xref: /linux/kernel/bpf/verifier.c (revision 79997eda0d31bc68203c95ecb978773ee6ce7a1f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <net/xdp.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
39 #undef BPF_PROG_TYPE
40 #undef BPF_MAP_TYPE
41 #undef BPF_LINK_TYPE
42 };
43 
44 /* bpf_check() is a static code analyzer that walks eBPF program
45  * instruction by instruction and updates register/stack state.
46  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
47  *
48  * The first pass is depth-first-search to check that the program is a DAG.
49  * It rejects the following programs:
50  * - larger than BPF_MAXINSNS insns
51  * - if loop is present (detected via back-edge)
52  * - unreachable insns exist (shouldn't be a forest. program = one function)
53  * - out of bounds or malformed jumps
54  * The second pass is all possible path descent from the 1st insn.
55  * Since it's analyzing all paths through the program, the length of the
56  * analysis is limited to 64k insn, which may be hit even if total number of
57  * insn is less then 4K, but there are too many branches that change stack/regs.
58  * Number of 'branches to be analyzed' is limited to 1k
59  *
60  * On entry to each instruction, each register has a type, and the instruction
61  * changes the types of the registers depending on instruction semantics.
62  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63  * copied to R1.
64  *
65  * All registers are 64-bit.
66  * R0 - return register
67  * R1-R5 argument passing registers
68  * R6-R9 callee saved registers
69  * R10 - frame pointer read-only
70  *
71  * At the start of BPF program the register R1 contains a pointer to bpf_context
72  * and has type PTR_TO_CTX.
73  *
74  * Verifier tracks arithmetic operations on pointers in case:
75  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77  * 1st insn copies R10 (which has FRAME_PTR) type into R1
78  * and 2nd arithmetic instruction is pattern matched to recognize
79  * that it wants to construct a pointer to some element within stack.
80  * So after 2nd insn, the register R1 has type PTR_TO_STACK
81  * (and -20 constant is saved for further stack bounds checking).
82  * Meaning that this reg is a pointer to stack plus known immediate constant.
83  *
84  * Most of the time the registers have SCALAR_VALUE type, which
85  * means the register has some value, but it's not a valid pointer.
86  * (like pointer plus pointer becomes SCALAR_VALUE type)
87  *
88  * When verifier sees load or store instructions the type of base register
89  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90  * four pointer types recognized by check_mem_access() function.
91  *
92  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93  * and the range of [ptr, ptr + map's value_size) is accessible.
94  *
95  * registers used to pass values to function calls are checked against
96  * function argument constraints.
97  *
98  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99  * It means that the register type passed to this function must be
100  * PTR_TO_STACK and it will be used inside the function as
101  * 'pointer to map element key'
102  *
103  * For example the argument constraints for bpf_map_lookup_elem():
104  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105  *   .arg1_type = ARG_CONST_MAP_PTR,
106  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
107  *
108  * ret_type says that this function returns 'pointer to map elem value or null'
109  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110  * 2nd argument should be a pointer to stack, which will be used inside
111  * the helper function as a pointer to map element key.
112  *
113  * On the kernel side the helper function looks like:
114  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
115  * {
116  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117  *    void *key = (void *) (unsigned long) r2;
118  *    void *value;
119  *
120  *    here kernel can access 'key' and 'map' pointers safely, knowing that
121  *    [key, key + map->key_size) bytes are valid and were initialized on
122  *    the stack of eBPF program.
123  * }
124  *
125  * Corresponding eBPF program may look like:
126  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
127  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
129  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130  * here verifier looks at prototype of map_lookup_elem() and sees:
131  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
133  *
134  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136  * and were initialized prior to this call.
137  * If it's ok, then verifier allows this BPF_CALL insn and looks at
138  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140  * returns either pointer to map value or NULL.
141  *
142  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143  * insn, the register holding that pointer in the true branch changes state to
144  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145  * branch. See check_cond_jmp_op().
146  *
147  * After the call R0 is set to return type of the function and registers R1-R5
148  * are set to NOT_INIT to indicate that they are no longer readable.
149  *
150  * The following reference types represent a potential reference to a kernel
151  * resource which, after first being allocated, must be checked and freed by
152  * the BPF program:
153  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
154  *
155  * When the verifier sees a helper call return a reference type, it allocates a
156  * pointer id for the reference and stores it in the current function state.
157  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159  * passes through a NULL-check conditional. For the branch wherein the state is
160  * changed to CONST_IMM, the verifier releases the reference.
161  *
162  * For each helper function that allocates a reference, such as
163  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164  * bpf_sk_release(). When a reference type passes into the release function,
165  * the verifier also releases the reference. If any unchecked or unreleased
166  * reference remains at the end of the program, the verifier rejects it.
167  */
168 
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171 	/* verifer state is 'st'
172 	 * before processing instruction 'insn_idx'
173 	 * and after processing instruction 'prev_insn_idx'
174 	 */
175 	struct bpf_verifier_state st;
176 	int insn_idx;
177 	int prev_insn_idx;
178 	struct bpf_verifier_stack_elem *next;
179 	/* length of verifier log at the time this state was pushed on stack */
180 	u32 log_pos;
181 };
182 
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
184 #define BPF_COMPLEXITY_LIMIT_STATES	64
185 
186 #define BPF_MAP_KEY_POISON	(1ULL << 63)
187 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
188 
189 #define BPF_MAP_PTR_UNPRIV	1UL
190 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
191 					  POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
193 
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199 			      struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201 			     u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
203 
204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
205 {
206 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
207 }
208 
209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
210 {
211 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
212 }
213 
214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 			      const struct bpf_map *map, bool unpriv)
216 {
217 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 	unpriv |= bpf_map_ptr_unpriv(aux);
219 	aux->map_ptr_state = (unsigned long)map |
220 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
221 }
222 
223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & BPF_MAP_KEY_POISON;
226 }
227 
228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
229 {
230 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
231 }
232 
233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
234 {
235 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
236 }
237 
238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
239 {
240 	bool poisoned = bpf_map_key_poisoned(aux);
241 
242 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
244 }
245 
246 static bool bpf_helper_call(const struct bpf_insn *insn)
247 {
248 	return insn->code == (BPF_JMP | BPF_CALL) &&
249 	       insn->src_reg == 0;
250 }
251 
252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
253 {
254 	return insn->code == (BPF_JMP | BPF_CALL) &&
255 	       insn->src_reg == BPF_PSEUDO_CALL;
256 }
257 
258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
259 {
260 	return insn->code == (BPF_JMP | BPF_CALL) &&
261 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
262 }
263 
264 struct bpf_call_arg_meta {
265 	struct bpf_map *map_ptr;
266 	bool raw_mode;
267 	bool pkt_access;
268 	u8 release_regno;
269 	int regno;
270 	int access_size;
271 	int mem_size;
272 	u64 msize_max_value;
273 	int ref_obj_id;
274 	int dynptr_id;
275 	int map_uid;
276 	int func_id;
277 	struct btf *btf;
278 	u32 btf_id;
279 	struct btf *ret_btf;
280 	u32 ret_btf_id;
281 	u32 subprogno;
282 	struct btf_field *kptr_field;
283 };
284 
285 struct bpf_kfunc_call_arg_meta {
286 	/* In parameters */
287 	struct btf *btf;
288 	u32 func_id;
289 	u32 kfunc_flags;
290 	const struct btf_type *func_proto;
291 	const char *func_name;
292 	/* Out parameters */
293 	u32 ref_obj_id;
294 	u8 release_regno;
295 	bool r0_rdonly;
296 	u32 ret_btf_id;
297 	u64 r0_size;
298 	u32 subprogno;
299 	struct {
300 		u64 value;
301 		bool found;
302 	} arg_constant;
303 
304 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305 	 * generally to pass info about user-defined local kptr types to later
306 	 * verification logic
307 	 *   bpf_obj_drop/bpf_percpu_obj_drop
308 	 *     Record the local kptr type to be drop'd
309 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310 	 *     Record the local kptr type to be refcount_incr'd and use
311 	 *     arg_owning_ref to determine whether refcount_acquire should be
312 	 *     fallible
313 	 */
314 	struct btf *arg_btf;
315 	u32 arg_btf_id;
316 	bool arg_owning_ref;
317 
318 	struct {
319 		struct btf_field *field;
320 	} arg_list_head;
321 	struct {
322 		struct btf_field *field;
323 	} arg_rbtree_root;
324 	struct {
325 		enum bpf_dynptr_type type;
326 		u32 id;
327 		u32 ref_obj_id;
328 	} initialized_dynptr;
329 	struct {
330 		u8 spi;
331 		u8 frameno;
332 	} iter;
333 	u64 mem_size;
334 };
335 
336 struct btf *btf_vmlinux;
337 
338 static DEFINE_MUTEX(bpf_verifier_lock);
339 
340 static const struct bpf_line_info *
341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
342 {
343 	const struct bpf_line_info *linfo;
344 	const struct bpf_prog *prog;
345 	u32 i, nr_linfo;
346 
347 	prog = env->prog;
348 	nr_linfo = prog->aux->nr_linfo;
349 
350 	if (!nr_linfo || insn_off >= prog->len)
351 		return NULL;
352 
353 	linfo = prog->aux->linfo;
354 	for (i = 1; i < nr_linfo; i++)
355 		if (insn_off < linfo[i].insn_off)
356 			break;
357 
358 	return &linfo[i - 1];
359 }
360 
361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
362 {
363 	struct bpf_verifier_env *env = private_data;
364 	va_list args;
365 
366 	if (!bpf_verifier_log_needed(&env->log))
367 		return;
368 
369 	va_start(args, fmt);
370 	bpf_verifier_vlog(&env->log, fmt, args);
371 	va_end(args);
372 }
373 
374 static const char *ltrim(const char *s)
375 {
376 	while (isspace(*s))
377 		s++;
378 
379 	return s;
380 }
381 
382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 					 u32 insn_off,
384 					 const char *prefix_fmt, ...)
385 {
386 	const struct bpf_line_info *linfo;
387 
388 	if (!bpf_verifier_log_needed(&env->log))
389 		return;
390 
391 	linfo = find_linfo(env, insn_off);
392 	if (!linfo || linfo == env->prev_linfo)
393 		return;
394 
395 	if (prefix_fmt) {
396 		va_list args;
397 
398 		va_start(args, prefix_fmt);
399 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 		va_end(args);
401 	}
402 
403 	verbose(env, "%s\n",
404 		ltrim(btf_name_by_offset(env->prog->aux->btf,
405 					 linfo->line_off)));
406 
407 	env->prev_linfo = linfo;
408 }
409 
410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 				   struct bpf_reg_state *reg,
412 				   struct tnum *range, const char *ctx,
413 				   const char *reg_name)
414 {
415 	char tn_buf[48];
416 
417 	verbose(env, "At %s the register %s ", ctx, reg_name);
418 	if (!tnum_is_unknown(reg->var_off)) {
419 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 		verbose(env, "has value %s", tn_buf);
421 	} else {
422 		verbose(env, "has unknown scalar value");
423 	}
424 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 	verbose(env, " should have been in %s\n", tn_buf);
426 }
427 
428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 	type = base_type(type);
431 	return type == PTR_TO_PACKET ||
432 	       type == PTR_TO_PACKET_META;
433 }
434 
435 static bool type_is_sk_pointer(enum bpf_reg_type type)
436 {
437 	return type == PTR_TO_SOCKET ||
438 		type == PTR_TO_SOCK_COMMON ||
439 		type == PTR_TO_TCP_SOCK ||
440 		type == PTR_TO_XDP_SOCK;
441 }
442 
443 static bool type_may_be_null(u32 type)
444 {
445 	return type & PTR_MAYBE_NULL;
446 }
447 
448 static bool reg_not_null(const struct bpf_reg_state *reg)
449 {
450 	enum bpf_reg_type type;
451 
452 	type = reg->type;
453 	if (type_may_be_null(type))
454 		return false;
455 
456 	type = base_type(type);
457 	return type == PTR_TO_SOCKET ||
458 		type == PTR_TO_TCP_SOCK ||
459 		type == PTR_TO_MAP_VALUE ||
460 		type == PTR_TO_MAP_KEY ||
461 		type == PTR_TO_SOCK_COMMON ||
462 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
463 		type == PTR_TO_MEM;
464 }
465 
466 static bool type_is_ptr_alloc_obj(u32 type)
467 {
468 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
469 }
470 
471 static bool type_is_non_owning_ref(u32 type)
472 {
473 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
474 }
475 
476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
477 {
478 	struct btf_record *rec = NULL;
479 	struct btf_struct_meta *meta;
480 
481 	if (reg->type == PTR_TO_MAP_VALUE) {
482 		rec = reg->map_ptr->record;
483 	} else if (type_is_ptr_alloc_obj(reg->type)) {
484 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
485 		if (meta)
486 			rec = meta->record;
487 	}
488 	return rec;
489 }
490 
491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
492 {
493 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
494 
495 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
496 }
497 
498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
499 {
500 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
501 }
502 
503 static bool type_is_rdonly_mem(u32 type)
504 {
505 	return type & MEM_RDONLY;
506 }
507 
508 static bool is_acquire_function(enum bpf_func_id func_id,
509 				const struct bpf_map *map)
510 {
511 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
512 
513 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 	    func_id == BPF_FUNC_sk_lookup_udp ||
515 	    func_id == BPF_FUNC_skc_lookup_tcp ||
516 	    func_id == BPF_FUNC_ringbuf_reserve ||
517 	    func_id == BPF_FUNC_kptr_xchg)
518 		return true;
519 
520 	if (func_id == BPF_FUNC_map_lookup_elem &&
521 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 	     map_type == BPF_MAP_TYPE_SOCKHASH))
523 		return true;
524 
525 	return false;
526 }
527 
528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
529 {
530 	return func_id == BPF_FUNC_tcp_sock ||
531 		func_id == BPF_FUNC_sk_fullsock ||
532 		func_id == BPF_FUNC_skc_to_tcp_sock ||
533 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 		func_id == BPF_FUNC_skc_to_udp6_sock ||
535 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
536 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539 
540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
541 {
542 	return func_id == BPF_FUNC_dynptr_data;
543 }
544 
545 static bool is_callback_calling_kfunc(u32 btf_id);
546 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
547 
548 static bool is_callback_calling_function(enum bpf_func_id func_id)
549 {
550 	return func_id == BPF_FUNC_for_each_map_elem ||
551 	       func_id == BPF_FUNC_timer_set_callback ||
552 	       func_id == BPF_FUNC_find_vma ||
553 	       func_id == BPF_FUNC_loop ||
554 	       func_id == BPF_FUNC_user_ringbuf_drain;
555 }
556 
557 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
558 {
559 	return func_id == BPF_FUNC_timer_set_callback;
560 }
561 
562 static bool is_storage_get_function(enum bpf_func_id func_id)
563 {
564 	return func_id == BPF_FUNC_sk_storage_get ||
565 	       func_id == BPF_FUNC_inode_storage_get ||
566 	       func_id == BPF_FUNC_task_storage_get ||
567 	       func_id == BPF_FUNC_cgrp_storage_get;
568 }
569 
570 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
571 					const struct bpf_map *map)
572 {
573 	int ref_obj_uses = 0;
574 
575 	if (is_ptr_cast_function(func_id))
576 		ref_obj_uses++;
577 	if (is_acquire_function(func_id, map))
578 		ref_obj_uses++;
579 	if (is_dynptr_ref_function(func_id))
580 		ref_obj_uses++;
581 
582 	return ref_obj_uses > 1;
583 }
584 
585 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
586 {
587 	return BPF_CLASS(insn->code) == BPF_STX &&
588 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
589 	       insn->imm == BPF_CMPXCHG;
590 }
591 
592 /* string representation of 'enum bpf_reg_type'
593  *
594  * Note that reg_type_str() can not appear more than once in a single verbose()
595  * statement.
596  */
597 static const char *reg_type_str(struct bpf_verifier_env *env,
598 				enum bpf_reg_type type)
599 {
600 	char postfix[16] = {0}, prefix[64] = {0};
601 	static const char * const str[] = {
602 		[NOT_INIT]		= "?",
603 		[SCALAR_VALUE]		= "scalar",
604 		[PTR_TO_CTX]		= "ctx",
605 		[CONST_PTR_TO_MAP]	= "map_ptr",
606 		[PTR_TO_MAP_VALUE]	= "map_value",
607 		[PTR_TO_STACK]		= "fp",
608 		[PTR_TO_PACKET]		= "pkt",
609 		[PTR_TO_PACKET_META]	= "pkt_meta",
610 		[PTR_TO_PACKET_END]	= "pkt_end",
611 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
612 		[PTR_TO_SOCKET]		= "sock",
613 		[PTR_TO_SOCK_COMMON]	= "sock_common",
614 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
615 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
616 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
617 		[PTR_TO_BTF_ID]		= "ptr_",
618 		[PTR_TO_MEM]		= "mem",
619 		[PTR_TO_BUF]		= "buf",
620 		[PTR_TO_FUNC]		= "func",
621 		[PTR_TO_MAP_KEY]	= "map_key",
622 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
623 	};
624 
625 	if (type & PTR_MAYBE_NULL) {
626 		if (base_type(type) == PTR_TO_BTF_ID)
627 			strncpy(postfix, "or_null_", 16);
628 		else
629 			strncpy(postfix, "_or_null", 16);
630 	}
631 
632 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
633 		 type & MEM_RDONLY ? "rdonly_" : "",
634 		 type & MEM_RINGBUF ? "ringbuf_" : "",
635 		 type & MEM_USER ? "user_" : "",
636 		 type & MEM_PERCPU ? "percpu_" : "",
637 		 type & MEM_RCU ? "rcu_" : "",
638 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
639 		 type & PTR_TRUSTED ? "trusted_" : ""
640 	);
641 
642 	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
643 		 prefix, str[base_type(type)], postfix);
644 	return env->tmp_str_buf;
645 }
646 
647 static char slot_type_char[] = {
648 	[STACK_INVALID]	= '?',
649 	[STACK_SPILL]	= 'r',
650 	[STACK_MISC]	= 'm',
651 	[STACK_ZERO]	= '0',
652 	[STACK_DYNPTR]	= 'd',
653 	[STACK_ITER]	= 'i',
654 };
655 
656 static void print_liveness(struct bpf_verifier_env *env,
657 			   enum bpf_reg_liveness live)
658 {
659 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
660 	    verbose(env, "_");
661 	if (live & REG_LIVE_READ)
662 		verbose(env, "r");
663 	if (live & REG_LIVE_WRITTEN)
664 		verbose(env, "w");
665 	if (live & REG_LIVE_DONE)
666 		verbose(env, "D");
667 }
668 
669 static int __get_spi(s32 off)
670 {
671 	return (-off - 1) / BPF_REG_SIZE;
672 }
673 
674 static struct bpf_func_state *func(struct bpf_verifier_env *env,
675 				   const struct bpf_reg_state *reg)
676 {
677 	struct bpf_verifier_state *cur = env->cur_state;
678 
679 	return cur->frame[reg->frameno];
680 }
681 
682 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
683 {
684        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
685 
686        /* We need to check that slots between [spi - nr_slots + 1, spi] are
687 	* within [0, allocated_stack).
688 	*
689 	* Please note that the spi grows downwards. For example, a dynptr
690 	* takes the size of two stack slots; the first slot will be at
691 	* spi and the second slot will be at spi - 1.
692 	*/
693        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
694 }
695 
696 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
697 			          const char *obj_kind, int nr_slots)
698 {
699 	int off, spi;
700 
701 	if (!tnum_is_const(reg->var_off)) {
702 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
703 		return -EINVAL;
704 	}
705 
706 	off = reg->off + reg->var_off.value;
707 	if (off % BPF_REG_SIZE) {
708 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
709 		return -EINVAL;
710 	}
711 
712 	spi = __get_spi(off);
713 	if (spi + 1 < nr_slots) {
714 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
715 		return -EINVAL;
716 	}
717 
718 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
719 		return -ERANGE;
720 	return spi;
721 }
722 
723 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
724 {
725 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
726 }
727 
728 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
729 {
730 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
731 }
732 
733 static const char *btf_type_name(const struct btf *btf, u32 id)
734 {
735 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
736 }
737 
738 static const char *dynptr_type_str(enum bpf_dynptr_type type)
739 {
740 	switch (type) {
741 	case BPF_DYNPTR_TYPE_LOCAL:
742 		return "local";
743 	case BPF_DYNPTR_TYPE_RINGBUF:
744 		return "ringbuf";
745 	case BPF_DYNPTR_TYPE_SKB:
746 		return "skb";
747 	case BPF_DYNPTR_TYPE_XDP:
748 		return "xdp";
749 	case BPF_DYNPTR_TYPE_INVALID:
750 		return "<invalid>";
751 	default:
752 		WARN_ONCE(1, "unknown dynptr type %d\n", type);
753 		return "<unknown>";
754 	}
755 }
756 
757 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
758 {
759 	if (!btf || btf_id == 0)
760 		return "<invalid>";
761 
762 	/* we already validated that type is valid and has conforming name */
763 	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
764 }
765 
766 static const char *iter_state_str(enum bpf_iter_state state)
767 {
768 	switch (state) {
769 	case BPF_ITER_STATE_ACTIVE:
770 		return "active";
771 	case BPF_ITER_STATE_DRAINED:
772 		return "drained";
773 	case BPF_ITER_STATE_INVALID:
774 		return "<invalid>";
775 	default:
776 		WARN_ONCE(1, "unknown iter state %d\n", state);
777 		return "<unknown>";
778 	}
779 }
780 
781 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
782 {
783 	env->scratched_regs |= 1U << regno;
784 }
785 
786 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
787 {
788 	env->scratched_stack_slots |= 1ULL << spi;
789 }
790 
791 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
792 {
793 	return (env->scratched_regs >> regno) & 1;
794 }
795 
796 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
797 {
798 	return (env->scratched_stack_slots >> regno) & 1;
799 }
800 
801 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
802 {
803 	return env->scratched_regs || env->scratched_stack_slots;
804 }
805 
806 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
807 {
808 	env->scratched_regs = 0U;
809 	env->scratched_stack_slots = 0ULL;
810 }
811 
812 /* Used for printing the entire verifier state. */
813 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
814 {
815 	env->scratched_regs = ~0U;
816 	env->scratched_stack_slots = ~0ULL;
817 }
818 
819 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
820 {
821 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
822 	case DYNPTR_TYPE_LOCAL:
823 		return BPF_DYNPTR_TYPE_LOCAL;
824 	case DYNPTR_TYPE_RINGBUF:
825 		return BPF_DYNPTR_TYPE_RINGBUF;
826 	case DYNPTR_TYPE_SKB:
827 		return BPF_DYNPTR_TYPE_SKB;
828 	case DYNPTR_TYPE_XDP:
829 		return BPF_DYNPTR_TYPE_XDP;
830 	default:
831 		return BPF_DYNPTR_TYPE_INVALID;
832 	}
833 }
834 
835 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
836 {
837 	switch (type) {
838 	case BPF_DYNPTR_TYPE_LOCAL:
839 		return DYNPTR_TYPE_LOCAL;
840 	case BPF_DYNPTR_TYPE_RINGBUF:
841 		return DYNPTR_TYPE_RINGBUF;
842 	case BPF_DYNPTR_TYPE_SKB:
843 		return DYNPTR_TYPE_SKB;
844 	case BPF_DYNPTR_TYPE_XDP:
845 		return DYNPTR_TYPE_XDP;
846 	default:
847 		return 0;
848 	}
849 }
850 
851 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
852 {
853 	return type == BPF_DYNPTR_TYPE_RINGBUF;
854 }
855 
856 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
857 			      enum bpf_dynptr_type type,
858 			      bool first_slot, int dynptr_id);
859 
860 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
861 				struct bpf_reg_state *reg);
862 
863 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
864 				   struct bpf_reg_state *sreg1,
865 				   struct bpf_reg_state *sreg2,
866 				   enum bpf_dynptr_type type)
867 {
868 	int id = ++env->id_gen;
869 
870 	__mark_dynptr_reg(sreg1, type, true, id);
871 	__mark_dynptr_reg(sreg2, type, false, id);
872 }
873 
874 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
875 			       struct bpf_reg_state *reg,
876 			       enum bpf_dynptr_type type)
877 {
878 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
879 }
880 
881 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
882 				        struct bpf_func_state *state, int spi);
883 
884 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
885 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
886 {
887 	struct bpf_func_state *state = func(env, reg);
888 	enum bpf_dynptr_type type;
889 	int spi, i, err;
890 
891 	spi = dynptr_get_spi(env, reg);
892 	if (spi < 0)
893 		return spi;
894 
895 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
896 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
897 	 * to ensure that for the following example:
898 	 *	[d1][d1][d2][d2]
899 	 * spi    3   2   1   0
900 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
901 	 * case they do belong to same dynptr, second call won't see slot_type
902 	 * as STACK_DYNPTR and will simply skip destruction.
903 	 */
904 	err = destroy_if_dynptr_stack_slot(env, state, spi);
905 	if (err)
906 		return err;
907 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
908 	if (err)
909 		return err;
910 
911 	for (i = 0; i < BPF_REG_SIZE; i++) {
912 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
913 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
914 	}
915 
916 	type = arg_to_dynptr_type(arg_type);
917 	if (type == BPF_DYNPTR_TYPE_INVALID)
918 		return -EINVAL;
919 
920 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
921 			       &state->stack[spi - 1].spilled_ptr, type);
922 
923 	if (dynptr_type_refcounted(type)) {
924 		/* The id is used to track proper releasing */
925 		int id;
926 
927 		if (clone_ref_obj_id)
928 			id = clone_ref_obj_id;
929 		else
930 			id = acquire_reference_state(env, insn_idx);
931 
932 		if (id < 0)
933 			return id;
934 
935 		state->stack[spi].spilled_ptr.ref_obj_id = id;
936 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
937 	}
938 
939 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
940 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
941 
942 	return 0;
943 }
944 
945 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
946 {
947 	int i;
948 
949 	for (i = 0; i < BPF_REG_SIZE; i++) {
950 		state->stack[spi].slot_type[i] = STACK_INVALID;
951 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
952 	}
953 
954 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
955 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
956 
957 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
958 	 *
959 	 * While we don't allow reading STACK_INVALID, it is still possible to
960 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
961 	 * helpers or insns can do partial read of that part without failing,
962 	 * but check_stack_range_initialized, check_stack_read_var_off, and
963 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
964 	 * the slot conservatively. Hence we need to prevent those liveness
965 	 * marking walks.
966 	 *
967 	 * This was not a problem before because STACK_INVALID is only set by
968 	 * default (where the default reg state has its reg->parent as NULL), or
969 	 * in clean_live_states after REG_LIVE_DONE (at which point
970 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
971 	 * verifier state exploration (like we did above). Hence, for our case
972 	 * parentage chain will still be live (i.e. reg->parent may be
973 	 * non-NULL), while earlier reg->parent was NULL, so we need
974 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
975 	 * done later on reads or by mark_dynptr_read as well to unnecessary
976 	 * mark registers in verifier state.
977 	 */
978 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
979 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
980 }
981 
982 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
983 {
984 	struct bpf_func_state *state = func(env, reg);
985 	int spi, ref_obj_id, i;
986 
987 	spi = dynptr_get_spi(env, reg);
988 	if (spi < 0)
989 		return spi;
990 
991 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
992 		invalidate_dynptr(env, state, spi);
993 		return 0;
994 	}
995 
996 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
997 
998 	/* If the dynptr has a ref_obj_id, then we need to invalidate
999 	 * two things:
1000 	 *
1001 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
1002 	 * 2) Any slices derived from this dynptr.
1003 	 */
1004 
1005 	/* Invalidate any slices associated with this dynptr */
1006 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
1007 
1008 	/* Invalidate any dynptr clones */
1009 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1010 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1011 			continue;
1012 
1013 		/* it should always be the case that if the ref obj id
1014 		 * matches then the stack slot also belongs to a
1015 		 * dynptr
1016 		 */
1017 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1018 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1019 			return -EFAULT;
1020 		}
1021 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
1022 			invalidate_dynptr(env, state, i);
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1029 			       struct bpf_reg_state *reg);
1030 
1031 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1032 {
1033 	if (!env->allow_ptr_leaks)
1034 		__mark_reg_not_init(env, reg);
1035 	else
1036 		__mark_reg_unknown(env, reg);
1037 }
1038 
1039 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1040 				        struct bpf_func_state *state, int spi)
1041 {
1042 	struct bpf_func_state *fstate;
1043 	struct bpf_reg_state *dreg;
1044 	int i, dynptr_id;
1045 
1046 	/* We always ensure that STACK_DYNPTR is never set partially,
1047 	 * hence just checking for slot_type[0] is enough. This is
1048 	 * different for STACK_SPILL, where it may be only set for
1049 	 * 1 byte, so code has to use is_spilled_reg.
1050 	 */
1051 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1052 		return 0;
1053 
1054 	/* Reposition spi to first slot */
1055 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1056 		spi = spi + 1;
1057 
1058 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1059 		verbose(env, "cannot overwrite referenced dynptr\n");
1060 		return -EINVAL;
1061 	}
1062 
1063 	mark_stack_slot_scratched(env, spi);
1064 	mark_stack_slot_scratched(env, spi - 1);
1065 
1066 	/* Writing partially to one dynptr stack slot destroys both. */
1067 	for (i = 0; i < BPF_REG_SIZE; i++) {
1068 		state->stack[spi].slot_type[i] = STACK_INVALID;
1069 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1070 	}
1071 
1072 	dynptr_id = state->stack[spi].spilled_ptr.id;
1073 	/* Invalidate any slices associated with this dynptr */
1074 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1075 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1076 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1077 			continue;
1078 		if (dreg->dynptr_id == dynptr_id)
1079 			mark_reg_invalid(env, dreg);
1080 	}));
1081 
1082 	/* Do not release reference state, we are destroying dynptr on stack,
1083 	 * not using some helper to release it. Just reset register.
1084 	 */
1085 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1086 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1087 
1088 	/* Same reason as unmark_stack_slots_dynptr above */
1089 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1090 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1091 
1092 	return 0;
1093 }
1094 
1095 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1096 {
1097 	int spi;
1098 
1099 	if (reg->type == CONST_PTR_TO_DYNPTR)
1100 		return false;
1101 
1102 	spi = dynptr_get_spi(env, reg);
1103 
1104 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1105 	 * error because this just means the stack state hasn't been updated yet.
1106 	 * We will do check_mem_access to check and update stack bounds later.
1107 	 */
1108 	if (spi < 0 && spi != -ERANGE)
1109 		return false;
1110 
1111 	/* We don't need to check if the stack slots are marked by previous
1112 	 * dynptr initializations because we allow overwriting existing unreferenced
1113 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1114 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1115 	 * touching are completely destructed before we reinitialize them for a new
1116 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1117 	 * instead of delaying it until the end where the user will get "Unreleased
1118 	 * reference" error.
