. 173 */ 174 175 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 176 struct bpf_verifier_stack_elem { 177 /* verifier state is 'st' 178 * before processing instruction 'insn_idx' 179 * and after processing instruction 'prev_insn_idx' 180 */ 181 struct bpf_verifier_state st; 182 int insn_idx; 183 int prev_insn_idx; 184 struct bpf_verifier_stack_elem *next; 185 /* length of verifier log at the time this state was pushed on stack */ 186 u32 log_pos; 187 }; 188 189 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 190 #define BPF_COMPLEXITY_LIMIT_STATES 64 191 192 #define BPF_MAP_KEY_POISON (1ULL << 63) 193 #define BPF_MAP_KEY_SEEN (1ULL << 62) 194 195 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 196 197 #define BPF_PRIV_STACK_MIN_SIZE 64 198 199 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 200 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 201 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 202 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 203 static int ref_set_non_owning(struct bpf_verifier_env *env, 204 struct bpf_reg_state *reg); 205 static void specialize_kfunc(struct bpf_verifier_env *env, 206 u32 func_id, u16 offset, unsigned long *addr); 207 static bool is_trusted_reg(const struct bpf_reg_state *reg); 208 209 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_ptr_state.poison; 212 } 213 214 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 215 { 216 return aux->map_ptr_state.unpriv; 217 } 218 219 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 220 struct bpf_map *map, 221 bool unpriv, bool poison) 222 { 223 unpriv |= bpf_map_ptr_unpriv(aux); 224 aux->map_ptr_state.unpriv = unpriv; 225 aux->map_ptr_state.poison = poison; 226 aux->map_ptr_state.map_ptr = map; 227 } 228 229 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 230 { 231 return aux->map_key_state & BPF_MAP_KEY_POISON; 232 } 233 234 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 235 { 236 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 237 } 238 239 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 240 { 241 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 242 } 243 244 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 245 { 246 bool poisoned = bpf_map_key_poisoned(aux); 247 248 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 249 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 250 } 251 252 static bool bpf_helper_call(const struct bpf_insn *insn) 253 { 254 return insn->code == (BPF_JMP | BPF_CALL) && 255 insn->src_reg == 0; 256 } 257 258 static bool bpf_pseudo_call(const struct bpf_insn *insn) 259 { 260 return insn->code == (BPF_JMP | BPF_CALL) && 261 insn->src_reg == BPF_PSEUDO_CALL; 262 } 263 264 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 265 { 266 return insn->code == (BPF_JMP | BPF_CALL) && 267 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 268 } 269 270 struct bpf_call_arg_meta { 271 struct bpf_map *map_ptr; 272 bool raw_mode; 273 bool pkt_access; 274 u8 release_regno; 275 int regno; 276 int access_size; 277 int mem_size; 278 u64 msize_max_value; 279 int ref_obj_id; 280 int dynptr_id; 281 int map_uid; 282 int func_id; 283 struct btf *btf; 284 u32 btf_id; 285 struct btf *ret_btf; 286 u32 ret_btf_id; 287 u32 subprogno; 288 struct btf_field *kptr_field; 289 }; 290 291 struct bpf_kfunc_call_arg_meta { 292 /* In parameters */ 293 struct btf *btf; 294 u32 func_id; 295 u32 kfunc_flags; 296 const struct btf_type *func_proto; 297 const char *func_name; 298 /* Out parameters */ 299 u32 ref_obj_id; 300 u8 release_regno; 301 bool r0_rdonly; 302 u32 ret_btf_id; 303 u64 r0_size; 304 u32 subprogno; 305 struct { 306 u64 value; 307 bool found; 308 } arg_constant; 309 310 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 311 * generally to pass info about user-defined local kptr types to later 312 * verification logic 313 * bpf_obj_drop/bpf_percpu_obj_drop 314 * Record the local kptr type to be drop'd 315 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 316 * Record the local kptr type to be refcount_incr'd and use 317 * arg_owning_ref to determine whether refcount_acquire should be 318 * fallible 319 */ 320 struct btf *arg_btf; 321 u32 arg_btf_id; 322 bool arg_owning_ref; 323 324 struct { 325 struct btf_field *field; 326 } arg_list_head; 327 struct { 328 struct btf_field *field; 329 } arg_rbtree_root; 330 struct { 331 enum bpf_dynptr_type type; 332 u32 id; 333 u32 ref_obj_id; 334 } initialized_dynptr; 335 struct { 336 u8 spi; 337 u8 frameno; 338 } iter; 339 struct { 340 struct bpf_map *ptr; 341 int uid; 342 } map; 343 u64 mem_size; 344 }; 345 346 struct btf *btf_vmlinux; 347 348 static const char *btf_type_name(const struct btf *btf, u32 id) 349 { 350 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 351 } 352 353 static DEFINE_MUTEX(bpf_verifier_lock); 354 static DEFINE_MUTEX(bpf_percpu_ma_lock); 355 356 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 357 { 358 struct bpf_verifier_env *env = private_data; 359 va_list args; 360 361 if (!bpf_verifier_log_needed(&env->log)) 362 return; 363 364 va_start(args, fmt); 365 bpf_verifier_vlog(&env->log, fmt, args); 366 va_end(args); 367 } 368 369 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 370 struct bpf_reg_state *reg, 371 struct bpf_retval_range range, const char *ctx, 372 const char *reg_name) 373 { 374 bool unknown = true; 375 376 verbose(env, "%s the register %s has", ctx, reg_name); 377 if (reg->smin_value > S64_MIN) { 378 verbose(env, " smin=%lld", reg->smin_value); 379 unknown = false; 380 } 381 if (reg->smax_value < S64_MAX) { 382 verbose(env, " smax=%lld", reg->smax_value); 383 unknown = false; 384 } 385 if (unknown) 386 verbose(env, " unknown scalar value"); 387 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); 388 } 389 390 static bool reg_not_null(const struct bpf_reg_state *reg) 391 { 392 enum bpf_reg_type type; 393 394 type = reg->type; 395 if (type_may_be_null(type)) 396 return false; 397 398 type = base_type(type); 399 return type == PTR_TO_SOCKET || 400 type == PTR_TO_TCP_SOCK || 401 type == PTR_TO_MAP_VALUE || 402 type == PTR_TO_MAP_KEY || 403 type == PTR_TO_SOCK_COMMON || 404 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 405 type == PTR_TO_MEM; 406 } 407 408 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 409 { 410 struct btf_record *rec = NULL; 411 struct btf_struct_meta *meta; 412 413 if (reg->type == PTR_TO_MAP_VALUE) { 414 rec = reg->map_ptr->record; 415 } else if (type_is_ptr_alloc_obj(reg->type)) { 416 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 417 if (meta) 418 rec = meta->record; 419 } 420 return rec; 421 } 422 423 static bool mask_raw_tp_reg_cond(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) { 424 return reg->type == (PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL) && 425 bpf_prog_is_raw_tp(env->prog) && !reg->ref_obj_id; 426 } 427 428 static bool mask_raw_tp_reg(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 429 { 430 if (!mask_raw_tp_reg_cond(env, reg)) 431 return false; 432 reg->type &= ~PTR_MAYBE_NULL; 433 return true; 434 } 435 436 static void unmask_raw_tp_reg(struct bpf_reg_state *reg, bool result) 437 { 438 if (result) 439 reg->type |= PTR_MAYBE_NULL; 440 } 441 442 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 443 { 444 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 445 446 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 447 } 448 449 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 450 { 451 struct bpf_func_info *info; 452 453 if (!env->prog->aux->func_info) 454 return ""; 455 456 info = &env->prog->aux->func_info[subprog]; 457 return btf_type_name(env->prog->aux->btf, info->type_id); 458 } 459 460 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) 461 { 462 struct bpf_subprog_info *info = subprog_info(env, subprog); 463 464 info->is_cb = true; 465 info->is_async_cb = true; 466 info->is_exception_cb = true; 467 } 468 469 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) 470 { 471 return subprog_info(env, subprog)->is_exception_cb; 472 } 473 474 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 475 { 476 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 477 } 478 479 static bool type_is_rdonly_mem(u32 type) 480 { 481 return type & MEM_RDONLY; 482 } 483 484 static bool is_acquire_function(enum bpf_func_id func_id, 485 const struct bpf_map *map) 486 { 487 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 488 489 if (func_id == BPF_FUNC_sk_lookup_tcp || 490 func_id == BPF_FUNC_sk_lookup_udp || 491 func_id == BPF_FUNC_skc_lookup_tcp || 492 func_id == BPF_FUNC_ringbuf_reserve || 493 func_id == BPF_FUNC_kptr_xchg) 494 return true; 495 496 if (func_id == BPF_FUNC_map_lookup_elem && 497 (map_type == BPF_MAP_TYPE_SOCKMAP || 498 map_type == BPF_MAP_TYPE_SOCKHASH)) 499 return true; 500 501 return false; 502 } 503 504 static bool is_ptr_cast_function(enum bpf_func_id func_id) 505 { 506 return func_id == BPF_FUNC_tcp_sock || 507 func_id == BPF_FUNC_sk_fullsock || 508 func_id == BPF_FUNC_skc_to_tcp_sock || 509 func_id == BPF_FUNC_skc_to_tcp6_sock || 510 func_id == BPF_FUNC_skc_to_udp6_sock || 511 func_id == BPF_FUNC_skc_to_mptcp_sock || 512 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 513 func_id == BPF_FUNC_skc_to_tcp_request_sock; 514 } 515 516 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 517 { 518 return func_id == BPF_FUNC_dynptr_data; 519 } 520 521 static bool is_sync_callback_calling_kfunc(u32 btf_id); 522 static bool is_async_callback_calling_kfunc(u32 btf_id); 523 static bool is_callback_calling_kfunc(u32 btf_id); 524 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 525 526 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id); 527 528 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 529 { 530 return func_id == BPF_FUNC_for_each_map_elem || 531 func_id == BPF_FUNC_find_vma || 532 func_id == BPF_FUNC_loop || 533 func_id == BPF_FUNC_user_ringbuf_drain; 534 } 535 536 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 537 { 538 return func_id == BPF_FUNC_timer_set_callback; 539 } 540 541 static bool is_callback_calling_function(enum bpf_func_id func_id) 542 { 543 return is_sync_callback_calling_function(func_id) || 544 is_async_callback_calling_function(func_id); 545 } 546 547 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 548 { 549 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 550 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 551 } 552 553 static bool is_async_callback_calling_insn(struct bpf_insn *insn) 554 { 555 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) || 556 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm)); 557 } 558 559 static bool is_may_goto_insn(struct bpf_insn *insn) 560 { 561 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; 562 } 563 564 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) 565 { 566 return is_may_goto_insn(&env->prog->insnsi[insn_idx]); 567 } 568 569 static bool is_storage_get_function(enum bpf_func_id func_id) 570 { 571 return func_id == BPF_FUNC_sk_storage_get || 572 func_id == BPF_FUNC_inode_storage_get || 573 func_id == BPF_FUNC_task_storage_get || 574 func_id == BPF_FUNC_cgrp_storage_get; 575 } 576 577 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 578 const struct bpf_map *map) 579 { 580 int ref_obj_uses = 0; 581 582 if (is_ptr_cast_function(func_id)) 583 ref_obj_uses++; 584 if (is_acquire_function(func_id, map)) 585 ref_obj_uses++; 586 if (is_dynptr_ref_function(func_id)) 587 ref_obj_uses++; 588 589 return ref_obj_uses > 1; 590 } 591 592 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 593 { 594 return BPF_CLASS(insn->code) == BPF_STX && 595 BPF_MODE(insn->code) == BPF_ATOMIC && 596 insn->imm == BPF_CMPXCHG; 597 } 598 599 static int __get_spi(s32 off) 600 { 601 return (-off - 1) / BPF_REG_SIZE; 602 } 603 604 static struct bpf_func_state *func(struct bpf_verifier_env *env, 605 const struct bpf_reg_state *reg) 606 { 607 struct bpf_verifier_state *cur = env->cur_state; 608 609 return cur->frame[reg->frameno]; 610 } 611 612 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 613 { 614 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 615 616 /* We need to check that slots between [spi - nr_slots + 1, spi] are 617 * within [0, allocated_stack). 618 * 619 * Please note that the spi grows downwards. For example, a dynptr 620 * takes the size of two stack slots; the first slot will be at 621 * spi and the second slot will be at spi - 1. 622 */ 623 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 624 } 625 626 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 627 const char *obj_kind, int nr_slots) 628 { 629 int off, spi; 630 631 if (!tnum_is_const(reg->var_off)) { 632 verbose(env, "%s has to be at a constant offset\n", obj_kind); 633 return -EINVAL; 634 } 635 636 off = reg->off + reg->var_off.value; 637 if (off % BPF_REG_SIZE) { 638 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 639 return -EINVAL; 640 } 641 642 spi = __get_spi(off); 643 if (spi + 1 < nr_slots) { 644 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 645 return -EINVAL; 646 } 647 648 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 649 return -ERANGE; 650 return spi; 651 } 652 653 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 654 { 655 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 656 } 657 658 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 659 { 660 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 661 } 662 663 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 664 { 665 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 666 case DYNPTR_TYPE_LOCAL: 667 return BPF_DYNPTR_TYPE_LOCAL; 668 case DYNPTR_TYPE_RINGBUF: 669 return BPF_DYNPTR_TYPE_RINGBUF; 670 case DYNPTR_TYPE_SKB: 671 return BPF_DYNPTR_TYPE_SKB; 672 case DYNPTR_TYPE_XDP: 673 return BPF_DYNPTR_TYPE_XDP; 674 default: 675 return BPF_DYNPTR_TYPE_INVALID; 676 } 677 } 678 679 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 680 { 681 switch (type) { 682 case BPF_DYNPTR_TYPE_LOCAL: 683 return DYNPTR_TYPE_LOCAL; 684 case BPF_DYNPTR_TYPE_RINGBUF: 685 return DYNPTR_TYPE_RINGBUF; 686 case BPF_DYNPTR_TYPE_SKB: 687 return DYNPTR_TYPE_SKB; 688 case BPF_DYNPTR_TYPE_XDP: 689 return DYNPTR_TYPE_XDP; 690 default: 691 return 0; 692 } 693 } 694 695 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 696 { 697 return type == BPF_DYNPTR_TYPE_RINGBUF; 698 } 699 700 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 701 enum bpf_dynptr_type type, 702 bool first_slot, int dynptr_id); 703 704 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 705 struct bpf_reg_state *reg); 706 707 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 708 struct bpf_reg_state *sreg1, 709 struct bpf_reg_state *sreg2, 710 enum bpf_dynptr_type type) 711 { 712 int id = ++env->id_gen; 713 714 __mark_dynptr_reg(sreg1, type, true, id); 715 __mark_dynptr_reg(sreg2, type, false, id); 716 } 717 718 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 719 struct bpf_reg_state *reg, 720 enum bpf_dynptr_type type) 721 { 722 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 723 } 724 725 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 726 struct bpf_func_state *state, int spi); 727 728 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 729 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 730 { 731 struct bpf_func_state *state = func(env, reg); 732 enum bpf_dynptr_type type; 733 int spi, i, err; 734 735 spi = dynptr_get_spi(env, reg); 736 if (spi < 0) 737 return spi; 738 739 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 740 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 741 * to ensure that for the following example: 742 * [d1][d1][d2][d2] 743 * spi 3 2 1 0 744 * So marking spi = 2 should lead to destruction of both d1 and d2. In 745 * case they do belong to same dynptr, second call won't see slot_type 746 * as STACK_DYNPTR and will simply skip destruction. 747 */ 748 err = destroy_if_dynptr_stack_slot(env, state, spi); 749 if (err) 750 return err; 751 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 752 if (err) 753 return err; 754 755 for (i = 0; i < BPF_REG_SIZE; i++) { 756 state->stack[spi].slot_type[i] = STACK_DYNPTR; 757 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 758 } 759 760 type = arg_to_dynptr_type(arg_type); 761 if (type == BPF_DYNPTR_TYPE_INVALID) 762 return -EINVAL; 763 764 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 765 &state->stack[spi - 1].spilled_ptr, type); 766 767 if (dynptr_type_refcounted(type)) { 768 /* The id is used to track proper releasing */ 769 int id; 770 771 if (clone_ref_obj_id) 772 id = clone_ref_obj_id; 773 else 774 id = acquire_reference_state(env, insn_idx); 775 776 if (id < 0) 777 return id; 778 779 state->stack[spi].spilled_ptr.ref_obj_id = id; 780 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 781 } 782 783 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 784 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 785 786 return 0; 787 } 788 789 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 790 { 791 int i; 792 793 for (i = 0; i < BPF_REG_SIZE; i++) { 794 state->stack[spi].slot_type[i] = STACK_INVALID; 795 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 796 } 797 798 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 799 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 800 801 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 802 * 803 * While we don't allow reading STACK_INVALID, it is still possible to 804 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 805 * helpers or insns can do partial read of that part without failing, 806 * but check_stack_range_initialized, check_stack_read_var_off, and 807 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 808 * the slot conservatively. Hence we need to prevent those liveness 809 * marking walks. 810 * 811 * This was not a problem before because STACK_INVALID is only set by 812 * default (where the default reg state has its reg->parent as NULL), or 813 * in clean_live_states after REG_LIVE_DONE (at which point 814 * mark_reg_read won't walk reg->parent chain), but not randomly during 815 * verifier state exploration (like we did above). Hence, for our case 816 * parentage chain will still be live (i.e. reg->parent may be 817 * non-NULL), while earlier reg->parent was NULL, so we need 818 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 819 * done later on reads or by mark_dynptr_read as well to unnecessary 820 * mark registers in verifier state. 821 */ 822 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 823 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 824 } 825 826 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 827 { 828 struct bpf_func_state *state = func(env, reg); 829 int spi, ref_obj_id, i; 830 831 spi = dynptr_get_spi(env, reg); 832 if (spi < 0) 833 return spi; 834 835 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 836 invalidate_dynptr(env, state, spi); 837 return 0; 838 } 839 840 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 841 842 /* If the dynptr has a ref_obj_id, then we need to invalidate 843 * two things: 844 * 845 * 1) Any dynptrs with a matching ref_obj_id (clones) 846 * 2) Any slices derived from this dynptr. 847 */ 848 849 /* Invalidate any slices associated with this dynptr */ 850 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 851 852 /* Invalidate any dynptr clones */ 853 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 854 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 855 continue; 856 857 /* it should always be the case that if the ref obj id 858 * matches then the stack slot also belongs to a 859 * dynptr 860 */ 861 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 862 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 863 return -EFAULT; 864 } 865 if (state->stack[i].spilled_ptr.dynptr.first_slot) 866 invalidate_dynptr(env, state, i); 867 } 868 869 return 0; 870 } 871 872 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 873 struct bpf_reg_state *reg); 874 875 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 876 { 877 if (!env->allow_ptr_leaks) 878 __mark_reg_not_init(env, reg); 879 else 880 __mark_reg_unknown(env, reg); 881 } 882 883 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 884 struct bpf_func_state *state, int spi) 885 { 886 struct bpf_func_state *fstate; 887 struct bpf_reg_state *dreg; 888 int i, dynptr_id; 889 890 /* We always ensure that STACK_DYNPTR is never set partially, 891 * hence just checking for slot_type[0] is enough. This is 892 * different for STACK_SPILL, where it may be only set for 893 * 1 byte, so code has to use is_spilled_reg. 894 */ 895 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 896 return 0; 897 898 /* Reposition spi to first slot */ 899 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 900 spi = spi + 1; 901 902 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 903 verbose(env, "cannot overwrite referenced dynptr\n"); 904 return -EINVAL; 905 } 906 907 mark_stack_slot_scratched(env, spi); 908 mark_stack_slot_scratched(env, spi - 1); 909 910 /* Writing partially to one dynptr stack slot destroys both. */ 911 for (i = 0; i < BPF_REG_SIZE; i++) { 912 state->stack[spi].slot_type[i] = STACK_INVALID; 913 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 914 } 915 916 dynptr_id = state->stack[spi].spilled_ptr.id; 917 /* Invalidate any slices associated with this dynptr */ 918 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 919 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 920 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 921 continue; 922 if (dreg->dynptr_id == dynptr_id) 923 mark_reg_invalid(env, dreg); 924 })); 925 926 /* Do not release reference state, we are destroying dynptr on stack, 927 * not using some helper to release it. Just reset register. 928 */ 929 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 930 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 931 932 /* Same reason as unmark_stack_slots_dynptr above */ 933 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 934 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 935 936 return 0; 937 } 938 939 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 940 { 941 int spi; 942 943 if (reg->type == CONST_PTR_TO_DYNPTR) 944 return false; 945 946 spi = dynptr_get_spi(env, reg); 947 948 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 949 * error because this just means the stack state hasn't been updated yet. 950 * We will do check_mem_access to check and update stack bounds later. 951 */ 952 if (spi < 0 && spi != -ERANGE) 953 return false; 954 955 /* We don't need to check if the stack slots are marked by previous 956 * dynptr initializations because we allow overwriting existing unreferenced 957 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 958 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 959 * touching are completely destructed before we reinitialize them for a new 960 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 961 * instead of delaying it until the end where the user will get "Unreleased 962 * reference" error. 963 */ 964 return true; 965 } 966 967 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 968 { 969 struct bpf_func_state *state = func(env, reg); 970 int i, spi; 971 972 /* This already represents first slot of initialized bpf_dynptr. 973 * 974 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 975 * check_func_arg_reg_off's logic, so we don't need to check its 976 * offset and alignment. 977 */ 978 if (reg->type == CONST_PTR_TO_DYNPTR) 979 return true; 980 981 spi = dynptr_get_spi(env, reg); 982 if (spi < 0) 983 return false; 984 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 985 return false; 986 987 for (i = 0; i < BPF_REG_SIZE; i++) { 988 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 989 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 990 return false; 991 } 992 993 return true; 994 } 995 996 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 997 enum bpf_arg_type arg_type) 998 { 999 struct bpf_func_state *state = func(env, reg); 1000 enum bpf_dynptr_type dynptr_type; 1001 int spi; 1002 1003 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1004 if (arg_type == ARG_PTR_TO_DYNPTR) 1005 return true; 1006 1007 dynptr_type = arg_to_dynptr_type(arg_type); 1008 if (reg->type == CONST_PTR_TO_DYNPTR) { 1009 return reg->dynptr.type == dynptr_type; 1010 } else { 1011 spi = dynptr_get_spi(env, reg); 1012 if (spi < 0) 1013 return false; 1014 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1015 } 1016 } 1017 1018 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1019 1020 static bool in_rcu_cs(struct bpf_verifier_env *env); 1021 1022 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 1023 1024 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1025 struct bpf_kfunc_call_arg_meta *meta, 1026 struct bpf_reg_state *reg, int insn_idx, 1027 struct btf *btf, u32 btf_id, int nr_slots) 1028 { 1029 struct bpf_func_state *state = func(env, reg); 1030 int spi, i, j, id; 1031 1032 spi = iter_get_spi(env, reg, nr_slots); 1033 if (spi < 0) 1034 return spi; 1035 1036 id = acquire_reference_state(env, insn_idx); 1037 if (id < 0) 1038 return id; 1039 1040 for (i = 0; i < nr_slots; i++) { 1041 struct bpf_stack_state *slot = &state->stack[spi - i]; 1042 struct bpf_reg_state *st = &slot->spilled_ptr; 1043 1044 __mark_reg_known_zero(st); 1045 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1046 if (is_kfunc_rcu_protected(meta)) { 1047 if (in_rcu_cs(env)) 1048 st->type |= MEM_RCU; 1049 else 1050 st->type |= PTR_UNTRUSTED; 1051 } 1052 st->live |= REG_LIVE_WRITTEN; 1053 st->ref_obj_id = i == 0 ? id : 0; 1054 st->iter.btf = btf; 1055 st->iter.btf_id = btf_id; 1056 st->iter.state = BPF_ITER_STATE_ACTIVE; 1057 st->iter.depth = 0; 1058 1059 for (j = 0; j < BPF_REG_SIZE; j++) 1060 slot->slot_type[j] = STACK_ITER; 1061 1062 mark_stack_slot_scratched(env, spi - i); 1063 } 1064 1065 return 0; 1066 } 1067 1068 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1069 struct bpf_reg_state *reg, int nr_slots) 1070 { 1071 struct bpf_func_state *state = func(env, reg); 1072 int spi, i, j; 1073 1074 spi = iter_get_spi(env, reg, nr_slots); 1075 if (spi < 0) 1076 return spi; 1077 1078 for (i = 0; i < nr_slots; i++) { 1079 struct bpf_stack_state *slot = &state->stack[spi - i]; 1080 struct bpf_reg_state *st = &slot->spilled_ptr; 1081 1082 if (i == 0) 1083 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1084 1085 __mark_reg_not_init(env, st); 1086 1087 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1088 st->live |= REG_LIVE_WRITTEN; 1089 1090 for (j = 0; j < BPF_REG_SIZE; j++) 1091 slot->slot_type[j] = STACK_INVALID; 1092 1093 mark_stack_slot_scratched(env, spi - i); 1094 } 1095 1096 return 0; 1097 } 1098 1099 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1100 struct bpf_reg_state *reg, int nr_slots) 1101 { 1102 struct bpf_func_state *state = func(env, reg); 1103 int spi, i, j; 1104 1105 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1106 * will do check_mem_access to check and update stack bounds later, so 1107 * return true for that case. 1108 */ 1109 spi = iter_get_spi(env, reg, nr_slots); 1110 if (spi == -ERANGE) 1111 return true; 1112 if (spi < 0) 1113 return false; 1114 1115 for (i = 0; i < nr_slots; i++) { 1116 struct bpf_stack_state *slot = &state->stack[spi - i]; 1117 1118 for (j = 0; j < BPF_REG_SIZE; j++) 1119 if (slot->slot_type[j] == STACK_ITER) 1120 return false; 1121 } 1122 1123 return true; 1124 } 1125 1126 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1127 struct btf *btf, u32 btf_id, int nr_slots) 1128 { 1129 struct bpf_func_state *state = func(env, reg); 1130 int spi, i, j; 1131 1132 spi = iter_get_spi(env, reg, nr_slots); 1133 if (spi < 0) 1134 return -EINVAL; 1135 1136 for (i = 0; i < nr_slots; i++) { 1137 struct bpf_stack_state *slot = &state->stack[spi - i]; 1138 struct bpf_reg_state *st = &slot->spilled_ptr; 1139 1140 if (st->type & PTR_UNTRUSTED) 1141 return -EPROTO; 1142 /* only main (first) slot has ref_obj_id set */ 1143 if (i == 0 && !st->ref_obj_id) 1144 return -EINVAL; 1145 if (i != 0 && st->ref_obj_id) 1146 return -EINVAL; 1147 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1148 return -EINVAL; 1149 1150 for (j = 0; j < BPF_REG_SIZE; j++) 1151 if (slot->slot_type[j] != STACK_ITER) 1152 return -EINVAL; 1153 } 1154 1155 return 0; 1156 } 1157 1158 /* Check if given stack slot is "special": 1159 * - spilled register state (STACK_SPILL); 1160 * - dynptr state (STACK_DYNPTR); 1161 * - iter state (STACK_ITER). 1162 */ 1163 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1164 { 1165 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1166 1167 switch (type) { 1168 case STACK_SPILL: 1169 case STACK_DYNPTR: 1170 case STACK_ITER: 1171 return true; 1172 case STACK_INVALID: 1173 case STACK_MISC: 1174 case STACK_ZERO: 1175 return false; 1176 default: 1177 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1178 return true; 1179 } 1180 } 1181 1182 /* The reg state of a pointer or a bounded scalar was saved when 1183 * it was spilled to the stack. 1184 */ 1185 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1186 { 1187 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1188 } 1189 1190 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1191 { 1192 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1193 stack->spilled_ptr.type == SCALAR_VALUE; 1194 } 1195 1196 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) 1197 { 1198 return stack->slot_type[0] == STACK_SPILL && 1199 stack->spilled_ptr.type == SCALAR_VALUE; 1200 } 1201 1202 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which 1203 * case they are equivalent, or it's STACK_ZERO, in which case we preserve 1204 * more precise STACK_ZERO. 1205 * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged 1206 * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is 1207 * unnecessary as both are considered equivalent when loading data and pruning, 1208 * in case of unprivileged mode it will be incorrect to allow reads of invalid 1209 * slots. 1210 */ 1211 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) 1212 { 1213 if (*stype == STACK_ZERO) 1214 return; 1215 if (*stype == STACK_INVALID) 1216 return; 1217 *stype = STACK_MISC; 1218 } 1219 1220 static void scrub_spilled_slot(u8 *stype) 1221 { 1222 if (*stype != STACK_INVALID) 1223 *stype = STACK_MISC; 1224 } 1225 1226 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1227 * small to hold src. This is different from krealloc since we don't want to preserve 1228 * the contents of dst. 1229 * 1230 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1231 * not be allocated. 1232 */ 1233 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1234 { 1235 size_t alloc_bytes; 1236 void *orig = dst; 1237 size_t bytes; 1238 1239 if (ZERO_OR_NULL_PTR(src)) 1240 goto out; 1241 1242 if (unlikely(check_mul_overflow(n, size, &bytes))) 1243 return NULL; 1244 1245 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1246 dst = krealloc(orig, alloc_bytes, flags); 1247 if (!dst) { 1248 kfree(orig); 1249 return NULL; 1250 } 1251 1252 memcpy(dst, src, bytes); 1253 out: 1254 return dst ? dst : ZERO_SIZE_PTR; 1255 } 1256 1257 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1258 * small to hold new_n items. new items are zeroed out if the array grows. 1259 * 1260 * Contrary to krealloc_array, does not free arr if new_n is zero. 1261 */ 1262 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1263 { 1264 size_t alloc_size; 1265 void *new_arr; 1266 1267 if (!new_n || old_n == new_n) 1268 goto out; 1269 1270 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1271 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1272 if (!new_arr) { 1273 kfree(arr); 1274 return NULL; 1275 } 1276 arr = new_arr; 1277 1278 if (new_n > old_n) 1279 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1280 1281 out: 1282 return arr ? arr : ZERO_SIZE_PTR; 1283 } 1284 1285 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1286 { 1287 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1288 sizeof(struct bpf_reference_state), GFP_KERNEL); 1289 if (!dst->refs) 1290 return -ENOMEM; 1291 1292 dst->active_locks = src->active_locks; 1293 dst->acquired_refs = src->acquired_refs; 1294 return 0; 1295 } 1296 1297 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1298 { 1299 size_t n = src->allocated_stack / BPF_REG_SIZE; 1300 1301 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1302 GFP_KERNEL); 1303 if (!dst->stack) 1304 return -ENOMEM; 1305 1306 dst->allocated_stack = src->allocated_stack; 1307 return 0; 1308 } 1309 1310 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1311 { 1312 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1313 sizeof(struct bpf_reference_state)); 1314 if (!state->refs) 1315 return -ENOMEM; 1316 1317 state->acquired_refs = n; 1318 return 0; 1319 } 1320 1321 /* Possibly update state->allocated_stack to be at least size bytes. Also 1322 * possibly update the function's high-water mark in its bpf_subprog_info. 1323 */ 1324 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1325 { 1326 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; 1327 1328 /* The stack size is always a multiple of BPF_REG_SIZE. */ 1329 size = round_up(size, BPF_REG_SIZE); 1330 n = size / BPF_REG_SIZE; 1331 1332 if (old_n >= n) 1333 return 0; 1334 1335 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1336 if (!state->stack) 1337 return -ENOMEM; 1338 1339 state->allocated_stack = size; 1340 1341 /* update known max for given subprogram */ 1342 if (env->subprog_info[state->subprogno].stack_depth < size) 1343 env->subprog_info[state->subprogno].stack_depth = size; 1344 1345 return 0; 1346 } 1347 1348 /* Acquire a pointer id from the env and update the state->refs to include 1349 * this new pointer reference. 1350 * On success, returns a valid pointer id to associate with the register 1351 * On failure, returns a negative errno. 1352 */ 1353 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1354 { 1355 struct bpf_func_state *state = cur_func(env); 1356 int new_ofs = state->acquired_refs; 1357 int id, err; 1358 1359 err = resize_reference_state(state, state->acquired_refs + 1); 1360 if (err) 1361 return err; 1362 id = ++env->id_gen; 1363 state->refs[new_ofs].type = REF_TYPE_PTR; 1364 state->refs[new_ofs].id = id; 1365 state->refs[new_ofs].insn_idx = insn_idx; 1366 1367 return id; 1368 } 1369 1370 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type, 1371 int id, void *ptr) 1372 { 1373 struct bpf_func_state *state = cur_func(env); 1374 int new_ofs = state->acquired_refs; 1375 int err; 1376 1377 err = resize_reference_state(state, state->acquired_refs + 1); 1378 if (err) 1379 return err; 1380 state->refs[new_ofs].type = type; 1381 state->refs[new_ofs].id = id; 1382 state->refs[new_ofs].insn_idx = insn_idx; 1383 state->refs[new_ofs].ptr = ptr; 1384 1385 state->active_locks++; 1386 return 0; 1387 } 1388 1389 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1390 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1391 { 1392 int i, last_idx; 1393 1394 last_idx = state->acquired_refs - 1; 1395 for (i = 0; i < state->acquired_refs; i++) { 1396 if (state->refs[i].type != REF_TYPE_PTR) 1397 continue; 1398 if (state->refs[i].id == ptr_id) { 1399 if (last_idx && i != last_idx) 1400 memcpy(&state->refs[i], &state->refs[last_idx], 1401 sizeof(*state->refs)); 1402 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1403 state->acquired_refs--; 1404 return 0; 1405 } 1406 } 1407 return -EINVAL; 1408 } 1409 1410 static int release_lock_state(struct bpf_func_state *state, int type, int id, void *ptr) 1411 { 1412 int i, last_idx; 1413 1414 last_idx = state->acquired_refs - 1; 1415 for (i = 0; i < state->acquired_refs; i++) { 1416 if (state->refs[i].type != type) 1417 continue; 1418 if (state->refs[i].id == id && state->refs[i].ptr == ptr) { 1419 if (last_idx && i != last_idx) 1420 memcpy(&state->refs[i], &state->refs[last_idx], 1421 sizeof(*state->refs)); 1422 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1423 state->acquired_refs--; 1424 state->active_locks--; 1425 return 0; 1426 } 1427 } 1428 return -EINVAL; 1429 } 1430 1431 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_env *env, enum ref_state_type type, 1432 int id, void *ptr) 1433 { 1434 struct bpf_func_state *state = cur_func(env); 1435 int i; 1436 1437 for (i = 0; i < state->acquired_refs; i++) { 1438 struct bpf_reference_state *s = &state->refs[i]; 1439 1440 if (s->type == REF_TYPE_PTR || s->type != type) 1441 continue; 1442 1443 if (s->id == id && s->ptr == ptr) 1444 return s; 1445 } 1446 return NULL; 1447 } 1448 1449 static void free_func_state(struct bpf_func_state *state) 1450 { 1451 if (!state) 1452 return; 1453 kfree(state->refs); 1454 kfree(state->stack); 1455 kfree(state); 1456 } 1457 1458 static void free_verifier_state(struct bpf_verifier_state *state, 1459 bool free_self) 1460 { 1461 int i; 1462 1463 for (i = 0; i <= state->curframe; i++) { 1464 free_func_state(state->frame[i]); 1465 state->frame[i] = NULL; 1466 } 1467 if (free_self) 1468 kfree(state); 1469 } 1470 1471 /* copy verifier state from src to dst growing dst stack space 1472 * when necessary to accommodate larger src stack 1473 */ 1474 static int copy_func_state(struct bpf_func_state *dst, 1475 const struct bpf_func_state *src) 1476 { 1477 int err; 1478 1479 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1480 err = copy_reference_state(dst, src); 1481 if (err) 1482 return err; 1483 return copy_stack_state(dst, src); 1484 } 1485 1486 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1487 const struct bpf_verifier_state *src) 1488 { 1489 struct bpf_func_state *dst; 1490 int i, err; 1491 1492 /* if dst has more stack frames then src frame, free them, this is also 1493 * necessary in case of exceptional exits using bpf_throw. 1494 */ 1495 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1496 free_func_state(dst_state->frame[i]); 1497 dst_state->frame[i] = NULL; 1498 } 1499 dst_state->speculative = src->speculative; 1500 dst_state->active_rcu_lock = src->active_rcu_lock; 1501 dst_state->active_preempt_lock = src->active_preempt_lock; 1502 dst_state->in_sleepable = src->in_sleepable; 1503 dst_state->curframe = src->curframe; 1504 dst_state->branches = src->branches; 1505 dst_state->parent = src->parent; 1506 dst_state->first_insn_idx = src->first_insn_idx; 1507 dst_state->last_insn_idx = src->last_insn_idx; 1508 dst_state->insn_hist_start = src->insn_hist_start; 1509 dst_state->insn_hist_end = src->insn_hist_end; 1510 dst_state->dfs_depth = src->dfs_depth; 1511 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1512 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1513 dst_state->may_goto_depth = src->may_goto_depth; 1514 for (i = 0; i <= src->curframe; i++) { 1515 dst = dst_state->frame[i]; 1516 if (!dst) { 1517 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1518 if (!dst) 1519 return -ENOMEM; 1520 dst_state->frame[i] = dst; 1521 } 1522 err = copy_func_state(dst, src->frame[i]); 1523 if (err) 1524 return err; 1525 } 1526 return 0; 1527 } 1528 1529 static u32 state_htab_size(struct bpf_verifier_env *env) 1530 { 1531 return env->prog->len; 1532 } 1533 1534 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1535 { 1536 struct bpf_verifier_state *cur = env->cur_state; 1537 struct bpf_func_state *state = cur->frame[cur->curframe]; 1538 1539 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1540 } 1541 1542 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1543 { 1544 int fr; 1545 1546 if (a->curframe != b->curframe) 1547 return false; 1548 1549 for (fr = a->curframe; fr >= 0; fr--) 1550 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1551 return false; 1552 1553 return true; 1554 } 1555 1556 /* Open coded iterators allow back-edges in the state graph in order to 1557 * check unbounded loops that iterators. 1558 * 1559 * In is_state_visited() it is necessary to know if explored states are 1560 * part of some loops in order to decide whether non-exact states 1561 * comparison could be used: 1562 * - non-exact states comparison establishes sub-state relation and uses 1563 * read and precision marks to do so, these marks are propagated from 1564 * children states and thus are not guaranteed to be final in a loop; 1565 * - exact states comparison just checks if current and explored states 1566 * are identical (and thus form a back-edge). 1567 * 1568 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1569 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1570 * algorithm for loop structure detection and gives an overview of 1571 * relevant terminology. It also has helpful illustrations. 1572 * 1573 * [1] https://api.semanticscholar.org/CorpusID:15784067 1574 * 1575 * We use a similar algorithm but because loop nested structure is 1576 * irrelevant for verifier ours is significantly simpler and resembles 1577 * strongly connected components algorithm from Sedgewick's textbook. 1578 * 1579 * Define topmost loop entry as a first node of the loop traversed in a 1580 * depth first search starting from initial state. The goal of the loop 1581 * tracking algorithm is to associate topmost loop entries with states 1582 * derived from these entries. 1583 * 1584 * For each step in the DFS states traversal algorithm needs to identify 1585 * the following situations: 1586 * 1587 * initial initial initial 1588 * | | | 1589 * V V V 1590 * ... ... .---------> hdr 1591 * | | | | 1592 * V V | V 1593 * cur .-> succ | .------... 1594 * | | | | | | 1595 * V | V | V V 1596 * succ '-- cur | ... ... 1597 * | | | 1598 * | V V 1599 * | succ <- cur 1600 * | | 1601 * | V 1602 * | ... 1603 * | | 1604 * '----' 1605 * 1606 * (A) successor state of cur (B) successor state of cur or it's entry 1607 * not yet traversed are in current DFS path, thus cur and succ 1608 * are members of the same outermost loop 1609 * 1610 * initial initial 1611 * | | 1612 * V V 1613 * ... ... 1614 * | | 1615 * V V 1616 * .------... .------... 1617 * | | | | 1618 * V V V V 1619 * .-> hdr ... ... ... 1620 * | | | | | 1621 * | V V V V 1622 * | succ <- cur succ <- cur 1623 * | | | 1624 * | V V 1625 * | ... ... 1626 * | | | 1627 * '----' exit 1628 * 1629 * (C) successor state of cur is a part of some loop but this loop 1630 * does not include cur or successor state is not in a loop at all. 1631 * 1632 * Algorithm could be described as the following python code: 1633 * 1634 * traversed = set() # Set of traversed nodes 1635 * entries = {} # Mapping from node to loop entry 1636 * depths = {} # Depth level assigned to graph node 1637 * path = set() # Current DFS path 1638 * 1639 * # Find outermost loop entry known for n 1640 * def get_loop_entry(n): 1641 * h = entries.get(n, None) 1642 * while h in entries and entries[h] != h: 1643 * h = entries[h] 1644 * return h 1645 * 1646 * # Update n's loop entry if h's outermost entry comes 1647 * # before n's outermost entry in current DFS path. 1648 * def update_loop_entry(n, h): 1649 * n1 = get_loop_entry(n) or n 1650 * h1 = get_loop_entry(h) or h 1651 * if h1 in path and depths[h1] <= depths[n1]: 1652 * entries[n] = h1 1653 * 1654 * def dfs(n, depth): 1655 * traversed.add(n) 1656 * path.add(n) 1657 * depths[n] = depth 1658 * for succ in G.successors(n): 1659 * if succ not in traversed: 1660 * # Case A: explore succ and update cur's loop entry 1661 * # only if succ's entry is in current DFS path. 1662 * dfs(succ, depth + 1) 1663 * h = get_loop_entry(succ) 1664 * update_loop_entry(n, h) 1665 * else: 1666 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1667 * update_loop_entry(n, succ) 1668 * path.remove(n) 1669 * 1670 * To adapt this algorithm for use with verifier: 1671 * - use st->branch == 0 as a signal that DFS of succ had been finished 1672 * and cur's loop entry has to be updated (case A), handle this in 1673 * update_branch_counts(); 1674 * - use st->branch > 0 as a signal that st is in the current DFS path; 1675 * - handle cases B and C in is_state_visited(); 1676 * - update topmost loop entry for intermediate states in get_loop_entry(). 1677 */ 1678 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1679 { 1680 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1681 1682 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1683 topmost = topmost->loop_entry; 1684 /* Update loop entries for intermediate states to avoid this 1685 * traversal in future get_loop_entry() calls. 1686 */ 1687 while (st && st->loop_entry != topmost) { 1688 old = st->loop_entry; 1689 st->loop_entry = topmost; 1690 st = old; 1691 } 1692 return topmost; 1693 } 1694 1695 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1696 { 1697 struct bpf_verifier_state *cur1, *hdr1; 1698 1699 cur1 = get_loop_entry(cur) ?: cur; 1700 hdr1 = get_loop_entry(hdr) ?: hdr; 1701 /* The head1->branches check decides between cases B and C in 1702 * comment for get_loop_entry(). If hdr1->branches == 0 then 1703 * head's topmost loop entry is not in current DFS path, 1704 * hence 'cur' and 'hdr' are not in the same loop and there is 1705 * no need to update cur->loop_entry. 1706 */ 1707 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1708 cur->loop_entry = hdr; 1709 hdr->used_as_loop_entry = true; 1710 } 1711 } 1712 1713 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1714 { 1715 while (st) { 1716 u32 br = --st->branches; 1717 1718 /* br == 0 signals that DFS exploration for 'st' is finished, 1719 * thus it is necessary to update parent's loop entry if it 1720 * turned out that st is a part of some loop. 1721 * This is a part of 'case A' in get_loop_entry() comment. 1722 */ 1723 if (br == 0 && st->parent && st->loop_entry) 1724 update_loop_entry(st->parent, st->loop_entry); 1725 1726 /* WARN_ON(br > 1) technically makes sense here, 1727 * but see comment in push_stack(), hence: 1728 */ 1729 WARN_ONCE((int)br < 0, 1730 "BUG update_branch_counts:branches_to_explore=%d\n", 1731 br); 1732 if (br) 1733 break; 1734 st = st->parent; 1735 } 1736 } 1737 1738 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1739 int *insn_idx, bool pop_log) 1740 { 1741 struct bpf_verifier_state *cur = env->cur_state; 1742 struct bpf_verifier_stack_elem *elem, *head = env->head; 1743 int err; 1744 1745 if (env->head == NULL) 1746 return -ENOENT; 1747 1748 if (cur) { 1749 err = copy_verifier_state(cur, &head->st); 1750 if (err) 1751 return err; 1752 } 1753 if (pop_log) 1754 bpf_vlog_reset(&env->log, head->log_pos); 1755 if (insn_idx) 1756 *insn_idx = head->insn_idx; 1757 if (prev_insn_idx) 1758 *prev_insn_idx = head->prev_insn_idx; 1759 elem = head->next; 1760 free_verifier_state(&head->st, false); 1761 kfree(head); 1762 env->head = elem; 1763 env->stack_size--; 1764 return 0; 1765 } 1766 1767 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1768 int insn_idx, int prev_insn_idx, 1769 bool speculative) 1770 { 1771 struct bpf_verifier_state *cur = env->cur_state; 1772 struct bpf_verifier_stack_elem *elem; 1773 int err; 1774 1775 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1776 if (!elem) 1777 goto err; 1778 1779 elem->insn_idx = insn_idx; 1780 elem->prev_insn_idx = prev_insn_idx; 1781 elem->next = env->head; 1782 elem->log_pos = env->log.end_pos; 1783 env->head = elem; 1784 env->stack_size++; 1785 err = copy_verifier_state(&elem->st, cur); 1786 if (err) 1787 goto err; 1788 elem->st.speculative |= speculative; 1789 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1790 verbose(env, "The sequence of %d jumps is too complex.\n", 1791 env->stack_size); 1792 goto err; 1793 } 1794 if (elem->st.parent) { 1795 ++elem->st.parent->branches; 1796 /* WARN_ON(branches > 2) technically makes sense here, 1797 * but 1798 * 1. speculative states will bump 'branches' for non-branch 1799 * instructions 1800 * 2. is_state_visited() heuristics may decide not to create 1801 * a new state for a sequence of branches and all such current 1802 * and cloned states will be pointing to a single parent state 1803 * which might have large 'branches' count. 1804 */ 1805 } 1806 return &elem->st; 1807 err: 1808 free_verifier_state(env->cur_state, true); 1809 env->cur_state = NULL; 1810 /* pop all elements and return */ 1811 while (!pop_stack(env, NULL, NULL, false)); 1812 return NULL; 1813 } 1814 1815 #define CALLER_SAVED_REGS 6 1816 static const int caller_saved[CALLER_SAVED_REGS] = { 1817 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1818 }; 1819 1820 /* This helper doesn't clear reg->id */ 1821 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1822 { 1823 reg->var_off = tnum_const(imm); 1824 reg->smin_value = (s64)imm; 1825 reg->smax_value = (s64)imm; 1826 reg->umin_value = imm; 1827 reg->umax_value = imm; 1828 1829 reg->s32_min_value = (s32)imm; 1830 reg->s32_max_value = (s32)imm; 1831 reg->u32_min_value = (u32)imm; 1832 reg->u32_max_value = (u32)imm; 1833 } 1834 1835 /* Mark the unknown part of a register (variable offset or scalar value) as 1836 * known to have the value @imm. 1837 */ 1838 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1839 { 1840 /* Clear off and union(map_ptr, range) */ 1841 memset(((u8 *)reg) + sizeof(reg->type), 0, 1842 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1843 reg->id = 0; 1844 reg->ref_obj_id = 0; 1845 ___mark_reg_known(reg, imm); 1846 } 1847 1848 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1849 { 1850 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1851 reg->s32_min_value = (s32)imm; 1852 reg->s32_max_value = (s32)imm; 1853 reg->u32_min_value = (u32)imm; 1854 reg->u32_max_value = (u32)imm; 1855 } 1856 1857 /* Mark the 'variable offset' part of a register as zero. This should be 1858 * used only on registers holding a pointer type. 1859 */ 1860 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1861 { 1862 __mark_reg_known(reg, 0); 1863 } 1864 1865 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1866 { 1867 __mark_reg_known(reg, 0); 1868 reg->type = SCALAR_VALUE; 1869 /* all scalars are assumed imprecise initially (unless unprivileged, 1870 * in which case everything is forced to be precise) 1871 */ 1872 reg->precise = !env->bpf_capable; 1873 } 1874 1875 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1876 struct bpf_reg_state *regs, u32 regno) 1877 { 1878 if (WARN_ON(regno >= MAX_BPF_REG)) { 1879 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1880 /* Something bad happened, let's kill all regs */ 1881 for (regno = 0; regno < MAX_BPF_REG; regno++) 1882 __mark_reg_not_init(env, regs + regno); 1883 return; 1884 } 1885 __mark_reg_known_zero(regs + regno); 1886 } 1887 1888 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1889 bool first_slot, int dynptr_id) 1890 { 1891 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1892 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1893 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1894 */ 1895 __mark_reg_known_zero(reg); 1896 reg->type = CONST_PTR_TO_DYNPTR; 1897 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1898 reg->id = dynptr_id; 1899 reg->dynptr.type = type; 1900 reg->dynptr.first_slot = first_slot; 1901 } 1902 1903 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1904 { 1905 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1906 const struct bpf_map *map = reg->map_ptr; 1907 1908 if (map->inner_map_meta) { 1909 reg->type = CONST_PTR_TO_MAP; 1910 reg->map_ptr = map->inner_map_meta; 1911 /* transfer reg's id which is unique for every map_lookup_elem 1912 * as UID of the inner map. 1913 */ 1914 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1915 reg->map_uid = reg->id; 1916 if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE)) 1917 reg->map_uid = reg->id; 1918 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1919 reg->type = PTR_TO_XDP_SOCK; 1920 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1921 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1922 reg->type = PTR_TO_SOCKET; 1923 } else { 1924 reg->type = PTR_TO_MAP_VALUE; 1925 } 1926 return; 1927 } 1928 1929 reg->type &= ~PTR_MAYBE_NULL; 1930 } 1931 1932 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1933 struct btf_field_graph_root *ds_head) 1934 { 1935 __mark_reg_known_zero(®s[regno]); 1936 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1937 regs[regno].btf = ds_head->btf; 1938 regs[regno].btf_id = ds_head->value_btf_id; 1939 regs[regno].off = ds_head->node_offset; 1940 } 1941 1942 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1943 { 1944 return type_is_pkt_pointer(reg->type); 1945 } 1946 1947 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1948 { 1949 return reg_is_pkt_pointer(reg) || 1950 reg->type == PTR_TO_PACKET_END; 1951 } 1952 1953 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 1954 { 1955 return base_type(reg->type) == PTR_TO_MEM && 1956 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 1957 } 1958 1959 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1960 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1961 enum bpf_reg_type which) 1962 { 1963 /* The register can already have a range from prior markings. 1964 * This is fine as long as it hasn't been advanced from its 1965 * origin. 1966 */ 1967 return reg->type == which && 1968 reg->id == 0 && 1969 reg->off == 0 && 1970 tnum_equals_const(reg->var_off, 0); 1971 } 1972 1973 /* Reset the min/max bounds of a register */ 1974 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1975 { 1976 reg->smin_value = S64_MIN; 1977 reg->smax_value = S64_MAX; 1978 reg->umin_value = 0; 1979 reg->umax_value = U64_MAX; 1980 1981 reg->s32_min_value = S32_MIN; 1982 reg->s32_max_value = S32_MAX; 1983 reg->u32_min_value = 0; 1984 reg->u32_max_value = U32_MAX; 1985 } 1986 1987 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1988 { 1989 reg->smin_value = S64_MIN; 1990 reg->smax_value = S64_MAX; 1991 reg->umin_value = 0; 1992 reg->umax_value = U64_MAX; 1993 } 1994 1995 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1996 { 1997 reg->s32_min_value = S32_MIN; 1998 reg->s32_max_value = S32_MAX; 1999 reg->u32_min_value = 0; 2000 reg->u32_max_value = U32_MAX; 2001 } 2002 2003 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2004 { 2005 struct tnum var32_off = tnum_subreg(reg->var_off); 2006 2007 /* min signed is max(sign bit) | min(other bits) */ 2008 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2009 var32_off.value | (var32_off.mask & S32_MIN)); 2010 /* max signed is min(sign bit) | max(other bits) */ 2011 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2012 var32_off.value | (var32_off.mask & S32_MAX)); 2013 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2014 reg->u32_max_value = min(reg->u32_max_value, 2015 (u32)(var32_off.value | var32_off.mask)); 2016 } 2017 2018 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2019 { 2020 /* min signed is max(sign bit) | min(other bits) */ 2021 reg->smin_value = max_t(s64, reg->smin_value, 2022 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2023 /* max signed is min(sign bit) | max(other bits) */ 2024 reg->smax_value = min_t(s64, reg->smax_value, 2025 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2026 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2027 reg->umax_value = min(reg->umax_value, 2028 reg->var_off.value | reg->var_off.mask); 2029 } 2030 2031 static void __update_reg_bounds(struct bpf_reg_state *reg) 2032 { 2033 __update_reg32_bounds(reg); 2034 __update_reg64_bounds(reg); 2035 } 2036 2037 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2038 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2039 { 2040 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 2041 * bits to improve our u32/s32 boundaries. 2042 * 2043 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 2044 * u64) is pretty trivial, it's obvious that in u32 we'll also have 2045 * [10, 20] range. But this property holds for any 64-bit range as 2046 * long as upper 32 bits in that entire range of values stay the same. 2047 * 2048 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 2049 * in decimal) has the same upper 32 bits throughout all the values in 2050 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 2051 * range. 2052 * 2053 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 2054 * following the rules outlined below about u64/s64 correspondence 2055 * (which equally applies to u32 vs s32 correspondence). In general it 2056 * depends on actual hexadecimal values of 32-bit range. They can form 2057 * only valid u32, or only valid s32 ranges in some cases. 2058 * 2059 * So we use all these insights to derive bounds for subregisters here. 2060 */ 2061 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 2062 /* u64 to u32 casting preserves validity of low 32 bits as 2063 * a range, if upper 32 bits are the same 2064 */ 2065 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 2066 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 2067 2068 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 2069 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2070 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2071 } 2072 } 2073 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 2074 /* low 32 bits should form a proper u32 range */ 2075 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 2076 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 2077 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 2078 } 2079 /* low 32 bits should form a proper s32 range */ 2080 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 2081 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2082 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2083 } 2084 } 2085 /* Special case where upper bits form a small sequence of two 2086 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 2087 * 0x00000000 is also valid), while lower bits form a proper s32 range 2088 * going from negative numbers to positive numbers. E.g., let's say we 2089 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 2090 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 2091 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 2092 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 2093 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 2094 * upper 32 bits. As a random example, s64 range 2095 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 2096 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 2097 */ 2098 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 2099 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 2100 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2101 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2102 } 2103 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 2104 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 2105 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2106 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2107 } 2108 /* if u32 range forms a valid s32 range (due to matching sign bit), 2109 * try to learn from that 2110 */ 2111 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 2112 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 2113 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 2114 } 2115 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2116 * are the same, so combine. This works even in the negative case, e.g. 2117 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2118 */ 2119 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2120 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 2121 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 2122 } 2123 } 2124 2125 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2126 { 2127 /* If u64 range forms a valid s64 range (due to matching sign bit), 2128 * try to learn from that. Let's do a bit of ASCII art to see when 2129 * this is happening. Let's take u64 range first: 2130 * 2131 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2132 * |-------------------------------|--------------------------------| 2133 * 2134 * Valid u64 range is formed when umin and umax are anywhere in the 2135 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 2136 * straightforward. Let's see how s64 range maps onto the same range 2137 * of values, annotated below the line for comparison: 2138 * 2139 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2140 * |-------------------------------|--------------------------------| 2141 * 0 S64_MAX S64_MIN -1 2142 * 2143 * So s64 values basically start in the middle and they are logically 2144 * contiguous to the right of it, wrapping around from -1 to 0, and 2145 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2146 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2147 * more visually as mapped to sign-agnostic range of hex values. 2148 * 2149 * u64 start u64 end 2150 * _______________________________________________________________ 2151 * / \ 2152 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2153 * |-------------------------------|--------------------------------| 2154 * 0 S64_MAX S64_MIN -1 2155 * / \ 2156 * >------------------------------ -------------------------------> 2157 * s64 continues... s64 end s64 start s64 "midpoint" 2158 * 2159 * What this means is that, in general, we can't always derive 2160 * something new about u64 from any random s64 range, and vice versa. 2161 * 2162 * But we can do that in two particular cases. One is when entire 2163 * u64/s64 range is *entirely* contained within left half of the above 2164 * diagram or when it is *entirely* contained in the right half. I.e.: 2165 * 2166 * |-------------------------------|--------------------------------| 2167 * ^ ^ ^ ^ 2168 * A B C D 2169 * 2170 * [A, B] and [C, D] are contained entirely in their respective halves 2171 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2172 * will be non-negative both as u64 and s64 (and in fact it will be 2173 * identical ranges no matter the signedness). [C, D] treated as s64 2174 * will be a range of negative values, while in u64 it will be 2175 * non-negative range of values larger than 0x8000000000000000. 2176 * 2177 * Now, any other range here can't be represented in both u64 and s64 2178 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2179 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2180 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2181 * for example. Similarly, valid s64 range [D, A] (going from negative 2182 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2183 * ranges as u64. Currently reg_state can't represent two segments per 2184 * numeric domain, so in such situations we can only derive maximal 2185 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2186 * 2187 * So we use these facts to derive umin/umax from smin/smax and vice 2188 * versa only if they stay within the same "half". This is equivalent 2189 * to checking sign bit: lower half will have sign bit as zero, upper 2190 * half have sign bit 1. Below in code we simplify this by just 2191 * casting umin/umax as smin/smax and checking if they form valid 2192 * range, and vice versa. Those are equivalent checks. 2193 */ 2194 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2195 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2196 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2197 } 2198 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2199 * are the same, so combine. This works even in the negative case, e.g. 2200 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2201 */ 2202 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2203 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2204 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2205 } 2206 } 2207 2208 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2209 { 2210 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2211 * values on both sides of 64-bit range in hope to have tighter range. 2212 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2213 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2214 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2215 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2216 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2217 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2218 * We just need to make sure that derived bounds we are intersecting 2219 * with are well-formed ranges in respective s64 or u64 domain, just 2220 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2221 */ 2222 __u64 new_umin, new_umax; 2223 __s64 new_smin, new_smax; 2224 2225 /* u32 -> u64 tightening, it's always well-formed */ 2226 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2227 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2228 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2229 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2230 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2231 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2232 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2233 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2234 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2235 2236 /* if s32 can be treated as valid u32 range, we can use it as well */ 2237 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2238 /* s32 -> u64 tightening */ 2239 new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2240 new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2241 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2242 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2243 /* s32 -> s64 tightening */ 2244 new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2245 new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2246 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2247 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2248 } 2249 2250 /* Here we would like to handle a special case after sign extending load, 2251 * when upper bits for a 64-bit range are all 1s or all 0s. 2252 * 2253 * Upper bits are all 1s when register is in a range: 2254 * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff] 2255 * Upper bits are all 0s when register is in a range: 2256 * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff] 2257 * Together this forms are continuous range: 2258 * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff] 2259 * 2260 * Now, suppose that register range is in fact tighter: 2261 * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R) 2262 * Also suppose that it's 32-bit range is positive, 2263 * meaning that lower 32-bits of the full 64-bit register 2264 * are in the range: 2265 * [0x0000_0000, 0x7fff_ffff] (W) 2266 * 2267 * If this happens, then any value in a range: 2268 * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff] 2269 * is smaller than a lowest bound of the range (R): 2270 * 0xffff_ffff_8000_0000 2271 * which means that upper bits of the full 64-bit register 2272 * can't be all 1s, when lower bits are in range (W). 2273 * 2274 * Note that: 2275 * - 0xffff_ffff_8000_0000 == (s64)S32_MIN 2276 * - 0x0000_0000_7fff_ffff == (s64)S32_MAX 2277 * These relations are used in the conditions below. 2278 */ 2279 if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) { 2280 reg->smin_value = reg->s32_min_value; 2281 reg->smax_value = reg->s32_max_value; 2282 reg->umin_value = reg->s32_min_value; 2283 reg->umax_value = reg->s32_max_value; 2284 reg->var_off = tnum_intersect(reg->var_off, 2285 tnum_range(reg->smin_value, reg->smax_value)); 2286 } 2287 } 2288 2289 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2290 { 2291 __reg32_deduce_bounds(reg); 2292 __reg64_deduce_bounds(reg); 2293 __reg_deduce_mixed_bounds(reg); 2294 } 2295 2296 /* Attempts to improve var_off based on unsigned min/max information */ 2297 static void __reg_bound_offset(struct bpf_reg_state *reg) 2298 { 2299 struct tnum var64_off = tnum_intersect(reg->var_off, 2300 tnum_range(reg->umin_value, 2301 reg->umax_value)); 2302 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2303 tnum_range(reg->u32_min_value, 2304 reg->u32_max_value)); 2305 2306 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2307 } 2308 2309 static void reg_bounds_sync(struct bpf_reg_state *reg) 2310 { 2311 /* We might have learned new bounds from the var_off. */ 2312 __update_reg_bounds(reg); 2313 /* We might have learned something about the sign bit. */ 2314 __reg_deduce_bounds(reg); 2315 __reg_deduce_bounds(reg); 2316 /* We might have learned some bits from the bounds. */ 2317 __reg_bound_offset(reg); 2318 /* Intersecting with the old var_off might have improved our bounds 2319 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2320 * then new var_off is (0; 0x7f...fc) which improves our umax. 2321 */ 2322 __update_reg_bounds(reg); 2323 } 2324 2325 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2326 struct bpf_reg_state *reg, const char *ctx) 2327 { 2328 const char *msg; 2329 2330 if (reg->umin_value > reg->umax_value || 2331 reg->smin_value > reg->smax_value || 2332 reg->u32_min_value > reg->u32_max_value || 2333 reg->s32_min_value > reg->s32_max_value) { 2334 msg = "range bounds violation"; 2335 goto out; 2336 } 2337 2338 if (tnum_is_const(reg->var_off)) { 2339 u64 uval = reg->var_off.value; 2340 s64 sval = (s64)uval; 2341 2342 if (reg->umin_value != uval || reg->umax_value != uval || 2343 reg->smin_value != sval || reg->smax_value != sval) { 2344 msg = "const tnum out of sync with range bounds"; 2345 goto out; 2346 } 2347 } 2348 2349 if (tnum_subreg_is_const(reg->var_off)) { 2350 u32 uval32 = tnum_subreg(reg->var_off).value; 2351 s32 sval32 = (s32)uval32; 2352 2353 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2354 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2355 msg = "const subreg tnum out of sync with range bounds"; 2356 goto out; 2357 } 2358 } 2359 2360 return 0; 2361 out: 2362 verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2363 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n", 2364 ctx, msg, reg->umin_value, reg->umax_value, 2365 reg->smin_value, reg->smax_value, 2366 reg->u32_min_value, reg->u32_max_value, 2367 reg->s32_min_value, reg->s32_max_value, 2368 reg->var_off.value, reg->var_off.mask); 2369 if (env->test_reg_invariants) 2370 return -EFAULT; 2371 __mark_reg_unbounded(reg); 2372 return 0; 2373 } 2374 2375 static bool __reg32_bound_s64(s32 a) 2376 { 2377 return a >= 0 && a <= S32_MAX; 2378 } 2379 2380 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2381 { 2382 reg->umin_value = reg->u32_min_value; 2383 reg->umax_value = reg->u32_max_value; 2384 2385 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2386 * be positive otherwise set to worse case bounds and refine later 2387 * from tnum. 2388 */ 2389 if (__reg32_bound_s64(reg->s32_min_value) && 2390 __reg32_bound_s64(reg->s32_max_value)) { 2391 reg->smin_value = reg->s32_min_value; 2392 reg->smax_value = reg->s32_max_value; 2393 } else { 2394 reg->smin_value = 0; 2395 reg->smax_value = U32_MAX; 2396 } 2397 } 2398 2399 /* Mark a register as having a completely unknown (scalar) value. */ 2400 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) 2401 { 2402 /* 2403 * Clear type, off, and union(map_ptr, range) and 2404 * padding between 'type' and union 2405 */ 2406 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2407 reg->type = SCALAR_VALUE; 2408 reg->id = 0; 2409 reg->ref_obj_id = 0; 2410 reg->var_off = tnum_unknown; 2411 reg->frameno = 0; 2412 reg->precise = false; 2413 __mark_reg_unbounded(reg); 2414 } 2415 2416 /* Mark a register as having a completely unknown (scalar) value, 2417 * initialize .precise as true when not bpf capable. 2418 */ 2419 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2420 struct bpf_reg_state *reg) 2421 { 2422 __mark_reg_unknown_imprecise(reg); 2423 reg->precise = !env->bpf_capable; 2424 } 2425 2426 static void mark_reg_unknown(struct bpf_verifier_env *env, 2427 struct bpf_reg_state *regs, u32 regno) 2428 { 2429 if (WARN_ON(regno >= MAX_BPF_REG)) { 2430 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2431 /* Something bad happened, let's kill all regs except FP */ 2432 for (regno = 0; regno < BPF_REG_FP; regno++) 2433 __mark_reg_not_init(env, regs + regno); 2434 return; 2435 } 2436 __mark_reg_unknown(env, regs + regno); 2437 } 2438 2439 static int __mark_reg_s32_range(struct bpf_verifier_env *env, 2440 struct bpf_reg_state *regs, 2441 u32 regno, 2442 s32 s32_min, 2443 s32 s32_max) 2444 { 2445 struct bpf_reg_state *reg = regs + regno; 2446 2447 reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min); 2448 reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max); 2449 2450 reg->smin_value = max_t(s64, reg->smin_value, s32_min); 2451 reg->smax_value = min_t(s64, reg->smax_value, s32_max); 2452 2453 reg_bounds_sync(reg); 2454 2455 return reg_bounds_sanity_check(env, reg, "s32_range"); 2456 } 2457 2458 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2459 struct bpf_reg_state *reg) 2460 { 2461 __mark_reg_unknown(env, reg); 2462 reg->type = NOT_INIT; 2463 } 2464 2465 static void mark_reg_not_init(struct bpf_verifier_env *env, 2466 struct bpf_reg_state *regs, u32 regno) 2467 { 2468 if (WARN_ON(regno >= MAX_BPF_REG)) { 2469 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2470 /* Something bad happened, let's kill all regs except FP */ 2471 for (regno = 0; regno < BPF_REG_FP; regno++) 2472 __mark_reg_not_init(env, regs + regno); 2473 return; 2474 } 2475 __mark_reg_not_init(env, regs + regno); 2476 } 2477 2478 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2479 struct bpf_reg_state *regs, u32 regno, 2480 enum bpf_reg_type reg_type, 2481 struct btf *btf, u32 btf_id, 2482 enum bpf_type_flag flag) 2483 { 2484 if (reg_type == SCALAR_VALUE) { 2485 mark_reg_unknown(env, regs, regno); 2486 return; 2487 } 2488 mark_reg_known_zero(env, regs, regno); 2489 regs[regno].type = PTR_TO_BTF_ID | flag; 2490 regs[regno].btf = btf; 2491 regs[regno].btf_id = btf_id; 2492 if (type_may_be_null(flag)) 2493 regs[regno].id = ++env->id_gen; 2494 } 2495 2496 #define DEF_NOT_SUBREG (0) 2497 static void init_reg_state(struct bpf_verifier_env *env, 2498 struct bpf_func_state *state) 2499 { 2500 struct bpf_reg_state *regs = state->regs; 2501 int i; 2502 2503 for (i = 0; i < MAX_BPF_REG; i++) { 2504 mark_reg_not_init(env, regs, i); 2505 regs[i].live = REG_LIVE_NONE; 2506 regs[i].parent = NULL; 2507 regs[i].subreg_def = DEF_NOT_SUBREG; 2508 } 2509 2510 /* frame pointer */ 2511 regs[BPF_REG_FP].type = PTR_TO_STACK; 2512 mark_reg_known_zero(env, regs, BPF_REG_FP); 2513 regs[BPF_REG_FP].frameno = state->frameno; 2514 } 2515 2516 static struct bpf_retval_range retval_range(s32 minval, s32 maxval) 2517 { 2518 return (struct bpf_retval_range){ minval, maxval }; 2519 } 2520 2521 #define BPF_MAIN_FUNC (-1) 2522 static void init_func_state(struct bpf_verifier_env *env, 2523 struct bpf_func_state *state, 2524 int callsite, int frameno, int subprogno) 2525 { 2526 state->callsite = callsite; 2527 state->frameno = frameno; 2528 state->subprogno = subprogno; 2529 state->callback_ret_range = retval_range(0, 0); 2530 init_reg_state(env, state); 2531 mark_verifier_state_scratched(env); 2532 } 2533 2534 /* Similar to push_stack(), but for async callbacks */ 2535 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2536 int insn_idx, int prev_insn_idx, 2537 int subprog, bool is_sleepable) 2538 { 2539 struct bpf_verifier_stack_elem *elem; 2540 struct bpf_func_state *frame; 2541 2542 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2543 if (!elem) 2544 goto err; 2545 2546 elem->insn_idx = insn_idx; 2547 elem->prev_insn_idx = prev_insn_idx; 2548 elem->next = env->head; 2549 elem->log_pos = env->log.end_pos; 2550 env->head = elem; 2551 env->stack_size++; 2552 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2553 verbose(env, 2554 "The sequence of %d jumps is too complex for async cb.\n", 2555 env->stack_size); 2556 goto err; 2557 } 2558 /* Unlike push_stack() do not copy_verifier_state(). 2559 * The caller state doesn't matter. 2560 * This is async callback. It starts in a fresh stack. 2561 * Initialize it similar to do_check_common(). 2562 * But we do need to make sure to not clobber insn_hist, so we keep 2563 * chaining insn_hist_start/insn_hist_end indices as for a normal 2564 * child state. 2565 */ 2566 elem->st.branches = 1; 2567 elem->st.in_sleepable = is_sleepable; 2568 elem->st.insn_hist_start = env->cur_state->insn_hist_end; 2569 elem->st.insn_hist_end = elem->st.insn_hist_start; 2570 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2571 if (!frame) 2572 goto err; 2573 init_func_state(env, frame, 2574 BPF_MAIN_FUNC /* callsite */, 2575 0 /* frameno within this callchain */, 2576 subprog /* subprog number within this prog */); 2577 elem->st.frame[0] = frame; 2578 return &elem->st; 2579 err: 2580 free_verifier_state(env->cur_state, true); 2581 env->cur_state = NULL; 2582 /* pop all elements and return */ 2583 while (!pop_stack(env, NULL, NULL, false)); 2584 return NULL; 2585 } 2586 2587 2588 enum reg_arg_type { 2589 SRC_OP, /* register is used as source operand */ 2590 DST_OP, /* register is used as destination operand */ 2591 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2592 }; 2593 2594 static int cmp_subprogs(const void *a, const void *b) 2595 { 2596 return ((struct bpf_subprog_info *)a)->start - 2597 ((struct bpf_subprog_info *)b)->start; 2598 } 2599 2600 static int find_subprog(struct bpf_verifier_env *env, int off) 2601 { 2602 struct bpf_subprog_info *p; 2603 2604 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2605 sizeof(env->subprog_info[0]), cmp_subprogs); 2606 if (!p) 2607 return -ENOENT; 2608 return p - env->subprog_info; 2609 2610 } 2611 2612 static int add_subprog(struct bpf_verifier_env *env, int off) 2613 { 2614 int insn_cnt = env->prog->len; 2615 int ret; 2616 2617 if (off >= insn_cnt || off < 0) { 2618 verbose(env, "call to invalid destination\n"); 2619 return -EINVAL; 2620 } 2621 ret = find_subprog(env, off); 2622 if (ret >= 0) 2623 return ret; 2624 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2625 verbose(env, "too many subprograms\n"); 2626 return -E2BIG; 2627 } 2628 /* determine subprog starts. The end is one before the next starts */ 2629 env->subprog_info[env->subprog_cnt++].start = off; 2630 sort(env->subprog_info, env->subprog_cnt, 2631 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2632 return env->subprog_cnt - 1; 2633 } 2634 2635 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 2636 { 2637 struct bpf_prog_aux *aux = env->prog->aux; 2638 struct btf *btf = aux->btf; 2639 const struct btf_type *t; 2640 u32 main_btf_id, id; 2641 const char *name; 2642 int ret, i; 2643 2644 /* Non-zero func_info_cnt implies valid btf */ 2645 if (!aux->func_info_cnt) 2646 return 0; 2647 main_btf_id = aux->func_info[0].type_id; 2648 2649 t = btf_type_by_id(btf, main_btf_id); 2650 if (!t) { 2651 verbose(env, "invalid btf id for main subprog in func_info\n"); 2652 return -EINVAL; 2653 } 2654 2655 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 2656 if (IS_ERR(name)) { 2657 ret = PTR_ERR(name); 2658 /* If there is no tag present, there is no exception callback */ 2659 if (ret == -ENOENT) 2660 ret = 0; 2661 else if (ret == -EEXIST) 2662 verbose(env, "multiple exception callback tags for main subprog\n"); 2663 return ret; 2664 } 2665 2666 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 2667 if (ret < 0) { 2668 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 2669 return ret; 2670 } 2671 id = ret; 2672 t = btf_type_by_id(btf, id); 2673 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 2674 verbose(env, "exception callback '%s' must have global linkage\n", name); 2675 return -EINVAL; 2676 } 2677 ret = 0; 2678 for (i = 0; i < aux->func_info_cnt; i++) { 2679 if (aux->func_info[i].type_id != id) 2680 continue; 2681 ret = aux->func_info[i].insn_off; 2682 /* Further func_info and subprog checks will also happen 2683 * later, so assume this is the right insn_off for now. 2684 */ 2685 if (!ret) { 2686 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 2687 ret = -EINVAL; 2688 } 2689 } 2690 if (!ret) { 2691 verbose(env, "exception callback type id not found in func_info\n"); 2692 ret = -EINVAL; 2693 } 2694 return ret; 2695 } 2696 2697 #define MAX_KFUNC_DESCS 256 2698 #define MAX_KFUNC_BTFS 256 2699 2700 struct bpf_kfunc_desc { 2701 struct btf_func_model func_model; 2702 u32 func_id; 2703 s32 imm; 2704 u16 offset; 2705 unsigned long addr; 2706 }; 2707 2708 struct bpf_kfunc_btf { 2709 struct btf *btf; 2710 struct module *module; 2711 u16 offset; 2712 }; 2713 2714 struct bpf_kfunc_desc_tab { 2715 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2716 * verification. JITs do lookups by bpf_insn, where func_id may not be 2717 * available, therefore at the end of verification do_misc_fixups() 2718 * sorts this by imm and offset. 2719 */ 2720 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2721 u32 nr_descs; 2722 }; 2723 2724 struct bpf_kfunc_btf_tab { 2725 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2726 u32 nr_descs; 2727 }; 2728 2729 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2730 { 2731 const struct bpf_kfunc_desc *d0 = a; 2732 const struct bpf_kfunc_desc *d1 = b; 2733 2734 /* func_id is not greater than BTF_MAX_TYPE */ 2735 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2736 } 2737 2738 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2739 { 2740 const struct bpf_kfunc_btf *d0 = a; 2741 const struct bpf_kfunc_btf *d1 = b; 2742 2743 return d0->offset - d1->offset; 2744 } 2745 2746 static const struct bpf_kfunc_desc * 2747 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2748 { 2749 struct bpf_kfunc_desc desc = { 2750 .func_id = func_id, 2751 .offset = offset, 2752 }; 2753 struct bpf_kfunc_desc_tab *tab; 2754 2755 tab = prog->aux->kfunc_tab; 2756 return bsearch(&desc, tab->descs, tab->nr_descs, 2757 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2758 } 2759 2760 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2761 u16 btf_fd_idx, u8 **func_addr) 2762 { 2763 const struct bpf_kfunc_desc *desc; 2764 2765 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2766 if (!desc) 2767 return -EFAULT; 2768 2769 *func_addr = (u8 *)desc->addr; 2770 return 0; 2771 } 2772 2773 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2774 s16 offset) 2775 { 2776 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2777 struct bpf_kfunc_btf_tab *tab; 2778 struct bpf_kfunc_btf *b; 2779 struct module *mod; 2780 struct btf *btf; 2781 int btf_fd; 2782 2783 tab = env->prog->aux->kfunc_btf_tab; 2784 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2785 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2786 if (!b) { 2787 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2788 verbose(env, "too many different module BTFs\n"); 2789 return ERR_PTR(-E2BIG); 2790 } 2791 2792 if (bpfptr_is_null(env->fd_array)) { 2793 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2794 return ERR_PTR(-EPROTO); 2795 } 2796 2797 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2798 offset * sizeof(btf_fd), 2799 sizeof(btf_fd))) 2800 return ERR_PTR(-EFAULT); 2801 2802 btf = btf_get_by_fd(btf_fd); 2803 if (IS_ERR(btf)) { 2804 verbose(env, "invalid module BTF fd specified\n"); 2805 return btf; 2806 } 2807 2808 if (!btf_is_module(btf)) { 2809 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2810 btf_put(btf); 2811 return ERR_PTR(-EINVAL); 2812 } 2813 2814 mod = btf_try_get_module(btf); 2815 if (!mod) { 2816 btf_put(btf); 2817 return ERR_PTR(-ENXIO); 2818 } 2819 2820 b = &tab->descs[tab->nr_descs++]; 2821 b->btf = btf; 2822 b->module = mod; 2823 b->offset = offset; 2824 2825 /* sort() reorders entries by value, so b may no longer point 2826 * to the right entry after this 2827 */ 2828 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2829 kfunc_btf_cmp_by_off, NULL); 2830 } else { 2831 btf = b->btf; 2832 } 2833 2834 return btf; 2835 } 2836 2837 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2838 { 2839 if (!tab) 2840 return; 2841 2842 while (tab->nr_descs--) { 2843 module_put(tab->descs[tab->nr_descs].module); 2844 btf_put(tab->descs[tab->nr_descs].btf); 2845 } 2846 kfree(tab); 2847 } 2848 2849 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2850 { 2851 if (offset) { 2852 if (offset < 0) { 2853 /* In the future, this can be allowed to increase limit 2854 * of fd index into fd_array, interpreted as u16. 2855 */ 2856 verbose(env, "negative offset disallowed for kernel module function call\n"); 2857 return ERR_PTR(-EINVAL); 2858 } 2859 2860 return __find_kfunc_desc_btf(env, offset); 2861 } 2862 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2863 } 2864 2865 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2866 { 2867 const struct btf_type *func, *func_proto; 2868 struct bpf_kfunc_btf_tab *btf_tab; 2869 struct bpf_kfunc_desc_tab *tab; 2870 struct bpf_prog_aux *prog_aux; 2871 struct bpf_kfunc_desc *desc; 2872 const char *func_name; 2873 struct btf *desc_btf; 2874 unsigned long call_imm; 2875 unsigned long addr; 2876 int err; 2877 2878 prog_aux = env->prog->aux; 2879 tab = prog_aux->kfunc_tab; 2880 btf_tab = prog_aux->kfunc_btf_tab; 2881 if (!tab) { 2882 if (!btf_vmlinux) { 2883 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2884 return -ENOTSUPP; 2885 } 2886 2887 if (!env->prog->jit_requested) { 2888 verbose(env, "JIT is required for calling kernel function\n"); 2889 return -ENOTSUPP; 2890 } 2891 2892 if (!bpf_jit_supports_kfunc_call()) { 2893 verbose(env, "JIT does not support calling kernel function\n"); 2894 return -ENOTSUPP; 2895 } 2896 2897 if (!env->prog->gpl_compatible) { 2898 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2899 return -EINVAL; 2900 } 2901 2902 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2903 if (!tab) 2904 return -ENOMEM; 2905 prog_aux->kfunc_tab = tab; 2906 } 2907 2908 /* func_id == 0 is always invalid, but instead of returning an error, be 2909 * conservative and wait until the code elimination pass before returning 2910 * error, so that invalid calls that get pruned out can be in BPF programs 2911 * loaded from userspace. It is also required that offset be untouched 2912 * for such calls. 2913 */ 2914 if (!func_id && !offset) 2915 return 0; 2916 2917 if (!btf_tab && offset) { 2918 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2919 if (!btf_tab) 2920 return -ENOMEM; 2921 prog_aux->kfunc_btf_tab = btf_tab; 2922 } 2923 2924 desc_btf = find_kfunc_desc_btf(env, offset); 2925 if (IS_ERR(desc_btf)) { 2926 verbose(env, "failed to find BTF for kernel function\n"); 2927 return PTR_ERR(desc_btf); 2928 } 2929 2930 if (find_kfunc_desc(env->prog, func_id, offset)) 2931 return 0; 2932 2933 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2934 verbose(env, "too many different kernel function calls\n"); 2935 return -E2BIG; 2936 } 2937 2938 func = btf_type_by_id(desc_btf, func_id); 2939 if (!func || !btf_type_is_func(func)) { 2940 verbose(env, "kernel btf_id %u is not a function\n", 2941 func_id); 2942 return -EINVAL; 2943 } 2944 func_proto = btf_type_by_id(desc_btf, func->type); 2945 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2946 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2947 func_id); 2948 return -EINVAL; 2949 } 2950 2951 func_name = btf_name_by_offset(desc_btf, func->name_off); 2952 addr = kallsyms_lookup_name(func_name); 2953 if (!addr) { 2954 verbose(env, "cannot find address for kernel function %s\n", 2955 func_name); 2956 return -EINVAL; 2957 } 2958 specialize_kfunc(env, func_id, offset, &addr); 2959 2960 if (bpf_jit_supports_far_kfunc_call()) { 2961 call_imm = func_id; 2962 } else { 2963 call_imm = BPF_CALL_IMM(addr); 2964 /* Check whether the relative offset overflows desc->imm */ 2965 if ((unsigned long)(s32)call_imm != call_imm) { 2966 verbose(env, "address of kernel function %s is out of range\n", 2967 func_name); 2968 return -EINVAL; 2969 } 2970 } 2971 2972 if (bpf_dev_bound_kfunc_id(func_id)) { 2973 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2974 if (err) 2975 return err; 2976 } 2977 2978 desc = &tab->descs[tab->nr_descs++]; 2979 desc->func_id = func_id; 2980 desc->imm = call_imm; 2981 desc->offset = offset; 2982 desc->addr = addr; 2983 err = btf_distill_func_proto(&env->log, desc_btf, 2984 func_proto, func_name, 2985 &desc->func_model); 2986 if (!err) 2987 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2988 kfunc_desc_cmp_by_id_off, NULL); 2989 return err; 2990 } 2991 2992 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2993 { 2994 const struct bpf_kfunc_desc *d0 = a; 2995 const struct bpf_kfunc_desc *d1 = b; 2996 2997 if (d0->imm != d1->imm) 2998 return d0->imm < d1->imm ? -1 : 1; 2999 if (d0->offset != d1->offset) 3000 return d0->offset < d1->offset ? -1 : 1; 3001 return 0; 3002 } 3003 3004 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 3005 { 3006 struct bpf_kfunc_desc_tab *tab; 3007 3008 tab = prog->aux->kfunc_tab; 3009 if (!tab) 3010 return; 3011 3012 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3013 kfunc_desc_cmp_by_imm_off, NULL); 3014 } 3015 3016 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 3017 { 3018 return !!prog->aux->kfunc_tab; 3019 } 3020 3021 const struct btf_func_model * 3022 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 3023 const struct bpf_insn *insn) 3024 { 3025 const struct bpf_kfunc_desc desc = { 3026 .imm = insn->imm, 3027 .offset = insn->off, 3028 }; 3029 const struct bpf_kfunc_desc *res; 3030 struct bpf_kfunc_desc_tab *tab; 3031 3032 tab = prog->aux->kfunc_tab; 3033 res = bsearch(&desc, tab->descs, tab->nr_descs, 3034 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3035 3036 return res ? &res->func_model : NULL; 3037 } 3038 3039 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3040 { 3041 struct bpf_subprog_info *subprog = env->subprog_info; 3042 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 3043 struct bpf_insn *insn = env->prog->insnsi; 3044 3045 /* Add entry function. */ 3046 ret = add_subprog(env, 0); 3047 if (ret) 3048 return ret; 3049 3050 for (i = 0; i < insn_cnt; i++, insn++) { 3051 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3052 !bpf_pseudo_kfunc_call(insn)) 3053 continue; 3054 3055 if (!env->bpf_capable) { 3056 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3057 return -EPERM; 3058 } 3059 3060 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3061 ret = add_subprog(env, i + insn->imm + 1); 3062 else 3063 ret = add_kfunc_call(env, insn->imm, insn->off); 3064 3065 if (ret < 0) 3066 return ret; 3067 } 3068 3069 ret = bpf_find_exception_callback_insn_off(env); 3070 if (ret < 0) 3071 return ret; 3072 ex_cb_insn = ret; 3073 3074 /* If ex_cb_insn > 0, this means that the main program has a subprog 3075 * marked using BTF decl tag to serve as the exception callback. 3076 */ 3077 if (ex_cb_insn) { 3078 ret = add_subprog(env, ex_cb_insn); 3079 if (ret < 0) 3080 return ret; 3081 for (i = 1; i < env->subprog_cnt; i++) { 3082 if (env->subprog_info[i].start != ex_cb_insn) 3083 continue; 3084 env->exception_callback_subprog = i; 3085 mark_subprog_exc_cb(env, i); 3086 break; 3087 } 3088 } 3089 3090 /* Add a fake 'exit' subprog which could simplify subprog iteration 3091 * logic. 'subprog_cnt' should not be increased. 