1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 32 #include "disasm.h" 33 34 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 35 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 36 [_id] = & _name ## _verifier_ops, 37 #define BPF_MAP_TYPE(_id, _ops) 38 #define BPF_LINK_TYPE(_id, _name) 39 #include <linux/bpf_types.h> 40 #undef BPF_PROG_TYPE 41 #undef BPF_MAP_TYPE 42 #undef BPF_LINK_TYPE 43 }; 44 45 struct bpf_mem_alloc bpf_global_percpu_ma; 46 static bool bpf_global_percpu_ma_set; 47 48 /* bpf_check() is a static code analyzer that walks eBPF program 49 * instruction by instruction and updates register/stack state. 50 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 51 * 52 * The first pass is depth-first-search to check that the program is a DAG. 53 * It rejects the following programs: 54 * - larger than BPF_MAXINSNS insns 55 * - if loop is present (detected via back-edge) 56 * - unreachable insns exist (shouldn't be a forest. program = one function) 57 * - out of bounds or malformed jumps 58 * The second pass is all possible path descent from the 1st insn. 59 * Since it's analyzing all paths through the program, the length of the 60 * analysis is limited to 64k insn, which may be hit even if total number of 61 * insn is less then 4K, but there are too many branches that change stack/regs. 62 * Number of 'branches to be analyzed' is limited to 1k 63 * 64 * On entry to each instruction, each register has a type, and the instruction 65 * changes the types of the registers depending on instruction semantics. 66 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 67 * copied to R1. 68 * 69 * All registers are 64-bit. 70 * R0 - return register 71 * R1-R5 argument passing registers 72 * R6-R9 callee saved registers 73 * R10 - frame pointer read-only 74 * 75 * At the start of BPF program the register R1 contains a pointer to bpf_context 76 * and has type PTR_TO_CTX. 77 * 78 * Verifier tracks arithmetic operations on pointers in case: 79 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 80 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 81 * 1st insn copies R10 (which has FRAME_PTR) type into R1 82 * and 2nd arithmetic instruction is pattern matched to recognize 83 * that it wants to construct a pointer to some element within stack. 84 * So after 2nd insn, the register R1 has type PTR_TO_STACK 85 * (and -20 constant is saved for further stack bounds checking). 86 * Meaning that this reg is a pointer to stack plus known immediate constant. 87 * 88 * Most of the time the registers have SCALAR_VALUE type, which 89 * means the register has some value, but it's not a valid pointer. 90 * (like pointer plus pointer becomes SCALAR_VALUE type) 91 * 92 * When verifier sees load or store instructions the type of base register 93 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 94 * four pointer types recognized by check_mem_access() function. 95 * 96 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 97 * and the range of [ptr, ptr + map's value_size) is accessible. 98 * 99 * registers used to pass values to function calls are checked against 100 * function argument constraints. 101 * 102 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 103 * It means that the register type passed to this function must be 104 * PTR_TO_STACK and it will be used inside the function as 105 * 'pointer to map element key' 106 * 107 * For example the argument constraints for bpf_map_lookup_elem(): 108 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 109 * .arg1_type = ARG_CONST_MAP_PTR, 110 * .arg2_type = ARG_PTR_TO_MAP_KEY, 111 * 112 * ret_type says that this function returns 'pointer to map elem value or null' 113 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 114 * 2nd argument should be a pointer to stack, which will be used inside 115 * the helper function as a pointer to map element key. 116 * 117 * On the kernel side the helper function looks like: 118 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 119 * { 120 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 121 * void *key = (void *) (unsigned long) r2; 122 * void *value; 123 * 124 * here kernel can access 'key' and 'map' pointers safely, knowing that 125 * [key, key + map->key_size) bytes are valid and were initialized on 126 * the stack of eBPF program. 127 * } 128 * 129 * Corresponding eBPF program may look like: 130 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 131 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 132 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 133 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 134 * here verifier looks at prototype of map_lookup_elem() and sees: 135 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 136 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 137 * 138 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 139 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 140 * and were initialized prior to this call. 141 * If it's ok, then verifier allows this BPF_CALL insn and looks at 142 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 143 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 144 * returns either pointer to map value or NULL. 145 * 146 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 147 * insn, the register holding that pointer in the true branch changes state to 148 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 149 * branch. See check_cond_jmp_op(). 150 * 151 * After the call R0 is set to return type of the function and registers R1-R5 152 * are set to NOT_INIT to indicate that they are no longer readable. 153 * 154 * The following reference types represent a potential reference to a kernel 155 * resource which, after first being allocated, must be checked and freed by 156 * the BPF program: 157 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 158 * 159 * When the verifier sees a helper call return a reference type, it allocates a 160 * pointer id for the reference and stores it in the current function state. 161 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 162 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 163 * passes through a NULL-check conditional. For the branch wherein the state is 164 * changed to CONST_IMM, the verifier releases the reference. 165 * 166 * For each helper function that allocates a reference, such as 167 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 168 * bpf_sk_release(). When a reference type passes into the release function, 169 * the verifier also releases the reference. If any unchecked or unreleased 170 * reference remains at the end of the program, the verifier rejects it. 171 */ 172 173 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 174 struct bpf_verifier_stack_elem { 175 /* verifer state is 'st' 176 * before processing instruction 'insn_idx' 177 * and after processing instruction 'prev_insn_idx' 178 */ 179 struct bpf_verifier_state st; 180 int insn_idx; 181 int prev_insn_idx; 182 struct bpf_verifier_stack_elem *next; 183 /* length of verifier log at the time this state was pushed on stack */ 184 u32 log_pos; 185 }; 186 187 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 188 #define BPF_COMPLEXITY_LIMIT_STATES 64 189 190 #define BPF_MAP_KEY_POISON (1ULL << 63) 191 #define BPF_MAP_KEY_SEEN (1ULL << 62) 192 193 #define BPF_MAP_PTR_UNPRIV 1UL 194 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 195 POISON_POINTER_DELTA)) 196 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 197 198 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 199 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 200 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 201 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 202 static int ref_set_non_owning(struct bpf_verifier_env *env, 203 struct bpf_reg_state *reg); 204 static void specialize_kfunc(struct bpf_verifier_env *env, 205 u32 func_id, u16 offset, unsigned long *addr); 206 static bool is_trusted_reg(const struct bpf_reg_state *reg); 207 208 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 211 } 212 213 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 214 { 215 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 216 } 217 218 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 219 const struct bpf_map *map, bool unpriv) 220 { 221 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 222 unpriv |= bpf_map_ptr_unpriv(aux); 223 aux->map_ptr_state = (unsigned long)map | 224 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 225 } 226 227 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 228 { 229 return aux->map_key_state & BPF_MAP_KEY_POISON; 230 } 231 232 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 233 { 234 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 235 } 236 237 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 238 { 239 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 240 } 241 242 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 243 { 244 bool poisoned = bpf_map_key_poisoned(aux); 245 246 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 247 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 248 } 249 250 static bool bpf_helper_call(const struct bpf_insn *insn) 251 { 252 return insn->code == (BPF_JMP | BPF_CALL) && 253 insn->src_reg == 0; 254 } 255 256 static bool bpf_pseudo_call(const struct bpf_insn *insn) 257 { 258 return insn->code == (BPF_JMP | BPF_CALL) && 259 insn->src_reg == BPF_PSEUDO_CALL; 260 } 261 262 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 263 { 264 return insn->code == (BPF_JMP | BPF_CALL) && 265 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 266 } 267 268 struct bpf_call_arg_meta { 269 struct bpf_map *map_ptr; 270 bool raw_mode; 271 bool pkt_access; 272 u8 release_regno; 273 int regno; 274 int access_size; 275 int mem_size; 276 u64 msize_max_value; 277 int ref_obj_id; 278 int dynptr_id; 279 int map_uid; 280 int func_id; 281 struct btf *btf; 282 u32 btf_id; 283 struct btf *ret_btf; 284 u32 ret_btf_id; 285 u32 subprogno; 286 struct btf_field *kptr_field; 287 }; 288 289 struct bpf_kfunc_call_arg_meta { 290 /* In parameters */ 291 struct btf *btf; 292 u32 func_id; 293 u32 kfunc_flags; 294 const struct btf_type *func_proto; 295 const char *func_name; 296 /* Out parameters */ 297 u32 ref_obj_id; 298 u8 release_regno; 299 bool r0_rdonly; 300 u32 ret_btf_id; 301 u64 r0_size; 302 u32 subprogno; 303 struct { 304 u64 value; 305 bool found; 306 } arg_constant; 307 308 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 309 * generally to pass info about user-defined local kptr types to later 310 * verification logic 311 * bpf_obj_drop/bpf_percpu_obj_drop 312 * Record the local kptr type to be drop'd 313 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 314 * Record the local kptr type to be refcount_incr'd and use 315 * arg_owning_ref to determine whether refcount_acquire should be 316 * fallible 317 */ 318 struct btf *arg_btf; 319 u32 arg_btf_id; 320 bool arg_owning_ref; 321 322 struct { 323 struct btf_field *field; 324 } arg_list_head; 325 struct { 326 struct btf_field *field; 327 } arg_rbtree_root; 328 struct { 329 enum bpf_dynptr_type type; 330 u32 id; 331 u32 ref_obj_id; 332 } initialized_dynptr; 333 struct { 334 u8 spi; 335 u8 frameno; 336 } iter; 337 u64 mem_size; 338 }; 339 340 struct btf *btf_vmlinux; 341 342 static const char *btf_type_name(const struct btf *btf, u32 id) 343 { 344 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 345 } 346 347 static DEFINE_MUTEX(bpf_verifier_lock); 348 static DEFINE_MUTEX(bpf_percpu_ma_lock); 349 350 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 351 { 352 struct bpf_verifier_env *env = private_data; 353 va_list args; 354 355 if (!bpf_verifier_log_needed(&env->log)) 356 return; 357 358 va_start(args, fmt); 359 bpf_verifier_vlog(&env->log, fmt, args); 360 va_end(args); 361 } 362 363 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 364 struct bpf_reg_state *reg, 365 struct tnum *range, const char *ctx, 366 const char *reg_name) 367 { 368 char tn_buf[48]; 369 370 verbose(env, "At %s the register %s ", ctx, reg_name); 371 if (!tnum_is_unknown(reg->var_off)) { 372 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 373 verbose(env, "has value %s", tn_buf); 374 } else { 375 verbose(env, "has unknown scalar value"); 376 } 377 tnum_strn(tn_buf, sizeof(tn_buf), *range); 378 verbose(env, " should have been in %s\n", tn_buf); 379 } 380 381 static bool type_may_be_null(u32 type) 382 { 383 return type & PTR_MAYBE_NULL; 384 } 385 386 static bool reg_not_null(const struct bpf_reg_state *reg) 387 { 388 enum bpf_reg_type type; 389 390 type = reg->type; 391 if (type_may_be_null(type)) 392 return false; 393 394 type = base_type(type); 395 return type == PTR_TO_SOCKET || 396 type == PTR_TO_TCP_SOCK || 397 type == PTR_TO_MAP_VALUE || 398 type == PTR_TO_MAP_KEY || 399 type == PTR_TO_SOCK_COMMON || 400 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 401 type == PTR_TO_MEM; 402 } 403 404 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 405 { 406 struct btf_record *rec = NULL; 407 struct btf_struct_meta *meta; 408 409 if (reg->type == PTR_TO_MAP_VALUE) { 410 rec = reg->map_ptr->record; 411 } else if (type_is_ptr_alloc_obj(reg->type)) { 412 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 413 if (meta) 414 rec = meta->record; 415 } 416 return rec; 417 } 418 419 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 420 { 421 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 422 423 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 424 } 425 426 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 427 { 428 struct bpf_func_info *info; 429 430 if (!env->prog->aux->func_info) 431 return ""; 432 433 info = &env->prog->aux->func_info[subprog]; 434 return btf_type_name(env->prog->aux->btf, info->type_id); 435 } 436 437 static struct bpf_func_info_aux *subprog_aux(const struct bpf_verifier_env *env, int subprog) 438 { 439 return &env->prog->aux->func_info_aux[subprog]; 440 } 441 442 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 443 { 444 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 445 } 446 447 static bool type_is_rdonly_mem(u32 type) 448 { 449 return type & MEM_RDONLY; 450 } 451 452 static bool is_acquire_function(enum bpf_func_id func_id, 453 const struct bpf_map *map) 454 { 455 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 456 457 if (func_id == BPF_FUNC_sk_lookup_tcp || 458 func_id == BPF_FUNC_sk_lookup_udp || 459 func_id == BPF_FUNC_skc_lookup_tcp || 460 func_id == BPF_FUNC_ringbuf_reserve || 461 func_id == BPF_FUNC_kptr_xchg) 462 return true; 463 464 if (func_id == BPF_FUNC_map_lookup_elem && 465 (map_type == BPF_MAP_TYPE_SOCKMAP || 466 map_type == BPF_MAP_TYPE_SOCKHASH)) 467 return true; 468 469 return false; 470 } 471 472 static bool is_ptr_cast_function(enum bpf_func_id func_id) 473 { 474 return func_id == BPF_FUNC_tcp_sock || 475 func_id == BPF_FUNC_sk_fullsock || 476 func_id == BPF_FUNC_skc_to_tcp_sock || 477 func_id == BPF_FUNC_skc_to_tcp6_sock || 478 func_id == BPF_FUNC_skc_to_udp6_sock || 479 func_id == BPF_FUNC_skc_to_mptcp_sock || 480 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 481 func_id == BPF_FUNC_skc_to_tcp_request_sock; 482 } 483 484 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 485 { 486 return func_id == BPF_FUNC_dynptr_data; 487 } 488 489 static bool is_sync_callback_calling_kfunc(u32 btf_id); 490 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 491 492 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 493 { 494 return func_id == BPF_FUNC_for_each_map_elem || 495 func_id == BPF_FUNC_find_vma || 496 func_id == BPF_FUNC_loop || 497 func_id == BPF_FUNC_user_ringbuf_drain; 498 } 499 500 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 501 { 502 return func_id == BPF_FUNC_timer_set_callback; 503 } 504 505 static bool is_callback_calling_function(enum bpf_func_id func_id) 506 { 507 return is_sync_callback_calling_function(func_id) || 508 is_async_callback_calling_function(func_id); 509 } 510 511 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 512 { 513 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 514 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 515 } 516 517 static bool is_storage_get_function(enum bpf_func_id func_id) 518 { 519 return func_id == BPF_FUNC_sk_storage_get || 520 func_id == BPF_FUNC_inode_storage_get || 521 func_id == BPF_FUNC_task_storage_get || 522 func_id == BPF_FUNC_cgrp_storage_get; 523 } 524 525 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 526 const struct bpf_map *map) 527 { 528 int ref_obj_uses = 0; 529 530 if (is_ptr_cast_function(func_id)) 531 ref_obj_uses++; 532 if (is_acquire_function(func_id, map)) 533 ref_obj_uses++; 534 if (is_dynptr_ref_function(func_id)) 535 ref_obj_uses++; 536 537 return ref_obj_uses > 1; 538 } 539 540 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 541 { 542 return BPF_CLASS(insn->code) == BPF_STX && 543 BPF_MODE(insn->code) == BPF_ATOMIC && 544 insn->imm == BPF_CMPXCHG; 545 } 546 547 static int __get_spi(s32 off) 548 { 549 return (-off - 1) / BPF_REG_SIZE; 550 } 551 552 static struct bpf_func_state *func(struct bpf_verifier_env *env, 553 const struct bpf_reg_state *reg) 554 { 555 struct bpf_verifier_state *cur = env->cur_state; 556 557 return cur->frame[reg->frameno]; 558 } 559 560 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 561 { 562 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 563 564 /* We need to check that slots between [spi - nr_slots + 1, spi] are 565 * within [0, allocated_stack). 566 * 567 * Please note that the spi grows downwards. For example, a dynptr 568 * takes the size of two stack slots; the first slot will be at 569 * spi and the second slot will be at spi - 1. 570 */ 571 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 572 } 573 574 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 575 const char *obj_kind, int nr_slots) 576 { 577 int off, spi; 578 579 if (!tnum_is_const(reg->var_off)) { 580 verbose(env, "%s has to be at a constant offset\n", obj_kind); 581 return -EINVAL; 582 } 583 584 off = reg->off + reg->var_off.value; 585 if (off % BPF_REG_SIZE) { 586 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 587 return -EINVAL; 588 } 589 590 spi = __get_spi(off); 591 if (spi + 1 < nr_slots) { 592 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 593 return -EINVAL; 594 } 595 596 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 597 return -ERANGE; 598 return spi; 599 } 600 601 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 602 { 603 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 604 } 605 606 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 607 { 608 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 609 } 610 611 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 612 { 613 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 614 case DYNPTR_TYPE_LOCAL: 615 return BPF_DYNPTR_TYPE_LOCAL; 616 case DYNPTR_TYPE_RINGBUF: 617 return BPF_DYNPTR_TYPE_RINGBUF; 618 case DYNPTR_TYPE_SKB: 619 return BPF_DYNPTR_TYPE_SKB; 620 case DYNPTR_TYPE_XDP: 621 return BPF_DYNPTR_TYPE_XDP; 622 default: 623 return BPF_DYNPTR_TYPE_INVALID; 624 } 625 } 626 627 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 628 { 629 switch (type) { 630 case BPF_DYNPTR_TYPE_LOCAL: 631 return DYNPTR_TYPE_LOCAL; 632 case BPF_DYNPTR_TYPE_RINGBUF: 633 return DYNPTR_TYPE_RINGBUF; 634 case BPF_DYNPTR_TYPE_SKB: 635 return DYNPTR_TYPE_SKB; 636 case BPF_DYNPTR_TYPE_XDP: 637 return DYNPTR_TYPE_XDP; 638 default: 639 return 0; 640 } 641 } 642 643 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 644 { 645 return type == BPF_DYNPTR_TYPE_RINGBUF; 646 } 647 648 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 649 enum bpf_dynptr_type type, 650 bool first_slot, int dynptr_id); 651 652 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 653 struct bpf_reg_state *reg); 654 655 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 656 struct bpf_reg_state *sreg1, 657 struct bpf_reg_state *sreg2, 658 enum bpf_dynptr_type type) 659 { 660 int id = ++env->id_gen; 661 662 __mark_dynptr_reg(sreg1, type, true, id); 663 __mark_dynptr_reg(sreg2, type, false, id); 664 } 665 666 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 667 struct bpf_reg_state *reg, 668 enum bpf_dynptr_type type) 669 { 670 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 671 } 672 673 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 674 struct bpf_func_state *state, int spi); 675 676 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 677 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 678 { 679 struct bpf_func_state *state = func(env, reg); 680 enum bpf_dynptr_type type; 681 int spi, i, err; 682 683 spi = dynptr_get_spi(env, reg); 684 if (spi < 0) 685 return spi; 686 687 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 688 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 689 * to ensure that for the following example: 690 * [d1][d1][d2][d2] 691 * spi 3 2 1 0 692 * So marking spi = 2 should lead to destruction of both d1 and d2. In 693 * case they do belong to same dynptr, second call won't see slot_type 694 * as STACK_DYNPTR and will simply skip destruction. 695 */ 696 err = destroy_if_dynptr_stack_slot(env, state, spi); 697 if (err) 698 return err; 699 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 700 if (err) 701 return err; 702 703 for (i = 0; i < BPF_REG_SIZE; i++) { 704 state->stack[spi].slot_type[i] = STACK_DYNPTR; 705 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 706 } 707 708 type = arg_to_dynptr_type(arg_type); 709 if (type == BPF_DYNPTR_TYPE_INVALID) 710 return -EINVAL; 711 712 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 713 &state->stack[spi - 1].spilled_ptr, type); 714 715 if (dynptr_type_refcounted(type)) { 716 /* The id is used to track proper releasing */ 717 int id; 718 719 if (clone_ref_obj_id) 720 id = clone_ref_obj_id; 721 else 722 id = acquire_reference_state(env, insn_idx); 723 724 if (id < 0) 725 return id; 726 727 state->stack[spi].spilled_ptr.ref_obj_id = id; 728 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 729 } 730 731 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 732 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 733 734 return 0; 735 } 736 737 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 738 { 739 int i; 740 741 for (i = 0; i < BPF_REG_SIZE; i++) { 742 state->stack[spi].slot_type[i] = STACK_INVALID; 743 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 744 } 745 746 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 747 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 748 749 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 750 * 751 * While we don't allow reading STACK_INVALID, it is still possible to 752 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 753 * helpers or insns can do partial read of that part without failing, 754 * but check_stack_range_initialized, check_stack_read_var_off, and 755 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 756 * the slot conservatively. Hence we need to prevent those liveness 757 * marking walks. 758 * 759 * This was not a problem before because STACK_INVALID is only set by 760 * default (where the default reg state has its reg->parent as NULL), or 761 * in clean_live_states after REG_LIVE_DONE (at which point 762 * mark_reg_read won't walk reg->parent chain), but not randomly during 763 * verifier state exploration (like we did above). Hence, for our case 764 * parentage chain will still be live (i.e. reg->parent may be 765 * non-NULL), while earlier reg->parent was NULL, so we need 766 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 767 * done later on reads or by mark_dynptr_read as well to unnecessary 768 * mark registers in verifier state. 769 */ 770 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 771 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 772 } 773 774 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 775 { 776 struct bpf_func_state *state = func(env, reg); 777 int spi, ref_obj_id, i; 778 779 spi = dynptr_get_spi(env, reg); 780 if (spi < 0) 781 return spi; 782 783 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 784 invalidate_dynptr(env, state, spi); 785 return 0; 786 } 787 788 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 789 790 /* If the dynptr has a ref_obj_id, then we need to invalidate 791 * two things: 792 * 793 * 1) Any dynptrs with a matching ref_obj_id (clones) 794 * 2) Any slices derived from this dynptr. 795 */ 796 797 /* Invalidate any slices associated with this dynptr */ 798 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 799 800 /* Invalidate any dynptr clones */ 801 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 802 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 803 continue; 804 805 /* it should always be the case that if the ref obj id 806 * matches then the stack slot also belongs to a 807 * dynptr 808 */ 809 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 810 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 811 return -EFAULT; 812 } 813 if (state->stack[i].spilled_ptr.dynptr.first_slot) 814 invalidate_dynptr(env, state, i); 815 } 816 817 return 0; 818 } 819 820 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 821 struct bpf_reg_state *reg); 822 823 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 824 { 825 if (!env->allow_ptr_leaks) 826 __mark_reg_not_init(env, reg); 827 else 828 __mark_reg_unknown(env, reg); 829 } 830 831 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 832 struct bpf_func_state *state, int spi) 833 { 834 struct bpf_func_state *fstate; 835 struct bpf_reg_state *dreg; 836 int i, dynptr_id; 837 838 /* We always ensure that STACK_DYNPTR is never set partially, 839 * hence just checking for slot_type[0] is enough. This is 840 * different for STACK_SPILL, where it may be only set for 841 * 1 byte, so code has to use is_spilled_reg. 842 */ 843 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 844 return 0; 845 846 /* Reposition spi to first slot */ 847 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 848 spi = spi + 1; 849 850 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 851 verbose(env, "cannot overwrite referenced dynptr\n"); 852 return -EINVAL; 853 } 854 855 mark_stack_slot_scratched(env, spi); 856 mark_stack_slot_scratched(env, spi - 1); 857 858 /* Writing partially to one dynptr stack slot destroys both. */ 859 for (i = 0; i < BPF_REG_SIZE; i++) { 860 state->stack[spi].slot_type[i] = STACK_INVALID; 861 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 862 } 863 864 dynptr_id = state->stack[spi].spilled_ptr.id; 865 /* Invalidate any slices associated with this dynptr */ 866 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 867 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 868 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 869 continue; 870 if (dreg->dynptr_id == dynptr_id) 871 mark_reg_invalid(env, dreg); 872 })); 873 874 /* Do not release reference state, we are destroying dynptr on stack, 875 * not using some helper to release it. Just reset register. 876 */ 877 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 878 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 879 880 /* Same reason as unmark_stack_slots_dynptr above */ 881 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 882 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 883 884 return 0; 885 } 886 887 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 888 { 889 int spi; 890 891 if (reg->type == CONST_PTR_TO_DYNPTR) 892 return false; 893 894 spi = dynptr_get_spi(env, reg); 895 896 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 897 * error because this just means the stack state hasn't been updated yet. 898 * We will do check_mem_access to check and update stack bounds later. 899 */ 900 if (spi < 0 && spi != -ERANGE) 901 return false; 902 903 /* We don't need to check if the stack slots are marked by previous 904 * dynptr initializations because we allow overwriting existing unreferenced 905 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 906 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 907 * touching are completely destructed before we reinitialize them for a new 908 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 909 * instead of delaying it until the end where the user will get "Unreleased 910 * reference" error. 911 */ 912 return true; 913 } 914 915 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 916 { 917 struct bpf_func_state *state = func(env, reg); 918 int i, spi; 919 920 /* This already represents first slot of initialized bpf_dynptr. 921 * 922 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 923 * check_func_arg_reg_off's logic, so we don't need to check its 924 * offset and alignment. 925 */ 926 if (reg->type == CONST_PTR_TO_DYNPTR) 927 return true; 928 929 spi = dynptr_get_spi(env, reg); 930 if (spi < 0) 931 return false; 932 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 933 return false; 934 935 for (i = 0; i < BPF_REG_SIZE; i++) { 936 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 937 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 938 return false; 939 } 940 941 return true; 942 } 943 944 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 945 enum bpf_arg_type arg_type) 946 { 947 struct bpf_func_state *state = func(env, reg); 948 enum bpf_dynptr_type dynptr_type; 949 int spi; 950 951 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 952 if (arg_type == ARG_PTR_TO_DYNPTR) 953 return true; 954 955 dynptr_type = arg_to_dynptr_type(arg_type); 956 if (reg->type == CONST_PTR_TO_DYNPTR) { 957 return reg->dynptr.type == dynptr_type; 958 } else { 959 spi = dynptr_get_spi(env, reg); 960 if (spi < 0) 961 return false; 962 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 963 } 964 } 965 966 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 967 968 static bool in_rcu_cs(struct bpf_verifier_env *env); 969 970 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 971 972 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 973 struct bpf_kfunc_call_arg_meta *meta, 974 struct bpf_reg_state *reg, int insn_idx, 975 struct btf *btf, u32 btf_id, int nr_slots) 976 { 977 struct bpf_func_state *state = func(env, reg); 978 int spi, i, j, id; 979 980 spi = iter_get_spi(env, reg, nr_slots); 981 if (spi < 0) 982 return spi; 983 984 id = acquire_reference_state(env, insn_idx); 985 if (id < 0) 986 return id; 987 988 for (i = 0; i < nr_slots; i++) { 989 struct bpf_stack_state *slot = &state->stack[spi - i]; 990 struct bpf_reg_state *st = &slot->spilled_ptr; 991 992 __mark_reg_known_zero(st); 993 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 994 if (is_kfunc_rcu_protected(meta)) { 995 if (in_rcu_cs(env)) 996 st->type |= MEM_RCU; 997 else 998 st->type |= PTR_UNTRUSTED; 999 } 1000 st->live |= REG_LIVE_WRITTEN; 1001 st->ref_obj_id = i == 0 ? id : 0; 1002 st->iter.btf = btf; 1003 st->iter.btf_id = btf_id; 1004 st->iter.state = BPF_ITER_STATE_ACTIVE; 1005 st->iter.depth = 0; 1006 1007 for (j = 0; j < BPF_REG_SIZE; j++) 1008 slot->slot_type[j] = STACK_ITER; 1009 1010 mark_stack_slot_scratched(env, spi - i); 1011 } 1012 1013 return 0; 1014 } 1015 1016 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1017 struct bpf_reg_state *reg, int nr_slots) 1018 { 1019 struct bpf_func_state *state = func(env, reg); 1020 int spi, i, j; 1021 1022 spi = iter_get_spi(env, reg, nr_slots); 1023 if (spi < 0) 1024 return spi; 1025 1026 for (i = 0; i < nr_slots; i++) { 1027 struct bpf_stack_state *slot = &state->stack[spi - i]; 1028 struct bpf_reg_state *st = &slot->spilled_ptr; 1029 1030 if (i == 0) 1031 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1032 1033 __mark_reg_not_init(env, st); 1034 1035 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1036 st->live |= REG_LIVE_WRITTEN; 1037 1038 for (j = 0; j < BPF_REG_SIZE; j++) 1039 slot->slot_type[j] = STACK_INVALID; 1040 1041 mark_stack_slot_scratched(env, spi - i); 1042 } 1043 1044 return 0; 1045 } 1046 1047 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1048 struct bpf_reg_state *reg, int nr_slots) 1049 { 1050 struct bpf_func_state *state = func(env, reg); 1051 int spi, i, j; 1052 1053 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1054 * will do check_mem_access to check and update stack bounds later, so 1055 * return true for that case. 1056 */ 1057 spi = iter_get_spi(env, reg, nr_slots); 1058 if (spi == -ERANGE) 1059 return true; 1060 if (spi < 0) 1061 return false; 1062 1063 for (i = 0; i < nr_slots; i++) { 1064 struct bpf_stack_state *slot = &state->stack[spi - i]; 1065 1066 for (j = 0; j < BPF_REG_SIZE; j++) 1067 if (slot->slot_type[j] == STACK_ITER) 1068 return false; 1069 } 1070 1071 return true; 1072 } 1073 1074 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1075 struct btf *btf, u32 btf_id, int nr_slots) 1076 { 1077 struct bpf_func_state *state = func(env, reg); 1078 int spi, i, j; 1079 1080 spi = iter_get_spi(env, reg, nr_slots); 1081 if (spi < 0) 1082 return -EINVAL; 1083 1084 for (i = 0; i < nr_slots; i++) { 1085 struct bpf_stack_state *slot = &state->stack[spi - i]; 1086 struct bpf_reg_state *st = &slot->spilled_ptr; 1087 1088 if (st->type & PTR_UNTRUSTED) 1089 return -EPROTO; 1090 /* only main (first) slot has ref_obj_id set */ 1091 if (i == 0 && !st->ref_obj_id) 1092 return -EINVAL; 1093 if (i != 0 && st->ref_obj_id) 1094 return -EINVAL; 1095 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1096 return -EINVAL; 1097 1098 for (j = 0; j < BPF_REG_SIZE; j++) 1099 if (slot->slot_type[j] != STACK_ITER) 1100 return -EINVAL; 1101 } 1102 1103 return 0; 1104 } 1105 1106 /* Check if given stack slot is "special": 1107 * - spilled register state (STACK_SPILL); 1108 * - dynptr state (STACK_DYNPTR); 1109 * - iter state (STACK_ITER). 1110 */ 1111 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1112 { 1113 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1114 1115 switch (type) { 1116 case STACK_SPILL: 1117 case STACK_DYNPTR: 1118 case STACK_ITER: 1119 return true; 1120 case STACK_INVALID: 1121 case STACK_MISC: 1122 case STACK_ZERO: 1123 return false; 1124 default: 1125 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1126 return true; 1127 } 1128 } 1129 1130 /* The reg state of a pointer or a bounded scalar was saved when 1131 * it was spilled to the stack. 1132 */ 1133 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1134 { 1135 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1136 } 1137 1138 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1139 { 1140 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1141 stack->spilled_ptr.type == SCALAR_VALUE; 1142 } 1143 1144 static void scrub_spilled_slot(u8 *stype) 1145 { 1146 if (*stype != STACK_INVALID) 1147 *stype = STACK_MISC; 1148 } 1149 1150 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1151 * small to hold src. This is different from krealloc since we don't want to preserve 1152 * the contents of dst. 1153 * 1154 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1155 * not be allocated. 1156 */ 1157 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1158 { 1159 size_t alloc_bytes; 1160 void *orig = dst; 1161 size_t bytes; 1162 1163 if (ZERO_OR_NULL_PTR(src)) 1164 goto out; 1165 1166 if (unlikely(check_mul_overflow(n, size, &bytes))) 1167 return NULL; 1168 1169 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1170 dst = krealloc(orig, alloc_bytes, flags); 1171 if (!dst) { 1172 kfree(orig); 1173 return NULL; 1174 } 1175 1176 memcpy(dst, src, bytes); 1177 out: 1178 return dst ? dst : ZERO_SIZE_PTR; 1179 } 1180 1181 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1182 * small to hold new_n items. new items are zeroed out if the array grows. 1183 * 1184 * Contrary to krealloc_array, does not free arr if new_n is zero. 1185 */ 1186 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1187 { 1188 size_t alloc_size; 1189 void *new_arr; 1190 1191 if (!new_n || old_n == new_n) 1192 goto out; 1193 1194 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1195 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1196 if (!new_arr) { 1197 kfree(arr); 1198 return NULL; 1199 } 1200 arr = new_arr; 1201 1202 if (new_n > old_n) 1203 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1204 1205 out: 1206 return arr ? arr : ZERO_SIZE_PTR; 1207 } 1208 1209 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1210 { 1211 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1212 sizeof(struct bpf_reference_state), GFP_KERNEL); 1213 if (!dst->refs) 1214 return -ENOMEM; 1215 1216 dst->acquired_refs = src->acquired_refs; 1217 return 0; 1218 } 1219 1220 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1221 { 1222 size_t n = src->allocated_stack / BPF_REG_SIZE; 1223 1224 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1225 GFP_KERNEL); 1226 if (!dst->stack) 1227 return -ENOMEM; 1228 1229 dst->allocated_stack = src->allocated_stack; 1230 return 0; 1231 } 1232 1233 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1234 { 1235 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1236 sizeof(struct bpf_reference_state)); 1237 if (!state->refs) 1238 return -ENOMEM; 1239 1240 state->acquired_refs = n; 1241 return 0; 1242 } 1243 1244 static int grow_stack_state(struct bpf_func_state *state, int size) 1245 { 1246 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1247 1248 if (old_n >= n) 1249 return 0; 1250 1251 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1252 if (!state->stack) 1253 return -ENOMEM; 1254 1255 state->allocated_stack = size; 1256 return 0; 1257 } 1258 1259 /* Acquire a pointer id from the env and update the state->refs to include 1260 * this new pointer reference. 1261 * On success, returns a valid pointer id to associate with the register 1262 * On failure, returns a negative errno. 1263 */ 1264 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1265 { 1266 struct bpf_func_state *state = cur_func(env); 1267 int new_ofs = state->acquired_refs; 1268 int id, err; 1269 1270 err = resize_reference_state(state, state->acquired_refs + 1); 1271 if (err) 1272 return err; 1273 id = ++env->id_gen; 1274 state->refs[new_ofs].id = id; 1275 state->refs[new_ofs].insn_idx = insn_idx; 1276 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1277 1278 return id; 1279 } 1280 1281 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1282 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1283 { 1284 int i, last_idx; 1285 1286 last_idx = state->acquired_refs - 1; 1287 for (i = 0; i < state->acquired_refs; i++) { 1288 if (state->refs[i].id == ptr_id) { 1289 /* Cannot release caller references in callbacks */ 1290 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1291 return -EINVAL; 1292 if (last_idx && i != last_idx) 1293 memcpy(&state->refs[i], &state->refs[last_idx], 1294 sizeof(*state->refs)); 1295 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1296 state->acquired_refs--; 1297 return 0; 1298 } 1299 } 1300 return -EINVAL; 1301 } 1302 1303 static void free_func_state(struct bpf_func_state *state) 1304 { 1305 if (!state) 1306 return; 1307 kfree(state->refs); 1308 kfree(state->stack); 1309 kfree(state); 1310 } 1311 1312 static void clear_jmp_history(struct bpf_verifier_state *state) 1313 { 1314 kfree(state->jmp_history); 1315 state->jmp_history = NULL; 1316 state->jmp_history_cnt = 0; 1317 } 1318 1319 static void free_verifier_state(struct bpf_verifier_state *state, 1320 bool free_self) 1321 { 1322 int i; 1323 1324 for (i = 0; i <= state->curframe; i++) { 1325 free_func_state(state->frame[i]); 1326 state->frame[i] = NULL; 1327 } 1328 clear_jmp_history(state); 1329 if (free_self) 1330 kfree(state); 1331 } 1332 1333 /* copy verifier state from src to dst growing dst stack space 1334 * when necessary to accommodate larger src stack 1335 */ 1336 static int copy_func_state(struct bpf_func_state *dst, 1337 const struct bpf_func_state *src) 1338 { 1339 int err; 1340 1341 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1342 err = copy_reference_state(dst, src); 1343 if (err) 1344 return err; 1345 return copy_stack_state(dst, src); 1346 } 1347 1348 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1349 const struct bpf_verifier_state *src) 1350 { 1351 struct bpf_func_state *dst; 1352 int i, err; 1353 1354 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1355 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1356 GFP_USER); 1357 if (!dst_state->jmp_history) 1358 return -ENOMEM; 1359 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1360 1361 /* if dst has more stack frames then src frame, free them, this is also 1362 * necessary in case of exceptional exits using bpf_throw. 1363 */ 1364 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1365 free_func_state(dst_state->frame[i]); 1366 dst_state->frame[i] = NULL; 1367 } 1368 dst_state->speculative = src->speculative; 1369 dst_state->active_rcu_lock = src->active_rcu_lock; 1370 dst_state->curframe = src->curframe; 1371 dst_state->active_lock.ptr = src->active_lock.ptr; 1372 dst_state->active_lock.id = src->active_lock.id; 1373 dst_state->branches = src->branches; 1374 dst_state->parent = src->parent; 1375 dst_state->first_insn_idx = src->first_insn_idx; 1376 dst_state->last_insn_idx = src->last_insn_idx; 1377 dst_state->dfs_depth = src->dfs_depth; 1378 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1379 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1380 for (i = 0; i <= src->curframe; i++) { 1381 dst = dst_state->frame[i]; 1382 if (!dst) { 1383 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1384 if (!dst) 1385 return -ENOMEM; 1386 dst_state->frame[i] = dst; 1387 } 1388 err = copy_func_state(dst, src->frame[i]); 1389 if (err) 1390 return err; 1391 } 1392 return 0; 1393 } 1394 1395 static u32 state_htab_size(struct bpf_verifier_env *env) 1396 { 1397 return env->prog->len; 1398 } 1399 1400 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1401 { 1402 struct bpf_verifier_state *cur = env->cur_state; 1403 struct bpf_func_state *state = cur->frame[cur->curframe]; 1404 1405 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1406 } 1407 1408 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1409 { 1410 int fr; 1411 1412 if (a->curframe != b->curframe) 1413 return false; 1414 1415 for (fr = a->curframe; fr >= 0; fr--) 1416 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1417 return false; 1418 1419 return true; 1420 } 1421 1422 /* Open coded iterators allow back-edges in the state graph in order to 1423 * check unbounded loops that iterators. 1424 * 1425 * In is_state_visited() it is necessary to know if explored states are 1426 * part of some loops in order to decide whether non-exact states 1427 * comparison could be used: 1428 * - non-exact states comparison establishes sub-state relation and uses 1429 * read and precision marks to do so, these marks are propagated from 1430 * children states and thus are not guaranteed to be final in a loop; 1431 * - exact states comparison just checks if current and explored states 1432 * are identical (and thus form a back-edge). 1433 * 1434 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1435 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1436 * algorithm for loop structure detection and gives an overview of 1437 * relevant terminology. It also has helpful illustrations. 1438 * 1439 * [1] https://api.semanticscholar.org/CorpusID:15784067 1440 * 1441 * We use a similar algorithm but because loop nested structure is 1442 * irrelevant for verifier ours is significantly simpler and resembles 1443 * strongly connected components algorithm from Sedgewick's textbook. 1444 * 1445 * Define topmost loop entry as a first node of the loop traversed in a 1446 * depth first search starting from initial state. The goal of the loop 1447 * tracking algorithm is to associate topmost loop entries with states 1448 * derived from these entries. 1449 * 1450 * For each step in the DFS states traversal algorithm needs to identify 1451 * the following situations: 1452 * 1453 * initial initial initial 1454 * | | | 1455 * V V V 1456 * ... ... .---------> hdr 1457 * | | | | 1458 * V V | V 1459 * cur .-> succ | .------... 1460 * | | | | | | 1461 * V | V | V V 1462 * succ '-- cur | ... ... 1463 * | | | 1464 * | V V 1465 * | succ <- cur 1466 * | | 1467 * | V 1468 * | ... 1469 * | | 1470 * '----' 1471 * 1472 * (A) successor state of cur (B) successor state of cur or it's entry 1473 * not yet traversed are in current DFS path, thus cur and succ 1474 * are members of the same outermost loop 1475 * 1476 * initial initial 1477 * | | 1478 * V V 1479 * ... ... 1480 * | | 1481 * V V 1482 * .------... .------... 1483 * | | | | 1484 * V V V V 1485 * .-> hdr ... ... ... 1486 * | | | | | 1487 * | V V V V 1488 * | succ <- cur succ <- cur 1489 * | | | 1490 * | V V 1491 * | ... ... 1492 * | | | 1493 * '----' exit 1494 * 1495 * (C) successor state of cur is a part of some loop but this loop 1496 * does not include cur or successor state is not in a loop at all. 1497 * 1498 * Algorithm could be described as the following python code: 1499 * 1500 * traversed = set() # Set of traversed nodes 1501 * entries = {} # Mapping from node to loop entry 1502 * depths = {} # Depth level assigned to graph node 1503 * path = set() # Current DFS path 1504 * 1505 * # Find outermost loop entry known for n 1506 * def get_loop_entry(n): 1507 * h = entries.get(n, None) 1508 * while h in entries and entries[h] != h: 1509 * h = entries[h] 1510 * return h 1511 * 1512 * # Update n's loop entry if h's outermost entry comes 1513 * # before n's outermost entry in current DFS path. 1514 * def update_loop_entry(n, h): 1515 * n1 = get_loop_entry(n) or n 1516 * h1 = get_loop_entry(h) or h 1517 * if h1 in path and depths[h1] <= depths[n1]: 1518 * entries[n] = h1 1519 * 1520 * def dfs(n, depth): 1521 * traversed.add(n) 1522 * path.add(n) 1523 * depths[n] = depth 1524 * for succ in G.successors(n): 1525 * if succ not in traversed: 1526 * # Case A: explore succ and update cur's loop entry 1527 * # only if succ's entry is in current DFS path. 1528 * dfs(succ, depth + 1) 1529 * h = get_loop_entry(succ) 1530 * update_loop_entry(n, h) 1531 * else: 1532 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1533 * update_loop_entry(n, succ) 1534 * path.remove(n) 1535 * 1536 * To adapt this algorithm for use with verifier: 1537 * - use st->branch == 0 as a signal that DFS of succ had been finished 1538 * and cur's loop entry has to be updated (case A), handle this in 1539 * update_branch_counts(); 1540 * - use st->branch > 0 as a signal that st is in the current DFS path; 1541 * - handle cases B and C in is_state_visited(); 1542 * - update topmost loop entry for intermediate states in get_loop_entry(). 1543 */ 1544 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1545 { 1546 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1547 1548 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1549 topmost = topmost->loop_entry; 1550 /* Update loop entries for intermediate states to avoid this 1551 * traversal in future get_loop_entry() calls. 1552 */ 1553 while (st && st->loop_entry != topmost) { 1554 old = st->loop_entry; 1555 st->loop_entry = topmost; 1556 st = old; 1557 } 1558 return topmost; 1559 } 1560 1561 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1562 { 1563 struct bpf_verifier_state *cur1, *hdr1; 1564 1565 cur1 = get_loop_entry(cur) ?: cur; 1566 hdr1 = get_loop_entry(hdr) ?: hdr; 1567 /* The head1->branches check decides between cases B and C in 1568 * comment for get_loop_entry(). If hdr1->branches == 0 then 1569 * head's topmost loop entry is not in current DFS path, 1570 * hence 'cur' and 'hdr' are not in the same loop and there is 1571 * no need to update cur->loop_entry. 1572 */ 1573 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1574 cur->loop_entry = hdr; 1575 hdr->used_as_loop_entry = true; 1576 } 1577 } 1578 1579 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1580 { 1581 while (st) { 1582 u32 br = --st->branches; 1583 1584 /* br == 0 signals that DFS exploration for 'st' is finished, 1585 * thus it is necessary to update parent's loop entry if it 1586 * turned out that st is a part of some loop. 1587 * This is a part of 'case A' in get_loop_entry() comment. 1588 */ 1589 if (br == 0 && st->parent && st->loop_entry) 1590 update_loop_entry(st->parent, st->loop_entry); 1591 1592 /* WARN_ON(br > 1) technically makes sense here, 1593 * but see comment in push_stack(), hence: 1594 */ 1595 WARN_ONCE((int)br < 0, 1596 "BUG update_branch_counts:branches_to_explore=%d\n", 1597 br); 1598 if (br) 1599 break; 1600 st = st->parent; 1601 } 1602 } 1603 1604 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1605 int *insn_idx, bool pop_log) 1606 { 1607 struct bpf_verifier_state *cur = env->cur_state; 1608 struct bpf_verifier_stack_elem *elem, *head = env->head; 1609 int err; 1610 1611 if (env->head == NULL) 1612 return -ENOENT; 1613 1614 if (cur) { 1615 err = copy_verifier_state(cur, &head->st); 1616 if (err) 1617 return err; 1618 } 1619 if (pop_log) 1620 bpf_vlog_reset(&env->log, head->log_pos); 1621 if (insn_idx) 1622 *insn_idx = head->insn_idx; 1623 if (prev_insn_idx) 1624 *prev_insn_idx = head->prev_insn_idx; 1625 elem = head->next; 1626 free_verifier_state(&head->st, false); 1627 kfree(head); 1628 env->head = elem; 1629 env->stack_size--; 1630 return 0; 1631 } 1632 1633 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1634 int insn_idx, int prev_insn_idx, 1635 bool speculative) 1636 { 1637 struct bpf_verifier_state *cur = env->cur_state; 1638 struct bpf_verifier_stack_elem *elem; 1639 int err; 1640 1641 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1642 if (!elem) 1643 goto err; 1644 1645 elem->insn_idx = insn_idx; 1646 elem->prev_insn_idx = prev_insn_idx; 1647 elem->next = env->head; 1648 elem->log_pos = env->log.end_pos; 1649 env->head = elem; 1650 env->stack_size++; 1651 err = copy_verifier_state(&elem->st, cur); 1652 if (err) 1653 goto err; 1654 elem->st.speculative |= speculative; 1655 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1656 verbose(env, "The sequence of %d jumps is too complex.\n", 1657 env->stack_size); 1658 goto err; 1659 } 1660 if (elem->st.parent) { 1661 ++elem->st.parent->branches; 1662 /* WARN_ON(branches > 2) technically makes sense here, 1663 * but 1664 * 1. speculative states will bump 'branches' for non-branch 1665 * instructions 1666 * 2. is_state_visited() heuristics may decide not to create 1667 * a new state for a sequence of branches and all such current 1668 * and cloned states will be pointing to a single parent state 1669 * which might have large 'branches' count. 1670 */ 1671 } 1672 return &elem->st; 1673 err: 1674 free_verifier_state(env->cur_state, true); 1675 env->cur_state = NULL; 1676 /* pop all elements and return */ 1677 while (!pop_stack(env, NULL, NULL, false)); 1678 return NULL; 1679 } 1680 1681 #define CALLER_SAVED_REGS 6 1682 static const int caller_saved[CALLER_SAVED_REGS] = { 1683 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1684 }; 1685 1686 /* This helper doesn't clear reg->id */ 1687 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1688 { 1689 reg->var_off = tnum_const(imm); 1690 reg->smin_value = (s64)imm; 1691 reg->smax_value = (s64)imm; 1692 reg->umin_value = imm; 1693 reg->umax_value = imm; 1694 1695 reg->s32_min_value = (s32)imm; 1696 reg->s32_max_value = (s32)imm; 1697 reg->u32_min_value = (u32)imm; 1698 reg->u32_max_value = (u32)imm; 1699 } 1700 1701 /* Mark the unknown part of a register (variable offset or scalar value) as 1702 * known to have the value @imm. 1703 */ 1704 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1705 { 1706 /* Clear off and union(map_ptr, range) */ 1707 memset(((u8 *)reg) + sizeof(reg->type), 0, 1708 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1709 reg->id = 0; 1710 reg->ref_obj_id = 0; 1711 ___mark_reg_known(reg, imm); 1712 } 1713 1714 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1715 { 1716 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1717 reg->s32_min_value = (s32)imm; 1718 reg->s32_max_value = (s32)imm; 1719 reg->u32_min_value = (u32)imm; 1720 reg->u32_max_value = (u32)imm; 1721 } 1722 1723 /* Mark the 'variable offset' part of a register as zero. This should be 1724 * used only on registers holding a pointer type. 1725 */ 1726 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1727 { 1728 __mark_reg_known(reg, 0); 1729 } 1730 1731 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1732 { 1733 __mark_reg_known(reg, 0); 1734 reg->type = SCALAR_VALUE; 1735 } 1736 1737 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1738 struct bpf_reg_state *regs, u32 regno) 1739 { 1740 if (WARN_ON(regno >= MAX_BPF_REG)) { 1741 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1742 /* Something bad happened, let's kill all regs */ 1743 for (regno = 0; regno < MAX_BPF_REG; regno++) 1744 __mark_reg_not_init(env, regs + regno); 1745 return; 1746 } 1747 __mark_reg_known_zero(regs + regno); 1748 } 1749 1750 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1751 bool first_slot, int dynptr_id) 1752 { 1753 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1754 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1755 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1756 */ 1757 __mark_reg_known_zero(reg); 1758 reg->type = CONST_PTR_TO_DYNPTR; 1759 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1760 reg->id = dynptr_id; 1761 reg->dynptr.type = type; 1762 reg->dynptr.first_slot = first_slot; 1763 } 1764 1765 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1766 { 1767 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1768 const struct bpf_map *map = reg->map_ptr; 1769 1770 if (map->inner_map_meta) { 1771 reg->type = CONST_PTR_TO_MAP; 1772 reg->map_ptr = map->inner_map_meta; 1773 /* transfer reg's id which is unique for every map_lookup_elem 1774 * as UID of the inner map. 1775 */ 1776 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1777 reg->map_uid = reg->id; 1778 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1779 reg->type = PTR_TO_XDP_SOCK; 1780 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1781 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1782 reg->type = PTR_TO_SOCKET; 1783 } else { 1784 reg->type = PTR_TO_MAP_VALUE; 1785 } 1786 return; 1787 } 1788 1789 reg->type &= ~PTR_MAYBE_NULL; 1790 } 1791 1792 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1793 struct btf_field_graph_root *ds_head) 1794 { 1795 __mark_reg_known_zero(®s[regno]); 1796 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1797 regs[regno].btf = ds_head->btf; 1798 regs[regno].btf_id = ds_head->value_btf_id; 1799 regs[regno].off = ds_head->node_offset; 1800 } 1801 1802 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1803 { 1804 return type_is_pkt_pointer(reg->type); 1805 } 1806 1807 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1808 { 1809 return reg_is_pkt_pointer(reg) || 1810 reg->type == PTR_TO_PACKET_END; 1811 } 1812 1813 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 1814 { 1815 return base_type(reg->type) == PTR_TO_MEM && 1816 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 1817 } 1818 1819 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1820 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1821 enum bpf_reg_type which) 1822 { 1823 /* The register can already have a range from prior markings. 1824 * This is fine as long as it hasn't been advanced from its 1825 * origin. 1826 */ 1827 return reg->type == which && 1828 reg->id == 0 && 1829 reg->off == 0 && 1830 tnum_equals_const(reg->var_off, 0); 1831 } 1832 1833 /* Reset the min/max bounds of a register */ 1834 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1835 { 1836 reg->smin_value = S64_MIN; 1837 reg->smax_value = S64_MAX; 1838 reg->umin_value = 0; 1839 reg->umax_value = U64_MAX; 1840 1841 reg->s32_min_value = S32_MIN; 1842 reg->s32_max_value = S32_MAX; 1843 reg->u32_min_value = 0; 1844 reg->u32_max_value = U32_MAX; 1845 } 1846 1847 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1848 { 1849 reg->smin_value = S64_MIN; 1850 reg->smax_value = S64_MAX; 1851 reg->umin_value = 0; 1852 reg->umax_value = U64_MAX; 1853 } 1854 1855 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1856 { 1857 reg->s32_min_value = S32_MIN; 1858 reg->s32_max_value = S32_MAX; 1859 reg->u32_min_value = 0; 1860 reg->u32_max_value = U32_MAX; 1861 } 1862 1863 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1864 { 1865 struct tnum var32_off = tnum_subreg(reg->var_off); 1866 1867 /* min signed is max(sign bit) | min(other bits) */ 1868 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1869 var32_off.value | (var32_off.mask & S32_MIN)); 1870 /* max signed is min(sign bit) | max(other bits) */ 1871 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1872 var32_off.value | (var32_off.mask & S32_MAX)); 1873 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1874 reg->u32_max_value = min(reg->u32_max_value, 1875 (u32)(var32_off.value | var32_off.mask)); 1876 } 1877 1878 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1879 { 1880 /* min signed is max(sign bit) | min(other bits) */ 1881 reg->smin_value = max_t(s64, reg->smin_value, 1882 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1883 /* max signed is min(sign bit) | max(other bits) */ 1884 reg->smax_value = min_t(s64, reg->smax_value, 1885 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1886 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1887 reg->umax_value = min(reg->umax_value, 1888 reg->var_off.value | reg->var_off.mask); 1889 } 1890 1891 static void __update_reg_bounds(struct bpf_reg_state *reg) 1892 { 1893 __update_reg32_bounds(reg); 1894 __update_reg64_bounds(reg); 1895 } 1896 1897 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1898 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1899 { 1900 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 1901 * bits to improve our u32/s32 boundaries. 1902 * 1903 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 1904 * u64) is pretty trivial, it's obvious that in u32 we'll also have 1905 * [10, 20] range. But this property holds for any 64-bit range as 1906 * long as upper 32 bits in that entire range of values stay the same. 1907 * 1908 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 1909 * in decimal) has the same upper 32 bits throughout all the values in 1910 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 1911 * range. 1912 * 1913 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 1914 * following the rules outlined below about u64/s64 correspondence 1915 * (which equally applies to u32 vs s32 correspondence). In general it 1916 * depends on actual hexadecimal values of 32-bit range. They can form 1917 * only valid u32, or only valid s32 ranges in some cases. 1918 * 1919 * So we use all these insights to derive bounds for subregisters here. 1920 */ 1921 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 1922 /* u64 to u32 casting preserves validity of low 32 bits as 1923 * a range, if upper 32 bits are the same 1924 */ 1925 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 1926 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 1927 1928 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 1929 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 1930 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 1931 } 1932 } 1933 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 1934 /* low 32 bits should form a proper u32 range */ 1935 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 1936 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 1937 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 1938 } 1939 /* low 32 bits should form a proper s32 range */ 1940 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 1941 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 1942 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 1943 } 1944 } 1945 /* Special case where upper bits form a small sequence of two 1946 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 1947 * 0x00000000 is also valid), while lower bits form a proper s32 range 1948 * going from negative numbers to positive numbers. E.g., let's say we 1949 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 1950 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 1951 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 1952 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 1953 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 1954 * upper 32 bits. As a random example, s64 range 1955 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 1956 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 1957 */ 1958 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 1959 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 1960 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 1961 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 1962 } 1963 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 1964 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 1965 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 1966 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 1967 } 1968 /* if u32 range forms a valid s32 range (due to matching sign bit), 1969 * try to learn from that 1970 */ 1971 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 1972 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 1973 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 1974 } 1975 /* If we cannot cross the sign boundary, then signed and unsigned bounds 1976 * are the same, so combine. This works even in the negative case, e.g. 1977 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1978 */ 1979 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 1980 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 1981 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 1982 } 1983 } 1984 1985 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1986 { 1987 /* If u64 range forms a valid s64 range (due to matching sign bit), 1988 * try to learn from that. Let's do a bit of ASCII art to see when 1989 * this is happening. Let's take u64 range first: 1990 * 1991 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 1992 * |-------------------------------|--------------------------------| 1993 * 1994 * Valid u64 range is formed when umin and umax are anywhere in the 1995 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 1996 * straightforward. Let's see how s64 range maps onto the same range 1997 * of values, annotated below the line for comparison: 1998 * 1999 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2000 * |-------------------------------|--------------------------------| 2001 * 0 S64_MAX S64_MIN -1 2002 * 2003 * So s64 values basically start in the middle and they are logically 2004 * contiguous to the right of it, wrapping around from -1 to 0, and 2005 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2006 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2007 * more visually as mapped to sign-agnostic range of hex values. 2008 * 2009 * u64 start u64 end 2010 * _______________________________________________________________ 2011 * / \ 2012 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2013 * |-------------------------------|--------------------------------| 2014 * 0 S64_MAX S64_MIN -1 2015 * / \ 2016 * >------------------------------ -------------------------------> 2017 * s64 continues... s64 end s64 start s64 "midpoint" 2018 * 2019 * What this means is that, in general, we can't always derive 2020 * something new about u64 from any random s64 range, and vice versa. 2021 * 2022 * But we can do that in two particular cases. One is when entire 2023 * u64/s64 range is *entirely* contained within left half of the above 2024 * diagram or when it is *entirely* contained in the right half. I.e.: 2025 * 2026 * |-------------------------------|--------------------------------| 2027 * ^ ^ ^ ^ 2028 * A B C D 2029 * 2030 * [A, B] and [C, D] are contained entirely in their respective halves 2031 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2032 * will be non-negative both as u64 and s64 (and in fact it will be 2033 * identical ranges no matter the signedness). [C, D] treated as s64 2034 * will be a range of negative values, while in u64 it will be 2035 * non-negative range of values larger than 0x8000000000000000. 2036 * 2037 * Now, any other range here can't be represented in both u64 and s64 2038 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2039 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2040 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2041 * for example. Similarly, valid s64 range [D, A] (going from negative 2042 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2043 * ranges as u64. Currently reg_state can't represent two segments per 2044 * numeric domain, so in such situations we can only derive maximal 2045 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2046 * 2047 * So we use these facts to derive umin/umax from smin/smax and vice 2048 * versa only if they stay within the same "half". This is equivalent 2049 * to checking sign bit: lower half will have sign bit as zero, upper 2050 * half have sign bit 1. Below in code we simplify this by just 2051 * casting umin/umax as smin/smax and checking if they form valid 2052 * range, and vice versa. Those are equivalent checks. 2053 */ 2054 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2055 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2056 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2057 } 2058 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2059 * are the same, so combine. This works even in the negative case, e.g. 2060 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2061 */ 2062 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2063 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2064 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2065 } 2066 } 2067 2068 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2069 { 2070 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2071 * values on both sides of 64-bit range in hope to have tigher range. 2072 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2073 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2074 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2075 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2076 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2077 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2078 * We just need to make sure that derived bounds we are intersecting 2079 * with are well-formed ranges in respecitve s64 or u64 domain, just 2080 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2081 */ 2082 __u64 new_umin, new_umax; 2083 __s64 new_smin, new_smax; 2084 2085 /* u32 -> u64 tightening, it's always well-formed */ 2086 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2087 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2088 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2089 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2090 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2091 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2092 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2093 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2094 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2095 2096 /* if s32 can be treated as valid u32 range, we can use it as well */ 2097 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2098 /* s32 -> u64 tightening */ 2099 new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2100 new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2101 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2102 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2103 /* s32 -> s64 tightening */ 2104 new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2105 new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2106 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2107 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2108 } 2109 } 2110 2111 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2112 { 2113 __reg32_deduce_bounds(reg); 2114 __reg64_deduce_bounds(reg); 2115 __reg_deduce_mixed_bounds(reg); 2116 } 2117 2118 /* Attempts to improve var_off based on unsigned min/max information */ 2119 static void __reg_bound_offset(struct bpf_reg_state *reg) 2120 { 2121 struct tnum var64_off = tnum_intersect(reg->var_off, 2122 tnum_range(reg->umin_value, 2123 reg->umax_value)); 2124 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2125 tnum_range(reg->u32_min_value, 2126 reg->u32_max_value)); 2127 2128 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2129 } 2130 2131 static void reg_bounds_sync(struct bpf_reg_state *reg) 2132 { 2133 /* We might have learned new bounds from the var_off. */ 2134 __update_reg_bounds(reg); 2135 /* We might have learned something about the sign bit. */ 2136 __reg_deduce_bounds(reg); 2137 __reg_deduce_bounds(reg); 2138 /* We might have learned some bits from the bounds. */ 2139 __reg_bound_offset(reg); 2140 /* Intersecting with the old var_off might have improved our bounds 2141 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2142 * then new var_off is (0; 0x7f...fc) which improves our umax. 2143 */ 2144 __update_reg_bounds(reg); 2145 } 2146 2147 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2148 struct bpf_reg_state *reg, const char *ctx) 2149 { 2150 const char *msg; 2151 2152 if (reg->umin_value > reg->umax_value || 2153 reg->smin_value > reg->smax_value || 2154 reg->u32_min_value > reg->u32_max_value || 2155 reg->s32_min_value > reg->s32_max_value) { 2156 msg = "range bounds violation"; 2157 goto out; 2158 } 2159 2160 if (tnum_is_const(reg->var_off)) { 2161 u64 uval = reg->var_off.value; 2162 s64 sval = (s64)uval; 2163 2164 if (reg->umin_value != uval || reg->umax_value != uval || 2165 reg->smin_value != sval || reg->smax_value != sval) { 2166 msg = "const tnum out of sync with range bounds"; 2167 goto out; 2168 } 2169 } 2170 2171 if (tnum_subreg_is_const(reg->var_off)) { 2172 u32 uval32 = tnum_subreg(reg->var_off).value; 2173 s32 sval32 = (s32)uval32; 2174 2175 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2176 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2177 msg = "const subreg tnum out of sync with range bounds"; 2178 goto out; 2179 } 2180 } 2181 2182 return 0; 2183 out: 2184 verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2185 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n", 2186 ctx, msg, reg->umin_value, reg->umax_value, 2187 reg->smin_value, reg->smax_value, 2188 reg->u32_min_value, reg->u32_max_value, 2189 reg->s32_min_value, reg->s32_max_value, 2190 reg->var_off.value, reg->var_off.mask); 2191 if (env->test_reg_invariants) 2192 return -EFAULT; 2193 __mark_reg_unbounded(reg); 2194 return 0; 2195 } 2196 2197 static bool __reg32_bound_s64(s32 a) 2198 { 2199 return a >= 0 && a <= S32_MAX; 2200 } 2201 2202 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2203 { 2204 reg->umin_value = reg->u32_min_value; 2205 reg->umax_value = reg->u32_max_value; 2206 2207 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2208 * be positive otherwise set to worse case bounds and refine later 2209 * from tnum. 2210 */ 2211 if (__reg32_bound_s64(reg->s32_min_value) && 2212 __reg32_bound_s64(reg->s32_max_value)) { 2213 reg->smin_value = reg->s32_min_value; 2214 reg->smax_value = reg->s32_max_value; 2215 } else { 2216 reg->smin_value = 0; 2217 reg->smax_value = U32_MAX; 2218 } 2219 } 2220 2221 /* Mark a register as having a completely unknown (scalar) value. */ 2222 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2223 struct bpf_reg_state *reg) 2224 { 2225 /* 2226 * Clear type, off, and union(map_ptr, range) and 2227 * padding between 'type' and union 2228 */ 2229 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2230 reg->type = SCALAR_VALUE; 2231 reg->id = 0; 2232 reg->ref_obj_id = 0; 2233 reg->var_off = tnum_unknown; 2234 reg->frameno = 0; 2235 reg->precise = !env->bpf_capable; 2236 __mark_reg_unbounded(reg); 2237 } 2238 2239 static void mark_reg_unknown(struct bpf_verifier_env *env, 2240 struct bpf_reg_state *regs, u32 regno) 2241 { 2242 if (WARN_ON(regno >= MAX_BPF_REG)) { 2243 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2244 /* Something bad happened, let's kill all regs except FP */ 2245 for (regno = 0; regno < BPF_REG_FP; regno++) 2246 __mark_reg_not_init(env, regs + regno); 2247 return; 2248 } 2249 __mark_reg_unknown(env, regs + regno); 2250 } 2251 2252 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2253 struct bpf_reg_state *reg) 2254 { 2255 __mark_reg_unknown(env, reg); 2256 reg->type = NOT_INIT; 2257 } 2258 2259 static void mark_reg_not_init(struct bpf_verifier_env *env, 2260 struct bpf_reg_state *regs, u32 regno) 2261 { 2262 if (WARN_ON(regno >= MAX_BPF_REG)) { 2263 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2264 /* Something bad happened, let's kill all regs except FP */ 2265 for (regno = 0; regno < BPF_REG_FP; regno++) 2266 __mark_reg_not_init(env, regs + regno); 2267 return; 2268 } 2269 __mark_reg_not_init(env, regs + regno); 2270 } 2271 2272 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2273 struct bpf_reg_state *regs, u32 regno, 2274 enum bpf_reg_type reg_type, 2275 struct btf *btf, u32 btf_id, 2276 enum bpf_type_flag flag) 2277 { 2278 if (reg_type == SCALAR_VALUE) { 2279 mark_reg_unknown(env, regs, regno); 2280 return; 2281 } 2282 mark_reg_known_zero(env, regs, regno); 2283 regs[regno].type = PTR_TO_BTF_ID | flag; 2284 regs[regno].btf = btf; 2285 regs[regno].btf_id = btf_id; 2286 } 2287 2288 #define DEF_NOT_SUBREG (0) 2289 static void init_reg_state(struct bpf_verifier_env *env, 2290 struct bpf_func_state *state) 2291 { 2292 struct bpf_reg_state *regs = state->regs; 2293 int i; 2294 2295 for (i = 0; i < MAX_BPF_REG; i++) { 2296 mark_reg_not_init(env, regs, i); 2297 regs[i].live = REG_LIVE_NONE; 2298 regs[i].parent = NULL; 2299 regs[i].subreg_def = DEF_NOT_SUBREG; 2300 } 2301 2302 /* frame pointer */ 2303 regs[BPF_REG_FP].type = PTR_TO_STACK; 2304 mark_reg_known_zero(env, regs, BPF_REG_FP); 2305 regs[BPF_REG_FP].frameno = state->frameno; 2306 } 2307 2308 #define BPF_MAIN_FUNC (-1) 2309 static void init_func_state(struct bpf_verifier_env *env, 2310 struct bpf_func_state *state, 2311 int callsite, int frameno, int subprogno) 2312 { 2313 state->callsite = callsite; 2314 state->frameno = frameno; 2315 state->subprogno = subprogno; 2316 state->callback_ret_range = tnum_range(0, 0); 2317 init_reg_state(env, state); 2318 mark_verifier_state_scratched(env); 2319 } 2320 2321 /* Similar to push_stack(), but for async callbacks */ 2322 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2323 int insn_idx, int prev_insn_idx, 2324 int subprog) 2325 { 2326 struct bpf_verifier_stack_elem *elem; 2327 struct bpf_func_state *frame; 2328 2329 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2330 if (!elem) 2331 goto err; 2332 2333 elem->insn_idx = insn_idx; 2334 elem->prev_insn_idx = prev_insn_idx; 2335 elem->next = env->head; 2336 elem->log_pos = env->log.end_pos; 2337 env->head = elem; 2338 env->stack_size++; 2339 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2340 verbose(env, 2341 "The sequence of %d jumps is too complex for async cb.\n", 2342 env->stack_size); 2343 goto err; 2344 } 2345 /* Unlike push_stack() do not copy_verifier_state(). 2346 * The caller state doesn't matter. 2347 * This is async callback. It starts in a fresh stack. 2348 * Initialize it similar to do_check_common(). 2349 */ 2350 elem->st.branches = 1; 2351 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2352 if (!frame) 2353 goto err; 2354 init_func_state(env, frame, 2355 BPF_MAIN_FUNC /* callsite */, 2356 0 /* frameno within this callchain */, 2357 subprog /* subprog number within this prog */); 2358 elem->st.frame[0] = frame; 2359 return &elem->st; 2360 err: 2361 free_verifier_state(env->cur_state, true); 2362 env->cur_state = NULL; 2363 /* pop all elements and return */ 2364 while (!pop_stack(env, NULL, NULL, false)); 2365 return NULL; 2366 } 2367 2368 2369 enum reg_arg_type { 2370 SRC_OP, /* register is used as source operand */ 2371 DST_OP, /* register is used as destination operand */ 2372 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2373 }; 2374 2375 static int cmp_subprogs(const void *a, const void *b) 2376 { 2377 return ((struct bpf_subprog_info *)a)->start - 2378 ((struct bpf_subprog_info *)b)->start; 2379 } 2380 2381 static int find_subprog(struct bpf_verifier_env *env, int off) 2382 { 2383 struct bpf_subprog_info *p; 2384 2385 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2386 sizeof(env->subprog_info[0]), cmp_subprogs); 2387 if (!p) 2388 return -ENOENT; 2389 return p - env->subprog_info; 2390 2391 } 2392 2393 static int add_subprog(struct bpf_verifier_env *env, int off) 2394 { 2395 int insn_cnt = env->prog->len; 2396 int ret; 2397 2398 if (off >= insn_cnt || off < 0) { 2399 verbose(env, "call to invalid destination\n"); 2400 return -EINVAL; 2401 } 2402 ret = find_subprog(env, off); 2403 if (ret >= 0) 2404 return ret; 2405 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2406 verbose(env, "too many subprograms\n"); 2407 return -E2BIG; 2408 } 2409 /* determine subprog starts. The end is one before the next starts */ 2410 env->subprog_info[env->subprog_cnt++].start = off; 2411 sort(env->subprog_info, env->subprog_cnt, 2412 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2413 return env->subprog_cnt - 1; 2414 } 2415 2416 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 2417 { 2418 struct bpf_prog_aux *aux = env->prog->aux; 2419 struct btf *btf = aux->btf; 2420 const struct btf_type *t; 2421 u32 main_btf_id, id; 2422 const char *name; 2423 int ret, i; 2424 2425 /* Non-zero func_info_cnt implies valid btf */ 2426 if (!aux->func_info_cnt) 2427 return 0; 2428 main_btf_id = aux->func_info[0].type_id; 2429 2430 t = btf_type_by_id(btf, main_btf_id); 2431 if (!t) { 2432 verbose(env, "invalid btf id for main subprog in func_info\n"); 2433 return -EINVAL; 2434 } 2435 2436 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 2437 if (IS_ERR(name)) { 2438 ret = PTR_ERR(name); 2439 /* If there is no tag present, there is no exception callback */ 2440 if (ret == -ENOENT) 2441 ret = 0; 2442 else if (ret == -EEXIST) 2443 verbose(env, "multiple exception callback tags for main subprog\n"); 2444 return ret; 2445 } 2446 2447 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 2448 if (ret < 0) { 2449 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 2450 return ret; 2451 } 2452 id = ret; 2453 t = btf_type_by_id(btf, id); 2454 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 2455 verbose(env, "exception callback '%s' must have global linkage\n", name); 2456 return -EINVAL; 2457 } 2458 ret = 0; 2459 for (i = 0; i < aux->func_info_cnt; i++) { 2460 if (aux->func_info[i].type_id != id) 2461 continue; 2462 ret = aux->func_info[i].insn_off; 2463 /* Further func_info and subprog checks will also happen 2464 * later, so assume this is the right insn_off for now. 2465 */ 2466 if (!ret) { 2467 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 2468 ret = -EINVAL; 2469 } 2470 } 2471 if (!ret) { 2472 verbose(env, "exception callback type id not found in func_info\n"); 2473 ret = -EINVAL; 2474 } 2475 return ret; 2476 } 2477 2478 #define MAX_KFUNC_DESCS 256 2479 #define MAX_KFUNC_BTFS 256 2480 2481 struct bpf_kfunc_desc { 2482 struct btf_func_model func_model; 2483 u32 func_id; 2484 s32 imm; 2485 u16 offset; 2486 unsigned long addr; 2487 }; 2488 2489 struct bpf_kfunc_btf { 2490 struct btf *btf; 2491 struct module *module; 2492 u16 offset; 2493 }; 2494 2495 struct bpf_kfunc_desc_tab { 2496 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2497 * verification. JITs do lookups by bpf_insn, where func_id may not be 2498 * available, therefore at the end of verification do_misc_fixups() 2499 * sorts this by imm and offset. 2500 */ 2501 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2502 u32 nr_descs; 2503 }; 2504 2505 struct bpf_kfunc_btf_tab { 2506 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2507 u32 nr_descs; 2508 }; 2509 2510 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2511 { 2512 const struct bpf_kfunc_desc *d0 = a; 2513 const struct bpf_kfunc_desc *d1 = b; 2514 2515 /* func_id is not greater than BTF_MAX_TYPE */ 2516 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2517 } 2518 2519 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2520 { 2521 const struct bpf_kfunc_btf *d0 = a; 2522 const struct bpf_kfunc_btf *d1 = b; 2523 2524 return d0->offset - d1->offset; 2525 } 2526 2527 static const struct bpf_kfunc_desc * 2528 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2529 { 2530 struct bpf_kfunc_desc desc = { 2531 .func_id = func_id, 2532 .offset = offset, 2533 }; 2534 struct bpf_kfunc_desc_tab *tab; 2535 2536 tab = prog->aux->kfunc_tab; 2537 return bsearch(&desc, tab->descs, tab->nr_descs, 2538 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2539 } 2540 2541 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2542 u16 btf_fd_idx, u8 **func_addr) 2543 { 2544 const struct bpf_kfunc_desc *desc; 2545 2546 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2547 if (!desc) 2548 return -EFAULT; 2549 2550 *func_addr = (u8 *)desc->addr; 2551 return 0; 2552 } 2553 2554 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2555 s16 offset) 2556 { 2557 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2558 struct bpf_kfunc_btf_tab *tab; 2559 struct bpf_kfunc_btf *b; 2560 struct module *mod; 2561 struct btf *btf; 2562 int btf_fd; 2563 2564 tab = env->prog->aux->kfunc_btf_tab; 2565 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2566 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2567 if (!b) { 2568 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2569 verbose(env, "too many different module BTFs\n"); 2570 return ERR_PTR(-E2BIG); 2571 } 2572 2573 if (bpfptr_is_null(env->fd_array)) { 2574 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2575 return ERR_PTR(-EPROTO); 2576 } 2577 2578 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2579 offset * sizeof(btf_fd), 2580 sizeof(btf_fd))) 2581 return ERR_PTR(-EFAULT); 2582 2583 btf = btf_get_by_fd(btf_fd); 2584 if (IS_ERR(btf)) { 2585 verbose(env, "invalid module BTF fd specified\n"); 2586 return btf; 2587 } 2588 2589 if (!btf_is_module(btf)) { 2590 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2591 btf_put(btf); 2592 return ERR_PTR(-EINVAL); 2593 } 2594 2595 mod = btf_try_get_module(btf); 2596 if (!mod) { 2597 btf_put(btf); 2598 return ERR_PTR(-ENXIO); 2599 } 2600 2601 b = &tab->descs[tab->nr_descs++]; 2602 b->btf = btf; 2603 b->module = mod; 2604 b->offset = offset; 2605 2606 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2607 kfunc_btf_cmp_by_off, NULL); 2608 } 2609 return b->btf; 2610 } 2611 2612 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2613 { 2614 if (!tab) 2615 return; 2616 2617 while (tab->nr_descs--) { 2618 module_put(tab->descs[tab->nr_descs].module); 2619 btf_put(tab->descs[tab->nr_descs].btf); 2620 } 2621 kfree(tab); 2622 } 2623 2624 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2625 { 2626 if (offset) { 2627 if (offset < 0) { 2628 /* In the future, this can be allowed to increase limit 2629 * of fd index into fd_array, interpreted as u16. 