1119 	 */
1120 	return true;
1121 }
1122 
1123 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1124 {
1125 	struct bpf_func_state *state = func(env, reg);
1126 	int i, spi;
1127 
1128 	/* This already represents first slot of initialized bpf_dynptr.
1129 	 *
1130 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1131 	 * check_func_arg_reg_off's logic, so we don't need to check its
1132 	 * offset and alignment.
1133 	 */
1134 	if (reg->type == CONST_PTR_TO_DYNPTR)
1135 		return true;
1136 
1137 	spi = dynptr_get_spi(env, reg);
1138 	if (spi < 0)
1139 		return false;
1140 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1141 		return false;
1142 
1143 	for (i = 0; i < BPF_REG_SIZE; i++) {
1144 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1145 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1146 			return false;
1147 	}
1148 
1149 	return true;
1150 }
1151 
1152 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1153 				    enum bpf_arg_type arg_type)
1154 {
1155 	struct bpf_func_state *state = func(env, reg);
1156 	enum bpf_dynptr_type dynptr_type;
1157 	int spi;
1158 
1159 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1160 	if (arg_type == ARG_PTR_TO_DYNPTR)
1161 		return true;
1162 
1163 	dynptr_type = arg_to_dynptr_type(arg_type);
1164 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1165 		return reg->dynptr.type == dynptr_type;
1166 	} else {
1167 		spi = dynptr_get_spi(env, reg);
1168 		if (spi < 0)
1169 			return false;
1170 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1171 	}
1172 }
1173 
1174 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1175 
1176 static bool in_rcu_cs(struct bpf_verifier_env *env);
1177 
1178 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1179 
1180 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1181 				 struct bpf_kfunc_call_arg_meta *meta,
1182 				 struct bpf_reg_state *reg, int insn_idx,
1183 				 struct btf *btf, u32 btf_id, int nr_slots)
1184 {
1185 	struct bpf_func_state *state = func(env, reg);
1186 	int spi, i, j, id;
1187 
1188 	spi = iter_get_spi(env, reg, nr_slots);
1189 	if (spi < 0)
1190 		return spi;
1191 
1192 	id = acquire_reference_state(env, insn_idx);
1193 	if (id < 0)
1194 		return id;
1195 
1196 	for (i = 0; i < nr_slots; i++) {
1197 		struct bpf_stack_state *slot = &state->stack[spi - i];
1198 		struct bpf_reg_state *st = &slot->spilled_ptr;
1199 
1200 		__mark_reg_known_zero(st);
1201 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1202 		if (is_kfunc_rcu_protected(meta)) {
1203 			if (in_rcu_cs(env))
1204 				st->type |= MEM_RCU;
1205 			else
1206 				st->type |= PTR_UNTRUSTED;
1207 		}
1208 		st->live |= REG_LIVE_WRITTEN;
1209 		st->ref_obj_id = i == 0 ? id : 0;
1210 		st->iter.btf = btf;
1211 		st->iter.btf_id = btf_id;
1212 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1213 		st->iter.depth = 0;
1214 
1215 		for (j = 0; j < BPF_REG_SIZE; j++)
1216 			slot->slot_type[j] = STACK_ITER;
1217 
1218 		mark_stack_slot_scratched(env, spi - i);
1219 	}
1220 
1221 	return 0;
1222 }
1223 
1224 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1225 				   struct bpf_reg_state *reg, int nr_slots)
1226 {
1227 	struct bpf_func_state *state = func(env, reg);
1228 	int spi, i, j;
1229 
1230 	spi = iter_get_spi(env, reg, nr_slots);
1231 	if (spi < 0)
1232 		return spi;
1233 
1234 	for (i = 0; i < nr_slots; i++) {
1235 		struct bpf_stack_state *slot = &state->stack[spi - i];
1236 		struct bpf_reg_state *st = &slot->spilled_ptr;
1237 
1238 		if (i == 0)
1239 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1240 
1241 		__mark_reg_not_init(env, st);
1242 
1243 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1244 		st->live |= REG_LIVE_WRITTEN;
1245 
1246 		for (j = 0; j < BPF_REG_SIZE; j++)
1247 			slot->slot_type[j] = STACK_INVALID;
1248 
1249 		mark_stack_slot_scratched(env, spi - i);
1250 	}
1251 
1252 	return 0;
1253 }
1254 
1255 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1256 				     struct bpf_reg_state *reg, int nr_slots)
1257 {
1258 	struct bpf_func_state *state = func(env, reg);
1259 	int spi, i, j;
1260 
1261 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1262 	 * will do check_mem_access to check and update stack bounds later, so
1263 	 * return true for that case.
1264 	 */
1265 	spi = iter_get_spi(env, reg, nr_slots);
1266 	if (spi == -ERANGE)
1267 		return true;
1268 	if (spi < 0)
1269 		return false;
1270 
1271 	for (i = 0; i < nr_slots; i++) {
1272 		struct bpf_stack_state *slot = &state->stack[spi - i];
1273 
1274 		for (j = 0; j < BPF_REG_SIZE; j++)
1275 			if (slot->slot_type[j] == STACK_ITER)
1276 				return false;
1277 	}
1278 
1279 	return true;
1280 }
1281 
1282 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1283 				   struct btf *btf, u32 btf_id, int nr_slots)
1284 {
1285 	struct bpf_func_state *state = func(env, reg);
1286 	int spi, i, j;
1287 
1288 	spi = iter_get_spi(env, reg, nr_slots);
1289 	if (spi < 0)
1290 		return -EINVAL;
1291 
1292 	for (i = 0; i < nr_slots; i++) {
1293 		struct bpf_stack_state *slot = &state->stack[spi - i];
1294 		struct bpf_reg_state *st = &slot->spilled_ptr;
1295 
1296 		if (st->type & PTR_UNTRUSTED)
1297 			return -EPROTO;
1298 		/* only main (first) slot has ref_obj_id set */
1299 		if (i == 0 && !st->ref_obj_id)
1300 			return -EINVAL;
1301 		if (i != 0 && st->ref_obj_id)
1302 			return -EINVAL;
1303 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1304 			return -EINVAL;
1305 
1306 		for (j = 0; j < BPF_REG_SIZE; j++)
1307 			if (slot->slot_type[j] != STACK_ITER)
1308 				return -EINVAL;
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 /* Check if given stack slot is "special":
1315  *   - spilled register state (STACK_SPILL);
1316  *   - dynptr state (STACK_DYNPTR);
1317  *   - iter state (STACK_ITER).
1318  */
1319 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1320 {
1321 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1322 
1323 	switch (type) {
1324 	case STACK_SPILL:
1325 	case STACK_DYNPTR:
1326 	case STACK_ITER:
1327 		return true;
1328 	case STACK_INVALID:
1329 	case STACK_MISC:
1330 	case STACK_ZERO:
1331 		return false;
1332 	default:
1333 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1334 		return true;
1335 	}
1336 }
1337 
1338 /* The reg state of a pointer or a bounded scalar was saved when
1339  * it was spilled to the stack.
1340  */
1341 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1342 {
1343 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1344 }
1345 
1346 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1347 {
1348 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1349 	       stack->spilled_ptr.type == SCALAR_VALUE;
1350 }
1351 
1352 static void scrub_spilled_slot(u8 *stype)
1353 {
1354 	if (*stype != STACK_INVALID)
1355 		*stype = STACK_MISC;
1356 }
1357 
1358 static void print_scalar_ranges(struct bpf_verifier_env *env,
1359 				const struct bpf_reg_state *reg,
1360 				const char **sep)
1361 {
1362 	struct {
1363 		const char *name;
1364 		u64 val;
1365 		bool omit;
1366 	} minmaxs[] = {
1367 		{"smin",   reg->smin_value,         reg->smin_value == S64_MIN},
1368 		{"smax",   reg->smax_value,         reg->smax_value == S64_MAX},
1369 		{"umin",   reg->umin_value,         reg->umin_value == 0},
1370 		{"umax",   reg->umax_value,         reg->umax_value == U64_MAX},
1371 		{"smin32", (s64)reg->s32_min_value, reg->s32_min_value == S32_MIN},
1372 		{"smax32", (s64)reg->s32_max_value, reg->s32_max_value == S32_MAX},
1373 		{"umin32", reg->u32_min_value,      reg->u32_min_value == 0},
1374 		{"umax32", reg->u32_max_value,      reg->u32_max_value == U32_MAX},
1375 	}, *m1, *m2, *mend = &minmaxs[ARRAY_SIZE(minmaxs)];
1376 	bool neg1, neg2;
1377 
1378 	for (m1 = &minmaxs[0]; m1 < mend; m1++) {
1379 		if (m1->omit)
1380 			continue;
1381 
1382 		neg1 = m1->name[0] == 's' && (s64)m1->val < 0;
1383 
1384 		verbose(env, "%s%s=", *sep, m1->name);
1385 		*sep = ",";
1386 
1387 		for (m2 = m1 + 2; m2 < mend; m2 += 2) {
1388 			if (m2->omit || m2->val != m1->val)
1389 				continue;
1390 			/* don't mix negatives with positives */
1391 			neg2 = m2->name[0] == 's' && (s64)m2->val < 0;
1392 			if (neg2 != neg1)
1393 				continue;
1394 			m2->omit = true;
1395 			verbose(env, "%s=", m2->name);
1396 		}
1397 
1398 		verbose(env, m1->name[0] == 's' ? "%lld" : "%llu", m1->val);
1399 	}
1400 }
1401 
1402 static void print_verifier_state(struct bpf_verifier_env *env,
1403 				 const struct bpf_func_state *state,
1404 				 bool print_all)
1405 {
1406 	const struct bpf_reg_state *reg;
1407 	enum bpf_reg_type t;
1408 	int i;
1409 
1410 	if (state->frameno)
1411 		verbose(env, " frame%d:", state->frameno);
1412 	for (i = 0; i < MAX_BPF_REG; i++) {
1413 		reg = &state->regs[i];
1414 		t = reg->type;
1415 		if (t == NOT_INIT)
1416 			continue;
1417 		if (!print_all && !reg_scratched(env, i))
1418 			continue;
1419 		verbose(env, " R%d", i);
1420 		print_liveness(env, reg->live);
1421 		verbose(env, "=");
1422 		if (t == SCALAR_VALUE && reg->precise)
1423 			verbose(env, "P");
1424 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1425 		    tnum_is_const(reg->var_off)) {
1426 			/* reg->off should be 0 for SCALAR_VALUE */
1427 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1428 			verbose(env, "%lld", reg->var_off.value + reg->off);
1429 		} else {
1430 			const char *sep = "";
1431 
1432 			verbose(env, "%s", reg_type_str(env, t));
1433 			if (base_type(t) == PTR_TO_BTF_ID)
1434 				verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1435 			verbose(env, "(");
1436 /*
1437  * _a stands for append, was shortened to avoid multiline statements below.
1438  * This macro is used to output a comma separated list of attributes.
1439  */
1440 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1441 
1442 			if (reg->id)
1443 				verbose_a("id=%d", reg->id);
1444 			if (reg->ref_obj_id)
1445 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1446 			if (type_is_non_owning_ref(reg->type))
1447 				verbose_a("%s", "non_own_ref");
1448 			if (t != SCALAR_VALUE)
1449 				verbose_a("off=%d", reg->off);
1450 			if (type_is_pkt_pointer(t))
1451 				verbose_a("r=%d", reg->range);
1452 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1453 				 base_type(t) == PTR_TO_MAP_KEY ||
1454 				 base_type(t) == PTR_TO_MAP_VALUE)
1455 				verbose_a("ks=%d,vs=%d",
1456 					  reg->map_ptr->key_size,
1457 					  reg->map_ptr->value_size);
1458 			if (tnum_is_const(reg->var_off)) {
1459 				/* Typically an immediate SCALAR_VALUE, but
1460 				 * could be a pointer whose offset is too big
1461 				 * for reg->off
1462 				 */
1463 				verbose_a("imm=%llx", reg->var_off.value);
1464 			} else {
1465 				print_scalar_ranges(env, reg, &sep);
1466 				if (!tnum_is_unknown(reg->var_off)) {
1467 					char tn_buf[48];
1468 
1469 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1470 					verbose_a("var_off=%s", tn_buf);
1471 				}
1472 			}
1473 #undef verbose_a
1474 
1475 			verbose(env, ")");
1476 		}
1477 	}
1478 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1479 		char types_buf[BPF_REG_SIZE + 1];
1480 		bool valid = false;
1481 		int j;
1482 
1483 		for (j = 0; j < BPF_REG_SIZE; j++) {
1484 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1485 				valid = true;
1486 			types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1487 		}
1488 		types_buf[BPF_REG_SIZE] = 0;
1489 		if (!valid)
1490 			continue;
1491 		if (!print_all && !stack_slot_scratched(env, i))
1492 			continue;
1493 		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1494 		case STACK_SPILL:
1495 			reg = &state->stack[i].spilled_ptr;
1496 			t = reg->type;
1497 
1498 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1499 			print_liveness(env, reg->live);
1500 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1501 			if (t == SCALAR_VALUE && reg->precise)
1502 				verbose(env, "P");
1503 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1504 				verbose(env, "%lld", reg->var_off.value + reg->off);
1505 			break;
1506 		case STACK_DYNPTR:
1507 			i += BPF_DYNPTR_NR_SLOTS - 1;
1508 			reg = &state->stack[i].spilled_ptr;
1509 
1510 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1511 			print_liveness(env, reg->live);
1512 			verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1513 			if (reg->ref_obj_id)
1514 				verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1515 			break;
1516 		case STACK_ITER:
1517 			/* only main slot has ref_obj_id set; skip others */
1518 			reg = &state->stack[i].spilled_ptr;
1519 			if (!reg->ref_obj_id)
1520 				continue;
1521 
1522 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1523 			print_liveness(env, reg->live);
1524 			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1525 				iter_type_str(reg->iter.btf, reg->iter.btf_id),
1526 				reg->ref_obj_id, iter_state_str(reg->iter.state),
1527 				reg->iter.depth);
1528 			break;
1529 		case STACK_MISC:
1530 		case STACK_ZERO:
1531 		default:
1532 			reg = &state->stack[i].spilled_ptr;
1533 
1534 			for (j = 0; j < BPF_REG_SIZE; j++)
1535 				types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1536 			types_buf[BPF_REG_SIZE] = 0;
1537 
1538 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1539 			print_liveness(env, reg->live);
1540 			verbose(env, "=%s", types_buf);
1541 			break;
1542 		}
1543 	}
1544 	if (state->acquired_refs && state->refs[0].id) {
1545 		verbose(env, " refs=%d", state->refs[0].id);
1546 		for (i = 1; i < state->acquired_refs; i++)
1547 			if (state->refs[i].id)
1548 				verbose(env, ",%d", state->refs[i].id);
1549 	}
1550 	if (state->in_callback_fn)
1551 		verbose(env, " cb");
1552 	if (state->in_async_callback_fn)
1553 		verbose(env, " async_cb");
1554 	verbose(env, "\n");
1555 	if (!print_all)
1556 		mark_verifier_state_clean(env);
1557 }
1558 
1559 static inline u32 vlog_alignment(u32 pos)
1560 {
1561 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1562 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1563 }
1564 
1565 static void print_insn_state(struct bpf_verifier_env *env,
1566 			     const struct bpf_func_state *state)
1567 {
1568 	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1569 		/* remove new line character */
1570 		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1571 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1572 	} else {
1573 		verbose(env, "%d:", env->insn_idx);
1574 	}
1575 	print_verifier_state(env, state, false);
1576 }
1577 
1578 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1579  * small to hold src. This is different from krealloc since we don't want to preserve
1580  * the contents of dst.
1581  *
1582  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1583  * not be allocated.
1584  */
1585 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1586 {
1587 	size_t alloc_bytes;
1588 	void *orig = dst;
1589 	size_t bytes;
1590 
1591 	if (ZERO_OR_NULL_PTR(src))
1592 		goto out;
1593 
1594 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1595 		return NULL;
1596 
1597 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1598 	dst = krealloc(orig, alloc_bytes, flags);
1599 	if (!dst) {
1600 		kfree(orig);
1601 		return NULL;
1602 	}
1603 
1604 	memcpy(dst, src, bytes);
1605 out:
1606 	return dst ? dst : ZERO_SIZE_PTR;
1607 }
1608 
1609 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1610  * small to hold new_n items. new items are zeroed out if the array grows.
1611  *
1612  * Contrary to krealloc_array, does not free arr if new_n is zero.
1613  */
1614 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1615 {
1616 	size_t alloc_size;
1617 	void *new_arr;
1618 
1619 	if (!new_n || old_n == new_n)
1620 		goto out;
1621 
1622 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1623 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1624 	if (!new_arr) {
1625 		kfree(arr);
1626 		return NULL;
1627 	}
1628 	arr = new_arr;
1629 
1630 	if (new_n > old_n)
1631 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1632 
1633 out:
1634 	return arr ? arr : ZERO_SIZE_PTR;
1635 }
1636 
1637 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1638 {
1639 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1640 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1641 	if (!dst->refs)
1642 		return -ENOMEM;
1643 
1644 	dst->acquired_refs = src->acquired_refs;
1645 	return 0;
1646 }
1647 
1648 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1649 {
1650 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1651 
1652 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1653 				GFP_KERNEL);
1654 	if (!dst->stack)
1655 		return -ENOMEM;
1656 
1657 	dst->allocated_stack = src->allocated_stack;
1658 	return 0;
1659 }
1660 
1661 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1662 {
1663 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1664 				    sizeof(struct bpf_reference_state));
1665 	if (!state->refs)
1666 		return -ENOMEM;
1667 
1668 	state->acquired_refs = n;
1669 	return 0;
1670 }
1671 
1672 static int grow_stack_state(struct bpf_func_state *state, int size)
1673 {
1674 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1675 
1676 	if (old_n >= n)
1677 		return 0;
1678 
1679 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1680 	if (!state->stack)
1681 		return -ENOMEM;
1682 
1683 	state->allocated_stack = size;
1684 	return 0;
1685 }
1686 
1687 /* Acquire a pointer id from the env and update the state->refs to include
1688  * this new pointer reference.
1689  * On success, returns a valid pointer id to associate with the register
1690  * On failure, returns a negative errno.
1691  */
1692 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1693 {
1694 	struct bpf_func_state *state = cur_func(env);
1695 	int new_ofs = state->acquired_refs;
1696 	int id, err;
1697 
1698 	err = resize_reference_state(state, state->acquired_refs + 1);
1699 	if (err)
1700 		return err;
1701 	id = ++env->id_gen;
1702 	state->refs[new_ofs].id = id;
1703 	state->refs[new_ofs].insn_idx = insn_idx;
1704 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1705 
1706 	return id;
1707 }
1708 
1709 /* release function corresponding to acquire_reference_state(). Idempotent. */
1710 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1711 {
1712 	int i, last_idx;
1713 
1714 	last_idx = state->acquired_refs - 1;
1715 	for (i = 0; i < state->acquired_refs; i++) {
1716 		if (state->refs[i].id == ptr_id) {
1717 			/* Cannot release caller references in callbacks */
1718 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1719 				return -EINVAL;
1720 			if (last_idx && i != last_idx)
1721 				memcpy(&state->refs[i], &state->refs[last_idx],
1722 				       sizeof(*state->refs));
1723 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1724 			state->acquired_refs--;
1725 			return 0;
1726 		}
1727 	}
1728 	return -EINVAL;
1729 }
1730 
1731 static void free_func_state(struct bpf_func_state *state)
1732 {
1733 	if (!state)
1734 		return;
1735 	kfree(state->refs);
1736 	kfree(state->stack);
1737 	kfree(state);
1738 }
1739 
1740 static void clear_jmp_history(struct bpf_verifier_state *state)
1741 {
1742 	kfree(state->jmp_history);
1743 	state->jmp_history = NULL;
1744 	state->jmp_history_cnt = 0;
1745 }
1746 
1747 static void free_verifier_state(struct bpf_verifier_state *state,
1748 				bool free_self)
1749 {
1750 	int i;
1751 
1752 	for (i = 0; i <= state->curframe; i++) {
1753 		free_func_state(state->frame[i]);
1754 		state->frame[i] = NULL;
1755 	}
1756 	clear_jmp_history(state);
1757 	if (free_self)
1758 		kfree(state);
1759 }
1760 
1761 /* copy verifier state from src to dst growing dst stack space
1762  * when necessary to accommodate larger src stack
1763  */
1764 static int copy_func_state(struct bpf_func_state *dst,
1765 			   const struct bpf_func_state *src)
1766 {
1767 	int err;
1768 
1769 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1770 	err = copy_reference_state(dst, src);
1771 	if (err)
1772 		return err;
1773 	return copy_stack_state(dst, src);
1774 }
1775 
1776 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1777 			       const struct bpf_verifier_state *src)
1778 {
1779 	struct bpf_func_state *dst;
1780 	int i, err;
1781 
1782 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1783 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1784 					    GFP_USER);
1785 	if (!dst_state->jmp_history)
1786 		return -ENOMEM;
1787 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1788 
1789 	/* if dst has more stack frames then src frame, free them, this is also
1790 	 * necessary in case of exceptional exits using bpf_throw.
1791 	 */
1792 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1793 		free_func_state(dst_state->frame[i]);
1794 		dst_state->frame[i] = NULL;
1795 	}
1796 	dst_state->speculative = src->speculative;
1797 	dst_state->active_rcu_lock = src->active_rcu_lock;
1798 	dst_state->curframe = src->curframe;
1799 	dst_state->active_lock.ptr = src->active_lock.ptr;
1800 	dst_state->active_lock.id = src->active_lock.id;
1801 	dst_state->branches = src->branches;
1802 	dst_state->parent = src->parent;
1803 	dst_state->first_insn_idx = src->first_insn_idx;
1804 	dst_state->last_insn_idx = src->last_insn_idx;
1805 	dst_state->dfs_depth = src->dfs_depth;
1806 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1807 	for (i = 0; i <= src->curframe; i++) {
1808 		dst = dst_state->frame[i];
1809 		if (!dst) {
1810 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1811 			if (!dst)
1812 				return -ENOMEM;
1813 			dst_state->frame[i] = dst;
1814 		}
1815 		err = copy_func_state(dst, src->frame[i]);
1816 		if (err)
1817 			return err;
1818 	}
1819 	return 0;
1820 }
1821 
1822 static u32 state_htab_size(struct bpf_verifier_env *env)
1823 {
1824 	return env->prog->len;
1825 }
1826 
1827 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1828 {
1829 	struct bpf_verifier_state *cur = env->cur_state;
1830 	struct bpf_func_state *state = cur->frame[cur->curframe];
1831 
1832 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1833 }
1834 
1835 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1836 {
1837 	int fr;
1838 
1839 	if (a->curframe != b->curframe)
1840 		return false;
1841 
1842 	for (fr = a->curframe; fr >= 0; fr--)
1843 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1844 			return false;
1845 
1846 	return true;
1847 }
1848 
1849 /* Open coded iterators allow back-edges in the state graph in order to
1850  * check unbounded loops that iterators.
1851  *
1852  * In is_state_visited() it is necessary to know if explored states are
1853  * part of some loops in order to decide whether non-exact states
1854  * comparison could be used:
1855  * - non-exact states comparison establishes sub-state relation and uses
1856  *   read and precision marks to do so, these marks are propagated from
1857  *   children states and thus are not guaranteed to be final in a loop;
1858  * - exact states comparison just checks if current and explored states
1859  *   are identical (and thus form a back-edge).
1860  *
1861  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1862  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1863  * algorithm for loop structure detection and gives an overview of
1864  * relevant terminology. It also has helpful illustrations.
1865  *
1866  * [1] https://api.semanticscholar.org/CorpusID:15784067
1867  *
1868  * We use a similar algorithm but because loop nested structure is
1869  * irrelevant for verifier ours is significantly simpler and resembles
1870  * strongly connected components algorithm from Sedgewick's textbook.
1871  *
1872  * Define topmost loop entry as a first node of the loop traversed in a
1873  * depth first search starting from initial state. The goal of the loop
1874  * tracking algorithm is to associate topmost loop entries with states
1875  * derived from these entries.
1876  *
1877  * For each step in the DFS states traversal algorithm needs to identify
1878  * the following situations:
1879  *
1880  *          initial                     initial                   initial
1881  *            |                           |                         |
1882  *            V                           V                         V
1883  *           ...                         ...           .---------> hdr
1884  *            |                           |            |            |
1885  *            V                           V            |            V
1886  *           cur                     .-> succ          |    .------...
1887  *            |                      |    |            |    |       |
1888  *            V                      |    V            |    V       V
1889  *           succ                    '-- cur           |   ...     ...
1890  *                                                     |    |       |
1891  *                                                     |    V       V
1892  *                                                     |   succ <- cur
1893  *                                                     |    |
1894  *                                                     |    V
1895  *                                                     |   ...
1896  *                                                     |    |
1897  *                                                     '----'
1898  *
1899  *  (A) successor state of cur   (B) successor state of cur or it's entry
1900  *      not yet traversed            are in current DFS path, thus cur and succ
1901  *                                   are members of the same outermost loop
1902  *
1903  *                      initial                  initial
1904  *                        |                        |
1905  *                        V                        V
1906  *                       ...                      ...
1907  *                        |                        |
1908  *                        V                        V
1909  *                .------...               .------...
1910  *                |       |                |       |
1911  *                V       V                V       V
1912  *           .-> hdr     ...              ...     ...
1913  *           |    |       |                |       |
1914  *           |    V       V                V       V
1915  *           |   succ <- cur              succ <- cur
1916  *           |    |                        |
1917  *           |    V                        V
1918  *           |   ...                      ...
1919  *           |    |                        |
1920  *           '----'                       exit
1921  *
1922  * (C) successor state of cur is a part of some loop but this loop
1923  *     does not include cur or successor state is not in a loop at all.
1924  *
1925  * Algorithm could be described as the following python code:
1926  *
1927  *     traversed = set()   # Set of traversed nodes
1928  *     entries = {}        # Mapping from node to loop entry
1929  *     depths = {}         # Depth level assigned to graph node
1930  *     path = set()        # Current DFS path
1931  *
1932  *     # Find outermost loop entry known for n
1933  *     def get_loop_entry(n):
1934  *         h = entries.get(n, None)
1935  *         while h in entries and entries[h] != h:
1936  *             h = entries[h]
1937  *         return h
1938  *
1939  *     # Update n's loop entry if h's outermost entry comes
1940  *     # before n's outermost entry in current DFS path.
1941  *     def update_loop_entry(n, h):
1942  *         n1 = get_loop_entry(n) or n
1943  *         h1 = get_loop_entry(h) or h
1944  *         if h1 in path and depths[h1] <= depths[n1]:
1945  *             entries[n] = h1
1946  *
1947  *     def dfs(n, depth):
1948  *         traversed.add(n)
1949  *         path.add(n)
1950  *         depths[n] = depth
1951  *         for succ in G.successors(n):
1952  *             if succ not in traversed:
1953  *                 # Case A: explore succ and update cur's loop entry
1954  *                 #         only if succ's entry is in current DFS path.
1955  *                 dfs(succ, depth + 1)
1956  *                 h = get_loop_entry(succ)
1957  *                 update_loop_entry(n, h)
1958  *             else:
1959  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1960  *                 update_loop_entry(n, succ)
1961  *         path.remove(n)
1962  *
1963  * To adapt this algorithm for use with verifier:
1964  * - use st->branch == 0 as a signal that DFS of succ had been finished
1965  *   and cur's loop entry has to be updated (case A), handle this in
1966  *   update_branch_counts();
1967  * - use st->branch > 0 as a signal that st is in the current DFS path;
1968  * - handle cases B and C in is_state_visited();
1969  * - update topmost loop entry for intermediate states in get_loop_entry().
1970  */
1971 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1972 {
1973 	struct bpf_verifier_state *topmost = st->loop_entry, *old;
1974 
1975 	while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1976 		topmost = topmost->loop_entry;
1977 	/* Update loop entries for intermediate states to avoid this
1978 	 * traversal in future get_loop_entry() calls.
1979 	 */
1980 	while (st && st->loop_entry != topmost) {
1981 		old = st->loop_entry;
1982 		st->loop_entry = topmost;
1983 		st = old;
1984 	}
1985 	return topmost;
1986 }
1987 
1988 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1989 {
1990 	struct bpf_verifier_state *cur1, *hdr1;
1991 
1992 	cur1 = get_loop_entry(cur) ?: cur;
1993 	hdr1 = get_loop_entry(hdr) ?: hdr;
1994 	/* The head1->branches check decides between cases B and C in
1995 	 * comment for get_loop_entry(). If hdr1->branches == 0 then
1996 	 * head's topmost loop entry is not in current DFS path,
1997 	 * hence 'cur' and 'hdr' are not in the same loop and there is
1998 	 * no need to update cur->loop_entry.
1999 	 */
2000 	if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
2001 		cur->loop_entry = hdr;
2002 		hdr->used_as_loop_entry = true;
2003 	}
2004 }
2005 
2006 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2007 {
2008 	while (st) {
2009 		u32 br = --st->branches;
2010 
2011 		/* br == 0 signals that DFS exploration for 'st' is finished,
2012 		 * thus it is necessary to update parent's loop entry if it
2013 		 * turned out that st is a part of some loop.
2014 		 * This is a part of 'case A' in get_loop_entry() comment.
2015 		 */
2016 		if (br == 0 && st->parent && st->loop_entry)
2017 			update_loop_entry(st->parent, st->loop_entry);
2018 
2019 		/* WARN_ON(br > 1) technically makes sense here,
2020 		 * but see comment in push_stack(), hence:
2021 		 */
2022 		WARN_ONCE((int)br < 0,
2023 			  "BUG update_branch_counts:branches_to_explore=%d\n",
2024 			  br);
2025 		if (br)
2026 			break;
2027 		st = st->parent;
2028 	}
2029 }
2030 
2031 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
2032 		     int *insn_idx, bool pop_log)
2033 {
2034 	struct bpf_verifier_state *cur = env->cur_state;
2035 	struct bpf_verifier_stack_elem *elem, *head = env->head;
2036 	int err;
2037 
2038 	if (env->head == NULL)
2039 		return -ENOENT;
2040 
2041 	if (cur) {
2042 		err = copy_verifier_state(cur, &head->st);
2043 		if (err)
2044 			return err;
2045 	}
2046 	if (pop_log)
2047 		bpf_vlog_reset(&env->log, head->log_pos);
2048 	if (insn_idx)
2049 		*insn_idx = head->insn_idx;
2050 	if (prev_insn_idx)
2051 		*prev_insn_idx = head->prev_insn_idx;
2052 	elem = head->next;
2053 	free_verifier_state(&head->st, false);
2054 	kfree(head);
2055 	env->head = elem;
2056 	env->stack_size--;
2057 	return 0;
2058 }
2059 
2060 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
2061 					     int insn_idx, int prev_insn_idx,
2062 					     bool speculative)
2063 {
2064 	struct bpf_verifier_state *cur = env->cur_state;
2065 	struct bpf_verifier_stack_elem *elem;
2066 	int err;
2067 
2068 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2069 	if (!elem)
2070 		goto err;
2071 
2072 	elem->insn_idx = insn_idx;
2073 	elem->prev_insn_idx = prev_insn_idx;
2074 	elem->next = env->head;
2075 	elem->log_pos = env->log.end_pos;
2076 	env->head = elem;
2077 	env->stack_size++;
2078 	err = copy_verifier_state(&elem->st, cur);
2079 	if (err)
2080 		goto err;
2081 	elem->st.speculative |= speculative;
2082 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2083 		verbose(env, "The sequence of %d jumps is too complex.\n",
2084 			env->stack_size);
2085 		goto err;
2086 	}
2087 	if (elem->st.parent) {
2088 		++elem->st.parent->branches;
2089 		/* WARN_ON(branches > 2) technically makes sense here,
2090 		 * but
2091 		 * 1. speculative states will bump 'branches' for non-branch
2092 		 * instructions
2093 		 * 2. is_state_visited() heuristics may decide not to create
2094 		 * a new state for a sequence of branches and all such current
2095 		 * and cloned states will be pointing to a single parent state
2096 		 * which might have large 'branches' count.