3092 */ 3093 subprog[env->subprog_cnt].start = insn_cnt; 3094 3095 if (env->log.level & BPF_LOG_LEVEL2) 3096 for (i = 0; i < env->subprog_cnt; i++) 3097 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3098 3099 return 0; 3100 } 3101 3102 static int check_subprogs(struct bpf_verifier_env *env) 3103 { 3104 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3105 struct bpf_subprog_info *subprog = env->subprog_info; 3106 struct bpf_insn *insn = env->prog->insnsi; 3107 int insn_cnt = env->prog->len; 3108 3109 /* now check that all jumps are within the same subprog */ 3110 subprog_start = subprog[cur_subprog].start; 3111 subprog_end = subprog[cur_subprog + 1].start; 3112 for (i = 0; i < insn_cnt; i++) { 3113 u8 code = insn[i].code; 3114 3115 if (code == (BPF_JMP | BPF_CALL) && 3116 insn[i].src_reg == 0 && 3117 insn[i].imm == BPF_FUNC_tail_call) { 3118 subprog[cur_subprog].has_tail_call = true; 3119 subprog[cur_subprog].tail_call_reachable = true; 3120 } 3121 if (BPF_CLASS(code) == BPF_LD && 3122 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3123 subprog[cur_subprog].has_ld_abs = true; 3124 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3125 goto next; 3126 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3127 goto next; 3128 if (code == (BPF_JMP32 | BPF_JA)) 3129 off = i + insn[i].imm + 1; 3130 else 3131 off = i + insn[i].off + 1; 3132 if (off < subprog_start || off >= subprog_end) { 3133 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3134 return -EINVAL; 3135 } 3136 next: 3137 if (i == subprog_end - 1) { 3138 /* to avoid fall-through from one subprog into another 3139 * the last insn of the subprog should be either exit 3140 * or unconditional jump back or bpf_throw call 3141 */ 3142 if (code != (BPF_JMP | BPF_EXIT) && 3143 code != (BPF_JMP32 | BPF_JA) && 3144 code != (BPF_JMP | BPF_JA)) { 3145 verbose(env, "last insn is not an exit or jmp\n"); 3146 return -EINVAL; 3147 } 3148 subprog_start = subprog_end; 3149 cur_subprog++; 3150 if (cur_subprog < env->subprog_cnt) 3151 subprog_end = subprog[cur_subprog + 1].start; 3152 } 3153 } 3154 return 0; 3155 } 3156 3157 /* Parentage chain of this register (or stack slot) should take care of all 3158 * issues like callee-saved registers, stack slot allocation time, etc. 3159 */ 3160 static int mark_reg_read(struct bpf_verifier_env *env, 3161 const struct bpf_reg_state *state, 3162 struct bpf_reg_state *parent, u8 flag) 3163 { 3164 bool writes = parent == state->parent; /* Observe write marks */ 3165 int cnt = 0; 3166 3167 while (parent) { 3168 /* if read wasn't screened by an earlier write ... */ 3169 if (writes && state->live & REG_LIVE_WRITTEN) 3170 break; 3171 if (parent->live & REG_LIVE_DONE) { 3172 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 3173 reg_type_str(env, parent->type), 3174 parent->var_off.value, parent->off); 3175 return -EFAULT; 3176 } 3177 /* The first condition is more likely to be true than the 3178 * second, checked it first. 3179 */ 3180 if ((parent->live & REG_LIVE_READ) == flag || 3181 parent->live & REG_LIVE_READ64) 3182 /* The parentage chain never changes and 3183 * this parent was already marked as LIVE_READ. 3184 * There is no need to keep walking the chain again and 3185 * keep re-marking all parents as LIVE_READ. 3186 * This case happens when the same register is read 3187 * multiple times without writes into it in-between. 3188 * Also, if parent has the stronger REG_LIVE_READ64 set, 3189 * then no need to set the weak REG_LIVE_READ32. 3190 */ 3191 break; 3192 /* ... then we depend on parent's value */ 3193 parent->live |= flag; 3194 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3195 if (flag == REG_LIVE_READ64) 3196 parent->live &= ~REG_LIVE_READ32; 3197 state = parent; 3198 parent = state->parent; 3199 writes = true; 3200 cnt++; 3201 } 3202 3203 if (env->longest_mark_read_walk < cnt) 3204 env->longest_mark_read_walk = cnt; 3205 return 0; 3206 } 3207 3208 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3209 { 3210 struct bpf_func_state *state = func(env, reg); 3211 int spi, ret; 3212 3213 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3214 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3215 * check_kfunc_call. 3216 */ 3217 if (reg->type == CONST_PTR_TO_DYNPTR) 3218 return 0; 3219 spi = dynptr_get_spi(env, reg); 3220 if (spi < 0) 3221 return spi; 3222 /* Caller ensures dynptr is valid and initialized, which means spi is in 3223 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3224 * read. 3225 */ 3226 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 3227 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 3228 if (ret) 3229 return ret; 3230 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 3231 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 3232 } 3233 3234 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3235 int spi, int nr_slots) 3236 { 3237 struct bpf_func_state *state = func(env, reg); 3238 int err, i; 3239 3240 for (i = 0; i < nr_slots; i++) { 3241 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3242 3243 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3244 if (err) 3245 return err; 3246 3247 mark_stack_slot_scratched(env, spi - i); 3248 } 3249 3250 return 0; 3251 } 3252 3253 /* This function is supposed to be used by the following 32-bit optimization 3254 * code only. It returns TRUE if the source or destination register operates 3255 * on 64-bit, otherwise return FALSE. 3256 */ 3257 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3258 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3259 { 3260 u8 code, class, op; 3261 3262 code = insn->code; 3263 class = BPF_CLASS(code); 3264 op = BPF_OP(code); 3265 if (class == BPF_JMP) { 3266 /* BPF_EXIT for "main" will reach here. Return TRUE 3267 * conservatively. 3268 */ 3269 if (op == BPF_EXIT) 3270 return true; 3271 if (op == BPF_CALL) { 3272 /* BPF to BPF call will reach here because of marking 3273 * caller saved clobber with DST_OP_NO_MARK for which we 3274 * don't care the register def because they are anyway 3275 * marked as NOT_INIT already. 3276 */ 3277 if (insn->src_reg == BPF_PSEUDO_CALL) 3278 return false; 3279 /* Helper call will reach here because of arg type 3280 * check, conservatively return TRUE. 3281 */ 3282 if (t == SRC_OP) 3283 return true; 3284 3285 return false; 3286 } 3287 } 3288 3289 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3290 return false; 3291 3292 if (class == BPF_ALU64 || class == BPF_JMP || 3293 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3294 return true; 3295 3296 if (class == BPF_ALU || class == BPF_JMP32) 3297 return false; 3298 3299 if (class == BPF_LDX) { 3300 if (t != SRC_OP) 3301 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3302 /* LDX source must be ptr. */ 3303 return true; 3304 } 3305 3306 if (class == BPF_STX) { 3307 /* BPF_STX (including atomic variants) has multiple source 3308 * operands, one of which is a ptr. Check whether the caller is 3309 * asking about it. 3310 */ 3311 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3312 return true; 3313 return BPF_SIZE(code) == BPF_DW; 3314 } 3315 3316 if (class == BPF_LD) { 3317 u8 mode = BPF_MODE(code); 3318 3319 /* LD_IMM64 */ 3320 if (mode == BPF_IMM) 3321 return true; 3322 3323 /* Both LD_IND and LD_ABS return 32-bit data. */ 3324 if (t != SRC_OP) 3325 return false; 3326 3327 /* Implicit ctx ptr. */ 3328 if (regno == BPF_REG_6) 3329 return true; 3330 3331 /* Explicit source could be any width. */ 3332 return true; 3333 } 3334 3335 if (class == BPF_ST) 3336 /* The only source register for BPF_ST is a ptr. */ 3337 return true; 3338 3339 /* Conservatively return true at default. */ 3340 return true; 3341 } 3342 3343 /* Return the regno defined by the insn, or -1. */ 3344 static int insn_def_regno(const struct bpf_insn *insn) 3345 { 3346 switch (BPF_CLASS(insn->code)) { 3347 case BPF_JMP: 3348 case BPF_JMP32: 3349 case BPF_ST: 3350 return -1; 3351 case BPF_STX: 3352 if ((BPF_MODE(insn->code) == BPF_ATOMIC || 3353 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) && 3354 (insn->imm & BPF_FETCH)) { 3355 if (insn->imm == BPF_CMPXCHG) 3356 return BPF_REG_0; 3357 else 3358 return insn->src_reg; 3359 } else { 3360 return -1; 3361 } 3362 default: 3363 return insn->dst_reg; 3364 } 3365 } 3366 3367 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3368 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3369 { 3370 int dst_reg = insn_def_regno(insn); 3371 3372 if (dst_reg == -1) 3373 return false; 3374 3375 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3376 } 3377 3378 static void mark_insn_zext(struct bpf_verifier_env *env, 3379 struct bpf_reg_state *reg) 3380 { 3381 s32 def_idx = reg->subreg_def; 3382 3383 if (def_idx == DEF_NOT_SUBREG) 3384 return; 3385 3386 env->insn_aux_data[def_idx - 1].zext_dst = true; 3387 /* The dst will be zero extended, so won't be sub-register anymore. */ 3388 reg->subreg_def = DEF_NOT_SUBREG; 3389 } 3390 3391 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3392 enum reg_arg_type t) 3393 { 3394 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3395 struct bpf_reg_state *reg; 3396 bool rw64; 3397 3398 if (regno >= MAX_BPF_REG) { 3399 verbose(env, "R%d is invalid\n", regno); 3400 return -EINVAL; 3401 } 3402 3403 mark_reg_scratched(env, regno); 3404 3405 reg = ®s[regno]; 3406 rw64 = is_reg64(env, insn, regno, reg, t); 3407 if (t == SRC_OP) { 3408 /* check whether register used as source operand can be read */ 3409 if (reg->type == NOT_INIT) { 3410 verbose(env, "R%d !read_ok\n", regno); 3411 return -EACCES; 3412 } 3413 /* We don't need to worry about FP liveness because it's read-only */ 3414 if (regno == BPF_REG_FP) 3415 return 0; 3416 3417 if (rw64) 3418 mark_insn_zext(env, reg); 3419 3420 return mark_reg_read(env, reg, reg->parent, 3421 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3422 } else { 3423 /* check whether register used as dest operand can be written to */ 3424 if (regno == BPF_REG_FP) { 3425 verbose(env, "frame pointer is read only\n"); 3426 return -EACCES; 3427 } 3428 reg->live |= REG_LIVE_WRITTEN; 3429 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3430 if (t == DST_OP) 3431 mark_reg_unknown(env, regs, regno); 3432 } 3433 return 0; 3434 } 3435 3436 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3437 enum reg_arg_type t) 3438 { 3439 struct bpf_verifier_state *vstate = env->cur_state; 3440 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3441 3442 return __check_reg_arg(env, state->regs, regno, t); 3443 } 3444 3445 static int insn_stack_access_flags(int frameno, int spi) 3446 { 3447 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; 3448 } 3449 3450 static int insn_stack_access_spi(int insn_flags) 3451 { 3452 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; 3453 } 3454 3455 static int insn_stack_access_frameno(int insn_flags) 3456 { 3457 return insn_flags & INSN_F_FRAMENO_MASK; 3458 } 3459 3460 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3461 { 3462 env->insn_aux_data[idx].jmp_point = true; 3463 } 3464 3465 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3466 { 3467 return env->insn_aux_data[insn_idx].jmp_point; 3468 } 3469 3470 #define LR_FRAMENO_BITS 3 3471 #define LR_SPI_BITS 6 3472 #define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1) 3473 #define LR_SIZE_BITS 4 3474 #define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1) 3475 #define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1) 3476 #define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1) 3477 #define LR_SPI_OFF LR_FRAMENO_BITS 3478 #define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS) 3479 #define LINKED_REGS_MAX 6 3480 3481 struct linked_reg { 3482 u8 frameno; 3483 union { 3484 u8 spi; 3485 u8 regno; 3486 }; 3487 bool is_reg; 3488 }; 3489 3490 struct linked_regs { 3491 int cnt; 3492 struct linked_reg entries[LINKED_REGS_MAX]; 3493 }; 3494 3495 static struct linked_reg *linked_regs_push(struct linked_regs *s) 3496 { 3497 if (s->cnt < LINKED_REGS_MAX) 3498 return &s->entries[s->cnt++]; 3499 3500 return NULL; 3501 } 3502 3503 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track 3504 * number of elements currently in stack. 3505 * Pack one history entry for linked registers as 10 bits in the following format: 3506 * - 3-bits frameno 3507 * - 6-bits spi_or_reg 3508 * - 1-bit is_reg 3509 */ 3510 static u64 linked_regs_pack(struct linked_regs *s) 3511 { 3512 u64 val = 0; 3513 int i; 3514 3515 for (i = 0; i < s->cnt; ++i) { 3516 struct linked_reg *e = &s->entries[i]; 3517 u64 tmp = 0; 3518 3519 tmp |= e->frameno; 3520 tmp |= e->spi << LR_SPI_OFF; 3521 tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF; 3522 3523 val <<= LR_ENTRY_BITS; 3524 val |= tmp; 3525 } 3526 val <<= LR_SIZE_BITS; 3527 val |= s->cnt; 3528 return val; 3529 } 3530 3531 static void linked_regs_unpack(u64 val, struct linked_regs *s) 3532 { 3533 int i; 3534 3535 s->cnt = val & LR_SIZE_MASK; 3536 val >>= LR_SIZE_BITS; 3537 3538 for (i = 0; i < s->cnt; ++i) { 3539 struct linked_reg *e = &s->entries[i]; 3540 3541 e->frameno = val & LR_FRAMENO_MASK; 3542 e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK; 3543 e->is_reg = (val >> LR_IS_REG_OFF) & 0x1; 3544 val >>= LR_ENTRY_BITS; 3545 } 3546 } 3547 3548 /* for any branch, call, exit record the history of jmps in the given state */ 3549 static int push_insn_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, 3550 int insn_flags, u64 linked_regs) 3551 { 3552 struct bpf_insn_hist_entry *p; 3553 size_t alloc_size; 3554 3555 /* combine instruction flags if we already recorded this instruction */ 3556 if (env->cur_hist_ent) { 3557 /* atomic instructions push insn_flags twice, for READ and 3558 * WRITE sides, but they should agree on stack slot 3559 */ 3560 WARN_ONCE((env->cur_hist_ent->flags & insn_flags) && 3561 (env->cur_hist_ent->flags & insn_flags) != insn_flags, 3562 "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n", 3563 env->insn_idx, env->cur_hist_ent->flags, insn_flags); 3564 env->cur_hist_ent->flags |= insn_flags; 3565 WARN_ONCE(env->cur_hist_ent->linked_regs != 0, 3566 "verifier insn history bug: insn_idx %d linked_regs != 0: %#llx\n", 3567 env->insn_idx, env->cur_hist_ent->linked_regs); 3568 env->cur_hist_ent->linked_regs = linked_regs; 3569 return 0; 3570 } 3571 3572 if (cur->insn_hist_end + 1 > env->insn_hist_cap) { 3573 alloc_size = size_mul(cur->insn_hist_end + 1, sizeof(*p)); 3574 p = kvrealloc(env->insn_hist, alloc_size, GFP_USER); 3575 if (!p) 3576 return -ENOMEM; 3577 env->insn_hist = p; 3578 env->insn_hist_cap = alloc_size / sizeof(*p); 3579 } 3580 3581 p = &env->insn_hist[cur->insn_hist_end]; 3582 p->idx = env->insn_idx; 3583 p->prev_idx = env->prev_insn_idx; 3584 p->flags = insn_flags; 3585 p->linked_regs = linked_regs; 3586 3587 cur->insn_hist_end++; 3588 env->cur_hist_ent = p; 3589 3590 return 0; 3591 } 3592 3593 static struct bpf_insn_hist_entry *get_insn_hist_entry(struct bpf_verifier_env *env, 3594 u32 hist_start, u32 hist_end, int insn_idx) 3595 { 3596 if (hist_end > hist_start && env->insn_hist[hist_end - 1].idx == insn_idx) 3597 return &env->insn_hist[hist_end - 1]; 3598 return NULL; 3599 } 3600 3601 /* Backtrack one insn at a time. If idx is not at the top of recorded 3602 * history then previous instruction came from straight line execution. 3603 * Return -ENOENT if we exhausted all instructions within given state. 3604 * 3605 * It's legal to have a bit of a looping with the same starting and ending 3606 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3607 * instruction index is the same as state's first_idx doesn't mean we are 3608 * done. If there is still some jump history left, we should keep going. We 3609 * need to take into account that we might have a jump history between given 3610 * state's parent and itself, due to checkpointing. In this case, we'll have 3611 * history entry recording a jump from last instruction of parent state and 3612 * first instruction of given state. 3613 */ 3614 static int get_prev_insn_idx(const struct bpf_verifier_env *env, 3615 struct bpf_verifier_state *st, 3616 int insn_idx, u32 hist_start, u32 *hist_endp) 3617 { 3618 u32 hist_end = *hist_endp; 3619 u32 cnt = hist_end - hist_start; 3620 3621 if (insn_idx == st->first_insn_idx) { 3622 if (cnt == 0) 3623 return -ENOENT; 3624 if (cnt == 1 && env->insn_hist[hist_start].idx == insn_idx) 3625 return -ENOENT; 3626 } 3627 3628 if (cnt && env->insn_hist[hist_end - 1].idx == insn_idx) { 3629 (*hist_endp)--; 3630 return env->insn_hist[hist_end - 1].prev_idx; 3631 } else { 3632 return insn_idx - 1; 3633 } 3634 } 3635 3636 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3637 { 3638 const struct btf_type *func; 3639 struct btf *desc_btf; 3640 3641 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3642 return NULL; 3643 3644 desc_btf = find_kfunc_desc_btf(data, insn->off); 3645 if (IS_ERR(desc_btf)) 3646 return "<error>"; 3647 3648 func = btf_type_by_id(desc_btf, insn->imm); 3649 return btf_name_by_offset(desc_btf, func->name_off); 3650 } 3651 3652 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3653 { 3654 bt->frame = frame; 3655 } 3656 3657 static inline void bt_reset(struct backtrack_state *bt) 3658 { 3659 struct bpf_verifier_env *env = bt->env; 3660 3661 memset(bt, 0, sizeof(*bt)); 3662 bt->env = env; 3663 } 3664 3665 static inline u32 bt_empty(struct backtrack_state *bt) 3666 { 3667 u64 mask = 0; 3668 int i; 3669 3670 for (i = 0; i <= bt->frame; i++) 3671 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3672 3673 return mask == 0; 3674 } 3675 3676 static inline int bt_subprog_enter(struct backtrack_state *bt) 3677 { 3678 if (bt->frame == MAX_CALL_FRAMES - 1) { 3679 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3680 WARN_ONCE(1, "verifier backtracking bug"); 3681 return -EFAULT; 3682 } 3683 bt->frame++; 3684 return 0; 3685 } 3686 3687 static inline int bt_subprog_exit(struct backtrack_state *bt) 3688 { 3689 if (bt->frame == 0) { 3690 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3691 WARN_ONCE(1, "verifier backtracking bug"); 3692 return -EFAULT; 3693 } 3694 bt->frame--; 3695 return 0; 3696 } 3697 3698 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3699 { 3700 bt->reg_masks[frame] |= 1 << reg; 3701 } 3702 3703 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3704 { 3705 bt->reg_masks[frame] &= ~(1 << reg); 3706 } 3707 3708 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3709 { 3710 bt_set_frame_reg(bt, bt->frame, reg); 3711 } 3712 3713 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3714 { 3715 bt_clear_frame_reg(bt, bt->frame, reg); 3716 } 3717 3718 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3719 { 3720 bt->stack_masks[frame] |= 1ull << slot; 3721 } 3722 3723 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3724 { 3725 bt->stack_masks[frame] &= ~(1ull << slot); 3726 } 3727 3728 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3729 { 3730 return bt->reg_masks[frame]; 3731 } 3732 3733 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3734 { 3735 return bt->reg_masks[bt->frame]; 3736 } 3737 3738 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3739 { 3740 return bt->stack_masks[frame]; 3741 } 3742 3743 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3744 { 3745 return bt->stack_masks[bt->frame]; 3746 } 3747 3748 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3749 { 3750 return bt->reg_masks[bt->frame] & (1 << reg); 3751 } 3752 3753 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg) 3754 { 3755 return bt->reg_masks[frame] & (1 << reg); 3756 } 3757 3758 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) 3759 { 3760 return bt->stack_masks[frame] & (1ull << slot); 3761 } 3762 3763 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3764 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3765 { 3766 DECLARE_BITMAP(mask, 64); 3767 bool first = true; 3768 int i, n; 3769 3770 buf[0] = '\0'; 3771 3772 bitmap_from_u64(mask, reg_mask); 3773 for_each_set_bit(i, mask, 32) { 3774 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3775 first = false; 3776 buf += n; 3777 buf_sz -= n; 3778 if (buf_sz < 0) 3779 break; 3780 } 3781 } 3782 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3783 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3784 { 3785 DECLARE_BITMAP(mask, 64); 3786 bool first = true; 3787 int i, n; 3788 3789 buf[0] = '\0'; 3790 3791 bitmap_from_u64(mask, stack_mask); 3792 for_each_set_bit(i, mask, 64) { 3793 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3794 first = false; 3795 buf += n; 3796 buf_sz -= n; 3797 if (buf_sz < 0) 3798 break; 3799 } 3800 } 3801 3802 /* If any register R in hist->linked_regs is marked as precise in bt, 3803 * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs. 3804 */ 3805 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_insn_hist_entry *hist) 3806 { 3807 struct linked_regs linked_regs; 3808 bool some_precise = false; 3809 int i; 3810 3811 if (!hist || hist->linked_regs == 0) 3812 return; 3813 3814 linked_regs_unpack(hist->linked_regs, &linked_regs); 3815 for (i = 0; i < linked_regs.cnt; ++i) { 3816 struct linked_reg *e = &linked_regs.entries[i]; 3817 3818 if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) || 3819 (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) { 3820 some_precise = true; 3821 break; 3822 } 3823 } 3824 3825 if (!some_precise) 3826 return; 3827 3828 for (i = 0; i < linked_regs.cnt; ++i) { 3829 struct linked_reg *e = &linked_regs.entries[i]; 3830 3831 if (e->is_reg) 3832 bt_set_frame_reg(bt, e->frameno, e->regno); 3833 else 3834 bt_set_frame_slot(bt, e->frameno, e->spi); 3835 } 3836 } 3837 3838 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 3839 3840 /* For given verifier state backtrack_insn() is called from the last insn to 3841 * the first insn. Its purpose is to compute a bitmask of registers and 3842 * stack slots that needs precision in the parent verifier state. 3843 * 3844 * @idx is an index of the instruction we are currently processing; 3845 * @subseq_idx is an index of the subsequent instruction that: 3846 * - *would be* executed next, if jump history is viewed in forward order; 3847 * - *was* processed previously during backtracking. 3848 */ 3849 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3850 struct bpf_insn_hist_entry *hist, struct backtrack_state *bt) 3851 { 3852 const struct bpf_insn_cbs cbs = { 3853 .cb_call = disasm_kfunc_name, 3854 .cb_print = verbose, 3855 .private_data = env, 3856 }; 3857 struct bpf_insn *insn = env->prog->insnsi + idx; 3858 u8 class = BPF_CLASS(insn->code); 3859 u8 opcode = BPF_OP(insn->code); 3860 u8 mode = BPF_MODE(insn->code); 3861 u32 dreg = insn->dst_reg; 3862 u32 sreg = insn->src_reg; 3863 u32 spi, i, fr; 3864 3865 if (insn->code == 0) 3866 return 0; 3867 if (env->log.level & BPF_LOG_LEVEL2) { 3868 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3869 verbose(env, "mark_precise: frame%d: regs=%s ", 3870 bt->frame, env->tmp_str_buf); 3871 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3872 verbose(env, "stack=%s before ", env->tmp_str_buf); 3873 verbose(env, "%d: ", idx); 3874 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3875 } 3876 3877 /* If there is a history record that some registers gained range at this insn, 3878 * propagate precision marks to those registers, so that bt_is_reg_set() 3879 * accounts for these registers. 3880 */ 3881 bt_sync_linked_regs(bt, hist); 3882 3883 if (class == BPF_ALU || class == BPF_ALU64) { 3884 if (!bt_is_reg_set(bt, dreg)) 3885 return 0; 3886 if (opcode == BPF_END || opcode == BPF_NEG) { 3887 /* sreg is reserved and unused 3888 * dreg still need precision before this insn 3889 */ 3890 return 0; 3891 } else if (opcode == BPF_MOV) { 3892 if (BPF_SRC(insn->code) == BPF_X) { 3893 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3894 * dreg needs precision after this insn 3895 * sreg needs precision before this insn 3896 */ 3897 bt_clear_reg(bt, dreg); 3898 if (sreg != BPF_REG_FP) 3899 bt_set_reg(bt, sreg); 3900 } else { 3901 /* dreg = K 3902 * dreg needs precision after this insn. 3903 * Corresponding register is already marked 3904 * as precise=true in this verifier state. 3905 * No further markings in parent are necessary 3906 */ 3907 bt_clear_reg(bt, dreg); 3908 } 3909 } else { 3910 if (BPF_SRC(insn->code) == BPF_X) { 3911 /* dreg += sreg 3912 * both dreg and sreg need precision 3913 * before this insn 3914 */ 3915 if (sreg != BPF_REG_FP) 3916 bt_set_reg(bt, sreg); 3917 } /* else dreg += K 3918 * dreg still needs precision before this insn 3919 */ 3920 } 3921 } else if (class == BPF_LDX) { 3922 if (!bt_is_reg_set(bt, dreg)) 3923 return 0; 3924 bt_clear_reg(bt, dreg); 3925 3926 /* scalars can only be spilled into stack w/o losing precision. 3927 * Load from any other memory can be zero extended. 3928 * The desire to keep that precision is already indicated 3929 * by 'precise' mark in corresponding register of this state. 3930 * No further tracking necessary. 3931 */ 3932 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 3933 return 0; 3934 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3935 * that [fp - off] slot contains scalar that needs to be 3936 * tracked with precision 3937 */ 3938 spi = insn_stack_access_spi(hist->flags); 3939 fr = insn_stack_access_frameno(hist->flags); 3940 bt_set_frame_slot(bt, fr, spi); 3941 } else if (class == BPF_STX || class == BPF_ST) { 3942 if (bt_is_reg_set(bt, dreg)) 3943 /* stx & st shouldn't be using _scalar_ dst_reg 3944 * to access memory. It means backtracking 3945 * encountered a case of pointer subtraction. 3946 */ 3947 return -ENOTSUPP; 3948 /* scalars can only be spilled into stack */ 3949 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 3950 return 0; 3951 spi = insn_stack_access_spi(hist->flags); 3952 fr = insn_stack_access_frameno(hist->flags); 3953 if (!bt_is_frame_slot_set(bt, fr, spi)) 3954 return 0; 3955 bt_clear_frame_slot(bt, fr, spi); 3956 if (class == BPF_STX) 3957 bt_set_reg(bt, sreg); 3958 } else if (class == BPF_JMP || class == BPF_JMP32) { 3959 if (bpf_pseudo_call(insn)) { 3960 int subprog_insn_idx, subprog; 3961 3962 subprog_insn_idx = idx + insn->imm + 1; 3963 subprog = find_subprog(env, subprog_insn_idx); 3964 if (subprog < 0) 3965 return -EFAULT; 3966 3967 if (subprog_is_global(env, subprog)) { 3968 /* check that jump history doesn't have any 3969 * extra instructions from subprog; the next 3970 * instruction after call to global subprog 3971 * should be literally next instruction in 3972 * caller program 3973 */ 3974 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3975 /* r1-r5 are invalidated after subprog call, 3976 * so for global func call it shouldn't be set 3977 * anymore 3978 */ 3979 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3980 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3981 WARN_ONCE(1, "verifier backtracking bug"); 3982 return -EFAULT; 3983 } 3984 /* global subprog always sets R0 */ 3985 bt_clear_reg(bt, BPF_REG_0); 3986 return 0; 3987 } else { 3988 /* static subprog call instruction, which 3989 * means that we are exiting current subprog, 3990 * so only r1-r5 could be still requested as 3991 * precise, r0 and r6-r10 or any stack slot in 3992 * the current frame should be zero by now 3993 */ 3994 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3995 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3996 WARN_ONCE(1, "verifier backtracking bug"); 3997 return -EFAULT; 3998 } 3999 /* we are now tracking register spills correctly, 4000 * so any instance of leftover slots is a bug 4001 */ 4002 if (bt_stack_mask(bt) != 0) { 4003 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 4004 WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)"); 4005 return -EFAULT; 4006 } 4007 /* propagate r1-r5 to the caller */ 4008 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 4009 if (bt_is_reg_set(bt, i)) { 4010 bt_clear_reg(bt, i); 4011 bt_set_frame_reg(bt, bt->frame - 1, i); 4012 } 4013 } 4014 if (bt_subprog_exit(bt)) 4015 return -EFAULT; 4016 return 0; 4017 } 4018 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 4019 /* exit from callback subprog to callback-calling helper or 4020 * kfunc call. Use idx/subseq_idx check to discern it from 4021 * straight line code backtracking. 4022 * Unlike the subprog call handling above, we shouldn't 4023 * propagate precision of r1-r5 (if any requested), as they are 4024 * not actually arguments passed directly to callback subprogs 4025 */ 4026 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4027 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4028 WARN_ONCE(1, "verifier backtracking bug"); 4029 return -EFAULT; 4030 } 4031 if (bt_stack_mask(bt) != 0) { 4032 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 4033 WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)"); 4034 return -EFAULT; 4035 } 4036 /* clear r1-r5 in callback subprog's mask */ 4037 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4038 bt_clear_reg(bt, i); 4039 if (bt_subprog_exit(bt)) 4040 return -EFAULT; 4041 return 0; 4042 } else if (opcode == BPF_CALL) { 4043 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 4044 * catch this error later. Make backtracking conservative 4045 * with ENOTSUPP. 4046 */ 4047 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 4048 return -ENOTSUPP; 4049 /* regular helper call sets R0 */ 4050 bt_clear_reg(bt, BPF_REG_0); 4051 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4052 /* if backtracing was looking for registers R1-R5 4053 * they should have been found already. 4054 */ 4055 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4056 WARN_ONCE(1, "verifier backtracking bug"); 4057 return -EFAULT; 4058 } 4059 } else if (opcode == BPF_EXIT) { 4060 bool r0_precise; 4061 4062 /* Backtracking to a nested function call, 'idx' is a part of 4063 * the inner frame 'subseq_idx' is a part of the outer frame. 4064 * In case of a regular function call, instructions giving 4065 * precision to registers R1-R5 should have been found already. 4066 * In case of a callback, it is ok to have R1-R5 marked for 4067 * backtracking, as these registers are set by the function 4068 * invoking callback. 4069 */ 4070 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 4071 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4072 bt_clear_reg(bt, i); 4073 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4074 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4075 WARN_ONCE(1, "verifier backtracking bug"); 4076 return -EFAULT; 4077 } 4078 4079 /* BPF_EXIT in subprog or callback always returns 4080 * right after the call instruction, so by checking 4081 * whether the instruction at subseq_idx-1 is subprog 4082 * call or not we can distinguish actual exit from 4083 * *subprog* from exit from *callback*. In the former 4084 * case, we need to propagate r0 precision, if 4085 * necessary. In the former we never do that. 4086 */ 4087 r0_precise = subseq_idx - 1 >= 0 && 4088 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 4089 bt_is_reg_set(bt, BPF_REG_0); 4090 4091 bt_clear_reg(bt, BPF_REG_0); 4092 if (bt_subprog_enter(bt)) 4093 return -EFAULT; 4094 4095 if (r0_precise) 4096 bt_set_reg(bt, BPF_REG_0); 4097 /* r6-r9 and stack slots will stay set in caller frame 4098 * bitmasks until we return back from callee(s) 4099 */ 4100 return 0; 4101 } else if (BPF_SRC(insn->code) == BPF_X) { 4102 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 4103 return 0; 4104 /* dreg <cond> sreg 4105 * Both dreg and sreg need precision before 4106 * this insn. If only sreg was marked precise 4107 * before it would be equally necessary to 4108 * propagate it to dreg. 4109 */ 4110 bt_set_reg(bt, dreg); 4111 bt_set_reg(bt, sreg); 4112 } else if (BPF_SRC(insn->code) == BPF_K) { 4113 /* dreg <cond> K 4114 * Only dreg still needs precision before 4115 * this insn, so for the K-based conditional 4116 * there is nothing new to be marked. 4117 */ 4118 } 4119 } else if (class == BPF_LD) { 4120 if (!bt_is_reg_set(bt, dreg)) 4121 return 0; 4122 bt_clear_reg(bt, dreg); 4123 /* It's ld_imm64 or ld_abs or ld_ind. 4124 * For ld_imm64 no further tracking of precision 4125 * into parent is necessary 4126 */ 4127 if (mode == BPF_IND || mode == BPF_ABS) 4128 /* to be analyzed */ 4129 return -ENOTSUPP; 4130 } 4131 /* Propagate precision marks to linked registers, to account for 4132 * registers marked as precise in this function. 4133 */ 4134 bt_sync_linked_regs(bt, hist); 4135 return 0; 4136 } 4137 4138 /* the scalar precision tracking algorithm: 4139 * . at the start all registers have precise=false. 4140 * . scalar ranges are tracked as normal through alu and jmp insns. 4141 * . once precise value of the scalar register is used in: 4142 * . ptr + scalar alu 4143 * . if (scalar cond K|scalar) 4144 * . helper_call(.., scalar, ...) where ARG_CONST is expected 4145 * backtrack through the verifier states and mark all registers and 4146 * stack slots with spilled constants that these scalar regisers 4147 * should be precise. 4148 * . during state pruning two registers (or spilled stack slots) 4149 * are equivalent if both are not precise. 4150 * 4151 * Note the verifier cannot simply walk register parentage chain, 4152 * since many different registers and stack slots could have been 4153 * used to compute single precise scalar. 4154 * 4155 * The approach of starting with precise=true for all registers and then 4156 * backtrack to mark a register as not precise when the verifier detects 4157 * that program doesn't care about specific value (e.g., when helper 4158 * takes register as ARG_ANYTHING parameter) is not safe. 4159 * 4160 * It's ok to walk single parentage chain of the verifier states. 4161 * It's possible that this backtracking will go all the way till 1st insn. 4162 * All other branches will be explored for needing precision later. 4163 * 4164 * The backtracking needs to deal with cases like: 4165 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 4166 * r9 -= r8 4167 * r5 = r9 4168 * if r5 > 0x79f goto pc+7 4169 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 4170 * r5 += 1 4171 * ... 4172 * call bpf_perf_event_output#25 4173 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 4174 * 4175 * and this case: 4176 * r6 = 1 4177 * call foo // uses callee's r6 inside to compute r0 4178 * r0 += r6 4179 * if r0 == 0 goto 4180 * 4181 * to track above reg_mask/stack_mask needs to be independent for each frame. 4182 * 4183 * Also if parent's curframe > frame where backtracking started, 4184 * the verifier need to mark registers in both frames, otherwise callees 4185 * may incorrectly prune callers. This is similar to 4186 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 4187 * 4188 * For now backtracking falls back into conservative marking. 4189 */ 4190 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 4191 struct bpf_verifier_state *st) 4192 { 4193 struct bpf_func_state *func; 4194 struct bpf_reg_state *reg; 4195 int i, j; 4196 4197 if (env->log.level & BPF_LOG_LEVEL2) { 4198 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 4199 st->curframe); 4200 } 4201 4202 /* big hammer: mark all scalars precise in this path. 4203 * pop_stack may still get !precise scalars. 4204 * We also skip current state and go straight to first parent state, 4205 * because precision markings in current non-checkpointed state are 4206 * not needed. See why in the comment in __mark_chain_precision below. 4207 */ 4208 for (st = st->parent; st; st = st->parent) { 4209 for (i = 0; i <= st->curframe; i++) { 4210 func = st->frame[i]; 4211 for (j = 0; j < BPF_REG_FP; j++) { 4212 reg = &func->regs[j]; 4213 if (reg->type != SCALAR_VALUE || reg->precise) 4214 continue; 4215 reg->precise = true; 4216 if (env->log.level & BPF_LOG_LEVEL2) { 4217 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 4218 i, j); 4219 } 4220 } 4221 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4222 if (!is_spilled_reg(&func->stack[j])) 4223 continue; 4224 reg = &func->stack[j].spilled_ptr; 4225 if (reg->type != SCALAR_VALUE || reg->precise) 4226 continue; 4227 reg->precise = true; 4228 if (env->log.level & BPF_LOG_LEVEL2) { 4229 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4230 i, -(j + 1) * 8); 4231 } 4232 } 4233 } 4234 } 4235 } 4236 4237 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4238 { 4239 struct bpf_func_state *func; 4240 struct bpf_reg_state *reg; 4241 int i, j; 4242 4243 for (i = 0; i <= st->curframe; i++) { 4244 func = st->frame[i]; 4245 for (j = 0; j < BPF_REG_FP; j++) { 4246 reg = &func->regs[j]; 4247 if (reg->type != SCALAR_VALUE) 4248 continue; 4249 reg->precise = false; 4250 } 4251 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4252 if (!is_spilled_reg(&func->stack[j])) 4253 continue; 4254 reg = &func->stack[j].spilled_ptr; 4255 if (reg->type != SCALAR_VALUE) 4256 continue; 4257 reg->precise = false; 4258 } 4259 } 4260 } 4261 4262 /* 4263 * __mark_chain_precision() backtracks BPF program instruction sequence and 4264 * chain of verifier states making sure that register *regno* (if regno >= 0) 4265 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4266 * SCALARS, as well as any other registers and slots that contribute to 4267 * a tracked state of given registers/stack slots, depending on specific BPF 4268 * assembly instructions (see backtrack_insns() for exact instruction handling 4269 * logic). This backtracking relies on recorded insn_hist and is able to 4270 * traverse entire chain of parent states. This process ends only when all the 4271 * necessary registers/slots and their transitive dependencies are marked as 4272 * precise. 4273 * 4274 * One important and subtle aspect is that precise marks *do not matter* in 4275 * the currently verified state (current state). It is important to understand 4276 * why this is the case. 4277 * 4278 * First, note that current state is the state that is not yet "checkpointed", 4279 * i.e., it is not yet put into env->explored_states, and it has no children 4280 * states as well. It's ephemeral, and can end up either a) being discarded if 4281 * compatible explored state is found at some point or BPF_EXIT instruction is 4282 * reached or b) checkpointed and put into env->explored_states, branching out 4283 * into one or more children states. 4284 * 4285 * In the former case, precise markings in current state are completely 4286 * ignored by state comparison code (see regsafe() for details). Only 4287 * checkpointed ("old") state precise markings are important, and if old 4288 * state's register/slot is precise, regsafe() assumes current state's 4289 * register/slot as precise and checks value ranges exactly and precisely. If 4290 * states turn out to be compatible, current state's necessary precise 4291 * markings and any required parent states' precise markings are enforced 4292 * after the fact with propagate_precision() logic, after the fact. But it's 4293 * important to realize that in this case, even after marking current state 4294 * registers/slots as precise, we immediately discard current state. So what 4295 * actually matters is any of the precise markings propagated into current 4296 * state's parent states, which are always checkpointed (due to b) case above). 4297 * As such, for scenario a) it doesn't matter if current state has precise 4298 * markings set or not. 4299 * 4300 * Now, for the scenario b), checkpointing and forking into child(ren) 4301 * state(s). Note that before current state gets to checkpointing step, any 4302 * processed instruction always assumes precise SCALAR register/slot 4303 * knowledge: if precise value or range is useful to prune jump branch, BPF 4304 * verifier takes this opportunity enthusiastically. Similarly, when 4305 * register's value is used to calculate offset or memory address, exact 4306 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4307 * what we mentioned above about state comparison ignoring precise markings 4308 * during state comparison, BPF verifier ignores and also assumes precise 4309 * markings *at will* during instruction verification process. But as verifier 4310 * assumes precision, it also propagates any precision dependencies across 4311 * parent states, which are not yet finalized, so can be further restricted 4312 * based on new knowledge gained from restrictions enforced by their children 4313 * states. This is so that once those parent states are finalized, i.e., when 4314 * they have no more active children state, state comparison logic in 4315 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4316 * required for correctness. 4317 * 4318 * To build a bit more intuition, note also that once a state is checkpointed, 4319 * the path we took to get to that state is not important. This is crucial 4320 * property for state pruning. When state is checkpointed and finalized at 4321 * some instruction index, it can be correctly and safely used to "short 4322 * circuit" any *compatible* state that reaches exactly the same instruction 4323 * index. I.e., if we jumped to that instruction from a completely different 4324 * code path than original finalized state was derived from, it doesn't 4325 * matter, current state can be discarded because from that instruction 4326 * forward having a compatible state will ensure we will safely reach the 4327 * exit. States describe preconditions for further exploration, but completely 4328 * forget the history of how we got here. 4329 * 4330 * This also means that even if we needed precise SCALAR range to get to 4331 * finalized state, but from that point forward *that same* SCALAR register is 4332 * never used in a precise context (i.e., it's precise value is not needed for 4333 * correctness), it's correct and safe to mark such register as "imprecise" 4334 * (i.e., precise marking set to false). This is what we rely on when we do 4335 * not set precise marking in current state. If no child state requires 4336 * precision for any given SCALAR register, it's safe to dictate that it can 4337 * be imprecise. If any child state does require this register to be precise, 4338 * we'll mark it precise later retroactively during precise markings 4339 * propagation from child state to parent states. 4340 * 4341 * Skipping precise marking setting in current state is a mild version of 4342 * relying on the above observation. But we can utilize this property even 4343 * more aggressively by proactively forgetting any precise marking in the 4344 * current state (which we inherited from the parent state), right before we 4345 * checkpoint it and branch off into new child state. This is done by 4346 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4347 * finalized states which help in short circuiting more future states. 4348 */ 4349 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4350 { 4351 struct backtrack_state *bt = &env->bt; 4352 struct bpf_verifier_state *st = env->cur_state; 4353 int first_idx = st->first_insn_idx; 4354 int last_idx = env->insn_idx; 4355 int subseq_idx = -1; 4356 struct bpf_func_state *func; 4357 struct bpf_reg_state *reg; 4358 bool skip_first = true; 4359 int i, fr, err; 4360 4361 if (!env->bpf_capable) 4362 return 0; 4363 4364 /* set frame number from which we are starting to backtrack */ 4365 bt_init(bt, env->cur_state->curframe); 4366 4367 /* Do sanity checks against current state of register and/or stack 4368 * slot, but don't set precise flag in current state, as precision 4369 * tracking in the current state is unnecessary. 4370 */ 4371 func = st->frame[bt->frame]; 4372 if (regno >= 0) { 4373 reg = &func->regs[regno]; 4374 if (reg->type != SCALAR_VALUE) { 4375 WARN_ONCE(1, "backtracing misuse"); 4376 return -EFAULT; 4377 } 4378 bt_set_reg(bt, regno); 4379 } 4380 4381 if (bt_empty(bt)) 4382 return 0; 4383 4384 for (;;) { 4385 DECLARE_BITMAP(mask, 64); 4386 u32 hist_start = st->insn_hist_start; 4387 u32 hist_end = st->insn_hist_end; 4388 struct bpf_insn_hist_entry *hist; 4389 4390 if (env->log.level & BPF_LOG_LEVEL2) { 4391 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4392 bt->frame, last_idx, first_idx, subseq_idx); 4393 } 4394 4395 if (last_idx < 0) { 4396 /* we are at the entry into subprog, which 4397 * is expected for global funcs, but only if 4398 * requested precise registers are R1-R5 4399 * (which are global func's input arguments) 4400 */ 4401 if (st->curframe == 0 && 4402 st->frame[0]->subprogno > 0 && 4403 st->frame[0]->callsite == BPF_MAIN_FUNC && 4404 bt_stack_mask(bt) == 0 && 4405 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4406 bitmap_from_u64(mask, bt_reg_mask(bt)); 4407 for_each_set_bit(i, mask, 32) { 4408 reg = &st->frame[0]->regs[i]; 4409 bt_clear_reg(bt, i); 4410 if (reg->type == SCALAR_VALUE) 4411 reg->precise = true; 4412 } 4413 return 0; 4414 } 4415 4416 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4417 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4418 WARN_ONCE(1, "verifier backtracking bug"); 4419 return -EFAULT; 4420 } 4421 4422 for (i = last_idx;;) { 4423 if (skip_first) { 4424 err = 0; 4425 skip_first = false; 4426 } else { 4427 hist = get_insn_hist_entry(env, hist_start, hist_end, i); 4428 err = backtrack_insn(env, i, subseq_idx, hist, bt); 4429 } 4430 if (err == -ENOTSUPP) { 4431 mark_all_scalars_precise(env, env->cur_state); 4432 bt_reset(bt); 4433 return 0; 4434 } else if (err) { 4435 return err; 4436 } 4437 if (bt_empty(bt)) 4438 /* Found assignment(s) into tracked register in this state. 4439 * Since this state is already marked, just return. 4440 * Nothing to be tracked further in the parent state. 4441 */ 4442 return 0; 4443 subseq_idx = i; 4444 i = get_prev_insn_idx(env, st, i, hist_start, &hist_end); 4445 if (i == -ENOENT) 4446 break; 4447 if (i >= env->prog->len) { 4448 /* This can happen if backtracking reached insn 0 4449 * and there are still reg_mask or stack_mask 4450 * to backtrack. 4451 * It means the backtracking missed the spot where 4452 * particular register was initialized with a constant. 4453 */ 4454 verbose(env, "BUG backtracking idx %d\n", i); 4455 WARN_ONCE(1, "verifier backtracking bug"); 4456 return -EFAULT; 4457 } 4458 } 4459 st = st->parent; 4460 if (!st) 4461 break; 4462 4463 for (fr = bt->frame; fr >= 0; fr--) { 4464 func = st->frame[fr]; 4465 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4466 for_each_set_bit(i, mask, 32) { 4467 reg = &func->regs[i]; 4468 if (reg->type != SCALAR_VALUE) { 4469 bt_clear_frame_reg(bt, fr, i); 4470 continue; 4471 } 4472 if (reg->precise) 4473 bt_clear_frame_reg(bt, fr, i); 4474 else 4475 reg->precise = true; 4476 } 4477 4478 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4479 for_each_set_bit(i, mask, 64) { 4480 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4481 verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n", 4482 i, func->allocated_stack / BPF_REG_SIZE); 4483 WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)"); 4484 return -EFAULT; 4485 } 4486 4487 if (!is_spilled_scalar_reg(&func->stack[i])) { 4488 bt_clear_frame_slot(bt, fr, i); 4489 continue; 4490 } 4491 reg = &func->stack[i].spilled_ptr; 4492 if (reg->precise) 4493 bt_clear_frame_slot(bt, fr, i); 4494 else 4495 reg->precise = true; 4496 } 4497 if (env->log.level & BPF_LOG_LEVEL2) { 4498 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4499 bt_frame_reg_mask(bt, fr)); 4500 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4501 fr, env->tmp_str_buf); 4502 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4503 bt_frame_stack_mask(bt, fr)); 4504 verbose(env, "stack=%s: ", env->tmp_str_buf); 4505 print_verifier_state(env, func, true); 4506 } 4507 } 4508 4509 if (bt_empty(bt)) 4510 return 0; 4511 4512 subseq_idx = first_idx; 4513 last_idx = st->last_insn_idx; 4514 first_idx = st->first_insn_idx; 4515 } 4516 4517 /* if we still have requested precise regs or slots, we missed 4518 * something (e.g., stack access through non-r10 register), so 4519 * fallback to marking all precise 4520 */ 4521 if (!bt_empty(bt)) { 4522 mark_all_scalars_precise(env, env->cur_state); 4523 bt_reset(bt); 4524 } 4525 4526 return 0; 4527 } 4528 4529 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4530 { 4531 return __mark_chain_precision(env, regno); 4532 } 4533 4534 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4535 * desired reg and stack masks across all relevant frames 4536 */ 4537 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4538 { 4539 return __mark_chain_precision(env, -1); 4540 } 4541 4542 static bool is_spillable_regtype(enum bpf_reg_type type) 4543 { 4544 switch (base_type(type)) { 4545 case PTR_TO_MAP_VALUE: 4546 case PTR_TO_STACK: 4547 case PTR_TO_CTX: 4548 case PTR_TO_PACKET: 4549 case PTR_TO_PACKET_META: 4550 case PTR_TO_PACKET_END: 4551 case PTR_TO_FLOW_KEYS: 4552 case CONST_PTR_TO_MAP: 4553 case PTR_TO_SOCKET: 4554 case PTR_TO_SOCK_COMMON: 4555 case PTR_TO_TCP_SOCK: 4556 case PTR_TO_XDP_SOCK: 4557 case PTR_TO_BTF_ID: 4558 case PTR_TO_BUF: 4559 case PTR_TO_MEM: 4560 case PTR_TO_FUNC: 4561 case PTR_TO_MAP_KEY: 4562 case PTR_TO_ARENA: 4563 return true; 4564 default: 4565 return false; 4566 } 4567 } 4568 4569 /* Does this register contain a constant zero? */ 4570 static bool register_is_null(struct bpf_reg_state *reg) 4571 { 4572 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4573 } 4574 4575 /* check if register is a constant scalar value */ 4576 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 4577 { 4578 return reg->type == SCALAR_VALUE && 4579 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 4580 } 4581 4582 /* assuming is_reg_const() is true, return constant value of a register */ 4583 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 4584 { 4585 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 4586 } 4587 4588 static bool __is_pointer_value(bool allow_ptr_leaks, 4589 const struct bpf_reg_state *reg) 4590 { 4591 if (allow_ptr_leaks) 4592 return false; 4593 4594 return reg->type != SCALAR_VALUE; 4595 } 4596 4597 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, 4598 struct bpf_reg_state *src_reg) 4599 { 4600 if (src_reg->type != SCALAR_VALUE) 4601 return; 4602 4603 if (src_reg->id & BPF_ADD_CONST) { 4604 /* 4605 * The verifier is processing rX = rY insn and 4606 * rY->id has special linked register already. 4607 * Cleared it, since multiple rX += const are not supported. 4608 */ 4609 src_reg->id = 0; 4610 src_reg->off = 0; 4611 } 4612 4613 if (!src_reg->id && !tnum_is_const(src_reg->var_off)) 4614 /* Ensure that src_reg has a valid ID that will be copied to 4615 * dst_reg and then will be used by sync_linked_regs() to 4616 * propagate min/max range. 4617 */ 4618 src_reg->id = ++env->id_gen; 4619 } 4620 4621 /* Copy src state preserving dst->parent and dst->live fields */ 4622 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4623 { 4624 struct bpf_reg_state *parent = dst->parent; 4625 enum bpf_reg_liveness live = dst->live; 4626 4627 *dst = *src; 4628 dst->parent = parent; 4629 dst->live = live; 4630 } 4631 4632 static void save_register_state(struct bpf_verifier_env *env, 4633 struct bpf_func_state *state, 4634 int spi, struct bpf_reg_state *reg, 4635 int size) 4636 { 4637 int i; 4638 4639 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4640 if (size == BPF_REG_SIZE) 4641 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4642 4643 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4644 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4645 4646 /* size < 8 bytes spill */ 4647 for (; i; i--) 4648 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); 4649 } 4650 4651 static bool is_bpf_st_mem(struct bpf_insn *insn) 4652 { 4653 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4654 } 4655 4656 static int get_reg_width(struct bpf_reg_state *reg) 4657 { 4658 return fls64(reg->umax_value); 4659 } 4660 4661 /* See comment for mark_fastcall_pattern_for_call() */ 4662 static void check_fastcall_stack_contract(struct bpf_verifier_env *env, 4663 struct bpf_func_state *state, int insn_idx, int off) 4664 { 4665 struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno]; 4666 struct bpf_insn_aux_data *aux = env->insn_aux_data; 4667 int i; 4668 4669 if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern) 4670 return; 4671 /* access to the region [max_stack_depth .. fastcall_stack_off) 4672 * from something that is not a part of the fastcall pattern, 4673 * disable fastcall rewrites for current subprogram by setting 4674 * fastcall_stack_off to a value smaller than any possible offset. 4675 */ 4676 subprog->fastcall_stack_off = S16_MIN; 4677 /* reset fastcall aux flags within subprogram, 4678 * happens at most once per subprogram 4679 */ 4680 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 4681 aux[i].fastcall_spills_num = 0; 4682 aux[i].fastcall_pattern = 0; 4683 } 4684 } 4685 4686 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4687 * stack boundary and alignment are checked in check_mem_access() 4688 */ 4689 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4690 /* stack frame we're writing to */ 4691 struct bpf_func_state *state, 4692 int off, int size, int value_regno, 4693 int insn_idx) 4694 { 4695 struct bpf_func_state *cur; /* state of the current function */ 4696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4697 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4698 struct bpf_reg_state *reg = NULL; 4699 int insn_flags = insn_stack_access_flags(state->frameno, spi); 4700 4701 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4702 * so it's aligned access and [off, off + size) are within stack limits 4703 */ 4704 if (!env->allow_ptr_leaks && 4705 is_spilled_reg(&state->stack[spi]) && 4706 !is_spilled_scalar_reg(&state->stack[spi]) && 4707 size != BPF_REG_SIZE) { 4708 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4709 return -EACCES; 4710 } 4711 4712 cur = env->cur_state->frame[env->cur_state->curframe]; 4713 if (value_regno >= 0) 4714 reg = &cur->regs[value_regno]; 4715 if (!env->bypass_spec_v4) { 4716 bool sanitize = reg && is_spillable_regtype(reg->type); 4717 4718 for (i = 0; i < size; i++) { 4719 u8 type = state->stack[spi].slot_type[i]; 4720 4721 if (type != STACK_MISC && type != STACK_ZERO) { 4722 sanitize = true; 4723 break; 4724 } 4725 } 4726 4727 if (sanitize) 4728 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4729 } 4730 4731 err = destroy_if_dynptr_stack_slot(env, state, spi); 4732 if (err) 4733 return err; 4734 4735 check_fastcall_stack_contract(env, state, insn_idx, off); 4736 mark_stack_slot_scratched(env, spi); 4737 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { 4738 bool reg_value_fits; 4739 4740 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; 4741 /* Make sure that reg had an ID to build a relation on spill. */ 4742 if (reg_value_fits) 4743 assign_scalar_id_before_mov(env, reg); 4744 save_register_state(env, state, spi, reg, size); 4745 /* Break the relation on a narrowing spill. */ 4746 if (!reg_value_fits) 4747 state->stack[spi].spilled_ptr.id = 0; 4748 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4749 env->bpf_capable) { 4750 struct bpf_reg_state *tmp_reg = &env->fake_reg[0]; 4751 4752 memset(tmp_reg, 0, sizeof(*tmp_reg)); 4753 __mark_reg_known(tmp_reg, insn->imm); 4754 tmp_reg->type = SCALAR_VALUE; 4755 save_register_state(env, state, spi, tmp_reg, size); 4756 } else if (reg && is_spillable_regtype(reg->type)) { 4757 /* register containing pointer is being spilled into stack */ 4758 if (size != BPF_REG_SIZE) { 4759 verbose_linfo(env, insn_idx, "; "); 4760 verbose(env, "invalid size of register spill\n"); 4761 return -EACCES; 4762 } 4763 if (state != cur && reg->type == PTR_TO_STACK) { 4764 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4765 return -EINVAL; 4766 } 4767 save_register_state(env, state, spi, reg, size); 4768 } else { 4769 u8 type = STACK_MISC; 4770 4771 /* regular write of data into stack destroys any spilled ptr */ 4772 state->stack[spi].spilled_ptr.type = NOT_INIT; 4773 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4774 if (is_stack_slot_special(&state->stack[spi])) 4775 for (i = 0; i < BPF_REG_SIZE; i++) 4776 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4777 4778 /* only mark the slot as written if all 8 bytes were written 4779 * otherwise read propagation may incorrectly stop too soon 4780 * when stack slots are partially written. 4781 * This heuristic means that read propagation will be 4782 * conservative, since it will add reg_live_read marks 4783 * to stack slots all the way to first state when programs 4784 * writes+reads less than 8 bytes 4785 */ 4786 if (size == BPF_REG_SIZE) 4787 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4788 4789 /* when we zero initialize stack slots mark them as such */ 4790 if ((reg && register_is_null(reg)) || 4791 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4792 /* STACK_ZERO case happened because register spill 4793 * wasn't properly aligned at the stack slot boundary, 4794 * so it's not a register spill anymore; force 4795 * originating register to be precise to make 4796 * STACK_ZERO correct for subsequent states 4797 */ 4798 err = mark_chain_precision(env, value_regno); 4799 if (err) 4800 return err; 4801 type = STACK_ZERO; 4802 } 4803 4804 /* Mark slots affected by this stack write. */ 4805 for (i = 0; i < size; i++) 4806 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 4807 insn_flags = 0; /* not a register spill */ 4808 } 4809 4810 if (insn_flags) 4811 return push_insn_history(env, env->cur_state, insn_flags, 0); 4812 return 0; 4813 } 4814 4815 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4816 * known to contain a variable offset. 4817 * This function checks whether the write is permitted and conservatively 4818 * tracks the effects of the write, considering that each stack slot in the 4819 * dynamic range is potentially written to. 4820 * 4821 * 'off' includes 'regno->off'. 4822 * 'value_regno' can be -1, meaning that an unknown value is being written to 4823 * the stack. 4824 * 4825 * Spilled pointers in range are not marked as written because we don't know 4826 * what's going to be actually written. This means that read propagation for 4827 * future reads cannot be terminated by this write. 4828 * 4829 * For privileged programs, uninitialized stack slots are considered 4830 * initialized by this write (even though we don't know exactly what offsets 4831 * are going to be written to). The idea is that we don't want the verifier to 4832 * reject future reads that access slots written to through variable offsets. 4833 */ 4834 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4835 /* func where register points to */ 4836 struct bpf_func_state *state, 4837 int ptr_regno, int off, int size, 4838 int value_regno, int insn_idx) 4839 { 4840 struct bpf_func_state *cur; /* state of the current function */ 4841 int min_off, max_off; 4842 int i, err; 4843 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4844 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4845 bool writing_zero = false; 4846 /* set if the fact that we're writing a zero is used to let any 4847 * stack slots remain STACK_ZERO 4848 */ 4849 bool zero_used = false; 4850 4851 cur = env->cur_state->frame[env->cur_state->curframe]; 4852 ptr_reg = &cur->regs[ptr_regno]; 4853 min_off = ptr_reg->smin_value + off; 4854 max_off = ptr_reg->smax_value + off + size; 4855 if (value_regno >= 0) 4856 value_reg = &cur->regs[value_regno]; 4857 if ((value_reg && register_is_null(value_reg)) || 4858 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4859 writing_zero = true; 4860 4861 for (i = min_off; i < max_off; i++) { 4862 int spi; 4863 4864 spi = __get_spi(i); 4865 err = destroy_if_dynptr_stack_slot(env, state, spi); 4866 if (err) 4867 return err; 4868 } 4869 4870 check_fastcall_stack_contract(env, state, insn_idx, min_off); 4871 /* Variable offset writes destroy any spilled pointers in range. */ 4872 for (i = min_off; i < max_off; i++) { 4873 u8 new_type, *stype; 4874 int slot, spi; 4875 4876 slot = -i - 1; 4877 spi = slot / BPF_REG_SIZE; 4878 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4879 mark_stack_slot_scratched(env, spi); 4880 4881 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4882 /* Reject the write if range we may write to has not 4883 * been initialized beforehand. If we didn't reject 4884 * here, the ptr status would be erased below (even 4885 * though not all slots are actually overwritten), 4886 * possibly opening the door to leaks. 4887 * 4888 * We do however catch STACK_INVALID case below, and 4889 * only allow reading possibly uninitialized memory 4890 * later for CAP_PERFMON, as the write may not happen to 4891 * that slot. 4892 */ 4893 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4894 insn_idx, i); 4895 return -EINVAL; 4896 } 4897 4898 /* If writing_zero and the spi slot contains a spill of value 0, 4899 * maintain the spill type. 4900 */ 4901 if (writing_zero && *stype == STACK_SPILL && 4902 is_spilled_scalar_reg(&state->stack[spi])) { 4903 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; 4904 4905 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { 4906 zero_used = true; 4907 continue; 4908 } 4909 } 4910 4911 /* Erase all other spilled pointers. */ 4912 state->stack[spi].spilled_ptr.type = NOT_INIT; 4913 4914 /* Update the slot type. */ 4915 new_type = STACK_MISC; 4916 if (writing_zero && *stype == STACK_ZERO) { 4917 new_type = STACK_ZERO; 4918 zero_used = true; 4919 } 4920 /* If the slot is STACK_INVALID, we check whether it's OK to 4921 * pretend that it will be initialized by this write. The slot 4922 * might not actually be written to, and so if we mark it as 4923 * initialized future reads might leak uninitialized memory. 4924 * For privileged programs, we will accept such reads to slots 4925 * that may or may not be written because, if we're reject 4926 * them, the error would be too confusing. 4927 */ 4928 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4929 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4930 insn_idx, i); 4931 return -EINVAL; 4932 } 4933 *stype = new_type; 4934 } 4935 if (zero_used) { 4936 /* backtracking doesn't work for STACK_ZERO yet. */ 4937 err = mark_chain_precision(env, value_regno); 4938 if (err) 4939 return err; 4940 } 4941 return 0; 4942 } 4943 4944 /* When register 'dst_regno' is assigned some values from stack[min_off, 4945 * max_off), we set the register's type according to the types of the 4946 * respective stack slots. If all the stack values are known to be zeros, then 4947 * so is the destination reg. Otherwise, the register is considered to be 4948 * SCALAR. This function does not deal with register filling; the caller must 4949 * ensure that all spilled registers in the stack range have been marked as 4950 * read. 4951 */ 4952 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4953 /* func where src register points to */ 4954 struct bpf_func_state *ptr_state, 4955 int min_off, int max_off, int dst_regno) 4956 { 4957 struct bpf_verifier_state *vstate = env->cur_state; 4958 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4959 int i, slot, spi; 4960 u8 *stype; 4961 int zeros = 0; 4962 4963 for (i = min_off; i < max_off; i++) { 4964 slot = -i - 1; 4965 spi = slot / BPF_REG_SIZE; 4966 mark_stack_slot_scratched(env, spi); 4967 stype = ptr_state->stack[spi].slot_type; 4968 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4969 break; 4970 zeros++; 4971 } 4972 if (zeros == max_off - min_off) { 4973 /* Any access_size read into register is zero extended, 4974 * so the whole register == const_zero. 4975 */ 4976 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4977 } else { 4978 /* have read misc data from the stack */ 4979 mark_reg_unknown(env, state->regs, dst_regno); 4980 } 4981 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4982 } 4983 4984 /* Read the stack at 'off' and put the results into the register indicated by 4985 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4986 * spilled reg. 4987 * 4988 * 'dst_regno' can be -1, meaning that the read value is not going to a 4989 * register. 4990 * 4991 * The access is assumed to be within the current stack bounds. 4992 */ 4993 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4994 /* func where src register points to */ 4995 struct bpf_func_state *reg_state, 4996 int off, int size, int dst_regno) 4997 { 4998 struct bpf_verifier_state *vstate = env->cur_state; 4999 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5000 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 5001 struct bpf_reg_state *reg; 5002 u8 *stype, type; 5003 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); 5004 5005 stype = reg_state->stack[spi].slot_type; 5006 reg = ®_state->stack[spi].spilled_ptr; 5007 5008 mark_stack_slot_scratched(env, spi); 5009 check_fastcall_stack_contract(env, state, env->insn_idx, off); 5010 5011 if (is_spilled_reg(®_state->stack[spi])) { 5012 u8 spill_size = 1; 5013 5014 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 5015 spill_size++; 5016 5017 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 5018 if (reg->type != SCALAR_VALUE) { 5019 verbose_linfo(env, env->insn_idx, "; "); 5020 verbose(env, "invalid size of register fill\n"); 5021 return -EACCES; 5022 } 5023 5024 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5025 if (dst_regno < 0) 5026 return 0; 5027 5028 if (size <= spill_size && 5029 bpf_stack_narrow_access_ok(off, size, spill_size)) { 5030 /* The earlier check_reg_arg() has decided the 5031 * subreg_def for this insn. Save it first. 5032 */ 5033 s32 subreg_def = state->regs[dst_regno].subreg_def; 5034 5035 copy_register_state(&state->regs[dst_regno], reg); 5036 state->regs[dst_regno].subreg_def = subreg_def; 5037 5038 /* Break the relation on a narrowing fill. 5039 * coerce_reg_to_size will adjust the boundaries. 5040 */ 5041 if (get_reg_width(reg) > size * BITS_PER_BYTE) 5042 state->regs[dst_regno].id = 0; 5043 } else { 5044 int spill_cnt = 0, zero_cnt = 0; 5045 5046 for (i = 0; i < size; i++) { 5047 type = stype[(slot - i) % BPF_REG_SIZE]; 5048 if (type == STACK_SPILL) { 5049 spill_cnt++; 5050 continue; 5051 } 5052 if (type == STACK_MISC) 5053 continue; 5054 if (type == STACK_ZERO) { 5055 zero_cnt++; 5056 continue; 5057 } 5058 if (type == STACK_INVALID && env->allow_uninit_stack) 5059 continue; 5060 verbose(env, "invalid read from stack off %d+%d size %d\n", 5061 off, i, size); 5062 return -EACCES; 5063 } 5064 5065 if (spill_cnt == size && 5066 tnum_is_const(reg->var_off) && reg->var_off.value == 0) { 5067 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5068 /* this IS register fill, so keep insn_flags */ 5069 } else if (zero_cnt == size) { 5070 /* similarly to mark_reg_stack_read(), preserve zeroes */ 5071 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5072 insn_flags = 0; /* not restoring original register state */ 5073 } else { 5074 mark_reg_unknown(env, state->regs, dst_regno); 5075 insn_flags = 0; /* not restoring original register state */ 5076 } 5077 } 5078 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5079 } else if (dst_regno >= 0) { 5080 /* restore register state from stack */ 5081 copy_register_state(&state->regs[dst_regno], reg); 5082 /* mark reg as written since spilled pointer state likely 5083 * has its liveness marks cleared by is_state_visited() 5084 * which resets stack/reg liveness for state transitions 5085 */ 5086 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5087 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 5088 /* If dst_regno==-1, the caller is asking us whether 5089 * it is acceptable to use this value as a SCALAR_VALUE 5090 * (e.g. for XADD). 5091 * We must not allow unprivileged callers to do that 5092 * with spilled pointers. 5093 */ 5094 verbose(env, "leaking pointer from stack off %d\n", 5095 off); 5096 return -EACCES; 5097 } 5098 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5099 } else { 5100 for (i = 0; i < size; i++) { 5101 type = stype[(slot - i) % BPF_REG_SIZE]; 5102 if (type == STACK_MISC) 5103 continue; 5104 if (type == STACK_ZERO) 5105 continue; 5106 if (type == STACK_INVALID && env->allow_uninit_stack) 5107 continue; 5108 verbose(env, "invalid read from stack off %d+%d size %d\n", 5109 off, i, size); 5110 return -EACCES; 5111 } 5112 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5113 if (dst_regno >= 0) 5114 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 5115 insn_flags = 0; /* we are not restoring spilled register */ 5116 } 5117 if (insn_flags) 5118 return push_insn_history(env, env->cur_state, insn_flags, 0); 5119 return 0; 5120 } 5121 5122 enum bpf_access_src { 5123 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 5124 ACCESS_HELPER = 2, /* the access is performed by a helper */ 5125 }; 5126 5127 static int check_stack_range_initialized(struct bpf_verifier_env *env, 5128 int regno, int off, int access_size, 5129 bool zero_size_allowed, 5130 enum bpf_access_src type, 5131 struct bpf_call_arg_meta *meta); 5132 5133 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 5134 { 5135 return cur_regs(env) + regno; 5136 } 5137 5138 /* Read the stack at 'ptr_regno + off' and put the result into the register 5139 * 'dst_regno'. 5140 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 5141 * but not its variable offset. 5142 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 5143 * 5144 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 5145 * filling registers (i.e. reads of spilled register cannot be detected when 5146 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 5147 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 5148 * offset; for a fixed offset check_stack_read_fixed_off should be used 5149 * instead. 5150 */ 5151 static int check_stack_read_var_off(struct bpf_verifier_env *env, 5152 int ptr_regno, int off, int size, int dst_regno) 5153 { 5154 /* The state of the source register. */ 5155 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5156 struct bpf_func_state *ptr_state = func(env, reg); 5157 int err; 5158 int min_off, max_off; 5159 5160 /* Note that we pass a NULL meta, so raw access will not be permitted. 5161 */ 5162 err = check_stack_range_initialized(env, ptr_regno, off, size, 5163 false, ACCESS_DIRECT, NULL); 5164 if (err) 5165 return err; 5166 5167 min_off = reg->smin_value + off; 5168 max_off = reg->smax_value + off; 5169 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 5170 check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off); 5171 return 0; 5172 } 5173 5174 /* check_stack_read dispatches to check_stack_read_fixed_off or 5175 * check_stack_read_var_off. 5176 * 5177 * The caller must ensure that the offset falls within the allocated stack 5178 * bounds. 5179 * 5180 * 'dst_regno' is a register which will receive the value from the stack. It 5181 * can be -1, meaning that the read value is not going to a register. 5182 */ 5183 static int check_stack_read(struct bpf_verifier_env *env, 5184 int ptr_regno, int off, int size, 5185 int dst_regno) 5186 { 5187 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5188 struct bpf_func_state *state = func(env, reg); 5189 int err; 5190 /* Some accesses are only permitted with a static offset. */ 5191 bool var_off = !tnum_is_const(reg->var_off); 5192 5193 /* The offset is required to be static when reads don't go to a 5194 * register, in order to not leak pointers (see 5195 * check_stack_read_fixed_off). 5196 */ 5197 if (dst_regno < 0 && var_off) { 5198 char tn_buf[48]; 5199 5200 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5201 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5202 tn_buf, off, size); 5203 return -EACCES; 5204 } 5205 /* Variable offset is prohibited for unprivileged mode for simplicity 5206 * since it requires corresponding support in Spectre masking for stack 5207 * ALU. See also retrieve_ptr_limit(). The check in 5208 * check_stack_access_for_ptr_arithmetic() called by 5209 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5210 * with variable offsets, therefore no check is required here. Further, 5211 * just checking it here would be insufficient as speculative stack 5212 * writes could still lead to unsafe speculative behaviour. 5213 */ 5214 if (!var_off) { 5215 off += reg->var_off.value; 5216 err = check_stack_read_fixed_off(env, state, off, size, 5217 dst_regno); 5218 } else { 5219 /* Variable offset stack reads need more conservative handling 5220 * than fixed offset ones. Note that dst_regno >= 0 on this 5221 * branch. 5222 */ 5223 err = check_stack_read_var_off(env, ptr_regno, off, size, 5224 dst_regno); 5225 } 5226 return err; 5227 } 5228 5229 5230 /* check_stack_write dispatches to check_stack_write_fixed_off or 5231 * check_stack_write_var_off. 5232 * 5233 * 'ptr_regno' is the register used as a pointer into the stack. 5234 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5235 * 'value_regno' is the register whose value we're writing to the stack. It can 5236 * be -1, meaning that we're not writing from a register. 5237 * 5238 * The caller must ensure that the offset falls within the maximum stack size. 5239 */ 5240 static int check_stack_write(struct bpf_verifier_env *env, 5241 int ptr_regno, int off, int size, 5242 int value_regno, int insn_idx) 5243 { 5244 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5245 struct bpf_func_state *state = func(env, reg); 5246 int err; 5247 5248 if (tnum_is_const(reg->var_off)) { 5249 off += reg->var_off.value; 5250 err = check_stack_write_fixed_off(env, state, off, size, 5251 value_regno, insn_idx); 5252 } else { 5253 /* Variable offset stack reads need more conservative handling 5254 * than fixed offset ones. 5255 */ 5256 err = check_stack_write_var_off(env, state, 5257 ptr_regno, off, size, 5258 value_regno, insn_idx); 5259 } 5260 return err; 5261 } 5262 5263 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5264 int off, int size, enum bpf_access_type type) 5265 { 5266 struct bpf_reg_state *regs = cur_regs(env); 5267 struct bpf_map *map = regs[regno].map_ptr; 5268 u32 cap = bpf_map_flags_to_cap(map); 5269 5270 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5271 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5272 map->value_size, off, size); 5273 return -EACCES; 5274 } 5275 5276 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5277 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5278 map->value_size, off, size); 5279 return -EACCES; 5280 } 5281 5282 return 0; 5283 } 5284 5285 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5286 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5287 int off, int size, u32 mem_size, 5288 bool zero_size_allowed) 5289 { 5290 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5291 struct bpf_reg_state *reg; 5292 5293 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5294 return 0; 5295 5296 reg = &cur_regs(env)[regno]; 5297 switch (reg->type) { 5298 case PTR_TO_MAP_KEY: 5299 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5300 mem_size, off, size); 5301 break; 5302 case PTR_TO_MAP_VALUE: 5303 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5304 mem_size, off, size); 5305 break; 5306 case PTR_TO_PACKET: 5307 case PTR_TO_PACKET_META: 5308 case PTR_TO_PACKET_END: 5309 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5310 off, size, regno, reg->id, off, mem_size); 5311 break; 5312 case PTR_TO_MEM: 5313 default: 5314 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5315 mem_size, off, size); 5316 } 5317 5318 return -EACCES; 5319 } 5320 5321 /* check read/write into a memory region with possible variable offset */ 5322 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5323 int off, int size, u32 mem_size, 5324 bool zero_size_allowed) 5325 { 5326 struct bpf_verifier_state *vstate = env->cur_state; 5327 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5328 struct bpf_reg_state *reg = &state->regs[regno]; 5329 int err; 5330 5331 /* We may have adjusted the register pointing to memory region, so we 5332 * need to try adding each of min_value and max_value to off 5333 * to make sure our theoretical access will be safe. 5334 * 5335 * The minimum value is only important with signed 5336 * comparisons where we can't assume the floor of a 5337 * value is 0. If we are using signed variables for our 5338 * index'es we need to make sure that whatever we use 5339 * will have a set floor within our range. 5340 */ 5341 if (reg->smin_value < 0 && 5342 (reg->smin_value == S64_MIN || 5343 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5344 reg->smin_value + off < 0)) { 5345 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5346 regno); 5347 return -EACCES; 5348 } 5349 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5350 mem_size, zero_size_allowed); 5351 if (err) { 5352 verbose(env, "R%d min value is outside of the allowed memory range\n", 5353 regno); 5354 return err; 5355 } 5356 5357 /* If we haven't set a max value then we need to bail since we can't be 5358 * sure we won't do bad things. 5359 * If reg->umax_value + off could overflow, treat that as unbounded too. 5360 */ 5361 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5362 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5363 regno); 5364 return -EACCES; 5365 } 5366 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5367 mem_size, zero_size_allowed); 5368 if (err) { 5369 verbose(env, "R%d max value is outside of the allowed memory range\n", 5370 regno); 5371 return err; 5372 } 5373 5374 return 0; 5375 } 5376 5377 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5378 const struct bpf_reg_state *reg, int regno, 5379 bool fixed_off_ok) 5380 { 5381 /* Access to this pointer-typed register or passing it to a helper 5382 * is only allowed in its original, unmodified form. 5383 */ 5384 5385 if (reg->off < 0) { 5386 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5387 reg_type_str(env, reg->type), regno, reg->off); 5388 return -EACCES; 5389 } 5390 5391 if (!fixed_off_ok && reg->off) { 5392 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5393 reg_type_str(env, reg->type), regno, reg->off); 5394 return -EACCES; 5395 } 5396 5397 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5398 char tn_buf[48]; 5399 5400 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5401 verbose(env, "variable %s access var_off=%s disallowed\n", 5402 reg_type_str(env, reg->type), tn_buf); 5403 return -EACCES; 5404 } 5405 5406 return 0; 5407 } 5408 5409 static int check_ptr_off_reg(struct bpf_verifier_env *env, 5410 const struct bpf_reg_state *reg, int regno) 5411 { 5412 return __check_ptr_off_reg(env, reg, regno, false); 5413 } 5414 5415 static int map_kptr_match_type(struct bpf_verifier_env *env, 5416 struct btf_field *kptr_field, 5417 struct bpf_reg_state *reg, u32 regno) 5418 { 5419 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5420 int perm_flags; 5421 const char *reg_name = ""; 5422 5423 if (btf_is_kernel(reg->btf)) { 5424 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5425 5426 /* Only unreferenced case accepts untrusted pointers */ 5427 if (kptr_field->type == BPF_KPTR_UNREF) 5428 perm_flags |= PTR_UNTRUSTED; 5429 } else { 5430 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5431 if (kptr_field->type == BPF_KPTR_PERCPU) 5432 perm_flags |= MEM_PERCPU; 5433 } 5434 5435 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5436 goto bad_type; 5437 5438 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5439 reg_name = btf_type_name(reg->btf, reg->btf_id); 5440 5441 /* For ref_ptr case, release function check should ensure we get one 5442 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5443 * normal store of unreferenced kptr, we must ensure var_off is zero. 5444 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5445 * reg->off and reg->ref_obj_id are not needed here. 5446 */ 5447 if (__check_ptr_off_reg(env, reg, regno, true)) 5448 return -EACCES; 5449 5450 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5451 * we also need to take into account the reg->off. 5452 * 5453 * We want to support cases like: 5454 * 5455 * struct foo { 5456 * struct bar br; 5457 * struct baz bz; 5458 * }; 5459 * 5460 * struct foo *v; 5461 * v = func(); // PTR_TO_BTF_ID 5462 * val->foo = v; // reg->off is zero, btf and btf_id match type 5463 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5464 * // first member type of struct after comparison fails 5465 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5466 * // to match type 5467 * 5468 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5469 * is zero. We must also ensure that btf_struct_ids_match does not walk 5470 * the struct to match type against first member of struct, i.e. reject 5471 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5472 * strict mode to true for type match. 5473 */ 5474 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5475 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5476 kptr_field->type != BPF_KPTR_UNREF)) 5477 goto bad_type; 5478 return 0; 5479 bad_type: 5480 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5481 reg_type_str(env, reg->type), reg_name); 5482 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5483 if (kptr_field->type == BPF_KPTR_UNREF) 5484 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5485 targ_name); 5486 else 5487 verbose(env, "\n"); 5488 return -EINVAL; 5489 } 5490 5491 static bool in_sleepable(struct bpf_verifier_env *env) 5492 { 5493 return env->prog->sleepable || 5494 (env->cur_state && env->cur_state->in_sleepable); 5495 } 5496 5497 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5498 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5499 */ 5500 static bool in_rcu_cs(struct bpf_verifier_env *env) 5501 { 5502 return env->cur_state->active_rcu_lock || 5503 cur_func(env)->active_locks || 5504 !in_sleepable(env); 5505 } 5506 5507 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5508 BTF_SET_START(rcu_protected_types) 5509 BTF_ID(struct, prog_test_ref_kfunc) 5510 #ifdef CONFIG_CGROUPS 5511 BTF_ID(struct, cgroup) 5512 #endif 5513 #ifdef CONFIG_BPF_JIT 5514 BTF_ID(struct, bpf_cpumask) 5515 #endif 5516 BTF_ID(struct, task_struct) 5517 BTF_ID(struct, bpf_crypto_ctx) 5518 BTF_SET_END(rcu_protected_types) 5519 5520 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5521 { 5522 if (!btf_is_kernel(btf)) 5523 return true; 5524 return btf_id_set_contains(&rcu_protected_types, btf_id); 5525 } 5526 5527 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 5528 { 5529 struct btf_struct_meta *meta; 5530 5531 if (btf_is_kernel(kptr_field->kptr.btf)) 5532 return NULL; 5533 5534 meta = btf_find_struct_meta(kptr_field->kptr.btf, 5535 kptr_field->kptr.btf_id); 5536 5537 return meta ? meta->record : NULL; 5538 } 5539 5540 static bool rcu_safe_kptr(const struct btf_field *field) 5541 { 5542 const struct btf_field_kptr *kptr = &field->kptr; 5543 5544 return field->type == BPF_KPTR_PERCPU || 5545 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5546 } 5547 5548 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5549 { 5550 struct btf_record *rec; 5551 u32 ret; 5552 5553 ret = PTR_MAYBE_NULL; 5554 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5555 ret |= MEM_RCU; 5556 if (kptr_field->type == BPF_KPTR_PERCPU) 5557 ret |= MEM_PERCPU; 5558 else if (!btf_is_kernel(kptr_field->kptr.btf)) 5559 ret |= MEM_ALLOC; 5560 5561 rec = kptr_pointee_btf_record(kptr_field); 5562 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 5563 ret |= NON_OWN_REF; 5564 } else { 5565 ret |= PTR_UNTRUSTED; 5566 } 5567 5568 return ret; 5569 } 5570 5571 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno, 5572 struct btf_field *field) 5573 { 5574 struct bpf_reg_state *reg; 5575 const struct btf_type *t; 5576 5577 t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id); 5578 mark_reg_known_zero(env, cur_regs(env), regno); 5579 reg = reg_state(env, regno); 5580 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 5581 reg->mem_size = t->size; 5582 reg->id = ++env->id_gen; 5583 5584 return 0; 5585 } 5586 5587 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5588 int value_regno, int insn_idx, 5589 struct btf_field *kptr_field) 5590 { 5591 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5592 int class = BPF_CLASS(insn->code); 5593 struct bpf_reg_state *val_reg; 5594 5595 /* Things we already checked for in check_map_access and caller: 5596 * - Reject cases where variable offset may touch kptr 5597 * - size of access (must be BPF_DW) 5598 * - tnum_is_const(reg->var_off) 5599 * - kptr_field->offset == off + reg->var_off.value 5600 */ 5601 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5602 if (BPF_MODE(insn->code) != BPF_MEM) { 5603 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5604 return -EACCES; 5605 } 5606 5607 /* We only allow loading referenced kptr, since it will be marked as 5608 * untrusted, similar to unreferenced kptr. 5609 */ 5610 if (class != BPF_LDX && 5611 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 5612 verbose(env, "store to referenced kptr disallowed\n"); 5613 return -EACCES; 5614 } 5615 if (class != BPF_LDX && kptr_field->type == BPF_UPTR) { 5616 verbose(env, "store to uptr disallowed\n"); 5617 return -EACCES; 5618 } 5619 5620 if (class == BPF_LDX) { 5621 if (kptr_field->type == BPF_UPTR) 5622 return mark_uptr_ld_reg(env, value_regno, kptr_field); 5623 5624 /* We can simply mark the value_regno receiving the pointer 5625 * value from map as PTR_TO_BTF_ID, with the correct type. 5626 */ 5627 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5628 kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field)); 5629 } else if (class == BPF_STX) { 5630 val_reg = reg_state(env, value_regno); 5631 if (!register_is_null(val_reg) && 5632 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5633 return -EACCES; 5634 } else if (class == BPF_ST) { 5635 if (insn->imm) { 5636 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5637 kptr_field->offset); 5638 return -EACCES; 5639 } 5640 } else { 5641 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5642 return -EACCES; 5643 } 5644 return 0; 5645 } 5646 5647 /* check read/write into a map element with possible variable offset */ 5648 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5649 int off, int size, bool zero_size_allowed, 5650 enum bpf_access_src src) 5651 { 5652 struct bpf_verifier_state *vstate = env->cur_state; 5653 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5654 struct bpf_reg_state *reg = &state->regs[regno]; 5655 struct bpf_map *map = reg->map_ptr; 5656 struct btf_record *rec; 5657 int err, i; 5658 5659 err = check_mem_region_access(env, regno, off, size, map->value_size, 5660 zero_size_allowed); 5661 if (err) 5662 return err; 5663 5664 if (IS_ERR_OR_NULL(map->record)) 5665 return 0; 5666 rec = map->record; 5667 for (i = 0; i < rec->cnt; i++) { 5668 struct btf_field *field = &rec->fields[i]; 5669 u32 p = field->offset; 5670 5671 /* If any part of a field can be touched by load/store, reject 5672 * this program. To check that [x1, x2) overlaps with [y1, y2), 5673 * it is sufficient to check x1 < y2 && y1 < x2. 5674 */ 5675 if (reg->smin_value + off < p + field->size && 5676 p < reg->umax_value + off + size) { 5677 switch (field->type) { 5678 case BPF_KPTR_UNREF: 5679 case BPF_KPTR_REF: 5680 case BPF_KPTR_PERCPU: 5681 case BPF_UPTR: 5682 if (src != ACCESS_DIRECT) { 5683 verbose(env, "%s cannot be accessed indirectly by helper\n", 5684 btf_field_type_name(field->type)); 5685 return -EACCES; 5686 } 5687 if (!tnum_is_const(reg->var_off)) { 5688 verbose(env, "%s access cannot have variable offset\n", 5689 btf_field_type_name(field->type)); 5690 return -EACCES; 5691 } 5692 if (p != off + reg->var_off.value) { 5693 verbose(env, "%s access misaligned expected=%u off=%llu\n", 5694 btf_field_type_name(field->type), 5695 p, off + reg->var_off.value); 5696 return -EACCES; 5697 } 5698 if (size != bpf_size_to_bytes(BPF_DW)) { 5699 verbose(env, "%s access size must be BPF_DW\n", 5700 btf_field_type_name(field->type)); 5701 return -EACCES; 5702 } 5703 break; 5704 default: 5705 verbose(env, "%s cannot be accessed directly by load/store\n", 5706 btf_field_type_name(field->type)); 5707 return -EACCES; 5708 } 5709 } 5710 } 5711 return 0; 5712 } 5713 5714 #define MAX_PACKET_OFF 0xffff 5715 5716 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5717 const struct bpf_call_arg_meta *meta, 5718 enum bpf_access_type t) 5719 { 5720 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5721 5722 switch (prog_type) { 5723 /* Program types only with direct read access go here! */ 5724 case BPF_PROG_TYPE_LWT_IN: 5725 case BPF_PROG_TYPE_LWT_OUT: 5726 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5727 case BPF_PROG_TYPE_SK_REUSEPORT: 5728 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5729 case BPF_PROG_TYPE_CGROUP_SKB: 5730 if (t == BPF_WRITE) 5731 return false; 5732 fallthrough; 5733 5734 /* Program types with direct read + write access go here! */ 5735 case BPF_PROG_TYPE_SCHED_CLS: 5736 case BPF_PROG_TYPE_SCHED_ACT: 5737 case BPF_PROG_TYPE_XDP: 5738 case BPF_PROG_TYPE_LWT_XMIT: 5739 case BPF_PROG_TYPE_SK_SKB: 5740 case BPF_PROG_TYPE_SK_MSG: 5741 if (meta) 5742 return meta->pkt_access; 5743 5744 env->seen_direct_write = true; 5745 return true; 5746 5747 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5748 if (t == BPF_WRITE) 5749 env->seen_direct_write = true; 5750 5751 return true; 5752 5753 default: 5754 return false; 5755 } 5756 } 5757 5758 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5759 int size, bool zero_size_allowed) 5760 { 5761 struct bpf_reg_state *regs = cur_regs(env); 5762 struct bpf_reg_state *reg = ®s[regno]; 5763 int err; 5764 5765 /* We may have added a variable offset to the packet pointer; but any 5766 * reg->range we have comes after that. We are only checking the fixed 5767 * offset. 5768 */ 5769 5770 /* We don't allow negative numbers, because we aren't tracking enough 5771 * detail to prove they're safe. 5772 */ 5773 if (reg->smin_value < 0) { 5774 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5775 regno); 5776 return -EACCES; 5777 } 5778 5779 err = reg->range < 0 ? -EINVAL : 5780 __check_mem_access(env, regno, off, size, reg->range, 5781 zero_size_allowed); 5782 if (err) { 5783 verbose(env, "R%d offset is outside of the packet\n", regno); 5784 return err; 5785 } 5786 5787 /* __check_mem_access has made sure "off + size - 1" is within u16. 5788 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5789 * otherwise find_good_pkt_pointers would have refused to set range info 5790 * that __check_mem_access would have rejected this pkt access. 5791 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5792 */ 5793 env->prog->aux->max_pkt_offset = 5794 max_t(u32, env->prog->aux->max_pkt_offset, 5795 off + reg->umax_value + size - 1); 5796 5797 return err; 5798 } 5799 5800 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5801 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5802 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5803 struct btf **btf, u32 *btf_id, bool *is_retval, bool is_ldsx) 5804 { 5805 struct bpf_insn_access_aux info = { 5806 .reg_type = *reg_type, 5807 .log = &env->log, 5808 .is_retval = false, 5809 .is_ldsx = is_ldsx, 5810 }; 5811 5812 if (env->ops->is_valid_access && 5813 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5814 /* A non zero info.ctx_field_size indicates that this field is a 5815 * candidate for later verifier transformation to load the whole 5816 * field and then apply a mask when accessed with a narrower 5817 * access than actual ctx access size. A zero info.ctx_field_size 5818 * will only allow for whole field access and rejects any other 5819 * type of narrower access. 