2630 */ 2631 verbose(env, "negative offset disallowed for kernel module function call\n"); 2632 return ERR_PTR(-EINVAL); 2633 } 2634 2635 return __find_kfunc_desc_btf(env, offset); 2636 } 2637 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2638 } 2639 2640 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2641 { 2642 const struct btf_type *func, *func_proto; 2643 struct bpf_kfunc_btf_tab *btf_tab; 2644 struct bpf_kfunc_desc_tab *tab; 2645 struct bpf_prog_aux *prog_aux; 2646 struct bpf_kfunc_desc *desc; 2647 const char *func_name; 2648 struct btf *desc_btf; 2649 unsigned long call_imm; 2650 unsigned long addr; 2651 int err; 2652 2653 prog_aux = env->prog->aux; 2654 tab = prog_aux->kfunc_tab; 2655 btf_tab = prog_aux->kfunc_btf_tab; 2656 if (!tab) { 2657 if (!btf_vmlinux) { 2658 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2659 return -ENOTSUPP; 2660 } 2661 2662 if (!env->prog->jit_requested) { 2663 verbose(env, "JIT is required for calling kernel function\n"); 2664 return -ENOTSUPP; 2665 } 2666 2667 if (!bpf_jit_supports_kfunc_call()) { 2668 verbose(env, "JIT does not support calling kernel function\n"); 2669 return -ENOTSUPP; 2670 } 2671 2672 if (!env->prog->gpl_compatible) { 2673 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2674 return -EINVAL; 2675 } 2676 2677 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2678 if (!tab) 2679 return -ENOMEM; 2680 prog_aux->kfunc_tab = tab; 2681 } 2682 2683 /* func_id == 0 is always invalid, but instead of returning an error, be 2684 * conservative and wait until the code elimination pass before returning 2685 * error, so that invalid calls that get pruned out can be in BPF programs 2686 * loaded from userspace. It is also required that offset be untouched 2687 * for such calls. 2688 */ 2689 if (!func_id && !offset) 2690 return 0; 2691 2692 if (!btf_tab && offset) { 2693 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2694 if (!btf_tab) 2695 return -ENOMEM; 2696 prog_aux->kfunc_btf_tab = btf_tab; 2697 } 2698 2699 desc_btf = find_kfunc_desc_btf(env, offset); 2700 if (IS_ERR(desc_btf)) { 2701 verbose(env, "failed to find BTF for kernel function\n"); 2702 return PTR_ERR(desc_btf); 2703 } 2704 2705 if (find_kfunc_desc(env->prog, func_id, offset)) 2706 return 0; 2707 2708 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2709 verbose(env, "too many different kernel function calls\n"); 2710 return -E2BIG; 2711 } 2712 2713 func = btf_type_by_id(desc_btf, func_id); 2714 if (!func || !btf_type_is_func(func)) { 2715 verbose(env, "kernel btf_id %u is not a function\n", 2716 func_id); 2717 return -EINVAL; 2718 } 2719 func_proto = btf_type_by_id(desc_btf, func->type); 2720 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2721 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2722 func_id); 2723 return -EINVAL; 2724 } 2725 2726 func_name = btf_name_by_offset(desc_btf, func->name_off); 2727 addr = kallsyms_lookup_name(func_name); 2728 if (!addr) { 2729 verbose(env, "cannot find address for kernel function %s\n", 2730 func_name); 2731 return -EINVAL; 2732 } 2733 specialize_kfunc(env, func_id, offset, &addr); 2734 2735 if (bpf_jit_supports_far_kfunc_call()) { 2736 call_imm = func_id; 2737 } else { 2738 call_imm = BPF_CALL_IMM(addr); 2739 /* Check whether the relative offset overflows desc->imm */ 2740 if ((unsigned long)(s32)call_imm != call_imm) { 2741 verbose(env, "address of kernel function %s is out of range\n", 2742 func_name); 2743 return -EINVAL; 2744 } 2745 } 2746 2747 if (bpf_dev_bound_kfunc_id(func_id)) { 2748 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2749 if (err) 2750 return err; 2751 } 2752 2753 desc = &tab->descs[tab->nr_descs++]; 2754 desc->func_id = func_id; 2755 desc->imm = call_imm; 2756 desc->offset = offset; 2757 desc->addr = addr; 2758 err = btf_distill_func_proto(&env->log, desc_btf, 2759 func_proto, func_name, 2760 &desc->func_model); 2761 if (!err) 2762 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2763 kfunc_desc_cmp_by_id_off, NULL); 2764 return err; 2765 } 2766 2767 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2768 { 2769 const struct bpf_kfunc_desc *d0 = a; 2770 const struct bpf_kfunc_desc *d1 = b; 2771 2772 if (d0->imm != d1->imm) 2773 return d0->imm < d1->imm ? -1 : 1; 2774 if (d0->offset != d1->offset) 2775 return d0->offset < d1->offset ? -1 : 1; 2776 return 0; 2777 } 2778 2779 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2780 { 2781 struct bpf_kfunc_desc_tab *tab; 2782 2783 tab = prog->aux->kfunc_tab; 2784 if (!tab) 2785 return; 2786 2787 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2788 kfunc_desc_cmp_by_imm_off, NULL); 2789 } 2790 2791 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2792 { 2793 return !!prog->aux->kfunc_tab; 2794 } 2795 2796 const struct btf_func_model * 2797 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2798 const struct bpf_insn *insn) 2799 { 2800 const struct bpf_kfunc_desc desc = { 2801 .imm = insn->imm, 2802 .offset = insn->off, 2803 }; 2804 const struct bpf_kfunc_desc *res; 2805 struct bpf_kfunc_desc_tab *tab; 2806 2807 tab = prog->aux->kfunc_tab; 2808 res = bsearch(&desc, tab->descs, tab->nr_descs, 2809 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2810 2811 return res ? &res->func_model : NULL; 2812 } 2813 2814 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2815 { 2816 struct bpf_subprog_info *subprog = env->subprog_info; 2817 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 2818 struct bpf_insn *insn = env->prog->insnsi; 2819 2820 /* Add entry function. */ 2821 ret = add_subprog(env, 0); 2822 if (ret) 2823 return ret; 2824 2825 for (i = 0; i < insn_cnt; i++, insn++) { 2826 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2827 !bpf_pseudo_kfunc_call(insn)) 2828 continue; 2829 2830 if (!env->bpf_capable) { 2831 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2832 return -EPERM; 2833 } 2834 2835 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2836 ret = add_subprog(env, i + insn->imm + 1); 2837 else 2838 ret = add_kfunc_call(env, insn->imm, insn->off); 2839 2840 if (ret < 0) 2841 return ret; 2842 } 2843 2844 ret = bpf_find_exception_callback_insn_off(env); 2845 if (ret < 0) 2846 return ret; 2847 ex_cb_insn = ret; 2848 2849 /* If ex_cb_insn > 0, this means that the main program has a subprog 2850 * marked using BTF decl tag to serve as the exception callback. 2851 */ 2852 if (ex_cb_insn) { 2853 ret = add_subprog(env, ex_cb_insn); 2854 if (ret < 0) 2855 return ret; 2856 for (i = 1; i < env->subprog_cnt; i++) { 2857 if (env->subprog_info[i].start != ex_cb_insn) 2858 continue; 2859 env->exception_callback_subprog = i; 2860 break; 2861 } 2862 } 2863 2864 /* Add a fake 'exit' subprog which could simplify subprog iteration 2865 * logic. 'subprog_cnt' should not be increased. 2866 */ 2867 subprog[env->subprog_cnt].start = insn_cnt; 2868 2869 if (env->log.level & BPF_LOG_LEVEL2) 2870 for (i = 0; i < env->subprog_cnt; i++) 2871 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2872 2873 return 0; 2874 } 2875 2876 static int check_subprogs(struct bpf_verifier_env *env) 2877 { 2878 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2879 struct bpf_subprog_info *subprog = env->subprog_info; 2880 struct bpf_insn *insn = env->prog->insnsi; 2881 int insn_cnt = env->prog->len; 2882 2883 /* now check that all jumps are within the same subprog */ 2884 subprog_start = subprog[cur_subprog].start; 2885 subprog_end = subprog[cur_subprog + 1].start; 2886 for (i = 0; i < insn_cnt; i++) { 2887 u8 code = insn[i].code; 2888 2889 if (code == (BPF_JMP | BPF_CALL) && 2890 insn[i].src_reg == 0 && 2891 insn[i].imm == BPF_FUNC_tail_call) 2892 subprog[cur_subprog].has_tail_call = true; 2893 if (BPF_CLASS(code) == BPF_LD && 2894 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2895 subprog[cur_subprog].has_ld_abs = true; 2896 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2897 goto next; 2898 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2899 goto next; 2900 if (code == (BPF_JMP32 | BPF_JA)) 2901 off = i + insn[i].imm + 1; 2902 else 2903 off = i + insn[i].off + 1; 2904 if (off < subprog_start || off >= subprog_end) { 2905 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2906 return -EINVAL; 2907 } 2908 next: 2909 if (i == subprog_end - 1) { 2910 /* to avoid fall-through from one subprog into another 2911 * the last insn of the subprog should be either exit 2912 * or unconditional jump back or bpf_throw call 2913 */ 2914 if (code != (BPF_JMP | BPF_EXIT) && 2915 code != (BPF_JMP32 | BPF_JA) && 2916 code != (BPF_JMP | BPF_JA)) { 2917 verbose(env, "last insn is not an exit or jmp\n"); 2918 return -EINVAL; 2919 } 2920 subprog_start = subprog_end; 2921 cur_subprog++; 2922 if (cur_subprog < env->subprog_cnt) 2923 subprog_end = subprog[cur_subprog + 1].start; 2924 } 2925 } 2926 return 0; 2927 } 2928 2929 /* Parentage chain of this register (or stack slot) should take care of all 2930 * issues like callee-saved registers, stack slot allocation time, etc. 2931 */ 2932 static int mark_reg_read(struct bpf_verifier_env *env, 2933 const struct bpf_reg_state *state, 2934 struct bpf_reg_state *parent, u8 flag) 2935 { 2936 bool writes = parent == state->parent; /* Observe write marks */ 2937 int cnt = 0; 2938 2939 while (parent) { 2940 /* if read wasn't screened by an earlier write ... */ 2941 if (writes && state->live & REG_LIVE_WRITTEN) 2942 break; 2943 if (parent->live & REG_LIVE_DONE) { 2944 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2945 reg_type_str(env, parent->type), 2946 parent->var_off.value, parent->off); 2947 return -EFAULT; 2948 } 2949 /* The first condition is more likely to be true than the 2950 * second, checked it first. 2951 */ 2952 if ((parent->live & REG_LIVE_READ) == flag || 2953 parent->live & REG_LIVE_READ64) 2954 /* The parentage chain never changes and 2955 * this parent was already marked as LIVE_READ. 2956 * There is no need to keep walking the chain again and 2957 * keep re-marking all parents as LIVE_READ. 2958 * This case happens when the same register is read 2959 * multiple times without writes into it in-between. 2960 * Also, if parent has the stronger REG_LIVE_READ64 set, 2961 * then no need to set the weak REG_LIVE_READ32. 2962 */ 2963 break; 2964 /* ... then we depend on parent's value */ 2965 parent->live |= flag; 2966 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2967 if (flag == REG_LIVE_READ64) 2968 parent->live &= ~REG_LIVE_READ32; 2969 state = parent; 2970 parent = state->parent; 2971 writes = true; 2972 cnt++; 2973 } 2974 2975 if (env->longest_mark_read_walk < cnt) 2976 env->longest_mark_read_walk = cnt; 2977 return 0; 2978 } 2979 2980 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2981 { 2982 struct bpf_func_state *state = func(env, reg); 2983 int spi, ret; 2984 2985 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 2986 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 2987 * check_kfunc_call. 2988 */ 2989 if (reg->type == CONST_PTR_TO_DYNPTR) 2990 return 0; 2991 spi = dynptr_get_spi(env, reg); 2992 if (spi < 0) 2993 return spi; 2994 /* Caller ensures dynptr is valid and initialized, which means spi is in 2995 * bounds and spi is the first dynptr slot. Simply mark stack slot as 2996 * read. 2997 */ 2998 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 2999 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 3000 if (ret) 3001 return ret; 3002 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 3003 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 3004 } 3005 3006 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3007 int spi, int nr_slots) 3008 { 3009 struct bpf_func_state *state = func(env, reg); 3010 int err, i; 3011 3012 for (i = 0; i < nr_slots; i++) { 3013 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3014 3015 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3016 if (err) 3017 return err; 3018 3019 mark_stack_slot_scratched(env, spi - i); 3020 } 3021 3022 return 0; 3023 } 3024 3025 /* This function is supposed to be used by the following 32-bit optimization 3026 * code only. It returns TRUE if the source or destination register operates 3027 * on 64-bit, otherwise return FALSE. 3028 */ 3029 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3030 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3031 { 3032 u8 code, class, op; 3033 3034 code = insn->code; 3035 class = BPF_CLASS(code); 3036 op = BPF_OP(code); 3037 if (class == BPF_JMP) { 3038 /* BPF_EXIT for "main" will reach here. Return TRUE 3039 * conservatively. 3040 */ 3041 if (op == BPF_EXIT) 3042 return true; 3043 if (op == BPF_CALL) { 3044 /* BPF to BPF call will reach here because of marking 3045 * caller saved clobber with DST_OP_NO_MARK for which we 3046 * don't care the register def because they are anyway 3047 * marked as NOT_INIT already. 3048 */ 3049 if (insn->src_reg == BPF_PSEUDO_CALL) 3050 return false; 3051 /* Helper call will reach here because of arg type 3052 * check, conservatively return TRUE. 3053 */ 3054 if (t == SRC_OP) 3055 return true; 3056 3057 return false; 3058 } 3059 } 3060 3061 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3062 return false; 3063 3064 if (class == BPF_ALU64 || class == BPF_JMP || 3065 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3066 return true; 3067 3068 if (class == BPF_ALU || class == BPF_JMP32) 3069 return false; 3070 3071 if (class == BPF_LDX) { 3072 if (t != SRC_OP) 3073 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3074 /* LDX source must be ptr. */ 3075 return true; 3076 } 3077 3078 if (class == BPF_STX) { 3079 /* BPF_STX (including atomic variants) has multiple source 3080 * operands, one of which is a ptr. Check whether the caller is 3081 * asking about it. 3082 */ 3083 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3084 return true; 3085 return BPF_SIZE(code) == BPF_DW; 3086 } 3087 3088 if (class == BPF_LD) { 3089 u8 mode = BPF_MODE(code); 3090 3091 /* LD_IMM64 */ 3092 if (mode == BPF_IMM) 3093 return true; 3094 3095 /* Both LD_IND and LD_ABS return 32-bit data. */ 3096 if (t != SRC_OP) 3097 return false; 3098 3099 /* Implicit ctx ptr. */ 3100 if (regno == BPF_REG_6) 3101 return true; 3102 3103 /* Explicit source could be any width. */ 3104 return true; 3105 } 3106 3107 if (class == BPF_ST) 3108 /* The only source register for BPF_ST is a ptr. */ 3109 return true; 3110 3111 /* Conservatively return true at default. */ 3112 return true; 3113 } 3114 3115 /* Return the regno defined by the insn, or -1. */ 3116 static int insn_def_regno(const struct bpf_insn *insn) 3117 { 3118 switch (BPF_CLASS(insn->code)) { 3119 case BPF_JMP: 3120 case BPF_JMP32: 3121 case BPF_ST: 3122 return -1; 3123 case BPF_STX: 3124 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3125 (insn->imm & BPF_FETCH)) { 3126 if (insn->imm == BPF_CMPXCHG) 3127 return BPF_REG_0; 3128 else 3129 return insn->src_reg; 3130 } else { 3131 return -1; 3132 } 3133 default: 3134 return insn->dst_reg; 3135 } 3136 } 3137 3138 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3139 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3140 { 3141 int dst_reg = insn_def_regno(insn); 3142 3143 if (dst_reg == -1) 3144 return false; 3145 3146 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3147 } 3148 3149 static void mark_insn_zext(struct bpf_verifier_env *env, 3150 struct bpf_reg_state *reg) 3151 { 3152 s32 def_idx = reg->subreg_def; 3153 3154 if (def_idx == DEF_NOT_SUBREG) 3155 return; 3156 3157 env->insn_aux_data[def_idx - 1].zext_dst = true; 3158 /* The dst will be zero extended, so won't be sub-register anymore. */ 3159 reg->subreg_def = DEF_NOT_SUBREG; 3160 } 3161 3162 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3163 enum reg_arg_type t) 3164 { 3165 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3166 struct bpf_reg_state *reg; 3167 bool rw64; 3168 3169 if (regno >= MAX_BPF_REG) { 3170 verbose(env, "R%d is invalid\n", regno); 3171 return -EINVAL; 3172 } 3173 3174 mark_reg_scratched(env, regno); 3175 3176 reg = ®s[regno]; 3177 rw64 = is_reg64(env, insn, regno, reg, t); 3178 if (t == SRC_OP) { 3179 /* check whether register used as source operand can be read */ 3180 if (reg->type == NOT_INIT) { 3181 verbose(env, "R%d !read_ok\n", regno); 3182 return -EACCES; 3183 } 3184 /* We don't need to worry about FP liveness because it's read-only */ 3185 if (regno == BPF_REG_FP) 3186 return 0; 3187 3188 if (rw64) 3189 mark_insn_zext(env, reg); 3190 3191 return mark_reg_read(env, reg, reg->parent, 3192 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3193 } else { 3194 /* check whether register used as dest operand can be written to */ 3195 if (regno == BPF_REG_FP) { 3196 verbose(env, "frame pointer is read only\n"); 3197 return -EACCES; 3198 } 3199 reg->live |= REG_LIVE_WRITTEN; 3200 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3201 if (t == DST_OP) 3202 mark_reg_unknown(env, regs, regno); 3203 } 3204 return 0; 3205 } 3206 3207 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3208 enum reg_arg_type t) 3209 { 3210 struct bpf_verifier_state *vstate = env->cur_state; 3211 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3212 3213 return __check_reg_arg(env, state->regs, regno, t); 3214 } 3215 3216 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3217 { 3218 env->insn_aux_data[idx].jmp_point = true; 3219 } 3220 3221 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3222 { 3223 return env->insn_aux_data[insn_idx].jmp_point; 3224 } 3225 3226 /* for any branch, call, exit record the history of jmps in the given state */ 3227 static int push_jmp_history(struct bpf_verifier_env *env, 3228 struct bpf_verifier_state *cur) 3229 { 3230 u32 cnt = cur->jmp_history_cnt; 3231 struct bpf_idx_pair *p; 3232 size_t alloc_size; 3233 3234 if (!is_jmp_point(env, env->insn_idx)) 3235 return 0; 3236 3237 cnt++; 3238 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3239 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3240 if (!p) 3241 return -ENOMEM; 3242 p[cnt - 1].idx = env->insn_idx; 3243 p[cnt - 1].prev_idx = env->prev_insn_idx; 3244 cur->jmp_history = p; 3245 cur->jmp_history_cnt = cnt; 3246 return 0; 3247 } 3248 3249 /* Backtrack one insn at a time. If idx is not at the top of recorded 3250 * history then previous instruction came from straight line execution. 3251 * Return -ENOENT if we exhausted all instructions within given state. 3252 * 3253 * It's legal to have a bit of a looping with the same starting and ending 3254 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3255 * instruction index is the same as state's first_idx doesn't mean we are 3256 * done. If there is still some jump history left, we should keep going. We 3257 * need to take into account that we might have a jump history between given 3258 * state's parent and itself, due to checkpointing. In this case, we'll have 3259 * history entry recording a jump from last instruction of parent state and 3260 * first instruction of given state. 3261 */ 3262 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3263 u32 *history) 3264 { 3265 u32 cnt = *history; 3266 3267 if (i == st->first_insn_idx) { 3268 if (cnt == 0) 3269 return -ENOENT; 3270 if (cnt == 1 && st->jmp_history[0].idx == i) 3271 return -ENOENT; 3272 } 3273 3274 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3275 i = st->jmp_history[cnt - 1].prev_idx; 3276 (*history)--; 3277 } else { 3278 i--; 3279 } 3280 return i; 3281 } 3282 3283 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3284 { 3285 const struct btf_type *func; 3286 struct btf *desc_btf; 3287 3288 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3289 return NULL; 3290 3291 desc_btf = find_kfunc_desc_btf(data, insn->off); 3292 if (IS_ERR(desc_btf)) 3293 return "<error>"; 3294 3295 func = btf_type_by_id(desc_btf, insn->imm); 3296 return btf_name_by_offset(desc_btf, func->name_off); 3297 } 3298 3299 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3300 { 3301 bt->frame = frame; 3302 } 3303 3304 static inline void bt_reset(struct backtrack_state *bt) 3305 { 3306 struct bpf_verifier_env *env = bt->env; 3307 3308 memset(bt, 0, sizeof(*bt)); 3309 bt->env = env; 3310 } 3311 3312 static inline u32 bt_empty(struct backtrack_state *bt) 3313 { 3314 u64 mask = 0; 3315 int i; 3316 3317 for (i = 0; i <= bt->frame; i++) 3318 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3319 3320 return mask == 0; 3321 } 3322 3323 static inline int bt_subprog_enter(struct backtrack_state *bt) 3324 { 3325 if (bt->frame == MAX_CALL_FRAMES - 1) { 3326 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3327 WARN_ONCE(1, "verifier backtracking bug"); 3328 return -EFAULT; 3329 } 3330 bt->frame++; 3331 return 0; 3332 } 3333 3334 static inline int bt_subprog_exit(struct backtrack_state *bt) 3335 { 3336 if (bt->frame == 0) { 3337 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3338 WARN_ONCE(1, "verifier backtracking bug"); 3339 return -EFAULT; 3340 } 3341 bt->frame--; 3342 return 0; 3343 } 3344 3345 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3346 { 3347 bt->reg_masks[frame] |= 1 << reg; 3348 } 3349 3350 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3351 { 3352 bt->reg_masks[frame] &= ~(1 << reg); 3353 } 3354 3355 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3356 { 3357 bt_set_frame_reg(bt, bt->frame, reg); 3358 } 3359 3360 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3361 { 3362 bt_clear_frame_reg(bt, bt->frame, reg); 3363 } 3364 3365 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3366 { 3367 bt->stack_masks[frame] |= 1ull << slot; 3368 } 3369 3370 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3371 { 3372 bt->stack_masks[frame] &= ~(1ull << slot); 3373 } 3374 3375 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3376 { 3377 bt_set_frame_slot(bt, bt->frame, slot); 3378 } 3379 3380 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3381 { 3382 bt_clear_frame_slot(bt, bt->frame, slot); 3383 } 3384 3385 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3386 { 3387 return bt->reg_masks[frame]; 3388 } 3389 3390 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3391 { 3392 return bt->reg_masks[bt->frame]; 3393 } 3394 3395 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3396 { 3397 return bt->stack_masks[frame]; 3398 } 3399 3400 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3401 { 3402 return bt->stack_masks[bt->frame]; 3403 } 3404 3405 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3406 { 3407 return bt->reg_masks[bt->frame] & (1 << reg); 3408 } 3409 3410 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3411 { 3412 return bt->stack_masks[bt->frame] & (1ull << slot); 3413 } 3414 3415 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3416 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3417 { 3418 DECLARE_BITMAP(mask, 64); 3419 bool first = true; 3420 int i, n; 3421 3422 buf[0] = '\0'; 3423 3424 bitmap_from_u64(mask, reg_mask); 3425 for_each_set_bit(i, mask, 32) { 3426 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3427 first = false; 3428 buf += n; 3429 buf_sz -= n; 3430 if (buf_sz < 0) 3431 break; 3432 } 3433 } 3434 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3435 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3436 { 3437 DECLARE_BITMAP(mask, 64); 3438 bool first = true; 3439 int i, n; 3440 3441 buf[0] = '\0'; 3442 3443 bitmap_from_u64(mask, stack_mask); 3444 for_each_set_bit(i, mask, 64) { 3445 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3446 first = false; 3447 buf += n; 3448 buf_sz -= n; 3449 if (buf_sz < 0) 3450 break; 3451 } 3452 } 3453 3454 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 3455 3456 /* For given verifier state backtrack_insn() is called from the last insn to 3457 * the first insn. Its purpose is to compute a bitmask of registers and 3458 * stack slots that needs precision in the parent verifier state. 3459 * 3460 * @idx is an index of the instruction we are currently processing; 3461 * @subseq_idx is an index of the subsequent instruction that: 3462 * - *would be* executed next, if jump history is viewed in forward order; 3463 * - *was* processed previously during backtracking. 3464 */ 3465 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3466 struct backtrack_state *bt) 3467 { 3468 const struct bpf_insn_cbs cbs = { 3469 .cb_call = disasm_kfunc_name, 3470 .cb_print = verbose, 3471 .private_data = env, 3472 }; 3473 struct bpf_insn *insn = env->prog->insnsi + idx; 3474 u8 class = BPF_CLASS(insn->code); 3475 u8 opcode = BPF_OP(insn->code); 3476 u8 mode = BPF_MODE(insn->code); 3477 u32 dreg = insn->dst_reg; 3478 u32 sreg = insn->src_reg; 3479 u32 spi, i; 3480 3481 if (insn->code == 0) 3482 return 0; 3483 if (env->log.level & BPF_LOG_LEVEL2) { 3484 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3485 verbose(env, "mark_precise: frame%d: regs=%s ", 3486 bt->frame, env->tmp_str_buf); 3487 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3488 verbose(env, "stack=%s before ", env->tmp_str_buf); 3489 verbose(env, "%d: ", idx); 3490 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3491 } 3492 3493 if (class == BPF_ALU || class == BPF_ALU64) { 3494 if (!bt_is_reg_set(bt, dreg)) 3495 return 0; 3496 if (opcode == BPF_END || opcode == BPF_NEG) { 3497 /* sreg is reserved and unused 3498 * dreg still need precision before this insn 3499 */ 3500 return 0; 3501 } else if (opcode == BPF_MOV) { 3502 if (BPF_SRC(insn->code) == BPF_X) { 3503 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3504 * dreg needs precision after this insn 3505 * sreg needs precision before this insn 3506 */ 3507 bt_clear_reg(bt, dreg); 3508 bt_set_reg(bt, sreg); 3509 } else { 3510 /* dreg = K 3511 * dreg needs precision after this insn. 3512 * Corresponding register is already marked 3513 * as precise=true in this verifier state. 3514 * No further markings in parent are necessary 3515 */ 3516 bt_clear_reg(bt, dreg); 3517 } 3518 } else { 3519 if (BPF_SRC(insn->code) == BPF_X) { 3520 /* dreg += sreg 3521 * both dreg and sreg need precision 3522 * before this insn 3523 */ 3524 bt_set_reg(bt, sreg); 3525 } /* else dreg += K 3526 * dreg still needs precision before this insn 3527 */ 3528 } 3529 } else if (class == BPF_LDX) { 3530 if (!bt_is_reg_set(bt, dreg)) 3531 return 0; 3532 bt_clear_reg(bt, dreg); 3533 3534 /* scalars can only be spilled into stack w/o losing precision. 3535 * Load from any other memory can be zero extended. 3536 * The desire to keep that precision is already indicated 3537 * by 'precise' mark in corresponding register of this state. 3538 * No further tracking necessary. 3539 */ 3540 if (insn->src_reg != BPF_REG_FP) 3541 return 0; 3542 3543 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3544 * that [fp - off] slot contains scalar that needs to be 3545 * tracked with precision 3546 */ 3547 spi = (-insn->off - 1) / BPF_REG_SIZE; 3548 if (spi >= 64) { 3549 verbose(env, "BUG spi %d\n", spi); 3550 WARN_ONCE(1, "verifier backtracking bug"); 3551 return -EFAULT; 3552 } 3553 bt_set_slot(bt, spi); 3554 } else if (class == BPF_STX || class == BPF_ST) { 3555 if (bt_is_reg_set(bt, dreg)) 3556 /* stx & st shouldn't be using _scalar_ dst_reg 3557 * to access memory. It means backtracking 3558 * encountered a case of pointer subtraction. 3559 */ 3560 return -ENOTSUPP; 3561 /* scalars can only be spilled into stack */ 3562 if (insn->dst_reg != BPF_REG_FP) 3563 return 0; 3564 spi = (-insn->off - 1) / BPF_REG_SIZE; 3565 if (spi >= 64) { 3566 verbose(env, "BUG spi %d\n", spi); 3567 WARN_ONCE(1, "verifier backtracking bug"); 3568 return -EFAULT; 3569 } 3570 if (!bt_is_slot_set(bt, spi)) 3571 return 0; 3572 bt_clear_slot(bt, spi); 3573 if (class == BPF_STX) 3574 bt_set_reg(bt, sreg); 3575 } else if (class == BPF_JMP || class == BPF_JMP32) { 3576 if (bpf_pseudo_call(insn)) { 3577 int subprog_insn_idx, subprog; 3578 3579 subprog_insn_idx = idx + insn->imm + 1; 3580 subprog = find_subprog(env, subprog_insn_idx); 3581 if (subprog < 0) 3582 return -EFAULT; 3583 3584 if (subprog_is_global(env, subprog)) { 3585 /* check that jump history doesn't have any 3586 * extra instructions from subprog; the next 3587 * instruction after call to global subprog 3588 * should be literally next instruction in 3589 * caller program 3590 */ 3591 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3592 /* r1-r5 are invalidated after subprog call, 3593 * so for global func call it shouldn't be set 3594 * anymore 3595 */ 3596 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3597 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3598 WARN_ONCE(1, "verifier backtracking bug"); 3599 return -EFAULT; 3600 } 3601 /* global subprog always sets R0 */ 3602 bt_clear_reg(bt, BPF_REG_0); 3603 return 0; 3604 } else { 3605 /* static subprog call instruction, which 3606 * means that we are exiting current subprog, 3607 * so only r1-r5 could be still requested as 3608 * precise, r0 and r6-r10 or any stack slot in 3609 * the current frame should be zero by now 3610 */ 3611 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3612 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3613 WARN_ONCE(1, "verifier backtracking bug"); 3614 return -EFAULT; 3615 } 3616 /* we don't track register spills perfectly, 3617 * so fallback to force-precise instead of failing */ 3618 if (bt_stack_mask(bt) != 0) 3619 return -ENOTSUPP; 3620 /* propagate r1-r5 to the caller */ 3621 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3622 if (bt_is_reg_set(bt, i)) { 3623 bt_clear_reg(bt, i); 3624 bt_set_frame_reg(bt, bt->frame - 1, i); 3625 } 3626 } 3627 if (bt_subprog_exit(bt)) 3628 return -EFAULT; 3629 return 0; 3630 } 3631 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 3632 /* exit from callback subprog to callback-calling helper or 3633 * kfunc call. Use idx/subseq_idx check to discern it from 3634 * straight line code backtracking. 3635 * Unlike the subprog call handling above, we shouldn't 3636 * propagate precision of r1-r5 (if any requested), as they are 3637 * not actually arguments passed directly to callback subprogs 3638 */ 3639 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3640 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3641 WARN_ONCE(1, "verifier backtracking bug"); 3642 return -EFAULT; 3643 } 3644 if (bt_stack_mask(bt) != 0) 3645 return -ENOTSUPP; 3646 /* clear r1-r5 in callback subprog's mask */ 3647 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3648 bt_clear_reg(bt, i); 3649 if (bt_subprog_exit(bt)) 3650 return -EFAULT; 3651 return 0; 3652 } else if (opcode == BPF_CALL) { 3653 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3654 * catch this error later. Make backtracking conservative 3655 * with ENOTSUPP. 3656 */ 3657 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3658 return -ENOTSUPP; 3659 /* regular helper call sets R0 */ 3660 bt_clear_reg(bt, BPF_REG_0); 3661 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3662 /* if backtracing was looking for registers R1-R5 3663 * they should have been found already. 3664 */ 3665 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3666 WARN_ONCE(1, "verifier backtracking bug"); 3667 return -EFAULT; 3668 } 3669 } else if (opcode == BPF_EXIT) { 3670 bool r0_precise; 3671 3672 /* Backtracking to a nested function call, 'idx' is a part of 3673 * the inner frame 'subseq_idx' is a part of the outer frame. 3674 * In case of a regular function call, instructions giving 3675 * precision to registers R1-R5 should have been found already. 3676 * In case of a callback, it is ok to have R1-R5 marked for 3677 * backtracking, as these registers are set by the function 3678 * invoking callback. 3679 */ 3680 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 3681 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3682 bt_clear_reg(bt, i); 3683 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3684 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3685 WARN_ONCE(1, "verifier backtracking bug"); 3686 return -EFAULT; 3687 } 3688 3689 /* BPF_EXIT in subprog or callback always returns 3690 * right after the call instruction, so by checking 3691 * whether the instruction at subseq_idx-1 is subprog 3692 * call or not we can distinguish actual exit from 3693 * *subprog* from exit from *callback*. In the former 3694 * case, we need to propagate r0 precision, if 3695 * necessary. In the former we never do that. 3696 */ 3697 r0_precise = subseq_idx - 1 >= 0 && 3698 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3699 bt_is_reg_set(bt, BPF_REG_0); 3700 3701 bt_clear_reg(bt, BPF_REG_0); 3702 if (bt_subprog_enter(bt)) 3703 return -EFAULT; 3704 3705 if (r0_precise) 3706 bt_set_reg(bt, BPF_REG_0); 3707 /* r6-r9 and stack slots will stay set in caller frame 3708 * bitmasks until we return back from callee(s) 3709 */ 3710 return 0; 3711 } else if (BPF_SRC(insn->code) == BPF_X) { 3712 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3713 return 0; 3714 /* dreg <cond> sreg 3715 * Both dreg and sreg need precision before 3716 * this insn. If only sreg was marked precise 3717 * before it would be equally necessary to 3718 * propagate it to dreg. 3719 */ 3720 bt_set_reg(bt, dreg); 3721 bt_set_reg(bt, sreg); 3722 /* else dreg <cond> K 3723 * Only dreg still needs precision before 3724 * this insn, so for the K-based conditional 3725 * there is nothing new to be marked. 3726 */ 3727 } 3728 } else if (class == BPF_LD) { 3729 if (!bt_is_reg_set(bt, dreg)) 3730 return 0; 3731 bt_clear_reg(bt, dreg); 3732 /* It's ld_imm64 or ld_abs or ld_ind. 3733 * For ld_imm64 no further tracking of precision 3734 * into parent is necessary 3735 */ 3736 if (mode == BPF_IND || mode == BPF_ABS) 3737 /* to be analyzed */ 3738 return -ENOTSUPP; 3739 } 3740 return 0; 3741 } 3742 3743 /* the scalar precision tracking algorithm: 3744 * . at the start all registers have precise=false. 3745 * . scalar ranges are tracked as normal through alu and jmp insns. 3746 * . once precise value of the scalar register is used in: 3747 * . ptr + scalar alu 3748 * . if (scalar cond K|scalar) 3749 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3750 * backtrack through the verifier states and mark all registers and 3751 * stack slots with spilled constants that these scalar regisers 3752 * should be precise. 3753 * . during state pruning two registers (or spilled stack slots) 3754 * are equivalent if both are not precise. 3755 * 3756 * Note the verifier cannot simply walk register parentage chain, 3757 * since many different registers and stack slots could have been 3758 * used to compute single precise scalar. 3759 * 3760 * The approach of starting with precise=true for all registers and then 3761 * backtrack to mark a register as not precise when the verifier detects 3762 * that program doesn't care about specific value (e.g., when helper 3763 * takes register as ARG_ANYTHING parameter) is not safe. 3764 * 3765 * It's ok to walk single parentage chain of the verifier states. 3766 * It's possible that this backtracking will go all the way till 1st insn. 3767 * All other branches will be explored for needing precision later. 3768 * 3769 * The backtracking needs to deal with cases like: 3770 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3771 * r9 -= r8 3772 * r5 = r9 3773 * if r5 > 0x79f goto pc+7 3774 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3775 * r5 += 1 3776 * ... 3777 * call bpf_perf_event_output#25 3778 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3779 * 3780 * and this case: 3781 * r6 = 1 3782 * call foo // uses callee's r6 inside to compute r0 3783 * r0 += r6 3784 * if r0 == 0 goto 3785 * 3786 * to track above reg_mask/stack_mask needs to be independent for each frame. 3787 * 3788 * Also if parent's curframe > frame where backtracking started, 3789 * the verifier need to mark registers in both frames, otherwise callees 3790 * may incorrectly prune callers. This is similar to 3791 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3792 * 3793 * For now backtracking falls back into conservative marking. 3794 */ 3795 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3796 struct bpf_verifier_state *st) 3797 { 3798 struct bpf_func_state *func; 3799 struct bpf_reg_state *reg; 3800 int i, j; 3801 3802 if (env->log.level & BPF_LOG_LEVEL2) { 3803 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3804 st->curframe); 3805 } 3806 3807 /* big hammer: mark all scalars precise in this path. 3808 * pop_stack may still get !precise scalars. 3809 * We also skip current state and go straight to first parent state, 3810 * because precision markings in current non-checkpointed state are 3811 * not needed. See why in the comment in __mark_chain_precision below. 3812 */ 3813 for (st = st->parent; st; st = st->parent) { 3814 for (i = 0; i <= st->curframe; i++) { 3815 func = st->frame[i]; 3816 for (j = 0; j < BPF_REG_FP; j++) { 3817 reg = &func->regs[j]; 3818 if (reg->type != SCALAR_VALUE || reg->precise) 3819 continue; 3820 reg->precise = true; 3821 if (env->log.level & BPF_LOG_LEVEL2) { 3822 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3823 i, j); 3824 } 3825 } 3826 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3827 if (!is_spilled_reg(&func->stack[j])) 3828 continue; 3829 reg = &func->stack[j].spilled_ptr; 3830 if (reg->type != SCALAR_VALUE || reg->precise) 3831 continue; 3832 reg->precise = true; 3833 if (env->log.level & BPF_LOG_LEVEL2) { 3834 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 3835 i, -(j + 1) * 8); 3836 } 3837 } 3838 } 3839 } 3840 } 3841 3842 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3843 { 3844 struct bpf_func_state *func; 3845 struct bpf_reg_state *reg; 3846 int i, j; 3847 3848 for (i = 0; i <= st->curframe; i++) { 3849 func = st->frame[i]; 3850 for (j = 0; j < BPF_REG_FP; j++) { 3851 reg = &func->regs[j]; 3852 if (reg->type != SCALAR_VALUE) 3853 continue; 3854 reg->precise = false; 3855 } 3856 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3857 if (!is_spilled_reg(&func->stack[j])) 3858 continue; 3859 reg = &func->stack[j].spilled_ptr; 3860 if (reg->type != SCALAR_VALUE) 3861 continue; 3862 reg->precise = false; 3863 } 3864 } 3865 } 3866 3867 static bool idset_contains(struct bpf_idset *s, u32 id) 3868 { 3869 u32 i; 3870 3871 for (i = 0; i < s->count; ++i) 3872 if (s->ids[i] == id) 3873 return true; 3874 3875 return false; 3876 } 3877 3878 static int idset_push(struct bpf_idset *s, u32 id) 3879 { 3880 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 3881 return -EFAULT; 3882 s->ids[s->count++] = id; 3883 return 0; 3884 } 3885 3886 static void idset_reset(struct bpf_idset *s) 3887 { 3888 s->count = 0; 3889 } 3890 3891 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 3892 * Mark all registers with these IDs as precise. 3893 */ 3894 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3895 { 3896 struct bpf_idset *precise_ids = &env->idset_scratch; 3897 struct backtrack_state *bt = &env->bt; 3898 struct bpf_func_state *func; 3899 struct bpf_reg_state *reg; 3900 DECLARE_BITMAP(mask, 64); 3901 int i, fr; 3902 3903 idset_reset(precise_ids); 3904 3905 for (fr = bt->frame; fr >= 0; fr--) { 3906 func = st->frame[fr]; 3907 3908 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 3909 for_each_set_bit(i, mask, 32) { 3910 reg = &func->regs[i]; 3911 if (!reg->id || reg->type != SCALAR_VALUE) 3912 continue; 3913 if (idset_push(precise_ids, reg->id)) 3914 return -EFAULT; 3915 } 3916 3917 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 3918 for_each_set_bit(i, mask, 64) { 3919 if (i >= func->allocated_stack / BPF_REG_SIZE) 3920 break; 3921 if (!is_spilled_scalar_reg(&func->stack[i])) 3922 continue; 3923 reg = &func->stack[i].spilled_ptr; 3924 if (!reg->id) 3925 continue; 3926 if (idset_push(precise_ids, reg->id)) 3927 return -EFAULT; 3928 } 3929 } 3930 3931 for (fr = 0; fr <= st->curframe; ++fr) { 3932 func = st->frame[fr]; 3933 3934 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 3935 reg = &func->regs[i]; 3936 if (!reg->id) 3937 continue; 3938 if (!idset_contains(precise_ids, reg->id)) 3939 continue; 3940 bt_set_frame_reg(bt, fr, i); 3941 } 3942 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 3943 if (!is_spilled_scalar_reg(&func->stack[i])) 3944 continue; 3945 reg = &func->stack[i].spilled_ptr; 3946 if (!reg->id) 3947 continue; 3948 if (!idset_contains(precise_ids, reg->id)) 3949 continue; 3950 bt_set_frame_slot(bt, fr, i); 3951 } 3952 } 3953 3954 return 0; 3955 } 3956 3957 /* 3958 * __mark_chain_precision() backtracks BPF program instruction sequence and 3959 * chain of verifier states making sure that register *regno* (if regno >= 0) 3960 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 3961 * SCALARS, as well as any other registers and slots that contribute to 3962 * a tracked state of given registers/stack slots, depending on specific BPF 3963 * assembly instructions (see backtrack_insns() for exact instruction handling 3964 * logic). This backtracking relies on recorded jmp_history and is able to 3965 * traverse entire chain of parent states. This process ends only when all the 3966 * necessary registers/slots and their transitive dependencies are marked as 3967 * precise. 3968 * 3969 * One important and subtle aspect is that precise marks *do not matter* in 3970 * the currently verified state (current state). It is important to understand 3971 * why this is the case. 3972 * 3973 * First, note that current state is the state that is not yet "checkpointed", 3974 * i.e., it is not yet put into env->explored_states, and it has no children 3975 * states as well. It's ephemeral, and can end up either a) being discarded if 3976 * compatible explored state is found at some point or BPF_EXIT instruction is 3977 * reached or b) checkpointed and put into env->explored_states, branching out 3978 * into one or more children states. 3979 * 3980 * In the former case, precise markings in current state are completely 3981 * ignored by state comparison code (see regsafe() for details). Only 3982 * checkpointed ("old") state precise markings are important, and if old 3983 * state's register/slot is precise, regsafe() assumes current state's 3984 * register/slot as precise and checks value ranges exactly and precisely. If 3985 * states turn out to be compatible, current state's necessary precise 3986 * markings and any required parent states' precise markings are enforced 3987 * after the fact with propagate_precision() logic, after the fact. But it's 3988 * important to realize that in this case, even after marking current state 3989 * registers/slots as precise, we immediately discard current state. So what 3990 * actually matters is any of the precise markings propagated into current 3991 * state's parent states, which are always checkpointed (due to b) case above). 3992 * As such, for scenario a) it doesn't matter if current state has precise 3993 * markings set or not. 3994 * 3995 * Now, for the scenario b), checkpointing and forking into child(ren) 3996 * state(s). Note that before current state gets to checkpointing step, any 3997 * processed instruction always assumes precise SCALAR register/slot 3998 * knowledge: if precise value or range is useful to prune jump branch, BPF 3999 * verifier takes this opportunity enthusiastically. Similarly, when 4000 * register's value is used to calculate offset or memory address, exact 4001 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4002 * what we mentioned above about state comparison ignoring precise markings 4003 * during state comparison, BPF verifier ignores and also assumes precise 4004 * markings *at will* during instruction verification process. But as verifier 4005 * assumes precision, it also propagates any precision dependencies across 4006 * parent states, which are not yet finalized, so can be further restricted 4007 * based on new knowledge gained from restrictions enforced by their children 4008 * states. This is so that once those parent states are finalized, i.e., when 4009 * they have no more active children state, state comparison logic in 4010 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4011 * required for correctness. 4012 * 4013 * To build a bit more intuition, note also that once a state is checkpointed, 4014 * the path we took to get to that state is not important. This is crucial 4015 * property for state pruning. When state is checkpointed and finalized at 4016 * some instruction index, it can be correctly and safely used to "short 4017 * circuit" any *compatible* state that reaches exactly the same instruction 4018 * index. I.e., if we jumped to that instruction from a completely different 4019 * code path than original finalized state was derived from, it doesn't 4020 * matter, current state can be discarded because from that instruction 4021 * forward having a compatible state will ensure we will safely reach the 4022 * exit. States describe preconditions for further exploration, but completely 4023 * forget the history of how we got here. 4024 * 4025 * This also means that even if we needed precise SCALAR range to get to 4026 * finalized state, but from that point forward *that same* SCALAR register is 4027 * never used in a precise context (i.e., it's precise value is not needed for 4028 * correctness), it's correct and safe to mark such register as "imprecise" 4029 * (i.e., precise marking set to false). This is what we rely on when we do 4030 * not set precise marking in current state. If no child state requires 4031 * precision for any given SCALAR register, it's safe to dictate that it can 4032 * be imprecise. If any child state does require this register to be precise, 4033 * we'll mark it precise later retroactively during precise markings 4034 * propagation from child state to parent states. 4035 * 4036 * Skipping precise marking setting in current state is a mild version of 4037 * relying on the above observation. But we can utilize this property even 4038 * more aggressively by proactively forgetting any precise marking in the 4039 * current state (which we inherited from the parent state), right before we 4040 * checkpoint it and branch off into new child state. This is done by 4041 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4042 * finalized states which help in short circuiting more future states. 4043 */ 4044 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4045 { 4046 struct backtrack_state *bt = &env->bt; 4047 struct bpf_verifier_state *st = env->cur_state; 4048 int first_idx = st->first_insn_idx; 4049 int last_idx = env->insn_idx; 4050 int subseq_idx = -1; 4051 struct bpf_func_state *func; 4052 struct bpf_reg_state *reg; 4053 bool skip_first = true; 4054 int i, fr, err; 4055 4056 if (!env->bpf_capable) 4057 return 0; 4058 4059 /* set frame number from which we are starting to backtrack */ 4060 bt_init(bt, env->cur_state->curframe); 4061 4062 /* Do sanity checks against current state of register and/or stack 4063 * slot, but don't set precise flag in current state, as precision 4064 * tracking in the current state is unnecessary. 4065 */ 4066 func = st->frame[bt->frame]; 4067 if (regno >= 0) { 4068 reg = &func->regs[regno]; 4069 if (reg->type != SCALAR_VALUE) { 4070 WARN_ONCE(1, "backtracing misuse"); 4071 return -EFAULT; 4072 } 4073 bt_set_reg(bt, regno); 4074 } 4075 4076 if (bt_empty(bt)) 4077 return 0; 4078 4079 for (;;) { 4080 DECLARE_BITMAP(mask, 64); 4081 u32 history = st->jmp_history_cnt; 4082 4083 if (env->log.level & BPF_LOG_LEVEL2) { 4084 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4085 bt->frame, last_idx, first_idx, subseq_idx); 4086 } 4087 4088 /* If some register with scalar ID is marked as precise, 4089 * make sure that all registers sharing this ID are also precise. 4090 * This is needed to estimate effect of find_equal_scalars(). 4091 * Do this at the last instruction of each state, 4092 * bpf_reg_state::id fields are valid for these instructions. 4093 * 4094 * Allows to track precision in situation like below: 4095 * 4096 * r2 = unknown value 4097 * ... 4098 * --- state #0 --- 4099 * ... 4100 * r1 = r2 // r1 and r2 now share the same ID 4101 * ... 4102 * --- state #1 {r1.id = A, r2.id = A} --- 4103 * ... 4104 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4105 * ... 4106 * --- state #2 {r1.id = A, r2.id = A} --- 4107 * r3 = r10 4108 * r3 += r1 // need to mark both r1 and r2 4109 */ 4110 if (mark_precise_scalar_ids(env, st)) 4111 return -EFAULT; 4112 4113 if (last_idx < 0) { 4114 /* we are at the entry into subprog, which 4115 * is expected for global funcs, but only if 4116 * requested precise registers are R1-R5 4117 * (which are global func's input arguments) 4118 */ 4119 if (st->curframe == 0 && 4120 st->frame[0]->subprogno > 0 && 4121 st->frame[0]->callsite == BPF_MAIN_FUNC && 4122 bt_stack_mask(bt) == 0 && 4123 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4124 bitmap_from_u64(mask, bt_reg_mask(bt)); 4125 for_each_set_bit(i, mask, 32) { 4126 reg = &st->frame[0]->regs[i]; 4127 bt_clear_reg(bt, i); 4128 if (reg->type == SCALAR_VALUE) 4129 reg->precise = true; 4130 } 4131 return 0; 4132 } 4133 4134 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4135 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4136 WARN_ONCE(1, "verifier backtracking bug"); 4137 return -EFAULT; 4138 } 4139 4140 for (i = last_idx;;) { 4141 if (skip_first) { 4142 err = 0; 4143 skip_first = false; 4144 } else { 4145 err = backtrack_insn(env, i, subseq_idx, bt); 4146 } 4147 if (err == -ENOTSUPP) { 4148 mark_all_scalars_precise(env, env->cur_state); 4149 bt_reset(bt); 4150 return 0; 4151 } else if (err) { 4152 return err; 4153 } 4154 if (bt_empty(bt)) 4155 /* Found assignment(s) into tracked register in this state. 4156 * Since this state is already marked, just return. 4157 * Nothing to be tracked further in the parent state. 4158 */ 4159 return 0; 4160 subseq_idx = i; 4161 i = get_prev_insn_idx(st, i, &history); 4162 if (i == -ENOENT) 4163 break; 4164 if (i >= env->prog->len) { 4165 /* This can happen if backtracking reached insn 0 4166 * and there are still reg_mask or stack_mask 4167 * to backtrack. 4168 * It means the backtracking missed the spot where 4169 * particular register was initialized with a constant. 4170 */ 4171 verbose(env, "BUG backtracking idx %d\n", i); 4172 WARN_ONCE(1, "verifier backtracking bug"); 4173 return -EFAULT; 4174 } 4175 } 4176 st = st->parent; 4177 if (!st) 4178 break; 4179 4180 for (fr = bt->frame; fr >= 0; fr--) { 4181 func = st->frame[fr]; 4182 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4183 for_each_set_bit(i, mask, 32) { 4184 reg = &func->regs[i]; 4185 if (reg->type != SCALAR_VALUE) { 4186 bt_clear_frame_reg(bt, fr, i); 4187 continue; 4188 } 4189 if (reg->precise) 4190 bt_clear_frame_reg(bt, fr, i); 4191 else 4192 reg->precise = true; 4193 } 4194 4195 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4196 for_each_set_bit(i, mask, 64) { 4197 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4198 /* the sequence of instructions: 4199 * 2: (bf) r3 = r10 4200 * 3: (7b) *(u64 *)(r3 -8) = r0 4201 * 4: (79) r4 = *(u64 *)(r10 -8) 4202 * doesn't contain jmps. It's backtracked 4203 * as a single block. 4204 * During backtracking insn 3 is not recognized as 4205 * stack access, so at the end of backtracking 4206 * stack slot fp-8 is still marked in stack_mask. 4207 * However the parent state may not have accessed 4208 * fp-8 and it's "unallocated" stack space. 4209 * In such case fallback to conservative. 4210 */ 4211 mark_all_scalars_precise(env, env->cur_state); 4212 bt_reset(bt); 4213 return 0; 4214 } 4215 4216 if (!is_spilled_scalar_reg(&func->stack[i])) { 4217 bt_clear_frame_slot(bt, fr, i); 4218 continue; 4219 } 4220 reg = &func->stack[i].spilled_ptr; 4221 if (reg->precise) 4222 bt_clear_frame_slot(bt, fr, i); 4223 else 4224 reg->precise = true; 4225 } 4226 if (env->log.level & BPF_LOG_LEVEL2) { 4227 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4228 bt_frame_reg_mask(bt, fr)); 4229 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4230 fr, env->tmp_str_buf); 4231 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4232 bt_frame_stack_mask(bt, fr)); 4233 verbose(env, "stack=%s: ", env->tmp_str_buf); 4234 print_verifier_state(env, func, true); 4235 } 4236 } 4237 4238 if (bt_empty(bt)) 4239 return 0; 4240 4241 subseq_idx = first_idx; 4242 last_idx = st->last_insn_idx; 4243 first_idx = st->first_insn_idx; 4244 } 4245 4246 /* if we still have requested precise regs or slots, we missed 4247 * something (e.g., stack access through non-r10 register), so 4248 * fallback to marking all precise 4249 */ 4250 if (!bt_empty(bt)) { 4251 mark_all_scalars_precise(env, env->cur_state); 4252 bt_reset(bt); 4253 } 4254 4255 return 0; 4256 } 4257 4258 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4259 { 4260 return __mark_chain_precision(env, regno); 4261 } 4262 4263 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4264 * desired reg and stack masks across all relevant frames 4265 */ 4266 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4267 { 4268 return __mark_chain_precision(env, -1); 4269 } 4270 4271 static bool is_spillable_regtype(enum bpf_reg_type type) 4272 { 4273 switch (base_type(type)) { 4274 case PTR_TO_MAP_VALUE: 4275 case PTR_TO_STACK: 4276 case PTR_TO_CTX: 4277 case PTR_TO_PACKET: 4278 case PTR_TO_PACKET_META: 4279 case PTR_TO_PACKET_END: 4280 case PTR_TO_FLOW_KEYS: 4281 case CONST_PTR_TO_MAP: 4282 case PTR_TO_SOCKET: 4283 case PTR_TO_SOCK_COMMON: 4284 case PTR_TO_TCP_SOCK: 4285 case PTR_TO_XDP_SOCK: 4286 case PTR_TO_BTF_ID: 4287 case PTR_TO_BUF: 4288 case PTR_TO_MEM: 4289 case PTR_TO_FUNC: 4290 case PTR_TO_MAP_KEY: 4291 return true; 4292 default: 4293 return false; 4294 } 4295 } 4296 4297 /* Does this register contain a constant zero? */ 4298 static bool register_is_null(struct bpf_reg_state *reg) 4299 { 4300 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4301 } 4302 4303 /* check if register is a constant scalar value */ 4304 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 4305 { 4306 return reg->type == SCALAR_VALUE && 4307 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 4308 } 4309 4310 /* assuming is_reg_const() is true, return constant value of a register */ 4311 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 4312 { 4313 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 4314 } 4315 4316 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4317 { 4318 return tnum_is_unknown(reg->var_off) && 4319 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4320 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4321 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4322 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4323 } 4324 4325 static bool register_is_bounded(struct bpf_reg_state *reg) 4326 { 4327 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4328 } 4329 4330 static bool __is_pointer_value(bool allow_ptr_leaks, 4331 const struct bpf_reg_state *reg) 4332 { 4333 if (allow_ptr_leaks) 4334 return false; 4335 4336 return reg->type != SCALAR_VALUE; 4337 } 4338 4339 /* Copy src state preserving dst->parent and dst->live fields */ 4340 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4341 { 4342 struct bpf_reg_state *parent = dst->parent; 4343 enum bpf_reg_liveness live = dst->live; 4344 4345 *dst = *src; 4346 dst->parent = parent; 4347 dst->live = live; 4348 } 4349 4350 static void save_register_state(struct bpf_func_state *state, 4351 int spi, struct bpf_reg_state *reg, 4352 int size) 4353 { 4354 int i; 4355 4356 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4357 if (size == BPF_REG_SIZE) 4358 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4359 4360 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4361 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4362 4363 /* size < 8 bytes spill */ 4364 for (; i; i--) 4365 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4366 } 4367 4368 static bool is_bpf_st_mem(struct bpf_insn *insn) 4369 { 4370 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4371 } 4372 4373 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4374 * stack boundary and alignment are checked in check_mem_access() 4375 */ 4376 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4377 /* stack frame we're writing to */ 4378 struct bpf_func_state *state, 4379 int off, int size, int value_regno, 4380 int insn_idx) 4381 { 4382 struct bpf_func_state *cur; /* state of the current function */ 4383 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4384 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4385 struct bpf_reg_state *reg = NULL; 4386 u32 dst_reg = insn->dst_reg; 4387 4388 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 4389 if (err) 4390 return err; 4391 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4392 * so it's aligned access and [off, off + size) are within stack limits 4393 */ 4394 if (!env->allow_ptr_leaks && 4395 state->stack[spi].slot_type[0] == STACK_SPILL && 4396 size != BPF_REG_SIZE) { 4397 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4398 return -EACCES; 4399 } 4400 4401 cur = env->cur_state->frame[env->cur_state->curframe]; 4402 if (value_regno >= 0) 4403 reg = &cur->regs[value_regno]; 4404 if (!env->bypass_spec_v4) { 4405 bool sanitize = reg && is_spillable_regtype(reg->type); 4406 4407 for (i = 0; i < size; i++) { 4408 u8 type = state->stack[spi].slot_type[i]; 4409 4410 if (type != STACK_MISC && type != STACK_ZERO) { 4411 sanitize = true; 4412 break; 4413 } 4414 } 4415 4416 if (sanitize) 4417 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4418 } 4419 4420 err = destroy_if_dynptr_stack_slot(env, state, spi); 4421 if (err) 4422 return err; 4423 4424 mark_stack_slot_scratched(env, spi); 4425 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4426 !register_is_null(reg) && env->bpf_capable) { 4427 if (dst_reg != BPF_REG_FP) { 4428 /* The backtracking logic can only recognize explicit 4429 * stack slot address like [fp - 8]. Other spill of 4430 * scalar via different register has to be conservative. 4431 * Backtrack from here and mark all registers as precise 4432 * that contributed into 'reg' being a constant. 4433 */ 4434 err = mark_chain_precision(env, value_regno); 4435 if (err) 4436 return err; 4437 } 4438 save_register_state(state, spi, reg, size); 4439 /* Break the relation on a narrowing spill. */ 4440 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4441 state->stack[spi].spilled_ptr.id = 0; 4442 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4443 insn->imm != 0 && env->bpf_capable) { 4444 struct bpf_reg_state fake_reg = {}; 4445 4446 __mark_reg_known(&fake_reg, insn->imm); 4447 fake_reg.type = SCALAR_VALUE; 4448 save_register_state(state, spi, &fake_reg, size); 4449 } else if (reg && is_spillable_regtype(reg->type)) { 4450 /* register containing pointer is being spilled into stack */ 4451 if (size != BPF_REG_SIZE) { 4452 verbose_linfo(env, insn_idx, "; "); 4453 verbose(env, "invalid size of register spill\n"); 4454 return -EACCES; 4455 } 4456 if (state != cur && reg->type == PTR_TO_STACK) { 4457 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4458 return -EINVAL; 4459 } 4460 save_register_state(state, spi, reg, size); 4461 } else { 4462 u8 type = STACK_MISC; 4463 4464 /* regular write of data into stack destroys any spilled ptr */ 4465 state->stack[spi].spilled_ptr.type = NOT_INIT; 4466 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4467 if (is_stack_slot_special(&state->stack[spi])) 4468 for (i = 0; i < BPF_REG_SIZE; i++) 4469 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4470 4471 /* only mark the slot as written if all 8 bytes were written 4472 * otherwise read propagation may incorrectly stop too soon 4473 * when stack slots are partially written. 4474 * This heuristic means that read propagation will be 4475 * conservative, since it will add reg_live_read marks 4476 * to stack slots all the way to first state when programs 4477 * writes+reads less than 8 bytes 4478 */ 4479 if (size == BPF_REG_SIZE) 4480 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4481 4482 /* when we zero initialize stack slots mark them as such */ 4483 if ((reg && register_is_null(reg)) || 4484 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4485 /* backtracking doesn't work for STACK_ZERO yet. */ 4486 err = mark_chain_precision(env, value_regno); 4487 if (err) 4488 return err; 4489 type = STACK_ZERO; 4490 } 4491 4492 /* Mark slots affected by this stack write. */ 4493 for (i = 0; i < size; i++) 4494 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4495 type; 4496 } 4497 return 0; 4498 } 4499 4500 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4501 * known to contain a variable offset. 4502 * This function checks whether the write is permitted and conservatively 4503 * tracks the effects of the write, considering that each stack slot in the 4504 * dynamic range is potentially written to. 4505 * 4506 * 'off' includes 'regno->off'. 4507 * 'value_regno' can be -1, meaning that an unknown value is being written to 4508 * the stack. 4509 * 4510 * Spilled pointers in range are not marked as written because we don't know 4511 * what's going to be actually written. This means that read propagation for 4512 * future reads cannot be terminated by this write. 4513 * 4514 * For privileged programs, uninitialized stack slots are considered 4515 * initialized by this write (even though we don't know exactly what offsets 4516 * are going to be written to). The idea is that we don't want the verifier to 4517 * reject future reads that access slots written to through variable offsets. 4518 */ 4519 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4520 /* func where register points to */ 4521 struct bpf_func_state *state, 4522 int ptr_regno, int off, int size, 4523 int value_regno, int insn_idx) 4524 { 4525 struct bpf_func_state *cur; /* state of the current function */ 4526 int min_off, max_off; 4527 int i, err; 4528 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4529 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4530 bool writing_zero = false; 4531 /* set if the fact that we're writing a zero is used to let any 4532 * stack slots remain STACK_ZERO 4533 */ 4534 bool zero_used = false; 4535 4536 cur = env->cur_state->frame[env->cur_state->curframe]; 4537 ptr_reg = &cur->regs[ptr_regno]; 4538 min_off = ptr_reg->smin_value + off; 4539 max_off = ptr_reg->smax_value + off + size; 4540 if (value_regno >= 0) 4541 value_reg = &cur->regs[value_regno]; 4542 if ((value_reg && register_is_null(value_reg)) || 4543 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4544 writing_zero = true; 4545 4546 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 4547 if (err) 4548 return err; 4549 4550 for (i = min_off; i < max_off; i++) { 4551 int spi; 4552 4553 spi = __get_spi(i); 4554 err = destroy_if_dynptr_stack_slot(env, state, spi); 4555 if (err) 4556 return err; 4557 } 4558 4559 /* Variable offset writes destroy any spilled pointers in range. */ 4560 for (i = min_off; i < max_off; i++) { 4561 u8 new_type, *stype; 4562 int slot, spi; 4563 4564 slot = -i - 1; 4565 spi = slot / BPF_REG_SIZE; 4566 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4567 mark_stack_slot_scratched(env, spi); 4568 4569 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4570 /* Reject the write if range we may write to has not 4571 * been initialized beforehand. If we didn't reject 4572 * here, the ptr status would be erased below (even 4573 * though not all slots are actually overwritten), 4574 * possibly opening the door to leaks. 4575 * 4576 * We do however catch STACK_INVALID case below, and 4577 * only allow reading possibly uninitialized memory 4578 * later for CAP_PERFMON, as the write may not happen to 4579 * that slot. 4580 */ 4581 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4582 insn_idx, i); 4583 return -EINVAL; 4584 } 4585 4586 /* Erase all spilled pointers. */ 4587 state->stack[spi].spilled_ptr.type = NOT_INIT; 4588 4589 /* Update the slot type. */ 4590 new_type = STACK_MISC; 4591 if (writing_zero && *stype == STACK_ZERO) { 4592 new_type = STACK_ZERO; 4593 zero_used = true; 4594 } 4595 /* If the slot is STACK_INVALID, we check whether it's OK to 4596 * pretend that it will be initialized by this write. The slot 4597 * might not actually be written to, and so if we mark it as 4598 * initialized future reads might leak uninitialized memory. 4599 * For privileged programs, we will accept such reads to slots 4600 * that may or may not be written because, if we're reject 4601 * them, the error would be too confusing. 4602 */ 4603 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4604 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4605 insn_idx, i); 4606 return -EINVAL; 4607 } 4608 *stype = new_type; 4609 } 4610 if (zero_used) { 4611 /* backtracking doesn't work for STACK_ZERO yet. */ 4612 err = mark_chain_precision(env, value_regno); 4613 if (err) 4614 return err; 4615 } 4616 return 0; 4617 } 4618 4619 /* When register 'dst_regno' is assigned some values from stack[min_off, 4620 * max_off), we set the register's type according to the types of the 4621 * respective stack slots. If all the stack values are known to be zeros, then 4622 * so is the destination reg. Otherwise, the register is considered to be 4623 * SCALAR. This function does not deal with register filling; the caller must 4624 * ensure that all spilled registers in the stack range have been marked as 4625 * read. 4626 */ 4627 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4628 /* func where src register points to */ 4629 struct bpf_func_state *ptr_state, 4630 int min_off, int max_off, int dst_regno) 4631 { 4632 struct bpf_verifier_state *vstate = env->cur_state; 4633 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4634 int i, slot, spi; 4635 u8 *stype; 4636 int zeros = 0; 4637 4638 for (i = min_off; i < max_off; i++) { 4639 slot = -i - 1; 4640 spi = slot / BPF_REG_SIZE; 4641 mark_stack_slot_scratched(env, spi); 4642 stype = ptr_state->stack[spi].slot_type; 4643 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4644 break; 4645 zeros++; 4646 } 4647 if (zeros == max_off - min_off) { 4648 /* any access_size read into register is zero extended, 4649 * so the whole register == const_zero 4650 */ 4651 __mark_reg_const_zero(&state->regs[dst_regno]); 4652 /* backtracking doesn't support STACK_ZERO yet, 4653 * so mark it precise here, so that later 4654 * backtracking can stop here. 4655 * Backtracking may not need this if this register 4656 * doesn't participate in pointer adjustment. 4657 * Forward propagation of precise flag is not 4658 * necessary either. This mark is only to stop 4659 * backtracking. Any register that contributed 4660 * to const 0 was marked precise before spill. 4661 */ 4662 state->regs[dst_regno].precise = true; 4663 } else { 4664 /* have read misc data from the stack */ 4665 mark_reg_unknown(env, state->regs, dst_regno); 4666 } 4667 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4668 } 4669 4670 /* Read the stack at 'off' and put the results into the register indicated by 4671 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4672 * spilled reg. 4673 * 4674 * 'dst_regno' can be -1, meaning that the read value is not going to a 4675 * register. 4676 * 4677 * The access is assumed to be within the current stack bounds. 4678 */ 4679 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4680 /* func where src register points to */ 4681 struct bpf_func_state *reg_state, 4682 int off, int size, int dst_regno) 4683 { 4684 struct bpf_verifier_state *vstate = env->cur_state; 4685 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4686 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4687 struct bpf_reg_state *reg; 4688 u8 *stype, type; 4689 4690 stype = reg_state->stack[spi].slot_type; 4691 reg = ®_state->stack[spi].spilled_ptr; 4692 4693 mark_stack_slot_scratched(env, spi); 4694 4695 if (is_spilled_reg(®_state->stack[spi])) { 4696 u8 spill_size = 1; 4697 4698 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4699 spill_size++; 4700 4701 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4702 if (reg->type != SCALAR_VALUE) { 4703 verbose_linfo(env, env->insn_idx, "; "); 4704 verbose(env, "invalid size of register fill\n"); 4705 return -EACCES; 4706 } 4707 4708 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4709 if (dst_regno < 0) 4710 return 0; 4711 4712 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4713 /* The earlier check_reg_arg() has decided the 4714 * subreg_def for this insn. Save it first. 4715 */ 4716 s32 subreg_def = state->regs[dst_regno].subreg_def; 4717 4718 copy_register_state(&state->regs[dst_regno], reg); 4719 state->regs[dst_regno].subreg_def = subreg_def; 4720 } else { 4721 for (i = 0; i < size; i++) { 4722 type = stype[(slot - i) % BPF_REG_SIZE]; 4723 if (type == STACK_SPILL) 4724 continue; 4725 if (type == STACK_MISC) 4726 continue; 4727 if (type == STACK_INVALID && env->allow_uninit_stack) 4728 continue; 4729 verbose(env, "invalid read from stack off %d+%d size %d\n", 4730 off, i, size); 4731 return -EACCES; 4732 } 4733 mark_reg_unknown(env, state->regs, dst_regno); 4734 } 4735 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4736 return 0; 4737 } 4738 4739 if (dst_regno >= 0) { 4740 /* restore register state from stack */ 4741 copy_register_state(&state->regs[dst_regno], reg); 4742 /* mark reg as written since spilled pointer state likely 4743 * has its liveness marks cleared by is_state_visited() 4744 * which resets stack/reg liveness for state transitions 4745 */ 4746 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4747 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4748 /* If dst_regno==-1, the caller is asking us whether 4749 * it is acceptable to use this value as a SCALAR_VALUE 4750 * (e.g. for XADD). 4751 * We must not allow unprivileged callers to do that 4752 * with spilled pointers. 4753 */ 4754 verbose(env, "leaking pointer from stack off %d\n", 4755 off); 4756 return -EACCES; 4757 } 4758 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4759 } else { 4760 for (i = 0; i < size; i++) { 4761 type = stype[(slot - i) % BPF_REG_SIZE]; 4762 if (type == STACK_MISC) 4763 continue; 4764 if (type == STACK_ZERO) 4765 continue; 4766 if (type == STACK_INVALID && env->allow_uninit_stack) 4767 continue; 4768 verbose(env, "invalid read from stack off %d+%d size %d\n", 4769 off, i, size); 4770 return -EACCES; 4771 } 4772 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4773 if (dst_regno >= 0) 4774 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4775 } 4776 return 0; 4777 } 4778 4779 enum bpf_access_src { 4780 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4781 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4782 }; 4783 4784 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4785 int regno, int off, int access_size, 4786 bool zero_size_allowed, 4787 enum bpf_access_src type, 4788 struct bpf_call_arg_meta *meta); 4789 4790 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4791 { 4792 return cur_regs(env) + regno; 4793 } 4794 4795 /* Read the stack at 'ptr_regno + off' and put the result into the register 4796 * 'dst_regno'. 4797 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4798 * but not its variable offset. 4799 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4800 * 4801 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4802 * filling registers (i.e. reads of spilled register cannot be detected when 4803 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4804 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4805 * offset; for a fixed offset check_stack_read_fixed_off should be used 4806 * instead. 4807 */ 4808 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4809 int ptr_regno, int off, int size, int dst_regno) 4810 { 4811 /* The state of the source register. */ 4812 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4813 struct bpf_func_state *ptr_state = func(env, reg); 4814 int err; 4815 int min_off, max_off; 4816 4817 /* Note that we pass a NULL meta, so raw access will not be permitted. 4818 */ 4819 err = check_stack_range_initialized(env, ptr_regno, off, size, 4820 false, ACCESS_DIRECT, NULL); 4821 if (err) 4822 return err; 4823 4824 min_off = reg->smin_value + off; 4825 max_off = reg->smax_value + off; 4826 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4827 return 0; 4828 } 4829 4830 /* check_stack_read dispatches to check_stack_read_fixed_off or 4831 * check_stack_read_var_off. 4832 * 4833 * The caller must ensure that the offset falls within the allocated stack 4834 * bounds. 4835 * 4836 * 'dst_regno' is a register which will receive the value from the stack. It 4837 * can be -1, meaning that the read value is not going to a register. 4838 */ 4839 static int check_stack_read(struct bpf_verifier_env *env, 4840 int ptr_regno, int off, int size, 4841 int dst_regno) 4842 { 4843 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4844 struct bpf_func_state *state = func(env, reg); 4845 int err; 4846 /* Some accesses are only permitted with a static offset. */ 4847 bool var_off = !tnum_is_const(reg->var_off); 4848 4849 /* The offset is required to be static when reads don't go to a 4850 * register, in order to not leak pointers (see 4851 * check_stack_read_fixed_off). 4852 */ 4853 if (dst_regno < 0 && var_off) { 4854 char tn_buf[48]; 4855 4856 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4857 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 4858 tn_buf, off, size); 4859 return -EACCES; 4860 } 4861 /* Variable offset is prohibited for unprivileged mode for simplicity 4862 * since it requires corresponding support in Spectre masking for stack 4863 * ALU. See also retrieve_ptr_limit(). The check in 4864 * check_stack_access_for_ptr_arithmetic() called by 4865 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 4866 * with variable offsets, therefore no check is required here. Further, 4867 * just checking it here would be insufficient as speculative stack 4868 * writes could still lead to unsafe speculative behaviour. 4869 */ 4870 if (!var_off) { 4871 off += reg->var_off.value; 4872 err = check_stack_read_fixed_off(env, state, off, size, 4873 dst_regno); 4874 } else { 4875 /* Variable offset stack reads need more conservative handling 4876 * than fixed offset ones. Note that dst_regno >= 0 on this 4877 * branch. 4878 */ 4879 err = check_stack_read_var_off(env, ptr_regno, off, size, 4880 dst_regno); 4881 } 4882 return err; 4883 } 4884 4885 4886 /* check_stack_write dispatches to check_stack_write_fixed_off or 4887 * check_stack_write_var_off. 4888 * 4889 * 'ptr_regno' is the register used as a pointer into the stack. 4890 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 4891 * 'value_regno' is the register whose value we're writing to the stack. It can 4892 * be -1, meaning that we're not writing from a register. 4893 * 4894 * The caller must ensure that the offset falls within the maximum stack size. 4895 */ 4896 static int check_stack_write(struct bpf_verifier_env *env, 4897 int ptr_regno, int off, int size, 4898 int value_regno, int insn_idx) 4899 { 4900 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4901 struct bpf_func_state *state = func(env, reg); 4902 int err; 4903 4904 if (tnum_is_const(reg->var_off)) { 4905 off += reg->var_off.value; 4906 err = check_stack_write_fixed_off(env, state, off, size, 4907 value_regno, insn_idx); 4908 } else { 4909 /* Variable offset stack reads need more conservative handling 4910 * than fixed offset ones. 4911 */ 4912 err = check_stack_write_var_off(env, state, 4913 ptr_regno, off, size, 4914 value_regno, insn_idx); 4915 } 4916 return err; 4917 } 4918 4919 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 4920 int off, int size, enum bpf_access_type type) 4921 { 4922 struct bpf_reg_state *regs = cur_regs(env); 4923 struct bpf_map *map = regs[regno].map_ptr; 4924 u32 cap = bpf_map_flags_to_cap(map); 4925 4926 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 4927 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 4928 map->value_size, off, size); 4929 return -EACCES; 4930 } 4931 4932 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 4933 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 4934 map->value_size, off, size); 4935 return -EACCES; 4936 } 4937 4938 return 0; 4939 } 4940 4941 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 4942 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 4943 int off, int size, u32 mem_size, 4944 bool zero_size_allowed) 4945 { 4946 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 4947 struct bpf_reg_state *reg; 4948 4949 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 4950 return 0; 4951 4952 reg = &cur_regs(env)[regno]; 4953 switch (reg->type) { 4954 case PTR_TO_MAP_KEY: 4955 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 4956 mem_size, off, size); 4957 break; 4958 case PTR_TO_MAP_VALUE: 4959 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 4960 mem_size, off, size); 4961 break; 4962 case PTR_TO_PACKET: 4963 case PTR_TO_PACKET_META: 4964 case PTR_TO_PACKET_END: 4965 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 4966 off, size, regno, reg->id, off, mem_size); 4967 break; 4968 case PTR_TO_MEM: 4969 default: 4970 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 4971 mem_size, off, size); 4972 } 4973 4974 return -EACCES; 4975 } 4976 4977 /* check read/write into a memory region with possible variable offset */ 4978 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 4979 int off, int size, u32 mem_size, 4980 bool zero_size_allowed) 4981 { 4982 struct bpf_verifier_state *vstate = env->cur_state; 4983 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4984 struct bpf_reg_state *reg = &state->regs[regno]; 4985 int err; 4986 4987 /* We may have adjusted the register pointing to memory region, so we 4988 * need to try adding each of min_value and max_value to off 4989 * to make sure our theoretical access will be safe. 4990 * 4991 * The minimum value is only important with signed 4992 * comparisons where we can't assume the floor of a 4993 * value is 0. If we are using signed variables for our 4994 * index'es we need to make sure that whatever we use 4995 * will have a set floor within our range. 4996 */ 4997 if (reg->smin_value < 0 && 4998 (reg->smin_value == S64_MIN || 4999 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5000 reg->smin_value + off < 0)) { 5001 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5002 regno); 5003 return -EACCES; 5004 } 5005 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5006 mem_size, zero_size_allowed); 5007 if (err) { 5008 verbose(env, "R%d min value is outside of the allowed memory range\n", 5009 regno); 5010 return err; 5011 } 5012 5013 /* If we haven't set a max value then we need to bail since we can't be 5014 * sure we won't do bad things. 5015 * If reg->umax_value + off could overflow, treat that as unbounded too. 5016 */ 5017 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5018 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5019 regno); 5020 return -EACCES; 5021 } 5022 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5023 mem_size, zero_size_allowed); 5024 if (err) { 5025 verbose(env, "R%d max value is outside of the allowed memory range\n", 5026 regno); 5027 return err; 5028 } 5029 5030 return 0; 5031 } 5032 5033 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5034 const struct bpf_reg_state *reg, int regno, 5035 bool fixed_off_ok) 5036 { 5037 /* Access to this pointer-typed register or passing it to a helper 5038 * is only allowed in its original, unmodified form. 5039 */ 5040 5041 if (reg->off < 0) { 5042 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5043 reg_type_str(env, reg->type), regno, reg->off); 5044 return -EACCES; 5045 } 5046 5047 if (!fixed_off_ok && reg->off) { 5048 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5049 reg_type_str(env, reg->type), regno, reg->off); 5050 return -EACCES; 5051 } 5052 5053 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5054 char tn_buf[48]; 5055 5056 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5057 verbose(env, "variable %s access var_off=%s disallowed\n", 5058 reg_type_str(env, reg->type), tn_buf); 5059 return -EACCES; 5060 } 5061 5062 return 0; 5063 } 5064 5065 int check_ptr_off_reg(struct bpf_verifier_env *env, 5066 const struct bpf_reg_state *reg, int regno) 5067 { 5068 return __check_ptr_off_reg(env, reg, regno, false); 5069 } 5070 5071 static int map_kptr_match_type(struct bpf_verifier_env *env, 5072 struct btf_field *kptr_field, 5073 struct bpf_reg_state *reg, u32 regno) 5074 { 5075 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5076 int perm_flags; 5077 const char *reg_name = ""; 5078 5079 if (btf_is_kernel(reg->btf)) { 5080 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5081 5082 /* Only unreferenced case accepts untrusted pointers */ 5083 if (kptr_field->type == BPF_KPTR_UNREF) 5084 perm_flags |= PTR_UNTRUSTED; 5085 } else { 5086 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5087 if (kptr_field->type == BPF_KPTR_PERCPU) 5088 perm_flags |= MEM_PERCPU; 5089 } 5090 5091 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5092 goto bad_type; 5093 5094 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5095 reg_name = btf_type_name(reg->btf, reg->btf_id); 5096 5097 /* For ref_ptr case, release function check should ensure we get one 5098 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5099 * normal store of unreferenced kptr, we must ensure var_off is zero. 5100 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5101 * reg->off and reg->ref_obj_id are not needed here. 5102 */ 5103 if (__check_ptr_off_reg(env, reg, regno, true)) 5104 return -EACCES; 5105 5106 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5107 * we also need to take into account the reg->off. 5108 * 5109 * We want to support cases like: 5110 * 5111 * struct foo { 5112 * struct bar br; 5113 * struct baz bz; 5114 * }; 5115 * 5116 * struct foo *v; 5117 * v = func(); // PTR_TO_BTF_ID 5118 * val->foo = v; // reg->off is zero, btf and btf_id match type 5119 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5120 * // first member type of struct after comparison fails 5121 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5122 * // to match type 5123 * 5124 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5125 * is zero. We must also ensure that btf_struct_ids_match does not walk 5126 * the struct to match type against first member of struct, i.e. reject 5127 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5128 * strict mode to true for type match. 