2097 		 */
2098 	}
2099 	return &elem->st;
2100 err:
2101 	free_verifier_state(env->cur_state, true);
2102 	env->cur_state = NULL;
2103 	/* pop all elements and return */
2104 	while (!pop_stack(env, NULL, NULL, false));
2105 	return NULL;
2106 }
2107 
2108 #define CALLER_SAVED_REGS 6
2109 static const int caller_saved[CALLER_SAVED_REGS] = {
2110 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
2111 };
2112 
2113 /* This helper doesn't clear reg->id */
2114 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2115 {
2116 	reg->var_off = tnum_const(imm);
2117 	reg->smin_value = (s64)imm;
2118 	reg->smax_value = (s64)imm;
2119 	reg->umin_value = imm;
2120 	reg->umax_value = imm;
2121 
2122 	reg->s32_min_value = (s32)imm;
2123 	reg->s32_max_value = (s32)imm;
2124 	reg->u32_min_value = (u32)imm;
2125 	reg->u32_max_value = (u32)imm;
2126 }
2127 
2128 /* Mark the unknown part of a register (variable offset or scalar value) as
2129  * known to have the value @imm.
2130  */
2131 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2132 {
2133 	/* Clear off and union(map_ptr, range) */
2134 	memset(((u8 *)reg) + sizeof(reg->type), 0,
2135 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
2136 	reg->id = 0;
2137 	reg->ref_obj_id = 0;
2138 	___mark_reg_known(reg, imm);
2139 }
2140 
2141 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
2142 {
2143 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
2144 	reg->s32_min_value = (s32)imm;
2145 	reg->s32_max_value = (s32)imm;
2146 	reg->u32_min_value = (u32)imm;
2147 	reg->u32_max_value = (u32)imm;
2148 }
2149 
2150 /* Mark the 'variable offset' part of a register as zero.  This should be
2151  * used only on registers holding a pointer type.
2152  */
2153 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
2154 {
2155 	__mark_reg_known(reg, 0);
2156 }
2157 
2158 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
2159 {
2160 	__mark_reg_known(reg, 0);
2161 	reg->type = SCALAR_VALUE;
2162 }
2163 
2164 static void mark_reg_known_zero(struct bpf_verifier_env *env,
2165 				struct bpf_reg_state *regs, u32 regno)
2166 {
2167 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2168 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
2169 		/* Something bad happened, let's kill all regs */
2170 		for (regno = 0; regno < MAX_BPF_REG; regno++)
2171 			__mark_reg_not_init(env, regs + regno);
2172 		return;
2173 	}
2174 	__mark_reg_known_zero(regs + regno);
2175 }
2176 
2177 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
2178 			      bool first_slot, int dynptr_id)
2179 {
2180 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
2181 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
2182 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
2183 	 */
2184 	__mark_reg_known_zero(reg);
2185 	reg->type = CONST_PTR_TO_DYNPTR;
2186 	/* Give each dynptr a unique id to uniquely associate slices to it. */
2187 	reg->id = dynptr_id;
2188 	reg->dynptr.type = type;
2189 	reg->dynptr.first_slot = first_slot;
2190 }
2191 
2192 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
2193 {
2194 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
2195 		const struct bpf_map *map = reg->map_ptr;
2196 
2197 		if (map->inner_map_meta) {
2198 			reg->type = CONST_PTR_TO_MAP;
2199 			reg->map_ptr = map->inner_map_meta;
2200 			/* transfer reg's id which is unique for every map_lookup_elem
2201 			 * as UID of the inner map.
2202 			 */
2203 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
2204 				reg->map_uid = reg->id;
2205 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
2206 			reg->type = PTR_TO_XDP_SOCK;
2207 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2208 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2209 			reg->type = PTR_TO_SOCKET;
2210 		} else {
2211 			reg->type = PTR_TO_MAP_VALUE;
2212 		}
2213 		return;
2214 	}
2215 
2216 	reg->type &= ~PTR_MAYBE_NULL;
2217 }
2218 
2219 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2220 				struct btf_field_graph_root *ds_head)
2221 {
2222 	__mark_reg_known_zero(&regs[regno]);
2223 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2224 	regs[regno].btf = ds_head->btf;
2225 	regs[regno].btf_id = ds_head->value_btf_id;
2226 	regs[regno].off = ds_head->node_offset;
2227 }
2228 
2229 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2230 {
2231 	return type_is_pkt_pointer(reg->type);
2232 }
2233 
2234 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2235 {
2236 	return reg_is_pkt_pointer(reg) ||
2237 	       reg->type == PTR_TO_PACKET_END;
2238 }
2239 
2240 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2241 {
2242 	return base_type(reg->type) == PTR_TO_MEM &&
2243 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2244 }
2245 
2246 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2247 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2248 				    enum bpf_reg_type which)
2249 {
2250 	/* The register can already have a range from prior markings.
2251 	 * This is fine as long as it hasn't been advanced from its
2252 	 * origin.
2253 	 */
2254 	return reg->type == which &&
2255 	       reg->id == 0 &&
2256 	       reg->off == 0 &&
2257 	       tnum_equals_const(reg->var_off, 0);
2258 }
2259 
2260 /* Reset the min/max bounds of a register */
2261 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2262 {
2263 	reg->smin_value = S64_MIN;
2264 	reg->smax_value = S64_MAX;
2265 	reg->umin_value = 0;
2266 	reg->umax_value = U64_MAX;
2267 
2268 	reg->s32_min_value = S32_MIN;
2269 	reg->s32_max_value = S32_MAX;
2270 	reg->u32_min_value = 0;
2271 	reg->u32_max_value = U32_MAX;
2272 }
2273 
2274 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2275 {
2276 	reg->smin_value = S64_MIN;
2277 	reg->smax_value = S64_MAX;
2278 	reg->umin_value = 0;
2279 	reg->umax_value = U64_MAX;
2280 }
2281 
2282 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2283 {
2284 	reg->s32_min_value = S32_MIN;
2285 	reg->s32_max_value = S32_MAX;
2286 	reg->u32_min_value = 0;
2287 	reg->u32_max_value = U32_MAX;
2288 }
2289 
2290 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2291 {
2292 	struct tnum var32_off = tnum_subreg(reg->var_off);
2293 
2294 	/* min signed is max(sign bit) | min(other bits) */
2295 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2296 			var32_off.value | (var32_off.mask & S32_MIN));
2297 	/* max signed is min(sign bit) | max(other bits) */
2298 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2299 			var32_off.value | (var32_off.mask & S32_MAX));
2300 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2301 	reg->u32_max_value = min(reg->u32_max_value,
2302 				 (u32)(var32_off.value | var32_off.mask));
2303 }
2304 
2305 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2306 {
2307 	/* min signed is max(sign bit) | min(other bits) */
2308 	reg->smin_value = max_t(s64, reg->smin_value,
2309 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2310 	/* max signed is min(sign bit) | max(other bits) */
2311 	reg->smax_value = min_t(s64, reg->smax_value,
2312 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2313 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2314 	reg->umax_value = min(reg->umax_value,
2315 			      reg->var_off.value | reg->var_off.mask);
2316 }
2317 
2318 static void __update_reg_bounds(struct bpf_reg_state *reg)
2319 {
2320 	__update_reg32_bounds(reg);
2321 	__update_reg64_bounds(reg);
2322 }
2323 
2324 /* Uses signed min/max values to inform unsigned, and vice-versa */
2325 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2326 {
2327 	/* Learn sign from signed bounds.
2328 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2329 	 * are the same, so combine.  This works even in the negative case, e.g.
2330 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2331 	 */
2332 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2333 		reg->s32_min_value = reg->u32_min_value =
2334 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2335 		reg->s32_max_value = reg->u32_max_value =
2336 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2337 		return;
2338 	}
2339 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2340 	 * boundary, so we must be careful.
2341 	 */
2342 	if ((s32)reg->u32_max_value >= 0) {
2343 		/* Positive.  We can't learn anything from the smin, but smax
2344 		 * is positive, hence safe.
2345 		 */
2346 		reg->s32_min_value = reg->u32_min_value;
2347 		reg->s32_max_value = reg->u32_max_value =
2348 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2349 	} else if ((s32)reg->u32_min_value < 0) {
2350 		/* Negative.  We can't learn anything from the smax, but smin
2351 		 * is negative, hence safe.
2352 		 */
2353 		reg->s32_min_value = reg->u32_min_value =
2354 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2355 		reg->s32_max_value = reg->u32_max_value;
2356 	}
2357 }
2358 
2359 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2360 {
2361 	/* Learn sign from signed bounds.
2362 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2363 	 * are the same, so combine.  This works even in the negative case, e.g.
2364 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2365 	 */
2366 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
2367 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2368 							  reg->umin_value);
2369 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2370 							  reg->umax_value);
2371 		return;
2372 	}
2373 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2374 	 * boundary, so we must be careful.
2375 	 */
2376 	if ((s64)reg->umax_value >= 0) {
2377 		/* Positive.  We can't learn anything from the smin, but smax
2378 		 * is positive, hence safe.
2379 		 */
2380 		reg->smin_value = reg->umin_value;
2381 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2382 							  reg->umax_value);
2383 	} else if ((s64)reg->umin_value < 0) {
2384 		/* Negative.  We can't learn anything from the smax, but smin
2385 		 * is negative, hence safe.
2386 		 */
2387 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2388 							  reg->umin_value);
2389 		reg->smax_value = reg->umax_value;
2390 	}
2391 }
2392 
2393 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2394 {
2395 	__reg32_deduce_bounds(reg);
2396 	__reg64_deduce_bounds(reg);
2397 }
2398 
2399 /* Attempts to improve var_off based on unsigned min/max information */
2400 static void __reg_bound_offset(struct bpf_reg_state *reg)
2401 {
2402 	struct tnum var64_off = tnum_intersect(reg->var_off,
2403 					       tnum_range(reg->umin_value,
2404 							  reg->umax_value));
2405 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2406 					       tnum_range(reg->u32_min_value,
2407 							  reg->u32_max_value));
2408 
2409 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2410 }
2411 
2412 static void reg_bounds_sync(struct bpf_reg_state *reg)
2413 {
2414 	/* We might have learned new bounds from the var_off. */
2415 	__update_reg_bounds(reg);
2416 	/* We might have learned something about the sign bit. */
2417 	__reg_deduce_bounds(reg);
2418 	/* We might have learned some bits from the bounds. */
2419 	__reg_bound_offset(reg);
2420 	/* Intersecting with the old var_off might have improved our bounds
2421 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2422 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2423 	 */
2424 	__update_reg_bounds(reg);
2425 }
2426 
2427 static bool __reg32_bound_s64(s32 a)
2428 {
2429 	return a >= 0 && a <= S32_MAX;
2430 }
2431 
2432 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2433 {
2434 	reg->umin_value = reg->u32_min_value;
2435 	reg->umax_value = reg->u32_max_value;
2436 
2437 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2438 	 * be positive otherwise set to worse case bounds and refine later
2439 	 * from tnum.
2440 	 */
2441 	if (__reg32_bound_s64(reg->s32_min_value) &&
2442 	    __reg32_bound_s64(reg->s32_max_value)) {
2443 		reg->smin_value = reg->s32_min_value;
2444 		reg->smax_value = reg->s32_max_value;
2445 	} else {
2446 		reg->smin_value = 0;
2447 		reg->smax_value = U32_MAX;
2448 	}
2449 }
2450 
2451 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2452 {
2453 	/* special case when 64-bit register has upper 32-bit register
2454 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
2455 	 * allowing us to use 32-bit bounds directly,
2456 	 */
2457 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2458 		__reg_assign_32_into_64(reg);
2459 	} else {
2460 		/* Otherwise the best we can do is push lower 32bit known and
2461 		 * unknown bits into register (var_off set from jmp logic)
2462 		 * then learn as much as possible from the 64-bit tnum
2463 		 * known and unknown bits. The previous smin/smax bounds are
2464 		 * invalid here because of jmp32 compare so mark them unknown
2465 		 * so they do not impact tnum bounds calculation.
2466 		 */
2467 		__mark_reg64_unbounded(reg);
2468 	}
2469 	reg_bounds_sync(reg);
2470 }
2471 
2472 static bool __reg64_bound_s32(s64 a)
2473 {
2474 	return a >= S32_MIN && a <= S32_MAX;
2475 }
2476 
2477 static bool __reg64_bound_u32(u64 a)
2478 {
2479 	return a >= U32_MIN && a <= U32_MAX;
2480 }
2481 
2482 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2483 {
2484 	__mark_reg32_unbounded(reg);
2485 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2486 		reg->s32_min_value = (s32)reg->smin_value;
2487 		reg->s32_max_value = (s32)reg->smax_value;
2488 	}
2489 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2490 		reg->u32_min_value = (u32)reg->umin_value;
2491 		reg->u32_max_value = (u32)reg->umax_value;
2492 	}
2493 	reg_bounds_sync(reg);
2494 }
2495 
2496 /* Mark a register as having a completely unknown (scalar) value. */
2497 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2498 			       struct bpf_reg_state *reg)
2499 {
2500 	/*
2501 	 * Clear type, off, and union(map_ptr, range) and
2502 	 * padding between 'type' and union
2503 	 */
2504 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2505 	reg->type = SCALAR_VALUE;
2506 	reg->id = 0;
2507 	reg->ref_obj_id = 0;
2508 	reg->var_off = tnum_unknown;
2509 	reg->frameno = 0;
2510 	reg->precise = !env->bpf_capable;
2511 	__mark_reg_unbounded(reg);
2512 }
2513 
2514 static void mark_reg_unknown(struct bpf_verifier_env *env,
2515 			     struct bpf_reg_state *regs, u32 regno)
2516 {
2517 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2518 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2519 		/* Something bad happened, let's kill all regs except FP */
2520 		for (regno = 0; regno < BPF_REG_FP; regno++)
2521 			__mark_reg_not_init(env, regs + regno);
2522 		return;
2523 	}
2524 	__mark_reg_unknown(env, regs + regno);
2525 }
2526 
2527 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2528 				struct bpf_reg_state *reg)
2529 {
2530 	__mark_reg_unknown(env, reg);
2531 	reg->type = NOT_INIT;
2532 }
2533 
2534 static void mark_reg_not_init(struct bpf_verifier_env *env,
2535 			      struct bpf_reg_state *regs, u32 regno)
2536 {
2537 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2538 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2539 		/* Something bad happened, let's kill all regs except FP */
2540 		for (regno = 0; regno < BPF_REG_FP; regno++)
2541 			__mark_reg_not_init(env, regs + regno);
2542 		return;
2543 	}
2544 	__mark_reg_not_init(env, regs + regno);
2545 }
2546 
2547 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2548 			    struct bpf_reg_state *regs, u32 regno,
2549 			    enum bpf_reg_type reg_type,
2550 			    struct btf *btf, u32 btf_id,
2551 			    enum bpf_type_flag flag)
2552 {
2553 	if (reg_type == SCALAR_VALUE) {
2554 		mark_reg_unknown(env, regs, regno);
2555 		return;
2556 	}
2557 	mark_reg_known_zero(env, regs, regno);
2558 	regs[regno].type = PTR_TO_BTF_ID | flag;
2559 	regs[regno].btf = btf;
2560 	regs[regno].btf_id = btf_id;
2561 }
2562 
2563 #define DEF_NOT_SUBREG	(0)
2564 static void init_reg_state(struct bpf_verifier_env *env,
2565 			   struct bpf_func_state *state)
2566 {
2567 	struct bpf_reg_state *regs = state->regs;
2568 	int i;
2569 
2570 	for (i = 0; i < MAX_BPF_REG; i++) {
2571 		mark_reg_not_init(env, regs, i);
2572 		regs[i].live = REG_LIVE_NONE;
2573 		regs[i].parent = NULL;
2574 		regs[i].subreg_def = DEF_NOT_SUBREG;
2575 	}
2576 
2577 	/* frame pointer */
2578 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2579 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2580 	regs[BPF_REG_FP].frameno = state->frameno;
2581 }
2582 
2583 #define BPF_MAIN_FUNC (-1)
2584 static void init_func_state(struct bpf_verifier_env *env,
2585 			    struct bpf_func_state *state,
2586 			    int callsite, int frameno, int subprogno)
2587 {
2588 	state->callsite = callsite;
2589 	state->frameno = frameno;
2590 	state->subprogno = subprogno;
2591 	state->callback_ret_range = tnum_range(0, 0);
2592 	init_reg_state(env, state);
2593 	mark_verifier_state_scratched(env);
2594 }
2595 
2596 /* Similar to push_stack(), but for async callbacks */
2597 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2598 						int insn_idx, int prev_insn_idx,
2599 						int subprog)
2600 {
2601 	struct bpf_verifier_stack_elem *elem;
2602 	struct bpf_func_state *frame;
2603 
2604 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2605 	if (!elem)
2606 		goto err;
2607 
2608 	elem->insn_idx = insn_idx;
2609 	elem->prev_insn_idx = prev_insn_idx;
2610 	elem->next = env->head;
2611 	elem->log_pos = env->log.end_pos;
2612 	env->head = elem;
2613 	env->stack_size++;
2614 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2615 		verbose(env,
2616 			"The sequence of %d jumps is too complex for async cb.\n",
2617 			env->stack_size);
2618 		goto err;
2619 	}
2620 	/* Unlike push_stack() do not copy_verifier_state().
2621 	 * The caller state doesn't matter.
2622 	 * This is async callback. It starts in a fresh stack.
2623 	 * Initialize it similar to do_check_common().
2624 	 */
2625 	elem->st.branches = 1;
2626 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2627 	if (!frame)
2628 		goto err;
2629 	init_func_state(env, frame,
2630 			BPF_MAIN_FUNC /* callsite */,
2631 			0 /* frameno within this callchain */,
2632 			subprog /* subprog number within this prog */);
2633 	elem->st.frame[0] = frame;
2634 	return &elem->st;
2635 err:
2636 	free_verifier_state(env->cur_state, true);
2637 	env->cur_state = NULL;
2638 	/* pop all elements and return */
2639 	while (!pop_stack(env, NULL, NULL, false));
2640 	return NULL;
2641 }
2642 
2643 
2644 enum reg_arg_type {
2645 	SRC_OP,		/* register is used as source operand */
2646 	DST_OP,		/* register is used as destination operand */
2647 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2648 };
2649 
2650 static int cmp_subprogs(const void *a, const void *b)
2651 {
2652 	return ((struct bpf_subprog_info *)a)->start -
2653 	       ((struct bpf_subprog_info *)b)->start;
2654 }
2655 
2656 static int find_subprog(struct bpf_verifier_env *env, int off)
2657 {
2658 	struct bpf_subprog_info *p;
2659 
2660 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2661 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2662 	if (!p)
2663 		return -ENOENT;
2664 	return p - env->subprog_info;
2665 
2666 }
2667 
2668 static int add_subprog(struct bpf_verifier_env *env, int off)
2669 {
2670 	int insn_cnt = env->prog->len;
2671 	int ret;
2672 
2673 	if (off >= insn_cnt || off < 0) {
2674 		verbose(env, "call to invalid destination\n");
2675 		return -EINVAL;
2676 	}
2677 	ret = find_subprog(env, off);
2678 	if (ret >= 0)
2679 		return ret;
2680 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2681 		verbose(env, "too many subprograms\n");
2682 		return -E2BIG;
2683 	}
2684 	/* determine subprog starts. The end is one before the next starts */
2685 	env->subprog_info[env->subprog_cnt++].start = off;
2686 	sort(env->subprog_info, env->subprog_cnt,
2687 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2688 	return env->subprog_cnt - 1;
2689 }
2690 
2691 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2692 {
2693 	struct bpf_prog_aux *aux = env->prog->aux;
2694 	struct btf *btf = aux->btf;
2695 	const struct btf_type *t;
2696 	u32 main_btf_id, id;
2697 	const char *name;
2698 	int ret, i;
2699 
2700 	/* Non-zero func_info_cnt implies valid btf */
2701 	if (!aux->func_info_cnt)
2702 		return 0;
2703 	main_btf_id = aux->func_info[0].type_id;
2704 
2705 	t = btf_type_by_id(btf, main_btf_id);
2706 	if (!t) {
2707 		verbose(env, "invalid btf id for main subprog in func_info\n");
2708 		return -EINVAL;
2709 	}
2710 
2711 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2712 	if (IS_ERR(name)) {
2713 		ret = PTR_ERR(name);
2714 		/* If there is no tag present, there is no exception callback */
2715 		if (ret == -ENOENT)
2716 			ret = 0;
2717 		else if (ret == -EEXIST)
2718 			verbose(env, "multiple exception callback tags for main subprog\n");
2719 		return ret;
2720 	}
2721 
2722 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2723 	if (ret < 0) {
2724 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2725 		return ret;
2726 	}
2727 	id = ret;
2728 	t = btf_type_by_id(btf, id);
2729 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2730 		verbose(env, "exception callback '%s' must have global linkage\n", name);
2731 		return -EINVAL;
2732 	}
2733 	ret = 0;
2734 	for (i = 0; i < aux->func_info_cnt; i++) {
2735 		if (aux->func_info[i].type_id != id)
2736 			continue;
2737 		ret = aux->func_info[i].insn_off;
2738 		/* Further func_info and subprog checks will also happen
2739 		 * later, so assume this is the right insn_off for now.
2740 		 */
2741 		if (!ret) {
2742 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2743 			ret = -EINVAL;
2744 		}
2745 	}
2746 	if (!ret) {
2747 		verbose(env, "exception callback type id not found in func_info\n");
2748 		ret = -EINVAL;
2749 	}
2750 	return ret;
2751 }
2752 
2753 #define MAX_KFUNC_DESCS 256
2754 #define MAX_KFUNC_BTFS	256
2755 
2756 struct bpf_kfunc_desc {
2757 	struct btf_func_model func_model;
2758 	u32 func_id;
2759 	s32 imm;
2760 	u16 offset;
2761 	unsigned long addr;
2762 };
2763 
2764 struct bpf_kfunc_btf {
2765 	struct btf *btf;
2766 	struct module *module;
2767 	u16 offset;
2768 };
2769 
2770 struct bpf_kfunc_desc_tab {
2771 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2772 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2773 	 * available, therefore at the end of verification do_misc_fixups()
2774 	 * sorts this by imm and offset.
2775 	 */
2776 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2777 	u32 nr_descs;
2778 };
2779 
2780 struct bpf_kfunc_btf_tab {
2781 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2782 	u32 nr_descs;
2783 };
2784 
2785 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2786 {
2787 	const struct bpf_kfunc_desc *d0 = a;
2788 	const struct bpf_kfunc_desc *d1 = b;
2789 
2790 	/* func_id is not greater than BTF_MAX_TYPE */
2791 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2792 }
2793 
2794 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2795 {
2796 	const struct bpf_kfunc_btf *d0 = a;
2797 	const struct bpf_kfunc_btf *d1 = b;
2798 
2799 	return d0->offset - d1->offset;
2800 }
2801 
2802 static const struct bpf_kfunc_desc *
2803 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2804 {
2805 	struct bpf_kfunc_desc desc = {
2806 		.func_id = func_id,
2807 		.offset = offset,
2808 	};
2809 	struct bpf_kfunc_desc_tab *tab;
2810 
2811 	tab = prog->aux->kfunc_tab;
2812 	return bsearch(&desc, tab->descs, tab->nr_descs,
2813 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2814 }
2815 
2816 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2817 		       u16 btf_fd_idx, u8 **func_addr)
2818 {
2819 	const struct bpf_kfunc_desc *desc;
2820 
2821 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2822 	if (!desc)
2823 		return -EFAULT;
2824 
2825 	*func_addr = (u8 *)desc->addr;
2826 	return 0;
2827 }
2828 
2829 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2830 					 s16 offset)
2831 {
2832 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2833 	struct bpf_kfunc_btf_tab *tab;
2834 	struct bpf_kfunc_btf *b;
2835 	struct module *mod;
2836 	struct btf *btf;
2837 	int btf_fd;
2838 
2839 	tab = env->prog->aux->kfunc_btf_tab;
2840 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2841 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2842 	if (!b) {
2843 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2844 			verbose(env, "too many different module BTFs\n");
2845 			return ERR_PTR(-E2BIG);
2846 		}
2847 
2848 		if (bpfptr_is_null(env->fd_array)) {
2849 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2850 			return ERR_PTR(-EPROTO);
2851 		}
2852 
2853 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2854 					    offset * sizeof(btf_fd),
2855 					    sizeof(btf_fd)))
2856 			return ERR_PTR(-EFAULT);
2857 
2858 		btf = btf_get_by_fd(btf_fd);
2859 		if (IS_ERR(btf)) {
2860 			verbose(env, "invalid module BTF fd specified\n");
2861 			return btf;
2862 		}
2863 
2864 		if (!btf_is_module(btf)) {
2865 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2866 			btf_put(btf);
2867 			return ERR_PTR(-EINVAL);
2868 		}
2869 
2870 		mod = btf_try_get_module(btf);
2871 		if (!mod) {
2872 			btf_put(btf);
2873 			return ERR_PTR(-ENXIO);
2874 		}
2875 
2876 		b = &tab->descs[tab->nr_descs++];
2877 		b->btf = btf;
2878 		b->module = mod;
2879 		b->offset = offset;
2880 
2881 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2882 		     kfunc_btf_cmp_by_off, NULL);
2883 	}
2884 	return b->btf;
2885 }
2886 
2887 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2888 {
2889 	if (!tab)
2890 		return;
2891 
2892 	while (tab->nr_descs--) {
2893 		module_put(tab->descs[tab->nr_descs].module);
2894 		btf_put(tab->descs[tab->nr_descs].btf);
2895 	}
2896 	kfree(tab);
2897 }
2898 
2899 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2900 {
2901 	if (offset) {
2902 		if (offset < 0) {
2903 			/* In the future, this can be allowed to increase limit
2904 			 * of fd index into fd_array, interpreted as u16.
2905 			 */
2906 			verbose(env, "negative offset disallowed for kernel module function call\n");
2907 			return ERR_PTR(-EINVAL);
2908 		}
2909 
2910 		return __find_kfunc_desc_btf(env, offset);
2911 	}
2912 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2913 }
2914 
2915 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2916 {
2917 	const struct btf_type *func, *func_proto;
2918 	struct bpf_kfunc_btf_tab *btf_tab;
2919 	struct bpf_kfunc_desc_tab *tab;
2920 	struct bpf_prog_aux *prog_aux;
2921 	struct bpf_kfunc_desc *desc;
2922 	const char *func_name;
2923 	struct btf *desc_btf;
2924 	unsigned long call_imm;
2925 	unsigned long addr;
2926 	int err;
2927 
2928 	prog_aux = env->prog->aux;
2929 	tab = prog_aux->kfunc_tab;
2930 	btf_tab = prog_aux->kfunc_btf_tab;
2931 	if (!tab) {
2932 		if (!btf_vmlinux) {
2933 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2934 			return -ENOTSUPP;
2935 		}
2936 
2937 		if (!env->prog->jit_requested) {
2938 			verbose(env, "JIT is required for calling kernel function\n");
2939 			return -ENOTSUPP;
2940 		}
2941 
2942 		if (!bpf_jit_supports_kfunc_call()) {
2943 			verbose(env, "JIT does not support calling kernel function\n");
2944 			return -ENOTSUPP;
2945 		}
2946 
2947 		if (!env->prog->gpl_compatible) {
2948 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2949 			return -EINVAL;
2950 		}
2951 
2952 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2953 		if (!tab)
2954 			return -ENOMEM;
2955 		prog_aux->kfunc_tab = tab;
2956 	}
2957 
2958 	/* func_id == 0 is always invalid, but instead of returning an error, be
2959 	 * conservative and wait until the code elimination pass before returning
2960 	 * error, so that invalid calls that get pruned out can be in BPF programs
2961 	 * loaded from userspace.  It is also required that offset be untouched
2962 	 * for such calls.