5820 */ 5821 *reg_type = info.reg_type; 5822 *is_retval = info.is_retval; 5823 5824 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5825 *btf = info.btf; 5826 *btf_id = info.btf_id; 5827 } else { 5828 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5829 } 5830 /* remember the offset of last byte accessed in ctx */ 5831 if (env->prog->aux->max_ctx_offset < off + size) 5832 env->prog->aux->max_ctx_offset = off + size; 5833 return 0; 5834 } 5835 5836 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5837 return -EACCES; 5838 } 5839 5840 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5841 int size) 5842 { 5843 if (size < 0 || off < 0 || 5844 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5845 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5846 off, size); 5847 return -EACCES; 5848 } 5849 return 0; 5850 } 5851 5852 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5853 u32 regno, int off, int size, 5854 enum bpf_access_type t) 5855 { 5856 struct bpf_reg_state *regs = cur_regs(env); 5857 struct bpf_reg_state *reg = ®s[regno]; 5858 struct bpf_insn_access_aux info = {}; 5859 bool valid; 5860 5861 if (reg->smin_value < 0) { 5862 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5863 regno); 5864 return -EACCES; 5865 } 5866 5867 switch (reg->type) { 5868 case PTR_TO_SOCK_COMMON: 5869 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5870 break; 5871 case PTR_TO_SOCKET: 5872 valid = bpf_sock_is_valid_access(off, size, t, &info); 5873 break; 5874 case PTR_TO_TCP_SOCK: 5875 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5876 break; 5877 case PTR_TO_XDP_SOCK: 5878 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5879 break; 5880 default: 5881 valid = false; 5882 } 5883 5884 5885 if (valid) { 5886 env->insn_aux_data[insn_idx].ctx_field_size = 5887 info.ctx_field_size; 5888 return 0; 5889 } 5890 5891 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5892 regno, reg_type_str(env, reg->type), off, size); 5893 5894 return -EACCES; 5895 } 5896 5897 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5898 { 5899 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5900 } 5901 5902 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5903 { 5904 const struct bpf_reg_state *reg = reg_state(env, regno); 5905 5906 return reg->type == PTR_TO_CTX; 5907 } 5908 5909 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5910 { 5911 const struct bpf_reg_state *reg = reg_state(env, regno); 5912 5913 return type_is_sk_pointer(reg->type); 5914 } 5915 5916 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5917 { 5918 const struct bpf_reg_state *reg = reg_state(env, regno); 5919 5920 return type_is_pkt_pointer(reg->type); 5921 } 5922 5923 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5924 { 5925 const struct bpf_reg_state *reg = reg_state(env, regno); 5926 5927 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5928 return reg->type == PTR_TO_FLOW_KEYS; 5929 } 5930 5931 static bool is_arena_reg(struct bpf_verifier_env *env, int regno) 5932 { 5933 const struct bpf_reg_state *reg = reg_state(env, regno); 5934 5935 return reg->type == PTR_TO_ARENA; 5936 } 5937 5938 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5939 #ifdef CONFIG_NET 5940 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5941 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5942 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5943 #endif 5944 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5945 }; 5946 5947 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5948 { 5949 /* A referenced register is always trusted. */ 5950 if (reg->ref_obj_id) 5951 return true; 5952 5953 /* Types listed in the reg2btf_ids are always trusted */ 5954 if (reg2btf_ids[base_type(reg->type)] && 5955 !bpf_type_has_unsafe_modifiers(reg->type)) 5956 return true; 5957 5958 /* If a register is not referenced, it is trusted if it has the 5959 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5960 * other type modifiers may be safe, but we elect to take an opt-in 5961 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5962 * not. 5963 * 5964 * Eventually, we should make PTR_TRUSTED the single source of truth 5965 * for whether a register is trusted. 5966 */ 5967 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5968 !bpf_type_has_unsafe_modifiers(reg->type); 5969 } 5970 5971 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5972 { 5973 return reg->type & MEM_RCU; 5974 } 5975 5976 static void clear_trusted_flags(enum bpf_type_flag *flag) 5977 { 5978 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5979 } 5980 5981 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5982 const struct bpf_reg_state *reg, 5983 int off, int size, bool strict) 5984 { 5985 struct tnum reg_off; 5986 int ip_align; 5987 5988 /* Byte size accesses are always allowed. */ 5989 if (!strict || size == 1) 5990 return 0; 5991 5992 /* For platforms that do not have a Kconfig enabling 5993 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5994 * NET_IP_ALIGN is universally set to '2'. And on platforms 5995 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5996 * to this code only in strict mode where we want to emulate 5997 * the NET_IP_ALIGN==2 checking. Therefore use an 5998 * unconditional IP align value of '2'. 5999 */ 6000 ip_align = 2; 6001 6002 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 6003 if (!tnum_is_aligned(reg_off, size)) { 6004 char tn_buf[48]; 6005 6006 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6007 verbose(env, 6008 "misaligned packet access off %d+%s+%d+%d size %d\n", 6009 ip_align, tn_buf, reg->off, off, size); 6010 return -EACCES; 6011 } 6012 6013 return 0; 6014 } 6015 6016 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 6017 const struct bpf_reg_state *reg, 6018 const char *pointer_desc, 6019 int off, int size, bool strict) 6020 { 6021 struct tnum reg_off; 6022 6023 /* Byte size accesses are always allowed. */ 6024 if (!strict || size == 1) 6025 return 0; 6026 6027 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 6028 if (!tnum_is_aligned(reg_off, size)) { 6029 char tn_buf[48]; 6030 6031 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6032 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 6033 pointer_desc, tn_buf, reg->off, off, size); 6034 return -EACCES; 6035 } 6036 6037 return 0; 6038 } 6039 6040 static int check_ptr_alignment(struct bpf_verifier_env *env, 6041 const struct bpf_reg_state *reg, int off, 6042 int size, bool strict_alignment_once) 6043 { 6044 bool strict = env->strict_alignment || strict_alignment_once; 6045 const char *pointer_desc = ""; 6046 6047 switch (reg->type) { 6048 case PTR_TO_PACKET: 6049 case PTR_TO_PACKET_META: 6050 /* Special case, because of NET_IP_ALIGN. Given metadata sits 6051 * right in front, treat it the very same way. 6052 */ 6053 return check_pkt_ptr_alignment(env, reg, off, size, strict); 6054 case PTR_TO_FLOW_KEYS: 6055 pointer_desc = "flow keys "; 6056 break; 6057 case PTR_TO_MAP_KEY: 6058 pointer_desc = "key "; 6059 break; 6060 case PTR_TO_MAP_VALUE: 6061 pointer_desc = "value "; 6062 break; 6063 case PTR_TO_CTX: 6064 pointer_desc = "context "; 6065 break; 6066 case PTR_TO_STACK: 6067 pointer_desc = "stack "; 6068 /* The stack spill tracking logic in check_stack_write_fixed_off() 6069 * and check_stack_read_fixed_off() relies on stack accesses being 6070 * aligned. 6071 */ 6072 strict = true; 6073 break; 6074 case PTR_TO_SOCKET: 6075 pointer_desc = "sock "; 6076 break; 6077 case PTR_TO_SOCK_COMMON: 6078 pointer_desc = "sock_common "; 6079 break; 6080 case PTR_TO_TCP_SOCK: 6081 pointer_desc = "tcp_sock "; 6082 break; 6083 case PTR_TO_XDP_SOCK: 6084 pointer_desc = "xdp_sock "; 6085 break; 6086 case PTR_TO_ARENA: 6087 return 0; 6088 default: 6089 break; 6090 } 6091 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 6092 strict); 6093 } 6094 6095 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog) 6096 { 6097 if (!bpf_jit_supports_private_stack()) 6098 return NO_PRIV_STACK; 6099 6100 /* bpf_prog_check_recur() checks all prog types that use bpf trampoline 6101 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked 6102 * explicitly. 6103 */ 6104 switch (prog->type) { 6105 case BPF_PROG_TYPE_KPROBE: 6106 case BPF_PROG_TYPE_TRACEPOINT: 6107 case BPF_PROG_TYPE_PERF_EVENT: 6108 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6109 return PRIV_STACK_ADAPTIVE; 6110 case BPF_PROG_TYPE_TRACING: 6111 case BPF_PROG_TYPE_LSM: 6112 case BPF_PROG_TYPE_STRUCT_OPS: 6113 if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog)) 6114 return PRIV_STACK_ADAPTIVE; 6115 fallthrough; 6116 default: 6117 break; 6118 } 6119 6120 return NO_PRIV_STACK; 6121 } 6122 6123 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) 6124 { 6125 if (env->prog->jit_requested) 6126 return round_up(stack_depth, 16); 6127 6128 /* round up to 32-bytes, since this is granularity 6129 * of interpreter stack size 6130 */ 6131 return round_up(max_t(u32, stack_depth, 1), 32); 6132 } 6133 6134 /* starting from main bpf function walk all instructions of the function 6135 * and recursively walk all callees that given function can call. 6136 * Ignore jump and exit insns. 6137 * Since recursion is prevented by check_cfg() this algorithm 6138 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 6139 */ 6140 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx, 6141 bool priv_stack_supported) 6142 { 6143 struct bpf_subprog_info *subprog = env->subprog_info; 6144 struct bpf_insn *insn = env->prog->insnsi; 6145 int depth = 0, frame = 0, i, subprog_end, subprog_depth; 6146 bool tail_call_reachable = false; 6147 int ret_insn[MAX_CALL_FRAMES]; 6148 int ret_prog[MAX_CALL_FRAMES]; 6149 int j; 6150 6151 i = subprog[idx].start; 6152 if (!priv_stack_supported) 6153 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6154 process_func: 6155 /* protect against potential stack overflow that might happen when 6156 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 6157 * depth for such case down to 256 so that the worst case scenario 6158 * would result in 8k stack size (32 which is tailcall limit * 256 = 6159 * 8k). 6160 * 6161 * To get the idea what might happen, see an example: 6162 * func1 -> sub rsp, 128 6163 * subfunc1 -> sub rsp, 256 6164 * tailcall1 -> add rsp, 256 6165 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 6166 * subfunc2 -> sub rsp, 64 6167 * subfunc22 -> sub rsp, 128 6168 * tailcall2 -> add rsp, 128 6169 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 6170 * 6171 * tailcall will unwind the current stack frame but it will not get rid 6172 * of caller's stack as shown on the example above. 6173 */ 6174 if (idx && subprog[idx].has_tail_call && depth >= 256) { 6175 verbose(env, 6176 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 6177 depth); 6178 return -EACCES; 6179 } 6180 6181 subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth); 6182 if (priv_stack_supported) { 6183 /* Request private stack support only if the subprog stack 6184 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to 6185 * avoid jit penalty if the stack usage is small. 6186 */ 6187 if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN && 6188 subprog_depth >= BPF_PRIV_STACK_MIN_SIZE) 6189 subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE; 6190 } 6191 6192 if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6193 if (subprog_depth > MAX_BPF_STACK) { 6194 verbose(env, "stack size of subprog %d is %d. Too large\n", 6195 idx, subprog_depth); 6196 return -EACCES; 6197 } 6198 } else { 6199 depth += subprog_depth; 6200 if (depth > MAX_BPF_STACK) { 6201 verbose(env, "combined stack size of %d calls is %d. Too large\n", 6202 frame + 1, depth); 6203 return -EACCES; 6204 } 6205 } 6206 continue_func: 6207 subprog_end = subprog[idx + 1].start; 6208 for (; i < subprog_end; i++) { 6209 int next_insn, sidx; 6210 6211 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 6212 bool err = false; 6213 6214 if (!is_bpf_throw_kfunc(insn + i)) 6215 continue; 6216 if (subprog[idx].is_cb) 6217 err = true; 6218 for (int c = 0; c < frame && !err; c++) { 6219 if (subprog[ret_prog[c]].is_cb) { 6220 err = true; 6221 break; 6222 } 6223 } 6224 if (!err) 6225 continue; 6226 verbose(env, 6227 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 6228 i, idx); 6229 return -EINVAL; 6230 } 6231 6232 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 6233 continue; 6234 /* remember insn and function to return to */ 6235 ret_insn[frame] = i + 1; 6236 ret_prog[frame] = idx; 6237 6238 /* find the callee */ 6239 next_insn = i + insn[i].imm + 1; 6240 sidx = find_subprog(env, next_insn); 6241 if (sidx < 0) { 6242 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6243 next_insn); 6244 return -EFAULT; 6245 } 6246 if (subprog[sidx].is_async_cb) { 6247 if (subprog[sidx].has_tail_call) { 6248 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 6249 return -EFAULT; 6250 } 6251 /* async callbacks don't increase bpf prog stack size unless called directly */ 6252 if (!bpf_pseudo_call(insn + i)) 6253 continue; 6254 if (subprog[sidx].is_exception_cb) { 6255 verbose(env, "insn %d cannot call exception cb directly\n", i); 6256 return -EINVAL; 6257 } 6258 } 6259 i = next_insn; 6260 idx = sidx; 6261 if (!priv_stack_supported) 6262 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6263 6264 if (subprog[idx].has_tail_call) 6265 tail_call_reachable = true; 6266 6267 frame++; 6268 if (frame >= MAX_CALL_FRAMES) { 6269 verbose(env, "the call stack of %d frames is too deep !\n", 6270 frame); 6271 return -E2BIG; 6272 } 6273 goto process_func; 6274 } 6275 /* if tail call got detected across bpf2bpf calls then mark each of the 6276 * currently present subprog frames as tail call reachable subprogs; 6277 * this info will be utilized by JIT so that we will be preserving the 6278 * tail call counter throughout bpf2bpf calls combined with tailcalls 6279 */ 6280 if (tail_call_reachable) 6281 for (j = 0; j < frame; j++) { 6282 if (subprog[ret_prog[j]].is_exception_cb) { 6283 verbose(env, "cannot tail call within exception cb\n"); 6284 return -EINVAL; 6285 } 6286 subprog[ret_prog[j]].tail_call_reachable = true; 6287 } 6288 if (subprog[0].tail_call_reachable) 6289 env->prog->aux->tail_call_reachable = true; 6290 6291 /* end of for() loop means the last insn of the 'subprog' 6292 * was reached. Doesn't matter whether it was JA or EXIT 6293 */ 6294 if (frame == 0) 6295 return 0; 6296 if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE) 6297 depth -= round_up_stack_depth(env, subprog[idx].stack_depth); 6298 frame--; 6299 i = ret_insn[frame]; 6300 idx = ret_prog[frame]; 6301 goto continue_func; 6302 } 6303 6304 static int check_max_stack_depth(struct bpf_verifier_env *env) 6305 { 6306 enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN; 6307 struct bpf_subprog_info *si = env->subprog_info; 6308 bool priv_stack_supported; 6309 int ret; 6310 6311 for (int i = 0; i < env->subprog_cnt; i++) { 6312 if (si[i].has_tail_call) { 6313 priv_stack_mode = NO_PRIV_STACK; 6314 break; 6315 } 6316 } 6317 6318 if (priv_stack_mode == PRIV_STACK_UNKNOWN) 6319 priv_stack_mode = bpf_enable_priv_stack(env->prog); 6320 6321 /* All async_cb subprogs use normal kernel stack. If a particular 6322 * subprog appears in both main prog and async_cb subtree, that 6323 * subprog will use normal kernel stack to avoid potential nesting. 6324 * The reverse subprog traversal ensures when main prog subtree is 6325 * checked, the subprogs appearing in async_cb subtrees are already 6326 * marked as using normal kernel stack, so stack size checking can 6327 * be done properly. 6328 */ 6329 for (int i = env->subprog_cnt - 1; i >= 0; i--) { 6330 if (!i || si[i].is_async_cb) { 6331 priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE; 6332 ret = check_max_stack_depth_subprog(env, i, priv_stack_supported); 6333 if (ret < 0) 6334 return ret; 6335 } 6336 } 6337 6338 for (int i = 0; i < env->subprog_cnt; i++) { 6339 if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6340 env->prog->aux->jits_use_priv_stack = true; 6341 break; 6342 } 6343 } 6344 6345 return 0; 6346 } 6347 6348 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6349 static int get_callee_stack_depth(struct bpf_verifier_env *env, 6350 const struct bpf_insn *insn, int idx) 6351 { 6352 int start = idx + insn->imm + 1, subprog; 6353 6354 subprog = find_subprog(env, start); 6355 if (subprog < 0) { 6356 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6357 start); 6358 return -EFAULT; 6359 } 6360 return env->subprog_info[subprog].stack_depth; 6361 } 6362 #endif 6363 6364 static int __check_buffer_access(struct bpf_verifier_env *env, 6365 const char *buf_info, 6366 const struct bpf_reg_state *reg, 6367 int regno, int off, int size) 6368 { 6369 if (off < 0) { 6370 verbose(env, 6371 "R%d invalid %s buffer access: off=%d, size=%d\n", 6372 regno, buf_info, off, size); 6373 return -EACCES; 6374 } 6375 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6376 char tn_buf[48]; 6377 6378 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6379 verbose(env, 6380 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6381 regno, off, tn_buf); 6382 return -EACCES; 6383 } 6384 6385 return 0; 6386 } 6387 6388 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6389 const struct bpf_reg_state *reg, 6390 int regno, int off, int size) 6391 { 6392 int err; 6393 6394 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6395 if (err) 6396 return err; 6397 6398 if (off + size > env->prog->aux->max_tp_access) 6399 env->prog->aux->max_tp_access = off + size; 6400 6401 return 0; 6402 } 6403 6404 static int check_buffer_access(struct bpf_verifier_env *env, 6405 const struct bpf_reg_state *reg, 6406 int regno, int off, int size, 6407 bool zero_size_allowed, 6408 u32 *max_access) 6409 { 6410 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6411 int err; 6412 6413 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6414 if (err) 6415 return err; 6416 6417 if (off + size > *max_access) 6418 *max_access = off + size; 6419 6420 return 0; 6421 } 6422 6423 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6424 static void zext_32_to_64(struct bpf_reg_state *reg) 6425 { 6426 reg->var_off = tnum_subreg(reg->var_off); 6427 __reg_assign_32_into_64(reg); 6428 } 6429 6430 /* truncate register to smaller size (in bytes) 6431 * must be called with size < BPF_REG_SIZE 6432 */ 6433 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6434 { 6435 u64 mask; 6436 6437 /* clear high bits in bit representation */ 6438 reg->var_off = tnum_cast(reg->var_off, size); 6439 6440 /* fix arithmetic bounds */ 6441 mask = ((u64)1 << (size * 8)) - 1; 6442 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6443 reg->umin_value &= mask; 6444 reg->umax_value &= mask; 6445 } else { 6446 reg->umin_value = 0; 6447 reg->umax_value = mask; 6448 } 6449 reg->smin_value = reg->umin_value; 6450 reg->smax_value = reg->umax_value; 6451 6452 /* If size is smaller than 32bit register the 32bit register 6453 * values are also truncated so we push 64-bit bounds into 6454 * 32-bit bounds. Above were truncated < 32-bits already. 6455 */ 6456 if (size < 4) 6457 __mark_reg32_unbounded(reg); 6458 6459 reg_bounds_sync(reg); 6460 } 6461 6462 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6463 { 6464 if (size == 1) { 6465 reg->smin_value = reg->s32_min_value = S8_MIN; 6466 reg->smax_value = reg->s32_max_value = S8_MAX; 6467 } else if (size == 2) { 6468 reg->smin_value = reg->s32_min_value = S16_MIN; 6469 reg->smax_value = reg->s32_max_value = S16_MAX; 6470 } else { 6471 /* size == 4 */ 6472 reg->smin_value = reg->s32_min_value = S32_MIN; 6473 reg->smax_value = reg->s32_max_value = S32_MAX; 6474 } 6475 reg->umin_value = reg->u32_min_value = 0; 6476 reg->umax_value = U64_MAX; 6477 reg->u32_max_value = U32_MAX; 6478 reg->var_off = tnum_unknown; 6479 } 6480 6481 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6482 { 6483 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6484 u64 top_smax_value, top_smin_value; 6485 u64 num_bits = size * 8; 6486 6487 if (tnum_is_const(reg->var_off)) { 6488 u64_cval = reg->var_off.value; 6489 if (size == 1) 6490 reg->var_off = tnum_const((s8)u64_cval); 6491 else if (size == 2) 6492 reg->var_off = tnum_const((s16)u64_cval); 6493 else 6494 /* size == 4 */ 6495 reg->var_off = tnum_const((s32)u64_cval); 6496 6497 u64_cval = reg->var_off.value; 6498 reg->smax_value = reg->smin_value = u64_cval; 6499 reg->umax_value = reg->umin_value = u64_cval; 6500 reg->s32_max_value = reg->s32_min_value = u64_cval; 6501 reg->u32_max_value = reg->u32_min_value = u64_cval; 6502 return; 6503 } 6504 6505 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6506 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6507 6508 if (top_smax_value != top_smin_value) 6509 goto out; 6510 6511 /* find the s64_min and s64_min after sign extension */ 6512 if (size == 1) { 6513 init_s64_max = (s8)reg->smax_value; 6514 init_s64_min = (s8)reg->smin_value; 6515 } else if (size == 2) { 6516 init_s64_max = (s16)reg->smax_value; 6517 init_s64_min = (s16)reg->smin_value; 6518 } else { 6519 init_s64_max = (s32)reg->smax_value; 6520 init_s64_min = (s32)reg->smin_value; 6521 } 6522 6523 s64_max = max(init_s64_max, init_s64_min); 6524 s64_min = min(init_s64_max, init_s64_min); 6525 6526 /* both of s64_max/s64_min positive or negative */ 6527 if ((s64_max >= 0) == (s64_min >= 0)) { 6528 reg->s32_min_value = reg->smin_value = s64_min; 6529 reg->s32_max_value = reg->smax_value = s64_max; 6530 reg->u32_min_value = reg->umin_value = s64_min; 6531 reg->u32_max_value = reg->umax_value = s64_max; 6532 reg->var_off = tnum_range(s64_min, s64_max); 6533 return; 6534 } 6535 6536 out: 6537 set_sext64_default_val(reg, size); 6538 } 6539 6540 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6541 { 6542 if (size == 1) { 6543 reg->s32_min_value = S8_MIN; 6544 reg->s32_max_value = S8_MAX; 6545 } else { 6546 /* size == 2 */ 6547 reg->s32_min_value = S16_MIN; 6548 reg->s32_max_value = S16_MAX; 6549 } 6550 reg->u32_min_value = 0; 6551 reg->u32_max_value = U32_MAX; 6552 reg->var_off = tnum_subreg(tnum_unknown); 6553 } 6554 6555 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6556 { 6557 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6558 u32 top_smax_value, top_smin_value; 6559 u32 num_bits = size * 8; 6560 6561 if (tnum_is_const(reg->var_off)) { 6562 u32_val = reg->var_off.value; 6563 if (size == 1) 6564 reg->var_off = tnum_const((s8)u32_val); 6565 else 6566 reg->var_off = tnum_const((s16)u32_val); 6567 6568 u32_val = reg->var_off.value; 6569 reg->s32_min_value = reg->s32_max_value = u32_val; 6570 reg->u32_min_value = reg->u32_max_value = u32_val; 6571 return; 6572 } 6573 6574 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6575 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6576 6577 if (top_smax_value != top_smin_value) 6578 goto out; 6579 6580 /* find the s32_min and s32_min after sign extension */ 6581 if (size == 1) { 6582 init_s32_max = (s8)reg->s32_max_value; 6583 init_s32_min = (s8)reg->s32_min_value; 6584 } else { 6585 /* size == 2 */ 6586 init_s32_max = (s16)reg->s32_max_value; 6587 init_s32_min = (s16)reg->s32_min_value; 6588 } 6589 s32_max = max(init_s32_max, init_s32_min); 6590 s32_min = min(init_s32_max, init_s32_min); 6591 6592 if ((s32_min >= 0) == (s32_max >= 0)) { 6593 reg->s32_min_value = s32_min; 6594 reg->s32_max_value = s32_max; 6595 reg->u32_min_value = (u32)s32_min; 6596 reg->u32_max_value = (u32)s32_max; 6597 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); 6598 return; 6599 } 6600 6601 out: 6602 set_sext32_default_val(reg, size); 6603 } 6604 6605 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6606 { 6607 /* A map is considered read-only if the following condition are true: 6608 * 6609 * 1) BPF program side cannot change any of the map content. The 6610 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6611 * and was set at map creation time. 6612 * 2) The map value(s) have been initialized from user space by a 6613 * loader and then "frozen", such that no new map update/delete 6614 * operations from syscall side are possible for the rest of 6615 * the map's lifetime from that point onwards. 6616 * 3) Any parallel/pending map update/delete operations from syscall 6617 * side have been completed. Only after that point, it's safe to 6618 * assume that map value(s) are immutable. 6619 */ 6620 return (map->map_flags & BPF_F_RDONLY_PROG) && 6621 READ_ONCE(map->frozen) && 6622 !bpf_map_write_active(map); 6623 } 6624 6625 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6626 bool is_ldsx) 6627 { 6628 void *ptr; 6629 u64 addr; 6630 int err; 6631 6632 err = map->ops->map_direct_value_addr(map, &addr, off); 6633 if (err) 6634 return err; 6635 ptr = (void *)(long)addr + off; 6636 6637 switch (size) { 6638 case sizeof(u8): 6639 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6640 break; 6641 case sizeof(u16): 6642 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6643 break; 6644 case sizeof(u32): 6645 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6646 break; 6647 case sizeof(u64): 6648 *val = *(u64 *)ptr; 6649 break; 6650 default: 6651 return -EINVAL; 6652 } 6653 return 0; 6654 } 6655 6656 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6657 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6658 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6659 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) 6660 6661 /* 6662 * Allow list few fields as RCU trusted or full trusted. 6663 * This logic doesn't allow mix tagging and will be removed once GCC supports 6664 * btf_type_tag. 6665 */ 6666 6667 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6668 BTF_TYPE_SAFE_RCU(struct task_struct) { 6669 const cpumask_t *cpus_ptr; 6670 struct css_set __rcu *cgroups; 6671 struct task_struct __rcu *real_parent; 6672 struct task_struct *group_leader; 6673 }; 6674 6675 BTF_TYPE_SAFE_RCU(struct cgroup) { 6676 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6677 struct kernfs_node *kn; 6678 }; 6679 6680 BTF_TYPE_SAFE_RCU(struct css_set) { 6681 struct cgroup *dfl_cgrp; 6682 }; 6683 6684 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6685 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6686 struct file __rcu *exe_file; 6687 }; 6688 6689 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6690 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6691 */ 6692 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6693 struct sock *sk; 6694 }; 6695 6696 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6697 struct sock *sk; 6698 }; 6699 6700 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6701 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6702 struct seq_file *seq; 6703 }; 6704 6705 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6706 struct bpf_iter_meta *meta; 6707 struct task_struct *task; 6708 }; 6709 6710 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6711 struct file *file; 6712 }; 6713 6714 BTF_TYPE_SAFE_TRUSTED(struct file) { 6715 struct inode *f_inode; 6716 }; 6717 6718 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6719 /* no negative dentry-s in places where bpf can see it */ 6720 struct inode *d_inode; 6721 }; 6722 6723 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { 6724 struct sock *sk; 6725 }; 6726 6727 static bool type_is_rcu(struct bpf_verifier_env *env, 6728 struct bpf_reg_state *reg, 6729 const char *field_name, u32 btf_id) 6730 { 6731 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6732 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6733 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6734 6735 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6736 } 6737 6738 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6739 struct bpf_reg_state *reg, 6740 const char *field_name, u32 btf_id) 6741 { 6742 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6743 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6744 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6745 6746 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6747 } 6748 6749 static bool type_is_trusted(struct bpf_verifier_env *env, 6750 struct bpf_reg_state *reg, 6751 const char *field_name, u32 btf_id) 6752 { 6753 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6754 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6755 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6756 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6757 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6758 6759 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6760 } 6761 6762 static bool type_is_trusted_or_null(struct bpf_verifier_env *env, 6763 struct bpf_reg_state *reg, 6764 const char *field_name, u32 btf_id) 6765 { 6766 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); 6767 6768 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, 6769 "__safe_trusted_or_null"); 6770 } 6771 6772 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6773 struct bpf_reg_state *regs, 6774 int regno, int off, int size, 6775 enum bpf_access_type atype, 6776 int value_regno) 6777 { 6778 struct bpf_reg_state *reg = regs + regno; 6779 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6780 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6781 const char *field_name = NULL; 6782 enum bpf_type_flag flag = 0; 6783 u32 btf_id = 0; 6784 bool mask; 6785 int ret; 6786 6787 if (!env->allow_ptr_leaks) { 6788 verbose(env, 6789 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6790 tname); 6791 return -EPERM; 6792 } 6793 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6794 verbose(env, 6795 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6796 tname); 6797 return -EINVAL; 6798 } 6799 if (off < 0) { 6800 verbose(env, 6801 "R%d is ptr_%s invalid negative access: off=%d\n", 6802 regno, tname, off); 6803 return -EACCES; 6804 } 6805 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6806 char tn_buf[48]; 6807 6808 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6809 verbose(env, 6810 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6811 regno, tname, off, tn_buf); 6812 return -EACCES; 6813 } 6814 6815 if (reg->type & MEM_USER) { 6816 verbose(env, 6817 "R%d is ptr_%s access user memory: off=%d\n", 6818 regno, tname, off); 6819 return -EACCES; 6820 } 6821 6822 if (reg->type & MEM_PERCPU) { 6823 verbose(env, 6824 "R%d is ptr_%s access percpu memory: off=%d\n", 6825 regno, tname, off); 6826 return -EACCES; 6827 } 6828 6829 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6830 if (!btf_is_kernel(reg->btf)) { 6831 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6832 return -EFAULT; 6833 } 6834 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6835 } else { 6836 /* Writes are permitted with default btf_struct_access for 6837 * program allocated objects (which always have ref_obj_id > 0), 6838 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6839 */ 6840 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6841 verbose(env, "only read is supported\n"); 6842 return -EACCES; 6843 } 6844 6845 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6846 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 6847 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6848 return -EFAULT; 6849 } 6850 6851 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6852 } 6853 6854 if (ret < 0) 6855 return ret; 6856 /* For raw_tp progs, we allow dereference of PTR_MAYBE_NULL 6857 * trusted PTR_TO_BTF_ID, these are the ones that are possibly 6858 * arguments to the raw_tp. Since internal checks in for trusted 6859 * reg in check_ptr_to_btf_access would consider PTR_MAYBE_NULL 6860 * modifier as problematic, mask it out temporarily for the 6861 * check. Don't apply this to pointers with ref_obj_id > 0, as 6862 * those won't be raw_tp args. 6863 * 6864 * We may end up applying this relaxation to other trusted 6865 * PTR_TO_BTF_ID with maybe null flag, since we cannot 6866 * distinguish PTR_MAYBE_NULL tagged for arguments vs normal 6867 * tagging, but that should expand allowed behavior, and not 6868 * cause regression for existing behavior. 6869 */ 6870 mask = mask_raw_tp_reg(env, reg); 6871 if (ret != PTR_TO_BTF_ID) { 6872 /* just mark; */ 6873 6874 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6875 /* If this is an untrusted pointer, all pointers formed by walking it 6876 * also inherit the untrusted flag. 6877 */ 6878 flag = PTR_UNTRUSTED; 6879 6880 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6881 /* By default any pointer obtained from walking a trusted pointer is no 6882 * longer trusted, unless the field being accessed has explicitly been 6883 * marked as inheriting its parent's state of trust (either full or RCU). 6884 * For example: 6885 * 'cgroups' pointer is untrusted if task->cgroups dereference 6886 * happened in a sleepable program outside of bpf_rcu_read_lock() 6887 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6888 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6889 * 6890 * A regular RCU-protected pointer with __rcu tag can also be deemed 6891 * trusted if we are in an RCU CS. Such pointer can be NULL. 6892 */ 6893 if (type_is_trusted(env, reg, field_name, btf_id)) { 6894 flag |= PTR_TRUSTED; 6895 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { 6896 flag |= PTR_TRUSTED | PTR_MAYBE_NULL; 6897 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6898 if (type_is_rcu(env, reg, field_name, btf_id)) { 6899 /* ignore __rcu tag and mark it MEM_RCU */ 6900 flag |= MEM_RCU; 6901 } else if (flag & MEM_RCU || 6902 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6903 /* __rcu tagged pointers can be NULL */ 6904 flag |= MEM_RCU | PTR_MAYBE_NULL; 6905 6906 /* We always trust them */ 6907 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6908 flag & PTR_UNTRUSTED) 6909 flag &= ~PTR_UNTRUSTED; 6910 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6911 /* keep as-is */ 6912 } else { 6913 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6914 clear_trusted_flags(&flag); 6915 } 6916 } else { 6917 /* 6918 * If not in RCU CS or MEM_RCU pointer can be NULL then 6919 * aggressively mark as untrusted otherwise such 6920 * pointers will be plain PTR_TO_BTF_ID without flags 6921 * and will be allowed to be passed into helpers for 6922 * compat reasons. 6923 */ 6924 flag = PTR_UNTRUSTED; 6925 } 6926 } else { 6927 /* Old compat. Deprecated */ 6928 clear_trusted_flags(&flag); 6929 } 6930 6931 if (atype == BPF_READ && value_regno >= 0) { 6932 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6933 /* We've assigned a new type to regno, so don't undo masking. */ 6934 if (regno == value_regno) 6935 mask = false; 6936 } 6937 unmask_raw_tp_reg(reg, mask); 6938 6939 return 0; 6940 } 6941 6942 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6943 struct bpf_reg_state *regs, 6944 int regno, int off, int size, 6945 enum bpf_access_type atype, 6946 int value_regno) 6947 { 6948 struct bpf_reg_state *reg = regs + regno; 6949 struct bpf_map *map = reg->map_ptr; 6950 struct bpf_reg_state map_reg; 6951 enum bpf_type_flag flag = 0; 6952 const struct btf_type *t; 6953 const char *tname; 6954 u32 btf_id; 6955 int ret; 6956 6957 if (!btf_vmlinux) { 6958 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6959 return -ENOTSUPP; 6960 } 6961 6962 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6963 verbose(env, "map_ptr access not supported for map type %d\n", 6964 map->map_type); 6965 return -ENOTSUPP; 6966 } 6967 6968 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6969 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6970 6971 if (!env->allow_ptr_leaks) { 6972 verbose(env, 6973 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6974 tname); 6975 return -EPERM; 6976 } 6977 6978 if (off < 0) { 6979 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6980 regno, tname, off); 6981 return -EACCES; 6982 } 6983 6984 if (atype != BPF_READ) { 6985 verbose(env, "only read from %s is supported\n", tname); 6986 return -EACCES; 6987 } 6988 6989 /* Simulate access to a PTR_TO_BTF_ID */ 6990 memset(&map_reg, 0, sizeof(map_reg)); 6991 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6992 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6993 if (ret < 0) 6994 return ret; 6995 6996 if (value_regno >= 0) 6997 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6998 6999 return 0; 7000 } 7001 7002 /* Check that the stack access at the given offset is within bounds. The 7003 * maximum valid offset is -1. 7004 * 7005 * The minimum valid offset is -MAX_BPF_STACK for writes, and 7006 * -state->allocated_stack for reads. 7007 */ 7008 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 7009 s64 off, 7010 struct bpf_func_state *state, 7011 enum bpf_access_type t) 7012 { 7013 int min_valid_off; 7014 7015 if (t == BPF_WRITE || env->allow_uninit_stack) 7016 min_valid_off = -MAX_BPF_STACK; 7017 else 7018 min_valid_off = -state->allocated_stack; 7019 7020 if (off < min_valid_off || off > -1) 7021 return -EACCES; 7022 return 0; 7023 } 7024 7025 /* Check that the stack access at 'regno + off' falls within the maximum stack 7026 * bounds. 7027 * 7028 * 'off' includes `regno->offset`, but not its dynamic part (if any). 7029 */ 7030 static int check_stack_access_within_bounds( 7031 struct bpf_verifier_env *env, 7032 int regno, int off, int access_size, 7033 enum bpf_access_src src, enum bpf_access_type type) 7034 { 7035 struct bpf_reg_state *regs = cur_regs(env); 7036 struct bpf_reg_state *reg = regs + regno; 7037 struct bpf_func_state *state = func(env, reg); 7038 s64 min_off, max_off; 7039 int err; 7040 char *err_extra; 7041 7042 if (src == ACCESS_HELPER) 7043 /* We don't know if helpers are reading or writing (or both). */ 7044 err_extra = " indirect access to"; 7045 else if (type == BPF_READ) 7046 err_extra = " read from"; 7047 else 7048 err_extra = " write to"; 7049 7050 if (tnum_is_const(reg->var_off)) { 7051 min_off = (s64)reg->var_off.value + off; 7052 max_off = min_off + access_size; 7053 } else { 7054 if (reg->smax_value >= BPF_MAX_VAR_OFF || 7055 reg->smin_value <= -BPF_MAX_VAR_OFF) { 7056 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 7057 err_extra, regno); 7058 return -EACCES; 7059 } 7060 min_off = reg->smin_value + off; 7061 max_off = reg->smax_value + off + access_size; 7062 } 7063 7064 err = check_stack_slot_within_bounds(env, min_off, state, type); 7065 if (!err && max_off > 0) 7066 err = -EINVAL; /* out of stack access into non-negative offsets */ 7067 if (!err && access_size < 0) 7068 /* access_size should not be negative (or overflow an int); others checks 7069 * along the way should have prevented such an access. 7070 */ 7071 err = -EFAULT; /* invalid negative access size; integer overflow? */ 7072 7073 if (err) { 7074 if (tnum_is_const(reg->var_off)) { 7075 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 7076 err_extra, regno, off, access_size); 7077 } else { 7078 char tn_buf[48]; 7079 7080 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7081 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", 7082 err_extra, regno, tn_buf, off, access_size); 7083 } 7084 return err; 7085 } 7086 7087 /* Note that there is no stack access with offset zero, so the needed stack 7088 * size is -min_off, not -min_off+1. 7089 */ 7090 return grow_stack_state(env, state, -min_off /* size */); 7091 } 7092 7093 static bool get_func_retval_range(struct bpf_prog *prog, 7094 struct bpf_retval_range *range) 7095 { 7096 if (prog->type == BPF_PROG_TYPE_LSM && 7097 prog->expected_attach_type == BPF_LSM_MAC && 7098 !bpf_lsm_get_retval_range(prog, range)) { 7099 return true; 7100 } 7101 return false; 7102 } 7103 7104 /* check whether memory at (regno + off) is accessible for t = (read | write) 7105 * if t==write, value_regno is a register which value is stored into memory 7106 * if t==read, value_regno is a register which will receive the value from memory 7107 * if t==write && value_regno==-1, some unknown value is stored into memory 7108 * if t==read && value_regno==-1, don't care what we read from memory 7109 */ 7110 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 7111 int off, int bpf_size, enum bpf_access_type t, 7112 int value_regno, bool strict_alignment_once, bool is_ldsx) 7113 { 7114 struct bpf_reg_state *regs = cur_regs(env); 7115 struct bpf_reg_state *reg = regs + regno; 7116 int size, err = 0; 7117 7118 size = bpf_size_to_bytes(bpf_size); 7119 if (size < 0) 7120 return size; 7121 7122 /* alignment checks will add in reg->off themselves */ 7123 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 7124 if (err) 7125 return err; 7126 7127 /* for access checks, reg->off is just part of off */ 7128 off += reg->off; 7129 7130 if (reg->type == PTR_TO_MAP_KEY) { 7131 if (t == BPF_WRITE) { 7132 verbose(env, "write to change key R%d not allowed\n", regno); 7133 return -EACCES; 7134 } 7135 7136 err = check_mem_region_access(env, regno, off, size, 7137 reg->map_ptr->key_size, false); 7138 if (err) 7139 return err; 7140 if (value_regno >= 0) 7141 mark_reg_unknown(env, regs, value_regno); 7142 } else if (reg->type == PTR_TO_MAP_VALUE) { 7143 struct btf_field *kptr_field = NULL; 7144 7145 if (t == BPF_WRITE && value_regno >= 0 && 7146 is_pointer_value(env, value_regno)) { 7147 verbose(env, "R%d leaks addr into map\n", value_regno); 7148 return -EACCES; 7149 } 7150 err = check_map_access_type(env, regno, off, size, t); 7151 if (err) 7152 return err; 7153 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 7154 if (err) 7155 return err; 7156 if (tnum_is_const(reg->var_off)) 7157 kptr_field = btf_record_find(reg->map_ptr->record, 7158 off + reg->var_off.value, BPF_KPTR | BPF_UPTR); 7159 if (kptr_field) { 7160 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 7161 } else if (t == BPF_READ && value_regno >= 0) { 7162 struct bpf_map *map = reg->map_ptr; 7163 7164 /* if map is read-only, track its contents as scalars */ 7165 if (tnum_is_const(reg->var_off) && 7166 bpf_map_is_rdonly(map) && 7167 map->ops->map_direct_value_addr) { 7168 int map_off = off + reg->var_off.value; 7169 u64 val = 0; 7170 7171 err = bpf_map_direct_read(map, map_off, size, 7172 &val, is_ldsx); 7173 if (err) 7174 return err; 7175 7176 regs[value_regno].type = SCALAR_VALUE; 7177 __mark_reg_known(®s[value_regno], val); 7178 } else { 7179 mark_reg_unknown(env, regs, value_regno); 7180 } 7181 } 7182 } else if (base_type(reg->type) == PTR_TO_MEM) { 7183 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7184 7185 if (type_may_be_null(reg->type)) { 7186 verbose(env, "R%d invalid mem access '%s'\n", regno, 7187 reg_type_str(env, reg->type)); 7188 return -EACCES; 7189 } 7190 7191 if (t == BPF_WRITE && rdonly_mem) { 7192 verbose(env, "R%d cannot write into %s\n", 7193 regno, reg_type_str(env, reg->type)); 7194 return -EACCES; 7195 } 7196 7197 if (t == BPF_WRITE && value_regno >= 0 && 7198 is_pointer_value(env, value_regno)) { 7199 verbose(env, "R%d leaks addr into mem\n", value_regno); 7200 return -EACCES; 7201 } 7202 7203 err = check_mem_region_access(env, regno, off, size, 7204 reg->mem_size, false); 7205 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 7206 mark_reg_unknown(env, regs, value_regno); 7207 } else if (reg->type == PTR_TO_CTX) { 7208 bool is_retval = false; 7209 struct bpf_retval_range range; 7210 enum bpf_reg_type reg_type = SCALAR_VALUE; 7211 struct btf *btf = NULL; 7212 u32 btf_id = 0; 7213 7214 if (t == BPF_WRITE && value_regno >= 0 && 7215 is_pointer_value(env, value_regno)) { 7216 verbose(env, "R%d leaks addr into ctx\n", value_regno); 7217 return -EACCES; 7218 } 7219 7220 err = check_ptr_off_reg(env, reg, regno); 7221 if (err < 0) 7222 return err; 7223 7224 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 7225 &btf_id, &is_retval, is_ldsx); 7226 if (err) 7227 verbose_linfo(env, insn_idx, "; "); 7228 if (!err && t == BPF_READ && value_regno >= 0) { 7229 /* ctx access returns either a scalar, or a 7230 * PTR_TO_PACKET[_META,_END]. In the latter 7231 * case, we know the offset is zero. 7232 */ 7233 if (reg_type == SCALAR_VALUE) { 7234 if (is_retval && get_func_retval_range(env->prog, &range)) { 7235 err = __mark_reg_s32_range(env, regs, value_regno, 7236 range.minval, range.maxval); 7237 if (err) 7238 return err; 7239 } else { 7240 mark_reg_unknown(env, regs, value_regno); 7241 } 7242 } else { 7243 mark_reg_known_zero(env, regs, 7244 value_regno); 7245 if (type_may_be_null(reg_type)) 7246 regs[value_regno].id = ++env->id_gen; 7247 /* A load of ctx field could have different 7248 * actual load size with the one encoded in the 7249 * insn. When the dst is PTR, it is for sure not 7250 * a sub-register. 7251 */ 7252 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 7253 if (base_type(reg_type) == PTR_TO_BTF_ID) { 7254 regs[value_regno].btf = btf; 7255 regs[value_regno].btf_id = btf_id; 7256 } 7257 } 7258 regs[value_regno].type = reg_type; 7259 } 7260 7261 } else if (reg->type == PTR_TO_STACK) { 7262 /* Basic bounds checks. */ 7263 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 7264 if (err) 7265 return err; 7266 7267 if (t == BPF_READ) 7268 err = check_stack_read(env, regno, off, size, 7269 value_regno); 7270 else 7271 err = check_stack_write(env, regno, off, size, 7272 value_regno, insn_idx); 7273 } else if (reg_is_pkt_pointer(reg)) { 7274 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 7275 verbose(env, "cannot write into packet\n"); 7276 return -EACCES; 7277 } 7278 if (t == BPF_WRITE && value_regno >= 0 && 7279 is_pointer_value(env, value_regno)) { 7280 verbose(env, "R%d leaks addr into packet\n", 7281 value_regno); 7282 return -EACCES; 7283 } 7284 err = check_packet_access(env, regno, off, size, false); 7285 if (!err && t == BPF_READ && value_regno >= 0) 7286 mark_reg_unknown(env, regs, value_regno); 7287 } else if (reg->type == PTR_TO_FLOW_KEYS) { 7288 if (t == BPF_WRITE && value_regno >= 0 && 7289 is_pointer_value(env, value_regno)) { 7290 verbose(env, "R%d leaks addr into flow keys\n", 7291 value_regno); 7292 return -EACCES; 7293 } 7294 7295 err = check_flow_keys_access(env, off, size); 7296 if (!err && t == BPF_READ && value_regno >= 0) 7297 mark_reg_unknown(env, regs, value_regno); 7298 } else if (type_is_sk_pointer(reg->type)) { 7299 if (t == BPF_WRITE) { 7300 verbose(env, "R%d cannot write into %s\n", 7301 regno, reg_type_str(env, reg->type)); 7302 return -EACCES; 7303 } 7304 err = check_sock_access(env, insn_idx, regno, off, size, t); 7305 if (!err && value_regno >= 0) 7306 mark_reg_unknown(env, regs, value_regno); 7307 } else if (reg->type == PTR_TO_TP_BUFFER) { 7308 err = check_tp_buffer_access(env, reg, regno, off, size); 7309 if (!err && t == BPF_READ && value_regno >= 0) 7310 mark_reg_unknown(env, regs, value_regno); 7311 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 7312 (mask_raw_tp_reg_cond(env, reg) || !type_may_be_null(reg->type))) { 7313 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 7314 value_regno); 7315 } else if (reg->type == CONST_PTR_TO_MAP) { 7316 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 7317 value_regno); 7318 } else if (base_type(reg->type) == PTR_TO_BUF) { 7319 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7320 u32 *max_access; 7321 7322 if (rdonly_mem) { 7323 if (t == BPF_WRITE) { 7324 verbose(env, "R%d cannot write into %s\n", 7325 regno, reg_type_str(env, reg->type)); 7326 return -EACCES; 7327 } 7328 max_access = &env->prog->aux->max_rdonly_access; 7329 } else { 7330 max_access = &env->prog->aux->max_rdwr_access; 7331 } 7332 7333 err = check_buffer_access(env, reg, regno, off, size, false, 7334 max_access); 7335 7336 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 7337 mark_reg_unknown(env, regs, value_regno); 7338 } else if (reg->type == PTR_TO_ARENA) { 7339 if (t == BPF_READ && value_regno >= 0) 7340 mark_reg_unknown(env, regs, value_regno); 7341 } else { 7342 verbose(env, "R%d invalid mem access '%s'\n", regno, 7343 reg_type_str(env, reg->type)); 7344 return -EACCES; 7345 } 7346 7347 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 7348 regs[value_regno].type == SCALAR_VALUE) { 7349 if (!is_ldsx) 7350 /* b/h/w load zero-extends, mark upper bits as known 0 */ 7351 coerce_reg_to_size(®s[value_regno], size); 7352 else 7353 coerce_reg_to_size_sx(®s[value_regno], size); 7354 } 7355 return err; 7356 } 7357 7358 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 7359 bool allow_trust_mismatch); 7360 7361 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 7362 { 7363 int load_reg; 7364 int err; 7365 7366 switch (insn->imm) { 7367 case BPF_ADD: 7368 case BPF_ADD | BPF_FETCH: 7369 case BPF_AND: 7370 case BPF_AND | BPF_FETCH: 7371 case BPF_OR: 7372 case BPF_OR | BPF_FETCH: 7373 case BPF_XOR: 7374 case BPF_XOR | BPF_FETCH: 7375 case BPF_XCHG: 7376 case BPF_CMPXCHG: 7377 break; 7378 default: 7379 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 7380 return -EINVAL; 7381 } 7382 7383 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 7384 verbose(env, "invalid atomic operand size\n"); 7385 return -EINVAL; 7386 } 7387 7388 /* check src1 operand */ 7389 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7390 if (err) 7391 return err; 7392 7393 /* check src2 operand */ 7394 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7395 if (err) 7396 return err; 7397 7398 if (insn->imm == BPF_CMPXCHG) { 7399 /* Check comparison of R0 with memory location */ 7400 const u32 aux_reg = BPF_REG_0; 7401 7402 err = check_reg_arg(env, aux_reg, SRC_OP); 7403 if (err) 7404 return err; 7405 7406 if (is_pointer_value(env, aux_reg)) { 7407 verbose(env, "R%d leaks addr into mem\n", aux_reg); 7408 return -EACCES; 7409 } 7410 } 7411 7412 if (is_pointer_value(env, insn->src_reg)) { 7413 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 7414 return -EACCES; 7415 } 7416 7417 if (is_ctx_reg(env, insn->dst_reg) || 7418 is_pkt_reg(env, insn->dst_reg) || 7419 is_flow_key_reg(env, insn->dst_reg) || 7420 is_sk_reg(env, insn->dst_reg) || 7421 (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) { 7422 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7423 insn->dst_reg, 7424 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7425 return -EACCES; 7426 } 7427 7428 if (insn->imm & BPF_FETCH) { 7429 if (insn->imm == BPF_CMPXCHG) 7430 load_reg = BPF_REG_0; 7431 else 7432 load_reg = insn->src_reg; 7433 7434 /* check and record load of old value */ 7435 err = check_reg_arg(env, load_reg, DST_OP); 7436 if (err) 7437 return err; 7438 } else { 7439 /* This instruction accesses a memory location but doesn't 7440 * actually load it into a register. 7441 */ 7442 load_reg = -1; 7443 } 7444 7445 /* Check whether we can read the memory, with second call for fetch 7446 * case to simulate the register fill. 7447 */ 7448 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7449 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7450 if (!err && load_reg >= 0) 7451 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7452 BPF_SIZE(insn->code), BPF_READ, load_reg, 7453 true, false); 7454 if (err) 7455 return err; 7456 7457 if (is_arena_reg(env, insn->dst_reg)) { 7458 err = save_aux_ptr_type(env, PTR_TO_ARENA, false); 7459 if (err) 7460 return err; 7461 } 7462 /* Check whether we can write into the same memory. */ 7463 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7464 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7465 if (err) 7466 return err; 7467 return 0; 7468 } 7469 7470 /* When register 'regno' is used to read the stack (either directly or through 7471 * a helper function) make sure that it's within stack boundary and, depending 7472 * on the access type and privileges, that all elements of the stack are 7473 * initialized. 7474 * 7475 * 'off' includes 'regno->off', but not its dynamic part (if any). 7476 * 7477 * All registers that have been spilled on the stack in the slots within the 7478 * read offsets are marked as read. 7479 */ 7480 static int check_stack_range_initialized( 7481 struct bpf_verifier_env *env, int regno, int off, 7482 int access_size, bool zero_size_allowed, 7483 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 7484 { 7485 struct bpf_reg_state *reg = reg_state(env, regno); 7486 struct bpf_func_state *state = func(env, reg); 7487 int err, min_off, max_off, i, j, slot, spi; 7488 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 7489 enum bpf_access_type bounds_check_type; 7490 /* Some accesses can write anything into the stack, others are 7491 * read-only. 7492 */ 7493 bool clobber = false; 7494 7495 if (access_size == 0 && !zero_size_allowed) { 7496 verbose(env, "invalid zero-sized read\n"); 7497 return -EACCES; 7498 } 7499 7500 if (type == ACCESS_HELPER) { 7501 /* The bounds checks for writes are more permissive than for 7502 * reads. However, if raw_mode is not set, we'll do extra 7503 * checks below. 7504 */ 7505 bounds_check_type = BPF_WRITE; 7506 clobber = true; 7507 } else { 7508 bounds_check_type = BPF_READ; 7509 } 7510 err = check_stack_access_within_bounds(env, regno, off, access_size, 7511 type, bounds_check_type); 7512 if (err) 7513 return err; 7514 7515 7516 if (tnum_is_const(reg->var_off)) { 7517 min_off = max_off = reg->var_off.value + off; 7518 } else { 7519 /* Variable offset is prohibited for unprivileged mode for 7520 * simplicity since it requires corresponding support in 7521 * Spectre masking for stack ALU. 7522 * See also retrieve_ptr_limit(). 7523 */ 7524 if (!env->bypass_spec_v1) { 7525 char tn_buf[48]; 7526 7527 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7528 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 7529 regno, err_extra, tn_buf); 7530 return -EACCES; 7531 } 7532 /* Only initialized buffer on stack is allowed to be accessed 7533 * with variable offset. With uninitialized buffer it's hard to 7534 * guarantee that whole memory is marked as initialized on 7535 * helper return since specific bounds are unknown what may 7536 * cause uninitialized stack leaking. 7537 */ 7538 if (meta && meta->raw_mode) 7539 meta = NULL; 7540 7541 min_off = reg->smin_value + off; 7542 max_off = reg->smax_value + off; 7543 } 7544 7545 if (meta && meta->raw_mode) { 7546 /* Ensure we won't be overwriting dynptrs when simulating byte 7547 * by byte access in check_helper_call using meta.access_size. 7548 * This would be a problem if we have a helper in the future 7549 * which takes: 7550 * 7551 * helper(uninit_mem, len, dynptr) 7552 * 7553 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7554 * may end up writing to dynptr itself when touching memory from 7555 * arg 1. This can be relaxed on a case by case basis for known 7556 * safe cases, but reject due to the possibilitiy of aliasing by 7557 * default. 7558 */ 7559 for (i = min_off; i < max_off + access_size; i++) { 7560 int stack_off = -i - 1; 7561 7562 spi = __get_spi(i); 7563 /* raw_mode may write past allocated_stack */ 7564 if (state->allocated_stack <= stack_off) 7565 continue; 7566 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7567 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7568 return -EACCES; 7569 } 7570 } 7571 meta->access_size = access_size; 7572 meta->regno = regno; 7573 return 0; 7574 } 7575 7576 for (i = min_off; i < max_off + access_size; i++) { 7577 u8 *stype; 7578 7579 slot = -i - 1; 7580 spi = slot / BPF_REG_SIZE; 7581 if (state->allocated_stack <= slot) { 7582 verbose(env, "verifier bug: allocated_stack too small"); 7583 return -EFAULT; 7584 } 7585 7586 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7587 if (*stype == STACK_MISC) 7588 goto mark; 7589 if ((*stype == STACK_ZERO) || 7590 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7591 if (clobber) { 7592 /* helper can write anything into the stack */ 7593 *stype = STACK_MISC; 7594 } 7595 goto mark; 7596 } 7597 7598 if (is_spilled_reg(&state->stack[spi]) && 7599 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7600 env->allow_ptr_leaks)) { 7601 if (clobber) { 7602 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7603 for (j = 0; j < BPF_REG_SIZE; j++) 7604 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7605 } 7606 goto mark; 7607 } 7608 7609 if (tnum_is_const(reg->var_off)) { 7610 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 7611 err_extra, regno, min_off, i - min_off, access_size); 7612 } else { 7613 char tn_buf[48]; 7614 7615 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7616 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 7617 err_extra, regno, tn_buf, i - min_off, access_size); 7618 } 7619 return -EACCES; 7620 mark: 7621 /* reading any byte out of 8-byte 'spill_slot' will cause 7622 * the whole slot to be marked as 'read' 7623 */ 7624 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7625 state->stack[spi].spilled_ptr.parent, 7626 REG_LIVE_READ64); 7627 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7628 * be sure that whether stack slot is written to or not. Hence, 7629 * we must still conservatively propagate reads upwards even if 7630 * helper may write to the entire memory range. 7631 */ 7632 } 7633 return 0; 7634 } 7635 7636 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7637 int access_size, enum bpf_access_type access_type, 7638 bool zero_size_allowed, 7639 struct bpf_call_arg_meta *meta) 7640 { 7641 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7642 u32 *max_access; 7643 7644 switch (base_type(reg->type)) { 7645 case PTR_TO_PACKET: 7646 case PTR_TO_PACKET_META: 7647 return check_packet_access(env, regno, reg->off, access_size, 7648 zero_size_allowed); 7649 case PTR_TO_MAP_KEY: 7650 if (access_type == BPF_WRITE) { 7651 verbose(env, "R%d cannot write into %s\n", regno, 7652 reg_type_str(env, reg->type)); 7653 return -EACCES; 7654 } 7655 return check_mem_region_access(env, regno, reg->off, access_size, 7656 reg->map_ptr->key_size, false); 7657 case PTR_TO_MAP_VALUE: 7658 if (check_map_access_type(env, regno, reg->off, access_size, access_type)) 7659 return -EACCES; 7660 return check_map_access(env, regno, reg->off, access_size, 7661 zero_size_allowed, ACCESS_HELPER); 7662 case PTR_TO_MEM: 7663 if (type_is_rdonly_mem(reg->type)) { 7664 if (access_type == BPF_WRITE) { 7665 verbose(env, "R%d cannot write into %s\n", regno, 7666 reg_type_str(env, reg->type)); 7667 return -EACCES; 7668 } 7669 } 7670 return check_mem_region_access(env, regno, reg->off, 7671 access_size, reg->mem_size, 7672 zero_size_allowed); 7673 case PTR_TO_BUF: 7674 if (type_is_rdonly_mem(reg->type)) { 7675 if (access_type == BPF_WRITE) { 7676 verbose(env, "R%d cannot write into %s\n", regno, 7677 reg_type_str(env, reg->type)); 7678 return -EACCES; 7679 } 7680 7681 max_access = &env->prog->aux->max_rdonly_access; 7682 } else { 7683 max_access = &env->prog->aux->max_rdwr_access; 7684 } 7685 return check_buffer_access(env, reg, regno, reg->off, 7686 access_size, zero_size_allowed, 7687 max_access); 7688 case PTR_TO_STACK: 7689 return check_stack_range_initialized( 7690 env, 7691 regno, reg->off, access_size, 7692 zero_size_allowed, ACCESS_HELPER, meta); 7693 case PTR_TO_BTF_ID: 7694 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7695 access_size, BPF_READ, -1); 7696 case PTR_TO_CTX: 7697 /* in case the function doesn't know how to access the context, 7698 * (because we are in a program of type SYSCALL for example), we 7699 * can not statically check its size. 7700 * Dynamically check it now. 7701 */ 7702 if (!env->ops->convert_ctx_access) { 7703 int offset = access_size - 1; 7704 7705 /* Allow zero-byte read from PTR_TO_CTX */ 7706 if (access_size == 0) 7707 return zero_size_allowed ? 0 : -EACCES; 7708 7709 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7710 access_type, -1, false, false); 7711 } 7712 7713 fallthrough; 7714 default: /* scalar_value or invalid ptr */ 7715 /* Allow zero-byte read from NULL, regardless of pointer type */ 7716 if (zero_size_allowed && access_size == 0 && 7717 register_is_null(reg)) 7718 return 0; 7719 7720 verbose(env, "R%d type=%s ", regno, 7721 reg_type_str(env, reg->type)); 7722 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7723 return -EACCES; 7724 } 7725 } 7726 7727 /* verify arguments to helpers or kfuncs consisting of a pointer and an access 7728 * size. 7729 * 7730 * @regno is the register containing the access size. regno-1 is the register 7731 * containing the pointer. 7732 */ 7733 static int check_mem_size_reg(struct bpf_verifier_env *env, 7734 struct bpf_reg_state *reg, u32 regno, 7735 enum bpf_access_type access_type, 7736 bool zero_size_allowed, 7737 struct bpf_call_arg_meta *meta) 7738 { 7739 int err; 7740 7741 /* This is used to refine r0 return value bounds for helpers 7742 * that enforce this value as an upper bound on return values. 7743 * See do_refine_retval_range() for helpers that can refine 7744 * the return value. C type of helper is u32 so we pull register 7745 * bound from umax_value however, if negative verifier errors 7746 * out. Only upper bounds can be learned because retval is an 7747 * int type and negative retvals are allowed. 7748 */ 7749 meta->msize_max_value = reg->umax_value; 7750 7751 /* The register is SCALAR_VALUE; the access check happens using 7752 * its boundaries. For unprivileged variable accesses, disable 7753 * raw mode so that the program is required to initialize all 7754 * the memory that the helper could just partially fill up. 7755 */ 7756 if (!tnum_is_const(reg->var_off)) 7757 meta = NULL; 7758 7759 if (reg->smin_value < 0) { 7760 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7761 regno); 7762 return -EACCES; 7763 } 7764 7765 if (reg->umin_value == 0 && !zero_size_allowed) { 7766 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", 7767 regno, reg->umin_value, reg->umax_value); 7768 return -EACCES; 7769 } 7770 7771 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7772 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7773 regno); 7774 return -EACCES; 7775 } 7776 err = check_helper_mem_access(env, regno - 1, reg->umax_value, 7777 access_type, zero_size_allowed, meta); 7778 if (!err) 7779 err = mark_chain_precision(env, regno); 7780 return err; 7781 } 7782 7783 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7784 u32 regno, u32 mem_size) 7785 { 7786 bool may_be_null = type_may_be_null(reg->type); 7787 struct bpf_reg_state saved_reg; 7788 int err; 7789 7790 if (register_is_null(reg)) 7791 return 0; 7792 7793 /* Assuming that the register contains a value check if the memory 7794 * access is safe. Temporarily save and restore the register's state as 7795 * the conversion shouldn't be visible to a caller. 7796 */ 7797 if (may_be_null) { 7798 saved_reg = *reg; 7799 mark_ptr_not_null_reg(reg); 7800 } 7801 7802 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL); 7803 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL); 7804 7805 if (may_be_null) 7806 *reg = saved_reg; 7807 7808 return err; 7809 } 7810 7811 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7812 u32 regno) 7813 { 7814 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7815 bool may_be_null = type_may_be_null(mem_reg->type); 7816 struct bpf_reg_state saved_reg; 7817 struct bpf_call_arg_meta meta; 7818 int err; 7819 7820 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7821 7822 memset(&meta, 0, sizeof(meta)); 7823 7824 if (may_be_null) { 7825 saved_reg = *mem_reg; 7826 mark_ptr_not_null_reg(mem_reg); 7827 } 7828 7829 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta); 7830 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta); 7831 7832 if (may_be_null) 7833 *mem_reg = saved_reg; 7834 7835 return err; 7836 } 7837 7838 /* Implementation details: 7839 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7840 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7841 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7842 * Two separate bpf_obj_new will also have different reg->id. 7843 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7844 * clears reg->id after value_or_null->value transition, since the verifier only 7845 * cares about the range of access to valid map value pointer and doesn't care 7846 * about actual address of the map element. 7847 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7848 * reg->id > 0 after value_or_null->value transition. By doing so 7849 * two bpf_map_lookups will be considered two different pointers that 7850 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7851 * returned from bpf_obj_new. 7852 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7853 * dead-locks. 7854 * Since only one bpf_spin_lock is allowed the checks are simpler than 7855 * reg_is_refcounted() logic. The verifier needs to remember only 7856 * one spin_lock instead of array of acquired_refs. 7857 * cur_func(env)->active_locks remembers which map value element or allocated 7858 * object got locked and clears it after bpf_spin_unlock. 7859 */ 7860 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7861 bool is_lock) 7862 { 7863 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7864 bool is_const = tnum_is_const(reg->var_off); 7865 struct bpf_func_state *cur = cur_func(env); 7866 u64 val = reg->var_off.value; 7867 struct bpf_map *map = NULL; 7868 struct btf *btf = NULL; 7869 struct btf_record *rec; 7870 int err; 7871 7872 if (!is_const) { 7873 verbose(env, 7874 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7875 regno); 7876 return -EINVAL; 7877 } 7878 if (reg->type == PTR_TO_MAP_VALUE) { 7879 map = reg->map_ptr; 7880 if (!map->btf) { 7881 verbose(env, 7882 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7883 map->name); 7884 return -EINVAL; 7885 } 7886 } else { 7887 btf = reg->btf; 7888 } 7889 7890 rec = reg_btf_record(reg); 7891 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7892 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7893 map ? map->name : "kptr"); 7894 return -EINVAL; 7895 } 7896 if (rec->spin_lock_off != val + reg->off) { 7897 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7898 val + reg->off, rec->spin_lock_off); 7899 return -EINVAL; 7900 } 7901 if (is_lock) { 7902 void *ptr; 7903 7904 if (map) 7905 ptr = map; 7906 else 7907 ptr = btf; 7908 7909 if (cur->active_locks) { 7910 verbose(env, 7911 "Locking two bpf_spin_locks are not allowed\n"); 7912 return -EINVAL; 7913 } 7914 err = acquire_lock_state(env, env->insn_idx, REF_TYPE_LOCK, reg->id, ptr); 7915 if (err < 0) { 7916 verbose(env, "Failed to acquire lock state\n"); 7917 return err; 7918 } 7919 } else { 7920 void *ptr; 7921 7922 if (map) 7923 ptr = map; 7924 else 7925 ptr = btf; 7926 7927 if (!cur->active_locks) { 7928 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7929 return -EINVAL; 7930 } 7931 7932 if (release_lock_state(cur_func(env), REF_TYPE_LOCK, reg->id, ptr)) { 7933 verbose(env, "bpf_spin_unlock of different lock\n"); 7934 return -EINVAL; 7935 } 7936 7937 invalidate_non_owning_refs(env); 7938 } 7939 return 0; 7940 } 7941 7942 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7943 struct bpf_call_arg_meta *meta) 7944 { 7945 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7946 bool is_const = tnum_is_const(reg->var_off); 7947 struct bpf_map *map = reg->map_ptr; 7948 u64 val = reg->var_off.value; 7949 7950 if (!is_const) { 7951 verbose(env, 7952 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7953 regno); 7954 return -EINVAL; 7955 } 7956 if (!map->btf) { 7957 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7958 map->name); 7959 return -EINVAL; 7960 } 7961 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7962 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7963 return -EINVAL; 7964 } 7965 if (map->record->timer_off != val + reg->off) { 7966 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7967 val + reg->off, map->record->timer_off); 7968 return -EINVAL; 7969 } 7970 if (meta->map_ptr) { 7971 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7972 return -EFAULT; 7973 } 7974 meta->map_uid = reg->map_uid; 7975 meta->map_ptr = map; 7976 return 0; 7977 } 7978 7979 static int process_wq_func(struct bpf_verifier_env *env, int regno, 7980 struct bpf_kfunc_call_arg_meta *meta) 7981 { 7982 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7983 struct bpf_map *map = reg->map_ptr; 7984 u64 val = reg->var_off.value; 7985 7986 if (map->record->wq_off != val + reg->off) { 7987 verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n", 7988 val + reg->off, map->record->wq_off); 7989 return -EINVAL; 7990 } 7991 meta->map.uid = reg->map_uid; 7992 meta->map.ptr = map; 7993 return 0; 7994 } 7995 7996 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7997 struct bpf_call_arg_meta *meta) 7998 { 7999 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8000 struct btf_field *kptr_field; 8001 struct bpf_map *map_ptr; 8002 struct btf_record *rec; 8003 u32 kptr_off; 8004 8005 if (type_is_ptr_alloc_obj(reg->type)) { 8006 rec = reg_btf_record(reg); 8007 } else { /* PTR_TO_MAP_VALUE */ 8008 map_ptr = reg->map_ptr; 8009 if (!map_ptr->btf) { 8010 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 8011 map_ptr->name); 8012 return -EINVAL; 8013 } 8014 rec = map_ptr->record; 8015 meta->map_ptr = map_ptr; 8016 } 8017 8018 if (!tnum_is_const(reg->var_off)) { 8019 verbose(env, 8020 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 8021 regno); 8022 return -EINVAL; 8023 } 8024 8025 if (!btf_record_has_field(rec, BPF_KPTR)) { 8026 verbose(env, "R%d has no valid kptr\n", regno); 8027 return -EINVAL; 8028 } 8029 8030 kptr_off = reg->off + reg->var_off.value; 8031 kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR); 8032 if (!kptr_field) { 8033 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 8034 return -EACCES; 8035 } 8036 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 8037 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 8038 return -EACCES; 8039 } 8040 meta->kptr_field = kptr_field; 8041 return 0; 8042 } 8043 8044 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 8045 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 8046 * 8047 * In both cases we deal with the first 8 bytes, but need to mark the next 8 8048 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 8049 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 8050 * 8051 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 8052 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 8053 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 8054 * mutate the view of the dynptr and also possibly destroy it. In the latter 8055 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 8056 * memory that dynptr points to. 8057 * 8058 * The verifier will keep track both levels of mutation (bpf_dynptr's in 8059 * reg->type and the memory's in reg->dynptr.type), but there is no support for 8060 * readonly dynptr view yet, hence only the first case is tracked and checked. 8061 * 8062 * This is consistent with how C applies the const modifier to a struct object, 8063 * where the pointer itself inside bpf_dynptr becomes const but not what it 8064 * points to. 8065 * 8066 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 8067 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 8068 */ 8069 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 8070 enum bpf_arg_type arg_type, int clone_ref_obj_id) 8071 { 8072 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8073 int err; 8074 8075 if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) { 8076 verbose(env, 8077 "arg#%d expected pointer to stack or const struct bpf_dynptr\n", 8078 regno - 1); 8079 return -EINVAL; 8080 } 8081 8082 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 8083 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 8084 */ 8085 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 8086 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 8087 return -EFAULT; 8088 } 8089 8090 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 8091 * constructing a mutable bpf_dynptr object. 8092 * 8093 * Currently, this is only possible with PTR_TO_STACK 8094 * pointing to a region of at least 16 bytes which doesn't 8095 * contain an existing bpf_dynptr. 8096 * 8097 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 8098 * mutated or destroyed. However, the memory it points to 8099 * may be mutated. 8100 * 8101 * None - Points to a initialized dynptr that can be mutated and 8102 * destroyed, including mutation of the memory it points 8103 * to. 8104 */ 8105 if (arg_type & MEM_UNINIT) { 8106 int i; 8107 8108 if (!is_dynptr_reg_valid_uninit(env, reg)) { 8109 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 8110 return -EINVAL; 8111 } 8112 8113 /* we write BPF_DW bits (8 bytes) at a time */ 8114 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 8115 err = check_mem_access(env, insn_idx, regno, 8116 i, BPF_DW, BPF_WRITE, -1, false, false); 8117 if (err) 8118 return err; 8119 } 8120 8121 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 8122 } else /* MEM_RDONLY and None case from above */ { 8123 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 8124 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 8125 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 8126 return -EINVAL; 8127 } 8128 8129 if (!is_dynptr_reg_valid_init(env, reg)) { 8130 verbose(env, 8131 "Expected an initialized dynptr as arg #%d\n", 8132 regno - 1); 8133 return -EINVAL; 8134 } 8135 8136 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 8137 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 8138 verbose(env, 8139 "Expected a dynptr of type %s as arg #%d\n", 8140 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1); 8141 return -EINVAL; 8142 } 8143 8144 err = mark_dynptr_read(env, reg); 8145 } 8146 return err; 8147 } 8148 8149 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 8150 { 8151 struct bpf_func_state *state = func(env, reg); 8152 8153 return state->stack[spi].spilled_ptr.ref_obj_id; 8154 } 8155 8156 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8157 { 8158 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8159 } 8160 8161 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8162 { 8163 return meta->kfunc_flags & KF_ITER_NEW; 8164 } 8165 8166 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8167 { 8168 return meta->kfunc_flags & KF_ITER_NEXT; 8169 } 8170 8171 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8172 { 8173 return meta->kfunc_flags & KF_ITER_DESTROY; 8174 } 8175 8176 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx, 8177 const struct btf_param *arg) 8178 { 8179 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 8180 * kfunc is iter state pointer 8181 */ 8182 if (is_iter_kfunc(meta)) 8183 return arg_idx == 0; 8184 8185 /* iter passed as an argument to a generic kfunc */ 8186 return btf_param_match_suffix(meta->btf, arg, "__iter"); 8187 } 8188 8189 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 8190 struct bpf_kfunc_call_arg_meta *meta) 8191 { 8192 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8193 const struct btf_type *t; 8194 int spi, err, i, nr_slots, btf_id; 8195 8196 if (reg->type != PTR_TO_STACK) { 8197 verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1); 8198 return -EINVAL; 8199 } 8200 8201 /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs() 8202 * ensures struct convention, so we wouldn't need to do any BTF 8203 * validation here. But given iter state can be passed as a parameter 8204 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more 8205 * conservative here. 8206 */ 8207 btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1); 8208 if (btf_id < 0) { 8209 verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1); 8210 return -EINVAL; 8211 } 8212 t = btf_type_by_id(meta->btf, btf_id); 8213 nr_slots = t->size / BPF_REG_SIZE; 8214 8215 if (is_iter_new_kfunc(meta)) { 8216 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 8217 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 8218 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 8219 iter_type_str(meta->btf, btf_id), regno - 1); 8220 return -EINVAL; 8221 } 8222 8223 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 8224 err = check_mem_access(env, insn_idx, regno, 8225 i, BPF_DW, BPF_WRITE, -1, false, false); 8226 if (err) 8227 return err; 8228 } 8229 8230 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 8231 if (err) 8232 return err; 8233 } else { 8234 /* iter_next() or iter_destroy(), as well as any kfunc 8235 * accepting iter argument, expect initialized iter state 8236 */ 8237 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 8238 switch (err) { 8239 case 0: 8240 break; 8241 case -EINVAL: 8242 verbose(env, "expected an initialized iter_%s as arg #%d\n", 8243 iter_type_str(meta->btf, btf_id), regno - 1); 8244 return err; 8245 case -EPROTO: 8246 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 8247 return err; 8248 default: 8249 return err; 8250 } 8251 8252 spi = iter_get_spi(env, reg, nr_slots); 8253 if (spi < 0) 8254 return spi; 8255 8256 err = mark_iter_read(env, reg, spi, nr_slots); 8257 if (err) 8258 return err; 8259 8260 /* remember meta->iter info for process_iter_next_call() */ 8261 meta->iter.spi = spi; 8262 meta->iter.frameno = reg->frameno; 8263 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 8264 8265 if (is_iter_destroy_kfunc(meta)) { 8266 err = unmark_stack_slots_iter(env, reg, nr_slots); 8267 if (err) 8268 return err; 8269 } 8270 } 8271 8272 return 0; 8273 } 8274 8275 /* Look for a previous loop entry at insn_idx: nearest parent state 8276 * stopped at insn_idx with callsites matching those in cur->frame. 8277 */ 8278 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 8279 struct bpf_verifier_state *cur, 8280 int insn_idx) 8281 { 8282 struct bpf_verifier_state_list *sl; 8283 struct bpf_verifier_state *st; 8284 8285 /* Explored states are pushed in stack order, most recent states come first */ 8286 sl = *explored_state(env, insn_idx); 8287 for (; sl; sl = sl->next) { 8288 /* If st->branches != 0 state is a part of current DFS verification path, 8289 * hence cur & st for a loop. 8290 */ 8291 st = &sl->state; 8292 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 8293 st->dfs_depth < cur->dfs_depth) 8294 return st; 8295 } 8296 8297 return NULL; 8298 } 8299 8300 static void reset_idmap_scratch(struct bpf_verifier_env *env); 8301 static bool regs_exact(const struct bpf_reg_state *rold, 8302 const struct bpf_reg_state *rcur, 8303 struct bpf_idmap *idmap); 8304 8305 static void maybe_widen_reg(struct bpf_verifier_env *env, 8306 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8307 struct bpf_idmap *idmap) 8308 { 8309 if (rold->type != SCALAR_VALUE) 8310 return; 8311 if (rold->type != rcur->type) 8312 return; 8313 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 8314 return; 8315 __mark_reg_unknown(env, rcur); 8316 } 8317 8318 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 8319 struct bpf_verifier_state *old, 8320 struct bpf_verifier_state *cur) 8321 { 8322 struct bpf_func_state *fold, *fcur; 8323 int i, fr; 8324 8325 reset_idmap_scratch(env); 8326 for (fr = old->curframe; fr >= 0; fr--) { 8327 fold = old->frame[fr]; 8328 fcur = cur->frame[fr]; 8329 8330 for (i = 0; i < MAX_BPF_REG; i++) 8331 maybe_widen_reg(env, 8332 &fold->regs[i], 8333 &fcur->regs[i], 8334 &env->idmap_scratch); 8335 8336 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 8337 if (!is_spilled_reg(&fold->stack[i]) || 8338 !is_spilled_reg(&fcur->stack[i])) 8339 continue; 8340 8341 maybe_widen_reg(env, 8342 &fold->stack[i].spilled_ptr, 8343 &fcur->stack[i].spilled_ptr, 8344 &env->idmap_scratch); 8345 } 8346 } 8347 return 0; 8348 } 8349 8350 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st, 8351 struct bpf_kfunc_call_arg_meta *meta) 8352 { 8353 int iter_frameno = meta->iter.frameno; 8354 int iter_spi = meta->iter.spi; 8355 8356 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 8357 } 8358 8359 /* process_iter_next_call() is called when verifier gets to iterator's next 8360 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 8361 * to it as just "iter_next()" in comments below. 8362 * 8363 * BPF verifier relies on a crucial contract for any iter_next() 8364 * implementation: it should *eventually* return NULL, and once that happens 8365 * it should keep returning NULL. That is, once iterator exhausts elements to 8366 * iterate, it should never reset or spuriously return new elements. 8367 * 8368 * With the assumption of such contract, process_iter_next_call() simulates 8369 * a fork in the verifier state to validate loop logic correctness and safety 8370 * without having to simulate infinite amount of iterations. 8371 * 8372 * In current state, we first assume that iter_next() returned NULL and 8373 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 8374 * conditions we should not form an infinite loop and should eventually reach 8375 * exit. 8376 * 8377 * Besides that, we also fork current state and enqueue it for later 8378 * verification. In a forked state we keep iterator state as ACTIVE 8379 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 8380 * also bump iteration depth to prevent erroneous infinite loop detection 8381 * later on (see iter_active_depths_differ() comment for details). In this 8382 * state we assume that we'll eventually loop back to another iter_next() 8383 * calls (it could be in exactly same location or in some other instruction, 8384 * it doesn't matter, we don't make any unnecessary assumptions about this, 8385 * everything revolves around iterator state in a stack slot, not which 8386 * instruction is calling iter_next()). When that happens, we either will come 8387 * to iter_next() with equivalent state and can conclude that next iteration 8388 * will proceed in exactly the same way as we just verified, so it's safe to 8389 * assume that loop converges. If not, we'll go on another iteration 8390 * simulation with a different input state, until all possible starting states 8391 * are validated or we reach maximum number of instructions limit. 8392 * 8393 * This way, we will either exhaustively discover all possible input states 8394 * that iterator loop can start with and eventually will converge, or we'll 8395 * effectively regress into bounded loop simulation logic and either reach 8396 * maximum number of instructions if loop is not provably convergent, or there 8397 * is some statically known limit on number of iterations (e.g., if there is 8398 * an explicit `if n > 100 then break;` statement somewhere in the loop). 8399 * 8400 * Iteration convergence logic in is_state_visited() relies on exact 8401 * states comparison, which ignores read and precision marks. 8402 * This is necessary because read and precision marks are not finalized 8403 * while in the loop. Exact comparison might preclude convergence for 8404 * simple programs like below: 8405 * 8406 * i = 0; 8407 * while(iter_next(&it)) 8408 * i++; 8409 * 8410 * At each iteration step i++ would produce a new distinct state and 8411 * eventually instruction processing limit would be reached. 8412 * 8413 * To avoid such behavior speculatively forget (widen) range for 8414 * imprecise scalar registers, if those registers were not precise at the 8415 * end of the previous iteration and do not match exactly. 8416 * 8417 * This is a conservative heuristic that allows to verify wide range of programs, 8418 * however it precludes verification of programs that conjure an 8419 * imprecise value on the first loop iteration and use it as precise on a second. 8420 * For example, the following safe program would fail to verify: 8421 * 8422 * struct bpf_num_iter it; 8423 * int arr[10]; 8424 * int i = 0, a = 0; 8425 * bpf_iter_num_new(&it, 0, 10); 8426 * while (bpf_iter_num_next(&it)) { 8427 * if (a == 0) { 8428 * a = 1; 8429 * i = 7; // Because i changed verifier would forget 8430 * // it's range on second loop entry. 8431 * } else { 8432 * arr[i] = 42; // This would fail to verify. 8433 * } 8434 * } 8435 * bpf_iter_num_destroy(&it); 8436 */ 8437 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 8438 struct bpf_kfunc_call_arg_meta *meta) 8439 { 8440 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 8441 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 8442 struct bpf_reg_state *cur_iter, *queued_iter; 8443 8444 BTF_TYPE_EMIT(struct bpf_iter); 8445 8446 cur_iter = get_iter_from_state(cur_st, meta); 8447 8448 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 8449 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 8450 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 8451 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 8452 return -EFAULT; 8453 } 8454 8455 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 8456 /* Because iter_next() call is a checkpoint is_state_visitied() 8457 * should guarantee parent state with same call sites and insn_idx. 8458 */ 8459 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 8460 !same_callsites(cur_st->parent, cur_st)) { 8461 verbose(env, "bug: bad parent state for iter next call"); 8462 return -EFAULT; 8463 } 8464 /* Note cur_st->parent in the call below, it is necessary to skip 8465 * checkpoint created for cur_st by is_state_visited() 8466 * right at this instruction. 8467 */ 8468 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 8469 /* branch out active iter state */ 8470 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 8471 if (!queued_st) 8472 return -ENOMEM; 8473 8474 queued_iter = get_iter_from_state(queued_st, meta); 8475 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 8476 queued_iter->iter.depth++; 8477 if (prev_st) 8478 widen_imprecise_scalars(env, prev_st, queued_st); 8479 8480 queued_fr = queued_st->frame[queued_st->curframe]; 8481 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 8482 } 8483 8484 /* switch to DRAINED state, but keep the depth unchanged */ 8485 /* mark current iter state as drained and assume returned NULL */ 8486 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 8487 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); 8488 8489 return 0; 8490 } 8491 8492 static bool arg_type_is_mem_size(enum bpf_arg_type type) 8493 { 8494 return type == ARG_CONST_SIZE || 8495 type == ARG_CONST_SIZE_OR_ZERO; 8496 } 8497 8498 static bool arg_type_is_raw_mem(enum bpf_arg_type type) 8499 { 8500 return base_type(type) == ARG_PTR_TO_MEM && 8501 type & MEM_UNINIT; 8502 } 8503 8504 static bool arg_type_is_release(enum bpf_arg_type type) 8505 { 8506 return type & OBJ_RELEASE; 8507 } 8508 8509 static bool arg_type_is_dynptr(enum bpf_arg_type type) 8510 { 8511 return base_type(type) == ARG_PTR_TO_DYNPTR; 8512 } 8513 8514 static int resolve_map_arg_type(struct bpf_verifier_env *env, 8515 const struct bpf_call_arg_meta *meta, 8516 enum bpf_arg_type *arg_type) 8517 { 8518 if (!meta->map_ptr) { 8519 /* kernel subsystem misconfigured verifier */ 8520 verbose(env, "invalid map_ptr to access map->type\n"); 8521 return -EACCES; 8522 } 8523 8524 switch (meta->map_ptr->map_type) { 8525 case BPF_MAP_TYPE_SOCKMAP: 8526 case BPF_MAP_TYPE_SOCKHASH: 8527 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8528 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8529 } else { 8530 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8531 return -EINVAL; 8532 } 8533 break; 8534 case BPF_MAP_TYPE_BLOOM_FILTER: 8535 if (meta->func_id == BPF_FUNC_map_peek_elem) 8536 *arg_type = ARG_PTR_TO_MAP_VALUE; 8537 break; 8538 default: 8539 break; 8540 } 8541 return 0; 8542 } 8543 8544 struct bpf_reg_types { 8545 const enum bpf_reg_type types[10]; 8546 u32 *btf_id; 8547 }; 8548 8549 static const struct bpf_reg_types sock_types = { 8550 .types = { 8551 PTR_TO_SOCK_COMMON, 8552 PTR_TO_SOCKET, 8553 PTR_TO_TCP_SOCK, 8554 PTR_TO_XDP_SOCK, 8555 }, 8556 }; 8557 8558 #ifdef CONFIG_NET 8559 static const struct bpf_reg_types btf_id_sock_common_types = { 8560 .types = { 8561 PTR_TO_SOCK_COMMON, 8562 PTR_TO_SOCKET, 8563 PTR_TO_TCP_SOCK, 8564 PTR_TO_XDP_SOCK, 8565 PTR_TO_BTF_ID, 8566 PTR_TO_BTF_ID | PTR_TRUSTED, 8567 }, 8568 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8569 }; 8570 #endif 8571 8572 static const struct bpf_reg_types mem_types = { 8573 .types = { 8574 PTR_TO_STACK, 8575 PTR_TO_PACKET, 8576 PTR_TO_PACKET_META, 8577 PTR_TO_MAP_KEY, 8578 PTR_TO_MAP_VALUE, 8579 PTR_TO_MEM, 8580 PTR_TO_MEM | MEM_RINGBUF, 8581 PTR_TO_BUF, 8582 PTR_TO_BTF_ID | PTR_TRUSTED, 8583 }, 8584 }; 8585 8586 static const struct bpf_reg_types spin_lock_types = { 8587 .types = { 8588 PTR_TO_MAP_VALUE, 8589 PTR_TO_BTF_ID | MEM_ALLOC, 8590 } 8591 }; 8592 8593 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8594 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8595 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8596 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8597 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8598 static const struct bpf_reg_types btf_ptr_types = { 8599 .types = { 8600 PTR_TO_BTF_ID, 8601 PTR_TO_BTF_ID | PTR_TRUSTED, 8602 PTR_TO_BTF_ID | MEM_RCU, 8603 }, 8604 }; 8605 static const struct bpf_reg_types percpu_btf_ptr_types = { 8606 .types = { 8607 PTR_TO_BTF_ID | MEM_PERCPU, 8608 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 8609 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8610 } 8611 }; 8612 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8613 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8614 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8615 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8616 static const struct bpf_reg_types kptr_xchg_dest_types = { 8617 .types = { 8618 PTR_TO_MAP_VALUE, 8619 PTR_TO_BTF_ID | MEM_ALLOC 8620 } 8621 }; 8622 static const struct bpf_reg_types dynptr_types = { 8623 .types = { 8624 PTR_TO_STACK, 8625 CONST_PTR_TO_DYNPTR, 8626 } 8627 }; 8628 8629 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8630 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8631 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8632 [ARG_CONST_SIZE] = &scalar_types, 8633 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8634 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8635 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8636 [ARG_PTR_TO_CTX] = &context_types, 8637 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8638 #ifdef CONFIG_NET 8639 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8640 #endif 8641 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8642 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8643 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8644 [ARG_PTR_TO_MEM] = &mem_types, 8645 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8646 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8647 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8648 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8649 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8650 [ARG_PTR_TO_TIMER] = &timer_types, 8651 [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types, 8652 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8653 }; 8654 8655 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8656 enum bpf_arg_type arg_type, 8657 const u32 *arg_btf_id, 8658 struct bpf_call_arg_meta *meta) 8659 { 8660 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8661 enum bpf_reg_type expected, type = reg->type; 8662 const struct bpf_reg_types *compatible; 8663 int i, j; 8664 8665 compatible = compatible_reg_types[base_type(arg_type)]; 8666 if (!compatible) { 8667 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8668 return -EFAULT; 8669 } 8670 8671 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8672 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8673 * 8674 * Same for MAYBE_NULL: 8675 * 8676 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8677 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8678 * 8679 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8680 * 8681 * Therefore we fold these flags depending on the arg_type before comparison. 8682 */ 8683 if (arg_type & MEM_RDONLY) 8684 type &= ~MEM_RDONLY; 8685 if (arg_type & PTR_MAYBE_NULL) 8686 type &= ~PTR_MAYBE_NULL; 8687 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8688 type &= ~DYNPTR_TYPE_FLAG_MASK; 8689 8690 /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */ 8691 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) { 8692 type &= ~MEM_ALLOC; 8693 type &= ~MEM_PERCPU; 8694 } 8695 8696 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8697 expected = compatible->types[i]; 8698 if (expected == NOT_INIT) 8699 break; 8700 8701 if (type == expected) 8702 goto found; 8703 } 8704 8705 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8706 for (j = 0; j + 1 < i; j++) 8707 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8708 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8709 return -EACCES; 8710 8711 found: 8712 if (base_type(reg->type) != PTR_TO_BTF_ID) 8713 return 0; 8714 8715 if (compatible == &mem_types) { 8716 if (!(arg_type & MEM_RDONLY)) { 8717 verbose(env, 8718 "%s() may write into memory pointed by R%d type=%s\n", 8719 func_id_name(meta->func_id), 8720 regno, reg_type_str(env, reg->type)); 8721 return -EACCES; 8722 } 8723 return 0; 8724 } 8725 8726 switch ((int)reg->type) { 8727 case PTR_TO_BTF_ID: 8728 case PTR_TO_BTF_ID | PTR_TRUSTED: 8729 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: 8730 case PTR_TO_BTF_ID | MEM_RCU: 8731 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8732 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8733 { 8734 /* For bpf_sk_release, it needs to match against first member 8735 * 'struct sock_common', hence make an exception for it. This 8736 * allows bpf_sk_release to work for multiple socket types. 