5129 */ 5130 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5131 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5132 kptr_field->type != BPF_KPTR_UNREF)) 5133 goto bad_type; 5134 return 0; 5135 bad_type: 5136 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5137 reg_type_str(env, reg->type), reg_name); 5138 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5139 if (kptr_field->type == BPF_KPTR_UNREF) 5140 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5141 targ_name); 5142 else 5143 verbose(env, "\n"); 5144 return -EINVAL; 5145 } 5146 5147 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5148 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5149 */ 5150 static bool in_rcu_cs(struct bpf_verifier_env *env) 5151 { 5152 return env->cur_state->active_rcu_lock || 5153 env->cur_state->active_lock.ptr || 5154 !env->prog->aux->sleepable; 5155 } 5156 5157 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5158 BTF_SET_START(rcu_protected_types) 5159 BTF_ID(struct, prog_test_ref_kfunc) 5160 #ifdef CONFIG_CGROUPS 5161 BTF_ID(struct, cgroup) 5162 #endif 5163 BTF_ID(struct, bpf_cpumask) 5164 BTF_ID(struct, task_struct) 5165 BTF_SET_END(rcu_protected_types) 5166 5167 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5168 { 5169 if (!btf_is_kernel(btf)) 5170 return true; 5171 return btf_id_set_contains(&rcu_protected_types, btf_id); 5172 } 5173 5174 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 5175 { 5176 struct btf_struct_meta *meta; 5177 5178 if (btf_is_kernel(kptr_field->kptr.btf)) 5179 return NULL; 5180 5181 meta = btf_find_struct_meta(kptr_field->kptr.btf, 5182 kptr_field->kptr.btf_id); 5183 5184 return meta ? meta->record : NULL; 5185 } 5186 5187 static bool rcu_safe_kptr(const struct btf_field *field) 5188 { 5189 const struct btf_field_kptr *kptr = &field->kptr; 5190 5191 return field->type == BPF_KPTR_PERCPU || 5192 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5193 } 5194 5195 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5196 { 5197 struct btf_record *rec; 5198 u32 ret; 5199 5200 ret = PTR_MAYBE_NULL; 5201 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5202 ret |= MEM_RCU; 5203 if (kptr_field->type == BPF_KPTR_PERCPU) 5204 ret |= MEM_PERCPU; 5205 else if (!btf_is_kernel(kptr_field->kptr.btf)) 5206 ret |= MEM_ALLOC; 5207 5208 rec = kptr_pointee_btf_record(kptr_field); 5209 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 5210 ret |= NON_OWN_REF; 5211 } else { 5212 ret |= PTR_UNTRUSTED; 5213 } 5214 5215 return ret; 5216 } 5217 5218 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5219 int value_regno, int insn_idx, 5220 struct btf_field *kptr_field) 5221 { 5222 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5223 int class = BPF_CLASS(insn->code); 5224 struct bpf_reg_state *val_reg; 5225 5226 /* Things we already checked for in check_map_access and caller: 5227 * - Reject cases where variable offset may touch kptr 5228 * - size of access (must be BPF_DW) 5229 * - tnum_is_const(reg->var_off) 5230 * - kptr_field->offset == off + reg->var_off.value 5231 */ 5232 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5233 if (BPF_MODE(insn->code) != BPF_MEM) { 5234 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5235 return -EACCES; 5236 } 5237 5238 /* We only allow loading referenced kptr, since it will be marked as 5239 * untrusted, similar to unreferenced kptr. 5240 */ 5241 if (class != BPF_LDX && 5242 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 5243 verbose(env, "store to referenced kptr disallowed\n"); 5244 return -EACCES; 5245 } 5246 5247 if (class == BPF_LDX) { 5248 val_reg = reg_state(env, value_regno); 5249 /* We can simply mark the value_regno receiving the pointer 5250 * value from map as PTR_TO_BTF_ID, with the correct type. 5251 */ 5252 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5253 kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field)); 5254 /* For mark_ptr_or_null_reg */ 5255 val_reg->id = ++env->id_gen; 5256 } else if (class == BPF_STX) { 5257 val_reg = reg_state(env, value_regno); 5258 if (!register_is_null(val_reg) && 5259 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5260 return -EACCES; 5261 } else if (class == BPF_ST) { 5262 if (insn->imm) { 5263 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5264 kptr_field->offset); 5265 return -EACCES; 5266 } 5267 } else { 5268 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5269 return -EACCES; 5270 } 5271 return 0; 5272 } 5273 5274 /* check read/write into a map element with possible variable offset */ 5275 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5276 int off, int size, bool zero_size_allowed, 5277 enum bpf_access_src src) 5278 { 5279 struct bpf_verifier_state *vstate = env->cur_state; 5280 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5281 struct bpf_reg_state *reg = &state->regs[regno]; 5282 struct bpf_map *map = reg->map_ptr; 5283 struct btf_record *rec; 5284 int err, i; 5285 5286 err = check_mem_region_access(env, regno, off, size, map->value_size, 5287 zero_size_allowed); 5288 if (err) 5289 return err; 5290 5291 if (IS_ERR_OR_NULL(map->record)) 5292 return 0; 5293 rec = map->record; 5294 for (i = 0; i < rec->cnt; i++) { 5295 struct btf_field *field = &rec->fields[i]; 5296 u32 p = field->offset; 5297 5298 /* If any part of a field can be touched by load/store, reject 5299 * this program. To check that [x1, x2) overlaps with [y1, y2), 5300 * it is sufficient to check x1 < y2 && y1 < x2. 5301 */ 5302 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5303 p < reg->umax_value + off + size) { 5304 switch (field->type) { 5305 case BPF_KPTR_UNREF: 5306 case BPF_KPTR_REF: 5307 case BPF_KPTR_PERCPU: 5308 if (src != ACCESS_DIRECT) { 5309 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5310 return -EACCES; 5311 } 5312 if (!tnum_is_const(reg->var_off)) { 5313 verbose(env, "kptr access cannot have variable offset\n"); 5314 return -EACCES; 5315 } 5316 if (p != off + reg->var_off.value) { 5317 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5318 p, off + reg->var_off.value); 5319 return -EACCES; 5320 } 5321 if (size != bpf_size_to_bytes(BPF_DW)) { 5322 verbose(env, "kptr access size must be BPF_DW\n"); 5323 return -EACCES; 5324 } 5325 break; 5326 default: 5327 verbose(env, "%s cannot be accessed directly by load/store\n", 5328 btf_field_type_name(field->type)); 5329 return -EACCES; 5330 } 5331 } 5332 } 5333 return 0; 5334 } 5335 5336 #define MAX_PACKET_OFF 0xffff 5337 5338 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5339 const struct bpf_call_arg_meta *meta, 5340 enum bpf_access_type t) 5341 { 5342 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5343 5344 switch (prog_type) { 5345 /* Program types only with direct read access go here! */ 5346 case BPF_PROG_TYPE_LWT_IN: 5347 case BPF_PROG_TYPE_LWT_OUT: 5348 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5349 case BPF_PROG_TYPE_SK_REUSEPORT: 5350 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5351 case BPF_PROG_TYPE_CGROUP_SKB: 5352 if (t == BPF_WRITE) 5353 return false; 5354 fallthrough; 5355 5356 /* Program types with direct read + write access go here! */ 5357 case BPF_PROG_TYPE_SCHED_CLS: 5358 case BPF_PROG_TYPE_SCHED_ACT: 5359 case BPF_PROG_TYPE_XDP: 5360 case BPF_PROG_TYPE_LWT_XMIT: 5361 case BPF_PROG_TYPE_SK_SKB: 5362 case BPF_PROG_TYPE_SK_MSG: 5363 if (meta) 5364 return meta->pkt_access; 5365 5366 env->seen_direct_write = true; 5367 return true; 5368 5369 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5370 if (t == BPF_WRITE) 5371 env->seen_direct_write = true; 5372 5373 return true; 5374 5375 default: 5376 return false; 5377 } 5378 } 5379 5380 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5381 int size, bool zero_size_allowed) 5382 { 5383 struct bpf_reg_state *regs = cur_regs(env); 5384 struct bpf_reg_state *reg = ®s[regno]; 5385 int err; 5386 5387 /* We may have added a variable offset to the packet pointer; but any 5388 * reg->range we have comes after that. We are only checking the fixed 5389 * offset. 5390 */ 5391 5392 /* We don't allow negative numbers, because we aren't tracking enough 5393 * detail to prove they're safe. 5394 */ 5395 if (reg->smin_value < 0) { 5396 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5397 regno); 5398 return -EACCES; 5399 } 5400 5401 err = reg->range < 0 ? -EINVAL : 5402 __check_mem_access(env, regno, off, size, reg->range, 5403 zero_size_allowed); 5404 if (err) { 5405 verbose(env, "R%d offset is outside of the packet\n", regno); 5406 return err; 5407 } 5408 5409 /* __check_mem_access has made sure "off + size - 1" is within u16. 5410 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5411 * otherwise find_good_pkt_pointers would have refused to set range info 5412 * that __check_mem_access would have rejected this pkt access. 5413 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5414 */ 5415 env->prog->aux->max_pkt_offset = 5416 max_t(u32, env->prog->aux->max_pkt_offset, 5417 off + reg->umax_value + size - 1); 5418 5419 return err; 5420 } 5421 5422 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5423 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5424 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5425 struct btf **btf, u32 *btf_id) 5426 { 5427 struct bpf_insn_access_aux info = { 5428 .reg_type = *reg_type, 5429 .log = &env->log, 5430 }; 5431 5432 if (env->ops->is_valid_access && 5433 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5434 /* A non zero info.ctx_field_size indicates that this field is a 5435 * candidate for later verifier transformation to load the whole 5436 * field and then apply a mask when accessed with a narrower 5437 * access than actual ctx access size. A zero info.ctx_field_size 5438 * will only allow for whole field access and rejects any other 5439 * type of narrower access. 5440 */ 5441 *reg_type = info.reg_type; 5442 5443 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5444 *btf = info.btf; 5445 *btf_id = info.btf_id; 5446 } else { 5447 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5448 } 5449 /* remember the offset of last byte accessed in ctx */ 5450 if (env->prog->aux->max_ctx_offset < off + size) 5451 env->prog->aux->max_ctx_offset = off + size; 5452 return 0; 5453 } 5454 5455 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5456 return -EACCES; 5457 } 5458 5459 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5460 int size) 5461 { 5462 if (size < 0 || off < 0 || 5463 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5464 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5465 off, size); 5466 return -EACCES; 5467 } 5468 return 0; 5469 } 5470 5471 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5472 u32 regno, int off, int size, 5473 enum bpf_access_type t) 5474 { 5475 struct bpf_reg_state *regs = cur_regs(env); 5476 struct bpf_reg_state *reg = ®s[regno]; 5477 struct bpf_insn_access_aux info = {}; 5478 bool valid; 5479 5480 if (reg->smin_value < 0) { 5481 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5482 regno); 5483 return -EACCES; 5484 } 5485 5486 switch (reg->type) { 5487 case PTR_TO_SOCK_COMMON: 5488 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5489 break; 5490 case PTR_TO_SOCKET: 5491 valid = bpf_sock_is_valid_access(off, size, t, &info); 5492 break; 5493 case PTR_TO_TCP_SOCK: 5494 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5495 break; 5496 case PTR_TO_XDP_SOCK: 5497 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5498 break; 5499 default: 5500 valid = false; 5501 } 5502 5503 5504 if (valid) { 5505 env->insn_aux_data[insn_idx].ctx_field_size = 5506 info.ctx_field_size; 5507 return 0; 5508 } 5509 5510 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5511 regno, reg_type_str(env, reg->type), off, size); 5512 5513 return -EACCES; 5514 } 5515 5516 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5517 { 5518 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5519 } 5520 5521 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5522 { 5523 const struct bpf_reg_state *reg = reg_state(env, regno); 5524 5525 return reg->type == PTR_TO_CTX; 5526 } 5527 5528 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5529 { 5530 const struct bpf_reg_state *reg = reg_state(env, regno); 5531 5532 return type_is_sk_pointer(reg->type); 5533 } 5534 5535 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5536 { 5537 const struct bpf_reg_state *reg = reg_state(env, regno); 5538 5539 return type_is_pkt_pointer(reg->type); 5540 } 5541 5542 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5543 { 5544 const struct bpf_reg_state *reg = reg_state(env, regno); 5545 5546 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5547 return reg->type == PTR_TO_FLOW_KEYS; 5548 } 5549 5550 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5551 #ifdef CONFIG_NET 5552 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5553 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5554 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5555 #endif 5556 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5557 }; 5558 5559 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5560 { 5561 /* A referenced register is always trusted. */ 5562 if (reg->ref_obj_id) 5563 return true; 5564 5565 /* Types listed in the reg2btf_ids are always trusted */ 5566 if (reg2btf_ids[base_type(reg->type)]) 5567 return true; 5568 5569 /* If a register is not referenced, it is trusted if it has the 5570 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5571 * other type modifiers may be safe, but we elect to take an opt-in 5572 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5573 * not. 5574 * 5575 * Eventually, we should make PTR_TRUSTED the single source of truth 5576 * for whether a register is trusted. 5577 */ 5578 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5579 !bpf_type_has_unsafe_modifiers(reg->type); 5580 } 5581 5582 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5583 { 5584 return reg->type & MEM_RCU; 5585 } 5586 5587 static void clear_trusted_flags(enum bpf_type_flag *flag) 5588 { 5589 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5590 } 5591 5592 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5593 const struct bpf_reg_state *reg, 5594 int off, int size, bool strict) 5595 { 5596 struct tnum reg_off; 5597 int ip_align; 5598 5599 /* Byte size accesses are always allowed. */ 5600 if (!strict || size == 1) 5601 return 0; 5602 5603 /* For platforms that do not have a Kconfig enabling 5604 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5605 * NET_IP_ALIGN is universally set to '2'. And on platforms 5606 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5607 * to this code only in strict mode where we want to emulate 5608 * the NET_IP_ALIGN==2 checking. Therefore use an 5609 * unconditional IP align value of '2'. 5610 */ 5611 ip_align = 2; 5612 5613 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5614 if (!tnum_is_aligned(reg_off, size)) { 5615 char tn_buf[48]; 5616 5617 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5618 verbose(env, 5619 "misaligned packet access off %d+%s+%d+%d size %d\n", 5620 ip_align, tn_buf, reg->off, off, size); 5621 return -EACCES; 5622 } 5623 5624 return 0; 5625 } 5626 5627 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5628 const struct bpf_reg_state *reg, 5629 const char *pointer_desc, 5630 int off, int size, bool strict) 5631 { 5632 struct tnum reg_off; 5633 5634 /* Byte size accesses are always allowed. */ 5635 if (!strict || size == 1) 5636 return 0; 5637 5638 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5639 if (!tnum_is_aligned(reg_off, size)) { 5640 char tn_buf[48]; 5641 5642 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5643 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5644 pointer_desc, tn_buf, reg->off, off, size); 5645 return -EACCES; 5646 } 5647 5648 return 0; 5649 } 5650 5651 static int check_ptr_alignment(struct bpf_verifier_env *env, 5652 const struct bpf_reg_state *reg, int off, 5653 int size, bool strict_alignment_once) 5654 { 5655 bool strict = env->strict_alignment || strict_alignment_once; 5656 const char *pointer_desc = ""; 5657 5658 switch (reg->type) { 5659 case PTR_TO_PACKET: 5660 case PTR_TO_PACKET_META: 5661 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5662 * right in front, treat it the very same way. 5663 */ 5664 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5665 case PTR_TO_FLOW_KEYS: 5666 pointer_desc = "flow keys "; 5667 break; 5668 case PTR_TO_MAP_KEY: 5669 pointer_desc = "key "; 5670 break; 5671 case PTR_TO_MAP_VALUE: 5672 pointer_desc = "value "; 5673 break; 5674 case PTR_TO_CTX: 5675 pointer_desc = "context "; 5676 break; 5677 case PTR_TO_STACK: 5678 pointer_desc = "stack "; 5679 /* The stack spill tracking logic in check_stack_write_fixed_off() 5680 * and check_stack_read_fixed_off() relies on stack accesses being 5681 * aligned. 5682 */ 5683 strict = true; 5684 break; 5685 case PTR_TO_SOCKET: 5686 pointer_desc = "sock "; 5687 break; 5688 case PTR_TO_SOCK_COMMON: 5689 pointer_desc = "sock_common "; 5690 break; 5691 case PTR_TO_TCP_SOCK: 5692 pointer_desc = "tcp_sock "; 5693 break; 5694 case PTR_TO_XDP_SOCK: 5695 pointer_desc = "xdp_sock "; 5696 break; 5697 default: 5698 break; 5699 } 5700 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5701 strict); 5702 } 5703 5704 static int update_stack_depth(struct bpf_verifier_env *env, 5705 const struct bpf_func_state *func, 5706 int off) 5707 { 5708 u16 stack = env->subprog_info[func->subprogno].stack_depth; 5709 5710 if (stack >= -off) 5711 return 0; 5712 5713 /* update known max for given subprogram */ 5714 env->subprog_info[func->subprogno].stack_depth = -off; 5715 return 0; 5716 } 5717 5718 /* starting from main bpf function walk all instructions of the function 5719 * and recursively walk all callees that given function can call. 5720 * Ignore jump and exit insns. 5721 * Since recursion is prevented by check_cfg() this algorithm 5722 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5723 */ 5724 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5725 { 5726 struct bpf_subprog_info *subprog = env->subprog_info; 5727 struct bpf_insn *insn = env->prog->insnsi; 5728 int depth = 0, frame = 0, i, subprog_end; 5729 bool tail_call_reachable = false; 5730 int ret_insn[MAX_CALL_FRAMES]; 5731 int ret_prog[MAX_CALL_FRAMES]; 5732 int j; 5733 5734 i = subprog[idx].start; 5735 process_func: 5736 /* protect against potential stack overflow that might happen when 5737 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5738 * depth for such case down to 256 so that the worst case scenario 5739 * would result in 8k stack size (32 which is tailcall limit * 256 = 5740 * 8k). 5741 * 5742 * To get the idea what might happen, see an example: 5743 * func1 -> sub rsp, 128 5744 * subfunc1 -> sub rsp, 256 5745 * tailcall1 -> add rsp, 256 5746 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5747 * subfunc2 -> sub rsp, 64 5748 * subfunc22 -> sub rsp, 128 5749 * tailcall2 -> add rsp, 128 5750 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5751 * 5752 * tailcall will unwind the current stack frame but it will not get rid 5753 * of caller's stack as shown on the example above. 5754 */ 5755 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5756 verbose(env, 5757 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5758 depth); 5759 return -EACCES; 5760 } 5761 /* round up to 32-bytes, since this is granularity 5762 * of interpreter stack size 5763 */ 5764 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5765 if (depth > MAX_BPF_STACK) { 5766 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5767 frame + 1, depth); 5768 return -EACCES; 5769 } 5770 continue_func: 5771 subprog_end = subprog[idx + 1].start; 5772 for (; i < subprog_end; i++) { 5773 int next_insn, sidx; 5774 5775 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 5776 bool err = false; 5777 5778 if (!is_bpf_throw_kfunc(insn + i)) 5779 continue; 5780 if (subprog[idx].is_cb) 5781 err = true; 5782 for (int c = 0; c < frame && !err; c++) { 5783 if (subprog[ret_prog[c]].is_cb) { 5784 err = true; 5785 break; 5786 } 5787 } 5788 if (!err) 5789 continue; 5790 verbose(env, 5791 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 5792 i, idx); 5793 return -EINVAL; 5794 } 5795 5796 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5797 continue; 5798 /* remember insn and function to return to */ 5799 ret_insn[frame] = i + 1; 5800 ret_prog[frame] = idx; 5801 5802 /* find the callee */ 5803 next_insn = i + insn[i].imm + 1; 5804 sidx = find_subprog(env, next_insn); 5805 if (sidx < 0) { 5806 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5807 next_insn); 5808 return -EFAULT; 5809 } 5810 if (subprog[sidx].is_async_cb) { 5811 if (subprog[sidx].has_tail_call) { 5812 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5813 return -EFAULT; 5814 } 5815 /* async callbacks don't increase bpf prog stack size unless called directly */ 5816 if (!bpf_pseudo_call(insn + i)) 5817 continue; 5818 if (subprog[sidx].is_exception_cb) { 5819 verbose(env, "insn %d cannot call exception cb directly\n", i); 5820 return -EINVAL; 5821 } 5822 } 5823 i = next_insn; 5824 idx = sidx; 5825 5826 if (subprog[idx].has_tail_call) 5827 tail_call_reachable = true; 5828 5829 frame++; 5830 if (frame >= MAX_CALL_FRAMES) { 5831 verbose(env, "the call stack of %d frames is too deep !\n", 5832 frame); 5833 return -E2BIG; 5834 } 5835 goto process_func; 5836 } 5837 /* if tail call got detected across bpf2bpf calls then mark each of the 5838 * currently present subprog frames as tail call reachable subprogs; 5839 * this info will be utilized by JIT so that we will be preserving the 5840 * tail call counter throughout bpf2bpf calls combined with tailcalls 5841 */ 5842 if (tail_call_reachable) 5843 for (j = 0; j < frame; j++) { 5844 if (subprog[ret_prog[j]].is_exception_cb) { 5845 verbose(env, "cannot tail call within exception cb\n"); 5846 return -EINVAL; 5847 } 5848 subprog[ret_prog[j]].tail_call_reachable = true; 5849 } 5850 if (subprog[0].tail_call_reachable) 5851 env->prog->aux->tail_call_reachable = true; 5852 5853 /* end of for() loop means the last insn of the 'subprog' 5854 * was reached. Doesn't matter whether it was JA or EXIT 5855 */ 5856 if (frame == 0) 5857 return 0; 5858 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5859 frame--; 5860 i = ret_insn[frame]; 5861 idx = ret_prog[frame]; 5862 goto continue_func; 5863 } 5864 5865 static int check_max_stack_depth(struct bpf_verifier_env *env) 5866 { 5867 struct bpf_subprog_info *si = env->subprog_info; 5868 int ret; 5869 5870 for (int i = 0; i < env->subprog_cnt; i++) { 5871 if (!i || si[i].is_async_cb) { 5872 ret = check_max_stack_depth_subprog(env, i); 5873 if (ret < 0) 5874 return ret; 5875 } 5876 continue; 5877 } 5878 return 0; 5879 } 5880 5881 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5882 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5883 const struct bpf_insn *insn, int idx) 5884 { 5885 int start = idx + insn->imm + 1, subprog; 5886 5887 subprog = find_subprog(env, start); 5888 if (subprog < 0) { 5889 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5890 start); 5891 return -EFAULT; 5892 } 5893 return env->subprog_info[subprog].stack_depth; 5894 } 5895 #endif 5896 5897 static int __check_buffer_access(struct bpf_verifier_env *env, 5898 const char *buf_info, 5899 const struct bpf_reg_state *reg, 5900 int regno, int off, int size) 5901 { 5902 if (off < 0) { 5903 verbose(env, 5904 "R%d invalid %s buffer access: off=%d, size=%d\n", 5905 regno, buf_info, off, size); 5906 return -EACCES; 5907 } 5908 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5909 char tn_buf[48]; 5910 5911 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5912 verbose(env, 5913 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5914 regno, off, tn_buf); 5915 return -EACCES; 5916 } 5917 5918 return 0; 5919 } 5920 5921 static int check_tp_buffer_access(struct bpf_verifier_env *env, 5922 const struct bpf_reg_state *reg, 5923 int regno, int off, int size) 5924 { 5925 int err; 5926 5927 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 5928 if (err) 5929 return err; 5930 5931 if (off + size > env->prog->aux->max_tp_access) 5932 env->prog->aux->max_tp_access = off + size; 5933 5934 return 0; 5935 } 5936 5937 static int check_buffer_access(struct bpf_verifier_env *env, 5938 const struct bpf_reg_state *reg, 5939 int regno, int off, int size, 5940 bool zero_size_allowed, 5941 u32 *max_access) 5942 { 5943 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 5944 int err; 5945 5946 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 5947 if (err) 5948 return err; 5949 5950 if (off + size > *max_access) 5951 *max_access = off + size; 5952 5953 return 0; 5954 } 5955 5956 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 5957 static void zext_32_to_64(struct bpf_reg_state *reg) 5958 { 5959 reg->var_off = tnum_subreg(reg->var_off); 5960 __reg_assign_32_into_64(reg); 5961 } 5962 5963 /* truncate register to smaller size (in bytes) 5964 * must be called with size < BPF_REG_SIZE 5965 */ 5966 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 5967 { 5968 u64 mask; 5969 5970 /* clear high bits in bit representation */ 5971 reg->var_off = tnum_cast(reg->var_off, size); 5972 5973 /* fix arithmetic bounds */ 5974 mask = ((u64)1 << (size * 8)) - 1; 5975 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 5976 reg->umin_value &= mask; 5977 reg->umax_value &= mask; 5978 } else { 5979 reg->umin_value = 0; 5980 reg->umax_value = mask; 5981 } 5982 reg->smin_value = reg->umin_value; 5983 reg->smax_value = reg->umax_value; 5984 5985 /* If size is smaller than 32bit register the 32bit register 5986 * values are also truncated so we push 64-bit bounds into 5987 * 32-bit bounds. Above were truncated < 32-bits already. 5988 */ 5989 if (size < 4) { 5990 __mark_reg32_unbounded(reg); 5991 reg_bounds_sync(reg); 5992 } 5993 } 5994 5995 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 5996 { 5997 if (size == 1) { 5998 reg->smin_value = reg->s32_min_value = S8_MIN; 5999 reg->smax_value = reg->s32_max_value = S8_MAX; 6000 } else if (size == 2) { 6001 reg->smin_value = reg->s32_min_value = S16_MIN; 6002 reg->smax_value = reg->s32_max_value = S16_MAX; 6003 } else { 6004 /* size == 4 */ 6005 reg->smin_value = reg->s32_min_value = S32_MIN; 6006 reg->smax_value = reg->s32_max_value = S32_MAX; 6007 } 6008 reg->umin_value = reg->u32_min_value = 0; 6009 reg->umax_value = U64_MAX; 6010 reg->u32_max_value = U32_MAX; 6011 reg->var_off = tnum_unknown; 6012 } 6013 6014 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6015 { 6016 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6017 u64 top_smax_value, top_smin_value; 6018 u64 num_bits = size * 8; 6019 6020 if (tnum_is_const(reg->var_off)) { 6021 u64_cval = reg->var_off.value; 6022 if (size == 1) 6023 reg->var_off = tnum_const((s8)u64_cval); 6024 else if (size == 2) 6025 reg->var_off = tnum_const((s16)u64_cval); 6026 else 6027 /* size == 4 */ 6028 reg->var_off = tnum_const((s32)u64_cval); 6029 6030 u64_cval = reg->var_off.value; 6031 reg->smax_value = reg->smin_value = u64_cval; 6032 reg->umax_value = reg->umin_value = u64_cval; 6033 reg->s32_max_value = reg->s32_min_value = u64_cval; 6034 reg->u32_max_value = reg->u32_min_value = u64_cval; 6035 return; 6036 } 6037 6038 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6039 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6040 6041 if (top_smax_value != top_smin_value) 6042 goto out; 6043 6044 /* find the s64_min and s64_min after sign extension */ 6045 if (size == 1) { 6046 init_s64_max = (s8)reg->smax_value; 6047 init_s64_min = (s8)reg->smin_value; 6048 } else if (size == 2) { 6049 init_s64_max = (s16)reg->smax_value; 6050 init_s64_min = (s16)reg->smin_value; 6051 } else { 6052 init_s64_max = (s32)reg->smax_value; 6053 init_s64_min = (s32)reg->smin_value; 6054 } 6055 6056 s64_max = max(init_s64_max, init_s64_min); 6057 s64_min = min(init_s64_max, init_s64_min); 6058 6059 /* both of s64_max/s64_min positive or negative */ 6060 if ((s64_max >= 0) == (s64_min >= 0)) { 6061 reg->smin_value = reg->s32_min_value = s64_min; 6062 reg->smax_value = reg->s32_max_value = s64_max; 6063 reg->umin_value = reg->u32_min_value = s64_min; 6064 reg->umax_value = reg->u32_max_value = s64_max; 6065 reg->var_off = tnum_range(s64_min, s64_max); 6066 return; 6067 } 6068 6069 out: 6070 set_sext64_default_val(reg, size); 6071 } 6072 6073 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6074 { 6075 if (size == 1) { 6076 reg->s32_min_value = S8_MIN; 6077 reg->s32_max_value = S8_MAX; 6078 } else { 6079 /* size == 2 */ 6080 reg->s32_min_value = S16_MIN; 6081 reg->s32_max_value = S16_MAX; 6082 } 6083 reg->u32_min_value = 0; 6084 reg->u32_max_value = U32_MAX; 6085 } 6086 6087 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6088 { 6089 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6090 u32 top_smax_value, top_smin_value; 6091 u32 num_bits = size * 8; 6092 6093 if (tnum_is_const(reg->var_off)) { 6094 u32_val = reg->var_off.value; 6095 if (size == 1) 6096 reg->var_off = tnum_const((s8)u32_val); 6097 else 6098 reg->var_off = tnum_const((s16)u32_val); 6099 6100 u32_val = reg->var_off.value; 6101 reg->s32_min_value = reg->s32_max_value = u32_val; 6102 reg->u32_min_value = reg->u32_max_value = u32_val; 6103 return; 6104 } 6105 6106 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6107 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6108 6109 if (top_smax_value != top_smin_value) 6110 goto out; 6111 6112 /* find the s32_min and s32_min after sign extension */ 6113 if (size == 1) { 6114 init_s32_max = (s8)reg->s32_max_value; 6115 init_s32_min = (s8)reg->s32_min_value; 6116 } else { 6117 /* size == 2 */ 6118 init_s32_max = (s16)reg->s32_max_value; 6119 init_s32_min = (s16)reg->s32_min_value; 6120 } 6121 s32_max = max(init_s32_max, init_s32_min); 6122 s32_min = min(init_s32_max, init_s32_min); 6123 6124 if ((s32_min >= 0) == (s32_max >= 0)) { 6125 reg->s32_min_value = s32_min; 6126 reg->s32_max_value = s32_max; 6127 reg->u32_min_value = (u32)s32_min; 6128 reg->u32_max_value = (u32)s32_max; 6129 return; 6130 } 6131 6132 out: 6133 set_sext32_default_val(reg, size); 6134 } 6135 6136 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6137 { 6138 /* A map is considered read-only if the following condition are true: 6139 * 6140 * 1) BPF program side cannot change any of the map content. The 6141 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6142 * and was set at map creation time. 6143 * 2) The map value(s) have been initialized from user space by a 6144 * loader and then "frozen", such that no new map update/delete 6145 * operations from syscall side are possible for the rest of 6146 * the map's lifetime from that point onwards. 6147 * 3) Any parallel/pending map update/delete operations from syscall 6148 * side have been completed. Only after that point, it's safe to 6149 * assume that map value(s) are immutable. 6150 */ 6151 return (map->map_flags & BPF_F_RDONLY_PROG) && 6152 READ_ONCE(map->frozen) && 6153 !bpf_map_write_active(map); 6154 } 6155 6156 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6157 bool is_ldsx) 6158 { 6159 void *ptr; 6160 u64 addr; 6161 int err; 6162 6163 err = map->ops->map_direct_value_addr(map, &addr, off); 6164 if (err) 6165 return err; 6166 ptr = (void *)(long)addr + off; 6167 6168 switch (size) { 6169 case sizeof(u8): 6170 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6171 break; 6172 case sizeof(u16): 6173 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6174 break; 6175 case sizeof(u32): 6176 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6177 break; 6178 case sizeof(u64): 6179 *val = *(u64 *)ptr; 6180 break; 6181 default: 6182 return -EINVAL; 6183 } 6184 return 0; 6185 } 6186 6187 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6188 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6189 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6190 6191 /* 6192 * Allow list few fields as RCU trusted or full trusted. 6193 * This logic doesn't allow mix tagging and will be removed once GCC supports 6194 * btf_type_tag. 6195 */ 6196 6197 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6198 BTF_TYPE_SAFE_RCU(struct task_struct) { 6199 const cpumask_t *cpus_ptr; 6200 struct css_set __rcu *cgroups; 6201 struct task_struct __rcu *real_parent; 6202 struct task_struct *group_leader; 6203 }; 6204 6205 BTF_TYPE_SAFE_RCU(struct cgroup) { 6206 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6207 struct kernfs_node *kn; 6208 }; 6209 6210 BTF_TYPE_SAFE_RCU(struct css_set) { 6211 struct cgroup *dfl_cgrp; 6212 }; 6213 6214 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6215 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6216 struct file __rcu *exe_file; 6217 }; 6218 6219 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6220 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6221 */ 6222 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6223 struct sock *sk; 6224 }; 6225 6226 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6227 struct sock *sk; 6228 }; 6229 6230 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6231 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6232 struct seq_file *seq; 6233 }; 6234 6235 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6236 struct bpf_iter_meta *meta; 6237 struct task_struct *task; 6238 }; 6239 6240 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6241 struct file *file; 6242 }; 6243 6244 BTF_TYPE_SAFE_TRUSTED(struct file) { 6245 struct inode *f_inode; 6246 }; 6247 6248 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6249 /* no negative dentry-s in places where bpf can see it */ 6250 struct inode *d_inode; 6251 }; 6252 6253 BTF_TYPE_SAFE_TRUSTED(struct socket) { 6254 struct sock *sk; 6255 }; 6256 6257 static bool type_is_rcu(struct bpf_verifier_env *env, 6258 struct bpf_reg_state *reg, 6259 const char *field_name, u32 btf_id) 6260 { 6261 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6262 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6263 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6264 6265 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6266 } 6267 6268 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6269 struct bpf_reg_state *reg, 6270 const char *field_name, u32 btf_id) 6271 { 6272 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6273 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6274 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6275 6276 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6277 } 6278 6279 static bool type_is_trusted(struct bpf_verifier_env *env, 6280 struct bpf_reg_state *reg, 6281 const char *field_name, u32 btf_id) 6282 { 6283 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6284 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6285 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6286 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6287 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6288 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 6289 6290 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6291 } 6292 6293 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6294 struct bpf_reg_state *regs, 6295 int regno, int off, int size, 6296 enum bpf_access_type atype, 6297 int value_regno) 6298 { 6299 struct bpf_reg_state *reg = regs + regno; 6300 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6301 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6302 const char *field_name = NULL; 6303 enum bpf_type_flag flag = 0; 6304 u32 btf_id = 0; 6305 int ret; 6306 6307 if (!env->allow_ptr_leaks) { 6308 verbose(env, 6309 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6310 tname); 6311 return -EPERM; 6312 } 6313 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6314 verbose(env, 6315 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6316 tname); 6317 return -EINVAL; 6318 } 6319 if (off < 0) { 6320 verbose(env, 6321 "R%d is ptr_%s invalid negative access: off=%d\n", 6322 regno, tname, off); 6323 return -EACCES; 6324 } 6325 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6326 char tn_buf[48]; 6327 6328 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6329 verbose(env, 6330 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6331 regno, tname, off, tn_buf); 6332 return -EACCES; 6333 } 6334 6335 if (reg->type & MEM_USER) { 6336 verbose(env, 6337 "R%d is ptr_%s access user memory: off=%d\n", 6338 regno, tname, off); 6339 return -EACCES; 6340 } 6341 6342 if (reg->type & MEM_PERCPU) { 6343 verbose(env, 6344 "R%d is ptr_%s access percpu memory: off=%d\n", 6345 regno, tname, off); 6346 return -EACCES; 6347 } 6348 6349 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6350 if (!btf_is_kernel(reg->btf)) { 6351 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6352 return -EFAULT; 6353 } 6354 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6355 } else { 6356 /* Writes are permitted with default btf_struct_access for 6357 * program allocated objects (which always have ref_obj_id > 0), 6358 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6359 */ 6360 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6361 verbose(env, "only read is supported\n"); 6362 return -EACCES; 6363 } 6364 6365 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6366 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 6367 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6368 return -EFAULT; 6369 } 6370 6371 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6372 } 6373 6374 if (ret < 0) 6375 return ret; 6376 6377 if (ret != PTR_TO_BTF_ID) { 6378 /* just mark; */ 6379 6380 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6381 /* If this is an untrusted pointer, all pointers formed by walking it 6382 * also inherit the untrusted flag. 6383 */ 6384 flag = PTR_UNTRUSTED; 6385 6386 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6387 /* By default any pointer obtained from walking a trusted pointer is no 6388 * longer trusted, unless the field being accessed has explicitly been 6389 * marked as inheriting its parent's state of trust (either full or RCU). 6390 * For example: 6391 * 'cgroups' pointer is untrusted if task->cgroups dereference 6392 * happened in a sleepable program outside of bpf_rcu_read_lock() 6393 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6394 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6395 * 6396 * A regular RCU-protected pointer with __rcu tag can also be deemed 6397 * trusted if we are in an RCU CS. Such pointer can be NULL. 6398 */ 6399 if (type_is_trusted(env, reg, field_name, btf_id)) { 6400 flag |= PTR_TRUSTED; 6401 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6402 if (type_is_rcu(env, reg, field_name, btf_id)) { 6403 /* ignore __rcu tag and mark it MEM_RCU */ 6404 flag |= MEM_RCU; 6405 } else if (flag & MEM_RCU || 6406 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6407 /* __rcu tagged pointers can be NULL */ 6408 flag |= MEM_RCU | PTR_MAYBE_NULL; 6409 6410 /* We always trust them */ 6411 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6412 flag & PTR_UNTRUSTED) 6413 flag &= ~PTR_UNTRUSTED; 6414 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6415 /* keep as-is */ 6416 } else { 6417 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6418 clear_trusted_flags(&flag); 6419 } 6420 } else { 6421 /* 6422 * If not in RCU CS or MEM_RCU pointer can be NULL then 6423 * aggressively mark as untrusted otherwise such 6424 * pointers will be plain PTR_TO_BTF_ID without flags 6425 * and will be allowed to be passed into helpers for 6426 * compat reasons. 6427 */ 6428 flag = PTR_UNTRUSTED; 6429 } 6430 } else { 6431 /* Old compat. Deprecated */ 6432 clear_trusted_flags(&flag); 6433 } 6434 6435 if (atype == BPF_READ && value_regno >= 0) 6436 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6437 6438 return 0; 6439 } 6440 6441 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6442 struct bpf_reg_state *regs, 6443 int regno, int off, int size, 6444 enum bpf_access_type atype, 6445 int value_regno) 6446 { 6447 struct bpf_reg_state *reg = regs + regno; 6448 struct bpf_map *map = reg->map_ptr; 6449 struct bpf_reg_state map_reg; 6450 enum bpf_type_flag flag = 0; 6451 const struct btf_type *t; 6452 const char *tname; 6453 u32 btf_id; 6454 int ret; 6455 6456 if (!btf_vmlinux) { 6457 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6458 return -ENOTSUPP; 6459 } 6460 6461 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6462 verbose(env, "map_ptr access not supported for map type %d\n", 6463 map->map_type); 6464 return -ENOTSUPP; 6465 } 6466 6467 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6468 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6469 6470 if (!env->allow_ptr_leaks) { 6471 verbose(env, 6472 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6473 tname); 6474 return -EPERM; 6475 } 6476 6477 if (off < 0) { 6478 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6479 regno, tname, off); 6480 return -EACCES; 6481 } 6482 6483 if (atype != BPF_READ) { 6484 verbose(env, "only read from %s is supported\n", tname); 6485 return -EACCES; 6486 } 6487 6488 /* Simulate access to a PTR_TO_BTF_ID */ 6489 memset(&map_reg, 0, sizeof(map_reg)); 6490 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6491 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6492 if (ret < 0) 6493 return ret; 6494 6495 if (value_regno >= 0) 6496 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6497 6498 return 0; 6499 } 6500 6501 /* Check that the stack access at the given offset is within bounds. The 6502 * maximum valid offset is -1. 6503 * 6504 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6505 * -state->allocated_stack for reads. 6506 */ 6507 static int check_stack_slot_within_bounds(int off, 6508 struct bpf_func_state *state, 6509 enum bpf_access_type t) 6510 { 6511 int min_valid_off; 6512 6513 if (t == BPF_WRITE) 6514 min_valid_off = -MAX_BPF_STACK; 6515 else 6516 min_valid_off = -state->allocated_stack; 6517 6518 if (off < min_valid_off || off > -1) 6519 return -EACCES; 6520 return 0; 6521 } 6522 6523 /* Check that the stack access at 'regno + off' falls within the maximum stack 6524 * bounds. 6525 * 6526 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6527 */ 6528 static int check_stack_access_within_bounds( 6529 struct bpf_verifier_env *env, 6530 int regno, int off, int access_size, 6531 enum bpf_access_src src, enum bpf_access_type type) 6532 { 6533 struct bpf_reg_state *regs = cur_regs(env); 6534 struct bpf_reg_state *reg = regs + regno; 6535 struct bpf_func_state *state = func(env, reg); 6536 int min_off, max_off; 6537 int err; 6538 char *err_extra; 6539 6540 if (src == ACCESS_HELPER) 6541 /* We don't know if helpers are reading or writing (or both). */ 6542 err_extra = " indirect access to"; 6543 else if (type == BPF_READ) 6544 err_extra = " read from"; 6545 else 6546 err_extra = " write to"; 6547 6548 if (tnum_is_const(reg->var_off)) { 6549 min_off = reg->var_off.value + off; 6550 if (access_size > 0) 6551 max_off = min_off + access_size - 1; 6552 else 6553 max_off = min_off; 6554 } else { 6555 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6556 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6557 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6558 err_extra, regno); 6559 return -EACCES; 6560 } 6561 min_off = reg->smin_value + off; 6562 if (access_size > 0) 6563 max_off = reg->smax_value + off + access_size - 1; 6564 else 6565 max_off = min_off; 6566 } 6567 6568 err = check_stack_slot_within_bounds(min_off, state, type); 6569 if (!err) 6570 err = check_stack_slot_within_bounds(max_off, state, type); 6571 6572 if (err) { 6573 if (tnum_is_const(reg->var_off)) { 6574 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6575 err_extra, regno, off, access_size); 6576 } else { 6577 char tn_buf[48]; 6578 6579 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6580 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6581 err_extra, regno, tn_buf, access_size); 6582 } 6583 } 6584 return err; 6585 } 6586 6587 /* check whether memory at (regno + off) is accessible for t = (read | write) 6588 * if t==write, value_regno is a register which value is stored into memory 6589 * if t==read, value_regno is a register which will receive the value from memory 6590 * if t==write && value_regno==-1, some unknown value is stored into memory 6591 * if t==read && value_regno==-1, don't care what we read from memory 6592 */ 6593 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6594 int off, int bpf_size, enum bpf_access_type t, 6595 int value_regno, bool strict_alignment_once, bool is_ldsx) 6596 { 6597 struct bpf_reg_state *regs = cur_regs(env); 6598 struct bpf_reg_state *reg = regs + regno; 6599 struct bpf_func_state *state; 6600 int size, err = 0; 6601 6602 size = bpf_size_to_bytes(bpf_size); 6603 if (size < 0) 6604 return size; 6605 6606 /* alignment checks will add in reg->off themselves */ 6607 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6608 if (err) 6609 return err; 6610 6611 /* for access checks, reg->off is just part of off */ 6612 off += reg->off; 6613 6614 if (reg->type == PTR_TO_MAP_KEY) { 6615 if (t == BPF_WRITE) { 6616 verbose(env, "write to change key R%d not allowed\n", regno); 6617 return -EACCES; 6618 } 6619 6620 err = check_mem_region_access(env, regno, off, size, 6621 reg->map_ptr->key_size, false); 6622 if (err) 6623 return err; 6624 if (value_regno >= 0) 6625 mark_reg_unknown(env, regs, value_regno); 6626 } else if (reg->type == PTR_TO_MAP_VALUE) { 6627 struct btf_field *kptr_field = NULL; 6628 6629 if (t == BPF_WRITE && value_regno >= 0 && 6630 is_pointer_value(env, value_regno)) { 6631 verbose(env, "R%d leaks addr into map\n", value_regno); 6632 return -EACCES; 6633 } 6634 err = check_map_access_type(env, regno, off, size, t); 6635 if (err) 6636 return err; 6637 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6638 if (err) 6639 return err; 6640 if (tnum_is_const(reg->var_off)) 6641 kptr_field = btf_record_find(reg->map_ptr->record, 6642 off + reg->var_off.value, BPF_KPTR); 6643 if (kptr_field) { 6644 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6645 } else if (t == BPF_READ && value_regno >= 0) { 6646 struct bpf_map *map = reg->map_ptr; 6647 6648 /* if map is read-only, track its contents as scalars */ 6649 if (tnum_is_const(reg->var_off) && 6650 bpf_map_is_rdonly(map) && 6651 map->ops->map_direct_value_addr) { 6652 int map_off = off + reg->var_off.value; 6653 u64 val = 0; 6654 6655 err = bpf_map_direct_read(map, map_off, size, 6656 &val, is_ldsx); 6657 if (err) 6658 return err; 6659 6660 regs[value_regno].type = SCALAR_VALUE; 6661 __mark_reg_known(®s[value_regno], val); 6662 } else { 6663 mark_reg_unknown(env, regs, value_regno); 6664 } 6665 } 6666 } else if (base_type(reg->type) == PTR_TO_MEM) { 6667 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6668 6669 if (type_may_be_null(reg->type)) { 6670 verbose(env, "R%d invalid mem access '%s'\n", regno, 6671 reg_type_str(env, reg->type)); 6672 return -EACCES; 6673 } 6674 6675 if (t == BPF_WRITE && rdonly_mem) { 6676 verbose(env, "R%d cannot write into %s\n", 6677 regno, reg_type_str(env, reg->type)); 6678 return -EACCES; 6679 } 6680 6681 if (t == BPF_WRITE && value_regno >= 0 && 6682 is_pointer_value(env, value_regno)) { 6683 verbose(env, "R%d leaks addr into mem\n", value_regno); 6684 return -EACCES; 6685 } 6686 6687 err = check_mem_region_access(env, regno, off, size, 6688 reg->mem_size, false); 6689 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6690 mark_reg_unknown(env, regs, value_regno); 6691 } else if (reg->type == PTR_TO_CTX) { 6692 enum bpf_reg_type reg_type = SCALAR_VALUE; 6693 struct btf *btf = NULL; 6694 u32 btf_id = 0; 6695 6696 if (t == BPF_WRITE && value_regno >= 0 && 6697 is_pointer_value(env, value_regno)) { 6698 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6699 return -EACCES; 6700 } 6701 6702 err = check_ptr_off_reg(env, reg, regno); 6703 if (err < 0) 6704 return err; 6705 6706 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6707 &btf_id); 6708 if (err) 6709 verbose_linfo(env, insn_idx, "; "); 6710 if (!err && t == BPF_READ && value_regno >= 0) { 6711 /* ctx access returns either a scalar, or a 6712 * PTR_TO_PACKET[_META,_END]. In the latter 6713 * case, we know the offset is zero. 6714 */ 6715 if (reg_type == SCALAR_VALUE) { 6716 mark_reg_unknown(env, regs, value_regno); 6717 } else { 6718 mark_reg_known_zero(env, regs, 6719 value_regno); 6720 if (type_may_be_null(reg_type)) 6721 regs[value_regno].id = ++env->id_gen; 6722 /* A load of ctx field could have different 6723 * actual load size with the one encoded in the 6724 * insn. When the dst is PTR, it is for sure not 6725 * a sub-register. 6726 */ 6727 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6728 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6729 regs[value_regno].btf = btf; 6730 regs[value_regno].btf_id = btf_id; 6731 } 6732 } 6733 regs[value_regno].type = reg_type; 6734 } 6735 6736 } else if (reg->type == PTR_TO_STACK) { 6737 /* Basic bounds checks. */ 6738 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6739 if (err) 6740 return err; 6741 6742 state = func(env, reg); 6743 err = update_stack_depth(env, state, off); 6744 if (err) 6745 return err; 6746 6747 if (t == BPF_READ) 6748 err = check_stack_read(env, regno, off, size, 6749 value_regno); 6750 else 6751 err = check_stack_write(env, regno, off, size, 6752 value_regno, insn_idx); 6753 } else if (reg_is_pkt_pointer(reg)) { 6754 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6755 verbose(env, "cannot write into packet\n"); 6756 return -EACCES; 6757 } 6758 if (t == BPF_WRITE && value_regno >= 0 && 6759 is_pointer_value(env, value_regno)) { 6760 verbose(env, "R%d leaks addr into packet\n", 6761 value_regno); 6762 return -EACCES; 6763 } 6764 err = check_packet_access(env, regno, off, size, false); 6765 if (!err && t == BPF_READ && value_regno >= 0) 6766 mark_reg_unknown(env, regs, value_regno); 6767 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6768 if (t == BPF_WRITE && value_regno >= 0 && 6769 is_pointer_value(env, value_regno)) { 6770 verbose(env, "R%d leaks addr into flow keys\n", 6771 value_regno); 6772 return -EACCES; 6773 } 6774 6775 err = check_flow_keys_access(env, off, size); 6776 if (!err && t == BPF_READ && value_regno >= 0) 6777 mark_reg_unknown(env, regs, value_regno); 6778 } else if (type_is_sk_pointer(reg->type)) { 6779 if (t == BPF_WRITE) { 6780 verbose(env, "R%d cannot write into %s\n", 6781 regno, reg_type_str(env, reg->type)); 6782 return -EACCES; 6783 } 6784 err = check_sock_access(env, insn_idx, regno, off, size, t); 6785 if (!err && value_regno >= 0) 6786 mark_reg_unknown(env, regs, value_regno); 6787 } else if (reg->type == PTR_TO_TP_BUFFER) { 6788 err = check_tp_buffer_access(env, reg, regno, off, size); 6789 if (!err && t == BPF_READ && value_regno >= 0) 6790 mark_reg_unknown(env, regs, value_regno); 6791 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6792 !type_may_be_null(reg->type)) { 6793 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6794 value_regno); 6795 } else if (reg->type == CONST_PTR_TO_MAP) { 6796 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6797 value_regno); 6798 } else if (base_type(reg->type) == PTR_TO_BUF) { 6799 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6800 u32 *max_access; 6801 6802 if (rdonly_mem) { 6803 if (t == BPF_WRITE) { 6804 verbose(env, "R%d cannot write into %s\n", 6805 regno, reg_type_str(env, reg->type)); 6806 return -EACCES; 6807 } 6808 max_access = &env->prog->aux->max_rdonly_access; 6809 } else { 6810 max_access = &env->prog->aux->max_rdwr_access; 6811 } 6812 6813 err = check_buffer_access(env, reg, regno, off, size, false, 6814 max_access); 6815 6816 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6817 mark_reg_unknown(env, regs, value_regno); 6818 } else { 6819 verbose(env, "R%d invalid mem access '%s'\n", regno, 6820 reg_type_str(env, reg->type)); 6821 return -EACCES; 6822 } 6823 6824 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6825 regs[value_regno].type == SCALAR_VALUE) { 6826 if (!is_ldsx) 6827 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6828 coerce_reg_to_size(®s[value_regno], size); 6829 else 6830 coerce_reg_to_size_sx(®s[value_regno], size); 6831 } 6832 return err; 6833 } 6834 6835 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6836 { 6837 int load_reg; 6838 int err; 6839 6840 switch (insn->imm) { 6841 case BPF_ADD: 6842 case BPF_ADD | BPF_FETCH: 6843 case BPF_AND: 6844 case BPF_AND | BPF_FETCH: 6845 case BPF_OR: 6846 case BPF_OR | BPF_FETCH: 6847 case BPF_XOR: 6848 case BPF_XOR | BPF_FETCH: 6849 case BPF_XCHG: 6850 case BPF_CMPXCHG: 6851 break; 6852 default: 6853 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6854 return -EINVAL; 6855 } 6856 6857 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6858 verbose(env, "invalid atomic operand size\n"); 6859 return -EINVAL; 6860 } 6861 6862 /* check src1 operand */ 6863 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6864 if (err) 6865 return err; 6866 6867 /* check src2 operand */ 6868 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6869 if (err) 6870 return err; 6871 6872 if (insn->imm == BPF_CMPXCHG) { 6873 /* Check comparison of R0 with memory location */ 6874 const u32 aux_reg = BPF_REG_0; 6875 6876 err = check_reg_arg(env, aux_reg, SRC_OP); 6877 if (err) 6878 return err; 6879 6880 if (is_pointer_value(env, aux_reg)) { 6881 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6882 return -EACCES; 6883 } 6884 } 6885 6886 if (is_pointer_value(env, insn->src_reg)) { 6887 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6888 return -EACCES; 6889 } 6890 6891 if (is_ctx_reg(env, insn->dst_reg) || 6892 is_pkt_reg(env, insn->dst_reg) || 6893 is_flow_key_reg(env, insn->dst_reg) || 6894 is_sk_reg(env, insn->dst_reg)) { 6895 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6896 insn->dst_reg, 6897 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6898 return -EACCES; 6899 } 6900 6901 if (insn->imm & BPF_FETCH) { 6902 if (insn->imm == BPF_CMPXCHG) 6903 load_reg = BPF_REG_0; 6904 else 6905 load_reg = insn->src_reg; 6906 6907 /* check and record load of old value */ 6908 err = check_reg_arg(env, load_reg, DST_OP); 6909 if (err) 6910 return err; 6911 } else { 6912 /* This instruction accesses a memory location but doesn't 6913 * actually load it into a register. 6914 */ 6915 load_reg = -1; 6916 } 6917 6918 /* Check whether we can read the memory, with second call for fetch 6919 * case to simulate the register fill. 6920 */ 6921 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6922 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 6923 if (!err && load_reg >= 0) 6924 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6925 BPF_SIZE(insn->code), BPF_READ, load_reg, 6926 true, false); 6927 if (err) 6928 return err; 6929 6930 /* Check whether we can write into the same memory. */ 6931 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6932 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 6933 if (err) 6934 return err; 6935 6936 return 0; 6937 } 6938 6939 /* When register 'regno' is used to read the stack (either directly or through 6940 * a helper function) make sure that it's within stack boundary and, depending 6941 * on the access type, that all elements of the stack are initialized. 6942 * 6943 * 'off' includes 'regno->off', but not its dynamic part (if any). 6944 * 6945 * All registers that have been spilled on the stack in the slots within the 6946 * read offsets are marked as read. 6947 */ 6948 static int check_stack_range_initialized( 6949 struct bpf_verifier_env *env, int regno, int off, 6950 int access_size, bool zero_size_allowed, 6951 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 6952 { 6953 struct bpf_reg_state *reg = reg_state(env, regno); 6954 struct bpf_func_state *state = func(env, reg); 6955 int err, min_off, max_off, i, j, slot, spi; 6956 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 6957 enum bpf_access_type bounds_check_type; 6958 /* Some accesses can write anything into the stack, others are 6959 * read-only. 6960 */ 6961 bool clobber = false; 6962 6963 if (access_size == 0 && !zero_size_allowed) { 6964 verbose(env, "invalid zero-sized read\n"); 6965 return -EACCES; 6966 } 6967 6968 if (type == ACCESS_HELPER) { 6969 /* The bounds checks for writes are more permissive than for 6970 * reads. However, if raw_mode is not set, we'll do extra 6971 * checks below. 6972 */ 6973 bounds_check_type = BPF_WRITE; 6974 clobber = true; 6975 } else { 6976 bounds_check_type = BPF_READ; 6977 } 6978 err = check_stack_access_within_bounds(env, regno, off, access_size, 6979 type, bounds_check_type); 6980 if (err) 6981 return err; 6982 6983 6984 if (tnum_is_const(reg->var_off)) { 6985 min_off = max_off = reg->var_off.value + off; 6986 } else { 6987 /* Variable offset is prohibited for unprivileged mode for 6988 * simplicity since it requires corresponding support in 6989 * Spectre masking for stack ALU. 6990 * See also retrieve_ptr_limit(). 6991 */ 6992 if (!env->bypass_spec_v1) { 6993 char tn_buf[48]; 6994 6995 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6996 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 6997 regno, err_extra, tn_buf); 6998 return -EACCES; 6999 } 7000 /* Only initialized buffer on stack is allowed to be accessed 7001 * with variable offset. With uninitialized buffer it's hard to 7002 * guarantee that whole memory is marked as initialized on 7003 * helper return since specific bounds are unknown what may 7004 * cause uninitialized stack leaking. 7005 */ 7006 if (meta && meta->raw_mode) 7007 meta = NULL; 7008 7009 min_off = reg->smin_value + off; 7010 max_off = reg->smax_value + off; 7011 } 7012 7013 if (meta && meta->raw_mode) { 7014 /* Ensure we won't be overwriting dynptrs when simulating byte 7015 * by byte access in check_helper_call using meta.access_size. 7016 * This would be a problem if we have a helper in the future 7017 * which takes: 7018 * 7019 * helper(uninit_mem, len, dynptr) 7020 * 7021 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7022 * may end up writing to dynptr itself when touching memory from 7023 * arg 1. This can be relaxed on a case by case basis for known 7024 * safe cases, but reject due to the possibilitiy of aliasing by 7025 * default. 7026 */ 7027 for (i = min_off; i < max_off + access_size; i++) { 7028 int stack_off = -i - 1; 7029 7030 spi = __get_spi(i); 7031 /* raw_mode may write past allocated_stack */ 7032 if (state->allocated_stack <= stack_off) 7033 continue; 7034 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7035 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7036 return -EACCES; 7037 } 7038 } 7039 meta->access_size = access_size; 7040 meta->regno = regno; 7041 return 0; 7042 } 7043 7044 for (i = min_off; i < max_off + access_size; i++) { 7045 u8 *stype; 7046 7047 slot = -i - 1; 7048 spi = slot / BPF_REG_SIZE; 7049 if (state->allocated_stack <= slot) 7050 goto err; 7051 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7052 if (*stype == STACK_MISC) 7053 goto mark; 7054 if ((*stype == STACK_ZERO) || 7055 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7056 if (clobber) { 7057 /* helper can write anything into the stack */ 7058 *stype = STACK_MISC; 7059 } 7060 goto mark; 7061 } 7062 7063 if (is_spilled_reg(&state->stack[spi]) && 7064 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7065 env->allow_ptr_leaks)) { 7066 if (clobber) { 7067 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7068 for (j = 0; j < BPF_REG_SIZE; j++) 7069 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7070 } 7071 goto mark; 7072 } 7073 7074 err: 7075 if (tnum_is_const(reg->var_off)) { 7076 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 7077 err_extra, regno, min_off, i - min_off, access_size); 7078 } else { 7079 char tn_buf[48]; 7080 7081 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7082 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 7083 err_extra, regno, tn_buf, i - min_off, access_size); 7084 } 7085 return -EACCES; 7086 mark: 7087 /* reading any byte out of 8-byte 'spill_slot' will cause 7088 * the whole slot to be marked as 'read' 7089 */ 7090 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7091 state->stack[spi].spilled_ptr.parent, 7092 REG_LIVE_READ64); 7093 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7094 * be sure that whether stack slot is written to or not. Hence, 7095 * we must still conservatively propagate reads upwards even if 7096 * helper may write to the entire memory range. 7097 */ 7098 } 7099 return update_stack_depth(env, state, min_off); 7100 } 7101 7102 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7103 int access_size, bool zero_size_allowed, 7104 struct bpf_call_arg_meta *meta) 7105 { 7106 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7107 u32 *max_access; 7108 7109 switch (base_type(reg->type)) { 7110 case PTR_TO_PACKET: 7111 case PTR_TO_PACKET_META: 7112 return check_packet_access(env, regno, reg->off, access_size, 7113 zero_size_allowed); 7114 case PTR_TO_MAP_KEY: 7115 if (meta && meta->raw_mode) { 7116 verbose(env, "R%d cannot write into %s\n", regno, 7117 reg_type_str(env, reg->type)); 7118 return -EACCES; 7119 } 7120 return check_mem_region_access(env, regno, reg->off, access_size, 7121 reg->map_ptr->key_size, false); 7122 case PTR_TO_MAP_VALUE: 7123 if (check_map_access_type(env, regno, reg->off, access_size, 7124 meta && meta->raw_mode ? BPF_WRITE : 7125 BPF_READ)) 7126 return -EACCES; 7127 return check_map_access(env, regno, reg->off, access_size, 7128 zero_size_allowed, ACCESS_HELPER); 7129 case PTR_TO_MEM: 7130 if (type_is_rdonly_mem(reg->type)) { 7131 if (meta && meta->raw_mode) { 7132 verbose(env, "R%d cannot write into %s\n", regno, 7133 reg_type_str(env, reg->type)); 7134 return -EACCES; 7135 } 7136 } 7137 return check_mem_region_access(env, regno, reg->off, 7138 access_size, reg->mem_size, 7139 zero_size_allowed); 7140 case PTR_TO_BUF: 7141 if (type_is_rdonly_mem(reg->type)) { 7142 if (meta && meta->raw_mode) { 7143 verbose(env, "R%d cannot write into %s\n", regno, 7144 reg_type_str(env, reg->type)); 7145 return -EACCES; 7146 } 7147 7148 max_access = &env->prog->aux->max_rdonly_access; 7149 } else { 7150 max_access = &env->prog->aux->max_rdwr_access; 7151 } 7152 return check_buffer_access(env, reg, regno, reg->off, 7153 access_size, zero_size_allowed, 7154 max_access); 7155 case PTR_TO_STACK: 7156 return check_stack_range_initialized( 7157 env, 7158 regno, reg->off, access_size, 7159 zero_size_allowed, ACCESS_HELPER, meta); 7160 case PTR_TO_BTF_ID: 7161 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7162 access_size, BPF_READ, -1); 7163 case PTR_TO_CTX: 7164 /* in case the function doesn't know how to access the context, 7165 * (because we are in a program of type SYSCALL for example), we 7166 * can not statically check its size. 7167 * Dynamically check it now. 7168 */ 7169 if (!env->ops->convert_ctx_access) { 7170 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7171 int offset = access_size - 1; 7172 7173 /* Allow zero-byte read from PTR_TO_CTX */ 7174 if (access_size == 0) 7175 return zero_size_allowed ? 0 : -EACCES; 7176 7177 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7178 atype, -1, false, false); 7179 } 7180 7181 fallthrough; 7182 default: /* scalar_value or invalid ptr */ 7183 /* Allow zero-byte read from NULL, regardless of pointer type */ 7184 if (zero_size_allowed && access_size == 0 && 7185 register_is_null(reg)) 7186 return 0; 7187 7188 verbose(env, "R%d type=%s ", regno, 7189 reg_type_str(env, reg->type)); 7190 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7191 return -EACCES; 7192 } 7193 } 7194 7195 static int check_mem_size_reg(struct bpf_verifier_env *env, 7196 struct bpf_reg_state *reg, u32 regno, 7197 bool zero_size_allowed, 7198 struct bpf_call_arg_meta *meta) 7199 { 7200 int err; 7201 7202 /* This is used to refine r0 return value bounds for helpers 7203 * that enforce this value as an upper bound on return values. 7204 * See do_refine_retval_range() for helpers that can refine 7205 * the return value. C type of helper is u32 so we pull register 7206 * bound from umax_value however, if negative verifier errors 7207 * out. Only upper bounds can be learned because retval is an 7208 * int type and negative retvals are allowed. 7209 */ 7210 meta->msize_max_value = reg->umax_value; 7211 7212 /* The register is SCALAR_VALUE; the access check 7213 * happens using its boundaries. 7214 */ 7215 if (!tnum_is_const(reg->var_off)) 7216 /* For unprivileged variable accesses, disable raw 7217 * mode so that the program is required to 7218 * initialize all the memory that the helper could 7219 * just partially fill up. 7220 */ 7221 meta = NULL; 7222 7223 if (reg->smin_value < 0) { 7224 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7225 regno); 7226 return -EACCES; 7227 } 7228 7229 if (reg->umin_value == 0) { 7230 err = check_helper_mem_access(env, regno - 1, 0, 7231 zero_size_allowed, 7232 meta); 7233 if (err) 7234 return err; 7235 } 7236 7237 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7238 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7239 regno); 7240 return -EACCES; 7241 } 7242 err = check_helper_mem_access(env, regno - 1, 7243 reg->umax_value, 7244 zero_size_allowed, meta); 7245 if (!err) 7246 err = mark_chain_precision(env, regno); 7247 return err; 7248 } 7249 7250 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7251 u32 regno, u32 mem_size) 7252 { 7253 bool may_be_null = type_may_be_null(reg->type); 7254 struct bpf_reg_state saved_reg; 7255 struct bpf_call_arg_meta meta; 7256 int err; 7257 7258 if (register_is_null(reg)) 7259 return 0; 7260 7261 memset(&meta, 0, sizeof(meta)); 7262 /* Assuming that the register contains a value check if the memory 7263 * access is safe. Temporarily save and restore the register's state as 7264 * the conversion shouldn't be visible to a caller. 7265 */ 7266 if (may_be_null) { 7267 saved_reg = *reg; 7268 mark_ptr_not_null_reg(reg); 7269 } 7270 7271 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7272 /* Check access for BPF_WRITE */ 7273 meta.raw_mode = true; 7274 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7275 7276 if (may_be_null) 7277 *reg = saved_reg; 7278 7279 return err; 7280 } 7281 7282 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7283 u32 regno) 7284 { 7285 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7286 bool may_be_null = type_may_be_null(mem_reg->type); 7287 struct bpf_reg_state saved_reg; 7288 struct bpf_call_arg_meta meta; 7289 int err; 7290 7291 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7292 7293 memset(&meta, 0, sizeof(meta)); 7294 7295 if (may_be_null) { 7296 saved_reg = *mem_reg; 7297 mark_ptr_not_null_reg(mem_reg); 7298 } 7299 7300 err = check_mem_size_reg(env, reg, regno, true, &meta); 7301 /* Check access for BPF_WRITE */ 7302 meta.raw_mode = true; 7303 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7304 7305 if (may_be_null) 7306 *mem_reg = saved_reg; 7307 return err; 7308 } 7309 7310 /* Implementation details: 7311 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7312 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7313 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7314 * Two separate bpf_obj_new will also have different reg->id. 7315 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7316 * clears reg->id after value_or_null->value transition, since the verifier only 7317 * cares about the range of access to valid map value pointer and doesn't care 7318 * about actual address of the map element. 7319 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7320 * reg->id > 0 after value_or_null->value transition. By doing so 7321 * two bpf_map_lookups will be considered two different pointers that 7322 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7323 * returned from bpf_obj_new. 7324 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7325 * dead-locks. 7326 * Since only one bpf_spin_lock is allowed the checks are simpler than 7327 * reg_is_refcounted() logic. The verifier needs to remember only 7328 * one spin_lock instead of array of acquired_refs. 7329 * cur_state->active_lock remembers which map value element or allocated 7330 * object got locked and clears it after bpf_spin_unlock. 7331 */ 7332 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7333 bool is_lock) 7334 { 7335 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7336 struct bpf_verifier_state *cur = env->cur_state; 7337 bool is_const = tnum_is_const(reg->var_off); 7338 u64 val = reg->var_off.value; 7339 struct bpf_map *map = NULL; 7340 struct btf *btf = NULL; 7341 struct btf_record *rec; 7342 7343 if (!is_const) { 7344 verbose(env, 7345 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7346 regno); 7347 return -EINVAL; 7348 } 7349 if (reg->type == PTR_TO_MAP_VALUE) { 7350 map = reg->map_ptr; 7351 if (!map->btf) { 7352 verbose(env, 7353 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7354 map->name); 7355 return -EINVAL; 7356 } 7357 } else { 7358 btf = reg->btf; 7359 } 7360 7361 rec = reg_btf_record(reg); 7362 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7363 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7364 map ? map->name : "kptr"); 7365 return -EINVAL; 7366 } 7367 if (rec->spin_lock_off != val + reg->off) { 7368 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7369 val + reg->off, rec->spin_lock_off); 7370 return -EINVAL; 7371 } 7372 if (is_lock) { 7373 if (cur->active_lock.ptr) { 7374 verbose(env, 7375 "Locking two bpf_spin_locks are not allowed\n"); 7376 return -EINVAL; 7377 } 7378 if (map) 7379 cur->active_lock.ptr = map; 7380 else 7381 cur->active_lock.ptr = btf; 7382 cur->active_lock.id = reg->id; 7383 } else { 7384 void *ptr; 7385 7386 if (map) 7387 ptr = map; 7388 else 7389 ptr = btf; 7390 7391 if (!cur->active_lock.ptr) { 7392 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7393 return -EINVAL; 7394 } 7395 if (cur->active_lock.ptr != ptr || 7396 cur->active_lock.id != reg->id) { 7397 verbose(env, "bpf_spin_unlock of different lock\n"); 7398 return -EINVAL; 7399 } 7400 7401 invalidate_non_owning_refs(env); 7402 7403 cur->active_lock.ptr = NULL; 7404 cur->active_lock.id = 0; 7405 } 7406 return 0; 7407 } 7408 7409 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7410 struct bpf_call_arg_meta *meta) 7411 { 7412 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7413 bool is_const = tnum_is_const(reg->var_off); 7414 struct bpf_map *map = reg->map_ptr; 7415 u64 val = reg->var_off.value; 7416 7417 if (!is_const) { 7418 verbose(env, 7419 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7420 regno); 7421 return -EINVAL; 7422 } 7423 if (!map->btf) { 7424 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7425 map->name); 7426 return -EINVAL; 7427 } 7428 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7429 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7430 return -EINVAL; 7431 } 7432 if (map->record->timer_off != val + reg->off) { 7433 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7434 val + reg->off, map->record->timer_off); 7435 return -EINVAL; 7436 } 7437 if (meta->map_ptr) { 7438 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7439 return -EFAULT; 7440 } 7441 meta->map_uid = reg->map_uid; 7442 meta->map_ptr = map; 7443 return 0; 7444 } 7445 7446 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7447 struct bpf_call_arg_meta *meta) 7448 { 7449 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7450 struct bpf_map *map_ptr = reg->map_ptr; 7451 struct btf_field *kptr_field; 7452 u32 kptr_off; 7453 7454 if (!tnum_is_const(reg->var_off)) { 7455 verbose(env, 7456 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7457 regno); 7458 return -EINVAL; 7459 } 7460 if (!map_ptr->btf) { 7461 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7462 map_ptr->name); 7463 return -EINVAL; 7464 } 7465 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7466 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7467 return -EINVAL; 7468 } 7469 7470 meta->map_ptr = map_ptr; 7471 kptr_off = reg->off + reg->var_off.value; 7472 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7473 if (!kptr_field) { 7474 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7475 return -EACCES; 7476 } 7477 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 7478 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7479 return -EACCES; 7480 } 7481 meta->kptr_field = kptr_field; 7482 return 0; 7483 } 7484 7485 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7486 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7487 * 7488 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7489 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7490 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7491 * 7492 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7493 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7494 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7495 * mutate the view of the dynptr and also possibly destroy it. In the latter 7496 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7497 * memory that dynptr points to. 7498 * 7499 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7500 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7501 * readonly dynptr view yet, hence only the first case is tracked and checked. 7502 * 7503 * This is consistent with how C applies the const modifier to a struct object, 7504 * where the pointer itself inside bpf_dynptr becomes const but not what it 7505 * points to. 7506 * 7507 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7508 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7509 */ 7510 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7511 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7512 { 7513 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7514 int err; 7515 7516 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7517 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7518 */ 7519 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7520 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7521 return -EFAULT; 7522 } 7523 7524 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7525 * constructing a mutable bpf_dynptr object. 7526 * 7527 * Currently, this is only possible with PTR_TO_STACK 7528 * pointing to a region of at least 16 bytes which doesn't 7529 * contain an existing bpf_dynptr. 7530 * 7531 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7532 * mutated or destroyed. However, the memory it points to 7533 * may be mutated. 7534 * 7535 * None - Points to a initialized dynptr that can be mutated and 7536 * destroyed, including mutation of the memory it points 7537 * to. 7538 */ 7539 if (arg_type & MEM_UNINIT) { 7540 int i; 7541 7542 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7543 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7544 return -EINVAL; 7545 } 7546 7547 /* we write BPF_DW bits (8 bytes) at a time */ 7548 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7549 err = check_mem_access(env, insn_idx, regno, 7550 i, BPF_DW, BPF_WRITE, -1, false, false); 7551 if (err) 7552 return err; 7553 } 7554 7555 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7556 } else /* MEM_RDONLY and None case from above */ { 7557 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7558 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7559 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7560 return -EINVAL; 7561 } 7562 7563 if (!is_dynptr_reg_valid_init(env, reg)) { 7564 verbose(env, 7565 "Expected an initialized dynptr as arg #%d\n", 7566 regno); 7567 return -EINVAL; 7568 } 7569 7570 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7571 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7572 verbose(env, 7573 "Expected a dynptr of type %s as arg #%d\n", 7574 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7575 return -EINVAL; 7576 } 7577 7578 err = mark_dynptr_read(env, reg); 7579 } 7580 return err; 7581 } 7582 7583 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7584 { 7585 struct bpf_func_state *state = func(env, reg); 7586 7587 return state->stack[spi].spilled_ptr.ref_obj_id; 7588 } 7589 7590 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7591 { 7592 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7593 } 7594 7595 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7596 { 7597 return meta->kfunc_flags & KF_ITER_NEW; 7598 } 7599 7600 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7601 { 7602 return meta->kfunc_flags & KF_ITER_NEXT; 7603 } 7604 7605 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7606 { 7607 return meta->kfunc_flags & KF_ITER_DESTROY; 7608 } 7609 7610 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7611 { 7612 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7613 * kfunc is iter state pointer 7614 */ 7615 return arg == 0 && is_iter_kfunc(meta); 7616 } 7617 7618 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7619 struct bpf_kfunc_call_arg_meta *meta) 7620 { 7621 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7622 const struct btf_type *t; 7623 const struct btf_param *arg; 7624 int spi, err, i, nr_slots; 7625 u32 btf_id; 7626 7627 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7628 arg = &btf_params(meta->func_proto)[0]; 7629 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7630 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7631 nr_slots = t->size / BPF_REG_SIZE; 7632 7633 if (is_iter_new_kfunc(meta)) { 7634 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7635 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7636 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7637 iter_type_str(meta->btf, btf_id), regno); 7638 return -EINVAL; 7639 } 7640 7641 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7642 err = check_mem_access(env, insn_idx, regno, 7643 i, BPF_DW, BPF_WRITE, -1, false, false); 7644 if (err) 7645 return err; 7646 } 7647 7648 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 7649 if (err) 7650 return err; 7651 } else { 7652 /* iter_next() or iter_destroy() expect initialized iter state*/ 7653 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 7654 switch (err) { 7655 case 0: 7656 break; 7657 case -EINVAL: 7658 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7659 iter_type_str(meta->btf, btf_id), regno); 7660 return err; 7661 case -EPROTO: 7662 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 7663 return err; 7664 default: 7665 return err; 7666 } 7667 7668 spi = iter_get_spi(env, reg, nr_slots); 7669 if (spi < 0) 7670 return spi; 7671 7672 err = mark_iter_read(env, reg, spi, nr_slots); 7673 if (err) 7674 return err; 7675 7676 /* remember meta->iter info for process_iter_next_call() */ 7677 meta->iter.spi = spi; 7678 meta->iter.frameno = reg->frameno; 7679 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7680 7681 if (is_iter_destroy_kfunc(meta)) { 7682 err = unmark_stack_slots_iter(env, reg, nr_slots); 7683 if (err) 7684 return err; 7685 } 7686 } 7687 7688 return 0; 7689 } 7690 7691 /* Look for a previous loop entry at insn_idx: nearest parent state 7692 * stopped at insn_idx with callsites matching those in cur->frame. 7693 */ 7694 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 7695 struct bpf_verifier_state *cur, 7696 int insn_idx) 7697 { 7698 struct bpf_verifier_state_list *sl; 7699 struct bpf_verifier_state *st; 7700 7701 /* Explored states are pushed in stack order, most recent states come first */ 7702 sl = *explored_state(env, insn_idx); 7703 for (; sl; sl = sl->next) { 7704 /* If st->branches != 0 state is a part of current DFS verification path, 7705 * hence cur & st for a loop. 7706 */ 7707 st = &sl->state; 7708 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 7709 st->dfs_depth < cur->dfs_depth) 7710 return st; 7711 } 7712 7713 return NULL; 7714 } 7715 7716 static void reset_idmap_scratch(struct bpf_verifier_env *env); 7717 static bool regs_exact(const struct bpf_reg_state *rold, 7718 const struct bpf_reg_state *rcur, 7719 struct bpf_idmap *idmap); 7720 7721 static void maybe_widen_reg(struct bpf_verifier_env *env, 7722 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7723 struct bpf_idmap *idmap) 7724 { 7725 if (rold->type != SCALAR_VALUE) 7726 return; 7727 if (rold->type != rcur->type) 7728 return; 7729 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 7730 return; 7731 __mark_reg_unknown(env, rcur); 7732 } 7733 7734 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 7735 struct bpf_verifier_state *old, 7736 struct bpf_verifier_state *cur) 7737 { 7738 struct bpf_func_state *fold, *fcur; 7739 int i, fr; 7740 7741 reset_idmap_scratch(env); 7742 for (fr = old->curframe; fr >= 0; fr--) { 7743 fold = old->frame[fr]; 7744 fcur = cur->frame[fr]; 7745 7746 for (i = 0; i < MAX_BPF_REG; i++) 7747 maybe_widen_reg(env, 7748 &fold->regs[i], 7749 &fcur->regs[i], 7750 &env->idmap_scratch); 7751 7752 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 7753 if (!is_spilled_reg(&fold->stack[i]) || 7754 !is_spilled_reg(&fcur->stack[i])) 7755 continue; 7756 7757 maybe_widen_reg(env, 7758 &fold->stack[i].spilled_ptr, 7759 &fcur->stack[i].spilled_ptr, 7760 &env->idmap_scratch); 7761 } 7762 } 7763 return 0; 7764 } 7765 7766 /* process_iter_next_call() is called when verifier gets to iterator's next 7767 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7768 * to it as just "iter_next()" in comments below. 7769 * 7770 * BPF verifier relies on a crucial contract for any iter_next() 7771 * implementation: it should *eventually* return NULL, and once that happens 7772 * it should keep returning NULL. That is, once iterator exhausts elements to 7773 * iterate, it should never reset or spuriously return new elements. 7774 * 7775 * With the assumption of such contract, process_iter_next_call() simulates 7776 * a fork in the verifier state to validate loop logic correctness and safety 7777 * without having to simulate infinite amount of iterations. 7778 * 7779 * In current state, we first assume that iter_next() returned NULL and 7780 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7781 * conditions we should not form an infinite loop and should eventually reach 7782 * exit. 7783 * 7784 * Besides that, we also fork current state and enqueue it for later 7785 * verification. In a forked state we keep iterator state as ACTIVE 7786 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7787 * also bump iteration depth to prevent erroneous infinite loop detection 7788 * later on (see iter_active_depths_differ() comment for details). In this 7789 * state we assume that we'll eventually loop back to another iter_next() 7790 * calls (it could be in exactly same location or in some other instruction, 7791 * it doesn't matter, we don't make any unnecessary assumptions about this, 7792 * everything revolves around iterator state in a stack slot, not which 7793 * instruction is calling iter_next()). When that happens, we either will come 7794 * to iter_next() with equivalent state and can conclude that next iteration 7795 * will proceed in exactly the same way as we just verified, so it's safe to 7796 * assume that loop converges. If not, we'll go on another iteration 7797 * simulation with a different input state, until all possible starting states 7798 * are validated or we reach maximum number of instructions limit. 7799 * 7800 * This way, we will either exhaustively discover all possible input states 7801 * that iterator loop can start with and eventually will converge, or we'll 7802 * effectively regress into bounded loop simulation logic and either reach 7803 * maximum number of instructions if loop is not provably convergent, or there 7804 * is some statically known limit on number of iterations (e.g., if there is 7805 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7806 * 7807 * Iteration convergence logic in is_state_visited() relies on exact 7808 * states comparison, which ignores read and precision marks. 7809 * This is necessary because read and precision marks are not finalized 7810 * while in the loop. Exact comparison might preclude convergence for 7811 * simple programs like below: 7812 * 7813 * i = 0; 7814 * while(iter_next(&it)) 7815 * i++; 7816 * 7817 * At each iteration step i++ would produce a new distinct state and 7818 * eventually instruction processing limit would be reached. 7819 * 7820 * To avoid such behavior speculatively forget (widen) range for 7821 * imprecise scalar registers, if those registers were not precise at the 7822 * end of the previous iteration and do not match exactly. 