2963 	 */
2964 	if (!func_id && !offset)
2965 		return 0;
2966 
2967 	if (!btf_tab && offset) {
2968 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2969 		if (!btf_tab)
2970 			return -ENOMEM;
2971 		prog_aux->kfunc_btf_tab = btf_tab;
2972 	}
2973 
2974 	desc_btf = find_kfunc_desc_btf(env, offset);
2975 	if (IS_ERR(desc_btf)) {
2976 		verbose(env, "failed to find BTF for kernel function\n");
2977 		return PTR_ERR(desc_btf);
2978 	}
2979 
2980 	if (find_kfunc_desc(env->prog, func_id, offset))
2981 		return 0;
2982 
2983 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2984 		verbose(env, "too many different kernel function calls\n");
2985 		return -E2BIG;
2986 	}
2987 
2988 	func = btf_type_by_id(desc_btf, func_id);
2989 	if (!func || !btf_type_is_func(func)) {
2990 		verbose(env, "kernel btf_id %u is not a function\n",
2991 			func_id);
2992 		return -EINVAL;
2993 	}
2994 	func_proto = btf_type_by_id(desc_btf, func->type);
2995 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2996 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2997 			func_id);
2998 		return -EINVAL;
2999 	}
3000 
3001 	func_name = btf_name_by_offset(desc_btf, func->name_off);
3002 	addr = kallsyms_lookup_name(func_name);
3003 	if (!addr) {
3004 		verbose(env, "cannot find address for kernel function %s\n",
3005 			func_name);
3006 		return -EINVAL;
3007 	}
3008 	specialize_kfunc(env, func_id, offset, &addr);
3009 
3010 	if (bpf_jit_supports_far_kfunc_call()) {
3011 		call_imm = func_id;
3012 	} else {
3013 		call_imm = BPF_CALL_IMM(addr);
3014 		/* Check whether the relative offset overflows desc->imm */
3015 		if ((unsigned long)(s32)call_imm != call_imm) {
3016 			verbose(env, "address of kernel function %s is out of range\n",
3017 				func_name);
3018 			return -EINVAL;
3019 		}
3020 	}
3021 
3022 	if (bpf_dev_bound_kfunc_id(func_id)) {
3023 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
3024 		if (err)
3025 			return err;
3026 	}
3027 
3028 	desc = &tab->descs[tab->nr_descs++];
3029 	desc->func_id = func_id;
3030 	desc->imm = call_imm;
3031 	desc->offset = offset;
3032 	desc->addr = addr;
3033 	err = btf_distill_func_proto(&env->log, desc_btf,
3034 				     func_proto, func_name,
3035 				     &desc->func_model);
3036 	if (!err)
3037 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3038 		     kfunc_desc_cmp_by_id_off, NULL);
3039 	return err;
3040 }
3041 
3042 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
3043 {
3044 	const struct bpf_kfunc_desc *d0 = a;
3045 	const struct bpf_kfunc_desc *d1 = b;
3046 
3047 	if (d0->imm != d1->imm)
3048 		return d0->imm < d1->imm ? -1 : 1;
3049 	if (d0->offset != d1->offset)
3050 		return d0->offset < d1->offset ? -1 : 1;
3051 	return 0;
3052 }
3053 
3054 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
3055 {
3056 	struct bpf_kfunc_desc_tab *tab;
3057 
3058 	tab = prog->aux->kfunc_tab;
3059 	if (!tab)
3060 		return;
3061 
3062 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3063 	     kfunc_desc_cmp_by_imm_off, NULL);
3064 }
3065 
3066 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3067 {
3068 	return !!prog->aux->kfunc_tab;
3069 }
3070 
3071 const struct btf_func_model *
3072 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3073 			 const struct bpf_insn *insn)
3074 {
3075 	const struct bpf_kfunc_desc desc = {
3076 		.imm = insn->imm,
3077 		.offset = insn->off,
3078 	};
3079 	const struct bpf_kfunc_desc *res;
3080 	struct bpf_kfunc_desc_tab *tab;
3081 
3082 	tab = prog->aux->kfunc_tab;
3083 	res = bsearch(&desc, tab->descs, tab->nr_descs,
3084 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3085 
3086 	return res ? &res->func_model : NULL;
3087 }
3088 
3089 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3090 {
3091 	struct bpf_subprog_info *subprog = env->subprog_info;
3092 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
3093 	struct bpf_insn *insn = env->prog->insnsi;
3094 
3095 	/* Add entry function. */
3096 	ret = add_subprog(env, 0);
3097 	if (ret)
3098 		return ret;
3099 
3100 	for (i = 0; i < insn_cnt; i++, insn++) {
3101 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3102 		    !bpf_pseudo_kfunc_call(insn))
3103 			continue;
3104 
3105 		if (!env->bpf_capable) {
3106 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3107 			return -EPERM;
3108 		}
3109 
3110 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3111 			ret = add_subprog(env, i + insn->imm + 1);
3112 		else
3113 			ret = add_kfunc_call(env, insn->imm, insn->off);
3114 
3115 		if (ret < 0)
3116 			return ret;
3117 	}
3118 
3119 	ret = bpf_find_exception_callback_insn_off(env);
3120 	if (ret < 0)
3121 		return ret;
3122 	ex_cb_insn = ret;
3123 
3124 	/* If ex_cb_insn > 0, this means that the main program has a subprog
3125 	 * marked using BTF decl tag to serve as the exception callback.
3126 	 */
3127 	if (ex_cb_insn) {
3128 		ret = add_subprog(env, ex_cb_insn);
3129 		if (ret < 0)
3130 			return ret;
3131 		for (i = 1; i < env->subprog_cnt; i++) {
3132 			if (env->subprog_info[i].start != ex_cb_insn)
3133 				continue;
3134 			env->exception_callback_subprog = i;
3135 			break;
3136 		}
3137 	}
3138 
3139 	/* Add a fake 'exit' subprog which could simplify subprog iteration
3140 	 * logic. 'subprog_cnt' should not be increased.
3141 	 */
3142 	subprog[env->subprog_cnt].start = insn_cnt;
3143 
3144 	if (env->log.level & BPF_LOG_LEVEL2)
3145 		for (i = 0; i < env->subprog_cnt; i++)
3146 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
3147 
3148 	return 0;
3149 }
3150 
3151 static int check_subprogs(struct bpf_verifier_env *env)
3152 {
3153 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
3154 	struct bpf_subprog_info *subprog = env->subprog_info;
3155 	struct bpf_insn *insn = env->prog->insnsi;
3156 	int insn_cnt = env->prog->len;
3157 
3158 	/* now check that all jumps are within the same subprog */
3159 	subprog_start = subprog[cur_subprog].start;
3160 	subprog_end = subprog[cur_subprog + 1].start;
3161 	for (i = 0; i < insn_cnt; i++) {
3162 		u8 code = insn[i].code;
3163 
3164 		if (code == (BPF_JMP | BPF_CALL) &&
3165 		    insn[i].src_reg == 0 &&
3166 		    insn[i].imm == BPF_FUNC_tail_call)
3167 			subprog[cur_subprog].has_tail_call = true;
3168 		if (BPF_CLASS(code) == BPF_LD &&
3169 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3170 			subprog[cur_subprog].has_ld_abs = true;
3171 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3172 			goto next;
3173 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3174 			goto next;
3175 		if (code == (BPF_JMP32 | BPF_JA))
3176 			off = i + insn[i].imm + 1;
3177 		else
3178 			off = i + insn[i].off + 1;
3179 		if (off < subprog_start || off >= subprog_end) {
3180 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
3181 			return -EINVAL;
3182 		}
3183 next:
3184 		if (i == subprog_end - 1) {
3185 			/* to avoid fall-through from one subprog into another
3186 			 * the last insn of the subprog should be either exit
3187 			 * or unconditional jump back or bpf_throw call
3188 			 */
3189 			if (code != (BPF_JMP | BPF_EXIT) &&
3190 			    code != (BPF_JMP32 | BPF_JA) &&
3191 			    code != (BPF_JMP | BPF_JA)) {
3192 				verbose(env, "last insn is not an exit or jmp\n");
3193 				return -EINVAL;
3194 			}
3195 			subprog_start = subprog_end;
3196 			cur_subprog++;
3197 			if (cur_subprog < env->subprog_cnt)
3198 				subprog_end = subprog[cur_subprog + 1].start;
3199 		}
3200 	}
3201 	return 0;
3202 }
3203 
3204 /* Parentage chain of this register (or stack slot) should take care of all
3205  * issues like callee-saved registers, stack slot allocation time, etc.
3206  */
3207 static int mark_reg_read(struct bpf_verifier_env *env,
3208 			 const struct bpf_reg_state *state,
3209 			 struct bpf_reg_state *parent, u8 flag)
3210 {
3211 	bool writes = parent == state->parent; /* Observe write marks */
3212 	int cnt = 0;
3213 
3214 	while (parent) {
3215 		/* if read wasn't screened by an earlier write ... */
3216 		if (writes && state->live & REG_LIVE_WRITTEN)
3217 			break;
3218 		if (parent->live & REG_LIVE_DONE) {
3219 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3220 				reg_type_str(env, parent->type),
3221 				parent->var_off.value, parent->off);
3222 			return -EFAULT;
3223 		}
3224 		/* The first condition is more likely to be true than the
3225 		 * second, checked it first.
3226 		 */
3227 		if ((parent->live & REG_LIVE_READ) == flag ||
3228 		    parent->live & REG_LIVE_READ64)
3229 			/* The parentage chain never changes and
3230 			 * this parent was already marked as LIVE_READ.
3231 			 * There is no need to keep walking the chain again and
3232 			 * keep re-marking all parents as LIVE_READ.
3233 			 * This case happens when the same register is read
3234 			 * multiple times without writes into it in-between.
3235 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3236 			 * then no need to set the weak REG_LIVE_READ32.
3237 			 */
3238 			break;
3239 		/* ... then we depend on parent's value */
3240 		parent->live |= flag;
3241 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3242 		if (flag == REG_LIVE_READ64)
3243 			parent->live &= ~REG_LIVE_READ32;
3244 		state = parent;
3245 		parent = state->parent;
3246 		writes = true;
3247 		cnt++;
3248 	}
3249 
3250 	if (env->longest_mark_read_walk < cnt)
3251 		env->longest_mark_read_walk = cnt;
3252 	return 0;
3253 }
3254 
3255 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3256 {
3257 	struct bpf_func_state *state = func(env, reg);
3258 	int spi, ret;
3259 
3260 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3261 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3262 	 * check_kfunc_call.
3263 	 */
3264 	if (reg->type == CONST_PTR_TO_DYNPTR)
3265 		return 0;
3266 	spi = dynptr_get_spi(env, reg);
3267 	if (spi < 0)
3268 		return spi;
3269 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3270 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3271 	 * read.
3272 	 */
3273 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3274 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3275 	if (ret)
3276 		return ret;
3277 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3278 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3279 }
3280 
3281 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3282 			  int spi, int nr_slots)
3283 {
3284 	struct bpf_func_state *state = func(env, reg);
3285 	int err, i;
3286 
3287 	for (i = 0; i < nr_slots; i++) {
3288 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3289 
3290 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3291 		if (err)
3292 			return err;
3293 
3294 		mark_stack_slot_scratched(env, spi - i);
3295 	}
3296 
3297 	return 0;
3298 }
3299 
3300 /* This function is supposed to be used by the following 32-bit optimization
3301  * code only. It returns TRUE if the source or destination register operates
3302  * on 64-bit, otherwise return FALSE.
3303  */
3304 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3305 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3306 {
3307 	u8 code, class, op;
3308 
3309 	code = insn->code;
3310 	class = BPF_CLASS(code);
3311 	op = BPF_OP(code);
3312 	if (class == BPF_JMP) {
3313 		/* BPF_EXIT for "main" will reach here. Return TRUE
3314 		 * conservatively.
3315 		 */
3316 		if (op == BPF_EXIT)
3317 			return true;
3318 		if (op == BPF_CALL) {
3319 			/* BPF to BPF call will reach here because of marking
3320 			 * caller saved clobber with DST_OP_NO_MARK for which we
3321 			 * don't care the register def because they are anyway
3322 			 * marked as NOT_INIT already.
3323 			 */
3324 			if (insn->src_reg == BPF_PSEUDO_CALL)
3325 				return false;
3326 			/* Helper call will reach here because of arg type
3327 			 * check, conservatively return TRUE.
3328 			 */
3329 			if (t == SRC_OP)
3330 				return true;
3331 
3332 			return false;
3333 		}
3334 	}
3335 
3336 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3337 		return false;
3338 
3339 	if (class == BPF_ALU64 || class == BPF_JMP ||
3340 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3341 		return true;
3342 
3343 	if (class == BPF_ALU || class == BPF_JMP32)
3344 		return false;
3345 
3346 	if (class == BPF_LDX) {
3347 		if (t != SRC_OP)
3348 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3349 		/* LDX source must be ptr. */
3350 		return true;
3351 	}
3352 
3353 	if (class == BPF_STX) {
3354 		/* BPF_STX (including atomic variants) has multiple source
3355 		 * operands, one of which is a ptr. Check whether the caller is
3356 		 * asking about it.
3357 		 */
3358 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3359 			return true;
3360 		return BPF_SIZE(code) == BPF_DW;
3361 	}
3362 
3363 	if (class == BPF_LD) {
3364 		u8 mode = BPF_MODE(code);
3365 
3366 		/* LD_IMM64 */
3367 		if (mode == BPF_IMM)
3368 			return true;
3369 
3370 		/* Both LD_IND and LD_ABS return 32-bit data. */
3371 		if (t != SRC_OP)
3372 			return  false;
3373 
3374 		/* Implicit ctx ptr. */
3375 		if (regno == BPF_REG_6)
3376 			return true;
3377 
3378 		/* Explicit source could be any width. */
3379 		return true;
3380 	}
3381 
3382 	if (class == BPF_ST)
3383 		/* The only source register for BPF_ST is a ptr. */
3384 		return true;
3385 
3386 	/* Conservatively return true at default. */
3387 	return true;
3388 }
3389 
3390 /* Return the regno defined by the insn, or -1. */
3391 static int insn_def_regno(const struct bpf_insn *insn)
3392 {
3393 	switch (BPF_CLASS(insn->code)) {
3394 	case BPF_JMP:
3395 	case BPF_JMP32:
3396 	case BPF_ST:
3397 		return -1;
3398 	case BPF_STX:
3399 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3400 		    (insn->imm & BPF_FETCH)) {
3401 			if (insn->imm == BPF_CMPXCHG)
3402 				return BPF_REG_0;
3403 			else
3404 				return insn->src_reg;
3405 		} else {
3406 			return -1;
3407 		}
3408 	default:
3409 		return insn->dst_reg;
3410 	}
3411 }
3412 
3413 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3414 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3415 {
3416 	int dst_reg = insn_def_regno(insn);
3417 
3418 	if (dst_reg == -1)
3419 		return false;
3420 
3421 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3422 }
3423 
3424 static void mark_insn_zext(struct bpf_verifier_env *env,
3425 			   struct bpf_reg_state *reg)
3426 {
3427 	s32 def_idx = reg->subreg_def;
3428 
3429 	if (def_idx == DEF_NOT_SUBREG)
3430 		return;
3431 
3432 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3433 	/* The dst will be zero extended, so won't be sub-register anymore. */
3434 	reg->subreg_def = DEF_NOT_SUBREG;
3435 }
3436 
3437 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3438 			 enum reg_arg_type t)
3439 {
3440 	struct bpf_verifier_state *vstate = env->cur_state;
3441 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3442 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3443 	struct bpf_reg_state *reg, *regs = state->regs;
3444 	bool rw64;
3445 
3446 	if (regno >= MAX_BPF_REG) {
3447 		verbose(env, "R%d is invalid\n", regno);
3448 		return -EINVAL;
3449 	}
3450 
3451 	mark_reg_scratched(env, regno);
3452 
3453 	reg = &regs[regno];
3454 	rw64 = is_reg64(env, insn, regno, reg, t);
3455 	if (t == SRC_OP) {
3456 		/* check whether register used as source operand can be read */
3457 		if (reg->type == NOT_INIT) {
3458 			verbose(env, "R%d !read_ok\n", regno);
3459 			return -EACCES;
3460 		}
3461 		/* We don't need to worry about FP liveness because it's read-only */
3462 		if (regno == BPF_REG_FP)
3463 			return 0;
3464 
3465 		if (rw64)
3466 			mark_insn_zext(env, reg);
3467 
3468 		return mark_reg_read(env, reg, reg->parent,
3469 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3470 	} else {
3471 		/* check whether register used as dest operand can be written to */
3472 		if (regno == BPF_REG_FP) {
3473 			verbose(env, "frame pointer is read only\n");
3474 			return -EACCES;
3475 		}
3476 		reg->live |= REG_LIVE_WRITTEN;
3477 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3478 		if (t == DST_OP)
3479 			mark_reg_unknown(env, regs, regno);
3480 	}
3481 	return 0;
3482 }
3483 
3484 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3485 {
3486 	env->insn_aux_data[idx].jmp_point = true;
3487 }
3488 
3489 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3490 {
3491 	return env->insn_aux_data[insn_idx].jmp_point;
3492 }
3493 
3494 /* for any branch, call, exit record the history of jmps in the given state */
3495 static int push_jmp_history(struct bpf_verifier_env *env,
3496 			    struct bpf_verifier_state *cur)
3497 {
3498 	u32 cnt = cur->jmp_history_cnt;
3499 	struct bpf_idx_pair *p;
3500 	size_t alloc_size;
3501 
3502 	if (!is_jmp_point(env, env->insn_idx))
3503 		return 0;
3504 
3505 	cnt++;
3506 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3507 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3508 	if (!p)
3509 		return -ENOMEM;
3510 	p[cnt - 1].idx = env->insn_idx;
3511 	p[cnt - 1].prev_idx = env->prev_insn_idx;
3512 	cur->jmp_history = p;
3513 	cur->jmp_history_cnt = cnt;
3514 	return 0;
3515 }
3516 
3517 /* Backtrack one insn at a time. If idx is not at the top of recorded
3518  * history then previous instruction came from straight line execution.
3519  */
3520 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3521 			     u32 *history)
3522 {
3523 	u32 cnt = *history;
3524 
3525 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3526 		i = st->jmp_history[cnt - 1].prev_idx;
3527 		(*history)--;
3528 	} else {
3529 		i--;
3530 	}
3531 	return i;
3532 }
3533 
3534 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3535 {
3536 	const struct btf_type *func;
3537 	struct btf *desc_btf;
3538 
3539 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3540 		return NULL;
3541 
3542 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3543 	if (IS_ERR(desc_btf))
3544 		return "<error>";
3545 
3546 	func = btf_type_by_id(desc_btf, insn->imm);
3547 	return btf_name_by_offset(desc_btf, func->name_off);
3548 }
3549 
3550 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3551 {
3552 	bt->frame = frame;
3553 }
3554 
3555 static inline void bt_reset(struct backtrack_state *bt)
3556 {
3557 	struct bpf_verifier_env *env = bt->env;
3558 
3559 	memset(bt, 0, sizeof(*bt));
3560 	bt->env = env;
3561 }
3562 
3563 static inline u32 bt_empty(struct backtrack_state *bt)
3564 {
3565 	u64 mask = 0;
3566 	int i;
3567 
3568 	for (i = 0; i <= bt->frame; i++)
3569 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3570 
3571 	return mask == 0;
3572 }
3573 
3574 static inline int bt_subprog_enter(struct backtrack_state *bt)
3575 {
3576 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3577 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3578 		WARN_ONCE(1, "verifier backtracking bug");
3579 		return -EFAULT;
3580 	}
3581 	bt->frame++;
3582 	return 0;
3583 }
3584 
3585 static inline int bt_subprog_exit(struct backtrack_state *bt)
3586 {
3587 	if (bt->frame == 0) {
3588 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3589 		WARN_ONCE(1, "verifier backtracking bug");
3590 		return -EFAULT;
3591 	}
3592 	bt->frame--;
3593 	return 0;
3594 }
3595 
3596 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3597 {
3598 	bt->reg_masks[frame] |= 1 << reg;
3599 }
3600 
3601 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3602 {
3603 	bt->reg_masks[frame] &= ~(1 << reg);
3604 }
3605 
3606 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3607 {
3608 	bt_set_frame_reg(bt, bt->frame, reg);
3609 }
3610 
3611 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3612 {
3613 	bt_clear_frame_reg(bt, bt->frame, reg);
3614 }
3615 
3616 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3617 {
3618 	bt->stack_masks[frame] |= 1ull << slot;
3619 }
3620 
3621 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3622 {
3623 	bt->stack_masks[frame] &= ~(1ull << slot);
3624 }
3625 
3626 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3627 {
3628 	bt_set_frame_slot(bt, bt->frame, slot);
3629 }
3630 
3631 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3632 {
3633 	bt_clear_frame_slot(bt, bt->frame, slot);
3634 }
3635 
3636 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3637 {
3638 	return bt->reg_masks[frame];
3639 }
3640 
3641 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3642 {
3643 	return bt->reg_masks[bt->frame];
3644 }
3645 
3646 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3647 {
3648 	return bt->stack_masks[frame];
3649 }
3650 
3651 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3652 {
3653 	return bt->stack_masks[bt->frame];
3654 }
3655 
3656 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3657 {
3658 	return bt->reg_masks[bt->frame] & (1 << reg);
3659 }
3660 
3661 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3662 {
3663 	return bt->stack_masks[bt->frame] & (1ull << slot);
3664 }
3665 
3666 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3667 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3668 {
3669 	DECLARE_BITMAP(mask, 64);
3670 	bool first = true;
3671 	int i, n;
3672 
3673 	buf[0] = '\0';
3674 
3675 	bitmap_from_u64(mask, reg_mask);
3676 	for_each_set_bit(i, mask, 32) {
3677 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3678 		first = false;
3679 		buf += n;
3680 		buf_sz -= n;
3681 		if (buf_sz < 0)
3682 			break;
3683 	}
3684 }
3685 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3686 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3687 {
3688 	DECLARE_BITMAP(mask, 64);
3689 	bool first = true;
3690 	int i, n;
3691 
3692 	buf[0] = '\0';
3693 
3694 	bitmap_from_u64(mask, stack_mask);
3695 	for_each_set_bit(i, mask, 64) {
3696 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3697 		first = false;
3698 		buf += n;
3699 		buf_sz -= n;
3700 		if (buf_sz < 0)
3701 			break;
3702 	}
3703 }
3704 
3705 /* For given verifier state backtrack_insn() is called from the last insn to
3706  * the first insn. Its purpose is to compute a bitmask of registers and
3707  * stack slots that needs precision in the parent verifier state.
3708  *
3709  * @idx is an index of the instruction we are currently processing;
3710  * @subseq_idx is an index of the subsequent instruction that:
3711  *   - *would be* executed next, if jump history is viewed in forward order;
3712  *   - *was* processed previously during backtracking.
3713  */
3714 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3715 			  struct backtrack_state *bt)
3716 {
3717 	const struct bpf_insn_cbs cbs = {
3718 		.cb_call	= disasm_kfunc_name,
3719 		.cb_print	= verbose,
3720 		.private_data	= env,
3721 	};
3722 	struct bpf_insn *insn = env->prog->insnsi + idx;
3723 	u8 class = BPF_CLASS(insn->code);
3724 	u8 opcode = BPF_OP(insn->code);
3725 	u8 mode = BPF_MODE(insn->code);
3726 	u32 dreg = insn->dst_reg;
3727 	u32 sreg = insn->src_reg;
3728 	u32 spi, i;
3729 
3730 	if (insn->code == 0)
3731 		return 0;
3732 	if (env->log.level & BPF_LOG_LEVEL2) {
3733 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3734 		verbose(env, "mark_precise: frame%d: regs=%s ",
3735 			bt->frame, env->tmp_str_buf);
3736 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3737 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3738 		verbose(env, "%d: ", idx);
3739 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3740 	}
3741 
3742 	if (class == BPF_ALU || class == BPF_ALU64) {
3743 		if (!bt_is_reg_set(bt, dreg))
3744 			return 0;
3745 		if (opcode == BPF_END || opcode == BPF_NEG) {
3746 			/* sreg is reserved and unused
3747 			 * dreg still need precision before this insn
3748 			 */
3749 			return 0;
3750 		} else if (opcode == BPF_MOV) {
3751 			if (BPF_SRC(insn->code) == BPF_X) {
3752 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3753 				 * dreg needs precision after this insn
3754 				 * sreg needs precision before this insn
3755 				 */
3756 				bt_clear_reg(bt, dreg);
3757 				bt_set_reg(bt, sreg);
3758 			} else {
3759 				/* dreg = K
3760 				 * dreg needs precision after this insn.
3761 				 * Corresponding register is already marked
3762 				 * as precise=true in this verifier state.
3763 				 * No further markings in parent are necessary
3764 				 */
3765 				bt_clear_reg(bt, dreg);
3766 			}
3767 		} else {
3768 			if (BPF_SRC(insn->code) == BPF_X) {
3769 				/* dreg += sreg
3770 				 * both dreg and sreg need precision
3771 				 * before this insn
3772 				 */
3773 				bt_set_reg(bt, sreg);
3774 			} /* else dreg += K
3775 			   * dreg still needs precision before this insn
3776 			   */
3777 		}
3778 	} else if (class == BPF_LDX) {
3779 		if (!bt_is_reg_set(bt, dreg))
3780 			return 0;
3781 		bt_clear_reg(bt, dreg);
3782 
3783 		/* scalars can only be spilled into stack w/o losing precision.
3784 		 * Load from any other memory can be zero extended.
3785 		 * The desire to keep that precision is already indicated
3786 		 * by 'precise' mark in corresponding register of this state.
3787 		 * No further tracking necessary.
3788 		 */
3789 		if (insn->src_reg != BPF_REG_FP)
3790 			return 0;
3791 
3792 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3793 		 * that [fp - off] slot contains scalar that needs to be
3794 		 * tracked with precision
3795 		 */
3796 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3797 		if (spi >= 64) {
3798 			verbose(env, "BUG spi %d\n", spi);
3799 			WARN_ONCE(1, "verifier backtracking bug");
3800 			return -EFAULT;
3801 		}
3802 		bt_set_slot(bt, spi);
3803 	} else if (class == BPF_STX || class == BPF_ST) {
3804 		if (bt_is_reg_set(bt, dreg))
3805 			/* stx & st shouldn't be using _scalar_ dst_reg
3806 			 * to access memory. It means backtracking
3807 			 * encountered a case of pointer subtraction.
3808 			 */
3809 			return -ENOTSUPP;
3810 		/* scalars can only be spilled into stack */
3811 		if (insn->dst_reg != BPF_REG_FP)
3812 			return 0;
3813 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3814 		if (spi >= 64) {
3815 			verbose(env, "BUG spi %d\n", spi);
3816 			WARN_ONCE(1, "verifier backtracking bug");
3817 			return -EFAULT;
3818 		}
3819 		if (!bt_is_slot_set(bt, spi))
3820 			return 0;
3821 		bt_clear_slot(bt, spi);
3822 		if (class == BPF_STX)
3823 			bt_set_reg(bt, sreg);
3824 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3825 		if (bpf_pseudo_call(insn)) {
3826 			int subprog_insn_idx, subprog;
3827 
3828 			subprog_insn_idx = idx + insn->imm + 1;
3829 			subprog = find_subprog(env, subprog_insn_idx);
3830 			if (subprog < 0)
3831 				return -EFAULT;
3832 
3833 			if (subprog_is_global(env, subprog)) {
3834 				/* check that jump history doesn't have any
3835 				 * extra instructions from subprog; the next
3836 				 * instruction after call to global subprog
3837 				 * should be literally next instruction in
3838 				 * caller program
3839 				 */
3840 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3841 				/* r1-r5 are invalidated after subprog call,
3842 				 * so for global func call it shouldn't be set
3843 				 * anymore
3844 				 */
3845 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3846 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3847 					WARN_ONCE(1, "verifier backtracking bug");
3848 					return -EFAULT;
3849 				}
3850 				/* global subprog always sets R0 */
3851 				bt_clear_reg(bt, BPF_REG_0);
3852 				return 0;
3853 			} else {
3854 				/* static subprog call instruction, which
3855 				 * means that we are exiting current subprog,
3856 				 * so only r1-r5 could be still requested as
3857 				 * precise, r0 and r6-r10 or any stack slot in
3858 				 * the current frame should be zero by now
3859 				 */
3860 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3861 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3862 					WARN_ONCE(1, "verifier backtracking bug");
3863 					return -EFAULT;
3864 				}
3865 				/* we don't track register spills perfectly,
3866 				 * so fallback to force-precise instead of failing */
3867 				if (bt_stack_mask(bt) != 0)
3868 					return -ENOTSUPP;
3869 				/* propagate r1-r5 to the caller */
3870 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3871 					if (bt_is_reg_set(bt, i)) {
3872 						bt_clear_reg(bt, i);
3873 						bt_set_frame_reg(bt, bt->frame - 1, i);
3874 					}
3875 				}
3876 				if (bt_subprog_exit(bt))
3877 					return -EFAULT;
3878 				return 0;
3879 			}
3880 		} else if ((bpf_helper_call(insn) &&
3881 			    is_callback_calling_function(insn->imm) &&
3882 			    !is_async_callback_calling_function(insn->imm)) ||
3883 			   (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) {
3884 			/* callback-calling helper or kfunc call, which means
3885 			 * we are exiting from subprog, but unlike the subprog
3886 			 * call handling above, we shouldn't propagate
3887 			 * precision of r1-r5 (if any requested), as they are
3888 			 * not actually arguments passed directly to callback
3889 			 * subprogs
3890 			 */
3891 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3892 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3893 				WARN_ONCE(1, "verifier backtracking bug");
3894 				return -EFAULT;
3895 			}
3896 			if (bt_stack_mask(bt) != 0)
3897 				return -ENOTSUPP;
3898 			/* clear r1-r5 in callback subprog's mask */
3899 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3900 				bt_clear_reg(bt, i);
3901 			if (bt_subprog_exit(bt))
3902 				return -EFAULT;
3903 			return 0;
3904 		} else if (opcode == BPF_CALL) {
3905 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3906 			 * catch this error later. Make backtracking conservative
3907 			 * with ENOTSUPP.
3908 			 */
3909 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3910 				return -ENOTSUPP;
3911 			/* regular helper call sets R0 */
3912 			bt_clear_reg(bt, BPF_REG_0);
3913 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3914 				/* if backtracing was looking for registers R1-R5
3915 				 * they should have been found already.
3916 				 */
3917 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3918 				WARN_ONCE(1, "verifier backtracking bug");
3919 				return -EFAULT;
3920 			}
3921 		} else if (opcode == BPF_EXIT) {
3922 			bool r0_precise;
3923 
3924 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3925 				/* if backtracing was looking for registers R1-R5
3926 				 * they should have been found already.
3927 				 */
3928 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3929 				WARN_ONCE(1, "verifier backtracking bug");
3930 				return -EFAULT;
3931 			}
3932 
3933 			/* BPF_EXIT in subprog or callback always returns
3934 			 * right after the call instruction, so by checking
3935 			 * whether the instruction at subseq_idx-1 is subprog
3936 			 * call or not we can distinguish actual exit from
3937 			 * *subprog* from exit from *callback*. In the former
3938 			 * case, we need to propagate r0 precision, if
3939 			 * necessary. In the former we never do that.
3940 			 */
3941 			r0_precise = subseq_idx - 1 >= 0 &&
3942 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3943 				     bt_is_reg_set(bt, BPF_REG_0);
3944 
3945 			bt_clear_reg(bt, BPF_REG_0);
3946 			if (bt_subprog_enter(bt))
3947 				return -EFAULT;
3948 
3949 			if (r0_precise)
3950 				bt_set_reg(bt, BPF_REG_0);
3951 			/* r6-r9 and stack slots will stay set in caller frame
3952 			 * bitmasks until we return back from callee(s)
3953 			 */
3954 			return 0;
3955 		} else if (BPF_SRC(insn->code) == BPF_X) {
3956 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3957 				return 0;
3958 			/* dreg <cond> sreg
3959 			 * Both dreg and sreg need precision before
3960 			 * this insn. If only sreg was marked precise
3961 			 * before it would be equally necessary to
3962 			 * propagate it to dreg.
3963 			 */
3964 			bt_set_reg(bt, dreg);
3965 			bt_set_reg(bt, sreg);
3966 			 /* else dreg <cond> K
3967 			  * Only dreg still needs precision before
3968 			  * this insn, so for the K-based conditional
3969 			  * there is nothing new to be marked.