8737 */ 8738 bool strict_type_match = arg_type_is_release(arg_type) && 8739 meta->func_id != BPF_FUNC_sk_release; 8740 8741 if (type_may_be_null(reg->type) && 8742 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8743 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8744 return -EACCES; 8745 } 8746 8747 if (!arg_btf_id) { 8748 if (!compatible->btf_id) { 8749 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8750 return -EFAULT; 8751 } 8752 arg_btf_id = compatible->btf_id; 8753 } 8754 8755 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8756 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8757 return -EACCES; 8758 } else { 8759 if (arg_btf_id == BPF_PTR_POISON) { 8760 verbose(env, "verifier internal error:"); 8761 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8762 regno); 8763 return -EACCES; 8764 } 8765 8766 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8767 btf_vmlinux, *arg_btf_id, 8768 strict_type_match)) { 8769 verbose(env, "R%d is of type %s but %s is expected\n", 8770 regno, btf_type_name(reg->btf, reg->btf_id), 8771 btf_type_name(btf_vmlinux, *arg_btf_id)); 8772 return -EACCES; 8773 } 8774 } 8775 break; 8776 } 8777 case PTR_TO_BTF_ID | MEM_ALLOC: 8778 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 8779 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8780 meta->func_id != BPF_FUNC_kptr_xchg) { 8781 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8782 return -EFAULT; 8783 } 8784 /* Check if local kptr in src arg matches kptr in dst arg */ 8785 if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) { 8786 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8787 return -EACCES; 8788 } 8789 break; 8790 case PTR_TO_BTF_ID | MEM_PERCPU: 8791 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 8792 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8793 /* Handled by helper specific checks */ 8794 break; 8795 default: 8796 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8797 return -EFAULT; 8798 } 8799 return 0; 8800 } 8801 8802 static struct btf_field * 8803 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8804 { 8805 struct btf_field *field; 8806 struct btf_record *rec; 8807 8808 rec = reg_btf_record(reg); 8809 if (!rec) 8810 return NULL; 8811 8812 field = btf_record_find(rec, off, fields); 8813 if (!field) 8814 return NULL; 8815 8816 return field; 8817 } 8818 8819 static int check_func_arg_reg_off(struct bpf_verifier_env *env, 8820 const struct bpf_reg_state *reg, int regno, 8821 enum bpf_arg_type arg_type) 8822 { 8823 u32 type = reg->type; 8824 8825 /* When referenced register is passed to release function, its fixed 8826 * offset must be 0. 8827 * 8828 * We will check arg_type_is_release reg has ref_obj_id when storing 8829 * meta->release_regno. 8830 */ 8831 if (arg_type_is_release(arg_type)) { 8832 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8833 * may not directly point to the object being released, but to 8834 * dynptr pointing to such object, which might be at some offset 8835 * on the stack. In that case, we simply to fallback to the 8836 * default handling. 8837 */ 8838 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8839 return 0; 8840 8841 /* Doing check_ptr_off_reg check for the offset will catch this 8842 * because fixed_off_ok is false, but checking here allows us 8843 * to give the user a better error message. 8844 */ 8845 if (reg->off) { 8846 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8847 regno); 8848 return -EINVAL; 8849 } 8850 return __check_ptr_off_reg(env, reg, regno, false); 8851 } 8852 8853 switch (type) { 8854 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8855 case PTR_TO_STACK: 8856 case PTR_TO_PACKET: 8857 case PTR_TO_PACKET_META: 8858 case PTR_TO_MAP_KEY: 8859 case PTR_TO_MAP_VALUE: 8860 case PTR_TO_MEM: 8861 case PTR_TO_MEM | MEM_RDONLY: 8862 case PTR_TO_MEM | MEM_RINGBUF: 8863 case PTR_TO_BUF: 8864 case PTR_TO_BUF | MEM_RDONLY: 8865 case PTR_TO_ARENA: 8866 case SCALAR_VALUE: 8867 return 0; 8868 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8869 * fixed offset. 8870 */ 8871 case PTR_TO_BTF_ID: 8872 case PTR_TO_BTF_ID | MEM_ALLOC: 8873 case PTR_TO_BTF_ID | PTR_TRUSTED: 8874 case PTR_TO_BTF_ID | MEM_RCU: 8875 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8876 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8877 /* When referenced PTR_TO_BTF_ID is passed to release function, 8878 * its fixed offset must be 0. In the other cases, fixed offset 8879 * can be non-zero. This was already checked above. So pass 8880 * fixed_off_ok as true to allow fixed offset for all other 8881 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8882 * still need to do checks instead of returning. 8883 */ 8884 return __check_ptr_off_reg(env, reg, regno, true); 8885 default: 8886 return __check_ptr_off_reg(env, reg, regno, false); 8887 } 8888 } 8889 8890 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8891 const struct bpf_func_proto *fn, 8892 struct bpf_reg_state *regs) 8893 { 8894 struct bpf_reg_state *state = NULL; 8895 int i; 8896 8897 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8898 if (arg_type_is_dynptr(fn->arg_type[i])) { 8899 if (state) { 8900 verbose(env, "verifier internal error: multiple dynptr args\n"); 8901 return NULL; 8902 } 8903 state = ®s[BPF_REG_1 + i]; 8904 } 8905 8906 if (!state) 8907 verbose(env, "verifier internal error: no dynptr arg found\n"); 8908 8909 return state; 8910 } 8911 8912 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8913 { 8914 struct bpf_func_state *state = func(env, reg); 8915 int spi; 8916 8917 if (reg->type == CONST_PTR_TO_DYNPTR) 8918 return reg->id; 8919 spi = dynptr_get_spi(env, reg); 8920 if (spi < 0) 8921 return spi; 8922 return state->stack[spi].spilled_ptr.id; 8923 } 8924 8925 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8926 { 8927 struct bpf_func_state *state = func(env, reg); 8928 int spi; 8929 8930 if (reg->type == CONST_PTR_TO_DYNPTR) 8931 return reg->ref_obj_id; 8932 spi = dynptr_get_spi(env, reg); 8933 if (spi < 0) 8934 return spi; 8935 return state->stack[spi].spilled_ptr.ref_obj_id; 8936 } 8937 8938 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8939 struct bpf_reg_state *reg) 8940 { 8941 struct bpf_func_state *state = func(env, reg); 8942 int spi; 8943 8944 if (reg->type == CONST_PTR_TO_DYNPTR) 8945 return reg->dynptr.type; 8946 8947 spi = __get_spi(reg->off); 8948 if (spi < 0) { 8949 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8950 return BPF_DYNPTR_TYPE_INVALID; 8951 } 8952 8953 return state->stack[spi].spilled_ptr.dynptr.type; 8954 } 8955 8956 static int check_reg_const_str(struct bpf_verifier_env *env, 8957 struct bpf_reg_state *reg, u32 regno) 8958 { 8959 struct bpf_map *map = reg->map_ptr; 8960 int err; 8961 int map_off; 8962 u64 map_addr; 8963 char *str_ptr; 8964 8965 if (reg->type != PTR_TO_MAP_VALUE) 8966 return -EINVAL; 8967 8968 if (!bpf_map_is_rdonly(map)) { 8969 verbose(env, "R%d does not point to a readonly map'\n", regno); 8970 return -EACCES; 8971 } 8972 8973 if (!tnum_is_const(reg->var_off)) { 8974 verbose(env, "R%d is not a constant address'\n", regno); 8975 return -EACCES; 8976 } 8977 8978 if (!map->ops->map_direct_value_addr) { 8979 verbose(env, "no direct value access support for this map type\n"); 8980 return -EACCES; 8981 } 8982 8983 err = check_map_access(env, regno, reg->off, 8984 map->value_size - reg->off, false, 8985 ACCESS_HELPER); 8986 if (err) 8987 return err; 8988 8989 map_off = reg->off + reg->var_off.value; 8990 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8991 if (err) { 8992 verbose(env, "direct value access on string failed\n"); 8993 return err; 8994 } 8995 8996 str_ptr = (char *)(long)(map_addr); 8997 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8998 verbose(env, "string is not zero-terminated\n"); 8999 return -EINVAL; 9000 } 9001 return 0; 9002 } 9003 9004 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 9005 struct bpf_call_arg_meta *meta, 9006 const struct bpf_func_proto *fn, 9007 int insn_idx) 9008 { 9009 u32 regno = BPF_REG_1 + arg; 9010 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 9011 enum bpf_arg_type arg_type = fn->arg_type[arg]; 9012 enum bpf_reg_type type = reg->type; 9013 u32 *arg_btf_id = NULL; 9014 int err = 0; 9015 bool mask; 9016 9017 if (arg_type == ARG_DONTCARE) 9018 return 0; 9019 9020 err = check_reg_arg(env, regno, SRC_OP); 9021 if (err) 9022 return err; 9023 9024 if (arg_type == ARG_ANYTHING) { 9025 if (is_pointer_value(env, regno)) { 9026 verbose(env, "R%d leaks addr into helper function\n", 9027 regno); 9028 return -EACCES; 9029 } 9030 return 0; 9031 } 9032 9033 if (type_is_pkt_pointer(type) && 9034 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 9035 verbose(env, "helper access to the packet is not allowed\n"); 9036 return -EACCES; 9037 } 9038 9039 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 9040 err = resolve_map_arg_type(env, meta, &arg_type); 9041 if (err) 9042 return err; 9043 } 9044 9045 if (register_is_null(reg) && type_may_be_null(arg_type)) 9046 /* A NULL register has a SCALAR_VALUE type, so skip 9047 * type checking. 9048 */ 9049 goto skip_type_check; 9050 9051 /* arg_btf_id and arg_size are in a union. */ 9052 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 9053 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 9054 arg_btf_id = fn->arg_btf_id[arg]; 9055 9056 mask = mask_raw_tp_reg(env, reg); 9057 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 9058 9059 err = err ?: check_func_arg_reg_off(env, reg, regno, arg_type); 9060 unmask_raw_tp_reg(reg, mask); 9061 if (err) 9062 return err; 9063 9064 skip_type_check: 9065 if (arg_type_is_release(arg_type)) { 9066 if (arg_type_is_dynptr(arg_type)) { 9067 struct bpf_func_state *state = func(env, reg); 9068 int spi; 9069 9070 /* Only dynptr created on stack can be released, thus 9071 * the get_spi and stack state checks for spilled_ptr 9072 * should only be done before process_dynptr_func for 9073 * PTR_TO_STACK. 9074 */ 9075 if (reg->type == PTR_TO_STACK) { 9076 spi = dynptr_get_spi(env, reg); 9077 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 9078 verbose(env, "arg %d is an unacquired reference\n", regno); 9079 return -EINVAL; 9080 } 9081 } else { 9082 verbose(env, "cannot release unowned const bpf_dynptr\n"); 9083 return -EINVAL; 9084 } 9085 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 9086 verbose(env, "R%d must be referenced when passed to release function\n", 9087 regno); 9088 return -EINVAL; 9089 } 9090 if (meta->release_regno) { 9091 verbose(env, "verifier internal error: more than one release argument\n"); 9092 return -EFAULT; 9093 } 9094 meta->release_regno = regno; 9095 } 9096 9097 if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) { 9098 if (meta->ref_obj_id) { 9099 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 9100 regno, reg->ref_obj_id, 9101 meta->ref_obj_id); 9102 return -EFAULT; 9103 } 9104 meta->ref_obj_id = reg->ref_obj_id; 9105 } 9106 9107 switch (base_type(arg_type)) { 9108 case ARG_CONST_MAP_PTR: 9109 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 9110 if (meta->map_ptr) { 9111 /* Use map_uid (which is unique id of inner map) to reject: 9112 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 9113 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 9114 * if (inner_map1 && inner_map2) { 9115 * timer = bpf_map_lookup_elem(inner_map1); 9116 * if (timer) 9117 * // mismatch would have been allowed 9118 * bpf_timer_init(timer, inner_map2); 9119 * } 9120 * 9121 * Comparing map_ptr is enough to distinguish normal and outer maps. 9122 */ 9123 if (meta->map_ptr != reg->map_ptr || 9124 meta->map_uid != reg->map_uid) { 9125 verbose(env, 9126 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 9127 meta->map_uid, reg->map_uid); 9128 return -EINVAL; 9129 } 9130 } 9131 meta->map_ptr = reg->map_ptr; 9132 meta->map_uid = reg->map_uid; 9133 break; 9134 case ARG_PTR_TO_MAP_KEY: 9135 /* bpf_map_xxx(..., map_ptr, ..., key) call: 9136 * check that [key, key + map->key_size) are within 9137 * stack limits and initialized 9138 */ 9139 if (!meta->map_ptr) { 9140 /* in function declaration map_ptr must come before 9141 * map_key, so that it's verified and known before 9142 * we have to check map_key here. Otherwise it means 9143 * that kernel subsystem misconfigured verifier 9144 */ 9145 verbose(env, "invalid map_ptr to access map->key\n"); 9146 return -EACCES; 9147 } 9148 err = check_helper_mem_access(env, regno, meta->map_ptr->key_size, 9149 BPF_READ, false, NULL); 9150 break; 9151 case ARG_PTR_TO_MAP_VALUE: 9152 if (type_may_be_null(arg_type) && register_is_null(reg)) 9153 return 0; 9154 9155 /* bpf_map_xxx(..., map_ptr, ..., value) call: 9156 * check [value, value + map->value_size) validity 9157 */ 9158 if (!meta->map_ptr) { 9159 /* kernel subsystem misconfigured verifier */ 9160 verbose(env, "invalid map_ptr to access map->value\n"); 9161 return -EACCES; 9162 } 9163 meta->raw_mode = arg_type & MEM_UNINIT; 9164 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size, 9165 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9166 false, meta); 9167 break; 9168 case ARG_PTR_TO_PERCPU_BTF_ID: 9169 if (!reg->btf_id) { 9170 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 9171 return -EACCES; 9172 } 9173 meta->ret_btf = reg->btf; 9174 meta->ret_btf_id = reg->btf_id; 9175 break; 9176 case ARG_PTR_TO_SPIN_LOCK: 9177 if (in_rbtree_lock_required_cb(env)) { 9178 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 9179 return -EACCES; 9180 } 9181 if (meta->func_id == BPF_FUNC_spin_lock) { 9182 err = process_spin_lock(env, regno, true); 9183 if (err) 9184 return err; 9185 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 9186 err = process_spin_lock(env, regno, false); 9187 if (err) 9188 return err; 9189 } else { 9190 verbose(env, "verifier internal error\n"); 9191 return -EFAULT; 9192 } 9193 break; 9194 case ARG_PTR_TO_TIMER: 9195 err = process_timer_func(env, regno, meta); 9196 if (err) 9197 return err; 9198 break; 9199 case ARG_PTR_TO_FUNC: 9200 meta->subprogno = reg->subprogno; 9201 break; 9202 case ARG_PTR_TO_MEM: 9203 /* The access to this pointer is only checked when we hit the 9204 * next is_mem_size argument below. 9205 */ 9206 meta->raw_mode = arg_type & MEM_UNINIT; 9207 if (arg_type & MEM_FIXED_SIZE) { 9208 err = check_helper_mem_access(env, regno, fn->arg_size[arg], 9209 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9210 false, meta); 9211 if (err) 9212 return err; 9213 if (arg_type & MEM_ALIGNED) 9214 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true); 9215 } 9216 break; 9217 case ARG_CONST_SIZE: 9218 err = check_mem_size_reg(env, reg, regno, 9219 fn->arg_type[arg - 1] & MEM_WRITE ? 9220 BPF_WRITE : BPF_READ, 9221 false, meta); 9222 break; 9223 case ARG_CONST_SIZE_OR_ZERO: 9224 err = check_mem_size_reg(env, reg, regno, 9225 fn->arg_type[arg - 1] & MEM_WRITE ? 9226 BPF_WRITE : BPF_READ, 9227 true, meta); 9228 break; 9229 case ARG_PTR_TO_DYNPTR: 9230 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 9231 if (err) 9232 return err; 9233 break; 9234 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 9235 if (!tnum_is_const(reg->var_off)) { 9236 verbose(env, "R%d is not a known constant'\n", 9237 regno); 9238 return -EACCES; 9239 } 9240 meta->mem_size = reg->var_off.value; 9241 err = mark_chain_precision(env, regno); 9242 if (err) 9243 return err; 9244 break; 9245 case ARG_PTR_TO_CONST_STR: 9246 { 9247 err = check_reg_const_str(env, reg, regno); 9248 if (err) 9249 return err; 9250 break; 9251 } 9252 case ARG_KPTR_XCHG_DEST: 9253 err = process_kptr_func(env, regno, meta); 9254 if (err) 9255 return err; 9256 break; 9257 } 9258 9259 return err; 9260 } 9261 9262 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 9263 { 9264 enum bpf_attach_type eatype = env->prog->expected_attach_type; 9265 enum bpf_prog_type type = resolve_prog_type(env->prog); 9266 9267 if (func_id != BPF_FUNC_map_update_elem && 9268 func_id != BPF_FUNC_map_delete_elem) 9269 return false; 9270 9271 /* It's not possible to get access to a locked struct sock in these 9272 * contexts, so updating is safe. 9273 */ 9274 switch (type) { 9275 case BPF_PROG_TYPE_TRACING: 9276 if (eatype == BPF_TRACE_ITER) 9277 return true; 9278 break; 9279 case BPF_PROG_TYPE_SOCK_OPS: 9280 /* map_update allowed only via dedicated helpers with event type checks */ 9281 if (func_id == BPF_FUNC_map_delete_elem) 9282 return true; 9283 break; 9284 case BPF_PROG_TYPE_SOCKET_FILTER: 9285 case BPF_PROG_TYPE_SCHED_CLS: 9286 case BPF_PROG_TYPE_SCHED_ACT: 9287 case BPF_PROG_TYPE_XDP: 9288 case BPF_PROG_TYPE_SK_REUSEPORT: 9289 case BPF_PROG_TYPE_FLOW_DISSECTOR: 9290 case BPF_PROG_TYPE_SK_LOOKUP: 9291 return true; 9292 default: 9293 break; 9294 } 9295 9296 verbose(env, "cannot update sockmap in this context\n"); 9297 return false; 9298 } 9299 9300 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 9301 { 9302 return env->prog->jit_requested && 9303 bpf_jit_supports_subprog_tailcalls(); 9304 } 9305 9306 static int check_map_func_compatibility(struct bpf_verifier_env *env, 9307 struct bpf_map *map, int func_id) 9308 { 9309 if (!map) 9310 return 0; 9311 9312 /* We need a two way check, first is from map perspective ... */ 9313 switch (map->map_type) { 9314 case BPF_MAP_TYPE_PROG_ARRAY: 9315 if (func_id != BPF_FUNC_tail_call) 9316 goto error; 9317 break; 9318 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 9319 if (func_id != BPF_FUNC_perf_event_read && 9320 func_id != BPF_FUNC_perf_event_output && 9321 func_id != BPF_FUNC_skb_output && 9322 func_id != BPF_FUNC_perf_event_read_value && 9323 func_id != BPF_FUNC_xdp_output) 9324 goto error; 9325 break; 9326 case BPF_MAP_TYPE_RINGBUF: 9327 if (func_id != BPF_FUNC_ringbuf_output && 9328 func_id != BPF_FUNC_ringbuf_reserve && 9329 func_id != BPF_FUNC_ringbuf_query && 9330 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 9331 func_id != BPF_FUNC_ringbuf_submit_dynptr && 9332 func_id != BPF_FUNC_ringbuf_discard_dynptr) 9333 goto error; 9334 break; 9335 case BPF_MAP_TYPE_USER_RINGBUF: 9336 if (func_id != BPF_FUNC_user_ringbuf_drain) 9337 goto error; 9338 break; 9339 case BPF_MAP_TYPE_STACK_TRACE: 9340 if (func_id != BPF_FUNC_get_stackid) 9341 goto error; 9342 break; 9343 case BPF_MAP_TYPE_CGROUP_ARRAY: 9344 if (func_id != BPF_FUNC_skb_under_cgroup && 9345 func_id != BPF_FUNC_current_task_under_cgroup) 9346 goto error; 9347 break; 9348 case BPF_MAP_TYPE_CGROUP_STORAGE: 9349 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 9350 if (func_id != BPF_FUNC_get_local_storage) 9351 goto error; 9352 break; 9353 case BPF_MAP_TYPE_DEVMAP: 9354 case BPF_MAP_TYPE_DEVMAP_HASH: 9355 if (func_id != BPF_FUNC_redirect_map && 9356 func_id != BPF_FUNC_map_lookup_elem) 9357 goto error; 9358 break; 9359 /* Restrict bpf side of cpumap and xskmap, open when use-cases 9360 * appear. 9361 */ 9362 case BPF_MAP_TYPE_CPUMAP: 9363 if (func_id != BPF_FUNC_redirect_map) 9364 goto error; 9365 break; 9366 case BPF_MAP_TYPE_XSKMAP: 9367 if (func_id != BPF_FUNC_redirect_map && 9368 func_id != BPF_FUNC_map_lookup_elem) 9369 goto error; 9370 break; 9371 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 9372 case BPF_MAP_TYPE_HASH_OF_MAPS: 9373 if (func_id != BPF_FUNC_map_lookup_elem) 9374 goto error; 9375 break; 9376 case BPF_MAP_TYPE_SOCKMAP: 9377 if (func_id != BPF_FUNC_sk_redirect_map && 9378 func_id != BPF_FUNC_sock_map_update && 9379 func_id != BPF_FUNC_msg_redirect_map && 9380 func_id != BPF_FUNC_sk_select_reuseport && 9381 func_id != BPF_FUNC_map_lookup_elem && 9382 !may_update_sockmap(env, func_id)) 9383 goto error; 9384 break; 9385 case BPF_MAP_TYPE_SOCKHASH: 9386 if (func_id != BPF_FUNC_sk_redirect_hash && 9387 func_id != BPF_FUNC_sock_hash_update && 9388 func_id != BPF_FUNC_msg_redirect_hash && 9389 func_id != BPF_FUNC_sk_select_reuseport && 9390 func_id != BPF_FUNC_map_lookup_elem && 9391 !may_update_sockmap(env, func_id)) 9392 goto error; 9393 break; 9394 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 9395 if (func_id != BPF_FUNC_sk_select_reuseport) 9396 goto error; 9397 break; 9398 case BPF_MAP_TYPE_QUEUE: 9399 case BPF_MAP_TYPE_STACK: 9400 if (func_id != BPF_FUNC_map_peek_elem && 9401 func_id != BPF_FUNC_map_pop_elem && 9402 func_id != BPF_FUNC_map_push_elem) 9403 goto error; 9404 break; 9405 case BPF_MAP_TYPE_SK_STORAGE: 9406 if (func_id != BPF_FUNC_sk_storage_get && 9407 func_id != BPF_FUNC_sk_storage_delete && 9408 func_id != BPF_FUNC_kptr_xchg) 9409 goto error; 9410 break; 9411 case BPF_MAP_TYPE_INODE_STORAGE: 9412 if (func_id != BPF_FUNC_inode_storage_get && 9413 func_id != BPF_FUNC_inode_storage_delete && 9414 func_id != BPF_FUNC_kptr_xchg) 9415 goto error; 9416 break; 9417 case BPF_MAP_TYPE_TASK_STORAGE: 9418 if (func_id != BPF_FUNC_task_storage_get && 9419 func_id != BPF_FUNC_task_storage_delete && 9420 func_id != BPF_FUNC_kptr_xchg) 9421 goto error; 9422 break; 9423 case BPF_MAP_TYPE_CGRP_STORAGE: 9424 if (func_id != BPF_FUNC_cgrp_storage_get && 9425 func_id != BPF_FUNC_cgrp_storage_delete && 9426 func_id != BPF_FUNC_kptr_xchg) 9427 goto error; 9428 break; 9429 case BPF_MAP_TYPE_BLOOM_FILTER: 9430 if (func_id != BPF_FUNC_map_peek_elem && 9431 func_id != BPF_FUNC_map_push_elem) 9432 goto error; 9433 break; 9434 default: 9435 break; 9436 } 9437 9438 /* ... and second from the function itself. */ 9439 switch (func_id) { 9440 case BPF_FUNC_tail_call: 9441 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 9442 goto error; 9443 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 9444 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 9445 return -EINVAL; 9446 } 9447 break; 9448 case BPF_FUNC_perf_event_read: 9449 case BPF_FUNC_perf_event_output: 9450 case BPF_FUNC_perf_event_read_value: 9451 case BPF_FUNC_skb_output: 9452 case BPF_FUNC_xdp_output: 9453 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9454 goto error; 9455 break; 9456 case BPF_FUNC_ringbuf_output: 9457 case BPF_FUNC_ringbuf_reserve: 9458 case BPF_FUNC_ringbuf_query: 9459 case BPF_FUNC_ringbuf_reserve_dynptr: 9460 case BPF_FUNC_ringbuf_submit_dynptr: 9461 case BPF_FUNC_ringbuf_discard_dynptr: 9462 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 9463 goto error; 9464 break; 9465 case BPF_FUNC_user_ringbuf_drain: 9466 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 9467 goto error; 9468 break; 9469 case BPF_FUNC_get_stackid: 9470 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 9471 goto error; 9472 break; 9473 case BPF_FUNC_current_task_under_cgroup: 9474 case BPF_FUNC_skb_under_cgroup: 9475 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 9476 goto error; 9477 break; 9478 case BPF_FUNC_redirect_map: 9479 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 9480 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 9481 map->map_type != BPF_MAP_TYPE_CPUMAP && 9482 map->map_type != BPF_MAP_TYPE_XSKMAP) 9483 goto error; 9484 break; 9485 case BPF_FUNC_sk_redirect_map: 9486 case BPF_FUNC_msg_redirect_map: 9487 case BPF_FUNC_sock_map_update: 9488 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 9489 goto error; 9490 break; 9491 case BPF_FUNC_sk_redirect_hash: 9492 case BPF_FUNC_msg_redirect_hash: 9493 case BPF_FUNC_sock_hash_update: 9494 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 9495 goto error; 9496 break; 9497 case BPF_FUNC_get_local_storage: 9498 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 9499 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 9500 goto error; 9501 break; 9502 case BPF_FUNC_sk_select_reuseport: 9503 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 9504 map->map_type != BPF_MAP_TYPE_SOCKMAP && 9505 map->map_type != BPF_MAP_TYPE_SOCKHASH) 9506 goto error; 9507 break; 9508 case BPF_FUNC_map_pop_elem: 9509 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9510 map->map_type != BPF_MAP_TYPE_STACK) 9511 goto error; 9512 break; 9513 case BPF_FUNC_map_peek_elem: 9514 case BPF_FUNC_map_push_elem: 9515 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9516 map->map_type != BPF_MAP_TYPE_STACK && 9517 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 9518 goto error; 9519 break; 9520 case BPF_FUNC_map_lookup_percpu_elem: 9521 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 9522 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9523 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 9524 goto error; 9525 break; 9526 case BPF_FUNC_sk_storage_get: 9527 case BPF_FUNC_sk_storage_delete: 9528 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 9529 goto error; 9530 break; 9531 case BPF_FUNC_inode_storage_get: 9532 case BPF_FUNC_inode_storage_delete: 9533 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 9534 goto error; 9535 break; 9536 case BPF_FUNC_task_storage_get: 9537 case BPF_FUNC_task_storage_delete: 9538 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 9539 goto error; 9540 break; 9541 case BPF_FUNC_cgrp_storage_get: 9542 case BPF_FUNC_cgrp_storage_delete: 9543 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 9544 goto error; 9545 break; 9546 default: 9547 break; 9548 } 9549 9550 return 0; 9551 error: 9552 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9553 map->map_type, func_id_name(func_id), func_id); 9554 return -EINVAL; 9555 } 9556 9557 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9558 { 9559 int count = 0; 9560 9561 if (arg_type_is_raw_mem(fn->arg1_type)) 9562 count++; 9563 if (arg_type_is_raw_mem(fn->arg2_type)) 9564 count++; 9565 if (arg_type_is_raw_mem(fn->arg3_type)) 9566 count++; 9567 if (arg_type_is_raw_mem(fn->arg4_type)) 9568 count++; 9569 if (arg_type_is_raw_mem(fn->arg5_type)) 9570 count++; 9571 9572 /* We only support one arg being in raw mode at the moment, 9573 * which is sufficient for the helper functions we have 9574 * right now. 9575 */ 9576 return count <= 1; 9577 } 9578 9579 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9580 { 9581 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9582 bool has_size = fn->arg_size[arg] != 0; 9583 bool is_next_size = false; 9584 9585 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9586 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9587 9588 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9589 return is_next_size; 9590 9591 return has_size == is_next_size || is_next_size == is_fixed; 9592 } 9593 9594 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9595 { 9596 /* bpf_xxx(..., buf, len) call will access 'len' 9597 * bytes from memory 'buf'. Both arg types need 9598 * to be paired, so make sure there's no buggy 9599 * helper function specification. 9600 */ 9601 if (arg_type_is_mem_size(fn->arg1_type) || 9602 check_args_pair_invalid(fn, 0) || 9603 check_args_pair_invalid(fn, 1) || 9604 check_args_pair_invalid(fn, 2) || 9605 check_args_pair_invalid(fn, 3) || 9606 check_args_pair_invalid(fn, 4)) 9607 return false; 9608 9609 return true; 9610 } 9611 9612 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9613 { 9614 int i; 9615 9616 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9617 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9618 return !!fn->arg_btf_id[i]; 9619 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9620 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9621 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9622 /* arg_btf_id and arg_size are in a union. */ 9623 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9624 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9625 return false; 9626 } 9627 9628 return true; 9629 } 9630 9631 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9632 { 9633 return check_raw_mode_ok(fn) && 9634 check_arg_pair_ok(fn) && 9635 check_btf_id_ok(fn) ? 0 : -EINVAL; 9636 } 9637 9638 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9639 * are now invalid, so turn them into unknown SCALAR_VALUE. 9640 * 9641 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9642 * since these slices point to packet data. 9643 */ 9644 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9645 { 9646 struct bpf_func_state *state; 9647 struct bpf_reg_state *reg; 9648 9649 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9650 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9651 mark_reg_invalid(env, reg); 9652 })); 9653 } 9654 9655 enum { 9656 AT_PKT_END = -1, 9657 BEYOND_PKT_END = -2, 9658 }; 9659 9660 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9661 { 9662 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9663 struct bpf_reg_state *reg = &state->regs[regn]; 9664 9665 if (reg->type != PTR_TO_PACKET) 9666 /* PTR_TO_PACKET_META is not supported yet */ 9667 return; 9668 9669 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9670 * How far beyond pkt_end it goes is unknown. 9671 * if (!range_open) it's the case of pkt >= pkt_end 9672 * if (range_open) it's the case of pkt > pkt_end 9673 * hence this pointer is at least 1 byte bigger than pkt_end 9674 */ 9675 if (range_open) 9676 reg->range = BEYOND_PKT_END; 9677 else 9678 reg->range = AT_PKT_END; 9679 } 9680 9681 /* The pointer with the specified id has released its reference to kernel 9682 * resources. Identify all copies of the same pointer and clear the reference. 9683 */ 9684 static int release_reference(struct bpf_verifier_env *env, 9685 int ref_obj_id) 9686 { 9687 struct bpf_func_state *state; 9688 struct bpf_reg_state *reg; 9689 int err; 9690 9691 err = release_reference_state(cur_func(env), ref_obj_id); 9692 if (err) 9693 return err; 9694 9695 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9696 if (reg->ref_obj_id == ref_obj_id) 9697 mark_reg_invalid(env, reg); 9698 })); 9699 9700 return 0; 9701 } 9702 9703 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9704 { 9705 struct bpf_func_state *unused; 9706 struct bpf_reg_state *reg; 9707 9708 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9709 if (type_is_non_owning_ref(reg->type)) 9710 mark_reg_invalid(env, reg); 9711 })); 9712 } 9713 9714 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9715 struct bpf_reg_state *regs) 9716 { 9717 int i; 9718 9719 /* after the call registers r0 - r5 were scratched */ 9720 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9721 mark_reg_not_init(env, regs, caller_saved[i]); 9722 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9723 } 9724 } 9725 9726 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9727 struct bpf_func_state *caller, 9728 struct bpf_func_state *callee, 9729 int insn_idx); 9730 9731 static int set_callee_state(struct bpf_verifier_env *env, 9732 struct bpf_func_state *caller, 9733 struct bpf_func_state *callee, int insn_idx); 9734 9735 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9736 set_callee_state_fn set_callee_state_cb, 9737 struct bpf_verifier_state *state) 9738 { 9739 struct bpf_func_state *caller, *callee; 9740 int err; 9741 9742 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9743 verbose(env, "the call stack of %d frames is too deep\n", 9744 state->curframe + 2); 9745 return -E2BIG; 9746 } 9747 9748 if (state->frame[state->curframe + 1]) { 9749 verbose(env, "verifier bug. Frame %d already allocated\n", 9750 state->curframe + 1); 9751 return -EFAULT; 9752 } 9753 9754 caller = state->frame[state->curframe]; 9755 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9756 if (!callee) 9757 return -ENOMEM; 9758 state->frame[state->curframe + 1] = callee; 9759 9760 /* callee cannot access r0, r6 - r9 for reading and has to write 9761 * into its own stack before reading from it. 9762 * callee can read/write into caller's stack 9763 */ 9764 init_func_state(env, callee, 9765 /* remember the callsite, it will be used by bpf_exit */ 9766 callsite, 9767 state->curframe + 1 /* frameno within this callchain */, 9768 subprog /* subprog number within this prog */); 9769 /* Transfer references to the callee */ 9770 err = copy_reference_state(callee, caller); 9771 err = err ?: set_callee_state_cb(env, caller, callee, callsite); 9772 if (err) 9773 goto err_out; 9774 9775 /* only increment it after check_reg_arg() finished */ 9776 state->curframe++; 9777 9778 return 0; 9779 9780 err_out: 9781 free_func_state(callee); 9782 state->frame[state->curframe + 1] = NULL; 9783 return err; 9784 } 9785 9786 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 9787 const struct btf *btf, 9788 struct bpf_reg_state *regs) 9789 { 9790 struct bpf_subprog_info *sub = subprog_info(env, subprog); 9791 struct bpf_verifier_log *log = &env->log; 9792 u32 i; 9793 int ret; 9794 9795 ret = btf_prepare_func_args(env, subprog); 9796 if (ret) 9797 return ret; 9798 9799 /* check that BTF function arguments match actual types that the 9800 * verifier sees. 9801 */ 9802 for (i = 0; i < sub->arg_cnt; i++) { 9803 u32 regno = i + 1; 9804 struct bpf_reg_state *reg = ®s[regno]; 9805 struct bpf_subprog_arg_info *arg = &sub->args[i]; 9806 9807 if (arg->arg_type == ARG_ANYTHING) { 9808 if (reg->type != SCALAR_VALUE) { 9809 bpf_log(log, "R%d is not a scalar\n", regno); 9810 return -EINVAL; 9811 } 9812 } else if (arg->arg_type == ARG_PTR_TO_CTX) { 9813 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 9814 if (ret < 0) 9815 return ret; 9816 /* If function expects ctx type in BTF check that caller 9817 * is passing PTR_TO_CTX. 9818 */ 9819 if (reg->type != PTR_TO_CTX) { 9820 bpf_log(log, "arg#%d expects pointer to ctx\n", i); 9821 return -EINVAL; 9822 } 9823 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 9824 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 9825 if (ret < 0) 9826 return ret; 9827 if (check_mem_reg(env, reg, regno, arg->mem_size)) 9828 return -EINVAL; 9829 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { 9830 bpf_log(log, "arg#%d is expected to be non-NULL\n", i); 9831 return -EINVAL; 9832 } 9833 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 9834 /* 9835 * Can pass any value and the kernel won't crash, but 9836 * only PTR_TO_ARENA or SCALAR make sense. Everything 9837 * else is a bug in the bpf program. Point it out to 9838 * the user at the verification time instead of 9839 * run-time debug nightmare. 9840 */ 9841 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { 9842 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); 9843 return -EINVAL; 9844 } 9845 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 9846 ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR); 9847 if (ret) 9848 return ret; 9849 9850 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); 9851 if (ret) 9852 return ret; 9853 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 9854 struct bpf_call_arg_meta meta; 9855 bool mask; 9856 int err; 9857 9858 if (register_is_null(reg) && type_may_be_null(arg->arg_type)) 9859 continue; 9860 9861 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ 9862 mask = mask_raw_tp_reg(env, reg); 9863 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); 9864 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); 9865 unmask_raw_tp_reg(reg, mask); 9866 if (err) 9867 return err; 9868 } else { 9869 bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n", 9870 i, arg->arg_type); 9871 return -EFAULT; 9872 } 9873 } 9874 9875 return 0; 9876 } 9877 9878 /* Compare BTF of a function call with given bpf_reg_state. 9879 * Returns: 9880 * EFAULT - there is a verifier bug. Abort verification. 9881 * EINVAL - there is a type mismatch or BTF is not available. 9882 * 0 - BTF matches with what bpf_reg_state expects. 9883 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 9884 */ 9885 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 9886 struct bpf_reg_state *regs) 9887 { 9888 struct bpf_prog *prog = env->prog; 9889 struct btf *btf = prog->aux->btf; 9890 u32 btf_id; 9891 int err; 9892 9893 if (!prog->aux->func_info) 9894 return -EINVAL; 9895 9896 btf_id = prog->aux->func_info[subprog].type_id; 9897 if (!btf_id) 9898 return -EFAULT; 9899 9900 if (prog->aux->func_info_aux[subprog].unreliable) 9901 return -EINVAL; 9902 9903 err = btf_check_func_arg_match(env, subprog, btf, regs); 9904 /* Compiler optimizations can remove arguments from static functions 9905 * or mismatched type can be passed into a global function. 9906 * In such cases mark the function as unreliable from BTF point of view. 9907 */ 9908 if (err) 9909 prog->aux->func_info_aux[subprog].unreliable = true; 9910 return err; 9911 } 9912 9913 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9914 int insn_idx, int subprog, 9915 set_callee_state_fn set_callee_state_cb) 9916 { 9917 struct bpf_verifier_state *state = env->cur_state, *callback_state; 9918 struct bpf_func_state *caller, *callee; 9919 int err; 9920 9921 caller = state->frame[state->curframe]; 9922 err = btf_check_subprog_call(env, subprog, caller->regs); 9923 if (err == -EFAULT) 9924 return err; 9925 9926 /* set_callee_state is used for direct subprog calls, but we are 9927 * interested in validating only BPF helpers that can call subprogs as 9928 * callbacks 9929 */ 9930 env->subprog_info[subprog].is_cb = true; 9931 if (bpf_pseudo_kfunc_call(insn) && 9932 !is_callback_calling_kfunc(insn->imm)) { 9933 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 9934 func_id_name(insn->imm), insn->imm); 9935 return -EFAULT; 9936 } else if (!bpf_pseudo_kfunc_call(insn) && 9937 !is_callback_calling_function(insn->imm)) { /* helper */ 9938 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 9939 func_id_name(insn->imm), insn->imm); 9940 return -EFAULT; 9941 } 9942 9943 if (is_async_callback_calling_insn(insn)) { 9944 struct bpf_verifier_state *async_cb; 9945 9946 /* there is no real recursion here. timer and workqueue callbacks are async */ 9947 env->subprog_info[subprog].is_async_cb = true; 9948 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 9949 insn_idx, subprog, 9950 is_bpf_wq_set_callback_impl_kfunc(insn->imm)); 9951 if (!async_cb) 9952 return -EFAULT; 9953 callee = async_cb->frame[0]; 9954 callee->async_entry_cnt = caller->async_entry_cnt + 1; 9955 9956 /* Convert bpf_timer_set_callback() args into timer callback args */ 9957 err = set_callee_state_cb(env, caller, callee, insn_idx); 9958 if (err) 9959 return err; 9960 9961 return 0; 9962 } 9963 9964 /* for callback functions enqueue entry to callback and 9965 * proceed with next instruction within current frame. 9966 */ 9967 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 9968 if (!callback_state) 9969 return -ENOMEM; 9970 9971 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 9972 callback_state); 9973 if (err) 9974 return err; 9975 9976 callback_state->callback_unroll_depth++; 9977 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 9978 caller->callback_depth = 0; 9979 return 0; 9980 } 9981 9982 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9983 int *insn_idx) 9984 { 9985 struct bpf_verifier_state *state = env->cur_state; 9986 struct bpf_func_state *caller; 9987 int err, subprog, target_insn; 9988 9989 target_insn = *insn_idx + insn->imm + 1; 9990 subprog = find_subprog(env, target_insn); 9991 if (subprog < 0) { 9992 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 9993 return -EFAULT; 9994 } 9995 9996 caller = state->frame[state->curframe]; 9997 err = btf_check_subprog_call(env, subprog, caller->regs); 9998 if (err == -EFAULT) 9999 return err; 10000 if (subprog_is_global(env, subprog)) { 10001 const char *sub_name = subprog_name(env, subprog); 10002 10003 /* Only global subprogs cannot be called with a lock held. */ 10004 if (cur_func(env)->active_locks) { 10005 verbose(env, "global function calls are not allowed while holding a lock,\n" 10006 "use static function instead\n"); 10007 return -EINVAL; 10008 } 10009 10010 /* Only global subprogs cannot be called with preemption disabled. */ 10011 if (env->cur_state->active_preempt_lock) { 10012 verbose(env, "global function calls are not allowed with preemption disabled,\n" 10013 "use static function instead\n"); 10014 return -EINVAL; 10015 } 10016 10017 if (err) { 10018 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 10019 subprog, sub_name); 10020 return err; 10021 } 10022 10023 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 10024 subprog, sub_name); 10025 /* mark global subprog for verifying after main prog */ 10026 subprog_aux(env, subprog)->called = true; 10027 clear_caller_saved_regs(env, caller->regs); 10028 10029 /* All global functions return a 64-bit SCALAR_VALUE */ 10030 mark_reg_unknown(env, caller->regs, BPF_REG_0); 10031 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10032 10033 /* continue with next insn after call */ 10034 return 0; 10035 } 10036 10037 /* for regular function entry setup new frame and continue 10038 * from that frame. 10039 */ 10040 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 10041 if (err) 10042 return err; 10043 10044 clear_caller_saved_regs(env, caller->regs); 10045 10046 /* and go analyze first insn of the callee */ 10047 *insn_idx = env->subprog_info[subprog].start - 1; 10048 10049 if (env->log.level & BPF_LOG_LEVEL) { 10050 verbose(env, "caller:\n"); 10051 print_verifier_state(env, caller, true); 10052 verbose(env, "callee:\n"); 10053 print_verifier_state(env, state->frame[state->curframe], true); 10054 } 10055 10056 return 0; 10057 } 10058 10059 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 10060 struct bpf_func_state *caller, 10061 struct bpf_func_state *callee) 10062 { 10063 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 10064 * void *callback_ctx, u64 flags); 10065 * callback_fn(struct bpf_map *map, void *key, void *value, 10066 * void *callback_ctx); 10067 */ 10068 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10069 10070 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10071 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10072 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10073 10074 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10075 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10076 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10077 10078 /* pointer to stack or null */ 10079 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 10080 10081 /* unused */ 10082 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10083 return 0; 10084 } 10085 10086 static int set_callee_state(struct bpf_verifier_env *env, 10087 struct bpf_func_state *caller, 10088 struct bpf_func_state *callee, int insn_idx) 10089 { 10090 int i; 10091 10092 /* copy r1 - r5 args that callee can access. The copy includes parent 10093 * pointers, which connects us up to the liveness chain 10094 */ 10095 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 10096 callee->regs[i] = caller->regs[i]; 10097 return 0; 10098 } 10099 10100 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 10101 struct bpf_func_state *caller, 10102 struct bpf_func_state *callee, 10103 int insn_idx) 10104 { 10105 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 10106 struct bpf_map *map; 10107 int err; 10108 10109 /* valid map_ptr and poison value does not matter */ 10110 map = insn_aux->map_ptr_state.map_ptr; 10111 if (!map->ops->map_set_for_each_callback_args || 10112 !map->ops->map_for_each_callback) { 10113 verbose(env, "callback function not allowed for map\n"); 10114 return -ENOTSUPP; 10115 } 10116 10117 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 10118 if (err) 10119 return err; 10120 10121 callee->in_callback_fn = true; 10122 callee->callback_ret_range = retval_range(0, 1); 10123 return 0; 10124 } 10125 10126 static int set_loop_callback_state(struct bpf_verifier_env *env, 10127 struct bpf_func_state *caller, 10128 struct bpf_func_state *callee, 10129 int insn_idx) 10130 { 10131 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 10132 * u64 flags); 10133 * callback_fn(u64 index, void *callback_ctx); 10134 */ 10135 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 10136 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10137 10138 /* unused */ 10139 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10140 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10141 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10142 10143 callee->in_callback_fn = true; 10144 callee->callback_ret_range = retval_range(0, 1); 10145 return 0; 10146 } 10147 10148 static int set_timer_callback_state(struct bpf_verifier_env *env, 10149 struct bpf_func_state *caller, 10150 struct bpf_func_state *callee, 10151 int insn_idx) 10152 { 10153 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 10154 10155 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 10156 * callback_fn(struct bpf_map *map, void *key, void *value); 10157 */ 10158 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 10159 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 10160 callee->regs[BPF_REG_1].map_ptr = map_ptr; 10161 10162 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10163 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10164 callee->regs[BPF_REG_2].map_ptr = map_ptr; 10165 10166 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10167 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10168 callee->regs[BPF_REG_3].map_ptr = map_ptr; 10169 10170 /* unused */ 10171 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10172 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10173 callee->in_async_callback_fn = true; 10174 callee->callback_ret_range = retval_range(0, 1); 10175 return 0; 10176 } 10177 10178 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 10179 struct bpf_func_state *caller, 10180 struct bpf_func_state *callee, 10181 int insn_idx) 10182 { 10183 /* bpf_find_vma(struct task_struct *task, u64 addr, 10184 * void *callback_fn, void *callback_ctx, u64 flags) 10185 * (callback_fn)(struct task_struct *task, 10186 * struct vm_area_struct *vma, void *callback_ctx); 10187 */ 10188 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10189 10190 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 10191 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10192 callee->regs[BPF_REG_2].btf = btf_vmlinux; 10193 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; 10194 10195 /* pointer to stack or null */ 10196 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 10197 10198 /* unused */ 10199 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10200 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10201 callee->in_callback_fn = true; 10202 callee->callback_ret_range = retval_range(0, 1); 10203 return 0; 10204 } 10205 10206 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 10207 struct bpf_func_state *caller, 10208 struct bpf_func_state *callee, 10209 int insn_idx) 10210 { 10211 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 10212 * callback_ctx, u64 flags); 10213 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 10214 */ 10215 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 10216 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 10217 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10218 10219 /* unused */ 10220 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10221 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10222 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10223 10224 callee->in_callback_fn = true; 10225 callee->callback_ret_range = retval_range(0, 1); 10226 return 0; 10227 } 10228 10229 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 10230 struct bpf_func_state *caller, 10231 struct bpf_func_state *callee, 10232 int insn_idx) 10233 { 10234 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 10235 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 10236 * 10237 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 10238 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 10239 * by this point, so look at 'root' 10240 */ 10241 struct btf_field *field; 10242 10243 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 10244 BPF_RB_ROOT); 10245 if (!field || !field->graph_root.value_btf_id) 10246 return -EFAULT; 10247 10248 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 10249 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 10250 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 10251 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 10252 10253 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10254 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10255 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10256 callee->in_callback_fn = true; 10257 callee->callback_ret_range = retval_range(0, 1); 10258 return 0; 10259 } 10260 10261 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 10262 10263 /* Are we currently verifying the callback for a rbtree helper that must 10264 * be called with lock held? If so, no need to complain about unreleased 10265 * lock 10266 */ 10267 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 10268 { 10269 struct bpf_verifier_state *state = env->cur_state; 10270 struct bpf_insn *insn = env->prog->insnsi; 10271 struct bpf_func_state *callee; 10272 int kfunc_btf_id; 10273 10274 if (!state->curframe) 10275 return false; 10276 10277 callee = state->frame[state->curframe]; 10278 10279 if (!callee->in_callback_fn) 10280 return false; 10281 10282 kfunc_btf_id = insn[callee->callsite].imm; 10283 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 10284 } 10285 10286 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg, 10287 bool return_32bit) 10288 { 10289 if (return_32bit) 10290 return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval; 10291 else 10292 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; 10293 } 10294 10295 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 10296 { 10297 struct bpf_verifier_state *state = env->cur_state, *prev_st; 10298 struct bpf_func_state *caller, *callee; 10299 struct bpf_reg_state *r0; 10300 bool in_callback_fn; 10301 int err; 10302 10303 callee = state->frame[state->curframe]; 10304 r0 = &callee->regs[BPF_REG_0]; 10305 if (r0->type == PTR_TO_STACK) { 10306 /* technically it's ok to return caller's stack pointer 10307 * (or caller's caller's pointer) back to the caller, 10308 * since these pointers are valid. Only current stack 10309 * pointer will be invalid as soon as function exits, 10310 * but let's be conservative 10311 */ 10312 verbose(env, "cannot return stack pointer to the caller\n"); 10313 return -EINVAL; 10314 } 10315 10316 caller = state->frame[state->curframe - 1]; 10317 if (callee->in_callback_fn) { 10318 if (r0->type != SCALAR_VALUE) { 10319 verbose(env, "R0 not a scalar value\n"); 10320 return -EACCES; 10321 } 10322 10323 /* we are going to rely on register's precise value */ 10324 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 10325 err = err ?: mark_chain_precision(env, BPF_REG_0); 10326 if (err) 10327 return err; 10328 10329 /* enforce R0 return value range, and bpf_callback_t returns 64bit */ 10330 if (!retval_range_within(callee->callback_ret_range, r0, false)) { 10331 verbose_invalid_scalar(env, r0, callee->callback_ret_range, 10332 "At callback return", "R0"); 10333 return -EINVAL; 10334 } 10335 if (!calls_callback(env, callee->callsite)) { 10336 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 10337 *insn_idx, callee->callsite); 10338 return -EFAULT; 10339 } 10340 } else { 10341 /* return to the caller whatever r0 had in the callee */ 10342 caller->regs[BPF_REG_0] = *r0; 10343 } 10344 10345 /* Transfer references to the caller */ 10346 err = copy_reference_state(caller, callee); 10347 if (err) 10348 return err; 10349 10350 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 10351 * there function call logic would reschedule callback visit. If iteration 10352 * converges is_state_visited() would prune that visit eventually. 10353 */ 10354 in_callback_fn = callee->in_callback_fn; 10355 if (in_callback_fn) 10356 *insn_idx = callee->callsite; 10357 else 10358 *insn_idx = callee->callsite + 1; 10359 10360 if (env->log.level & BPF_LOG_LEVEL) { 10361 verbose(env, "returning from callee:\n"); 10362 print_verifier_state(env, callee, true); 10363 verbose(env, "to caller at %d:\n", *insn_idx); 10364 print_verifier_state(env, caller, true); 10365 } 10366 /* clear everything in the callee. In case of exceptional exits using 10367 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 10368 free_func_state(callee); 10369 state->frame[state->curframe--] = NULL; 10370 10371 /* for callbacks widen imprecise scalars to make programs like below verify: 10372 * 10373 * struct ctx { int i; } 10374 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 10375 * ... 10376 * struct ctx = { .i = 0; } 10377 * bpf_loop(100, cb, &ctx, 0); 10378 * 10379 * This is similar to what is done in process_iter_next_call() for open 10380 * coded iterators. 10381 */ 10382 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 10383 if (prev_st) { 10384 err = widen_imprecise_scalars(env, prev_st, state); 10385 if (err) 10386 return err; 10387 } 10388 return 0; 10389 } 10390 10391 static int do_refine_retval_range(struct bpf_verifier_env *env, 10392 struct bpf_reg_state *regs, int ret_type, 10393 int func_id, 10394 struct bpf_call_arg_meta *meta) 10395 { 10396 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 10397 10398 if (ret_type != RET_INTEGER) 10399 return 0; 10400 10401 switch (func_id) { 10402 case BPF_FUNC_get_stack: 10403 case BPF_FUNC_get_task_stack: 10404 case BPF_FUNC_probe_read_str: 10405 case BPF_FUNC_probe_read_kernel_str: 10406 case BPF_FUNC_probe_read_user_str: 10407 ret_reg->smax_value = meta->msize_max_value; 10408 ret_reg->s32_max_value = meta->msize_max_value; 10409 ret_reg->smin_value = -MAX_ERRNO; 10410 ret_reg->s32_min_value = -MAX_ERRNO; 10411 reg_bounds_sync(ret_reg); 10412 break; 10413 case BPF_FUNC_get_smp_processor_id: 10414 ret_reg->umax_value = nr_cpu_ids - 1; 10415 ret_reg->u32_max_value = nr_cpu_ids - 1; 10416 ret_reg->smax_value = nr_cpu_ids - 1; 10417 ret_reg->s32_max_value = nr_cpu_ids - 1; 10418 ret_reg->umin_value = 0; 10419 ret_reg->u32_min_value = 0; 10420 ret_reg->smin_value = 0; 10421 ret_reg->s32_min_value = 0; 10422 reg_bounds_sync(ret_reg); 10423 break; 10424 } 10425 10426 return reg_bounds_sanity_check(env, ret_reg, "retval"); 10427 } 10428 10429 static int 10430 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10431 int func_id, int insn_idx) 10432 { 10433 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10434 struct bpf_map *map = meta->map_ptr; 10435 10436 if (func_id != BPF_FUNC_tail_call && 10437 func_id != BPF_FUNC_map_lookup_elem && 10438 func_id != BPF_FUNC_map_update_elem && 10439 func_id != BPF_FUNC_map_delete_elem && 10440 func_id != BPF_FUNC_map_push_elem && 10441 func_id != BPF_FUNC_map_pop_elem && 10442 func_id != BPF_FUNC_map_peek_elem && 10443 func_id != BPF_FUNC_for_each_map_elem && 10444 func_id != BPF_FUNC_redirect_map && 10445 func_id != BPF_FUNC_map_lookup_percpu_elem) 10446 return 0; 10447 10448 if (map == NULL) { 10449 verbose(env, "kernel subsystem misconfigured verifier\n"); 10450 return -EINVAL; 10451 } 10452 10453 /* In case of read-only, some additional restrictions 10454 * need to be applied in order to prevent altering the 10455 * state of the map from program side. 10456 */ 10457 if ((map->map_flags & BPF_F_RDONLY_PROG) && 10458 (func_id == BPF_FUNC_map_delete_elem || 10459 func_id == BPF_FUNC_map_update_elem || 10460 func_id == BPF_FUNC_map_push_elem || 10461 func_id == BPF_FUNC_map_pop_elem)) { 10462 verbose(env, "write into map forbidden\n"); 10463 return -EACCES; 10464 } 10465 10466 if (!aux->map_ptr_state.map_ptr) 10467 bpf_map_ptr_store(aux, meta->map_ptr, 10468 !meta->map_ptr->bypass_spec_v1, false); 10469 else if (aux->map_ptr_state.map_ptr != meta->map_ptr) 10470 bpf_map_ptr_store(aux, meta->map_ptr, 10471 !meta->map_ptr->bypass_spec_v1, true); 10472 return 0; 10473 } 10474 10475 static int 10476 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10477 int func_id, int insn_idx) 10478 { 10479 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10480 struct bpf_reg_state *regs = cur_regs(env), *reg; 10481 struct bpf_map *map = meta->map_ptr; 10482 u64 val, max; 10483 int err; 10484 10485 if (func_id != BPF_FUNC_tail_call) 10486 return 0; 10487 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 10488 verbose(env, "kernel subsystem misconfigured verifier\n"); 10489 return -EINVAL; 10490 } 10491 10492 reg = ®s[BPF_REG_3]; 10493 val = reg->var_off.value; 10494 max = map->max_entries; 10495 10496 if (!(is_reg_const(reg, false) && val < max)) { 10497 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10498 return 0; 10499 } 10500 10501 err = mark_chain_precision(env, BPF_REG_3); 10502 if (err) 10503 return err; 10504 if (bpf_map_key_unseen(aux)) 10505 bpf_map_key_store(aux, val); 10506 else if (!bpf_map_key_poisoned(aux) && 10507 bpf_map_key_immediate(aux) != val) 10508 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10509 return 0; 10510 } 10511 10512 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 10513 { 10514 struct bpf_func_state *state = cur_func(env); 10515 bool refs_lingering = false; 10516 int i; 10517 10518 if (!exception_exit && state->frameno) 10519 return 0; 10520 10521 for (i = 0; i < state->acquired_refs; i++) { 10522 if (state->refs[i].type != REF_TYPE_PTR) 10523 continue; 10524 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 10525 state->refs[i].id, state->refs[i].insn_idx); 10526 refs_lingering = true; 10527 } 10528 return refs_lingering ? -EINVAL : 0; 10529 } 10530 10531 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix) 10532 { 10533 int err; 10534 10535 if (check_lock && cur_func(env)->active_locks) { 10536 verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix); 10537 return -EINVAL; 10538 } 10539 10540 err = check_reference_leak(env, exception_exit); 10541 if (err) { 10542 verbose(env, "%s would lead to reference leak\n", prefix); 10543 return err; 10544 } 10545 10546 if (check_lock && env->cur_state->active_rcu_lock) { 10547 verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix); 10548 return -EINVAL; 10549 } 10550 10551 if (check_lock && env->cur_state->active_preempt_lock) { 10552 verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix); 10553 return -EINVAL; 10554 } 10555 10556 return 0; 10557 } 10558 10559 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 10560 struct bpf_reg_state *regs) 10561 { 10562 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 10563 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 10564 struct bpf_map *fmt_map = fmt_reg->map_ptr; 10565 struct bpf_bprintf_data data = {}; 10566 int err, fmt_map_off, num_args; 10567 u64 fmt_addr; 10568 char *fmt; 10569 10570 /* data must be an array of u64 */ 10571 if (data_len_reg->var_off.value % 8) 10572 return -EINVAL; 10573 num_args = data_len_reg->var_off.value / 8; 10574 10575 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 10576 * and map_direct_value_addr is set. 10577 */ 10578 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 10579 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 10580 fmt_map_off); 10581 if (err) { 10582 verbose(env, "verifier bug\n"); 10583 return -EFAULT; 10584 } 10585 fmt = (char *)(long)fmt_addr + fmt_map_off; 10586 10587 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 10588 * can focus on validating the format specifiers. 10589 */ 10590 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 10591 if (err < 0) 10592 verbose(env, "Invalid format string\n"); 10593 10594 return err; 10595 } 10596 10597 static int check_get_func_ip(struct bpf_verifier_env *env) 10598 { 10599 enum bpf_prog_type type = resolve_prog_type(env->prog); 10600 int func_id = BPF_FUNC_get_func_ip; 10601 10602 if (type == BPF_PROG_TYPE_TRACING) { 10603 if (!bpf_prog_has_trampoline(env->prog)) { 10604 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 10605 func_id_name(func_id), func_id); 10606 return -ENOTSUPP; 10607 } 10608 return 0; 10609 } else if (type == BPF_PROG_TYPE_KPROBE) { 10610 return 0; 10611 } 10612 10613 verbose(env, "func %s#%d not supported for program type %d\n", 10614 func_id_name(func_id), func_id, type); 10615 return -ENOTSUPP; 10616 } 10617 10618 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 10619 { 10620 return &env->insn_aux_data[env->insn_idx]; 10621 } 10622 10623 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 10624 { 10625 struct bpf_reg_state *regs = cur_regs(env); 10626 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 10627 bool reg_is_null = register_is_null(reg); 10628 10629 if (reg_is_null) 10630 mark_chain_precision(env, BPF_REG_4); 10631 10632 return reg_is_null; 10633 } 10634 10635 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 10636 { 10637 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 10638 10639 if (!state->initialized) { 10640 state->initialized = 1; 10641 state->fit_for_inline = loop_flag_is_zero(env); 10642 state->callback_subprogno = subprogno; 10643 return; 10644 } 10645 10646 if (!state->fit_for_inline) 10647 return; 10648 10649 state->fit_for_inline = (loop_flag_is_zero(env) && 10650 state->callback_subprogno == subprogno); 10651 } 10652 10653 static int get_helper_proto(struct bpf_verifier_env *env, int func_id, 10654 const struct bpf_func_proto **ptr) 10655 { 10656 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) 10657 return -ERANGE; 10658 10659 if (!env->ops->get_func_proto) 10660 return -EINVAL; 10661 10662 *ptr = env->ops->get_func_proto(func_id, env->prog); 10663 return *ptr ? 0 : -EINVAL; 10664 } 10665 10666 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10667 int *insn_idx_p) 10668 { 10669 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10670 bool returns_cpu_specific_alloc_ptr = false; 10671 const struct bpf_func_proto *fn = NULL; 10672 enum bpf_return_type ret_type; 10673 enum bpf_type_flag ret_flag; 10674 struct bpf_reg_state *regs; 10675 struct bpf_call_arg_meta meta; 10676 int insn_idx = *insn_idx_p; 10677 bool changes_data; 10678 int i, err, func_id; 10679 10680 /* find function prototype */ 10681 func_id = insn->imm; 10682 err = get_helper_proto(env, insn->imm, &fn); 10683 if (err == -ERANGE) { 10684 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id); 10685 return -EINVAL; 10686 } 10687 10688 if (err) { 10689 verbose(env, "program of this type cannot use helper %s#%d\n", 10690 func_id_name(func_id), func_id); 10691 return err; 10692 } 10693 10694 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 10695 if (!env->prog->gpl_compatible && fn->gpl_only) { 10696 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 10697 return -EINVAL; 10698 } 10699 10700 if (fn->allowed && !fn->allowed(env->prog)) { 10701 verbose(env, "helper call is not allowed in probe\n"); 10702 return -EINVAL; 10703 } 10704 10705 if (!in_sleepable(env) && fn->might_sleep) { 10706 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 10707 return -EINVAL; 10708 } 10709 10710 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 10711 changes_data = bpf_helper_changes_pkt_data(fn->func); 10712 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 10713 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 10714 func_id_name(func_id), func_id); 10715 return -EINVAL; 10716 } 10717 10718 memset(&meta, 0, sizeof(meta)); 10719 meta.pkt_access = fn->pkt_access; 10720 10721 err = check_func_proto(fn, func_id); 10722 if (err) { 10723 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 10724 func_id_name(func_id), func_id); 10725 return err; 10726 } 10727 10728 if (env->cur_state->active_rcu_lock) { 10729 if (fn->might_sleep) { 10730 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 10731 func_id_name(func_id), func_id); 10732 return -EINVAL; 10733 } 10734 10735 if (in_sleepable(env) && is_storage_get_function(func_id)) 10736 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10737 } 10738 10739 if (env->cur_state->active_preempt_lock) { 10740 if (fn->might_sleep) { 10741 verbose(env, "sleepable helper %s#%d in non-preemptible region\n", 10742 func_id_name(func_id), func_id); 10743 return -EINVAL; 10744 } 10745 10746 if (in_sleepable(env) && is_storage_get_function(func_id)) 10747 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10748 } 10749 10750 meta.func_id = func_id; 10751 /* check args */ 10752 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 10753 err = check_func_arg(env, i, &meta, fn, insn_idx); 10754 if (err) 10755 return err; 10756 } 10757 10758 err = record_func_map(env, &meta, func_id, insn_idx); 10759 if (err) 10760 return err; 10761 10762 err = record_func_key(env, &meta, func_id, insn_idx); 10763 if (err) 10764 return err; 10765 10766 /* Mark slots with STACK_MISC in case of raw mode, stack offset 10767 * is inferred from register state. 10768 */ 10769 for (i = 0; i < meta.access_size; i++) { 10770 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 10771 BPF_WRITE, -1, false, false); 10772 if (err) 10773 return err; 10774 } 10775 10776 regs = cur_regs(env); 10777 10778 if (meta.release_regno) { 10779 err = -EINVAL; 10780 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 10781 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 10782 * is safe to do directly. 10783 */ 10784 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 10785 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 10786 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 10787 return -EFAULT; 10788 } 10789 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 10790 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 10791 u32 ref_obj_id = meta.ref_obj_id; 10792 bool in_rcu = in_rcu_cs(env); 10793 struct bpf_func_state *state; 10794 struct bpf_reg_state *reg; 10795 10796 err = release_reference_state(cur_func(env), ref_obj_id); 10797 if (!err) { 10798 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10799 if (reg->ref_obj_id == ref_obj_id) { 10800 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 10801 reg->ref_obj_id = 0; 10802 reg->type &= ~MEM_ALLOC; 10803 reg->type |= MEM_RCU; 10804 } else { 10805 mark_reg_invalid(env, reg); 10806 } 10807 } 10808 })); 10809 } 10810 } else if (meta.ref_obj_id) { 10811 err = release_reference(env, meta.ref_obj_id); 10812 } else if (register_is_null(®s[meta.release_regno])) { 10813 /* meta.ref_obj_id can only be 0 if register that is meant to be 10814 * released is NULL, which must be > R0. 10815 */ 10816 err = 0; 10817 } 10818 if (err) { 10819 verbose(env, "func %s#%d reference has not been acquired before\n", 10820 func_id_name(func_id), func_id); 10821 return err; 10822 } 10823 } 10824 10825 switch (func_id) { 10826 case BPF_FUNC_tail_call: 10827 err = check_resource_leak(env, false, true, "tail_call"); 10828 if (err) 10829 return err; 10830 break; 10831 case BPF_FUNC_get_local_storage: 10832 /* check that flags argument in get_local_storage(map, flags) is 0, 10833 * this is required because get_local_storage() can't return an error. 10834 */ 10835 if (!register_is_null(®s[BPF_REG_2])) { 10836 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 10837 return -EINVAL; 10838 } 10839 break; 10840 case BPF_FUNC_for_each_map_elem: 10841 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10842 set_map_elem_callback_state); 10843 break; 10844 case BPF_FUNC_timer_set_callback: 10845 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10846 set_timer_callback_state); 10847 break; 10848 case BPF_FUNC_find_vma: 10849 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10850 set_find_vma_callback_state); 10851 break; 10852 case BPF_FUNC_snprintf: 10853 err = check_bpf_snprintf_call(env, regs); 10854 break; 10855 case BPF_FUNC_loop: 10856 update_loop_inline_state(env, meta.subprogno); 10857 /* Verifier relies on R1 value to determine if bpf_loop() iteration 10858 * is finished, thus mark it precise. 10859 */ 10860 err = mark_chain_precision(env, BPF_REG_1); 10861 if (err) 10862 return err; 10863 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 10864 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10865 set_loop_callback_state); 10866 } else { 10867 cur_func(env)->callback_depth = 0; 10868 if (env->log.level & BPF_LOG_LEVEL2) 10869 verbose(env, "frame%d bpf_loop iteration limit reached\n", 10870 env->cur_state->curframe); 10871 } 10872 break; 10873 case BPF_FUNC_dynptr_from_mem: 10874 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 10875 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 10876 reg_type_str(env, regs[BPF_REG_1].type)); 10877 return -EACCES; 10878 } 10879 break; 10880 case BPF_FUNC_set_retval: 10881 if (prog_type == BPF_PROG_TYPE_LSM && 10882 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 10883 if (!env->prog->aux->attach_func_proto->type) { 10884 /* Make sure programs that attach to void 10885 * hooks don't try to modify return value. 10886 */ 10887 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10888 return -EINVAL; 10889 } 10890 } 10891 break; 10892 case BPF_FUNC_dynptr_data: 10893 { 10894 struct bpf_reg_state *reg; 10895 int id, ref_obj_id; 10896 10897 reg = get_dynptr_arg_reg(env, fn, regs); 10898 if (!reg) 10899 return -EFAULT; 10900 10901 10902 if (meta.dynptr_id) { 10903 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 10904 return -EFAULT; 10905 } 10906 if (meta.ref_obj_id) { 10907 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 10908 return -EFAULT; 10909 } 10910 10911 id = dynptr_id(env, reg); 10912 if (id < 0) { 10913 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10914 return id; 10915 } 10916 10917 ref_obj_id = dynptr_ref_obj_id(env, reg); 10918 if (ref_obj_id < 0) { 10919 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 10920 return ref_obj_id; 10921 } 10922 10923 meta.dynptr_id = id; 10924 meta.ref_obj_id = ref_obj_id; 10925 10926 break; 10927 } 10928 case BPF_FUNC_dynptr_write: 10929 { 10930 enum bpf_dynptr_type dynptr_type; 10931 struct bpf_reg_state *reg; 10932 10933 reg = get_dynptr_arg_reg(env, fn, regs); 10934 if (!reg) 10935 return -EFAULT; 10936 10937 dynptr_type = dynptr_get_type(env, reg); 10938 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 10939 return -EFAULT; 10940 10941 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 10942 /* this will trigger clear_all_pkt_pointers(), which will 10943 * invalidate all dynptr slices associated with the skb 10944 */ 10945 changes_data = true; 10946 10947 break; 10948 } 10949 case BPF_FUNC_per_cpu_ptr: 10950 case BPF_FUNC_this_cpu_ptr: 10951 { 10952 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 10953 const struct btf_type *type; 10954 10955 if (reg->type & MEM_RCU) { 10956 type = btf_type_by_id(reg->btf, reg->btf_id); 10957 if (!type || !btf_type_is_struct(type)) { 10958 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 10959 return -EFAULT; 10960 } 10961 returns_cpu_specific_alloc_ptr = true; 10962 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 10963 } 10964 break; 10965 } 10966 case BPF_FUNC_user_ringbuf_drain: 10967 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10968 set_user_ringbuf_callback_state); 10969 break; 10970 } 10971 10972 if (err) 10973 return err; 10974 10975 /* reset caller saved regs */ 10976 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10977 mark_reg_not_init(env, regs, caller_saved[i]); 10978 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10979 } 10980 10981 /* helper call returns 64-bit value. */ 10982 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10983 10984 /* update return register (already marked as written above) */ 10985 ret_type = fn->ret_type; 10986 ret_flag = type_flag(ret_type); 10987 10988 switch (base_type(ret_type)) { 10989 case RET_INTEGER: 10990 /* sets type to SCALAR_VALUE */ 10991 mark_reg_unknown(env, regs, BPF_REG_0); 10992 break; 10993 case RET_VOID: 10994 regs[BPF_REG_0].type = NOT_INIT; 10995 break; 10996 case RET_PTR_TO_MAP_VALUE: 10997 /* There is no offset yet applied, variable or fixed */ 10998 mark_reg_known_zero(env, regs, BPF_REG_0); 10999 /* remember map_ptr, so that check_map_access() 11000 * can check 'value_size' boundary of memory access 11001 * to map element returned from bpf_map_lookup_elem() 11002 */ 11003 if (meta.map_ptr == NULL) { 11004 verbose(env, 11005 "kernel subsystem misconfigured verifier\n"); 11006 return -EINVAL; 11007 } 11008 regs[BPF_REG_0].map_ptr = meta.map_ptr; 11009 regs[BPF_REG_0].map_uid = meta.map_uid; 11010 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 11011 if (!type_may_be_null(ret_type) && 11012 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 11013 regs[BPF_REG_0].id = ++env->id_gen; 11014 } 11015 break; 11016 case RET_PTR_TO_SOCKET: 11017 mark_reg_known_zero(env, regs, BPF_REG_0); 11018 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 11019 break; 11020 case RET_PTR_TO_SOCK_COMMON: 11021 mark_reg_known_zero(env, regs, BPF_REG_0); 11022 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 11023 break; 11024 case RET_PTR_TO_TCP_SOCK: 11025 mark_reg_known_zero(env, regs, BPF_REG_0); 11026 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 11027 break; 11028 case RET_PTR_TO_MEM: 11029 mark_reg_known_zero(env, regs, BPF_REG_0); 11030 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11031 regs[BPF_REG_0].mem_size = meta.mem_size; 11032 break; 11033 case RET_PTR_TO_MEM_OR_BTF_ID: 11034 { 11035 const struct btf_type *t; 11036 11037 mark_reg_known_zero(env, regs, BPF_REG_0); 11038 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 11039 if (!btf_type_is_struct(t)) { 11040 u32 tsize; 11041 const struct btf_type *ret; 11042 const char *tname; 11043 11044 /* resolve the type size of ksym. */ 11045 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 11046 if (IS_ERR(ret)) { 11047 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 11048 verbose(env, "unable to resolve the size of type '%s': %ld\n", 11049 tname, PTR_ERR(ret)); 11050 return -EINVAL; 11051 } 11052 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11053 regs[BPF_REG_0].mem_size = tsize; 11054 } else { 11055 if (returns_cpu_specific_alloc_ptr) { 11056 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 11057 } else { 11058 /* MEM_RDONLY may be carried from ret_flag, but it 11059 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 11060 * it will confuse the check of PTR_TO_BTF_ID in 11061 * check_mem_access(). 11062 */ 11063 ret_flag &= ~MEM_RDONLY; 11064 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11065 } 11066 11067 regs[BPF_REG_0].btf = meta.ret_btf; 11068 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11069 } 11070 break; 11071 } 11072 case RET_PTR_TO_BTF_ID: 11073 { 11074 struct btf *ret_btf; 11075 int ret_btf_id; 11076 11077 mark_reg_known_zero(env, regs, BPF_REG_0); 11078 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11079 if (func_id == BPF_FUNC_kptr_xchg) { 11080 ret_btf = meta.kptr_field->kptr.btf; 11081 ret_btf_id = meta.kptr_field->kptr.btf_id; 11082 if (!btf_is_kernel(ret_btf)) { 11083 regs[BPF_REG_0].type |= MEM_ALLOC; 11084 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 11085 regs[BPF_REG_0].type |= MEM_PERCPU; 11086 } 11087 } else { 11088 if (fn->ret_btf_id == BPF_PTR_POISON) { 11089 verbose(env, "verifier internal error:"); 11090 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 11091 func_id_name(func_id)); 11092 return -EINVAL; 11093 } 11094 ret_btf = btf_vmlinux; 11095 ret_btf_id = *fn->ret_btf_id; 11096 } 11097 if (ret_btf_id == 0) { 11098 verbose(env, "invalid return type %u of func %s#%d\n", 11099 base_type(ret_type), func_id_name(func_id), 11100 func_id); 11101 return -EINVAL; 11102 } 11103 regs[BPF_REG_0].btf = ret_btf; 11104 regs[BPF_REG_0].btf_id = ret_btf_id; 11105 break; 11106 } 11107 default: 11108 verbose(env, "unknown return type %u of func %s#%d\n", 11109 base_type(ret_type), func_id_name(func_id), func_id); 11110 return -EINVAL; 11111 } 11112 11113 if (type_may_be_null(regs[BPF_REG_0].type)) 11114 regs[BPF_REG_0].id = ++env->id_gen; 11115 11116 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 11117 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 11118 func_id_name(func_id), func_id); 11119 return -EFAULT; 11120 } 11121 11122 if (is_dynptr_ref_function(func_id)) 11123 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 11124 11125 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 11126 /* For release_reference() */ 11127 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11128 } else if (is_acquire_function(func_id, meta.map_ptr)) { 11129 int id = acquire_reference_state(env, insn_idx); 11130 11131 if (id < 0) 11132 return id; 11133 /* For mark_ptr_or_null_reg() */ 11134 regs[BPF_REG_0].id = id; 11135 /* For release_reference() */ 11136 regs[BPF_REG_0].ref_obj_id = id; 11137 } 11138 11139 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 11140 if (err) 11141 return err; 11142 11143 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 11144 if (err) 11145 return err; 11146 11147 if ((func_id == BPF_FUNC_get_stack || 11148 func_id == BPF_FUNC_get_task_stack) && 11149 !env->prog->has_callchain_buf) { 11150 const char *err_str; 11151 11152 #ifdef CONFIG_PERF_EVENTS 11153 err = get_callchain_buffers(sysctl_perf_event_max_stack); 11154 err_str = "cannot get callchain buffer for func %s#%d\n"; 11155 #else 11156 err = -ENOTSUPP; 11157 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 11158 #endif 11159 if (err) { 11160 verbose(env, err_str, func_id_name(func_id), func_id); 11161 return err; 11162 } 11163 11164 env->prog->has_callchain_buf = true; 11165 } 11166 11167 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 11168 env->prog->call_get_stack = true; 11169 11170 if (func_id == BPF_FUNC_get_func_ip) { 11171 if (check_get_func_ip(env)) 11172 return -ENOTSUPP; 11173 env->prog->call_get_func_ip = true; 11174 } 11175 11176 if (changes_data) 11177 clear_all_pkt_pointers(env); 11178 return 0; 11179 } 11180 11181 /* mark_btf_func_reg_size() is used when the reg size is determined by 11182 * the BTF func_proto's return value size and argument. 11183 */ 11184 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 11185 size_t reg_size) 11186 { 11187 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 11188 11189 if (regno == BPF_REG_0) { 11190 /* Function return value */ 11191 reg->live |= REG_LIVE_WRITTEN; 11192 reg->subreg_def = reg_size == sizeof(u64) ? 11193 DEF_NOT_SUBREG : env->insn_idx + 1; 11194 } else { 11195 /* Function argument */ 11196 if (reg_size == sizeof(u64)) { 11197 mark_insn_zext(env, reg); 11198 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 11199 } else { 11200 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 11201 } 11202 } 11203 } 11204 11205 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 11206 { 11207 return meta->kfunc_flags & KF_ACQUIRE; 11208 } 11209 11210 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 11211 { 11212 return meta->kfunc_flags & KF_RELEASE; 11213 } 11214 11215 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 11216 { 11217 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 11218 } 11219 11220 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 11221 { 11222 return meta->kfunc_flags & KF_SLEEPABLE; 11223 } 11224 11225 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 11226 { 11227 return meta->kfunc_flags & KF_DESTRUCTIVE; 11228 } 11229 11230 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 11231 { 11232 return meta->kfunc_flags & KF_RCU; 11233 } 11234 11235 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 11236 { 11237 return meta->kfunc_flags & KF_RCU_PROTECTED; 11238 } 11239 11240 static bool is_kfunc_arg_mem_size(const struct btf *btf, 11241 const struct btf_param *arg, 11242 const struct bpf_reg_state *reg) 11243 { 11244 const struct btf_type *t; 11245 11246 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11247 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11248 return false; 11249 11250 return btf_param_match_suffix(btf, arg, "__sz"); 11251 } 11252 11253 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 11254 const struct btf_param *arg, 11255 const struct bpf_reg_state *reg) 11256 { 11257 const struct btf_type *t; 11258 11259 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11260 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11261 return false; 11262 11263 return btf_param_match_suffix(btf, arg, "__szk"); 11264 } 11265 11266 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 11267 { 11268 return btf_param_match_suffix(btf, arg, "__opt"); 11269 } 11270 11271 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 11272 { 11273 return btf_param_match_suffix(btf, arg, "__k"); 11274 } 11275 11276 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 11277 { 11278 return btf_param_match_suffix(btf, arg, "__ign"); 11279 } 11280 11281 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) 11282 { 11283 return btf_param_match_suffix(btf, arg, "__map"); 11284 } 11285 11286 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 11287 { 11288 return btf_param_match_suffix(btf, arg, "__alloc"); 11289 } 11290 11291 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 11292 { 11293 return btf_param_match_suffix(btf, arg, "__uninit"); 11294 } 11295 11296 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 11297 { 11298 return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); 11299 } 11300 11301 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 11302 { 11303 return btf_param_match_suffix(btf, arg, "__nullable"); 11304 } 11305 11306 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 11307 { 11308 return btf_param_match_suffix(btf, arg, "__str"); 11309 } 11310 11311 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 11312 const struct btf_param *arg, 11313 const char *name) 11314 { 11315 int len, target_len = strlen(name); 11316 const char *param_name; 11317 11318 param_name = btf_name_by_offset(btf, arg->name_off); 11319 if (str_is_empty(param_name)) 11320 return false; 11321 len = strlen(param_name); 11322 if (len != target_len) 11323 return false; 11324 if (strcmp(param_name, name)) 11325 return false; 11326 11327 return true; 11328 } 11329 11330 enum { 11331 KF_ARG_DYNPTR_ID, 11332 KF_ARG_LIST_HEAD_ID, 11333 KF_ARG_LIST_NODE_ID, 11334 KF_ARG_RB_ROOT_ID, 11335 KF_ARG_RB_NODE_ID, 11336 KF_ARG_WORKQUEUE_ID, 11337 }; 11338 11339 BTF_ID_LIST(kf_arg_btf_ids) 11340 BTF_ID(struct, bpf_dynptr) 11341 BTF_ID(struct, bpf_list_head) 11342 BTF_ID(struct, bpf_list_node) 11343 BTF_ID(struct, bpf_rb_root) 11344 BTF_ID(struct, bpf_rb_node) 11345 BTF_ID(struct, bpf_wq) 11346 11347 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 11348 const struct btf_param *arg, int type) 11349 { 11350 const struct btf_type *t; 11351 u32 res_id; 11352 11353 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11354 if (!t) 11355 return false; 11356 if (!btf_type_is_ptr(t)) 11357 return false; 11358 t = btf_type_skip_modifiers(btf, t->type, &res_id); 11359 if (!t) 11360 return false; 11361 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 11362 } 11363 11364 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 11365 { 11366 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 11367 } 11368 11369 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 11370 { 11371 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 11372 } 11373 11374 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 11375 { 11376 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 11377 } 11378 11379 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 11380 { 11381 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 11382 } 11383 11384 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 11385 { 11386 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 11387 } 11388 11389 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) 11390 { 11391 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); 11392 } 11393 11394 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 11395 const struct btf_param *arg) 11396 { 11397 const struct btf_type *t; 11398 11399 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 11400 if (!t) 11401 return false; 11402 11403 return true; 11404 } 11405 11406 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 11407 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 11408 const struct btf *btf, 11409 const struct btf_type *t, int rec) 11410 { 11411 const struct btf_type *member_type; 11412 const struct btf_member *member; 11413 u32 i; 11414 11415 if (!btf_type_is_struct(t)) 11416 return false; 11417 11418 for_each_member(i, t, member) { 11419 const struct btf_array *array; 11420 11421 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 11422 if (btf_type_is_struct(member_type)) { 11423 if (rec >= 3) { 11424 verbose(env, "max struct nesting depth exceeded\n"); 11425 return false; 11426 } 11427 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 11428 return false; 11429 continue; 11430 } 11431 if (btf_type_is_array(member_type)) { 11432 array = btf_array(member_type); 11433 if (!array->nelems) 11434 return false; 11435 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 11436 if (!btf_type_is_scalar(member_type)) 11437 return false; 11438 continue; 11439 } 11440 if (!btf_type_is_scalar(member_type)) 11441 return false; 11442 } 11443 return true; 11444 } 11445 11446 enum kfunc_ptr_arg_type { 11447 KF_ARG_PTR_TO_CTX, 11448 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 11449 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 11450 KF_ARG_PTR_TO_DYNPTR, 11451 KF_ARG_PTR_TO_ITER, 11452 KF_ARG_PTR_TO_LIST_HEAD, 11453 KF_ARG_PTR_TO_LIST_NODE, 11454 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 11455 KF_ARG_PTR_TO_MEM, 11456 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 11457 KF_ARG_PTR_TO_CALLBACK, 11458 KF_ARG_PTR_TO_RB_ROOT, 11459 KF_ARG_PTR_TO_RB_NODE, 11460 KF_ARG_PTR_TO_NULL, 11461 KF_ARG_PTR_TO_CONST_STR, 11462 KF_ARG_PTR_TO_MAP, 11463 KF_ARG_PTR_TO_WORKQUEUE, 11464 }; 11465 11466 enum special_kfunc_type { 11467 KF_bpf_obj_new_impl, 11468 KF_bpf_obj_drop_impl, 11469 KF_bpf_refcount_acquire_impl, 11470 KF_bpf_list_push_front_impl, 11471 KF_bpf_list_push_back_impl, 11472 KF_bpf_list_pop_front, 11473 KF_bpf_list_pop_back, 11474 KF_bpf_cast_to_kern_ctx, 11475 KF_bpf_rdonly_cast, 11476 KF_bpf_rcu_read_lock, 11477 KF_bpf_rcu_read_unlock, 11478 KF_bpf_rbtree_remove, 11479 KF_bpf_rbtree_add_impl, 11480 KF_bpf_rbtree_first, 11481 KF_bpf_dynptr_from_skb, 11482 KF_bpf_dynptr_from_xdp, 11483 KF_bpf_dynptr_slice, 11484 KF_bpf_dynptr_slice_rdwr, 11485 KF_bpf_dynptr_clone, 11486 KF_bpf_percpu_obj_new_impl, 11487 KF_bpf_percpu_obj_drop_impl, 11488 KF_bpf_throw, 11489 KF_bpf_wq_set_callback_impl, 11490 KF_bpf_preempt_disable, 11491 KF_bpf_preempt_enable, 11492 KF_bpf_iter_css_task_new, 11493 KF_bpf_session_cookie, 11494 KF_bpf_get_kmem_cache, 11495 }; 11496 11497 BTF_SET_START(special_kfunc_set) 11498 BTF_ID(func, bpf_obj_new_impl) 11499 BTF_ID(func, bpf_obj_drop_impl) 11500 BTF_ID(func, bpf_refcount_acquire_impl) 11501 BTF_ID(func, bpf_list_push_front_impl) 11502 BTF_ID(func, bpf_list_push_back_impl) 11503 BTF_ID(func, bpf_list_pop_front) 11504 BTF_ID(func, bpf_list_pop_back) 11505 BTF_ID(func, bpf_cast_to_kern_ctx) 11506 BTF_ID(func, bpf_rdonly_cast) 11507 BTF_ID(func, bpf_rbtree_remove) 11508 BTF_ID(func, bpf_rbtree_add_impl) 11509 BTF_ID(func, bpf_rbtree_first) 11510 BTF_ID(func, bpf_dynptr_from_skb) 11511 BTF_ID(func, bpf_dynptr_from_xdp) 11512 BTF_ID(func, bpf_dynptr_slice) 11513 BTF_ID(func, bpf_dynptr_slice_rdwr) 11514 BTF_ID(func, bpf_dynptr_clone) 11515 BTF_ID(func, bpf_percpu_obj_new_impl) 11516 BTF_ID(func, bpf_percpu_obj_drop_impl) 11517 BTF_ID(func, bpf_throw) 11518 BTF_ID(func, bpf_wq_set_callback_impl) 11519 #ifdef CONFIG_CGROUPS 11520 BTF_ID(func, bpf_iter_css_task_new) 11521 #endif 11522 BTF_SET_END(special_kfunc_set) 11523 11524 BTF_ID_LIST(special_kfunc_list) 11525 BTF_ID(func, bpf_obj_new_impl) 11526 BTF_ID(func, bpf_obj_drop_impl) 11527 BTF_ID(func, bpf_refcount_acquire_impl) 11528 BTF_ID(func, bpf_list_push_front_impl) 11529 BTF_ID(func, bpf_list_push_back_impl) 11530 BTF_ID(func, bpf_list_pop_front) 11531 BTF_ID(func, bpf_list_pop_back) 11532 BTF_ID(func, bpf_cast_to_kern_ctx) 11533 BTF_ID(func, bpf_rdonly_cast) 11534 BTF_ID(func, bpf_rcu_read_lock) 11535 BTF_ID(func, bpf_rcu_read_unlock) 11536 BTF_ID(func, bpf_rbtree_remove) 11537 BTF_ID(func, bpf_rbtree_add_impl) 11538 BTF_ID(func, bpf_rbtree_first) 11539 BTF_ID(func, bpf_dynptr_from_skb) 11540 BTF_ID(func, bpf_dynptr_from_xdp) 11541 BTF_ID(func, bpf_dynptr_slice) 11542 BTF_ID(func, bpf_dynptr_slice_rdwr) 11543 BTF_ID(func, bpf_dynptr_clone) 11544 BTF_ID(func, bpf_percpu_obj_new_impl) 11545 BTF_ID(func, bpf_percpu_obj_drop_impl) 11546 BTF_ID(func, bpf_throw) 11547 BTF_ID(func, bpf_wq_set_callback_impl) 11548 BTF_ID(func, bpf_preempt_disable) 11549 BTF_ID(func, bpf_preempt_enable) 11550 #ifdef CONFIG_CGROUPS 11551 BTF_ID(func, bpf_iter_css_task_new) 11552 #else 11553 BTF_ID_UNUSED 11554 #endif 11555 #ifdef CONFIG_BPF_EVENTS 11556 BTF_ID(func, bpf_session_cookie) 11557 #else 11558 BTF_ID_UNUSED 11559 #endif 11560 BTF_ID(func, bpf_get_kmem_cache) 11561 11562 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 11563 { 11564 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 11565 meta->arg_owning_ref) { 11566 return false; 11567 } 11568 11569 return meta->kfunc_flags & KF_RET_NULL; 11570 } 11571 11572 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 11573 { 11574 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 11575 } 11576 11577 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 11578 { 11579 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 11580 } 11581 11582 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta) 11583 { 11584 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable]; 11585 } 11586 11587 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta) 11588 { 11589 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable]; 11590 } 11591 11592 static enum kfunc_ptr_arg_type 11593 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 11594 struct bpf_kfunc_call_arg_meta *meta, 11595 const struct btf_type *t, const struct btf_type *ref_t, 11596 const char *ref_tname, const struct btf_param *args, 11597 int argno, int nargs) 11598 { 11599 u32 regno = argno + 1; 11600 struct bpf_reg_state *regs = cur_regs(env); 11601 struct bpf_reg_state *reg = ®s[regno]; 11602 bool arg_mem_size = false; 11603 11604 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 11605 return KF_ARG_PTR_TO_CTX; 11606 11607 /* In this function, we verify the kfunc's BTF as per the argument type, 11608 * leaving the rest of the verification with respect to the register 11609 * type to our caller. When a set of conditions hold in the BTF type of 11610 * arguments, we resolve it to a known kfunc_ptr_arg_type. 11611 */ 11612 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 11613 return KF_ARG_PTR_TO_CTX; 11614 11615 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 11616 return KF_ARG_PTR_TO_NULL; 11617 11618 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 11619 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 11620 11621 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 11622 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 11623 11624 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 11625 return KF_ARG_PTR_TO_DYNPTR; 11626 11627 if (is_kfunc_arg_iter(meta, argno, &args[argno])) 11628 return KF_ARG_PTR_TO_ITER; 11629 11630 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 11631 return KF_ARG_PTR_TO_LIST_HEAD; 11632 11633 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 11634 return KF_ARG_PTR_TO_LIST_NODE; 11635 11636 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 11637 return KF_ARG_PTR_TO_RB_ROOT; 11638 11639 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 11640 return KF_ARG_PTR_TO_RB_NODE; 11641 11642 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 11643 return KF_ARG_PTR_TO_CONST_STR; 11644 11645 if (is_kfunc_arg_map(meta->btf, &args[argno])) 11646 return KF_ARG_PTR_TO_MAP; 11647 11648 if (is_kfunc_arg_wq(meta->btf, &args[argno])) 11649 return KF_ARG_PTR_TO_WORKQUEUE; 11650 11651 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 11652 if (!btf_type_is_struct(ref_t)) { 11653 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 11654 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 11655 return -EINVAL; 11656 } 11657 return KF_ARG_PTR_TO_BTF_ID; 11658 } 11659 11660 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 11661 return KF_ARG_PTR_TO_CALLBACK; 11662 11663 if (argno + 1 < nargs && 11664 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 11665 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 11666 arg_mem_size = true; 11667 11668 /* This is the catch all argument type of register types supported by 11669 * check_helper_mem_access. However, we only allow when argument type is 11670 * pointer to scalar, or struct composed (recursively) of scalars. When 11671 * arg_mem_size is true, the pointer can be void *. 