7823 * 7824 * This is a conservative heuristic that allows to verify wide range of programs, 7825 * however it precludes verification of programs that conjure an 7826 * imprecise value on the first loop iteration and use it as precise on a second. 7827 * For example, the following safe program would fail to verify: 7828 * 7829 * struct bpf_num_iter it; 7830 * int arr[10]; 7831 * int i = 0, a = 0; 7832 * bpf_iter_num_new(&it, 0, 10); 7833 * while (bpf_iter_num_next(&it)) { 7834 * if (a == 0) { 7835 * a = 1; 7836 * i = 7; // Because i changed verifier would forget 7837 * // it's range on second loop entry. 7838 * } else { 7839 * arr[i] = 42; // This would fail to verify. 7840 * } 7841 * } 7842 * bpf_iter_num_destroy(&it); 7843 */ 7844 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7845 struct bpf_kfunc_call_arg_meta *meta) 7846 { 7847 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 7848 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7849 struct bpf_reg_state *cur_iter, *queued_iter; 7850 int iter_frameno = meta->iter.frameno; 7851 int iter_spi = meta->iter.spi; 7852 7853 BTF_TYPE_EMIT(struct bpf_iter); 7854 7855 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7856 7857 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7858 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7859 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7860 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7861 return -EFAULT; 7862 } 7863 7864 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7865 /* Because iter_next() call is a checkpoint is_state_visitied() 7866 * should guarantee parent state with same call sites and insn_idx. 7867 */ 7868 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 7869 !same_callsites(cur_st->parent, cur_st)) { 7870 verbose(env, "bug: bad parent state for iter next call"); 7871 return -EFAULT; 7872 } 7873 /* Note cur_st->parent in the call below, it is necessary to skip 7874 * checkpoint created for cur_st by is_state_visited() 7875 * right at this instruction. 7876 */ 7877 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 7878 /* branch out active iter state */ 7879 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7880 if (!queued_st) 7881 return -ENOMEM; 7882 7883 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7884 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7885 queued_iter->iter.depth++; 7886 if (prev_st) 7887 widen_imprecise_scalars(env, prev_st, queued_st); 7888 7889 queued_fr = queued_st->frame[queued_st->curframe]; 7890 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7891 } 7892 7893 /* switch to DRAINED state, but keep the depth unchanged */ 7894 /* mark current iter state as drained and assume returned NULL */ 7895 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7896 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7897 7898 return 0; 7899 } 7900 7901 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7902 { 7903 return type == ARG_CONST_SIZE || 7904 type == ARG_CONST_SIZE_OR_ZERO; 7905 } 7906 7907 static bool arg_type_is_release(enum bpf_arg_type type) 7908 { 7909 return type & OBJ_RELEASE; 7910 } 7911 7912 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7913 { 7914 return base_type(type) == ARG_PTR_TO_DYNPTR; 7915 } 7916 7917 static int int_ptr_type_to_size(enum bpf_arg_type type) 7918 { 7919 if (type == ARG_PTR_TO_INT) 7920 return sizeof(u32); 7921 else if (type == ARG_PTR_TO_LONG) 7922 return sizeof(u64); 7923 7924 return -EINVAL; 7925 } 7926 7927 static int resolve_map_arg_type(struct bpf_verifier_env *env, 7928 const struct bpf_call_arg_meta *meta, 7929 enum bpf_arg_type *arg_type) 7930 { 7931 if (!meta->map_ptr) { 7932 /* kernel subsystem misconfigured verifier */ 7933 verbose(env, "invalid map_ptr to access map->type\n"); 7934 return -EACCES; 7935 } 7936 7937 switch (meta->map_ptr->map_type) { 7938 case BPF_MAP_TYPE_SOCKMAP: 7939 case BPF_MAP_TYPE_SOCKHASH: 7940 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 7941 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 7942 } else { 7943 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 7944 return -EINVAL; 7945 } 7946 break; 7947 case BPF_MAP_TYPE_BLOOM_FILTER: 7948 if (meta->func_id == BPF_FUNC_map_peek_elem) 7949 *arg_type = ARG_PTR_TO_MAP_VALUE; 7950 break; 7951 default: 7952 break; 7953 } 7954 return 0; 7955 } 7956 7957 struct bpf_reg_types { 7958 const enum bpf_reg_type types[10]; 7959 u32 *btf_id; 7960 }; 7961 7962 static const struct bpf_reg_types sock_types = { 7963 .types = { 7964 PTR_TO_SOCK_COMMON, 7965 PTR_TO_SOCKET, 7966 PTR_TO_TCP_SOCK, 7967 PTR_TO_XDP_SOCK, 7968 }, 7969 }; 7970 7971 #ifdef CONFIG_NET 7972 static const struct bpf_reg_types btf_id_sock_common_types = { 7973 .types = { 7974 PTR_TO_SOCK_COMMON, 7975 PTR_TO_SOCKET, 7976 PTR_TO_TCP_SOCK, 7977 PTR_TO_XDP_SOCK, 7978 PTR_TO_BTF_ID, 7979 PTR_TO_BTF_ID | PTR_TRUSTED, 7980 }, 7981 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 7982 }; 7983 #endif 7984 7985 static const struct bpf_reg_types mem_types = { 7986 .types = { 7987 PTR_TO_STACK, 7988 PTR_TO_PACKET, 7989 PTR_TO_PACKET_META, 7990 PTR_TO_MAP_KEY, 7991 PTR_TO_MAP_VALUE, 7992 PTR_TO_MEM, 7993 PTR_TO_MEM | MEM_RINGBUF, 7994 PTR_TO_BUF, 7995 PTR_TO_BTF_ID | PTR_TRUSTED, 7996 }, 7997 }; 7998 7999 static const struct bpf_reg_types int_ptr_types = { 8000 .types = { 8001 PTR_TO_STACK, 8002 PTR_TO_PACKET, 8003 PTR_TO_PACKET_META, 8004 PTR_TO_MAP_KEY, 8005 PTR_TO_MAP_VALUE, 8006 }, 8007 }; 8008 8009 static const struct bpf_reg_types spin_lock_types = { 8010 .types = { 8011 PTR_TO_MAP_VALUE, 8012 PTR_TO_BTF_ID | MEM_ALLOC, 8013 } 8014 }; 8015 8016 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8017 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8018 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8019 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8020 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8021 static const struct bpf_reg_types btf_ptr_types = { 8022 .types = { 8023 PTR_TO_BTF_ID, 8024 PTR_TO_BTF_ID | PTR_TRUSTED, 8025 PTR_TO_BTF_ID | MEM_RCU, 8026 }, 8027 }; 8028 static const struct bpf_reg_types percpu_btf_ptr_types = { 8029 .types = { 8030 PTR_TO_BTF_ID | MEM_PERCPU, 8031 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 8032 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8033 } 8034 }; 8035 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8036 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8037 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8038 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8039 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8040 static const struct bpf_reg_types dynptr_types = { 8041 .types = { 8042 PTR_TO_STACK, 8043 CONST_PTR_TO_DYNPTR, 8044 } 8045 }; 8046 8047 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8048 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8049 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8050 [ARG_CONST_SIZE] = &scalar_types, 8051 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8052 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8053 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8054 [ARG_PTR_TO_CTX] = &context_types, 8055 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8056 #ifdef CONFIG_NET 8057 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8058 #endif 8059 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8060 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8061 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8062 [ARG_PTR_TO_MEM] = &mem_types, 8063 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8064 [ARG_PTR_TO_INT] = &int_ptr_types, 8065 [ARG_PTR_TO_LONG] = &int_ptr_types, 8066 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8067 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8068 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8069 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8070 [ARG_PTR_TO_TIMER] = &timer_types, 8071 [ARG_PTR_TO_KPTR] = &kptr_types, 8072 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8073 }; 8074 8075 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8076 enum bpf_arg_type arg_type, 8077 const u32 *arg_btf_id, 8078 struct bpf_call_arg_meta *meta) 8079 { 8080 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8081 enum bpf_reg_type expected, type = reg->type; 8082 const struct bpf_reg_types *compatible; 8083 int i, j; 8084 8085 compatible = compatible_reg_types[base_type(arg_type)]; 8086 if (!compatible) { 8087 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8088 return -EFAULT; 8089 } 8090 8091 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8092 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8093 * 8094 * Same for MAYBE_NULL: 8095 * 8096 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8097 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8098 * 8099 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8100 * 8101 * Therefore we fold these flags depending on the arg_type before comparison. 8102 */ 8103 if (arg_type & MEM_RDONLY) 8104 type &= ~MEM_RDONLY; 8105 if (arg_type & PTR_MAYBE_NULL) 8106 type &= ~PTR_MAYBE_NULL; 8107 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8108 type &= ~DYNPTR_TYPE_FLAG_MASK; 8109 8110 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) { 8111 type &= ~MEM_ALLOC; 8112 type &= ~MEM_PERCPU; 8113 } 8114 8115 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8116 expected = compatible->types[i]; 8117 if (expected == NOT_INIT) 8118 break; 8119 8120 if (type == expected) 8121 goto found; 8122 } 8123 8124 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8125 for (j = 0; j + 1 < i; j++) 8126 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8127 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8128 return -EACCES; 8129 8130 found: 8131 if (base_type(reg->type) != PTR_TO_BTF_ID) 8132 return 0; 8133 8134 if (compatible == &mem_types) { 8135 if (!(arg_type & MEM_RDONLY)) { 8136 verbose(env, 8137 "%s() may write into memory pointed by R%d type=%s\n", 8138 func_id_name(meta->func_id), 8139 regno, reg_type_str(env, reg->type)); 8140 return -EACCES; 8141 } 8142 return 0; 8143 } 8144 8145 switch ((int)reg->type) { 8146 case PTR_TO_BTF_ID: 8147 case PTR_TO_BTF_ID | PTR_TRUSTED: 8148 case PTR_TO_BTF_ID | MEM_RCU: 8149 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8150 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8151 { 8152 /* For bpf_sk_release, it needs to match against first member 8153 * 'struct sock_common', hence make an exception for it. This 8154 * allows bpf_sk_release to work for multiple socket types. 8155 */ 8156 bool strict_type_match = arg_type_is_release(arg_type) && 8157 meta->func_id != BPF_FUNC_sk_release; 8158 8159 if (type_may_be_null(reg->type) && 8160 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8161 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8162 return -EACCES; 8163 } 8164 8165 if (!arg_btf_id) { 8166 if (!compatible->btf_id) { 8167 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8168 return -EFAULT; 8169 } 8170 arg_btf_id = compatible->btf_id; 8171 } 8172 8173 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8174 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8175 return -EACCES; 8176 } else { 8177 if (arg_btf_id == BPF_PTR_POISON) { 8178 verbose(env, "verifier internal error:"); 8179 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8180 regno); 8181 return -EACCES; 8182 } 8183 8184 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8185 btf_vmlinux, *arg_btf_id, 8186 strict_type_match)) { 8187 verbose(env, "R%d is of type %s but %s is expected\n", 8188 regno, btf_type_name(reg->btf, reg->btf_id), 8189 btf_type_name(btf_vmlinux, *arg_btf_id)); 8190 return -EACCES; 8191 } 8192 } 8193 break; 8194 } 8195 case PTR_TO_BTF_ID | MEM_ALLOC: 8196 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 8197 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8198 meta->func_id != BPF_FUNC_kptr_xchg) { 8199 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8200 return -EFAULT; 8201 } 8202 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8203 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8204 return -EACCES; 8205 } 8206 break; 8207 case PTR_TO_BTF_ID | MEM_PERCPU: 8208 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 8209 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8210 /* Handled by helper specific checks */ 8211 break; 8212 default: 8213 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8214 return -EFAULT; 8215 } 8216 return 0; 8217 } 8218 8219 static struct btf_field * 8220 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8221 { 8222 struct btf_field *field; 8223 struct btf_record *rec; 8224 8225 rec = reg_btf_record(reg); 8226 if (!rec) 8227 return NULL; 8228 8229 field = btf_record_find(rec, off, fields); 8230 if (!field) 8231 return NULL; 8232 8233 return field; 8234 } 8235 8236 int check_func_arg_reg_off(struct bpf_verifier_env *env, 8237 const struct bpf_reg_state *reg, int regno, 8238 enum bpf_arg_type arg_type) 8239 { 8240 u32 type = reg->type; 8241 8242 /* When referenced register is passed to release function, its fixed 8243 * offset must be 0. 8244 * 8245 * We will check arg_type_is_release reg has ref_obj_id when storing 8246 * meta->release_regno. 8247 */ 8248 if (arg_type_is_release(arg_type)) { 8249 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8250 * may not directly point to the object being released, but to 8251 * dynptr pointing to such object, which might be at some offset 8252 * on the stack. In that case, we simply to fallback to the 8253 * default handling. 8254 */ 8255 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8256 return 0; 8257 8258 /* Doing check_ptr_off_reg check for the offset will catch this 8259 * because fixed_off_ok is false, but checking here allows us 8260 * to give the user a better error message. 8261 */ 8262 if (reg->off) { 8263 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8264 regno); 8265 return -EINVAL; 8266 } 8267 return __check_ptr_off_reg(env, reg, regno, false); 8268 } 8269 8270 switch (type) { 8271 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8272 case PTR_TO_STACK: 8273 case PTR_TO_PACKET: 8274 case PTR_TO_PACKET_META: 8275 case PTR_TO_MAP_KEY: 8276 case PTR_TO_MAP_VALUE: 8277 case PTR_TO_MEM: 8278 case PTR_TO_MEM | MEM_RDONLY: 8279 case PTR_TO_MEM | MEM_RINGBUF: 8280 case PTR_TO_BUF: 8281 case PTR_TO_BUF | MEM_RDONLY: 8282 case SCALAR_VALUE: 8283 return 0; 8284 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8285 * fixed offset. 8286 */ 8287 case PTR_TO_BTF_ID: 8288 case PTR_TO_BTF_ID | MEM_ALLOC: 8289 case PTR_TO_BTF_ID | PTR_TRUSTED: 8290 case PTR_TO_BTF_ID | MEM_RCU: 8291 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8292 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8293 /* When referenced PTR_TO_BTF_ID is passed to release function, 8294 * its fixed offset must be 0. In the other cases, fixed offset 8295 * can be non-zero. This was already checked above. So pass 8296 * fixed_off_ok as true to allow fixed offset for all other 8297 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8298 * still need to do checks instead of returning. 8299 */ 8300 return __check_ptr_off_reg(env, reg, regno, true); 8301 default: 8302 return __check_ptr_off_reg(env, reg, regno, false); 8303 } 8304 } 8305 8306 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8307 const struct bpf_func_proto *fn, 8308 struct bpf_reg_state *regs) 8309 { 8310 struct bpf_reg_state *state = NULL; 8311 int i; 8312 8313 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8314 if (arg_type_is_dynptr(fn->arg_type[i])) { 8315 if (state) { 8316 verbose(env, "verifier internal error: multiple dynptr args\n"); 8317 return NULL; 8318 } 8319 state = ®s[BPF_REG_1 + i]; 8320 } 8321 8322 if (!state) 8323 verbose(env, "verifier internal error: no dynptr arg found\n"); 8324 8325 return state; 8326 } 8327 8328 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8329 { 8330 struct bpf_func_state *state = func(env, reg); 8331 int spi; 8332 8333 if (reg->type == CONST_PTR_TO_DYNPTR) 8334 return reg->id; 8335 spi = dynptr_get_spi(env, reg); 8336 if (spi < 0) 8337 return spi; 8338 return state->stack[spi].spilled_ptr.id; 8339 } 8340 8341 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8342 { 8343 struct bpf_func_state *state = func(env, reg); 8344 int spi; 8345 8346 if (reg->type == CONST_PTR_TO_DYNPTR) 8347 return reg->ref_obj_id; 8348 spi = dynptr_get_spi(env, reg); 8349 if (spi < 0) 8350 return spi; 8351 return state->stack[spi].spilled_ptr.ref_obj_id; 8352 } 8353 8354 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8355 struct bpf_reg_state *reg) 8356 { 8357 struct bpf_func_state *state = func(env, reg); 8358 int spi; 8359 8360 if (reg->type == CONST_PTR_TO_DYNPTR) 8361 return reg->dynptr.type; 8362 8363 spi = __get_spi(reg->off); 8364 if (spi < 0) { 8365 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8366 return BPF_DYNPTR_TYPE_INVALID; 8367 } 8368 8369 return state->stack[spi].spilled_ptr.dynptr.type; 8370 } 8371 8372 static int check_reg_const_str(struct bpf_verifier_env *env, 8373 struct bpf_reg_state *reg, u32 regno) 8374 { 8375 struct bpf_map *map = reg->map_ptr; 8376 int err; 8377 int map_off; 8378 u64 map_addr; 8379 char *str_ptr; 8380 8381 if (reg->type != PTR_TO_MAP_VALUE) 8382 return -EINVAL; 8383 8384 if (!bpf_map_is_rdonly(map)) { 8385 verbose(env, "R%d does not point to a readonly map'\n", regno); 8386 return -EACCES; 8387 } 8388 8389 if (!tnum_is_const(reg->var_off)) { 8390 verbose(env, "R%d is not a constant address'\n", regno); 8391 return -EACCES; 8392 } 8393 8394 if (!map->ops->map_direct_value_addr) { 8395 verbose(env, "no direct value access support for this map type\n"); 8396 return -EACCES; 8397 } 8398 8399 err = check_map_access(env, regno, reg->off, 8400 map->value_size - reg->off, false, 8401 ACCESS_HELPER); 8402 if (err) 8403 return err; 8404 8405 map_off = reg->off + reg->var_off.value; 8406 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8407 if (err) { 8408 verbose(env, "direct value access on string failed\n"); 8409 return err; 8410 } 8411 8412 str_ptr = (char *)(long)(map_addr); 8413 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8414 verbose(env, "string is not zero-terminated\n"); 8415 return -EINVAL; 8416 } 8417 return 0; 8418 } 8419 8420 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8421 struct bpf_call_arg_meta *meta, 8422 const struct bpf_func_proto *fn, 8423 int insn_idx) 8424 { 8425 u32 regno = BPF_REG_1 + arg; 8426 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8427 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8428 enum bpf_reg_type type = reg->type; 8429 u32 *arg_btf_id = NULL; 8430 int err = 0; 8431 8432 if (arg_type == ARG_DONTCARE) 8433 return 0; 8434 8435 err = check_reg_arg(env, regno, SRC_OP); 8436 if (err) 8437 return err; 8438 8439 if (arg_type == ARG_ANYTHING) { 8440 if (is_pointer_value(env, regno)) { 8441 verbose(env, "R%d leaks addr into helper function\n", 8442 regno); 8443 return -EACCES; 8444 } 8445 return 0; 8446 } 8447 8448 if (type_is_pkt_pointer(type) && 8449 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8450 verbose(env, "helper access to the packet is not allowed\n"); 8451 return -EACCES; 8452 } 8453 8454 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8455 err = resolve_map_arg_type(env, meta, &arg_type); 8456 if (err) 8457 return err; 8458 } 8459 8460 if (register_is_null(reg) && type_may_be_null(arg_type)) 8461 /* A NULL register has a SCALAR_VALUE type, so skip 8462 * type checking. 8463 */ 8464 goto skip_type_check; 8465 8466 /* arg_btf_id and arg_size are in a union. */ 8467 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8468 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8469 arg_btf_id = fn->arg_btf_id[arg]; 8470 8471 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8472 if (err) 8473 return err; 8474 8475 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8476 if (err) 8477 return err; 8478 8479 skip_type_check: 8480 if (arg_type_is_release(arg_type)) { 8481 if (arg_type_is_dynptr(arg_type)) { 8482 struct bpf_func_state *state = func(env, reg); 8483 int spi; 8484 8485 /* Only dynptr created on stack can be released, thus 8486 * the get_spi and stack state checks for spilled_ptr 8487 * should only be done before process_dynptr_func for 8488 * PTR_TO_STACK. 8489 */ 8490 if (reg->type == PTR_TO_STACK) { 8491 spi = dynptr_get_spi(env, reg); 8492 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8493 verbose(env, "arg %d is an unacquired reference\n", regno); 8494 return -EINVAL; 8495 } 8496 } else { 8497 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8498 return -EINVAL; 8499 } 8500 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8501 verbose(env, "R%d must be referenced when passed to release function\n", 8502 regno); 8503 return -EINVAL; 8504 } 8505 if (meta->release_regno) { 8506 verbose(env, "verifier internal error: more than one release argument\n"); 8507 return -EFAULT; 8508 } 8509 meta->release_regno = regno; 8510 } 8511 8512 if (reg->ref_obj_id) { 8513 if (meta->ref_obj_id) { 8514 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8515 regno, reg->ref_obj_id, 8516 meta->ref_obj_id); 8517 return -EFAULT; 8518 } 8519 meta->ref_obj_id = reg->ref_obj_id; 8520 } 8521 8522 switch (base_type(arg_type)) { 8523 case ARG_CONST_MAP_PTR: 8524 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8525 if (meta->map_ptr) { 8526 /* Use map_uid (which is unique id of inner map) to reject: 8527 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8528 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8529 * if (inner_map1 && inner_map2) { 8530 * timer = bpf_map_lookup_elem(inner_map1); 8531 * if (timer) 8532 * // mismatch would have been allowed 8533 * bpf_timer_init(timer, inner_map2); 8534 * } 8535 * 8536 * Comparing map_ptr is enough to distinguish normal and outer maps. 8537 */ 8538 if (meta->map_ptr != reg->map_ptr || 8539 meta->map_uid != reg->map_uid) { 8540 verbose(env, 8541 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8542 meta->map_uid, reg->map_uid); 8543 return -EINVAL; 8544 } 8545 } 8546 meta->map_ptr = reg->map_ptr; 8547 meta->map_uid = reg->map_uid; 8548 break; 8549 case ARG_PTR_TO_MAP_KEY: 8550 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8551 * check that [key, key + map->key_size) are within 8552 * stack limits and initialized 8553 */ 8554 if (!meta->map_ptr) { 8555 /* in function declaration map_ptr must come before 8556 * map_key, so that it's verified and known before 8557 * we have to check map_key here. Otherwise it means 8558 * that kernel subsystem misconfigured verifier 8559 */ 8560 verbose(env, "invalid map_ptr to access map->key\n"); 8561 return -EACCES; 8562 } 8563 err = check_helper_mem_access(env, regno, 8564 meta->map_ptr->key_size, false, 8565 NULL); 8566 break; 8567 case ARG_PTR_TO_MAP_VALUE: 8568 if (type_may_be_null(arg_type) && register_is_null(reg)) 8569 return 0; 8570 8571 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8572 * check [value, value + map->value_size) validity 8573 */ 8574 if (!meta->map_ptr) { 8575 /* kernel subsystem misconfigured verifier */ 8576 verbose(env, "invalid map_ptr to access map->value\n"); 8577 return -EACCES; 8578 } 8579 meta->raw_mode = arg_type & MEM_UNINIT; 8580 err = check_helper_mem_access(env, regno, 8581 meta->map_ptr->value_size, false, 8582 meta); 8583 break; 8584 case ARG_PTR_TO_PERCPU_BTF_ID: 8585 if (!reg->btf_id) { 8586 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8587 return -EACCES; 8588 } 8589 meta->ret_btf = reg->btf; 8590 meta->ret_btf_id = reg->btf_id; 8591 break; 8592 case ARG_PTR_TO_SPIN_LOCK: 8593 if (in_rbtree_lock_required_cb(env)) { 8594 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8595 return -EACCES; 8596 } 8597 if (meta->func_id == BPF_FUNC_spin_lock) { 8598 err = process_spin_lock(env, regno, true); 8599 if (err) 8600 return err; 8601 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8602 err = process_spin_lock(env, regno, false); 8603 if (err) 8604 return err; 8605 } else { 8606 verbose(env, "verifier internal error\n"); 8607 return -EFAULT; 8608 } 8609 break; 8610 case ARG_PTR_TO_TIMER: 8611 err = process_timer_func(env, regno, meta); 8612 if (err) 8613 return err; 8614 break; 8615 case ARG_PTR_TO_FUNC: 8616 meta->subprogno = reg->subprogno; 8617 break; 8618 case ARG_PTR_TO_MEM: 8619 /* The access to this pointer is only checked when we hit the 8620 * next is_mem_size argument below. 8621 */ 8622 meta->raw_mode = arg_type & MEM_UNINIT; 8623 if (arg_type & MEM_FIXED_SIZE) { 8624 err = check_helper_mem_access(env, regno, 8625 fn->arg_size[arg], false, 8626 meta); 8627 } 8628 break; 8629 case ARG_CONST_SIZE: 8630 err = check_mem_size_reg(env, reg, regno, false, meta); 8631 break; 8632 case ARG_CONST_SIZE_OR_ZERO: 8633 err = check_mem_size_reg(env, reg, regno, true, meta); 8634 break; 8635 case ARG_PTR_TO_DYNPTR: 8636 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8637 if (err) 8638 return err; 8639 break; 8640 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8641 if (!tnum_is_const(reg->var_off)) { 8642 verbose(env, "R%d is not a known constant'\n", 8643 regno); 8644 return -EACCES; 8645 } 8646 meta->mem_size = reg->var_off.value; 8647 err = mark_chain_precision(env, regno); 8648 if (err) 8649 return err; 8650 break; 8651 case ARG_PTR_TO_INT: 8652 case ARG_PTR_TO_LONG: 8653 { 8654 int size = int_ptr_type_to_size(arg_type); 8655 8656 err = check_helper_mem_access(env, regno, size, false, meta); 8657 if (err) 8658 return err; 8659 err = check_ptr_alignment(env, reg, 0, size, true); 8660 break; 8661 } 8662 case ARG_PTR_TO_CONST_STR: 8663 { 8664 err = check_reg_const_str(env, reg, regno); 8665 if (err) 8666 return err; 8667 break; 8668 } 8669 case ARG_PTR_TO_KPTR: 8670 err = process_kptr_func(env, regno, meta); 8671 if (err) 8672 return err; 8673 break; 8674 } 8675 8676 return err; 8677 } 8678 8679 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8680 { 8681 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8682 enum bpf_prog_type type = resolve_prog_type(env->prog); 8683 8684 if (func_id != BPF_FUNC_map_update_elem) 8685 return false; 8686 8687 /* It's not possible to get access to a locked struct sock in these 8688 * contexts, so updating is safe. 8689 */ 8690 switch (type) { 8691 case BPF_PROG_TYPE_TRACING: 8692 if (eatype == BPF_TRACE_ITER) 8693 return true; 8694 break; 8695 case BPF_PROG_TYPE_SOCKET_FILTER: 8696 case BPF_PROG_TYPE_SCHED_CLS: 8697 case BPF_PROG_TYPE_SCHED_ACT: 8698 case BPF_PROG_TYPE_XDP: 8699 case BPF_PROG_TYPE_SK_REUSEPORT: 8700 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8701 case BPF_PROG_TYPE_SK_LOOKUP: 8702 return true; 8703 default: 8704 break; 8705 } 8706 8707 verbose(env, "cannot update sockmap in this context\n"); 8708 return false; 8709 } 8710 8711 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8712 { 8713 return env->prog->jit_requested && 8714 bpf_jit_supports_subprog_tailcalls(); 8715 } 8716 8717 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8718 struct bpf_map *map, int func_id) 8719 { 8720 if (!map) 8721 return 0; 8722 8723 /* We need a two way check, first is from map perspective ... */ 8724 switch (map->map_type) { 8725 case BPF_MAP_TYPE_PROG_ARRAY: 8726 if (func_id != BPF_FUNC_tail_call) 8727 goto error; 8728 break; 8729 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8730 if (func_id != BPF_FUNC_perf_event_read && 8731 func_id != BPF_FUNC_perf_event_output && 8732 func_id != BPF_FUNC_skb_output && 8733 func_id != BPF_FUNC_perf_event_read_value && 8734 func_id != BPF_FUNC_xdp_output) 8735 goto error; 8736 break; 8737 case BPF_MAP_TYPE_RINGBUF: 8738 if (func_id != BPF_FUNC_ringbuf_output && 8739 func_id != BPF_FUNC_ringbuf_reserve && 8740 func_id != BPF_FUNC_ringbuf_query && 8741 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8742 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8743 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8744 goto error; 8745 break; 8746 case BPF_MAP_TYPE_USER_RINGBUF: 8747 if (func_id != BPF_FUNC_user_ringbuf_drain) 8748 goto error; 8749 break; 8750 case BPF_MAP_TYPE_STACK_TRACE: 8751 if (func_id != BPF_FUNC_get_stackid) 8752 goto error; 8753 break; 8754 case BPF_MAP_TYPE_CGROUP_ARRAY: 8755 if (func_id != BPF_FUNC_skb_under_cgroup && 8756 func_id != BPF_FUNC_current_task_under_cgroup) 8757 goto error; 8758 break; 8759 case BPF_MAP_TYPE_CGROUP_STORAGE: 8760 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8761 if (func_id != BPF_FUNC_get_local_storage) 8762 goto error; 8763 break; 8764 case BPF_MAP_TYPE_DEVMAP: 8765 case BPF_MAP_TYPE_DEVMAP_HASH: 8766 if (func_id != BPF_FUNC_redirect_map && 8767 func_id != BPF_FUNC_map_lookup_elem) 8768 goto error; 8769 break; 8770 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8771 * appear. 8772 */ 8773 case BPF_MAP_TYPE_CPUMAP: 8774 if (func_id != BPF_FUNC_redirect_map) 8775 goto error; 8776 break; 8777 case BPF_MAP_TYPE_XSKMAP: 8778 if (func_id != BPF_FUNC_redirect_map && 8779 func_id != BPF_FUNC_map_lookup_elem) 8780 goto error; 8781 break; 8782 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8783 case BPF_MAP_TYPE_HASH_OF_MAPS: 8784 if (func_id != BPF_FUNC_map_lookup_elem) 8785 goto error; 8786 break; 8787 case BPF_MAP_TYPE_SOCKMAP: 8788 if (func_id != BPF_FUNC_sk_redirect_map && 8789 func_id != BPF_FUNC_sock_map_update && 8790 func_id != BPF_FUNC_map_delete_elem && 8791 func_id != BPF_FUNC_msg_redirect_map && 8792 func_id != BPF_FUNC_sk_select_reuseport && 8793 func_id != BPF_FUNC_map_lookup_elem && 8794 !may_update_sockmap(env, func_id)) 8795 goto error; 8796 break; 8797 case BPF_MAP_TYPE_SOCKHASH: 8798 if (func_id != BPF_FUNC_sk_redirect_hash && 8799 func_id != BPF_FUNC_sock_hash_update && 8800 func_id != BPF_FUNC_map_delete_elem && 8801 func_id != BPF_FUNC_msg_redirect_hash && 8802 func_id != BPF_FUNC_sk_select_reuseport && 8803 func_id != BPF_FUNC_map_lookup_elem && 8804 !may_update_sockmap(env, func_id)) 8805 goto error; 8806 break; 8807 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8808 if (func_id != BPF_FUNC_sk_select_reuseport) 8809 goto error; 8810 break; 8811 case BPF_MAP_TYPE_QUEUE: 8812 case BPF_MAP_TYPE_STACK: 8813 if (func_id != BPF_FUNC_map_peek_elem && 8814 func_id != BPF_FUNC_map_pop_elem && 8815 func_id != BPF_FUNC_map_push_elem) 8816 goto error; 8817 break; 8818 case BPF_MAP_TYPE_SK_STORAGE: 8819 if (func_id != BPF_FUNC_sk_storage_get && 8820 func_id != BPF_FUNC_sk_storage_delete && 8821 func_id != BPF_FUNC_kptr_xchg) 8822 goto error; 8823 break; 8824 case BPF_MAP_TYPE_INODE_STORAGE: 8825 if (func_id != BPF_FUNC_inode_storage_get && 8826 func_id != BPF_FUNC_inode_storage_delete && 8827 func_id != BPF_FUNC_kptr_xchg) 8828 goto error; 8829 break; 8830 case BPF_MAP_TYPE_TASK_STORAGE: 8831 if (func_id != BPF_FUNC_task_storage_get && 8832 func_id != BPF_FUNC_task_storage_delete && 8833 func_id != BPF_FUNC_kptr_xchg) 8834 goto error; 8835 break; 8836 case BPF_MAP_TYPE_CGRP_STORAGE: 8837 if (func_id != BPF_FUNC_cgrp_storage_get && 8838 func_id != BPF_FUNC_cgrp_storage_delete && 8839 func_id != BPF_FUNC_kptr_xchg) 8840 goto error; 8841 break; 8842 case BPF_MAP_TYPE_BLOOM_FILTER: 8843 if (func_id != BPF_FUNC_map_peek_elem && 8844 func_id != BPF_FUNC_map_push_elem) 8845 goto error; 8846 break; 8847 default: 8848 break; 8849 } 8850 8851 /* ... and second from the function itself. */ 8852 switch (func_id) { 8853 case BPF_FUNC_tail_call: 8854 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8855 goto error; 8856 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8857 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8858 return -EINVAL; 8859 } 8860 break; 8861 case BPF_FUNC_perf_event_read: 8862 case BPF_FUNC_perf_event_output: 8863 case BPF_FUNC_perf_event_read_value: 8864 case BPF_FUNC_skb_output: 8865 case BPF_FUNC_xdp_output: 8866 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8867 goto error; 8868 break; 8869 case BPF_FUNC_ringbuf_output: 8870 case BPF_FUNC_ringbuf_reserve: 8871 case BPF_FUNC_ringbuf_query: 8872 case BPF_FUNC_ringbuf_reserve_dynptr: 8873 case BPF_FUNC_ringbuf_submit_dynptr: 8874 case BPF_FUNC_ringbuf_discard_dynptr: 8875 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8876 goto error; 8877 break; 8878 case BPF_FUNC_user_ringbuf_drain: 8879 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8880 goto error; 8881 break; 8882 case BPF_FUNC_get_stackid: 8883 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8884 goto error; 8885 break; 8886 case BPF_FUNC_current_task_under_cgroup: 8887 case BPF_FUNC_skb_under_cgroup: 8888 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8889 goto error; 8890 break; 8891 case BPF_FUNC_redirect_map: 8892 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8893 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8894 map->map_type != BPF_MAP_TYPE_CPUMAP && 8895 map->map_type != BPF_MAP_TYPE_XSKMAP) 8896 goto error; 8897 break; 8898 case BPF_FUNC_sk_redirect_map: 8899 case BPF_FUNC_msg_redirect_map: 8900 case BPF_FUNC_sock_map_update: 8901 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8902 goto error; 8903 break; 8904 case BPF_FUNC_sk_redirect_hash: 8905 case BPF_FUNC_msg_redirect_hash: 8906 case BPF_FUNC_sock_hash_update: 8907 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8908 goto error; 8909 break; 8910 case BPF_FUNC_get_local_storage: 8911 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8912 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8913 goto error; 8914 break; 8915 case BPF_FUNC_sk_select_reuseport: 8916 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8917 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8918 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8919 goto error; 8920 break; 8921 case BPF_FUNC_map_pop_elem: 8922 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8923 map->map_type != BPF_MAP_TYPE_STACK) 8924 goto error; 8925 break; 8926 case BPF_FUNC_map_peek_elem: 8927 case BPF_FUNC_map_push_elem: 8928 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8929 map->map_type != BPF_MAP_TYPE_STACK && 8930 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8931 goto error; 8932 break; 8933 case BPF_FUNC_map_lookup_percpu_elem: 8934 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 8935 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8936 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 8937 goto error; 8938 break; 8939 case BPF_FUNC_sk_storage_get: 8940 case BPF_FUNC_sk_storage_delete: 8941 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 8942 goto error; 8943 break; 8944 case BPF_FUNC_inode_storage_get: 8945 case BPF_FUNC_inode_storage_delete: 8946 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 8947 goto error; 8948 break; 8949 case BPF_FUNC_task_storage_get: 8950 case BPF_FUNC_task_storage_delete: 8951 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 8952 goto error; 8953 break; 8954 case BPF_FUNC_cgrp_storage_get: 8955 case BPF_FUNC_cgrp_storage_delete: 8956 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 8957 goto error; 8958 break; 8959 default: 8960 break; 8961 } 8962 8963 return 0; 8964 error: 8965 verbose(env, "cannot pass map_type %d into func %s#%d\n", 8966 map->map_type, func_id_name(func_id), func_id); 8967 return -EINVAL; 8968 } 8969 8970 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 8971 { 8972 int count = 0; 8973 8974 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 8975 count++; 8976 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 8977 count++; 8978 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 8979 count++; 8980 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 8981 count++; 8982 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 8983 count++; 8984 8985 /* We only support one arg being in raw mode at the moment, 8986 * which is sufficient for the helper functions we have 8987 * right now. 8988 */ 8989 return count <= 1; 8990 } 8991 8992 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 8993 { 8994 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 8995 bool has_size = fn->arg_size[arg] != 0; 8996 bool is_next_size = false; 8997 8998 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 8999 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9000 9001 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9002 return is_next_size; 9003 9004 return has_size == is_next_size || is_next_size == is_fixed; 9005 } 9006 9007 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9008 { 9009 /* bpf_xxx(..., buf, len) call will access 'len' 9010 * bytes from memory 'buf'. Both arg types need 9011 * to be paired, so make sure there's no buggy 9012 * helper function specification. 9013 */ 9014 if (arg_type_is_mem_size(fn->arg1_type) || 9015 check_args_pair_invalid(fn, 0) || 9016 check_args_pair_invalid(fn, 1) || 9017 check_args_pair_invalid(fn, 2) || 9018 check_args_pair_invalid(fn, 3) || 9019 check_args_pair_invalid(fn, 4)) 9020 return false; 9021 9022 return true; 9023 } 9024 9025 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9026 { 9027 int i; 9028 9029 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9030 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9031 return !!fn->arg_btf_id[i]; 9032 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9033 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9034 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9035 /* arg_btf_id and arg_size are in a union. */ 9036 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9037 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9038 return false; 9039 } 9040 9041 return true; 9042 } 9043 9044 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9045 { 9046 return check_raw_mode_ok(fn) && 9047 check_arg_pair_ok(fn) && 9048 check_btf_id_ok(fn) ? 0 : -EINVAL; 9049 } 9050 9051 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9052 * are now invalid, so turn them into unknown SCALAR_VALUE. 9053 * 9054 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9055 * since these slices point to packet data. 9056 */ 9057 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9058 { 9059 struct bpf_func_state *state; 9060 struct bpf_reg_state *reg; 9061 9062 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9063 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9064 mark_reg_invalid(env, reg); 9065 })); 9066 } 9067 9068 enum { 9069 AT_PKT_END = -1, 9070 BEYOND_PKT_END = -2, 9071 }; 9072 9073 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9074 { 9075 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9076 struct bpf_reg_state *reg = &state->regs[regn]; 9077 9078 if (reg->type != PTR_TO_PACKET) 9079 /* PTR_TO_PACKET_META is not supported yet */ 9080 return; 9081 9082 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9083 * How far beyond pkt_end it goes is unknown. 9084 * if (!range_open) it's the case of pkt >= pkt_end 9085 * if (range_open) it's the case of pkt > pkt_end 9086 * hence this pointer is at least 1 byte bigger than pkt_end 9087 */ 9088 if (range_open) 9089 reg->range = BEYOND_PKT_END; 9090 else 9091 reg->range = AT_PKT_END; 9092 } 9093 9094 /* The pointer with the specified id has released its reference to kernel 9095 * resources. Identify all copies of the same pointer and clear the reference. 9096 */ 9097 static int release_reference(struct bpf_verifier_env *env, 9098 int ref_obj_id) 9099 { 9100 struct bpf_func_state *state; 9101 struct bpf_reg_state *reg; 9102 int err; 9103 9104 err = release_reference_state(cur_func(env), ref_obj_id); 9105 if (err) 9106 return err; 9107 9108 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9109 if (reg->ref_obj_id == ref_obj_id) 9110 mark_reg_invalid(env, reg); 9111 })); 9112 9113 return 0; 9114 } 9115 9116 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9117 { 9118 struct bpf_func_state *unused; 9119 struct bpf_reg_state *reg; 9120 9121 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9122 if (type_is_non_owning_ref(reg->type)) 9123 mark_reg_invalid(env, reg); 9124 })); 9125 } 9126 9127 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9128 struct bpf_reg_state *regs) 9129 { 9130 int i; 9131 9132 /* after the call registers r0 - r5 were scratched */ 9133 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9134 mark_reg_not_init(env, regs, caller_saved[i]); 9135 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9136 } 9137 } 9138 9139 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9140 struct bpf_func_state *caller, 9141 struct bpf_func_state *callee, 9142 int insn_idx); 9143 9144 static int set_callee_state(struct bpf_verifier_env *env, 9145 struct bpf_func_state *caller, 9146 struct bpf_func_state *callee, int insn_idx); 9147 9148 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9149 set_callee_state_fn set_callee_state_cb, 9150 struct bpf_verifier_state *state) 9151 { 9152 struct bpf_func_state *caller, *callee; 9153 int err; 9154 9155 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9156 verbose(env, "the call stack of %d frames is too deep\n", 9157 state->curframe + 2); 9158 return -E2BIG; 9159 } 9160 9161 if (state->frame[state->curframe + 1]) { 9162 verbose(env, "verifier bug. Frame %d already allocated\n", 9163 state->curframe + 1); 9164 return -EFAULT; 9165 } 9166 9167 caller = state->frame[state->curframe]; 9168 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9169 if (!callee) 9170 return -ENOMEM; 9171 state->frame[state->curframe + 1] = callee; 9172 9173 /* callee cannot access r0, r6 - r9 for reading and has to write 9174 * into its own stack before reading from it. 9175 * callee can read/write into caller's stack 9176 */ 9177 init_func_state(env, callee, 9178 /* remember the callsite, it will be used by bpf_exit */ 9179 callsite, 9180 state->curframe + 1 /* frameno within this callchain */, 9181 subprog /* subprog number within this prog */); 9182 /* Transfer references to the callee */ 9183 err = copy_reference_state(callee, caller); 9184 err = err ?: set_callee_state_cb(env, caller, callee, callsite); 9185 if (err) 9186 goto err_out; 9187 9188 /* only increment it after check_reg_arg() finished */ 9189 state->curframe++; 9190 9191 return 0; 9192 9193 err_out: 9194 free_func_state(callee); 9195 state->frame[state->curframe + 1] = NULL; 9196 return err; 9197 } 9198 9199 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9200 int insn_idx, int subprog, 9201 set_callee_state_fn set_callee_state_cb) 9202 { 9203 struct bpf_verifier_state *state = env->cur_state, *callback_state; 9204 struct bpf_func_state *caller, *callee; 9205 int err; 9206 9207 caller = state->frame[state->curframe]; 9208 err = btf_check_subprog_call(env, subprog, caller->regs); 9209 if (err == -EFAULT) 9210 return err; 9211 9212 /* set_callee_state is used for direct subprog calls, but we are 9213 * interested in validating only BPF helpers that can call subprogs as 9214 * callbacks 9215 */ 9216 env->subprog_info[subprog].is_cb = true; 9217 if (bpf_pseudo_kfunc_call(insn) && 9218 !is_sync_callback_calling_kfunc(insn->imm)) { 9219 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 9220 func_id_name(insn->imm), insn->imm); 9221 return -EFAULT; 9222 } else if (!bpf_pseudo_kfunc_call(insn) && 9223 !is_callback_calling_function(insn->imm)) { /* helper */ 9224 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 9225 func_id_name(insn->imm), insn->imm); 9226 return -EFAULT; 9227 } 9228 9229 if (insn->code == (BPF_JMP | BPF_CALL) && 9230 insn->src_reg == 0 && 9231 insn->imm == BPF_FUNC_timer_set_callback) { 9232 struct bpf_verifier_state *async_cb; 9233 9234 /* there is no real recursion here. timer callbacks are async */ 9235 env->subprog_info[subprog].is_async_cb = true; 9236 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 9237 insn_idx, subprog); 9238 if (!async_cb) 9239 return -EFAULT; 9240 callee = async_cb->frame[0]; 9241 callee->async_entry_cnt = caller->async_entry_cnt + 1; 9242 9243 /* Convert bpf_timer_set_callback() args into timer callback args */ 9244 err = set_callee_state_cb(env, caller, callee, insn_idx); 9245 if (err) 9246 return err; 9247 9248 return 0; 9249 } 9250 9251 /* for callback functions enqueue entry to callback and 9252 * proceed with next instruction within current frame. 9253 */ 9254 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 9255 if (!callback_state) 9256 return -ENOMEM; 9257 9258 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 9259 callback_state); 9260 if (err) 9261 return err; 9262 9263 callback_state->callback_unroll_depth++; 9264 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 9265 caller->callback_depth = 0; 9266 return 0; 9267 } 9268 9269 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9270 int *insn_idx) 9271 { 9272 struct bpf_verifier_state *state = env->cur_state; 9273 struct bpf_func_state *caller; 9274 int err, subprog, target_insn; 9275 9276 target_insn = *insn_idx + insn->imm + 1; 9277 subprog = find_subprog(env, target_insn); 9278 if (subprog < 0) { 9279 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 9280 return -EFAULT; 9281 } 9282 9283 caller = state->frame[state->curframe]; 9284 err = btf_check_subprog_call(env, subprog, caller->regs); 9285 if (err == -EFAULT) 9286 return err; 9287 if (subprog_is_global(env, subprog)) { 9288 const char *sub_name = subprog_name(env, subprog); 9289 9290 if (err) { 9291 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 9292 subprog, sub_name); 9293 return err; 9294 } 9295 9296 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 9297 subprog, sub_name); 9298 /* mark global subprog for verifying after main prog */ 9299 subprog_aux(env, subprog)->called = true; 9300 clear_caller_saved_regs(env, caller->regs); 9301 9302 /* All global functions return a 64-bit SCALAR_VALUE */ 9303 mark_reg_unknown(env, caller->regs, BPF_REG_0); 9304 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9305 9306 /* continue with next insn after call */ 9307 return 0; 9308 } 9309 9310 /* for regular function entry setup new frame and continue 9311 * from that frame. 9312 */ 9313 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 9314 if (err) 9315 return err; 9316 9317 clear_caller_saved_regs(env, caller->regs); 9318 9319 /* and go analyze first insn of the callee */ 9320 *insn_idx = env->subprog_info[subprog].start - 1; 9321 9322 if (env->log.level & BPF_LOG_LEVEL) { 9323 verbose(env, "caller:\n"); 9324 print_verifier_state(env, caller, true); 9325 verbose(env, "callee:\n"); 9326 print_verifier_state(env, state->frame[state->curframe], true); 9327 } 9328 9329 return 0; 9330 } 9331 9332 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 9333 struct bpf_func_state *caller, 9334 struct bpf_func_state *callee) 9335 { 9336 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 9337 * void *callback_ctx, u64 flags); 9338 * callback_fn(struct bpf_map *map, void *key, void *value, 9339 * void *callback_ctx); 9340 */ 9341 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9342 9343 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9344 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9345 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9346 9347 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9348 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9349 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9350 9351 /* pointer to stack or null */ 9352 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9353 9354 /* unused */ 9355 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9356 return 0; 9357 } 9358 9359 static int set_callee_state(struct bpf_verifier_env *env, 9360 struct bpf_func_state *caller, 9361 struct bpf_func_state *callee, int insn_idx) 9362 { 9363 int i; 9364 9365 /* copy r1 - r5 args that callee can access. The copy includes parent 9366 * pointers, which connects us up to the liveness chain 9367 */ 9368 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9369 callee->regs[i] = caller->regs[i]; 9370 return 0; 9371 } 9372 9373 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9374 struct bpf_func_state *caller, 9375 struct bpf_func_state *callee, 9376 int insn_idx) 9377 { 9378 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9379 struct bpf_map *map; 9380 int err; 9381 9382 if (bpf_map_ptr_poisoned(insn_aux)) { 9383 verbose(env, "tail_call abusing map_ptr\n"); 9384 return -EINVAL; 9385 } 9386 9387 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 9388 if (!map->ops->map_set_for_each_callback_args || 9389 !map->ops->map_for_each_callback) { 9390 verbose(env, "callback function not allowed for map\n"); 9391 return -ENOTSUPP; 9392 } 9393 9394 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9395 if (err) 9396 return err; 9397 9398 callee->in_callback_fn = true; 9399 callee->callback_ret_range = tnum_range(0, 1); 9400 return 0; 9401 } 9402 9403 static int set_loop_callback_state(struct bpf_verifier_env *env, 9404 struct bpf_func_state *caller, 9405 struct bpf_func_state *callee, 9406 int insn_idx) 9407 { 9408 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9409 * u64 flags); 9410 * callback_fn(u32 index, void *callback_ctx); 9411 */ 9412 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9413 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9414 9415 /* unused */ 9416 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9417 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9418 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9419 9420 callee->in_callback_fn = true; 9421 callee->callback_ret_range = tnum_range(0, 1); 9422 return 0; 9423 } 9424 9425 static int set_timer_callback_state(struct bpf_verifier_env *env, 9426 struct bpf_func_state *caller, 9427 struct bpf_func_state *callee, 9428 int insn_idx) 9429 { 9430 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9431 9432 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9433 * callback_fn(struct bpf_map *map, void *key, void *value); 9434 */ 9435 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9436 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9437 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9438 9439 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9440 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9441 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9442 9443 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9444 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9445 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9446 9447 /* unused */ 9448 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9449 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9450 callee->in_async_callback_fn = true; 9451 callee->callback_ret_range = tnum_range(0, 1); 9452 return 0; 9453 } 9454 9455 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9456 struct bpf_func_state *caller, 9457 struct bpf_func_state *callee, 9458 int insn_idx) 9459 { 9460 /* bpf_find_vma(struct task_struct *task, u64 addr, 9461 * void *callback_fn, void *callback_ctx, u64 flags) 9462 * (callback_fn)(struct task_struct *task, 9463 * struct vm_area_struct *vma, void *callback_ctx); 9464 */ 9465 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9466 9467 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9468 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9469 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9470 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 9471 9472 /* pointer to stack or null */ 9473 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9474 9475 /* unused */ 9476 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9477 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9478 callee->in_callback_fn = true; 9479 callee->callback_ret_range = tnum_range(0, 1); 9480 return 0; 9481 } 9482 9483 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9484 struct bpf_func_state *caller, 9485 struct bpf_func_state *callee, 9486 int insn_idx) 9487 { 9488 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9489 * callback_ctx, u64 flags); 9490 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9491 */ 9492 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9493 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9494 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9495 9496 /* unused */ 9497 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9498 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9499 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9500 9501 callee->in_callback_fn = true; 9502 callee->callback_ret_range = tnum_range(0, 1); 9503 return 0; 9504 } 9505 9506 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9507 struct bpf_func_state *caller, 9508 struct bpf_func_state *callee, 9509 int insn_idx) 9510 { 9511 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9512 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9513 * 9514 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9515 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9516 * by this point, so look at 'root' 9517 */ 9518 struct btf_field *field; 9519 9520 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9521 BPF_RB_ROOT); 9522 if (!field || !field->graph_root.value_btf_id) 9523 return -EFAULT; 9524 9525 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9526 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9527 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9528 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9529 9530 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9531 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9532 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9533 callee->in_callback_fn = true; 9534 callee->callback_ret_range = tnum_range(0, 1); 9535 return 0; 9536 } 9537 9538 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9539 9540 /* Are we currently verifying the callback for a rbtree helper that must 9541 * be called with lock held? If so, no need to complain about unreleased 9542 * lock 9543 */ 9544 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9545 { 9546 struct bpf_verifier_state *state = env->cur_state; 9547 struct bpf_insn *insn = env->prog->insnsi; 9548 struct bpf_func_state *callee; 9549 int kfunc_btf_id; 9550 9551 if (!state->curframe) 9552 return false; 9553 9554 callee = state->frame[state->curframe]; 9555 9556 if (!callee->in_callback_fn) 9557 return false; 9558 9559 kfunc_btf_id = insn[callee->callsite].imm; 9560 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9561 } 9562 9563 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9564 { 9565 struct bpf_verifier_state *state = env->cur_state, *prev_st; 9566 struct bpf_func_state *caller, *callee; 9567 struct bpf_reg_state *r0; 9568 bool in_callback_fn; 9569 int err; 9570 9571 callee = state->frame[state->curframe]; 9572 r0 = &callee->regs[BPF_REG_0]; 9573 if (r0->type == PTR_TO_STACK) { 9574 /* technically it's ok to return caller's stack pointer 9575 * (or caller's caller's pointer) back to the caller, 9576 * since these pointers are valid. Only current stack 9577 * pointer will be invalid as soon as function exits, 9578 * but let's be conservative 9579 */ 9580 verbose(env, "cannot return stack pointer to the caller\n"); 9581 return -EINVAL; 9582 } 9583 9584 caller = state->frame[state->curframe - 1]; 9585 if (callee->in_callback_fn) { 9586 /* enforce R0 return value range [0, 1]. */ 9587 struct tnum range = callee->callback_ret_range; 9588 9589 if (r0->type != SCALAR_VALUE) { 9590 verbose(env, "R0 not a scalar value\n"); 9591 return -EACCES; 9592 } 9593 if (!tnum_in(range, r0->var_off)) { 9594 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 9595 return -EINVAL; 9596 } 9597 if (!calls_callback(env, callee->callsite)) { 9598 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 9599 *insn_idx, callee->callsite); 9600 return -EFAULT; 9601 } 9602 } else { 9603 /* return to the caller whatever r0 had in the callee */ 9604 caller->regs[BPF_REG_0] = *r0; 9605 } 9606 9607 /* callback_fn frame should have released its own additions to parent's 9608 * reference state at this point, or check_reference_leak would 9609 * complain, hence it must be the same as the caller. There is no need 9610 * to copy it back. 9611 */ 9612 if (!callee->in_callback_fn) { 9613 /* Transfer references to the caller */ 9614 err = copy_reference_state(caller, callee); 9615 if (err) 9616 return err; 9617 } 9618 9619 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 9620 * there function call logic would reschedule callback visit. If iteration 9621 * converges is_state_visited() would prune that visit eventually. 9622 */ 9623 in_callback_fn = callee->in_callback_fn; 9624 if (in_callback_fn) 9625 *insn_idx = callee->callsite; 9626 else 9627 *insn_idx = callee->callsite + 1; 9628 9629 if (env->log.level & BPF_LOG_LEVEL) { 9630 verbose(env, "returning from callee:\n"); 9631 print_verifier_state(env, callee, true); 9632 verbose(env, "to caller at %d:\n", *insn_idx); 9633 print_verifier_state(env, caller, true); 9634 } 9635 /* clear everything in the callee. In case of exceptional exits using 9636 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 9637 free_func_state(callee); 9638 state->frame[state->curframe--] = NULL; 9639 9640 /* for callbacks widen imprecise scalars to make programs like below verify: 9641 * 9642 * struct ctx { int i; } 9643 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 9644 * ... 9645 * struct ctx = { .i = 0; } 9646 * bpf_loop(100, cb, &ctx, 0); 9647 * 9648 * This is similar to what is done in process_iter_next_call() for open 9649 * coded iterators. 9650 */ 9651 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 9652 if (prev_st) { 9653 err = widen_imprecise_scalars(env, prev_st, state); 9654 if (err) 9655 return err; 9656 } 9657 return 0; 9658 } 9659 9660 static int do_refine_retval_range(struct bpf_verifier_env *env, 9661 struct bpf_reg_state *regs, int ret_type, 9662 int func_id, 9663 struct bpf_call_arg_meta *meta) 9664 { 9665 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9666 9667 if (ret_type != RET_INTEGER) 9668 return 0; 9669 9670 switch (func_id) { 9671 case BPF_FUNC_get_stack: 9672 case BPF_FUNC_get_task_stack: 9673 case BPF_FUNC_probe_read_str: 9674 case BPF_FUNC_probe_read_kernel_str: 9675 case BPF_FUNC_probe_read_user_str: 9676 ret_reg->smax_value = meta->msize_max_value; 9677 ret_reg->s32_max_value = meta->msize_max_value; 9678 ret_reg->smin_value = -MAX_ERRNO; 9679 ret_reg->s32_min_value = -MAX_ERRNO; 9680 reg_bounds_sync(ret_reg); 9681 break; 9682 case BPF_FUNC_get_smp_processor_id: 9683 ret_reg->umax_value = nr_cpu_ids - 1; 9684 ret_reg->u32_max_value = nr_cpu_ids - 1; 9685 ret_reg->smax_value = nr_cpu_ids - 1; 9686 ret_reg->s32_max_value = nr_cpu_ids - 1; 9687 ret_reg->umin_value = 0; 9688 ret_reg->u32_min_value = 0; 9689 ret_reg->smin_value = 0; 9690 ret_reg->s32_min_value = 0; 9691 reg_bounds_sync(ret_reg); 9692 break; 9693 } 9694 9695 return reg_bounds_sanity_check(env, ret_reg, "retval"); 9696 } 9697 9698 static int 9699 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9700 int func_id, int insn_idx) 9701 { 9702 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9703 struct bpf_map *map = meta->map_ptr; 9704 9705 if (func_id != BPF_FUNC_tail_call && 9706 func_id != BPF_FUNC_map_lookup_elem && 9707 func_id != BPF_FUNC_map_update_elem && 9708 func_id != BPF_FUNC_map_delete_elem && 9709 func_id != BPF_FUNC_map_push_elem && 9710 func_id != BPF_FUNC_map_pop_elem && 9711 func_id != BPF_FUNC_map_peek_elem && 9712 func_id != BPF_FUNC_for_each_map_elem && 9713 func_id != BPF_FUNC_redirect_map && 9714 func_id != BPF_FUNC_map_lookup_percpu_elem) 9715 return 0; 9716 9717 if (map == NULL) { 9718 verbose(env, "kernel subsystem misconfigured verifier\n"); 9719 return -EINVAL; 9720 } 9721 9722 /* In case of read-only, some additional restrictions 9723 * need to be applied in order to prevent altering the 9724 * state of the map from program side. 9725 */ 9726 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9727 (func_id == BPF_FUNC_map_delete_elem || 9728 func_id == BPF_FUNC_map_update_elem || 9729 func_id == BPF_FUNC_map_push_elem || 9730 func_id == BPF_FUNC_map_pop_elem)) { 9731 verbose(env, "write into map forbidden\n"); 9732 return -EACCES; 9733 } 9734 9735 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9736 bpf_map_ptr_store(aux, meta->map_ptr, 9737 !meta->map_ptr->bypass_spec_v1); 9738 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9739 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9740 !meta->map_ptr->bypass_spec_v1); 9741 return 0; 9742 } 9743 9744 static int 9745 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9746 int func_id, int insn_idx) 9747 { 9748 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9749 struct bpf_reg_state *regs = cur_regs(env), *reg; 9750 struct bpf_map *map = meta->map_ptr; 9751 u64 val, max; 9752 int err; 9753 9754 if (func_id != BPF_FUNC_tail_call) 9755 return 0; 9756 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9757 verbose(env, "kernel subsystem misconfigured verifier\n"); 9758 return -EINVAL; 9759 } 9760 9761 reg = ®s[BPF_REG_3]; 9762 val = reg->var_off.value; 9763 max = map->max_entries; 9764 9765 if (!(is_reg_const(reg, false) && val < max)) { 9766 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9767 return 0; 9768 } 9769 9770 err = mark_chain_precision(env, BPF_REG_3); 9771 if (err) 9772 return err; 9773 if (bpf_map_key_unseen(aux)) 9774 bpf_map_key_store(aux, val); 9775 else if (!bpf_map_key_poisoned(aux) && 9776 bpf_map_key_immediate(aux) != val) 9777 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9778 return 0; 9779 } 9780 9781 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 9782 { 9783 struct bpf_func_state *state = cur_func(env); 9784 bool refs_lingering = false; 9785 int i; 9786 9787 if (!exception_exit && state->frameno && !state->in_callback_fn) 9788 return 0; 9789 9790 for (i = 0; i < state->acquired_refs; i++) { 9791 if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9792 continue; 9793 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9794 state->refs[i].id, state->refs[i].insn_idx); 9795 refs_lingering = true; 9796 } 9797 return refs_lingering ? -EINVAL : 0; 9798 } 9799 9800 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9801 struct bpf_reg_state *regs) 9802 { 9803 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9804 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9805 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9806 struct bpf_bprintf_data data = {}; 9807 int err, fmt_map_off, num_args; 9808 u64 fmt_addr; 9809 char *fmt; 9810 9811 /* data must be an array of u64 */ 9812 if (data_len_reg->var_off.value % 8) 9813 return -EINVAL; 9814 num_args = data_len_reg->var_off.value / 8; 9815 9816 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9817 * and map_direct_value_addr is set. 9818 */ 9819 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9820 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9821 fmt_map_off); 9822 if (err) { 9823 verbose(env, "verifier bug\n"); 9824 return -EFAULT; 9825 } 9826 fmt = (char *)(long)fmt_addr + fmt_map_off; 9827 9828 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9829 * can focus on validating the format specifiers. 9830 */ 9831 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9832 if (err < 0) 9833 verbose(env, "Invalid format string\n"); 9834 9835 return err; 9836 } 9837 9838 static int check_get_func_ip(struct bpf_verifier_env *env) 9839 { 9840 enum bpf_prog_type type = resolve_prog_type(env->prog); 9841 int func_id = BPF_FUNC_get_func_ip; 9842 9843 if (type == BPF_PROG_TYPE_TRACING) { 9844 if (!bpf_prog_has_trampoline(env->prog)) { 9845 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9846 func_id_name(func_id), func_id); 9847 return -ENOTSUPP; 9848 } 9849 return 0; 9850 } else if (type == BPF_PROG_TYPE_KPROBE) { 9851 return 0; 9852 } 9853 9854 verbose(env, "func %s#%d not supported for program type %d\n", 9855 func_id_name(func_id), func_id, type); 9856 return -ENOTSUPP; 9857 } 9858 9859 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9860 { 9861 return &env->insn_aux_data[env->insn_idx]; 9862 } 9863 9864 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9865 { 9866 struct bpf_reg_state *regs = cur_regs(env); 9867 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9868 bool reg_is_null = register_is_null(reg); 9869 9870 if (reg_is_null) 9871 mark_chain_precision(env, BPF_REG_4); 9872 9873 return reg_is_null; 9874 } 9875 9876 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9877 { 9878 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9879 9880 if (!state->initialized) { 9881 state->initialized = 1; 9882 state->fit_for_inline = loop_flag_is_zero(env); 9883 state->callback_subprogno = subprogno; 9884 return; 9885 } 9886 9887 if (!state->fit_for_inline) 9888 return; 9889 9890 state->fit_for_inline = (loop_flag_is_zero(env) && 9891 state->callback_subprogno == subprogno); 9892 } 9893 9894 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9895 int *insn_idx_p) 9896 { 9897 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9898 bool returns_cpu_specific_alloc_ptr = false; 9899 const struct bpf_func_proto *fn = NULL; 9900 enum bpf_return_type ret_type; 9901 enum bpf_type_flag ret_flag; 9902 struct bpf_reg_state *regs; 9903 struct bpf_call_arg_meta meta; 9904 int insn_idx = *insn_idx_p; 9905 bool changes_data; 9906 int i, err, func_id; 9907 9908 /* find function prototype */ 9909 func_id = insn->imm; 9910 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9911 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9912 func_id); 9913 return -EINVAL; 9914 } 9915 9916 if (env->ops->get_func_proto) 9917 fn = env->ops->get_func_proto(func_id, env->prog); 9918 if (!fn) { 9919 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9920 func_id); 9921 return -EINVAL; 9922 } 9923 9924 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9925 if (!env->prog->gpl_compatible && fn->gpl_only) { 9926 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9927 return -EINVAL; 9928 } 9929 9930 if (fn->allowed && !fn->allowed(env->prog)) { 9931 verbose(env, "helper call is not allowed in probe\n"); 9932 return -EINVAL; 9933 } 9934 9935 if (!env->prog->aux->sleepable && fn->might_sleep) { 9936 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 9937 return -EINVAL; 9938 } 9939 9940 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 9941 changes_data = bpf_helper_changes_pkt_data(fn->func); 9942 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 9943 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 9944 func_id_name(func_id), func_id); 9945 return -EINVAL; 9946 } 9947 9948 memset(&meta, 0, sizeof(meta)); 9949 meta.pkt_access = fn->pkt_access; 9950 9951 err = check_func_proto(fn, func_id); 9952 if (err) { 9953 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 9954 func_id_name(func_id), func_id); 9955 return err; 9956 } 9957 9958 if (env->cur_state->active_rcu_lock) { 9959 if (fn->might_sleep) { 9960 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 9961 func_id_name(func_id), func_id); 9962 return -EINVAL; 9963 } 9964 9965 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 9966 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 9967 } 9968 9969 meta.func_id = func_id; 9970 /* check args */ 9971 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 9972 err = check_func_arg(env, i, &meta, fn, insn_idx); 9973 if (err) 9974 return err; 9975 } 9976 9977 err = record_func_map(env, &meta, func_id, insn_idx); 9978 if (err) 9979 return err; 9980 9981 err = record_func_key(env, &meta, func_id, insn_idx); 9982 if (err) 9983 return err; 9984 9985 /* Mark slots with STACK_MISC in case of raw mode, stack offset 9986 * is inferred from register state. 9987 */ 9988 for (i = 0; i < meta.access_size; i++) { 9989 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 9990 BPF_WRITE, -1, false, false); 9991 if (err) 9992 return err; 9993 } 9994 9995 regs = cur_regs(env); 9996 9997 if (meta.release_regno) { 9998 err = -EINVAL; 9999 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 10000 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 10001 * is safe to do directly. 10002 */ 10003 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 10004 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 10005 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 10006 return -EFAULT; 10007 } 10008 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 10009 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 10010 u32 ref_obj_id = meta.ref_obj_id; 10011 bool in_rcu = in_rcu_cs(env); 10012 struct bpf_func_state *state; 10013 struct bpf_reg_state *reg; 10014 10015 err = release_reference_state(cur_func(env), ref_obj_id); 10016 if (!err) { 10017 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10018 if (reg->ref_obj_id == ref_obj_id) { 10019 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 10020 reg->ref_obj_id = 0; 10021 reg->type &= ~MEM_ALLOC; 10022 reg->type |= MEM_RCU; 10023 } else { 10024 mark_reg_invalid(env, reg); 10025 } 10026 } 10027 })); 10028 } 10029 } else if (meta.ref_obj_id) { 10030 err = release_reference(env, meta.ref_obj_id); 10031 } else if (register_is_null(®s[meta.release_regno])) { 10032 /* meta.ref_obj_id can only be 0 if register that is meant to be 10033 * released is NULL, which must be > R0. 10034 */ 10035 err = 0; 10036 } 10037 if (err) { 10038 verbose(env, "func %s#%d reference has not been acquired before\n", 10039 func_id_name(func_id), func_id); 10040 return err; 10041 } 10042 } 10043 10044 switch (func_id) { 10045 case BPF_FUNC_tail_call: 10046 err = check_reference_leak(env, false); 10047 if (err) { 10048 verbose(env, "tail_call would lead to reference leak\n"); 10049 return err; 10050 } 10051 break; 10052 case BPF_FUNC_get_local_storage: 10053 /* check that flags argument in get_local_storage(map, flags) is 0, 10054 * this is required because get_local_storage() can't return an error. 10055 */ 10056 if (!register_is_null(®s[BPF_REG_2])) { 10057 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 10058 return -EINVAL; 10059 } 10060 break; 10061 case BPF_FUNC_for_each_map_elem: 10062 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10063 set_map_elem_callback_state); 10064 break; 10065 case BPF_FUNC_timer_set_callback: 10066 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10067 set_timer_callback_state); 10068 break; 10069 case BPF_FUNC_find_vma: 10070 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10071 set_find_vma_callback_state); 10072 break; 10073 case BPF_FUNC_snprintf: 10074 err = check_bpf_snprintf_call(env, regs); 10075 break; 10076 case BPF_FUNC_loop: 10077 update_loop_inline_state(env, meta.subprogno); 10078 /* Verifier relies on R1 value to determine if bpf_loop() iteration 10079 * is finished, thus mark it precise. 10080 */ 10081 err = mark_chain_precision(env, BPF_REG_1); 10082 if (err) 10083 return err; 10084 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 10085 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10086 set_loop_callback_state); 10087 } else { 10088 cur_func(env)->callback_depth = 0; 10089 if (env->log.level & BPF_LOG_LEVEL2) 10090 verbose(env, "frame%d bpf_loop iteration limit reached\n", 10091 env->cur_state->curframe); 10092 } 10093 break; 10094 case BPF_FUNC_dynptr_from_mem: 10095 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 10096 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 10097 reg_type_str(env, regs[BPF_REG_1].type)); 10098 return -EACCES; 10099 } 10100 break; 10101 case BPF_FUNC_set_retval: 10102 if (prog_type == BPF_PROG_TYPE_LSM && 10103 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 10104 if (!env->prog->aux->attach_func_proto->type) { 10105 /* Make sure programs that attach to void 10106 * hooks don't try to modify return value. 10107 */ 10108 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10109 return -EINVAL; 10110 } 10111 } 10112 break; 10113 case BPF_FUNC_dynptr_data: 10114 { 10115 struct bpf_reg_state *reg; 10116 int id, ref_obj_id; 10117 10118 reg = get_dynptr_arg_reg(env, fn, regs); 10119 if (!reg) 10120 return -EFAULT; 10121 10122 10123 if (meta.dynptr_id) { 10124 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 10125 return -EFAULT; 10126 } 10127 if (meta.ref_obj_id) { 10128 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 10129 return -EFAULT; 10130 } 10131 10132 id = dynptr_id(env, reg); 10133 if (id < 0) { 10134 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10135 return id; 10136 } 10137 10138 ref_obj_id = dynptr_ref_obj_id(env, reg); 10139 if (ref_obj_id < 0) { 10140 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 10141 return ref_obj_id; 10142 } 10143 10144 meta.dynptr_id = id; 10145 meta.ref_obj_id = ref_obj_id; 10146 10147 break; 10148 } 10149 case BPF_FUNC_dynptr_write: 10150 { 10151 enum bpf_dynptr_type dynptr_type; 10152 struct bpf_reg_state *reg; 10153 10154 reg = get_dynptr_arg_reg(env, fn, regs); 10155 if (!reg) 10156 return -EFAULT; 10157 10158 dynptr_type = dynptr_get_type(env, reg); 10159 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 10160 return -EFAULT; 10161 10162 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 10163 /* this will trigger clear_all_pkt_pointers(), which will 10164 * invalidate all dynptr slices associated with the skb 10165 */ 10166 changes_data = true; 10167 10168 break; 10169 } 10170 case BPF_FUNC_per_cpu_ptr: 10171 case BPF_FUNC_this_cpu_ptr: 10172 { 10173 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 10174 const struct btf_type *type; 10175 10176 if (reg->type & MEM_RCU) { 10177 type = btf_type_by_id(reg->btf, reg->btf_id); 10178 if (!type || !btf_type_is_struct(type)) { 10179 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 10180 return -EFAULT; 10181 } 10182 returns_cpu_specific_alloc_ptr = true; 10183 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 10184 } 10185 break; 10186 } 10187 case BPF_FUNC_user_ringbuf_drain: 10188 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10189 set_user_ringbuf_callback_state); 10190 break; 10191 } 10192 10193 if (err) 10194 return err; 10195 10196 /* reset caller saved regs */ 10197 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10198 mark_reg_not_init(env, regs, caller_saved[i]); 10199 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10200 } 10201 10202 /* helper call returns 64-bit value. */ 10203 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10204 10205 /* update return register (already marked as written above) */ 10206 ret_type = fn->ret_type; 10207 ret_flag = type_flag(ret_type); 10208 10209 switch (base_type(ret_type)) { 10210 case RET_INTEGER: 10211 /* sets type to SCALAR_VALUE */ 10212 mark_reg_unknown(env, regs, BPF_REG_0); 10213 break; 10214 case RET_VOID: 10215 regs[BPF_REG_0].type = NOT_INIT; 10216 break; 10217 case RET_PTR_TO_MAP_VALUE: 10218 /* There is no offset yet applied, variable or fixed */ 10219 mark_reg_known_zero(env, regs, BPF_REG_0); 10220 /* remember map_ptr, so that check_map_access() 10221 * can check 'value_size' boundary of memory access 10222 * to map element returned from bpf_map_lookup_elem() 10223 */ 10224 if (meta.map_ptr == NULL) { 10225 verbose(env, 10226 "kernel subsystem misconfigured verifier\n"); 10227 return -EINVAL; 10228 } 10229 regs[BPF_REG_0].map_ptr = meta.map_ptr; 10230 regs[BPF_REG_0].map_uid = meta.map_uid; 10231 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 10232 if (!type_may_be_null(ret_type) && 10233 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 10234 regs[BPF_REG_0].id = ++env->id_gen; 10235 } 10236 break; 10237 case RET_PTR_TO_SOCKET: 10238 mark_reg_known_zero(env, regs, BPF_REG_0); 10239 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 10240 break; 10241 case RET_PTR_TO_SOCK_COMMON: 10242 mark_reg_known_zero(env, regs, BPF_REG_0); 10243 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 10244 break; 10245 case RET_PTR_TO_TCP_SOCK: 10246 mark_reg_known_zero(env, regs, BPF_REG_0); 10247 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 10248 break; 10249 case RET_PTR_TO_MEM: 10250 mark_reg_known_zero(env, regs, BPF_REG_0); 10251 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10252 regs[BPF_REG_0].mem_size = meta.mem_size; 10253 break; 10254 case RET_PTR_TO_MEM_OR_BTF_ID: 10255 { 10256 const struct btf_type *t; 10257 10258 mark_reg_known_zero(env, regs, BPF_REG_0); 10259 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 10260 if (!btf_type_is_struct(t)) { 10261 u32 tsize; 10262 const struct btf_type *ret; 10263 const char *tname; 10264 10265 /* resolve the type size of ksym. */ 10266 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 10267 if (IS_ERR(ret)) { 10268 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 10269 verbose(env, "unable to resolve the size of type '%s': %ld\n", 10270 tname, PTR_ERR(ret)); 10271 return -EINVAL; 10272 } 10273 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10274 regs[BPF_REG_0].mem_size = tsize; 10275 } else { 10276 if (returns_cpu_specific_alloc_ptr) { 10277 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 10278 } else { 10279 /* MEM_RDONLY may be carried from ret_flag, but it 10280 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 10281 * it will confuse the check of PTR_TO_BTF_ID in 10282 * check_mem_access(). 10283 */ 10284 ret_flag &= ~MEM_RDONLY; 10285 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10286 } 10287 10288 regs[BPF_REG_0].btf = meta.ret_btf; 10289 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 10290 } 10291 break; 10292 } 10293 case RET_PTR_TO_BTF_ID: 10294 { 10295 struct btf *ret_btf; 10296 int ret_btf_id; 10297 10298 mark_reg_known_zero(env, regs, BPF_REG_0); 10299 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10300 if (func_id == BPF_FUNC_kptr_xchg) { 10301 ret_btf = meta.kptr_field->kptr.btf; 10302 ret_btf_id = meta.kptr_field->kptr.btf_id; 10303 if (!btf_is_kernel(ret_btf)) { 10304 regs[BPF_REG_0].type |= MEM_ALLOC; 10305 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 10306 regs[BPF_REG_0].type |= MEM_PERCPU; 10307 } 10308 } else { 10309 if (fn->ret_btf_id == BPF_PTR_POISON) { 10310 verbose(env, "verifier internal error:"); 10311 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 10312 func_id_name(func_id)); 10313 return -EINVAL; 10314 } 10315 ret_btf = btf_vmlinux; 10316 ret_btf_id = *fn->ret_btf_id; 10317 } 10318 if (ret_btf_id == 0) { 10319 verbose(env, "invalid return type %u of func %s#%d\n", 10320 base_type(ret_type), func_id_name(func_id), 10321 func_id); 10322 return -EINVAL; 10323 } 10324 regs[BPF_REG_0].btf = ret_btf; 10325 regs[BPF_REG_0].btf_id = ret_btf_id; 10326 break; 10327 } 10328 default: 10329 verbose(env, "unknown return type %u of func %s#%d\n", 10330 base_type(ret_type), func_id_name(func_id), func_id); 10331 return -EINVAL; 10332 } 10333 10334 if (type_may_be_null(regs[BPF_REG_0].type)) 10335 regs[BPF_REG_0].id = ++env->id_gen; 10336 10337 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 10338 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 10339 func_id_name(func_id), func_id); 10340 return -EFAULT; 10341 } 10342 10343 if (is_dynptr_ref_function(func_id)) 10344 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 10345 10346 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 10347 /* For release_reference() */ 10348 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10349 } else if (is_acquire_function(func_id, meta.map_ptr)) { 10350 int id = acquire_reference_state(env, insn_idx); 10351 10352 if (id < 0) 10353 return id; 10354 /* For mark_ptr_or_null_reg() */ 10355 regs[BPF_REG_0].id = id; 10356 /* For release_reference() */ 10357 regs[BPF_REG_0].ref_obj_id = id; 10358 } 10359 10360 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 10361 if (err) 10362 return err; 10363 10364 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 10365 if (err) 10366 return err; 10367 10368 if ((func_id == BPF_FUNC_get_stack || 10369 func_id == BPF_FUNC_get_task_stack) && 10370 !env->prog->has_callchain_buf) { 10371 const char *err_str; 10372 10373 #ifdef CONFIG_PERF_EVENTS 10374 err = get_callchain_buffers(sysctl_perf_event_max_stack); 10375 err_str = "cannot get callchain buffer for func %s#%d\n"; 10376 #else 10377 err = -ENOTSUPP; 10378 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 10379 #endif 10380 if (err) { 10381 verbose(env, err_str, func_id_name(func_id), func_id); 10382 return err; 10383 } 10384 10385 env->prog->has_callchain_buf = true; 10386 } 10387 10388 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 10389 env->prog->call_get_stack = true; 10390 10391 if (func_id == BPF_FUNC_get_func_ip) { 10392 if (check_get_func_ip(env)) 10393 return -ENOTSUPP; 10394 env->prog->call_get_func_ip = true; 10395 } 10396 10397 if (changes_data) 10398 clear_all_pkt_pointers(env); 10399 return 0; 10400 } 10401 10402 /* mark_btf_func_reg_size() is used when the reg size is determined by 10403 * the BTF func_proto's return value size and argument. 10404 */ 10405 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 10406 size_t reg_size) 10407 { 10408 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 10409 10410 if (regno == BPF_REG_0) { 10411 /* Function return value */ 10412 reg->live |= REG_LIVE_WRITTEN; 10413 reg->subreg_def = reg_size == sizeof(u64) ? 