3970 			  */
3971 		}
3972 	} else if (class == BPF_LD) {
3973 		if (!bt_is_reg_set(bt, dreg))
3974 			return 0;
3975 		bt_clear_reg(bt, dreg);
3976 		/* It's ld_imm64 or ld_abs or ld_ind.
3977 		 * For ld_imm64 no further tracking of precision
3978 		 * into parent is necessary
3979 		 */
3980 		if (mode == BPF_IND || mode == BPF_ABS)
3981 			/* to be analyzed */
3982 			return -ENOTSUPP;
3983 	}
3984 	return 0;
3985 }
3986 
3987 /* the scalar precision tracking algorithm:
3988  * . at the start all registers have precise=false.
3989  * . scalar ranges are tracked as normal through alu and jmp insns.
3990  * . once precise value of the scalar register is used in:
3991  *   .  ptr + scalar alu
3992  *   . if (scalar cond K|scalar)
3993  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3994  *   backtrack through the verifier states and mark all registers and
3995  *   stack slots with spilled constants that these scalar regisers
3996  *   should be precise.
3997  * . during state pruning two registers (or spilled stack slots)
3998  *   are equivalent if both are not precise.
3999  *
4000  * Note the verifier cannot simply walk register parentage chain,
4001  * since many different registers and stack slots could have been
4002  * used to compute single precise scalar.
4003  *
4004  * The approach of starting with precise=true for all registers and then
4005  * backtrack to mark a register as not precise when the verifier detects
4006  * that program doesn't care about specific value (e.g., when helper
4007  * takes register as ARG_ANYTHING parameter) is not safe.
4008  *
4009  * It's ok to walk single parentage chain of the verifier states.
4010  * It's possible that this backtracking will go all the way till 1st insn.
4011  * All other branches will be explored for needing precision later.
4012  *
4013  * The backtracking needs to deal with cases like:
4014  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
4015  * r9 -= r8
4016  * r5 = r9
4017  * if r5 > 0x79f goto pc+7
4018  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4019  * r5 += 1
4020  * ...
4021  * call bpf_perf_event_output#25
4022  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4023  *
4024  * and this case:
4025  * r6 = 1
4026  * call foo // uses callee's r6 inside to compute r0
4027  * r0 += r6
4028  * if r0 == 0 goto
4029  *
4030  * to track above reg_mask/stack_mask needs to be independent for each frame.
4031  *
4032  * Also if parent's curframe > frame where backtracking started,
4033  * the verifier need to mark registers in both frames, otherwise callees
4034  * may incorrectly prune callers. This is similar to
4035  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4036  *
4037  * For now backtracking falls back into conservative marking.
4038  */
4039 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4040 				     struct bpf_verifier_state *st)
4041 {
4042 	struct bpf_func_state *func;
4043 	struct bpf_reg_state *reg;
4044 	int i, j;
4045 
4046 	if (env->log.level & BPF_LOG_LEVEL2) {
4047 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4048 			st->curframe);
4049 	}
4050 
4051 	/* big hammer: mark all scalars precise in this path.
4052 	 * pop_stack may still get !precise scalars.
4053 	 * We also skip current state and go straight to first parent state,
4054 	 * because precision markings in current non-checkpointed state are
4055 	 * not needed. See why in the comment in __mark_chain_precision below.
4056 	 */
4057 	for (st = st->parent; st; st = st->parent) {
4058 		for (i = 0; i <= st->curframe; i++) {
4059 			func = st->frame[i];
4060 			for (j = 0; j < BPF_REG_FP; j++) {
4061 				reg = &func->regs[j];
4062 				if (reg->type != SCALAR_VALUE || reg->precise)
4063 					continue;
4064 				reg->precise = true;
4065 				if (env->log.level & BPF_LOG_LEVEL2) {
4066 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4067 						i, j);
4068 				}
4069 			}
4070 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4071 				if (!is_spilled_reg(&func->stack[j]))
4072 					continue;
4073 				reg = &func->stack[j].spilled_ptr;
4074 				if (reg->type != SCALAR_VALUE || reg->precise)
4075 					continue;
4076 				reg->precise = true;
4077 				if (env->log.level & BPF_LOG_LEVEL2) {
4078 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4079 						i, -(j + 1) * 8);
4080 				}
4081 			}
4082 		}
4083 	}
4084 }
4085 
4086 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4087 {
4088 	struct bpf_func_state *func;
4089 	struct bpf_reg_state *reg;
4090 	int i, j;
4091 
4092 	for (i = 0; i <= st->curframe; i++) {
4093 		func = st->frame[i];
4094 		for (j = 0; j < BPF_REG_FP; j++) {
4095 			reg = &func->regs[j];
4096 			if (reg->type != SCALAR_VALUE)
4097 				continue;
4098 			reg->precise = false;
4099 		}
4100 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4101 			if (!is_spilled_reg(&func->stack[j]))
4102 				continue;
4103 			reg = &func->stack[j].spilled_ptr;
4104 			if (reg->type != SCALAR_VALUE)
4105 				continue;
4106 			reg->precise = false;
4107 		}
4108 	}
4109 }
4110 
4111 static bool idset_contains(struct bpf_idset *s, u32 id)
4112 {
4113 	u32 i;
4114 
4115 	for (i = 0; i < s->count; ++i)
4116 		if (s->ids[i] == id)
4117 			return true;
4118 
4119 	return false;
4120 }
4121 
4122 static int idset_push(struct bpf_idset *s, u32 id)
4123 {
4124 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
4125 		return -EFAULT;
4126 	s->ids[s->count++] = id;
4127 	return 0;
4128 }
4129 
4130 static void idset_reset(struct bpf_idset *s)
4131 {
4132 	s->count = 0;
4133 }
4134 
4135 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
4136  * Mark all registers with these IDs as precise.
4137  */
4138 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4139 {
4140 	struct bpf_idset *precise_ids = &env->idset_scratch;
4141 	struct backtrack_state *bt = &env->bt;
4142 	struct bpf_func_state *func;
4143 	struct bpf_reg_state *reg;
4144 	DECLARE_BITMAP(mask, 64);
4145 	int i, fr;
4146 
4147 	idset_reset(precise_ids);
4148 
4149 	for (fr = bt->frame; fr >= 0; fr--) {
4150 		func = st->frame[fr];
4151 
4152 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4153 		for_each_set_bit(i, mask, 32) {
4154 			reg = &func->regs[i];
4155 			if (!reg->id || reg->type != SCALAR_VALUE)
4156 				continue;
4157 			if (idset_push(precise_ids, reg->id))
4158 				return -EFAULT;
4159 		}
4160 
4161 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4162 		for_each_set_bit(i, mask, 64) {
4163 			if (i >= func->allocated_stack / BPF_REG_SIZE)
4164 				break;
4165 			if (!is_spilled_scalar_reg(&func->stack[i]))
4166 				continue;
4167 			reg = &func->stack[i].spilled_ptr;
4168 			if (!reg->id)
4169 				continue;
4170 			if (idset_push(precise_ids, reg->id))
4171 				return -EFAULT;
4172 		}
4173 	}
4174 
4175 	for (fr = 0; fr <= st->curframe; ++fr) {
4176 		func = st->frame[fr];
4177 
4178 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
4179 			reg = &func->regs[i];
4180 			if (!reg->id)
4181 				continue;
4182 			if (!idset_contains(precise_ids, reg->id))
4183 				continue;
4184 			bt_set_frame_reg(bt, fr, i);
4185 		}
4186 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
4187 			if (!is_spilled_scalar_reg(&func->stack[i]))
4188 				continue;
4189 			reg = &func->stack[i].spilled_ptr;
4190 			if (!reg->id)
4191 				continue;
4192 			if (!idset_contains(precise_ids, reg->id))
4193 				continue;
4194 			bt_set_frame_slot(bt, fr, i);
4195 		}
4196 	}
4197 
4198 	return 0;
4199 }
4200 
4201 /*
4202  * __mark_chain_precision() backtracks BPF program instruction sequence and
4203  * chain of verifier states making sure that register *regno* (if regno >= 0)
4204  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4205  * SCALARS, as well as any other registers and slots that contribute to
4206  * a tracked state of given registers/stack slots, depending on specific BPF
4207  * assembly instructions (see backtrack_insns() for exact instruction handling
4208  * logic). This backtracking relies on recorded jmp_history and is able to
4209  * traverse entire chain of parent states. This process ends only when all the
4210  * necessary registers/slots and their transitive dependencies are marked as
4211  * precise.
4212  *
4213  * One important and subtle aspect is that precise marks *do not matter* in
4214  * the currently verified state (current state). It is important to understand
4215  * why this is the case.
4216  *
4217  * First, note that current state is the state that is not yet "checkpointed",
4218  * i.e., it is not yet put into env->explored_states, and it has no children
4219  * states as well. It's ephemeral, and can end up either a) being discarded if
4220  * compatible explored state is found at some point or BPF_EXIT instruction is
4221  * reached or b) checkpointed and put into env->explored_states, branching out
4222  * into one or more children states.
4223  *
4224  * In the former case, precise markings in current state are completely
4225  * ignored by state comparison code (see regsafe() for details). Only
4226  * checkpointed ("old") state precise markings are important, and if old
4227  * state's register/slot is precise, regsafe() assumes current state's
4228  * register/slot as precise and checks value ranges exactly and precisely. If
4229  * states turn out to be compatible, current state's necessary precise
4230  * markings and any required parent states' precise markings are enforced
4231  * after the fact with propagate_precision() logic, after the fact. But it's
4232  * important to realize that in this case, even after marking current state
4233  * registers/slots as precise, we immediately discard current state. So what
4234  * actually matters is any of the precise markings propagated into current
4235  * state's parent states, which are always checkpointed (due to b) case above).
4236  * As such, for scenario a) it doesn't matter if current state has precise
4237  * markings set or not.
4238  *
4239  * Now, for the scenario b), checkpointing and forking into child(ren)
4240  * state(s). Note that before current state gets to checkpointing step, any
4241  * processed instruction always assumes precise SCALAR register/slot
4242  * knowledge: if precise value or range is useful to prune jump branch, BPF
4243  * verifier takes this opportunity enthusiastically. Similarly, when
4244  * register's value is used to calculate offset or memory address, exact
4245  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4246  * what we mentioned above about state comparison ignoring precise markings
4247  * during state comparison, BPF verifier ignores and also assumes precise
4248  * markings *at will* during instruction verification process. But as verifier
4249  * assumes precision, it also propagates any precision dependencies across
4250  * parent states, which are not yet finalized, so can be further restricted
4251  * based on new knowledge gained from restrictions enforced by their children
4252  * states. This is so that once those parent states are finalized, i.e., when
4253  * they have no more active children state, state comparison logic in
4254  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4255  * required for correctness.
4256  *
4257  * To build a bit more intuition, note also that once a state is checkpointed,
4258  * the path we took to get to that state is not important. This is crucial
4259  * property for state pruning. When state is checkpointed and finalized at
4260  * some instruction index, it can be correctly and safely used to "short
4261  * circuit" any *compatible* state that reaches exactly the same instruction
4262  * index. I.e., if we jumped to that instruction from a completely different
4263  * code path than original finalized state was derived from, it doesn't
4264  * matter, current state can be discarded because from that instruction
4265  * forward having a compatible state will ensure we will safely reach the
4266  * exit. States describe preconditions for further exploration, but completely
4267  * forget the history of how we got here.
4268  *
4269  * This also means that even if we needed precise SCALAR range to get to
4270  * finalized state, but from that point forward *that same* SCALAR register is
4271  * never used in a precise context (i.e., it's precise value is not needed for
4272  * correctness), it's correct and safe to mark such register as "imprecise"
4273  * (i.e., precise marking set to false). This is what we rely on when we do
4274  * not set precise marking in current state. If no child state requires
4275  * precision for any given SCALAR register, it's safe to dictate that it can
4276  * be imprecise. If any child state does require this register to be precise,
4277  * we'll mark it precise later retroactively during precise markings
4278  * propagation from child state to parent states.
4279  *
4280  * Skipping precise marking setting in current state is a mild version of
4281  * relying on the above observation. But we can utilize this property even
4282  * more aggressively by proactively forgetting any precise marking in the
4283  * current state (which we inherited from the parent state), right before we
4284  * checkpoint it and branch off into new child state. This is done by
4285  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4286  * finalized states which help in short circuiting more future states.
4287  */
4288 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4289 {
4290 	struct backtrack_state *bt = &env->bt;
4291 	struct bpf_verifier_state *st = env->cur_state;
4292 	int first_idx = st->first_insn_idx;
4293 	int last_idx = env->insn_idx;
4294 	int subseq_idx = -1;
4295 	struct bpf_func_state *func;
4296 	struct bpf_reg_state *reg;
4297 	bool skip_first = true;
4298 	int i, fr, err;
4299 
4300 	if (!env->bpf_capable)
4301 		return 0;
4302 
4303 	/* set frame number from which we are starting to backtrack */
4304 	bt_init(bt, env->cur_state->curframe);
4305 
4306 	/* Do sanity checks against current state of register and/or stack
4307 	 * slot, but don't set precise flag in current state, as precision
4308 	 * tracking in the current state is unnecessary.
4309 	 */
4310 	func = st->frame[bt->frame];
4311 	if (regno >= 0) {
4312 		reg = &func->regs[regno];
4313 		if (reg->type != SCALAR_VALUE) {
4314 			WARN_ONCE(1, "backtracing misuse");
4315 			return -EFAULT;
4316 		}
4317 		bt_set_reg(bt, regno);
4318 	}
4319 
4320 	if (bt_empty(bt))
4321 		return 0;
4322 
4323 	for (;;) {
4324 		DECLARE_BITMAP(mask, 64);
4325 		u32 history = st->jmp_history_cnt;
4326 
4327 		if (env->log.level & BPF_LOG_LEVEL2) {
4328 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4329 				bt->frame, last_idx, first_idx, subseq_idx);
4330 		}
4331 
4332 		/* If some register with scalar ID is marked as precise,
4333 		 * make sure that all registers sharing this ID are also precise.
4334 		 * This is needed to estimate effect of find_equal_scalars().
4335 		 * Do this at the last instruction of each state,
4336 		 * bpf_reg_state::id fields are valid for these instructions.
4337 		 *
4338 		 * Allows to track precision in situation like below:
4339 		 *
4340 		 *     r2 = unknown value
4341 		 *     ...
4342 		 *   --- state #0 ---
4343 		 *     ...
4344 		 *     r1 = r2                 // r1 and r2 now share the same ID
4345 		 *     ...
4346 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4347 		 *     ...
4348 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4349 		 *     ...
4350 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4351 		 *     r3 = r10
4352 		 *     r3 += r1                // need to mark both r1 and r2
4353 		 */
4354 		if (mark_precise_scalar_ids(env, st))
4355 			return -EFAULT;
4356 
4357 		if (last_idx < 0) {
4358 			/* we are at the entry into subprog, which
4359 			 * is expected for global funcs, but only if
4360 			 * requested precise registers are R1-R5
4361 			 * (which are global func's input arguments)
4362 			 */
4363 			if (st->curframe == 0 &&
4364 			    st->frame[0]->subprogno > 0 &&
4365 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4366 			    bt_stack_mask(bt) == 0 &&
4367 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4368 				bitmap_from_u64(mask, bt_reg_mask(bt));
4369 				for_each_set_bit(i, mask, 32) {
4370 					reg = &st->frame[0]->regs[i];
4371 					bt_clear_reg(bt, i);
4372 					if (reg->type == SCALAR_VALUE)
4373 						reg->precise = true;
4374 				}
4375 				return 0;
4376 			}
4377 
4378 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4379 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4380 			WARN_ONCE(1, "verifier backtracking bug");
4381 			return -EFAULT;
4382 		}
4383 
4384 		for (i = last_idx;;) {
4385 			if (skip_first) {
4386 				err = 0;
4387 				skip_first = false;
4388 			} else {
4389 				err = backtrack_insn(env, i, subseq_idx, bt);
4390 			}
4391 			if (err == -ENOTSUPP) {
4392 				mark_all_scalars_precise(env, env->cur_state);
4393 				bt_reset(bt);
4394 				return 0;
4395 			} else if (err) {
4396 				return err;
4397 			}
4398 			if (bt_empty(bt))
4399 				/* Found assignment(s) into tracked register in this state.
4400 				 * Since this state is already marked, just return.
4401 				 * Nothing to be tracked further in the parent state.
4402 				 */
4403 				return 0;
4404 			if (i == first_idx)
4405 				break;
4406 			subseq_idx = i;
4407 			i = get_prev_insn_idx(st, i, &history);
4408 			if (i >= env->prog->len) {
4409 				/* This can happen if backtracking reached insn 0
4410 				 * and there are still reg_mask or stack_mask
4411 				 * to backtrack.
4412 				 * It means the backtracking missed the spot where
4413 				 * particular register was initialized with a constant.
4414 				 */
4415 				verbose(env, "BUG backtracking idx %d\n", i);
4416 				WARN_ONCE(1, "verifier backtracking bug");
4417 				return -EFAULT;
4418 			}
4419 		}
4420 		st = st->parent;
4421 		if (!st)
4422 			break;
4423 
4424 		for (fr = bt->frame; fr >= 0; fr--) {
4425 			func = st->frame[fr];
4426 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4427 			for_each_set_bit(i, mask, 32) {
4428 				reg = &func->regs[i];
4429 				if (reg->type != SCALAR_VALUE) {
4430 					bt_clear_frame_reg(bt, fr, i);
4431 					continue;
4432 				}
4433 				if (reg->precise)
4434 					bt_clear_frame_reg(bt, fr, i);
4435 				else
4436 					reg->precise = true;
4437 			}
4438 
4439 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4440 			for_each_set_bit(i, mask, 64) {
4441 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4442 					/* the sequence of instructions:
4443 					 * 2: (bf) r3 = r10
4444 					 * 3: (7b) *(u64 *)(r3 -8) = r0
4445 					 * 4: (79) r4 = *(u64 *)(r10 -8)
4446 					 * doesn't contain jmps. It's backtracked
4447 					 * as a single block.
4448 					 * During backtracking insn 3 is not recognized as
4449 					 * stack access, so at the end of backtracking
4450 					 * stack slot fp-8 is still marked in stack_mask.
4451 					 * However the parent state may not have accessed
4452 					 * fp-8 and it's "unallocated" stack space.
4453 					 * In such case fallback to conservative.
4454 					 */
4455 					mark_all_scalars_precise(env, env->cur_state);
4456 					bt_reset(bt);
4457 					return 0;
4458 				}
4459 
4460 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4461 					bt_clear_frame_slot(bt, fr, i);
4462 					continue;
4463 				}
4464 				reg = &func->stack[i].spilled_ptr;
4465 				if (reg->precise)
4466 					bt_clear_frame_slot(bt, fr, i);
4467 				else
4468 					reg->precise = true;
4469 			}
4470 			if (env->log.level & BPF_LOG_LEVEL2) {
4471 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4472 					     bt_frame_reg_mask(bt, fr));
4473 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4474 					fr, env->tmp_str_buf);
4475 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4476 					       bt_frame_stack_mask(bt, fr));
4477 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4478 				print_verifier_state(env, func, true);
4479 			}
4480 		}
4481 
4482 		if (bt_empty(bt))
4483 			return 0;
4484 
4485 		subseq_idx = first_idx;
4486 		last_idx = st->last_insn_idx;
4487 		first_idx = st->first_insn_idx;
4488 	}
4489 
4490 	/* if we still have requested precise regs or slots, we missed
4491 	 * something (e.g., stack access through non-r10 register), so
4492 	 * fallback to marking all precise
4493 	 */
4494 	if (!bt_empty(bt)) {
4495 		mark_all_scalars_precise(env, env->cur_state);
4496 		bt_reset(bt);
4497 	}
4498 
4499 	return 0;
4500 }
4501 
4502 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4503 {
4504 	return __mark_chain_precision(env, regno);
4505 }
4506 
4507 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4508  * desired reg and stack masks across all relevant frames
4509  */
4510 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4511 {
4512 	return __mark_chain_precision(env, -1);
4513 }
4514 
4515 static bool is_spillable_regtype(enum bpf_reg_type type)
4516 {
4517 	switch (base_type(type)) {
4518 	case PTR_TO_MAP_VALUE:
4519 	case PTR_TO_STACK:
4520 	case PTR_TO_CTX:
4521 	case PTR_TO_PACKET:
4522 	case PTR_TO_PACKET_META:
4523 	case PTR_TO_PACKET_END:
4524 	case PTR_TO_FLOW_KEYS:
4525 	case CONST_PTR_TO_MAP:
4526 	case PTR_TO_SOCKET:
4527 	case PTR_TO_SOCK_COMMON:
4528 	case PTR_TO_TCP_SOCK:
4529 	case PTR_TO_XDP_SOCK:
4530 	case PTR_TO_BTF_ID:
4531 	case PTR_TO_BUF:
4532 	case PTR_TO_MEM:
4533 	case PTR_TO_FUNC:
4534 	case PTR_TO_MAP_KEY:
4535 		return true;
4536 	default:
4537 		return false;
4538 	}
4539 }
4540 
4541 /* Does this register contain a constant zero? */
4542 static bool register_is_null(struct bpf_reg_state *reg)
4543 {
4544 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4545 }
4546 
4547 static bool register_is_const(struct bpf_reg_state *reg)
4548 {
4549 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4550 }
4551 
4552 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4553 {
4554 	return tnum_is_unknown(reg->var_off) &&
4555 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4556 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4557 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4558 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4559 }
4560 
4561 static bool register_is_bounded(struct bpf_reg_state *reg)
4562 {
4563 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4564 }
4565 
4566 static bool __is_pointer_value(bool allow_ptr_leaks,
4567 			       const struct bpf_reg_state *reg)
4568 {
4569 	if (allow_ptr_leaks)
4570 		return false;
4571 
4572 	return reg->type != SCALAR_VALUE;
4573 }
4574 
4575 /* Copy src state preserving dst->parent and dst->live fields */
4576 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4577 {
4578 	struct bpf_reg_state *parent = dst->parent;
4579 	enum bpf_reg_liveness live = dst->live;
4580 
4581 	*dst = *src;
4582 	dst->parent = parent;
4583 	dst->live = live;
4584 }
4585 
4586 static void save_register_state(struct bpf_func_state *state,
4587 				int spi, struct bpf_reg_state *reg,
4588 				int size)
4589 {
4590 	int i;
4591 
4592 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4593 	if (size == BPF_REG_SIZE)
4594 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4595 
4596 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4597 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4598 
4599 	/* size < 8 bytes spill */
4600 	for (; i; i--)
4601 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4602 }
4603 
4604 static bool is_bpf_st_mem(struct bpf_insn *insn)
4605 {
4606 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4607 }
4608 
4609 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4610  * stack boundary and alignment are checked in check_mem_access()
4611  */
4612 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4613 				       /* stack frame we're writing to */
4614 				       struct bpf_func_state *state,
4615 				       int off, int size, int value_regno,
4616 				       int insn_idx)
4617 {
4618 	struct bpf_func_state *cur; /* state of the current function */
4619 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4620 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4621 	struct bpf_reg_state *reg = NULL;
4622 	u32 dst_reg = insn->dst_reg;
4623 
4624 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
4625 	if (err)
4626 		return err;
4627 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4628 	 * so it's aligned access and [off, off + size) are within stack limits
4629 	 */
4630 	if (!env->allow_ptr_leaks &&
4631 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
4632 	    size != BPF_REG_SIZE) {
4633 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4634 		return -EACCES;
4635 	}
4636 
4637 	cur = env->cur_state->frame[env->cur_state->curframe];
4638 	if (value_regno >= 0)
4639 		reg = &cur->regs[value_regno];
4640 	if (!env->bypass_spec_v4) {
4641 		bool sanitize = reg && is_spillable_regtype(reg->type);
4642 
4643 		for (i = 0; i < size; i++) {
4644 			u8 type = state->stack[spi].slot_type[i];
4645 
4646 			if (type != STACK_MISC && type != STACK_ZERO) {
4647 				sanitize = true;
4648 				break;
4649 			}
4650 		}
4651 
4652 		if (sanitize)
4653 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4654 	}
4655 
4656 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4657 	if (err)
4658 		return err;
4659 
4660 	mark_stack_slot_scratched(env, spi);
4661 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4662 	    !register_is_null(reg) && env->bpf_capable) {
4663 		if (dst_reg != BPF_REG_FP) {
4664 			/* The backtracking logic can only recognize explicit
4665 			 * stack slot address like [fp - 8]. Other spill of
4666 			 * scalar via different register has to be conservative.
4667 			 * Backtrack from here and mark all registers as precise
4668 			 * that contributed into 'reg' being a constant.
4669 			 */
4670 			err = mark_chain_precision(env, value_regno);
4671 			if (err)
4672 				return err;
4673 		}
4674 		save_register_state(state, spi, reg, size);
4675 		/* Break the relation on a narrowing spill. */
4676 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4677 			state->stack[spi].spilled_ptr.id = 0;
4678 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4679 		   insn->imm != 0 && env->bpf_capable) {
4680 		struct bpf_reg_state fake_reg = {};
4681 
4682 		__mark_reg_known(&fake_reg, insn->imm);
4683 		fake_reg.type = SCALAR_VALUE;
4684 		save_register_state(state, spi, &fake_reg, size);
4685 	} else if (reg && is_spillable_regtype(reg->type)) {
4686 		/* register containing pointer is being spilled into stack */
4687 		if (size != BPF_REG_SIZE) {
4688 			verbose_linfo(env, insn_idx, "; ");
4689 			verbose(env, "invalid size of register spill\n");
4690 			return -EACCES;
4691 		}
4692 		if (state != cur && reg->type == PTR_TO_STACK) {
4693 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4694 			return -EINVAL;
4695 		}
4696 		save_register_state(state, spi, reg, size);
4697 	} else {
4698 		u8 type = STACK_MISC;
4699 
4700 		/* regular write of data into stack destroys any spilled ptr */
4701 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4702 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4703 		if (is_stack_slot_special(&state->stack[spi]))
4704 			for (i = 0; i < BPF_REG_SIZE; i++)
4705 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4706 
4707 		/* only mark the slot as written if all 8 bytes were written
4708 		 * otherwise read propagation may incorrectly stop too soon
4709 		 * when stack slots are partially written.
4710 		 * This heuristic means that read propagation will be
4711 		 * conservative, since it will add reg_live_read marks
4712 		 * to stack slots all the way to first state when programs
4713 		 * writes+reads less than 8 bytes
4714 		 */
4715 		if (size == BPF_REG_SIZE)
4716 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4717 
4718 		/* when we zero initialize stack slots mark them as such */
4719 		if ((reg && register_is_null(reg)) ||
4720 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4721 			/* backtracking doesn't work for STACK_ZERO yet. */
4722 			err = mark_chain_precision(env, value_regno);
4723 			if (err)
4724 				return err;
4725 			type = STACK_ZERO;
4726 		}
4727 
4728 		/* Mark slots affected by this stack write. */
4729 		for (i = 0; i < size; i++)
4730 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4731 				type;
4732 	}
4733 	return 0;
4734 }
4735 
4736 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4737  * known to contain a variable offset.
4738  * This function checks whether the write is permitted and conservatively
4739  * tracks the effects of the write, considering that each stack slot in the
4740  * dynamic range is potentially written to.
4741  *
4742  * 'off' includes 'regno->off'.
4743  * 'value_regno' can be -1, meaning that an unknown value is being written to
4744  * the stack.
4745  *
4746  * Spilled pointers in range are not marked as written because we don't know
4747  * what's going to be actually written. This means that read propagation for
4748  * future reads cannot be terminated by this write.
4749  *
4750  * For privileged programs, uninitialized stack slots are considered
4751  * initialized by this write (even though we don't know exactly what offsets
4752  * are going to be written to). The idea is that we don't want the verifier to
4753  * reject future reads that access slots written to through variable offsets.
4754  */
4755 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4756 				     /* func where register points to */
4757 				     struct bpf_func_state *state,
4758 				     int ptr_regno, int off, int size,
4759 				     int value_regno, int insn_idx)
4760 {
4761 	struct bpf_func_state *cur; /* state of the current function */
4762 	int min_off, max_off;
4763 	int i, err;
4764 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4765 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4766 	bool writing_zero = false;
4767 	/* set if the fact that we're writing a zero is used to let any
4768 	 * stack slots remain STACK_ZERO
4769 	 */
4770 	bool zero_used = false;
4771 
4772 	cur = env->cur_state->frame[env->cur_state->curframe];
4773 	ptr_reg = &cur->regs[ptr_regno];
4774 	min_off = ptr_reg->smin_value + off;
4775 	max_off = ptr_reg->smax_value + off + size;
4776 	if (value_regno >= 0)
4777 		value_reg = &cur->regs[value_regno];
4778 	if ((value_reg && register_is_null(value_reg)) ||
4779 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4780 		writing_zero = true;
4781 
4782 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
4783 	if (err)
4784 		return err;
4785 
4786 	for (i = min_off; i < max_off; i++) {
4787 		int spi;
4788 
4789 		spi = __get_spi(i);
4790 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4791 		if (err)
4792 			return err;
4793 	}
4794 
4795 	/* Variable offset writes destroy any spilled pointers in range. */
4796 	for (i = min_off; i < max_off; i++) {
4797 		u8 new_type, *stype;
4798 		int slot, spi;
4799 
4800 		slot = -i - 1;
4801 		spi = slot / BPF_REG_SIZE;
4802 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4803 		mark_stack_slot_scratched(env, spi);
4804 
4805 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4806 			/* Reject the write if range we may write to has not
4807 			 * been initialized beforehand. If we didn't reject
4808 			 * here, the ptr status would be erased below (even
4809 			 * though not all slots are actually overwritten),
4810 			 * possibly opening the door to leaks.
4811 			 *
4812 			 * We do however catch STACK_INVALID case below, and
4813 			 * only allow reading possibly uninitialized memory
4814 			 * later for CAP_PERFMON, as the write may not happen to
4815 			 * that slot.
4816 			 */
4817 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4818 				insn_idx, i);
4819 			return -EINVAL;
4820 		}
4821 
4822 		/* Erase all spilled pointers. */
4823 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4824 
4825 		/* Update the slot type. */
4826 		new_type = STACK_MISC;
4827 		if (writing_zero && *stype == STACK_ZERO) {
4828 			new_type = STACK_ZERO;
4829 			zero_used = true;
4830 		}
4831 		/* If the slot is STACK_INVALID, we check whether it's OK to
4832 		 * pretend that it will be initialized by this write. The slot
4833 		 * might not actually be written to, and so if we mark it as
4834 		 * initialized future reads might leak uninitialized memory.
4835 		 * For privileged programs, we will accept such reads to slots
4836 		 * that may or may not be written because, if we're reject
4837 		 * them, the error would be too confusing.