11672 */ 11673 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 11674 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 11675 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 11676 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 11677 return -EINVAL; 11678 } 11679 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 11680 } 11681 11682 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 11683 struct bpf_reg_state *reg, 11684 const struct btf_type *ref_t, 11685 const char *ref_tname, u32 ref_id, 11686 struct bpf_kfunc_call_arg_meta *meta, 11687 int argno) 11688 { 11689 const struct btf_type *reg_ref_t; 11690 bool strict_type_match = false; 11691 const struct btf *reg_btf; 11692 const char *reg_ref_tname; 11693 bool taking_projection; 11694 bool struct_same; 11695 u32 reg_ref_id; 11696 11697 if (base_type(reg->type) == PTR_TO_BTF_ID) { 11698 reg_btf = reg->btf; 11699 reg_ref_id = reg->btf_id; 11700 } else { 11701 reg_btf = btf_vmlinux; 11702 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 11703 } 11704 11705 /* Enforce strict type matching for calls to kfuncs that are acquiring 11706 * or releasing a reference, or are no-cast aliases. We do _not_ 11707 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 11708 * as we want to enable BPF programs to pass types that are bitwise 11709 * equivalent without forcing them to explicitly cast with something 11710 * like bpf_cast_to_kern_ctx(). 11711 * 11712 * For example, say we had a type like the following: 11713 * 11714 * struct bpf_cpumask { 11715 * cpumask_t cpumask; 11716 * refcount_t usage; 11717 * }; 11718 * 11719 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 11720 * to a struct cpumask, so it would be safe to pass a struct 11721 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 11722 * 11723 * The philosophy here is similar to how we allow scalars of different 11724 * types to be passed to kfuncs as long as the size is the same. The 11725 * only difference here is that we're simply allowing 11726 * btf_struct_ids_match() to walk the struct at the 0th offset, and 11727 * resolve types. 11728 */ 11729 if ((is_kfunc_release(meta) && reg->ref_obj_id) || 11730 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 11731 strict_type_match = true; 11732 11733 WARN_ON_ONCE(is_kfunc_release(meta) && 11734 (reg->off || !tnum_is_const(reg->var_off) || 11735 reg->var_off.value)); 11736 11737 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 11738 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 11739 struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match); 11740 /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot 11741 * actually use it -- it must cast to the underlying type. So we allow 11742 * caller to pass in the underlying type. 11743 */ 11744 taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname); 11745 if (!taking_projection && !struct_same) { 11746 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 11747 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 11748 btf_type_str(reg_ref_t), reg_ref_tname); 11749 return -EINVAL; 11750 } 11751 return 0; 11752 } 11753 11754 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11755 { 11756 struct btf_record *rec = reg_btf_record(reg); 11757 11758 if (!cur_func(env)->active_locks) { 11759 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 11760 return -EFAULT; 11761 } 11762 11763 if (type_flag(reg->type) & NON_OWN_REF) { 11764 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 11765 return -EFAULT; 11766 } 11767 11768 reg->type |= NON_OWN_REF; 11769 if (rec->refcount_off >= 0) 11770 reg->type |= MEM_RCU; 11771 11772 return 0; 11773 } 11774 11775 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 11776 { 11777 struct bpf_func_state *state, *unused; 11778 struct bpf_reg_state *reg; 11779 int i; 11780 11781 state = cur_func(env); 11782 11783 if (!ref_obj_id) { 11784 verbose(env, "verifier internal error: ref_obj_id is zero for " 11785 "owning -> non-owning conversion\n"); 11786 return -EFAULT; 11787 } 11788 11789 for (i = 0; i < state->acquired_refs; i++) { 11790 if (state->refs[i].id != ref_obj_id) 11791 continue; 11792 11793 /* Clear ref_obj_id here so release_reference doesn't clobber 11794 * the whole reg 11795 */ 11796 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 11797 if (reg->ref_obj_id == ref_obj_id) { 11798 reg->ref_obj_id = 0; 11799 ref_set_non_owning(env, reg); 11800 } 11801 })); 11802 return 0; 11803 } 11804 11805 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 11806 return -EFAULT; 11807 } 11808 11809 /* Implementation details: 11810 * 11811 * Each register points to some region of memory, which we define as an 11812 * allocation. Each allocation may embed a bpf_spin_lock which protects any 11813 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 11814 * allocation. The lock and the data it protects are colocated in the same 11815 * memory region. 11816 * 11817 * Hence, everytime a register holds a pointer value pointing to such 11818 * allocation, the verifier preserves a unique reg->id for it. 11819 * 11820 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 11821 * bpf_spin_lock is called. 11822 * 11823 * To enable this, lock state in the verifier captures two values: 11824 * active_lock.ptr = Register's type specific pointer 11825 * active_lock.id = A unique ID for each register pointer value 11826 * 11827 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 11828 * supported register types. 11829 * 11830 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 11831 * allocated objects is the reg->btf pointer. 11832 * 11833 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 11834 * can establish the provenance of the map value statically for each distinct 11835 * lookup into such maps. They always contain a single map value hence unique 11836 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 11837 * 11838 * So, in case of global variables, they use array maps with max_entries = 1, 11839 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 11840 * into the same map value as max_entries is 1, as described above). 11841 * 11842 * In case of inner map lookups, the inner map pointer has same map_ptr as the 11843 * outer map pointer (in verifier context), but each lookup into an inner map 11844 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 11845 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 11846 * will get different reg->id assigned to each lookup, hence different 11847 * active_lock.id. 11848 * 11849 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 11850 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 11851 * returned from bpf_obj_new. Each allocation receives a new reg->id. 11852 */ 11853 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11854 { 11855 struct bpf_reference_state *s; 11856 void *ptr; 11857 u32 id; 11858 11859 switch ((int)reg->type) { 11860 case PTR_TO_MAP_VALUE: 11861 ptr = reg->map_ptr; 11862 break; 11863 case PTR_TO_BTF_ID | MEM_ALLOC: 11864 ptr = reg->btf; 11865 break; 11866 default: 11867 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 11868 return -EFAULT; 11869 } 11870 id = reg->id; 11871 11872 if (!cur_func(env)->active_locks) 11873 return -EINVAL; 11874 s = find_lock_state(env, REF_TYPE_LOCK, id, ptr); 11875 if (!s) { 11876 verbose(env, "held lock and object are not in the same allocation\n"); 11877 return -EINVAL; 11878 } 11879 return 0; 11880 } 11881 11882 static bool is_bpf_list_api_kfunc(u32 btf_id) 11883 { 11884 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11885 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11886 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 11887 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 11888 } 11889 11890 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 11891 { 11892 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 11893 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11894 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 11895 } 11896 11897 static bool is_bpf_graph_api_kfunc(u32 btf_id) 11898 { 11899 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 11900 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 11901 } 11902 11903 static bool is_sync_callback_calling_kfunc(u32 btf_id) 11904 { 11905 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 11906 } 11907 11908 static bool is_async_callback_calling_kfunc(u32 btf_id) 11909 { 11910 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 11911 } 11912 11913 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 11914 { 11915 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 11916 insn->imm == special_kfunc_list[KF_bpf_throw]; 11917 } 11918 11919 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id) 11920 { 11921 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 11922 } 11923 11924 static bool is_callback_calling_kfunc(u32 btf_id) 11925 { 11926 return is_sync_callback_calling_kfunc(btf_id) || 11927 is_async_callback_calling_kfunc(btf_id); 11928 } 11929 11930 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 11931 { 11932 return is_bpf_rbtree_api_kfunc(btf_id); 11933 } 11934 11935 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 11936 enum btf_field_type head_field_type, 11937 u32 kfunc_btf_id) 11938 { 11939 bool ret; 11940 11941 switch (head_field_type) { 11942 case BPF_LIST_HEAD: 11943 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 11944 break; 11945 case BPF_RB_ROOT: 11946 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 11947 break; 11948 default: 11949 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 11950 btf_field_type_name(head_field_type)); 11951 return false; 11952 } 11953 11954 if (!ret) 11955 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 11956 btf_field_type_name(head_field_type)); 11957 return ret; 11958 } 11959 11960 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 11961 enum btf_field_type node_field_type, 11962 u32 kfunc_btf_id) 11963 { 11964 bool ret; 11965 11966 switch (node_field_type) { 11967 case BPF_LIST_NODE: 11968 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11969 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 11970 break; 11971 case BPF_RB_NODE: 11972 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11973 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 11974 break; 11975 default: 11976 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 11977 btf_field_type_name(node_field_type)); 11978 return false; 11979 } 11980 11981 if (!ret) 11982 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 11983 btf_field_type_name(node_field_type)); 11984 return ret; 11985 } 11986 11987 static int 11988 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 11989 struct bpf_reg_state *reg, u32 regno, 11990 struct bpf_kfunc_call_arg_meta *meta, 11991 enum btf_field_type head_field_type, 11992 struct btf_field **head_field) 11993 { 11994 const char *head_type_name; 11995 struct btf_field *field; 11996 struct btf_record *rec; 11997 u32 head_off; 11998 11999 if (meta->btf != btf_vmlinux) { 12000 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 12001 return -EFAULT; 12002 } 12003 12004 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 12005 return -EFAULT; 12006 12007 head_type_name = btf_field_type_name(head_field_type); 12008 if (!tnum_is_const(reg->var_off)) { 12009 verbose(env, 12010 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 12011 regno, head_type_name); 12012 return -EINVAL; 12013 } 12014 12015 rec = reg_btf_record(reg); 12016 head_off = reg->off + reg->var_off.value; 12017 field = btf_record_find(rec, head_off, head_field_type); 12018 if (!field) { 12019 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 12020 return -EINVAL; 12021 } 12022 12023 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 12024 if (check_reg_allocation_locked(env, reg)) { 12025 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 12026 rec->spin_lock_off, head_type_name); 12027 return -EINVAL; 12028 } 12029 12030 if (*head_field) { 12031 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 12032 return -EFAULT; 12033 } 12034 *head_field = field; 12035 return 0; 12036 } 12037 12038 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 12039 struct bpf_reg_state *reg, u32 regno, 12040 struct bpf_kfunc_call_arg_meta *meta) 12041 { 12042 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 12043 &meta->arg_list_head.field); 12044 } 12045 12046 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 12047 struct bpf_reg_state *reg, u32 regno, 12048 struct bpf_kfunc_call_arg_meta *meta) 12049 { 12050 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 12051 &meta->arg_rbtree_root.field); 12052 } 12053 12054 static int 12055 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 12056 struct bpf_reg_state *reg, u32 regno, 12057 struct bpf_kfunc_call_arg_meta *meta, 12058 enum btf_field_type head_field_type, 12059 enum btf_field_type node_field_type, 12060 struct btf_field **node_field) 12061 { 12062 const char *node_type_name; 12063 const struct btf_type *et, *t; 12064 struct btf_field *field; 12065 u32 node_off; 12066 12067 if (meta->btf != btf_vmlinux) { 12068 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 12069 return -EFAULT; 12070 } 12071 12072 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 12073 return -EFAULT; 12074 12075 node_type_name = btf_field_type_name(node_field_type); 12076 if (!tnum_is_const(reg->var_off)) { 12077 verbose(env, 12078 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 12079 regno, node_type_name); 12080 return -EINVAL; 12081 } 12082 12083 node_off = reg->off + reg->var_off.value; 12084 field = reg_find_field_offset(reg, node_off, node_field_type); 12085 if (!field) { 12086 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 12087 return -EINVAL; 12088 } 12089 12090 field = *node_field; 12091 12092 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 12093 t = btf_type_by_id(reg->btf, reg->btf_id); 12094 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 12095 field->graph_root.value_btf_id, true)) { 12096 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 12097 "in struct %s, but arg is at offset=%d in struct %s\n", 12098 btf_field_type_name(head_field_type), 12099 btf_field_type_name(node_field_type), 12100 field->graph_root.node_offset, 12101 btf_name_by_offset(field->graph_root.btf, et->name_off), 12102 node_off, btf_name_by_offset(reg->btf, t->name_off)); 12103 return -EINVAL; 12104 } 12105 meta->arg_btf = reg->btf; 12106 meta->arg_btf_id = reg->btf_id; 12107 12108 if (node_off != field->graph_root.node_offset) { 12109 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 12110 node_off, btf_field_type_name(node_field_type), 12111 field->graph_root.node_offset, 12112 btf_name_by_offset(field->graph_root.btf, et->name_off)); 12113 return -EINVAL; 12114 } 12115 12116 return 0; 12117 } 12118 12119 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 12120 struct bpf_reg_state *reg, u32 regno, 12121 struct bpf_kfunc_call_arg_meta *meta) 12122 { 12123 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 12124 BPF_LIST_HEAD, BPF_LIST_NODE, 12125 &meta->arg_list_head.field); 12126 } 12127 12128 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 12129 struct bpf_reg_state *reg, u32 regno, 12130 struct bpf_kfunc_call_arg_meta *meta) 12131 { 12132 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 12133 BPF_RB_ROOT, BPF_RB_NODE, 12134 &meta->arg_rbtree_root.field); 12135 } 12136 12137 /* 12138 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 12139 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 12140 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 12141 * them can only be attached to some specific hook points. 12142 */ 12143 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 12144 { 12145 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 12146 12147 switch (prog_type) { 12148 case BPF_PROG_TYPE_LSM: 12149 return true; 12150 case BPF_PROG_TYPE_TRACING: 12151 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 12152 return true; 12153 fallthrough; 12154 default: 12155 return in_sleepable(env); 12156 } 12157 } 12158 12159 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 12160 int insn_idx) 12161 { 12162 const char *func_name = meta->func_name, *ref_tname; 12163 const struct btf *btf = meta->btf; 12164 const struct btf_param *args; 12165 struct btf_record *rec; 12166 u32 i, nargs; 12167 int ret; 12168 12169 args = (const struct btf_param *)(meta->func_proto + 1); 12170 nargs = btf_type_vlen(meta->func_proto); 12171 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 12172 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 12173 MAX_BPF_FUNC_REG_ARGS); 12174 return -EINVAL; 12175 } 12176 12177 /* Check that BTF function arguments match actual types that the 12178 * verifier sees. 12179 */ 12180 for (i = 0; i < nargs; i++) { 12181 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 12182 const struct btf_type *t, *ref_t, *resolve_ret; 12183 enum bpf_arg_type arg_type = ARG_DONTCARE; 12184 u32 regno = i + 1, ref_id, type_size; 12185 bool is_ret_buf_sz = false; 12186 bool mask = false; 12187 int kf_arg_type; 12188 12189 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 12190 12191 if (is_kfunc_arg_ignore(btf, &args[i])) 12192 continue; 12193 12194 if (btf_type_is_scalar(t)) { 12195 if (reg->type != SCALAR_VALUE) { 12196 verbose(env, "R%d is not a scalar\n", regno); 12197 return -EINVAL; 12198 } 12199 12200 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 12201 if (meta->arg_constant.found) { 12202 verbose(env, "verifier internal error: only one constant argument permitted\n"); 12203 return -EFAULT; 12204 } 12205 if (!tnum_is_const(reg->var_off)) { 12206 verbose(env, "R%d must be a known constant\n", regno); 12207 return -EINVAL; 12208 } 12209 ret = mark_chain_precision(env, regno); 12210 if (ret < 0) 12211 return ret; 12212 meta->arg_constant.found = true; 12213 meta->arg_constant.value = reg->var_off.value; 12214 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 12215 meta->r0_rdonly = true; 12216 is_ret_buf_sz = true; 12217 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 12218 is_ret_buf_sz = true; 12219 } 12220 12221 if (is_ret_buf_sz) { 12222 if (meta->r0_size) { 12223 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 12224 return -EINVAL; 12225 } 12226 12227 if (!tnum_is_const(reg->var_off)) { 12228 verbose(env, "R%d is not a const\n", regno); 12229 return -EINVAL; 12230 } 12231 12232 meta->r0_size = reg->var_off.value; 12233 ret = mark_chain_precision(env, regno); 12234 if (ret) 12235 return ret; 12236 } 12237 continue; 12238 } 12239 12240 if (!btf_type_is_ptr(t)) { 12241 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 12242 return -EINVAL; 12243 } 12244 12245 mask = mask_raw_tp_reg(env, reg); 12246 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 12247 (register_is_null(reg) || type_may_be_null(reg->type)) && 12248 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 12249 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 12250 unmask_raw_tp_reg(reg, mask); 12251 return -EACCES; 12252 } 12253 unmask_raw_tp_reg(reg, mask); 12254 12255 if (reg->ref_obj_id) { 12256 if (is_kfunc_release(meta) && meta->ref_obj_id) { 12257 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 12258 regno, reg->ref_obj_id, 12259 meta->ref_obj_id); 12260 return -EFAULT; 12261 } 12262 meta->ref_obj_id = reg->ref_obj_id; 12263 if (is_kfunc_release(meta)) 12264 meta->release_regno = regno; 12265 } 12266 12267 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 12268 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 12269 12270 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 12271 if (kf_arg_type < 0) 12272 return kf_arg_type; 12273 12274 switch (kf_arg_type) { 12275 case KF_ARG_PTR_TO_NULL: 12276 continue; 12277 case KF_ARG_PTR_TO_MAP: 12278 if (!reg->map_ptr) { 12279 verbose(env, "pointer in R%d isn't map pointer\n", regno); 12280 return -EINVAL; 12281 } 12282 if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) { 12283 /* Use map_uid (which is unique id of inner map) to reject: 12284 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 12285 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 12286 * if (inner_map1 && inner_map2) { 12287 * wq = bpf_map_lookup_elem(inner_map1); 12288 * if (wq) 12289 * // mismatch would have been allowed 12290 * bpf_wq_init(wq, inner_map2); 12291 * } 12292 * 12293 * Comparing map_ptr is enough to distinguish normal and outer maps. 12294 */ 12295 if (meta->map.ptr != reg->map_ptr || 12296 meta->map.uid != reg->map_uid) { 12297 verbose(env, 12298 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 12299 meta->map.uid, reg->map_uid); 12300 return -EINVAL; 12301 } 12302 } 12303 meta->map.ptr = reg->map_ptr; 12304 meta->map.uid = reg->map_uid; 12305 fallthrough; 12306 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 12307 case KF_ARG_PTR_TO_BTF_ID: 12308 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 12309 break; 12310 12311 /* Allow passing maybe NULL raw_tp arguments to 12312 * kfuncs for compatibility. Don't apply this to 12313 * arguments with ref_obj_id > 0. 12314 */ 12315 mask = mask_raw_tp_reg(env, reg); 12316 if (!is_trusted_reg(reg)) { 12317 if (!is_kfunc_rcu(meta)) { 12318 verbose(env, "R%d must be referenced or trusted\n", regno); 12319 unmask_raw_tp_reg(reg, mask); 12320 return -EINVAL; 12321 } 12322 if (!is_rcu_reg(reg)) { 12323 verbose(env, "R%d must be a rcu pointer\n", regno); 12324 unmask_raw_tp_reg(reg, mask); 12325 return -EINVAL; 12326 } 12327 } 12328 unmask_raw_tp_reg(reg, mask); 12329 fallthrough; 12330 case KF_ARG_PTR_TO_CTX: 12331 case KF_ARG_PTR_TO_DYNPTR: 12332 case KF_ARG_PTR_TO_ITER: 12333 case KF_ARG_PTR_TO_LIST_HEAD: 12334 case KF_ARG_PTR_TO_LIST_NODE: 12335 case KF_ARG_PTR_TO_RB_ROOT: 12336 case KF_ARG_PTR_TO_RB_NODE: 12337 case KF_ARG_PTR_TO_MEM: 12338 case KF_ARG_PTR_TO_MEM_SIZE: 12339 case KF_ARG_PTR_TO_CALLBACK: 12340 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 12341 case KF_ARG_PTR_TO_CONST_STR: 12342 case KF_ARG_PTR_TO_WORKQUEUE: 12343 break; 12344 default: 12345 WARN_ON_ONCE(1); 12346 return -EFAULT; 12347 } 12348 12349 if (is_kfunc_release(meta) && reg->ref_obj_id) 12350 arg_type |= OBJ_RELEASE; 12351 mask = mask_raw_tp_reg(env, reg); 12352 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 12353 unmask_raw_tp_reg(reg, mask); 12354 if (ret < 0) 12355 return ret; 12356 12357 switch (kf_arg_type) { 12358 case KF_ARG_PTR_TO_CTX: 12359 if (reg->type != PTR_TO_CTX) { 12360 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", 12361 i, reg_type_str(env, reg->type)); 12362 return -EINVAL; 12363 } 12364 12365 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 12366 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 12367 if (ret < 0) 12368 return -EINVAL; 12369 meta->ret_btf_id = ret; 12370 } 12371 break; 12372 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 12373 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 12374 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 12375 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 12376 return -EINVAL; 12377 } 12378 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 12379 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 12380 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 12381 return -EINVAL; 12382 } 12383 } else { 12384 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12385 return -EINVAL; 12386 } 12387 if (!reg->ref_obj_id) { 12388 verbose(env, "allocated object must be referenced\n"); 12389 return -EINVAL; 12390 } 12391 if (meta->btf == btf_vmlinux) { 12392 meta->arg_btf = reg->btf; 12393 meta->arg_btf_id = reg->btf_id; 12394 } 12395 break; 12396 case KF_ARG_PTR_TO_DYNPTR: 12397 { 12398 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 12399 int clone_ref_obj_id = 0; 12400 12401 if (reg->type == CONST_PTR_TO_DYNPTR) 12402 dynptr_arg_type |= MEM_RDONLY; 12403 12404 if (is_kfunc_arg_uninit(btf, &args[i])) 12405 dynptr_arg_type |= MEM_UNINIT; 12406 12407 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 12408 dynptr_arg_type |= DYNPTR_TYPE_SKB; 12409 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 12410 dynptr_arg_type |= DYNPTR_TYPE_XDP; 12411 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 12412 (dynptr_arg_type & MEM_UNINIT)) { 12413 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 12414 12415 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 12416 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 12417 return -EFAULT; 12418 } 12419 12420 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 12421 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 12422 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 12423 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 12424 return -EFAULT; 12425 } 12426 } 12427 12428 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 12429 if (ret < 0) 12430 return ret; 12431 12432 if (!(dynptr_arg_type & MEM_UNINIT)) { 12433 int id = dynptr_id(env, reg); 12434 12435 if (id < 0) { 12436 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 12437 return id; 12438 } 12439 meta->initialized_dynptr.id = id; 12440 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 12441 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 12442 } 12443 12444 break; 12445 } 12446 case KF_ARG_PTR_TO_ITER: 12447 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 12448 if (!check_css_task_iter_allowlist(env)) { 12449 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 12450 return -EINVAL; 12451 } 12452 } 12453 ret = process_iter_arg(env, regno, insn_idx, meta); 12454 if (ret < 0) 12455 return ret; 12456 break; 12457 case KF_ARG_PTR_TO_LIST_HEAD: 12458 if (reg->type != PTR_TO_MAP_VALUE && 12459 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12460 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 12461 return -EINVAL; 12462 } 12463 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 12464 verbose(env, "allocated object must be referenced\n"); 12465 return -EINVAL; 12466 } 12467 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 12468 if (ret < 0) 12469 return ret; 12470 break; 12471 case KF_ARG_PTR_TO_RB_ROOT: 12472 if (reg->type != PTR_TO_MAP_VALUE && 12473 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12474 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 12475 return -EINVAL; 12476 } 12477 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 12478 verbose(env, "allocated object must be referenced\n"); 12479 return -EINVAL; 12480 } 12481 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 12482 if (ret < 0) 12483 return ret; 12484 break; 12485 case KF_ARG_PTR_TO_LIST_NODE: 12486 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12487 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12488 return -EINVAL; 12489 } 12490 if (!reg->ref_obj_id) { 12491 verbose(env, "allocated object must be referenced\n"); 12492 return -EINVAL; 12493 } 12494 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 12495 if (ret < 0) 12496 return ret; 12497 break; 12498 case KF_ARG_PTR_TO_RB_NODE: 12499 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 12500 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 12501 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 12502 return -EINVAL; 12503 } 12504 if (in_rbtree_lock_required_cb(env)) { 12505 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 12506 return -EINVAL; 12507 } 12508 } else { 12509 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12510 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12511 return -EINVAL; 12512 } 12513 if (!reg->ref_obj_id) { 12514 verbose(env, "allocated object must be referenced\n"); 12515 return -EINVAL; 12516 } 12517 } 12518 12519 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 12520 if (ret < 0) 12521 return ret; 12522 break; 12523 case KF_ARG_PTR_TO_MAP: 12524 /* If argument has '__map' suffix expect 'struct bpf_map *' */ 12525 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; 12526 ref_t = btf_type_by_id(btf_vmlinux, ref_id); 12527 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 12528 fallthrough; 12529 case KF_ARG_PTR_TO_BTF_ID: 12530 mask = mask_raw_tp_reg(env, reg); 12531 /* Only base_type is checked, further checks are done here */ 12532 if ((base_type(reg->type) != PTR_TO_BTF_ID || 12533 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 12534 !reg2btf_ids[base_type(reg->type)]) { 12535 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 12536 verbose(env, "expected %s or socket\n", 12537 reg_type_str(env, base_type(reg->type) | 12538 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 12539 unmask_raw_tp_reg(reg, mask); 12540 return -EINVAL; 12541 } 12542 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 12543 unmask_raw_tp_reg(reg, mask); 12544 if (ret < 0) 12545 return ret; 12546 break; 12547 case KF_ARG_PTR_TO_MEM: 12548 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 12549 if (IS_ERR(resolve_ret)) { 12550 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 12551 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 12552 return -EINVAL; 12553 } 12554 ret = check_mem_reg(env, reg, regno, type_size); 12555 if (ret < 0) 12556 return ret; 12557 break; 12558 case KF_ARG_PTR_TO_MEM_SIZE: 12559 { 12560 struct bpf_reg_state *buff_reg = ®s[regno]; 12561 const struct btf_param *buff_arg = &args[i]; 12562 struct bpf_reg_state *size_reg = ®s[regno + 1]; 12563 const struct btf_param *size_arg = &args[i + 1]; 12564 12565 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 12566 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 12567 if (ret < 0) { 12568 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 12569 return ret; 12570 } 12571 } 12572 12573 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 12574 if (meta->arg_constant.found) { 12575 verbose(env, "verifier internal error: only one constant argument permitted\n"); 12576 return -EFAULT; 12577 } 12578 if (!tnum_is_const(size_reg->var_off)) { 12579 verbose(env, "R%d must be a known constant\n", regno + 1); 12580 return -EINVAL; 12581 } 12582 meta->arg_constant.found = true; 12583 meta->arg_constant.value = size_reg->var_off.value; 12584 } 12585 12586 /* Skip next '__sz' or '__szk' argument */ 12587 i++; 12588 break; 12589 } 12590 case KF_ARG_PTR_TO_CALLBACK: 12591 if (reg->type != PTR_TO_FUNC) { 12592 verbose(env, "arg%d expected pointer to func\n", i); 12593 return -EINVAL; 12594 } 12595 meta->subprogno = reg->subprogno; 12596 break; 12597 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 12598 if (!type_is_ptr_alloc_obj(reg->type)) { 12599 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 12600 return -EINVAL; 12601 } 12602 if (!type_is_non_owning_ref(reg->type)) 12603 meta->arg_owning_ref = true; 12604 12605 rec = reg_btf_record(reg); 12606 if (!rec) { 12607 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 12608 return -EFAULT; 12609 } 12610 12611 if (rec->refcount_off < 0) { 12612 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 12613 return -EINVAL; 12614 } 12615 12616 meta->arg_btf = reg->btf; 12617 meta->arg_btf_id = reg->btf_id; 12618 break; 12619 case KF_ARG_PTR_TO_CONST_STR: 12620 if (reg->type != PTR_TO_MAP_VALUE) { 12621 verbose(env, "arg#%d doesn't point to a const string\n", i); 12622 return -EINVAL; 12623 } 12624 ret = check_reg_const_str(env, reg, regno); 12625 if (ret) 12626 return ret; 12627 break; 12628 case KF_ARG_PTR_TO_WORKQUEUE: 12629 if (reg->type != PTR_TO_MAP_VALUE) { 12630 verbose(env, "arg#%d doesn't point to a map value\n", i); 12631 return -EINVAL; 12632 } 12633 ret = process_wq_func(env, regno, meta); 12634 if (ret < 0) 12635 return ret; 12636 break; 12637 } 12638 } 12639 12640 if (is_kfunc_release(meta) && !meta->release_regno) { 12641 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 12642 func_name); 12643 return -EINVAL; 12644 } 12645 12646 return 0; 12647 } 12648 12649 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 12650 struct bpf_insn *insn, 12651 struct bpf_kfunc_call_arg_meta *meta, 12652 const char **kfunc_name) 12653 { 12654 const struct btf_type *func, *func_proto; 12655 u32 func_id, *kfunc_flags; 12656 const char *func_name; 12657 struct btf *desc_btf; 12658 12659 if (kfunc_name) 12660 *kfunc_name = NULL; 12661 12662 if (!insn->imm) 12663 return -EINVAL; 12664 12665 desc_btf = find_kfunc_desc_btf(env, insn->off); 12666 if (IS_ERR(desc_btf)) 12667 return PTR_ERR(desc_btf); 12668 12669 func_id = insn->imm; 12670 func = btf_type_by_id(desc_btf, func_id); 12671 func_name = btf_name_by_offset(desc_btf, func->name_off); 12672 if (kfunc_name) 12673 *kfunc_name = func_name; 12674 func_proto = btf_type_by_id(desc_btf, func->type); 12675 12676 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 12677 if (!kfunc_flags) { 12678 return -EACCES; 12679 } 12680 12681 memset(meta, 0, sizeof(*meta)); 12682 meta->btf = desc_btf; 12683 meta->func_id = func_id; 12684 meta->kfunc_flags = *kfunc_flags; 12685 meta->func_proto = func_proto; 12686 meta->func_name = func_name; 12687 12688 return 0; 12689 } 12690 12691 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); 12692 12693 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 12694 int *insn_idx_p) 12695 { 12696 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable; 12697 u32 i, nargs, ptr_type_id, release_ref_obj_id; 12698 struct bpf_reg_state *regs = cur_regs(env); 12699 const char *func_name, *ptr_type_name; 12700 const struct btf_type *t, *ptr_type; 12701 struct bpf_kfunc_call_arg_meta meta; 12702 struct bpf_insn_aux_data *insn_aux; 12703 int err, insn_idx = *insn_idx_p; 12704 const struct btf_param *args; 12705 const struct btf_type *ret_t; 12706 struct btf *desc_btf; 12707 12708 /* skip for now, but return error when we find this in fixup_kfunc_call */ 12709 if (!insn->imm) 12710 return 0; 12711 12712 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 12713 if (err == -EACCES && func_name) 12714 verbose(env, "calling kernel function %s is not allowed\n", func_name); 12715 if (err) 12716 return err; 12717 desc_btf = meta.btf; 12718 insn_aux = &env->insn_aux_data[insn_idx]; 12719 12720 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 12721 12722 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 12723 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 12724 return -EACCES; 12725 } 12726 12727 sleepable = is_kfunc_sleepable(&meta); 12728 if (sleepable && !in_sleepable(env)) { 12729 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 12730 return -EACCES; 12731 } 12732 12733 /* Check the arguments */ 12734 err = check_kfunc_args(env, &meta, insn_idx); 12735 if (err < 0) 12736 return err; 12737 12738 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12739 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 12740 set_rbtree_add_callback_state); 12741 if (err) { 12742 verbose(env, "kfunc %s#%d failed callback verification\n", 12743 func_name, meta.func_id); 12744 return err; 12745 } 12746 } 12747 12748 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) { 12749 meta.r0_size = sizeof(u64); 12750 meta.r0_rdonly = false; 12751 } 12752 12753 if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) { 12754 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 12755 set_timer_callback_state); 12756 if (err) { 12757 verbose(env, "kfunc %s#%d failed callback verification\n", 12758 func_name, meta.func_id); 12759 return err; 12760 } 12761 } 12762 12763 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 12764 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 12765 12766 preempt_disable = is_kfunc_bpf_preempt_disable(&meta); 12767 preempt_enable = is_kfunc_bpf_preempt_enable(&meta); 12768 12769 if (env->cur_state->active_rcu_lock) { 12770 struct bpf_func_state *state; 12771 struct bpf_reg_state *reg; 12772 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 12773 12774 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 12775 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 12776 return -EACCES; 12777 } 12778 12779 if (rcu_lock) { 12780 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 12781 return -EINVAL; 12782 } else if (rcu_unlock) { 12783 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 12784 if (reg->type & MEM_RCU) { 12785 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 12786 reg->type |= PTR_UNTRUSTED; 12787 } 12788 })); 12789 env->cur_state->active_rcu_lock = false; 12790 } else if (sleepable) { 12791 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 12792 return -EACCES; 12793 } 12794 } else if (rcu_lock) { 12795 env->cur_state->active_rcu_lock = true; 12796 } else if (rcu_unlock) { 12797 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 12798 return -EINVAL; 12799 } 12800 12801 if (env->cur_state->active_preempt_lock) { 12802 if (preempt_disable) { 12803 env->cur_state->active_preempt_lock++; 12804 } else if (preempt_enable) { 12805 env->cur_state->active_preempt_lock--; 12806 } else if (sleepable) { 12807 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name); 12808 return -EACCES; 12809 } 12810 } else if (preempt_disable) { 12811 env->cur_state->active_preempt_lock++; 12812 } else if (preempt_enable) { 12813 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name); 12814 return -EINVAL; 12815 } 12816 12817 /* In case of release function, we get register number of refcounted 12818 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 12819 */ 12820 if (meta.release_regno) { 12821 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 12822 if (err) { 12823 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12824 func_name, meta.func_id); 12825 return err; 12826 } 12827 } 12828 12829 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12830 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12831 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12832 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 12833 insn_aux->insert_off = regs[BPF_REG_2].off; 12834 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 12835 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 12836 if (err) { 12837 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 12838 func_name, meta.func_id); 12839 return err; 12840 } 12841 12842 err = release_reference(env, release_ref_obj_id); 12843 if (err) { 12844 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12845 func_name, meta.func_id); 12846 return err; 12847 } 12848 } 12849 12850 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 12851 if (!bpf_jit_supports_exceptions()) { 12852 verbose(env, "JIT does not support calling kfunc %s#%d\n", 12853 func_name, meta.func_id); 12854 return -ENOTSUPP; 12855 } 12856 env->seen_exception = true; 12857 12858 /* In the case of the default callback, the cookie value passed 12859 * to bpf_throw becomes the return value of the program. 12860 */ 12861 if (!env->exception_callback_subprog) { 12862 err = check_return_code(env, BPF_REG_1, "R1"); 12863 if (err < 0) 12864 return err; 12865 } 12866 } 12867 12868 for (i = 0; i < CALLER_SAVED_REGS; i++) 12869 mark_reg_not_init(env, regs, caller_saved[i]); 12870 12871 /* Check return type */ 12872 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 12873 12874 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 12875 /* Only exception is bpf_obj_new_impl */ 12876 if (meta.btf != btf_vmlinux || 12877 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 12878 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 12879 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 12880 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 12881 return -EINVAL; 12882 } 12883 } 12884 12885 if (btf_type_is_scalar(t)) { 12886 mark_reg_unknown(env, regs, BPF_REG_0); 12887 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 12888 } else if (btf_type_is_ptr(t)) { 12889 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 12890 12891 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12892 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 12893 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12894 struct btf_struct_meta *struct_meta; 12895 struct btf *ret_btf; 12896 u32 ret_btf_id; 12897 12898 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 12899 return -ENOMEM; 12900 12901 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 12902 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 12903 return -EINVAL; 12904 } 12905 12906 ret_btf = env->prog->aux->btf; 12907 ret_btf_id = meta.arg_constant.value; 12908 12909 /* This may be NULL due to user not supplying a BTF */ 12910 if (!ret_btf) { 12911 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 12912 return -EINVAL; 12913 } 12914 12915 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 12916 if (!ret_t || !__btf_type_is_struct(ret_t)) { 12917 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 12918 return -EINVAL; 12919 } 12920 12921 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12922 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { 12923 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", 12924 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); 12925 return -EINVAL; 12926 } 12927 12928 if (!bpf_global_percpu_ma_set) { 12929 mutex_lock(&bpf_percpu_ma_lock); 12930 if (!bpf_global_percpu_ma_set) { 12931 /* Charge memory allocated with bpf_global_percpu_ma to 12932 * root memcg. The obj_cgroup for root memcg is NULL. 12933 */ 12934 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); 12935 if (!err) 12936 bpf_global_percpu_ma_set = true; 12937 } 12938 mutex_unlock(&bpf_percpu_ma_lock); 12939 if (err) 12940 return err; 12941 } 12942 12943 mutex_lock(&bpf_percpu_ma_lock); 12944 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); 12945 mutex_unlock(&bpf_percpu_ma_lock); 12946 if (err) 12947 return err; 12948 } 12949 12950 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 12951 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12952 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 12953 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 12954 return -EINVAL; 12955 } 12956 12957 if (struct_meta) { 12958 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 12959 return -EINVAL; 12960 } 12961 } 12962 12963 mark_reg_known_zero(env, regs, BPF_REG_0); 12964 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12965 regs[BPF_REG_0].btf = ret_btf; 12966 regs[BPF_REG_0].btf_id = ret_btf_id; 12967 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 12968 regs[BPF_REG_0].type |= MEM_PERCPU; 12969 12970 insn_aux->obj_new_size = ret_t->size; 12971 insn_aux->kptr_struct_meta = struct_meta; 12972 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 12973 mark_reg_known_zero(env, regs, BPF_REG_0); 12974 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12975 regs[BPF_REG_0].btf = meta.arg_btf; 12976 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 12977 12978 insn_aux->kptr_struct_meta = 12979 btf_find_struct_meta(meta.arg_btf, 12980 meta.arg_btf_id); 12981 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 12982 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 12983 struct btf_field *field = meta.arg_list_head.field; 12984 12985 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12986 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12987 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12988 struct btf_field *field = meta.arg_rbtree_root.field; 12989 12990 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12991 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 12992 mark_reg_known_zero(env, regs, BPF_REG_0); 12993 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 12994 regs[BPF_REG_0].btf = desc_btf; 12995 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 12996 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 12997 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 12998 if (!ret_t || !btf_type_is_struct(ret_t)) { 12999 verbose(env, 13000 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 13001 return -EINVAL; 13002 } 13003 13004 mark_reg_known_zero(env, regs, BPF_REG_0); 13005 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 13006 regs[BPF_REG_0].btf = desc_btf; 13007 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 13008 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 13009 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 13010 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 13011 13012 mark_reg_known_zero(env, regs, BPF_REG_0); 13013 13014 if (!meta.arg_constant.found) { 13015 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 13016 return -EFAULT; 13017 } 13018 13019 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 13020 13021 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 13022 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 13023 13024 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 13025 regs[BPF_REG_0].type |= MEM_RDONLY; 13026 } else { 13027 /* this will set env->seen_direct_write to true */ 13028 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 13029 verbose(env, "the prog does not allow writes to packet data\n"); 13030 return -EINVAL; 13031 } 13032 } 13033 13034 if (!meta.initialized_dynptr.id) { 13035 verbose(env, "verifier internal error: no dynptr id\n"); 13036 return -EFAULT; 13037 } 13038 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 13039 13040 /* we don't need to set BPF_REG_0's ref obj id 13041 * because packet slices are not refcounted (see 13042 * dynptr_type_refcounted) 13043 */ 13044 } else { 13045 verbose(env, "kernel function %s unhandled dynamic return type\n", 13046 meta.func_name); 13047 return -EFAULT; 13048 } 13049 } else if (btf_type_is_void(ptr_type)) { 13050 /* kfunc returning 'void *' is equivalent to returning scalar */ 13051 mark_reg_unknown(env, regs, BPF_REG_0); 13052 } else if (!__btf_type_is_struct(ptr_type)) { 13053 if (!meta.r0_size) { 13054 __u32 sz; 13055 13056 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 13057 meta.r0_size = sz; 13058 meta.r0_rdonly = true; 13059 } 13060 } 13061 if (!meta.r0_size) { 13062 ptr_type_name = btf_name_by_offset(desc_btf, 13063 ptr_type->name_off); 13064 verbose(env, 13065 "kernel function %s returns pointer type %s %s is not supported\n", 13066 func_name, 13067 btf_type_str(ptr_type), 13068 ptr_type_name); 13069 return -EINVAL; 13070 } 13071 13072 mark_reg_known_zero(env, regs, BPF_REG_0); 13073 regs[BPF_REG_0].type = PTR_TO_MEM; 13074 regs[BPF_REG_0].mem_size = meta.r0_size; 13075 13076 if (meta.r0_rdonly) 13077 regs[BPF_REG_0].type |= MEM_RDONLY; 13078 13079 /* Ensures we don't access the memory after a release_reference() */ 13080 if (meta.ref_obj_id) 13081 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 13082 } else { 13083 mark_reg_known_zero(env, regs, BPF_REG_0); 13084 regs[BPF_REG_0].btf = desc_btf; 13085 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 13086 regs[BPF_REG_0].btf_id = ptr_type_id; 13087 13088 if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache]) 13089 regs[BPF_REG_0].type |= PTR_UNTRUSTED; 13090 13091 if (is_iter_next_kfunc(&meta)) { 13092 struct bpf_reg_state *cur_iter; 13093 13094 cur_iter = get_iter_from_state(env->cur_state, &meta); 13095 13096 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */ 13097 regs[BPF_REG_0].type |= MEM_RCU; 13098 else 13099 regs[BPF_REG_0].type |= PTR_TRUSTED; 13100 } 13101 } 13102 13103 if (is_kfunc_ret_null(&meta)) { 13104 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 13105 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 13106 regs[BPF_REG_0].id = ++env->id_gen; 13107 } 13108 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 13109 if (is_kfunc_acquire(&meta)) { 13110 int id = acquire_reference_state(env, insn_idx); 13111 13112 if (id < 0) 13113 return id; 13114 if (is_kfunc_ret_null(&meta)) 13115 regs[BPF_REG_0].id = id; 13116 regs[BPF_REG_0].ref_obj_id = id; 13117 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 13118 ref_set_non_owning(env, ®s[BPF_REG_0]); 13119 } 13120 13121 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 13122 regs[BPF_REG_0].id = ++env->id_gen; 13123 } else if (btf_type_is_void(t)) { 13124 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 13125 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 13126 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 13127 insn_aux->kptr_struct_meta = 13128 btf_find_struct_meta(meta.arg_btf, 13129 meta.arg_btf_id); 13130 } 13131 } 13132 } 13133 13134 nargs = btf_type_vlen(meta.func_proto); 13135 args = (const struct btf_param *)(meta.func_proto + 1); 13136 for (i = 0; i < nargs; i++) { 13137 u32 regno = i + 1; 13138 13139 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 13140 if (btf_type_is_ptr(t)) 13141 mark_btf_func_reg_size(env, regno, sizeof(void *)); 13142 else 13143 /* scalar. ensured by btf_check_kfunc_arg_match() */ 13144 mark_btf_func_reg_size(env, regno, t->size); 13145 } 13146 13147 if (is_iter_next_kfunc(&meta)) { 13148 err = process_iter_next_call(env, insn_idx, &meta); 13149 if (err) 13150 return err; 13151 } 13152 13153 return 0; 13154 } 13155 13156 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 13157 const struct bpf_reg_state *reg, 13158 enum bpf_reg_type type) 13159 { 13160 bool known = tnum_is_const(reg->var_off); 13161 s64 val = reg->var_off.value; 13162 s64 smin = reg->smin_value; 13163 13164 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 13165 verbose(env, "math between %s pointer and %lld is not allowed\n", 13166 reg_type_str(env, type), val); 13167 return false; 13168 } 13169 13170 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 13171 verbose(env, "%s pointer offset %d is not allowed\n", 13172 reg_type_str(env, type), reg->off); 13173 return false; 13174 } 13175 13176 if (smin == S64_MIN) { 13177 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 13178 reg_type_str(env, type)); 13179 return false; 13180 } 13181 13182 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 13183 verbose(env, "value %lld makes %s pointer be out of bounds\n", 13184 smin, reg_type_str(env, type)); 13185 return false; 13186 } 13187 13188 return true; 13189 } 13190 13191 enum { 13192 REASON_BOUNDS = -1, 13193 REASON_TYPE = -2, 13194 REASON_PATHS = -3, 13195 REASON_LIMIT = -4, 13196 REASON_STACK = -5, 13197 }; 13198 13199 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 13200 u32 *alu_limit, bool mask_to_left) 13201 { 13202 u32 max = 0, ptr_limit = 0; 13203 13204 switch (ptr_reg->type) { 13205 case PTR_TO_STACK: 13206 /* Offset 0 is out-of-bounds, but acceptable start for the 13207 * left direction, see BPF_REG_FP. Also, unknown scalar 13208 * offset where we would need to deal with min/max bounds is 13209 * currently prohibited for unprivileged. 13210 */ 13211 max = MAX_BPF_STACK + mask_to_left; 13212 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 13213 break; 13214 case PTR_TO_MAP_VALUE: 13215 max = ptr_reg->map_ptr->value_size; 13216 ptr_limit = (mask_to_left ? 13217 ptr_reg->smin_value : 13218 ptr_reg->umax_value) + ptr_reg->off; 13219 break; 13220 default: 13221 return REASON_TYPE; 13222 } 13223 13224 if (ptr_limit >= max) 13225 return REASON_LIMIT; 13226 *alu_limit = ptr_limit; 13227 return 0; 13228 } 13229 13230 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 13231 const struct bpf_insn *insn) 13232 { 13233 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 13234 } 13235 13236 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 13237 u32 alu_state, u32 alu_limit) 13238 { 13239 /* If we arrived here from different branches with different 13240 * state or limits to sanitize, then this won't work. 13241 */ 13242 if (aux->alu_state && 13243 (aux->alu_state != alu_state || 13244 aux->alu_limit != alu_limit)) 13245 return REASON_PATHS; 13246 13247 /* Corresponding fixup done in do_misc_fixups(). */ 13248 aux->alu_state = alu_state; 13249 aux->alu_limit = alu_limit; 13250 return 0; 13251 } 13252 13253 static int sanitize_val_alu(struct bpf_verifier_env *env, 13254 struct bpf_insn *insn) 13255 { 13256 struct bpf_insn_aux_data *aux = cur_aux(env); 13257 13258 if (can_skip_alu_sanitation(env, insn)) 13259 return 0; 13260 13261 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 13262 } 13263 13264 static bool sanitize_needed(u8 opcode) 13265 { 13266 return opcode == BPF_ADD || opcode == BPF_SUB; 13267 } 13268 13269 struct bpf_sanitize_info { 13270 struct bpf_insn_aux_data aux; 13271 bool mask_to_left; 13272 }; 13273 13274 static struct bpf_verifier_state * 13275 sanitize_speculative_path(struct bpf_verifier_env *env, 13276 const struct bpf_insn *insn, 13277 u32 next_idx, u32 curr_idx) 13278 { 13279 struct bpf_verifier_state *branch; 13280 struct bpf_reg_state *regs; 13281 13282 branch = push_stack(env, next_idx, curr_idx, true); 13283 if (branch && insn) { 13284 regs = branch->frame[branch->curframe]->regs; 13285 if (BPF_SRC(insn->code) == BPF_K) { 13286 mark_reg_unknown(env, regs, insn->dst_reg); 13287 } else if (BPF_SRC(insn->code) == BPF_X) { 13288 mark_reg_unknown(env, regs, insn->dst_reg); 13289 mark_reg_unknown(env, regs, insn->src_reg); 13290 } 13291 } 13292 return branch; 13293 } 13294 13295 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 13296 struct bpf_insn *insn, 13297 const struct bpf_reg_state *ptr_reg, 13298 const struct bpf_reg_state *off_reg, 13299 struct bpf_reg_state *dst_reg, 13300 struct bpf_sanitize_info *info, 13301 const bool commit_window) 13302 { 13303 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 13304 struct bpf_verifier_state *vstate = env->cur_state; 13305 bool off_is_imm = tnum_is_const(off_reg->var_off); 13306 bool off_is_neg = off_reg->smin_value < 0; 13307 bool ptr_is_dst_reg = ptr_reg == dst_reg; 13308 u8 opcode = BPF_OP(insn->code); 13309 u32 alu_state, alu_limit; 13310 struct bpf_reg_state tmp; 13311 bool ret; 13312 int err; 13313 13314 if (can_skip_alu_sanitation(env, insn)) 13315 return 0; 13316 13317 /* We already marked aux for masking from non-speculative 13318 * paths, thus we got here in the first place. We only care 13319 * to explore bad access from here. 13320 */ 13321 if (vstate->speculative) 13322 goto do_sim; 13323 13324 if (!commit_window) { 13325 if (!tnum_is_const(off_reg->var_off) && 13326 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 13327 return REASON_BOUNDS; 13328 13329 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 13330 (opcode == BPF_SUB && !off_is_neg); 13331 } 13332 13333 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 13334 if (err < 0) 13335 return err; 13336 13337 if (commit_window) { 13338 /* In commit phase we narrow the masking window based on 13339 * the observed pointer move after the simulated operation. 13340 */ 13341 alu_state = info->aux.alu_state; 13342 alu_limit = abs(info->aux.alu_limit - alu_limit); 13343 } else { 13344 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 13345 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 13346 alu_state |= ptr_is_dst_reg ? 13347 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 13348 13349 /* Limit pruning on unknown scalars to enable deep search for 13350 * potential masking differences from other program paths. 13351 */ 13352 if (!off_is_imm) 13353 env->explore_alu_limits = true; 13354 } 13355 13356 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 13357 if (err < 0) 13358 return err; 13359 do_sim: 13360 /* If we're in commit phase, we're done here given we already 13361 * pushed the truncated dst_reg into the speculative verification 13362 * stack. 13363 * 13364 * Also, when register is a known constant, we rewrite register-based 13365 * operation to immediate-based, and thus do not need masking (and as 13366 * a consequence, do not need to simulate the zero-truncation either). 13367 */ 13368 if (commit_window || off_is_imm) 13369 return 0; 13370 13371 /* Simulate and find potential out-of-bounds access under 13372 * speculative execution from truncation as a result of 13373 * masking when off was not within expected range. If off 13374 * sits in dst, then we temporarily need to move ptr there 13375 * to simulate dst (== 0) +/-= ptr. Needed, for example, 13376 * for cases where we use K-based arithmetic in one direction 13377 * and truncated reg-based in the other in order to explore 13378 * bad access. 13379 */ 13380 if (!ptr_is_dst_reg) { 13381 tmp = *dst_reg; 13382 copy_register_state(dst_reg, ptr_reg); 13383 } 13384 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 13385 env->insn_idx); 13386 if (!ptr_is_dst_reg && ret) 13387 *dst_reg = tmp; 13388 return !ret ? REASON_STACK : 0; 13389 } 13390 13391 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 13392 { 13393 struct bpf_verifier_state *vstate = env->cur_state; 13394 13395 /* If we simulate paths under speculation, we don't update the 13396 * insn as 'seen' such that when we verify unreachable paths in 13397 * the non-speculative domain, sanitize_dead_code() can still 13398 * rewrite/sanitize them. 13399 */ 13400 if (!vstate->speculative) 13401 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 13402 } 13403 13404 static int sanitize_err(struct bpf_verifier_env *env, 13405 const struct bpf_insn *insn, int reason, 13406 const struct bpf_reg_state *off_reg, 13407 const struct bpf_reg_state *dst_reg) 13408 { 13409 static const char *err = "pointer arithmetic with it prohibited for !root"; 13410 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 13411 u32 dst = insn->dst_reg, src = insn->src_reg; 13412 13413 switch (reason) { 13414 case REASON_BOUNDS: 13415 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 13416 off_reg == dst_reg ? dst : src, err); 13417 break; 13418 case REASON_TYPE: 13419 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 13420 off_reg == dst_reg ? src : dst, err); 13421 break; 13422 case REASON_PATHS: 13423 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 13424 dst, op, err); 13425 break; 13426 case REASON_LIMIT: 13427 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 13428 dst, op, err); 13429 break; 13430 case REASON_STACK: 13431 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 13432 dst, err); 13433 break; 13434 default: 13435 verbose(env, "verifier internal error: unknown reason (%d)\n", 13436 reason); 13437 break; 13438 } 13439 13440 return -EACCES; 13441 } 13442 13443 /* check that stack access falls within stack limits and that 'reg' doesn't 13444 * have a variable offset. 13445 * 13446 * Variable offset is prohibited for unprivileged mode for simplicity since it 13447 * requires corresponding support in Spectre masking for stack ALU. See also 13448 * retrieve_ptr_limit(). 13449 * 13450 * 13451 * 'off' includes 'reg->off'. 13452 */ 13453 static int check_stack_access_for_ptr_arithmetic( 13454 struct bpf_verifier_env *env, 13455 int regno, 13456 const struct bpf_reg_state *reg, 13457 int off) 13458 { 13459 if (!tnum_is_const(reg->var_off)) { 13460 char tn_buf[48]; 13461 13462 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 13463 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 13464 regno, tn_buf, off); 13465 return -EACCES; 13466 } 13467 13468 if (off >= 0 || off < -MAX_BPF_STACK) { 13469 verbose(env, "R%d stack pointer arithmetic goes out of range, " 13470 "prohibited for !root; off=%d\n", regno, off); 13471 return -EACCES; 13472 } 13473 13474 return 0; 13475 } 13476 13477 static int sanitize_check_bounds(struct bpf_verifier_env *env, 13478 const struct bpf_insn *insn, 13479 const struct bpf_reg_state *dst_reg) 13480 { 13481 u32 dst = insn->dst_reg; 13482 13483 /* For unprivileged we require that resulting offset must be in bounds 13484 * in order to be able to sanitize access later on. 13485 */ 13486 if (env->bypass_spec_v1) 13487 return 0; 13488 13489 switch (dst_reg->type) { 13490 case PTR_TO_STACK: 13491 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 13492 dst_reg->off + dst_reg->var_off.value)) 13493 return -EACCES; 13494 break; 13495 case PTR_TO_MAP_VALUE: 13496 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 13497 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 13498 "prohibited for !root\n", dst); 13499 return -EACCES; 13500 } 13501 break; 13502 default: 13503 break; 13504 } 13505 13506 return 0; 13507 } 13508 13509 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 13510 * Caller should also handle BPF_MOV case separately. 13511 * If we return -EACCES, caller may want to try again treating pointer as a 13512 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 13513 */ 13514 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 13515 struct bpf_insn *insn, 13516 struct bpf_reg_state *ptr_reg, 13517 const struct bpf_reg_state *off_reg) 13518 { 13519 struct bpf_verifier_state *vstate = env->cur_state; 13520 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13521 struct bpf_reg_state *regs = state->regs, *dst_reg; 13522 bool known = tnum_is_const(off_reg->var_off); 13523 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 13524 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 13525 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 13526 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 13527 struct bpf_sanitize_info info = {}; 13528 u8 opcode = BPF_OP(insn->code); 13529 u32 dst = insn->dst_reg; 13530 bool mask; 13531 int ret; 13532 13533 dst_reg = ®s[dst]; 13534 13535 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 13536 smin_val > smax_val || umin_val > umax_val) { 13537 /* Taint dst register if offset had invalid bounds derived from 13538 * e.g. dead branches. 13539 */ 13540 __mark_reg_unknown(env, dst_reg); 13541 return 0; 13542 } 13543 13544 if (BPF_CLASS(insn->code) != BPF_ALU64) { 13545 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 13546 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13547 __mark_reg_unknown(env, dst_reg); 13548 return 0; 13549 } 13550 13551 verbose(env, 13552 "R%d 32-bit pointer arithmetic prohibited\n", 13553 dst); 13554 return -EACCES; 13555 } 13556 13557 mask = mask_raw_tp_reg(env, ptr_reg); 13558 if (ptr_reg->type & PTR_MAYBE_NULL) { 13559 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 13560 dst, reg_type_str(env, ptr_reg->type)); 13561 unmask_raw_tp_reg(ptr_reg, mask); 13562 return -EACCES; 13563 } 13564 unmask_raw_tp_reg(ptr_reg, mask); 13565 13566 switch (base_type(ptr_reg->type)) { 13567 case PTR_TO_CTX: 13568 case PTR_TO_MAP_VALUE: 13569 case PTR_TO_MAP_KEY: 13570 case PTR_TO_STACK: 13571 case PTR_TO_PACKET_META: 13572 case PTR_TO_PACKET: 13573 case PTR_TO_TP_BUFFER: 13574 case PTR_TO_BTF_ID: 13575 case PTR_TO_MEM: 13576 case PTR_TO_BUF: 13577 case PTR_TO_FUNC: 13578 case CONST_PTR_TO_DYNPTR: 13579 break; 13580 case PTR_TO_FLOW_KEYS: 13581 if (known) 13582 break; 13583 fallthrough; 13584 case CONST_PTR_TO_MAP: 13585 /* smin_val represents the known value */ 13586 if (known && smin_val == 0 && opcode == BPF_ADD) 13587 break; 13588 fallthrough; 13589 default: 13590 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 13591 dst, reg_type_str(env, ptr_reg->type)); 13592 return -EACCES; 13593 } 13594 13595 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 13596 * The id may be overwritten later if we create a new variable offset. 13597 */ 13598 dst_reg->type = ptr_reg->type; 13599 dst_reg->id = ptr_reg->id; 13600 13601 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 13602 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 13603 return -EINVAL; 13604 13605 /* pointer types do not carry 32-bit bounds at the moment. */ 13606 __mark_reg32_unbounded(dst_reg); 13607 13608 if (sanitize_needed(opcode)) { 13609 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 13610 &info, false); 13611 if (ret < 0) 13612 return sanitize_err(env, insn, ret, off_reg, dst_reg); 13613 } 13614 13615 switch (opcode) { 13616 case BPF_ADD: 13617 /* We can take a fixed offset as long as it doesn't overflow 13618 * the s32 'off' field 13619 */ 13620 if (known && (ptr_reg->off + smin_val == 13621 (s64)(s32)(ptr_reg->off + smin_val))) { 13622 /* pointer += K. Accumulate it into fixed offset */ 13623 dst_reg->smin_value = smin_ptr; 13624 dst_reg->smax_value = smax_ptr; 13625 dst_reg->umin_value = umin_ptr; 13626 dst_reg->umax_value = umax_ptr; 13627 dst_reg->var_off = ptr_reg->var_off; 13628 dst_reg->off = ptr_reg->off + smin_val; 13629 dst_reg->raw = ptr_reg->raw; 13630 break; 13631 } 13632 /* A new variable offset is created. Note that off_reg->off 13633 * == 0, since it's a scalar. 13634 * dst_reg gets the pointer type and since some positive 13635 * integer value was added to the pointer, give it a new 'id' 13636 * if it's a PTR_TO_PACKET. 13637 * this creates a new 'base' pointer, off_reg (variable) gets 13638 * added into the variable offset, and we copy the fixed offset 13639 * from ptr_reg. 13640 */ 13641 if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) || 13642 check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) { 13643 dst_reg->smin_value = S64_MIN; 13644 dst_reg->smax_value = S64_MAX; 13645 } 13646 if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) || 13647 check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) { 13648 dst_reg->umin_value = 0; 13649 dst_reg->umax_value = U64_MAX; 13650 } 13651 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 13652 dst_reg->off = ptr_reg->off; 13653 dst_reg->raw = ptr_reg->raw; 13654 if (reg_is_pkt_pointer(ptr_reg)) { 13655 dst_reg->id = ++env->id_gen; 13656 /* something was added to pkt_ptr, set range to zero */ 13657 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 13658 } 13659 break; 13660 case BPF_SUB: 13661 if (dst_reg == off_reg) { 13662 /* scalar -= pointer. Creates an unknown scalar */ 13663 verbose(env, "R%d tried to subtract pointer from scalar\n", 13664 dst); 13665 return -EACCES; 13666 } 13667 /* We don't allow subtraction from FP, because (according to 13668 * test_verifier.c test "invalid fp arithmetic", JITs might not 13669 * be able to deal with it. 13670 */ 13671 if (ptr_reg->type == PTR_TO_STACK) { 13672 verbose(env, "R%d subtraction from stack pointer prohibited\n", 13673 dst); 13674 return -EACCES; 13675 } 13676 if (known && (ptr_reg->off - smin_val == 13677 (s64)(s32)(ptr_reg->off - smin_val))) { 13678 /* pointer -= K. Subtract it from fixed offset */ 13679 dst_reg->smin_value = smin_ptr; 13680 dst_reg->smax_value = smax_ptr; 13681 dst_reg->umin_value = umin_ptr; 13682 dst_reg->umax_value = umax_ptr; 13683 dst_reg->var_off = ptr_reg->var_off; 13684 dst_reg->id = ptr_reg->id; 13685 dst_reg->off = ptr_reg->off - smin_val; 13686 dst_reg->raw = ptr_reg->raw; 13687 break; 13688 } 13689 /* A new variable offset is created. If the subtrahend is known 13690 * nonnegative, then any reg->range we had before is still good. 13691 */ 13692 if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) || 13693 check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) { 13694 /* Overflow possible, we know nothing */ 13695 dst_reg->smin_value = S64_MIN; 13696 dst_reg->smax_value = S64_MAX; 13697 } 13698 if (umin_ptr < umax_val) { 13699 /* Overflow possible, we know nothing */ 13700 dst_reg->umin_value = 0; 13701 dst_reg->umax_value = U64_MAX; 13702 } else { 13703 /* Cannot overflow (as long as bounds are consistent) */ 13704 dst_reg->umin_value = umin_ptr - umax_val; 13705 dst_reg->umax_value = umax_ptr - umin_val; 13706 } 13707 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 13708 dst_reg->off = ptr_reg->off; 13709 dst_reg->raw = ptr_reg->raw; 13710 if (reg_is_pkt_pointer(ptr_reg)) { 13711 dst_reg->id = ++env->id_gen; 13712 /* something was added to pkt_ptr, set range to zero */ 13713 if (smin_val < 0) 13714 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 13715 } 13716 break; 13717 case BPF_AND: 13718 case BPF_OR: 13719 case BPF_XOR: 13720 /* bitwise ops on pointers are troublesome, prohibit. */ 13721 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 13722 dst, bpf_alu_string[opcode >> 4]); 13723 return -EACCES; 13724 default: 13725 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 13726 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 13727 dst, bpf_alu_string[opcode >> 4]); 13728 return -EACCES; 13729 } 13730 13731 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 13732 return -EINVAL; 13733 reg_bounds_sync(dst_reg); 13734 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 13735 return -EACCES; 13736 if (sanitize_needed(opcode)) { 13737 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 13738 &info, true); 13739 if (ret < 0) 13740 return sanitize_err(env, insn, ret, off_reg, dst_reg); 13741 } 13742 13743 return 0; 13744 } 13745 13746 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 13747 struct bpf_reg_state *src_reg) 13748 { 13749 s32 *dst_smin = &dst_reg->s32_min_value; 13750 s32 *dst_smax = &dst_reg->s32_max_value; 13751 u32 *dst_umin = &dst_reg->u32_min_value; 13752 u32 *dst_umax = &dst_reg->u32_max_value; 13753 13754 if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) || 13755 check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) { 13756 *dst_smin = S32_MIN; 13757 *dst_smax = S32_MAX; 13758 } 13759 if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) || 13760 check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) { 13761 *dst_umin = 0; 13762 *dst_umax = U32_MAX; 13763 } 13764 } 13765 13766 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 13767 struct bpf_reg_state *src_reg) 13768 { 13769 s64 *dst_smin = &dst_reg->smin_value; 13770 s64 *dst_smax = &dst_reg->smax_value; 13771 u64 *dst_umin = &dst_reg->umin_value; 13772 u64 *dst_umax = &dst_reg->umax_value; 13773 13774 if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) || 13775 check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) { 13776 *dst_smin = S64_MIN; 13777 *dst_smax = S64_MAX; 13778 } 13779 if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) || 13780 check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) { 13781 *dst_umin = 0; 13782 *dst_umax = U64_MAX; 13783 } 13784 } 13785 13786 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 13787 struct bpf_reg_state *src_reg) 13788 { 13789 s32 *dst_smin = &dst_reg->s32_min_value; 13790 s32 *dst_smax = &dst_reg->s32_max_value; 13791 u32 umin_val = src_reg->u32_min_value; 13792 u32 umax_val = src_reg->u32_max_value; 13793 13794 if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) || 13795 check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) { 13796 /* Overflow possible, we know nothing */ 13797 *dst_smin = S32_MIN; 13798 *dst_smax = S32_MAX; 13799 } 13800 if (dst_reg->u32_min_value < umax_val) { 13801 /* Overflow possible, we know nothing */ 13802 dst_reg->u32_min_value = 0; 13803 dst_reg->u32_max_value = U32_MAX; 13804 } else { 13805 /* Cannot overflow (as long as bounds are consistent) */ 13806 dst_reg->u32_min_value -= umax_val; 13807 dst_reg->u32_max_value -= umin_val; 13808 } 13809 } 13810 13811 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 13812 struct bpf_reg_state *src_reg) 13813 { 13814 s64 *dst_smin = &dst_reg->smin_value; 13815 s64 *dst_smax = &dst_reg->smax_value; 13816 u64 umin_val = src_reg->umin_value; 13817 u64 umax_val = src_reg->umax_value; 13818 13819 if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) || 13820 check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) { 13821 /* Overflow possible, we know nothing */ 13822 *dst_smin = S64_MIN; 13823 *dst_smax = S64_MAX; 13824 } 13825 if (dst_reg->umin_value < umax_val) { 13826 /* Overflow possible, we know nothing */ 13827 dst_reg->umin_value = 0; 13828 dst_reg->umax_value = U64_MAX; 13829 } else { 13830 /* Cannot overflow (as long as bounds are consistent) */ 13831 dst_reg->umin_value -= umax_val; 13832 dst_reg->umax_value -= umin_val; 13833 } 13834 } 13835 13836 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 13837 struct bpf_reg_state *src_reg) 13838 { 13839 s32 smin_val = src_reg->s32_min_value; 13840 u32 umin_val = src_reg->u32_min_value; 13841 u32 umax_val = src_reg->u32_max_value; 13842 13843 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 13844 /* Ain't nobody got time to multiply that sign */ 13845 __mark_reg32_unbounded(dst_reg); 13846 return; 13847 } 13848 /* Both values are positive, so we can work with unsigned and 13849 * copy the result to signed (unless it exceeds S32_MAX). 13850 */ 13851 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 13852 /* Potential overflow, we know nothing */ 13853 __mark_reg32_unbounded(dst_reg); 13854 return; 13855 } 13856 dst_reg->u32_min_value *= umin_val; 13857 dst_reg->u32_max_value *= umax_val; 13858 if (dst_reg->u32_max_value > S32_MAX) { 13859 /* Overflow possible, we know nothing */ 13860 dst_reg->s32_min_value = S32_MIN; 13861 dst_reg->s32_max_value = S32_MAX; 13862 } else { 13863 dst_reg->s32_min_value = dst_reg->u32_min_value; 13864 dst_reg->s32_max_value = dst_reg->u32_max_value; 13865 } 13866 } 13867 13868 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 13869 struct bpf_reg_state *src_reg) 13870 { 13871 s64 smin_val = src_reg->smin_value; 13872 u64 umin_val = src_reg->umin_value; 13873 u64 umax_val = src_reg->umax_value; 13874 13875 if (smin_val < 0 || dst_reg->smin_value < 0) { 13876 /* Ain't nobody got time to multiply that sign */ 13877 __mark_reg64_unbounded(dst_reg); 13878 return; 13879 } 13880 /* Both values are positive, so we can work with unsigned and 13881 * copy the result to signed (unless it exceeds S64_MAX). 13882 */ 13883 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 13884 /* Potential overflow, we know nothing */ 13885 __mark_reg64_unbounded(dst_reg); 13886 return; 13887 } 13888 dst_reg->umin_value *= umin_val; 13889 dst_reg->umax_value *= umax_val; 13890 if (dst_reg->umax_value > S64_MAX) { 13891 /* Overflow possible, we know nothing */ 13892 dst_reg->smin_value = S64_MIN; 13893 dst_reg->smax_value = S64_MAX; 13894 } else { 13895 dst_reg->smin_value = dst_reg->umin_value; 13896 dst_reg->smax_value = dst_reg->umax_value; 13897 } 13898 } 13899 13900 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 13901 struct bpf_reg_state *src_reg) 13902 { 13903 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13904 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13905 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13906 u32 umax_val = src_reg->u32_max_value; 13907 13908 if (src_known && dst_known) { 13909 __mark_reg32_known(dst_reg, var32_off.value); 13910 return; 13911 } 13912 13913 /* We get our minimum from the var_off, since that's inherently 13914 * bitwise. Our maximum is the minimum of the operands' maxima. 13915 */ 13916 dst_reg->u32_min_value = var32_off.value; 13917 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 13918 13919 /* Safe to set s32 bounds by casting u32 result into s32 when u32 13920 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 13921 */ 13922 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 13923 dst_reg->s32_min_value = dst_reg->u32_min_value; 13924 dst_reg->s32_max_value = dst_reg->u32_max_value; 13925 } else { 13926 dst_reg->s32_min_value = S32_MIN; 13927 dst_reg->s32_max_value = S32_MAX; 13928 } 13929 } 13930 13931 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 13932 struct bpf_reg_state *src_reg) 13933 { 13934 bool src_known = tnum_is_const(src_reg->var_off); 13935 bool dst_known = tnum_is_const(dst_reg->var_off); 13936 u64 umax_val = src_reg->umax_value; 13937 13938 if (src_known && dst_known) { 13939 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13940 return; 13941 } 13942 13943 /* We get our minimum from the var_off, since that's inherently 13944 * bitwise. Our maximum is the minimum of the operands' maxima. 13945 */ 13946 dst_reg->umin_value = dst_reg->var_off.value; 13947 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 13948 13949 /* Safe to set s64 bounds by casting u64 result into s64 when u64 13950 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 13951 */ 13952 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 13953 dst_reg->smin_value = dst_reg->umin_value; 13954 dst_reg->smax_value = dst_reg->umax_value; 13955 } else { 13956 dst_reg->smin_value = S64_MIN; 13957 dst_reg->smax_value = S64_MAX; 13958 } 13959 /* We may learn something more from the var_off */ 13960 __update_reg_bounds(dst_reg); 13961 } 13962 13963 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 13964 struct bpf_reg_state *src_reg) 13965 { 13966 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13967 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13968 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13969 u32 umin_val = src_reg->u32_min_value; 13970 13971 if (src_known && dst_known) { 13972 __mark_reg32_known(dst_reg, var32_off.value); 13973 return; 13974 } 13975 13976 /* We get our maximum from the var_off, and our minimum is the 13977 * maximum of the operands' minima 13978 */ 13979 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 13980 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13981 13982 /* Safe to set s32 bounds by casting u32 result into s32 when u32 13983 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 13984 */ 13985 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 13986 dst_reg->s32_min_value = dst_reg->u32_min_value; 13987 dst_reg->s32_max_value = dst_reg->u32_max_value; 13988 } else { 13989 dst_reg->s32_min_value = S32_MIN; 13990 dst_reg->s32_max_value = S32_MAX; 13991 } 13992 } 13993 13994 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 13995 struct bpf_reg_state *src_reg) 13996 { 13997 bool src_known = tnum_is_const(src_reg->var_off); 13998 bool dst_known = tnum_is_const(dst_reg->var_off); 13999 u64 umin_val = src_reg->umin_value; 14000 14001 if (src_known && dst_known) { 14002 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14003 return; 14004 } 14005 14006 /* We get our maximum from the var_off, and our minimum is the 14007 * maximum of the operands' minima 14008 */ 14009 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 14010 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 14011 14012 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14013 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 14014 */ 14015 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 14016 dst_reg->smin_value = dst_reg->umin_value; 14017 dst_reg->smax_value = dst_reg->umax_value; 14018 } else { 14019 dst_reg->smin_value = S64_MIN; 14020 dst_reg->smax_value = S64_MAX; 14021 } 14022 /* We may learn something more from the var_off */ 14023 __update_reg_bounds(dst_reg); 14024 } 14025 14026 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 14027 struct bpf_reg_state *src_reg) 14028 { 14029 bool src_known = tnum_subreg_is_const(src_reg->var_off); 14030 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 14031 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 14032 14033 if (src_known && dst_known) { 14034 __mark_reg32_known(dst_reg, var32_off.value); 14035 return; 14036 } 14037 14038 /* We get both minimum and maximum from the var32_off. */ 14039 dst_reg->u32_min_value = var32_off.value; 14040 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 14041 14042 /* Safe to set s32 bounds by casting u32 result into s32 when u32 14043 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 14044 */ 14045 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 14046 dst_reg->s32_min_value = dst_reg->u32_min_value; 14047 dst_reg->s32_max_value = dst_reg->u32_max_value; 14048 } else { 14049 dst_reg->s32_min_value = S32_MIN; 14050 dst_reg->s32_max_value = S32_MAX; 14051 } 14052 } 14053 14054 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 14055 struct bpf_reg_state *src_reg) 14056 { 14057 bool src_known = tnum_is_const(src_reg->var_off); 14058 bool dst_known = tnum_is_const(dst_reg->var_off); 14059 14060 if (src_known && dst_known) { 14061 /* dst_reg->var_off.value has been updated earlier */ 14062 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14063 return; 14064 } 14065 14066 /* We get both minimum and maximum from the var_off. */ 14067 dst_reg->umin_value = dst_reg->var_off.value; 14068 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 14069 14070 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14071 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 14072 */ 14073 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 14074 dst_reg->smin_value = dst_reg->umin_value; 14075 dst_reg->smax_value = dst_reg->umax_value; 14076 } else { 14077 dst_reg->smin_value = S64_MIN; 14078 dst_reg->smax_value = S64_MAX; 14079 } 14080 14081 __update_reg_bounds(dst_reg); 14082 } 14083 14084 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 14085 u64 umin_val, u64 umax_val) 14086 { 14087 /* We lose all sign bit information (except what we can pick 14088 * up from var_off) 14089 */ 14090 dst_reg->s32_min_value = S32_MIN; 14091 dst_reg->s32_max_value = S32_MAX; 14092 /* If we might shift our top bit out, then we know nothing */ 14093 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 14094 dst_reg->u32_min_value = 0; 14095 dst_reg->u32_max_value = U32_MAX; 14096 } else { 14097 dst_reg->u32_min_value <<= umin_val; 14098 dst_reg->u32_max_value <<= umax_val; 14099 } 14100 } 14101 14102 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 14103 struct bpf_reg_state *src_reg) 14104 { 14105 u32 umax_val = src_reg->u32_max_value; 14106 u32 umin_val = src_reg->u32_min_value; 14107 /* u32 alu operation will zext upper bits */ 14108 struct tnum subreg = tnum_subreg(dst_reg->var_off); 14109 14110 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 14111 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 14112 /* Not required but being careful mark reg64 bounds as unknown so 14113 * that we are forced to pick them up from tnum and zext later and 14114 * if some path skips this step we are still safe. 14115 */ 14116 __mark_reg64_unbounded(dst_reg); 14117 __update_reg32_bounds(dst_reg); 14118 } 14119 14120 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 14121 u64 umin_val, u64 umax_val) 14122 { 14123 /* Special case <<32 because it is a common compiler pattern to sign 14124 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 14125 * positive we know this shift will also be positive so we can track 14126 * bounds correctly. Otherwise we lose all sign bit information except 14127 * what we can pick up from var_off. Perhaps we can generalize this 14128 * later to shifts of any length. 14129 */ 14130 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 14131 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 14132 else 14133 dst_reg->smax_value = S64_MAX; 14134 14135 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 14136 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 14137 else 14138 dst_reg->smin_value = S64_MIN; 14139 14140 /* If we might shift our top bit out, then we know nothing */ 14141 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 14142 dst_reg->umin_value = 0; 14143 dst_reg->umax_value = U64_MAX; 14144 } else { 14145 dst_reg->umin_value <<= umin_val; 14146 dst_reg->umax_value <<= umax_val; 14147 } 14148 } 14149 14150 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 14151 struct bpf_reg_state *src_reg) 14152 { 14153 u64 umax_val = src_reg->umax_value; 14154 u64 umin_val = src_reg->umin_value; 14155 14156 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 14157 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 14158 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 14159 14160 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 14161 /* We may learn something more from the var_off */ 14162 __update_reg_bounds(dst_reg); 14163 } 14164 14165 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 14166 struct bpf_reg_state *src_reg) 14167 { 14168 struct tnum subreg = tnum_subreg(dst_reg->var_off); 14169 u32 umax_val = src_reg->u32_max_value; 14170 u32 umin_val = src_reg->u32_min_value; 14171 14172 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 14173 * be negative, then either: 14174 * 1) src_reg might be zero, so the sign bit of the result is 14175 * unknown, so we lose our signed bounds 14176 * 2) it's known negative, thus the unsigned bounds capture the 14177 * signed bounds 14178 * 3) the signed bounds cross zero, so they tell us nothing 14179 * about the result 14180 * If the value in dst_reg is known nonnegative, then again the 14181 * unsigned bounds capture the signed bounds. 14182 * Thus, in all cases it suffices to blow away our signed bounds 14183 * and rely on inferring new ones from the unsigned bounds and 14184 * var_off of the result. 14185 */ 14186 dst_reg->s32_min_value = S32_MIN; 14187 dst_reg->s32_max_value = S32_MAX; 14188 14189 dst_reg->var_off = tnum_rshift(subreg, umin_val); 14190 dst_reg->u32_min_value >>= umax_val; 14191 dst_reg->u32_max_value >>= umin_val; 14192 14193 __mark_reg64_unbounded(dst_reg); 14194 __update_reg32_bounds(dst_reg); 14195 } 14196 14197 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 14198 struct bpf_reg_state *src_reg) 14199 { 14200 u64 umax_val = src_reg->umax_value; 14201 u64 umin_val = src_reg->umin_value; 14202 14203 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 14204 * be negative, then either: 14205 * 1) src_reg might be zero, so the sign bit of the result is 14206 * unknown, so we lose our signed bounds 14207 * 2) it's known negative, thus the unsigned bounds capture the 14208 * signed bounds 14209 * 3) the signed bounds cross zero, so they tell us nothing 14210 * about the result 14211 * If the value in dst_reg is known nonnegative, then again the 14212 * unsigned bounds capture the signed bounds. 14213 * Thus, in all cases it suffices to blow away our signed bounds 14214 * and rely on inferring new ones from the unsigned bounds and 14215 * var_off of the result. 14216 */ 14217 dst_reg->smin_value = S64_MIN; 14218 dst_reg->smax_value = S64_MAX; 14219 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 14220 dst_reg->umin_value >>= umax_val; 14221 dst_reg->umax_value >>= umin_val; 14222 14223 /* Its not easy to operate on alu32 bounds here because it depends 14224 * on bits being shifted in. Take easy way out and mark unbounded 14225 * so we can recalculate later from tnum. 14226 */ 14227 __mark_reg32_unbounded(dst_reg); 14228 __update_reg_bounds(dst_reg); 14229 } 14230 14231 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 14232 struct bpf_reg_state *src_reg) 14233 { 14234 u64 umin_val = src_reg->u32_min_value; 14235 14236 /* Upon reaching here, src_known is true and 14237 * umax_val is equal to umin_val. 14238 */ 14239 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 14240 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 14241 14242 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 14243 14244 /* blow away the dst_reg umin_value/umax_value and rely on 14245 * dst_reg var_off to refine the result. 14246 */ 14247 dst_reg->u32_min_value = 0; 14248 dst_reg->u32_max_value = U32_MAX; 14249 14250 __mark_reg64_unbounded(dst_reg); 14251 __update_reg32_bounds(dst_reg); 14252 } 14253 14254 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 14255 struct bpf_reg_state *src_reg) 14256 { 14257 u64 umin_val = src_reg->umin_value; 14258 14259 /* Upon reaching here, src_known is true and umax_val is equal 14260 * to umin_val. 14261 */ 14262 dst_reg->smin_value >>= umin_val; 14263 dst_reg->smax_value >>= umin_val; 14264 14265 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 14266 14267 /* blow away the dst_reg umin_value/umax_value and rely on 14268 * dst_reg var_off to refine the result. 14269 */ 14270 dst_reg->umin_value = 0; 14271 dst_reg->umax_value = U64_MAX; 14272 14273 /* Its not easy to operate on alu32 bounds here because it depends 14274 * on bits being shifted in from upper 32-bits. Take easy way out 14275 * and mark unbounded so we can recalculate later from tnum. 14276 */ 14277 __mark_reg32_unbounded(dst_reg); 14278 __update_reg_bounds(dst_reg); 14279 } 14280 14281 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn, 14282 const struct bpf_reg_state *src_reg) 14283 { 14284 bool src_is_const = false; 14285 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 14286 14287 if (insn_bitness == 32) { 14288 if (tnum_subreg_is_const(src_reg->var_off) 14289 && src_reg->s32_min_value == src_reg->s32_max_value 14290 && src_reg->u32_min_value == src_reg->u32_max_value) 14291 src_is_const = true; 14292 } else { 14293 if (tnum_is_const(src_reg->var_off) 14294 && src_reg->smin_value == src_reg->smax_value 14295 && src_reg->umin_value == src_reg->umax_value) 14296 src_is_const = true; 14297 } 14298 14299 switch (BPF_OP(insn->code)) { 14300 case BPF_ADD: 14301 case BPF_SUB: 14302 case BPF_AND: 14303 case BPF_XOR: 14304 case BPF_OR: 14305 case BPF_MUL: 14306 return true; 14307 14308 /* Shift operators range is only computable if shift dimension operand 14309 * is a constant. Shifts greater than 31 or 63 are undefined. This 14310 * includes shifts by a negative number. 14311 */ 14312 case BPF_LSH: 14313 case BPF_RSH: 14314 case BPF_ARSH: 14315 return (src_is_const && src_reg->umax_value < insn_bitness); 14316 default: 14317 return false; 14318 } 14319 } 14320 14321 /* WARNING: This function does calculations on 64-bit values, but the actual 14322 * execution may occur on 32-bit values. Therefore, things like bitshifts 14323 * need extra checks in the 32-bit case. 14324 */ 14325 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 14326 struct bpf_insn *insn, 14327 struct bpf_reg_state *dst_reg, 14328 struct bpf_reg_state src_reg) 14329 { 14330 u8 opcode = BPF_OP(insn->code); 14331 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 14332 int ret; 14333 14334 if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) { 14335 __mark_reg_unknown(env, dst_reg); 14336 return 0; 14337 } 14338 14339 if (sanitize_needed(opcode)) { 14340 ret = sanitize_val_alu(env, insn); 14341 if (ret < 0) 14342 return sanitize_err(env, insn, ret, NULL, NULL); 14343 } 14344 14345 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 14346 * There are two classes of instructions: The first class we track both 14347 * alu32 and alu64 sign/unsigned bounds independently this provides the 14348 * greatest amount of precision when alu operations are mixed with jmp32 14349 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 14350 * and BPF_OR. This is possible because these ops have fairly easy to 14351 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 14352 * See alu32 verifier tests for examples. The second class of 14353 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 14354 * with regards to tracking sign/unsigned bounds because the bits may 14355 * cross subreg boundaries in the alu64 case. When this happens we mark 14356 * the reg unbounded in the subreg bound space and use the resulting 14357 * tnum to calculate an approximation of the sign/unsigned bounds. 