10414 DEF_NOT_SUBREG : env->insn_idx + 1; 10415 } else { 10416 /* Function argument */ 10417 if (reg_size == sizeof(u64)) { 10418 mark_insn_zext(env, reg); 10419 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10420 } else { 10421 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10422 } 10423 } 10424 } 10425 10426 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10427 { 10428 return meta->kfunc_flags & KF_ACQUIRE; 10429 } 10430 10431 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10432 { 10433 return meta->kfunc_flags & KF_RELEASE; 10434 } 10435 10436 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10437 { 10438 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10439 } 10440 10441 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10442 { 10443 return meta->kfunc_flags & KF_SLEEPABLE; 10444 } 10445 10446 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10447 { 10448 return meta->kfunc_flags & KF_DESTRUCTIVE; 10449 } 10450 10451 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10452 { 10453 return meta->kfunc_flags & KF_RCU; 10454 } 10455 10456 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 10457 { 10458 return meta->kfunc_flags & KF_RCU_PROTECTED; 10459 } 10460 10461 static bool __kfunc_param_match_suffix(const struct btf *btf, 10462 const struct btf_param *arg, 10463 const char *suffix) 10464 { 10465 int suffix_len = strlen(suffix), len; 10466 const char *param_name; 10467 10468 /* In the future, this can be ported to use BTF tagging */ 10469 param_name = btf_name_by_offset(btf, arg->name_off); 10470 if (str_is_empty(param_name)) 10471 return false; 10472 len = strlen(param_name); 10473 if (len < suffix_len) 10474 return false; 10475 param_name += len - suffix_len; 10476 return !strncmp(param_name, suffix, suffix_len); 10477 } 10478 10479 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10480 const struct btf_param *arg, 10481 const struct bpf_reg_state *reg) 10482 { 10483 const struct btf_type *t; 10484 10485 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10486 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10487 return false; 10488 10489 return __kfunc_param_match_suffix(btf, arg, "__sz"); 10490 } 10491 10492 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10493 const struct btf_param *arg, 10494 const struct bpf_reg_state *reg) 10495 { 10496 const struct btf_type *t; 10497 10498 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10499 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10500 return false; 10501 10502 return __kfunc_param_match_suffix(btf, arg, "__szk"); 10503 } 10504 10505 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10506 { 10507 return __kfunc_param_match_suffix(btf, arg, "__opt"); 10508 } 10509 10510 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10511 { 10512 return __kfunc_param_match_suffix(btf, arg, "__k"); 10513 } 10514 10515 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10516 { 10517 return __kfunc_param_match_suffix(btf, arg, "__ign"); 10518 } 10519 10520 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10521 { 10522 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 10523 } 10524 10525 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10526 { 10527 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 10528 } 10529 10530 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10531 { 10532 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 10533 } 10534 10535 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 10536 { 10537 return __kfunc_param_match_suffix(btf, arg, "__nullable"); 10538 } 10539 10540 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 10541 { 10542 return __kfunc_param_match_suffix(btf, arg, "__str"); 10543 } 10544 10545 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10546 const struct btf_param *arg, 10547 const char *name) 10548 { 10549 int len, target_len = strlen(name); 10550 const char *param_name; 10551 10552 param_name = btf_name_by_offset(btf, arg->name_off); 10553 if (str_is_empty(param_name)) 10554 return false; 10555 len = strlen(param_name); 10556 if (len != target_len) 10557 return false; 10558 if (strcmp(param_name, name)) 10559 return false; 10560 10561 return true; 10562 } 10563 10564 enum { 10565 KF_ARG_DYNPTR_ID, 10566 KF_ARG_LIST_HEAD_ID, 10567 KF_ARG_LIST_NODE_ID, 10568 KF_ARG_RB_ROOT_ID, 10569 KF_ARG_RB_NODE_ID, 10570 }; 10571 10572 BTF_ID_LIST(kf_arg_btf_ids) 10573 BTF_ID(struct, bpf_dynptr_kern) 10574 BTF_ID(struct, bpf_list_head) 10575 BTF_ID(struct, bpf_list_node) 10576 BTF_ID(struct, bpf_rb_root) 10577 BTF_ID(struct, bpf_rb_node) 10578 10579 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10580 const struct btf_param *arg, int type) 10581 { 10582 const struct btf_type *t; 10583 u32 res_id; 10584 10585 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10586 if (!t) 10587 return false; 10588 if (!btf_type_is_ptr(t)) 10589 return false; 10590 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10591 if (!t) 10592 return false; 10593 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10594 } 10595 10596 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10597 { 10598 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10599 } 10600 10601 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10602 { 10603 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10604 } 10605 10606 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10607 { 10608 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10609 } 10610 10611 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10612 { 10613 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10614 } 10615 10616 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10617 { 10618 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10619 } 10620 10621 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10622 const struct btf_param *arg) 10623 { 10624 const struct btf_type *t; 10625 10626 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10627 if (!t) 10628 return false; 10629 10630 return true; 10631 } 10632 10633 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10634 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10635 const struct btf *btf, 10636 const struct btf_type *t, int rec) 10637 { 10638 const struct btf_type *member_type; 10639 const struct btf_member *member; 10640 u32 i; 10641 10642 if (!btf_type_is_struct(t)) 10643 return false; 10644 10645 for_each_member(i, t, member) { 10646 const struct btf_array *array; 10647 10648 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10649 if (btf_type_is_struct(member_type)) { 10650 if (rec >= 3) { 10651 verbose(env, "max struct nesting depth exceeded\n"); 10652 return false; 10653 } 10654 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10655 return false; 10656 continue; 10657 } 10658 if (btf_type_is_array(member_type)) { 10659 array = btf_array(member_type); 10660 if (!array->nelems) 10661 return false; 10662 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10663 if (!btf_type_is_scalar(member_type)) 10664 return false; 10665 continue; 10666 } 10667 if (!btf_type_is_scalar(member_type)) 10668 return false; 10669 } 10670 return true; 10671 } 10672 10673 enum kfunc_ptr_arg_type { 10674 KF_ARG_PTR_TO_CTX, 10675 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10676 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10677 KF_ARG_PTR_TO_DYNPTR, 10678 KF_ARG_PTR_TO_ITER, 10679 KF_ARG_PTR_TO_LIST_HEAD, 10680 KF_ARG_PTR_TO_LIST_NODE, 10681 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10682 KF_ARG_PTR_TO_MEM, 10683 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10684 KF_ARG_PTR_TO_CALLBACK, 10685 KF_ARG_PTR_TO_RB_ROOT, 10686 KF_ARG_PTR_TO_RB_NODE, 10687 KF_ARG_PTR_TO_NULL, 10688 KF_ARG_PTR_TO_CONST_STR, 10689 }; 10690 10691 enum special_kfunc_type { 10692 KF_bpf_obj_new_impl, 10693 KF_bpf_obj_drop_impl, 10694 KF_bpf_refcount_acquire_impl, 10695 KF_bpf_list_push_front_impl, 10696 KF_bpf_list_push_back_impl, 10697 KF_bpf_list_pop_front, 10698 KF_bpf_list_pop_back, 10699 KF_bpf_cast_to_kern_ctx, 10700 KF_bpf_rdonly_cast, 10701 KF_bpf_rcu_read_lock, 10702 KF_bpf_rcu_read_unlock, 10703 KF_bpf_rbtree_remove, 10704 KF_bpf_rbtree_add_impl, 10705 KF_bpf_rbtree_first, 10706 KF_bpf_dynptr_from_skb, 10707 KF_bpf_dynptr_from_xdp, 10708 KF_bpf_dynptr_slice, 10709 KF_bpf_dynptr_slice_rdwr, 10710 KF_bpf_dynptr_clone, 10711 KF_bpf_percpu_obj_new_impl, 10712 KF_bpf_percpu_obj_drop_impl, 10713 KF_bpf_throw, 10714 KF_bpf_iter_css_task_new, 10715 }; 10716 10717 BTF_SET_START(special_kfunc_set) 10718 BTF_ID(func, bpf_obj_new_impl) 10719 BTF_ID(func, bpf_obj_drop_impl) 10720 BTF_ID(func, bpf_refcount_acquire_impl) 10721 BTF_ID(func, bpf_list_push_front_impl) 10722 BTF_ID(func, bpf_list_push_back_impl) 10723 BTF_ID(func, bpf_list_pop_front) 10724 BTF_ID(func, bpf_list_pop_back) 10725 BTF_ID(func, bpf_cast_to_kern_ctx) 10726 BTF_ID(func, bpf_rdonly_cast) 10727 BTF_ID(func, bpf_rbtree_remove) 10728 BTF_ID(func, bpf_rbtree_add_impl) 10729 BTF_ID(func, bpf_rbtree_first) 10730 BTF_ID(func, bpf_dynptr_from_skb) 10731 BTF_ID(func, bpf_dynptr_from_xdp) 10732 BTF_ID(func, bpf_dynptr_slice) 10733 BTF_ID(func, bpf_dynptr_slice_rdwr) 10734 BTF_ID(func, bpf_dynptr_clone) 10735 BTF_ID(func, bpf_percpu_obj_new_impl) 10736 BTF_ID(func, bpf_percpu_obj_drop_impl) 10737 BTF_ID(func, bpf_throw) 10738 #ifdef CONFIG_CGROUPS 10739 BTF_ID(func, bpf_iter_css_task_new) 10740 #endif 10741 BTF_SET_END(special_kfunc_set) 10742 10743 BTF_ID_LIST(special_kfunc_list) 10744 BTF_ID(func, bpf_obj_new_impl) 10745 BTF_ID(func, bpf_obj_drop_impl) 10746 BTF_ID(func, bpf_refcount_acquire_impl) 10747 BTF_ID(func, bpf_list_push_front_impl) 10748 BTF_ID(func, bpf_list_push_back_impl) 10749 BTF_ID(func, bpf_list_pop_front) 10750 BTF_ID(func, bpf_list_pop_back) 10751 BTF_ID(func, bpf_cast_to_kern_ctx) 10752 BTF_ID(func, bpf_rdonly_cast) 10753 BTF_ID(func, bpf_rcu_read_lock) 10754 BTF_ID(func, bpf_rcu_read_unlock) 10755 BTF_ID(func, bpf_rbtree_remove) 10756 BTF_ID(func, bpf_rbtree_add_impl) 10757 BTF_ID(func, bpf_rbtree_first) 10758 BTF_ID(func, bpf_dynptr_from_skb) 10759 BTF_ID(func, bpf_dynptr_from_xdp) 10760 BTF_ID(func, bpf_dynptr_slice) 10761 BTF_ID(func, bpf_dynptr_slice_rdwr) 10762 BTF_ID(func, bpf_dynptr_clone) 10763 BTF_ID(func, bpf_percpu_obj_new_impl) 10764 BTF_ID(func, bpf_percpu_obj_drop_impl) 10765 BTF_ID(func, bpf_throw) 10766 #ifdef CONFIG_CGROUPS 10767 BTF_ID(func, bpf_iter_css_task_new) 10768 #else 10769 BTF_ID_UNUSED 10770 #endif 10771 10772 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10773 { 10774 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10775 meta->arg_owning_ref) { 10776 return false; 10777 } 10778 10779 return meta->kfunc_flags & KF_RET_NULL; 10780 } 10781 10782 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10783 { 10784 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10785 } 10786 10787 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10788 { 10789 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10790 } 10791 10792 static enum kfunc_ptr_arg_type 10793 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10794 struct bpf_kfunc_call_arg_meta *meta, 10795 const struct btf_type *t, const struct btf_type *ref_t, 10796 const char *ref_tname, const struct btf_param *args, 10797 int argno, int nargs) 10798 { 10799 u32 regno = argno + 1; 10800 struct bpf_reg_state *regs = cur_regs(env); 10801 struct bpf_reg_state *reg = ®s[regno]; 10802 bool arg_mem_size = false; 10803 10804 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10805 return KF_ARG_PTR_TO_CTX; 10806 10807 /* In this function, we verify the kfunc's BTF as per the argument type, 10808 * leaving the rest of the verification with respect to the register 10809 * type to our caller. When a set of conditions hold in the BTF type of 10810 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10811 */ 10812 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10813 return KF_ARG_PTR_TO_CTX; 10814 10815 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10816 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10817 10818 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10819 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10820 10821 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10822 return KF_ARG_PTR_TO_DYNPTR; 10823 10824 if (is_kfunc_arg_iter(meta, argno)) 10825 return KF_ARG_PTR_TO_ITER; 10826 10827 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10828 return KF_ARG_PTR_TO_LIST_HEAD; 10829 10830 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10831 return KF_ARG_PTR_TO_LIST_NODE; 10832 10833 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10834 return KF_ARG_PTR_TO_RB_ROOT; 10835 10836 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10837 return KF_ARG_PTR_TO_RB_NODE; 10838 10839 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 10840 return KF_ARG_PTR_TO_CONST_STR; 10841 10842 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10843 if (!btf_type_is_struct(ref_t)) { 10844 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10845 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10846 return -EINVAL; 10847 } 10848 return KF_ARG_PTR_TO_BTF_ID; 10849 } 10850 10851 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10852 return KF_ARG_PTR_TO_CALLBACK; 10853 10854 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 10855 return KF_ARG_PTR_TO_NULL; 10856 10857 if (argno + 1 < nargs && 10858 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10859 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10860 arg_mem_size = true; 10861 10862 /* This is the catch all argument type of register types supported by 10863 * check_helper_mem_access. However, we only allow when argument type is 10864 * pointer to scalar, or struct composed (recursively) of scalars. When 10865 * arg_mem_size is true, the pointer can be void *. 10866 */ 10867 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10868 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10869 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10870 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10871 return -EINVAL; 10872 } 10873 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10874 } 10875 10876 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10877 struct bpf_reg_state *reg, 10878 const struct btf_type *ref_t, 10879 const char *ref_tname, u32 ref_id, 10880 struct bpf_kfunc_call_arg_meta *meta, 10881 int argno) 10882 { 10883 const struct btf_type *reg_ref_t; 10884 bool strict_type_match = false; 10885 const struct btf *reg_btf; 10886 const char *reg_ref_tname; 10887 u32 reg_ref_id; 10888 10889 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10890 reg_btf = reg->btf; 10891 reg_ref_id = reg->btf_id; 10892 } else { 10893 reg_btf = btf_vmlinux; 10894 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10895 } 10896 10897 /* Enforce strict type matching for calls to kfuncs that are acquiring 10898 * or releasing a reference, or are no-cast aliases. We do _not_ 10899 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10900 * as we want to enable BPF programs to pass types that are bitwise 10901 * equivalent without forcing them to explicitly cast with something 10902 * like bpf_cast_to_kern_ctx(). 10903 * 10904 * For example, say we had a type like the following: 10905 * 10906 * struct bpf_cpumask { 10907 * cpumask_t cpumask; 10908 * refcount_t usage; 10909 * }; 10910 * 10911 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10912 * to a struct cpumask, so it would be safe to pass a struct 10913 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10914 * 10915 * The philosophy here is similar to how we allow scalars of different 10916 * types to be passed to kfuncs as long as the size is the same. The 10917 * only difference here is that we're simply allowing 10918 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10919 * resolve types. 10920 */ 10921 if (is_kfunc_acquire(meta) || 10922 (is_kfunc_release(meta) && reg->ref_obj_id) || 10923 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10924 strict_type_match = true; 10925 10926 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10927 10928 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10929 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10930 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10931 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10932 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10933 btf_type_str(reg_ref_t), reg_ref_tname); 10934 return -EINVAL; 10935 } 10936 return 0; 10937 } 10938 10939 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10940 { 10941 struct bpf_verifier_state *state = env->cur_state; 10942 struct btf_record *rec = reg_btf_record(reg); 10943 10944 if (!state->active_lock.ptr) { 10945 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10946 return -EFAULT; 10947 } 10948 10949 if (type_flag(reg->type) & NON_OWN_REF) { 10950 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10951 return -EFAULT; 10952 } 10953 10954 reg->type |= NON_OWN_REF; 10955 if (rec->refcount_off >= 0) 10956 reg->type |= MEM_RCU; 10957 10958 return 0; 10959 } 10960 10961 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10962 { 10963 struct bpf_func_state *state, *unused; 10964 struct bpf_reg_state *reg; 10965 int i; 10966 10967 state = cur_func(env); 10968 10969 if (!ref_obj_id) { 10970 verbose(env, "verifier internal error: ref_obj_id is zero for " 10971 "owning -> non-owning conversion\n"); 10972 return -EFAULT; 10973 } 10974 10975 for (i = 0; i < state->acquired_refs; i++) { 10976 if (state->refs[i].id != ref_obj_id) 10977 continue; 10978 10979 /* Clear ref_obj_id here so release_reference doesn't clobber 10980 * the whole reg 10981 */ 10982 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10983 if (reg->ref_obj_id == ref_obj_id) { 10984 reg->ref_obj_id = 0; 10985 ref_set_non_owning(env, reg); 10986 } 10987 })); 10988 return 0; 10989 } 10990 10991 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10992 return -EFAULT; 10993 } 10994 10995 /* Implementation details: 10996 * 10997 * Each register points to some region of memory, which we define as an 10998 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10999 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 11000 * allocation. The lock and the data it protects are colocated in the same 11001 * memory region. 11002 * 11003 * Hence, everytime a register holds a pointer value pointing to such 11004 * allocation, the verifier preserves a unique reg->id for it. 11005 * 11006 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 11007 * bpf_spin_lock is called. 11008 * 11009 * To enable this, lock state in the verifier captures two values: 11010 * active_lock.ptr = Register's type specific pointer 11011 * active_lock.id = A unique ID for each register pointer value 11012 * 11013 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 11014 * supported register types. 11015 * 11016 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 11017 * allocated objects is the reg->btf pointer. 11018 * 11019 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 11020 * can establish the provenance of the map value statically for each distinct 11021 * lookup into such maps. They always contain a single map value hence unique 11022 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 11023 * 11024 * So, in case of global variables, they use array maps with max_entries = 1, 11025 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 11026 * into the same map value as max_entries is 1, as described above). 11027 * 11028 * In case of inner map lookups, the inner map pointer has same map_ptr as the 11029 * outer map pointer (in verifier context), but each lookup into an inner map 11030 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 11031 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 11032 * will get different reg->id assigned to each lookup, hence different 11033 * active_lock.id. 11034 * 11035 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 11036 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 11037 * returned from bpf_obj_new. Each allocation receives a new reg->id. 11038 */ 11039 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11040 { 11041 void *ptr; 11042 u32 id; 11043 11044 switch ((int)reg->type) { 11045 case PTR_TO_MAP_VALUE: 11046 ptr = reg->map_ptr; 11047 break; 11048 case PTR_TO_BTF_ID | MEM_ALLOC: 11049 ptr = reg->btf; 11050 break; 11051 default: 11052 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 11053 return -EFAULT; 11054 } 11055 id = reg->id; 11056 11057 if (!env->cur_state->active_lock.ptr) 11058 return -EINVAL; 11059 if (env->cur_state->active_lock.ptr != ptr || 11060 env->cur_state->active_lock.id != id) { 11061 verbose(env, "held lock and object are not in the same allocation\n"); 11062 return -EINVAL; 11063 } 11064 return 0; 11065 } 11066 11067 static bool is_bpf_list_api_kfunc(u32 btf_id) 11068 { 11069 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11070 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11071 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 11072 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 11073 } 11074 11075 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 11076 { 11077 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 11078 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11079 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 11080 } 11081 11082 static bool is_bpf_graph_api_kfunc(u32 btf_id) 11083 { 11084 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 11085 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 11086 } 11087 11088 static bool is_sync_callback_calling_kfunc(u32 btf_id) 11089 { 11090 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 11091 } 11092 11093 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 11094 { 11095 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 11096 insn->imm == special_kfunc_list[KF_bpf_throw]; 11097 } 11098 11099 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 11100 { 11101 return is_bpf_rbtree_api_kfunc(btf_id); 11102 } 11103 11104 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 11105 enum btf_field_type head_field_type, 11106 u32 kfunc_btf_id) 11107 { 11108 bool ret; 11109 11110 switch (head_field_type) { 11111 case BPF_LIST_HEAD: 11112 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 11113 break; 11114 case BPF_RB_ROOT: 11115 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 11116 break; 11117 default: 11118 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 11119 btf_field_type_name(head_field_type)); 11120 return false; 11121 } 11122 11123 if (!ret) 11124 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 11125 btf_field_type_name(head_field_type)); 11126 return ret; 11127 } 11128 11129 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 11130 enum btf_field_type node_field_type, 11131 u32 kfunc_btf_id) 11132 { 11133 bool ret; 11134 11135 switch (node_field_type) { 11136 case BPF_LIST_NODE: 11137 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11138 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 11139 break; 11140 case BPF_RB_NODE: 11141 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11142 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 11143 break; 11144 default: 11145 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 11146 btf_field_type_name(node_field_type)); 11147 return false; 11148 } 11149 11150 if (!ret) 11151 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 11152 btf_field_type_name(node_field_type)); 11153 return ret; 11154 } 11155 11156 static int 11157 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 11158 struct bpf_reg_state *reg, u32 regno, 11159 struct bpf_kfunc_call_arg_meta *meta, 11160 enum btf_field_type head_field_type, 11161 struct btf_field **head_field) 11162 { 11163 const char *head_type_name; 11164 struct btf_field *field; 11165 struct btf_record *rec; 11166 u32 head_off; 11167 11168 if (meta->btf != btf_vmlinux) { 11169 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11170 return -EFAULT; 11171 } 11172 11173 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 11174 return -EFAULT; 11175 11176 head_type_name = btf_field_type_name(head_field_type); 11177 if (!tnum_is_const(reg->var_off)) { 11178 verbose(env, 11179 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11180 regno, head_type_name); 11181 return -EINVAL; 11182 } 11183 11184 rec = reg_btf_record(reg); 11185 head_off = reg->off + reg->var_off.value; 11186 field = btf_record_find(rec, head_off, head_field_type); 11187 if (!field) { 11188 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 11189 return -EINVAL; 11190 } 11191 11192 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 11193 if (check_reg_allocation_locked(env, reg)) { 11194 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 11195 rec->spin_lock_off, head_type_name); 11196 return -EINVAL; 11197 } 11198 11199 if (*head_field) { 11200 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 11201 return -EFAULT; 11202 } 11203 *head_field = field; 11204 return 0; 11205 } 11206 11207 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 11208 struct bpf_reg_state *reg, u32 regno, 11209 struct bpf_kfunc_call_arg_meta *meta) 11210 { 11211 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 11212 &meta->arg_list_head.field); 11213 } 11214 11215 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 11216 struct bpf_reg_state *reg, u32 regno, 11217 struct bpf_kfunc_call_arg_meta *meta) 11218 { 11219 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 11220 &meta->arg_rbtree_root.field); 11221 } 11222 11223 static int 11224 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 11225 struct bpf_reg_state *reg, u32 regno, 11226 struct bpf_kfunc_call_arg_meta *meta, 11227 enum btf_field_type head_field_type, 11228 enum btf_field_type node_field_type, 11229 struct btf_field **node_field) 11230 { 11231 const char *node_type_name; 11232 const struct btf_type *et, *t; 11233 struct btf_field *field; 11234 u32 node_off; 11235 11236 if (meta->btf != btf_vmlinux) { 11237 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11238 return -EFAULT; 11239 } 11240 11241 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 11242 return -EFAULT; 11243 11244 node_type_name = btf_field_type_name(node_field_type); 11245 if (!tnum_is_const(reg->var_off)) { 11246 verbose(env, 11247 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11248 regno, node_type_name); 11249 return -EINVAL; 11250 } 11251 11252 node_off = reg->off + reg->var_off.value; 11253 field = reg_find_field_offset(reg, node_off, node_field_type); 11254 if (!field || field->offset != node_off) { 11255 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 11256 return -EINVAL; 11257 } 11258 11259 field = *node_field; 11260 11261 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 11262 t = btf_type_by_id(reg->btf, reg->btf_id); 11263 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 11264 field->graph_root.value_btf_id, true)) { 11265 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 11266 "in struct %s, but arg is at offset=%d in struct %s\n", 11267 btf_field_type_name(head_field_type), 11268 btf_field_type_name(node_field_type), 11269 field->graph_root.node_offset, 11270 btf_name_by_offset(field->graph_root.btf, et->name_off), 11271 node_off, btf_name_by_offset(reg->btf, t->name_off)); 11272 return -EINVAL; 11273 } 11274 meta->arg_btf = reg->btf; 11275 meta->arg_btf_id = reg->btf_id; 11276 11277 if (node_off != field->graph_root.node_offset) { 11278 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 11279 node_off, btf_field_type_name(node_field_type), 11280 field->graph_root.node_offset, 11281 btf_name_by_offset(field->graph_root.btf, et->name_off)); 11282 return -EINVAL; 11283 } 11284 11285 return 0; 11286 } 11287 11288 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 11289 struct bpf_reg_state *reg, u32 regno, 11290 struct bpf_kfunc_call_arg_meta *meta) 11291 { 11292 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11293 BPF_LIST_HEAD, BPF_LIST_NODE, 11294 &meta->arg_list_head.field); 11295 } 11296 11297 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 11298 struct bpf_reg_state *reg, u32 regno, 11299 struct bpf_kfunc_call_arg_meta *meta) 11300 { 11301 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11302 BPF_RB_ROOT, BPF_RB_NODE, 11303 &meta->arg_rbtree_root.field); 11304 } 11305 11306 /* 11307 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 11308 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 11309 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 11310 * them can only be attached to some specific hook points. 11311 */ 11312 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 11313 { 11314 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 11315 11316 switch (prog_type) { 11317 case BPF_PROG_TYPE_LSM: 11318 return true; 11319 case BPF_PROG_TYPE_TRACING: 11320 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 11321 return true; 11322 fallthrough; 11323 default: 11324 return env->prog->aux->sleepable; 11325 } 11326 } 11327 11328 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 11329 int insn_idx) 11330 { 11331 const char *func_name = meta->func_name, *ref_tname; 11332 const struct btf *btf = meta->btf; 11333 const struct btf_param *args; 11334 struct btf_record *rec; 11335 u32 i, nargs; 11336 int ret; 11337 11338 args = (const struct btf_param *)(meta->func_proto + 1); 11339 nargs = btf_type_vlen(meta->func_proto); 11340 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 11341 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 11342 MAX_BPF_FUNC_REG_ARGS); 11343 return -EINVAL; 11344 } 11345 11346 /* Check that BTF function arguments match actual types that the 11347 * verifier sees. 11348 */ 11349 for (i = 0; i < nargs; i++) { 11350 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 11351 const struct btf_type *t, *ref_t, *resolve_ret; 11352 enum bpf_arg_type arg_type = ARG_DONTCARE; 11353 u32 regno = i + 1, ref_id, type_size; 11354 bool is_ret_buf_sz = false; 11355 int kf_arg_type; 11356 11357 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 11358 11359 if (is_kfunc_arg_ignore(btf, &args[i])) 11360 continue; 11361 11362 if (btf_type_is_scalar(t)) { 11363 if (reg->type != SCALAR_VALUE) { 11364 verbose(env, "R%d is not a scalar\n", regno); 11365 return -EINVAL; 11366 } 11367 11368 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 11369 if (meta->arg_constant.found) { 11370 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11371 return -EFAULT; 11372 } 11373 if (!tnum_is_const(reg->var_off)) { 11374 verbose(env, "R%d must be a known constant\n", regno); 11375 return -EINVAL; 11376 } 11377 ret = mark_chain_precision(env, regno); 11378 if (ret < 0) 11379 return ret; 11380 meta->arg_constant.found = true; 11381 meta->arg_constant.value = reg->var_off.value; 11382 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 11383 meta->r0_rdonly = true; 11384 is_ret_buf_sz = true; 11385 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 11386 is_ret_buf_sz = true; 11387 } 11388 11389 if (is_ret_buf_sz) { 11390 if (meta->r0_size) { 11391 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 11392 return -EINVAL; 11393 } 11394 11395 if (!tnum_is_const(reg->var_off)) { 11396 verbose(env, "R%d is not a const\n", regno); 11397 return -EINVAL; 11398 } 11399 11400 meta->r0_size = reg->var_off.value; 11401 ret = mark_chain_precision(env, regno); 11402 if (ret) 11403 return ret; 11404 } 11405 continue; 11406 } 11407 11408 if (!btf_type_is_ptr(t)) { 11409 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 11410 return -EINVAL; 11411 } 11412 11413 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 11414 (register_is_null(reg) || type_may_be_null(reg->type)) && 11415 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 11416 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 11417 return -EACCES; 11418 } 11419 11420 if (reg->ref_obj_id) { 11421 if (is_kfunc_release(meta) && meta->ref_obj_id) { 11422 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 11423 regno, reg->ref_obj_id, 11424 meta->ref_obj_id); 11425 return -EFAULT; 11426 } 11427 meta->ref_obj_id = reg->ref_obj_id; 11428 if (is_kfunc_release(meta)) 11429 meta->release_regno = regno; 11430 } 11431 11432 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 11433 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 11434 11435 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 11436 if (kf_arg_type < 0) 11437 return kf_arg_type; 11438 11439 switch (kf_arg_type) { 11440 case KF_ARG_PTR_TO_NULL: 11441 continue; 11442 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11443 case KF_ARG_PTR_TO_BTF_ID: 11444 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 11445 break; 11446 11447 if (!is_trusted_reg(reg)) { 11448 if (!is_kfunc_rcu(meta)) { 11449 verbose(env, "R%d must be referenced or trusted\n", regno); 11450 return -EINVAL; 11451 } 11452 if (!is_rcu_reg(reg)) { 11453 verbose(env, "R%d must be a rcu pointer\n", regno); 11454 return -EINVAL; 11455 } 11456 } 11457 11458 fallthrough; 11459 case KF_ARG_PTR_TO_CTX: 11460 /* Trusted arguments have the same offset checks as release arguments */ 11461 arg_type |= OBJ_RELEASE; 11462 break; 11463 case KF_ARG_PTR_TO_DYNPTR: 11464 case KF_ARG_PTR_TO_ITER: 11465 case KF_ARG_PTR_TO_LIST_HEAD: 11466 case KF_ARG_PTR_TO_LIST_NODE: 11467 case KF_ARG_PTR_TO_RB_ROOT: 11468 case KF_ARG_PTR_TO_RB_NODE: 11469 case KF_ARG_PTR_TO_MEM: 11470 case KF_ARG_PTR_TO_MEM_SIZE: 11471 case KF_ARG_PTR_TO_CALLBACK: 11472 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11473 case KF_ARG_PTR_TO_CONST_STR: 11474 /* Trusted by default */ 11475 break; 11476 default: 11477 WARN_ON_ONCE(1); 11478 return -EFAULT; 11479 } 11480 11481 if (is_kfunc_release(meta) && reg->ref_obj_id) 11482 arg_type |= OBJ_RELEASE; 11483 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 11484 if (ret < 0) 11485 return ret; 11486 11487 switch (kf_arg_type) { 11488 case KF_ARG_PTR_TO_CTX: 11489 if (reg->type != PTR_TO_CTX) { 11490 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 11491 return -EINVAL; 11492 } 11493 11494 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11495 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 11496 if (ret < 0) 11497 return -EINVAL; 11498 meta->ret_btf_id = ret; 11499 } 11500 break; 11501 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11502 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 11503 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 11504 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 11505 return -EINVAL; 11506 } 11507 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 11508 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 11509 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 11510 return -EINVAL; 11511 } 11512 } else { 11513 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11514 return -EINVAL; 11515 } 11516 if (!reg->ref_obj_id) { 11517 verbose(env, "allocated object must be referenced\n"); 11518 return -EINVAL; 11519 } 11520 if (meta->btf == btf_vmlinux) { 11521 meta->arg_btf = reg->btf; 11522 meta->arg_btf_id = reg->btf_id; 11523 } 11524 break; 11525 case KF_ARG_PTR_TO_DYNPTR: 11526 { 11527 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11528 int clone_ref_obj_id = 0; 11529 11530 if (reg->type != PTR_TO_STACK && 11531 reg->type != CONST_PTR_TO_DYNPTR) { 11532 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11533 return -EINVAL; 11534 } 11535 11536 if (reg->type == CONST_PTR_TO_DYNPTR) 11537 dynptr_arg_type |= MEM_RDONLY; 11538 11539 if (is_kfunc_arg_uninit(btf, &args[i])) 11540 dynptr_arg_type |= MEM_UNINIT; 11541 11542 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11543 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11544 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11545 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11546 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11547 (dynptr_arg_type & MEM_UNINIT)) { 11548 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11549 11550 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11551 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11552 return -EFAULT; 11553 } 11554 11555 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11556 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11557 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11558 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11559 return -EFAULT; 11560 } 11561 } 11562 11563 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11564 if (ret < 0) 11565 return ret; 11566 11567 if (!(dynptr_arg_type & MEM_UNINIT)) { 11568 int id = dynptr_id(env, reg); 11569 11570 if (id < 0) { 11571 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11572 return id; 11573 } 11574 meta->initialized_dynptr.id = id; 11575 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11576 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11577 } 11578 11579 break; 11580 } 11581 case KF_ARG_PTR_TO_ITER: 11582 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 11583 if (!check_css_task_iter_allowlist(env)) { 11584 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 11585 return -EINVAL; 11586 } 11587 } 11588 ret = process_iter_arg(env, regno, insn_idx, meta); 11589 if (ret < 0) 11590 return ret; 11591 break; 11592 case KF_ARG_PTR_TO_LIST_HEAD: 11593 if (reg->type != PTR_TO_MAP_VALUE && 11594 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11595 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11596 return -EINVAL; 11597 } 11598 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11599 verbose(env, "allocated object must be referenced\n"); 11600 return -EINVAL; 11601 } 11602 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 11603 if (ret < 0) 11604 return ret; 11605 break; 11606 case KF_ARG_PTR_TO_RB_ROOT: 11607 if (reg->type != PTR_TO_MAP_VALUE && 11608 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11609 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11610 return -EINVAL; 11611 } 11612 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11613 verbose(env, "allocated object must be referenced\n"); 11614 return -EINVAL; 11615 } 11616 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 11617 if (ret < 0) 11618 return ret; 11619 break; 11620 case KF_ARG_PTR_TO_LIST_NODE: 11621 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11622 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11623 return -EINVAL; 11624 } 11625 if (!reg->ref_obj_id) { 11626 verbose(env, "allocated object must be referenced\n"); 11627 return -EINVAL; 11628 } 11629 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 11630 if (ret < 0) 11631 return ret; 11632 break; 11633 case KF_ARG_PTR_TO_RB_NODE: 11634 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 11635 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 11636 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 11637 return -EINVAL; 11638 } 11639 if (in_rbtree_lock_required_cb(env)) { 11640 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 11641 return -EINVAL; 11642 } 11643 } else { 11644 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11645 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11646 return -EINVAL; 11647 } 11648 if (!reg->ref_obj_id) { 11649 verbose(env, "allocated object must be referenced\n"); 11650 return -EINVAL; 11651 } 11652 } 11653 11654 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 11655 if (ret < 0) 11656 return ret; 11657 break; 11658 case KF_ARG_PTR_TO_BTF_ID: 11659 /* Only base_type is checked, further checks are done here */ 11660 if ((base_type(reg->type) != PTR_TO_BTF_ID || 11661 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 11662 !reg2btf_ids[base_type(reg->type)]) { 11663 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11664 verbose(env, "expected %s or socket\n", 11665 reg_type_str(env, base_type(reg->type) | 11666 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11667 return -EINVAL; 11668 } 11669 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11670 if (ret < 0) 11671 return ret; 11672 break; 11673 case KF_ARG_PTR_TO_MEM: 11674 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11675 if (IS_ERR(resolve_ret)) { 11676 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11677 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11678 return -EINVAL; 11679 } 11680 ret = check_mem_reg(env, reg, regno, type_size); 11681 if (ret < 0) 11682 return ret; 11683 break; 11684 case KF_ARG_PTR_TO_MEM_SIZE: 11685 { 11686 struct bpf_reg_state *buff_reg = ®s[regno]; 11687 const struct btf_param *buff_arg = &args[i]; 11688 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11689 const struct btf_param *size_arg = &args[i + 1]; 11690 11691 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11692 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11693 if (ret < 0) { 11694 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11695 return ret; 11696 } 11697 } 11698 11699 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11700 if (meta->arg_constant.found) { 11701 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11702 return -EFAULT; 11703 } 11704 if (!tnum_is_const(size_reg->var_off)) { 11705 verbose(env, "R%d must be a known constant\n", regno + 1); 11706 return -EINVAL; 11707 } 11708 meta->arg_constant.found = true; 11709 meta->arg_constant.value = size_reg->var_off.value; 11710 } 11711 11712 /* Skip next '__sz' or '__szk' argument */ 11713 i++; 11714 break; 11715 } 11716 case KF_ARG_PTR_TO_CALLBACK: 11717 if (reg->type != PTR_TO_FUNC) { 11718 verbose(env, "arg%d expected pointer to func\n", i); 11719 return -EINVAL; 11720 } 11721 meta->subprogno = reg->subprogno; 11722 break; 11723 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11724 if (!type_is_ptr_alloc_obj(reg->type)) { 11725 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11726 return -EINVAL; 11727 } 11728 if (!type_is_non_owning_ref(reg->type)) 11729 meta->arg_owning_ref = true; 11730 11731 rec = reg_btf_record(reg); 11732 if (!rec) { 11733 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11734 return -EFAULT; 11735 } 11736 11737 if (rec->refcount_off < 0) { 11738 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11739 return -EINVAL; 11740 } 11741 11742 meta->arg_btf = reg->btf; 11743 meta->arg_btf_id = reg->btf_id; 11744 break; 11745 case KF_ARG_PTR_TO_CONST_STR: 11746 if (reg->type != PTR_TO_MAP_VALUE) { 11747 verbose(env, "arg#%d doesn't point to a const string\n", i); 11748 return -EINVAL; 11749 } 11750 ret = check_reg_const_str(env, reg, regno); 11751 if (ret) 11752 return ret; 11753 break; 11754 } 11755 } 11756 11757 if (is_kfunc_release(meta) && !meta->release_regno) { 11758 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11759 func_name); 11760 return -EINVAL; 11761 } 11762 11763 return 0; 11764 } 11765 11766 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11767 struct bpf_insn *insn, 11768 struct bpf_kfunc_call_arg_meta *meta, 11769 const char **kfunc_name) 11770 { 11771 const struct btf_type *func, *func_proto; 11772 u32 func_id, *kfunc_flags; 11773 const char *func_name; 11774 struct btf *desc_btf; 11775 11776 if (kfunc_name) 11777 *kfunc_name = NULL; 11778 11779 if (!insn->imm) 11780 return -EINVAL; 11781 11782 desc_btf = find_kfunc_desc_btf(env, insn->off); 11783 if (IS_ERR(desc_btf)) 11784 return PTR_ERR(desc_btf); 11785 11786 func_id = insn->imm; 11787 func = btf_type_by_id(desc_btf, func_id); 11788 func_name = btf_name_by_offset(desc_btf, func->name_off); 11789 if (kfunc_name) 11790 *kfunc_name = func_name; 11791 func_proto = btf_type_by_id(desc_btf, func->type); 11792 11793 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11794 if (!kfunc_flags) { 11795 return -EACCES; 11796 } 11797 11798 memset(meta, 0, sizeof(*meta)); 11799 meta->btf = desc_btf; 11800 meta->func_id = func_id; 11801 meta->kfunc_flags = *kfunc_flags; 11802 meta->func_proto = func_proto; 11803 meta->func_name = func_name; 11804 11805 return 0; 11806 } 11807 11808 static int check_return_code(struct bpf_verifier_env *env, int regno); 11809 11810 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11811 int *insn_idx_p) 11812 { 11813 const struct btf_type *t, *ptr_type; 11814 u32 i, nargs, ptr_type_id, release_ref_obj_id; 11815 struct bpf_reg_state *regs = cur_regs(env); 11816 const char *func_name, *ptr_type_name; 11817 bool sleepable, rcu_lock, rcu_unlock; 11818 struct bpf_kfunc_call_arg_meta meta; 11819 struct bpf_insn_aux_data *insn_aux; 11820 int err, insn_idx = *insn_idx_p; 11821 const struct btf_param *args; 11822 const struct btf_type *ret_t; 11823 struct btf *desc_btf; 11824 11825 /* skip for now, but return error when we find this in fixup_kfunc_call */ 11826 if (!insn->imm) 11827 return 0; 11828 11829 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 11830 if (err == -EACCES && func_name) 11831 verbose(env, "calling kernel function %s is not allowed\n", func_name); 11832 if (err) 11833 return err; 11834 desc_btf = meta.btf; 11835 insn_aux = &env->insn_aux_data[insn_idx]; 11836 11837 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 11838 11839 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 11840 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 11841 return -EACCES; 11842 } 11843 11844 sleepable = is_kfunc_sleepable(&meta); 11845 if (sleepable && !env->prog->aux->sleepable) { 11846 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 11847 return -EACCES; 11848 } 11849 11850 /* Check the arguments */ 11851 err = check_kfunc_args(env, &meta, insn_idx); 11852 if (err < 0) 11853 return err; 11854 11855 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11856 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11857 set_rbtree_add_callback_state); 11858 if (err) { 11859 verbose(env, "kfunc %s#%d failed callback verification\n", 11860 func_name, meta.func_id); 11861 return err; 11862 } 11863 } 11864 11865 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 11866 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 11867 11868 if (env->cur_state->active_rcu_lock) { 11869 struct bpf_func_state *state; 11870 struct bpf_reg_state *reg; 11871 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 11872 11873 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 11874 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 11875 return -EACCES; 11876 } 11877 11878 if (rcu_lock) { 11879 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11880 return -EINVAL; 11881 } else if (rcu_unlock) { 11882 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 11883 if (reg->type & MEM_RCU) { 11884 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11885 reg->type |= PTR_UNTRUSTED; 11886 } 11887 })); 11888 env->cur_state->active_rcu_lock = false; 11889 } else if (sleepable) { 11890 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11891 return -EACCES; 11892 } 11893 } else if (rcu_lock) { 11894 env->cur_state->active_rcu_lock = true; 11895 } else if (rcu_unlock) { 11896 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11897 return -EINVAL; 11898 } 11899 11900 /* In case of release function, we get register number of refcounted 11901 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11902 */ 11903 if (meta.release_regno) { 11904 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11905 if (err) { 11906 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11907 func_name, meta.func_id); 11908 return err; 11909 } 11910 } 11911 11912 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11913 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11914 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11915 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11916 insn_aux->insert_off = regs[BPF_REG_2].off; 11917 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 11918 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11919 if (err) { 11920 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11921 func_name, meta.func_id); 11922 return err; 11923 } 11924 11925 err = release_reference(env, release_ref_obj_id); 11926 if (err) { 11927 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11928 func_name, meta.func_id); 11929 return err; 11930 } 11931 } 11932 11933 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 11934 if (!bpf_jit_supports_exceptions()) { 11935 verbose(env, "JIT does not support calling kfunc %s#%d\n", 11936 func_name, meta.func_id); 11937 return -ENOTSUPP; 11938 } 11939 env->seen_exception = true; 11940 11941 /* In the case of the default callback, the cookie value passed 11942 * to bpf_throw becomes the return value of the program. 11943 */ 11944 if (!env->exception_callback_subprog) { 11945 err = check_return_code(env, BPF_REG_1); 11946 if (err < 0) 11947 return err; 11948 } 11949 } 11950 11951 for (i = 0; i < CALLER_SAVED_REGS; i++) 11952 mark_reg_not_init(env, regs, caller_saved[i]); 11953 11954 /* Check return type */ 11955 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11956 11957 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11958 /* Only exception is bpf_obj_new_impl */ 11959 if (meta.btf != btf_vmlinux || 11960 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11961 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 11962 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11963 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11964 return -EINVAL; 11965 } 11966 } 11967 11968 if (btf_type_is_scalar(t)) { 11969 mark_reg_unknown(env, regs, BPF_REG_0); 11970 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11971 } else if (btf_type_is_ptr(t)) { 11972 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11973 11974 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11975 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 11976 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 11977 struct btf_struct_meta *struct_meta; 11978 struct btf *ret_btf; 11979 u32 ret_btf_id; 11980 11981 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 11982 return -ENOMEM; 11983 11984 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 11985 if (!bpf_global_percpu_ma_set) { 11986 mutex_lock(&bpf_percpu_ma_lock); 11987 if (!bpf_global_percpu_ma_set) { 11988 err = bpf_mem_alloc_init(&bpf_global_percpu_ma, 0, true); 11989 if (!err) 11990 bpf_global_percpu_ma_set = true; 11991 } 11992 mutex_unlock(&bpf_percpu_ma_lock); 11993 if (err) 11994 return err; 11995 } 11996 } 11997 11998 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11999 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 12000 return -EINVAL; 12001 } 12002 12003 ret_btf = env->prog->aux->btf; 12004 ret_btf_id = meta.arg_constant.value; 12005 12006 /* This may be NULL due to user not supplying a BTF */ 12007 if (!ret_btf) { 12008 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 12009 return -EINVAL; 12010 } 12011 12012 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 12013 if (!ret_t || !__btf_type_is_struct(ret_t)) { 12014 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 12015 return -EINVAL; 12016 } 12017 12018 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 12019 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12020 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 12021 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 12022 return -EINVAL; 12023 } 12024 12025 if (struct_meta) { 12026 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 12027 return -EINVAL; 12028 } 12029 } 12030 12031 mark_reg_known_zero(env, regs, BPF_REG_0); 12032 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12033 regs[BPF_REG_0].btf = ret_btf; 12034 regs[BPF_REG_0].btf_id = ret_btf_id; 12035 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 12036 regs[BPF_REG_0].type |= MEM_PERCPU; 12037 12038 insn_aux->obj_new_size = ret_t->size; 12039 insn_aux->kptr_struct_meta = struct_meta; 12040 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 12041 mark_reg_known_zero(env, regs, BPF_REG_0); 12042 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12043 regs[BPF_REG_0].btf = meta.arg_btf; 12044 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 12045 12046 insn_aux->kptr_struct_meta = 12047 btf_find_struct_meta(meta.arg_btf, 12048 meta.arg_btf_id); 12049 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 12050 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 12051 struct btf_field *field = meta.arg_list_head.field; 12052 12053 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12054 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12055 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12056 struct btf_field *field = meta.arg_rbtree_root.field; 12057 12058 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12059 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 12060 mark_reg_known_zero(env, regs, BPF_REG_0); 12061 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 12062 regs[BPF_REG_0].btf = desc_btf; 12063 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 12064 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 12065 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 12066 if (!ret_t || !btf_type_is_struct(ret_t)) { 12067 verbose(env, 12068 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 12069 return -EINVAL; 12070 } 12071 12072 mark_reg_known_zero(env, regs, BPF_REG_0); 12073 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 12074 regs[BPF_REG_0].btf = desc_btf; 12075 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 12076 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 12077 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 12078 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 12079 12080 mark_reg_known_zero(env, regs, BPF_REG_0); 12081 12082 if (!meta.arg_constant.found) { 12083 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 12084 return -EFAULT; 12085 } 12086 12087 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 12088 12089 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 12090 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 12091 12092 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 12093 regs[BPF_REG_0].type |= MEM_RDONLY; 12094 } else { 12095 /* this will set env->seen_direct_write to true */ 12096 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 12097 verbose(env, "the prog does not allow writes to packet data\n"); 12098 return -EINVAL; 12099 } 12100 } 12101 12102 if (!meta.initialized_dynptr.id) { 12103 verbose(env, "verifier internal error: no dynptr id\n"); 12104 return -EFAULT; 12105 } 12106 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 12107 12108 /* we don't need to set BPF_REG_0's ref obj id 12109 * because packet slices are not refcounted (see 12110 * dynptr_type_refcounted) 12111 */ 12112 } else { 12113 verbose(env, "kernel function %s unhandled dynamic return type\n", 12114 meta.func_name); 12115 return -EFAULT; 12116 } 12117 } else if (!__btf_type_is_struct(ptr_type)) { 12118 if (!meta.r0_size) { 12119 __u32 sz; 12120 12121 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 12122 meta.r0_size = sz; 12123 meta.r0_rdonly = true; 12124 } 12125 } 12126 if (!meta.r0_size) { 12127 ptr_type_name = btf_name_by_offset(desc_btf, 12128 ptr_type->name_off); 12129 verbose(env, 12130 "kernel function %s returns pointer type %s %s is not supported\n", 12131 func_name, 12132 btf_type_str(ptr_type), 12133 ptr_type_name); 12134 return -EINVAL; 12135 } 12136 12137 mark_reg_known_zero(env, regs, BPF_REG_0); 12138 regs[BPF_REG_0].type = PTR_TO_MEM; 12139 regs[BPF_REG_0].mem_size = meta.r0_size; 12140 12141 if (meta.r0_rdonly) 12142 regs[BPF_REG_0].type |= MEM_RDONLY; 12143 12144 /* Ensures we don't access the memory after a release_reference() */ 12145 if (meta.ref_obj_id) 12146 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 12147 } else { 12148 mark_reg_known_zero(env, regs, BPF_REG_0); 12149 regs[BPF_REG_0].btf = desc_btf; 12150 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 12151 regs[BPF_REG_0].btf_id = ptr_type_id; 12152 } 12153 12154 if (is_kfunc_ret_null(&meta)) { 12155 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 12156 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 12157 regs[BPF_REG_0].id = ++env->id_gen; 12158 } 12159 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 12160 if (is_kfunc_acquire(&meta)) { 12161 int id = acquire_reference_state(env, insn_idx); 12162 12163 if (id < 0) 12164 return id; 12165 if (is_kfunc_ret_null(&meta)) 12166 regs[BPF_REG_0].id = id; 12167 regs[BPF_REG_0].ref_obj_id = id; 12168 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12169 ref_set_non_owning(env, ®s[BPF_REG_0]); 12170 } 12171 12172 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 12173 regs[BPF_REG_0].id = ++env->id_gen; 12174 } else if (btf_type_is_void(t)) { 12175 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12176 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 12177 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 12178 insn_aux->kptr_struct_meta = 12179 btf_find_struct_meta(meta.arg_btf, 12180 meta.arg_btf_id); 12181 } 12182 } 12183 } 12184 12185 nargs = btf_type_vlen(meta.func_proto); 12186 args = (const struct btf_param *)(meta.func_proto + 1); 12187 for (i = 0; i < nargs; i++) { 12188 u32 regno = i + 1; 12189 12190 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 12191 if (btf_type_is_ptr(t)) 12192 mark_btf_func_reg_size(env, regno, sizeof(void *)); 12193 else 12194 /* scalar. ensured by btf_check_kfunc_arg_match() */ 12195 mark_btf_func_reg_size(env, regno, t->size); 12196 } 12197 12198 if (is_iter_next_kfunc(&meta)) { 12199 err = process_iter_next_call(env, insn_idx, &meta); 12200 if (err) 12201 return err; 12202 } 12203 12204 return 0; 12205 } 12206 12207 static bool signed_add_overflows(s64 a, s64 b) 12208 { 12209 /* Do the add in u64, where overflow is well-defined */ 12210 s64 res = (s64)((u64)a + (u64)b); 12211 12212 if (b < 0) 12213 return res > a; 12214 return res < a; 12215 } 12216 12217 static bool signed_add32_overflows(s32 a, s32 b) 12218 { 12219 /* Do the add in u32, where overflow is well-defined */ 12220 s32 res = (s32)((u32)a + (u32)b); 12221 12222 if (b < 0) 12223 return res > a; 12224 return res < a; 12225 } 12226 12227 static bool signed_sub_overflows(s64 a, s64 b) 12228 { 12229 /* Do the sub in u64, where overflow is well-defined */ 12230 s64 res = (s64)((u64)a - (u64)b); 12231 12232 if (b < 0) 12233 return res < a; 12234 return res > a; 12235 } 12236 12237 static bool signed_sub32_overflows(s32 a, s32 b) 12238 { 12239 /* Do the sub in u32, where overflow is well-defined */ 12240 s32 res = (s32)((u32)a - (u32)b); 12241 12242 if (b < 0) 12243 return res < a; 12244 return res > a; 12245 } 12246 12247 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 12248 const struct bpf_reg_state *reg, 12249 enum bpf_reg_type type) 12250 { 12251 bool known = tnum_is_const(reg->var_off); 12252 s64 val = reg->var_off.value; 12253 s64 smin = reg->smin_value; 12254 12255 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 12256 verbose(env, "math between %s pointer and %lld is not allowed\n", 12257 reg_type_str(env, type), val); 12258 return false; 12259 } 12260 12261 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 12262 verbose(env, "%s pointer offset %d is not allowed\n", 12263 reg_type_str(env, type), reg->off); 12264 return false; 12265 } 12266 12267 if (smin == S64_MIN) { 12268 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 12269 reg_type_str(env, type)); 12270 return false; 12271 } 12272 12273 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 12274 verbose(env, "value %lld makes %s pointer be out of bounds\n", 12275 smin, reg_type_str(env, type)); 12276 return false; 12277 } 12278 12279 return true; 12280 } 12281 12282 enum { 12283 REASON_BOUNDS = -1, 12284 REASON_TYPE = -2, 12285 REASON_PATHS = -3, 12286 REASON_LIMIT = -4, 12287 REASON_STACK = -5, 12288 }; 12289 12290 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 12291 u32 *alu_limit, bool mask_to_left) 12292 { 12293 u32 max = 0, ptr_limit = 0; 12294 12295 switch (ptr_reg->type) { 12296 case PTR_TO_STACK: 12297 /* Offset 0 is out-of-bounds, but acceptable start for the 12298 * left direction, see BPF_REG_FP. Also, unknown scalar 12299 * offset where we would need to deal with min/max bounds is 12300 * currently prohibited for unprivileged. 12301 */ 12302 max = MAX_BPF_STACK + mask_to_left; 12303 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 12304 break; 12305 case PTR_TO_MAP_VALUE: 12306 max = ptr_reg->map_ptr->value_size; 12307 ptr_limit = (mask_to_left ? 12308 ptr_reg->smin_value : 12309 ptr_reg->umax_value) + ptr_reg->off; 12310 break; 12311 default: 12312 return REASON_TYPE; 12313 } 12314 12315 if (ptr_limit >= max) 12316 return REASON_LIMIT; 12317 *alu_limit = ptr_limit; 12318 return 0; 12319 } 12320 12321 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 12322 const struct bpf_insn *insn) 12323 { 12324 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 12325 } 12326 12327 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 12328 u32 alu_state, u32 alu_limit) 12329 { 12330 /* If we arrived here from different branches with different 12331 * state or limits to sanitize, then this won't work. 12332 */ 12333 if (aux->alu_state && 12334 (aux->alu_state != alu_state || 12335 aux->alu_limit != alu_limit)) 12336 return REASON_PATHS; 12337 12338 /* Corresponding fixup done in do_misc_fixups(). */ 12339 aux->alu_state = alu_state; 12340 aux->alu_limit = alu_limit; 12341 return 0; 12342 } 12343 12344 static int sanitize_val_alu(struct bpf_verifier_env *env, 12345 struct bpf_insn *insn) 12346 { 12347 struct bpf_insn_aux_data *aux = cur_aux(env); 12348 12349 if (can_skip_alu_sanitation(env, insn)) 12350 return 0; 12351 12352 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 12353 } 12354 12355 static bool sanitize_needed(u8 opcode) 12356 { 12357 return opcode == BPF_ADD || opcode == BPF_SUB; 12358 } 12359 12360 struct bpf_sanitize_info { 12361 struct bpf_insn_aux_data aux; 12362 bool mask_to_left; 12363 }; 12364 12365 static struct bpf_verifier_state * 12366 sanitize_speculative_path(struct bpf_verifier_env *env, 12367 const struct bpf_insn *insn, 12368 u32 next_idx, u32 curr_idx) 12369 { 12370 struct bpf_verifier_state *branch; 12371 struct bpf_reg_state *regs; 12372 12373 branch = push_stack(env, next_idx, curr_idx, true); 12374 if (branch && insn) { 12375 regs = branch->frame[branch->curframe]->regs; 12376 if (BPF_SRC(insn->code) == BPF_K) { 12377 mark_reg_unknown(env, regs, insn->dst_reg); 12378 } else if (BPF_SRC(insn->code) == BPF_X) { 12379 mark_reg_unknown(env, regs, insn->dst_reg); 12380 mark_reg_unknown(env, regs, insn->src_reg); 12381 } 12382 } 12383 return branch; 12384 } 12385 12386 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 12387 struct bpf_insn *insn, 12388 const struct bpf_reg_state *ptr_reg, 12389 const struct bpf_reg_state *off_reg, 12390 struct bpf_reg_state *dst_reg, 12391 struct bpf_sanitize_info *info, 12392 const bool commit_window) 12393 { 12394 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 12395 struct bpf_verifier_state *vstate = env->cur_state; 12396 bool off_is_imm = tnum_is_const(off_reg->var_off); 12397 bool off_is_neg = off_reg->smin_value < 0; 12398 bool ptr_is_dst_reg = ptr_reg == dst_reg; 12399 u8 opcode = BPF_OP(insn->code); 12400 u32 alu_state, alu_limit; 12401 struct bpf_reg_state tmp; 12402 bool ret; 12403 int err; 12404 12405 if (can_skip_alu_sanitation(env, insn)) 12406 return 0; 12407 12408 /* We already marked aux for masking from non-speculative 12409 * paths, thus we got here in the first place. We only care 12410 * to explore bad access from here. 12411 */ 12412 if (vstate->speculative) 12413 goto do_sim; 12414 12415 if (!commit_window) { 12416 if (!tnum_is_const(off_reg->var_off) && 12417 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 12418 return REASON_BOUNDS; 12419 12420 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 12421 (opcode == BPF_SUB && !off_is_neg); 12422 } 12423 12424 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 12425 if (err < 0) 12426 return err; 12427 12428 if (commit_window) { 12429 /* In commit phase we narrow the masking window based on 12430 * the observed pointer move after the simulated operation. 12431 */ 12432 alu_state = info->aux.alu_state; 12433 alu_limit = abs(info->aux.alu_limit - alu_limit); 12434 } else { 12435 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 12436 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 12437 alu_state |= ptr_is_dst_reg ? 12438 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 12439 12440 /* Limit pruning on unknown scalars to enable deep search for 12441 * potential masking differences from other program paths. 12442 */ 12443 if (!off_is_imm) 12444 env->explore_alu_limits = true; 12445 } 12446 12447 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 12448 if (err < 0) 12449 return err; 12450 do_sim: 12451 /* If we're in commit phase, we're done here given we already 12452 * pushed the truncated dst_reg into the speculative verification 12453 * stack. 12454 * 12455 * Also, when register is a known constant, we rewrite register-based 12456 * operation to immediate-based, and thus do not need masking (and as 12457 * a consequence, do not need to simulate the zero-truncation either). 12458 */ 12459 if (commit_window || off_is_imm) 12460 return 0; 12461 12462 /* Simulate and find potential out-of-bounds access under 12463 * speculative execution from truncation as a result of 12464 * masking when off was not within expected range. If off 12465 * sits in dst, then we temporarily need to move ptr there 12466 * to simulate dst (== 0) +/-= ptr. Needed, for example, 12467 * for cases where we use K-based arithmetic in one direction 12468 * and truncated reg-based in the other in order to explore 12469 * bad access. 12470 */ 12471 if (!ptr_is_dst_reg) { 12472 tmp = *dst_reg; 12473 copy_register_state(dst_reg, ptr_reg); 12474 } 12475 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 12476 env->insn_idx); 12477 if (!ptr_is_dst_reg && ret) 12478 *dst_reg = tmp; 12479 return !ret ? REASON_STACK : 0; 12480 } 12481 12482 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 12483 { 12484 struct bpf_verifier_state *vstate = env->cur_state; 12485 12486 /* If we simulate paths under speculation, we don't update the 12487 * insn as 'seen' such that when we verify unreachable paths in 12488 * the non-speculative domain, sanitize_dead_code() can still 12489 * rewrite/sanitize them. 12490 */ 12491 if (!vstate->speculative) 12492 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 12493 } 12494 12495 static int sanitize_err(struct bpf_verifier_env *env, 12496 const struct bpf_insn *insn, int reason, 12497 const struct bpf_reg_state *off_reg, 12498 const struct bpf_reg_state *dst_reg) 12499 { 12500 static const char *err = "pointer arithmetic with it prohibited for !root"; 12501 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 12502 u32 dst = insn->dst_reg, src = insn->src_reg; 12503 12504 switch (reason) { 12505 case REASON_BOUNDS: 12506 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 12507 off_reg == dst_reg ? dst : src, err); 12508 break; 12509 case REASON_TYPE: 12510 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 12511 off_reg == dst_reg ? src : dst, err); 12512 break; 12513 case REASON_PATHS: 12514 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 12515 dst, op, err); 12516 break; 12517 case REASON_LIMIT: 12518 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 12519 dst, op, err); 12520 break; 12521 case REASON_STACK: 12522 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 12523 dst, err); 12524 break; 12525 default: 12526 verbose(env, "verifier internal error: unknown reason (%d)\n", 12527 reason); 12528 break; 12529 } 12530 12531 return -EACCES; 12532 } 12533 12534 /* check that stack access falls within stack limits and that 'reg' doesn't 12535 * have a variable offset. 12536 * 12537 * Variable offset is prohibited for unprivileged mode for simplicity since it 12538 * requires corresponding support in Spectre masking for stack ALU. See also 12539 * retrieve_ptr_limit(). 12540 * 12541 * 12542 * 'off' includes 'reg->off'. 12543 */ 12544 static int check_stack_access_for_ptr_arithmetic( 12545 struct bpf_verifier_env *env, 12546 int regno, 12547 const struct bpf_reg_state *reg, 12548 int off) 12549 { 12550 if (!tnum_is_const(reg->var_off)) { 12551 char tn_buf[48]; 12552 12553 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 12554 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 12555 regno, tn_buf, off); 12556 return -EACCES; 12557 } 12558 12559 if (off >= 0 || off < -MAX_BPF_STACK) { 12560 verbose(env, "R%d stack pointer arithmetic goes out of range, " 12561 "prohibited for !root; off=%d\n", regno, off); 12562 return -EACCES; 12563 } 12564 12565 return 0; 12566 } 12567 12568 static int sanitize_check_bounds(struct bpf_verifier_env *env, 12569 const struct bpf_insn *insn, 12570 const struct bpf_reg_state *dst_reg) 12571 { 12572 u32 dst = insn->dst_reg; 12573 12574 /* For unprivileged we require that resulting offset must be in bounds 12575 * in order to be able to sanitize access later on. 12576 */ 12577 if (env->bypass_spec_v1) 12578 return 0; 12579 12580 switch (dst_reg->type) { 12581 case PTR_TO_STACK: 12582 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 12583 dst_reg->off + dst_reg->var_off.value)) 12584 return -EACCES; 12585 break; 12586 case PTR_TO_MAP_VALUE: 12587 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 12588 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 12589 "prohibited for !root\n", dst); 12590 return -EACCES; 12591 } 12592 break; 12593 default: 12594 break; 12595 } 12596 12597 return 0; 12598 } 12599 12600 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 12601 * Caller should also handle BPF_MOV case separately. 12602 * If we return -EACCES, caller may want to try again treating pointer as a 12603 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 12604 */ 12605 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 12606 struct bpf_insn *insn, 12607 const struct bpf_reg_state *ptr_reg, 12608 const struct bpf_reg_state *off_reg) 12609 { 12610 struct bpf_verifier_state *vstate = env->cur_state; 12611 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12612 struct bpf_reg_state *regs = state->regs, *dst_reg; 12613 bool known = tnum_is_const(off_reg->var_off); 12614 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 12615 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 12616 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 12617 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 12618 struct bpf_sanitize_info info = {}; 12619 u8 opcode = BPF_OP(insn->code); 12620 u32 dst = insn->dst_reg; 12621 int ret; 12622 12623 dst_reg = ®s[dst]; 12624 12625 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 12626 smin_val > smax_val || umin_val > umax_val) { 12627 /* Taint dst register if offset had invalid bounds derived from 12628 * e.g. dead branches. 12629 */ 12630 __mark_reg_unknown(env, dst_reg); 12631 return 0; 12632 } 12633 12634 if (BPF_CLASS(insn->code) != BPF_ALU64) { 12635 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 12636 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12637 __mark_reg_unknown(env, dst_reg); 12638 return 0; 12639 } 12640 12641 verbose(env, 12642 "R%d 32-bit pointer arithmetic prohibited\n", 12643 dst); 12644 return -EACCES; 12645 } 12646 12647 if (ptr_reg->type & PTR_MAYBE_NULL) { 12648 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 12649 dst, reg_type_str(env, ptr_reg->type)); 12650 return -EACCES; 12651 } 12652 12653 switch (base_type(ptr_reg->type)) { 12654 case CONST_PTR_TO_MAP: 12655 /* smin_val represents the known value */ 12656 if (known && smin_val == 0 && opcode == BPF_ADD) 12657 break; 12658 fallthrough; 12659 case PTR_TO_PACKET_END: 12660 case PTR_TO_SOCKET: 12661 case PTR_TO_SOCK_COMMON: 12662 case PTR_TO_TCP_SOCK: 12663 case PTR_TO_XDP_SOCK: 12664 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 12665 dst, reg_type_str(env, ptr_reg->type)); 12666 return -EACCES; 12667 default: 12668 break; 12669 } 12670 12671 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 12672 * The id may be overwritten later if we create a new variable offset. 12673 */ 12674 dst_reg->type = ptr_reg->type; 12675 dst_reg->id = ptr_reg->id; 12676 12677 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 12678 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 12679 return -EINVAL; 12680 12681 /* pointer types do not carry 32-bit bounds at the moment. */ 12682 __mark_reg32_unbounded(dst_reg); 12683 12684 if (sanitize_needed(opcode)) { 12685 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 12686 &info, false); 12687 if (ret < 0) 12688 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12689 } 12690 12691 switch (opcode) { 12692 case BPF_ADD: 12693 /* We can take a fixed offset as long as it doesn't overflow 12694 * the s32 'off' field 12695 */ 12696 if (known && (ptr_reg->off + smin_val == 12697 (s64)(s32)(ptr_reg->off + smin_val))) { 12698 /* pointer += K. Accumulate it into fixed offset */ 12699 dst_reg->smin_value = smin_ptr; 12700 dst_reg->smax_value = smax_ptr; 12701 dst_reg->umin_value = umin_ptr; 12702 dst_reg->umax_value = umax_ptr; 12703 dst_reg->var_off = ptr_reg->var_off; 12704 dst_reg->off = ptr_reg->off + smin_val; 12705 dst_reg->raw = ptr_reg->raw; 12706 break; 12707 } 12708 /* A new variable offset is created. Note that off_reg->off 12709 * == 0, since it's a scalar. 12710 * dst_reg gets the pointer type and since some positive 12711 * integer value was added to the pointer, give it a new 'id' 12712 * if it's a PTR_TO_PACKET. 12713 * this creates a new 'base' pointer, off_reg (variable) gets 12714 * added into the variable offset, and we copy the fixed offset 12715 * from ptr_reg. 12716 */ 12717 if (signed_add_overflows(smin_ptr, smin_val) || 12718 signed_add_overflows(smax_ptr, smax_val)) { 12719 dst_reg->smin_value = S64_MIN; 12720 dst_reg->smax_value = S64_MAX; 12721 } else { 12722 dst_reg->smin_value = smin_ptr + smin_val; 12723 dst_reg->smax_value = smax_ptr + smax_val; 12724 } 12725 if (umin_ptr + umin_val < umin_ptr || 12726 umax_ptr + umax_val < umax_ptr) { 12727 dst_reg->umin_value = 0; 12728 dst_reg->umax_value = U64_MAX; 12729 } else { 12730 dst_reg->umin_value = umin_ptr + umin_val; 12731 dst_reg->umax_value = umax_ptr + umax_val; 12732 } 12733 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 12734 dst_reg->off = ptr_reg->off; 12735 dst_reg->raw = ptr_reg->raw; 12736 if (reg_is_pkt_pointer(ptr_reg)) { 12737 dst_reg->id = ++env->id_gen; 12738 /* something was added to pkt_ptr, set range to zero */ 12739 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12740 } 12741 break; 12742 case BPF_SUB: 12743 if (dst_reg == off_reg) { 12744 /* scalar -= pointer. Creates an unknown scalar */ 12745 verbose(env, "R%d tried to subtract pointer from scalar\n", 12746 dst); 12747 return -EACCES; 12748 } 12749 /* We don't allow subtraction from FP, because (according to 12750 * test_verifier.c test "invalid fp arithmetic", JITs might not 12751 * be able to deal with it. 12752 */ 12753 if (ptr_reg->type == PTR_TO_STACK) { 12754 verbose(env, "R%d subtraction from stack pointer prohibited\n", 12755 dst); 12756 return -EACCES; 12757 } 12758 if (known && (ptr_reg->off - smin_val == 12759 (s64)(s32)(ptr_reg->off - smin_val))) { 12760 /* pointer -= K. Subtract it from fixed offset */ 12761 dst_reg->smin_value = smin_ptr; 12762 dst_reg->smax_value = smax_ptr; 12763 dst_reg->umin_value = umin_ptr; 12764 dst_reg->umax_value = umax_ptr; 12765 dst_reg->var_off = ptr_reg->var_off; 12766 dst_reg->id = ptr_reg->id; 12767 dst_reg->off = ptr_reg->off - smin_val; 12768 dst_reg->raw = ptr_reg->raw; 12769 break; 12770 } 12771 /* A new variable offset is created. If the subtrahend is known 12772 * nonnegative, then any reg->range we had before is still good. 12773 */ 12774 if (signed_sub_overflows(smin_ptr, smax_val) || 12775 signed_sub_overflows(smax_ptr, smin_val)) { 12776 /* Overflow possible, we know nothing */ 12777 dst_reg->smin_value = S64_MIN; 12778 dst_reg->smax_value = S64_MAX; 12779 } else { 12780 dst_reg->smin_value = smin_ptr - smax_val; 12781 dst_reg->smax_value = smax_ptr - smin_val; 12782 } 12783 if (umin_ptr < umax_val) { 12784 /* Overflow possible, we know nothing */ 12785 dst_reg->umin_value = 0; 12786 dst_reg->umax_value = U64_MAX; 12787 } else { 12788 /* Cannot overflow (as long as bounds are consistent) */ 12789 dst_reg->umin_value = umin_ptr - umax_val; 12790 dst_reg->umax_value = umax_ptr - umin_val; 12791 } 12792 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 12793 dst_reg->off = ptr_reg->off; 12794 dst_reg->raw = ptr_reg->raw; 12795 if (reg_is_pkt_pointer(ptr_reg)) { 12796 dst_reg->id = ++env->id_gen; 12797 /* something was added to pkt_ptr, set range to zero */ 12798 if (smin_val < 0) 12799 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12800 } 12801 break; 12802 case BPF_AND: 12803 case BPF_OR: 12804 case BPF_XOR: 12805 /* bitwise ops on pointers are troublesome, prohibit. */ 12806 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 12807 dst, bpf_alu_string[opcode >> 4]); 12808 return -EACCES; 12809 default: 12810 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 12811 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 12812 dst, bpf_alu_string[opcode >> 4]); 12813 return -EACCES; 12814 } 12815 12816 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 12817 return -EINVAL; 12818 reg_bounds_sync(dst_reg); 12819 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 12820 return -EACCES; 12821 if (sanitize_needed(opcode)) { 12822 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 12823 &info, true); 12824 if (ret < 0) 12825 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12826 } 12827 12828 return 0; 12829 } 12830 12831 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 12832 struct bpf_reg_state *src_reg) 12833 { 12834 s32 smin_val = src_reg->s32_min_value; 12835 s32 smax_val = src_reg->s32_max_value; 12836 u32 umin_val = src_reg->u32_min_value; 12837 u32 umax_val = src_reg->u32_max_value; 12838 12839 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 12840 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 12841 dst_reg->s32_min_value = S32_MIN; 12842 dst_reg->s32_max_value = S32_MAX; 12843 } else { 12844 dst_reg->s32_min_value += smin_val; 12845 dst_reg->s32_max_value += smax_val; 12846 } 12847 if (dst_reg->u32_min_value + umin_val < umin_val || 12848 dst_reg->u32_max_value + umax_val < umax_val) { 12849 dst_reg->u32_min_value = 0; 12850 dst_reg->u32_max_value = U32_MAX; 12851 } else { 12852 dst_reg->u32_min_value += umin_val; 12853 dst_reg->u32_max_value += umax_val; 12854 } 12855 } 12856 12857 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 12858 struct bpf_reg_state *src_reg) 12859 { 12860 s64 smin_val = src_reg->smin_value; 12861 s64 smax_val = src_reg->smax_value; 12862 u64 umin_val = src_reg->umin_value; 12863 u64 umax_val = src_reg->umax_value; 12864 12865 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 12866 signed_add_overflows(dst_reg->smax_value, smax_val)) { 12867 dst_reg->smin_value = S64_MIN; 12868 dst_reg->smax_value = S64_MAX; 12869 } else { 12870 dst_reg->smin_value += smin_val; 12871 dst_reg->smax_value += smax_val; 12872 } 12873 if (dst_reg->umin_value + umin_val < umin_val || 12874 dst_reg->umax_value + umax_val < umax_val) { 12875 dst_reg->umin_value = 0; 12876 dst_reg->umax_value = U64_MAX; 12877 } else { 12878 dst_reg->umin_value += umin_val; 12879 dst_reg->umax_value += umax_val; 12880 } 12881 } 12882 12883 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 12884 struct bpf_reg_state *src_reg) 12885 { 12886 s32 smin_val = src_reg->s32_min_value; 12887 s32 smax_val = src_reg->s32_max_value; 12888 u32 umin_val = src_reg->u32_min_value; 12889 u32 umax_val = src_reg->u32_max_value; 12890 12891 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 12892 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 12893 /* Overflow possible, we know nothing */ 12894 dst_reg->s32_min_value = S32_MIN; 12895 dst_reg->s32_max_value = S32_MAX; 12896 } else { 12897 dst_reg->s32_min_value -= smax_val; 12898 dst_reg->s32_max_value -= smin_val; 12899 } 12900 if (dst_reg->u32_min_value < umax_val) { 12901 /* Overflow possible, we know nothing */ 12902 dst_reg->u32_min_value = 0; 12903 dst_reg->u32_max_value = U32_MAX; 12904 } else { 12905 /* Cannot overflow (as long as bounds are consistent) */ 12906 dst_reg->u32_min_value -= umax_val; 12907 dst_reg->u32_max_value -= umin_val; 12908 } 12909 } 12910 12911 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12912 struct bpf_reg_state *src_reg) 12913 { 12914 s64 smin_val = src_reg->smin_value; 12915 s64 smax_val = src_reg->smax_value; 12916 u64 umin_val = src_reg->umin_value; 12917 u64 umax_val = src_reg->umax_value; 12918 12919 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12920 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12921 /* Overflow possible, we know nothing */ 12922 dst_reg->smin_value = S64_MIN; 12923 dst_reg->smax_value = S64_MAX; 12924 } else { 12925 dst_reg->smin_value -= smax_val; 12926 dst_reg->smax_value -= smin_val; 12927 } 12928 if (dst_reg->umin_value < umax_val) { 12929 /* Overflow possible, we know nothing */ 12930 dst_reg->umin_value = 0; 12931 dst_reg->umax_value = U64_MAX; 12932 } else { 12933 /* Cannot overflow (as long as bounds are consistent) */ 12934 dst_reg->umin_value -= umax_val; 12935 dst_reg->umax_value -= umin_val; 12936 } 12937 } 12938 12939 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12940 struct bpf_reg_state *src_reg) 12941 { 12942 s32 smin_val = src_reg->s32_min_value; 12943 u32 umin_val = src_reg->u32_min_value; 12944 u32 umax_val = src_reg->u32_max_value; 12945 12946 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12947 /* Ain't nobody got time to multiply that sign */ 12948 __mark_reg32_unbounded(dst_reg); 12949 return; 12950 } 12951 /* Both values are positive, so we can work with unsigned and 12952 * copy the result to signed (unless it exceeds S32_MAX). 12953 */ 12954 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12955 /* Potential overflow, we know nothing */ 12956 __mark_reg32_unbounded(dst_reg); 12957 return; 12958 } 12959 dst_reg->u32_min_value *= umin_val; 12960 dst_reg->u32_max_value *= umax_val; 12961 if (dst_reg->u32_max_value > S32_MAX) { 12962 /* Overflow possible, we know nothing */ 12963 dst_reg->s32_min_value = S32_MIN; 12964 dst_reg->s32_max_value = S32_MAX; 12965 } else { 12966 dst_reg->s32_min_value = dst_reg->u32_min_value; 12967 dst_reg->s32_max_value = dst_reg->u32_max_value; 12968 } 12969 } 12970 12971 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12972 struct bpf_reg_state *src_reg) 12973 { 12974 s64 smin_val = src_reg->smin_value; 12975 u64 umin_val = src_reg->umin_value; 12976 u64 umax_val = src_reg->umax_value; 12977 12978 if (smin_val < 0 || dst_reg->smin_value < 0) { 12979 /* Ain't nobody got time to multiply that sign */ 12980 __mark_reg64_unbounded(dst_reg); 12981 return; 12982 } 12983 /* Both values are positive, so we can work with unsigned and 12984 * copy the result to signed (unless it exceeds S64_MAX). 12985 */ 12986 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12987 /* Potential overflow, we know nothing */ 12988 __mark_reg64_unbounded(dst_reg); 12989 return; 12990 } 12991 dst_reg->umin_value *= umin_val; 12992 dst_reg->umax_value *= umax_val; 12993 if (dst_reg->umax_value > S64_MAX) { 12994 /* Overflow possible, we know nothing */ 12995 dst_reg->smin_value = S64_MIN; 12996 dst_reg->smax_value = S64_MAX; 12997 } else { 12998 dst_reg->smin_value = dst_reg->umin_value; 12999 dst_reg->smax_value = dst_reg->umax_value; 13000 } 13001 } 13002 13003 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 13004 struct bpf_reg_state *src_reg) 13005 { 13006 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13007 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13008 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13009 s32 smin_val = src_reg->s32_min_value; 13010 u32 umax_val = src_reg->u32_max_value; 13011 13012 if (src_known && dst_known) { 13013 __mark_reg32_known(dst_reg, var32_off.value); 13014 return; 13015 } 13016 13017 /* We get our minimum from the var_off, since that's inherently 13018 * bitwise. Our maximum is the minimum of the operands' maxima. 13019 */ 13020 dst_reg->u32_min_value = var32_off.value; 13021 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 13022 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 13023 /* Lose signed bounds when ANDing negative numbers, 13024 * ain't nobody got time for that. 13025 */ 13026 dst_reg->s32_min_value = S32_MIN; 13027 dst_reg->s32_max_value = S32_MAX; 13028 } else { 13029 /* ANDing two positives gives a positive, so safe to 13030 * cast result into s64. 13031 */ 13032 dst_reg->s32_min_value = dst_reg->u32_min_value; 13033 dst_reg->s32_max_value = dst_reg->u32_max_value; 13034 } 13035 } 13036 13037 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 13038 struct bpf_reg_state *src_reg) 13039 { 13040 bool src_known = tnum_is_const(src_reg->var_off); 13041 bool dst_known = tnum_is_const(dst_reg->var_off); 13042 s64 smin_val = src_reg->smin_value; 13043 u64 umax_val = src_reg->umax_value; 13044 13045 if (src_known && dst_known) { 13046 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13047 return; 13048 } 13049 13050 /* We get our minimum from the var_off, since that's inherently 13051 * bitwise. Our maximum is the minimum of the operands' maxima. 13052 */ 13053 dst_reg->umin_value = dst_reg->var_off.value; 13054 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 13055 if (dst_reg->smin_value < 0 || smin_val < 0) { 13056 /* Lose signed bounds when ANDing negative numbers, 13057 * ain't nobody got time for that. 13058 */ 13059 dst_reg->smin_value = S64_MIN; 13060 dst_reg->smax_value = S64_MAX; 13061 } else { 13062 /* ANDing two positives gives a positive, so safe to 13063 * cast result into s64. 