4838 		 */
4839 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4840 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4841 					insn_idx, i);
4842 			return -EINVAL;
4843 		}
4844 		*stype = new_type;
4845 	}
4846 	if (zero_used) {
4847 		/* backtracking doesn't work for STACK_ZERO yet. */
4848 		err = mark_chain_precision(env, value_regno);
4849 		if (err)
4850 			return err;
4851 	}
4852 	return 0;
4853 }
4854 
4855 /* When register 'dst_regno' is assigned some values from stack[min_off,
4856  * max_off), we set the register's type according to the types of the
4857  * respective stack slots. If all the stack values are known to be zeros, then
4858  * so is the destination reg. Otherwise, the register is considered to be
4859  * SCALAR. This function does not deal with register filling; the caller must
4860  * ensure that all spilled registers in the stack range have been marked as
4861  * read.
4862  */
4863 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4864 				/* func where src register points to */
4865 				struct bpf_func_state *ptr_state,
4866 				int min_off, int max_off, int dst_regno)
4867 {
4868 	struct bpf_verifier_state *vstate = env->cur_state;
4869 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4870 	int i, slot, spi;
4871 	u8 *stype;
4872 	int zeros = 0;
4873 
4874 	for (i = min_off; i < max_off; i++) {
4875 		slot = -i - 1;
4876 		spi = slot / BPF_REG_SIZE;
4877 		mark_stack_slot_scratched(env, spi);
4878 		stype = ptr_state->stack[spi].slot_type;
4879 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4880 			break;
4881 		zeros++;
4882 	}
4883 	if (zeros == max_off - min_off) {
4884 		/* any access_size read into register is zero extended,
4885 		 * so the whole register == const_zero
4886 		 */
4887 		__mark_reg_const_zero(&state->regs[dst_regno]);
4888 		/* backtracking doesn't support STACK_ZERO yet,
4889 		 * so mark it precise here, so that later
4890 		 * backtracking can stop here.
4891 		 * Backtracking may not need this if this register
4892 		 * doesn't participate in pointer adjustment.
4893 		 * Forward propagation of precise flag is not
4894 		 * necessary either. This mark is only to stop
4895 		 * backtracking. Any register that contributed
4896 		 * to const 0 was marked precise before spill.
4897 		 */
4898 		state->regs[dst_regno].precise = true;
4899 	} else {
4900 		/* have read misc data from the stack */
4901 		mark_reg_unknown(env, state->regs, dst_regno);
4902 	}
4903 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4904 }
4905 
4906 /* Read the stack at 'off' and put the results into the register indicated by
4907  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4908  * spilled reg.
4909  *
4910  * 'dst_regno' can be -1, meaning that the read value is not going to a
4911  * register.
4912  *
4913  * The access is assumed to be within the current stack bounds.
4914  */
4915 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4916 				      /* func where src register points to */
4917 				      struct bpf_func_state *reg_state,
4918 				      int off, int size, int dst_regno)
4919 {
4920 	struct bpf_verifier_state *vstate = env->cur_state;
4921 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4922 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4923 	struct bpf_reg_state *reg;
4924 	u8 *stype, type;
4925 
4926 	stype = reg_state->stack[spi].slot_type;
4927 	reg = &reg_state->stack[spi].spilled_ptr;
4928 
4929 	mark_stack_slot_scratched(env, spi);
4930 
4931 	if (is_spilled_reg(&reg_state->stack[spi])) {
4932 		u8 spill_size = 1;
4933 
4934 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4935 			spill_size++;
4936 
4937 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4938 			if (reg->type != SCALAR_VALUE) {
4939 				verbose_linfo(env, env->insn_idx, "; ");
4940 				verbose(env, "invalid size of register fill\n");
4941 				return -EACCES;
4942 			}
4943 
4944 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4945 			if (dst_regno < 0)
4946 				return 0;
4947 
4948 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4949 				/* The earlier check_reg_arg() has decided the
4950 				 * subreg_def for this insn.  Save it first.
4951 				 */
4952 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4953 
4954 				copy_register_state(&state->regs[dst_regno], reg);
4955 				state->regs[dst_regno].subreg_def = subreg_def;
4956 			} else {
4957 				for (i = 0; i < size; i++) {
4958 					type = stype[(slot - i) % BPF_REG_SIZE];
4959 					if (type == STACK_SPILL)
4960 						continue;
4961 					if (type == STACK_MISC)
4962 						continue;
4963 					if (type == STACK_INVALID && env->allow_uninit_stack)
4964 						continue;
4965 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4966 						off, i, size);
4967 					return -EACCES;
4968 				}
4969 				mark_reg_unknown(env, state->regs, dst_regno);
4970 			}
4971 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4972 			return 0;
4973 		}
4974 
4975 		if (dst_regno >= 0) {
4976 			/* restore register state from stack */
4977 			copy_register_state(&state->regs[dst_regno], reg);
4978 			/* mark reg as written since spilled pointer state likely
4979 			 * has its liveness marks cleared by is_state_visited()
4980 			 * which resets stack/reg liveness for state transitions
4981 			 */
4982 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4983 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4984 			/* If dst_regno==-1, the caller is asking us whether
4985 			 * it is acceptable to use this value as a SCALAR_VALUE
4986 			 * (e.g. for XADD).
4987 			 * We must not allow unprivileged callers to do that
4988 			 * with spilled pointers.
4989 			 */
4990 			verbose(env, "leaking pointer from stack off %d\n",
4991 				off);
4992 			return -EACCES;
4993 		}
4994 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4995 	} else {
4996 		for (i = 0; i < size; i++) {
4997 			type = stype[(slot - i) % BPF_REG_SIZE];
4998 			if (type == STACK_MISC)
4999 				continue;
5000 			if (type == STACK_ZERO)
5001 				continue;
5002 			if (type == STACK_INVALID && env->allow_uninit_stack)
5003 				continue;
5004 			verbose(env, "invalid read from stack off %d+%d size %d\n",
5005 				off, i, size);
5006 			return -EACCES;
5007 		}
5008 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5009 		if (dst_regno >= 0)
5010 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
5011 	}
5012 	return 0;
5013 }
5014 
5015 enum bpf_access_src {
5016 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
5017 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
5018 };
5019 
5020 static int check_stack_range_initialized(struct bpf_verifier_env *env,
5021 					 int regno, int off, int access_size,
5022 					 bool zero_size_allowed,
5023 					 enum bpf_access_src type,
5024 					 struct bpf_call_arg_meta *meta);
5025 
5026 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
5027 {
5028 	return cur_regs(env) + regno;
5029 }
5030 
5031 /* Read the stack at 'ptr_regno + off' and put the result into the register
5032  * 'dst_regno'.
5033  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
5034  * but not its variable offset.
5035  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
5036  *
5037  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5038  * filling registers (i.e. reads of spilled register cannot be detected when
5039  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5040  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5041  * offset; for a fixed offset check_stack_read_fixed_off should be used
5042  * instead.
5043  */
5044 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5045 				    int ptr_regno, int off, int size, int dst_regno)
5046 {
5047 	/* The state of the source register. */
5048 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5049 	struct bpf_func_state *ptr_state = func(env, reg);
5050 	int err;
5051 	int min_off, max_off;
5052 
5053 	/* Note that we pass a NULL meta, so raw access will not be permitted.
5054 	 */
5055 	err = check_stack_range_initialized(env, ptr_regno, off, size,
5056 					    false, ACCESS_DIRECT, NULL);
5057 	if (err)
5058 		return err;
5059 
5060 	min_off = reg->smin_value + off;
5061 	max_off = reg->smax_value + off;
5062 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5063 	return 0;
5064 }
5065 
5066 /* check_stack_read dispatches to check_stack_read_fixed_off or
5067  * check_stack_read_var_off.
5068  *
5069  * The caller must ensure that the offset falls within the allocated stack
5070  * bounds.
5071  *
5072  * 'dst_regno' is a register which will receive the value from the stack. It
5073  * can be -1, meaning that the read value is not going to a register.
5074  */
5075 static int check_stack_read(struct bpf_verifier_env *env,
5076 			    int ptr_regno, int off, int size,
5077 			    int dst_regno)
5078 {
5079 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5080 	struct bpf_func_state *state = func(env, reg);
5081 	int err;
5082 	/* Some accesses are only permitted with a static offset. */
5083 	bool var_off = !tnum_is_const(reg->var_off);
5084 
5085 	/* The offset is required to be static when reads don't go to a
5086 	 * register, in order to not leak pointers (see
5087 	 * check_stack_read_fixed_off).
5088 	 */
5089 	if (dst_regno < 0 && var_off) {
5090 		char tn_buf[48];
5091 
5092 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5093 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5094 			tn_buf, off, size);
5095 		return -EACCES;
5096 	}
5097 	/* Variable offset is prohibited for unprivileged mode for simplicity
5098 	 * since it requires corresponding support in Spectre masking for stack
5099 	 * ALU. See also retrieve_ptr_limit(). The check in
5100 	 * check_stack_access_for_ptr_arithmetic() called by
5101 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5102 	 * with variable offsets, therefore no check is required here. Further,
5103 	 * just checking it here would be insufficient as speculative stack
5104 	 * writes could still lead to unsafe speculative behaviour.
5105 	 */
5106 	if (!var_off) {
5107 		off += reg->var_off.value;
5108 		err = check_stack_read_fixed_off(env, state, off, size,
5109 						 dst_regno);
5110 	} else {
5111 		/* Variable offset stack reads need more conservative handling
5112 		 * than fixed offset ones. Note that dst_regno >= 0 on this
5113 		 * branch.
5114 		 */
5115 		err = check_stack_read_var_off(env, ptr_regno, off, size,
5116 					       dst_regno);
5117 	}
5118 	return err;
5119 }
5120 
5121 
5122 /* check_stack_write dispatches to check_stack_write_fixed_off or
5123  * check_stack_write_var_off.
5124  *
5125  * 'ptr_regno' is the register used as a pointer into the stack.
5126  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5127  * 'value_regno' is the register whose value we're writing to the stack. It can
5128  * be -1, meaning that we're not writing from a register.
5129  *
5130  * The caller must ensure that the offset falls within the maximum stack size.
5131  */
5132 static int check_stack_write(struct bpf_verifier_env *env,
5133 			     int ptr_regno, int off, int size,
5134 			     int value_regno, int insn_idx)
5135 {
5136 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5137 	struct bpf_func_state *state = func(env, reg);
5138 	int err;
5139 
5140 	if (tnum_is_const(reg->var_off)) {
5141 		off += reg->var_off.value;
5142 		err = check_stack_write_fixed_off(env, state, off, size,
5143 						  value_regno, insn_idx);
5144 	} else {
5145 		/* Variable offset stack reads need more conservative handling
5146 		 * than fixed offset ones.
5147 		 */
5148 		err = check_stack_write_var_off(env, state,
5149 						ptr_regno, off, size,
5150 						value_regno, insn_idx);
5151 	}
5152 	return err;
5153 }
5154 
5155 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5156 				 int off, int size, enum bpf_access_type type)
5157 {
5158 	struct bpf_reg_state *regs = cur_regs(env);
5159 	struct bpf_map *map = regs[regno].map_ptr;
5160 	u32 cap = bpf_map_flags_to_cap(map);
5161 
5162 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5163 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5164 			map->value_size, off, size);
5165 		return -EACCES;
5166 	}
5167 
5168 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5169 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5170 			map->value_size, off, size);
5171 		return -EACCES;
5172 	}
5173 
5174 	return 0;
5175 }
5176 
5177 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5178 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5179 			      int off, int size, u32 mem_size,
5180 			      bool zero_size_allowed)
5181 {
5182 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5183 	struct bpf_reg_state *reg;
5184 
5185 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5186 		return 0;
5187 
5188 	reg = &cur_regs(env)[regno];
5189 	switch (reg->type) {
5190 	case PTR_TO_MAP_KEY:
5191 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5192 			mem_size, off, size);
5193 		break;
5194 	case PTR_TO_MAP_VALUE:
5195 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5196 			mem_size, off, size);
5197 		break;
5198 	case PTR_TO_PACKET:
5199 	case PTR_TO_PACKET_META:
5200 	case PTR_TO_PACKET_END:
5201 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5202 			off, size, regno, reg->id, off, mem_size);
5203 		break;
5204 	case PTR_TO_MEM:
5205 	default:
5206 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5207 			mem_size, off, size);
5208 	}
5209 
5210 	return -EACCES;
5211 }
5212 
5213 /* check read/write into a memory region with possible variable offset */
5214 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5215 				   int off, int size, u32 mem_size,
5216 				   bool zero_size_allowed)
5217 {
5218 	struct bpf_verifier_state *vstate = env->cur_state;
5219 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5220 	struct bpf_reg_state *reg = &state->regs[regno];
5221 	int err;
5222 
5223 	/* We may have adjusted the register pointing to memory region, so we
5224 	 * need to try adding each of min_value and max_value to off
5225 	 * to make sure our theoretical access will be safe.
5226 	 *
5227 	 * The minimum value is only important with signed
5228 	 * comparisons where we can't assume the floor of a
5229 	 * value is 0.  If we are using signed variables for our
5230 	 * index'es we need to make sure that whatever we use
5231 	 * will have a set floor within our range.
5232 	 */
5233 	if (reg->smin_value < 0 &&
5234 	    (reg->smin_value == S64_MIN ||
5235 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5236 	      reg->smin_value + off < 0)) {
5237 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5238 			regno);
5239 		return -EACCES;
5240 	}
5241 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5242 				 mem_size, zero_size_allowed);
5243 	if (err) {
5244 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5245 			regno);
5246 		return err;
5247 	}
5248 
5249 	/* If we haven't set a max value then we need to bail since we can't be
5250 	 * sure we won't do bad things.
5251 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5252 	 */
5253 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5254 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5255 			regno);
5256 		return -EACCES;
5257 	}
5258 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5259 				 mem_size, zero_size_allowed);
5260 	if (err) {
5261 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5262 			regno);
5263 		return err;
5264 	}
5265 
5266 	return 0;
5267 }
5268 
5269 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5270 			       const struct bpf_reg_state *reg, int regno,
5271 			       bool fixed_off_ok)
5272 {
5273 	/* Access to this pointer-typed register or passing it to a helper
5274 	 * is only allowed in its original, unmodified form.
5275 	 */
5276 
5277 	if (reg->off < 0) {
5278 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5279 			reg_type_str(env, reg->type), regno, reg->off);
5280 		return -EACCES;
5281 	}
5282 
5283 	if (!fixed_off_ok && reg->off) {
5284 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5285 			reg_type_str(env, reg->type), regno, reg->off);
5286 		return -EACCES;
5287 	}
5288 
5289 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5290 		char tn_buf[48];
5291 
5292 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5293 		verbose(env, "variable %s access var_off=%s disallowed\n",
5294 			reg_type_str(env, reg->type), tn_buf);
5295 		return -EACCES;
5296 	}
5297 
5298 	return 0;
5299 }
5300 
5301 int check_ptr_off_reg(struct bpf_verifier_env *env,
5302 		      const struct bpf_reg_state *reg, int regno)
5303 {
5304 	return __check_ptr_off_reg(env, reg, regno, false);
5305 }
5306 
5307 static int map_kptr_match_type(struct bpf_verifier_env *env,
5308 			       struct btf_field *kptr_field,
5309 			       struct bpf_reg_state *reg, u32 regno)
5310 {
5311 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5312 	int perm_flags;
5313 	const char *reg_name = "";
5314 
5315 	if (btf_is_kernel(reg->btf)) {
5316 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5317 
5318 		/* Only unreferenced case accepts untrusted pointers */
5319 		if (kptr_field->type == BPF_KPTR_UNREF)
5320 			perm_flags |= PTR_UNTRUSTED;
5321 	} else {
5322 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5323 		if (kptr_field->type == BPF_KPTR_PERCPU)
5324 			perm_flags |= MEM_PERCPU;
5325 	}
5326 
5327 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5328 		goto bad_type;
5329 
5330 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5331 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5332 
5333 	/* For ref_ptr case, release function check should ensure we get one
5334 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5335 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5336 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5337 	 * reg->off and reg->ref_obj_id are not needed here.
5338 	 */
5339 	if (__check_ptr_off_reg(env, reg, regno, true))
5340 		return -EACCES;
5341 
5342 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5343 	 * we also need to take into account the reg->off.
5344 	 *
5345 	 * We want to support cases like:
5346 	 *
5347 	 * struct foo {
5348 	 *         struct bar br;
5349 	 *         struct baz bz;
5350 	 * };
5351 	 *
5352 	 * struct foo *v;
5353 	 * v = func();	      // PTR_TO_BTF_ID
5354 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5355 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5356 	 *                    // first member type of struct after comparison fails
5357 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5358 	 *                    // to match type
5359 	 *
5360 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5361 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5362 	 * the struct to match type against first member of struct, i.e. reject
5363 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5364 	 * strict mode to true for type match.
5365 	 */
5366 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5367 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5368 				  kptr_field->type != BPF_KPTR_UNREF))
5369 		goto bad_type;
5370 	return 0;
5371 bad_type:
5372 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5373 		reg_type_str(env, reg->type), reg_name);
5374 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5375 	if (kptr_field->type == BPF_KPTR_UNREF)
5376 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5377 			targ_name);
5378 	else
5379 		verbose(env, "\n");
5380 	return -EINVAL;
5381 }
5382 
5383 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5384  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5385  */
5386 static bool in_rcu_cs(struct bpf_verifier_env *env)
5387 {
5388 	return env->cur_state->active_rcu_lock ||
5389 	       env->cur_state->active_lock.ptr ||
5390 	       !env->prog->aux->sleepable;
5391 }
5392 
5393 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5394 BTF_SET_START(rcu_protected_types)
5395 BTF_ID(struct, prog_test_ref_kfunc)
5396 #ifdef CONFIG_CGROUPS
5397 BTF_ID(struct, cgroup)
5398 #endif
5399 BTF_ID(struct, bpf_cpumask)
5400 BTF_ID(struct, task_struct)
5401 BTF_SET_END(rcu_protected_types)
5402 
5403 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5404 {
5405 	if (!btf_is_kernel(btf))
5406 		return false;
5407 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5408 }
5409 
5410 static bool rcu_safe_kptr(const struct btf_field *field)
5411 {
5412 	const struct btf_field_kptr *kptr = &field->kptr;
5413 
5414 	return field->type == BPF_KPTR_PERCPU ||
5415 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5416 }
5417 
5418 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5419 {
5420 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5421 		if (kptr_field->type != BPF_KPTR_PERCPU)
5422 			return PTR_MAYBE_NULL | MEM_RCU;
5423 		return PTR_MAYBE_NULL | MEM_RCU | MEM_PERCPU;
5424 	}
5425 	return PTR_MAYBE_NULL | PTR_UNTRUSTED;
5426 }
5427 
5428 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5429 				 int value_regno, int insn_idx,
5430 				 struct btf_field *kptr_field)
5431 {
5432 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5433 	int class = BPF_CLASS(insn->code);
5434 	struct bpf_reg_state *val_reg;
5435 
5436 	/* Things we already checked for in check_map_access and caller:
5437 	 *  - Reject cases where variable offset may touch kptr
5438 	 *  - size of access (must be BPF_DW)
5439 	 *  - tnum_is_const(reg->var_off)
5440 	 *  - kptr_field->offset == off + reg->var_off.value
5441 	 */
5442 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5443 	if (BPF_MODE(insn->code) != BPF_MEM) {
5444 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5445 		return -EACCES;
5446 	}
5447 
5448 	/* We only allow loading referenced kptr, since it will be marked as
5449 	 * untrusted, similar to unreferenced kptr.
5450 	 */
5451 	if (class != BPF_LDX &&
5452 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5453 		verbose(env, "store to referenced kptr disallowed\n");
5454 		return -EACCES;
5455 	}
5456 
5457 	if (class == BPF_LDX) {
5458 		val_reg = reg_state(env, value_regno);
5459 		/* We can simply mark the value_regno receiving the pointer
5460 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5461 		 */
5462 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5463 				kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5464 		/* For mark_ptr_or_null_reg */
5465 		val_reg->id = ++env->id_gen;
5466 	} else if (class == BPF_STX) {
5467 		val_reg = reg_state(env, value_regno);
5468 		if (!register_is_null(val_reg) &&
5469 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5470 			return -EACCES;
5471 	} else if (class == BPF_ST) {
5472 		if (insn->imm) {
5473 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5474 				kptr_field->offset);
5475 			return -EACCES;
5476 		}
5477 	} else {
5478 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5479 		return -EACCES;
5480 	}
5481 	return 0;
5482 }
5483 
5484 /* check read/write into a map element with possible variable offset */
5485 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5486 			    int off, int size, bool zero_size_allowed,
5487 			    enum bpf_access_src src)
5488 {
5489 	struct bpf_verifier_state *vstate = env->cur_state;
5490 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5491 	struct bpf_reg_state *reg = &state->regs[regno];
5492 	struct bpf_map *map = reg->map_ptr;
5493 	struct btf_record *rec;
5494 	int err, i;
5495 
5496 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5497 				      zero_size_allowed);
5498 	if (err)
5499 		return err;
5500 
5501 	if (IS_ERR_OR_NULL(map->record))
5502 		return 0;
5503 	rec = map->record;
5504 	for (i = 0; i < rec->cnt; i++) {
5505 		struct btf_field *field = &rec->fields[i];
5506 		u32 p = field->offset;
5507 
5508 		/* If any part of a field  can be touched by load/store, reject
5509 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5510 		 * it is sufficient to check x1 < y2 && y1 < x2.
5511 		 */
5512 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5513 		    p < reg->umax_value + off + size) {
5514 			switch (field->type) {
5515 			case BPF_KPTR_UNREF:
5516 			case BPF_KPTR_REF:
5517 			case BPF_KPTR_PERCPU:
5518 				if (src != ACCESS_DIRECT) {
5519 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5520 					return -EACCES;
5521 				}
5522 				if (!tnum_is_const(reg->var_off)) {
5523 					verbose(env, "kptr access cannot have variable offset\n");
5524 					return -EACCES;
5525 				}
5526 				if (p != off + reg->var_off.value) {
5527 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5528 						p, off + reg->var_off.value);
5529 					return -EACCES;
5530 				}
5531 				if (size != bpf_size_to_bytes(BPF_DW)) {
5532 					verbose(env, "kptr access size must be BPF_DW\n");
5533 					return -EACCES;
5534 				}
5535 				break;
5536 			default:
5537 				verbose(env, "%s cannot be accessed directly by load/store\n",
5538 					btf_field_type_name(field->type));
5539 				return -EACCES;
5540 			}
5541 		}
5542 	}
5543 	return 0;
5544 }
5545 
5546 #define MAX_PACKET_OFF 0xffff
5547 
5548 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5549 				       const struct bpf_call_arg_meta *meta,
5550 				       enum bpf_access_type t)
5551 {
5552 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5553 
5554 	switch (prog_type) {
5555 	/* Program types only with direct read access go here! */
5556 	case BPF_PROG_TYPE_LWT_IN:
5557 	case BPF_PROG_TYPE_LWT_OUT:
5558 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5559 	case BPF_PROG_TYPE_SK_REUSEPORT:
5560 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5561 	case BPF_PROG_TYPE_CGROUP_SKB:
5562 		if (t == BPF_WRITE)
5563 			return false;
5564 		fallthrough;
5565 
5566 	/* Program types with direct read + write access go here! */
5567 	case BPF_PROG_TYPE_SCHED_CLS:
5568 	case BPF_PROG_TYPE_SCHED_ACT:
5569 	case BPF_PROG_TYPE_XDP:
5570 	case BPF_PROG_TYPE_LWT_XMIT:
5571 	case BPF_PROG_TYPE_SK_SKB:
5572 	case BPF_PROG_TYPE_SK_MSG:
5573 		if (meta)
5574 			return meta->pkt_access;
5575 
5576 		env->seen_direct_write = true;
5577 		return true;
5578 
5579 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5580 		if (t == BPF_WRITE)
5581 			env->seen_direct_write = true;
5582 
5583 		return true;
5584 
5585 	default:
5586 		return false;
5587 	}
5588 }
5589 
5590 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5591 			       int size, bool zero_size_allowed)
5592 {
5593 	struct bpf_reg_state *regs = cur_regs(env);
5594 	struct bpf_reg_state *reg = &regs[regno];
5595 	int err;
5596 
5597 	/* We may have added a variable offset to the packet pointer; but any
5598 	 * reg->range we have comes after that.  We are only checking the fixed
5599 	 * offset.
5600 	 */
5601 
5602 	/* We don't allow negative numbers, because we aren't tracking enough
5603 	 * detail to prove they're safe.
5604 	 */
5605 	if (reg->smin_value < 0) {
5606 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5607 			regno);
5608 		return -EACCES;
5609 	}
5610 
5611 	err = reg->range < 0 ? -EINVAL :
5612 	      __check_mem_access(env, regno, off, size, reg->range,
5613 				 zero_size_allowed);
5614 	if (err) {
5615 		verbose(env, "R%d offset is outside of the packet\n", regno);
5616 		return err;
5617 	}
5618 
5619 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5620 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5621 	 * otherwise find_good_pkt_pointers would have refused to set range info
5622 	 * that __check_mem_access would have rejected this pkt access.
5623 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5624 	 */
5625 	env->prog->aux->max_pkt_offset =
5626 		max_t(u32, env->prog->aux->max_pkt_offset,
5627 		      off + reg->umax_value + size - 1);
5628 
5629 	return err;
5630 }
5631 
5632 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5633 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5634 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5635 			    struct btf **btf, u32 *btf_id)
5636 {
5637 	struct bpf_insn_access_aux info = {
5638 		.reg_type = *reg_type,
5639 		.log = &env->log,
5640 	};
5641 
5642 	if (env->ops->is_valid_access &&
5643 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5644 		/* A non zero info.ctx_field_size indicates that this field is a
5645 		 * candidate for later verifier transformation to load the whole
5646 		 * field and then apply a mask when accessed with a narrower
5647 		 * access than actual ctx access size. A zero info.ctx_field_size
5648 		 * will only allow for whole field access and rejects any other
5649 		 * type of narrower access.
5650 		 */
5651 		*reg_type = info.reg_type;
5652 
5653 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5654 			*btf = info.btf;
5655 			*btf_id = info.btf_id;
5656 		} else {
5657 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5658 		}
5659 		/* remember the offset of last byte accessed in ctx */
5660 		if (env->prog->aux->max_ctx_offset < off + size)
5661 			env->prog->aux->max_ctx_offset = off + size;
5662 		return 0;
5663 	}
5664 
5665 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5666 	return -EACCES;
5667 }
5668 
5669 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5670 				  int size)
5671 {
5672 	if (size < 0 || off < 0 ||
5673 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5674 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5675 			off, size);
5676 		return -EACCES;
5677 	}
5678 	return 0;
5679 }
5680 
5681 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5682 			     u32 regno, int off, int size,
5683 			     enum bpf_access_type t)
5684 {
5685 	struct bpf_reg_state *regs = cur_regs(env);
5686 	struct bpf_reg_state *reg = &regs[regno];
5687 	struct bpf_insn_access_aux info = {};
5688 	bool valid;
5689 
5690 	if (reg->smin_value < 0) {
5691 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5692 			regno);
5693 		return -EACCES;
5694 	}
5695 
5696 	switch (reg->type) {
5697 	case PTR_TO_SOCK_COMMON:
5698 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5699 		break;
5700 	case PTR_TO_SOCKET:
5701 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5702 		break;
5703 	case PTR_TO_TCP_SOCK:
5704 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5705 		break;
5706 	case PTR_TO_XDP_SOCK:
5707 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5708 		break;
5709 	default:
5710 		valid = false;
5711 	}
5712 
5713 
5714 	if (valid) {
5715 		env->insn_aux_data[insn_idx].ctx_field_size =
5716 			info.ctx_field_size;
5717 		return 0;
5718 	}
5719 
5720 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5721 		regno, reg_type_str(env, reg->type), off, size);
5722 
5723 	return -EACCES;
5724 }
5725 
5726 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5727 {
5728 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5729 }
5730 
5731 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5732 {
5733 	const struct bpf_reg_state *reg = reg_state(env, regno);
5734 
5735 	return reg->type == PTR_TO_CTX;
5736 }
5737 
5738 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5739 {
5740 	const struct bpf_reg_state *reg = reg_state(env, regno);
5741 
5742 	return type_is_sk_pointer(reg->type);
5743 }
5744 
5745 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5746 {
5747 	const struct bpf_reg_state *reg = reg_state(env, regno);
5748 
5749 	return type_is_pkt_pointer(reg->type);
5750 }
5751 
5752 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5753 {
5754 	const struct bpf_reg_state *reg = reg_state(env, regno);
5755 
5756 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5757 	return reg->type == PTR_TO_FLOW_KEYS;
5758 }
5759 
5760 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5761 #ifdef CONFIG_NET
5762 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5763 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5764 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5765 #endif
5766 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5767 };
5768 
5769 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5770 {
5771 	/* A referenced register is always trusted. */
5772 	if (reg->ref_obj_id)
5773 		return true;
5774 
5775 	/* Types listed in the reg2btf_ids are always trusted */
5776 	if (reg2btf_ids[base_type(reg->type)])
5777 		return true;
5778 
5779 	/* If a register is not referenced, it is trusted if it has the
5780 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5781 	 * other type modifiers may be safe, but we elect to take an opt-in
5782 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5783 	 * not.
5784 	 *
5785 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5786 	 * for whether a register is trusted.
5787 	 */
5788 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5789 	       !bpf_type_has_unsafe_modifiers(reg->type);
5790 }
5791 
5792 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5793 {
5794 	return reg->type & MEM_RCU;
5795 }
5796 
5797 static void clear_trusted_flags(enum bpf_type_flag *flag)
5798 {
5799 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5800 }
5801 
5802 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5803 				   const struct bpf_reg_state *reg,
5804 				   int off, int size, bool strict)
5805 {
5806 	struct tnum reg_off;
5807 	int ip_align;
5808 
5809 	/* Byte size accesses are always allowed. */
5810 	if (!strict || size == 1)
5811 		return 0;
5812 
5813 	/* For platforms that do not have a Kconfig enabling
5814 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5815 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5816 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5817 	 * to this code only in strict mode where we want to emulate
5818 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5819 	 * unconditional IP align value of '2'.