14358 */ 14359 switch (opcode) { 14360 case BPF_ADD: 14361 scalar32_min_max_add(dst_reg, &src_reg); 14362 scalar_min_max_add(dst_reg, &src_reg); 14363 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 14364 break; 14365 case BPF_SUB: 14366 scalar32_min_max_sub(dst_reg, &src_reg); 14367 scalar_min_max_sub(dst_reg, &src_reg); 14368 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 14369 break; 14370 case BPF_MUL: 14371 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 14372 scalar32_min_max_mul(dst_reg, &src_reg); 14373 scalar_min_max_mul(dst_reg, &src_reg); 14374 break; 14375 case BPF_AND: 14376 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 14377 scalar32_min_max_and(dst_reg, &src_reg); 14378 scalar_min_max_and(dst_reg, &src_reg); 14379 break; 14380 case BPF_OR: 14381 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 14382 scalar32_min_max_or(dst_reg, &src_reg); 14383 scalar_min_max_or(dst_reg, &src_reg); 14384 break; 14385 case BPF_XOR: 14386 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 14387 scalar32_min_max_xor(dst_reg, &src_reg); 14388 scalar_min_max_xor(dst_reg, &src_reg); 14389 break; 14390 case BPF_LSH: 14391 if (alu32) 14392 scalar32_min_max_lsh(dst_reg, &src_reg); 14393 else 14394 scalar_min_max_lsh(dst_reg, &src_reg); 14395 break; 14396 case BPF_RSH: 14397 if (alu32) 14398 scalar32_min_max_rsh(dst_reg, &src_reg); 14399 else 14400 scalar_min_max_rsh(dst_reg, &src_reg); 14401 break; 14402 case BPF_ARSH: 14403 if (alu32) 14404 scalar32_min_max_arsh(dst_reg, &src_reg); 14405 else 14406 scalar_min_max_arsh(dst_reg, &src_reg); 14407 break; 14408 default: 14409 break; 14410 } 14411 14412 /* ALU32 ops are zero extended into 64bit register */ 14413 if (alu32) 14414 zext_32_to_64(dst_reg); 14415 reg_bounds_sync(dst_reg); 14416 return 0; 14417 } 14418 14419 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 14420 * and var_off. 14421 */ 14422 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 14423 struct bpf_insn *insn) 14424 { 14425 struct bpf_verifier_state *vstate = env->cur_state; 14426 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14427 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 14428 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 14429 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 14430 u8 opcode = BPF_OP(insn->code); 14431 int err; 14432 14433 dst_reg = ®s[insn->dst_reg]; 14434 src_reg = NULL; 14435 14436 if (dst_reg->type == PTR_TO_ARENA) { 14437 struct bpf_insn_aux_data *aux = cur_aux(env); 14438 14439 if (BPF_CLASS(insn->code) == BPF_ALU64) 14440 /* 14441 * 32-bit operations zero upper bits automatically. 14442 * 64-bit operations need to be converted to 32. 14443 */ 14444 aux->needs_zext = true; 14445 14446 /* Any arithmetic operations are allowed on arena pointers */ 14447 return 0; 14448 } 14449 14450 if (dst_reg->type != SCALAR_VALUE) 14451 ptr_reg = dst_reg; 14452 14453 if (BPF_SRC(insn->code) == BPF_X) { 14454 src_reg = ®s[insn->src_reg]; 14455 if (src_reg->type != SCALAR_VALUE) { 14456 if (dst_reg->type != SCALAR_VALUE) { 14457 /* Combining two pointers by any ALU op yields 14458 * an arbitrary scalar. Disallow all math except 14459 * pointer subtraction 14460 */ 14461 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 14462 mark_reg_unknown(env, regs, insn->dst_reg); 14463 return 0; 14464 } 14465 verbose(env, "R%d pointer %s pointer prohibited\n", 14466 insn->dst_reg, 14467 bpf_alu_string[opcode >> 4]); 14468 return -EACCES; 14469 } else { 14470 /* scalar += pointer 14471 * This is legal, but we have to reverse our 14472 * src/dest handling in computing the range 14473 */ 14474 err = mark_chain_precision(env, insn->dst_reg); 14475 if (err) 14476 return err; 14477 return adjust_ptr_min_max_vals(env, insn, 14478 src_reg, dst_reg); 14479 } 14480 } else if (ptr_reg) { 14481 /* pointer += scalar */ 14482 err = mark_chain_precision(env, insn->src_reg); 14483 if (err) 14484 return err; 14485 return adjust_ptr_min_max_vals(env, insn, 14486 dst_reg, src_reg); 14487 } else if (dst_reg->precise) { 14488 /* if dst_reg is precise, src_reg should be precise as well */ 14489 err = mark_chain_precision(env, insn->src_reg); 14490 if (err) 14491 return err; 14492 } 14493 } else { 14494 /* Pretend the src is a reg with a known value, since we only 14495 * need to be able to read from this state. 14496 */ 14497 off_reg.type = SCALAR_VALUE; 14498 __mark_reg_known(&off_reg, insn->imm); 14499 src_reg = &off_reg; 14500 if (ptr_reg) /* pointer += K */ 14501 return adjust_ptr_min_max_vals(env, insn, 14502 ptr_reg, src_reg); 14503 } 14504 14505 /* Got here implies adding two SCALAR_VALUEs */ 14506 if (WARN_ON_ONCE(ptr_reg)) { 14507 print_verifier_state(env, state, true); 14508 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 14509 return -EINVAL; 14510 } 14511 if (WARN_ON(!src_reg)) { 14512 print_verifier_state(env, state, true); 14513 verbose(env, "verifier internal error: no src_reg\n"); 14514 return -EINVAL; 14515 } 14516 err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 14517 if (err) 14518 return err; 14519 /* 14520 * Compilers can generate the code 14521 * r1 = r2 14522 * r1 += 0x1 14523 * if r2 < 1000 goto ... 14524 * use r1 in memory access 14525 * So for 64-bit alu remember constant delta between r2 and r1 and 14526 * update r1 after 'if' condition. 14527 */ 14528 if (env->bpf_capable && 14529 BPF_OP(insn->code) == BPF_ADD && !alu32 && 14530 dst_reg->id && is_reg_const(src_reg, false)) { 14531 u64 val = reg_const_value(src_reg, false); 14532 14533 if ((dst_reg->id & BPF_ADD_CONST) || 14534 /* prevent overflow in sync_linked_regs() later */ 14535 val > (u32)S32_MAX) { 14536 /* 14537 * If the register already went through rX += val 14538 * we cannot accumulate another val into rx->off. 14539 */ 14540 dst_reg->off = 0; 14541 dst_reg->id = 0; 14542 } else { 14543 dst_reg->id |= BPF_ADD_CONST; 14544 dst_reg->off = val; 14545 } 14546 } else { 14547 /* 14548 * Make sure ID is cleared otherwise dst_reg min/max could be 14549 * incorrectly propagated into other registers by sync_linked_regs() 14550 */ 14551 dst_reg->id = 0; 14552 } 14553 return 0; 14554 } 14555 14556 /* check validity of 32-bit and 64-bit arithmetic operations */ 14557 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 14558 { 14559 struct bpf_reg_state *regs = cur_regs(env); 14560 u8 opcode = BPF_OP(insn->code); 14561 int err; 14562 14563 if (opcode == BPF_END || opcode == BPF_NEG) { 14564 if (opcode == BPF_NEG) { 14565 if (BPF_SRC(insn->code) != BPF_K || 14566 insn->src_reg != BPF_REG_0 || 14567 insn->off != 0 || insn->imm != 0) { 14568 verbose(env, "BPF_NEG uses reserved fields\n"); 14569 return -EINVAL; 14570 } 14571 } else { 14572 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 14573 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 14574 (BPF_CLASS(insn->code) == BPF_ALU64 && 14575 BPF_SRC(insn->code) != BPF_TO_LE)) { 14576 verbose(env, "BPF_END uses reserved fields\n"); 14577 return -EINVAL; 14578 } 14579 } 14580 14581 /* check src operand */ 14582 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14583 if (err) 14584 return err; 14585 14586 if (is_pointer_value(env, insn->dst_reg)) { 14587 verbose(env, "R%d pointer arithmetic prohibited\n", 14588 insn->dst_reg); 14589 return -EACCES; 14590 } 14591 14592 /* check dest operand */ 14593 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14594 if (err) 14595 return err; 14596 14597 } else if (opcode == BPF_MOV) { 14598 14599 if (BPF_SRC(insn->code) == BPF_X) { 14600 if (BPF_CLASS(insn->code) == BPF_ALU) { 14601 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || 14602 insn->imm) { 14603 verbose(env, "BPF_MOV uses reserved fields\n"); 14604 return -EINVAL; 14605 } 14606 } else if (insn->off == BPF_ADDR_SPACE_CAST) { 14607 if (insn->imm != 1 && insn->imm != 1u << 16) { 14608 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); 14609 return -EINVAL; 14610 } 14611 if (!env->prog->aux->arena) { 14612 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n"); 14613 return -EINVAL; 14614 } 14615 } else { 14616 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && 14617 insn->off != 32) || insn->imm) { 14618 verbose(env, "BPF_MOV uses reserved fields\n"); 14619 return -EINVAL; 14620 } 14621 } 14622 14623 /* check src operand */ 14624 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14625 if (err) 14626 return err; 14627 } else { 14628 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 14629 verbose(env, "BPF_MOV uses reserved fields\n"); 14630 return -EINVAL; 14631 } 14632 } 14633 14634 /* check dest operand, mark as required later */ 14635 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14636 if (err) 14637 return err; 14638 14639 if (BPF_SRC(insn->code) == BPF_X) { 14640 struct bpf_reg_state *src_reg = regs + insn->src_reg; 14641 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 14642 14643 if (BPF_CLASS(insn->code) == BPF_ALU64) { 14644 if (insn->imm) { 14645 /* off == BPF_ADDR_SPACE_CAST */ 14646 mark_reg_unknown(env, regs, insn->dst_reg); 14647 if (insn->imm == 1) { /* cast from as(1) to as(0) */ 14648 dst_reg->type = PTR_TO_ARENA; 14649 /* PTR_TO_ARENA is 32-bit */ 14650 dst_reg->subreg_def = env->insn_idx + 1; 14651 } 14652 } else if (insn->off == 0) { 14653 /* case: R1 = R2 14654 * copy register state to dest reg 14655 */ 14656 assign_scalar_id_before_mov(env, src_reg); 14657 copy_register_state(dst_reg, src_reg); 14658 dst_reg->live |= REG_LIVE_WRITTEN; 14659 dst_reg->subreg_def = DEF_NOT_SUBREG; 14660 } else { 14661 /* case: R1 = (s8, s16 s32)R2 */ 14662 if (is_pointer_value(env, insn->src_reg)) { 14663 verbose(env, 14664 "R%d sign-extension part of pointer\n", 14665 insn->src_reg); 14666 return -EACCES; 14667 } else if (src_reg->type == SCALAR_VALUE) { 14668 bool no_sext; 14669 14670 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 14671 if (no_sext) 14672 assign_scalar_id_before_mov(env, src_reg); 14673 copy_register_state(dst_reg, src_reg); 14674 if (!no_sext) 14675 dst_reg->id = 0; 14676 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 14677 dst_reg->live |= REG_LIVE_WRITTEN; 14678 dst_reg->subreg_def = DEF_NOT_SUBREG; 14679 } else { 14680 mark_reg_unknown(env, regs, insn->dst_reg); 14681 } 14682 } 14683 } else { 14684 /* R1 = (u32) R2 */ 14685 if (is_pointer_value(env, insn->src_reg)) { 14686 verbose(env, 14687 "R%d partial copy of pointer\n", 14688 insn->src_reg); 14689 return -EACCES; 14690 } else if (src_reg->type == SCALAR_VALUE) { 14691 if (insn->off == 0) { 14692 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; 14693 14694 if (is_src_reg_u32) 14695 assign_scalar_id_before_mov(env, src_reg); 14696 copy_register_state(dst_reg, src_reg); 14697 /* Make sure ID is cleared if src_reg is not in u32 14698 * range otherwise dst_reg min/max could be incorrectly 14699 * propagated into src_reg by sync_linked_regs() 14700 */ 14701 if (!is_src_reg_u32) 14702 dst_reg->id = 0; 14703 dst_reg->live |= REG_LIVE_WRITTEN; 14704 dst_reg->subreg_def = env->insn_idx + 1; 14705 } else { 14706 /* case: W1 = (s8, s16)W2 */ 14707 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 14708 14709 if (no_sext) 14710 assign_scalar_id_before_mov(env, src_reg); 14711 copy_register_state(dst_reg, src_reg); 14712 if (!no_sext) 14713 dst_reg->id = 0; 14714 dst_reg->live |= REG_LIVE_WRITTEN; 14715 dst_reg->subreg_def = env->insn_idx + 1; 14716 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 14717 } 14718 } else { 14719 mark_reg_unknown(env, regs, 14720 insn->dst_reg); 14721 } 14722 zext_32_to_64(dst_reg); 14723 reg_bounds_sync(dst_reg); 14724 } 14725 } else { 14726 /* case: R = imm 14727 * remember the value we stored into this reg 14728 */ 14729 /* clear any state __mark_reg_known doesn't set */ 14730 mark_reg_unknown(env, regs, insn->dst_reg); 14731 regs[insn->dst_reg].type = SCALAR_VALUE; 14732 if (BPF_CLASS(insn->code) == BPF_ALU64) { 14733 __mark_reg_known(regs + insn->dst_reg, 14734 insn->imm); 14735 } else { 14736 __mark_reg_known(regs + insn->dst_reg, 14737 (u32)insn->imm); 14738 } 14739 } 14740 14741 } else if (opcode > BPF_END) { 14742 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 14743 return -EINVAL; 14744 14745 } else { /* all other ALU ops: and, sub, xor, add, ... */ 14746 14747 if (BPF_SRC(insn->code) == BPF_X) { 14748 if (insn->imm != 0 || insn->off > 1 || 14749 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14750 verbose(env, "BPF_ALU uses reserved fields\n"); 14751 return -EINVAL; 14752 } 14753 /* check src1 operand */ 14754 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14755 if (err) 14756 return err; 14757 } else { 14758 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 14759 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14760 verbose(env, "BPF_ALU uses reserved fields\n"); 14761 return -EINVAL; 14762 } 14763 } 14764 14765 /* check src2 operand */ 14766 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14767 if (err) 14768 return err; 14769 14770 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 14771 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 14772 verbose(env, "div by zero\n"); 14773 return -EINVAL; 14774 } 14775 14776 if ((opcode == BPF_LSH || opcode == BPF_RSH || 14777 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 14778 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 14779 14780 if (insn->imm < 0 || insn->imm >= size) { 14781 verbose(env, "invalid shift %d\n", insn->imm); 14782 return -EINVAL; 14783 } 14784 } 14785 14786 /* check dest operand */ 14787 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14788 err = err ?: adjust_reg_min_max_vals(env, insn); 14789 if (err) 14790 return err; 14791 } 14792 14793 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 14794 } 14795 14796 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 14797 struct bpf_reg_state *dst_reg, 14798 enum bpf_reg_type type, 14799 bool range_right_open) 14800 { 14801 struct bpf_func_state *state; 14802 struct bpf_reg_state *reg; 14803 int new_range; 14804 14805 if (dst_reg->off < 0 || 14806 (dst_reg->off == 0 && range_right_open)) 14807 /* This doesn't give us any range */ 14808 return; 14809 14810 if (dst_reg->umax_value > MAX_PACKET_OFF || 14811 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 14812 /* Risk of overflow. For instance, ptr + (1<<63) may be less 14813 * than pkt_end, but that's because it's also less than pkt. 14814 */ 14815 return; 14816 14817 new_range = dst_reg->off; 14818 if (range_right_open) 14819 new_range++; 14820 14821 /* Examples for register markings: 14822 * 14823 * pkt_data in dst register: 14824 * 14825 * r2 = r3; 14826 * r2 += 8; 14827 * if (r2 > pkt_end) goto <handle exception> 14828 * <access okay> 14829 * 14830 * r2 = r3; 14831 * r2 += 8; 14832 * if (r2 < pkt_end) goto <access okay> 14833 * <handle exception> 14834 * 14835 * Where: 14836 * r2 == dst_reg, pkt_end == src_reg 14837 * r2=pkt(id=n,off=8,r=0) 14838 * r3=pkt(id=n,off=0,r=0) 14839 * 14840 * pkt_data in src register: 14841 * 14842 * r2 = r3; 14843 * r2 += 8; 14844 * if (pkt_end >= r2) goto <access okay> 14845 * <handle exception> 14846 * 14847 * r2 = r3; 14848 * r2 += 8; 14849 * if (pkt_end <= r2) goto <handle exception> 14850 * <access okay> 14851 * 14852 * Where: 14853 * pkt_end == dst_reg, r2 == src_reg 14854 * r2=pkt(id=n,off=8,r=0) 14855 * r3=pkt(id=n,off=0,r=0) 14856 * 14857 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 14858 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 14859 * and [r3, r3 + 8-1) respectively is safe to access depending on 14860 * the check. 14861 */ 14862 14863 /* If our ids match, then we must have the same max_value. And we 14864 * don't care about the other reg's fixed offset, since if it's too big 14865 * the range won't allow anything. 14866 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 14867 */ 14868 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14869 if (reg->type == type && reg->id == dst_reg->id) 14870 /* keep the maximum range already checked */ 14871 reg->range = max(reg->range, new_range); 14872 })); 14873 } 14874 14875 /* 14876 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 14877 */ 14878 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14879 u8 opcode, bool is_jmp32) 14880 { 14881 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 14882 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 14883 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 14884 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 14885 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 14886 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 14887 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 14888 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 14889 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 14890 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 14891 14892 switch (opcode) { 14893 case BPF_JEQ: 14894 /* constants, umin/umax and smin/smax checks would be 14895 * redundant in this case because they all should match 14896 */ 14897 if (tnum_is_const(t1) && tnum_is_const(t2)) 14898 return t1.value == t2.value; 14899 /* non-overlapping ranges */ 14900 if (umin1 > umax2 || umax1 < umin2) 14901 return 0; 14902 if (smin1 > smax2 || smax1 < smin2) 14903 return 0; 14904 if (!is_jmp32) { 14905 /* if 64-bit ranges are inconclusive, see if we can 14906 * utilize 32-bit subrange knowledge to eliminate 14907 * branches that can't be taken a priori 14908 */ 14909 if (reg1->u32_min_value > reg2->u32_max_value || 14910 reg1->u32_max_value < reg2->u32_min_value) 14911 return 0; 14912 if (reg1->s32_min_value > reg2->s32_max_value || 14913 reg1->s32_max_value < reg2->s32_min_value) 14914 return 0; 14915 } 14916 break; 14917 case BPF_JNE: 14918 /* constants, umin/umax and smin/smax checks would be 14919 * redundant in this case because they all should match 14920 */ 14921 if (tnum_is_const(t1) && tnum_is_const(t2)) 14922 return t1.value != t2.value; 14923 /* non-overlapping ranges */ 14924 if (umin1 > umax2 || umax1 < umin2) 14925 return 1; 14926 if (smin1 > smax2 || smax1 < smin2) 14927 return 1; 14928 if (!is_jmp32) { 14929 /* if 64-bit ranges are inconclusive, see if we can 14930 * utilize 32-bit subrange knowledge to eliminate 14931 * branches that can't be taken a priori 14932 */ 14933 if (reg1->u32_min_value > reg2->u32_max_value || 14934 reg1->u32_max_value < reg2->u32_min_value) 14935 return 1; 14936 if (reg1->s32_min_value > reg2->s32_max_value || 14937 reg1->s32_max_value < reg2->s32_min_value) 14938 return 1; 14939 } 14940 break; 14941 case BPF_JSET: 14942 if (!is_reg_const(reg2, is_jmp32)) { 14943 swap(reg1, reg2); 14944 swap(t1, t2); 14945 } 14946 if (!is_reg_const(reg2, is_jmp32)) 14947 return -1; 14948 if ((~t1.mask & t1.value) & t2.value) 14949 return 1; 14950 if (!((t1.mask | t1.value) & t2.value)) 14951 return 0; 14952 break; 14953 case BPF_JGT: 14954 if (umin1 > umax2) 14955 return 1; 14956 else if (umax1 <= umin2) 14957 return 0; 14958 break; 14959 case BPF_JSGT: 14960 if (smin1 > smax2) 14961 return 1; 14962 else if (smax1 <= smin2) 14963 return 0; 14964 break; 14965 case BPF_JLT: 14966 if (umax1 < umin2) 14967 return 1; 14968 else if (umin1 >= umax2) 14969 return 0; 14970 break; 14971 case BPF_JSLT: 14972 if (smax1 < smin2) 14973 return 1; 14974 else if (smin1 >= smax2) 14975 return 0; 14976 break; 14977 case BPF_JGE: 14978 if (umin1 >= umax2) 14979 return 1; 14980 else if (umax1 < umin2) 14981 return 0; 14982 break; 14983 case BPF_JSGE: 14984 if (smin1 >= smax2) 14985 return 1; 14986 else if (smax1 < smin2) 14987 return 0; 14988 break; 14989 case BPF_JLE: 14990 if (umax1 <= umin2) 14991 return 1; 14992 else if (umin1 > umax2) 14993 return 0; 14994 break; 14995 case BPF_JSLE: 14996 if (smax1 <= smin2) 14997 return 1; 14998 else if (smin1 > smax2) 14999 return 0; 15000 break; 15001 } 15002 15003 return -1; 15004 } 15005 15006 static int flip_opcode(u32 opcode) 15007 { 15008 /* How can we transform "a <op> b" into "b <op> a"? */ 15009 static const u8 opcode_flip[16] = { 15010 /* these stay the same */ 15011 [BPF_JEQ >> 4] = BPF_JEQ, 15012 [BPF_JNE >> 4] = BPF_JNE, 15013 [BPF_JSET >> 4] = BPF_JSET, 15014 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 15015 [BPF_JGE >> 4] = BPF_JLE, 15016 [BPF_JGT >> 4] = BPF_JLT, 15017 [BPF_JLE >> 4] = BPF_JGE, 15018 [BPF_JLT >> 4] = BPF_JGT, 15019 [BPF_JSGE >> 4] = BPF_JSLE, 15020 [BPF_JSGT >> 4] = BPF_JSLT, 15021 [BPF_JSLE >> 4] = BPF_JSGE, 15022 [BPF_JSLT >> 4] = BPF_JSGT 15023 }; 15024 return opcode_flip[opcode >> 4]; 15025 } 15026 15027 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 15028 struct bpf_reg_state *src_reg, 15029 u8 opcode) 15030 { 15031 struct bpf_reg_state *pkt; 15032 15033 if (src_reg->type == PTR_TO_PACKET_END) { 15034 pkt = dst_reg; 15035 } else if (dst_reg->type == PTR_TO_PACKET_END) { 15036 pkt = src_reg; 15037 opcode = flip_opcode(opcode); 15038 } else { 15039 return -1; 15040 } 15041 15042 if (pkt->range >= 0) 15043 return -1; 15044 15045 switch (opcode) { 15046 case BPF_JLE: 15047 /* pkt <= pkt_end */ 15048 fallthrough; 15049 case BPF_JGT: 15050 /* pkt > pkt_end */ 15051 if (pkt->range == BEYOND_PKT_END) 15052 /* pkt has at last one extra byte beyond pkt_end */ 15053 return opcode == BPF_JGT; 15054 break; 15055 case BPF_JLT: 15056 /* pkt < pkt_end */ 15057 fallthrough; 15058 case BPF_JGE: 15059 /* pkt >= pkt_end */ 15060 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 15061 return opcode == BPF_JGE; 15062 break; 15063 } 15064 return -1; 15065 } 15066 15067 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 15068 * and return: 15069 * 1 - branch will be taken and "goto target" will be executed 15070 * 0 - branch will not be taken and fall-through to next insn 15071 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 15072 * range [0,10] 15073 */ 15074 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15075 u8 opcode, bool is_jmp32) 15076 { 15077 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 15078 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 15079 15080 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 15081 u64 val; 15082 15083 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 15084 if (!is_reg_const(reg2, is_jmp32)) { 15085 opcode = flip_opcode(opcode); 15086 swap(reg1, reg2); 15087 } 15088 /* and ensure that reg2 is a constant */ 15089 if (!is_reg_const(reg2, is_jmp32)) 15090 return -1; 15091 15092 if (!reg_not_null(reg1)) 15093 return -1; 15094 15095 /* If pointer is valid tests against zero will fail so we can 15096 * use this to direct branch taken. 15097 */ 15098 val = reg_const_value(reg2, is_jmp32); 15099 if (val != 0) 15100 return -1; 15101 15102 switch (opcode) { 15103 case BPF_JEQ: 15104 return 0; 15105 case BPF_JNE: 15106 return 1; 15107 default: 15108 return -1; 15109 } 15110 } 15111 15112 /* now deal with two scalars, but not necessarily constants */ 15113 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 15114 } 15115 15116 /* Opcode that corresponds to a *false* branch condition. 15117 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 15118 */ 15119 static u8 rev_opcode(u8 opcode) 15120 { 15121 switch (opcode) { 15122 case BPF_JEQ: return BPF_JNE; 15123 case BPF_JNE: return BPF_JEQ; 15124 /* JSET doesn't have it's reverse opcode in BPF, so add 15125 * BPF_X flag to denote the reverse of that operation 15126 */ 15127 case BPF_JSET: return BPF_JSET | BPF_X; 15128 case BPF_JSET | BPF_X: return BPF_JSET; 15129 case BPF_JGE: return BPF_JLT; 15130 case BPF_JGT: return BPF_JLE; 15131 case BPF_JLE: return BPF_JGT; 15132 case BPF_JLT: return BPF_JGE; 15133 case BPF_JSGE: return BPF_JSLT; 15134 case BPF_JSGT: return BPF_JSLE; 15135 case BPF_JSLE: return BPF_JSGT; 15136 case BPF_JSLT: return BPF_JSGE; 15137 default: return 0; 15138 } 15139 } 15140 15141 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 15142 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15143 u8 opcode, bool is_jmp32) 15144 { 15145 struct tnum t; 15146 u64 val; 15147 15148 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */ 15149 switch (opcode) { 15150 case BPF_JGE: 15151 case BPF_JGT: 15152 case BPF_JSGE: 15153 case BPF_JSGT: 15154 opcode = flip_opcode(opcode); 15155 swap(reg1, reg2); 15156 break; 15157 default: 15158 break; 15159 } 15160 15161 switch (opcode) { 15162 case BPF_JEQ: 15163 if (is_jmp32) { 15164 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 15165 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 15166 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 15167 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 15168 reg2->u32_min_value = reg1->u32_min_value; 15169 reg2->u32_max_value = reg1->u32_max_value; 15170 reg2->s32_min_value = reg1->s32_min_value; 15171 reg2->s32_max_value = reg1->s32_max_value; 15172 15173 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 15174 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 15175 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 15176 } else { 15177 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 15178 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 15179 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 15180 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 15181 reg2->umin_value = reg1->umin_value; 15182 reg2->umax_value = reg1->umax_value; 15183 reg2->smin_value = reg1->smin_value; 15184 reg2->smax_value = reg1->smax_value; 15185 15186 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 15187 reg2->var_off = reg1->var_off; 15188 } 15189 break; 15190 case BPF_JNE: 15191 if (!is_reg_const(reg2, is_jmp32)) 15192 swap(reg1, reg2); 15193 if (!is_reg_const(reg2, is_jmp32)) 15194 break; 15195 15196 /* try to recompute the bound of reg1 if reg2 is a const and 15197 * is exactly the edge of reg1. 15198 */ 15199 val = reg_const_value(reg2, is_jmp32); 15200 if (is_jmp32) { 15201 /* u32_min_value is not equal to 0xffffffff at this point, 15202 * because otherwise u32_max_value is 0xffffffff as well, 15203 * in such a case both reg1 and reg2 would be constants, 15204 * jump would be predicted and reg_set_min_max() won't 15205 * be called. 15206 * 15207 * Same reasoning works for all {u,s}{min,max}{32,64} cases 15208 * below. 15209 */ 15210 if (reg1->u32_min_value == (u32)val) 15211 reg1->u32_min_value++; 15212 if (reg1->u32_max_value == (u32)val) 15213 reg1->u32_max_value--; 15214 if (reg1->s32_min_value == (s32)val) 15215 reg1->s32_min_value++; 15216 if (reg1->s32_max_value == (s32)val) 15217 reg1->s32_max_value--; 15218 } else { 15219 if (reg1->umin_value == (u64)val) 15220 reg1->umin_value++; 15221 if (reg1->umax_value == (u64)val) 15222 reg1->umax_value--; 15223 if (reg1->smin_value == (s64)val) 15224 reg1->smin_value++; 15225 if (reg1->smax_value == (s64)val) 15226 reg1->smax_value--; 15227 } 15228 break; 15229 case BPF_JSET: 15230 if (!is_reg_const(reg2, is_jmp32)) 15231 swap(reg1, reg2); 15232 if (!is_reg_const(reg2, is_jmp32)) 15233 break; 15234 val = reg_const_value(reg2, is_jmp32); 15235 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 15236 * requires single bit to learn something useful. E.g., if we 15237 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 15238 * are actually set? We can learn something definite only if 15239 * it's a single-bit value to begin with. 15240 * 15241 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 15242 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 15243 * bit 1 is set, which we can readily use in adjustments. 15244 */ 15245 if (!is_power_of_2(val)) 15246 break; 15247 if (is_jmp32) { 15248 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 15249 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 15250 } else { 15251 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 15252 } 15253 break; 15254 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 15255 if (!is_reg_const(reg2, is_jmp32)) 15256 swap(reg1, reg2); 15257 if (!is_reg_const(reg2, is_jmp32)) 15258 break; 15259 val = reg_const_value(reg2, is_jmp32); 15260 if (is_jmp32) { 15261 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 15262 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 15263 } else { 15264 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 15265 } 15266 break; 15267 case BPF_JLE: 15268 if (is_jmp32) { 15269 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 15270 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 15271 } else { 15272 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 15273 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 15274 } 15275 break; 15276 case BPF_JLT: 15277 if (is_jmp32) { 15278 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 15279 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 15280 } else { 15281 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 15282 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 15283 } 15284 break; 15285 case BPF_JSLE: 15286 if (is_jmp32) { 15287 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 15288 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 15289 } else { 15290 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 15291 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 15292 } 15293 break; 15294 case BPF_JSLT: 15295 if (is_jmp32) { 15296 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 15297 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 15298 } else { 15299 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 15300 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 15301 } 15302 break; 15303 default: 15304 return; 15305 } 15306 } 15307 15308 /* Adjusts the register min/max values in the case that the dst_reg and 15309 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 15310 * check, in which case we have a fake SCALAR_VALUE representing insn->imm). 15311 * Technically we can do similar adjustments for pointers to the same object, 15312 * but we don't support that right now. 15313 */ 15314 static int reg_set_min_max(struct bpf_verifier_env *env, 15315 struct bpf_reg_state *true_reg1, 15316 struct bpf_reg_state *true_reg2, 15317 struct bpf_reg_state *false_reg1, 15318 struct bpf_reg_state *false_reg2, 15319 u8 opcode, bool is_jmp32) 15320 { 15321 int err; 15322 15323 /* If either register is a pointer, we can't learn anything about its 15324 * variable offset from the compare (unless they were a pointer into 15325 * the same object, but we don't bother with that). 15326 */ 15327 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 15328 return 0; 15329 15330 /* fallthrough (FALSE) branch */ 15331 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 15332 reg_bounds_sync(false_reg1); 15333 reg_bounds_sync(false_reg2); 15334 15335 /* jump (TRUE) branch */ 15336 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 15337 reg_bounds_sync(true_reg1); 15338 reg_bounds_sync(true_reg2); 15339 15340 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 15341 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 15342 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 15343 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 15344 return err; 15345 } 15346 15347 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 15348 struct bpf_reg_state *reg, u32 id, 15349 bool is_null) 15350 { 15351 if (type_may_be_null(reg->type) && reg->id == id && 15352 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 15353 /* Old offset (both fixed and variable parts) should have been 15354 * known-zero, because we don't allow pointer arithmetic on 15355 * pointers that might be NULL. If we see this happening, don't 15356 * convert the register. 15357 * 15358 * But in some cases, some helpers that return local kptrs 15359 * advance offset for the returned pointer. In those cases, it 15360 * is fine to expect to see reg->off. 15361 */ 15362 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 15363 return; 15364 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 15365 WARN_ON_ONCE(reg->off)) 15366 return; 15367 15368 if (is_null) { 15369 reg->type = SCALAR_VALUE; 15370 /* We don't need id and ref_obj_id from this point 15371 * onwards anymore, thus we should better reset it, 15372 * so that state pruning has chances to take effect. 15373 */ 15374 reg->id = 0; 15375 reg->ref_obj_id = 0; 15376 15377 return; 15378 } 15379 15380 mark_ptr_not_null_reg(reg); 15381 15382 if (!reg_may_point_to_spin_lock(reg)) { 15383 /* For not-NULL ptr, reg->ref_obj_id will be reset 15384 * in release_reference(). 15385 * 15386 * reg->id is still used by spin_lock ptr. Other 15387 * than spin_lock ptr type, reg->id can be reset. 15388 */ 15389 reg->id = 0; 15390 } 15391 } 15392 } 15393 15394 /* The logic is similar to find_good_pkt_pointers(), both could eventually 15395 * be folded together at some point. 15396 */ 15397 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 15398 bool is_null) 15399 { 15400 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 15401 struct bpf_reg_state *regs = state->regs, *reg; 15402 u32 ref_obj_id = regs[regno].ref_obj_id; 15403 u32 id = regs[regno].id; 15404 15405 if (ref_obj_id && ref_obj_id == id && is_null) 15406 /* regs[regno] is in the " == NULL" branch. 15407 * No one could have freed the reference state before 15408 * doing the NULL check. 15409 */ 15410 WARN_ON_ONCE(release_reference_state(state, id)); 15411 15412 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 15413 mark_ptr_or_null_reg(state, reg, id, is_null); 15414 })); 15415 } 15416 15417 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 15418 struct bpf_reg_state *dst_reg, 15419 struct bpf_reg_state *src_reg, 15420 struct bpf_verifier_state *this_branch, 15421 struct bpf_verifier_state *other_branch) 15422 { 15423 if (BPF_SRC(insn->code) != BPF_X) 15424 return false; 15425 15426 /* Pointers are always 64-bit. */ 15427 if (BPF_CLASS(insn->code) == BPF_JMP32) 15428 return false; 15429 15430 switch (BPF_OP(insn->code)) { 15431 case BPF_JGT: 15432 if ((dst_reg->type == PTR_TO_PACKET && 15433 src_reg->type == PTR_TO_PACKET_END) || 15434 (dst_reg->type == PTR_TO_PACKET_META && 15435 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15436 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 15437 find_good_pkt_pointers(this_branch, dst_reg, 15438 dst_reg->type, false); 15439 mark_pkt_end(other_branch, insn->dst_reg, true); 15440 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15441 src_reg->type == PTR_TO_PACKET) || 15442 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15443 src_reg->type == PTR_TO_PACKET_META)) { 15444 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 15445 find_good_pkt_pointers(other_branch, src_reg, 15446 src_reg->type, true); 15447 mark_pkt_end(this_branch, insn->src_reg, false); 15448 } else { 15449 return false; 15450 } 15451 break; 15452 case BPF_JLT: 15453 if ((dst_reg->type == PTR_TO_PACKET && 15454 src_reg->type == PTR_TO_PACKET_END) || 15455 (dst_reg->type == PTR_TO_PACKET_META && 15456 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15457 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 15458 find_good_pkt_pointers(other_branch, dst_reg, 15459 dst_reg->type, true); 15460 mark_pkt_end(this_branch, insn->dst_reg, false); 15461 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15462 src_reg->type == PTR_TO_PACKET) || 15463 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15464 src_reg->type == PTR_TO_PACKET_META)) { 15465 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 15466 find_good_pkt_pointers(this_branch, src_reg, 15467 src_reg->type, false); 15468 mark_pkt_end(other_branch, insn->src_reg, true); 15469 } else { 15470 return false; 15471 } 15472 break; 15473 case BPF_JGE: 15474 if ((dst_reg->type == PTR_TO_PACKET && 15475 src_reg->type == PTR_TO_PACKET_END) || 15476 (dst_reg->type == PTR_TO_PACKET_META && 15477 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15478 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 15479 find_good_pkt_pointers(this_branch, dst_reg, 15480 dst_reg->type, true); 15481 mark_pkt_end(other_branch, insn->dst_reg, false); 15482 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15483 src_reg->type == PTR_TO_PACKET) || 15484 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15485 src_reg->type == PTR_TO_PACKET_META)) { 15486 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 15487 find_good_pkt_pointers(other_branch, src_reg, 15488 src_reg->type, false); 15489 mark_pkt_end(this_branch, insn->src_reg, true); 15490 } else { 15491 return false; 15492 } 15493 break; 15494 case BPF_JLE: 15495 if ((dst_reg->type == PTR_TO_PACKET && 15496 src_reg->type == PTR_TO_PACKET_END) || 15497 (dst_reg->type == PTR_TO_PACKET_META && 15498 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15499 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 15500 find_good_pkt_pointers(other_branch, dst_reg, 15501 dst_reg->type, false); 15502 mark_pkt_end(this_branch, insn->dst_reg, true); 15503 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15504 src_reg->type == PTR_TO_PACKET) || 15505 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15506 src_reg->type == PTR_TO_PACKET_META)) { 15507 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 15508 find_good_pkt_pointers(this_branch, src_reg, 15509 src_reg->type, true); 15510 mark_pkt_end(other_branch, insn->src_reg, false); 15511 } else { 15512 return false; 15513 } 15514 break; 15515 default: 15516 return false; 15517 } 15518 15519 return true; 15520 } 15521 15522 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg, 15523 u32 id, u32 frameno, u32 spi_or_reg, bool is_reg) 15524 { 15525 struct linked_reg *e; 15526 15527 if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id) 15528 return; 15529 15530 e = linked_regs_push(reg_set); 15531 if (e) { 15532 e->frameno = frameno; 15533 e->is_reg = is_reg; 15534 e->regno = spi_or_reg; 15535 } else { 15536 reg->id = 0; 15537 } 15538 } 15539 15540 /* For all R being scalar registers or spilled scalar registers 15541 * in verifier state, save R in linked_regs if R->id == id. 15542 * If there are too many Rs sharing same id, reset id for leftover Rs. 15543 */ 15544 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id, 15545 struct linked_regs *linked_regs) 15546 { 15547 struct bpf_func_state *func; 15548 struct bpf_reg_state *reg; 15549 int i, j; 15550 15551 id = id & ~BPF_ADD_CONST; 15552 for (i = vstate->curframe; i >= 0; i--) { 15553 func = vstate->frame[i]; 15554 for (j = 0; j < BPF_REG_FP; j++) { 15555 reg = &func->regs[j]; 15556 __collect_linked_regs(linked_regs, reg, id, i, j, true); 15557 } 15558 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 15559 if (!is_spilled_reg(&func->stack[j])) 15560 continue; 15561 reg = &func->stack[j].spilled_ptr; 15562 __collect_linked_regs(linked_regs, reg, id, i, j, false); 15563 } 15564 } 15565 } 15566 15567 /* For all R in linked_regs, copy known_reg range into R 15568 * if R->id == known_reg->id. 15569 */ 15570 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg, 15571 struct linked_regs *linked_regs) 15572 { 15573 struct bpf_reg_state fake_reg; 15574 struct bpf_reg_state *reg; 15575 struct linked_reg *e; 15576 int i; 15577 15578 for (i = 0; i < linked_regs->cnt; ++i) { 15579 e = &linked_regs->entries[i]; 15580 reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno] 15581 : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr; 15582 if (reg->type != SCALAR_VALUE || reg == known_reg) 15583 continue; 15584 if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST)) 15585 continue; 15586 if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) || 15587 reg->off == known_reg->off) { 15588 s32 saved_subreg_def = reg->subreg_def; 15589 15590 copy_register_state(reg, known_reg); 15591 reg->subreg_def = saved_subreg_def; 15592 } else { 15593 s32 saved_subreg_def = reg->subreg_def; 15594 s32 saved_off = reg->off; 15595 15596 fake_reg.type = SCALAR_VALUE; 15597 __mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off); 15598 15599 /* reg = known_reg; reg += delta */ 15600 copy_register_state(reg, known_reg); 15601 /* 15602 * Must preserve off, id and add_const flag, 15603 * otherwise another sync_linked_regs() will be incorrect. 15604 */ 15605 reg->off = saved_off; 15606 reg->subreg_def = saved_subreg_def; 15607 15608 scalar32_min_max_add(reg, &fake_reg); 15609 scalar_min_max_add(reg, &fake_reg); 15610 reg->var_off = tnum_add(reg->var_off, fake_reg.var_off); 15611 } 15612 } 15613 } 15614 15615 static int check_cond_jmp_op(struct bpf_verifier_env *env, 15616 struct bpf_insn *insn, int *insn_idx) 15617 { 15618 struct bpf_verifier_state *this_branch = env->cur_state; 15619 struct bpf_verifier_state *other_branch; 15620 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 15621 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 15622 struct bpf_reg_state *eq_branch_regs; 15623 struct linked_regs linked_regs = {}; 15624 u8 opcode = BPF_OP(insn->code); 15625 bool is_jmp32; 15626 int pred = -1; 15627 int err; 15628 15629 /* Only conditional jumps are expected to reach here. */ 15630 if (opcode == BPF_JA || opcode > BPF_JCOND) { 15631 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 15632 return -EINVAL; 15633 } 15634 15635 if (opcode == BPF_JCOND) { 15636 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 15637 int idx = *insn_idx; 15638 15639 if (insn->code != (BPF_JMP | BPF_JCOND) || 15640 insn->src_reg != BPF_MAY_GOTO || 15641 insn->dst_reg || insn->imm || insn->off == 0) { 15642 verbose(env, "invalid may_goto off %d imm %d\n", 15643 insn->off, insn->imm); 15644 return -EINVAL; 15645 } 15646 prev_st = find_prev_entry(env, cur_st->parent, idx); 15647 15648 /* branch out 'fallthrough' insn as a new state to explore */ 15649 queued_st = push_stack(env, idx + 1, idx, false); 15650 if (!queued_st) 15651 return -ENOMEM; 15652 15653 queued_st->may_goto_depth++; 15654 if (prev_st) 15655 widen_imprecise_scalars(env, prev_st, queued_st); 15656 *insn_idx += insn->off; 15657 return 0; 15658 } 15659 15660 /* check src2 operand */ 15661 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15662 if (err) 15663 return err; 15664 15665 dst_reg = ®s[insn->dst_reg]; 15666 if (BPF_SRC(insn->code) == BPF_X) { 15667 if (insn->imm != 0) { 15668 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 15669 return -EINVAL; 15670 } 15671 15672 /* check src1 operand */ 15673 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15674 if (err) 15675 return err; 15676 15677 src_reg = ®s[insn->src_reg]; 15678 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 15679 is_pointer_value(env, insn->src_reg)) { 15680 verbose(env, "R%d pointer comparison prohibited\n", 15681 insn->src_reg); 15682 return -EACCES; 15683 } 15684 } else { 15685 if (insn->src_reg != BPF_REG_0) { 15686 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 15687 return -EINVAL; 15688 } 15689 src_reg = &env->fake_reg[0]; 15690 memset(src_reg, 0, sizeof(*src_reg)); 15691 src_reg->type = SCALAR_VALUE; 15692 __mark_reg_known(src_reg, insn->imm); 15693 } 15694 15695 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 15696 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 15697 if (pred >= 0) { 15698 /* If we get here with a dst_reg pointer type it is because 15699 * above is_branch_taken() special cased the 0 comparison. 15700 */ 15701 if (!__is_pointer_value(false, dst_reg)) 15702 err = mark_chain_precision(env, insn->dst_reg); 15703 if (BPF_SRC(insn->code) == BPF_X && !err && 15704 !__is_pointer_value(false, src_reg)) 15705 err = mark_chain_precision(env, insn->src_reg); 15706 if (err) 15707 return err; 15708 } 15709 15710 if (pred == 1) { 15711 /* Only follow the goto, ignore fall-through. If needed, push 15712 * the fall-through branch for simulation under speculative 15713 * execution. 15714 */ 15715 if (!env->bypass_spec_v1 && 15716 !sanitize_speculative_path(env, insn, *insn_idx + 1, 15717 *insn_idx)) 15718 return -EFAULT; 15719 if (env->log.level & BPF_LOG_LEVEL) 15720 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15721 *insn_idx += insn->off; 15722 return 0; 15723 } else if (pred == 0) { 15724 /* Only follow the fall-through branch, since that's where the 15725 * program will go. If needed, push the goto branch for 15726 * simulation under speculative execution. 15727 */ 15728 if (!env->bypass_spec_v1 && 15729 !sanitize_speculative_path(env, insn, 15730 *insn_idx + insn->off + 1, 15731 *insn_idx)) 15732 return -EFAULT; 15733 if (env->log.level & BPF_LOG_LEVEL) 15734 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15735 return 0; 15736 } 15737 15738 /* Push scalar registers sharing same ID to jump history, 15739 * do this before creating 'other_branch', so that both 15740 * 'this_branch' and 'other_branch' share this history 15741 * if parent state is created. 15742 */ 15743 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id) 15744 collect_linked_regs(this_branch, src_reg->id, &linked_regs); 15745 if (dst_reg->type == SCALAR_VALUE && dst_reg->id) 15746 collect_linked_regs(this_branch, dst_reg->id, &linked_regs); 15747 if (linked_regs.cnt > 1) { 15748 err = push_insn_history(env, this_branch, 0, linked_regs_pack(&linked_regs)); 15749 if (err) 15750 return err; 15751 } 15752 15753 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 15754 false); 15755 if (!other_branch) 15756 return -EFAULT; 15757 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 15758 15759 if (BPF_SRC(insn->code) == BPF_X) { 15760 err = reg_set_min_max(env, 15761 &other_branch_regs[insn->dst_reg], 15762 &other_branch_regs[insn->src_reg], 15763 dst_reg, src_reg, opcode, is_jmp32); 15764 } else /* BPF_SRC(insn->code) == BPF_K */ { 15765 /* reg_set_min_max() can mangle the fake_reg. Make a copy 15766 * so that these are two different memory locations. The 15767 * src_reg is not used beyond here in context of K. 15768 */ 15769 memcpy(&env->fake_reg[1], &env->fake_reg[0], 15770 sizeof(env->fake_reg[0])); 15771 err = reg_set_min_max(env, 15772 &other_branch_regs[insn->dst_reg], 15773 &env->fake_reg[0], 15774 dst_reg, &env->fake_reg[1], 15775 opcode, is_jmp32); 15776 } 15777 if (err) 15778 return err; 15779 15780 if (BPF_SRC(insn->code) == BPF_X && 15781 src_reg->type == SCALAR_VALUE && src_reg->id && 15782 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 15783 sync_linked_regs(this_branch, src_reg, &linked_regs); 15784 sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs); 15785 } 15786 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 15787 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 15788 sync_linked_regs(this_branch, dst_reg, &linked_regs); 15789 sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs); 15790 } 15791 15792 /* if one pointer register is compared to another pointer 15793 * register check if PTR_MAYBE_NULL could be lifted. 15794 * E.g. register A - maybe null 15795 * register B - not null 15796 * for JNE A, B, ... - A is not null in the false branch; 15797 * for JEQ A, B, ... - A is not null in the true branch. 15798 * 15799 * Since PTR_TO_BTF_ID points to a kernel struct that does 15800 * not need to be null checked by the BPF program, i.e., 15801 * could be null even without PTR_MAYBE_NULL marking, so 15802 * only propagate nullness when neither reg is that type. 15803 */ 15804 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 15805 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 15806 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 15807 base_type(src_reg->type) != PTR_TO_BTF_ID && 15808 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 15809 eq_branch_regs = NULL; 15810 switch (opcode) { 15811 case BPF_JEQ: 15812 eq_branch_regs = other_branch_regs; 15813 break; 15814 case BPF_JNE: 15815 eq_branch_regs = regs; 15816 break; 15817 default: 15818 /* do nothing */ 15819 break; 15820 } 15821 if (eq_branch_regs) { 15822 if (type_may_be_null(src_reg->type)) 15823 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 15824 else 15825 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 15826 } 15827 } 15828 15829 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 15830 * NOTE: these optimizations below are related with pointer comparison 15831 * which will never be JMP32. 15832 */ 15833 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 15834 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 15835 type_may_be_null(dst_reg->type)) { 15836 /* Mark all identical registers in each branch as either 15837 * safe or unknown depending R == 0 or R != 0 conditional. 15838 */ 15839 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 15840 opcode == BPF_JNE); 15841 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 15842 opcode == BPF_JEQ); 15843 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 15844 this_branch, other_branch) && 15845 is_pointer_value(env, insn->dst_reg)) { 15846 verbose(env, "R%d pointer comparison prohibited\n", 15847 insn->dst_reg); 15848 return -EACCES; 15849 } 15850 if (env->log.level & BPF_LOG_LEVEL) 15851 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15852 return 0; 15853 } 15854 15855 /* verify BPF_LD_IMM64 instruction */ 15856 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 15857 { 15858 struct bpf_insn_aux_data *aux = cur_aux(env); 15859 struct bpf_reg_state *regs = cur_regs(env); 15860 struct bpf_reg_state *dst_reg; 15861 struct bpf_map *map; 15862 int err; 15863 15864 if (BPF_SIZE(insn->code) != BPF_DW) { 15865 verbose(env, "invalid BPF_LD_IMM insn\n"); 15866 return -EINVAL; 15867 } 15868 if (insn->off != 0) { 15869 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 15870 return -EINVAL; 15871 } 15872 15873 err = check_reg_arg(env, insn->dst_reg, DST_OP); 15874 if (err) 15875 return err; 15876 15877 dst_reg = ®s[insn->dst_reg]; 15878 if (insn->src_reg == 0) { 15879 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 15880 15881 dst_reg->type = SCALAR_VALUE; 15882 __mark_reg_known(®s[insn->dst_reg], imm); 15883 return 0; 15884 } 15885 15886 /* All special src_reg cases are listed below. From this point onwards 15887 * we either succeed and assign a corresponding dst_reg->type after 15888 * zeroing the offset, or fail and reject the program. 15889 */ 15890 mark_reg_known_zero(env, regs, insn->dst_reg); 15891 15892 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 15893 dst_reg->type = aux->btf_var.reg_type; 15894 switch (base_type(dst_reg->type)) { 15895 case PTR_TO_MEM: 15896 dst_reg->mem_size = aux->btf_var.mem_size; 15897 break; 15898 case PTR_TO_BTF_ID: 15899 dst_reg->btf = aux->btf_var.btf; 15900 dst_reg->btf_id = aux->btf_var.btf_id; 15901 break; 15902 default: 15903 verbose(env, "bpf verifier is misconfigured\n"); 15904 return -EFAULT; 15905 } 15906 return 0; 15907 } 15908 15909 if (insn->src_reg == BPF_PSEUDO_FUNC) { 15910 struct bpf_prog_aux *aux = env->prog->aux; 15911 u32 subprogno = find_subprog(env, 15912 env->insn_idx + insn->imm + 1); 15913 15914 if (!aux->func_info) { 15915 verbose(env, "missing btf func_info\n"); 15916 return -EINVAL; 15917 } 15918 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 15919 verbose(env, "callback function not static\n"); 15920 return -EINVAL; 15921 } 15922 15923 dst_reg->type = PTR_TO_FUNC; 15924 dst_reg->subprogno = subprogno; 15925 return 0; 15926 } 15927 15928 map = env->used_maps[aux->map_index]; 15929 dst_reg->map_ptr = map; 15930 15931 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 15932 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 15933 if (map->map_type == BPF_MAP_TYPE_ARENA) { 15934 __mark_reg_unknown(env, dst_reg); 15935 return 0; 15936 } 15937 dst_reg->type = PTR_TO_MAP_VALUE; 15938 dst_reg->off = aux->map_off; 15939 WARN_ON_ONCE(map->max_entries != 1); 15940 /* We want reg->id to be same (0) as map_value is not distinct */ 15941 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 15942 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 15943 dst_reg->type = CONST_PTR_TO_MAP; 15944 } else { 15945 verbose(env, "bpf verifier is misconfigured\n"); 15946 return -EINVAL; 15947 } 15948 15949 return 0; 15950 } 15951 15952 static bool may_access_skb(enum bpf_prog_type type) 15953 { 15954 switch (type) { 15955 case BPF_PROG_TYPE_SOCKET_FILTER: 15956 case BPF_PROG_TYPE_SCHED_CLS: 15957 case BPF_PROG_TYPE_SCHED_ACT: 15958 return true; 15959 default: 15960 return false; 15961 } 15962 } 15963 15964 /* verify safety of LD_ABS|LD_IND instructions: 15965 * - they can only appear in the programs where ctx == skb 15966 * - since they are wrappers of function calls, they scratch R1-R5 registers, 15967 * preserve R6-R9, and store return value into R0 15968 * 15969 * Implicit input: 15970 * ctx == skb == R6 == CTX 15971 * 15972 * Explicit input: 15973 * SRC == any register 15974 * IMM == 32-bit immediate 15975 * 15976 * Output: 15977 * R0 - 8/16/32-bit skb data converted to cpu endianness 15978 */ 15979 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 15980 { 15981 struct bpf_reg_state *regs = cur_regs(env); 15982 static const int ctx_reg = BPF_REG_6; 15983 u8 mode = BPF_MODE(insn->code); 15984 int i, err; 15985 15986 if (!may_access_skb(resolve_prog_type(env->prog))) { 15987 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 15988 return -EINVAL; 15989 } 15990 15991 if (!env->ops->gen_ld_abs) { 15992 verbose(env, "bpf verifier is misconfigured\n"); 15993 return -EINVAL; 15994 } 15995 15996 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 15997 BPF_SIZE(insn->code) == BPF_DW || 15998 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 15999 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 16000 return -EINVAL; 16001 } 16002 16003 /* check whether implicit source operand (register R6) is readable */ 16004 err = check_reg_arg(env, ctx_reg, SRC_OP); 16005 if (err) 16006 return err; 16007 16008 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 16009 * gen_ld_abs() may terminate the program at runtime, leading to 16010 * reference leak. 16011 */ 16012 err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]"); 16013 if (err) 16014 return err; 16015 16016 if (regs[ctx_reg].type != PTR_TO_CTX) { 16017 verbose(env, 16018 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 16019 return -EINVAL; 16020 } 16021 16022 if (mode == BPF_IND) { 16023 /* check explicit source operand */ 16024 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16025 if (err) 16026 return err; 16027 } 16028 16029 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 16030 if (err < 0) 16031 return err; 16032 16033 /* reset caller saved regs to unreadable */ 16034 for (i = 0; i < CALLER_SAVED_REGS; i++) { 16035 mark_reg_not_init(env, regs, caller_saved[i]); 16036 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 16037 } 16038 16039 /* mark destination R0 register as readable, since it contains 16040 * the value fetched from the packet. 16041 * Already marked as written above. 16042 */ 16043 mark_reg_unknown(env, regs, BPF_REG_0); 16044 /* ld_abs load up to 32-bit skb data. */ 16045 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 16046 return 0; 16047 } 16048 16049 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) 16050 { 16051 const char *exit_ctx = "At program exit"; 16052 struct tnum enforce_attach_type_range = tnum_unknown; 16053 const struct bpf_prog *prog = env->prog; 16054 struct bpf_reg_state *reg; 16055 struct bpf_retval_range range = retval_range(0, 1); 16056 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 16057 int err; 16058 struct bpf_func_state *frame = env->cur_state->frame[0]; 16059 const bool is_subprog = frame->subprogno; 16060 bool return_32bit = false; 16061 16062 /* LSM and struct_ops func-ptr's return type could be "void" */ 16063 if (!is_subprog || frame->in_exception_callback_fn) { 16064 switch (prog_type) { 16065 case BPF_PROG_TYPE_LSM: 16066 if (prog->expected_attach_type == BPF_LSM_CGROUP) 16067 /* See below, can be 0 or 0-1 depending on hook. */ 16068 break; 16069 fallthrough; 16070 case BPF_PROG_TYPE_STRUCT_OPS: 16071 if (!prog->aux->attach_func_proto->type) 16072 return 0; 16073 break; 16074 default: 16075 break; 16076 } 16077 } 16078 16079 /* eBPF calling convention is such that R0 is used 16080 * to return the value from eBPF program. 16081 * Make sure that it's readable at this time 16082 * of bpf_exit, which means that program wrote 16083 * something into it earlier 16084 */ 16085 err = check_reg_arg(env, regno, SRC_OP); 16086 if (err) 16087 return err; 16088 16089 if (is_pointer_value(env, regno)) { 16090 verbose(env, "R%d leaks addr as return value\n", regno); 16091 return -EACCES; 16092 } 16093 16094 reg = cur_regs(env) + regno; 16095 16096 if (frame->in_async_callback_fn) { 16097 /* enforce return zero from async callbacks like timer */ 16098 exit_ctx = "At async callback return"; 16099 range = retval_range(0, 0); 16100 goto enforce_retval; 16101 } 16102 16103 if (is_subprog && !frame->in_exception_callback_fn) { 16104 if (reg->type != SCALAR_VALUE) { 16105 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 16106 regno, reg_type_str(env, reg->type)); 16107 return -EINVAL; 16108 } 16109 return 0; 16110 } 16111 16112 switch (prog_type) { 16113 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 16114 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 16115 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 16116 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 16117 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 16118 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 16119 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 16120 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 16121 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 16122 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 16123 range = retval_range(1, 1); 16124 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 16125 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 16126 range = retval_range(0, 3); 16127 break; 16128 case BPF_PROG_TYPE_CGROUP_SKB: 16129 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 16130 range = retval_range(0, 3); 16131 enforce_attach_type_range = tnum_range(2, 3); 16132 } 16133 break; 16134 case BPF_PROG_TYPE_CGROUP_SOCK: 16135 case BPF_PROG_TYPE_SOCK_OPS: 16136 case BPF_PROG_TYPE_CGROUP_DEVICE: 16137 case BPF_PROG_TYPE_CGROUP_SYSCTL: 16138 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 16139 break; 16140 case BPF_PROG_TYPE_RAW_TRACEPOINT: 16141 if (!env->prog->aux->attach_btf_id) 16142 return 0; 16143 range = retval_range(0, 0); 16144 break; 16145 case BPF_PROG_TYPE_TRACING: 16146 switch (env->prog->expected_attach_type) { 16147 case BPF_TRACE_FENTRY: 16148 case BPF_TRACE_FEXIT: 16149 range = retval_range(0, 0); 16150 break; 16151 case BPF_TRACE_RAW_TP: 16152 case BPF_MODIFY_RETURN: 16153 return 0; 16154 case BPF_TRACE_ITER: 16155 break; 16156 default: 16157 return -ENOTSUPP; 16158 } 16159 break; 16160 case BPF_PROG_TYPE_KPROBE: 16161 switch (env->prog->expected_attach_type) { 16162 case BPF_TRACE_KPROBE_SESSION: 16163 case BPF_TRACE_UPROBE_SESSION: 16164 range = retval_range(0, 1); 16165 break; 16166 default: 16167 return 0; 16168 } 16169 break; 16170 case BPF_PROG_TYPE_SK_LOOKUP: 16171 range = retval_range(SK_DROP, SK_PASS); 16172 break; 16173 16174 case BPF_PROG_TYPE_LSM: 16175 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 16176 /* no range found, any return value is allowed */ 16177 if (!get_func_retval_range(env->prog, &range)) 16178 return 0; 16179 /* no restricted range, any return value is allowed */ 16180 if (range.minval == S32_MIN && range.maxval == S32_MAX) 16181 return 0; 16182 return_32bit = true; 16183 } else if (!env->prog->aux->attach_func_proto->type) { 16184 /* Make sure programs that attach to void 16185 * hooks don't try to modify return value. 16186 */ 16187 range = retval_range(1, 1); 16188 } 16189 break; 16190 16191 case BPF_PROG_TYPE_NETFILTER: 16192 range = retval_range(NF_DROP, NF_ACCEPT); 16193 break; 16194 case BPF_PROG_TYPE_EXT: 16195 /* freplace program can return anything as its return value 16196 * depends on the to-be-replaced kernel func or bpf program. 16197 */ 16198 default: 16199 return 0; 16200 } 16201 16202 enforce_retval: 16203 if (reg->type != SCALAR_VALUE) { 16204 verbose(env, "%s the register R%d is not a known value (%s)\n", 16205 exit_ctx, regno, reg_type_str(env, reg->type)); 16206 return -EINVAL; 16207 } 16208 16209 err = mark_chain_precision(env, regno); 16210 if (err) 16211 return err; 16212 16213 if (!retval_range_within(range, reg, return_32bit)) { 16214 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); 16215 if (!is_subprog && 16216 prog->expected_attach_type == BPF_LSM_CGROUP && 16217 prog_type == BPF_PROG_TYPE_LSM && 16218 !prog->aux->attach_func_proto->type) 16219 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 16220 return -EINVAL; 16221 } 16222 16223 if (!tnum_is_unknown(enforce_attach_type_range) && 16224 tnum_in(enforce_attach_type_range, reg->var_off)) 16225 env->prog->enforce_expected_attach_type = 1; 16226 return 0; 16227 } 16228 16229 /* non-recursive DFS pseudo code 16230 * 1 procedure DFS-iterative(G,v): 16231 * 2 label v as discovered 16232 * 3 let S be a stack 16233 * 4 S.push(v) 16234 * 5 while S is not empty 16235 * 6 t <- S.peek() 16236 * 7 if t is what we're looking for: 16237 * 8 return t 16238 * 9 for all edges e in G.adjacentEdges(t) do 16239 * 10 if edge e is already labelled 16240 * 11 continue with the next edge 16241 * 12 w <- G.adjacentVertex(t,e) 16242 * 13 if vertex w is not discovered and not explored 16243 * 14 label e as tree-edge 16244 * 15 label w as discovered 16245 * 16 S.push(w) 16246 * 17 continue at 5 16247 * 18 else if vertex w is discovered 16248 * 19 label e as back-edge 16249 * 20 else 16250 * 21 // vertex w is explored 16251 * 22 label e as forward- or cross-edge 16252 * 23 label t as explored 16253 * 24 S.pop() 16254 * 16255 * convention: 16256 * 0x10 - discovered 16257 * 0x11 - discovered and fall-through edge labelled 16258 * 0x12 - discovered and fall-through and branch edges labelled 16259 * 0x20 - explored 16260 */ 16261 16262 enum { 16263 DISCOVERED = 0x10, 16264 EXPLORED = 0x20, 16265 FALLTHROUGH = 1, 16266 BRANCH = 2, 16267 }; 16268 16269 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 16270 { 16271 env->insn_aux_data[idx].prune_point = true; 16272 } 16273 16274 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 16275 { 16276 return env->insn_aux_data[insn_idx].prune_point; 16277 } 16278 16279 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 16280 { 16281 env->insn_aux_data[idx].force_checkpoint = true; 16282 } 16283 16284 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 16285 { 16286 return env->insn_aux_data[insn_idx].force_checkpoint; 16287 } 16288 16289 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 16290 { 16291 env->insn_aux_data[idx].calls_callback = true; 16292 } 16293 16294 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 16295 { 16296 return env->insn_aux_data[insn_idx].calls_callback; 16297 } 16298 16299 enum { 16300 DONE_EXPLORING = 0, 16301 KEEP_EXPLORING = 1, 16302 }; 16303 16304 /* t, w, e - match pseudo-code above: 16305 * t - index of current instruction 16306 * w - next instruction 16307 * e - edge 16308 */ 16309 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 16310 { 16311 int *insn_stack = env->cfg.insn_stack; 16312 int *insn_state = env->cfg.insn_state; 16313 16314 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 16315 return DONE_EXPLORING; 16316 16317 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 16318 return DONE_EXPLORING; 16319 16320 if (w < 0 || w >= env->prog->len) { 16321 verbose_linfo(env, t, "%d: ", t); 16322 verbose(env, "jump out of range from insn %d to %d\n", t, w); 16323 return -EINVAL; 16324 } 16325 16326 if (e == BRANCH) { 16327 /* mark branch target for state pruning */ 16328 mark_prune_point(env, w); 16329 mark_jmp_point(env, w); 16330 } 16331 16332 if (insn_state[w] == 0) { 16333 /* tree-edge */ 16334 insn_state[t] = DISCOVERED | e; 16335 insn_state[w] = DISCOVERED; 16336 if (env->cfg.cur_stack >= env->prog->len) 16337 return -E2BIG; 16338 insn_stack[env->cfg.cur_stack++] = w; 16339 return KEEP_EXPLORING; 16340 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 16341 if (env->bpf_capable) 16342 return DONE_EXPLORING; 16343 verbose_linfo(env, t, "%d: ", t); 16344 verbose_linfo(env, w, "%d: ", w); 16345 verbose(env, "back-edge from insn %d to %d\n", t, w); 16346 return -EINVAL; 16347 } else if (insn_state[w] == EXPLORED) { 16348 /* forward- or cross-edge */ 16349 insn_state[t] = DISCOVERED | e; 16350 } else { 16351 verbose(env, "insn state internal bug\n"); 16352 return -EFAULT; 16353 } 16354 return DONE_EXPLORING; 16355 } 16356 16357 static int visit_func_call_insn(int t, struct bpf_insn *insns, 16358 struct bpf_verifier_env *env, 16359 bool visit_callee) 16360 { 16361 int ret, insn_sz; 16362 16363 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 16364 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 16365 if (ret) 16366 return ret; 16367 16368 mark_prune_point(env, t + insn_sz); 16369 /* when we exit from subprog, we need to record non-linear history */ 16370 mark_jmp_point(env, t + insn_sz); 16371 16372 if (visit_callee) { 16373 mark_prune_point(env, t); 16374 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 16375 } 16376 return ret; 16377 } 16378 16379 /* Bitmask with 1s for all caller saved registers */ 16380 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 16381 16382 /* Return a bitmask specifying which caller saved registers are 16383 * clobbered by a call to a helper *as if* this helper follows 16384 * bpf_fastcall contract: 16385 * - includes R0 if function is non-void; 16386 * - includes R1-R5 if corresponding parameter has is described 16387 * in the function prototype. 16388 */ 16389 static u32 helper_fastcall_clobber_mask(const struct bpf_func_proto *fn) 16390 { 16391 u32 mask; 16392 int i; 16393 16394 mask = 0; 16395 if (fn->ret_type != RET_VOID) 16396 mask |= BIT(BPF_REG_0); 16397 for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) 16398 if (fn->arg_type[i] != ARG_DONTCARE) 16399 mask |= BIT(BPF_REG_1 + i); 16400 return mask; 16401 } 16402 16403 /* True if do_misc_fixups() replaces calls to helper number 'imm', 16404 * replacement patch is presumed to follow bpf_fastcall contract 16405 * (see mark_fastcall_pattern_for_call() below). 16406 */ 16407 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm) 16408 { 16409 switch (imm) { 16410 #ifdef CONFIG_X86_64 16411 case BPF_FUNC_get_smp_processor_id: 16412 return env->prog->jit_requested && bpf_jit_supports_percpu_insn(); 16413 #endif 16414 default: 16415 return false; 16416 } 16417 } 16418 16419 /* Same as helper_fastcall_clobber_mask() but for kfuncs, see comment above */ 16420 static u32 kfunc_fastcall_clobber_mask(struct bpf_kfunc_call_arg_meta *meta) 16421 { 16422 u32 vlen, i, mask; 16423 16424 vlen = btf_type_vlen(meta->func_proto); 16425 mask = 0; 16426 if (!btf_type_is_void(btf_type_by_id(meta->btf, meta->func_proto->type))) 16427 mask |= BIT(BPF_REG_0); 16428 for (i = 0; i < vlen; ++i) 16429 mask |= BIT(BPF_REG_1 + i); 16430 return mask; 16431 } 16432 16433 /* Same as verifier_inlines_helper_call() but for kfuncs, see comment above */ 16434 static bool is_fastcall_kfunc_call(struct bpf_kfunc_call_arg_meta *meta) 16435 { 16436 return meta->kfunc_flags & KF_FASTCALL; 16437 } 16438 16439 /* LLVM define a bpf_fastcall function attribute. 16440 * This attribute means that function scratches only some of 16441 * the caller saved registers defined by ABI. 16442 * For BPF the set of such registers could be defined as follows: 16443 * - R0 is scratched only if function is non-void; 16444 * - R1-R5 are scratched only if corresponding parameter type is defined 16445 * in the function prototype. 16446 * 16447 * The contract between kernel and clang allows to simultaneously use 16448 * such functions and maintain backwards compatibility with old 16449 * kernels that don't understand bpf_fastcall calls: 16450 * 16451 * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5 16452 * registers are not scratched by the call; 16453 * 16454 * - as a post-processing step, clang visits each bpf_fastcall call and adds 16455 * spill/fill for every live r0-r5; 16456 * 16457 * - stack offsets used for the spill/fill are allocated as lowest 16458 * stack offsets in whole function and are not used for any other 16459 * purposes; 16460 * 16461 * - when kernel loads a program, it looks for such patterns 16462 * (bpf_fastcall function surrounded by spills/fills) and checks if 16463 * spill/fill stack offsets are used exclusively in fastcall patterns; 16464 * 16465 * - if so, and if verifier or current JIT inlines the call to the 16466 * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary 16467 * spill/fill pairs; 16468 * 16469 * - when old kernel loads a program, presence of spill/fill pairs 16470 * keeps BPF program valid, albeit slightly less efficient. 16471 * 16472 * For example: 16473 * 16474 * r1 = 1; 16475 * r2 = 2; 16476 * *(u64 *)(r10 - 8) = r1; r1 = 1; 16477 * *(u64 *)(r10 - 16) = r2; r2 = 2; 16478 * call %[to_be_inlined] --> call %[to_be_inlined] 16479 * r2 = *(u64 *)(r10 - 16); r0 = r1; 16480 * r1 = *(u64 *)(r10 - 8); r0 += r2; 16481 * r0 = r1; exit; 16482 * r0 += r2; 16483 * exit; 16484 * 16485 * The purpose of mark_fastcall_pattern_for_call is to: 16486 * - look for such patterns; 16487 * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern; 16488 * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction; 16489 * - update env->subprog_info[*]->fastcall_stack_off to find an offset 16490 * at which bpf_fastcall spill/fill stack slots start; 16491 * - update env->subprog_info[*]->keep_fastcall_stack. 16492 * 16493 * The .fastcall_pattern and .fastcall_stack_off are used by 16494 * check_fastcall_stack_contract() to check if every stack access to 16495 * fastcall spill/fill stack slot originates from spill/fill 16496 * instructions, members of fastcall patterns. 16497 * 16498 * If such condition holds true for a subprogram, fastcall patterns could 16499 * be rewritten by remove_fastcall_spills_fills(). 16500 * Otherwise bpf_fastcall patterns are not changed in the subprogram 16501 * (code, presumably, generated by an older clang version). 16502 * 16503 * For example, it is *not* safe to remove spill/fill below: 16504 * 16505 * r1 = 1; 16506 * *(u64 *)(r10 - 8) = r1; r1 = 1; 16507 * call %[to_be_inlined] --> call %[to_be_inlined] 16508 * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!! 16509 * r0 = *(u64 *)(r10 - 8); r0 += r1; 16510 * r0 += r1; exit; 16511 * exit; 16512 */ 16513 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env, 16514 struct bpf_subprog_info *subprog, 16515 int insn_idx, s16 lowest_off) 16516 { 16517 struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx; 16518 struct bpf_insn *call = &env->prog->insnsi[insn_idx]; 16519 const struct bpf_func_proto *fn; 16520 u32 clobbered_regs_mask = ALL_CALLER_SAVED_REGS; 16521 u32 expected_regs_mask; 16522 bool can_be_inlined = false; 16523 s16 off; 16524 int i; 16525 16526 if (bpf_helper_call(call)) { 16527 if (get_helper_proto(env, call->imm, &fn) < 0) 16528 /* error would be reported later */ 16529 return; 16530 clobbered_regs_mask = helper_fastcall_clobber_mask(fn); 16531 can_be_inlined = fn->allow_fastcall && 16532 (verifier_inlines_helper_call(env, call->imm) || 16533 bpf_jit_inlines_helper_call(call->imm)); 16534 } 16535 16536 if (bpf_pseudo_kfunc_call(call)) { 16537 struct bpf_kfunc_call_arg_meta meta; 16538 int err; 16539 16540 err = fetch_kfunc_meta(env, call, &meta, NULL); 16541 if (err < 0) 16542 /* error would be reported later */ 16543 return; 16544 16545 clobbered_regs_mask = kfunc_fastcall_clobber_mask(&meta); 16546 can_be_inlined = is_fastcall_kfunc_call(&meta); 16547 } 16548 16549 if (clobbered_regs_mask == ALL_CALLER_SAVED_REGS) 16550 return; 16551 16552 /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */ 16553 expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS; 16554 16555 /* match pairs of form: 16556 * 16557 * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0) 16558 * ... 16559 * call %[to_be_inlined] 16560 * ... 16561 * rX = *(u64 *)(r10 - Y) 16562 */ 16563 for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) { 16564 if (insn_idx - i < 0 || insn_idx + i >= env->prog->len) 16565 break; 16566 stx = &insns[insn_idx - i]; 16567 ldx = &insns[insn_idx + i]; 16568 /* must be a stack spill/fill pair */ 16569 if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) || 16570 ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) || 16571 stx->dst_reg != BPF_REG_10 || 16572 ldx->src_reg != BPF_REG_10) 16573 break; 16574 /* must be a spill/fill for the same reg */ 16575 if (stx->src_reg != ldx->dst_reg) 16576 break; 16577 /* must be one of the previously unseen registers */ 16578 if ((BIT(stx->src_reg) & expected_regs_mask) == 0) 16579 break; 16580 /* must be a spill/fill for the same expected offset, 16581 * no need to check offset alignment, BPF_DW stack access 16582 * is always 8-byte aligned. 16583 */ 16584 if (stx->off != off || ldx->off != off) 16585 break; 16586 expected_regs_mask &= ~BIT(stx->src_reg); 16587 env->insn_aux_data[insn_idx - i].fastcall_pattern = 1; 16588 env->insn_aux_data[insn_idx + i].fastcall_pattern = 1; 16589 } 16590 if (i == 1) 16591 return; 16592 16593 /* Conditionally set 'fastcall_spills_num' to allow forward 16594 * compatibility when more helper functions are marked as 16595 * bpf_fastcall at compile time than current kernel supports, e.g: 16596 * 16597 * 1: *(u64 *)(r10 - 8) = r1 16598 * 2: call A ;; assume A is bpf_fastcall for current kernel 16599 * 3: r1 = *(u64 *)(r10 - 8) 16600 * 4: *(u64 *)(r10 - 8) = r1 16601 * 5: call B ;; assume B is not bpf_fastcall for current kernel 16602 * 6: r1 = *(u64 *)(r10 - 8) 16603 * 16604 * There is no need to block bpf_fastcall rewrite for such program. 16605 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy, 16606 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills() 16607 * does not remove spill/fill pair {4,6}. 16608 */ 16609 if (can_be_inlined) 16610 env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1; 16611 else 16612 subprog->keep_fastcall_stack = 1; 16613 subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off); 16614 } 16615 16616 static int mark_fastcall_patterns(struct bpf_verifier_env *env) 16617 { 16618 struct bpf_subprog_info *subprog = env->subprog_info; 16619 struct bpf_insn *insn; 16620 s16 lowest_off; 16621 int s, i; 16622 16623 for (s = 0; s < env->subprog_cnt; ++s, ++subprog) { 16624 /* find lowest stack spill offset used in this subprog */ 16625 lowest_off = 0; 16626 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 16627 insn = env->prog->insnsi + i; 16628 if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) || 16629 insn->dst_reg != BPF_REG_10) 16630 continue; 16631 lowest_off = min(lowest_off, insn->off); 16632 } 16633 /* use this offset to find fastcall patterns */ 16634 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 16635 insn = env->prog->insnsi + i; 16636 if (insn->code != (BPF_JMP | BPF_CALL)) 16637 continue; 16638 mark_fastcall_pattern_for_call(env, subprog, i, lowest_off); 16639 } 16640 } 16641 return 0; 16642 } 16643 16644 /* Visits the instruction at index t and returns one of the following: 16645 * < 0 - an error occurred 16646 * DONE_EXPLORING - the instruction was fully explored 16647 * KEEP_EXPLORING - there is still work to be done before it is fully explored 16648 */ 16649 static int visit_insn(int t, struct bpf_verifier_env *env) 16650 { 16651 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 16652 int ret, off, insn_sz; 16653 16654 if (bpf_pseudo_func(insn)) 16655 return visit_func_call_insn(t, insns, env, true); 16656 16657 /* All non-branch instructions have a single fall-through edge. */ 16658 if (BPF_CLASS(insn->code) != BPF_JMP && 16659 BPF_CLASS(insn->code) != BPF_JMP32) { 16660 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 16661 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 16662 } 16663 16664 switch (BPF_OP(insn->code)) { 16665 case BPF_EXIT: 16666 return DONE_EXPLORING; 16667 16668 case BPF_CALL: 16669 if (is_async_callback_calling_insn(insn)) 16670 /* Mark this call insn as a prune point to trigger 16671 * is_state_visited() check before call itself is 16672 * processed by __check_func_call(). Otherwise new 16673 * async state will be pushed for further exploration. 16674 */ 16675 mark_prune_point(env, t); 16676 /* For functions that invoke callbacks it is not known how many times 16677 * callback would be called. Verifier models callback calling functions 16678 * by repeatedly visiting callback bodies and returning to origin call 16679 * instruction. 16680 * In order to stop such iteration verifier needs to identify when a 16681 * state identical some state from a previous iteration is reached. 16682 * Check below forces creation of checkpoint before callback calling 16683 * instruction to allow search for such identical states. 16684 */ 16685 if (is_sync_callback_calling_insn(insn)) { 16686 mark_calls_callback(env, t); 16687 mark_force_checkpoint(env, t); 16688 mark_prune_point(env, t); 16689 mark_jmp_point(env, t); 16690 } 16691 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 16692 struct bpf_kfunc_call_arg_meta meta; 16693 16694 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 16695 if (ret == 0 && is_iter_next_kfunc(&meta)) { 16696 mark_prune_point(env, t); 16697 /* Checking and saving state checkpoints at iter_next() call 16698 * is crucial for fast convergence of open-coded iterator loop 16699 * logic, so we need to force it. If we don't do that, 16700 * is_state_visited() might skip saving a checkpoint, causing 16701 * unnecessarily long sequence of not checkpointed 16702 * instructions and jumps, leading to exhaustion of jump 16703 * history buffer, and potentially other undesired outcomes. 16704 * It is expected that with correct open-coded iterators 16705 * convergence will happen quickly, so we don't run a risk of 16706 * exhausting memory. 16707 */ 16708 mark_force_checkpoint(env, t); 16709 } 16710 } 16711 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 16712 16713 case BPF_JA: 16714 if (BPF_SRC(insn->code) != BPF_K) 16715 return -EINVAL; 16716 16717 if (BPF_CLASS(insn->code) == BPF_JMP) 16718 off = insn->off; 16719 else 16720 off = insn->imm; 16721 16722 /* unconditional jump with single edge */ 16723 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 16724 if (ret) 16725 return ret; 16726 16727 mark_prune_point(env, t + off + 1); 16728 mark_jmp_point(env, t + off + 1); 16729 16730 return ret; 16731 16732 default: 16733 /* conditional jump with two edges */ 16734 mark_prune_point(env, t); 16735 if (is_may_goto_insn(insn)) 16736 mark_force_checkpoint(env, t); 16737 16738 ret = push_insn(t, t + 1, FALLTHROUGH, env); 16739 if (ret) 16740 return ret; 16741 16742 return push_insn(t, t + insn->off + 1, BRANCH, env); 16743 } 16744 } 16745 16746 /* non-recursive depth-first-search to detect loops in BPF program 16747 * loop == back-edge in directed graph 16748 */ 16749 static int check_cfg(struct bpf_verifier_env *env) 16750 { 16751 int insn_cnt = env->prog->len; 16752 int *insn_stack, *insn_state; 16753 int ex_insn_beg, i, ret = 0; 16754 bool ex_done = false; 16755 16756 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 16757 if (!insn_state) 16758 return -ENOMEM; 16759 16760 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 16761 if (!insn_stack) { 16762 kvfree(insn_state); 16763 return -ENOMEM; 16764 } 16765 16766 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 16767 insn_stack[0] = 0; /* 0 is the first instruction */ 16768 env->cfg.cur_stack = 1; 16769 16770 walk_cfg: 16771 while (env->cfg.cur_stack > 0) { 16772 int t = insn_stack[env->cfg.cur_stack - 1]; 16773 16774 ret = visit_insn(t, env); 16775 switch (ret) { 16776 case DONE_EXPLORING: 16777 insn_state[t] = EXPLORED; 16778 env->cfg.cur_stack--; 16779 break; 16780 case KEEP_EXPLORING: 16781 break; 16782 default: 16783 if (ret > 0) { 16784 verbose(env, "visit_insn internal bug\n"); 16785 ret = -EFAULT; 16786 } 16787 goto err_free; 16788 } 16789 } 16790 16791 if (env->cfg.cur_stack < 0) { 16792 verbose(env, "pop stack internal bug\n"); 16793 ret = -EFAULT; 16794 goto err_free; 16795 } 16796 16797 if (env->exception_callback_subprog && !ex_done) { 16798 ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start; 16799 16800 insn_state[ex_insn_beg] = DISCOVERED; 16801 insn_stack[0] = ex_insn_beg; 16802 env->cfg.cur_stack = 1; 16803 ex_done = true; 16804 goto walk_cfg; 16805 } 16806 16807 for (i = 0; i < insn_cnt; i++) { 16808 struct bpf_insn *insn = &env->prog->insnsi[i]; 16809 16810 if (insn_state[i] != EXPLORED) { 16811 verbose(env, "unreachable insn %d\n", i); 16812 ret = -EINVAL; 16813 goto err_free; 16814 } 16815 if (bpf_is_ldimm64(insn)) { 16816 if (insn_state[i + 1] != 0) { 16817 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 16818 ret = -EINVAL; 16819 goto err_free; 16820 } 16821 i++; /* skip second half of ldimm64 */ 16822 } 16823 } 16824 ret = 0; /* cfg looks good */ 16825 16826 err_free: 16827 kvfree(insn_state); 16828 kvfree(insn_stack); 16829 env->cfg.insn_state = env->cfg.insn_stack = NULL; 16830 return ret; 16831 } 16832 16833 static int check_abnormal_return(struct bpf_verifier_env *env) 16834 { 16835 int i; 16836 16837 for (i = 1; i < env->subprog_cnt; i++) { 16838 if (env->subprog_info[i].has_ld_abs) { 16839 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 16840 return -EINVAL; 16841 } 16842 if (env->subprog_info[i].has_tail_call) { 16843 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 16844 return -EINVAL; 16845 } 16846 } 16847 return 0; 16848 } 16849 16850 /* The minimum supported BTF func info size */ 16851 #define MIN_BPF_FUNCINFO_SIZE 8 16852 #define MAX_FUNCINFO_REC_SIZE 252 16853 16854 static int check_btf_func_early(struct bpf_verifier_env *env, 16855 const union bpf_attr *attr, 16856 bpfptr_t uattr) 16857 { 16858 u32 krec_size = sizeof(struct bpf_func_info); 16859 const struct btf_type *type, *func_proto; 16860 u32 i, nfuncs, urec_size, min_size; 16861 struct bpf_func_info *krecord; 16862 struct bpf_prog *prog; 16863 const struct btf *btf; 16864 u32 prev_offset = 0; 16865 bpfptr_t urecord; 16866 int ret = -ENOMEM; 16867 16868 nfuncs = attr->func_info_cnt; 16869 if (!nfuncs) { 16870 if (check_abnormal_return(env)) 16871 return -EINVAL; 16872 return 0; 16873 } 16874 16875 urec_size = attr->func_info_rec_size; 16876 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 16877 urec_size > MAX_FUNCINFO_REC_SIZE || 16878 urec_size % sizeof(u32)) { 16879 verbose(env, "invalid func info rec size %u\n", urec_size); 16880 return -EINVAL; 16881 } 16882 16883 prog = env->prog; 16884 btf = prog->aux->btf; 16885 16886 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 16887 min_size = min_t(u32, krec_size, urec_size); 16888 16889 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 16890 if (!krecord) 16891 return -ENOMEM; 16892 16893 for (i = 0; i < nfuncs; i++) { 16894 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 16895 if (ret) { 16896 if (ret == -E2BIG) { 16897 verbose(env, "nonzero tailing record in func info"); 16898 /* set the size kernel expects so loader can zero 16899 * out the rest of the record. 16900 */ 16901 if (copy_to_bpfptr_offset(uattr, 16902 offsetof(union bpf_attr, func_info_rec_size), 16903 &min_size, sizeof(min_size))) 16904 ret = -EFAULT; 16905 } 16906 goto err_free; 16907 } 16908 16909 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 16910 ret = -EFAULT; 16911 goto err_free; 16912 } 16913 16914 /* check insn_off */ 16915 ret = -EINVAL; 16916 if (i == 0) { 16917 if (krecord[i].insn_off) { 16918 verbose(env, 16919 "nonzero insn_off %u for the first func info record", 16920 krecord[i].insn_off); 16921 goto err_free; 16922 } 16923 } else if (krecord[i].insn_off <= prev_offset) { 16924 verbose(env, 16925 "same or smaller insn offset (%u) than previous func info record (%u)", 16926 krecord[i].insn_off, prev_offset); 16927 goto err_free; 16928 } 16929 16930 /* check type_id */ 16931 type = btf_type_by_id(btf, krecord[i].type_id); 16932 if (!type || !btf_type_is_func(type)) { 16933 verbose(env, "invalid type id %d in func info", 16934 krecord[i].type_id); 16935 goto err_free; 16936 } 16937 16938 func_proto = btf_type_by_id(btf, type->type); 16939 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 16940 /* btf_func_check() already verified it during BTF load */ 16941 goto err_free; 16942 16943 prev_offset = krecord[i].insn_off; 16944 bpfptr_add(&urecord, urec_size); 16945 } 16946 16947 prog->aux->func_info = krecord; 16948 prog->aux->func_info_cnt = nfuncs; 16949 return 0; 16950 16951 err_free: 16952 kvfree(krecord); 16953 return ret; 16954 } 16955 16956 static int check_btf_func(struct bpf_verifier_env *env, 16957 const union bpf_attr *attr, 16958 bpfptr_t uattr) 16959 { 16960 const struct btf_type *type, *func_proto, *ret_type; 16961 u32 i, nfuncs, urec_size; 16962 struct bpf_func_info *krecord; 16963 struct bpf_func_info_aux *info_aux = NULL; 16964 struct bpf_prog *prog; 16965 const struct btf *btf; 16966 bpfptr_t urecord; 16967 bool scalar_return; 16968 int ret = -ENOMEM; 16969 16970 nfuncs = attr->func_info_cnt; 16971 if (!nfuncs) { 16972 if (check_abnormal_return(env)) 16973 return -EINVAL; 16974 return 0; 16975 } 16976 if (nfuncs != env->subprog_cnt) { 16977 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 16978 return -EINVAL; 16979 } 16980 16981 urec_size = attr->func_info_rec_size; 16982 16983 prog = env->prog; 16984 btf = prog->aux->btf; 16985 16986 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 16987 16988 krecord = prog->aux->func_info; 16989 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 16990 if (!info_aux) 16991 return -ENOMEM; 16992 16993 for (i = 0; i < nfuncs; i++) { 16994 /* check insn_off */ 16995 ret = -EINVAL; 16996 16997 if (env->subprog_info[i].start != krecord[i].insn_off) { 16998 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 16999 goto err_free; 17000 } 17001 17002 /* Already checked type_id */ 17003 type = btf_type_by_id(btf, krecord[i].type_id); 17004 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 17005 /* Already checked func_proto */ 17006 func_proto = btf_type_by_id(btf, type->type); 17007 17008 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 17009 scalar_return = 17010 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 17011 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 17012 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 17013 goto err_free; 17014 } 17015 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 17016 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 17017 goto err_free; 17018 } 17019 17020 bpfptr_add(&urecord, urec_size); 17021 } 17022 17023 prog->aux->func_info_aux = info_aux; 17024 return 0; 17025 17026 err_free: 17027 kfree(info_aux); 17028 return ret; 17029 } 17030 17031 static void adjust_btf_func(struct bpf_verifier_env *env) 17032 { 17033 struct bpf_prog_aux *aux = env->prog->aux; 17034 int i; 17035 17036 if (!aux->func_info) 17037 return; 17038 17039 /* func_info is not available for hidden subprogs */ 17040 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 17041 aux->func_info[i].insn_off = env->subprog_info[i].start; 17042 } 17043 17044 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 17045 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 17046 17047 static int check_btf_line(struct bpf_verifier_env *env, 17048 const union bpf_attr *attr, 17049 bpfptr_t uattr) 17050 { 17051 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 17052 struct bpf_subprog_info *sub; 17053 struct bpf_line_info *linfo; 17054 struct bpf_prog *prog; 17055 const struct btf *btf; 17056 bpfptr_t ulinfo; 17057 int err; 17058 17059 nr_linfo = attr->line_info_cnt; 17060 if (!nr_linfo) 17061 return 0; 17062 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 17063 return -EINVAL; 17064 17065 rec_size = attr->line_info_rec_size; 17066 if (rec_size < MIN_BPF_LINEINFO_SIZE || 17067 rec_size > MAX_LINEINFO_REC_SIZE || 17068 rec_size & (sizeof(u32) - 1)) 17069 return -EINVAL; 17070 17071 /* Need to zero it in case the userspace may 17072 * pass in a smaller bpf_line_info object. 17073 */ 17074 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 17075 GFP_KERNEL | __GFP_NOWARN); 17076 if (!linfo) 17077 return -ENOMEM; 17078 17079 prog = env->prog; 17080 btf = prog->aux->btf; 17081 17082 s = 0; 17083 sub = env->subprog_info; 17084 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 17085 expected_size = sizeof(struct bpf_line_info); 17086 ncopy = min_t(u32, expected_size, rec_size); 17087 for (i = 0; i < nr_linfo; i++) { 17088 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 17089 if (err) { 17090 if (err == -E2BIG) { 17091 verbose(env, "nonzero tailing record in line_info"); 17092 if (copy_to_bpfptr_offset(uattr, 17093 offsetof(union bpf_attr, line_info_rec_size), 17094 &expected_size, sizeof(expected_size))) 17095 err = -EFAULT; 17096 } 17097 goto err_free; 17098 } 17099 17100 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 17101 err = -EFAULT; 17102 goto err_free; 17103 } 17104 17105 /* 17106 * Check insn_off to ensure 17107 * 1) strictly increasing AND 17108 * 2) bounded by prog->len 17109 * 17110 * The linfo[0].insn_off == 0 check logically falls into 17111 * the later "missing bpf_line_info for func..." case 17112 * because the first linfo[0].insn_off must be the 17113 * first sub also and the first sub must have 17114 * subprog_info[0].start == 0. 17115 */ 17116 if ((i && linfo[i].insn_off <= prev_offset) || 17117 linfo[i].insn_off >= prog->len) { 17118 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 17119 i, linfo[i].insn_off, prev_offset, 17120 prog->len); 17121 err = -EINVAL; 17122 goto err_free; 17123 } 17124 17125 if (!prog->insnsi[linfo[i].insn_off].code) { 17126 verbose(env, 17127 "Invalid insn code at line_info[%u].insn_off\n", 17128 i); 17129 err = -EINVAL; 17130 goto err_free; 17131 } 17132 17133 if (!btf_name_by_offset(btf, linfo[i].line_off) || 17134 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 17135 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 17136 err = -EINVAL; 17137 goto err_free; 17138 } 17139 17140 if (s != env->subprog_cnt) { 17141 if (linfo[i].insn_off == sub[s].start) { 17142 sub[s].linfo_idx = i; 17143 s++; 17144 } else if (sub[s].start < linfo[i].insn_off) { 17145 verbose(env, "missing bpf_line_info for func#%u\n", s); 17146 err = -EINVAL; 17147 goto err_free; 17148 } 17149 } 17150 17151 prev_offset = linfo[i].insn_off; 17152 bpfptr_add(&ulinfo, rec_size); 17153 } 17154 17155 if (s != env->subprog_cnt) { 17156 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 17157 env->subprog_cnt - s, s); 17158 err = -EINVAL; 17159 goto err_free; 17160 } 17161 17162 prog->aux->linfo = linfo; 17163 prog->aux->nr_linfo = nr_linfo; 17164 17165 return 0; 17166 17167 err_free: 17168 kvfree(linfo); 17169 return err; 17170 } 17171 17172 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 17173 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 17174 17175 static int check_core_relo(struct bpf_verifier_env *env, 17176 const union bpf_attr *attr, 17177 bpfptr_t uattr) 17178 { 17179 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 17180 struct bpf_core_relo core_relo = {}; 17181 struct bpf_prog *prog = env->prog; 17182 const struct btf *btf = prog->aux->btf; 17183 struct bpf_core_ctx ctx = { 17184 .log = &env->log, 17185 .btf = btf, 17186 }; 17187 bpfptr_t u_core_relo; 17188 int err; 17189 17190 nr_core_relo = attr->core_relo_cnt; 17191 if (!nr_core_relo) 17192 return 0; 17193 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 17194 return -EINVAL; 17195 17196 rec_size = attr->core_relo_rec_size; 17197 if (rec_size < MIN_CORE_RELO_SIZE || 17198 rec_size > MAX_CORE_RELO_SIZE || 17199 rec_size % sizeof(u32)) 17200 return -EINVAL; 17201 17202 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 17203 expected_size = sizeof(struct bpf_core_relo); 17204 ncopy = min_t(u32, expected_size, rec_size); 17205 17206 /* Unlike func_info and line_info, copy and apply each CO-RE 17207 * relocation record one at a time. 17208 */ 17209 for (i = 0; i < nr_core_relo; i++) { 17210 /* future proofing when sizeof(bpf_core_relo) changes */ 17211 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 17212 if (err) { 17213 if (err == -E2BIG) { 17214 verbose(env, "nonzero tailing record in core_relo"); 17215 if (copy_to_bpfptr_offset(uattr, 17216 offsetof(union bpf_attr, core_relo_rec_size), 17217 &expected_size, sizeof(expected_size))) 17218 err = -EFAULT; 17219 } 17220 break; 17221 } 17222 17223 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 17224 err = -EFAULT; 17225 break; 17226 } 17227 17228 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 17229 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 17230 i, core_relo.insn_off, prog->len); 17231 err = -EINVAL; 17232 break; 17233 } 17234 17235 err = bpf_core_apply(&ctx, &core_relo, i, 17236 &prog->insnsi[core_relo.insn_off / 8]); 17237 if (err) 17238 break; 17239 bpfptr_add(&u_core_relo, rec_size); 17240 } 17241 return err; 17242 } 17243 17244 static int check_btf_info_early(struct bpf_verifier_env *env, 17245 const union bpf_attr *attr, 17246 bpfptr_t uattr) 17247 { 17248 struct btf *btf; 17249 int err; 17250 17251 if (!attr->func_info_cnt && !attr->line_info_cnt) { 17252 if (check_abnormal_return(env)) 17253 return -EINVAL; 17254 return 0; 17255 } 17256 17257 btf = btf_get_by_fd(attr->prog_btf_fd); 17258 if (IS_ERR(btf)) 17259 return PTR_ERR(btf); 17260 if (btf_is_kernel(btf)) { 17261 btf_put(btf); 17262 return -EACCES; 17263 } 17264 env->prog->aux->btf = btf; 17265 17266 err = check_btf_func_early(env, attr, uattr); 17267 if (err) 17268 return err; 17269 return 0; 17270 } 17271 17272 static int check_btf_info(struct bpf_verifier_env *env, 17273 const union bpf_attr *attr, 17274 bpfptr_t uattr) 17275 { 17276 int err; 17277 17278 if (!attr->func_info_cnt && !attr->line_info_cnt) { 17279 if (check_abnormal_return(env)) 17280 return -EINVAL; 17281 return 0; 17282 } 17283 17284 err = check_btf_func(env, attr, uattr); 17285 if (err) 17286 return err; 17287 17288 err = check_btf_line(env, attr, uattr); 17289 if (err) 17290 return err; 17291 17292 err = check_core_relo(env, attr, uattr); 17293 if (err) 17294 return err; 17295 17296 return 0; 17297 } 17298 17299 /* check %cur's range satisfies %old's */ 17300 static bool range_within(const struct bpf_reg_state *old, 17301 const struct bpf_reg_state *cur) 17302 { 17303 return old->umin_value <= cur->umin_value && 17304 old->umax_value >= cur->umax_value && 17305 old->smin_value <= cur->smin_value && 17306 old->smax_value >= cur->smax_value && 17307 old->u32_min_value <= cur->u32_min_value && 17308 old->u32_max_value >= cur->u32_max_value && 17309 old->s32_min_value <= cur->s32_min_value && 17310 old->s32_max_value >= cur->s32_max_value; 17311 } 17312 17313 /* If in the old state two registers had the same id, then they need to have 17314 * the same id in the new state as well. But that id could be different from 17315 * the old state, so we need to track the mapping from old to new ids. 17316 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 17317 * regs with old id 5 must also have new id 9 for the new state to be safe. But 17318 * regs with a different old id could still have new id 9, we don't care about 17319 * that. 17320 * So we look through our idmap to see if this old id has been seen before. If 17321 * so, we require the new id to match; otherwise, we add the id pair to the map. 17322 */ 17323 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 17324 { 17325 struct bpf_id_pair *map = idmap->map; 17326 unsigned int i; 17327 17328 /* either both IDs should be set or both should be zero */ 17329 if (!!old_id != !!cur_id) 17330 return false; 17331 17332 if (old_id == 0) /* cur_id == 0 as well */ 17333 return true; 17334 17335 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 17336 if (!map[i].old) { 17337 /* Reached an empty slot; haven't seen this id before */ 17338 map[i].old = old_id; 17339 map[i].cur = cur_id; 17340 return true; 17341 } 17342 if (map[i].old == old_id) 17343 return map[i].cur == cur_id; 17344 if (map[i].cur == cur_id) 17345 return false; 17346 } 17347 /* We ran out of idmap slots, which should be impossible */ 17348 WARN_ON_ONCE(1); 17349 return false; 17350 } 17351 17352 /* Similar to check_ids(), but allocate a unique temporary ID 17353 * for 'old_id' or 'cur_id' of zero. 17354 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 17355 */ 17356 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 17357 { 17358 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 17359 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 17360 17361 return check_ids(old_id, cur_id, idmap); 17362 } 17363 17364 static void clean_func_state(struct bpf_verifier_env *env, 17365 struct bpf_func_state *st) 17366 { 17367 enum bpf_reg_liveness live; 17368 int i, j; 17369 17370 for (i = 0; i < BPF_REG_FP; i++) { 17371 live = st->regs[i].live; 17372 /* liveness must not touch this register anymore */ 17373 st->regs[i].live |= REG_LIVE_DONE; 17374 if (!