13064 */ 13065 dst_reg->smin_value = dst_reg->umin_value; 13066 dst_reg->smax_value = dst_reg->umax_value; 13067 } 13068 /* We may learn something more from the var_off */ 13069 __update_reg_bounds(dst_reg); 13070 } 13071 13072 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 13073 struct bpf_reg_state *src_reg) 13074 { 13075 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13076 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13077 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13078 s32 smin_val = src_reg->s32_min_value; 13079 u32 umin_val = src_reg->u32_min_value; 13080 13081 if (src_known && dst_known) { 13082 __mark_reg32_known(dst_reg, var32_off.value); 13083 return; 13084 } 13085 13086 /* We get our maximum from the var_off, and our minimum is the 13087 * maximum of the operands' minima 13088 */ 13089 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 13090 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13091 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 13092 /* Lose signed bounds when ORing negative numbers, 13093 * ain't nobody got time for that. 13094 */ 13095 dst_reg->s32_min_value = S32_MIN; 13096 dst_reg->s32_max_value = S32_MAX; 13097 } else { 13098 /* ORing two positives gives a positive, so safe to 13099 * cast result into s64. 13100 */ 13101 dst_reg->s32_min_value = dst_reg->u32_min_value; 13102 dst_reg->s32_max_value = dst_reg->u32_max_value; 13103 } 13104 } 13105 13106 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 13107 struct bpf_reg_state *src_reg) 13108 { 13109 bool src_known = tnum_is_const(src_reg->var_off); 13110 bool dst_known = tnum_is_const(dst_reg->var_off); 13111 s64 smin_val = src_reg->smin_value; 13112 u64 umin_val = src_reg->umin_value; 13113 13114 if (src_known && dst_known) { 13115 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13116 return; 13117 } 13118 13119 /* We get our maximum from the var_off, and our minimum is the 13120 * maximum of the operands' minima 13121 */ 13122 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 13123 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13124 if (dst_reg->smin_value < 0 || smin_val < 0) { 13125 /* Lose signed bounds when ORing negative numbers, 13126 * ain't nobody got time for that. 13127 */ 13128 dst_reg->smin_value = S64_MIN; 13129 dst_reg->smax_value = S64_MAX; 13130 } else { 13131 /* ORing two positives gives a positive, so safe to 13132 * cast result into s64. 13133 */ 13134 dst_reg->smin_value = dst_reg->umin_value; 13135 dst_reg->smax_value = dst_reg->umax_value; 13136 } 13137 /* We may learn something more from the var_off */ 13138 __update_reg_bounds(dst_reg); 13139 } 13140 13141 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 13142 struct bpf_reg_state *src_reg) 13143 { 13144 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13145 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13146 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13147 s32 smin_val = src_reg->s32_min_value; 13148 13149 if (src_known && dst_known) { 13150 __mark_reg32_known(dst_reg, var32_off.value); 13151 return; 13152 } 13153 13154 /* We get both minimum and maximum from the var32_off. */ 13155 dst_reg->u32_min_value = var32_off.value; 13156 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13157 13158 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 13159 /* XORing two positive sign numbers gives a positive, 13160 * so safe to cast u32 result into s32. 13161 */ 13162 dst_reg->s32_min_value = dst_reg->u32_min_value; 13163 dst_reg->s32_max_value = dst_reg->u32_max_value; 13164 } else { 13165 dst_reg->s32_min_value = S32_MIN; 13166 dst_reg->s32_max_value = S32_MAX; 13167 } 13168 } 13169 13170 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 13171 struct bpf_reg_state *src_reg) 13172 { 13173 bool src_known = tnum_is_const(src_reg->var_off); 13174 bool dst_known = tnum_is_const(dst_reg->var_off); 13175 s64 smin_val = src_reg->smin_value; 13176 13177 if (src_known && dst_known) { 13178 /* dst_reg->var_off.value has been updated earlier */ 13179 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13180 return; 13181 } 13182 13183 /* We get both minimum and maximum from the var_off. */ 13184 dst_reg->umin_value = dst_reg->var_off.value; 13185 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13186 13187 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 13188 /* XORing two positive sign numbers gives a positive, 13189 * so safe to cast u64 result into s64. 13190 */ 13191 dst_reg->smin_value = dst_reg->umin_value; 13192 dst_reg->smax_value = dst_reg->umax_value; 13193 } else { 13194 dst_reg->smin_value = S64_MIN; 13195 dst_reg->smax_value = S64_MAX; 13196 } 13197 13198 __update_reg_bounds(dst_reg); 13199 } 13200 13201 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13202 u64 umin_val, u64 umax_val) 13203 { 13204 /* We lose all sign bit information (except what we can pick 13205 * up from var_off) 13206 */ 13207 dst_reg->s32_min_value = S32_MIN; 13208 dst_reg->s32_max_value = S32_MAX; 13209 /* If we might shift our top bit out, then we know nothing */ 13210 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 13211 dst_reg->u32_min_value = 0; 13212 dst_reg->u32_max_value = U32_MAX; 13213 } else { 13214 dst_reg->u32_min_value <<= umin_val; 13215 dst_reg->u32_max_value <<= umax_val; 13216 } 13217 } 13218 13219 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13220 struct bpf_reg_state *src_reg) 13221 { 13222 u32 umax_val = src_reg->u32_max_value; 13223 u32 umin_val = src_reg->u32_min_value; 13224 /* u32 alu operation will zext upper bits */ 13225 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13226 13227 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13228 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 13229 /* Not required but being careful mark reg64 bounds as unknown so 13230 * that we are forced to pick them up from tnum and zext later and 13231 * if some path skips this step we are still safe. 13232 */ 13233 __mark_reg64_unbounded(dst_reg); 13234 __update_reg32_bounds(dst_reg); 13235 } 13236 13237 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 13238 u64 umin_val, u64 umax_val) 13239 { 13240 /* Special case <<32 because it is a common compiler pattern to sign 13241 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 13242 * positive we know this shift will also be positive so we can track 13243 * bounds correctly. Otherwise we lose all sign bit information except 13244 * what we can pick up from var_off. Perhaps we can generalize this 13245 * later to shifts of any length. 13246 */ 13247 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 13248 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 13249 else 13250 dst_reg->smax_value = S64_MAX; 13251 13252 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 13253 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 13254 else 13255 dst_reg->smin_value = S64_MIN; 13256 13257 /* If we might shift our top bit out, then we know nothing */ 13258 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 13259 dst_reg->umin_value = 0; 13260 dst_reg->umax_value = U64_MAX; 13261 } else { 13262 dst_reg->umin_value <<= umin_val; 13263 dst_reg->umax_value <<= umax_val; 13264 } 13265 } 13266 13267 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 13268 struct bpf_reg_state *src_reg) 13269 { 13270 u64 umax_val = src_reg->umax_value; 13271 u64 umin_val = src_reg->umin_value; 13272 13273 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 13274 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 13275 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13276 13277 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 13278 /* We may learn something more from the var_off */ 13279 __update_reg_bounds(dst_reg); 13280 } 13281 13282 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 13283 struct bpf_reg_state *src_reg) 13284 { 13285 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13286 u32 umax_val = src_reg->u32_max_value; 13287 u32 umin_val = src_reg->u32_min_value; 13288 13289 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13290 * be negative, then either: 13291 * 1) src_reg might be zero, so the sign bit of the result is 13292 * unknown, so we lose our signed bounds 13293 * 2) it's known negative, thus the unsigned bounds capture the 13294 * signed bounds 13295 * 3) the signed bounds cross zero, so they tell us nothing 13296 * about the result 13297 * If the value in dst_reg is known nonnegative, then again the 13298 * unsigned bounds capture the signed bounds. 13299 * Thus, in all cases it suffices to blow away our signed bounds 13300 * and rely on inferring new ones from the unsigned bounds and 13301 * var_off of the result. 13302 */ 13303 dst_reg->s32_min_value = S32_MIN; 13304 dst_reg->s32_max_value = S32_MAX; 13305 13306 dst_reg->var_off = tnum_rshift(subreg, umin_val); 13307 dst_reg->u32_min_value >>= umax_val; 13308 dst_reg->u32_max_value >>= umin_val; 13309 13310 __mark_reg64_unbounded(dst_reg); 13311 __update_reg32_bounds(dst_reg); 13312 } 13313 13314 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 13315 struct bpf_reg_state *src_reg) 13316 { 13317 u64 umax_val = src_reg->umax_value; 13318 u64 umin_val = src_reg->umin_value; 13319 13320 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13321 * be negative, then either: 13322 * 1) src_reg might be zero, so the sign bit of the result is 13323 * unknown, so we lose our signed bounds 13324 * 2) it's known negative, thus the unsigned bounds capture the 13325 * signed bounds 13326 * 3) the signed bounds cross zero, so they tell us nothing 13327 * about the result 13328 * If the value in dst_reg is known nonnegative, then again the 13329 * unsigned bounds capture the signed bounds. 13330 * Thus, in all cases it suffices to blow away our signed bounds 13331 * and rely on inferring new ones from the unsigned bounds and 13332 * var_off of the result. 13333 */ 13334 dst_reg->smin_value = S64_MIN; 13335 dst_reg->smax_value = S64_MAX; 13336 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 13337 dst_reg->umin_value >>= umax_val; 13338 dst_reg->umax_value >>= umin_val; 13339 13340 /* Its not easy to operate on alu32 bounds here because it depends 13341 * on bits being shifted in. Take easy way out and mark unbounded 13342 * so we can recalculate later from tnum. 13343 */ 13344 __mark_reg32_unbounded(dst_reg); 13345 __update_reg_bounds(dst_reg); 13346 } 13347 13348 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 13349 struct bpf_reg_state *src_reg) 13350 { 13351 u64 umin_val = src_reg->u32_min_value; 13352 13353 /* Upon reaching here, src_known is true and 13354 * umax_val is equal to umin_val. 13355 */ 13356 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 13357 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 13358 13359 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 13360 13361 /* blow away the dst_reg umin_value/umax_value and rely on 13362 * dst_reg var_off to refine the result. 13363 */ 13364 dst_reg->u32_min_value = 0; 13365 dst_reg->u32_max_value = U32_MAX; 13366 13367 __mark_reg64_unbounded(dst_reg); 13368 __update_reg32_bounds(dst_reg); 13369 } 13370 13371 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 13372 struct bpf_reg_state *src_reg) 13373 { 13374 u64 umin_val = src_reg->umin_value; 13375 13376 /* Upon reaching here, src_known is true and umax_val is equal 13377 * to umin_val. 13378 */ 13379 dst_reg->smin_value >>= umin_val; 13380 dst_reg->smax_value >>= umin_val; 13381 13382 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 13383 13384 /* blow away the dst_reg umin_value/umax_value and rely on 13385 * dst_reg var_off to refine the result. 13386 */ 13387 dst_reg->umin_value = 0; 13388 dst_reg->umax_value = U64_MAX; 13389 13390 /* Its not easy to operate on alu32 bounds here because it depends 13391 * on bits being shifted in from upper 32-bits. Take easy way out 13392 * and mark unbounded so we can recalculate later from tnum. 13393 */ 13394 __mark_reg32_unbounded(dst_reg); 13395 __update_reg_bounds(dst_reg); 13396 } 13397 13398 /* WARNING: This function does calculations on 64-bit values, but the actual 13399 * execution may occur on 32-bit values. Therefore, things like bitshifts 13400 * need extra checks in the 32-bit case. 13401 */ 13402 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 13403 struct bpf_insn *insn, 13404 struct bpf_reg_state *dst_reg, 13405 struct bpf_reg_state src_reg) 13406 { 13407 struct bpf_reg_state *regs = cur_regs(env); 13408 u8 opcode = BPF_OP(insn->code); 13409 bool src_known; 13410 s64 smin_val, smax_val; 13411 u64 umin_val, umax_val; 13412 s32 s32_min_val, s32_max_val; 13413 u32 u32_min_val, u32_max_val; 13414 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 13415 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 13416 int ret; 13417 13418 smin_val = src_reg.smin_value; 13419 smax_val = src_reg.smax_value; 13420 umin_val = src_reg.umin_value; 13421 umax_val = src_reg.umax_value; 13422 13423 s32_min_val = src_reg.s32_min_value; 13424 s32_max_val = src_reg.s32_max_value; 13425 u32_min_val = src_reg.u32_min_value; 13426 u32_max_val = src_reg.u32_max_value; 13427 13428 if (alu32) { 13429 src_known = tnum_subreg_is_const(src_reg.var_off); 13430 if ((src_known && 13431 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 13432 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 13433 /* Taint dst register if offset had invalid bounds 13434 * derived from e.g. dead branches. 13435 */ 13436 __mark_reg_unknown(env, dst_reg); 13437 return 0; 13438 } 13439 } else { 13440 src_known = tnum_is_const(src_reg.var_off); 13441 if ((src_known && 13442 (smin_val != smax_val || umin_val != umax_val)) || 13443 smin_val > smax_val || umin_val > umax_val) { 13444 /* Taint dst register if offset had invalid bounds 13445 * derived from e.g. dead branches. 13446 */ 13447 __mark_reg_unknown(env, dst_reg); 13448 return 0; 13449 } 13450 } 13451 13452 if (!src_known && 13453 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 13454 __mark_reg_unknown(env, dst_reg); 13455 return 0; 13456 } 13457 13458 if (sanitize_needed(opcode)) { 13459 ret = sanitize_val_alu(env, insn); 13460 if (ret < 0) 13461 return sanitize_err(env, insn, ret, NULL, NULL); 13462 } 13463 13464 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 13465 * There are two classes of instructions: The first class we track both 13466 * alu32 and alu64 sign/unsigned bounds independently this provides the 13467 * greatest amount of precision when alu operations are mixed with jmp32 13468 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 13469 * and BPF_OR. This is possible because these ops have fairly easy to 13470 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 13471 * See alu32 verifier tests for examples. The second class of 13472 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 13473 * with regards to tracking sign/unsigned bounds because the bits may 13474 * cross subreg boundaries in the alu64 case. When this happens we mark 13475 * the reg unbounded in the subreg bound space and use the resulting 13476 * tnum to calculate an approximation of the sign/unsigned bounds. 13477 */ 13478 switch (opcode) { 13479 case BPF_ADD: 13480 scalar32_min_max_add(dst_reg, &src_reg); 13481 scalar_min_max_add(dst_reg, &src_reg); 13482 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 13483 break; 13484 case BPF_SUB: 13485 scalar32_min_max_sub(dst_reg, &src_reg); 13486 scalar_min_max_sub(dst_reg, &src_reg); 13487 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 13488 break; 13489 case BPF_MUL: 13490 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 13491 scalar32_min_max_mul(dst_reg, &src_reg); 13492 scalar_min_max_mul(dst_reg, &src_reg); 13493 break; 13494 case BPF_AND: 13495 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 13496 scalar32_min_max_and(dst_reg, &src_reg); 13497 scalar_min_max_and(dst_reg, &src_reg); 13498 break; 13499 case BPF_OR: 13500 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 13501 scalar32_min_max_or(dst_reg, &src_reg); 13502 scalar_min_max_or(dst_reg, &src_reg); 13503 break; 13504 case BPF_XOR: 13505 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 13506 scalar32_min_max_xor(dst_reg, &src_reg); 13507 scalar_min_max_xor(dst_reg, &src_reg); 13508 break; 13509 case BPF_LSH: 13510 if (umax_val >= insn_bitness) { 13511 /* Shifts greater than 31 or 63 are undefined. 13512 * This includes shifts by a negative number. 13513 */ 13514 mark_reg_unknown(env, regs, insn->dst_reg); 13515 break; 13516 } 13517 if (alu32) 13518 scalar32_min_max_lsh(dst_reg, &src_reg); 13519 else 13520 scalar_min_max_lsh(dst_reg, &src_reg); 13521 break; 13522 case BPF_RSH: 13523 if (umax_val >= insn_bitness) { 13524 /* Shifts greater than 31 or 63 are undefined. 13525 * This includes shifts by a negative number. 13526 */ 13527 mark_reg_unknown(env, regs, insn->dst_reg); 13528 break; 13529 } 13530 if (alu32) 13531 scalar32_min_max_rsh(dst_reg, &src_reg); 13532 else 13533 scalar_min_max_rsh(dst_reg, &src_reg); 13534 break; 13535 case BPF_ARSH: 13536 if (umax_val >= insn_bitness) { 13537 /* Shifts greater than 31 or 63 are undefined. 13538 * This includes shifts by a negative number. 13539 */ 13540 mark_reg_unknown(env, regs, insn->dst_reg); 13541 break; 13542 } 13543 if (alu32) 13544 scalar32_min_max_arsh(dst_reg, &src_reg); 13545 else 13546 scalar_min_max_arsh(dst_reg, &src_reg); 13547 break; 13548 default: 13549 mark_reg_unknown(env, regs, insn->dst_reg); 13550 break; 13551 } 13552 13553 /* ALU32 ops are zero extended into 64bit register */ 13554 if (alu32) 13555 zext_32_to_64(dst_reg); 13556 reg_bounds_sync(dst_reg); 13557 return 0; 13558 } 13559 13560 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 13561 * and var_off. 13562 */ 13563 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 13564 struct bpf_insn *insn) 13565 { 13566 struct bpf_verifier_state *vstate = env->cur_state; 13567 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13568 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 13569 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 13570 u8 opcode = BPF_OP(insn->code); 13571 int err; 13572 13573 dst_reg = ®s[insn->dst_reg]; 13574 src_reg = NULL; 13575 if (dst_reg->type != SCALAR_VALUE) 13576 ptr_reg = dst_reg; 13577 else 13578 /* Make sure ID is cleared otherwise dst_reg min/max could be 13579 * incorrectly propagated into other registers by find_equal_scalars() 13580 */ 13581 dst_reg->id = 0; 13582 if (BPF_SRC(insn->code) == BPF_X) { 13583 src_reg = ®s[insn->src_reg]; 13584 if (src_reg->type != SCALAR_VALUE) { 13585 if (dst_reg->type != SCALAR_VALUE) { 13586 /* Combining two pointers by any ALU op yields 13587 * an arbitrary scalar. Disallow all math except 13588 * pointer subtraction 13589 */ 13590 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13591 mark_reg_unknown(env, regs, insn->dst_reg); 13592 return 0; 13593 } 13594 verbose(env, "R%d pointer %s pointer prohibited\n", 13595 insn->dst_reg, 13596 bpf_alu_string[opcode >> 4]); 13597 return -EACCES; 13598 } else { 13599 /* scalar += pointer 13600 * This is legal, but we have to reverse our 13601 * src/dest handling in computing the range 13602 */ 13603 err = mark_chain_precision(env, insn->dst_reg); 13604 if (err) 13605 return err; 13606 return adjust_ptr_min_max_vals(env, insn, 13607 src_reg, dst_reg); 13608 } 13609 } else if (ptr_reg) { 13610 /* pointer += scalar */ 13611 err = mark_chain_precision(env, insn->src_reg); 13612 if (err) 13613 return err; 13614 return adjust_ptr_min_max_vals(env, insn, 13615 dst_reg, src_reg); 13616 } else if (dst_reg->precise) { 13617 /* if dst_reg is precise, src_reg should be precise as well */ 13618 err = mark_chain_precision(env, insn->src_reg); 13619 if (err) 13620 return err; 13621 } 13622 } else { 13623 /* Pretend the src is a reg with a known value, since we only 13624 * need to be able to read from this state. 13625 */ 13626 off_reg.type = SCALAR_VALUE; 13627 __mark_reg_known(&off_reg, insn->imm); 13628 src_reg = &off_reg; 13629 if (ptr_reg) /* pointer += K */ 13630 return adjust_ptr_min_max_vals(env, insn, 13631 ptr_reg, src_reg); 13632 } 13633 13634 /* Got here implies adding two SCALAR_VALUEs */ 13635 if (WARN_ON_ONCE(ptr_reg)) { 13636 print_verifier_state(env, state, true); 13637 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 13638 return -EINVAL; 13639 } 13640 if (WARN_ON(!src_reg)) { 13641 print_verifier_state(env, state, true); 13642 verbose(env, "verifier internal error: no src_reg\n"); 13643 return -EINVAL; 13644 } 13645 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 13646 } 13647 13648 /* check validity of 32-bit and 64-bit arithmetic operations */ 13649 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 13650 { 13651 struct bpf_reg_state *regs = cur_regs(env); 13652 u8 opcode = BPF_OP(insn->code); 13653 int err; 13654 13655 if (opcode == BPF_END || opcode == BPF_NEG) { 13656 if (opcode == BPF_NEG) { 13657 if (BPF_SRC(insn->code) != BPF_K || 13658 insn->src_reg != BPF_REG_0 || 13659 insn->off != 0 || insn->imm != 0) { 13660 verbose(env, "BPF_NEG uses reserved fields\n"); 13661 return -EINVAL; 13662 } 13663 } else { 13664 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 13665 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 13666 (BPF_CLASS(insn->code) == BPF_ALU64 && 13667 BPF_SRC(insn->code) != BPF_TO_LE)) { 13668 verbose(env, "BPF_END uses reserved fields\n"); 13669 return -EINVAL; 13670 } 13671 } 13672 13673 /* check src operand */ 13674 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13675 if (err) 13676 return err; 13677 13678 if (is_pointer_value(env, insn->dst_reg)) { 13679 verbose(env, "R%d pointer arithmetic prohibited\n", 13680 insn->dst_reg); 13681 return -EACCES; 13682 } 13683 13684 /* check dest operand */ 13685 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13686 if (err) 13687 return err; 13688 13689 } else if (opcode == BPF_MOV) { 13690 13691 if (BPF_SRC(insn->code) == BPF_X) { 13692 if (insn->imm != 0) { 13693 verbose(env, "BPF_MOV uses reserved fields\n"); 13694 return -EINVAL; 13695 } 13696 13697 if (BPF_CLASS(insn->code) == BPF_ALU) { 13698 if (insn->off != 0 && insn->off != 8 && insn->off != 16) { 13699 verbose(env, "BPF_MOV uses reserved fields\n"); 13700 return -EINVAL; 13701 } 13702 } else { 13703 if (insn->off != 0 && insn->off != 8 && insn->off != 16 && 13704 insn->off != 32) { 13705 verbose(env, "BPF_MOV uses reserved fields\n"); 13706 return -EINVAL; 13707 } 13708 } 13709 13710 /* check src operand */ 13711 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13712 if (err) 13713 return err; 13714 } else { 13715 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13716 verbose(env, "BPF_MOV uses reserved fields\n"); 13717 return -EINVAL; 13718 } 13719 } 13720 13721 /* check dest operand, mark as required later */ 13722 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13723 if (err) 13724 return err; 13725 13726 if (BPF_SRC(insn->code) == BPF_X) { 13727 struct bpf_reg_state *src_reg = regs + insn->src_reg; 13728 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 13729 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 13730 !tnum_is_const(src_reg->var_off); 13731 13732 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13733 if (insn->off == 0) { 13734 /* case: R1 = R2 13735 * copy register state to dest reg 13736 */ 13737 if (need_id) 13738 /* Assign src and dst registers the same ID 13739 * that will be used by find_equal_scalars() 13740 * to propagate min/max range. 13741 */ 13742 src_reg->id = ++env->id_gen; 13743 copy_register_state(dst_reg, src_reg); 13744 dst_reg->live |= REG_LIVE_WRITTEN; 13745 dst_reg->subreg_def = DEF_NOT_SUBREG; 13746 } else { 13747 /* case: R1 = (s8, s16 s32)R2 */ 13748 if (is_pointer_value(env, insn->src_reg)) { 13749 verbose(env, 13750 "R%d sign-extension part of pointer\n", 13751 insn->src_reg); 13752 return -EACCES; 13753 } else if (src_reg->type == SCALAR_VALUE) { 13754 bool no_sext; 13755 13756 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13757 if (no_sext && need_id) 13758 src_reg->id = ++env->id_gen; 13759 copy_register_state(dst_reg, src_reg); 13760 if (!no_sext) 13761 dst_reg->id = 0; 13762 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 13763 dst_reg->live |= REG_LIVE_WRITTEN; 13764 dst_reg->subreg_def = DEF_NOT_SUBREG; 13765 } else { 13766 mark_reg_unknown(env, regs, insn->dst_reg); 13767 } 13768 } 13769 } else { 13770 /* R1 = (u32) R2 */ 13771 if (is_pointer_value(env, insn->src_reg)) { 13772 verbose(env, 13773 "R%d partial copy of pointer\n", 13774 insn->src_reg); 13775 return -EACCES; 13776 } else if (src_reg->type == SCALAR_VALUE) { 13777 if (insn->off == 0) { 13778 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 13779 13780 if (is_src_reg_u32 && need_id) 13781 src_reg->id = ++env->id_gen; 13782 copy_register_state(dst_reg, src_reg); 13783 /* Make sure ID is cleared if src_reg is not in u32 13784 * range otherwise dst_reg min/max could be incorrectly 13785 * propagated into src_reg by find_equal_scalars() 13786 */ 13787 if (!is_src_reg_u32) 13788 dst_reg->id = 0; 13789 dst_reg->live |= REG_LIVE_WRITTEN; 13790 dst_reg->subreg_def = env->insn_idx + 1; 13791 } else { 13792 /* case: W1 = (s8, s16)W2 */ 13793 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13794 13795 if (no_sext && need_id) 13796 src_reg->id = ++env->id_gen; 13797 copy_register_state(dst_reg, src_reg); 13798 if (!no_sext) 13799 dst_reg->id = 0; 13800 dst_reg->live |= REG_LIVE_WRITTEN; 13801 dst_reg->subreg_def = env->insn_idx + 1; 13802 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 13803 } 13804 } else { 13805 mark_reg_unknown(env, regs, 13806 insn->dst_reg); 13807 } 13808 zext_32_to_64(dst_reg); 13809 reg_bounds_sync(dst_reg); 13810 } 13811 } else { 13812 /* case: R = imm 13813 * remember the value we stored into this reg 13814 */ 13815 /* clear any state __mark_reg_known doesn't set */ 13816 mark_reg_unknown(env, regs, insn->dst_reg); 13817 regs[insn->dst_reg].type = SCALAR_VALUE; 13818 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13819 __mark_reg_known(regs + insn->dst_reg, 13820 insn->imm); 13821 } else { 13822 __mark_reg_known(regs + insn->dst_reg, 13823 (u32)insn->imm); 13824 } 13825 } 13826 13827 } else if (opcode > BPF_END) { 13828 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 13829 return -EINVAL; 13830 13831 } else { /* all other ALU ops: and, sub, xor, add, ... */ 13832 13833 if (BPF_SRC(insn->code) == BPF_X) { 13834 if (insn->imm != 0 || insn->off > 1 || 13835 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13836 verbose(env, "BPF_ALU uses reserved fields\n"); 13837 return -EINVAL; 13838 } 13839 /* check src1 operand */ 13840 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13841 if (err) 13842 return err; 13843 } else { 13844 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 13845 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13846 verbose(env, "BPF_ALU uses reserved fields\n"); 13847 return -EINVAL; 13848 } 13849 } 13850 13851 /* check src2 operand */ 13852 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13853 if (err) 13854 return err; 13855 13856 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 13857 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 13858 verbose(env, "div by zero\n"); 13859 return -EINVAL; 13860 } 13861 13862 if ((opcode == BPF_LSH || opcode == BPF_RSH || 13863 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 13864 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 13865 13866 if (insn->imm < 0 || insn->imm >= size) { 13867 verbose(env, "invalid shift %d\n", insn->imm); 13868 return -EINVAL; 13869 } 13870 } 13871 13872 /* check dest operand */ 13873 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13874 err = err ?: adjust_reg_min_max_vals(env, insn); 13875 if (err) 13876 return err; 13877 } 13878 13879 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 13880 } 13881 13882 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 13883 struct bpf_reg_state *dst_reg, 13884 enum bpf_reg_type type, 13885 bool range_right_open) 13886 { 13887 struct bpf_func_state *state; 13888 struct bpf_reg_state *reg; 13889 int new_range; 13890 13891 if (dst_reg->off < 0 || 13892 (dst_reg->off == 0 && range_right_open)) 13893 /* This doesn't give us any range */ 13894 return; 13895 13896 if (dst_reg->umax_value > MAX_PACKET_OFF || 13897 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 13898 /* Risk of overflow. For instance, ptr + (1<<63) may be less 13899 * than pkt_end, but that's because it's also less than pkt. 13900 */ 13901 return; 13902 13903 new_range = dst_reg->off; 13904 if (range_right_open) 13905 new_range++; 13906 13907 /* Examples for register markings: 13908 * 13909 * pkt_data in dst register: 13910 * 13911 * r2 = r3; 13912 * r2 += 8; 13913 * if (r2 > pkt_end) goto <handle exception> 13914 * <access okay> 13915 * 13916 * r2 = r3; 13917 * r2 += 8; 13918 * if (r2 < pkt_end) goto <access okay> 13919 * <handle exception> 13920 * 13921 * Where: 13922 * r2 == dst_reg, pkt_end == src_reg 13923 * r2=pkt(id=n,off=8,r=0) 13924 * r3=pkt(id=n,off=0,r=0) 13925 * 13926 * pkt_data in src register: 13927 * 13928 * r2 = r3; 13929 * r2 += 8; 13930 * if (pkt_end >= r2) goto <access okay> 13931 * <handle exception> 13932 * 13933 * r2 = r3; 13934 * r2 += 8; 13935 * if (pkt_end <= r2) goto <handle exception> 13936 * <access okay> 13937 * 13938 * Where: 13939 * pkt_end == dst_reg, r2 == src_reg 13940 * r2=pkt(id=n,off=8,r=0) 13941 * r3=pkt(id=n,off=0,r=0) 13942 * 13943 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 13944 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 13945 * and [r3, r3 + 8-1) respectively is safe to access depending on 13946 * the check. 13947 */ 13948 13949 /* If our ids match, then we must have the same max_value. And we 13950 * don't care about the other reg's fixed offset, since if it's too big 13951 * the range won't allow anything. 13952 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 13953 */ 13954 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13955 if (reg->type == type && reg->id == dst_reg->id) 13956 /* keep the maximum range already checked */ 13957 reg->range = max(reg->range, new_range); 13958 })); 13959 } 13960 13961 /* 13962 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 13963 */ 13964 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 13965 u8 opcode, bool is_jmp32) 13966 { 13967 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 13968 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 13969 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 13970 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 13971 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 13972 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 13973 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 13974 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 13975 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 13976 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 13977 13978 switch (opcode) { 13979 case BPF_JEQ: 13980 /* constants, umin/umax and smin/smax checks would be 13981 * redundant in this case because they all should match 13982 */ 13983 if (tnum_is_const(t1) && tnum_is_const(t2)) 13984 return t1.value == t2.value; 13985 /* non-overlapping ranges */ 13986 if (umin1 > umax2 || umax1 < umin2) 13987 return 0; 13988 if (smin1 > smax2 || smax1 < smin2) 13989 return 0; 13990 if (!is_jmp32) { 13991 /* if 64-bit ranges are inconclusive, see if we can 13992 * utilize 32-bit subrange knowledge to eliminate 13993 * branches that can't be taken a priori 13994 */ 13995 if (reg1->u32_min_value > reg2->u32_max_value || 13996 reg1->u32_max_value < reg2->u32_min_value) 13997 return 0; 13998 if (reg1->s32_min_value > reg2->s32_max_value || 13999 reg1->s32_max_value < reg2->s32_min_value) 14000 return 0; 14001 } 14002 break; 14003 case BPF_JNE: 14004 /* constants, umin/umax and smin/smax checks would be 14005 * redundant in this case because they all should match 14006 */ 14007 if (tnum_is_const(t1) && tnum_is_const(t2)) 14008 return t1.value != t2.value; 14009 /* non-overlapping ranges */ 14010 if (umin1 > umax2 || umax1 < umin2) 14011 return 1; 14012 if (smin1 > smax2 || smax1 < smin2) 14013 return 1; 14014 if (!is_jmp32) { 14015 /* if 64-bit ranges are inconclusive, see if we can 14016 * utilize 32-bit subrange knowledge to eliminate 14017 * branches that can't be taken a priori 14018 */ 14019 if (reg1->u32_min_value > reg2->u32_max_value || 14020 reg1->u32_max_value < reg2->u32_min_value) 14021 return 1; 14022 if (reg1->s32_min_value > reg2->s32_max_value || 14023 reg1->s32_max_value < reg2->s32_min_value) 14024 return 1; 14025 } 14026 break; 14027 case BPF_JSET: 14028 if (!is_reg_const(reg2, is_jmp32)) { 14029 swap(reg1, reg2); 14030 swap(t1, t2); 14031 } 14032 if (!is_reg_const(reg2, is_jmp32)) 14033 return -1; 14034 if ((~t1.mask & t1.value) & t2.value) 14035 return 1; 14036 if (!((t1.mask | t1.value) & t2.value)) 14037 return 0; 14038 break; 14039 case BPF_JGT: 14040 if (umin1 > umax2) 14041 return 1; 14042 else if (umax1 <= umin2) 14043 return 0; 14044 break; 14045 case BPF_JSGT: 14046 if (smin1 > smax2) 14047 return 1; 14048 else if (smax1 <= smin2) 14049 return 0; 14050 break; 14051 case BPF_JLT: 14052 if (umax1 < umin2) 14053 return 1; 14054 else if (umin1 >= umax2) 14055 return 0; 14056 break; 14057 case BPF_JSLT: 14058 if (smax1 < smin2) 14059 return 1; 14060 else if (smin1 >= smax2) 14061 return 0; 14062 break; 14063 case BPF_JGE: 14064 if (umin1 >= umax2) 14065 return 1; 14066 else if (umax1 < umin2) 14067 return 0; 14068 break; 14069 case BPF_JSGE: 14070 if (smin1 >= smax2) 14071 return 1; 14072 else if (smax1 < smin2) 14073 return 0; 14074 break; 14075 case BPF_JLE: 14076 if (umax1 <= umin2) 14077 return 1; 14078 else if (umin1 > umax2) 14079 return 0; 14080 break; 14081 case BPF_JSLE: 14082 if (smax1 <= smin2) 14083 return 1; 14084 else if (smin1 > smax2) 14085 return 0; 14086 break; 14087 } 14088 14089 return -1; 14090 } 14091 14092 static int flip_opcode(u32 opcode) 14093 { 14094 /* How can we transform "a <op> b" into "b <op> a"? */ 14095 static const u8 opcode_flip[16] = { 14096 /* these stay the same */ 14097 [BPF_JEQ >> 4] = BPF_JEQ, 14098 [BPF_JNE >> 4] = BPF_JNE, 14099 [BPF_JSET >> 4] = BPF_JSET, 14100 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 14101 [BPF_JGE >> 4] = BPF_JLE, 14102 [BPF_JGT >> 4] = BPF_JLT, 14103 [BPF_JLE >> 4] = BPF_JGE, 14104 [BPF_JLT >> 4] = BPF_JGT, 14105 [BPF_JSGE >> 4] = BPF_JSLE, 14106 [BPF_JSGT >> 4] = BPF_JSLT, 14107 [BPF_JSLE >> 4] = BPF_JSGE, 14108 [BPF_JSLT >> 4] = BPF_JSGT 14109 }; 14110 return opcode_flip[opcode >> 4]; 14111 } 14112 14113 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 14114 struct bpf_reg_state *src_reg, 14115 u8 opcode) 14116 { 14117 struct bpf_reg_state *pkt; 14118 14119 if (src_reg->type == PTR_TO_PACKET_END) { 14120 pkt = dst_reg; 14121 } else if (dst_reg->type == PTR_TO_PACKET_END) { 14122 pkt = src_reg; 14123 opcode = flip_opcode(opcode); 14124 } else { 14125 return -1; 14126 } 14127 14128 if (pkt->range >= 0) 14129 return -1; 14130 14131 switch (opcode) { 14132 case BPF_JLE: 14133 /* pkt <= pkt_end */ 14134 fallthrough; 14135 case BPF_JGT: 14136 /* pkt > pkt_end */ 14137 if (pkt->range == BEYOND_PKT_END) 14138 /* pkt has at last one extra byte beyond pkt_end */ 14139 return opcode == BPF_JGT; 14140 break; 14141 case BPF_JLT: 14142 /* pkt < pkt_end */ 14143 fallthrough; 14144 case BPF_JGE: 14145 /* pkt >= pkt_end */ 14146 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 14147 return opcode == BPF_JGE; 14148 break; 14149 } 14150 return -1; 14151 } 14152 14153 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 14154 * and return: 14155 * 1 - branch will be taken and "goto target" will be executed 14156 * 0 - branch will not be taken and fall-through to next insn 14157 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 14158 * range [0,10] 14159 */ 14160 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14161 u8 opcode, bool is_jmp32) 14162 { 14163 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 14164 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 14165 14166 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 14167 u64 val; 14168 14169 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 14170 if (!is_reg_const(reg2, is_jmp32)) { 14171 opcode = flip_opcode(opcode); 14172 swap(reg1, reg2); 14173 } 14174 /* and ensure that reg2 is a constant */ 14175 if (!is_reg_const(reg2, is_jmp32)) 14176 return -1; 14177 14178 if (!reg_not_null(reg1)) 14179 return -1; 14180 14181 /* If pointer is valid tests against zero will fail so we can 14182 * use this to direct branch taken. 14183 */ 14184 val = reg_const_value(reg2, is_jmp32); 14185 if (val != 0) 14186 return -1; 14187 14188 switch (opcode) { 14189 case BPF_JEQ: 14190 return 0; 14191 case BPF_JNE: 14192 return 1; 14193 default: 14194 return -1; 14195 } 14196 } 14197 14198 /* now deal with two scalars, but not necessarily constants */ 14199 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 14200 } 14201 14202 /* Opcode that corresponds to a *false* branch condition. 14203 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 14204 */ 14205 static u8 rev_opcode(u8 opcode) 14206 { 14207 switch (opcode) { 14208 case BPF_JEQ: return BPF_JNE; 14209 case BPF_JNE: return BPF_JEQ; 14210 /* JSET doesn't have it's reverse opcode in BPF, so add 14211 * BPF_X flag to denote the reverse of that operation 14212 */ 14213 case BPF_JSET: return BPF_JSET | BPF_X; 14214 case BPF_JSET | BPF_X: return BPF_JSET; 14215 case BPF_JGE: return BPF_JLT; 14216 case BPF_JGT: return BPF_JLE; 14217 case BPF_JLE: return BPF_JGT; 14218 case BPF_JLT: return BPF_JGE; 14219 case BPF_JSGE: return BPF_JSLT; 14220 case BPF_JSGT: return BPF_JSLE; 14221 case BPF_JSLE: return BPF_JSGT; 14222 case BPF_JSLT: return BPF_JSGE; 14223 default: return 0; 14224 } 14225 } 14226 14227 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 14228 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14229 u8 opcode, bool is_jmp32) 14230 { 14231 struct tnum t; 14232 u64 val; 14233 14234 again: 14235 switch (opcode) { 14236 case BPF_JEQ: 14237 if (is_jmp32) { 14238 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 14239 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 14240 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 14241 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 14242 reg2->u32_min_value = reg1->u32_min_value; 14243 reg2->u32_max_value = reg1->u32_max_value; 14244 reg2->s32_min_value = reg1->s32_min_value; 14245 reg2->s32_max_value = reg1->s32_max_value; 14246 14247 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 14248 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14249 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 14250 } else { 14251 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 14252 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 14253 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 14254 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 14255 reg2->umin_value = reg1->umin_value; 14256 reg2->umax_value = reg1->umax_value; 14257 reg2->smin_value = reg1->smin_value; 14258 reg2->smax_value = reg1->smax_value; 14259 14260 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 14261 reg2->var_off = reg1->var_off; 14262 } 14263 break; 14264 case BPF_JNE: 14265 /* we don't derive any new information for inequality yet */ 14266 break; 14267 case BPF_JSET: 14268 if (!is_reg_const(reg2, is_jmp32)) 14269 swap(reg1, reg2); 14270 if (!is_reg_const(reg2, is_jmp32)) 14271 break; 14272 val = reg_const_value(reg2, is_jmp32); 14273 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 14274 * requires single bit to learn something useful. E.g., if we 14275 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 14276 * are actually set? We can learn something definite only if 14277 * it's a single-bit value to begin with. 14278 * 14279 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 14280 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 14281 * bit 1 is set, which we can readily use in adjustments. 14282 */ 14283 if (!is_power_of_2(val)) 14284 break; 14285 if (is_jmp32) { 14286 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 14287 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14288 } else { 14289 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 14290 } 14291 break; 14292 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 14293 if (!is_reg_const(reg2, is_jmp32)) 14294 swap(reg1, reg2); 14295 if (!is_reg_const(reg2, is_jmp32)) 14296 break; 14297 val = reg_const_value(reg2, is_jmp32); 14298 if (is_jmp32) { 14299 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 14300 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14301 } else { 14302 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 14303 } 14304 break; 14305 case BPF_JLE: 14306 if (is_jmp32) { 14307 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 14308 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 14309 } else { 14310 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 14311 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 14312 } 14313 break; 14314 case BPF_JLT: 14315 if (is_jmp32) { 14316 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 14317 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 14318 } else { 14319 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 14320 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 14321 } 14322 break; 14323 case BPF_JSLE: 14324 if (is_jmp32) { 14325 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 14326 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 14327 } else { 14328 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 14329 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 14330 } 14331 break; 14332 case BPF_JSLT: 14333 if (is_jmp32) { 14334 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 14335 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 14336 } else { 14337 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 14338 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 14339 } 14340 break; 14341 case BPF_JGE: 14342 case BPF_JGT: 14343 case BPF_JSGE: 14344 case BPF_JSGT: 14345 /* just reuse LE/LT logic above */ 14346 opcode = flip_opcode(opcode); 14347 swap(reg1, reg2); 14348 goto again; 14349 default: 14350 return; 14351 } 14352 } 14353 14354 /* Adjusts the register min/max values in the case that the dst_reg and 14355 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 14356 * check, in which case we havea fake SCALAR_VALUE representing insn->imm). 14357 * Technically we can do similar adjustments for pointers to the same object, 14358 * but we don't support that right now. 14359 */ 14360 static int reg_set_min_max(struct bpf_verifier_env *env, 14361 struct bpf_reg_state *true_reg1, 14362 struct bpf_reg_state *true_reg2, 14363 struct bpf_reg_state *false_reg1, 14364 struct bpf_reg_state *false_reg2, 14365 u8 opcode, bool is_jmp32) 14366 { 14367 int err; 14368 14369 /* If either register is a pointer, we can't learn anything about its 14370 * variable offset from the compare (unless they were a pointer into 14371 * the same object, but we don't bother with that). 14372 */ 14373 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 14374 return 0; 14375 14376 /* fallthrough (FALSE) branch */ 14377 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 14378 reg_bounds_sync(false_reg1); 14379 reg_bounds_sync(false_reg2); 14380 14381 /* jump (TRUE) branch */ 14382 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 14383 reg_bounds_sync(true_reg1); 14384 reg_bounds_sync(true_reg2); 14385 14386 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 14387 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 14388 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 14389 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 14390 return err; 14391 } 14392 14393 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 14394 struct bpf_reg_state *reg, u32 id, 14395 bool is_null) 14396 { 14397 if (type_may_be_null(reg->type) && reg->id == id && 14398 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 14399 /* Old offset (both fixed and variable parts) should have been 14400 * known-zero, because we don't allow pointer arithmetic on 14401 * pointers that might be NULL. If we see this happening, don't 14402 * convert the register. 14403 * 14404 * But in some cases, some helpers that return local kptrs 14405 * advance offset for the returned pointer. In those cases, it 14406 * is fine to expect to see reg->off. 14407 */ 14408 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 14409 return; 14410 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 14411 WARN_ON_ONCE(reg->off)) 14412 return; 14413 14414 if (is_null) { 14415 reg->type = SCALAR_VALUE; 14416 /* We don't need id and ref_obj_id from this point 14417 * onwards anymore, thus we should better reset it, 14418 * so that state pruning has chances to take effect. 14419 */ 14420 reg->id = 0; 14421 reg->ref_obj_id = 0; 14422 14423 return; 14424 } 14425 14426 mark_ptr_not_null_reg(reg); 14427 14428 if (!reg_may_point_to_spin_lock(reg)) { 14429 /* For not-NULL ptr, reg->ref_obj_id will be reset 14430 * in release_reference(). 14431 * 14432 * reg->id is still used by spin_lock ptr. Other 14433 * than spin_lock ptr type, reg->id can be reset. 14434 */ 14435 reg->id = 0; 14436 } 14437 } 14438 } 14439 14440 /* The logic is similar to find_good_pkt_pointers(), both could eventually 14441 * be folded together at some point. 14442 */ 14443 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 14444 bool is_null) 14445 { 14446 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14447 struct bpf_reg_state *regs = state->regs, *reg; 14448 u32 ref_obj_id = regs[regno].ref_obj_id; 14449 u32 id = regs[regno].id; 14450 14451 if (ref_obj_id && ref_obj_id == id && is_null) 14452 /* regs[regno] is in the " == NULL" branch. 14453 * No one could have freed the reference state before 14454 * doing the NULL check. 14455 */ 14456 WARN_ON_ONCE(release_reference_state(state, id)); 14457 14458 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14459 mark_ptr_or_null_reg(state, reg, id, is_null); 14460 })); 14461 } 14462 14463 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 14464 struct bpf_reg_state *dst_reg, 14465 struct bpf_reg_state *src_reg, 14466 struct bpf_verifier_state *this_branch, 14467 struct bpf_verifier_state *other_branch) 14468 { 14469 if (BPF_SRC(insn->code) != BPF_X) 14470 return false; 14471 14472 /* Pointers are always 64-bit. */ 14473 if (BPF_CLASS(insn->code) == BPF_JMP32) 14474 return false; 14475 14476 switch (BPF_OP(insn->code)) { 14477 case BPF_JGT: 14478 if ((dst_reg->type == PTR_TO_PACKET && 14479 src_reg->type == PTR_TO_PACKET_END) || 14480 (dst_reg->type == PTR_TO_PACKET_META && 14481 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14482 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 14483 find_good_pkt_pointers(this_branch, dst_reg, 14484 dst_reg->type, false); 14485 mark_pkt_end(other_branch, insn->dst_reg, true); 14486 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14487 src_reg->type == PTR_TO_PACKET) || 14488 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14489 src_reg->type == PTR_TO_PACKET_META)) { 14490 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 14491 find_good_pkt_pointers(other_branch, src_reg, 14492 src_reg->type, true); 14493 mark_pkt_end(this_branch, insn->src_reg, false); 14494 } else { 14495 return false; 14496 } 14497 break; 14498 case BPF_JLT: 14499 if ((dst_reg->type == PTR_TO_PACKET && 14500 src_reg->type == PTR_TO_PACKET_END) || 14501 (dst_reg->type == PTR_TO_PACKET_META && 14502 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14503 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 14504 find_good_pkt_pointers(other_branch, dst_reg, 14505 dst_reg->type, true); 14506 mark_pkt_end(this_branch, insn->dst_reg, false); 14507 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14508 src_reg->type == PTR_TO_PACKET) || 14509 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14510 src_reg->type == PTR_TO_PACKET_META)) { 14511 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 14512 find_good_pkt_pointers(this_branch, src_reg, 14513 src_reg->type, false); 14514 mark_pkt_end(other_branch, insn->src_reg, true); 14515 } else { 14516 return false; 14517 } 14518 break; 14519 case BPF_JGE: 14520 if ((dst_reg->type == PTR_TO_PACKET && 14521 src_reg->type == PTR_TO_PACKET_END) || 14522 (dst_reg->type == PTR_TO_PACKET_META && 14523 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14524 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 14525 find_good_pkt_pointers(this_branch, dst_reg, 14526 dst_reg->type, true); 14527 mark_pkt_end(other_branch, insn->dst_reg, false); 14528 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14529 src_reg->type == PTR_TO_PACKET) || 14530 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14531 src_reg->type == PTR_TO_PACKET_META)) { 14532 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 14533 find_good_pkt_pointers(other_branch, src_reg, 14534 src_reg->type, false); 14535 mark_pkt_end(this_branch, insn->src_reg, true); 14536 } else { 14537 return false; 14538 } 14539 break; 14540 case BPF_JLE: 14541 if ((dst_reg->type == PTR_TO_PACKET && 14542 src_reg->type == PTR_TO_PACKET_END) || 14543 (dst_reg->type == PTR_TO_PACKET_META && 14544 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14545 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 14546 find_good_pkt_pointers(other_branch, dst_reg, 14547 dst_reg->type, false); 14548 mark_pkt_end(this_branch, insn->dst_reg, true); 14549 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14550 src_reg->type == PTR_TO_PACKET) || 14551 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14552 src_reg->type == PTR_TO_PACKET_META)) { 14553 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 14554 find_good_pkt_pointers(this_branch, src_reg, 14555 src_reg->type, true); 14556 mark_pkt_end(other_branch, insn->src_reg, false); 14557 } else { 14558 return false; 14559 } 14560 break; 14561 default: 14562 return false; 14563 } 14564 14565 return true; 14566 } 14567 14568 static void find_equal_scalars(struct bpf_verifier_state *vstate, 14569 struct bpf_reg_state *known_reg) 14570 { 14571 struct bpf_func_state *state; 14572 struct bpf_reg_state *reg; 14573 14574 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14575 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 14576 copy_register_state(reg, known_reg); 14577 })); 14578 } 14579 14580 static int check_cond_jmp_op(struct bpf_verifier_env *env, 14581 struct bpf_insn *insn, int *insn_idx) 14582 { 14583 struct bpf_verifier_state *this_branch = env->cur_state; 14584 struct bpf_verifier_state *other_branch; 14585 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 14586 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 14587 struct bpf_reg_state *eq_branch_regs; 14588 struct bpf_reg_state fake_reg = {}; 14589 u8 opcode = BPF_OP(insn->code); 14590 bool is_jmp32; 14591 int pred = -1; 14592 int err; 14593 14594 /* Only conditional jumps are expected to reach here. */ 14595 if (opcode == BPF_JA || opcode > BPF_JSLE) { 14596 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 14597 return -EINVAL; 14598 } 14599 14600 /* check src2 operand */ 14601 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14602 if (err) 14603 return err; 14604 14605 dst_reg = ®s[insn->dst_reg]; 14606 if (BPF_SRC(insn->code) == BPF_X) { 14607 if (insn->imm != 0) { 14608 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14609 return -EINVAL; 14610 } 14611 14612 /* check src1 operand */ 14613 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14614 if (err) 14615 return err; 14616 14617 src_reg = ®s[insn->src_reg]; 14618 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 14619 is_pointer_value(env, insn->src_reg)) { 14620 verbose(env, "R%d pointer comparison prohibited\n", 14621 insn->src_reg); 14622 return -EACCES; 14623 } 14624 } else { 14625 if (insn->src_reg != BPF_REG_0) { 14626 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14627 return -EINVAL; 14628 } 14629 src_reg = &fake_reg; 14630 src_reg->type = SCALAR_VALUE; 14631 __mark_reg_known(src_reg, insn->imm); 14632 } 14633 14634 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 14635 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 14636 if (pred >= 0) { 14637 /* If we get here with a dst_reg pointer type it is because 14638 * above is_branch_taken() special cased the 0 comparison. 14639 */ 14640 if (!__is_pointer_value(false, dst_reg)) 14641 err = mark_chain_precision(env, insn->dst_reg); 14642 if (BPF_SRC(insn->code) == BPF_X && !err && 14643 !__is_pointer_value(false, src_reg)) 14644 err = mark_chain_precision(env, insn->src_reg); 14645 if (err) 14646 return err; 14647 } 14648 14649 if (pred == 1) { 14650 /* Only follow the goto, ignore fall-through. If needed, push 14651 * the fall-through branch for simulation under speculative 14652 * execution. 14653 */ 14654 if (!env->bypass_spec_v1 && 14655 !sanitize_speculative_path(env, insn, *insn_idx + 1, 14656 *insn_idx)) 14657 return -EFAULT; 14658 if (env->log.level & BPF_LOG_LEVEL) 14659 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14660 *insn_idx += insn->off; 14661 return 0; 14662 } else if (pred == 0) { 14663 /* Only follow the fall-through branch, since that's where the 14664 * program will go. If needed, push the goto branch for 14665 * simulation under speculative execution. 14666 */ 14667 if (!env->bypass_spec_v1 && 14668 !sanitize_speculative_path(env, insn, 14669 *insn_idx + insn->off + 1, 14670 *insn_idx)) 14671 return -EFAULT; 14672 if (env->log.level & BPF_LOG_LEVEL) 14673 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14674 return 0; 14675 } 14676 14677 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 14678 false); 14679 if (!other_branch) 14680 return -EFAULT; 14681 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 14682 14683 if (BPF_SRC(insn->code) == BPF_X) { 14684 err = reg_set_min_max(env, 14685 &other_branch_regs[insn->dst_reg], 14686 &other_branch_regs[insn->src_reg], 14687 dst_reg, src_reg, opcode, is_jmp32); 14688 } else /* BPF_SRC(insn->code) == BPF_K */ { 14689 err = reg_set_min_max(env, 14690 &other_branch_regs[insn->dst_reg], 14691 src_reg /* fake one */, 14692 dst_reg, src_reg /* same fake one */, 14693 opcode, is_jmp32); 14694 } 14695 if (err) 14696 return err; 14697 14698 if (BPF_SRC(insn->code) == BPF_X && 14699 src_reg->type == SCALAR_VALUE && src_reg->id && 14700 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 14701 find_equal_scalars(this_branch, src_reg); 14702 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 14703 } 14704 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 14705 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 14706 find_equal_scalars(this_branch, dst_reg); 14707 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 14708 } 14709 14710 /* if one pointer register is compared to another pointer 14711 * register check if PTR_MAYBE_NULL could be lifted. 14712 * E.g. register A - maybe null 14713 * register B - not null 14714 * for JNE A, B, ... - A is not null in the false branch; 14715 * for JEQ A, B, ... - A is not null in the true branch. 14716 * 14717 * Since PTR_TO_BTF_ID points to a kernel struct that does 14718 * not need to be null checked by the BPF program, i.e., 14719 * could be null even without PTR_MAYBE_NULL marking, so 14720 * only propagate nullness when neither reg is that type. 14721 */ 14722 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 14723 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 14724 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 14725 base_type(src_reg->type) != PTR_TO_BTF_ID && 14726 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 14727 eq_branch_regs = NULL; 14728 switch (opcode) { 14729 case BPF_JEQ: 14730 eq_branch_regs = other_branch_regs; 14731 break; 14732 case BPF_JNE: 14733 eq_branch_regs = regs; 14734 break; 14735 default: 14736 /* do nothing */ 14737 break; 14738 } 14739 if (eq_branch_regs) { 14740 if (type_may_be_null(src_reg->type)) 14741 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 14742 else 14743 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 14744 } 14745 } 14746 14747 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 14748 * NOTE: these optimizations below are related with pointer comparison 14749 * which will never be JMP32. 14750 */ 14751 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 14752 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 14753 type_may_be_null(dst_reg->type)) { 14754 /* Mark all identical registers in each branch as either 14755 * safe or unknown depending R == 0 or R != 0 conditional. 14756 */ 14757 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 14758 opcode == BPF_JNE); 14759 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 14760 opcode == BPF_JEQ); 14761 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 14762 this_branch, other_branch) && 14763 is_pointer_value(env, insn->dst_reg)) { 14764 verbose(env, "R%d pointer comparison prohibited\n", 14765 insn->dst_reg); 14766 return -EACCES; 14767 } 14768 if (env->log.level & BPF_LOG_LEVEL) 14769 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14770 return 0; 14771 } 14772 14773 /* verify BPF_LD_IMM64 instruction */ 14774 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 14775 { 14776 struct bpf_insn_aux_data *aux = cur_aux(env); 14777 struct bpf_reg_state *regs = cur_regs(env); 14778 struct bpf_reg_state *dst_reg; 14779 struct bpf_map *map; 14780 int err; 14781 14782 if (BPF_SIZE(insn->code) != BPF_DW) { 14783 verbose(env, "invalid BPF_LD_IMM insn\n"); 14784 return -EINVAL; 14785 } 14786 if (insn->off != 0) { 14787 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 14788 return -EINVAL; 14789 } 14790 14791 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14792 if (err) 14793 return err; 14794 14795 dst_reg = ®s[insn->dst_reg]; 14796 if (insn->src_reg == 0) { 14797 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 14798 14799 dst_reg->type = SCALAR_VALUE; 14800 __mark_reg_known(®s[insn->dst_reg], imm); 14801 return 0; 14802 } 14803 14804 /* All special src_reg cases are listed below. From this point onwards 14805 * we either succeed and assign a corresponding dst_reg->type after 14806 * zeroing the offset, or fail and reject the program. 14807 */ 14808 mark_reg_known_zero(env, regs, insn->dst_reg); 14809 14810 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 14811 dst_reg->type = aux->btf_var.reg_type; 14812 switch (base_type(dst_reg->type)) { 14813 case PTR_TO_MEM: 14814 dst_reg->mem_size = aux->btf_var.mem_size; 14815 break; 14816 case PTR_TO_BTF_ID: 14817 dst_reg->btf = aux->btf_var.btf; 14818 dst_reg->btf_id = aux->btf_var.btf_id; 14819 break; 14820 default: 14821 verbose(env, "bpf verifier is misconfigured\n"); 14822 return -EFAULT; 14823 } 14824 return 0; 14825 } 14826 14827 if (insn->src_reg == BPF_PSEUDO_FUNC) { 14828 struct bpf_prog_aux *aux = env->prog->aux; 14829 u32 subprogno = find_subprog(env, 14830 env->insn_idx + insn->imm + 1); 14831 14832 if (!aux->func_info) { 14833 verbose(env, "missing btf func_info\n"); 14834 return -EINVAL; 14835 } 14836 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 14837 verbose(env, "callback function not static\n"); 14838 return -EINVAL; 14839 } 14840 14841 dst_reg->type = PTR_TO_FUNC; 14842 dst_reg->subprogno = subprogno; 14843 return 0; 14844 } 14845 14846 map = env->used_maps[aux->map_index]; 14847 dst_reg->map_ptr = map; 14848 14849 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 14850 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 14851 dst_reg->type = PTR_TO_MAP_VALUE; 14852 dst_reg->off = aux->map_off; 14853 WARN_ON_ONCE(map->max_entries != 1); 14854 /* We want reg->id to be same (0) as map_value is not distinct */ 14855 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 14856 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 14857 dst_reg->type = CONST_PTR_TO_MAP; 14858 } else { 14859 verbose(env, "bpf verifier is misconfigured\n"); 14860 return -EINVAL; 14861 } 14862 14863 return 0; 14864 } 14865 14866 static bool may_access_skb(enum bpf_prog_type type) 14867 { 14868 switch (type) { 14869 case BPF_PROG_TYPE_SOCKET_FILTER: 14870 case BPF_PROG_TYPE_SCHED_CLS: 14871 case BPF_PROG_TYPE_SCHED_ACT: 14872 return true; 14873 default: 14874 return false; 14875 } 14876 } 14877 14878 /* verify safety of LD_ABS|LD_IND instructions: 14879 * - they can only appear in the programs where ctx == skb 14880 * - since they are wrappers of function calls, they scratch R1-R5 registers, 14881 * preserve R6-R9, and store return value into R0 14882 * 14883 * Implicit input: 14884 * ctx == skb == R6 == CTX 14885 * 14886 * Explicit input: 14887 * SRC == any register 14888 * IMM == 32-bit immediate 14889 * 14890 * Output: 14891 * R0 - 8/16/32-bit skb data converted to cpu endianness 14892 */ 14893 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14894 { 14895 struct bpf_reg_state *regs = cur_regs(env); 14896 static const int ctx_reg = BPF_REG_6; 14897 u8 mode = BPF_MODE(insn->code); 14898 int i, err; 14899 14900 if (!may_access_skb(resolve_prog_type(env->prog))) { 14901 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14902 return -EINVAL; 14903 } 14904 14905 if (!env->ops->gen_ld_abs) { 14906 verbose(env, "bpf verifier is misconfigured\n"); 14907 return -EINVAL; 14908 } 14909 14910 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14911 BPF_SIZE(insn->code) == BPF_DW || 14912 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14913 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14914 return -EINVAL; 14915 } 14916 14917 /* check whether implicit source operand (register R6) is readable */ 14918 err = check_reg_arg(env, ctx_reg, SRC_OP); 14919 if (err) 14920 return err; 14921 14922 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14923 * gen_ld_abs() may terminate the program at runtime, leading to 14924 * reference leak. 14925 */ 14926 err = check_reference_leak(env, false); 14927 if (err) { 14928 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14929 return err; 14930 } 14931 14932 if (env->cur_state->active_lock.ptr) { 14933 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14934 return -EINVAL; 14935 } 14936 14937 if (env->cur_state->active_rcu_lock) { 14938 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14939 return -EINVAL; 14940 } 14941 14942 if (regs[ctx_reg].type != PTR_TO_CTX) { 14943 verbose(env, 14944 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14945 return -EINVAL; 14946 } 14947 14948 if (mode == BPF_IND) { 14949 /* check explicit source operand */ 14950 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14951 if (err) 14952 return err; 14953 } 14954 14955 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14956 if (err < 0) 14957 return err; 14958 14959 /* reset caller saved regs to unreadable */ 14960 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14961 mark_reg_not_init(env, regs, caller_saved[i]); 14962 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14963 } 14964 14965 /* mark destination R0 register as readable, since it contains 14966 * the value fetched from the packet. 14967 * Already marked as written above. 14968 */ 14969 mark_reg_unknown(env, regs, BPF_REG_0); 14970 /* ld_abs load up to 32-bit skb data. */ 14971 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14972 return 0; 14973 } 14974 14975 static int check_return_code(struct bpf_verifier_env *env, int regno) 14976 { 14977 struct tnum enforce_attach_type_range = tnum_unknown; 14978 const struct bpf_prog *prog = env->prog; 14979 struct bpf_reg_state *reg; 14980 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0); 14981 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14982 int err; 14983 struct bpf_func_state *frame = env->cur_state->frame[0]; 14984 const bool is_subprog = frame->subprogno; 14985 14986 /* LSM and struct_ops func-ptr's return type could be "void" */ 14987 if (!is_subprog || frame->in_exception_callback_fn) { 14988 switch (prog_type) { 14989 case BPF_PROG_TYPE_LSM: 14990 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14991 /* See below, can be 0 or 0-1 depending on hook. */ 14992 break; 14993 fallthrough; 14994 case BPF_PROG_TYPE_STRUCT_OPS: 14995 if (!prog->aux->attach_func_proto->type) 14996 return 0; 14997 break; 14998 default: 14999 break; 15000 } 15001 } 15002 15003 /* eBPF calling convention is such that R0 is used 15004 * to return the value from eBPF program. 15005 * Make sure that it's readable at this time 15006 * of bpf_exit, which means that program wrote 15007 * something into it earlier 15008 */ 15009 err = check_reg_arg(env, regno, SRC_OP); 15010 if (err) 15011 return err; 15012 15013 if (is_pointer_value(env, regno)) { 15014 verbose(env, "R%d leaks addr as return value\n", regno); 15015 return -EACCES; 15016 } 15017 15018 reg = cur_regs(env) + regno; 15019 15020 if (frame->in_async_callback_fn) { 15021 /* enforce return zero from async callbacks like timer */ 15022 if (reg->type != SCALAR_VALUE) { 15023 verbose(env, "In async callback the register R%d is not a known value (%s)\n", 15024 regno, reg_type_str(env, reg->type)); 15025 return -EINVAL; 15026 } 15027 15028 if (!tnum_in(const_0, reg->var_off)) { 15029 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0"); 15030 return -EINVAL; 15031 } 15032 return 0; 15033 } 15034 15035 if (is_subprog && !frame->in_exception_callback_fn) { 15036 if (reg->type != SCALAR_VALUE) { 15037 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 15038 regno, reg_type_str(env, reg->type)); 15039 return -EINVAL; 15040 } 15041 return 0; 15042 } 15043 15044 switch (prog_type) { 15045 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 15046 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 15047 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 15048 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 15049 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 15050 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 15051 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 15052 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 15053 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 15054 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 15055 range = tnum_range(1, 1); 15056 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 15057 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 15058 range = tnum_range(0, 3); 15059 break; 15060 case BPF_PROG_TYPE_CGROUP_SKB: 15061 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 15062 range = tnum_range(0, 3); 15063 enforce_attach_type_range = tnum_range(2, 3); 15064 } 15065 break; 15066 case BPF_PROG_TYPE_CGROUP_SOCK: 15067 case BPF_PROG_TYPE_SOCK_OPS: 15068 case BPF_PROG_TYPE_CGROUP_DEVICE: 15069 case BPF_PROG_TYPE_CGROUP_SYSCTL: 15070 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 15071 break; 15072 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15073 if (!env->prog->aux->attach_btf_id) 15074 return 0; 15075 range = tnum_const(0); 15076 break; 15077 case BPF_PROG_TYPE_TRACING: 15078 switch (env->prog->expected_attach_type) { 15079 case BPF_TRACE_FENTRY: 15080 case BPF_TRACE_FEXIT: 15081 range = tnum_const(0); 15082 break; 15083 case BPF_TRACE_RAW_TP: 15084 case BPF_MODIFY_RETURN: 15085 return 0; 15086 case BPF_TRACE_ITER: 15087 break; 15088 default: 15089 return -ENOTSUPP; 15090 } 15091 break; 15092 case BPF_PROG_TYPE_SK_LOOKUP: 15093 range = tnum_range(SK_DROP, SK_PASS); 15094 break; 15095 15096 case BPF_PROG_TYPE_LSM: 15097 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 15098 /* Regular BPF_PROG_TYPE_LSM programs can return 15099 * any value. 15100 */ 15101 return 0; 15102 } 15103 if (!env->prog->aux->attach_func_proto->type) { 15104 /* Make sure programs that attach to void 15105 * hooks don't try to modify return value. 15106 */ 15107 range = tnum_range(1, 1); 15108 } 15109 break; 15110 15111 case BPF_PROG_TYPE_NETFILTER: 15112 range = tnum_range(NF_DROP, NF_ACCEPT); 15113 break; 15114 case BPF_PROG_TYPE_EXT: 15115 /* freplace program can return anything as its return value 15116 * depends on the to-be-replaced kernel func or bpf program. 15117 */ 15118 default: 15119 return 0; 15120 } 15121 15122 if (reg->type != SCALAR_VALUE) { 15123 verbose(env, "At program exit the register R%d is not a known value (%s)\n", 15124 regno, reg_type_str(env, reg->type)); 15125 return -EINVAL; 15126 } 15127 15128 if (!tnum_in(range, reg->var_off)) { 15129 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 15130 if (prog->expected_attach_type == BPF_LSM_CGROUP && 15131 prog_type == BPF_PROG_TYPE_LSM && 15132 !prog->aux->attach_func_proto->type) 15133 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 15134 return -EINVAL; 15135 } 15136 15137 if (!tnum_is_unknown(enforce_attach_type_range) && 15138 tnum_in(enforce_attach_type_range, reg->var_off)) 15139 env->prog->enforce_expected_attach_type = 1; 15140 return 0; 15141 } 15142 15143 /* non-recursive DFS pseudo code 15144 * 1 procedure DFS-iterative(G,v): 15145 * 2 label v as discovered 15146 * 3 let S be a stack 15147 * 4 S.push(v) 15148 * 5 while S is not empty 15149 * 6 t <- S.peek() 15150 * 7 if t is what we're looking for: 15151 * 8 return t 15152 * 9 for all edges e in G.adjacentEdges(t) do 15153 * 10 if edge e is already labelled 15154 * 11 continue with the next edge 15155 * 12 w <- G.adjacentVertex(t,e) 15156 * 13 if vertex w is not discovered and not explored 15157 * 14 label e as tree-edge 15158 * 15 label w as discovered 15159 * 16 S.push(w) 15160 * 17 continue at 5 15161 * 18 else if vertex w is discovered 15162 * 19 label e as back-edge 15163 * 20 else 15164 * 21 // vertex w is explored 15165 * 22 label e as forward- or cross-edge 15166 * 23 label t as explored 15167 * 24 S.pop() 15168 * 15169 * convention: 15170 * 0x10 - discovered 15171 * 0x11 - discovered and fall-through edge labelled 15172 * 0x12 - discovered and fall-through and branch edges labelled 15173 * 0x20 - explored 15174 */ 15175 15176 enum { 15177 DISCOVERED = 0x10, 15178 EXPLORED = 0x20, 15179 FALLTHROUGH = 1, 15180 BRANCH = 2, 15181 }; 15182 15183 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 15184 { 15185 env->insn_aux_data[idx].prune_point = true; 15186 } 15187 15188 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 15189 { 15190 return env->insn_aux_data[insn_idx].prune_point; 15191 } 15192 15193 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 15194 { 15195 env->insn_aux_data[idx].force_checkpoint = true; 15196 } 15197 15198 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 15199 { 15200 return env->insn_aux_data[insn_idx].force_checkpoint; 15201 } 15202 15203 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 15204 { 15205 env->insn_aux_data[idx].calls_callback = true; 15206 } 15207 15208 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 15209 { 15210 return env->insn_aux_data[insn_idx].calls_callback; 15211 } 15212 15213 enum { 15214 DONE_EXPLORING = 0, 15215 KEEP_EXPLORING = 1, 15216 }; 15217 15218 /* t, w, e - match pseudo-code above: 15219 * t - index of current instruction 15220 * w - next instruction 15221 * e - edge 15222 */ 15223 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 15224 { 15225 int *insn_stack = env->cfg.insn_stack; 15226 int *insn_state = env->cfg.insn_state; 15227 15228 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 15229 return DONE_EXPLORING; 15230 15231 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 15232 return DONE_EXPLORING; 15233 15234 if (w < 0 || w >= env->prog->len) { 15235 verbose_linfo(env, t, "%d: ", t); 15236 verbose(env, "jump out of range from insn %d to %d\n", t, w); 15237 return -EINVAL; 15238 } 15239 15240 if (e == BRANCH) { 15241 /* mark branch target for state pruning */ 15242 mark_prune_point(env, w); 15243 mark_jmp_point(env, w); 15244 } 15245 15246 if (insn_state[w] == 0) { 15247 /* tree-edge */ 15248 insn_state[t] = DISCOVERED | e; 15249 insn_state[w] = DISCOVERED; 15250 if (env->cfg.cur_stack >= env->prog->len) 15251 return -E2BIG; 15252 insn_stack[env->cfg.cur_stack++] = w; 15253 return KEEP_EXPLORING; 15254 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 15255 if (env->bpf_capable) 15256 return DONE_EXPLORING; 15257 verbose_linfo(env, t, "%d: ", t); 15258 verbose_linfo(env, w, "%d: ", w); 15259 verbose(env, "back-edge from insn %d to %d\n", t, w); 15260 return -EINVAL; 15261 } else if (insn_state[w] == EXPLORED) { 15262 /* forward- or cross-edge */ 15263 insn_state[t] = DISCOVERED | e; 15264 } else { 15265 verbose(env, "insn state internal bug\n"); 15266 return -EFAULT; 15267 } 15268 return DONE_EXPLORING; 15269 } 15270 15271 static int visit_func_call_insn(int t, struct bpf_insn *insns, 15272 struct bpf_verifier_env *env, 15273 bool visit_callee) 15274 { 15275 int ret, insn_sz; 15276 15277 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 15278 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 15279 if (ret) 15280 return ret; 15281 15282 mark_prune_point(env, t + insn_sz); 15283 /* when we exit from subprog, we need to record non-linear history */ 15284 mark_jmp_point(env, t + insn_sz); 15285 15286 if (visit_callee) { 15287 mark_prune_point(env, t); 15288 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 15289 } 15290 return ret; 15291 } 15292 15293 /* Visits the instruction at index t and returns one of the following: 15294 * < 0 - an error occurred 15295 * DONE_EXPLORING - the instruction was fully explored 15296 * KEEP_EXPLORING - there is still work to be done before it is fully explored 15297 */ 15298 static int visit_insn(int t, struct bpf_verifier_env *env) 15299 { 15300 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 15301 int ret, off, insn_sz; 15302 15303 if (bpf_pseudo_func(insn)) 15304 return visit_func_call_insn(t, insns, env, true); 15305 15306 /* All non-branch instructions have a single fall-through edge. */ 15307 if (BPF_CLASS(insn->code) != BPF_JMP && 15308 BPF_CLASS(insn->code) != BPF_JMP32) { 15309 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 15310 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 15311 } 15312 15313 switch (BPF_OP(insn->code)) { 15314 case BPF_EXIT: 15315 return DONE_EXPLORING; 15316 15317 case BPF_CALL: 15318 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 15319 /* Mark this call insn as a prune point to trigger 15320 * is_state_visited() check before call itself is 15321 * processed by __check_func_call(). Otherwise new 15322 * async state will be pushed for further exploration. 15323 */ 15324 mark_prune_point(env, t); 15325 /* For functions that invoke callbacks it is not known how many times 15326 * callback would be called. Verifier models callback calling functions 15327 * by repeatedly visiting callback bodies and returning to origin call 15328 * instruction. 15329 * In order to stop such iteration verifier needs to identify when a 15330 * state identical some state from a previous iteration is reached. 15331 * Check below forces creation of checkpoint before callback calling 15332 * instruction to allow search for such identical states. 15333 */ 15334 if (is_sync_callback_calling_insn(insn)) { 15335 mark_calls_callback(env, t); 15336 mark_force_checkpoint(env, t); 15337 mark_prune_point(env, t); 15338 mark_jmp_point(env, t); 15339 } 15340 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15341 struct bpf_kfunc_call_arg_meta meta; 15342 15343 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 15344 if (ret == 0 && is_iter_next_kfunc(&meta)) { 15345 mark_prune_point(env, t); 15346 /* Checking and saving state checkpoints at iter_next() call 15347 * is crucial for fast convergence of open-coded iterator loop 15348 * logic, so we need to force it. If we don't do that, 15349 * is_state_visited() might skip saving a checkpoint, causing 15350 * unnecessarily long sequence of not checkpointed 15351 * instructions and jumps, leading to exhaustion of jump 15352 * history buffer, and potentially other undesired outcomes. 15353 * It is expected that with correct open-coded iterators 15354 * convergence will happen quickly, so we don't run a risk of 15355 * exhausting memory. 15356 */ 15357 mark_force_checkpoint(env, t); 15358 } 15359 } 15360 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 15361 15362 case BPF_JA: 15363 if (BPF_SRC(insn->code) != BPF_K) 15364 return -EINVAL; 15365 15366 if (BPF_CLASS(insn->code) == BPF_JMP) 15367 off = insn->off; 15368 else 15369 off = insn->imm; 15370 15371 /* unconditional jump with single edge */ 15372 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 15373 if (ret) 15374 return ret; 15375 15376 mark_prune_point(env, t + off + 1); 15377 mark_jmp_point(env, t + off + 1); 15378 15379 return ret; 15380 15381 default: 15382 /* conditional jump with two edges */ 15383 mark_prune_point(env, t); 15384 15385 ret = push_insn(t, t + 1, FALLTHROUGH, env); 15386 if (ret) 15387 return ret; 15388 15389 return push_insn(t, t + insn->off + 1, BRANCH, env); 15390 } 15391 } 15392 15393 /* non-recursive depth-first-search to detect loops in BPF program 15394 * loop == back-edge in directed graph 15395 */ 15396 static int check_cfg(struct bpf_verifier_env *env) 15397 { 15398 int insn_cnt = env->prog->len; 15399 int *insn_stack, *insn_state; 15400 int ex_insn_beg, i, ret = 0; 15401 bool ex_done = false; 15402 15403 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15404 if (!insn_state) 15405 return -ENOMEM; 15406 15407 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15408 if (!insn_stack) { 15409 kvfree(insn_state); 15410 return -ENOMEM; 15411 } 15412 15413 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 15414 insn_stack[0] = 0; /* 0 is the first instruction */ 15415 env->cfg.cur_stack = 1; 15416 15417 walk_cfg: 15418 while (env->cfg.cur_stack > 0) { 15419 int t = insn_stack[env->cfg.cur_stack - 1]; 15420 15421 ret = visit_insn(t, env); 15422 switch (ret) { 15423 case DONE_EXPLORING: 15424 insn_state[t] = EXPLORED; 15425 env->cfg.cur_stack--; 15426 break; 15427 case KEEP_EXPLORING: 15428 break; 15429 default: 15430 if (ret > 0) { 15431 verbose(env, "visit_insn internal bug\n"); 15432 ret = -EFAULT; 15433 } 15434 goto err_free; 15435 } 15436 } 15437 15438 if (env->cfg.cur_stack < 0) { 15439 verbose(env, "pop stack internal bug\n"); 15440 ret = -EFAULT; 15441 goto err_free; 15442 } 15443 15444 if (env->exception_callback_subprog && !ex_done) { 15445 ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start; 15446 15447 insn_state[ex_insn_beg] = DISCOVERED; 15448 insn_stack[0] = ex_insn_beg; 15449 env->cfg.cur_stack = 1; 15450 ex_done = true; 15451 goto walk_cfg; 15452 } 15453 15454 for (i = 0; i < insn_cnt; i++) { 15455 struct bpf_insn *insn = &env->prog->insnsi[i]; 15456 15457 if (insn_state[i] != EXPLORED) { 15458 verbose(env, "unreachable insn %d\n", i); 15459 ret = -EINVAL; 15460 goto err_free; 15461 } 15462 if (bpf_is_ldimm64(insn)) { 15463 if (insn_state[i + 1] != 0) { 15464 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 15465 ret = -EINVAL; 15466 goto err_free; 15467 } 15468 i++; /* skip second half of ldimm64 */ 15469 } 15470 } 15471 ret = 0; /* cfg looks good */ 15472 15473 err_free: 15474 kvfree(insn_state); 15475 kvfree(insn_stack); 15476 env->cfg.insn_state = env->cfg.insn_stack = NULL; 15477 return ret; 15478 } 15479 15480 static int check_abnormal_return(struct bpf_verifier_env *env) 15481 { 15482 int i; 15483 15484 for (i = 1; i < env->subprog_cnt; i++) { 15485 if (env->subprog_info[i].has_ld_abs) { 15486 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 15487 return -EINVAL; 15488 } 15489 if (env->subprog_info[i].has_tail_call) { 15490 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 15491 return -EINVAL; 15492 } 15493 } 15494 return 0; 15495 } 15496 15497 /* The minimum supported BTF func info size */ 15498 #define MIN_BPF_FUNCINFO_SIZE 8 15499 #define MAX_FUNCINFO_REC_SIZE 252 15500 15501 static int check_btf_func_early(struct bpf_verifier_env *env, 15502 const union bpf_attr *attr, 15503 bpfptr_t uattr) 15504 { 15505 u32 krec_size = sizeof(struct bpf_func_info); 15506 const struct btf_type *type, *func_proto; 15507 u32 i, nfuncs, urec_size, min_size; 15508 struct bpf_func_info *krecord; 15509 struct bpf_prog *prog; 15510 const struct btf *btf; 15511 u32 prev_offset = 0; 15512 bpfptr_t urecord; 15513 int ret = -ENOMEM; 15514 15515 nfuncs = attr->func_info_cnt; 15516 if (!nfuncs) { 15517 if (check_abnormal_return(env)) 15518 return -EINVAL; 15519 return 0; 15520 } 15521 15522 urec_size = attr->func_info_rec_size; 15523 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 15524 urec_size > MAX_FUNCINFO_REC_SIZE || 15525 urec_size % sizeof(u32)) { 15526 verbose(env, "invalid func info rec size %u\n", urec_size); 15527 return -EINVAL; 15528 } 15529 15530 prog = env->prog; 15531 btf = prog->aux->btf; 15532 15533 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15534 min_size = min_t(u32, krec_size, urec_size); 15535 15536 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 15537 if (!krecord) 15538 return -ENOMEM; 15539 15540 for (i = 0; i < nfuncs; i++) { 15541 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 15542 if (ret) { 15543 if (ret == -E2BIG) { 15544 verbose(env, "nonzero tailing record in func info"); 15545 /* set the size kernel expects so loader can zero 15546 * out the rest of the record. 