5820 	 */
5821 	ip_align = 2;
5822 
5823 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5824 	if (!tnum_is_aligned(reg_off, size)) {
5825 		char tn_buf[48];
5826 
5827 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5828 		verbose(env,
5829 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5830 			ip_align, tn_buf, reg->off, off, size);
5831 		return -EACCES;
5832 	}
5833 
5834 	return 0;
5835 }
5836 
5837 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5838 				       const struct bpf_reg_state *reg,
5839 				       const char *pointer_desc,
5840 				       int off, int size, bool strict)
5841 {
5842 	struct tnum reg_off;
5843 
5844 	/* Byte size accesses are always allowed. */
5845 	if (!strict || size == 1)
5846 		return 0;
5847 
5848 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5849 	if (!tnum_is_aligned(reg_off, size)) {
5850 		char tn_buf[48];
5851 
5852 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5853 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5854 			pointer_desc, tn_buf, reg->off, off, size);
5855 		return -EACCES;
5856 	}
5857 
5858 	return 0;
5859 }
5860 
5861 static int check_ptr_alignment(struct bpf_verifier_env *env,
5862 			       const struct bpf_reg_state *reg, int off,
5863 			       int size, bool strict_alignment_once)
5864 {
5865 	bool strict = env->strict_alignment || strict_alignment_once;
5866 	const char *pointer_desc = "";
5867 
5868 	switch (reg->type) {
5869 	case PTR_TO_PACKET:
5870 	case PTR_TO_PACKET_META:
5871 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5872 		 * right in front, treat it the very same way.
5873 		 */
5874 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5875 	case PTR_TO_FLOW_KEYS:
5876 		pointer_desc = "flow keys ";
5877 		break;
5878 	case PTR_TO_MAP_KEY:
5879 		pointer_desc = "key ";
5880 		break;
5881 	case PTR_TO_MAP_VALUE:
5882 		pointer_desc = "value ";
5883 		break;
5884 	case PTR_TO_CTX:
5885 		pointer_desc = "context ";
5886 		break;
5887 	case PTR_TO_STACK:
5888 		pointer_desc = "stack ";
5889 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5890 		 * and check_stack_read_fixed_off() relies on stack accesses being
5891 		 * aligned.
5892 		 */
5893 		strict = true;
5894 		break;
5895 	case PTR_TO_SOCKET:
5896 		pointer_desc = "sock ";
5897 		break;
5898 	case PTR_TO_SOCK_COMMON:
5899 		pointer_desc = "sock_common ";
5900 		break;
5901 	case PTR_TO_TCP_SOCK:
5902 		pointer_desc = "tcp_sock ";
5903 		break;
5904 	case PTR_TO_XDP_SOCK:
5905 		pointer_desc = "xdp_sock ";
5906 		break;
5907 	default:
5908 		break;
5909 	}
5910 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5911 					   strict);
5912 }
5913 
5914 static int update_stack_depth(struct bpf_verifier_env *env,
5915 			      const struct bpf_func_state *func,
5916 			      int off)
5917 {
5918 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
5919 
5920 	if (stack >= -off)
5921 		return 0;
5922 
5923 	/* update known max for given subprogram */
5924 	env->subprog_info[func->subprogno].stack_depth = -off;
5925 	return 0;
5926 }
5927 
5928 /* starting from main bpf function walk all instructions of the function
5929  * and recursively walk all callees that given function can call.
5930  * Ignore jump and exit insns.
5931  * Since recursion is prevented by check_cfg() this algorithm
5932  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5933  */
5934 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5935 {
5936 	struct bpf_subprog_info *subprog = env->subprog_info;
5937 	struct bpf_insn *insn = env->prog->insnsi;
5938 	int depth = 0, frame = 0, i, subprog_end;
5939 	bool tail_call_reachable = false;
5940 	int ret_insn[MAX_CALL_FRAMES];
5941 	int ret_prog[MAX_CALL_FRAMES];
5942 	int j;
5943 
5944 	i = subprog[idx].start;
5945 process_func:
5946 	/* protect against potential stack overflow that might happen when
5947 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5948 	 * depth for such case down to 256 so that the worst case scenario
5949 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5950 	 * 8k).
5951 	 *
5952 	 * To get the idea what might happen, see an example:
5953 	 * func1 -> sub rsp, 128
5954 	 *  subfunc1 -> sub rsp, 256
5955 	 *  tailcall1 -> add rsp, 256
5956 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5957 	 *   subfunc2 -> sub rsp, 64
5958 	 *   subfunc22 -> sub rsp, 128
5959 	 *   tailcall2 -> add rsp, 128
5960 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5961 	 *
5962 	 * tailcall will unwind the current stack frame but it will not get rid
5963 	 * of caller's stack as shown on the example above.
5964 	 */
5965 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5966 		verbose(env,
5967 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5968 			depth);
5969 		return -EACCES;
5970 	}
5971 	/* round up to 32-bytes, since this is granularity
5972 	 * of interpreter stack size
5973 	 */
5974 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5975 	if (depth > MAX_BPF_STACK) {
5976 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5977 			frame + 1, depth);
5978 		return -EACCES;
5979 	}
5980 continue_func:
5981 	subprog_end = subprog[idx + 1].start;
5982 	for (; i < subprog_end; i++) {
5983 		int next_insn, sidx;
5984 
5985 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
5986 			bool err = false;
5987 
5988 			if (!is_bpf_throw_kfunc(insn + i))
5989 				continue;
5990 			if (subprog[idx].is_cb)
5991 				err = true;
5992 			for (int c = 0; c < frame && !err; c++) {
5993 				if (subprog[ret_prog[c]].is_cb) {
5994 					err = true;
5995 					break;
5996 				}
5997 			}
5998 			if (!err)
5999 				continue;
6000 			verbose(env,
6001 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
6002 				i, idx);
6003 			return -EINVAL;
6004 		}
6005 
6006 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
6007 			continue;
6008 		/* remember insn and function to return to */
6009 		ret_insn[frame] = i + 1;
6010 		ret_prog[frame] = idx;
6011 
6012 		/* find the callee */
6013 		next_insn = i + insn[i].imm + 1;
6014 		sidx = find_subprog(env, next_insn);
6015 		if (sidx < 0) {
6016 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6017 				  next_insn);
6018 			return -EFAULT;
6019 		}
6020 		if (subprog[sidx].is_async_cb) {
6021 			if (subprog[sidx].has_tail_call) {
6022 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
6023 				return -EFAULT;
6024 			}
6025 			/* async callbacks don't increase bpf prog stack size unless called directly */
6026 			if (!bpf_pseudo_call(insn + i))
6027 				continue;
6028 			if (subprog[sidx].is_exception_cb) {
6029 				verbose(env, "insn %d cannot call exception cb directly\n", i);
6030 				return -EINVAL;
6031 			}
6032 		}
6033 		i = next_insn;
6034 		idx = sidx;
6035 
6036 		if (subprog[idx].has_tail_call)
6037 			tail_call_reachable = true;
6038 
6039 		frame++;
6040 		if (frame >= MAX_CALL_FRAMES) {
6041 			verbose(env, "the call stack of %d frames is too deep !\n",
6042 				frame);
6043 			return -E2BIG;
6044 		}
6045 		goto process_func;
6046 	}
6047 	/* if tail call got detected across bpf2bpf calls then mark each of the
6048 	 * currently present subprog frames as tail call reachable subprogs;
6049 	 * this info will be utilized by JIT so that we will be preserving the
6050 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
6051 	 */
6052 	if (tail_call_reachable)
6053 		for (j = 0; j < frame; j++) {
6054 			if (subprog[ret_prog[j]].is_exception_cb) {
6055 				verbose(env, "cannot tail call within exception cb\n");
6056 				return -EINVAL;
6057 			}
6058 			subprog[ret_prog[j]].tail_call_reachable = true;
6059 		}
6060 	if (subprog[0].tail_call_reachable)
6061 		env->prog->aux->tail_call_reachable = true;
6062 
6063 	/* end of for() loop means the last insn of the 'subprog'
6064 	 * was reached. Doesn't matter whether it was JA or EXIT
6065 	 */
6066 	if (frame == 0)
6067 		return 0;
6068 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
6069 	frame--;
6070 	i = ret_insn[frame];
6071 	idx = ret_prog[frame];
6072 	goto continue_func;
6073 }
6074 
6075 static int check_max_stack_depth(struct bpf_verifier_env *env)
6076 {
6077 	struct bpf_subprog_info *si = env->subprog_info;
6078 	int ret;
6079 
6080 	for (int i = 0; i < env->subprog_cnt; i++) {
6081 		if (!i || si[i].is_async_cb) {
6082 			ret = check_max_stack_depth_subprog(env, i);
6083 			if (ret < 0)
6084 				return ret;
6085 		}
6086 		continue;
6087 	}
6088 	return 0;
6089 }
6090 
6091 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6092 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6093 				  const struct bpf_insn *insn, int idx)
6094 {
6095 	int start = idx + insn->imm + 1, subprog;
6096 
6097 	subprog = find_subprog(env, start);
6098 	if (subprog < 0) {
6099 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6100 			  start);
6101 		return -EFAULT;
6102 	}
6103 	return env->subprog_info[subprog].stack_depth;
6104 }
6105 #endif
6106 
6107 static int __check_buffer_access(struct bpf_verifier_env *env,
6108 				 const char *buf_info,
6109 				 const struct bpf_reg_state *reg,
6110 				 int regno, int off, int size)
6111 {
6112 	if (off < 0) {
6113 		verbose(env,
6114 			"R%d invalid %s buffer access: off=%d, size=%d\n",
6115 			regno, buf_info, off, size);
6116 		return -EACCES;
6117 	}
6118 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6119 		char tn_buf[48];
6120 
6121 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6122 		verbose(env,
6123 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6124 			regno, off, tn_buf);
6125 		return -EACCES;
6126 	}
6127 
6128 	return 0;
6129 }
6130 
6131 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6132 				  const struct bpf_reg_state *reg,
6133 				  int regno, int off, int size)
6134 {
6135 	int err;
6136 
6137 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6138 	if (err)
6139 		return err;
6140 
6141 	if (off + size > env->prog->aux->max_tp_access)
6142 		env->prog->aux->max_tp_access = off + size;
6143 
6144 	return 0;
6145 }
6146 
6147 static int check_buffer_access(struct bpf_verifier_env *env,
6148 			       const struct bpf_reg_state *reg,
6149 			       int regno, int off, int size,
6150 			       bool zero_size_allowed,
6151 			       u32 *max_access)
6152 {
6153 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6154 	int err;
6155 
6156 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6157 	if (err)
6158 		return err;
6159 
6160 	if (off + size > *max_access)
6161 		*max_access = off + size;
6162 
6163 	return 0;
6164 }
6165 
6166 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6167 static void zext_32_to_64(struct bpf_reg_state *reg)
6168 {
6169 	reg->var_off = tnum_subreg(reg->var_off);
6170 	__reg_assign_32_into_64(reg);
6171 }
6172 
6173 /* truncate register to smaller size (in bytes)
6174  * must be called with size < BPF_REG_SIZE
6175  */
6176 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6177 {
6178 	u64 mask;
6179 
6180 	/* clear high bits in bit representation */
6181 	reg->var_off = tnum_cast(reg->var_off, size);
6182 
6183 	/* fix arithmetic bounds */
6184 	mask = ((u64)1 << (size * 8)) - 1;
6185 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6186 		reg->umin_value &= mask;
6187 		reg->umax_value &= mask;
6188 	} else {
6189 		reg->umin_value = 0;
6190 		reg->umax_value = mask;
6191 	}
6192 	reg->smin_value = reg->umin_value;
6193 	reg->smax_value = reg->umax_value;
6194 
6195 	/* If size is smaller than 32bit register the 32bit register
6196 	 * values are also truncated so we push 64-bit bounds into
6197 	 * 32-bit bounds. Above were truncated < 32-bits already.
6198 	 */
6199 	if (size >= 4)
6200 		return;
6201 	__reg_combine_64_into_32(reg);
6202 }
6203 
6204 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6205 {
6206 	if (size == 1) {
6207 		reg->smin_value = reg->s32_min_value = S8_MIN;
6208 		reg->smax_value = reg->s32_max_value = S8_MAX;
6209 	} else if (size == 2) {
6210 		reg->smin_value = reg->s32_min_value = S16_MIN;
6211 		reg->smax_value = reg->s32_max_value = S16_MAX;
6212 	} else {
6213 		/* size == 4 */
6214 		reg->smin_value = reg->s32_min_value = S32_MIN;
6215 		reg->smax_value = reg->s32_max_value = S32_MAX;
6216 	}
6217 	reg->umin_value = reg->u32_min_value = 0;
6218 	reg->umax_value = U64_MAX;
6219 	reg->u32_max_value = U32_MAX;
6220 	reg->var_off = tnum_unknown;
6221 }
6222 
6223 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6224 {
6225 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6226 	u64 top_smax_value, top_smin_value;
6227 	u64 num_bits = size * 8;
6228 
6229 	if (tnum_is_const(reg->var_off)) {
6230 		u64_cval = reg->var_off.value;
6231 		if (size == 1)
6232 			reg->var_off = tnum_const((s8)u64_cval);
6233 		else if (size == 2)
6234 			reg->var_off = tnum_const((s16)u64_cval);
6235 		else
6236 			/* size == 4 */
6237 			reg->var_off = tnum_const((s32)u64_cval);
6238 
6239 		u64_cval = reg->var_off.value;
6240 		reg->smax_value = reg->smin_value = u64_cval;
6241 		reg->umax_value = reg->umin_value = u64_cval;
6242 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6243 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6244 		return;
6245 	}
6246 
6247 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6248 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6249 
6250 	if (top_smax_value != top_smin_value)
6251 		goto out;
6252 
6253 	/* find the s64_min and s64_min after sign extension */
6254 	if (size == 1) {
6255 		init_s64_max = (s8)reg->smax_value;
6256 		init_s64_min = (s8)reg->smin_value;
6257 	} else if (size == 2) {
6258 		init_s64_max = (s16)reg->smax_value;
6259 		init_s64_min = (s16)reg->smin_value;
6260 	} else {
6261 		init_s64_max = (s32)reg->smax_value;
6262 		init_s64_min = (s32)reg->smin_value;
6263 	}
6264 
6265 	s64_max = max(init_s64_max, init_s64_min);
6266 	s64_min = min(init_s64_max, init_s64_min);
6267 
6268 	/* both of s64_max/s64_min positive or negative */
6269 	if ((s64_max >= 0) == (s64_min >= 0)) {
6270 		reg->smin_value = reg->s32_min_value = s64_min;
6271 		reg->smax_value = reg->s32_max_value = s64_max;
6272 		reg->umin_value = reg->u32_min_value = s64_min;
6273 		reg->umax_value = reg->u32_max_value = s64_max;
6274 		reg->var_off = tnum_range(s64_min, s64_max);
6275 		return;
6276 	}
6277 
6278 out:
6279 	set_sext64_default_val(reg, size);
6280 }
6281 
6282 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6283 {
6284 	if (size == 1) {
6285 		reg->s32_min_value = S8_MIN;
6286 		reg->s32_max_value = S8_MAX;
6287 	} else {
6288 		/* size == 2 */
6289 		reg->s32_min_value = S16_MIN;
6290 		reg->s32_max_value = S16_MAX;
6291 	}
6292 	reg->u32_min_value = 0;
6293 	reg->u32_max_value = U32_MAX;
6294 }
6295 
6296 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6297 {
6298 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6299 	u32 top_smax_value, top_smin_value;
6300 	u32 num_bits = size * 8;
6301 
6302 	if (tnum_is_const(reg->var_off)) {
6303 		u32_val = reg->var_off.value;
6304 		if (size == 1)
6305 			reg->var_off = tnum_const((s8)u32_val);
6306 		else
6307 			reg->var_off = tnum_const((s16)u32_val);
6308 
6309 		u32_val = reg->var_off.value;
6310 		reg->s32_min_value = reg->s32_max_value = u32_val;
6311 		reg->u32_min_value = reg->u32_max_value = u32_val;
6312 		return;
6313 	}
6314 
6315 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6316 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6317 
6318 	if (top_smax_value != top_smin_value)
6319 		goto out;
6320 
6321 	/* find the s32_min and s32_min after sign extension */
6322 	if (size == 1) {
6323 		init_s32_max = (s8)reg->s32_max_value;
6324 		init_s32_min = (s8)reg->s32_min_value;
6325 	} else {
6326 		/* size == 2 */
6327 		init_s32_max = (s16)reg->s32_max_value;
6328 		init_s32_min = (s16)reg->s32_min_value;
6329 	}
6330 	s32_max = max(init_s32_max, init_s32_min);
6331 	s32_min = min(init_s32_max, init_s32_min);
6332 
6333 	if ((s32_min >= 0) == (s32_max >= 0)) {
6334 		reg->s32_min_value = s32_min;
6335 		reg->s32_max_value = s32_max;
6336 		reg->u32_min_value = (u32)s32_min;
6337 		reg->u32_max_value = (u32)s32_max;
6338 		return;
6339 	}
6340 
6341 out:
6342 	set_sext32_default_val(reg, size);
6343 }
6344 
6345 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6346 {
6347 	/* A map is considered read-only if the following condition are true:
6348 	 *
6349 	 * 1) BPF program side cannot change any of the map content. The
6350 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6351 	 *    and was set at map creation time.
6352 	 * 2) The map value(s) have been initialized from user space by a
6353 	 *    loader and then "frozen", such that no new map update/delete
6354 	 *    operations from syscall side are possible for the rest of
6355 	 *    the map's lifetime from that point onwards.
6356 	 * 3) Any parallel/pending map update/delete operations from syscall
6357 	 *    side have been completed. Only after that point, it's safe to
6358 	 *    assume that map value(s) are immutable.
6359 	 */
6360 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6361 	       READ_ONCE(map->frozen) &&
6362 	       !bpf_map_write_active(map);
6363 }
6364 
6365 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6366 			       bool is_ldsx)
6367 {
6368 	void *ptr;
6369 	u64 addr;
6370 	int err;
6371 
6372 	err = map->ops->map_direct_value_addr(map, &addr, off);
6373 	if (err)
6374 		return err;
6375 	ptr = (void *)(long)addr + off;
6376 
6377 	switch (size) {
6378 	case sizeof(u8):
6379 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6380 		break;
6381 	case sizeof(u16):
6382 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6383 		break;
6384 	case sizeof(u32):
6385 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6386 		break;
6387 	case sizeof(u64):
6388 		*val = *(u64 *)ptr;
6389 		break;
6390 	default:
6391 		return -EINVAL;
6392 	}
6393 	return 0;
6394 }
6395 
6396 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6397 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6398 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6399 
6400 /*
6401  * Allow list few fields as RCU trusted or full trusted.
6402  * This logic doesn't allow mix tagging and will be removed once GCC supports
6403  * btf_type_tag.
6404  */
6405 
6406 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6407 BTF_TYPE_SAFE_RCU(struct task_struct) {
6408 	const cpumask_t *cpus_ptr;
6409 	struct css_set __rcu *cgroups;
6410 	struct task_struct __rcu *real_parent;
6411 	struct task_struct *group_leader;
6412 };
6413 
6414 BTF_TYPE_SAFE_RCU(struct cgroup) {
6415 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6416 	struct kernfs_node *kn;
6417 };
6418 
6419 BTF_TYPE_SAFE_RCU(struct css_set) {
6420 	struct cgroup *dfl_cgrp;
6421 };
6422 
6423 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6424 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6425 	struct file __rcu *exe_file;
6426 };
6427 
6428 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6429  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6430  */
6431 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6432 	struct sock *sk;
6433 };
6434 
6435 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6436 	struct sock *sk;
6437 };
6438 
6439 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6440 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6441 	struct seq_file *seq;
6442 };
6443 
6444 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6445 	struct bpf_iter_meta *meta;
6446 	struct task_struct *task;
6447 };
6448 
6449 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6450 	struct file *file;
6451 };
6452 
6453 BTF_TYPE_SAFE_TRUSTED(struct file) {
6454 	struct inode *f_inode;
6455 };
6456 
6457 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6458 	/* no negative dentry-s in places where bpf can see it */
6459 	struct inode *d_inode;
6460 };
6461 
6462 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6463 	struct sock *sk;
6464 };
6465 
6466 static bool type_is_rcu(struct bpf_verifier_env *env,
6467 			struct bpf_reg_state *reg,
6468 			const char *field_name, u32 btf_id)
6469 {
6470 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6471 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6472 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6473 
6474 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6475 }
6476 
6477 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6478 				struct bpf_reg_state *reg,
6479 				const char *field_name, u32 btf_id)
6480 {
6481 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6482 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6483 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6484 
6485 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6486 }
6487 
6488 static bool type_is_trusted(struct bpf_verifier_env *env,
6489 			    struct bpf_reg_state *reg,
6490 			    const char *field_name, u32 btf_id)
6491 {
6492 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6493 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6494 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6495 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6496 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6497 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6498 
6499 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6500 }
6501 
6502 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6503 				   struct bpf_reg_state *regs,
6504 				   int regno, int off, int size,
6505 				   enum bpf_access_type atype,
6506 				   int value_regno)
6507 {
6508 	struct bpf_reg_state *reg = regs + regno;
6509 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6510 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6511 	const char *field_name = NULL;
6512 	enum bpf_type_flag flag = 0;
6513 	u32 btf_id = 0;
6514 	int ret;
6515 
6516 	if (!env->allow_ptr_leaks) {
6517 		verbose(env,
6518 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6519 			tname);
6520 		return -EPERM;
6521 	}
6522 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6523 		verbose(env,
6524 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6525 			tname);
6526 		return -EINVAL;
6527 	}
6528 	if (off < 0) {
6529 		verbose(env,
6530 			"R%d is ptr_%s invalid negative access: off=%d\n",
6531 			regno, tname, off);
6532 		return -EACCES;
6533 	}
6534 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6535 		char tn_buf[48];
6536 
6537 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6538 		verbose(env,
6539 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6540 			regno, tname, off, tn_buf);
6541 		return -EACCES;
6542 	}
6543 
6544 	if (reg->type & MEM_USER) {
6545 		verbose(env,
6546 			"R%d is ptr_%s access user memory: off=%d\n",
6547 			regno, tname, off);
6548 		return -EACCES;
6549 	}
6550 
6551 	if (reg->type & MEM_PERCPU) {
6552 		verbose(env,
6553 			"R%d is ptr_%s access percpu memory: off=%d\n",
6554 			regno, tname, off);
6555 		return -EACCES;
6556 	}
6557 
6558 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6559 		if (!btf_is_kernel(reg->btf)) {
6560 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6561 			return -EFAULT;
6562 		}
6563 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6564 	} else {
6565 		/* Writes are permitted with default btf_struct_access for
6566 		 * program allocated objects (which always have ref_obj_id > 0),
6567 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6568 		 */
6569 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6570 			verbose(env, "only read is supported\n");
6571 			return -EACCES;
6572 		}
6573 
6574 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6575 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6576 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6577 			return -EFAULT;
6578 		}
6579 
6580 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6581 	}
6582 
6583 	if (ret < 0)
6584 		return ret;
6585 
6586 	if (ret != PTR_TO_BTF_ID) {
6587 		/* just mark; */
6588 
6589 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6590 		/* If this is an untrusted pointer, all pointers formed by walking it
6591 		 * also inherit the untrusted flag.
6592 		 */
6593 		flag = PTR_UNTRUSTED;
6594 
6595 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6596 		/* By default any pointer obtained from walking a trusted pointer is no
6597 		 * longer trusted, unless the field being accessed has explicitly been
6598 		 * marked as inheriting its parent's state of trust (either full or RCU).
6599 		 * For example:
6600 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6601 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6602 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6603 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6604 		 *
6605 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6606 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6607 		 */
6608 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6609 			flag |= PTR_TRUSTED;
6610 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6611 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6612 				/* ignore __rcu tag and mark it MEM_RCU */
6613 				flag |= MEM_RCU;
6614 			} else if (flag & MEM_RCU ||
6615 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6616 				/* __rcu tagged pointers can be NULL */
6617 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6618 
6619 				/* We always trust them */
6620 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6621 				    flag & PTR_UNTRUSTED)
6622 					flag &= ~PTR_UNTRUSTED;
6623 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6624 				/* keep as-is */
6625 			} else {
6626 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6627 				clear_trusted_flags(&flag);
6628 			}
6629 		} else {
6630 			/*
6631 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6632 			 * aggressively mark as untrusted otherwise such
6633 			 * pointers will be plain PTR_TO_BTF_ID without flags
6634 			 * and will be allowed to be passed into helpers for
6635 			 * compat reasons.
6636 			 */
6637 			flag = PTR_UNTRUSTED;
6638 		}
6639 	} else {
6640 		/* Old compat. Deprecated */
6641 		clear_trusted_flags(&flag);
6642 	}
6643 
6644 	if (atype == BPF_READ && value_regno >= 0)
6645 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6646 
6647 	return 0;
6648 }
6649 
6650 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6651 				   struct bpf_reg_state *regs,
6652 				   int regno, int off, int size,
6653 				   enum bpf_access_type atype,
6654 				   int value_regno)
6655 {
6656 	struct bpf_reg_state *reg = regs + regno;
6657 	struct bpf_map *map = reg->map_ptr;
6658 	struct bpf_reg_state map_reg;
6659 	enum bpf_type_flag flag = 0;
6660 	const struct btf_type *t;
6661 	const char *tname;
6662 	u32 btf_id;
6663 	int ret;
6664 
6665 	if (!btf_vmlinux) {
6666 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6667 		return -ENOTSUPP;
6668 	}
6669 
6670 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6671 		verbose(env, "map_ptr access not supported for map type %d\n",
6672 			map->map_type);
6673 		return -ENOTSUPP;
6674 	}
6675 
6676 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6677 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6678 
6679 	if (!env->allow_ptr_leaks) {
6680 		verbose(env,
6681 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6682 			tname);
6683 		return -EPERM;
6684 	}
6685 
6686 	if (off < 0) {
6687 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6688 			regno, tname, off);
6689 		return -EACCES;
6690 	}
6691 
6692 	if (atype != BPF_READ) {
6693 		verbose(env, "only read from %s is supported\n", tname);
6694 		return -EACCES;
6695 	}
6696 
6697 	/* Simulate access to a PTR_TO_BTF_ID */
6698 	memset(&map_reg, 0, sizeof(map_reg));
6699 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6700 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6701 	if (ret < 0)
6702 		return ret;
6703 
6704 	if (value_regno >= 0)
6705 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6706 
6707 	return 0;
6708 }
6709 
6710 /* Check that the stack access at the given offset is within bounds. The
6711  * maximum valid offset is -1.
6712  *
6713  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6714  * -state->allocated_stack for reads.
6715  */
6716 static int check_stack_slot_within_bounds(int off,
6717 					  struct bpf_func_state *state,
6718 					  enum bpf_access_type t)
6719 {
6720 	int min_valid_off;
6721 
6722 	if (t == BPF_WRITE)
6723 		min_valid_off = -MAX_BPF_STACK;
6724 	else
6725 		min_valid_off = -state->allocated_stack;
6726 
6727 	if (off < min_valid_off || off > -1)
6728 		return -EACCES;
6729 	return 0;
6730 }
6731 
6732 /* Check that the stack access at 'regno + off' falls within the maximum stack
6733  * bounds.
6734  *
6735  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6736  */
6737 static int check_stack_access_within_bounds(
6738 		struct bpf_verifier_env *env,
6739 		int regno, int off, int access_size,
6740 		enum bpf_access_src src, enum bpf_access_type type)
6741 {
6742 	struct bpf_reg_state *regs = cur_regs(env);
6743 	struct bpf_reg_state *reg = regs + regno;
6744 	struct bpf_func_state *state = func(env, reg);
6745 	int min_off, max_off;
6746 	int err;
6747 	char *err_extra;
6748 
6749 	if (src == ACCESS_HELPER)
6750 		/* We don't know if helpers are reading or writing (or both). */
6751 		err_extra = " indirect access to";
6752 	else if (type == BPF_READ)
6753 		err_extra = " read from";
6754 	else
6755 		err_extra = " write to";
6756 
6757 	if (tnum_is_const(reg->var_off)) {
6758 		min_off = reg->var_off.value + off;
6759 		if (access_size > 0)
6760 			max_off = min_off + access_size - 1;
6761 		else
6762 			max_off = min_off;
6763 	} else {
6764 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6765 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6766 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6767 				err_extra, regno);
6768 			return -EACCES;
6769 		}
6770 		min_off = reg->smin_value + off;
6771 		if (access_size > 0)
6772 			max_off = reg->smax_value + off + access_size - 1;
6773 		else
6774 			max_off = min_off;
6775 	}
6776 
6777 	err = check_stack_slot_within_bounds(min_off, state, type);
6778 	if (!err)
6779 		err = check_stack_slot_within_bounds(max_off, state, type);
6780 
6781 	if (err) {
6782 		if (tnum_is_const(reg->var_off)) {
6783 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6784 				err_extra, regno, off, access_size);
6785 		} else {
6786 			char tn_buf[48];
6787 
6788 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6789 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6790 				err_extra, regno, tn_buf, access_size);
6791 		}
6792 	}
6793 	return err;
6794 }
6795 
6796 /* check whether memory at (regno + off) is accessible for t = (read | write)
6797  * if t==write, value_regno is a register which value is stored into memory
6798  * if t==read, value_regno is a register which will receive the value from memory
6799  * if t==write && value_regno==-1, some unknown value is stored into memory
6800  * if t==read && value_regno==-1, don't care what we read from memory
6801  */
6802 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6803 			    int off, int bpf_size, enum bpf_access_type t,
6804 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6805 {
6806 	struct bpf_reg_state *regs = cur_regs(env);
6807 	struct bpf_reg_state *reg = regs + regno;
6808 	struct bpf_func_state *state;
6809 	int size, err = 0;
6810 
6811 	size = bpf_size_to_bytes(bpf_size);
6812 	if (size < 0)
6813 		return size;
6814 
6815 	/* alignment checks will add in reg->off themselves */
6816 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6817 	if (err)
6818 		return err;
6819 
6820 	/* for access checks, reg->off is just part of off */
6821 	off += reg->off;
6822 
6823 	if (reg->type == PTR_TO_MAP_KEY) {
6824 		if (t == BPF_WRITE) {
6825 			verbose(env, "write to change key R%d not allowed\n", regno);
6826 			return -EACCES;
6827 		}
6828 
6829 		err = check_mem_region_access(env, regno, off, size,
6830 					      reg->map_ptr->key_size, false);
6831 		if (err)
6832 			return err;
6833 		if (value_regno >= 0)
6834 			mark_reg_unknown(env, regs, value_regno);
6835 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6836 		struct btf_field *kptr_field = NULL;
6837 
6838 		if (t == BPF_WRITE && value_regno >= 0 &&
6839 		    is_pointer_value(env, value_regno)) {
6840 			verbose(env, "R%d leaks addr into map\n", value_regno);
6841 			return -EACCES;
6842 		}
6843 		err = check_map_access_type(env, regno, off, size, t);
6844 		if (err)
6845 			return err;
6846 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6847 		if (err)
6848 			return err;
6849 		if (tnum_is_const(reg->var_off))
6850 			kptr_field = btf_record_find(reg->map_ptr->record,
6851 						     off + reg->var_off.value, BPF_KPTR);
6852 		if (kptr_field) {
6853 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6854 		} else if (t == BPF_READ && value_regno >= 0) {
6855 			struct bpf_map *map = reg->map_ptr;
6856 
6857 			/* if map is read-only, track its contents as scalars */
6858 			if (tnum_is_const(reg->var_off) &&
6859 			    bpf_map_is_rdonly(map) &&
6860 			    map->ops->map_direct_value_addr) {
6861 				int map_off = off + reg->var_off.value;
6862 				u64 val = 0;
6863 
6864 				err = bpf_map_direct_read(map, map_off, size,
6865 							  &val, is_ldsx);
6866 				if (err)
6867 					return err;
6868 
6869 				regs[value_regno].type = SCALAR_VALUE;
6870 				__mark_reg_known(&regs[value_regno], val);
6871 			} else {
6872 				mark_reg_unknown(env, regs, value_regno);
6873 			}
6874 		}
6875 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6876 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6877 
6878 		if (type_may_be_null(reg->type)) {
6879 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6880 				reg_type_str(env, reg->type));
6881 			return -EACCES;
6882 		}
6883 
6884 		if (t == BPF_WRITE && rdonly_mem) {
6885 			verbose(env, "R%d cannot write into %s\n",
6886 				regno, reg_type_str(env, reg->type));
6887 			return -EACCES;
6888 		}
6889 
6890 		if (t == BPF_WRITE && value_regno >= 0 &&
6891 		    is_pointer_value(env, value_regno)) {
6892 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6893 			return -EACCES;
6894 		}
6895 
6896 		err = check_mem_region_access(env, regno, off, size,
6897 					      reg->mem_size, false);
6898 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6899 			mark_reg_unknown(env, regs, value_regno);
6900 	} else if (reg->type == PTR_TO_CTX) {
6901 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6902 		struct btf *btf = NULL;
6903 		u32 btf_id = 0;
6904 
6905 		if (t == BPF_WRITE && value_regno >= 0 &&
6906 		    is_pointer_value(env, value_regno)) {
6907 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6908 			return -EACCES;
6909 		}
6910 
6911 		err = check_ptr_off_reg(env, reg, regno);
6912 		if (err < 0)
6913 			return err;
6914 
6915 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6916 				       &btf_id);
6917 		if (err)
6918 			verbose_linfo(env, insn_idx, "; ");
6919 		if (!err && t == BPF_READ && value_regno >= 0) {
6920 			/* ctx access returns either a scalar, or a
6921 			 * PTR_TO_PACKET[_META,_END]. In the latter
6922 			 * case, we know the offset is zero.