(live & REG_LIVE_READ)) 17375 /* since the register is unused, clear its state 17376 * to make further comparison simpler 17377 */ 17378 __mark_reg_not_init(env, &st->regs[i]); 17379 } 17380 17381 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 17382 live = st->stack[i].spilled_ptr.live; 17383 /* liveness must not touch this stack slot anymore */ 17384 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 17385 if (!(live & REG_LIVE_READ)) { 17386 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 17387 for (j = 0; j < BPF_REG_SIZE; j++) 17388 st->stack[i].slot_type[j] = STACK_INVALID; 17389 } 17390 } 17391 } 17392 17393 static void clean_verifier_state(struct bpf_verifier_env *env, 17394 struct bpf_verifier_state *st) 17395 { 17396 int i; 17397 17398 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 17399 /* all regs in this state in all frames were already marked */ 17400 return; 17401 17402 for (i = 0; i <= st->curframe; i++) 17403 clean_func_state(env, st->frame[i]); 17404 } 17405 17406 /* the parentage chains form a tree. 17407 * the verifier states are added to state lists at given insn and 17408 * pushed into state stack for future exploration. 17409 * when the verifier reaches bpf_exit insn some of the verifer states 17410 * stored in the state lists have their final liveness state already, 17411 * but a lot of states will get revised from liveness point of view when 17412 * the verifier explores other branches. 17413 * Example: 17414 * 1: r0 = 1 17415 * 2: if r1 == 100 goto pc+1 17416 * 3: r0 = 2 17417 * 4: exit 17418 * when the verifier reaches exit insn the register r0 in the state list of 17419 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 17420 * of insn 2 and goes exploring further. At the insn 4 it will walk the 17421 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 17422 * 17423 * Since the verifier pushes the branch states as it sees them while exploring 17424 * the program the condition of walking the branch instruction for the second 17425 * time means that all states below this branch were already explored and 17426 * their final liveness marks are already propagated. 17427 * Hence when the verifier completes the search of state list in is_state_visited() 17428 * we can call this clean_live_states() function to mark all liveness states 17429 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 17430 * will not be used. 17431 * This function also clears the registers and stack for states that !READ 17432 * to simplify state merging. 17433 * 17434 * Important note here that walking the same branch instruction in the callee 17435 * doesn't meant that the states are DONE. The verifier has to compare 17436 * the callsites 17437 */ 17438 static void clean_live_states(struct bpf_verifier_env *env, int insn, 17439 struct bpf_verifier_state *cur) 17440 { 17441 struct bpf_verifier_state_list *sl; 17442 17443 sl = *explored_state(env, insn); 17444 while (sl) { 17445 if (sl->state.branches) 17446 goto next; 17447 if (sl->state.insn_idx != insn || 17448 !same_callsites(&sl->state, cur)) 17449 goto next; 17450 clean_verifier_state(env, &sl->state); 17451 next: 17452 sl = sl->next; 17453 } 17454 } 17455 17456 static bool regs_exact(const struct bpf_reg_state *rold, 17457 const struct bpf_reg_state *rcur, 17458 struct bpf_idmap *idmap) 17459 { 17460 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 17461 check_ids(rold->id, rcur->id, idmap) && 17462 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 17463 } 17464 17465 enum exact_level { 17466 NOT_EXACT, 17467 EXACT, 17468 RANGE_WITHIN 17469 }; 17470 17471 /* Returns true if (rold safe implies rcur safe) */ 17472 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 17473 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, 17474 enum exact_level exact) 17475 { 17476 if (exact == EXACT) 17477 return regs_exact(rold, rcur, idmap); 17478 17479 if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT) 17480 /* explored state didn't use this */ 17481 return true; 17482 if (rold->type == NOT_INIT) { 17483 if (exact == NOT_EXACT || rcur->type == NOT_INIT) 17484 /* explored state can't have used this */ 17485 return true; 17486 } 17487 17488 /* Enforce that register types have to match exactly, including their 17489 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 17490 * rule. 17491 * 17492 * One can make a point that using a pointer register as unbounded 17493 * SCALAR would be technically acceptable, but this could lead to 17494 * pointer leaks because scalars are allowed to leak while pointers 17495 * are not. We could make this safe in special cases if root is 17496 * calling us, but it's probably not worth the hassle. 17497 * 17498 * Also, register types that are *not* MAYBE_NULL could technically be 17499 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 17500 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 17501 * to the same map). 17502 * However, if the old MAYBE_NULL register then got NULL checked, 17503 * doing so could have affected others with the same id, and we can't 17504 * check for that because we lost the id when we converted to 17505 * a non-MAYBE_NULL variant. 17506 * So, as a general rule we don't allow mixing MAYBE_NULL and 17507 * non-MAYBE_NULL registers as well. 17508 */ 17509 if (rold->type != rcur->type) 17510 return false; 17511 17512 switch (base_type(rold->type)) { 17513 case SCALAR_VALUE: 17514 if (env->explore_alu_limits) { 17515 /* explore_alu_limits disables tnum_in() and range_within() 17516 * logic and requires everything to be strict 17517 */ 17518 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 17519 check_scalar_ids(rold->id, rcur->id, idmap); 17520 } 17521 if (!rold->precise && exact == NOT_EXACT) 17522 return true; 17523 if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST)) 17524 return false; 17525 if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off)) 17526 return false; 17527 /* Why check_ids() for scalar registers? 17528 * 17529 * Consider the following BPF code: 17530 * 1: r6 = ... unbound scalar, ID=a ... 17531 * 2: r7 = ... unbound scalar, ID=b ... 17532 * 3: if (r6 > r7) goto +1 17533 * 4: r6 = r7 17534 * 5: if (r6 > X) goto ... 17535 * 6: ... memory operation using r7 ... 17536 * 17537 * First verification path is [1-6]: 17538 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 17539 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark 17540 * r7 <= X, because r6 and r7 share same id. 17541 * Next verification path is [1-4, 6]. 17542 * 17543 * Instruction (6) would be reached in two states: 17544 * I. r6{.id=b}, r7{.id=b} via path 1-6; 17545 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 17546 * 17547 * Use check_ids() to distinguish these states. 17548 * --- 17549 * Also verify that new value satisfies old value range knowledge. 17550 */ 17551 return range_within(rold, rcur) && 17552 tnum_in(rold->var_off, rcur->var_off) && 17553 check_scalar_ids(rold->id, rcur->id, idmap); 17554 case PTR_TO_MAP_KEY: 17555 case PTR_TO_MAP_VALUE: 17556 case PTR_TO_MEM: 17557 case PTR_TO_BUF: 17558 case PTR_TO_TP_BUFFER: 17559 /* If the new min/max/var_off satisfy the old ones and 17560 * everything else matches, we are OK. 17561 */ 17562 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 17563 range_within(rold, rcur) && 17564 tnum_in(rold->var_off, rcur->var_off) && 17565 check_ids(rold->id, rcur->id, idmap) && 17566 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 17567 case PTR_TO_PACKET_META: 17568 case PTR_TO_PACKET: 17569 /* We must have at least as much range as the old ptr 17570 * did, so that any accesses which were safe before are 17571 * still safe. This is true even if old range < old off, 17572 * since someone could have accessed through (ptr - k), or 17573 * even done ptr -= k in a register, to get a safe access. 17574 */ 17575 if (rold->range > rcur->range) 17576 return false; 17577 /* If the offsets don't match, we can't trust our alignment; 17578 * nor can we be sure that we won't fall out of range. 17579 */ 17580 if (rold->off != rcur->off) 17581 return false; 17582 /* id relations must be preserved */ 17583 if (!check_ids(rold->id, rcur->id, idmap)) 17584 return false; 17585 /* new val must satisfy old val knowledge */ 17586 return range_within(rold, rcur) && 17587 tnum_in(rold->var_off, rcur->var_off); 17588 case PTR_TO_STACK: 17589 /* two stack pointers are equal only if they're pointing to 17590 * the same stack frame, since fp-8 in foo != fp-8 in bar 17591 */ 17592 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 17593 case PTR_TO_ARENA: 17594 return true; 17595 default: 17596 return regs_exact(rold, rcur, idmap); 17597 } 17598 } 17599 17600 static struct bpf_reg_state unbound_reg; 17601 17602 static __init int unbound_reg_init(void) 17603 { 17604 __mark_reg_unknown_imprecise(&unbound_reg); 17605 unbound_reg.live |= REG_LIVE_READ; 17606 return 0; 17607 } 17608 late_initcall(unbound_reg_init); 17609 17610 static bool is_stack_all_misc(struct bpf_verifier_env *env, 17611 struct bpf_stack_state *stack) 17612 { 17613 u32 i; 17614 17615 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { 17616 if ((stack->slot_type[i] == STACK_MISC) || 17617 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) 17618 continue; 17619 return false; 17620 } 17621 17622 return true; 17623 } 17624 17625 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, 17626 struct bpf_stack_state *stack) 17627 { 17628 if (is_spilled_scalar_reg64(stack)) 17629 return &stack->spilled_ptr; 17630 17631 if (is_stack_all_misc(env, stack)) 17632 return &unbound_reg; 17633 17634 return NULL; 17635 } 17636 17637 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 17638 struct bpf_func_state *cur, struct bpf_idmap *idmap, 17639 enum exact_level exact) 17640 { 17641 int i, spi; 17642 17643 /* walk slots of the explored stack and ignore any additional 17644 * slots in the current stack, since explored(safe) state 17645 * didn't use them 17646 */ 17647 for (i = 0; i < old->allocated_stack; i++) { 17648 struct bpf_reg_state *old_reg, *cur_reg; 17649 17650 spi = i / BPF_REG_SIZE; 17651 17652 if (exact != NOT_EXACT && 17653 (i >= cur->allocated_stack || 17654 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 17655 cur->stack[spi].slot_type[i % BPF_REG_SIZE])) 17656 return false; 17657 17658 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) 17659 && exact == NOT_EXACT) { 17660 i += BPF_REG_SIZE - 1; 17661 /* explored state didn't use this */ 17662 continue; 17663 } 17664 17665 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 17666 continue; 17667 17668 if (env->allow_uninit_stack && 17669 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 17670 continue; 17671 17672 /* explored stack has more populated slots than current stack 17673 * and these slots were used 17674 */ 17675 if (i >= cur->allocated_stack) 17676 return false; 17677 17678 /* 64-bit scalar spill vs all slots MISC and vice versa. 17679 * Load from all slots MISC produces unbound scalar. 17680 * Construct a fake register for such stack and call 17681 * regsafe() to ensure scalar ids are compared. 17682 */ 17683 old_reg = scalar_reg_for_stack(env, &old->stack[spi]); 17684 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); 17685 if (old_reg && cur_reg) { 17686 if (!regsafe(env, old_reg, cur_reg, idmap, exact)) 17687 return false; 17688 i += BPF_REG_SIZE - 1; 17689 continue; 17690 } 17691 17692 /* if old state was safe with misc data in the stack 17693 * it will be safe with zero-initialized stack. 17694 * The opposite is not true 17695 */ 17696 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 17697 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 17698 continue; 17699 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 17700 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 17701 /* Ex: old explored (safe) state has STACK_SPILL in 17702 * this stack slot, but current has STACK_MISC -> 17703 * this verifier states are not equivalent, 17704 * return false to continue verification of this path 17705 */ 17706 return false; 17707 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 17708 continue; 17709 /* Both old and cur are having same slot_type */ 17710 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 17711 case STACK_SPILL: 17712 /* when explored and current stack slot are both storing 17713 * spilled registers, check that stored pointers types 17714 * are the same as well. 17715 * Ex: explored safe path could have stored 17716 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 17717 * but current path has stored: 17718 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 17719 * such verifier states are not equivalent. 17720 * return false to continue verification of this path 17721 */ 17722 if (!regsafe(env, &old->stack[spi].spilled_ptr, 17723 &cur->stack[spi].spilled_ptr, idmap, exact)) 17724 return false; 17725 break; 17726 case STACK_DYNPTR: 17727 old_reg = &old->stack[spi].spilled_ptr; 17728 cur_reg = &cur->stack[spi].spilled_ptr; 17729 if (old_reg->dynptr.type != cur_reg->dynptr.type || 17730 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 17731 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 17732 return false; 17733 break; 17734 case STACK_ITER: 17735 old_reg = &old->stack[spi].spilled_ptr; 17736 cur_reg = &cur->stack[spi].spilled_ptr; 17737 /* iter.depth is not compared between states as it 17738 * doesn't matter for correctness and would otherwise 17739 * prevent convergence; we maintain it only to prevent 17740 * infinite loop check triggering, see 17741 * iter_active_depths_differ() 17742 */ 17743 if (old_reg->iter.btf != cur_reg->iter.btf || 17744 old_reg->iter.btf_id != cur_reg->iter.btf_id || 17745 old_reg->iter.state != cur_reg->iter.state || 17746 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 17747 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 17748 return false; 17749 break; 17750 case STACK_MISC: 17751 case STACK_ZERO: 17752 case STACK_INVALID: 17753 continue; 17754 /* Ensure that new unhandled slot types return false by default */ 17755 default: 17756 return false; 17757 } 17758 } 17759 return true; 17760 } 17761 17762 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 17763 struct bpf_idmap *idmap) 17764 { 17765 int i; 17766 17767 if (old->acquired_refs != cur->acquired_refs) 17768 return false; 17769 17770 for (i = 0; i < old->acquired_refs; i++) { 17771 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) || 17772 old->refs[i].type != cur->refs[i].type) 17773 return false; 17774 switch (old->refs[i].type) { 17775 case REF_TYPE_PTR: 17776 break; 17777 case REF_TYPE_LOCK: 17778 if (old->refs[i].ptr != cur->refs[i].ptr) 17779 return false; 17780 break; 17781 default: 17782 WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type); 17783 return false; 17784 } 17785 } 17786 17787 return true; 17788 } 17789 17790 /* compare two verifier states 17791 * 17792 * all states stored in state_list are known to be valid, since 17793 * verifier reached 'bpf_exit' instruction through them 17794 * 17795 * this function is called when verifier exploring different branches of 17796 * execution popped from the state stack. If it sees an old state that has 17797 * more strict register state and more strict stack state then this execution 17798 * branch doesn't need to be explored further, since verifier already 17799 * concluded that more strict state leads to valid finish. 17800 * 17801 * Therefore two states are equivalent if register state is more conservative 17802 * and explored stack state is more conservative than the current one. 17803 * Example: 17804 * explored current 17805 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 17806 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 17807 * 17808 * In other words if current stack state (one being explored) has more 17809 * valid slots than old one that already passed validation, it means 17810 * the verifier can stop exploring and conclude that current state is valid too 17811 * 17812 * Similarly with registers. If explored state has register type as invalid 17813 * whereas register type in current state is meaningful, it means that 17814 * the current state will reach 'bpf_exit' instruction safely 17815 */ 17816 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 17817 struct bpf_func_state *cur, enum exact_level exact) 17818 { 17819 int i; 17820 17821 if (old->callback_depth > cur->callback_depth) 17822 return false; 17823 17824 for (i = 0; i < MAX_BPF_REG; i++) 17825 if (!regsafe(env, &old->regs[i], &cur->regs[i], 17826 &env->idmap_scratch, exact)) 17827 return false; 17828 17829 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 17830 return false; 17831 17832 if (!refsafe(old, cur, &env->idmap_scratch)) 17833 return false; 17834 17835 return true; 17836 } 17837 17838 static void reset_idmap_scratch(struct bpf_verifier_env *env) 17839 { 17840 env->idmap_scratch.tmp_id_gen = env->id_gen; 17841 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 17842 } 17843 17844 static bool states_equal(struct bpf_verifier_env *env, 17845 struct bpf_verifier_state *old, 17846 struct bpf_verifier_state *cur, 17847 enum exact_level exact) 17848 { 17849 int i; 17850 17851 if (old->curframe != cur->curframe) 17852 return false; 17853 17854 reset_idmap_scratch(env); 17855 17856 /* Verification state from speculative execution simulation 17857 * must never prune a non-speculative execution one. 17858 */ 17859 if (old->speculative && !cur->speculative) 17860 return false; 17861 17862 if (old->active_rcu_lock != cur->active_rcu_lock) 17863 return false; 17864 17865 if (old->active_preempt_lock != cur->active_preempt_lock) 17866 return false; 17867 17868 if (old->in_sleepable != cur->in_sleepable) 17869 return false; 17870 17871 /* for states to be equal callsites have to be the same 17872 * and all frame states need to be equivalent 17873 */ 17874 for (i = 0; i <= old->curframe; i++) { 17875 if (old->frame[i]->callsite != cur->frame[i]->callsite) 17876 return false; 17877 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 17878 return false; 17879 } 17880 return true; 17881 } 17882 17883 /* Return 0 if no propagation happened. Return negative error code if error 17884 * happened. Otherwise, return the propagated bit. 17885 */ 17886 static int propagate_liveness_reg(struct bpf_verifier_env *env, 17887 struct bpf_reg_state *reg, 17888 struct bpf_reg_state *parent_reg) 17889 { 17890 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 17891 u8 flag = reg->live & REG_LIVE_READ; 17892 int err; 17893 17894 /* When comes here, read flags of PARENT_REG or REG could be any of 17895 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 17896 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 17897 */ 17898 if (parent_flag == REG_LIVE_READ64 || 17899 /* Or if there is no read flag from REG. */ 17900 !flag || 17901 /* Or if the read flag from REG is the same as PARENT_REG. */ 17902 parent_flag == flag) 17903 return 0; 17904 17905 err = mark_reg_read(env, reg, parent_reg, flag); 17906 if (err) 17907 return err; 17908 17909 return flag; 17910 } 17911 17912 /* A write screens off any subsequent reads; but write marks come from the 17913 * straight-line code between a state and its parent. When we arrive at an 17914 * equivalent state (jump target or such) we didn't arrive by the straight-line 17915 * code, so read marks in the state must propagate to the parent regardless 17916 * of the state's write marks. That's what 'parent == state->parent' comparison 17917 * in mark_reg_read() is for. 17918 */ 17919 static int propagate_liveness(struct bpf_verifier_env *env, 17920 const struct bpf_verifier_state *vstate, 17921 struct bpf_verifier_state *vparent) 17922 { 17923 struct bpf_reg_state *state_reg, *parent_reg; 17924 struct bpf_func_state *state, *parent; 17925 int i, frame, err = 0; 17926 17927 if (vparent->curframe != vstate->curframe) { 17928 WARN(1, "propagate_live: parent frame %d current frame %d\n", 17929 vparent->curframe, vstate->curframe); 17930 return -EFAULT; 17931 } 17932 /* Propagate read liveness of registers... */ 17933 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 17934 for (frame = 0; frame <= vstate->curframe; frame++) { 17935 parent = vparent->frame[frame]; 17936 state = vstate->frame[frame]; 17937 parent_reg = parent->regs; 17938 state_reg = state->regs; 17939 /* We don't need to worry about FP liveness, it's read-only */ 17940 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 17941 err = propagate_liveness_reg(env, &state_reg[i], 17942 &parent_reg[i]); 17943 if (err < 0) 17944 return err; 17945 if (err == REG_LIVE_READ64) 17946 mark_insn_zext(env, &parent_reg[i]); 17947 } 17948 17949 /* Propagate stack slots. */ 17950 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 17951 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 17952 parent_reg = &parent->stack[i].spilled_ptr; 17953 state_reg = &state->stack[i].spilled_ptr; 17954 err = propagate_liveness_reg(env, state_reg, 17955 parent_reg); 17956 if (err < 0) 17957 return err; 17958 } 17959 } 17960 return 0; 17961 } 17962 17963 /* find precise scalars in the previous equivalent state and 17964 * propagate them into the current state 17965 */ 17966 static int propagate_precision(struct bpf_verifier_env *env, 17967 const struct bpf_verifier_state *old) 17968 { 17969 struct bpf_reg_state *state_reg; 17970 struct bpf_func_state *state; 17971 int i, err = 0, fr; 17972 bool first; 17973 17974 for (fr = old->curframe; fr >= 0; fr--) { 17975 state = old->frame[fr]; 17976 state_reg = state->regs; 17977 first = true; 17978 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 17979 if (state_reg->type != SCALAR_VALUE || 17980 !state_reg->precise || 17981 !(state_reg->live & REG_LIVE_READ)) 17982 continue; 17983 if (env->log.level & BPF_LOG_LEVEL2) { 17984 if (first) 17985 verbose(env, "frame %d: propagating r%d", fr, i); 17986 else 17987 verbose(env, ",r%d", i); 17988 } 17989 bt_set_frame_reg(&env->bt, fr, i); 17990 first = false; 17991 } 17992 17993 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 17994 if (!is_spilled_reg(&state->stack[i])) 17995 continue; 17996 state_reg = &state->stack[i].spilled_ptr; 17997 if (state_reg->type != SCALAR_VALUE || 17998 !state_reg->precise || 17999 !(state_reg->live & REG_LIVE_READ)) 18000 continue; 18001 if (env->log.level & BPF_LOG_LEVEL2) { 18002 if (first) 18003 verbose(env, "frame %d: propagating fp%d", 18004 fr, (-i - 1) * BPF_REG_SIZE); 18005 else 18006 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 18007 } 18008 bt_set_frame_slot(&env->bt, fr, i); 18009 first = false; 18010 } 18011 if (!first) 18012 verbose(env, "\n"); 18013 } 18014 18015 err = mark_chain_precision_batch(env); 18016 if (err < 0) 18017 return err; 18018 18019 return 0; 18020 } 18021 18022 static bool states_maybe_looping(struct bpf_verifier_state *old, 18023 struct bpf_verifier_state *cur) 18024 { 18025 struct bpf_func_state *fold, *fcur; 18026 int i, fr = cur->curframe; 18027 18028 if (old->curframe != fr) 18029 return false; 18030 18031 fold = old->frame[fr]; 18032 fcur = cur->frame[fr]; 18033 for (i = 0; i < MAX_BPF_REG; i++) 18034 if (memcmp(&fold->regs[i], &fcur->regs[i], 18035 offsetof(struct bpf_reg_state, parent))) 18036 return false; 18037 return true; 18038 } 18039 18040 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 18041 { 18042 return env->insn_aux_data[insn_idx].is_iter_next; 18043 } 18044 18045 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 18046 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 18047 * states to match, which otherwise would look like an infinite loop. So while 18048 * iter_next() calls are taken care of, we still need to be careful and 18049 * prevent erroneous and too eager declaration of "ininite loop", when 18050 * iterators are involved. 18051 * 18052 * Here's a situation in pseudo-BPF assembly form: 18053 * 18054 * 0: again: ; set up iter_next() call args 18055 * 1: r1 = &it ; <CHECKPOINT HERE> 18056 * 2: call bpf_iter_num_next ; this is iter_next() call 18057 * 3: if r0 == 0 goto done 18058 * 4: ... something useful here ... 18059 * 5: goto again ; another iteration 18060 * 6: done: 18061 * 7: r1 = &it 18062 * 8: call bpf_iter_num_destroy ; clean up iter state 18063 * 9: exit 18064 * 18065 * This is a typical loop. Let's assume that we have a prune point at 1:, 18066 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 18067 * again`, assuming other heuristics don't get in a way). 18068 * 18069 * When we first time come to 1:, let's say we have some state X. We proceed 18070 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 18071 * Now we come back to validate that forked ACTIVE state. We proceed through 18072 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 18073 * are converging. But the problem is that we don't know that yet, as this 18074 * convergence has to happen at iter_next() call site only. So if nothing is 18075 * done, at 1: verifier will use bounded loop logic and declare infinite 18076 * looping (and would be *technically* correct, if not for iterator's 18077 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 18078 * don't want that. So what we do in process_iter_next_call() when we go on 18079 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 18080 * a different iteration. So when we suspect an infinite loop, we additionally 18081 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 18082 * pretend we are not looping and wait for next iter_next() call. 18083 * 18084 * This only applies to ACTIVE state. In DRAINED state we don't expect to 18085 * loop, because that would actually mean infinite loop, as DRAINED state is 18086 * "sticky", and so we'll keep returning into the same instruction with the 18087 * same state (at least in one of possible code paths). 18088 * 18089 * This approach allows to keep infinite loop heuristic even in the face of 18090 * active iterator. E.g., C snippet below is and will be detected as 18091 * inifintely looping: 18092 * 18093 * struct bpf_iter_num it; 18094 * int *p, x; 18095 * 18096 * bpf_iter_num_new(&it, 0, 10); 18097 * while ((p = bpf_iter_num_next(&t))) { 18098 * x = p; 18099 * while (x--) {} // <<-- infinite loop here 18100 * } 18101 * 18102 */ 18103 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 18104 { 18105 struct bpf_reg_state *slot, *cur_slot; 18106 struct bpf_func_state *state; 18107 int i, fr; 18108 18109 for (fr = old->curframe; fr >= 0; fr--) { 18110 state = old->frame[fr]; 18111 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 18112 if (state->stack[i].slot_type[0] != STACK_ITER) 18113 continue; 18114 18115 slot = &state->stack[i].spilled_ptr; 18116 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 18117 continue; 18118 18119 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 18120 if (cur_slot->iter.depth != slot->iter.depth) 18121 return true; 18122 } 18123 } 18124 return false; 18125 } 18126 18127 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 18128 { 18129 struct bpf_verifier_state_list *new_sl; 18130 struct bpf_verifier_state_list *sl, **pprev; 18131 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 18132 int i, j, n, err, states_cnt = 0; 18133 bool force_new_state, add_new_state, force_exact; 18134 18135 force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) || 18136 /* Avoid accumulating infinitely long jmp history */ 18137 cur->insn_hist_end - cur->insn_hist_start > 40; 18138 18139 /* bpf progs typically have pruning point every 4 instructions 18140 * http://vger.kernel.org/bpfconf2019.html#session-1 18141 * Do not add new state for future pruning if the verifier hasn't seen 18142 * at least 2 jumps and at least 8 instructions. 18143 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 18144 * In tests that amounts to up to 50% reduction into total verifier 18145 * memory consumption and 20% verifier time speedup. 18146 */ 18147 add_new_state = force_new_state; 18148 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 18149 env->insn_processed - env->prev_insn_processed >= 8) 18150 add_new_state = true; 18151 18152 pprev = explored_state(env, insn_idx); 18153 sl = *pprev; 18154 18155 clean_live_states(env, insn_idx, cur); 18156 18157 while (sl) { 18158 states_cnt++; 18159 if (sl->state.insn_idx != insn_idx) 18160 goto next; 18161 18162 if (sl->state.branches) { 18163 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 18164 18165 if (frame->in_async_callback_fn && 18166 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 18167 /* Different async_entry_cnt means that the verifier is 18168 * processing another entry into async callback. 18169 * Seeing the same state is not an indication of infinite 18170 * loop or infinite recursion. 18171 * But finding the same state doesn't mean that it's safe 18172 * to stop processing the current state. The previous state 18173 * hasn't yet reached bpf_exit, since state.branches > 0. 18174 * Checking in_async_callback_fn alone is not enough either. 18175 * Since the verifier still needs to catch infinite loops 18176 * inside async callbacks. 18177 */ 18178 goto skip_inf_loop_check; 18179 } 18180 /* BPF open-coded iterators loop detection is special. 18181 * states_maybe_looping() logic is too simplistic in detecting 18182 * states that *might* be equivalent, because it doesn't know 18183 * about ID remapping, so don't even perform it. 18184 * See process_iter_next_call() and iter_active_depths_differ() 18185 * for overview of the logic. When current and one of parent 18186 * states are detected as equivalent, it's a good thing: we prove 18187 * convergence and can stop simulating further iterations. 18188 * It's safe to assume that iterator loop will finish, taking into 18189 * account iter_next() contract of eventually returning 18190 * sticky NULL result. 18191 * 18192 * Note, that states have to be compared exactly in this case because 18193 * read and precision marks might not be finalized inside the loop. 18194 * E.g. as in the program below: 18195 * 18196 * 1. r7 = -16 18197 * 2. r6 = bpf_get_prandom_u32() 18198 * 3. while (bpf_iter_num_next(&fp[-8])) { 18199 * 4. if (r6 != 42) { 18200 * 5. r7 = -32 18201 * 6. r6 = bpf_get_prandom_u32() 18202 * 7. continue 18203 * 8. } 18204 * 9. r0 = r10 18205 * 10. r0 += r7 18206 * 11. r8 = *(u64 *)(r0 + 0) 18207 * 12. r6 = bpf_get_prandom_u32() 18208 * 13. } 18209 * 18210 * Here verifier would first visit path 1-3, create a checkpoint at 3 18211 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 18212 * not have read or precision mark for r7 yet, thus inexact states 18213 * comparison would discard current state with r7=-32 18214 * => unsafe memory access at 11 would not be caught. 18215 */ 18216 if (is_iter_next_insn(env, insn_idx)) { 18217 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 18218 struct bpf_func_state *cur_frame; 18219 struct bpf_reg_state *iter_state, *iter_reg; 18220 int spi; 18221 18222 cur_frame = cur->frame[cur->curframe]; 18223 /* btf_check_iter_kfuncs() enforces that 18224 * iter state pointer is always the first arg 18225 */ 18226 iter_reg = &cur_frame->regs[BPF_REG_1]; 18227 /* current state is valid due to states_equal(), 18228 * so we can assume valid iter and reg state, 18229 * no need for extra (re-)validations 18230 */ 18231 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 18232 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 18233 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 18234 update_loop_entry(cur, &sl->state); 18235 goto hit; 18236 } 18237 } 18238 goto skip_inf_loop_check; 18239 } 18240 if (is_may_goto_insn_at(env, insn_idx)) { 18241 if (sl->state.may_goto_depth != cur->may_goto_depth && 18242 states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 18243 update_loop_entry(cur, &sl->state); 18244 goto hit; 18245 } 18246 } 18247 if (calls_callback(env, insn_idx)) { 18248 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) 18249 goto hit; 18250 goto skip_inf_loop_check; 18251 } 18252 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 18253 if (states_maybe_looping(&sl->state, cur) && 18254 states_equal(env, &sl->state, cur, EXACT) && 18255 !iter_active_depths_differ(&sl->state, cur) && 18256 sl->state.may_goto_depth == cur->may_goto_depth && 18257 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 18258 verbose_linfo(env, insn_idx, "; "); 18259 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 18260 verbose(env, "cur state:"); 18261 print_verifier_state(env, cur->frame[cur->curframe], true); 18262 verbose(env, "old state:"); 18263 print_verifier_state(env, sl->state.frame[cur->curframe], true); 18264 return -EINVAL; 18265 } 18266 /* if the verifier is processing a loop, avoid adding new state 18267 * too often, since different loop iterations have distinct 18268 * states and may not help future pruning. 18269 * This threshold shouldn't be too low to make sure that 18270 * a loop with large bound will be rejected quickly. 18271 * The most abusive loop will be: 18272 * r1 += 1 18273 * if r1 < 1000000 goto pc-2 18274 * 1M insn_procssed limit / 100 == 10k peak states. 18275 * This threshold shouldn't be too high either, since states 18276 * at the end of the loop are likely to be useful in pruning. 18277 */ 18278 skip_inf_loop_check: 18279 if (!force_new_state && 18280 env->jmps_processed - env->prev_jmps_processed < 20 && 18281 env->insn_processed - env->prev_insn_processed < 100) 18282 add_new_state = false; 18283 goto miss; 18284 } 18285 /* If sl->state is a part of a loop and this loop's entry is a part of 18286 * current verification path then states have to be compared exactly. 18287 * 'force_exact' is needed to catch the following case: 18288 * 18289 * initial Here state 'succ' was processed first, 18290 * | it was eventually tracked to produce a 18291 * V state identical to 'hdr'. 18292 * .---------> hdr All branches from 'succ' had been explored 18293 * | | and thus 'succ' has its .branches == 0. 18294 * | V 18295 * | .------... Suppose states 'cur' and 'succ' correspond 18296 * | | | to the same instruction + callsites. 18297 * | V V In such case it is necessary to check 18298 * | ... ... if 'succ' and 'cur' are states_equal(). 18299 * | | | If 'succ' and 'cur' are a part of the 18300 * | V V same loop exact flag has to be set. 18301 * | succ <- cur To check if that is the case, verify 18302 * | | if loop entry of 'succ' is in current 18303 * | V DFS path. 18304 * | ... 18305 * | | 18306 * '----' 18307 * 18308 * Additional details are in the comment before get_loop_entry(). 18309 */ 18310 loop_entry = get_loop_entry(&sl->state); 18311 force_exact = loop_entry && loop_entry->branches > 0; 18312 if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) { 18313 if (force_exact) 18314 update_loop_entry(cur, loop_entry); 18315 hit: 18316 sl->hit_cnt++; 18317 /* reached equivalent register/stack state, 18318 * prune the search. 18319 * Registers read by the continuation are read by us. 18320 * If we have any write marks in env->cur_state, they 18321 * will prevent corresponding reads in the continuation 18322 * from reaching our parent (an explored_state). Our 18323 * own state will get the read marks recorded, but 18324 * they'll be immediately forgotten as we're pruning 18325 * this state and will pop a new one. 18326 */ 18327 err = propagate_liveness(env, &sl->state, cur); 18328 18329 /* if previous state reached the exit with precision and 18330 * current state is equivalent to it (except precision marks) 18331 * the precision needs to be propagated back in 18332 * the current state. 18333 */ 18334 if (is_jmp_point(env, env->insn_idx)) 18335 err = err ? : push_insn_history(env, cur, 0, 0); 18336 err = err ? : propagate_precision(env, &sl->state); 18337 if (err) 18338 return err; 18339 return 1; 18340 } 18341 miss: 18342 /* when new state is not going to be added do not increase miss count. 18343 * Otherwise several loop iterations will remove the state 18344 * recorded earlier. The goal of these heuristics is to have 18345 * states from some iterations of the loop (some in the beginning 18346 * and some at the end) to help pruning. 18347 */ 18348 if (add_new_state) 18349 sl->miss_cnt++; 18350 /* heuristic to determine whether this state is beneficial 18351 * to keep checking from state equivalence point of view. 18352 * Higher numbers increase max_states_per_insn and verification time, 18353 * but do not meaningfully decrease insn_processed. 18354 * 'n' controls how many times state could miss before eviction. 18355 * Use bigger 'n' for checkpoints because evicting checkpoint states 18356 * too early would hinder iterator convergence. 18357 */ 18358 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 18359 if (sl->miss_cnt > sl->hit_cnt * n + n) { 18360 /* the state is unlikely to be useful. Remove it to 18361 * speed up verification 18362 */ 18363 *pprev = sl->next; 18364 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 18365 !sl->state.used_as_loop_entry) { 18366 u32 br = sl->state.branches; 18367 18368 WARN_ONCE(br, 18369 "BUG live_done but branches_to_explore %d\n", 18370 br); 18371 free_verifier_state(&sl->state, false); 18372 kfree(sl); 18373 env->peak_states--; 18374 } else { 18375 /* cannot free this state, since parentage chain may 18376 * walk it later. Add it for free_list instead to 18377 * be freed at the end of verification 18378 */ 18379 sl->next = env->free_list; 18380 env->free_list = sl; 18381 } 18382 sl = *pprev; 18383 continue; 18384 } 18385 next: 18386 pprev = &sl->next; 18387 sl = *pprev; 18388 } 18389 18390 if (env->max_states_per_insn < states_cnt) 18391 env->max_states_per_insn = states_cnt; 18392 18393 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 18394 return 0; 18395 18396 if (!add_new_state) 18397 return 0; 18398 18399 /* There were no equivalent states, remember the current one. 18400 * Technically the current state is not proven to be safe yet, 18401 * but it will either reach outer most bpf_exit (which means it's safe) 18402 * or it will be rejected. When there are no loops the verifier won't be 18403 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 18404 * again on the way to bpf_exit. 18405 * When looping the sl->state.branches will be > 0 and this state 18406 * will not be considered for equivalence until branches == 0. 18407 */ 18408 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 18409 if (!new_sl) 18410 return -ENOMEM; 18411 env->total_states++; 18412 env->peak_states++; 18413 env->prev_jmps_processed = env->jmps_processed; 18414 env->prev_insn_processed = env->insn_processed; 18415 18416 /* forget precise markings we inherited, see __mark_chain_precision */ 18417 if (env->bpf_capable) 18418 mark_all_scalars_imprecise(env, cur); 18419 18420 /* add new state to the head of linked list */ 18421 new = &new_sl->state; 18422 err = copy_verifier_state(new, cur); 18423 if (err) { 18424 free_verifier_state(new, false); 18425 kfree(new_sl); 18426 return err; 18427 } 18428 new->insn_idx = insn_idx; 18429 WARN_ONCE(new->branches != 1, 18430 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 18431 18432 cur->parent = new; 18433 cur->first_insn_idx = insn_idx; 18434 cur->insn_hist_start = cur->insn_hist_end; 18435 cur->dfs_depth = new->dfs_depth + 1; 18436 new_sl->next = *explored_state(env, insn_idx); 18437 *explored_state(env, insn_idx) = new_sl; 18438 /* connect new state to parentage chain. Current frame needs all 18439 * registers connected. Only r6 - r9 of the callers are alive (pushed 18440 * to the stack implicitly by JITs) so in callers' frames connect just 18441 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 18442 * the state of the call instruction (with WRITTEN set), and r0 comes 18443 * from callee with its full parentage chain, anyway. 18444 */ 18445 /* clear write marks in current state: the writes we did are not writes 18446 * our child did, so they don't screen off its reads from us. 18447 * (There are no read marks in current state, because reads always mark 18448 * their parent and current state never has children yet. Only 18449 * explored_states can get read marks.) 18450 */ 18451 for (j = 0; j <= cur->curframe; j++) { 18452 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 18453 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 18454 for (i = 0; i < BPF_REG_FP; i++) 18455 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 18456 } 18457 18458 /* all stack frames are accessible from callee, clear them all */ 18459 for (j = 0; j <= cur->curframe; j++) { 18460 struct bpf_func_state *frame = cur->frame[j]; 18461 struct bpf_func_state *newframe = new->frame[j]; 18462 18463 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 18464 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 18465 frame->stack[i].spilled_ptr.parent = 18466 &newframe->stack[i].spilled_ptr; 18467 } 18468 } 18469 return 0; 18470 } 18471 18472 /* Return true if it's OK to have the same insn return a different type. */ 18473 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 18474 { 18475 switch (base_type(type)) { 18476 case PTR_TO_CTX: 18477 case PTR_TO_SOCKET: 18478 case PTR_TO_SOCK_COMMON: 18479 case PTR_TO_TCP_SOCK: 18480 case PTR_TO_XDP_SOCK: 18481 case PTR_TO_BTF_ID: 18482 case PTR_TO_ARENA: 18483 return false; 18484 default: 18485 return true; 18486 } 18487 } 18488 18489 /* If an instruction was previously used with particular pointer types, then we 18490 * need to be careful to avoid cases such as the below, where it may be ok 18491 * for one branch accessing the pointer, but not ok for the other branch: 18492 * 18493 * R1 = sock_ptr 18494 * goto X; 18495 * ... 18496 * R1 = some_other_valid_ptr; 18497 * goto X; 18498 * ... 18499 * R2 = *(u32 *)(R1 + 0); 18500 */ 18501 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 18502 { 18503 return src != prev && (!reg_type_mismatch_ok(src) || 18504 !reg_type_mismatch_ok(prev)); 18505 } 18506 18507 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 18508 bool allow_trust_mismatch) 18509 { 18510 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 18511 18512 if (*prev_type == NOT_INIT) { 18513 /* Saw a valid insn 18514 * dst_reg = *(u32 *)(src_reg + off) 18515 * save type to validate intersecting paths 18516 */ 18517 *prev_type = type; 18518 } else if (reg_type_mismatch(type, *prev_type)) { 18519 /* Abuser program is trying to use the same insn 18520 * dst_reg = *(u32*) (src_reg + off) 18521 * with different pointer types: 18522 * src_reg == ctx in one branch and 18523 * src_reg == stack|map in some other branch. 18524 * Reject it. 18525 */ 18526 if (allow_trust_mismatch && 18527 base_type(type) == PTR_TO_BTF_ID && 18528 base_type(*prev_type) == PTR_TO_BTF_ID) { 18529 /* 18530 * Have to support a use case when one path through 18531 * the program yields TRUSTED pointer while another 18532 * is UNTRUSTED. Fallback to UNTRUSTED to generate 18533 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 18534 */ 18535 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 18536 } else { 18537 verbose(env, "same insn cannot be used with different pointers\n"); 18538 return -EINVAL; 18539 } 18540 } 18541 18542 return 0; 18543 } 18544 18545 static int do_check(struct bpf_verifier_env *env) 18546 { 18547 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 18548 struct bpf_verifier_state *state = env->cur_state; 18549 struct bpf_insn *insns = env->prog->insnsi; 18550 struct bpf_reg_state *regs; 18551 int insn_cnt = env->prog->len; 18552 bool do_print_state = false; 18553 int prev_insn_idx = -1; 18554 18555 for (;;) { 18556 bool exception_exit = false; 18557 struct bpf_insn *insn; 18558 u8 class; 18559 int err; 18560 18561 /* reset current history entry on each new instruction */ 18562 env->cur_hist_ent = NULL; 18563 18564 env->prev_insn_idx = prev_insn_idx; 18565 if (env->insn_idx >= insn_cnt) { 18566 verbose(env, "invalid insn idx %d insn_cnt %d\n", 18567 env->insn_idx, insn_cnt); 18568 return -EFAULT; 18569 } 18570 18571 insn = &insns[env->insn_idx]; 18572 class = BPF_CLASS(insn->code); 18573 18574 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 18575 verbose(env, 18576 "BPF program is too large. Processed %d insn\n", 18577 env->insn_processed); 18578 return -E2BIG; 18579 } 18580 18581 state->last_insn_idx = env->prev_insn_idx; 18582 18583 if (is_prune_point(env, env->insn_idx)) { 18584 err = is_state_visited(env, env->insn_idx); 18585 if (err < 0) 18586 return err; 18587 if (err == 1) { 18588 /* found equivalent state, can prune the search */ 18589 if (env->log.level & BPF_LOG_LEVEL) { 18590 if (do_print_state) 18591 verbose(env, "\nfrom %d to %d%s: safe\n", 18592 env->prev_insn_idx, env->insn_idx, 18593 env->cur_state->speculative ? 18594 " (speculative execution)" : ""); 18595 else 18596 verbose(env, "%d: safe\n", env->insn_idx); 18597 } 18598 goto process_bpf_exit; 18599 } 18600 } 18601 18602 if (is_jmp_point(env, env->insn_idx)) { 18603 err = push_insn_history(env, state, 0, 0); 18604 if (err) 18605 return err; 18606 } 18607 18608 if (signal_pending(current)) 18609 return -EAGAIN; 18610 18611 if (need_resched()) 18612 cond_resched(); 18613 18614 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 18615 verbose(env, "\nfrom %d to %d%s:", 18616 env->prev_insn_idx, env->insn_idx, 18617 env->cur_state->speculative ? 18618 " (speculative execution)" : ""); 18619 print_verifier_state(env, state->frame[state->curframe], true); 18620 do_print_state = false; 18621 } 18622 18623 if (env->log.level & BPF_LOG_LEVEL) { 18624 const struct bpf_insn_cbs cbs = { 18625 .cb_call = disasm_kfunc_name, 18626 .cb_print = verbose, 18627 .private_data = env, 18628 }; 18629 18630 if (verifier_state_scratched(env)) 18631 print_insn_state(env, state->frame[state->curframe]); 18632 18633 verbose_linfo(env, env->insn_idx, "; "); 18634 env->prev_log_pos = env->log.end_pos; 18635 verbose(env, "%d: ", env->insn_idx); 18636 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 18637 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 18638 env->prev_log_pos = env->log.end_pos; 18639 } 18640 18641 if (bpf_prog_is_offloaded(env->prog->aux)) { 18642 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 18643 env->prev_insn_idx); 18644 if (err) 18645 return err; 18646 } 18647 18648 regs = cur_regs(env); 18649 sanitize_mark_insn_seen(env); 18650 prev_insn_idx = env->insn_idx; 18651 18652 if (class == BPF_ALU || class == BPF_ALU64) { 18653 err = check_alu_op(env, insn); 18654 if (err) 18655 return err; 18656 18657 } else if (class == BPF_LDX) { 18658 enum bpf_reg_type src_reg_type; 18659 18660 /* check for reserved fields is already done */ 18661 18662 /* check src operand */ 18663 err = check_reg_arg(env, insn->src_reg, SRC_OP); 18664 if (err) 18665 return err; 18666 18667 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 18668 if (err) 18669 return err; 18670 18671 src_reg_type = regs[insn->src_reg].type; 18672 18673 /* check that memory (src_reg + off) is readable, 18674 * the state of dst_reg will be updated by this func 18675 */ 18676 err = check_mem_access(env, env->insn_idx, insn->src_reg, 18677 insn->off, BPF_SIZE(insn->code), 18678 BPF_READ, insn->dst_reg, false, 18679 BPF_MODE(insn->code) == BPF_MEMSX); 18680 err = err ?: save_aux_ptr_type(env, src_reg_type, true); 18681 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], "ldx"); 18682 if (err) 18683 return err; 18684 } else if (class == BPF_STX) { 18685 enum bpf_reg_type dst_reg_type; 18686 18687 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 18688 err = check_atomic(env, env->insn_idx, insn); 18689 if (err) 18690 return err; 18691 env->insn_idx++; 18692 continue; 18693 } 18694 18695 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 18696 verbose(env, "BPF_STX uses reserved fields\n"); 18697 return -EINVAL; 18698 } 18699 18700 /* check src1 operand */ 18701 err = check_reg_arg(env, insn->src_reg, SRC_OP); 18702 if (err) 18703 return err; 18704 /* check src2 operand */ 18705 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 18706 if (err) 18707 return err; 18708 18709 dst_reg_type = regs[insn->dst_reg].type; 18710 18711 /* check that memory (dst_reg + off) is writeable */ 18712 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 18713 insn->off, BPF_SIZE(insn->code), 18714 BPF_WRITE, insn->src_reg, false, false); 18715 if (err) 18716 return err; 18717 18718 err = save_aux_ptr_type(env, dst_reg_type, false); 18719 if (err) 18720 return err; 18721 } else if (class == BPF_ST) { 18722 enum bpf_reg_type dst_reg_type; 18723 18724 if (BPF_MODE(insn->code) != BPF_MEM || 18725 insn->src_reg != BPF_REG_0) { 18726 verbose(env, "BPF_ST uses reserved fields\n"); 18727 return -EINVAL; 18728 } 18729 /* check src operand */ 18730 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 18731 if (err) 18732 return err; 18733 18734 dst_reg_type = regs[insn->dst_reg].type; 18735 18736 /* check that memory (dst_reg + off) is writeable */ 18737 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 18738 insn->off, BPF_SIZE(insn->code), 18739 BPF_WRITE, -1, false, false); 18740 if (err) 18741 return err; 18742 18743 err = save_aux_ptr_type(env, dst_reg_type, false); 18744 if (err) 18745 return err; 18746 } else if (class == BPF_JMP || class == BPF_JMP32) { 18747 u8 opcode = BPF_OP(insn->code); 18748 18749 env->jmps_processed++; 18750 if (opcode == BPF_CALL) { 18751 if (BPF_SRC(insn->code) != BPF_K || 18752 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 18753 && insn->off != 0) || 18754 (insn->src_reg != BPF_REG_0 && 18755 insn->src_reg != BPF_PSEUDO_CALL && 18756 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 18757 insn->dst_reg != BPF_REG_0 || 18758 class == BPF_JMP32) { 18759 verbose(env, "BPF_CALL uses reserved fields\n"); 18760 return -EINVAL; 18761 } 18762 18763 if (cur_func(env)->active_locks) { 18764 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 18765 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 18766 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 18767 verbose(env, "function calls are not allowed while holding a lock\n"); 18768 return -EINVAL; 18769 } 18770 } 18771 if (insn->src_reg == BPF_PSEUDO_CALL) { 18772 err = check_func_call(env, insn, &env->insn_idx); 18773 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 18774 err = check_kfunc_call(env, insn, &env->insn_idx); 18775 if (!err && is_bpf_throw_kfunc(insn)) { 18776 exception_exit = true; 18777 goto process_bpf_exit_full; 18778 } 18779 } else { 18780 err = check_helper_call(env, insn, &env->insn_idx); 18781 } 18782 if (err) 18783 return err; 18784 18785 mark_reg_scratched(env, BPF_REG_0); 18786 } else if (opcode == BPF_JA) { 18787 if (BPF_SRC(insn->code) != BPF_K || 18788 insn->src_reg != BPF_REG_0 || 18789 insn->dst_reg != BPF_REG_0 || 18790 (class == BPF_JMP && insn->imm != 0) || 18791 (class == BPF_JMP32 && insn->off != 0)) { 18792 verbose(env, "BPF_JA uses reserved fields\n"); 18793 return -EINVAL; 18794 } 18795 18796 if (class == BPF_JMP) 18797 env->insn_idx += insn->off + 1; 18798 else 18799 env->insn_idx += insn->imm + 1; 18800 continue; 18801 18802 } else if (opcode == BPF_EXIT) { 18803 if (BPF_SRC(insn->code) != BPF_K || 18804 insn->imm != 0 || 18805 insn->src_reg != BPF_REG_0 || 18806 insn->dst_reg != BPF_REG_0 || 18807 class == BPF_JMP32) { 18808 verbose(env, "BPF_EXIT uses reserved fields\n"); 18809 return -EINVAL; 18810 } 18811 process_bpf_exit_full: 18812 /* We must do check_reference_leak here before 18813 * prepare_func_exit to handle the case when 18814 * state->curframe > 0, it may be a callback 18815 * function, for which reference_state must 18816 * match caller reference state when it exits. 18817 */ 18818 err = check_resource_leak(env, exception_exit, !env->cur_state->curframe, 18819 "BPF_EXIT instruction"); 18820 if (err) 18821 return err; 18822 18823 /* The side effect of the prepare_func_exit 18824 * which is being skipped is that it frees 18825 * bpf_func_state. Typically, process_bpf_exit 18826 * will only be hit with outermost exit. 18827 * copy_verifier_state in pop_stack will handle 18828 * freeing of any extra bpf_func_state left over 18829 * from not processing all nested function 18830 * exits. We also skip return code checks as 18831 * they are not needed for exceptional exits. 18832 */ 18833 if (exception_exit) 18834 goto process_bpf_exit; 18835 18836 if (state->curframe) { 18837 /* exit from nested function */ 18838 err = prepare_func_exit(env, &env->insn_idx); 18839 if (err) 18840 return err; 18841 do_print_state = true; 18842 continue; 18843 } 18844 18845 err = check_return_code(env, BPF_REG_0, "R0"); 18846 if (err) 18847 return err; 18848 process_bpf_exit: 18849 mark_verifier_state_scratched(env); 18850 update_branch_counts(env, env->cur_state); 18851 err = pop_stack(env, &prev_insn_idx, 18852 &env->insn_idx, pop_log); 18853 if (err < 0) { 18854 if (err != -ENOENT) 18855 return err; 18856 break; 18857 } else { 18858 do_print_state = true; 18859 continue; 18860 } 18861 } else { 18862 err = check_cond_jmp_op(env, insn, &env->insn_idx); 18863 if (err) 18864 return err; 18865 } 18866 } else if (class == BPF_LD) { 18867 u8 mode = BPF_MODE(insn->code); 18868 18869 if (mode == BPF_ABS || mode == BPF_IND) { 18870 err = check_ld_abs(env, insn); 18871 if (err) 18872 return err; 18873 18874 } else if (mode == BPF_IMM) { 18875 err = check_ld_imm(env, insn); 18876 if (err) 18877 return err; 18878 18879 env->insn_idx++; 18880 sanitize_mark_insn_seen(env); 18881 } else { 18882 verbose(env, "invalid BPF_LD mode\n"); 18883 return -EINVAL; 18884 } 18885 } else { 18886 verbose(env, "unknown insn class %d\n", class); 18887 return -EINVAL; 18888 } 18889 18890 env->insn_idx++; 18891 } 18892 18893 return 0; 18894 } 18895 18896 static int find_btf_percpu_datasec(struct btf *btf) 18897 { 18898 const struct btf_type *t; 18899 const char *tname; 18900 int i, n; 18901 18902 /* 18903 * Both vmlinux and module each have their own ".data..percpu" 18904 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 18905 * types to look at only module's own BTF types. 18906 */ 18907 n = btf_nr_types(btf); 18908 if (btf_is_module(btf)) 18909 i = btf_nr_types(btf_vmlinux); 18910 else 18911 i = 1; 18912 18913 for(; i < n; i++) { 18914 t = btf_type_by_id(btf, i); 18915 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 18916 continue; 18917 18918 tname = btf_name_by_offset(btf, t->name_off); 18919 if (!strcmp(tname, ".data..percpu")) 18920 return i; 18921 } 18922 18923 return -ENOENT; 18924 } 18925 18926 /* replace pseudo btf_id with kernel symbol address */ 18927 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 18928 struct bpf_insn *insn, 18929 struct bpf_insn_aux_data *aux) 18930 { 18931 const struct btf_var_secinfo *vsi; 18932 const struct btf_type *datasec; 18933 struct btf_mod_pair *btf_mod; 18934 const struct btf_type *t; 18935 const char *sym_name; 18936 bool percpu = false; 18937 u32 type, id = insn->imm; 18938 struct btf *btf; 18939 s32 datasec_id; 18940 u64 addr; 18941 int i, btf_fd, err; 18942 18943 btf_fd = insn[1].imm; 18944 if (btf_fd) { 18945 btf = btf_get_by_fd(btf_fd); 18946 if (IS_ERR(btf)) { 18947 verbose(env, "invalid module BTF object FD specified.\n"); 18948 return -EINVAL; 18949 } 18950 } else { 18951 if (!btf_vmlinux) { 18952 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 18953 return -EINVAL; 18954 } 18955 btf = btf_vmlinux; 18956 btf_get(btf); 18957 } 18958 18959 t = btf_type_by_id(btf, id); 18960 if (!t) { 18961 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 18962 err = -ENOENT; 18963 goto err_put; 18964 } 18965 18966 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 18967 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 18968 err = -EINVAL; 18969 goto err_put; 18970 } 18971 18972 sym_name = btf_name_by_offset(btf, t->name_off); 18973 addr = kallsyms_lookup_name(sym_name); 18974 if (!addr) { 18975 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 18976 sym_name); 18977 err = -ENOENT; 18978 goto err_put; 18979 } 18980 insn[0].imm = (u32)addr; 18981 insn[1].imm = addr >> 32; 18982 18983 if (btf_type_is_func(t)) { 18984 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 18985 aux->btf_var.mem_size = 0; 18986 goto check_btf; 18987 } 18988 18989 datasec_id = find_btf_percpu_datasec(btf); 18990 if (datasec_id > 0) { 18991 datasec = btf_type_by_id(btf, datasec_id); 18992 for_each_vsi(i, datasec, vsi) { 18993 if (vsi->type == id) { 18994 percpu = true; 18995 break; 18996 } 18997 } 18998 } 18999 19000 type = t->type; 19001 t = btf_type_skip_modifiers(btf, type, NULL); 19002 if (percpu) { 19003 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 19004 aux->btf_var.btf = btf; 19005 aux->btf_var.btf_id = type; 19006 } else if (!btf_type_is_struct(t)) { 19007 const struct btf_type *ret; 19008 const char *tname; 19009 u32 tsize; 19010 19011 /* resolve the type size of ksym. */ 19012 ret = btf_resolve_size(btf, t, &tsize); 19013 if (IS_ERR(ret)) { 19014 tname = btf_name_by_offset(btf, t->name_off); 19015 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 19016 tname, PTR_ERR(ret)); 19017 err = -EINVAL; 19018 goto err_put; 19019 } 19020 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 19021 aux->btf_var.mem_size = tsize; 19022 } else { 19023 aux->btf_var.reg_type = PTR_TO_BTF_ID; 19024 aux->btf_var.btf = btf; 19025 aux->btf_var.btf_id = type; 19026 } 19027 check_btf: 19028 /* check whether we recorded this BTF (and maybe module) already */ 19029 for (i = 0; i < env->used_btf_cnt; i++) { 19030 if (env->used_btfs[i].btf == btf) { 19031 btf_put(btf); 19032 return 0; 19033 } 19034 } 19035 19036 if (env->used_btf_cnt >= MAX_USED_BTFS) { 19037 err = -E2BIG; 19038 goto err_put; 19039 } 19040 19041 btf_mod = &env->used_btfs[env->used_btf_cnt]; 19042 btf_mod->btf = btf; 19043 btf_mod->module = NULL; 19044 19045 /* if we reference variables from kernel module, bump its refcount */ 19046 if (btf_is_module(btf)) { 19047 btf_mod->module = btf_try_get_module(btf); 19048 if (!btf_mod->module) { 19049 err = -ENXIO; 19050 goto err_put; 19051 } 19052 } 19053 19054 env->used_btf_cnt++; 19055 19056 return 0; 19057 err_put: 19058 btf_put(btf); 19059 return err; 19060 } 19061 19062 static bool is_tracing_prog_type(enum bpf_prog_type type) 19063 { 19064 switch (type) { 19065 case BPF_PROG_TYPE_KPROBE: 19066 case BPF_PROG_TYPE_TRACEPOINT: 19067 case BPF_PROG_TYPE_PERF_EVENT: 19068 case BPF_PROG_TYPE_RAW_TRACEPOINT: 19069 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 19070 return true; 19071 default: 19072 return false; 19073 } 19074 } 19075 19076 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 19077 struct bpf_map *map, 19078 struct bpf_prog *prog) 19079 19080 { 19081 enum bpf_prog_type prog_type = resolve_prog_type(prog); 19082 19083 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 19084 btf_record_has_field(map->record, BPF_RB_ROOT)) { 19085 if (is_tracing_prog_type(prog_type)) { 19086 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 19087 return -EINVAL; 19088 } 19089 } 19090 19091 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 19092 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 19093 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 19094 return -EINVAL; 19095 } 19096 19097 if (is_tracing_prog_type(prog_type)) { 19098 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 19099 return -EINVAL; 19100 } 19101 } 19102 19103 if (btf_record_has_field(map->record, BPF_TIMER)) { 19104 if (is_tracing_prog_type(prog_type)) { 19105 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 19106 return -EINVAL; 19107 } 19108 } 19109 19110 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) { 19111 if (is_tracing_prog_type(prog_type)) { 19112 verbose(env, "tracing progs cannot use bpf_wq yet\n"); 19113 return -EINVAL; 19114 } 19115 } 19116 19117 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 19118 !bpf_offload_prog_map_match(prog, map)) { 19119 verbose(env, "offload device mismatch between prog and map\n"); 19120 return -EINVAL; 19121 } 19122 19123 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 19124 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 19125 return -EINVAL; 19126 } 19127 19128 if (prog->sleepable) 19129 switch (map->map_type) { 19130 case BPF_MAP_TYPE_HASH: 19131 case BPF_MAP_TYPE_LRU_HASH: 19132 case BPF_MAP_TYPE_ARRAY: 19133 case BPF_MAP_TYPE_PERCPU_HASH: 19134 case BPF_MAP_TYPE_PERCPU_ARRAY: 19135 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 19136 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 19137 case BPF_MAP_TYPE_HASH_OF_MAPS: 19138 case BPF_MAP_TYPE_RINGBUF: 19139 case BPF_MAP_TYPE_USER_RINGBUF: 19140 case BPF_MAP_TYPE_INODE_STORAGE: 19141 case BPF_MAP_TYPE_SK_STORAGE: 19142 case BPF_MAP_TYPE_TASK_STORAGE: 19143 case BPF_MAP_TYPE_CGRP_STORAGE: 19144 case BPF_MAP_TYPE_QUEUE: 19145 case BPF_MAP_TYPE_STACK: 19146 case BPF_MAP_TYPE_ARENA: 19147 break; 19148 default: 19149 verbose(env, 19150 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 19151 return -EINVAL; 19152 } 19153 19154 return 0; 19155 } 19156 19157 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 19158 { 19159 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 19160 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 19161 } 19162 19163 /* Add map behind fd to used maps list, if it's not already there, and return 19164 * its index. Also set *reused to true if this map was already in the list of 19165 * used maps. 19166 * Returns <0 on error, or >= 0 index, on success. 19167 */ 19168 static int add_used_map_from_fd(struct bpf_verifier_env *env, int fd, bool *reused) 19169 { 19170 CLASS(fd, f)(fd); 19171 struct bpf_map *map; 19172 int i; 19173 19174 map = __bpf_map_get(f); 19175 if (IS_ERR(map)) { 19176 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 19177 return PTR_ERR(map); 19178 } 19179 19180 /* check whether we recorded this map already */ 19181 for (i = 0; i < env->used_map_cnt; i++) { 19182 if (env->used_maps[i] == map) { 19183 *reused = true; 19184 return i; 19185 } 19186 } 19187 19188 if (env->used_map_cnt >= MAX_USED_MAPS) { 19189 verbose(env, "The total number of maps per program has reached the limit of %u\n", 19190 MAX_USED_MAPS); 19191 return -E2BIG; 19192 } 19193 19194 if (env->prog->sleepable) 19195 atomic64_inc(&map->sleepable_refcnt); 19196 19197 /* hold the map. If the program is rejected by verifier, 19198 * the map will be released by release_maps() or it 19199 * will be used by the valid program until it's unloaded 19200 * and all maps are released in bpf_free_used_maps() 19201 */ 19202 bpf_map_inc(map); 19203 19204 *reused = false; 19205 env->used_maps[env->used_map_cnt++] = map; 19206 19207 return env->used_map_cnt - 1; 19208 } 19209 19210 /* find and rewrite pseudo imm in ld_imm64 instructions: 19211 * 19212 * 1. if it accesses map FD, replace it with actual map pointer. 19213 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 19214 * 19215 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 19216 */ 19217 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 19218 { 19219 struct bpf_insn *insn = env->prog->insnsi; 19220 int insn_cnt = env->prog->len; 19221 int i, err; 19222 19223 err = bpf_prog_calc_tag(env->prog); 19224 if (err) 19225 return err; 19226 19227 for (i = 0; i < insn_cnt; i++, insn++) { 19228 if (BPF_CLASS(insn->code) == BPF_LDX && 19229 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 19230 insn->imm != 0)) { 19231 verbose(env, "BPF_LDX uses reserved fields\n"); 19232 return -EINVAL; 19233 } 19234 19235 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 19236 struct bpf_insn_aux_data *aux; 19237 struct bpf_map *map; 19238 int map_idx; 19239 u64 addr; 19240 u32 fd; 19241 bool reused; 19242 19243 if (i == insn_cnt - 1 || insn[1].code != 0 || 19244 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 19245 insn[1].off != 0) { 19246 verbose(env, "invalid bpf_ld_imm64 insn\n"); 19247 return -EINVAL; 19248 } 19249 19250 if (insn[0].src_reg == 0) 19251 /* valid generic load 64-bit imm */ 19252 goto next_insn; 19253 19254 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 19255 aux = &env->insn_aux_data[i]; 19256 err = check_pseudo_btf_id(env, insn, aux); 19257 if (err) 19258 return err; 19259 goto next_insn; 19260 } 19261 19262 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 19263 aux = &env->insn_aux_data[i]; 19264 aux->ptr_type = PTR_TO_FUNC; 19265 goto next_insn; 19266 } 19267 19268 /* In final convert_pseudo_ld_imm64() step, this is 19269 * converted into regular 64-bit imm load insn. 19270 */ 19271 switch (insn[0].src_reg) { 19272 case BPF_PSEUDO_MAP_VALUE: 19273 case BPF_PSEUDO_MAP_IDX_VALUE: 19274 break; 19275 case BPF_PSEUDO_MAP_FD: 19276 case BPF_PSEUDO_MAP_IDX: 19277 if (insn[1].imm == 0) 19278 break; 19279 fallthrough; 19280 default: 19281 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 19282 return -EINVAL; 19283 } 19284 19285 switch (insn[0].src_reg) { 19286 case BPF_PSEUDO_MAP_IDX_VALUE: 19287 case BPF_PSEUDO_MAP_IDX: 19288 if (bpfptr_is_null(env->fd_array)) { 19289 verbose(env, "fd_idx without fd_array is invalid\n"); 19290 return -EPROTO; 19291 } 19292 if (copy_from_bpfptr_offset(&fd, env->fd_array, 19293 insn[0].imm * sizeof(fd), 19294 sizeof(fd))) 19295 return -EFAULT; 19296 break; 19297 default: 19298 fd = insn[0].imm; 19299 break; 19300 } 19301 19302 map_idx = add_used_map_from_fd(env, fd, &reused); 19303 if (map_idx < 0) 19304 return map_idx; 19305 map = env->used_maps[map_idx]; 19306 19307 aux = &env->insn_aux_data[i]; 19308 aux->map_index = map_idx; 19309 19310 err = check_map_prog_compatibility(env, map, env->prog); 19311 if (err) 19312 return err; 19313 19314 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 19315 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 19316 addr = (unsigned long)map; 19317 } else { 19318 u32 off = insn[1].imm; 19319 19320 if (off >= BPF_MAX_VAR_OFF) { 19321 verbose(env, "direct value offset of %u is not allowed\n", off); 19322 return -EINVAL; 19323 } 19324 19325 if (!map->ops->map_direct_value_addr) { 19326 verbose(env, "no direct value access support for this map type\n"); 19327 return -EINVAL; 19328 } 19329 19330 err = map->ops->map_direct_value_addr(map, &addr, off); 19331 if (err) { 19332 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 19333 map->value_size, off); 19334 return err; 19335 } 19336 19337 aux->map_off = off; 19338 addr += off; 19339 } 19340 19341 insn[0].imm = (u32)addr; 19342 insn[1].imm = addr >> 32; 19343 19344 /* proceed with extra checks only if its newly added used map */ 19345 if (reused) 19346 goto next_insn; 19347 19348 if (bpf_map_is_cgroup_storage(map) && 19349 bpf_cgroup_storage_assign(env->prog->aux, map)) { 19350 verbose(env, "only one cgroup storage of each type is allowed\n"); 19351 return -EBUSY; 19352 } 19353 if (map->map_type == BPF_MAP_TYPE_ARENA) { 19354 if (env->prog->aux->arena) { 19355 verbose(env, "Only one arena per program\n"); 19356 return -EBUSY; 19357 } 19358 if (!env->allow_ptr_leaks || !env->bpf_capable) { 19359 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); 19360 return -EPERM; 19361 } 19362 if (!env->prog->jit_requested) { 19363 verbose(env, "JIT is required to use arena\n"); 19364 return -EOPNOTSUPP; 19365 } 19366 if (!bpf_jit_supports_arena()) { 19367 verbose(env, "JIT doesn't support arena\n"); 19368 return -EOPNOTSUPP; 19369 } 19370 env->prog->aux->arena = (void *)map; 19371 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { 19372 verbose(env, "arena's user address must be set via map_extra or mmap()\n"); 19373 return -EINVAL; 19374 } 19375 } 19376 19377 next_insn: 19378 insn++; 19379 i++; 19380 continue; 19381 } 19382 19383 /* Basic sanity check before we invest more work here. */ 19384 if (!bpf_opcode_in_insntable(insn->code)) { 19385 verbose(env, "unknown opcode %02x\n", insn->code); 19386 return -EINVAL; 19387 } 19388 } 19389 19390 /* now all pseudo BPF_LD_IMM64 instructions load valid 19391 * 'struct bpf_map *' into a register instead of user map_fd. 19392 * These pointers will be used later by verifier to validate map access. 19393 */ 19394 return 0; 19395 } 19396 19397 /* drop refcnt of maps used by the rejected program */ 19398 static void release_maps(struct bpf_verifier_env *env) 19399 { 19400 __bpf_free_used_maps(env->prog->aux, env->used_maps, 19401 env->used_map_cnt); 19402 } 19403 19404 /* drop refcnt of maps used by the rejected program */ 19405 static void release_btfs(struct bpf_verifier_env *env) 19406 { 19407 __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt); 19408 } 19409 19410 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 19411 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 19412 { 19413 struct bpf_insn *insn = env->prog->insnsi; 19414 int insn_cnt = env->prog->len; 19415 int i; 19416 19417 for (i = 0; i < insn_cnt; i++, insn++) { 19418 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 19419 continue; 19420 if (insn->src_reg == BPF_PSEUDO_FUNC) 19421 continue; 19422 insn->src_reg = 0; 19423 } 19424 } 19425 19426 /* single env->prog->insni[off] instruction was replaced with the range 19427 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 19428 * [0, off) and [off, end) to new locations, so the patched range stays zero 19429 */ 19430 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 19431 struct bpf_insn_aux_data *new_data, 19432 struct bpf_prog *new_prog, u32 off, u32 cnt) 19433 { 19434 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 19435 struct bpf_insn *insn = new_prog->insnsi; 19436 u32 old_seen = old_data[off].seen; 19437 u32 prog_len; 19438 int i; 19439 19440 /* aux info at OFF always needs adjustment, no matter fast path 19441 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 19442 * original insn at old prog. 19443 */ 19444 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 19445 19446 if (cnt == 1) 19447 return; 19448 prog_len = new_prog->len; 19449 19450 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 19451 memcpy(new_data + off + cnt - 1, old_data + off, 19452 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 19453 for (i = off; i < off + cnt - 1; i++) { 19454 /* Expand insni[off]'s seen count to the patched range. */ 19455 new_data[i].seen = old_seen; 19456 new_data[i].zext_dst = insn_has_def32(env, insn + i); 19457 } 19458 env->insn_aux_data = new_data; 19459 vfree(old_data); 19460 } 19461 19462 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 19463 { 19464 int i; 19465 19466 if (len == 1) 19467 return; 19468 /* NOTE: fake 'exit' subprog should be updated as well. */ 19469 for (i = 0; i <= env->subprog_cnt; i++) { 19470 if (env->subprog_info[i].start <= off) 19471 continue; 19472 env->subprog_info[i].start += len - 1; 19473 } 19474 } 19475 19476 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 19477 { 19478 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 19479 int i, sz = prog->aux->size_poke_tab; 19480 struct bpf_jit_poke_descriptor *desc; 19481 19482 for (i = 0; i < sz; i++) { 19483 desc = &tab[i]; 19484 if (desc->insn_idx <= off) 19485 continue; 19486 desc->insn_idx += len - 1; 19487 } 19488 } 19489 19490 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 19491 const struct bpf_insn *patch, u32 len) 19492 { 19493 struct bpf_prog *new_prog; 19494 struct bpf_insn_aux_data *new_data = NULL; 19495 19496 if (len > 1) { 19497 new_data = vzalloc(array_size(env->prog->len + len - 1, 19498 sizeof(struct bpf_insn_aux_data))); 19499 if (!new_data) 19500 return NULL; 19501 } 19502 19503 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 19504 if (IS_ERR(new_prog)) { 19505 if (PTR_ERR(new_prog) == -ERANGE) 19506 verbose(env, 19507 "insn %d cannot be patched due to 16-bit range\n", 19508 env->insn_aux_data[off].orig_idx); 19509 vfree(new_data); 19510 return NULL; 19511 } 19512 adjust_insn_aux_data(env, new_data, new_prog, off, len); 19513 adjust_subprog_starts(env, off, len); 19514 adjust_poke_descs(new_prog, off, len); 19515 return new_prog; 19516 } 19517 19518 /* 19519 * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the 19520 * jump offset by 'delta'. 19521 */ 19522 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta) 19523 { 19524 struct bpf_insn *insn = prog->insnsi; 19525 u32 insn_cnt = prog->len, i; 19526 s32 imm; 19527 s16 off; 19528 19529 for (i = 0; i < insn_cnt; i++, insn++) { 19530 u8 code = insn->code; 19531 19532 if (tgt_idx <= i && i < tgt_idx + delta) 19533 continue; 19534 19535 if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || 19536 BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT) 19537 continue; 19538 19539 if (insn->code == (BPF_JMP32 | BPF_JA)) { 19540 if (i + 1 + insn->imm != tgt_idx) 19541 continue; 19542 if (check_add_overflow(insn->imm, delta, &imm)) 19543 return -ERANGE; 19544 insn->imm = imm; 19545 } else { 19546 if (i + 1 + insn->off != tgt_idx) 19547 continue; 19548 if (check_add_overflow(insn->off, delta, &off)) 19549 return -ERANGE; 19550 insn->off = off; 19551 } 19552 } 19553 return 0; 19554 } 19555 19556 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 19557 u32 off, u32 cnt) 19558 { 19559 int i, j; 19560 19561 /* find first prog starting at or after off (first to remove) */ 19562 for (i = 0; i < env->subprog_cnt; i++) 19563 if (env->subprog_info[i].start >= off) 19564 break; 19565 /* find first prog starting at or after off + cnt (first to stay) */ 19566 for (j = i; j < env->subprog_cnt; j++) 19567 if (env->subprog_info[j].start >= off + cnt) 19568 break; 19569 /* if j doesn't start exactly at off + cnt, we are just removing 19570 * the front of previous prog 19571 */ 19572 if (env->subprog_info[j].start != off + cnt) 19573 j--; 19574 19575 if (j > i) { 19576 struct bpf_prog_aux *aux = env->prog->aux; 19577 int move; 19578 19579 /* move fake 'exit' subprog as well */ 19580 move = env->subprog_cnt + 1 - j; 19581 19582 memmove(env->subprog_info + i, 19583 env->subprog_info + j, 19584 sizeof(*env->subprog_info) * move); 19585 env->subprog_cnt -= j - i; 19586 19587 /* remove func_info */ 19588 if (aux->func_info) { 19589 move = aux->func_info_cnt - j; 19590 19591 memmove(aux->func_info + i, 19592 aux->func_info + j, 19593 sizeof(*aux->func_info) * move); 19594 aux->func_info_cnt -= j - i; 19595 /* func_info->insn_off is set after all code rewrites, 19596 * in adjust_btf_func() - no need to adjust 19597 */ 19598 } 19599 } else { 19600 /* convert i from "first prog to remove" to "first to adjust" */ 19601 if (env->subprog_info[i].start == off) 19602 i++; 19603 } 19604 19605 /* update fake 'exit' subprog as well */ 19606 for (; i <= env->subprog_cnt; i++) 19607 env->subprog_info[i].start -= cnt; 19608 19609 return 0; 19610 } 19611 19612 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 19613 u32 cnt) 19614 { 19615 struct bpf_prog *prog = env->prog; 19616 u32 i, l_off, l_cnt, nr_linfo; 19617 struct bpf_line_info *linfo; 19618 19619 nr_linfo = prog->aux->nr_linfo; 19620 if (!nr_linfo) 19621 return 0; 19622 19623 linfo = prog->aux->linfo; 19624 19625 /* find first line info to remove, count lines to be removed */ 19626 for (i = 0; i < nr_linfo; i++) 19627 if (linfo[i].insn_off >= off) 19628 break; 19629 19630 l_off = i; 19631 l_cnt = 0; 19632 for (; i < nr_linfo; i++) 19633 if (linfo[i].insn_off < off + cnt) 19634 l_cnt++; 19635 else 19636 break; 19637 19638 /* First live insn doesn't match first live linfo, it needs to "inherit" 19639 * last removed linfo. prog is already modified, so prog->len == off 19640 * means no live instructions after (tail of the program was removed). 19641 */ 19642 if (prog->len != off && l_cnt && 19643 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 19644 l_cnt--; 19645 linfo[--i].insn_off = off + cnt; 19646 } 19647 19648 /* remove the line info which refer to the removed instructions */ 19649 if (l_cnt) { 19650 memmove(linfo + l_off, linfo + i, 19651 sizeof(*linfo) * (nr_linfo - i)); 19652 19653 prog->aux->nr_linfo -= l_cnt; 19654 nr_linfo = prog->aux->nr_linfo; 19655 } 19656 19657 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 19658 for (i = l_off; i < nr_linfo; i++) 19659 linfo[i].insn_off -= cnt; 19660 19661 /* fix up all subprogs (incl. 'exit') which start >= off */ 19662 for (i = 0; i <= env->subprog_cnt; i++) 19663 if (env->subprog_info[i].linfo_idx > l_off) { 19664 /* program may have started in the removed region but 19665 * may not be fully removed 19666 */ 19667 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 19668 env->subprog_info[i].linfo_idx -= l_cnt; 19669 else 19670 env->subprog_info[i].linfo_idx = l_off; 19671 } 19672 19673 return 0; 19674 } 19675 19676 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 19677 { 19678 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 19679 unsigned int orig_prog_len = env->prog->len; 19680 int err; 19681 19682 if (bpf_prog_is_offloaded(env->prog->aux)) 19683 bpf_prog_offload_remove_insns(env, off, cnt); 19684 19685 err = bpf_remove_insns(env->prog, off, cnt); 19686 if (err) 19687 return err; 19688 19689 err = adjust_subprog_starts_after_remove(env, off, cnt); 19690 if (err) 19691 return err; 19692 19693 err = bpf_adj_linfo_after_remove(env, off, cnt); 19694 if (err) 19695 return err; 19696 19697 memmove(aux_data + off, aux_data + off + cnt, 19698 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 19699 19700 return 0; 19701 } 19702 19703 /* The verifier does more data flow analysis than llvm and will not 19704 * explore branches that are dead at run time. Malicious programs can 19705 * have dead code too. Therefore replace all dead at-run-time code 19706 * with 'ja -1'. 19707 * 19708 * Just nops are not optimal, e.g. if they would sit at the end of the 19709 * program and through another bug we would manage to jump there, then 19710 * we'd execute beyond program memory otherwise. Returning exception 19711 * code also wouldn't work since we can have subprogs where the dead 19712 * code could be located. 19713 */ 19714 static void sanitize_dead_code(struct bpf_verifier_env *env) 19715 { 19716 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 19717 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 19718 struct bpf_insn *insn = env->prog->insnsi; 19719 const int insn_cnt = env->prog->len; 19720 int i; 19721 19722 for (i = 0; i < insn_cnt; i++) { 19723 if (aux_data[i].seen) 19724 continue; 19725 memcpy(insn + i, &trap, sizeof(trap)); 19726 aux_data[i].zext_dst = false; 19727 } 19728 } 19729 19730 static bool insn_is_cond_jump(u8 code) 19731 { 19732 u8 op; 19733 19734 op = BPF_OP(code); 19735 if (BPF_CLASS(code) == BPF_JMP32) 19736 return op != BPF_JA; 19737 19738 if (BPF_CLASS(code) != BPF_JMP) 19739 return false; 19740 19741 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 19742 } 19743 19744 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 19745 { 19746 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 19747 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 19748 struct bpf_insn *insn = env->prog->insnsi; 19749 const int insn_cnt = env->prog->len; 19750 int i; 19751 19752 for (i = 0; i < insn_cnt; i++, insn++) { 19753 if (!insn_is_cond_jump(insn->code)) 19754 continue; 19755 19756 if (!aux_data[i + 1].seen) 19757 ja.off = insn->off; 19758 else if (!aux_data[i + 1 + insn->off].seen) 19759 ja.off = 0; 19760 else 19761 continue; 19762 19763 if (bpf_prog_is_offloaded(env->prog->aux)) 19764 bpf_prog_offload_replace_insn(env, i, &ja); 19765 19766 memcpy(insn, &ja, sizeof(ja)); 19767 } 19768 } 19769 19770 static int opt_remove_dead_code(struct bpf_verifier_env *env) 19771 { 19772 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 19773 int insn_cnt = env->prog->len; 19774 int i, err; 19775 19776 for (i = 0; i < insn_cnt; i++) { 19777 int j; 19778 19779 j = 0; 19780 while (i + j < insn_cnt && !aux_data[i + j].seen) 19781 j++; 19782 if (!j) 19783 continue; 19784 19785 err = verifier_remove_insns(env, i, j); 19786 if (err) 19787 return err; 19788 insn_cnt = env->prog->len; 19789 } 19790 19791 return 0; 19792 } 19793 19794 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 19795 19796 static int opt_remove_nops(struct bpf_verifier_env *env) 19797 { 19798 const struct bpf_insn ja = NOP; 19799 struct bpf_insn *insn = env->prog->insnsi; 19800 int insn_cnt = env->prog->len; 19801 int i, err; 19802 19803 for (i = 0; i < insn_cnt; i++) { 19804 if (memcmp(&insn[i], &ja, sizeof(ja))) 19805 continue; 19806 19807 err = verifier_remove_insns(env, i, 1); 19808 if (err) 19809 return err; 19810 insn_cnt--; 19811 i--; 19812 } 19813 19814 return 0; 19815 } 19816 19817 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 19818 const union bpf_attr *attr) 19819 { 19820 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 19821 struct bpf_insn_aux_data *aux = env->insn_aux_data; 19822 int i, patch_len, delta = 0, len = env->prog->len; 19823 struct bpf_insn *insns = env->prog->insnsi; 19824 struct bpf_prog *new_prog; 19825 bool rnd_hi32; 19826 19827 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 19828 zext_patch[1] = BPF_ZEXT_REG(0); 19829 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 19830 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 19831 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 19832 for (i = 0; i < len; i++) { 19833 int adj_idx = i + delta; 19834 struct bpf_insn insn; 19835 int load_reg; 19836 19837 insn = insns[adj_idx]; 19838 load_reg = insn_def_regno(&insn); 19839 if (!aux[adj_idx].zext_dst) { 19840 u8 code, class; 19841 u32 imm_rnd; 19842 19843 if (!rnd_hi32) 19844 continue; 19845 19846 code = insn.code; 19847 class = BPF_CLASS(code); 19848 if (load_reg == -1) 19849 continue; 19850 19851 /* NOTE: arg "reg" (the fourth one) is only used for 19852 * BPF_STX + SRC_OP, so it is safe to pass NULL 19853 * here. 19854 */ 19855 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 19856 if (class == BPF_LD && 19857 BPF_MODE(code) == BPF_IMM) 19858 i++; 19859 continue; 19860 } 19861 19862 /* ctx load could be transformed into wider load. */ 19863 if (class == BPF_LDX && 19864 aux[adj_idx].ptr_type == PTR_TO_CTX) 19865 continue; 19866 19867 imm_rnd = get_random_u32(); 19868 rnd_hi32_patch[0] = insn; 19869 rnd_hi32_patch[1].imm = imm_rnd; 19870 rnd_hi32_patch[3].dst_reg = load_reg; 19871 patch = rnd_hi32_patch; 19872 patch_len = 4; 19873 goto apply_patch_buffer; 19874 } 19875 19876 /* Add in an zero-extend instruction if a) the JIT has requested 19877 * it or b) it's a CMPXCHG. 19878 * 19879 * The latter is because: BPF_CMPXCHG always loads a value into 19880 * R0, therefore always zero-extends. However some archs' 19881 * equivalent instruction only does this load when the 19882 * comparison is successful. This detail of CMPXCHG is 19883 * orthogonal to the general zero-extension behaviour of the 19884 * CPU, so it's treated independently of bpf_jit_needs_zext. 19885 */ 19886 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 19887 continue; 19888 19889 /* Zero-extension is done by the caller. */ 19890 if (bpf_pseudo_kfunc_call(&insn)) 19891 continue; 19892 19893 if (WARN_ON(load_reg == -1)) { 19894 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 19895 return -EFAULT; 19896 } 19897 19898 zext_patch[0] = insn; 19899 zext_patch[1].dst_reg = load_reg; 19900 zext_patch[1].src_reg = load_reg; 19901 patch = zext_patch; 19902 patch_len = 2; 19903 apply_patch_buffer: 19904 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 19905 if (!new_prog) 19906 return -ENOMEM; 19907 env->prog = new_prog; 19908 insns = new_prog->insnsi; 19909 aux = env->insn_aux_data; 19910 delta += patch_len - 1; 19911 } 19912 19913 return 0; 19914 } 19915 19916 /* convert load instructions that access fields of a context type into a 19917 * sequence of instructions that access fields of the underlying structure: 19918 * struct __sk_buff -> struct sk_buff 19919 * struct bpf_sock_ops -> struct sock 19920 */ 19921 static int convert_ctx_accesses(struct bpf_verifier_env *env) 19922 { 19923 struct bpf_subprog_info *subprogs = env->subprog_info; 19924 const struct bpf_verifier_ops *ops = env->ops; 19925 int i, cnt, size, ctx_field_size, delta = 0, epilogue_cnt = 0; 19926 const int insn_cnt = env->prog->len; 19927 struct bpf_insn *epilogue_buf = env->epilogue_buf; 19928 struct bpf_insn *insn_buf = env->insn_buf; 19929 struct bpf_insn *insn; 19930 u32 target_size, size_default, off; 19931 struct bpf_prog *new_prog; 19932 enum bpf_access_type type; 19933 bool is_narrower_load; 19934 int epilogue_idx = 0; 19935 19936 if (ops->gen_epilogue) { 19937 epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog, 19938 -(subprogs[0].stack_depth + 8)); 19939 if (epilogue_cnt >= INSN_BUF_SIZE) { 19940 verbose(env, "bpf verifier is misconfigured\n"); 19941 return -EINVAL; 19942 } else if (epilogue_cnt) { 19943 /* Save the ARG_PTR_TO_CTX for the epilogue to use */ 19944 cnt = 0; 19945 subprogs[0].stack_depth += 8; 19946 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1, 19947 -subprogs[0].stack_depth); 19948 insn_buf[cnt++] = env->prog->insnsi[0]; 19949 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 19950 if (!new_prog) 19951 return -ENOMEM; 19952 env->prog = new_prog; 19953 delta += cnt - 1; 19954 } 19955 } 19956 19957 if (ops->gen_prologue || env->seen_direct_write) { 19958 if (!ops->gen_prologue) { 19959 verbose(env, "bpf verifier is misconfigured\n"); 19960 return -EINVAL; 19961 } 19962 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 19963 env->prog); 19964 if (cnt >= INSN_BUF_SIZE) { 19965 verbose(env, "bpf verifier is misconfigured\n"); 19966 return -EINVAL; 19967 } else if (cnt) { 19968 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 19969 if (!new_prog) 19970 return -ENOMEM; 19971 19972 env->prog = new_prog; 19973 delta += cnt - 1; 19974 } 19975 } 19976 19977 if (delta) 19978 WARN_ON(adjust_jmp_off(env->prog, 0, delta)); 19979 19980 if (bpf_prog_is_offloaded(env->prog->aux)) 19981 return 0; 19982 19983 insn = env->prog->insnsi + delta; 19984 19985 for (i = 0; i < insn_cnt; i++, insn++) { 19986 bpf_convert_ctx_access_t convert_ctx_access; 19987 u8 mode; 19988 19989 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 19990 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 19991 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 19992 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 19993 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 19994 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 19995 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 19996 type = BPF_READ; 19997 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 19998 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 19999 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 20000 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 20001 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 20002 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 20003 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 20004 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 20005 type = BPF_WRITE; 20006 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) || 20007 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) && 20008 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) { 20009 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code); 20010 env->prog->aux->num_exentries++; 20011 continue; 20012 } else if (insn->code == (BPF_JMP | BPF_EXIT) && 20013 epilogue_cnt && 20014 i + delta < subprogs[1].start) { 20015 /* Generate epilogue for the main prog */ 20016 if (epilogue_idx) { 20017 /* jump back to the earlier generated epilogue */ 20018 insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1); 20019 cnt = 1; 20020 } else { 20021 memcpy(insn_buf, epilogue_buf, 20022 epilogue_cnt * sizeof(*epilogue_buf)); 20023 cnt = epilogue_cnt; 20024 /* epilogue_idx cannot be 0. It must have at 20025 * least one ctx ptr saving insn before the 20026 * epilogue. 