15547 */ 15548 if (copy_to_bpfptr_offset(uattr, 15549 offsetof(union bpf_attr, func_info_rec_size), 15550 &min_size, sizeof(min_size))) 15551 ret = -EFAULT; 15552 } 15553 goto err_free; 15554 } 15555 15556 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 15557 ret = -EFAULT; 15558 goto err_free; 15559 } 15560 15561 /* check insn_off */ 15562 ret = -EINVAL; 15563 if (i == 0) { 15564 if (krecord[i].insn_off) { 15565 verbose(env, 15566 "nonzero insn_off %u for the first func info record", 15567 krecord[i].insn_off); 15568 goto err_free; 15569 } 15570 } else if (krecord[i].insn_off <= prev_offset) { 15571 verbose(env, 15572 "same or smaller insn offset (%u) than previous func info record (%u)", 15573 krecord[i].insn_off, prev_offset); 15574 goto err_free; 15575 } 15576 15577 /* check type_id */ 15578 type = btf_type_by_id(btf, krecord[i].type_id); 15579 if (!type || !btf_type_is_func(type)) { 15580 verbose(env, "invalid type id %d in func info", 15581 krecord[i].type_id); 15582 goto err_free; 15583 } 15584 15585 func_proto = btf_type_by_id(btf, type->type); 15586 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 15587 /* btf_func_check() already verified it during BTF load */ 15588 goto err_free; 15589 15590 prev_offset = krecord[i].insn_off; 15591 bpfptr_add(&urecord, urec_size); 15592 } 15593 15594 prog->aux->func_info = krecord; 15595 prog->aux->func_info_cnt = nfuncs; 15596 return 0; 15597 15598 err_free: 15599 kvfree(krecord); 15600 return ret; 15601 } 15602 15603 static int check_btf_func(struct bpf_verifier_env *env, 15604 const union bpf_attr *attr, 15605 bpfptr_t uattr) 15606 { 15607 const struct btf_type *type, *func_proto, *ret_type; 15608 u32 i, nfuncs, urec_size; 15609 struct bpf_func_info *krecord; 15610 struct bpf_func_info_aux *info_aux = NULL; 15611 struct bpf_prog *prog; 15612 const struct btf *btf; 15613 bpfptr_t urecord; 15614 bool scalar_return; 15615 int ret = -ENOMEM; 15616 15617 nfuncs = attr->func_info_cnt; 15618 if (!nfuncs) { 15619 if (check_abnormal_return(env)) 15620 return -EINVAL; 15621 return 0; 15622 } 15623 if (nfuncs != env->subprog_cnt) { 15624 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 15625 return -EINVAL; 15626 } 15627 15628 urec_size = attr->func_info_rec_size; 15629 15630 prog = env->prog; 15631 btf = prog->aux->btf; 15632 15633 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15634 15635 krecord = prog->aux->func_info; 15636 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 15637 if (!info_aux) 15638 return -ENOMEM; 15639 15640 for (i = 0; i < nfuncs; i++) { 15641 /* check insn_off */ 15642 ret = -EINVAL; 15643 15644 if (env->subprog_info[i].start != krecord[i].insn_off) { 15645 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 15646 goto err_free; 15647 } 15648 15649 /* Already checked type_id */ 15650 type = btf_type_by_id(btf, krecord[i].type_id); 15651 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 15652 /* Already checked func_proto */ 15653 func_proto = btf_type_by_id(btf, type->type); 15654 15655 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 15656 scalar_return = 15657 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 15658 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 15659 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 15660 goto err_free; 15661 } 15662 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 15663 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 15664 goto err_free; 15665 } 15666 15667 bpfptr_add(&urecord, urec_size); 15668 } 15669 15670 prog->aux->func_info_aux = info_aux; 15671 return 0; 15672 15673 err_free: 15674 kfree(info_aux); 15675 return ret; 15676 } 15677 15678 static void adjust_btf_func(struct bpf_verifier_env *env) 15679 { 15680 struct bpf_prog_aux *aux = env->prog->aux; 15681 int i; 15682 15683 if (!aux->func_info) 15684 return; 15685 15686 /* func_info is not available for hidden subprogs */ 15687 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 15688 aux->func_info[i].insn_off = env->subprog_info[i].start; 15689 } 15690 15691 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 15692 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 15693 15694 static int check_btf_line(struct bpf_verifier_env *env, 15695 const union bpf_attr *attr, 15696 bpfptr_t uattr) 15697 { 15698 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 15699 struct bpf_subprog_info *sub; 15700 struct bpf_line_info *linfo; 15701 struct bpf_prog *prog; 15702 const struct btf *btf; 15703 bpfptr_t ulinfo; 15704 int err; 15705 15706 nr_linfo = attr->line_info_cnt; 15707 if (!nr_linfo) 15708 return 0; 15709 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 15710 return -EINVAL; 15711 15712 rec_size = attr->line_info_rec_size; 15713 if (rec_size < MIN_BPF_LINEINFO_SIZE || 15714 rec_size > MAX_LINEINFO_REC_SIZE || 15715 rec_size & (sizeof(u32) - 1)) 15716 return -EINVAL; 15717 15718 /* Need to zero it in case the userspace may 15719 * pass in a smaller bpf_line_info object. 15720 */ 15721 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 15722 GFP_KERNEL | __GFP_NOWARN); 15723 if (!linfo) 15724 return -ENOMEM; 15725 15726 prog = env->prog; 15727 btf = prog->aux->btf; 15728 15729 s = 0; 15730 sub = env->subprog_info; 15731 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 15732 expected_size = sizeof(struct bpf_line_info); 15733 ncopy = min_t(u32, expected_size, rec_size); 15734 for (i = 0; i < nr_linfo; i++) { 15735 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 15736 if (err) { 15737 if (err == -E2BIG) { 15738 verbose(env, "nonzero tailing record in line_info"); 15739 if (copy_to_bpfptr_offset(uattr, 15740 offsetof(union bpf_attr, line_info_rec_size), 15741 &expected_size, sizeof(expected_size))) 15742 err = -EFAULT; 15743 } 15744 goto err_free; 15745 } 15746 15747 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 15748 err = -EFAULT; 15749 goto err_free; 15750 } 15751 15752 /* 15753 * Check insn_off to ensure 15754 * 1) strictly increasing AND 15755 * 2) bounded by prog->len 15756 * 15757 * The linfo[0].insn_off == 0 check logically falls into 15758 * the later "missing bpf_line_info for func..." case 15759 * because the first linfo[0].insn_off must be the 15760 * first sub also and the first sub must have 15761 * subprog_info[0].start == 0. 15762 */ 15763 if ((i && linfo[i].insn_off <= prev_offset) || 15764 linfo[i].insn_off >= prog->len) { 15765 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 15766 i, linfo[i].insn_off, prev_offset, 15767 prog->len); 15768 err = -EINVAL; 15769 goto err_free; 15770 } 15771 15772 if (!prog->insnsi[linfo[i].insn_off].code) { 15773 verbose(env, 15774 "Invalid insn code at line_info[%u].insn_off\n", 15775 i); 15776 err = -EINVAL; 15777 goto err_free; 15778 } 15779 15780 if (!btf_name_by_offset(btf, linfo[i].line_off) || 15781 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 15782 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 15783 err = -EINVAL; 15784 goto err_free; 15785 } 15786 15787 if (s != env->subprog_cnt) { 15788 if (linfo[i].insn_off == sub[s].start) { 15789 sub[s].linfo_idx = i; 15790 s++; 15791 } else if (sub[s].start < linfo[i].insn_off) { 15792 verbose(env, "missing bpf_line_info for func#%u\n", s); 15793 err = -EINVAL; 15794 goto err_free; 15795 } 15796 } 15797 15798 prev_offset = linfo[i].insn_off; 15799 bpfptr_add(&ulinfo, rec_size); 15800 } 15801 15802 if (s != env->subprog_cnt) { 15803 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 15804 env->subprog_cnt - s, s); 15805 err = -EINVAL; 15806 goto err_free; 15807 } 15808 15809 prog->aux->linfo = linfo; 15810 prog->aux->nr_linfo = nr_linfo; 15811 15812 return 0; 15813 15814 err_free: 15815 kvfree(linfo); 15816 return err; 15817 } 15818 15819 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 15820 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 15821 15822 static int check_core_relo(struct bpf_verifier_env *env, 15823 const union bpf_attr *attr, 15824 bpfptr_t uattr) 15825 { 15826 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 15827 struct bpf_core_relo core_relo = {}; 15828 struct bpf_prog *prog = env->prog; 15829 const struct btf *btf = prog->aux->btf; 15830 struct bpf_core_ctx ctx = { 15831 .log = &env->log, 15832 .btf = btf, 15833 }; 15834 bpfptr_t u_core_relo; 15835 int err; 15836 15837 nr_core_relo = attr->core_relo_cnt; 15838 if (!nr_core_relo) 15839 return 0; 15840 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 15841 return -EINVAL; 15842 15843 rec_size = attr->core_relo_rec_size; 15844 if (rec_size < MIN_CORE_RELO_SIZE || 15845 rec_size > MAX_CORE_RELO_SIZE || 15846 rec_size % sizeof(u32)) 15847 return -EINVAL; 15848 15849 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 15850 expected_size = sizeof(struct bpf_core_relo); 15851 ncopy = min_t(u32, expected_size, rec_size); 15852 15853 /* Unlike func_info and line_info, copy and apply each CO-RE 15854 * relocation record one at a time. 15855 */ 15856 for (i = 0; i < nr_core_relo; i++) { 15857 /* future proofing when sizeof(bpf_core_relo) changes */ 15858 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 15859 if (err) { 15860 if (err == -E2BIG) { 15861 verbose(env, "nonzero tailing record in core_relo"); 15862 if (copy_to_bpfptr_offset(uattr, 15863 offsetof(union bpf_attr, core_relo_rec_size), 15864 &expected_size, sizeof(expected_size))) 15865 err = -EFAULT; 15866 } 15867 break; 15868 } 15869 15870 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 15871 err = -EFAULT; 15872 break; 15873 } 15874 15875 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 15876 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 15877 i, core_relo.insn_off, prog->len); 15878 err = -EINVAL; 15879 break; 15880 } 15881 15882 err = bpf_core_apply(&ctx, &core_relo, i, 15883 &prog->insnsi[core_relo.insn_off / 8]); 15884 if (err) 15885 break; 15886 bpfptr_add(&u_core_relo, rec_size); 15887 } 15888 return err; 15889 } 15890 15891 static int check_btf_info_early(struct bpf_verifier_env *env, 15892 const union bpf_attr *attr, 15893 bpfptr_t uattr) 15894 { 15895 struct btf *btf; 15896 int err; 15897 15898 if (!attr->func_info_cnt && !attr->line_info_cnt) { 15899 if (check_abnormal_return(env)) 15900 return -EINVAL; 15901 return 0; 15902 } 15903 15904 btf = btf_get_by_fd(attr->prog_btf_fd); 15905 if (IS_ERR(btf)) 15906 return PTR_ERR(btf); 15907 if (btf_is_kernel(btf)) { 15908 btf_put(btf); 15909 return -EACCES; 15910 } 15911 env->prog->aux->btf = btf; 15912 15913 err = check_btf_func_early(env, attr, uattr); 15914 if (err) 15915 return err; 15916 return 0; 15917 } 15918 15919 static int check_btf_info(struct bpf_verifier_env *env, 15920 const union bpf_attr *attr, 15921 bpfptr_t uattr) 15922 { 15923 int err; 15924 15925 if (!attr->func_info_cnt && !attr->line_info_cnt) { 15926 if (check_abnormal_return(env)) 15927 return -EINVAL; 15928 return 0; 15929 } 15930 15931 err = check_btf_func(env, attr, uattr); 15932 if (err) 15933 return err; 15934 15935 err = check_btf_line(env, attr, uattr); 15936 if (err) 15937 return err; 15938 15939 err = check_core_relo(env, attr, uattr); 15940 if (err) 15941 return err; 15942 15943 return 0; 15944 } 15945 15946 /* check %cur's range satisfies %old's */ 15947 static bool range_within(struct bpf_reg_state *old, 15948 struct bpf_reg_state *cur) 15949 { 15950 return old->umin_value <= cur->umin_value && 15951 old->umax_value >= cur->umax_value && 15952 old->smin_value <= cur->smin_value && 15953 old->smax_value >= cur->smax_value && 15954 old->u32_min_value <= cur->u32_min_value && 15955 old->u32_max_value >= cur->u32_max_value && 15956 old->s32_min_value <= cur->s32_min_value && 15957 old->s32_max_value >= cur->s32_max_value; 15958 } 15959 15960 /* If in the old state two registers had the same id, then they need to have 15961 * the same id in the new state as well. But that id could be different from 15962 * the old state, so we need to track the mapping from old to new ids. 15963 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 15964 * regs with old id 5 must also have new id 9 for the new state to be safe. But 15965 * regs with a different old id could still have new id 9, we don't care about 15966 * that. 15967 * So we look through our idmap to see if this old id has been seen before. If 15968 * so, we require the new id to match; otherwise, we add the id pair to the map. 15969 */ 15970 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15971 { 15972 struct bpf_id_pair *map = idmap->map; 15973 unsigned int i; 15974 15975 /* either both IDs should be set or both should be zero */ 15976 if (!!old_id != !!cur_id) 15977 return false; 15978 15979 if (old_id == 0) /* cur_id == 0 as well */ 15980 return true; 15981 15982 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 15983 if (!map[i].old) { 15984 /* Reached an empty slot; haven't seen this id before */ 15985 map[i].old = old_id; 15986 map[i].cur = cur_id; 15987 return true; 15988 } 15989 if (map[i].old == old_id) 15990 return map[i].cur == cur_id; 15991 if (map[i].cur == cur_id) 15992 return false; 15993 } 15994 /* We ran out of idmap slots, which should be impossible */ 15995 WARN_ON_ONCE(1); 15996 return false; 15997 } 15998 15999 /* Similar to check_ids(), but allocate a unique temporary ID 16000 * for 'old_id' or 'cur_id' of zero. 16001 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 16002 */ 16003 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 16004 { 16005 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 16006 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 16007 16008 return check_ids(old_id, cur_id, idmap); 16009 } 16010 16011 static void clean_func_state(struct bpf_verifier_env *env, 16012 struct bpf_func_state *st) 16013 { 16014 enum bpf_reg_liveness live; 16015 int i, j; 16016 16017 for (i = 0; i < BPF_REG_FP; i++) { 16018 live = st->regs[i].live; 16019 /* liveness must not touch this register anymore */ 16020 st->regs[i].live |= REG_LIVE_DONE; 16021 if (!(live & REG_LIVE_READ)) 16022 /* since the register is unused, clear its state 16023 * to make further comparison simpler 16024 */ 16025 __mark_reg_not_init(env, &st->regs[i]); 16026 } 16027 16028 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 16029 live = st->stack[i].spilled_ptr.live; 16030 /* liveness must not touch this stack slot anymore */ 16031 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 16032 if (!(live & REG_LIVE_READ)) { 16033 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 16034 for (j = 0; j < BPF_REG_SIZE; j++) 16035 st->stack[i].slot_type[j] = STACK_INVALID; 16036 } 16037 } 16038 } 16039 16040 static void clean_verifier_state(struct bpf_verifier_env *env, 16041 struct bpf_verifier_state *st) 16042 { 16043 int i; 16044 16045 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 16046 /* all regs in this state in all frames were already marked */ 16047 return; 16048 16049 for (i = 0; i <= st->curframe; i++) 16050 clean_func_state(env, st->frame[i]); 16051 } 16052 16053 /* the parentage chains form a tree. 16054 * the verifier states are added to state lists at given insn and 16055 * pushed into state stack for future exploration. 16056 * when the verifier reaches bpf_exit insn some of the verifer states 16057 * stored in the state lists have their final liveness state already, 16058 * but a lot of states will get revised from liveness point of view when 16059 * the verifier explores other branches. 16060 * Example: 16061 * 1: r0 = 1 16062 * 2: if r1 == 100 goto pc+1 16063 * 3: r0 = 2 16064 * 4: exit 16065 * when the verifier reaches exit insn the register r0 in the state list of 16066 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 16067 * of insn 2 and goes exploring further. At the insn 4 it will walk the 16068 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 16069 * 16070 * Since the verifier pushes the branch states as it sees them while exploring 16071 * the program the condition of walking the branch instruction for the second 16072 * time means that all states below this branch were already explored and 16073 * their final liveness marks are already propagated. 16074 * Hence when the verifier completes the search of state list in is_state_visited() 16075 * we can call this clean_live_states() function to mark all liveness states 16076 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 16077 * will not be used. 16078 * This function also clears the registers and stack for states that !READ 16079 * to simplify state merging. 16080 * 16081 * Important note here that walking the same branch instruction in the callee 16082 * doesn't meant that the states are DONE. The verifier has to compare 16083 * the callsites 16084 */ 16085 static void clean_live_states(struct bpf_verifier_env *env, int insn, 16086 struct bpf_verifier_state *cur) 16087 { 16088 struct bpf_verifier_state_list *sl; 16089 16090 sl = *explored_state(env, insn); 16091 while (sl) { 16092 if (sl->state.branches) 16093 goto next; 16094 if (sl->state.insn_idx != insn || 16095 !same_callsites(&sl->state, cur)) 16096 goto next; 16097 clean_verifier_state(env, &sl->state); 16098 next: 16099 sl = sl->next; 16100 } 16101 } 16102 16103 static bool regs_exact(const struct bpf_reg_state *rold, 16104 const struct bpf_reg_state *rcur, 16105 struct bpf_idmap *idmap) 16106 { 16107 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16108 check_ids(rold->id, rcur->id, idmap) && 16109 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16110 } 16111 16112 /* Returns true if (rold safe implies rcur safe) */ 16113 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 16114 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact) 16115 { 16116 if (exact) 16117 return regs_exact(rold, rcur, idmap); 16118 16119 if (!(rold->live & REG_LIVE_READ)) 16120 /* explored state didn't use this */ 16121 return true; 16122 if (rold->type == NOT_INIT) 16123 /* explored state can't have used this */ 16124 return true; 16125 if (rcur->type == NOT_INIT) 16126 return false; 16127 16128 /* Enforce that register types have to match exactly, including their 16129 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 16130 * rule. 16131 * 16132 * One can make a point that using a pointer register as unbounded 16133 * SCALAR would be technically acceptable, but this could lead to 16134 * pointer leaks because scalars are allowed to leak while pointers 16135 * are not. We could make this safe in special cases if root is 16136 * calling us, but it's probably not worth the hassle. 16137 * 16138 * Also, register types that are *not* MAYBE_NULL could technically be 16139 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 16140 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 16141 * to the same map). 16142 * However, if the old MAYBE_NULL register then got NULL checked, 16143 * doing so could have affected others with the same id, and we can't 16144 * check for that because we lost the id when we converted to 16145 * a non-MAYBE_NULL variant. 16146 * So, as a general rule we don't allow mixing MAYBE_NULL and 16147 * non-MAYBE_NULL registers as well. 16148 */ 16149 if (rold->type != rcur->type) 16150 return false; 16151 16152 switch (base_type(rold->type)) { 16153 case SCALAR_VALUE: 16154 if (env->explore_alu_limits) { 16155 /* explore_alu_limits disables tnum_in() and range_within() 16156 * logic and requires everything to be strict 16157 */ 16158 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16159 check_scalar_ids(rold->id, rcur->id, idmap); 16160 } 16161 if (!rold->precise) 16162 return true; 16163 /* Why check_ids() for scalar registers? 16164 * 16165 * Consider the following BPF code: 16166 * 1: r6 = ... unbound scalar, ID=a ... 16167 * 2: r7 = ... unbound scalar, ID=b ... 16168 * 3: if (r6 > r7) goto +1 16169 * 4: r6 = r7 16170 * 5: if (r6 > X) goto ... 16171 * 6: ... memory operation using r7 ... 16172 * 16173 * First verification path is [1-6]: 16174 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 16175 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 16176 * r7 <= X, because r6 and r7 share same id. 16177 * Next verification path is [1-4, 6]. 16178 * 16179 * Instruction (6) would be reached in two states: 16180 * I. r6{.id=b}, r7{.id=b} via path 1-6; 16181 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 16182 * 16183 * Use check_ids() to distinguish these states. 16184 * --- 16185 * Also verify that new value satisfies old value range knowledge. 16186 */ 16187 return range_within(rold, rcur) && 16188 tnum_in(rold->var_off, rcur->var_off) && 16189 check_scalar_ids(rold->id, rcur->id, idmap); 16190 case PTR_TO_MAP_KEY: 16191 case PTR_TO_MAP_VALUE: 16192 case PTR_TO_MEM: 16193 case PTR_TO_BUF: 16194 case PTR_TO_TP_BUFFER: 16195 /* If the new min/max/var_off satisfy the old ones and 16196 * everything else matches, we are OK. 16197 */ 16198 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 16199 range_within(rold, rcur) && 16200 tnum_in(rold->var_off, rcur->var_off) && 16201 check_ids(rold->id, rcur->id, idmap) && 16202 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16203 case PTR_TO_PACKET_META: 16204 case PTR_TO_PACKET: 16205 /* We must have at least as much range as the old ptr 16206 * did, so that any accesses which were safe before are 16207 * still safe. This is true even if old range < old off, 16208 * since someone could have accessed through (ptr - k), or 16209 * even done ptr -= k in a register, to get a safe access. 16210 */ 16211 if (rold->range > rcur->range) 16212 return false; 16213 /* If the offsets don't match, we can't trust our alignment; 16214 * nor can we be sure that we won't fall out of range. 16215 */ 16216 if (rold->off != rcur->off) 16217 return false; 16218 /* id relations must be preserved */ 16219 if (!check_ids(rold->id, rcur->id, idmap)) 16220 return false; 16221 /* new val must satisfy old val knowledge */ 16222 return range_within(rold, rcur) && 16223 tnum_in(rold->var_off, rcur->var_off); 16224 case PTR_TO_STACK: 16225 /* two stack pointers are equal only if they're pointing to 16226 * the same stack frame, since fp-8 in foo != fp-8 in bar 16227 */ 16228 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 16229 default: 16230 return regs_exact(rold, rcur, idmap); 16231 } 16232 } 16233 16234 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 16235 struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact) 16236 { 16237 int i, spi; 16238 16239 /* walk slots of the explored stack and ignore any additional 16240 * slots in the current stack, since explored(safe) state 16241 * didn't use them 16242 */ 16243 for (i = 0; i < old->allocated_stack; i++) { 16244 struct bpf_reg_state *old_reg, *cur_reg; 16245 16246 spi = i / BPF_REG_SIZE; 16247 16248 if (exact && 16249 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16250 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16251 return false; 16252 16253 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) { 16254 i += BPF_REG_SIZE - 1; 16255 /* explored state didn't use this */ 16256 continue; 16257 } 16258 16259 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 16260 continue; 16261 16262 if (env->allow_uninit_stack && 16263 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 16264 continue; 16265 16266 /* explored stack has more populated slots than current stack 16267 * and these slots were used 16268 */ 16269 if (i >= cur->allocated_stack) 16270 return false; 16271 16272 /* if old state was safe with misc data in the stack 16273 * it will be safe with zero-initialized stack. 16274 * The opposite is not true 16275 */ 16276 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 16277 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 16278 continue; 16279 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16280 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16281 /* Ex: old explored (safe) state has STACK_SPILL in 16282 * this stack slot, but current has STACK_MISC -> 16283 * this verifier states are not equivalent, 16284 * return false to continue verification of this path 16285 */ 16286 return false; 16287 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 16288 continue; 16289 /* Both old and cur are having same slot_type */ 16290 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 16291 case STACK_SPILL: 16292 /* when explored and current stack slot are both storing 16293 * spilled registers, check that stored pointers types 16294 * are the same as well. 16295 * Ex: explored safe path could have stored 16296 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 16297 * but current path has stored: 16298 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 16299 * such verifier states are not equivalent. 16300 * return false to continue verification of this path 16301 */ 16302 if (!regsafe(env, &old->stack[spi].spilled_ptr, 16303 &cur->stack[spi].spilled_ptr, idmap, exact)) 16304 return false; 16305 break; 16306 case STACK_DYNPTR: 16307 old_reg = &old->stack[spi].spilled_ptr; 16308 cur_reg = &cur->stack[spi].spilled_ptr; 16309 if (old_reg->dynptr.type != cur_reg->dynptr.type || 16310 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 16311 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16312 return false; 16313 break; 16314 case STACK_ITER: 16315 old_reg = &old->stack[spi].spilled_ptr; 16316 cur_reg = &cur->stack[spi].spilled_ptr; 16317 /* iter.depth is not compared between states as it 16318 * doesn't matter for correctness and would otherwise 16319 * prevent convergence; we maintain it only to prevent 16320 * infinite loop check triggering, see 16321 * iter_active_depths_differ() 16322 */ 16323 if (old_reg->iter.btf != cur_reg->iter.btf || 16324 old_reg->iter.btf_id != cur_reg->iter.btf_id || 16325 old_reg->iter.state != cur_reg->iter.state || 16326 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 16327 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16328 return false; 16329 break; 16330 case STACK_MISC: 16331 case STACK_ZERO: 16332 case STACK_INVALID: 16333 continue; 16334 /* Ensure that new unhandled slot types return false by default */ 16335 default: 16336 return false; 16337 } 16338 } 16339 return true; 16340 } 16341 16342 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 16343 struct bpf_idmap *idmap) 16344 { 16345 int i; 16346 16347 if (old->acquired_refs != cur->acquired_refs) 16348 return false; 16349 16350 for (i = 0; i < old->acquired_refs; i++) { 16351 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 16352 return false; 16353 } 16354 16355 return true; 16356 } 16357 16358 /* compare two verifier states 16359 * 16360 * all states stored in state_list are known to be valid, since 16361 * verifier reached 'bpf_exit' instruction through them 16362 * 16363 * this function is called when verifier exploring different branches of 16364 * execution popped from the state stack. If it sees an old state that has 16365 * more strict register state and more strict stack state then this execution 16366 * branch doesn't need to be explored further, since verifier already 16367 * concluded that more strict state leads to valid finish. 16368 * 16369 * Therefore two states are equivalent if register state is more conservative 16370 * and explored stack state is more conservative than the current one. 16371 * Example: 16372 * explored current 16373 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 16374 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 16375 * 16376 * In other words if current stack state (one being explored) has more 16377 * valid slots than old one that already passed validation, it means 16378 * the verifier can stop exploring and conclude that current state is valid too 16379 * 16380 * Similarly with registers. If explored state has register type as invalid 16381 * whereas register type in current state is meaningful, it means that 16382 * the current state will reach 'bpf_exit' instruction safely 16383 */ 16384 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 16385 struct bpf_func_state *cur, bool exact) 16386 { 16387 int i; 16388 16389 for (i = 0; i < MAX_BPF_REG; i++) 16390 if (!regsafe(env, &old->regs[i], &cur->regs[i], 16391 &env->idmap_scratch, exact)) 16392 return false; 16393 16394 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 16395 return false; 16396 16397 if (!refsafe(old, cur, &env->idmap_scratch)) 16398 return false; 16399 16400 return true; 16401 } 16402 16403 static void reset_idmap_scratch(struct bpf_verifier_env *env) 16404 { 16405 env->idmap_scratch.tmp_id_gen = env->id_gen; 16406 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 16407 } 16408 16409 static bool states_equal(struct bpf_verifier_env *env, 16410 struct bpf_verifier_state *old, 16411 struct bpf_verifier_state *cur, 16412 bool exact) 16413 { 16414 int i; 16415 16416 if (old->curframe != cur->curframe) 16417 return false; 16418 16419 reset_idmap_scratch(env); 16420 16421 /* Verification state from speculative execution simulation 16422 * must never prune a non-speculative execution one. 16423 */ 16424 if (old->speculative && !cur->speculative) 16425 return false; 16426 16427 if (old->active_lock.ptr != cur->active_lock.ptr) 16428 return false; 16429 16430 /* Old and cur active_lock's have to be either both present 16431 * or both absent. 16432 */ 16433 if (!!old->active_lock.id != !!cur->active_lock.id) 16434 return false; 16435 16436 if (old->active_lock.id && 16437 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 16438 return false; 16439 16440 if (old->active_rcu_lock != cur->active_rcu_lock) 16441 return false; 16442 16443 /* for states to be equal callsites have to be the same 16444 * and all frame states need to be equivalent 16445 */ 16446 for (i = 0; i <= old->curframe; i++) { 16447 if (old->frame[i]->callsite != cur->frame[i]->callsite) 16448 return false; 16449 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 16450 return false; 16451 } 16452 return true; 16453 } 16454 16455 /* Return 0 if no propagation happened. Return negative error code if error 16456 * happened. Otherwise, return the propagated bit. 16457 */ 16458 static int propagate_liveness_reg(struct bpf_verifier_env *env, 16459 struct bpf_reg_state *reg, 16460 struct bpf_reg_state *parent_reg) 16461 { 16462 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 16463 u8 flag = reg->live & REG_LIVE_READ; 16464 int err; 16465 16466 /* When comes here, read flags of PARENT_REG or REG could be any of 16467 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 16468 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 16469 */ 16470 if (parent_flag == REG_LIVE_READ64 || 16471 /* Or if there is no read flag from REG. */ 16472 !flag || 16473 /* Or if the read flag from REG is the same as PARENT_REG. */ 16474 parent_flag == flag) 16475 return 0; 16476 16477 err = mark_reg_read(env, reg, parent_reg, flag); 16478 if (err) 16479 return err; 16480 16481 return flag; 16482 } 16483 16484 /* A write screens off any subsequent reads; but write marks come from the 16485 * straight-line code between a state and its parent. When we arrive at an 16486 * equivalent state (jump target or such) we didn't arrive by the straight-line 16487 * code, so read marks in the state must propagate to the parent regardless 16488 * of the state's write marks. That's what 'parent == state->parent' comparison 16489 * in mark_reg_read() is for. 16490 */ 16491 static int propagate_liveness(struct bpf_verifier_env *env, 16492 const struct bpf_verifier_state *vstate, 16493 struct bpf_verifier_state *vparent) 16494 { 16495 struct bpf_reg_state *state_reg, *parent_reg; 16496 struct bpf_func_state *state, *parent; 16497 int i, frame, err = 0; 16498 16499 if (vparent->curframe != vstate->curframe) { 16500 WARN(1, "propagate_live: parent frame %d current frame %d\n", 16501 vparent->curframe, vstate->curframe); 16502 return -EFAULT; 16503 } 16504 /* Propagate read liveness of registers... */ 16505 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 16506 for (frame = 0; frame <= vstate->curframe; frame++) { 16507 parent = vparent->frame[frame]; 16508 state = vstate->frame[frame]; 16509 parent_reg = parent->regs; 16510 state_reg = state->regs; 16511 /* We don't need to worry about FP liveness, it's read-only */ 16512 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 16513 err = propagate_liveness_reg(env, &state_reg[i], 16514 &parent_reg[i]); 16515 if (err < 0) 16516 return err; 16517 if (err == REG_LIVE_READ64) 16518 mark_insn_zext(env, &parent_reg[i]); 16519 } 16520 16521 /* Propagate stack slots. */ 16522 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 16523 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 16524 parent_reg = &parent->stack[i].spilled_ptr; 16525 state_reg = &state->stack[i].spilled_ptr; 16526 err = propagate_liveness_reg(env, state_reg, 16527 parent_reg); 16528 if (err < 0) 16529 return err; 16530 } 16531 } 16532 return 0; 16533 } 16534 16535 /* find precise scalars in the previous equivalent state and 16536 * propagate them into the current state 16537 */ 16538 static int propagate_precision(struct bpf_verifier_env *env, 16539 const struct bpf_verifier_state *old) 16540 { 16541 struct bpf_reg_state *state_reg; 16542 struct bpf_func_state *state; 16543 int i, err = 0, fr; 16544 bool first; 16545 16546 for (fr = old->curframe; fr >= 0; fr--) { 16547 state = old->frame[fr]; 16548 state_reg = state->regs; 16549 first = true; 16550 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 16551 if (state_reg->type != SCALAR_VALUE || 16552 !state_reg->precise || 16553 !(state_reg->live & REG_LIVE_READ)) 16554 continue; 16555 if (env->log.level & BPF_LOG_LEVEL2) { 16556 if (first) 16557 verbose(env, "frame %d: propagating r%d", fr, i); 16558 else 16559 verbose(env, ",r%d", i); 16560 } 16561 bt_set_frame_reg(&env->bt, fr, i); 16562 first = false; 16563 } 16564 16565 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16566 if (!is_spilled_reg(&state->stack[i])) 16567 continue; 16568 state_reg = &state->stack[i].spilled_ptr; 16569 if (state_reg->type != SCALAR_VALUE || 16570 !state_reg->precise || 16571 !(state_reg->live & REG_LIVE_READ)) 16572 continue; 16573 if (env->log.level & BPF_LOG_LEVEL2) { 16574 if (first) 16575 verbose(env, "frame %d: propagating fp%d", 16576 fr, (-i - 1) * BPF_REG_SIZE); 16577 else 16578 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 16579 } 16580 bt_set_frame_slot(&env->bt, fr, i); 16581 first = false; 16582 } 16583 if (!first) 16584 verbose(env, "\n"); 16585 } 16586 16587 err = mark_chain_precision_batch(env); 16588 if (err < 0) 16589 return err; 16590 16591 return 0; 16592 } 16593 16594 static bool states_maybe_looping(struct bpf_verifier_state *old, 16595 struct bpf_verifier_state *cur) 16596 { 16597 struct bpf_func_state *fold, *fcur; 16598 int i, fr = cur->curframe; 16599 16600 if (old->curframe != fr) 16601 return false; 16602 16603 fold = old->frame[fr]; 16604 fcur = cur->frame[fr]; 16605 for (i = 0; i < MAX_BPF_REG; i++) 16606 if (memcmp(&fold->regs[i], &fcur->regs[i], 16607 offsetof(struct bpf_reg_state, parent))) 16608 return false; 16609 return true; 16610 } 16611 16612 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 16613 { 16614 return env->insn_aux_data[insn_idx].is_iter_next; 16615 } 16616 16617 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 16618 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 16619 * states to match, which otherwise would look like an infinite loop. So while 16620 * iter_next() calls are taken care of, we still need to be careful and 16621 * prevent erroneous and too eager declaration of "ininite loop", when 16622 * iterators are involved. 16623 * 16624 * Here's a situation in pseudo-BPF assembly form: 16625 * 16626 * 0: again: ; set up iter_next() call args 16627 * 1: r1 = &it ; <CHECKPOINT HERE> 16628 * 2: call bpf_iter_num_next ; this is iter_next() call 16629 * 3: if r0 == 0 goto done 16630 * 4: ... something useful here ... 16631 * 5: goto again ; another iteration 16632 * 6: done: 16633 * 7: r1 = &it 16634 * 8: call bpf_iter_num_destroy ; clean up iter state 16635 * 9: exit 16636 * 16637 * This is a typical loop. Let's assume that we have a prune point at 1:, 16638 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 16639 * again`, assuming other heuristics don't get in a way). 16640 * 16641 * When we first time come to 1:, let's say we have some state X. We proceed 16642 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 16643 * Now we come back to validate that forked ACTIVE state. We proceed through 16644 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 16645 * are converging. But the problem is that we don't know that yet, as this 16646 * convergence has to happen at iter_next() call site only. So if nothing is 16647 * done, at 1: verifier will use bounded loop logic and declare infinite 16648 * looping (and would be *technically* correct, if not for iterator's 16649 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 16650 * don't want that. So what we do in process_iter_next_call() when we go on 16651 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 16652 * a different iteration. So when we suspect an infinite loop, we additionally 16653 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 16654 * pretend we are not looping and wait for next iter_next() call. 16655 * 16656 * This only applies to ACTIVE state. In DRAINED state we don't expect to 16657 * loop, because that would actually mean infinite loop, as DRAINED state is 16658 * "sticky", and so we'll keep returning into the same instruction with the 16659 * same state (at least in one of possible code paths). 16660 * 16661 * This approach allows to keep infinite loop heuristic even in the face of 16662 * active iterator. E.g., C snippet below is and will be detected as 16663 * inifintely looping: 16664 * 16665 * struct bpf_iter_num it; 16666 * int *p, x; 16667 * 16668 * bpf_iter_num_new(&it, 0, 10); 16669 * while ((p = bpf_iter_num_next(&t))) { 16670 * x = p; 16671 * while (x--) {} // <<-- infinite loop here 16672 * } 16673 * 16674 */ 16675 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 16676 { 16677 struct bpf_reg_state *slot, *cur_slot; 16678 struct bpf_func_state *state; 16679 int i, fr; 16680 16681 for (fr = old->curframe; fr >= 0; fr--) { 16682 state = old->frame[fr]; 16683 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16684 if (state->stack[i].slot_type[0] != STACK_ITER) 16685 continue; 16686 16687 slot = &state->stack[i].spilled_ptr; 16688 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 16689 continue; 16690 16691 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 16692 if (cur_slot->iter.depth != slot->iter.depth) 16693 return true; 16694 } 16695 } 16696 return false; 16697 } 16698 16699 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 16700 { 16701 struct bpf_verifier_state_list *new_sl; 16702 struct bpf_verifier_state_list *sl, **pprev; 16703 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 16704 int i, j, n, err, states_cnt = 0; 16705 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 16706 bool add_new_state = force_new_state; 16707 bool force_exact; 16708 16709 /* bpf progs typically have pruning point every 4 instructions 16710 * http://vger.kernel.org/bpfconf2019.html#session-1 16711 * Do not add new state for future pruning if the verifier hasn't seen 16712 * at least 2 jumps and at least 8 instructions. 16713 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 16714 * In tests that amounts to up to 50% reduction into total verifier 16715 * memory consumption and 20% verifier time speedup. 16716 */ 16717 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 16718 env->insn_processed - env->prev_insn_processed >= 8) 16719 add_new_state = true; 16720 16721 pprev = explored_state(env, insn_idx); 16722 sl = *pprev; 16723 16724 clean_live_states(env, insn_idx, cur); 16725 16726 while (sl) { 16727 states_cnt++; 16728 if (sl->state.insn_idx != insn_idx) 16729 goto next; 16730 16731 if (sl->state.branches) { 16732 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 16733 16734 if (frame->in_async_callback_fn && 16735 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 16736 /* Different async_entry_cnt means that the verifier is 16737 * processing another entry into async callback. 16738 * Seeing the same state is not an indication of infinite 16739 * loop or infinite recursion. 16740 * But finding the same state doesn't mean that it's safe 16741 * to stop processing the current state. The previous state 16742 * hasn't yet reached bpf_exit, since state.branches > 0. 16743 * Checking in_async_callback_fn alone is not enough either. 16744 * Since the verifier still needs to catch infinite loops 16745 * inside async callbacks. 16746 */ 16747 goto skip_inf_loop_check; 16748 } 16749 /* BPF open-coded iterators loop detection is special. 16750 * states_maybe_looping() logic is too simplistic in detecting 16751 * states that *might* be equivalent, because it doesn't know 16752 * about ID remapping, so don't even perform it. 16753 * See process_iter_next_call() and iter_active_depths_differ() 16754 * for overview of the logic. When current and one of parent 16755 * states are detected as equivalent, it's a good thing: we prove 16756 * convergence and can stop simulating further iterations. 16757 * It's safe to assume that iterator loop will finish, taking into 16758 * account iter_next() contract of eventually returning 16759 * sticky NULL result. 16760 * 16761 * Note, that states have to be compared exactly in this case because 16762 * read and precision marks might not be finalized inside the loop. 16763 * E.g. as in the program below: 16764 * 16765 * 1. r7 = -16 16766 * 2. r6 = bpf_get_prandom_u32() 16767 * 3. while (bpf_iter_num_next(&fp[-8])) { 16768 * 4. if (r6 != 42) { 16769 * 5. r7 = -32 16770 * 6. r6 = bpf_get_prandom_u32() 16771 * 7. continue 16772 * 8. } 16773 * 9. r0 = r10 16774 * 10. r0 += r7 16775 * 11. r8 = *(u64 *)(r0 + 0) 16776 * 12. r6 = bpf_get_prandom_u32() 16777 * 13. } 16778 * 16779 * Here verifier would first visit path 1-3, create a checkpoint at 3 16780 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 16781 * not have read or precision mark for r7 yet, thus inexact states 16782 * comparison would discard current state with r7=-32 16783 * => unsafe memory access at 11 would not be caught. 16784 */ 16785 if (is_iter_next_insn(env, insn_idx)) { 16786 if (states_equal(env, &sl->state, cur, true)) { 16787 struct bpf_func_state *cur_frame; 16788 struct bpf_reg_state *iter_state, *iter_reg; 16789 int spi; 16790 16791 cur_frame = cur->frame[cur->curframe]; 16792 /* btf_check_iter_kfuncs() enforces that 16793 * iter state pointer is always the first arg 16794 */ 16795 iter_reg = &cur_frame->regs[BPF_REG_1]; 16796 /* current state is valid due to states_equal(), 16797 * so we can assume valid iter and reg state, 16798 * no need for extra (re-)validations 16799 */ 16800 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 16801 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 16802 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 16803 update_loop_entry(cur, &sl->state); 16804 goto hit; 16805 } 16806 } 16807 goto skip_inf_loop_check; 16808 } 16809 if (calls_callback(env, insn_idx)) { 16810 if (states_equal(env, &sl->state, cur, true)) 16811 goto hit; 16812 goto skip_inf_loop_check; 16813 } 16814 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 16815 if (states_maybe_looping(&sl->state, cur) && 16816 states_equal(env, &sl->state, cur, false) && 16817 !iter_active_depths_differ(&sl->state, cur) && 16818 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 16819 verbose_linfo(env, insn_idx, "; "); 16820 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 16821 verbose(env, "cur state:"); 16822 print_verifier_state(env, cur->frame[cur->curframe], true); 16823 verbose(env, "old state:"); 16824 print_verifier_state(env, sl->state.frame[cur->curframe], true); 16825 return -EINVAL; 16826 } 16827 /* if the verifier is processing a loop, avoid adding new state 16828 * too often, since different loop iterations have distinct 16829 * states and may not help future pruning. 16830 * This threshold shouldn't be too low to make sure that 16831 * a loop with large bound will be rejected quickly. 16832 * The most abusive loop will be: 16833 * r1 += 1 16834 * if r1 < 1000000 goto pc-2 16835 * 1M insn_procssed limit / 100 == 10k peak states. 16836 * This threshold shouldn't be too high either, since states 16837 * at the end of the loop are likely to be useful in pruning. 16838 */ 16839 skip_inf_loop_check: 16840 if (!force_new_state && 16841 env->jmps_processed - env->prev_jmps_processed < 20 && 16842 env->insn_processed - env->prev_insn_processed < 100) 16843 add_new_state = false; 16844 goto miss; 16845 } 16846 /* If sl->state is a part of a loop and this loop's entry is a part of 16847 * current verification path then states have to be compared exactly. 16848 * 'force_exact' is needed to catch the following case: 16849 * 16850 * initial Here state 'succ' was processed first, 16851 * | it was eventually tracked to produce a 16852 * V state identical to 'hdr'. 16853 * .---------> hdr All branches from 'succ' had been explored 16854 * | | and thus 'succ' has its .branches == 0. 16855 * | V 16856 * | .------... Suppose states 'cur' and 'succ' correspond 16857 * | | | to the same instruction + callsites. 16858 * | V V In such case it is necessary to check 16859 * | ... ... if 'succ' and 'cur' are states_equal(). 16860 * | | | If 'succ' and 'cur' are a part of the 16861 * | V V same loop exact flag has to be set. 16862 * | succ <- cur To check if that is the case, verify 16863 * | | if loop entry of 'succ' is in current 16864 * | V DFS path. 16865 * | ... 16866 * | | 16867 * '----' 16868 * 16869 * Additional details are in the comment before get_loop_entry(). 16870 */ 16871 loop_entry = get_loop_entry(&sl->state); 16872 force_exact = loop_entry && loop_entry->branches > 0; 16873 if (states_equal(env, &sl->state, cur, force_exact)) { 16874 if (force_exact) 16875 update_loop_entry(cur, loop_entry); 16876 hit: 16877 sl->hit_cnt++; 16878 /* reached equivalent register/stack state, 16879 * prune the search. 16880 * Registers read by the continuation are read by us. 16881 * If we have any write marks in env->cur_state, they 16882 * will prevent corresponding reads in the continuation 16883 * from reaching our parent (an explored_state). Our 16884 * own state will get the read marks recorded, but 16885 * they'll be immediately forgotten as we're pruning 16886 * this state and will pop a new one. 16887 */ 16888 err = propagate_liveness(env, &sl->state, cur); 16889 16890 /* if previous state reached the exit with precision and 16891 * current state is equivalent to it (except precsion marks) 16892 * the precision needs to be propagated back in 16893 * the current state. 16894 */ 16895 err = err ? : push_jmp_history(env, cur); 16896 err = err ? : propagate_precision(env, &sl->state); 16897 if (err) 16898 return err; 16899 return 1; 16900 } 16901 miss: 16902 /* when new state is not going to be added do not increase miss count. 16903 * Otherwise several loop iterations will remove the state 16904 * recorded earlier. The goal of these heuristics is to have 16905 * states from some iterations of the loop (some in the beginning 16906 * and some at the end) to help pruning. 16907 */ 16908 if (add_new_state) 16909 sl->miss_cnt++; 16910 /* heuristic to determine whether this state is beneficial 16911 * to keep checking from state equivalence point of view. 16912 * Higher numbers increase max_states_per_insn and verification time, 16913 * but do not meaningfully decrease insn_processed. 16914 * 'n' controls how many times state could miss before eviction. 16915 * Use bigger 'n' for checkpoints because evicting checkpoint states 16916 * too early would hinder iterator convergence. 16917 */ 16918 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 16919 if (sl->miss_cnt > sl->hit_cnt * n + n) { 16920 /* the state is unlikely to be useful. Remove it to 16921 * speed up verification 16922 */ 16923 *pprev = sl->next; 16924 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 16925 !sl->state.used_as_loop_entry) { 16926 u32 br = sl->state.branches; 16927 16928 WARN_ONCE(br, 16929 "BUG live_done but branches_to_explore %d\n", 16930 br); 16931 free_verifier_state(&sl->state, false); 16932 kfree(sl); 16933 env->peak_states--; 16934 } else { 16935 /* cannot free this state, since parentage chain may 16936 * walk it later. Add it for free_list instead to 16937 * be freed at the end of verification 16938 */ 16939 sl->next = env->free_list; 16940 env->free_list = sl; 16941 } 16942 sl = *pprev; 16943 continue; 16944 } 16945 next: 16946 pprev = &sl->next; 16947 sl = *pprev; 16948 } 16949 16950 if (env->max_states_per_insn < states_cnt) 16951 env->max_states_per_insn = states_cnt; 16952 16953 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 16954 return 0; 16955 16956 if (!add_new_state) 16957 return 0; 16958 16959 /* There were no equivalent states, remember the current one. 16960 * Technically the current state is not proven to be safe yet, 16961 * but it will either reach outer most bpf_exit (which means it's safe) 16962 * or it will be rejected. When there are no loops the verifier won't be 16963 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 16964 * again on the way to bpf_exit. 16965 * When looping the sl->state.branches will be > 0 and this state 16966 * will not be considered for equivalence until branches == 0. 16967 */ 16968 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 16969 if (!new_sl) 16970 return -ENOMEM; 16971 env->total_states++; 16972 env->peak_states++; 16973 env->prev_jmps_processed = env->jmps_processed; 16974 env->prev_insn_processed = env->insn_processed; 16975 16976 /* forget precise markings we inherited, see __mark_chain_precision */ 16977 if (env->bpf_capable) 16978 mark_all_scalars_imprecise(env, cur); 16979 16980 /* add new state to the head of linked list */ 16981 new = &new_sl->state; 16982 err = copy_verifier_state(new, cur); 16983 if (err) { 16984 free_verifier_state(new, false); 16985 kfree(new_sl); 16986 return err; 16987 } 16988 new->insn_idx = insn_idx; 16989 WARN_ONCE(new->branches != 1, 16990 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 16991 16992 cur->parent = new; 16993 cur->first_insn_idx = insn_idx; 16994 cur->dfs_depth = new->dfs_depth + 1; 16995 clear_jmp_history(cur); 16996 new_sl->next = *explored_state(env, insn_idx); 16997 *explored_state(env, insn_idx) = new_sl; 16998 /* connect new state to parentage chain. Current frame needs all 16999 * registers connected. Only r6 - r9 of the callers are alive (pushed 17000 * to the stack implicitly by JITs) so in callers' frames connect just 17001 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 17002 * the state of the call instruction (with WRITTEN set), and r0 comes 17003 * from callee with its full parentage chain, anyway. 17004 */ 17005 /* clear write marks in current state: the writes we did are not writes 17006 * our child did, so they don't screen off its reads from us. 17007 * (There are no read marks in current state, because reads always mark 17008 * their parent and current state never has children yet. Only 17009 * explored_states can get read marks.) 17010 */ 17011 for (j = 0; j <= cur->curframe; j++) { 17012 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 17013 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 17014 for (i = 0; i < BPF_REG_FP; i++) 17015 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 17016 } 17017 17018 /* all stack frames are accessible from callee, clear them all */ 17019 for (j = 0; j <= cur->curframe; j++) { 17020 struct bpf_func_state *frame = cur->frame[j]; 17021 struct bpf_func_state *newframe = new->frame[j]; 17022 17023 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 17024 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 17025 frame->stack[i].spilled_ptr.parent = 17026 &newframe->stack[i].spilled_ptr; 17027 } 17028 } 17029 return 0; 17030 } 17031 17032 /* Return true if it's OK to have the same insn return a different type. */ 17033 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 17034 { 17035 switch (base_type(type)) { 17036 case PTR_TO_CTX: 17037 case PTR_TO_SOCKET: 17038 case PTR_TO_SOCK_COMMON: 17039 case PTR_TO_TCP_SOCK: 17040 case PTR_TO_XDP_SOCK: 17041 case PTR_TO_BTF_ID: 17042 return false; 17043 default: 17044 return true; 17045 } 17046 } 17047 17048 /* If an instruction was previously used with particular pointer types, then we 17049 * need to be careful to avoid cases such as the below, where it may be ok 17050 * for one branch accessing the pointer, but not ok for the other branch: 17051 * 17052 * R1 = sock_ptr 17053 * goto X; 17054 * ... 17055 * R1 = some_other_valid_ptr; 17056 * goto X; 17057 * ... 17058 * R2 = *(u32 *)(R1 + 0); 17059 */ 17060 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 17061 { 17062 return src != prev && (!reg_type_mismatch_ok(src) || 17063 !reg_type_mismatch_ok(prev)); 17064 } 17065 17066 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 17067 bool allow_trust_missmatch) 17068 { 17069 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 17070 17071 if (*prev_type == NOT_INIT) { 17072 /* Saw a valid insn 17073 * dst_reg = *(u32 *)(src_reg + off) 17074 * save type to validate intersecting paths 17075 */ 17076 *prev_type = type; 17077 } else if (reg_type_mismatch(type, *prev_type)) { 17078 /* Abuser program is trying to use the same insn 17079 * dst_reg = *(u32*) (src_reg + off) 17080 * with different pointer types: 17081 * src_reg == ctx in one branch and 17082 * src_reg == stack|map in some other branch. 17083 * Reject it. 17084 */ 17085 if (allow_trust_missmatch && 17086 base_type(type) == PTR_TO_BTF_ID && 17087 base_type(*prev_type) == PTR_TO_BTF_ID) { 17088 /* 17089 * Have to support a use case when one path through 17090 * the program yields TRUSTED pointer while another 17091 * is UNTRUSTED. Fallback to UNTRUSTED to generate 17092 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 17093 */ 17094 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 17095 } else { 17096 verbose(env, "same insn cannot be used with different pointers\n"); 17097 return -EINVAL; 17098 } 17099 } 17100 17101 return 0; 17102 } 17103 17104 static int do_check(struct bpf_verifier_env *env) 17105 { 17106 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 17107 struct bpf_verifier_state *state = env->cur_state; 17108 struct bpf_insn *insns = env->prog->insnsi; 17109 struct bpf_reg_state *regs; 17110 int insn_cnt = env->prog->len; 17111 bool do_print_state = false; 17112 int prev_insn_idx = -1; 17113 17114 for (;;) { 17115 bool exception_exit = false; 17116 struct bpf_insn *insn; 17117 u8 class; 17118 int err; 17119 17120 env->prev_insn_idx = prev_insn_idx; 17121 if (env->insn_idx >= insn_cnt) { 17122 verbose(env, "invalid insn idx %d insn_cnt %d\n", 17123 env->insn_idx, insn_cnt); 17124 return -EFAULT; 17125 } 17126 17127 insn = &insns[env->insn_idx]; 17128 class = BPF_CLASS(insn->code); 17129 17130 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 17131 verbose(env, 17132 "BPF program is too large. Processed %d insn\n", 17133 env->insn_processed); 17134 return -E2BIG; 17135 } 17136 17137 state->last_insn_idx = env->prev_insn_idx; 17138 17139 if (is_prune_point(env, env->insn_idx)) { 17140 err = is_state_visited(env, env->insn_idx); 17141 if (err < 0) 17142 return err; 17143 if (err == 1) { 17144 /* found equivalent state, can prune the search */ 17145 if (env->log.level & BPF_LOG_LEVEL) { 17146 if (do_print_state) 17147 verbose(env, "\nfrom %d to %d%s: safe\n", 17148 env->prev_insn_idx, env->insn_idx, 17149 env->cur_state->speculative ? 17150 " (speculative execution)" : ""); 17151 else 17152 verbose(env, "%d: safe\n", env->insn_idx); 17153 } 17154 goto process_bpf_exit; 17155 } 17156 } 17157 17158 if (is_jmp_point(env, env->insn_idx)) { 17159 err = push_jmp_history(env, state); 17160 if (err) 17161 return err; 17162 } 17163 17164 if (signal_pending(current)) 17165 return -EAGAIN; 17166 17167 if (need_resched()) 17168 cond_resched(); 17169 17170 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 17171 verbose(env, "\nfrom %d to %d%s:", 17172 env->prev_insn_idx, env->insn_idx, 17173 env->cur_state->speculative ? 17174 " (speculative execution)" : ""); 17175 print_verifier_state(env, state->frame[state->curframe], true); 17176 do_print_state = false; 17177 } 17178 17179 if (env->log.level & BPF_LOG_LEVEL) { 17180 const struct bpf_insn_cbs cbs = { 17181 .cb_call = disasm_kfunc_name, 17182 .cb_print = verbose, 17183 .private_data = env, 17184 }; 17185 17186 if (verifier_state_scratched(env)) 17187 print_insn_state(env, state->frame[state->curframe]); 17188 17189 verbose_linfo(env, env->insn_idx, "; "); 17190 env->prev_log_pos = env->log.end_pos; 17191 verbose(env, "%d: ", env->insn_idx); 17192 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 17193 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 17194 env->prev_log_pos = env->log.end_pos; 17195 } 17196 17197 if (bpf_prog_is_offloaded(env->prog->aux)) { 17198 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 17199 env->prev_insn_idx); 17200 if (err) 17201 return err; 17202 } 17203 17204 regs = cur_regs(env); 17205 sanitize_mark_insn_seen(env); 17206 prev_insn_idx = env->insn_idx; 17207 17208 if (class == BPF_ALU || class == BPF_ALU64) { 17209 err = check_alu_op(env, insn); 17210 if (err) 17211 return err; 17212 17213 } else if (class == BPF_LDX) { 17214 enum bpf_reg_type src_reg_type; 17215 17216 /* check for reserved fields is already done */ 17217 17218 /* check src operand */ 17219 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17220 if (err) 17221 return err; 17222 17223 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 17224 if (err) 17225 return err; 17226 17227 src_reg_type = regs[insn->src_reg].type; 17228 17229 /* check that memory (src_reg + off) is readable, 17230 * the state of dst_reg will be updated by this func 17231 */ 17232 err = check_mem_access(env, env->insn_idx, insn->src_reg, 17233 insn->off, BPF_SIZE(insn->code), 17234 BPF_READ, insn->dst_reg, false, 17235 BPF_MODE(insn->code) == BPF_MEMSX); 17236 err = err ?: save_aux_ptr_type(env, src_reg_type, true); 17237 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], "ldx"); 17238 if (err) 17239 return err; 17240 } else if (class == BPF_STX) { 17241 enum bpf_reg_type dst_reg_type; 17242 17243 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 17244 err = check_atomic(env, env->insn_idx, insn); 17245 if (err) 17246 return err; 17247 env->insn_idx++; 17248 continue; 17249 } 17250 17251 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 17252 verbose(env, "BPF_STX uses reserved fields\n"); 17253 return -EINVAL; 17254 } 17255 17256 /* check src1 operand */ 17257 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17258 if (err) 17259 return err; 17260 /* check src2 operand */ 17261 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17262 if (err) 17263 return err; 17264 17265 dst_reg_type = regs[insn->dst_reg].type; 17266 17267 /* check that memory (dst_reg + off) is writeable */ 17268 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17269 insn->off, BPF_SIZE(insn->code), 17270 BPF_WRITE, insn->src_reg, false, false); 17271 if (err) 17272 return err; 17273 17274 err = save_aux_ptr_type(env, dst_reg_type, false); 17275 if (err) 17276 return err; 17277 } else if (class == BPF_ST) { 17278 enum bpf_reg_type dst_reg_type; 17279 17280 if (BPF_MODE(insn->code) != BPF_MEM || 17281 insn->src_reg != BPF_REG_0) { 17282 verbose(env, "BPF_ST uses reserved fields\n"); 17283 return -EINVAL; 17284 } 17285 /* check src operand */ 17286 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17287 if (err) 17288 return err; 17289 17290 dst_reg_type = regs[insn->dst_reg].type; 17291 17292 /* check that memory (dst_reg + off) is writeable */ 17293 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17294 insn->off, BPF_SIZE(insn->code), 17295 BPF_WRITE, -1, false, false); 17296 if (err) 17297 return err; 17298 17299 err = save_aux_ptr_type(env, dst_reg_type, false); 17300 if (err) 17301 return err; 17302 } else if (class == BPF_JMP || class == BPF_JMP32) { 17303 u8 opcode = BPF_OP(insn->code); 17304 17305 env->jmps_processed++; 17306 if (opcode == BPF_CALL) { 17307 if (BPF_SRC(insn->code) != BPF_K || 17308 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 17309 && insn->off != 0) || 17310 (insn->src_reg != BPF_REG_0 && 17311 insn->src_reg != BPF_PSEUDO_CALL && 17312 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 17313 insn->dst_reg != BPF_REG_0 || 17314 class == BPF_JMP32) { 17315 verbose(env, "BPF_CALL uses reserved fields\n"); 17316 return -EINVAL; 17317 } 17318 17319 if (env->cur_state->active_lock.ptr) { 17320 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 17321 (insn->src_reg == BPF_PSEUDO_CALL) || 17322 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 17323 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 17324 verbose(env, "function calls are not allowed while holding a lock\n"); 17325 return -EINVAL; 17326 } 17327 } 17328 if (insn->src_reg == BPF_PSEUDO_CALL) { 17329 err = check_func_call(env, insn, &env->insn_idx); 17330 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 17331 err = check_kfunc_call(env, insn, &env->insn_idx); 17332 if (!err && is_bpf_throw_kfunc(insn)) { 17333 exception_exit = true; 17334 goto process_bpf_exit_full; 17335 } 17336 } else { 17337 err = check_helper_call(env, insn, &env->insn_idx); 17338 } 17339 if (err) 17340 return err; 17341 17342 mark_reg_scratched(env, BPF_REG_0); 17343 } else if (opcode == BPF_JA) { 17344 if (BPF_SRC(insn->code) != BPF_K || 17345 insn->src_reg != BPF_REG_0 || 17346 insn->dst_reg != BPF_REG_0 || 17347 (class == BPF_JMP && insn->imm != 0) || 17348 (class == BPF_JMP32 && insn->off != 0)) { 17349 verbose(env, "BPF_JA uses reserved fields\n"); 17350 return -EINVAL; 17351 } 17352 17353 if (class == BPF_JMP) 17354 env->insn_idx += insn->off + 1; 17355 else 17356 env->insn_idx += insn->imm + 1; 17357 continue; 17358 17359 } else if (opcode == BPF_EXIT) { 17360 if (BPF_SRC(insn->code) != BPF_K || 17361 insn->imm != 0 || 17362 insn->src_reg != BPF_REG_0 || 17363 insn->dst_reg != BPF_REG_0 || 17364 class == BPF_JMP32) { 17365 verbose(env, "BPF_EXIT uses reserved fields\n"); 17366 return -EINVAL; 17367 } 17368 process_bpf_exit_full: 17369 if (env->cur_state->active_lock.ptr && 17370 !in_rbtree_lock_required_cb(env)) { 17371 verbose(env, "bpf_spin_unlock is missing\n"); 17372 return -EINVAL; 17373 } 17374 17375 if (env->cur_state->active_rcu_lock && 17376 !in_rbtree_lock_required_cb(env)) { 17377 verbose(env, "bpf_rcu_read_unlock is missing\n"); 17378 return -EINVAL; 17379 } 17380 17381 /* We must do check_reference_leak here before 17382 * prepare_func_exit to handle the case when 17383 * state->curframe > 0, it may be a callback 17384 * function, for which reference_state must 17385 * match caller reference state when it exits. 17386 */ 17387 err = check_reference_leak(env, exception_exit); 17388 if (err) 17389 return err; 17390 17391 /* The side effect of the prepare_func_exit 17392 * which is being skipped is that it frees 17393 * bpf_func_state. Typically, process_bpf_exit 17394 * will only be hit with outermost exit. 17395 * copy_verifier_state in pop_stack will handle 17396 * freeing of any extra bpf_func_state left over 17397 * from not processing all nested function 17398 * exits. We also skip return code checks as 17399 * they are not needed for exceptional exits. 17400 */ 17401 if (exception_exit) 17402 goto process_bpf_exit; 17403 17404 if (state->curframe) { 17405 /* exit from nested function */ 17406 err = prepare_func_exit(env, &env->insn_idx); 17407 if (err) 17408 return err; 17409 do_print_state = true; 17410 continue; 17411 } 17412 17413 err = check_return_code(env, BPF_REG_0); 17414 if (err) 17415 return err; 17416 process_bpf_exit: 17417 mark_verifier_state_scratched(env); 17418 update_branch_counts(env, env->cur_state); 17419 err = pop_stack(env, &prev_insn_idx, 17420 &env->insn_idx, pop_log); 17421 if (err < 0) { 17422 if (err != -ENOENT) 17423 return err; 17424 break; 17425 } else { 17426 do_print_state = true; 17427 continue; 17428 } 17429 } else { 17430 err = check_cond_jmp_op(env, insn, &env->insn_idx); 17431 if (err) 17432 return err; 17433 } 17434 } else if (class == BPF_LD) { 17435 u8 mode = BPF_MODE(insn->code); 17436 17437 if (mode == BPF_ABS || mode == BPF_IND) { 17438 err = check_ld_abs(env, insn); 17439 if (err) 17440 return err; 17441 17442 } else if (mode == BPF_IMM) { 17443 err = check_ld_imm(env, insn); 17444 if (err) 17445 return err; 17446 17447 env->insn_idx++; 17448 sanitize_mark_insn_seen(env); 17449 } else { 17450 verbose(env, "invalid BPF_LD mode\n"); 17451 return -EINVAL; 17452 } 17453 } else { 17454 verbose(env, "unknown insn class %d\n", class); 17455 return -EINVAL; 17456 } 17457 17458 env->insn_idx++; 17459 } 17460 17461 return 0; 17462 } 17463 17464 static int find_btf_percpu_datasec(struct btf *btf) 17465 { 17466 const struct btf_type *t; 17467 const char *tname; 17468 int i, n; 17469 17470 /* 17471 * Both vmlinux and module each have their own ".data..percpu" 17472 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 17473 * types to look at only module's own BTF types. 17474 */ 17475 n = btf_nr_types(btf); 17476 if (btf_is_module(btf)) 17477 i = btf_nr_types(btf_vmlinux); 17478 else 17479 i = 1; 17480 17481 for(; i < n; i++) { 17482 t = btf_type_by_id(btf, i); 17483 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 17484 continue; 17485 17486 tname = btf_name_by_offset(btf, t->name_off); 17487 if (!strcmp(tname, ".data..percpu")) 17488 return i; 17489 } 17490 17491 return -ENOENT; 17492 } 17493 17494 /* replace pseudo btf_id with kernel symbol address */ 17495 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 17496 struct bpf_insn *insn, 17497 struct bpf_insn_aux_data *aux) 17498 { 17499 const struct btf_var_secinfo *vsi; 17500 const struct btf_type *datasec; 17501 struct btf_mod_pair *btf_mod; 17502 const struct btf_type *t; 17503 const char *sym_name; 17504 bool percpu = false; 17505 u32 type, id = insn->imm; 17506 struct btf *btf; 17507 s32 datasec_id; 17508 u64 addr; 17509 int i, btf_fd, err; 17510 17511 btf_fd = insn[1].imm; 17512 if (btf_fd) { 17513 btf = btf_get_by_fd(btf_fd); 17514 if (IS_ERR(btf)) { 17515 verbose(env, "invalid module BTF object FD specified.\n"); 17516 return -EINVAL; 17517 } 17518 } else { 17519 if (!btf_vmlinux) { 17520 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 17521 return -EINVAL; 17522 } 17523 btf = btf_vmlinux; 17524 btf_get(btf); 17525 } 17526 17527 t = btf_type_by_id(btf, id); 17528 if (!t) { 17529 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 17530 err = -ENOENT; 17531 goto err_put; 17532 } 17533 17534 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 17535 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 17536 err = -EINVAL; 17537 goto err_put; 17538 } 17539 17540 sym_name = btf_name_by_offset(btf, t->name_off); 17541 addr = kallsyms_lookup_name(sym_name); 17542 if (!addr) { 17543 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 17544 sym_name); 17545 err = -ENOENT; 17546 goto err_put; 17547 } 17548 insn[0].imm = (u32)addr; 17549 insn[1].imm = addr >> 32; 17550 17551 if (btf_type_is_func(t)) { 17552 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17553 aux->btf_var.mem_size = 0; 17554 goto check_btf; 17555 } 17556 17557 datasec_id = find_btf_percpu_datasec(btf); 17558 if (datasec_id > 0) { 17559 datasec = btf_type_by_id(btf, datasec_id); 17560 for_each_vsi(i, datasec, vsi) { 17561 if (vsi->type == id) { 17562 percpu = true; 17563 break; 17564 } 17565 } 17566 } 17567 17568 type = t->type; 17569 t = btf_type_skip_modifiers(btf, type, NULL); 17570 if (percpu) { 17571 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 17572 aux->btf_var.btf = btf; 17573 aux->btf_var.btf_id = type; 17574 } else if (!btf_type_is_struct(t)) { 17575 const struct btf_type *ret; 17576 const char *tname; 17577 u32 tsize; 17578 17579 /* resolve the type size of ksym. */ 17580 ret = btf_resolve_size(btf, t, &tsize); 17581 if (IS_ERR(ret)) { 17582 tname = btf_name_by_offset(btf, t->name_off); 17583 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 17584 tname, PTR_ERR(ret)); 17585 err = -EINVAL; 17586 goto err_put; 17587 } 17588 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17589 aux->btf_var.mem_size = tsize; 17590 } else { 17591 aux->btf_var.reg_type = PTR_TO_BTF_ID; 17592 aux->btf_var.btf = btf; 17593 aux->btf_var.btf_id = type; 17594 } 17595 check_btf: 17596 /* check whether we recorded this BTF (and maybe module) already */ 17597 for (i = 0; i < env->used_btf_cnt; i++) { 17598 if (env->used_btfs[i].btf == btf) { 17599 btf_put(btf); 17600 return 0; 17601 } 17602 } 17603 17604 if (env->used_btf_cnt >= MAX_USED_BTFS) { 17605 err = -E2BIG; 17606 goto err_put; 17607 } 17608 17609 btf_mod = &env->used_btfs[env->used_btf_cnt]; 17610 btf_mod->btf = btf; 17611 btf_mod->module = NULL; 17612 17613 /* if we reference variables from kernel module, bump its refcount */ 17614 if (btf_is_module(btf)) { 17615 btf_mod->module = btf_try_get_module(btf); 17616 if (!btf_mod->module) { 17617 err = -ENXIO; 17618 goto err_put; 17619 } 17620 } 17621 17622 env->used_btf_cnt++; 17623 17624 return 0; 17625 err_put: 17626 btf_put(btf); 17627 return err; 17628 } 17629 17630 static bool is_tracing_prog_type(enum bpf_prog_type type) 17631 { 17632 switch (type) { 17633 case BPF_PROG_TYPE_KPROBE: 17634 case BPF_PROG_TYPE_TRACEPOINT: 17635 case BPF_PROG_TYPE_PERF_EVENT: 17636 case BPF_PROG_TYPE_RAW_TRACEPOINT: 17637 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 17638 return true; 17639 default: 17640 return false; 17641 } 17642 } 17643 17644 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 17645 struct bpf_map *map, 17646 struct bpf_prog *prog) 17647 17648 { 17649 enum bpf_prog_type prog_type = resolve_prog_type(prog); 17650 17651 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 17652 btf_record_has_field(map->record, BPF_RB_ROOT)) { 17653 if (is_tracing_prog_type(prog_type)) { 17654 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 17655 return -EINVAL; 17656 } 17657 } 17658 17659 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 17660 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 17661 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 17662 return -EINVAL; 17663 } 17664 17665 if (is_tracing_prog_type(prog_type)) { 17666 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 17667 return -EINVAL; 17668 } 17669 } 17670 17671 if (btf_record_has_field(map->record, BPF_TIMER)) { 17672 if (is_tracing_prog_type(prog_type)) { 17673 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 17674 return -EINVAL; 17675 } 17676 } 17677 17678 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 17679 !bpf_offload_prog_map_match(prog, map)) { 17680 verbose(env, "offload device mismatch between prog and map\n"); 17681 return -EINVAL; 17682 } 17683 17684 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 17685 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 17686 return -EINVAL; 17687 } 17688 17689 if (prog->aux->sleepable) 17690 switch (map->map_type) { 17691 case BPF_MAP_TYPE_HASH: 17692 case BPF_MAP_TYPE_LRU_HASH: 17693 case BPF_MAP_TYPE_ARRAY: 17694 case BPF_MAP_TYPE_PERCPU_HASH: 17695 case BPF_MAP_TYPE_PERCPU_ARRAY: 17696 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 17697 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 17698 case BPF_MAP_TYPE_HASH_OF_MAPS: 17699 case BPF_MAP_TYPE_RINGBUF: 17700 case BPF_MAP_TYPE_USER_RINGBUF: 17701 case BPF_MAP_TYPE_INODE_STORAGE: 17702 case BPF_MAP_TYPE_SK_STORAGE: 17703 case BPF_MAP_TYPE_TASK_STORAGE: 17704 case BPF_MAP_TYPE_CGRP_STORAGE: 17705 break; 17706 default: 17707 verbose(env, 17708 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 17709 return -EINVAL; 17710 } 17711 17712 return 0; 17713 } 17714 17715 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 17716 { 17717 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 17718 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 17719 } 17720 17721 /* find and rewrite pseudo imm in ld_imm64 instructions: 17722 * 17723 * 1. if it accesses map FD, replace it with actual map pointer. 17724 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 17725 * 17726 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 17727 */ 17728 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 17729 { 17730 struct bpf_insn *insn = env->prog->insnsi; 17731 int insn_cnt = env->prog->len; 17732 int i, j, err; 17733 17734 err = bpf_prog_calc_tag(env->prog); 17735 if (err) 17736 return err; 17737 17738 for (i = 0; i < insn_cnt; i++, insn++) { 17739 if (BPF_CLASS(insn->code) == BPF_LDX && 17740 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 17741 insn->imm != 0)) { 17742 verbose(env, "BPF_LDX uses reserved fields\n"); 17743 return -EINVAL; 17744 } 17745 17746 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 17747 struct bpf_insn_aux_data *aux; 17748 struct bpf_map *map; 17749 struct fd f; 17750 u64 addr; 17751 u32 fd; 17752 17753 if (i == insn_cnt - 1 || insn[1].code != 0 || 17754 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 17755 insn[1].off != 0) { 17756 verbose(env, "invalid bpf_ld_imm64 insn\n"); 17757 return -EINVAL; 17758 } 17759 17760 if (insn[0].src_reg == 0) 17761 /* valid generic load 64-bit imm */ 17762 goto next_insn; 17763 17764 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 17765 aux = &env->insn_aux_data[i]; 17766 err = check_pseudo_btf_id(env, insn, aux); 17767 if (err) 17768 return err; 17769 goto next_insn; 17770 } 17771 17772 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 17773 aux = &env->insn_aux_data[i]; 17774 aux->ptr_type = PTR_TO_FUNC; 17775 goto next_insn; 17776 } 17777 17778 /* In final convert_pseudo_ld_imm64() step, this is 17779 * converted into regular 64-bit imm load insn. 17780 */ 17781 switch (insn[0].src_reg) { 17782 case BPF_PSEUDO_MAP_VALUE: 17783 case BPF_PSEUDO_MAP_IDX_VALUE: 17784 break; 17785 case BPF_PSEUDO_MAP_FD: 17786 case BPF_PSEUDO_MAP_IDX: 17787 if (insn[1].imm == 0) 17788 break; 17789 fallthrough; 17790 default: 17791 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 17792 return -EINVAL; 17793 } 17794 17795 switch (insn[0].src_reg) { 17796 case BPF_PSEUDO_MAP_IDX_VALUE: 17797 case BPF_PSEUDO_MAP_IDX: 17798 if (bpfptr_is_null(env->fd_array)) { 17799 verbose(env, "fd_idx without fd_array is invalid\n"); 17800 return -EPROTO; 17801 } 17802 if (copy_from_bpfptr_offset(&fd, env->fd_array, 17803 insn[0].imm * sizeof(fd), 17804 sizeof(fd))) 17805 return -EFAULT; 17806 break; 17807 default: 17808 fd = insn[0].imm; 17809 break; 17810 } 17811 17812 f = fdget(fd); 17813 map = __bpf_map_get(f); 17814 if (IS_ERR(map)) { 17815 verbose(env, "fd %d is not pointing to valid bpf_map\n", 17816 insn[0].imm); 17817 return PTR_ERR(map); 17818 } 17819 17820 err = check_map_prog_compatibility(env, map, env->prog); 17821 if (err) { 17822 fdput(f); 17823 return err; 17824 } 17825 17826 aux = &env->insn_aux_data[i]; 17827 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 17828 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 17829 addr = (unsigned long)map; 17830 } else { 17831 u32 off = insn[1].imm; 17832 17833 if (off >= BPF_MAX_VAR_OFF) { 17834 verbose(env, "direct value offset of %u is not allowed\n", off); 17835 fdput(f); 17836 return -EINVAL; 17837 } 17838 17839 if (!map->ops->map_direct_value_addr) { 17840 verbose(env, "no direct value access support for this map type\n"); 17841 fdput(f); 17842 return -EINVAL; 17843 } 17844 17845 err = map->ops->map_direct_value_addr(map, &addr, off); 17846 if (err) { 17847 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 17848 map->value_size, off); 17849 fdput(f); 17850 return err; 17851 } 17852 17853 aux->map_off = off; 17854 addr += off; 17855 } 17856 17857 insn[0].imm = (u32)addr; 17858 insn[1].imm = addr >> 32; 17859 17860 /* check whether we recorded this map already */ 17861 for (j = 0; j < env->used_map_cnt; j++) { 17862 if (env->used_maps[j] == map) { 17863 aux->map_index = j; 17864 fdput(f); 17865 goto next_insn; 17866 } 17867 } 17868 17869 if (env->used_map_cnt >= MAX_USED_MAPS) { 17870 fdput(f); 17871 return -E2BIG; 17872 } 17873 17874 /* hold the map. If the program is rejected by verifier, 17875 * the map will be released by release_maps() or it 17876 * will be used by the valid program until it's unloaded 17877 * and all maps are released in free_used_maps() 17878 */ 17879 bpf_map_inc(map); 17880 17881 aux->map_index = env->used_map_cnt; 17882 env->used_maps[env->used_map_cnt++] = map; 17883 17884 if (bpf_map_is_cgroup_storage(map) && 17885 bpf_cgroup_storage_assign(env->prog->aux, map)) { 17886 verbose(env, "only one cgroup storage of each type is allowed\n"); 17887 fdput(f); 17888 return -EBUSY; 17889 } 17890 17891 fdput(f); 17892 next_insn: 17893 insn++; 17894 i++; 17895 continue; 17896 } 17897 17898 /* Basic sanity check before we invest more work here. */ 17899 if (!bpf_opcode_in_insntable(insn->code)) { 17900 verbose(env, "unknown opcode %02x\n", insn->code); 17901 return -EINVAL; 17902 } 17903 } 17904 17905 /* now all pseudo BPF_LD_IMM64 instructions load valid 17906 * 'struct bpf_map *' into a register instead of user map_fd. 17907 * These pointers will be used later by verifier to validate map access. 17908 */ 17909 return 0; 17910 } 17911 17912 /* drop refcnt of maps used by the rejected program */ 17913 static void release_maps(struct bpf_verifier_env *env) 17914 { 17915 __bpf_free_used_maps(env->prog->aux, env->used_maps, 17916 env->used_map_cnt); 17917 } 17918 17919 /* drop refcnt of maps used by the rejected program */ 17920 static void release_btfs(struct bpf_verifier_env *env) 17921 { 17922 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 17923 env->used_btf_cnt); 17924 } 17925 17926 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 17927 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 17928 { 17929 struct bpf_insn *insn = env->prog->insnsi; 17930 int insn_cnt = env->prog->len; 17931 int i; 17932 17933 for (i = 0; i < insn_cnt; i++, insn++) { 17934 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 17935 continue; 17936 if (insn->src_reg == BPF_PSEUDO_FUNC) 17937 continue; 17938 insn->src_reg = 0; 17939 } 17940 } 17941 17942 /* single env->prog->insni[off] instruction was replaced with the range 17943 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 17944 * [0, off) and [off, end) to new locations, so the patched range stays zero 17945 */ 17946 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 17947 struct bpf_insn_aux_data *new_data, 17948 struct bpf_prog *new_prog, u32 off, u32 cnt) 17949 { 17950 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 17951 struct bpf_insn *insn = new_prog->insnsi; 17952 u32 old_seen = old_data[off].seen; 17953 u32 prog_len; 17954 int i; 17955 17956 /* aux info at OFF always needs adjustment, no matter fast path 17957 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 17958 * original insn at old prog. 17959 */ 17960 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 17961 17962 if (cnt == 1) 17963 return; 17964 prog_len = new_prog->len; 17965 17966 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 17967 memcpy(new_data + off + cnt - 1, old_data + off, 17968 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 17969 for (i = off; i < off + cnt - 1; i++) { 17970 /* Expand insni[off]'s seen count to the patched range. */ 17971 new_data[i].seen = old_seen; 17972 new_data[i].zext_dst = insn_has_def32(env, insn + i); 17973 } 17974 env->insn_aux_data = new_data; 17975 vfree(old_data); 17976 } 17977 17978 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 17979 { 17980 int i; 17981 17982 if (len == 1) 17983 return; 17984 /* NOTE: fake 'exit' subprog should be updated as well. */ 17985 for (i = 0; i <= env->subprog_cnt; i++) { 17986 if (env->subprog_info[i].start <= off) 17987 continue; 17988 env->subprog_info[i].start += len - 1; 17989 } 17990 } 17991 17992 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 17993 { 17994 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 17995 int i, sz = prog->aux->size_poke_tab; 17996 struct bpf_jit_poke_descriptor *desc; 17997 17998 for (i = 0; i < sz; i++) { 17999 desc = &tab[i]; 18000 if (desc->insn_idx <= off) 18001 continue; 18002 desc->insn_idx += len - 1; 18003 } 18004 } 18005 18006 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 18007 const struct bpf_insn *patch, u32 len) 18008 { 18009 struct bpf_prog *new_prog; 18010 struct bpf_insn_aux_data *new_data = NULL; 18011 18012 if (len > 1) { 18013 new_data = vzalloc(array_size(env->prog->len + len - 1, 18014 sizeof(struct bpf_insn_aux_data))); 18015 if (!new_data) 18016 return NULL; 18017 } 18018 18019 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 18020 if (IS_ERR(new_prog)) { 18021 if (PTR_ERR(new_prog) == -ERANGE) 18022 verbose(env, 18023 "insn %d cannot be patched due to 16-bit range\n", 18024 env->insn_aux_data[off].orig_idx); 18025 vfree(new_data); 18026 return NULL; 18027 } 18028 adjust_insn_aux_data(env, new_data, new_prog, off, len); 18029 adjust_subprog_starts(env, off, len); 18030 adjust_poke_descs(new_prog, off, len); 18031 return new_prog; 18032 } 18033 18034 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 18035 u32 off, u32 cnt) 18036 { 18037 int i, j; 18038 18039 /* find first prog starting at or after off (first to remove) */ 18040 for (i = 0; i < env->subprog_cnt; i++) 18041 if (env->subprog_info[i].start >= off) 18042 break; 18043 /* find first prog starting at or after off + cnt (first to stay) */ 18044 for (j = i; j < env->subprog_cnt; j++) 18045 if (env->subprog_info[j].start >= off + cnt) 18046 break; 18047 /* if j doesn't start exactly at off + cnt, we are just removing 18048 * the front of previous prog 18049 */ 18050 if (env->subprog_info[j].start != off + cnt) 18051 j--; 18052 18053 if (j > i) { 18054 struct bpf_prog_aux *aux = env->prog->aux; 18055 int move; 18056 18057 /* move fake 'exit' subprog as well */ 18058 move = env->subprog_cnt + 1 - j; 18059 18060 memmove(env->subprog_info + i, 18061 env->subprog_info + j, 18062 sizeof(*env->subprog_info) * move); 18063 env->subprog_cnt -= j - i; 18064 18065 /* remove func_info */ 18066 if (aux->func_info) { 18067 move = aux->func_info_cnt - j; 18068 18069 memmove(aux->func_info + i, 18070 aux->func_info + j, 18071 sizeof(*aux->func_info) * move); 18072 aux->func_info_cnt -= j - i; 18073 /* func_info->insn_off is set after all code rewrites, 18074 * in adjust_btf_func() - no need to adjust 18075 */ 18076 } 18077 } else { 18078 /* convert i from "first prog to remove" to "first to adjust" */ 18079 if (env->subprog_info[i].start == off) 18080 i++; 18081 } 18082 18083 /* update fake 'exit' subprog as well */ 18084 for (; i <= env->subprog_cnt; i++) 18085 env->subprog_info[i].start -= cnt; 18086 18087 return 0; 18088 } 18089 18090 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 18091 u32 cnt) 18092 { 18093 struct bpf_prog *prog = env->prog; 18094 u32 i, l_off, l_cnt, nr_linfo; 18095 struct bpf_line_info *linfo; 18096 18097 nr_linfo = prog->aux->nr_linfo; 18098 if (!nr_linfo) 18099 return 0; 18100 18101 linfo = prog->aux->linfo; 18102 18103 /* find first line info to remove, count lines to be removed */ 18104 for (i = 0; i < nr_linfo; i++) 18105 if (linfo[i].insn_off >= off) 18106 break; 18107 18108 l_off = i; 18109 l_cnt = 0; 18110 for (; i < nr_linfo; i++) 18111 if (linfo[i].insn_off < off + cnt) 18112 l_cnt++; 18113 else 18114 break; 18115 18116 /* First live insn doesn't match first live linfo, it needs to "inherit" 18117 * last removed linfo. prog is already modified, so prog->len == off 18118 * means no live instructions after (tail of the program was removed). 18119 */ 18120 if (prog->len != off && l_cnt && 18121 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 18122 l_cnt--; 18123 linfo[--i].insn_off = off + cnt; 18124 } 18125 18126 /* remove the line info which refer to the removed instructions */ 18127 if (l_cnt) { 18128 memmove(linfo + l_off, linfo + i, 18129 sizeof(*linfo) * (nr_linfo - i)); 18130 18131 prog->aux->nr_linfo -= l_cnt; 18132 nr_linfo = prog->aux->nr_linfo; 18133 } 18134 18135 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 18136 for (i = l_off; i < nr_linfo; i++) 18137 linfo[i].insn_off -= cnt; 18138 18139 /* fix up all subprogs (incl. 'exit') which start >= off */ 18140 for (i = 0; i <= env->subprog_cnt; i++) 18141 if (env->subprog_info[i].linfo_idx > l_off) { 18142 /* program may have started in the removed region but 18143 * may not be fully removed 18144 */ 18145 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 18146 env->subprog_info[i].linfo_idx -= l_cnt; 18147 else 18148 env->subprog_info[i].linfo_idx = l_off; 18149 } 18150 18151 return 0; 18152 } 18153 18154 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 18155 { 18156 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18157 unsigned int orig_prog_len = env->prog->len; 18158 int err; 18159 18160 if (bpf_prog_is_offloaded(env->prog->aux)) 18161 bpf_prog_offload_remove_insns(env, off, cnt); 18162 18163 err = bpf_remove_insns(env->prog, off, cnt); 18164 if (err) 18165 return err; 18166 18167 err = adjust_subprog_starts_after_remove(env, off, cnt); 18168 if (err) 18169 return err; 18170 18171 err = bpf_adj_linfo_after_remove(env, off, cnt); 18172 if (err) 18173 return err; 18174 18175 memmove(aux_data + off, aux_data + off + cnt, 18176 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 18177 18178 return 0; 18179 } 18180 18181 /* The verifier does more data flow analysis than llvm and will not 18182 * explore branches that are dead at run time. Malicious programs can 18183 * have dead code too. Therefore replace all dead at-run-time code 18184 * with 'ja -1'. 18185 * 18186 * Just nops are not optimal, e.g. if they would sit at the end of the 18187 * program and through another bug we would manage to jump there, then 18188 * we'd execute beyond program memory otherwise. Returning exception 18189 * code also wouldn't work since we can have subprogs where the dead 18190 * code could be located. 18191 */ 18192 static void sanitize_dead_code(struct bpf_verifier_env *env) 18193 { 18194 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18195 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 18196 struct bpf_insn *insn = env->prog->insnsi; 18197 const int insn_cnt = env->prog->len; 18198 int i; 18199 18200 for (i = 0; i < insn_cnt; i++) { 18201 if (aux_data[i].seen) 18202 continue; 18203 memcpy(insn + i, &trap, sizeof(trap)); 18204 aux_data[i].zext_dst = false; 18205 } 18206 } 18207 18208 static bool insn_is_cond_jump(u8 code) 18209 { 18210 u8 op; 18211 18212 op = BPF_OP(code); 18213 if (BPF_CLASS(code) == BPF_JMP32) 18214 return op != BPF_JA; 18215 18216 if (BPF_CLASS(code) != BPF_JMP) 18217 return false; 18218 18219 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 18220 } 18221 18222 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 18223 { 18224 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18225 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18226 struct bpf_insn *insn = env->prog->insnsi; 18227 const int insn_cnt = env->prog->len; 18228 int i; 18229 18230 for (i = 0; i < insn_cnt; i++, insn++) { 18231 if (!insn_is_cond_jump(insn->code)) 18232 continue; 18233 18234 if (!aux_data[i + 1].seen) 18235 ja.off = insn->off; 18236 else if (!aux_data[i + 1 + insn->off].seen) 18237 ja.off = 0; 18238 else 18239 continue; 18240 18241 if (bpf_prog_is_offloaded(env->prog->aux)) 18242 bpf_prog_offload_replace_insn(env, i, &ja); 18243 18244 memcpy(insn, &ja, sizeof(ja)); 18245 } 18246 } 18247 18248 static int opt_remove_dead_code(struct bpf_verifier_env *env) 18249 { 18250 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18251 int insn_cnt = env->prog->len; 18252 int i, err; 18253 18254 for (i = 0; i < insn_cnt; i++) { 18255 int j; 18256 18257 j = 0; 18258 while (i + j < insn_cnt && !aux_data[i + j].seen) 18259 j++; 18260 if (!j) 18261 continue; 18262 18263 err = verifier_remove_insns(env, i, j); 18264 if (err) 18265 return err; 18266 insn_cnt = env->prog->len; 18267 } 18268 18269 return 0; 18270 } 18271 18272 static int opt_remove_nops(struct bpf_verifier_env *env) 18273 { 18274 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18275 struct bpf_insn *insn = env->prog->insnsi; 18276 int insn_cnt = env->prog->len; 18277 int i, err; 18278 18279 for (i = 0; i < insn_cnt; i++) { 18280 if (memcmp(&insn[i], &ja, sizeof(ja))) 18281 continue; 18282 18283 err = verifier_remove_insns(env, i, 1); 18284 if (err) 18285 return err; 18286 insn_cnt--; 18287 i--; 18288 } 18289 18290 return 0; 18291 } 18292 18293 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 18294 const union bpf_attr *attr) 18295 { 18296 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 18297 struct bpf_insn_aux_data *aux = env->insn_aux_data; 18298 int i, patch_len, delta = 0, len = env->prog->len; 18299 struct bpf_insn *insns = env->prog->insnsi; 18300 struct bpf_prog *new_prog; 18301 bool rnd_hi32; 18302 18303 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 18304 zext_patch[1] = BPF_ZEXT_REG(0); 18305 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 18306 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 18307 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 18308 for (i = 0; i < len; i++) { 18309 int adj_idx = i + delta; 18310 struct bpf_insn insn; 18311 int load_reg; 18312 18313 insn = insns[adj_idx]; 18314 load_reg = insn_def_regno(&insn); 18315 if (!aux[adj_idx].zext_dst) { 18316 u8 code, class; 18317 u32 imm_rnd; 18318 18319 if (!rnd_hi32) 18320 continue; 18321 18322 code = insn.code; 18323 class = BPF_CLASS(code); 18324 if (load_reg == -1) 18325 continue; 18326 18327 /* NOTE: arg "reg" (the fourth one) is only used for 18328 * BPF_STX + SRC_OP, so it is safe to pass NULL 18329 * here. 18330 */ 18331 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 18332 if (class == BPF_LD && 18333 BPF_MODE(code) == BPF_IMM) 18334 i++; 18335 continue; 18336 } 18337 18338 /* ctx load could be transformed into wider load. */ 18339 if (class == BPF_LDX && 18340 aux[adj_idx].ptr_type == PTR_TO_CTX) 18341 continue; 18342 18343 imm_rnd = get_random_u32(); 18344 rnd_hi32_patch[0] = insn; 18345 rnd_hi32_patch[1].imm = imm_rnd; 18346 rnd_hi32_patch[3].dst_reg = load_reg; 18347 patch = rnd_hi32_patch; 18348 patch_len = 4; 18349 goto apply_patch_buffer; 18350 } 18351 18352 /* Add in an zero-extend instruction if a) the JIT has requested 18353 * it or b) it's a CMPXCHG. 18354 * 18355 * The latter is because: BPF_CMPXCHG always loads a value into 18356 * R0, therefore always zero-extends. However some archs' 18357 * equivalent instruction only does this load when the 18358 * comparison is successful. This detail of CMPXCHG is 18359 * orthogonal to the general zero-extension behaviour of the 18360 * CPU, so it's treated independently of bpf_jit_needs_zext. 18361 */ 18362 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 18363 continue; 18364 18365 /* Zero-extension is done by the caller. */ 18366 if (bpf_pseudo_kfunc_call(&insn)) 18367 continue; 18368 18369 if (WARN_ON(load_reg == -1)) { 18370 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 18371 return -EFAULT; 18372 } 18373 18374 zext_patch[0] = insn; 18375 zext_patch[1].dst_reg = load_reg; 18376 zext_patch[1].src_reg = load_reg; 18377 patch = zext_patch; 18378 patch_len = 2; 18379 apply_patch_buffer: 18380 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 18381 if (!new_prog) 18382 return -ENOMEM; 18383 env->prog = new_prog; 18384 insns = new_prog->insnsi; 18385 aux = env->insn_aux_data; 18386 delta += patch_len - 1; 18387 } 18388 18389 return 0; 18390 } 18391 18392 /* convert load instructions that access fields of a context type into a 18393 * sequence of instructions that access fields of the underlying structure: 18394 * struct __sk_buff -> struct sk_buff 18395 * struct bpf_sock_ops -> struct sock 18396 */ 18397 static int convert_ctx_accesses(struct bpf_verifier_env *env) 18398 { 18399 const struct bpf_verifier_ops *ops = env->ops; 18400 int i, cnt, size, ctx_field_size, delta = 0; 18401 const int insn_cnt = env->prog->len; 18402 struct bpf_insn insn_buf[16], *insn; 18403 u32 target_size, size_default, off; 18404 struct bpf_prog *new_prog; 18405 enum bpf_access_type type; 18406 bool is_narrower_load; 18407 18408 if (ops->gen_prologue || env->seen_direct_write) { 18409 if (!ops->gen_prologue) { 18410 verbose(env, "bpf verifier is misconfigured\n"); 18411 return -EINVAL; 18412 } 18413 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 18414 env->prog); 18415 if (cnt >= ARRAY_SIZE(insn_buf)) { 18416 verbose(env, "bpf verifier is misconfigured\n"); 18417 return -EINVAL; 18418 } else if (cnt) { 18419 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 18420 if (!new_prog) 18421 return -ENOMEM; 18422 18423 env->prog = new_prog; 18424 delta += cnt - 1; 18425 } 18426 } 18427 18428 if (bpf_prog_is_offloaded(env->prog->aux)) 18429 return 0; 18430 18431 insn = env->prog->insnsi + delta; 18432 18433 for (i = 0; i < insn_cnt; i++, insn++) { 18434 bpf_convert_ctx_access_t convert_ctx_access; 18435 u8 mode; 18436 18437 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 18438 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 18439 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 18440 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 18441 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 18442 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 18443 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 18444 type = BPF_READ; 18445 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 18446 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 18447 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 18448 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 18449 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 18450 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 18451 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 18452 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 18453 type = BPF_WRITE; 18454 } else { 18455 continue; 18456 } 18457 18458 if (type == BPF_WRITE && 18459 env->insn_aux_data[i + delta].sanitize_stack_spill) { 18460 struct bpf_insn patch[] = { 18461 *insn, 18462 BPF_ST_NOSPEC(), 18463 }; 18464 18465 cnt = ARRAY_SIZE(patch); 18466 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 18467 if (!new_prog) 18468 return -ENOMEM; 18469 18470 delta += cnt - 1; 18471 env->prog = new_prog; 18472 insn = new_prog->insnsi + i + delta; 18473 continue; 18474 } 18475 18476 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 18477 case PTR_TO_CTX: 18478 if (!ops->convert_ctx_access) 18479 continue; 18480 convert_ctx_access = ops->convert_ctx_access; 18481 break; 18482 case PTR_TO_SOCKET: 18483 case PTR_TO_SOCK_COMMON: 18484 convert_ctx_access = bpf_sock_convert_ctx_access; 18485 break; 18486 case PTR_TO_TCP_SOCK: 18487 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 18488 break; 18489 case PTR_TO_XDP_SOCK: 18490 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 18491 break; 18492 case PTR_TO_BTF_ID: 18493 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 18494 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 18495 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 18496 * be said once it is marked PTR_UNTRUSTED, hence we must handle 18497 * any faults for loads into such types. BPF_WRITE is disallowed 18498 * for this case. 18499 */ 18500 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 18501 if (type == BPF_READ) { 18502 if (BPF_MODE(insn->code) == BPF_MEM) 18503 insn->code = BPF_LDX | BPF_PROBE_MEM | 18504 BPF_SIZE((insn)->code); 18505 else 18506 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 18507 BPF_SIZE((insn)->code); 18508 env->prog->aux->num_exentries++; 18509 } 18510 continue; 18511 default: 18512 continue; 18513 } 18514 18515 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 18516 size = BPF_LDST_BYTES(insn); 18517 mode = BPF_MODE(insn->code); 18518 18519 /* If the read access is a narrower load of the field, 18520 * convert to a 4/8-byte load, to minimum program type specific 18521 * convert_ctx_access changes. If conversion is successful, 18522 * we will apply proper mask to the result. 18523 */ 18524 is_narrower_load = size < ctx_field_size; 18525 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 18526 off = insn->off; 18527 if (is_narrower_load) { 18528 u8 size_code; 18529 18530 if (type == BPF_WRITE) { 18531 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 18532 return -EINVAL; 18533 } 18534 18535 size_code = BPF_H; 18536 if (ctx_field_size == 4) 18537 size_code = BPF_W; 18538 else if (ctx_field_size == 8) 18539 size_code = BPF_DW; 18540 18541 insn->off = off & ~(size_default - 1); 18542 insn->code = BPF_LDX | BPF_MEM | size_code; 18543 } 18544 18545 target_size = 0; 18546 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 18547 &target_size); 18548 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 18549 (ctx_field_size && !target_size)) { 18550 verbose(env, "bpf verifier is misconfigured\n"); 18551 return -EINVAL; 18552 } 18553 18554 if (is_narrower_load && size < target_size) { 18555 u8 shift = bpf_ctx_narrow_access_offset( 18556 off, size, size_default) * 8; 18557 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 18558 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 18559 return -EINVAL; 18560 } 18561 if (ctx_field_size <= 4) { 18562 if (shift) 18563 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 18564 insn->dst_reg, 18565 shift); 18566 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18567 (1 << size * 8) - 1); 18568 } else { 18569 if (shift) 18570 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 18571 insn->dst_reg, 18572 shift); 18573 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18574 (1ULL << size * 8) - 1); 18575 } 18576 } 18577 if (mode == BPF_MEMSX) 18578 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 18579 insn->dst_reg, insn->dst_reg, 18580 size * 8, 0); 18581 18582 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18583 if (!new_prog) 18584 return -ENOMEM; 18585 18586 delta += cnt - 1; 18587 18588 /* keep walking new program and skip insns we just inserted */ 18589 env->prog = new_prog; 18590 insn = new_prog->insnsi + i + delta; 18591 } 18592 18593 return 0; 18594 } 18595 18596 static int jit_subprogs(struct bpf_verifier_env *env) 18597 { 18598 struct bpf_prog *prog = env->prog, **func, *tmp; 18599 int i, j, subprog_start, subprog_end = 0, len, subprog; 18600 struct bpf_map *map_ptr; 18601 struct bpf_insn *insn; 18602 void *old_bpf_func; 18603 int err, num_exentries; 18604 18605 if (env->subprog_cnt <= 1) 18606 return 0; 18607 18608 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18609 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 18610 continue; 18611 18612 /* Upon error here we cannot fall back to interpreter but 18613 * need a hard reject of the program. Thus -EFAULT is 18614 * propagated in any case. 18615 */ 18616 subprog = find_subprog(env, i + insn->imm + 1); 18617 if (subprog < 0) { 18618 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 18619 i + insn->imm + 1); 18620 return -EFAULT; 18621 } 18622 /* temporarily remember subprog id inside insn instead of 18623 * aux_data, since next loop will split up all insns into funcs 18624 */ 18625 insn->off = subprog; 18626 /* remember original imm in case JIT fails and fallback 18627 * to interpreter will be needed 18628 */ 18629 env->insn_aux_data[i].call_imm = insn->imm; 18630 /* point imm to __bpf_call_base+1 from JITs point of view */ 18631 insn->imm = 1; 18632 if (bpf_pseudo_func(insn)) 18633 /* jit (e.g. x86_64) may emit fewer instructions 18634 * if it learns a u32 imm is the same as a u64 imm. 18635 * Force a non zero here. 18636 */ 18637 insn[1].imm = 1; 18638 } 18639 18640 err = bpf_prog_alloc_jited_linfo(prog); 18641 if (err) 18642 goto out_undo_insn; 18643 18644 err = -ENOMEM; 18645 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 18646 if (!func) 18647 goto out_undo_insn; 18648 18649 for (i = 0; i < env->subprog_cnt; i++) { 18650 subprog_start = subprog_end; 18651 subprog_end = env->subprog_info[i + 1].start; 18652 18653 len = subprog_end - subprog_start; 18654 /* bpf_prog_run() doesn't call subprogs directly, 18655 * hence main prog stats include the runtime of subprogs. 18656 * subprogs don't have IDs and not reachable via prog_get_next_id 18657 * func[i]->stats will never be accessed and stays NULL 18658 */ 18659 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 18660 if (!func[i]) 18661 goto out_free; 18662 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 18663 len * sizeof(struct bpf_insn)); 18664 func[i]->type = prog->type; 18665 func[i]->len = len; 18666 if (bpf_prog_calc_tag(func[i])) 18667 goto out_free; 18668 func[i]->is_func = 1; 18669 func[i]->aux->func_idx = i; 18670 /* Below members will be freed only at prog->aux */ 18671 func[i]->aux->btf = prog->aux->btf; 18672 func[i]->aux->func_info = prog->aux->func_info; 18673 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 18674 func[i]->aux->poke_tab = prog->aux->poke_tab; 18675 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 18676 18677 for (j = 0; j < prog->aux->size_poke_tab; j++) { 18678 struct bpf_jit_poke_descriptor *poke; 18679 18680 poke = &prog->aux->poke_tab[j]; 18681 if (poke->insn_idx < subprog_end && 18682 poke->insn_idx >= subprog_start) 18683 poke->aux = func[i]->aux; 18684 } 18685 18686 func[i]->aux->name[0] = 'F'; 18687 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 18688 func[i]->jit_requested = 1; 18689 func[i]->blinding_requested = prog->blinding_requested; 18690 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 18691 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 18692 func[i]->aux->linfo = prog->aux->linfo; 18693 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 18694 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 18695 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 18696 num_exentries = 0; 18697 insn = func[i]->insnsi; 18698 for (j = 0; j < func[i]->len; j++, insn++) { 18699 if (BPF_CLASS(insn->code) == BPF_LDX && 18700 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 18701 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 18702 num_exentries++; 18703 } 18704 func[i]->aux->num_exentries = num_exentries; 18705 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 18706 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 18707 if (!i) 18708 func[i]->aux->exception_boundary = env->seen_exception; 18709 func[i] = bpf_int_jit_compile(func[i]); 18710 if (!func[i]->jited) { 18711 err = -ENOTSUPP; 18712 goto out_free; 18713 } 18714 cond_resched(); 18715 } 18716 18717 /* at this point all bpf functions were successfully JITed 18718 * now populate all bpf_calls with correct addresses and 18719 * run last pass of JIT 18720 */ 18721 for (i = 0; i < env->subprog_cnt; i++) { 18722 insn = func[i]->insnsi; 18723 for (j = 0; j < func[i]->len; j++, insn++) { 18724 if (bpf_pseudo_func(insn)) { 18725 subprog = insn->off; 18726 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 18727 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 18728 continue; 18729 } 18730 if (!bpf_pseudo_call(insn)) 18731 continue; 18732 subprog = insn->off; 18733 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 18734 } 18735 18736 /* we use the aux data to keep a list of the start addresses 18737 * of the JITed images for each function in the program 18738 * 18739 * for some architectures, such as powerpc64, the imm field 18740 * might not be large enough to hold the offset of the start 18741 * address of the callee's JITed image from __bpf_call_base 18742 * 18743 * in such cases, we can lookup the start address of a callee 18744 * by using its subprog id, available from the off field of 18745 * the call instruction, as an index for this list 18746 */ 18747 func[i]->aux->func = func; 18748 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 18749 func[i]->aux->real_func_cnt = env->subprog_cnt; 18750 } 18751 for (i = 0; i < env->subprog_cnt; i++) { 18752 old_bpf_func = func[i]->bpf_func; 18753 tmp = bpf_int_jit_compile(func[i]); 18754 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 18755 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 18756 err = -ENOTSUPP; 18757 goto out_free; 18758 } 18759 cond_resched(); 18760 } 18761 18762 /* finally lock prog and jit images for all functions and 18763 * populate kallsysm. Begin at the first subprogram, since 18764 * bpf_prog_load will add the kallsyms for the main program. 18765 */ 18766 for (i = 1; i < env->subprog_cnt; i++) { 18767 bpf_prog_lock_ro(func[i]); 18768 bpf_prog_kallsyms_add(func[i]); 18769 } 18770 18771 /* Last step: make now unused interpreter insns from main 18772 * prog consistent for later dump requests, so they can 18773 * later look the same as if they were interpreted only. 18774 */ 18775 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18776 if (bpf_pseudo_func(insn)) { 18777 insn[0].imm = env->insn_aux_data[i].call_imm; 18778 insn[1].imm = insn->off; 18779 insn->off = 0; 18780 continue; 18781 } 18782 if (!bpf_pseudo_call(insn)) 18783 continue; 18784 insn->off = env->insn_aux_data[i].call_imm; 18785 subprog = find_subprog(env, i + insn->off + 1); 18786 insn->imm = subprog; 18787 } 18788 18789 prog->jited = 1; 18790 prog->bpf_func = func[0]->bpf_func; 18791 prog->jited_len = func[0]->jited_len; 18792 prog->aux->extable = func[0]->aux->extable; 18793 prog->aux->num_exentries = func[0]->aux->num_exentries; 18794 prog->aux->func = func; 18795 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 18796 prog->aux->real_func_cnt = env->subprog_cnt; 18797 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 18798 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 18799 bpf_prog_jit_attempt_done(prog); 18800 return 0; 18801 out_free: 18802 /* We failed JIT'ing, so at this point we need to unregister poke 18803 * descriptors from subprogs, so that kernel is not attempting to 18804 * patch it anymore as we're freeing the subprog JIT memory. 18805 */ 18806 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18807 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18808 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 18809 } 18810 /* At this point we're guaranteed that poke descriptors are not 18811 * live anymore. We can just unlink its descriptor table as it's 18812 * released with the main prog. 18813 */ 18814 for (i = 0; i < env->subprog_cnt; i++) { 18815 if (!func[i]) 18816 continue; 18817 func[i]->aux->poke_tab = NULL; 18818 bpf_jit_free(func[i]); 18819 } 18820 kfree(func); 18821 out_undo_insn: 18822 /* cleanup main prog to be interpreted */ 18823 prog->jit_requested = 0; 18824 prog->blinding_requested = 0; 18825 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18826 if (!bpf_pseudo_call(insn)) 18827 continue; 18828 insn->off = 0; 18829 insn->imm = env->insn_aux_data[i].call_imm; 18830 } 18831 bpf_prog_jit_attempt_done(prog); 18832 return err; 18833 } 18834 18835 static int fixup_call_args(struct bpf_verifier_env *env) 18836 { 18837 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18838 struct bpf_prog *prog = env->prog; 18839 struct bpf_insn *insn = prog->insnsi; 18840 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 18841 int i, depth; 18842 #endif 18843 int err = 0; 18844 18845 if (env->prog->jit_requested && 18846 !bpf_prog_is_offloaded(env->prog->aux)) { 18847 err = jit_subprogs(env); 18848 if (err == 0) 18849 return 0; 18850 if (err == -EFAULT) 18851 return err; 18852 } 18853 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18854 if (has_kfunc_call) { 18855 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 18856 return -EINVAL; 18857 } 18858 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 18859 /* When JIT fails the progs with bpf2bpf calls and tail_calls 18860 * have to be rejected, since interpreter doesn't support them yet. 18861 */ 18862 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 18863 return -EINVAL; 18864 } 18865 for (i = 0; i < prog->len; i++, insn++) { 18866 if (bpf_pseudo_func(insn)) { 18867 /* When JIT fails the progs with callback calls 18868 * have to be rejected, since interpreter doesn't support them yet. 18869 */ 18870 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 18871 return -EINVAL; 18872 } 18873 18874 if (!bpf_pseudo_call(insn)) 18875 continue; 18876 depth = get_callee_stack_depth(env, insn, i); 18877 if (depth < 0) 18878 return depth; 18879 bpf_patch_call_args(insn, depth); 18880 } 18881 err = 0; 18882 #endif 18883 return err; 18884 } 18885 18886 /* replace a generic kfunc with a specialized version if necessary */ 18887 static void specialize_kfunc(struct bpf_verifier_env *env, 18888 u32 func_id, u16 offset, unsigned long *addr) 18889 { 18890 struct bpf_prog *prog = env->prog; 18891 bool seen_direct_write; 18892 void *xdp_kfunc; 18893 bool is_rdonly; 18894 18895 if (bpf_dev_bound_kfunc_id(func_id)) { 18896 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 18897 if (xdp_kfunc) { 18898 *addr = (unsigned long)xdp_kfunc; 18899 return; 18900 } 18901 /* fallback to default kfunc when not supported by netdev */ 18902 } 18903 18904 if (offset) 18905 return; 18906 18907 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 18908 seen_direct_write = env->seen_direct_write; 18909 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 18910 18911 if (is_rdonly) 18912 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 18913 18914 /* restore env->seen_direct_write to its original value, since 18915 * may_access_direct_pkt_data mutates it 18916 */ 18917 env->seen_direct_write = seen_direct_write; 18918 } 18919 } 18920 18921 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 18922 u16 struct_meta_reg, 18923 u16 node_offset_reg, 18924 struct bpf_insn *insn, 18925 struct bpf_insn *insn_buf, 18926 int *cnt) 18927 { 18928 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 18929 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 18930 18931 insn_buf[0] = addr[0]; 18932 insn_buf[1] = addr[1]; 18933 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 18934 insn_buf[3] = *insn; 18935 *cnt = 4; 18936 } 18937 18938 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 18939 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 18940 { 18941 const struct bpf_kfunc_desc *desc; 18942 18943 if (!insn->imm) { 18944 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 18945 return -EINVAL; 18946 } 18947 18948 *cnt = 0; 18949 18950 /* insn->imm has the btf func_id. Replace it with an offset relative to 18951 * __bpf_call_base, unless the JIT needs to call functions that are 18952 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 18953 */ 18954 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 18955 if (!desc) { 18956 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 18957 insn->imm); 18958 return -EFAULT; 18959 } 18960 18961 if (!bpf_jit_supports_far_kfunc_call()) 18962 insn->imm = BPF_CALL_IMM(desc->addr); 18963 if (insn->off) 18964 return 0; 18965 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 18966 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 18967 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18968 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18969 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 18970 18971 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 18972 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 18973 insn_idx); 18974 return -EFAULT; 18975 } 18976 18977 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 18978 insn_buf[1] = addr[0]; 18979 insn_buf[2] = addr[1]; 18980 insn_buf[3] = *insn; 18981 *cnt = 4; 18982 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 18983 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 18984 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 18985 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18986 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18987 18988 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 18989 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 18990 insn_idx); 18991 return -EFAULT; 18992 } 18993 18994 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 18995 !kptr_struct_meta) { 18996 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18997 insn_idx); 18998 return -EFAULT; 18999 } 19000 19001 insn_buf[0] = addr[0]; 19002 insn_buf[1] = addr[1]; 19003 insn_buf[2] = *insn; 19004 *cnt = 3; 19005 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 19006 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 19007 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 19008 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19009 int struct_meta_reg = BPF_REG_3; 19010 int node_offset_reg = BPF_REG_4; 19011 19012 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 19013 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 19014 struct_meta_reg = BPF_REG_4; 19015 node_offset_reg = BPF_REG_5; 19016 } 19017 19018 if (!kptr_struct_meta) { 19019 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 19020 insn_idx); 19021 return -EFAULT; 19022 } 19023 19024 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 19025 node_offset_reg, insn, insn_buf, cnt); 19026 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 19027 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 19028 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 19029 *cnt = 1; 19030 } 19031 return 0; 19032 } 19033 19034 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 19035 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 19036 { 19037 struct bpf_subprog_info *info = env->subprog_info; 19038 int cnt = env->subprog_cnt; 19039 struct bpf_prog *prog; 19040 19041 /* We only reserve one slot for hidden subprogs in subprog_info. */ 19042 if (env->hidden_subprog_cnt) { 19043 verbose(env, "verifier internal error: only one hidden subprog supported\n"); 19044 return -EFAULT; 19045 } 19046 /* We're not patching any existing instruction, just appending the new 19047 * ones for the hidden subprog. Hence all of the adjustment operations 19048 * in bpf_patch_insn_data are no-ops. 19049 */ 19050 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 19051 if (!prog) 19052 return -ENOMEM; 19053 env->prog = prog; 19054 info[cnt + 1].start = info[cnt].start; 19055 info[cnt].start = prog->len - len + 1; 19056 env->subprog_cnt++; 19057 env->hidden_subprog_cnt++; 19058 return 0; 19059 } 19060 19061 /* Do various post-verification rewrites in a single program pass. 19062 * These rewrites simplify JIT and interpreter implementations. 19063 */ 19064 static int do_misc_fixups(struct bpf_verifier_env *env) 19065 { 19066 struct bpf_prog *prog = env->prog; 19067 enum bpf_attach_type eatype = prog->expected_attach_type; 19068 enum bpf_prog_type prog_type = resolve_prog_type(prog); 19069 struct bpf_insn *insn = prog->insnsi; 19070 const struct bpf_func_proto *fn; 19071 const int insn_cnt = prog->len; 19072 const struct bpf_map_ops *ops; 19073 struct bpf_insn_aux_data *aux; 19074 struct bpf_insn insn_buf[16]; 19075 struct bpf_prog *new_prog; 19076 struct bpf_map *map_ptr; 19077 int i, ret, cnt, delta = 0; 19078 19079 if (env->seen_exception && !env->exception_callback_subprog) { 19080 struct bpf_insn patch[] = { 19081 env->prog->insnsi[insn_cnt - 1], 19082 BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), 19083 BPF_EXIT_INSN(), 19084 }; 19085 19086 ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch)); 19087 if (ret < 0) 19088 return ret; 19089 prog = env->prog; 19090 insn = prog->insnsi; 19091 19092 env->exception_callback_subprog = env->subprog_cnt - 1; 19093 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 19094 env->subprog_info[env->exception_callback_subprog].is_cb = true; 19095 env->subprog_info[env->exception_callback_subprog].is_async_cb = true; 19096 env->subprog_info[env->exception_callback_subprog].is_exception_cb = true; 19097 } 19098 19099 for (i = 0; i < insn_cnt; i++, insn++) { 19100 /* Make divide-by-zero exceptions impossible. */ 19101 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 19102 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 19103 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 19104 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 19105 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 19106 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 19107 struct bpf_insn *patchlet; 19108 struct bpf_insn chk_and_div[] = { 19109 /* [R,W]x div 0 -> 0 */ 19110 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 19111 BPF_JNE | BPF_K, insn->src_reg, 19112 0, 2, 0), 19113 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 19114 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 19115 *insn, 19116 }; 19117 struct bpf_insn chk_and_mod[] = { 19118 /* [R,W]x mod 0 -> [R,W]x */ 19119 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 19120 BPF_JEQ | BPF_K, insn->src_reg, 19121 0, 1 + (is64 ? 0 : 1), 0), 19122 *insn, 19123 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 19124 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 19125 }; 19126 19127 patchlet = isdiv ? chk_and_div : chk_and_mod; 19128 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 19129 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 19130 19131 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 19132 if (!new_prog) 19133 return -ENOMEM; 19134 19135 delta += cnt - 1; 19136 env->prog = prog = new_prog; 19137 insn = new_prog->insnsi + i + delta; 19138 continue; 19139 } 19140 19141 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 19142 if (BPF_CLASS(insn->code) == BPF_LD && 19143 (BPF_MODE(insn->code) == BPF_ABS || 19144 BPF_MODE(insn->code) == BPF_IND)) { 19145 cnt = env->ops->gen_ld_abs(insn, insn_buf); 19146 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19147 verbose(env, "bpf verifier is misconfigured\n"); 19148 return -EINVAL; 19149 } 19150 19151 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19152 if (!new_prog) 19153 return -ENOMEM; 19154 19155 delta += cnt - 1; 19156 env->prog = prog = new_prog; 19157 insn = new_prog->insnsi + i + delta; 19158 continue; 19159 } 19160 19161 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 19162 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 19163 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 19164 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 19165 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 19166 struct bpf_insn *patch = &insn_buf[0]; 19167 bool issrc, isneg, isimm; 19168 u32 off_reg; 19169 19170 aux = &env->insn_aux_data[i + delta]; 19171 if (!aux->alu_state || 19172 aux->alu_state == BPF_ALU_NON_POINTER) 19173 continue; 19174 19175 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 19176 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 19177 BPF_ALU_SANITIZE_SRC; 19178 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 19179 19180 off_reg = issrc ? insn->src_reg : insn->dst_reg; 19181 if (isimm) { 19182 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 19183 } else { 19184 if (isneg) 19185 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 19186 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 19187 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 19188 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 19189 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 19190 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 19191 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 19192 } 19193 if (!issrc) 19194 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 19195 insn->src_reg = BPF_REG_AX; 19196 if (isneg) 19197 insn->code = insn->code == code_add ? 19198 code_sub : code_add; 19199 *patch++ = *insn; 19200 if (issrc && isneg && !isimm) 19201 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 19202 cnt = patch - insn_buf; 19203 19204 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19205 if (!new_prog) 19206 return -ENOMEM; 19207 19208 delta += cnt - 1; 19209 env->prog = prog = new_prog; 19210 insn = new_prog->insnsi + i + delta; 19211 continue; 19212 } 19213 19214 if (insn->code != (BPF_JMP | BPF_CALL)) 19215 continue; 19216 if (insn->src_reg == BPF_PSEUDO_CALL) 19217 continue; 19218 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 19219 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 19220 if (ret) 19221 return ret; 19222 if (cnt == 0) 19223 continue; 19224 19225 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19226 if (!new_prog) 19227 return -ENOMEM; 19228 19229 delta += cnt - 1; 19230 env->prog = prog = new_prog; 19231 insn = new_prog->insnsi + i + delta; 19232 continue; 19233 } 19234 19235 if (insn->imm == BPF_FUNC_get_route_realm) 19236 prog->dst_needed = 1; 19237 if (insn->imm == BPF_FUNC_get_prandom_u32) 19238 bpf_user_rnd_init_once(); 19239 if (insn->imm == BPF_FUNC_override_return) 19240 prog->kprobe_override = 1; 19241 if (insn->imm == BPF_FUNC_tail_call) { 19242 /* If we tail call into other programs, we 19243 * cannot make any assumptions since they can 19244 * be replaced dynamically during runtime in 19245 * the program array. 19246 */ 19247 prog->cb_access = 1; 19248 if (!allow_tail_call_in_subprogs(env)) 19249 prog->aux->stack_depth = MAX_BPF_STACK; 19250 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 19251 19252 /* mark bpf_tail_call as different opcode to avoid 19253 * conditional branch in the interpreter for every normal 19254 * call and to prevent accidental JITing by JIT compiler 19255 * that doesn't support bpf_tail_call yet 19256 */ 19257 insn->imm = 0; 19258 insn->code = BPF_JMP | BPF_TAIL_CALL; 19259 19260 aux = &env->insn_aux_data[i + delta]; 19261 if (env->bpf_capable && !prog->blinding_requested && 19262 prog->jit_requested && 19263 !bpf_map_key_poisoned(aux) && 19264 !bpf_map_ptr_poisoned(aux) && 19265 !bpf_map_ptr_unpriv(aux)) { 19266 struct bpf_jit_poke_descriptor desc = { 19267 .reason = BPF_POKE_REASON_TAIL_CALL, 19268 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 19269 .tail_call.key = bpf_map_key_immediate(aux), 19270 .insn_idx = i + delta, 19271 }; 19272 19273 ret = bpf_jit_add_poke_descriptor(prog, &desc); 19274 if (ret < 0) { 19275 verbose(env, "adding tail call poke descriptor failed\n"); 19276 return ret; 19277 } 19278 19279 insn->imm = ret + 1; 19280 continue; 19281 } 19282 19283 if (!bpf_map_ptr_unpriv(aux)) 19284 continue; 19285 19286 /* instead of changing every JIT dealing with tail_call 19287 * emit two extra insns: 19288 * if (index >= max_entries) goto out; 19289 * index &= array->index_mask; 19290 * to avoid out-of-bounds cpu speculation 19291 */ 19292 if (bpf_map_ptr_poisoned(aux)) { 19293 verbose(env, "tail_call abusing map_ptr\n"); 19294 return -EINVAL; 19295 } 19296 19297 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19298 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 19299 map_ptr->max_entries, 2); 19300 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 19301 container_of(map_ptr, 19302 struct bpf_array, 19303 map)->index_mask); 19304 insn_buf[2] = *insn; 19305 cnt = 3; 19306 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19307 if (!new_prog) 19308 return -ENOMEM; 19309 19310 delta += cnt - 1; 19311 env->prog = prog = new_prog; 19312 insn = new_prog->insnsi + i + delta; 19313 continue; 19314 } 19315 19316 if (insn->imm == BPF_FUNC_timer_set_callback) { 19317 /* The verifier will process callback_fn as many times as necessary 19318 * with different maps and the register states prepared by 19319 * set_timer_callback_state will be accurate. 19320 * 19321 * The following use case is valid: 19322 * map1 is shared by prog1, prog2, prog3. 19323 * prog1 calls bpf_timer_init for some map1 elements 19324 * prog2 calls bpf_timer_set_callback for some map1 elements. 19325 * Those that were not bpf_timer_init-ed will return -EINVAL. 19326 * prog3 calls bpf_timer_start for some map1 elements. 19327 * Those that were not both bpf_timer_init-ed and 19328 * bpf_timer_set_callback-ed will return -EINVAL. 19329 */ 19330 struct bpf_insn ld_addrs[2] = { 19331 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 19332 }; 19333 19334 insn_buf[0] = ld_addrs[0]; 19335 insn_buf[1] = ld_addrs[1]; 19336 insn_buf[2] = *insn; 19337 cnt = 3; 19338 19339 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19340 if (!new_prog) 19341 return -ENOMEM; 19342 19343 delta += cnt - 1; 19344 env->prog = prog = new_prog; 19345 insn = new_prog->insnsi + i + delta; 19346 goto patch_call_imm; 19347 } 19348 19349 if (is_storage_get_function(insn->imm)) { 19350 if (!env->prog->aux->sleepable || 19351 env->insn_aux_data[i + delta].storage_get_func_atomic) 19352 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 19353 else 19354 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 19355 insn_buf[1] = *insn; 19356 cnt = 2; 19357 19358 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19359 if (!new_prog) 19360 return -ENOMEM; 19361 19362 delta += cnt - 1; 19363 env->prog = prog = new_prog; 19364 insn = new_prog->insnsi + i + delta; 19365 goto patch_call_imm; 19366 } 19367 19368 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 19369 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 19370 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 19371 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 19372 */ 19373 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 19374 insn_buf[1] = *insn; 19375 cnt = 2; 19376 19377 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19378 if (!new_prog) 19379 return -ENOMEM; 19380 19381 delta += cnt - 1; 19382 env->prog = prog = new_prog; 19383 insn = new_prog->insnsi + i + delta; 19384 goto patch_call_imm; 19385 } 19386 19387 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 19388 * and other inlining handlers are currently limited to 64 bit 19389 * only. 19390 */ 19391 if (prog->jit_requested && BITS_PER_LONG == 64 && 19392 (insn->imm == BPF_FUNC_map_lookup_elem || 19393 insn->imm == BPF_FUNC_map_update_elem || 19394 insn->imm == BPF_FUNC_map_delete_elem || 19395 insn->imm == BPF_FUNC_map_push_elem || 19396 insn->imm == BPF_FUNC_map_pop_elem || 19397 insn->imm == BPF_FUNC_map_peek_elem || 19398 insn->imm == BPF_FUNC_redirect_map || 19399 insn->imm == BPF_FUNC_for_each_map_elem || 19400 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 19401 aux = &env->insn_aux_data[i + delta]; 19402 if (bpf_map_ptr_poisoned(aux)) 19403 goto patch_call_imm; 19404 19405 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19406 ops = map_ptr->ops; 19407 if (insn->imm == BPF_FUNC_map_lookup_elem && 19408 ops->map_gen_lookup) { 19409 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 19410 if (cnt == -EOPNOTSUPP) 19411 goto patch_map_ops_generic; 19412 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19413 verbose(env, "bpf verifier is misconfigured\n"); 19414 return -EINVAL; 19415 } 19416 19417 new_prog = bpf_patch_insn_data(env, i + delta, 19418 insn_buf, cnt); 19419 if (!new_prog) 19420 return -ENOMEM; 19421 19422 delta += cnt - 1; 19423 env->prog = prog = new_prog; 19424 insn = new_prog->insnsi + i + delta; 19425 continue; 19426 } 19427 19428 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 19429 (void *(*)(struct bpf_map *map, void *key))NULL)); 19430 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 19431 (long (*)(struct bpf_map *map, void *key))NULL)); 19432 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 19433 (long (*)(struct bpf_map *map, void *key, void *value, 19434 u64 flags))NULL)); 19435 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 19436 (long (*)(struct bpf_map *map, void *value, 19437 u64 flags))NULL)); 19438 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 19439 (long (*)(struct bpf_map *map, void *value))NULL)); 19440 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 19441 (long (*)(struct bpf_map *map, void *value))NULL)); 19442 BUILD_BUG_ON(!__same_type(ops->map_redirect, 19443 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 19444 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 19445 (long (*)(struct bpf_map *map, 19446 bpf_callback_t callback_fn, 19447 void *callback_ctx, 19448 u64 flags))NULL)); 19449 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 19450 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 19451 19452 patch_map_ops_generic: 19453 switch (insn->imm) { 19454 case BPF_FUNC_map_lookup_elem: 19455 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 19456 continue; 19457 case BPF_FUNC_map_update_elem: 19458 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 19459 continue; 19460 case BPF_FUNC_map_delete_elem: 19461 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 19462 continue; 19463 case BPF_FUNC_map_push_elem: 19464 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 19465 continue; 19466 case BPF_FUNC_map_pop_elem: 19467 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 19468 continue; 19469 case BPF_FUNC_map_peek_elem: 19470 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 19471 continue; 19472 case BPF_FUNC_redirect_map: 19473 insn->imm = BPF_CALL_IMM(ops->map_redirect); 19474 continue; 19475 case BPF_FUNC_for_each_map_elem: 19476 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 19477 continue; 19478 case BPF_FUNC_map_lookup_percpu_elem: 19479 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 19480 continue; 19481 } 19482 19483 goto patch_call_imm; 19484 } 19485 19486 /* Implement bpf_jiffies64 inline. */ 19487 if (prog->jit_requested && BITS_PER_LONG == 64 && 19488 insn->imm == BPF_FUNC_jiffies64) { 19489 struct bpf_insn ld_jiffies_addr[2] = { 19490 BPF_LD_IMM64(BPF_REG_0, 19491 (unsigned long)&jiffies), 19492 }; 19493 19494 insn_buf[0] = ld_jiffies_addr[0]; 19495 insn_buf[1] = ld_jiffies_addr[1]; 19496 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 19497 BPF_REG_0, 0); 19498 cnt = 3; 19499 19500 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 19501 cnt); 19502 if (!new_prog) 19503 return -ENOMEM; 19504 19505 delta += cnt - 1; 19506 env->prog = prog = new_prog; 19507 insn = new_prog->insnsi + i + delta; 19508 continue; 19509 } 19510 19511 /* Implement bpf_get_func_arg inline. */ 19512 if (prog_type == BPF_PROG_TYPE_TRACING && 19513 insn->imm == BPF_FUNC_get_func_arg) { 19514 /* Load nr_args from ctx - 8 */ 19515 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19516 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 19517 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 19518 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 19519 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 19520 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19521 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 19522 insn_buf[7] = BPF_JMP_A(1); 19523 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 19524 cnt = 9; 19525 19526 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19527 if (!new_prog) 19528 return -ENOMEM; 19529 19530 delta += cnt - 1; 19531 env->prog = prog = new_prog; 19532 insn = new_prog->insnsi + i + delta; 19533 continue; 19534 } 19535 19536 /* Implement bpf_get_func_ret inline. */ 19537 if (prog_type == BPF_PROG_TYPE_TRACING && 19538 insn->imm == BPF_FUNC_get_func_ret) { 19539 if (eatype == BPF_TRACE_FEXIT || 19540 eatype == BPF_MODIFY_RETURN) { 19541 /* Load nr_args from ctx - 8 */ 19542 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19543 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 19544 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 19545 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19546 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 19547 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 19548 cnt = 6; 19549 } else { 19550 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 19551 cnt = 1; 19552 } 19553 19554 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19555 if (!new_prog) 19556 return -ENOMEM; 19557 19558 delta += cnt - 1; 19559 env->prog = prog = new_prog; 19560 insn = new_prog->insnsi + i + delta; 19561 continue; 19562 } 19563 19564 /* Implement get_func_arg_cnt inline. */ 19565 if (prog_type == BPF_PROG_TYPE_TRACING && 19566 insn->imm == BPF_FUNC_get_func_arg_cnt) { 19567 /* Load nr_args from ctx - 8 */ 19568 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19569 19570 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19571 if (!new_prog) 19572 return -ENOMEM; 19573 19574 env->prog = prog = new_prog; 19575 insn = new_prog->insnsi + i + delta; 19576 continue; 19577 } 19578 19579 /* Implement bpf_get_func_ip inline. */ 19580 if (prog_type == BPF_PROG_TYPE_TRACING && 19581 insn->imm == BPF_FUNC_get_func_ip) { 19582 /* Load IP address from ctx - 16 */ 19583 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 19584 19585 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19586 if (!new_prog) 19587 return -ENOMEM; 19588 19589 env->prog = prog = new_prog; 19590 insn = new_prog->insnsi + i + delta; 19591 continue; 19592 } 19593 19594 patch_call_imm: 19595 fn = env->ops->get_func_proto(insn->imm, env->prog); 19596 /* all functions that have prototype and verifier allowed 19597 * programs to call them, must be real in-kernel functions 19598 */ 19599 if (!fn->func) { 19600 verbose(env, 19601 "kernel subsystem misconfigured func %s#%d\n", 19602 func_id_name(insn->imm), insn->imm); 19603 return -EFAULT; 19604 } 19605 insn->imm = fn->func - __bpf_call_base; 19606 } 19607 19608 /* Since poke tab is now finalized, publish aux to tracker. */ 19609 for (i = 0; i < prog->aux->size_poke_tab; i++) { 19610 map_ptr = prog->aux->poke_tab[i].tail_call.map; 19611 if (!map_ptr->ops->map_poke_track || 19612 !map_ptr->ops->map_poke_untrack || 19613 !map_ptr->ops->map_poke_run) { 19614 verbose(env, "bpf verifier is misconfigured\n"); 19615 return -EINVAL; 19616 } 19617 19618 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 19619 if (ret < 0) { 19620 verbose(env, "tracking tail call prog failed\n"); 19621 return ret; 19622 } 19623 } 19624 19625 sort_kfunc_descs_by_imm_off(env->prog); 19626 19627 return 0; 19628 } 19629 19630 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 19631 int position, 19632 s32 stack_base, 19633 u32 callback_subprogno, 19634 u32 *cnt) 19635 { 19636 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 19637 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 19638 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 19639 int reg_loop_max = BPF_REG_6; 19640 int reg_loop_cnt = BPF_REG_7; 19641 int reg_loop_ctx = BPF_REG_8; 19642 19643 struct bpf_prog *new_prog; 19644 u32 callback_start; 19645 u32 call_insn_offset; 19646 s32 callback_offset; 19647 19648 /* This represents an inlined version of bpf_iter.c:bpf_loop, 19649 * be careful to modify this code in sync. 19650 */ 19651 struct bpf_insn insn_buf[] = { 19652 /* Return error and jump to the end of the patch if 19653 * expected number of iterations is too big. 19654 */ 19655 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 19656 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 19657 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 19658 /* spill R6, R7, R8 to use these as loop vars */ 19659 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 19660 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 19661 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 19662 /* initialize loop vars */ 19663 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 19664 BPF_MOV32_IMM(reg_loop_cnt, 0), 19665 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 19666 /* loop header, 19667 * if reg_loop_cnt >= reg_loop_max skip the loop body 19668 */ 19669 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 19670 /* callback call, 19671 * correct callback offset would be set after patching 19672 */ 19673 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 19674 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 19675 BPF_CALL_REL(0), 19676 /* increment loop counter */ 19677 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 19678 /* jump to loop header if callback returned 0 */ 19679 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 19680 /* return value of bpf_loop, 19681 * set R0 to the number of iterations 19682 */ 19683 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 19684 /* restore original values of R6, R7, R8 */ 19685 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 19686 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 19687 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 19688 }; 19689 19690 *cnt = ARRAY_SIZE(insn_buf); 19691 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 19692 if (!new_prog) 19693 return new_prog; 19694 19695 /* callback start is known only after patching */ 19696 callback_start = env->subprog_info[callback_subprogno].start; 19697 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 19698 call_insn_offset = position + 12; 19699 callback_offset = callback_start - call_insn_offset - 1; 19700 new_prog->insnsi[call_insn_offset].imm = callback_offset; 19701 19702 return new_prog; 19703 } 19704 19705 static bool is_bpf_loop_call(struct bpf_insn *insn) 19706 { 19707 return insn->code == (BPF_JMP | BPF_CALL) && 19708 insn->src_reg == 0 && 19709 insn->imm == BPF_FUNC_loop; 19710 } 19711 19712 /* For all sub-programs in the program (including main) check 19713 * insn_aux_data to see if there are bpf_loop calls that require 19714 * inlining. If such calls are found the calls are replaced with a 19715 * sequence of instructions produced by `inline_bpf_loop` function and 19716 * subprog stack_depth is increased by the size of 3 registers. 19717 * This stack space is used to spill values of the R6, R7, R8. These 19718 * registers are used to store the loop bound, counter and context 19719 * variables. 19720 */ 19721 static int optimize_bpf_loop(struct bpf_verifier_env *env) 19722 { 19723 struct bpf_subprog_info *subprogs = env->subprog_info; 19724 int i, cur_subprog = 0, cnt, delta = 0; 19725 struct bpf_insn *insn = env->prog->insnsi; 19726 int insn_cnt = env->prog->len; 19727 u16 stack_depth = subprogs[cur_subprog].stack_depth; 19728 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19729 u16 stack_depth_extra = 0; 19730 19731 for (i = 0; i < insn_cnt; i++, insn++) { 19732 struct bpf_loop_inline_state *inline_state = 19733 &env->insn_aux_data[i + delta].loop_inline_state; 19734 19735 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 19736 struct bpf_prog *new_prog; 19737 19738 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 19739 new_prog = inline_bpf_loop(env, 19740 i + delta, 19741 -(stack_depth + stack_depth_extra), 19742 inline_state->callback_subprogno, 19743 &cnt); 19744 if (!new_prog) 19745 return -ENOMEM; 19746 19747 delta += cnt - 1; 19748 env->prog = new_prog; 19749 insn = new_prog->insnsi + i + delta; 19750 } 19751 19752 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 19753 subprogs[cur_subprog].stack_depth += stack_depth_extra; 19754 cur_subprog++; 19755 stack_depth = subprogs[cur_subprog].stack_depth; 19756 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19757 stack_depth_extra = 0; 19758 } 19759 } 19760 19761 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19762 19763 return 0; 19764 } 19765 19766 static void free_states(struct bpf_verifier_env *env) 19767 { 19768 struct bpf_verifier_state_list *sl, *sln; 19769 int i; 19770 19771 sl = env->free_list; 19772 while (sl) { 19773 sln = sl->next; 19774 free_verifier_state(&sl->state, false); 19775 kfree(sl); 19776 sl = sln; 19777 } 19778 env->free_list = NULL; 19779 19780 if (!env->explored_states) 19781 return; 19782 19783 for (i = 0; i < state_htab_size(env); i++) { 19784 sl = env->explored_states[i]; 19785 19786 while (sl) { 19787 sln = sl->next; 19788 free_verifier_state(&sl->state, false); 19789 kfree(sl); 19790 sl = sln; 19791 } 19792 env->explored_states[i] = NULL; 19793 } 19794 } 19795 19796 static int do_check_common(struct bpf_verifier_env *env, int subprog, bool is_ex_cb) 19797 { 19798 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19799 struct bpf_verifier_state *state; 19800 struct bpf_reg_state *regs; 19801 int ret, i; 19802 19803 env->prev_linfo = NULL; 19804 env->pass_cnt++; 19805 19806 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 19807 if (!state) 19808 return -ENOMEM; 19809 state->curframe = 0; 19810 state->speculative = false; 19811 state->branches = 1; 19812 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 19813 if (!state->frame[0]) { 19814 kfree(state); 19815 return -ENOMEM; 19816 } 19817 env->cur_state = state; 19818 init_func_state(env, state->frame[0], 19819 BPF_MAIN_FUNC /* callsite */, 19820 0 /* frameno */, 19821 subprog); 19822 state->first_insn_idx = env->subprog_info[subprog].start; 19823 state->last_insn_idx = -1; 19824 19825 regs = state->frame[state->curframe]->regs; 19826 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 19827 ret = btf_prepare_func_args(env, subprog, regs, is_ex_cb); 19828 if (ret) 19829 goto out; 19830 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 19831 if (regs[i].type == PTR_TO_CTX) 19832 mark_reg_known_zero(env, regs, i); 19833 else if (regs[i].type == SCALAR_VALUE) 19834 mark_reg_unknown(env, regs, i); 19835 else if (base_type(regs[i].type) == PTR_TO_MEM) { 19836 const u32 mem_size = regs[i].mem_size; 19837 19838 mark_reg_known_zero(env, regs, i); 19839 regs[i].mem_size = mem_size; 19840 regs[i].id = ++env->id_gen; 19841 } 19842 } 19843 if (is_ex_cb) { 19844 state->frame[0]->in_exception_callback_fn = true; 19845 env->subprog_info[subprog].is_cb = true; 19846 env->subprog_info[subprog].is_async_cb = true; 19847 env->subprog_info[subprog].is_exception_cb = true; 19848 } 19849 } else { 19850 /* 1st arg to a function */ 19851 regs[BPF_REG_1].type = PTR_TO_CTX; 19852 mark_reg_known_zero(env, regs, BPF_REG_1); 19853 ret = btf_check_subprog_arg_match(env, subprog, regs); 19854 if (ret == -EFAULT) 19855 /* unlikely verifier bug. abort. 19856 * ret == 0 and ret < 0 are sadly acceptable for 19857 * main() function due to backward compatibility. 19858 * Like socket filter program may be written as: 19859 * int bpf_prog(struct pt_regs *ctx) 19860 * and never dereference that ctx in the program. 19861 * 'struct pt_regs' is a type mismatch for socket 19862 * filter that should be using 'struct __sk_buff'. 19863 */ 19864 goto out; 19865 } 19866 19867 ret = do_check(env); 19868 out: 19869 /* check for NULL is necessary, since cur_state can be freed inside 19870 * do_check() under memory pressure. 19871 */ 19872 if (env->cur_state) { 19873 free_verifier_state(env->cur_state, true); 19874 env->cur_state = NULL; 19875 } 19876 while (!pop_stack(env, NULL, NULL, false)); 19877 if (!ret && pop_log) 19878 bpf_vlog_reset(&env->log, 0); 19879 free_states(env); 19880 return ret; 19881 } 19882 19883 /* Lazily verify all global functions based on their BTF, if they are called 19884 * from main BPF program or any of subprograms transitively. 19885 * BPF global subprogs called from dead code are not validated. 19886 * All callable global functions must pass verification. 19887 * Otherwise the whole program is rejected. 19888 * Consider: 19889 * int bar(int); 19890 * int foo(int f) 19891 * { 19892 * return bar(f); 19893 * } 19894 * int bar(int b) 19895 * { 19896 * ... 19897 * } 19898 * foo() will be verified first for R1=any_scalar_value. During verification it 19899 * will be assumed that bar() already verified successfully and call to bar() 19900 * from foo() will be checked for type match only. Later bar() will be verified 19901 * independently to check that it's safe for R1=any_scalar_value. 19902 */ 19903 static int do_check_subprogs(struct bpf_verifier_env *env) 19904 { 19905 struct bpf_prog_aux *aux = env->prog->aux; 19906 struct bpf_func_info_aux *sub_aux; 19907 int i, ret, new_cnt; 19908 19909 if (!aux->func_info) 19910 return 0; 19911 19912 /* exception callback is presumed to be always called */ 19913 if (env->exception_callback_subprog) 19914 subprog_aux(env, env->exception_callback_subprog)->called = true; 19915 19916 again: 19917 new_cnt = 0; 19918 for (i = 1; i < env->subprog_cnt; i++) { 19919 if (!subprog_is_global(env, i)) 19920 continue; 19921 19922 sub_aux = subprog_aux(env, i); 19923 if (!sub_aux->called || sub_aux->verified) 19924 continue; 19925 19926 env->insn_idx = env->subprog_info[i].start; 19927 WARN_ON_ONCE(env->insn_idx == 0); 19928 ret = do_check_common(env, i, env->exception_callback_subprog == i); 19929 if (ret) { 19930 return ret; 19931 } else if (env->log.level & BPF_LOG_LEVEL) { 19932 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 19933 i, subprog_name(env, i)); 19934 } 19935 19936 /* We verified new global subprog, it might have called some 19937 * more global subprogs that we haven't verified yet, so we 19938 * need to do another pass over subprogs to verify those. 19939 */ 19940 sub_aux->verified = true; 19941 new_cnt++; 19942 } 19943 19944 /* We can't loop forever as we verify at least one global subprog on 19945 * each pass. 19946 */ 19947 if (new_cnt) 19948 goto again; 19949 19950 return 0; 19951 } 19952 19953 static int do_check_main(struct bpf_verifier_env *env) 19954 { 19955 int ret; 19956 19957 env->insn_idx = 0; 19958 ret = do_check_common(env, 0, false); 19959 if (!ret) 19960 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19961 return ret; 19962 } 19963 19964 19965 static void print_verification_stats(struct bpf_verifier_env *env) 19966 { 19967 int i; 19968 19969 if (env->log.level & BPF_LOG_STATS) { 19970 verbose(env, "verification time %lld usec\n", 19971 div_u64(env->verification_time, 1000)); 19972 verbose(env, "stack depth "); 19973 for (i = 0; i < env->subprog_cnt; i++) { 19974 u32 depth = env->subprog_info[i].stack_depth; 19975 19976 verbose(env, "%d", depth); 19977 if (i + 1 < env->subprog_cnt) 19978 verbose(env, "+"); 19979 } 19980 verbose(env, "\n"); 19981 } 19982 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 19983 "total_states %d peak_states %d mark_read %d\n", 19984 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 19985 env->max_states_per_insn, env->total_states, 19986 env->peak_states, env->longest_mark_read_walk); 19987 } 19988 19989 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 19990 { 19991 const struct btf_type *t, *func_proto; 19992 const struct bpf_struct_ops *st_ops; 19993 const struct btf_member *member; 19994 struct bpf_prog *prog = env->prog; 19995 u32 btf_id, member_idx; 19996 const char *mname; 19997 19998 if (!prog->gpl_compatible) { 19999 verbose(env, "struct ops programs must have a GPL compatible license\n"); 20000 return -EINVAL; 20001 } 20002 20003 btf_id = prog->aux->attach_btf_id; 20004 st_ops = bpf_struct_ops_find(btf_id); 20005 if (!st_ops) { 20006 verbose(env, "attach_btf_id %u is not a supported struct\n", 20007 btf_id); 20008 return -ENOTSUPP; 20009 } 20010 20011 t = st_ops->type; 20012 member_idx = prog->expected_attach_type; 20013 if (member_idx >= btf_type_vlen(t)) { 20014 verbose(env, "attach to invalid member idx %u of struct %s\n", 20015 member_idx, st_ops->name); 20016 return -EINVAL; 20017 } 20018 20019 member = &btf_type_member(t)[member_idx]; 20020 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 20021 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 20022 NULL); 20023 if (!func_proto) { 20024 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 20025 mname, member_idx, st_ops->name); 20026 return -EINVAL; 20027 } 20028 20029 if (st_ops->check_member) { 20030 int err = st_ops->check_member(t, member, prog); 20031 20032 if (err) { 20033 verbose(env, "attach to unsupported member %s of struct %s\n", 20034 mname, st_ops->name); 20035 return err; 20036 } 20037 } 20038 20039 prog->aux->attach_func_proto = func_proto; 20040 prog->aux->attach_func_name = mname; 20041 env->ops = st_ops->verifier_ops; 20042 20043 return 0; 20044 } 20045 #define SECURITY_PREFIX "security_" 20046 20047 static int check_attach_modify_return(unsigned long addr, const char *func_name) 20048 { 20049 if (within_error_injection_list(addr) || 20050 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 20051 return 0; 20052 20053 return -EINVAL; 20054 } 20055 20056 /* list of non-sleepable functions that are otherwise on 20057 * ALLOW_ERROR_INJECTION list 20058 */ 20059 BTF_SET_START(btf_non_sleepable_error_inject) 20060 /* Three functions below can be called from sleepable and non-sleepable context. 20061 * Assume non-sleepable from bpf safety point of view. 20062 */ 20063 BTF_ID(func, __filemap_add_folio) 20064 BTF_ID(func, should_fail_alloc_page) 20065 BTF_ID(func, should_failslab) 20066 BTF_SET_END(btf_non_sleepable_error_inject) 20067 20068 static int check_non_sleepable_error_inject(u32 btf_id) 20069 { 20070 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 20071 } 20072 20073 int bpf_check_attach_target(struct bpf_verifier_log *log, 20074 const struct bpf_prog *prog, 20075 const struct bpf_prog *tgt_prog, 20076 u32 btf_id, 20077 struct bpf_attach_target_info *tgt_info) 20078 { 20079 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 20080 const char prefix[] = "btf_trace_"; 20081 int ret = 0, subprog = -1, i; 20082 const struct btf_type *t; 20083 bool conservative = true; 20084 const char *tname; 20085 struct btf *btf; 20086 long addr = 0; 20087 struct module *mod = NULL; 20088 20089 if (!btf_id) { 20090 bpf_log(log, "Tracing programs must provide btf_id\n"); 20091 return -EINVAL; 20092 } 20093 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 20094 if (!btf) { 20095 bpf_log(log, 20096 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 20097 return -EINVAL; 20098 } 20099 t = btf_type_by_id(btf, btf_id); 20100 if (!t) { 20101 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 20102 return -EINVAL; 20103 } 20104 tname = btf_name_by_offset(btf, t->name_off); 20105 if (!tname) { 20106 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 20107 return -EINVAL; 20108 } 20109 if (tgt_prog) { 20110 struct bpf_prog_aux *aux = tgt_prog->aux; 20111 20112 if (bpf_prog_is_dev_bound(prog->aux) && 20113 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 20114 bpf_log(log, "Target program bound device mismatch"); 20115 return -EINVAL; 20116 } 20117 20118 for (i = 0; i < aux->func_info_cnt; i++) 20119 if (aux->func_info[i].type_id == btf_id) { 20120 subprog = i; 20121 break; 20122 } 20123 if (subprog == -1) { 20124 bpf_log(log, "Subprog %s doesn't exist\n", tname); 20125 return -EINVAL; 20126 } 20127 if (aux->func && aux->func[subprog]->aux->exception_cb) { 20128 bpf_log(log, 20129 "%s programs cannot attach to exception callback\n", 20130 prog_extension ? "Extension" : "FENTRY/FEXIT"); 20131 return -EINVAL; 20132 } 20133 conservative = aux->func_info_aux[subprog].unreliable; 20134 if (prog_extension) { 20135 if (conservative) { 20136 bpf_log(log, 20137 "Cannot replace static functions\n"); 20138 return -EINVAL; 20139 } 20140 if (!prog->jit_requested) { 20141 bpf_log(log, 20142 "Extension programs should be JITed\n"); 20143 return -EINVAL; 20144 } 20145 } 20146 if (!tgt_prog->jited) { 20147 bpf_log(log, "Can attach to only JITed progs\n"); 20148 return -EINVAL; 20149 } 20150 if (tgt_prog->type == prog->type) { 20151 /* Cannot fentry/fexit another fentry/fexit program. 20152 * Cannot attach program extension to another extension. 20153 * It's ok to attach fentry/fexit to extension program. 20154 */ 20155 bpf_log(log, "Cannot recursively attach\n"); 20156 return -EINVAL; 20157 } 20158 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 20159 prog_extension && 20160 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 20161 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 20162 /* Program extensions can extend all program types 20163 * except fentry/fexit. The reason is the following. 20164 * The fentry/fexit programs are used for performance 20165 * analysis, stats and can be attached to any program 20166 * type except themselves. When extension program is 20167 * replacing XDP function it is necessary to allow 20168 * performance analysis of all functions. Both original 20169 * XDP program and its program extension. Hence 20170 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 20171 * allowed. If extending of fentry/fexit was allowed it 20172 * would be possible to create long call chain 20173 * fentry->extension->fentry->extension beyond 20174 * reasonable stack size. Hence extending fentry is not 20175 * allowed. 20176 */ 20177 bpf_log(log, "Cannot extend fentry/fexit\n"); 20178 return -EINVAL; 20179 } 20180 } else { 20181 if (prog_extension) { 20182 bpf_log(log, "Cannot replace kernel functions\n"); 20183 return -EINVAL; 20184 } 20185 } 20186 20187 switch (prog->expected_attach_type) { 20188 case BPF_TRACE_RAW_TP: 20189 if (tgt_prog) { 20190 bpf_log(log, 20191 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 20192 return -EINVAL; 20193 } 20194 if (!btf_type_is_typedef(t)) { 20195 bpf_log(log, "attach_btf_id %u is not a typedef\n", 20196 btf_id); 20197 return -EINVAL; 20198 } 20199 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 20200 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 20201 btf_id, tname); 20202 return -EINVAL; 20203 } 20204 tname += sizeof(prefix) - 1; 20205 t = btf_type_by_id(btf, t->type); 20206 if (!btf_type_is_ptr(t)) 20207 /* should never happen in valid vmlinux build */ 20208 return -EINVAL; 20209 t = btf_type_by_id(btf, t->type); 20210 if (!btf_type_is_func_proto(t)) 20211 /* should never happen in valid vmlinux build */ 20212 return -EINVAL; 20213 20214 break; 20215 case BPF_TRACE_ITER: 20216 if (!btf_type_is_func(t)) { 20217 bpf_log(log, "attach_btf_id %u is not a function\n", 20218 btf_id); 20219 return -EINVAL; 20220 } 20221 t = btf_type_by_id(btf, t->type); 20222 if (!btf_type_is_func_proto(t)) 20223 return -EINVAL; 20224 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 20225 if (ret) 20226 return ret; 20227 break; 20228 default: 20229 if (!prog_extension) 20230 return -EINVAL; 20231 fallthrough; 20232 case BPF_MODIFY_RETURN: 20233 case BPF_LSM_MAC: 20234 case BPF_LSM_CGROUP: 20235 case BPF_TRACE_FENTRY: 20236 case BPF_TRACE_FEXIT: 20237 if (!btf_type_is_func(t)) { 20238 bpf_log(log, "attach_btf_id %u is not a function\n", 20239 btf_id); 20240 return -EINVAL; 20241 } 20242 if (prog_extension && 20243 btf_check_type_match(log, prog, btf, t)) 20244 return -EINVAL; 20245 t = btf_type_by_id(btf, t->type); 20246 if (!btf_type_is_func_proto(t)) 20247 return -EINVAL; 20248 20249 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 20250 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 20251 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 20252 return -EINVAL; 20253 20254 if (tgt_prog && conservative) 20255 t = NULL; 20256 20257 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 20258 if (ret < 0) 20259 return ret; 20260 20261 if (tgt_prog) { 20262 if (subprog == 0) 20263 addr = (long) tgt_prog->bpf_func; 20264 else 20265 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 20266 } else { 20267 if (btf_is_module(btf)) { 20268 mod = btf_try_get_module(btf); 20269 if (mod) 20270 addr = find_kallsyms_symbol_value(mod, tname); 20271 else 20272 addr = 0; 20273 } else { 20274 addr = kallsyms_lookup_name(tname); 20275 } 20276 if (!addr) { 20277 module_put(mod); 20278 bpf_log(log, 20279 "The address of function %s cannot be found\n", 20280 tname); 20281 return -ENOENT; 20282 } 20283 } 20284 20285 if (prog->aux->sleepable) { 20286 ret = -EINVAL; 20287 switch (prog->type) { 20288 case BPF_PROG_TYPE_TRACING: 20289 20290 /* fentry/fexit/fmod_ret progs can be sleepable if they are 20291 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 20292 */ 20293 if (!check_non_sleepable_error_inject(btf_id) && 20294 within_error_injection_list(addr)) 20295 ret = 0; 20296 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 20297 * in the fmodret id set with the KF_SLEEPABLE flag. 20298 */ 20299 else { 20300 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 20301 prog); 20302 20303 if (flags && (*flags & KF_SLEEPABLE)) 20304 ret = 0; 20305 } 20306 break; 20307 case BPF_PROG_TYPE_LSM: 20308 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 20309 * Only some of them are sleepable. 20310 */ 20311 if (bpf_lsm_is_sleepable_hook(btf_id)) 20312 ret = 0; 20313 break; 20314 default: 20315 break; 20316 } 20317 if (ret) { 20318 module_put(mod); 20319 bpf_log(log, "%s is not sleepable\n", tname); 20320 return ret; 20321 } 20322 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 20323 if (tgt_prog) { 20324 module_put(mod); 20325 bpf_log(log, "can't modify return codes of BPF programs\n"); 20326 return -EINVAL; 20327 } 20328 ret = -EINVAL; 20329 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 20330 !check_attach_modify_return(addr, tname)) 20331 ret = 0; 20332 if (ret) { 20333 module_put(mod); 20334 bpf_log(log, "%s() is not modifiable\n", tname); 20335 return ret; 20336 } 20337 } 20338 20339 break; 20340 } 20341 tgt_info->tgt_addr = addr; 20342 tgt_info->tgt_name = tname; 20343 tgt_info->tgt_type = t; 20344 tgt_info->tgt_mod = mod; 20345 return 0; 20346 } 20347 20348 BTF_SET_START(btf_id_deny) 20349 BTF_ID_UNUSED 20350 #ifdef CONFIG_SMP 20351 BTF_ID(func, migrate_disable) 20352 BTF_ID(func, migrate_enable) 20353 #endif 20354 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 20355 BTF_ID(func, rcu_read_unlock_strict) 20356 #endif 20357 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 20358 BTF_ID(func, preempt_count_add) 20359 BTF_ID(func, preempt_count_sub) 20360 #endif 20361 #ifdef CONFIG_PREEMPT_RCU 20362 BTF_ID(func, __rcu_read_lock) 20363 BTF_ID(func, __rcu_read_unlock) 20364 #endif 20365 BTF_SET_END(btf_id_deny) 20366 20367 static bool can_be_sleepable(struct bpf_prog *prog) 20368 { 20369 if (prog->type == BPF_PROG_TYPE_TRACING) { 20370 switch (prog->expected_attach_type) { 20371 case BPF_TRACE_FENTRY: 20372 case BPF_TRACE_FEXIT: 20373 case BPF_MODIFY_RETURN: 20374 case BPF_TRACE_ITER: 20375 return true; 20376 default: 20377 return false; 20378 } 20379 } 20380 return prog->type == BPF_PROG_TYPE_LSM || 20381 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 20382 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 20383 } 20384 20385 static int check_attach_btf_id(struct bpf_verifier_env *env) 20386 { 20387 struct bpf_prog *prog = env->prog; 20388 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 20389 struct bpf_attach_target_info tgt_info = {}; 20390 u32 btf_id = prog->aux->attach_btf_id; 20391 struct bpf_trampoline *tr; 20392 int ret; 20393 u64 key; 20394 20395 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 20396 if (prog->aux->sleepable) 20397 /* attach_btf_id checked to be zero already */ 20398 return 0; 20399 verbose(env, "Syscall programs can only be sleepable\n"); 20400 return -EINVAL; 20401 } 20402 20403 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 20404 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 20405 return -EINVAL; 20406 } 20407 20408 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 20409 return check_struct_ops_btf_id(env); 20410 20411 if (prog->type != BPF_PROG_TYPE_TRACING && 20412 prog->type != BPF_PROG_TYPE_LSM && 20413 prog->type != BPF_PROG_TYPE_EXT) 20414 return 0; 20415 20416 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 20417 if (ret) 20418 return ret; 20419 20420 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 20421 /* to make freplace equivalent to their targets, they need to 20422 * inherit env->ops and expected_attach_type for the rest of the 20423 * verification 20424 */ 20425 env->ops = bpf_verifier_ops[tgt_prog->type]; 20426 prog->expected_attach_type = tgt_prog->expected_attach_type; 20427 } 20428 20429 /* store info about the attachment target that will be used later */ 20430 prog->aux->attach_func_proto = tgt_info.tgt_type; 20431 prog->aux->attach_func_name = tgt_info.tgt_name; 20432 prog->aux->mod = tgt_info.tgt_mod; 20433 20434 if (tgt_prog) { 20435 prog->aux->saved_dst_prog_type = tgt_prog->type; 20436 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 20437 } 20438 20439 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 20440 prog->aux->attach_btf_trace = true; 20441 return 0; 20442 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 20443 if (!bpf_iter_prog_supported(prog)) 20444 return -EINVAL; 20445 return 0; 20446 } 20447 20448 if (prog->type == BPF_PROG_TYPE_LSM) { 20449 ret = bpf_lsm_verify_prog(&env->log, prog); 20450 if (ret < 0) 20451 return ret; 20452 } else if (prog->type == BPF_PROG_TYPE_TRACING && 20453 btf_id_set_contains(&btf_id_deny, btf_id)) { 20454 return -EINVAL; 20455 } 20456 20457 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 20458 tr = bpf_trampoline_get(key, &tgt_info); 20459 if (!tr) 20460 return -ENOMEM; 20461 20462 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 20463 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 20464 20465 prog->aux->dst_trampoline = tr; 20466 return 0; 20467 } 20468 20469 struct btf *bpf_get_btf_vmlinux(void) 20470 { 20471 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 20472 mutex_lock(&bpf_verifier_lock); 20473 if (!btf_vmlinux) 20474 btf_vmlinux = btf_parse_vmlinux(); 20475 mutex_unlock(&bpf_verifier_lock); 20476 } 20477 return btf_vmlinux; 20478 } 20479 20480 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 20481 { 20482 u64 start_time = ktime_get_ns(); 20483 struct bpf_verifier_env *env; 20484 int i, len, ret = -EINVAL, err; 20485 u32 log_true_size; 20486 bool is_priv; 20487 20488 /* no program is valid */ 20489 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 20490 return -EINVAL; 20491 20492 /* 'struct bpf_verifier_env' can be global, but since it's not small, 20493 * allocate/free it every time bpf_check() is called 20494 */ 20495 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 20496 if (!env) 20497 return -ENOMEM; 20498 20499 env->bt.env = env; 20500 20501 len = (*prog)->len; 20502 env->insn_aux_data = 20503 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 20504 ret = -ENOMEM; 20505 if (!env->insn_aux_data) 20506 goto err_free_env; 20507 for (i = 0; i < len; i++) 20508 env->insn_aux_data[i].orig_idx = i; 20509 env->prog = *prog; 20510 env->ops = bpf_verifier_ops[env->prog->type]; 20511 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 20512 is_priv = bpf_capable(); 20513 20514 bpf_get_btf_vmlinux(); 20515 20516 /* grab the mutex to protect few globals used by verifier */ 20517 if (!is_priv) 20518 mutex_lock(&bpf_verifier_lock); 20519 20520 /* user could have requested verbose verifier output 20521 * and supplied buffer to store the verification trace 20522 */ 20523 ret = bpf_vlog_init(&env->log, attr->log_level, 20524 (char __user *) (unsigned long) attr->log_buf, 20525 attr->log_size); 20526 if (ret) 20527 goto err_unlock; 20528 20529 mark_verifier_state_clean(env); 20530 20531 if (IS_ERR(btf_vmlinux)) { 20532 /* Either gcc or pahole or kernel are broken. */ 20533 verbose(env, "in-kernel BTF is malformed\n"); 20534 ret = PTR_ERR(btf_vmlinux); 20535 goto skip_full_check; 20536 } 20537 20538 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 20539 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 20540 env->strict_alignment = true; 20541 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 20542 env->strict_alignment = false; 20543 20544 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 20545 env->allow_uninit_stack = bpf_allow_uninit_stack(); 20546 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 20547 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 20548 env->bpf_capable = bpf_capable(); 20549 20550 if (is_priv) 20551 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 20552 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 20553 20554 env->explored_states = kvcalloc(state_htab_size(env), 20555 sizeof(struct bpf_verifier_state_list *), 20556 GFP_USER); 20557 ret = -ENOMEM; 20558 if (!env->explored_states) 20559 goto skip_full_check; 20560 20561 ret = check_btf_info_early(env, attr, uattr); 20562 if (ret < 0) 20563 goto skip_full_check; 20564 20565 ret = add_subprog_and_kfunc(env); 20566 if (ret < 0) 20567 goto skip_full_check; 20568 20569 ret = check_subprogs(env); 20570 if (ret < 0) 20571 goto skip_full_check; 20572 20573 ret = check_btf_info(env, attr, uattr); 20574 if (ret < 0) 20575 goto skip_full_check; 20576 20577 ret = check_attach_btf_id(env); 20578 if (ret) 20579 goto skip_full_check; 20580 20581 ret = resolve_pseudo_ldimm64(env); 20582 if (ret < 0) 20583 goto skip_full_check; 20584 20585 if (bpf_prog_is_offloaded(env->prog->aux)) { 20586 ret = bpf_prog_offload_verifier_prep(env->prog); 20587 if (ret) 20588 goto skip_full_check; 20589 } 20590 20591 ret = check_cfg(env); 20592 if (ret < 0) 20593 goto skip_full_check; 20594 20595 ret = do_check_main(env); 20596 ret = ret ?: do_check_subprogs(env); 20597 20598 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 20599 ret = bpf_prog_offload_finalize(env); 20600 20601 skip_full_check: 20602 kvfree(env->explored_states); 20603 20604 if (ret == 0) 20605 ret = check_max_stack_depth(env); 20606 20607 /* instruction rewrites happen after this point */ 20608 if (ret == 0) 20609 ret = optimize_bpf_loop(env); 20610 20611 if (is_priv) { 20612 if (ret == 0) 20613 opt_hard_wire_dead_code_branches(env); 20614 if (ret == 0) 20615 ret = opt_remove_dead_code(env); 20616 if (ret == 0) 20617 ret = opt_remove_nops(env); 20618 } else { 20619 if (ret == 0) 20620 sanitize_dead_code(env); 20621 } 20622 20623 if (ret == 0) 20624 /* program is valid, convert *(u32*)(ctx + off) accesses */ 20625 ret = convert_ctx_accesses(env); 20626 20627 if (ret == 0) 20628 ret = do_misc_fixups(env); 20629 20630 /* do 32-bit optimization after insn patching has done so those patched 20631 * insns could be handled correctly. 20632 */ 20633 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 20634 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 20635 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 20636 : false; 20637 } 20638 20639 if (ret == 0) 20640 ret = fixup_call_args(env); 20641 20642 env->verification_time = ktime_get_ns() - start_time; 20643 print_verification_stats(env); 20644 env->prog->aux->verified_insns = env->insn_processed; 20645 20646 /* preserve original error even if log finalization is successful */ 20647 err = bpf_vlog_finalize(&env->log, &log_true_size); 20648 if (err) 20649 ret = err; 20650 20651 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 20652 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 20653 &log_true_size, sizeof(log_true_size))) { 20654 ret = -EFAULT; 20655 goto err_release_maps; 20656 } 20657 20658 if (ret) 20659 goto err_release_maps; 20660 20661 if (env->used_map_cnt) { 20662 /* if program passed verifier, update used_maps in bpf_prog_info */ 20663 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 20664 sizeof(env->used_maps[0]), 20665 GFP_KERNEL); 20666 20667 if (!env->prog->aux->used_maps) { 20668 ret = -ENOMEM; 20669 goto err_release_maps; 20670 } 20671 20672 memcpy(env->prog->aux->used_maps, env->used_maps, 20673 sizeof(env->used_maps[0]) * env->used_map_cnt); 20674 env->prog->aux->used_map_cnt = env->used_map_cnt; 20675 } 20676 if (env->used_btf_cnt) { 20677 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 20678 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 20679 sizeof(env->used_btfs[0]), 20680 GFP_KERNEL); 20681 if (!env->prog->aux->used_btfs) { 20682 ret = -ENOMEM; 20683 goto err_release_maps; 20684 } 20685 20686 memcpy(env->prog->aux->used_btfs, env->used_btfs, 20687 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 20688 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 20689 } 20690 if (env->used_map_cnt || env->used_btf_cnt) { 20691 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 20692 * bpf_ld_imm64 instructions 20693 */ 20694 convert_pseudo_ld_imm64(env); 20695 } 20696 20697 adjust_btf_func(env); 20698 20699 err_release_maps: 20700 if (!env->prog->aux->used_maps) 20701 /* if we didn't copy map pointers into bpf_prog_info, release 20702 * them now. Otherwise free_used_maps() will release them. 20703 */ 20704 release_maps(env); 20705 if (!env->prog->aux->used_btfs) 20706 release_btfs(env); 20707 20708 /* extension progs temporarily inherit the attach_type of their targets 20709 for verification purposes, so set it back to zero before returning 20710 */ 20711 if (env->prog->type == BPF_PROG_TYPE_EXT) 20712 env->prog->expected_attach_type = 0; 20713 20714 *prog = env->prog; 20715 err_unlock: 20716 if (!is_priv) 20717 mutex_unlock(&bpf_verifier_lock); 20718 vfree(env->insn_aux_data); 20719 err_free_env: 20720 kfree(env); 20721 return ret; 20722 } 20723