20027 */ 20028 epilogue_idx = i + delta; 20029 } 20030 goto patch_insn_buf; 20031 } else { 20032 continue; 20033 } 20034 20035 if (type == BPF_WRITE && 20036 env->insn_aux_data[i + delta].sanitize_stack_spill) { 20037 struct bpf_insn patch[] = { 20038 *insn, 20039 BPF_ST_NOSPEC(), 20040 }; 20041 20042 cnt = ARRAY_SIZE(patch); 20043 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 20044 if (!new_prog) 20045 return -ENOMEM; 20046 20047 delta += cnt - 1; 20048 env->prog = new_prog; 20049 insn = new_prog->insnsi + i + delta; 20050 continue; 20051 } 20052 20053 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 20054 case PTR_TO_CTX: 20055 if (!ops->convert_ctx_access) 20056 continue; 20057 convert_ctx_access = ops->convert_ctx_access; 20058 break; 20059 case PTR_TO_SOCKET: 20060 case PTR_TO_SOCK_COMMON: 20061 convert_ctx_access = bpf_sock_convert_ctx_access; 20062 break; 20063 case PTR_TO_TCP_SOCK: 20064 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 20065 break; 20066 case PTR_TO_XDP_SOCK: 20067 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 20068 break; 20069 case PTR_TO_BTF_ID: 20070 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 20071 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 20072 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 20073 * be said once it is marked PTR_UNTRUSTED, hence we must handle 20074 * any faults for loads into such types. BPF_WRITE is disallowed 20075 * for this case. 20076 */ 20077 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 20078 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: 20079 if (type == BPF_READ) { 20080 if (BPF_MODE(insn->code) == BPF_MEM) 20081 insn->code = BPF_LDX | BPF_PROBE_MEM | 20082 BPF_SIZE((insn)->code); 20083 else 20084 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 20085 BPF_SIZE((insn)->code); 20086 env->prog->aux->num_exentries++; 20087 } 20088 continue; 20089 case PTR_TO_ARENA: 20090 if (BPF_MODE(insn->code) == BPF_MEMSX) { 20091 verbose(env, "sign extending loads from arena are not supported yet\n"); 20092 return -EOPNOTSUPP; 20093 } 20094 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); 20095 env->prog->aux->num_exentries++; 20096 continue; 20097 default: 20098 continue; 20099 } 20100 20101 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 20102 size = BPF_LDST_BYTES(insn); 20103 mode = BPF_MODE(insn->code); 20104 20105 /* If the read access is a narrower load of the field, 20106 * convert to a 4/8-byte load, to minimum program type specific 20107 * convert_ctx_access changes. If conversion is successful, 20108 * we will apply proper mask to the result. 20109 */ 20110 is_narrower_load = size < ctx_field_size; 20111 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 20112 off = insn->off; 20113 if (is_narrower_load) { 20114 u8 size_code; 20115 20116 if (type == BPF_WRITE) { 20117 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 20118 return -EINVAL; 20119 } 20120 20121 size_code = BPF_H; 20122 if (ctx_field_size == 4) 20123 size_code = BPF_W; 20124 else if (ctx_field_size == 8) 20125 size_code = BPF_DW; 20126 20127 insn->off = off & ~(size_default - 1); 20128 insn->code = BPF_LDX | BPF_MEM | size_code; 20129 } 20130 20131 target_size = 0; 20132 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 20133 &target_size); 20134 if (cnt == 0 || cnt >= INSN_BUF_SIZE || 20135 (ctx_field_size && !target_size)) { 20136 verbose(env, "bpf verifier is misconfigured\n"); 20137 return -EINVAL; 20138 } 20139 20140 if (is_narrower_load && size < target_size) { 20141 u8 shift = bpf_ctx_narrow_access_offset( 20142 off, size, size_default) * 8; 20143 if (shift && cnt + 1 >= INSN_BUF_SIZE) { 20144 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 20145 return -EINVAL; 20146 } 20147 if (ctx_field_size <= 4) { 20148 if (shift) 20149 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 20150 insn->dst_reg, 20151 shift); 20152 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 20153 (1 << size * 8) - 1); 20154 } else { 20155 if (shift) 20156 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 20157 insn->dst_reg, 20158 shift); 20159 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 20160 (1ULL << size * 8) - 1); 20161 } 20162 } 20163 if (mode == BPF_MEMSX) 20164 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 20165 insn->dst_reg, insn->dst_reg, 20166 size * 8, 0); 20167 20168 patch_insn_buf: 20169 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20170 if (!new_prog) 20171 return -ENOMEM; 20172 20173 delta += cnt - 1; 20174 20175 /* keep walking new program and skip insns we just inserted */ 20176 env->prog = new_prog; 20177 insn = new_prog->insnsi + i + delta; 20178 } 20179 20180 return 0; 20181 } 20182 20183 static int jit_subprogs(struct bpf_verifier_env *env) 20184 { 20185 struct bpf_prog *prog = env->prog, **func, *tmp; 20186 int i, j, subprog_start, subprog_end = 0, len, subprog; 20187 struct bpf_map *map_ptr; 20188 struct bpf_insn *insn; 20189 void *old_bpf_func; 20190 int err, num_exentries; 20191 20192 if (env->subprog_cnt <= 1) 20193 return 0; 20194 20195 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 20196 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 20197 continue; 20198 20199 /* Upon error here we cannot fall back to interpreter but 20200 * need a hard reject of the program. Thus -EFAULT is 20201 * propagated in any case. 20202 */ 20203 subprog = find_subprog(env, i + insn->imm + 1); 20204 if (subprog < 0) { 20205 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 20206 i + insn->imm + 1); 20207 return -EFAULT; 20208 } 20209 /* temporarily remember subprog id inside insn instead of 20210 * aux_data, since next loop will split up all insns into funcs 20211 */ 20212 insn->off = subprog; 20213 /* remember original imm in case JIT fails and fallback 20214 * to interpreter will be needed 20215 */ 20216 env->insn_aux_data[i].call_imm = insn->imm; 20217 /* point imm to __bpf_call_base+1 from JITs point of view */ 20218 insn->imm = 1; 20219 if (bpf_pseudo_func(insn)) { 20220 #if defined(MODULES_VADDR) 20221 u64 addr = MODULES_VADDR; 20222 #else 20223 u64 addr = VMALLOC_START; 20224 #endif 20225 /* jit (e.g. x86_64) may emit fewer instructions 20226 * if it learns a u32 imm is the same as a u64 imm. 20227 * Set close enough to possible prog address. 20228 */ 20229 insn[0].imm = (u32)addr; 20230 insn[1].imm = addr >> 32; 20231 } 20232 } 20233 20234 err = bpf_prog_alloc_jited_linfo(prog); 20235 if (err) 20236 goto out_undo_insn; 20237 20238 err = -ENOMEM; 20239 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 20240 if (!func) 20241 goto out_undo_insn; 20242 20243 for (i = 0; i < env->subprog_cnt; i++) { 20244 subprog_start = subprog_end; 20245 subprog_end = env->subprog_info[i + 1].start; 20246 20247 len = subprog_end - subprog_start; 20248 /* bpf_prog_run() doesn't call subprogs directly, 20249 * hence main prog stats include the runtime of subprogs. 20250 * subprogs don't have IDs and not reachable via prog_get_next_id 20251 * func[i]->stats will never be accessed and stays NULL 20252 */ 20253 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 20254 if (!func[i]) 20255 goto out_free; 20256 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 20257 len * sizeof(struct bpf_insn)); 20258 func[i]->type = prog->type; 20259 func[i]->len = len; 20260 if (bpf_prog_calc_tag(func[i])) 20261 goto out_free; 20262 func[i]->is_func = 1; 20263 func[i]->sleepable = prog->sleepable; 20264 func[i]->aux->func_idx = i; 20265 /* Below members will be freed only at prog->aux */ 20266 func[i]->aux->btf = prog->aux->btf; 20267 func[i]->aux->func_info = prog->aux->func_info; 20268 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 20269 func[i]->aux->poke_tab = prog->aux->poke_tab; 20270 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 20271 20272 for (j = 0; j < prog->aux->size_poke_tab; j++) { 20273 struct bpf_jit_poke_descriptor *poke; 20274 20275 poke = &prog->aux->poke_tab[j]; 20276 if (poke->insn_idx < subprog_end && 20277 poke->insn_idx >= subprog_start) 20278 poke->aux = func[i]->aux; 20279 } 20280 20281 func[i]->aux->name[0] = 'F'; 20282 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 20283 if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) 20284 func[i]->aux->jits_use_priv_stack = true; 20285 20286 func[i]->jit_requested = 1; 20287 func[i]->blinding_requested = prog->blinding_requested; 20288 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 20289 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 20290 func[i]->aux->linfo = prog->aux->linfo; 20291 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 20292 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 20293 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 20294 func[i]->aux->arena = prog->aux->arena; 20295 num_exentries = 0; 20296 insn = func[i]->insnsi; 20297 for (j = 0; j < func[i]->len; j++, insn++) { 20298 if (BPF_CLASS(insn->code) == BPF_LDX && 20299 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 20300 BPF_MODE(insn->code) == BPF_PROBE_MEM32 || 20301 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 20302 num_exentries++; 20303 if ((BPF_CLASS(insn->code) == BPF_STX || 20304 BPF_CLASS(insn->code) == BPF_ST) && 20305 BPF_MODE(insn->code) == BPF_PROBE_MEM32) 20306 num_exentries++; 20307 if (BPF_CLASS(insn->code) == BPF_STX && 20308 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) 20309 num_exentries++; 20310 } 20311 func[i]->aux->num_exentries = num_exentries; 20312 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 20313 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 20314 if (!i) 20315 func[i]->aux->exception_boundary = env->seen_exception; 20316 func[i] = bpf_int_jit_compile(func[i]); 20317 if (!func[i]->jited) { 20318 err = -ENOTSUPP; 20319 goto out_free; 20320 } 20321 cond_resched(); 20322 } 20323 20324 /* at this point all bpf functions were successfully JITed 20325 * now populate all bpf_calls with correct addresses and 20326 * run last pass of JIT 20327 */ 20328 for (i = 0; i < env->subprog_cnt; i++) { 20329 insn = func[i]->insnsi; 20330 for (j = 0; j < func[i]->len; j++, insn++) { 20331 if (bpf_pseudo_func(insn)) { 20332 subprog = insn->off; 20333 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 20334 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 20335 continue; 20336 } 20337 if (!bpf_pseudo_call(insn)) 20338 continue; 20339 subprog = insn->off; 20340 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 20341 } 20342 20343 /* we use the aux data to keep a list of the start addresses 20344 * of the JITed images for each function in the program 20345 * 20346 * for some architectures, such as powerpc64, the imm field 20347 * might not be large enough to hold the offset of the start 20348 * address of the callee's JITed image from __bpf_call_base 20349 * 20350 * in such cases, we can lookup the start address of a callee 20351 * by using its subprog id, available from the off field of 20352 * the call instruction, as an index for this list 20353 */ 20354 func[i]->aux->func = func; 20355 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 20356 func[i]->aux->real_func_cnt = env->subprog_cnt; 20357 } 20358 for (i = 0; i < env->subprog_cnt; i++) { 20359 old_bpf_func = func[i]->bpf_func; 20360 tmp = bpf_int_jit_compile(func[i]); 20361 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 20362 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 20363 err = -ENOTSUPP; 20364 goto out_free; 20365 } 20366 cond_resched(); 20367 } 20368 20369 /* finally lock prog and jit images for all functions and 20370 * populate kallsysm. Begin at the first subprogram, since 20371 * bpf_prog_load will add the kallsyms for the main program. 20372 */ 20373 for (i = 1; i < env->subprog_cnt; i++) { 20374 err = bpf_prog_lock_ro(func[i]); 20375 if (err) 20376 goto out_free; 20377 } 20378 20379 for (i = 1; i < env->subprog_cnt; i++) 20380 bpf_prog_kallsyms_add(func[i]); 20381 20382 /* Last step: make now unused interpreter insns from main 20383 * prog consistent for later dump requests, so they can 20384 * later look the same as if they were interpreted only. 20385 */ 20386 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 20387 if (bpf_pseudo_func(insn)) { 20388 insn[0].imm = env->insn_aux_data[i].call_imm; 20389 insn[1].imm = insn->off; 20390 insn->off = 0; 20391 continue; 20392 } 20393 if (!bpf_pseudo_call(insn)) 20394 continue; 20395 insn->off = env->insn_aux_data[i].call_imm; 20396 subprog = find_subprog(env, i + insn->off + 1); 20397 insn->imm = subprog; 20398 } 20399 20400 prog->jited = 1; 20401 prog->bpf_func = func[0]->bpf_func; 20402 prog->jited_len = func[0]->jited_len; 20403 prog->aux->extable = func[0]->aux->extable; 20404 prog->aux->num_exentries = func[0]->aux->num_exentries; 20405 prog->aux->func = func; 20406 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 20407 prog->aux->real_func_cnt = env->subprog_cnt; 20408 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 20409 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 20410 bpf_prog_jit_attempt_done(prog); 20411 return 0; 20412 out_free: 20413 /* We failed JIT'ing, so at this point we need to unregister poke 20414 * descriptors from subprogs, so that kernel is not attempting to 20415 * patch it anymore as we're freeing the subprog JIT memory. 20416 */ 20417 for (i = 0; i < prog->aux->size_poke_tab; i++) { 20418 map_ptr = prog->aux->poke_tab[i].tail_call.map; 20419 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 20420 } 20421 /* At this point we're guaranteed that poke descriptors are not 20422 * live anymore. We can just unlink its descriptor table as it's 20423 * released with the main prog. 20424 */ 20425 for (i = 0; i < env->subprog_cnt; i++) { 20426 if (!func[i]) 20427 continue; 20428 func[i]->aux->poke_tab = NULL; 20429 bpf_jit_free(func[i]); 20430 } 20431 kfree(func); 20432 out_undo_insn: 20433 /* cleanup main prog to be interpreted */ 20434 prog->jit_requested = 0; 20435 prog->blinding_requested = 0; 20436 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 20437 if (!bpf_pseudo_call(insn)) 20438 continue; 20439 insn->off = 0; 20440 insn->imm = env->insn_aux_data[i].call_imm; 20441 } 20442 bpf_prog_jit_attempt_done(prog); 20443 return err; 20444 } 20445 20446 static int fixup_call_args(struct bpf_verifier_env *env) 20447 { 20448 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 20449 struct bpf_prog *prog = env->prog; 20450 struct bpf_insn *insn = prog->insnsi; 20451 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 20452 int i, depth; 20453 #endif 20454 int err = 0; 20455 20456 if (env->prog->jit_requested && 20457 !bpf_prog_is_offloaded(env->prog->aux)) { 20458 err = jit_subprogs(env); 20459 if (err == 0) 20460 return 0; 20461 if (err == -EFAULT) 20462 return err; 20463 } 20464 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 20465 if (has_kfunc_call) { 20466 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 20467 return -EINVAL; 20468 } 20469 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 20470 /* When JIT fails the progs with bpf2bpf calls and tail_calls 20471 * have to be rejected, since interpreter doesn't support them yet. 20472 */ 20473 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 20474 return -EINVAL; 20475 } 20476 for (i = 0; i < prog->len; i++, insn++) { 20477 if (bpf_pseudo_func(insn)) { 20478 /* When JIT fails the progs with callback calls 20479 * have to be rejected, since interpreter doesn't support them yet. 20480 */ 20481 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 20482 return -EINVAL; 20483 } 20484 20485 if (!bpf_pseudo_call(insn)) 20486 continue; 20487 depth = get_callee_stack_depth(env, insn, i); 20488 if (depth < 0) 20489 return depth; 20490 bpf_patch_call_args(insn, depth); 20491 } 20492 err = 0; 20493 #endif 20494 return err; 20495 } 20496 20497 /* replace a generic kfunc with a specialized version if necessary */ 20498 static void specialize_kfunc(struct bpf_verifier_env *env, 20499 u32 func_id, u16 offset, unsigned long *addr) 20500 { 20501 struct bpf_prog *prog = env->prog; 20502 bool seen_direct_write; 20503 void *xdp_kfunc; 20504 bool is_rdonly; 20505 20506 if (bpf_dev_bound_kfunc_id(func_id)) { 20507 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 20508 if (xdp_kfunc) { 20509 *addr = (unsigned long)xdp_kfunc; 20510 return; 20511 } 20512 /* fallback to default kfunc when not supported by netdev */ 20513 } 20514 20515 if (offset) 20516 return; 20517 20518 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 20519 seen_direct_write = env->seen_direct_write; 20520 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 20521 20522 if (is_rdonly) 20523 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 20524 20525 /* restore env->seen_direct_write to its original value, since 20526 * may_access_direct_pkt_data mutates it 20527 */ 20528 env->seen_direct_write = seen_direct_write; 20529 } 20530 } 20531 20532 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 20533 u16 struct_meta_reg, 20534 u16 node_offset_reg, 20535 struct bpf_insn *insn, 20536 struct bpf_insn *insn_buf, 20537 int *cnt) 20538 { 20539 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 20540 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 20541 20542 insn_buf[0] = addr[0]; 20543 insn_buf[1] = addr[1]; 20544 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 20545 insn_buf[3] = *insn; 20546 *cnt = 4; 20547 } 20548 20549 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 20550 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 20551 { 20552 const struct bpf_kfunc_desc *desc; 20553 20554 if (!insn->imm) { 20555 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 20556 return -EINVAL; 20557 } 20558 20559 *cnt = 0; 20560 20561 /* insn->imm has the btf func_id. Replace it with an offset relative to 20562 * __bpf_call_base, unless the JIT needs to call functions that are 20563 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 20564 */ 20565 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 20566 if (!desc) { 20567 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 20568 insn->imm); 20569 return -EFAULT; 20570 } 20571 20572 if (!bpf_jit_supports_far_kfunc_call()) 20573 insn->imm = BPF_CALL_IMM(desc->addr); 20574 if (insn->off) 20575 return 0; 20576 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 20577 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 20578 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 20579 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 20580 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 20581 20582 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 20583 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 20584 insn_idx); 20585 return -EFAULT; 20586 } 20587 20588 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 20589 insn_buf[1] = addr[0]; 20590 insn_buf[2] = addr[1]; 20591 insn_buf[3] = *insn; 20592 *cnt = 4; 20593 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 20594 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 20595 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 20596 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 20597 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 20598 20599 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 20600 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 20601 insn_idx); 20602 return -EFAULT; 20603 } 20604 20605 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 20606 !kptr_struct_meta) { 20607 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 20608 insn_idx); 20609 return -EFAULT; 20610 } 20611 20612 insn_buf[0] = addr[0]; 20613 insn_buf[1] = addr[1]; 20614 insn_buf[2] = *insn; 20615 *cnt = 3; 20616 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 20617 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 20618 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 20619 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 20620 int struct_meta_reg = BPF_REG_3; 20621 int node_offset_reg = BPF_REG_4; 20622 20623 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 20624 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 20625 struct_meta_reg = BPF_REG_4; 20626 node_offset_reg = BPF_REG_5; 20627 } 20628 20629 if (!kptr_struct_meta) { 20630 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 20631 insn_idx); 20632 return -EFAULT; 20633 } 20634 20635 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 20636 node_offset_reg, insn, insn_buf, cnt); 20637 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 20638 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 20639 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 20640 *cnt = 1; 20641 } else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) { 20642 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) }; 20643 20644 insn_buf[0] = ld_addrs[0]; 20645 insn_buf[1] = ld_addrs[1]; 20646 insn_buf[2] = *insn; 20647 *cnt = 3; 20648 } 20649 return 0; 20650 } 20651 20652 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 20653 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 20654 { 20655 struct bpf_subprog_info *info = env->subprog_info; 20656 int cnt = env->subprog_cnt; 20657 struct bpf_prog *prog; 20658 20659 /* We only reserve one slot for hidden subprogs in subprog_info. */ 20660 if (env->hidden_subprog_cnt) { 20661 verbose(env, "verifier internal error: only one hidden subprog supported\n"); 20662 return -EFAULT; 20663 } 20664 /* We're not patching any existing instruction, just appending the new 20665 * ones for the hidden subprog. Hence all of the adjustment operations 20666 * in bpf_patch_insn_data are no-ops. 20667 */ 20668 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 20669 if (!prog) 20670 return -ENOMEM; 20671 env->prog = prog; 20672 info[cnt + 1].start = info[cnt].start; 20673 info[cnt].start = prog->len - len + 1; 20674 env->subprog_cnt++; 20675 env->hidden_subprog_cnt++; 20676 return 0; 20677 } 20678 20679 /* Do various post-verification rewrites in a single program pass. 20680 * These rewrites simplify JIT and interpreter implementations. 20681 */ 20682 static int do_misc_fixups(struct bpf_verifier_env *env) 20683 { 20684 struct bpf_prog *prog = env->prog; 20685 enum bpf_attach_type eatype = prog->expected_attach_type; 20686 enum bpf_prog_type prog_type = resolve_prog_type(prog); 20687 struct bpf_insn *insn = prog->insnsi; 20688 const struct bpf_func_proto *fn; 20689 const int insn_cnt = prog->len; 20690 const struct bpf_map_ops *ops; 20691 struct bpf_insn_aux_data *aux; 20692 struct bpf_insn *insn_buf = env->insn_buf; 20693 struct bpf_prog *new_prog; 20694 struct bpf_map *map_ptr; 20695 int i, ret, cnt, delta = 0, cur_subprog = 0; 20696 struct bpf_subprog_info *subprogs = env->subprog_info; 20697 u16 stack_depth = subprogs[cur_subprog].stack_depth; 20698 u16 stack_depth_extra = 0; 20699 20700 if (env->seen_exception && !env->exception_callback_subprog) { 20701 struct bpf_insn patch[] = { 20702 env->prog->insnsi[insn_cnt - 1], 20703 BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), 20704 BPF_EXIT_INSN(), 20705 }; 20706 20707 ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch)); 20708 if (ret < 0) 20709 return ret; 20710 prog = env->prog; 20711 insn = prog->insnsi; 20712 20713 env->exception_callback_subprog = env->subprog_cnt - 1; 20714 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 20715 mark_subprog_exc_cb(env, env->exception_callback_subprog); 20716 } 20717 20718 for (i = 0; i < insn_cnt;) { 20719 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { 20720 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || 20721 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { 20722 /* convert to 32-bit mov that clears upper 32-bit */ 20723 insn->code = BPF_ALU | BPF_MOV | BPF_X; 20724 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */ 20725 insn->off = 0; 20726 insn->imm = 0; 20727 } /* cast from as(0) to as(1) should be handled by JIT */ 20728 goto next_insn; 20729 } 20730 20731 if (env->insn_aux_data[i + delta].needs_zext) 20732 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ 20733 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); 20734 20735 /* Make sdiv/smod divide-by-minus-one exceptions impossible. */ 20736 if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) || 20737 insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) || 20738 insn->code == (BPF_ALU | BPF_MOD | BPF_K) || 20739 insn->code == (BPF_ALU | BPF_DIV | BPF_K)) && 20740 insn->off == 1 && insn->imm == -1) { 20741 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 20742 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 20743 struct bpf_insn *patchlet; 20744 struct bpf_insn chk_and_sdiv[] = { 20745 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20746 BPF_NEG | BPF_K, insn->dst_reg, 20747 0, 0, 0), 20748 }; 20749 struct bpf_insn chk_and_smod[] = { 20750 BPF_MOV32_IMM(insn->dst_reg, 0), 20751 }; 20752 20753 patchlet = isdiv ? chk_and_sdiv : chk_and_smod; 20754 cnt = isdiv ? ARRAY_SIZE(chk_and_sdiv) : ARRAY_SIZE(chk_and_smod); 20755 20756 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 20757 if (!new_prog) 20758 return -ENOMEM; 20759 20760 delta += cnt - 1; 20761 env->prog = prog = new_prog; 20762 insn = new_prog->insnsi + i + delta; 20763 goto next_insn; 20764 } 20765 20766 /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */ 20767 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 20768 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 20769 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 20770 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 20771 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 20772 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 20773 bool is_sdiv = isdiv && insn->off == 1; 20774 bool is_smod = !isdiv && insn->off == 1; 20775 struct bpf_insn *patchlet; 20776 struct bpf_insn chk_and_div[] = { 20777 /* [R,W]x div 0 -> 0 */ 20778 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20779 BPF_JNE | BPF_K, insn->src_reg, 20780 0, 2, 0), 20781 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 20782 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20783 *insn, 20784 }; 20785 struct bpf_insn chk_and_mod[] = { 20786 /* [R,W]x mod 0 -> [R,W]x */ 20787 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20788 BPF_JEQ | BPF_K, insn->src_reg, 20789 0, 1 + (is64 ? 0 : 1), 0), 20790 *insn, 20791 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20792 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 20793 }; 20794 struct bpf_insn chk_and_sdiv[] = { 20795 /* [R,W]x sdiv 0 -> 0 20796 * LLONG_MIN sdiv -1 -> LLONG_MIN 20797 * INT_MIN sdiv -1 -> INT_MIN 20798 */ 20799 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), 20800 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20801 BPF_ADD | BPF_K, BPF_REG_AX, 20802 0, 0, 1), 20803 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20804 BPF_JGT | BPF_K, BPF_REG_AX, 20805 0, 4, 1), 20806 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20807 BPF_JEQ | BPF_K, BPF_REG_AX, 20808 0, 1, 0), 20809 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20810 BPF_MOV | BPF_K, insn->dst_reg, 20811 0, 0, 0), 20812 /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */ 20813 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20814 BPF_NEG | BPF_K, insn->dst_reg, 20815 0, 0, 0), 20816 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20817 *insn, 20818 }; 20819 struct bpf_insn chk_and_smod[] = { 20820 /* [R,W]x mod 0 -> [R,W]x */ 20821 /* [R,W]x mod -1 -> 0 */ 20822 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), 20823 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20824 BPF_ADD | BPF_K, BPF_REG_AX, 20825 0, 0, 1), 20826 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20827 BPF_JGT | BPF_K, BPF_REG_AX, 20828 0, 3, 1), 20829 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20830 BPF_JEQ | BPF_K, BPF_REG_AX, 20831 0, 3 + (is64 ? 0 : 1), 1), 20832 BPF_MOV32_IMM(insn->dst_reg, 0), 20833 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20834 *insn, 20835 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20836 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 20837 }; 20838 20839 if (is_sdiv) { 20840 patchlet = chk_and_sdiv; 20841 cnt = ARRAY_SIZE(chk_and_sdiv); 20842 } else if (is_smod) { 20843 patchlet = chk_and_smod; 20844 cnt = ARRAY_SIZE(chk_and_smod) - (is64 ? 2 : 0); 20845 } else { 20846 patchlet = isdiv ? chk_and_div : chk_and_mod; 20847 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 20848 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 20849 } 20850 20851 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 20852 if (!new_prog) 20853 return -ENOMEM; 20854 20855 delta += cnt - 1; 20856 env->prog = prog = new_prog; 20857 insn = new_prog->insnsi + i + delta; 20858 goto next_insn; 20859 } 20860 20861 /* Make it impossible to de-reference a userspace address */ 20862 if (BPF_CLASS(insn->code) == BPF_LDX && 20863 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 20864 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { 20865 struct bpf_insn *patch = &insn_buf[0]; 20866 u64 uaddress_limit = bpf_arch_uaddress_limit(); 20867 20868 if (!uaddress_limit) 20869 goto next_insn; 20870 20871 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 20872 if (insn->off) 20873 *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); 20874 *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); 20875 *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); 20876 *patch++ = *insn; 20877 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 20878 *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); 20879 20880 cnt = patch - insn_buf; 20881 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20882 if (!new_prog) 20883 return -ENOMEM; 20884 20885 delta += cnt - 1; 20886 env->prog = prog = new_prog; 20887 insn = new_prog->insnsi + i + delta; 20888 goto next_insn; 20889 } 20890 20891 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 20892 if (BPF_CLASS(insn->code) == BPF_LD && 20893 (BPF_MODE(insn->code) == BPF_ABS || 20894 BPF_MODE(insn->code) == BPF_IND)) { 20895 cnt = env->ops->gen_ld_abs(insn, insn_buf); 20896 if (cnt == 0 || cnt >= INSN_BUF_SIZE) { 20897 verbose(env, "bpf verifier is misconfigured\n"); 20898 return -EINVAL; 20899 } 20900 20901 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20902 if (!new_prog) 20903 return -ENOMEM; 20904 20905 delta += cnt - 1; 20906 env->prog = prog = new_prog; 20907 insn = new_prog->insnsi + i + delta; 20908 goto next_insn; 20909 } 20910 20911 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 20912 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 20913 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 20914 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 20915 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 20916 struct bpf_insn *patch = &insn_buf[0]; 20917 bool issrc, isneg, isimm; 20918 u32 off_reg; 20919 20920 aux = &env->insn_aux_data[i + delta]; 20921 if (!aux->alu_state || 20922 aux->alu_state == BPF_ALU_NON_POINTER) 20923 goto next_insn; 20924 20925 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 20926 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 20927 BPF_ALU_SANITIZE_SRC; 20928 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 20929 20930 off_reg = issrc ? insn->src_reg : insn->dst_reg; 20931 if (isimm) { 20932 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 20933 } else { 20934 if (isneg) 20935 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 20936 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 20937 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 20938 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 20939 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 20940 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 20941 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 20942 } 20943 if (!issrc) 20944 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 20945 insn->src_reg = BPF_REG_AX; 20946 if (isneg) 20947 insn->code = insn->code == code_add ? 20948 code_sub : code_add; 20949 *patch++ = *insn; 20950 if (issrc && isneg && !isimm) 20951 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 20952 cnt = patch - insn_buf; 20953 20954 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20955 if (!new_prog) 20956 return -ENOMEM; 20957 20958 delta += cnt - 1; 20959 env->prog = prog = new_prog; 20960 insn = new_prog->insnsi + i + delta; 20961 goto next_insn; 20962 } 20963 20964 if (is_may_goto_insn(insn)) { 20965 int stack_off = -stack_depth - 8; 20966 20967 stack_depth_extra = 8; 20968 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); 20969 if (insn->off >= 0) 20970 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); 20971 else 20972 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 20973 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 20974 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); 20975 cnt = 4; 20976 20977 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20978 if (!new_prog) 20979 return -ENOMEM; 20980 20981 delta += cnt - 1; 20982 env->prog = prog = new_prog; 20983 insn = new_prog->insnsi + i + delta; 20984 goto next_insn; 20985 } 20986 20987 if (insn->code != (BPF_JMP | BPF_CALL)) 20988 goto next_insn; 20989 if (insn->src_reg == BPF_PSEUDO_CALL) 20990 goto next_insn; 20991 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 20992 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 20993 if (ret) 20994 return ret; 20995 if (cnt == 0) 20996 goto next_insn; 20997 20998 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20999 if (!new_prog) 21000 return -ENOMEM; 21001 21002 delta += cnt - 1; 21003 env->prog = prog = new_prog; 21004 insn = new_prog->insnsi + i + delta; 21005 goto next_insn; 21006 } 21007 21008 /* Skip inlining the helper call if the JIT does it. */ 21009 if (bpf_jit_inlines_helper_call(insn->imm)) 21010 goto next_insn; 21011 21012 if (insn->imm == BPF_FUNC_get_route_realm) 21013 prog->dst_needed = 1; 21014 if (insn->imm == BPF_FUNC_get_prandom_u32) 21015 bpf_user_rnd_init_once(); 21016 if (insn->imm == BPF_FUNC_override_return) 21017 prog->kprobe_override = 1; 21018 if (insn->imm == BPF_FUNC_tail_call) { 21019 /* If we tail call into other programs, we 21020 * cannot make any assumptions since they can 21021 * be replaced dynamically during runtime in 21022 * the program array. 21023 */ 21024 prog->cb_access = 1; 21025 if (!allow_tail_call_in_subprogs(env)) 21026 prog->aux->stack_depth = MAX_BPF_STACK; 21027 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 21028 21029 /* mark bpf_tail_call as different opcode to avoid 21030 * conditional branch in the interpreter for every normal 21031 * call and to prevent accidental JITing by JIT compiler 21032 * that doesn't support bpf_tail_call yet 21033 */ 21034 insn->imm = 0; 21035 insn->code = BPF_JMP | BPF_TAIL_CALL; 21036 21037 aux = &env->insn_aux_data[i + delta]; 21038 if (env->bpf_capable && !prog->blinding_requested && 21039 prog->jit_requested && 21040 !bpf_map_key_poisoned(aux) && 21041 !bpf_map_ptr_poisoned(aux) && 21042 !bpf_map_ptr_unpriv(aux)) { 21043 struct bpf_jit_poke_descriptor desc = { 21044 .reason = BPF_POKE_REASON_TAIL_CALL, 21045 .tail_call.map = aux->map_ptr_state.map_ptr, 21046 .tail_call.key = bpf_map_key_immediate(aux), 21047 .insn_idx = i + delta, 21048 }; 21049 21050 ret = bpf_jit_add_poke_descriptor(prog, &desc); 21051 if (ret < 0) { 21052 verbose(env, "adding tail call poke descriptor failed\n"); 21053 return ret; 21054 } 21055 21056 insn->imm = ret + 1; 21057 goto next_insn; 21058 } 21059 21060 if (!bpf_map_ptr_unpriv(aux)) 21061 goto next_insn; 21062 21063 /* instead of changing every JIT dealing with tail_call 21064 * emit two extra insns: 21065 * if (index >= max_entries) goto out; 21066 * index &= array->index_mask; 21067 * to avoid out-of-bounds cpu speculation 21068 */ 21069 if (bpf_map_ptr_poisoned(aux)) { 21070 verbose(env, "tail_call abusing map_ptr\n"); 21071 return -EINVAL; 21072 } 21073 21074 map_ptr = aux->map_ptr_state.map_ptr; 21075 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 21076 map_ptr->max_entries, 2); 21077 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 21078 container_of(map_ptr, 21079 struct bpf_array, 21080 map)->index_mask); 21081 insn_buf[2] = *insn; 21082 cnt = 3; 21083 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21084 if (!new_prog) 21085 return -ENOMEM; 21086 21087 delta += cnt - 1; 21088 env->prog = prog = new_prog; 21089 insn = new_prog->insnsi + i + delta; 21090 goto next_insn; 21091 } 21092 21093 if (insn->imm == BPF_FUNC_timer_set_callback) { 21094 /* The verifier will process callback_fn as many times as necessary 21095 * with different maps and the register states prepared by 21096 * set_timer_callback_state will be accurate. 21097 * 21098 * The following use case is valid: 21099 * map1 is shared by prog1, prog2, prog3. 21100 * prog1 calls bpf_timer_init for some map1 elements 21101 * prog2 calls bpf_timer_set_callback for some map1 elements. 21102 * Those that were not bpf_timer_init-ed will return -EINVAL. 21103 * prog3 calls bpf_timer_start for some map1 elements. 21104 * Those that were not both bpf_timer_init-ed and 21105 * bpf_timer_set_callback-ed will return -EINVAL. 21106 */ 21107 struct bpf_insn ld_addrs[2] = { 21108 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 21109 }; 21110 21111 insn_buf[0] = ld_addrs[0]; 21112 insn_buf[1] = ld_addrs[1]; 21113 insn_buf[2] = *insn; 21114 cnt = 3; 21115 21116 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21117 if (!new_prog) 21118 return -ENOMEM; 21119 21120 delta += cnt - 1; 21121 env->prog = prog = new_prog; 21122 insn = new_prog->insnsi + i + delta; 21123 goto patch_call_imm; 21124 } 21125 21126 if (is_storage_get_function(insn->imm)) { 21127 if (!in_sleepable(env) || 21128 env->insn_aux_data[i + delta].storage_get_func_atomic) 21129 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 21130 else 21131 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 21132 insn_buf[1] = *insn; 21133 cnt = 2; 21134 21135 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21136 if (!new_prog) 21137 return -ENOMEM; 21138 21139 delta += cnt - 1; 21140 env->prog = prog = new_prog; 21141 insn = new_prog->insnsi + i + delta; 21142 goto patch_call_imm; 21143 } 21144 21145 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 21146 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 21147 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 21148 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 21149 */ 21150 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 21151 insn_buf[1] = *insn; 21152 cnt = 2; 21153 21154 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21155 if (!new_prog) 21156 return -ENOMEM; 21157 21158 delta += cnt - 1; 21159 env->prog = prog = new_prog; 21160 insn = new_prog->insnsi + i + delta; 21161 goto patch_call_imm; 21162 } 21163 21164 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 21165 * and other inlining handlers are currently limited to 64 bit 21166 * only. 21167 */ 21168 if (prog->jit_requested && BITS_PER_LONG == 64 && 21169 (insn->imm == BPF_FUNC_map_lookup_elem || 21170 insn->imm == BPF_FUNC_map_update_elem || 21171 insn->imm == BPF_FUNC_map_delete_elem || 21172 insn->imm == BPF_FUNC_map_push_elem || 21173 insn->imm == BPF_FUNC_map_pop_elem || 21174 insn->imm == BPF_FUNC_map_peek_elem || 21175 insn->imm == BPF_FUNC_redirect_map || 21176 insn->imm == BPF_FUNC_for_each_map_elem || 21177 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 21178 aux = &env->insn_aux_data[i + delta]; 21179 if (bpf_map_ptr_poisoned(aux)) 21180 goto patch_call_imm; 21181 21182 map_ptr = aux->map_ptr_state.map_ptr; 21183 ops = map_ptr->ops; 21184 if (insn->imm == BPF_FUNC_map_lookup_elem && 21185 ops->map_gen_lookup) { 21186 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 21187 if (cnt == -EOPNOTSUPP) 21188 goto patch_map_ops_generic; 21189 if (cnt <= 0 || cnt >= INSN_BUF_SIZE) { 21190 verbose(env, "bpf verifier is misconfigured\n"); 21191 return -EINVAL; 21192 } 21193 21194 new_prog = bpf_patch_insn_data(env, i + delta, 21195 insn_buf, cnt); 21196 if (!new_prog) 21197 return -ENOMEM; 21198 21199 delta += cnt - 1; 21200 env->prog = prog = new_prog; 21201 insn = new_prog->insnsi + i + delta; 21202 goto next_insn; 21203 } 21204 21205 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 21206 (void *(*)(struct bpf_map *map, void *key))NULL)); 21207 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 21208 (long (*)(struct bpf_map *map, void *key))NULL)); 21209 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 21210 (long (*)(struct bpf_map *map, void *key, void *value, 21211 u64 flags))NULL)); 21212 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 21213 (long (*)(struct bpf_map *map, void *value, 21214 u64 flags))NULL)); 21215 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 21216 (long (*)(struct bpf_map *map, void *value))NULL)); 21217 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 21218 (long (*)(struct bpf_map *map, void *value))NULL)); 21219 BUILD_BUG_ON(!__same_type(ops->map_redirect, 21220 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 21221 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 21222 (long (*)(struct bpf_map *map, 21223 bpf_callback_t callback_fn, 21224 void *callback_ctx, 21225 u64 flags))NULL)); 21226 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 21227 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 21228 21229 patch_map_ops_generic: 21230 switch (insn->imm) { 21231 case BPF_FUNC_map_lookup_elem: 21232 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 21233 goto next_insn; 21234 case BPF_FUNC_map_update_elem: 21235 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 21236 goto next_insn; 21237 case BPF_FUNC_map_delete_elem: 21238 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 21239 goto next_insn; 21240 case BPF_FUNC_map_push_elem: 21241 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 21242 goto next_insn; 21243 case BPF_FUNC_map_pop_elem: 21244 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 21245 goto next_insn; 21246 case BPF_FUNC_map_peek_elem: 21247 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 21248 goto next_insn; 21249 case BPF_FUNC_redirect_map: 21250 insn->imm = BPF_CALL_IMM(ops->map_redirect); 21251 goto next_insn; 21252 case BPF_FUNC_for_each_map_elem: 21253 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 21254 goto next_insn; 21255 case BPF_FUNC_map_lookup_percpu_elem: 21256 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 21257 goto next_insn; 21258 } 21259 21260 goto patch_call_imm; 21261 } 21262 21263 /* Implement bpf_jiffies64 inline. */ 21264 if (prog->jit_requested && BITS_PER_LONG == 64 && 21265 insn->imm == BPF_FUNC_jiffies64) { 21266 struct bpf_insn ld_jiffies_addr[2] = { 21267 BPF_LD_IMM64(BPF_REG_0, 21268 (unsigned long)&jiffies), 21269 }; 21270 21271 insn_buf[0] = ld_jiffies_addr[0]; 21272 insn_buf[1] = ld_jiffies_addr[1]; 21273 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 21274 BPF_REG_0, 0); 21275 cnt = 3; 21276 21277 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 21278 cnt); 21279 if (!new_prog) 21280 return -ENOMEM; 21281 21282 delta += cnt - 1; 21283 env->prog = prog = new_prog; 21284 insn = new_prog->insnsi + i + delta; 21285 goto next_insn; 21286 } 21287 21288 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML) 21289 /* Implement bpf_get_smp_processor_id() inline. */ 21290 if (insn->imm == BPF_FUNC_get_smp_processor_id && 21291 verifier_inlines_helper_call(env, insn->imm)) { 21292 /* BPF_FUNC_get_smp_processor_id inlining is an 21293 * optimization, so if pcpu_hot.cpu_number is ever 21294 * changed in some incompatible and hard to support 21295 * way, it's fine to back out this inlining logic 21296 */ 21297 insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number); 21298 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 21299 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0); 21300 cnt = 3; 21301 21302 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21303 if (!new_prog) 21304 return -ENOMEM; 21305 21306 delta += cnt - 1; 21307 env->prog = prog = new_prog; 21308 insn = new_prog->insnsi + i + delta; 21309 goto next_insn; 21310 } 21311 #endif 21312 /* Implement bpf_get_func_arg inline. */ 21313 if (prog_type == BPF_PROG_TYPE_TRACING && 21314 insn->imm == BPF_FUNC_get_func_arg) { 21315 /* Load nr_args from ctx - 8 */ 21316 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 21317 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 21318 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 21319 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 21320 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 21321 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 21322 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 21323 insn_buf[7] = BPF_JMP_A(1); 21324 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 21325 cnt = 9; 21326 21327 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21328 if (!new_prog) 21329 return -ENOMEM; 21330 21331 delta += cnt - 1; 21332 env->prog = prog = new_prog; 21333 insn = new_prog->insnsi + i + delta; 21334 goto next_insn; 21335 } 21336 21337 /* Implement bpf_get_func_ret inline. */ 21338 if (prog_type == BPF_PROG_TYPE_TRACING && 21339 insn->imm == BPF_FUNC_get_func_ret) { 21340 if (eatype == BPF_TRACE_FEXIT || 21341 eatype == BPF_MODIFY_RETURN) { 21342 /* Load nr_args from ctx - 8 */ 21343 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 21344 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 21345 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 21346 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 21347 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 21348 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 21349 cnt = 6; 21350 } else { 21351 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 21352 cnt = 1; 21353 } 21354 21355 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21356 if (!new_prog) 21357 return -ENOMEM; 21358 21359 delta += cnt - 1; 21360 env->prog = prog = new_prog; 21361 insn = new_prog->insnsi + i + delta; 21362 goto next_insn; 21363 } 21364 21365 /* Implement get_func_arg_cnt inline. */ 21366 if (prog_type == BPF_PROG_TYPE_TRACING && 21367 insn->imm == BPF_FUNC_get_func_arg_cnt) { 21368 /* Load nr_args from ctx - 8 */ 21369 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 21370 21371 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 21372 if (!new_prog) 21373 return -ENOMEM; 21374 21375 env->prog = prog = new_prog; 21376 insn = new_prog->insnsi + i + delta; 21377 goto next_insn; 21378 } 21379 21380 /* Implement bpf_get_func_ip inline. */ 21381 if (prog_type == BPF_PROG_TYPE_TRACING && 21382 insn->imm == BPF_FUNC_get_func_ip) { 21383 /* Load IP address from ctx - 16 */ 21384 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 21385 21386 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 21387 if (!new_prog) 21388 return -ENOMEM; 21389 21390 env->prog = prog = new_prog; 21391 insn = new_prog->insnsi + i + delta; 21392 goto next_insn; 21393 } 21394 21395 /* Implement bpf_get_branch_snapshot inline. */ 21396 if (IS_ENABLED(CONFIG_PERF_EVENTS) && 21397 prog->jit_requested && BITS_PER_LONG == 64 && 21398 insn->imm == BPF_FUNC_get_branch_snapshot) { 21399 /* We are dealing with the following func protos: 21400 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags); 21401 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt); 21402 */ 21403 const u32 br_entry_size = sizeof(struct perf_branch_entry); 21404 21405 /* struct perf_branch_entry is part of UAPI and is 21406 * used as an array element, so extremely unlikely to 21407 * ever grow or shrink 21408 */ 21409 BUILD_BUG_ON(br_entry_size != 24); 21410 21411 /* if (unlikely(flags)) return -EINVAL */ 21412 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7); 21413 21414 /* Transform size (bytes) into number of entries (cnt = size / 24). 21415 * But to avoid expensive division instruction, we implement 21416 * divide-by-3 through multiplication, followed by further 21417 * division by 8 through 3-bit right shift. 21418 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr., 21419 * p. 227, chapter "Unsigned Division by 3" for details and proofs. 21420 * 21421 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab. 21422 */ 21423 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab); 21424 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0); 21425 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36); 21426 21427 /* call perf_snapshot_branch_stack implementation */ 21428 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack)); 21429 /* if (entry_cnt == 0) return -ENOENT */ 21430 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4); 21431 /* return entry_cnt * sizeof(struct perf_branch_entry) */ 21432 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size); 21433 insn_buf[7] = BPF_JMP_A(3); 21434 /* return -EINVAL; */ 21435 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 21436 insn_buf[9] = BPF_JMP_A(1); 21437 /* return -ENOENT; */ 21438 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT); 21439 cnt = 11; 21440 21441 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21442 if (!new_prog) 21443 return -ENOMEM; 21444 21445 delta += cnt - 1; 21446 env->prog = prog = new_prog; 21447 insn = new_prog->insnsi + i + delta; 21448 goto next_insn; 21449 } 21450 21451 /* Implement bpf_kptr_xchg inline */ 21452 if (prog->jit_requested && BITS_PER_LONG == 64 && 21453 insn->imm == BPF_FUNC_kptr_xchg && 21454 bpf_jit_supports_ptr_xchg()) { 21455 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); 21456 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); 21457 cnt = 2; 21458 21459 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21460 if (!new_prog) 21461 return -ENOMEM; 21462 21463 delta += cnt - 1; 21464 env->prog = prog = new_prog; 21465 insn = new_prog->insnsi + i + delta; 21466 goto next_insn; 21467 } 21468 patch_call_imm: 21469 fn = env->ops->get_func_proto(insn->imm, env->prog); 21470 /* all functions that have prototype and verifier allowed 21471 * programs to call them, must be real in-kernel functions 21472 */ 21473 if (!fn->func) { 21474 verbose(env, 21475 "kernel subsystem misconfigured func %s#%d\n", 21476 func_id_name(insn->imm), insn->imm); 21477 return -EFAULT; 21478 } 21479 insn->imm = fn->func - __bpf_call_base; 21480 next_insn: 21481 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 21482 subprogs[cur_subprog].stack_depth += stack_depth_extra; 21483 subprogs[cur_subprog].stack_extra = stack_depth_extra; 21484 cur_subprog++; 21485 stack_depth = subprogs[cur_subprog].stack_depth; 21486 stack_depth_extra = 0; 21487 } 21488 i++; 21489 insn++; 21490 } 21491 21492 env->prog->aux->stack_depth = subprogs[0].stack_depth; 21493 for (i = 0; i < env->subprog_cnt; i++) { 21494 int subprog_start = subprogs[i].start; 21495 int stack_slots = subprogs[i].stack_extra / 8; 21496 21497 if (!stack_slots) 21498 continue; 21499 if (stack_slots > 1) { 21500 verbose(env, "verifier bug: stack_slots supports may_goto only\n"); 21501 return -EFAULT; 21502 } 21503 21504 /* Add ST insn to subprog prologue to init extra stack */ 21505 insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, 21506 -subprogs[i].stack_depth, BPF_MAX_LOOPS); 21507 /* Copy first actual insn to preserve it */ 21508 insn_buf[1] = env->prog->insnsi[subprog_start]; 21509 21510 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2); 21511 if (!new_prog) 21512 return -ENOMEM; 21513 env->prog = prog = new_prog; 21514 /* 21515 * If may_goto is a first insn of a prog there could be a jmp 21516 * insn that points to it, hence adjust all such jmps to point 21517 * to insn after BPF_ST that inits may_goto count. 21518 * Adjustment will succeed because bpf_patch_insn_data() didn't fail. 21519 */ 21520 WARN_ON(adjust_jmp_off(env->prog, subprog_start, 1)); 21521 } 21522 21523 /* Since poke tab is now finalized, publish aux to tracker. */ 21524 for (i = 0; i < prog->aux->size_poke_tab; i++) { 21525 map_ptr = prog->aux->poke_tab[i].tail_call.map; 21526 if (!map_ptr->ops->map_poke_track || 21527 !map_ptr->ops->map_poke_untrack || 21528 !map_ptr->ops->map_poke_run) { 21529 verbose(env, "bpf verifier is misconfigured\n"); 21530 return -EINVAL; 21531 } 21532 21533 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 21534 if (ret < 0) { 21535 verbose(env, "tracking tail call prog failed\n"); 21536 return ret; 21537 } 21538 } 21539 21540 sort_kfunc_descs_by_imm_off(env->prog); 21541 21542 return 0; 21543 } 21544 21545 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 21546 int position, 21547 s32 stack_base, 21548 u32 callback_subprogno, 21549 u32 *total_cnt) 21550 { 21551 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 21552 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 21553 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 21554 int reg_loop_max = BPF_REG_6; 21555 int reg_loop_cnt = BPF_REG_7; 21556 int reg_loop_ctx = BPF_REG_8; 21557 21558 struct bpf_insn *insn_buf = env->insn_buf; 21559 struct bpf_prog *new_prog; 21560 u32 callback_start; 21561 u32 call_insn_offset; 21562 s32 callback_offset; 21563 u32 cnt = 0; 21564 21565 /* This represents an inlined version of bpf_iter.c:bpf_loop, 21566 * be careful to modify this code in sync. 21567 */ 21568 21569 /* Return error and jump to the end of the patch if 21570 * expected number of iterations is too big. 21571 */ 21572 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2); 21573 insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG); 21574 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16); 21575 /* spill R6, R7, R8 to use these as loop vars */ 21576 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset); 21577 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset); 21578 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset); 21579 /* initialize loop vars */ 21580 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1); 21581 insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0); 21582 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3); 21583 /* loop header, 21584 * if reg_loop_cnt >= reg_loop_max skip the loop body 21585 */ 21586 insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5); 21587 /* callback call, 21588 * correct callback offset would be set after patching 21589 */ 21590 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt); 21591 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx); 21592 insn_buf[cnt++] = BPF_CALL_REL(0); 21593 /* increment loop counter */ 21594 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1); 21595 /* jump to loop header if callback returned 0 */ 21596 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6); 21597 /* return value of bpf_loop, 21598 * set R0 to the number of iterations 21599 */ 21600 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt); 21601 /* restore original values of R6, R7, R8 */ 21602 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset); 21603 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset); 21604 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset); 21605 21606 *total_cnt = cnt; 21607 new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt); 21608 if (!new_prog) 21609 return new_prog; 21610 21611 /* callback start is known only after patching */ 21612 callback_start = env->subprog_info[callback_subprogno].start; 21613 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 21614 call_insn_offset = position + 12; 21615 callback_offset = callback_start - call_insn_offset - 1; 21616 new_prog->insnsi[call_insn_offset].imm = callback_offset; 21617 21618 return new_prog; 21619 } 21620 21621 static bool is_bpf_loop_call(struct bpf_insn *insn) 21622 { 21623 return insn->code == (BPF_JMP | BPF_CALL) && 21624 insn->src_reg == 0 && 21625 insn->imm == BPF_FUNC_loop; 21626 } 21627 21628 /* For all sub-programs in the program (including main) check 21629 * insn_aux_data to see if there are bpf_loop calls that require 21630 * inlining. If such calls are found the calls are replaced with a 21631 * sequence of instructions produced by `inline_bpf_loop` function and 21632 * subprog stack_depth is increased by the size of 3 registers. 21633 * This stack space is used to spill values of the R6, R7, R8. These 21634 * registers are used to store the loop bound, counter and context 21635 * variables. 21636 */ 21637 static int optimize_bpf_loop(struct bpf_verifier_env *env) 21638 { 21639 struct bpf_subprog_info *subprogs = env->subprog_info; 21640 int i, cur_subprog = 0, cnt, delta = 0; 21641 struct bpf_insn *insn = env->prog->insnsi; 21642 int insn_cnt = env->prog->len; 21643 u16 stack_depth = subprogs[cur_subprog].stack_depth; 21644 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 21645 u16 stack_depth_extra = 0; 21646 21647 for (i = 0; i < insn_cnt; i++, insn++) { 21648 struct bpf_loop_inline_state *inline_state = 21649 &env->insn_aux_data[i + delta].loop_inline_state; 21650 21651 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 21652 struct bpf_prog *new_prog; 21653 21654 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 21655 new_prog = inline_bpf_loop(env, 21656 i + delta, 21657 -(stack_depth + stack_depth_extra), 21658 inline_state->callback_subprogno, 21659 &cnt); 21660 if (!new_prog) 21661 return -ENOMEM; 21662 21663 delta += cnt - 1; 21664 env->prog = new_prog; 21665 insn = new_prog->insnsi + i + delta; 21666 } 21667 21668 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 21669 subprogs[cur_subprog].stack_depth += stack_depth_extra; 21670 cur_subprog++; 21671 stack_depth = subprogs[cur_subprog].stack_depth; 21672 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 21673 stack_depth_extra = 0; 21674 } 21675 } 21676 21677 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 21678 21679 return 0; 21680 } 21681 21682 /* Remove unnecessary spill/fill pairs, members of fastcall pattern, 21683 * adjust subprograms stack depth when possible. 21684 */ 21685 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env) 21686 { 21687 struct bpf_subprog_info *subprog = env->subprog_info; 21688 struct bpf_insn_aux_data *aux = env->insn_aux_data; 21689 struct bpf_insn *insn = env->prog->insnsi; 21690 int insn_cnt = env->prog->len; 21691 u32 spills_num; 21692 bool modified = false; 21693 int i, j; 21694 21695 for (i = 0; i < insn_cnt; i++, insn++) { 21696 if (aux[i].fastcall_spills_num > 0) { 21697 spills_num = aux[i].fastcall_spills_num; 21698 /* NOPs would be removed by opt_remove_nops() */ 21699 for (j = 1; j <= spills_num; ++j) { 21700 *(insn - j) = NOP; 21701 *(insn + j) = NOP; 21702 } 21703 modified = true; 21704 } 21705 if ((subprog + 1)->start == i + 1) { 21706 if (modified && !subprog->keep_fastcall_stack) 21707 subprog->stack_depth = -subprog->fastcall_stack_off; 21708 subprog++; 21709 modified = false; 21710 } 21711 } 21712 21713 return 0; 21714 } 21715 21716 static void free_states(struct bpf_verifier_env *env) 21717 { 21718 struct bpf_verifier_state_list *sl, *sln; 21719 int i; 21720 21721 sl = env->free_list; 21722 while (sl) { 21723 sln = sl->next; 21724 free_verifier_state(&sl->state, false); 21725 kfree(sl); 21726 sl = sln; 21727 } 21728 env->free_list = NULL; 21729 21730 if (!env->explored_states) 21731 return; 21732 21733 for (i = 0; i < state_htab_size(env); i++) { 21734 sl = env->explored_states[i]; 21735 21736 while (sl) { 21737 sln = sl->next; 21738 free_verifier_state(&sl->state, false); 21739 kfree(sl); 21740 sl = sln; 21741 } 21742 env->explored_states[i] = NULL; 21743 } 21744 } 21745 21746 static int do_check_common(struct bpf_verifier_env *env, int subprog) 21747 { 21748 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 21749 struct bpf_subprog_info *sub = subprog_info(env, subprog); 21750 struct bpf_verifier_state *state; 21751 struct bpf_reg_state *regs; 21752 int ret, i; 21753 21754 env->prev_linfo = NULL; 21755 env->pass_cnt++; 21756 21757 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 21758 if (!state) 21759 return -ENOMEM; 21760 state->curframe = 0; 21761 state->speculative = false; 21762 state->branches = 1; 21763 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 21764 if (!state->frame[0]) { 21765 kfree(state); 21766 return -ENOMEM; 21767 } 21768 env->cur_state = state; 21769 init_func_state(env, state->frame[0], 21770 BPF_MAIN_FUNC /* callsite */, 21771 0 /* frameno */, 21772 subprog); 21773 state->first_insn_idx = env->subprog_info[subprog].start; 21774 state->last_insn_idx = -1; 21775 21776 regs = state->frame[state->curframe]->regs; 21777 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 21778 const char *sub_name = subprog_name(env, subprog); 21779 struct bpf_subprog_arg_info *arg; 21780 struct bpf_reg_state *reg; 21781 21782 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); 21783 ret = btf_prepare_func_args(env, subprog); 21784 if (ret) 21785 goto out; 21786 21787 if (subprog_is_exc_cb(env, subprog)) { 21788 state->frame[0]->in_exception_callback_fn = true; 21789 /* We have already ensured that the callback returns an integer, just 21790 * like all global subprogs. We need to determine it only has a single 21791 * scalar argument. 21792 */ 21793 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { 21794 verbose(env, "exception cb only supports single integer argument\n"); 21795 ret = -EINVAL; 21796 goto out; 21797 } 21798 } 21799 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { 21800 arg = &sub->args[i - BPF_REG_1]; 21801 reg = ®s[i]; 21802 21803 if (arg->arg_type == ARG_PTR_TO_CTX) { 21804 reg->type = PTR_TO_CTX; 21805 mark_reg_known_zero(env, regs, i); 21806 } else if (arg->arg_type == ARG_ANYTHING) { 21807 reg->type = SCALAR_VALUE; 21808 mark_reg_unknown(env, regs, i); 21809 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 21810 /* assume unspecial LOCAL dynptr type */ 21811 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); 21812 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 21813 reg->type = PTR_TO_MEM; 21814 if (arg->arg_type & PTR_MAYBE_NULL) 21815 reg->type |= PTR_MAYBE_NULL; 21816 mark_reg_known_zero(env, regs, i); 21817 reg->mem_size = arg->mem_size; 21818 reg->id = ++env->id_gen; 21819 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 21820 reg->type = PTR_TO_BTF_ID; 21821 if (arg->arg_type & PTR_MAYBE_NULL) 21822 reg->type |= PTR_MAYBE_NULL; 21823 if (arg->arg_type & PTR_UNTRUSTED) 21824 reg->type |= PTR_UNTRUSTED; 21825 if (arg->arg_type & PTR_TRUSTED) 21826 reg->type |= PTR_TRUSTED; 21827 mark_reg_known_zero(env, regs, i); 21828 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ 21829 reg->btf_id = arg->btf_id; 21830 reg->id = ++env->id_gen; 21831 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 21832 /* caller can pass either PTR_TO_ARENA or SCALAR */ 21833 mark_reg_unknown(env, regs, i); 21834 } else { 21835 WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n", 21836 i - BPF_REG_1, arg->arg_type); 21837 ret = -EFAULT; 21838 goto out; 21839 } 21840 } 21841 } else { 21842 /* if main BPF program has associated BTF info, validate that 21843 * it's matching expected signature, and otherwise mark BTF 21844 * info for main program as unreliable 21845 */ 21846 if (env->prog->aux->func_info_aux) { 21847 ret = btf_prepare_func_args(env, 0); 21848 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) 21849 env->prog->aux->func_info_aux[0].unreliable = true; 21850 } 21851 21852 /* 1st arg to a function */ 21853 regs[BPF_REG_1].type = PTR_TO_CTX; 21854 mark_reg_known_zero(env, regs, BPF_REG_1); 21855 } 21856 21857 ret = do_check(env); 21858 out: 21859 /* check for NULL is necessary, since cur_state can be freed inside 21860 * do_check() under memory pressure. 21861 */ 21862 if (env->cur_state) { 21863 free_verifier_state(env->cur_state, true); 21864 env->cur_state = NULL; 21865 } 21866 while (!pop_stack(env, NULL, NULL, false)); 21867 if (!ret && pop_log) 21868 bpf_vlog_reset(&env->log, 0); 21869 free_states(env); 21870 return ret; 21871 } 21872 21873 /* Lazily verify all global functions based on their BTF, if they are called 21874 * from main BPF program or any of subprograms transitively. 21875 * BPF global subprogs called from dead code are not validated. 21876 * All callable global functions must pass verification. 21877 * Otherwise the whole program is rejected. 21878 * Consider: 21879 * int bar(int); 21880 * int foo(int f) 21881 * { 21882 * return bar(f); 21883 * } 21884 * int bar(int b) 21885 * { 21886 * ... 21887 * } 21888 * foo() will be verified first for R1=any_scalar_value. During verification it 21889 * will be assumed that bar() already verified successfully and call to bar() 21890 * from foo() will be checked for type match only. Later bar() will be verified 21891 * independently to check that it's safe for R1=any_scalar_value. 21892 */ 21893 static int do_check_subprogs(struct bpf_verifier_env *env) 21894 { 21895 struct bpf_prog_aux *aux = env->prog->aux; 21896 struct bpf_func_info_aux *sub_aux; 21897 int i, ret, new_cnt; 21898 21899 if (!aux->func_info) 21900 return 0; 21901 21902 /* exception callback is presumed to be always called */ 21903 if (env->exception_callback_subprog) 21904 subprog_aux(env, env->exception_callback_subprog)->called = true; 21905 21906 again: 21907 new_cnt = 0; 21908 for (i = 1; i < env->subprog_cnt; i++) { 21909 if (!subprog_is_global(env, i)) 21910 continue; 21911 21912 sub_aux = subprog_aux(env, i); 21913 if (!sub_aux->called || sub_aux->verified) 21914 continue; 21915 21916 env->insn_idx = env->subprog_info[i].start; 21917 WARN_ON_ONCE(env->insn_idx == 0); 21918 ret = do_check_common(env, i); 21919 if (ret) { 21920 return ret; 21921 } else if (env->log.level & BPF_LOG_LEVEL) { 21922 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 21923 i, subprog_name(env, i)); 21924 } 21925 21926 /* We verified new global subprog, it might have called some 21927 * more global subprogs that we haven't verified yet, so we 21928 * need to do another pass over subprogs to verify those. 21929 */ 21930 sub_aux->verified = true; 21931 new_cnt++; 21932 } 21933 21934 /* We can't loop forever as we verify at least one global subprog on 21935 * each pass. 21936 */ 21937 if (new_cnt) 21938 goto again; 21939 21940 return 0; 21941 } 21942 21943 static int do_check_main(struct bpf_verifier_env *env) 21944 { 21945 int ret; 21946 21947 env->insn_idx = 0; 21948 ret = do_check_common(env, 0); 21949 if (!ret) 21950 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 21951 return ret; 21952 } 21953 21954 21955 static void print_verification_stats(struct bpf_verifier_env *env) 21956 { 21957 int i; 21958 21959 if (env->log.level & BPF_LOG_STATS) { 21960 verbose(env, "verification time %lld usec\n", 21961 div_u64(env->verification_time, 1000)); 21962 verbose(env, "stack depth "); 21963 for (i = 0; i < env->subprog_cnt; i++) { 21964 u32 depth = env->subprog_info[i].stack_depth; 21965 21966 verbose(env, "%d", depth); 21967 if (i + 1 < env->subprog_cnt) 21968 verbose(env, "+"); 21969 } 21970 verbose(env, "\n"); 21971 } 21972 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 21973 "total_states %d peak_states %d mark_read %d\n", 21974 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 21975 env->max_states_per_insn, env->total_states, 21976 env->peak_states, env->longest_mark_read_walk); 21977 } 21978 21979 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 21980 { 21981 const struct btf_type *t, *func_proto; 21982 const struct bpf_struct_ops_desc *st_ops_desc; 21983 const struct bpf_struct_ops *st_ops; 21984 const struct btf_member *member; 21985 struct bpf_prog *prog = env->prog; 21986 u32 btf_id, member_idx; 21987 struct btf *btf; 21988 const char *mname; 21989 int err; 21990 21991 if (!prog->gpl_compatible) { 21992 verbose(env, "struct ops programs must have a GPL compatible license\n"); 21993 return -EINVAL; 21994 } 21995 21996 if (!prog->aux->attach_btf_id) 21997 return -ENOTSUPP; 21998 21999 btf = prog->aux->attach_btf; 22000 if (btf_is_module(btf)) { 22001 /* Make sure st_ops is valid through the lifetime of env */ 22002 env->attach_btf_mod = btf_try_get_module(btf); 22003 if (!env->attach_btf_mod) { 22004 verbose(env, "struct_ops module %s is not found\n", 22005 btf_get_name(btf)); 22006 return -ENOTSUPP; 22007 } 22008 } 22009 22010 btf_id = prog->aux->attach_btf_id; 22011 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 22012 if (!st_ops_desc) { 22013 verbose(env, "attach_btf_id %u is not a supported struct\n", 22014 btf_id); 22015 return -ENOTSUPP; 22016 } 22017 st_ops = st_ops_desc->st_ops; 22018 22019 t = st_ops_desc->type; 22020 member_idx = prog->expected_attach_type; 22021 if (member_idx >= btf_type_vlen(t)) { 22022 verbose(env, "attach to invalid member idx %u of struct %s\n", 22023 member_idx, st_ops->name); 22024 return -EINVAL; 22025 } 22026 22027 member = &btf_type_member(t)[member_idx]; 22028 mname = btf_name_by_offset(btf, member->name_off); 22029 func_proto = btf_type_resolve_func_ptr(btf, member->type, 22030 NULL); 22031 if (!func_proto) { 22032 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 22033 mname, member_idx, st_ops->name); 22034 return -EINVAL; 22035 } 22036 22037 err = bpf_struct_ops_supported(st_ops, __btf_member_bit_offset(t, member) / 8); 22038 if (err) { 22039 verbose(env, "attach to unsupported member %s of struct %s\n", 22040 mname, st_ops->name); 22041 return err; 22042 } 22043 22044 if (st_ops->check_member) { 22045 err = st_ops->check_member(t, member, prog); 22046 22047 if (err) { 22048 verbose(env, "attach to unsupported member %s of struct %s\n", 22049 mname, st_ops->name); 22050 return err; 22051 } 22052 } 22053 22054 if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) { 22055 verbose(env, "Private stack not supported by jit\n"); 22056 return -EACCES; 22057 } 22058 22059 /* btf_ctx_access() used this to provide argument type info */ 22060 prog->aux->ctx_arg_info = 22061 st_ops_desc->arg_info[member_idx].info; 22062 prog->aux->ctx_arg_info_size = 22063 st_ops_desc->arg_info[member_idx].cnt; 22064 22065 prog->aux->attach_func_proto = func_proto; 22066 prog->aux->attach_func_name = mname; 22067 env->ops = st_ops->verifier_ops; 22068 22069 return 0; 22070 } 22071 #define SECURITY_PREFIX "security_" 22072 22073 static int check_attach_modify_return(unsigned long addr, const char *func_name) 22074 { 22075 if (within_error_injection_list(addr) || 22076 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 22077 return 0; 22078 22079 return -EINVAL; 22080 } 22081 22082 /* list of non-sleepable functions that are otherwise on 22083 * ALLOW_ERROR_INJECTION list 22084 */ 22085 BTF_SET_START(btf_non_sleepable_error_inject) 22086 /* Three functions below can be called from sleepable and non-sleepable context. 22087 * Assume non-sleepable from bpf safety point of view. 22088 */ 22089 BTF_ID(func, __filemap_add_folio) 22090 #ifdef CONFIG_FAIL_PAGE_ALLOC 22091 BTF_ID(func, should_fail_alloc_page) 22092 #endif 22093 #ifdef CONFIG_FAILSLAB 22094 BTF_ID(func, should_failslab) 22095 #endif 22096 BTF_SET_END(btf_non_sleepable_error_inject) 22097 22098 static int check_non_sleepable_error_inject(u32 btf_id) 22099 { 22100 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 22101 } 22102 22103 int bpf_check_attach_target(struct bpf_verifier_log *log, 22104 const struct bpf_prog *prog, 22105 const struct bpf_prog *tgt_prog, 22106 u32 btf_id, 22107 struct bpf_attach_target_info *tgt_info) 22108 { 22109 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 22110 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; 22111 char trace_symbol[KSYM_SYMBOL_LEN]; 22112 const char prefix[] = "btf_trace_"; 22113 struct bpf_raw_event_map *btp; 22114 int ret = 0, subprog = -1, i; 22115 const struct btf_type *t; 22116 bool conservative = true; 22117 const char *tname, *fname; 22118 struct btf *btf; 22119 long addr = 0; 22120 struct module *mod = NULL; 22121 22122 if (!btf_id) { 22123 bpf_log(log, "Tracing programs must provide btf_id\n"); 22124 return -EINVAL; 22125 } 22126 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 22127 if (!btf) { 22128 bpf_log(log, 22129 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 22130 return -EINVAL; 22131 } 22132 t = btf_type_by_id(btf, btf_id); 22133 if (!t) { 22134 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 22135 return -EINVAL; 22136 } 22137 tname = btf_name_by_offset(btf, t->name_off); 22138 if (!tname) { 22139 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 22140 return -EINVAL; 22141 } 22142 if (tgt_prog) { 22143 struct bpf_prog_aux *aux = tgt_prog->aux; 22144 22145 if (bpf_prog_is_dev_bound(prog->aux) && 22146 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 22147 bpf_log(log, "Target program bound device mismatch"); 22148 return -EINVAL; 22149 } 22150 22151 for (i = 0; i < aux->func_info_cnt; i++) 22152 if (aux->func_info[i].type_id == btf_id) { 22153 subprog = i; 22154 break; 22155 } 22156 if (subprog == -1) { 22157 bpf_log(log, "Subprog %s doesn't exist\n", tname); 22158 return -EINVAL; 22159 } 22160 if (aux->func && aux->func[subprog]->aux->exception_cb) { 22161 bpf_log(log, 22162 "%s programs cannot attach to exception callback\n", 22163 prog_extension ? "Extension" : "FENTRY/FEXIT"); 22164 return -EINVAL; 22165 } 22166 conservative = aux->func_info_aux[subprog].unreliable; 22167 if (prog_extension) { 22168 if (conservative) { 22169 bpf_log(log, 22170 "Cannot replace static functions\n"); 22171 return -EINVAL; 22172 } 22173 if (!prog->jit_requested) { 22174 bpf_log(log, 22175 "Extension programs should be JITed\n"); 22176 return -EINVAL; 22177 } 22178 } 22179 if (!tgt_prog->jited) { 22180 bpf_log(log, "Can attach to only JITed progs\n"); 22181 return -EINVAL; 22182 } 22183 if (prog_tracing) { 22184 if (aux->attach_tracing_prog) { 22185 /* 22186 * Target program is an fentry/fexit which is already attached 22187 * to another tracing program. More levels of nesting 22188 * attachment are not allowed. 22189 */ 22190 bpf_log(log, "Cannot nest tracing program attach more than once\n"); 22191 return -EINVAL; 22192 } 22193 } else if (tgt_prog->type == prog->type) { 22194 /* 22195 * To avoid potential call chain cycles, prevent attaching of a 22196 * program extension to another extension. It's ok to attach 22197 * fentry/fexit to extension program. 22198 */ 22199 bpf_log(log, "Cannot recursively attach\n"); 22200 return -EINVAL; 22201 } 22202 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 22203 prog_extension && 22204 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 22205 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 22206 /* Program extensions can extend all program types 22207 * except fentry/fexit. The reason is the following. 22208 * The fentry/fexit programs are used for performance 22209 * analysis, stats and can be attached to any program 22210 * type. When extension program is replacing XDP function 22211 * it is necessary to allow performance analysis of all 22212 * functions. Both original XDP program and its program 22213 * extension. Hence attaching fentry/fexit to 22214 * BPF_PROG_TYPE_EXT is allowed. If extending of 22215 * fentry/fexit was allowed it would be possible to create 22216 * long call chain fentry->extension->fentry->extension 22217 * beyond reasonable stack size. Hence extending fentry 22218 * is not allowed. 22219 */ 22220 bpf_log(log, "Cannot extend fentry/fexit\n"); 22221 return -EINVAL; 22222 } 22223 } else { 22224 if (prog_extension) { 22225 bpf_log(log, "Cannot replace kernel functions\n"); 22226 return -EINVAL; 22227 } 22228 } 22229 22230 switch (prog->expected_attach_type) { 22231 case BPF_TRACE_RAW_TP: 22232 if (tgt_prog) { 22233 bpf_log(log, 22234 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 22235 return -EINVAL; 22236 } 22237 if (!btf_type_is_typedef(t)) { 22238 bpf_log(log, "attach_btf_id %u is not a typedef\n", 22239 btf_id); 22240 return -EINVAL; 22241 } 22242 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 22243 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 22244 btf_id, tname); 22245 return -EINVAL; 22246 } 22247 tname += sizeof(prefix) - 1; 22248 22249 /* The func_proto of "btf_trace_##tname" is generated from typedef without argument 22250 * names. Thus using bpf_raw_event_map to get argument names. 22251 */ 22252 btp = bpf_get_raw_tracepoint(tname); 22253 if (!btp) 22254 return -EINVAL; 22255 fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL, 22256 trace_symbol); 22257 bpf_put_raw_tracepoint(btp); 22258 22259 if (fname) 22260 ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC); 22261 22262 if (!fname || ret < 0) { 22263 bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n", 22264 prefix, tname); 22265 t = btf_type_by_id(btf, t->type); 22266 if (!btf_type_is_ptr(t)) 22267 /* should never happen in valid vmlinux build */ 22268 return -EINVAL; 22269 } else { 22270 t = btf_type_by_id(btf, ret); 22271 if (!btf_type_is_func(t)) 22272 /* should never happen in valid vmlinux build */ 22273 return -EINVAL; 22274 } 22275 22276 t = btf_type_by_id(btf, t->type); 22277 if (!btf_type_is_func_proto(t)) 22278 /* should never happen in valid vmlinux build */ 22279 return -EINVAL; 22280 22281 break; 22282 case BPF_TRACE_ITER: 22283 if (!btf_type_is_func(t)) { 22284 bpf_log(log, "attach_btf_id %u is not a function\n", 22285 btf_id); 22286 return -EINVAL; 22287 } 22288 t = btf_type_by_id(btf, t->type); 22289 if (!btf_type_is_func_proto(t)) 22290 return -EINVAL; 22291 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 22292 if (ret) 22293 return ret; 22294 break; 22295 default: 22296 if (!prog_extension) 22297 return -EINVAL; 22298 fallthrough; 22299 case BPF_MODIFY_RETURN: 22300 case BPF_LSM_MAC: 22301 case BPF_LSM_CGROUP: 22302 case BPF_TRACE_FENTRY: 22303 case BPF_TRACE_FEXIT: 22304 if (!btf_type_is_func(t)) { 22305 bpf_log(log, "attach_btf_id %u is not a function\n", 22306 btf_id); 22307 return -EINVAL; 22308 } 22309 if (prog_extension && 22310 btf_check_type_match(log, prog, btf, t)) 22311 return -EINVAL; 22312 t = btf_type_by_id(btf, t->type); 22313 if (!btf_type_is_func_proto(t)) 22314 return -EINVAL; 22315 22316 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 22317 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 22318 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 22319 return -EINVAL; 22320 22321 if (tgt_prog && conservative) 22322 t = NULL; 22323 22324 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 22325 if (ret < 0) 22326 return ret; 22327 22328 if (tgt_prog) { 22329 if (subprog == 0) 22330 addr = (long) tgt_prog->bpf_func; 22331 else 22332 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 22333 } else { 22334 if (btf_is_module(btf)) { 22335 mod = btf_try_get_module(btf); 22336 if (mod) 22337 addr = find_kallsyms_symbol_value(mod, tname); 22338 else 22339 addr = 0; 22340 } else { 22341 addr = kallsyms_lookup_name(tname); 22342 } 22343 if (!addr) { 22344 module_put(mod); 22345 bpf_log(log, 22346 "The address of function %s cannot be found\n", 22347 tname); 22348 return -ENOENT; 22349 } 22350 } 22351 22352 if (prog->sleepable) { 22353 ret = -EINVAL; 22354 switch (prog->type) { 22355 case BPF_PROG_TYPE_TRACING: 22356 22357 /* fentry/fexit/fmod_ret progs can be sleepable if they are 22358 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 22359 */ 22360 if (!check_non_sleepable_error_inject(btf_id) && 22361 within_error_injection_list(addr)) 22362 ret = 0; 22363 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 22364 * in the fmodret id set with the KF_SLEEPABLE flag. 22365 */ 22366 else { 22367 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 22368 prog); 22369 22370 if (flags && (*flags & KF_SLEEPABLE)) 22371 ret = 0; 22372 } 22373 break; 22374 case BPF_PROG_TYPE_LSM: 22375 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 22376 * Only some of them are sleepable. 22377 */ 22378 if (bpf_lsm_is_sleepable_hook(btf_id)) 22379 ret = 0; 22380 break; 22381 default: 22382 break; 22383 } 22384 if (ret) { 22385 module_put(mod); 22386 bpf_log(log, "%s is not sleepable\n", tname); 22387 return ret; 22388 } 22389 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 22390 if (tgt_prog) { 22391 module_put(mod); 22392 bpf_log(log, "can't modify return codes of BPF programs\n"); 22393 return -EINVAL; 22394 } 22395 ret = -EINVAL; 22396 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 22397 !check_attach_modify_return(addr, tname)) 22398 ret = 0; 22399 if (ret) { 22400 module_put(mod); 22401 bpf_log(log, "%s() is not modifiable\n", tname); 22402 return ret; 22403 } 22404 } 22405 22406 break; 22407 } 22408 tgt_info->tgt_addr = addr; 22409 tgt_info->tgt_name = tname; 22410 tgt_info->tgt_type = t; 22411 tgt_info->tgt_mod = mod; 22412 return 0; 22413 } 22414 22415 BTF_SET_START(btf_id_deny) 22416 BTF_ID_UNUSED 22417 #ifdef CONFIG_SMP 22418 BTF_ID(func, migrate_disable) 22419 BTF_ID(func, migrate_enable) 22420 #endif 22421 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 22422 BTF_ID(func, rcu_read_unlock_strict) 22423 #endif 22424 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 22425 BTF_ID(func, preempt_count_add) 22426 BTF_ID(func, preempt_count_sub) 22427 #endif 22428 #ifdef CONFIG_PREEMPT_RCU 22429 BTF_ID(func, __rcu_read_lock) 22430 BTF_ID(func, __rcu_read_unlock) 22431 #endif 22432 BTF_SET_END(btf_id_deny) 22433 22434 static bool can_be_sleepable(struct bpf_prog *prog) 22435 { 22436 if (prog->type == BPF_PROG_TYPE_TRACING) { 22437 switch (prog->expected_attach_type) { 22438 case BPF_TRACE_FENTRY: 22439 case BPF_TRACE_FEXIT: 22440 case BPF_MODIFY_RETURN: 22441 case BPF_TRACE_ITER: 22442 return true; 22443 default: 22444 return false; 22445 } 22446 } 22447 return prog->type == BPF_PROG_TYPE_LSM || 22448 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 22449 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 22450 } 22451 22452 static int check_attach_btf_id(struct bpf_verifier_env *env) 22453 { 22454 struct bpf_prog *prog = env->prog; 22455 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 22456 struct bpf_attach_target_info tgt_info = {}; 22457 u32 btf_id = prog->aux->attach_btf_id; 22458 struct bpf_trampoline *tr; 22459 int ret; 22460 u64 key; 22461 22462 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 22463 if (prog->sleepable) 22464 /* attach_btf_id checked to be zero already */ 22465 return 0; 22466 verbose(env, "Syscall programs can only be sleepable\n"); 22467 return -EINVAL; 22468 } 22469 22470 if (prog->sleepable && !can_be_sleepable(prog)) { 22471 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 22472 return -EINVAL; 22473 } 22474 22475 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 22476 return check_struct_ops_btf_id(env); 22477 22478 if (prog->type != BPF_PROG_TYPE_TRACING && 22479 prog->type != BPF_PROG_TYPE_LSM && 22480 prog->type != BPF_PROG_TYPE_EXT) 22481 return 0; 22482 22483 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 22484 if (ret) 22485 return ret; 22486 22487 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 22488 /* to make freplace equivalent to their targets, they need to 22489 * inherit env->ops and expected_attach_type for the rest of the 22490 * verification 22491 */ 22492 env->ops = bpf_verifier_ops[tgt_prog->type]; 22493 prog->expected_attach_type = tgt_prog->expected_attach_type; 22494 } 22495 22496 /* store info about the attachment target that will be used later */ 22497 prog->aux->attach_func_proto = tgt_info.tgt_type; 22498 prog->aux->attach_func_name = tgt_info.tgt_name; 22499 prog->aux->mod = tgt_info.tgt_mod; 22500 22501 if (tgt_prog) { 22502 prog->aux->saved_dst_prog_type = tgt_prog->type; 22503 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 22504 } 22505 22506 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 22507 prog->aux->attach_btf_trace = true; 22508 return 0; 22509 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 22510 if (!bpf_iter_prog_supported(prog)) 22511 return -EINVAL; 22512 return 0; 22513 } 22514 22515 if (prog->type == BPF_PROG_TYPE_LSM) { 22516 ret = bpf_lsm_verify_prog(&env->log, prog); 22517 if (ret < 0) 22518 return ret; 22519 } else if (prog->type == BPF_PROG_TYPE_TRACING && 22520 btf_id_set_contains(&btf_id_deny, btf_id)) { 22521 return -EINVAL; 22522 } 22523 22524 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 22525 tr = bpf_trampoline_get(key, &tgt_info); 22526 if (!tr) 22527 return -ENOMEM; 22528 22529 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 22530 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 22531 22532 prog->aux->dst_trampoline = tr; 22533 return 0; 22534 } 22535 22536 struct btf *bpf_get_btf_vmlinux(void) 22537 { 22538 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 22539 mutex_lock(&bpf_verifier_lock); 22540 if (!btf_vmlinux) 22541 btf_vmlinux = btf_parse_vmlinux(); 22542 mutex_unlock(&bpf_verifier_lock); 22543 } 22544 return btf_vmlinux; 22545 } 22546 22547 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 22548 { 22549 u64 start_time = ktime_get_ns(); 22550 struct bpf_verifier_env *env; 22551 int i, len, ret = -EINVAL, err; 22552 u32 log_true_size; 22553 bool is_priv; 22554 22555 /* no program is valid */ 22556 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 22557 return -EINVAL; 22558 22559 /* 'struct bpf_verifier_env' can be global, but since it's not small, 22560 * allocate/free it every time bpf_check() is called 22561 */ 22562 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 22563 if (!env) 22564 return -ENOMEM; 22565 22566 env->bt.env = env; 22567 22568 len = (*prog)->len; 22569 env->insn_aux_data = 22570 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 22571 ret = -ENOMEM; 22572 if (!env->insn_aux_data) 22573 goto err_free_env; 22574 for (i = 0; i < len; i++) 22575 env->insn_aux_data[i].orig_idx = i; 22576 env->prog = *prog; 22577 env->ops = bpf_verifier_ops[env->prog->type]; 22578 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 22579 22580 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); 22581 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); 22582 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); 22583 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); 22584 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); 22585 22586 bpf_get_btf_vmlinux(); 22587 22588 /* grab the mutex to protect few globals used by verifier */ 22589 if (!is_priv) 22590 mutex_lock(&bpf_verifier_lock); 22591 22592 /* user could have requested verbose verifier output 22593 * and supplied buffer to store the verification trace 22594 */ 22595 ret = bpf_vlog_init(&env->log, attr->log_level, 22596 (char __user *) (unsigned long) attr->log_buf, 22597 attr->log_size); 22598 if (ret) 22599 goto err_unlock; 22600 22601 mark_verifier_state_clean(env); 22602 22603 if (IS_ERR(btf_vmlinux)) { 22604 /* Either gcc or pahole or kernel are broken. */ 22605 verbose(env, "in-kernel BTF is malformed\n"); 22606 ret = PTR_ERR(btf_vmlinux); 22607 goto skip_full_check; 22608 } 22609 22610 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 22611 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 22612 env->strict_alignment = true; 22613 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 22614 env->strict_alignment = false; 22615 22616 if (is_priv) 22617 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 22618 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 22619 22620 env->explored_states = kvcalloc(state_htab_size(env), 22621 sizeof(struct bpf_verifier_state_list *), 22622 GFP_USER); 22623 ret = -ENOMEM; 22624 if (!env->explored_states) 22625 goto skip_full_check; 22626 22627 ret = check_btf_info_early(env, attr, uattr); 22628 if (ret < 0) 22629 goto skip_full_check; 22630 22631 ret = add_subprog_and_kfunc(env); 22632 if (ret < 0) 22633 goto skip_full_check; 22634 22635 ret = check_subprogs(env); 22636 if (ret < 0) 22637 goto skip_full_check; 22638 22639 ret = check_btf_info(env, attr, uattr); 22640 if (ret < 0) 22641 goto skip_full_check; 22642 22643 ret = check_attach_btf_id(env); 22644 if (ret) 22645 goto skip_full_check; 22646 22647 ret = resolve_pseudo_ldimm64(env); 22648 if (ret < 0) 22649 goto skip_full_check; 22650 22651 if (bpf_prog_is_offloaded(env->prog->aux)) { 22652 ret = bpf_prog_offload_verifier_prep(env->prog); 22653 if (ret) 22654 goto skip_full_check; 22655 } 22656 22657 ret = check_cfg(env); 22658 if (ret < 0) 22659 goto skip_full_check; 22660 22661 ret = mark_fastcall_patterns(env); 22662 if (ret < 0) 22663 goto skip_full_check; 22664 22665 ret = do_check_main(env); 22666 ret = ret ?: do_check_subprogs(env); 22667 22668 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 22669 ret = bpf_prog_offload_finalize(env); 22670 22671 skip_full_check: 22672 kvfree(env->explored_states); 22673 22674 /* might decrease stack depth, keep it before passes that 22675 * allocate additional slots. 22676 */ 22677 if (ret == 0) 22678 ret = remove_fastcall_spills_fills(env); 22679 22680 if (ret == 0) 22681 ret = check_max_stack_depth(env); 22682 22683 /* instruction rewrites happen after this point */ 22684 if (ret == 0) 22685 ret = optimize_bpf_loop(env); 22686 22687 if (is_priv) { 22688 if (ret == 0) 22689 opt_hard_wire_dead_code_branches(env); 22690 if (ret == 0) 22691 ret = opt_remove_dead_code(env); 22692 if (ret == 0) 22693 ret = opt_remove_nops(env); 22694 } else { 22695 if (ret == 0) 22696 sanitize_dead_code(env); 22697 } 22698 22699 if (ret == 0) 22700 /* program is valid, convert *(u32*)(ctx + off) accesses */ 22701 ret = convert_ctx_accesses(env); 22702 22703 if (ret == 0) 22704 ret = do_misc_fixups(env); 22705 22706 /* do 32-bit optimization after insn patching has done so those patched 22707 * insns could be handled correctly. 22708 */ 22709 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 22710 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 22711 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 22712 : false; 22713 } 22714 22715 if (ret == 0) 22716 ret = fixup_call_args(env); 22717 22718 env->verification_time = ktime_get_ns() - start_time; 22719 print_verification_stats(env); 22720 env->prog->aux->verified_insns = env->insn_processed; 22721 22722 /* preserve original error even if log finalization is successful */ 22723 err = bpf_vlog_finalize(&env->log, &log_true_size); 22724 if (err) 22725 ret = err; 22726 22727 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 22728 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 22729 &log_true_size, sizeof(log_true_size))) { 22730 ret = -EFAULT; 22731 goto err_release_maps; 22732 } 22733 22734 if (ret) 22735 goto err_release_maps; 22736 22737 if (env->used_map_cnt) { 22738 /* if program passed verifier, update used_maps in bpf_prog_info */ 22739 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 22740 sizeof(env->used_maps[0]), 22741 GFP_KERNEL); 22742 22743 if (!env->prog->aux->used_maps) { 22744 ret = -ENOMEM; 22745 goto err_release_maps; 22746 } 22747 22748 memcpy(env->prog->aux->used_maps, env->used_maps, 22749 sizeof(env->used_maps[0]) * env->used_map_cnt); 22750 env->prog->aux->used_map_cnt = env->used_map_cnt; 22751 } 22752 if (env->used_btf_cnt) { 22753 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 22754 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 22755 sizeof(env->used_btfs[0]), 22756 GFP_KERNEL); 22757 if (!env->prog->aux->used_btfs) { 22758 ret = -ENOMEM; 22759 goto err_release_maps; 22760 } 22761 22762 memcpy(env->prog->aux->used_btfs, env->used_btfs, 22763 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 22764 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 22765 } 22766 if (env->used_map_cnt || env->used_btf_cnt) { 22767 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 22768 * bpf_ld_imm64 instructions 22769 */ 22770 convert_pseudo_ld_imm64(env); 22771 } 22772 22773 adjust_btf_func(env); 22774 22775 err_release_maps: 22776 if (!env->prog->aux->used_maps) 22777 /* if we didn't copy map pointers into bpf_prog_info, release 22778 * them now. Otherwise free_used_maps() will release them. 22779 */ 22780 release_maps(env); 22781 if (!env->prog->aux->used_btfs) 22782 release_btfs(env); 22783 22784 /* extension progs temporarily inherit the attach_type of their targets 22785 for verification purposes, so set it back to zero before returning 22786 */ 22787 if (env->prog->type == BPF_PROG_TYPE_EXT) 22788 env->prog->expected_attach_type = 0; 22789 22790 *prog = env->prog; 22791 22792 module_put(env->attach_btf_mod); 22793 err_unlock: 22794 if (!is_priv) 22795 mutex_unlock(&bpf_verifier_lock); 22796 vfree(env->insn_aux_data); 22797 kvfree(env->insn_hist); 22798 err_free_env: 22799 kvfree(env); 22800 return ret; 22801 } 22802