6923 			 */
6924 			if (reg_type == SCALAR_VALUE) {
6925 				mark_reg_unknown(env, regs, value_regno);
6926 			} else {
6927 				mark_reg_known_zero(env, regs,
6928 						    value_regno);
6929 				if (type_may_be_null(reg_type))
6930 					regs[value_regno].id = ++env->id_gen;
6931 				/* A load of ctx field could have different
6932 				 * actual load size with the one encoded in the
6933 				 * insn. When the dst is PTR, it is for sure not
6934 				 * a sub-register.
6935 				 */
6936 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6937 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6938 					regs[value_regno].btf = btf;
6939 					regs[value_regno].btf_id = btf_id;
6940 				}
6941 			}
6942 			regs[value_regno].type = reg_type;
6943 		}
6944 
6945 	} else if (reg->type == PTR_TO_STACK) {
6946 		/* Basic bounds checks. */
6947 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6948 		if (err)
6949 			return err;
6950 
6951 		state = func(env, reg);
6952 		err = update_stack_depth(env, state, off);
6953 		if (err)
6954 			return err;
6955 
6956 		if (t == BPF_READ)
6957 			err = check_stack_read(env, regno, off, size,
6958 					       value_regno);
6959 		else
6960 			err = check_stack_write(env, regno, off, size,
6961 						value_regno, insn_idx);
6962 	} else if (reg_is_pkt_pointer(reg)) {
6963 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6964 			verbose(env, "cannot write into packet\n");
6965 			return -EACCES;
6966 		}
6967 		if (t == BPF_WRITE && value_regno >= 0 &&
6968 		    is_pointer_value(env, value_regno)) {
6969 			verbose(env, "R%d leaks addr into packet\n",
6970 				value_regno);
6971 			return -EACCES;
6972 		}
6973 		err = check_packet_access(env, regno, off, size, false);
6974 		if (!err && t == BPF_READ && value_regno >= 0)
6975 			mark_reg_unknown(env, regs, value_regno);
6976 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6977 		if (t == BPF_WRITE && value_regno >= 0 &&
6978 		    is_pointer_value(env, value_regno)) {
6979 			verbose(env, "R%d leaks addr into flow keys\n",
6980 				value_regno);
6981 			return -EACCES;
6982 		}
6983 
6984 		err = check_flow_keys_access(env, off, size);
6985 		if (!err && t == BPF_READ && value_regno >= 0)
6986 			mark_reg_unknown(env, regs, value_regno);
6987 	} else if (type_is_sk_pointer(reg->type)) {
6988 		if (t == BPF_WRITE) {
6989 			verbose(env, "R%d cannot write into %s\n",
6990 				regno, reg_type_str(env, reg->type));
6991 			return -EACCES;
6992 		}
6993 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6994 		if (!err && value_regno >= 0)
6995 			mark_reg_unknown(env, regs, value_regno);
6996 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6997 		err = check_tp_buffer_access(env, reg, regno, off, size);
6998 		if (!err && t == BPF_READ && value_regno >= 0)
6999 			mark_reg_unknown(env, regs, value_regno);
7000 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
7001 		   !type_may_be_null(reg->type)) {
7002 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
7003 					      value_regno);
7004 	} else if (reg->type == CONST_PTR_TO_MAP) {
7005 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
7006 					      value_regno);
7007 	} else if (base_type(reg->type) == PTR_TO_BUF) {
7008 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
7009 		u32 *max_access;
7010 
7011 		if (rdonly_mem) {
7012 			if (t == BPF_WRITE) {
7013 				verbose(env, "R%d cannot write into %s\n",
7014 					regno, reg_type_str(env, reg->type));
7015 				return -EACCES;
7016 			}
7017 			max_access = &env->prog->aux->max_rdonly_access;
7018 		} else {
7019 			max_access = &env->prog->aux->max_rdwr_access;
7020 		}
7021 
7022 		err = check_buffer_access(env, reg, regno, off, size, false,
7023 					  max_access);
7024 
7025 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
7026 			mark_reg_unknown(env, regs, value_regno);
7027 	} else {
7028 		verbose(env, "R%d invalid mem access '%s'\n", regno,
7029 			reg_type_str(env, reg->type));
7030 		return -EACCES;
7031 	}
7032 
7033 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
7034 	    regs[value_regno].type == SCALAR_VALUE) {
7035 		if (!is_ldsx)
7036 			/* b/h/w load zero-extends, mark upper bits as known 0 */
7037 			coerce_reg_to_size(&regs[value_regno], size);
7038 		else
7039 			coerce_reg_to_size_sx(&regs[value_regno], size);
7040 	}
7041 	return err;
7042 }
7043 
7044 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
7045 {
7046 	int load_reg;
7047 	int err;
7048 
7049 	switch (insn->imm) {
7050 	case BPF_ADD:
7051 	case BPF_ADD | BPF_FETCH:
7052 	case BPF_AND:
7053 	case BPF_AND | BPF_FETCH:
7054 	case BPF_OR:
7055 	case BPF_OR | BPF_FETCH:
7056 	case BPF_XOR:
7057 	case BPF_XOR | BPF_FETCH:
7058 	case BPF_XCHG:
7059 	case BPF_CMPXCHG:
7060 		break;
7061 	default:
7062 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
7063 		return -EINVAL;
7064 	}
7065 
7066 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7067 		verbose(env, "invalid atomic operand size\n");
7068 		return -EINVAL;
7069 	}
7070 
7071 	/* check src1 operand */
7072 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7073 	if (err)
7074 		return err;
7075 
7076 	/* check src2 operand */
7077 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7078 	if (err)
7079 		return err;
7080 
7081 	if (insn->imm == BPF_CMPXCHG) {
7082 		/* Check comparison of R0 with memory location */
7083 		const u32 aux_reg = BPF_REG_0;
7084 
7085 		err = check_reg_arg(env, aux_reg, SRC_OP);
7086 		if (err)
7087 			return err;
7088 
7089 		if (is_pointer_value(env, aux_reg)) {
7090 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
7091 			return -EACCES;
7092 		}
7093 	}
7094 
7095 	if (is_pointer_value(env, insn->src_reg)) {
7096 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7097 		return -EACCES;
7098 	}
7099 
7100 	if (is_ctx_reg(env, insn->dst_reg) ||
7101 	    is_pkt_reg(env, insn->dst_reg) ||
7102 	    is_flow_key_reg(env, insn->dst_reg) ||
7103 	    is_sk_reg(env, insn->dst_reg)) {
7104 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7105 			insn->dst_reg,
7106 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7107 		return -EACCES;
7108 	}
7109 
7110 	if (insn->imm & BPF_FETCH) {
7111 		if (insn->imm == BPF_CMPXCHG)
7112 			load_reg = BPF_REG_0;
7113 		else
7114 			load_reg = insn->src_reg;
7115 
7116 		/* check and record load of old value */
7117 		err = check_reg_arg(env, load_reg, DST_OP);
7118 		if (err)
7119 			return err;
7120 	} else {
7121 		/* This instruction accesses a memory location but doesn't
7122 		 * actually load it into a register.
7123 		 */
7124 		load_reg = -1;
7125 	}
7126 
7127 	/* Check whether we can read the memory, with second call for fetch
7128 	 * case to simulate the register fill.
7129 	 */
7130 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7131 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7132 	if (!err && load_reg >= 0)
7133 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7134 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
7135 				       true, false);
7136 	if (err)
7137 		return err;
7138 
7139 	/* Check whether we can write into the same memory. */
7140 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7141 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7142 	if (err)
7143 		return err;
7144 
7145 	return 0;
7146 }
7147 
7148 /* When register 'regno' is used to read the stack (either directly or through
7149  * a helper function) make sure that it's within stack boundary and, depending
7150  * on the access type, that all elements of the stack are initialized.
7151  *
7152  * 'off' includes 'regno->off', but not its dynamic part (if any).
7153  *
7154  * All registers that have been spilled on the stack in the slots within the
7155  * read offsets are marked as read.
7156  */
7157 static int check_stack_range_initialized(
7158 		struct bpf_verifier_env *env, int regno, int off,
7159 		int access_size, bool zero_size_allowed,
7160 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7161 {
7162 	struct bpf_reg_state *reg = reg_state(env, regno);
7163 	struct bpf_func_state *state = func(env, reg);
7164 	int err, min_off, max_off, i, j, slot, spi;
7165 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7166 	enum bpf_access_type bounds_check_type;
7167 	/* Some accesses can write anything into the stack, others are
7168 	 * read-only.
7169 	 */
7170 	bool clobber = false;
7171 
7172 	if (access_size == 0 && !zero_size_allowed) {
7173 		verbose(env, "invalid zero-sized read\n");
7174 		return -EACCES;
7175 	}
7176 
7177 	if (type == ACCESS_HELPER) {
7178 		/* The bounds checks for writes are more permissive than for
7179 		 * reads. However, if raw_mode is not set, we'll do extra
7180 		 * checks below.
7181 		 */
7182 		bounds_check_type = BPF_WRITE;
7183 		clobber = true;
7184 	} else {
7185 		bounds_check_type = BPF_READ;
7186 	}
7187 	err = check_stack_access_within_bounds(env, regno, off, access_size,
7188 					       type, bounds_check_type);
7189 	if (err)
7190 		return err;
7191 
7192 
7193 	if (tnum_is_const(reg->var_off)) {
7194 		min_off = max_off = reg->var_off.value + off;
7195 	} else {
7196 		/* Variable offset is prohibited for unprivileged mode for
7197 		 * simplicity since it requires corresponding support in
7198 		 * Spectre masking for stack ALU.
7199 		 * See also retrieve_ptr_limit().
7200 		 */
7201 		if (!env->bypass_spec_v1) {
7202 			char tn_buf[48];
7203 
7204 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7205 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7206 				regno, err_extra, tn_buf);
7207 			return -EACCES;
7208 		}
7209 		/* Only initialized buffer on stack is allowed to be accessed
7210 		 * with variable offset. With uninitialized buffer it's hard to
7211 		 * guarantee that whole memory is marked as initialized on
7212 		 * helper return since specific bounds are unknown what may
7213 		 * cause uninitialized stack leaking.
7214 		 */
7215 		if (meta && meta->raw_mode)
7216 			meta = NULL;
7217 
7218 		min_off = reg->smin_value + off;
7219 		max_off = reg->smax_value + off;
7220 	}
7221 
7222 	if (meta && meta->raw_mode) {
7223 		/* Ensure we won't be overwriting dynptrs when simulating byte
7224 		 * by byte access in check_helper_call using meta.access_size.
7225 		 * This would be a problem if we have a helper in the future
7226 		 * which takes:
7227 		 *
7228 		 *	helper(uninit_mem, len, dynptr)
7229 		 *
7230 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7231 		 * may end up writing to dynptr itself when touching memory from
7232 		 * arg 1. This can be relaxed on a case by case basis for known
7233 		 * safe cases, but reject due to the possibilitiy of aliasing by
7234 		 * default.
7235 		 */
7236 		for (i = min_off; i < max_off + access_size; i++) {
7237 			int stack_off = -i - 1;
7238 
7239 			spi = __get_spi(i);
7240 			/* raw_mode may write past allocated_stack */
7241 			if (state->allocated_stack <= stack_off)
7242 				continue;
7243 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7244 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7245 				return -EACCES;
7246 			}
7247 		}
7248 		meta->access_size = access_size;
7249 		meta->regno = regno;
7250 		return 0;
7251 	}
7252 
7253 	for (i = min_off; i < max_off + access_size; i++) {
7254 		u8 *stype;
7255 
7256 		slot = -i - 1;
7257 		spi = slot / BPF_REG_SIZE;
7258 		if (state->allocated_stack <= slot)
7259 			goto err;
7260 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7261 		if (*stype == STACK_MISC)
7262 			goto mark;
7263 		if ((*stype == STACK_ZERO) ||
7264 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7265 			if (clobber) {
7266 				/* helper can write anything into the stack */
7267 				*stype = STACK_MISC;
7268 			}
7269 			goto mark;
7270 		}
7271 
7272 		if (is_spilled_reg(&state->stack[spi]) &&
7273 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7274 		     env->allow_ptr_leaks)) {
7275 			if (clobber) {
7276 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7277 				for (j = 0; j < BPF_REG_SIZE; j++)
7278 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7279 			}
7280 			goto mark;
7281 		}
7282 
7283 err:
7284 		if (tnum_is_const(reg->var_off)) {
7285 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7286 				err_extra, regno, min_off, i - min_off, access_size);
7287 		} else {
7288 			char tn_buf[48];
7289 
7290 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7291 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7292 				err_extra, regno, tn_buf, i - min_off, access_size);
7293 		}
7294 		return -EACCES;
7295 mark:
7296 		/* reading any byte out of 8-byte 'spill_slot' will cause
7297 		 * the whole slot to be marked as 'read'
7298 		 */
7299 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7300 			      state->stack[spi].spilled_ptr.parent,
7301 			      REG_LIVE_READ64);
7302 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7303 		 * be sure that whether stack slot is written to or not. Hence,
7304 		 * we must still conservatively propagate reads upwards even if
7305 		 * helper may write to the entire memory range.
7306 		 */
7307 	}
7308 	return update_stack_depth(env, state, min_off);
7309 }
7310 
7311 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7312 				   int access_size, bool zero_size_allowed,
7313 				   struct bpf_call_arg_meta *meta)
7314 {
7315 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7316 	u32 *max_access;
7317 
7318 	switch (base_type(reg->type)) {
7319 	case PTR_TO_PACKET:
7320 	case PTR_TO_PACKET_META:
7321 		return check_packet_access(env, regno, reg->off, access_size,
7322 					   zero_size_allowed);
7323 	case PTR_TO_MAP_KEY:
7324 		if (meta && meta->raw_mode) {
7325 			verbose(env, "R%d cannot write into %s\n", regno,
7326 				reg_type_str(env, reg->type));
7327 			return -EACCES;
7328 		}
7329 		return check_mem_region_access(env, regno, reg->off, access_size,
7330 					       reg->map_ptr->key_size, false);
7331 	case PTR_TO_MAP_VALUE:
7332 		if (check_map_access_type(env, regno, reg->off, access_size,
7333 					  meta && meta->raw_mode ? BPF_WRITE :
7334 					  BPF_READ))
7335 			return -EACCES;
7336 		return check_map_access(env, regno, reg->off, access_size,
7337 					zero_size_allowed, ACCESS_HELPER);
7338 	case PTR_TO_MEM:
7339 		if (type_is_rdonly_mem(reg->type)) {
7340 			if (meta && meta->raw_mode) {
7341 				verbose(env, "R%d cannot write into %s\n", regno,
7342 					reg_type_str(env, reg->type));
7343 				return -EACCES;
7344 			}
7345 		}
7346 		return check_mem_region_access(env, regno, reg->off,
7347 					       access_size, reg->mem_size,
7348 					       zero_size_allowed);
7349 	case PTR_TO_BUF:
7350 		if (type_is_rdonly_mem(reg->type)) {
7351 			if (meta && meta->raw_mode) {
7352 				verbose(env, "R%d cannot write into %s\n", regno,
7353 					reg_type_str(env, reg->type));
7354 				return -EACCES;
7355 			}
7356 
7357 			max_access = &env->prog->aux->max_rdonly_access;
7358 		} else {
7359 			max_access = &env->prog->aux->max_rdwr_access;
7360 		}
7361 		return check_buffer_access(env, reg, regno, reg->off,
7362 					   access_size, zero_size_allowed,
7363 					   max_access);
7364 	case PTR_TO_STACK:
7365 		return check_stack_range_initialized(
7366 				env,
7367 				regno, reg->off, access_size,
7368 				zero_size_allowed, ACCESS_HELPER, meta);
7369 	case PTR_TO_BTF_ID:
7370 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7371 					       access_size, BPF_READ, -1);
7372 	case PTR_TO_CTX:
7373 		/* in case the function doesn't know how to access the context,
7374 		 * (because we are in a program of type SYSCALL for example), we
7375 		 * can not statically check its size.
7376 		 * Dynamically check it now.
7377 		 */
7378 		if (!env->ops->convert_ctx_access) {
7379 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7380 			int offset = access_size - 1;
7381 
7382 			/* Allow zero-byte read from PTR_TO_CTX */
7383 			if (access_size == 0)
7384 				return zero_size_allowed ? 0 : -EACCES;
7385 
7386 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7387 						atype, -1, false, false);
7388 		}
7389 
7390 		fallthrough;
7391 	default: /* scalar_value or invalid ptr */
7392 		/* Allow zero-byte read from NULL, regardless of pointer type */
7393 		if (zero_size_allowed && access_size == 0 &&
7394 		    register_is_null(reg))
7395 			return 0;
7396 
7397 		verbose(env, "R%d type=%s ", regno,
7398 			reg_type_str(env, reg->type));
7399 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7400 		return -EACCES;
7401 	}
7402 }
7403 
7404 static int check_mem_size_reg(struct bpf_verifier_env *env,
7405 			      struct bpf_reg_state *reg, u32 regno,
7406 			      bool zero_size_allowed,
7407 			      struct bpf_call_arg_meta *meta)
7408 {
7409 	int err;
7410 
7411 	/* This is used to refine r0 return value bounds for helpers
7412 	 * that enforce this value as an upper bound on return values.
7413 	 * See do_refine_retval_range() for helpers that can refine
7414 	 * the return value. C type of helper is u32 so we pull register
7415 	 * bound from umax_value however, if negative verifier errors
7416 	 * out. Only upper bounds can be learned because retval is an
7417 	 * int type and negative retvals are allowed.
7418 	 */
7419 	meta->msize_max_value = reg->umax_value;
7420 
7421 	/* The register is SCALAR_VALUE; the access check
7422 	 * happens using its boundaries.
7423 	 */
7424 	if (!tnum_is_const(reg->var_off))
7425 		/* For unprivileged variable accesses, disable raw
7426 		 * mode so that the program is required to
7427 		 * initialize all the memory that the helper could
7428 		 * just partially fill up.
7429 		 */
7430 		meta = NULL;
7431 
7432 	if (reg->smin_value < 0) {
7433 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7434 			regno);
7435 		return -EACCES;
7436 	}
7437 
7438 	if (reg->umin_value == 0) {
7439 		err = check_helper_mem_access(env, regno - 1, 0,
7440 					      zero_size_allowed,
7441 					      meta);
7442 		if (err)
7443 			return err;
7444 	}
7445 
7446 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7447 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7448 			regno);
7449 		return -EACCES;
7450 	}
7451 	err = check_helper_mem_access(env, regno - 1,
7452 				      reg->umax_value,
7453 				      zero_size_allowed, meta);
7454 	if (!err)
7455 		err = mark_chain_precision(env, regno);
7456 	return err;
7457 }
7458 
7459 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7460 		   u32 regno, u32 mem_size)
7461 {
7462 	bool may_be_null = type_may_be_null(reg->type);
7463 	struct bpf_reg_state saved_reg;
7464 	struct bpf_call_arg_meta meta;
7465 	int err;
7466 
7467 	if (register_is_null(reg))
7468 		return 0;
7469 
7470 	memset(&meta, 0, sizeof(meta));
7471 	/* Assuming that the register contains a value check if the memory
7472 	 * access is safe. Temporarily save and restore the register's state as
7473 	 * the conversion shouldn't be visible to a caller.
7474 	 */
7475 	if (may_be_null) {
7476 		saved_reg = *reg;
7477 		mark_ptr_not_null_reg(reg);
7478 	}
7479 
7480 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7481 	/* Check access for BPF_WRITE */
7482 	meta.raw_mode = true;
7483 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7484 
7485 	if (may_be_null)
7486 		*reg = saved_reg;
7487 
7488 	return err;
7489 }
7490 
7491 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7492 				    u32 regno)
7493 {
7494 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7495 	bool may_be_null = type_may_be_null(mem_reg->type);
7496 	struct bpf_reg_state saved_reg;
7497 	struct bpf_call_arg_meta meta;
7498 	int err;
7499 
7500 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7501 
7502 	memset(&meta, 0, sizeof(meta));
7503 
7504 	if (may_be_null) {
7505 		saved_reg = *mem_reg;
7506 		mark_ptr_not_null_reg(mem_reg);
7507 	}
7508 
7509 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7510 	/* Check access for BPF_WRITE */
7511 	meta.raw_mode = true;
7512 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7513 
7514 	if (may_be_null)
7515 		*mem_reg = saved_reg;
7516 	return err;
7517 }
7518 
7519 /* Implementation details:
7520  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7521  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7522  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7523  * Two separate bpf_obj_new will also have different reg->id.
7524  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7525  * clears reg->id after value_or_null->value transition, since the verifier only
7526  * cares about the range of access to valid map value pointer and doesn't care
7527  * about actual address of the map element.
7528  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7529  * reg->id > 0 after value_or_null->value transition. By doing so
7530  * two bpf_map_lookups will be considered two different pointers that
7531  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7532  * returned from bpf_obj_new.
7533  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7534  * dead-locks.
7535  * Since only one bpf_spin_lock is allowed the checks are simpler than
7536  * reg_is_refcounted() logic. The verifier needs to remember only
7537  * one spin_lock instead of array of acquired_refs.
7538  * cur_state->active_lock remembers which map value element or allocated
7539  * object got locked and clears it after bpf_spin_unlock.
7540  */
7541 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7542 			     bool is_lock)
7543 {
7544 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7545 	struct bpf_verifier_state *cur = env->cur_state;
7546 	bool is_const = tnum_is_const(reg->var_off);
7547 	u64 val = reg->var_off.value;
7548 	struct bpf_map *map = NULL;
7549 	struct btf *btf = NULL;
7550 	struct btf_record *rec;
7551 
7552 	if (!is_const) {
7553 		verbose(env,
7554 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7555 			regno);
7556 		return -EINVAL;
7557 	}
7558 	if (reg->type == PTR_TO_MAP_VALUE) {
7559 		map = reg->map_ptr;
7560 		if (!map->btf) {
7561 			verbose(env,
7562 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7563 				map->name);
7564 			return -EINVAL;
7565 		}
7566 	} else {
7567 		btf = reg->btf;
7568 	}
7569 
7570 	rec = reg_btf_record(reg);
7571 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7572 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7573 			map ? map->name : "kptr");
7574 		return -EINVAL;
7575 	}
7576 	if (rec->spin_lock_off != val + reg->off) {
7577 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7578 			val + reg->off, rec->spin_lock_off);
7579 		return -EINVAL;
7580 	}
7581 	if (is_lock) {
7582 		if (cur->active_lock.ptr) {
7583 			verbose(env,
7584 				"Locking two bpf_spin_locks are not allowed\n");
7585 			return -EINVAL;
7586 		}
7587 		if (map)
7588 			cur->active_lock.ptr = map;
7589 		else
7590 			cur->active_lock.ptr = btf;
7591 		cur->active_lock.id = reg->id;
7592 	} else {
7593 		void *ptr;
7594 
7595 		if (map)
7596 			ptr = map;
7597 		else
7598 			ptr = btf;
7599 
7600 		if (!cur->active_lock.ptr) {
7601 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7602 			return -EINVAL;
7603 		}
7604 		if (cur->active_lock.ptr != ptr ||
7605 		    cur->active_lock.id != reg->id) {
7606 			verbose(env, "bpf_spin_unlock of different lock\n");
7607 			return -EINVAL;
7608 		}
7609 
7610 		invalidate_non_owning_refs(env);
7611 
7612 		cur->active_lock.ptr = NULL;
7613 		cur->active_lock.id = 0;
7614 	}
7615 	return 0;
7616 }
7617 
7618 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7619 			      struct bpf_call_arg_meta *meta)
7620 {
7621 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7622 	bool is_const = tnum_is_const(reg->var_off);
7623 	struct bpf_map *map = reg->map_ptr;
7624 	u64 val = reg->var_off.value;
7625 
7626 	if (!is_const) {
7627 		verbose(env,
7628 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7629 			regno);
7630 		return -EINVAL;
7631 	}
7632 	if (!map->btf) {
7633 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7634 			map->name);
7635 		return -EINVAL;
7636 	}
7637 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7638 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7639 		return -EINVAL;
7640 	}
7641 	if (map->record->timer_off != val + reg->off) {
7642 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7643 			val + reg->off, map->record->timer_off);
7644 		return -EINVAL;
7645 	}
7646 	if (meta->map_ptr) {
7647 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7648 		return -EFAULT;
7649 	}
7650 	meta->map_uid = reg->map_uid;
7651 	meta->map_ptr = map;
7652 	return 0;
7653 }
7654 
7655 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7656 			     struct bpf_call_arg_meta *meta)
7657 {
7658 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7659 	struct bpf_map *map_ptr = reg->map_ptr;
7660 	struct btf_field *kptr_field;
7661 	u32 kptr_off;
7662 
7663 	if (!tnum_is_const(reg->var_off)) {
7664 		verbose(env,
7665 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7666 			regno);
7667 		return -EINVAL;
7668 	}
7669 	if (!map_ptr->btf) {
7670 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7671 			map_ptr->name);
7672 		return -EINVAL;
7673 	}
7674 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7675 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7676 		return -EINVAL;
7677 	}
7678 
7679 	meta->map_ptr = map_ptr;
7680 	kptr_off = reg->off + reg->var_off.value;
7681 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7682 	if (!kptr_field) {
7683 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7684 		return -EACCES;
7685 	}
7686 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
7687 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7688 		return -EACCES;
7689 	}
7690 	meta->kptr_field = kptr_field;
7691 	return 0;
7692 }
7693 
7694 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7695  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7696  *
7697  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7698  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7699  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7700  *
7701  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7702  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7703  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7704  * mutate the view of the dynptr and also possibly destroy it. In the latter
7705  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7706  * memory that dynptr points to.
7707  *
7708  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7709  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7710  * readonly dynptr view yet, hence only the first case is tracked and checked.
7711  *
7712  * This is consistent with how C applies the const modifier to a struct object,
7713  * where the pointer itself inside bpf_dynptr becomes const but not what it
7714  * points to.
7715  *
7716  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7717  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7718  */
7719 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7720 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7721 {
7722 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7723 	int err;
7724 
7725 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7726 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7727 	 */
7728 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7729 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7730 		return -EFAULT;
7731 	}
7732 
7733 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7734 	 *		 constructing a mutable bpf_dynptr object.
7735 	 *
7736 	 *		 Currently, this is only possible with PTR_TO_STACK
7737 	 *		 pointing to a region of at least 16 bytes which doesn't
7738 	 *		 contain an existing bpf_dynptr.
7739 	 *
7740 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7741 	 *		 mutated or destroyed. However, the memory it points to
7742 	 *		 may be mutated.
7743 	 *
7744 	 *  None       - Points to a initialized dynptr that can be mutated and
7745 	 *		 destroyed, including mutation of the memory it points
7746 	 *		 to.
7747 	 */
7748 	if (arg_type & MEM_UNINIT) {
7749 		int i;
7750 
7751 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7752 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7753 			return -EINVAL;
7754 		}
7755 
7756 		/* we write BPF_DW bits (8 bytes) at a time */
7757 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7758 			err = check_mem_access(env, insn_idx, regno,
7759 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7760 			if (err)
7761 				return err;
7762 		}
7763 
7764 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7765 	} else /* MEM_RDONLY and None case from above */ {
7766 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7767 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7768 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7769 			return -EINVAL;
7770 		}
7771 
7772 		if (!is_dynptr_reg_valid_init(env, reg)) {
7773 			verbose(env,
7774 				"Expected an initialized dynptr as arg #%d\n",
7775 				regno);
7776 			return -EINVAL;
7777 		}
7778 
7779 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7780 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7781 			verbose(env,
7782 				"Expected a dynptr of type %s as arg #%d\n",
7783 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7784 			return -EINVAL;
7785 		}
7786 
7787 		err = mark_dynptr_read(env, reg);
7788 	}
7789 	return err;
7790 }
7791 
7792 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7793 {
7794 	struct bpf_func_state *state = func(env, reg);
7795 
7796 	return state->stack[spi].spilled_ptr.ref_obj_id;
7797 }
7798 
7799 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7800 {
7801 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7802 }
7803 
7804 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7805 {
7806 	return meta->kfunc_flags & KF_ITER_NEW;
7807 }
7808 
7809 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7810 {
7811 	return meta->kfunc_flags & KF_ITER_NEXT;
7812 }
7813 
7814 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7815 {
7816 	return meta->kfunc_flags & KF_ITER_DESTROY;
7817 }
7818 
7819 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7820 {
7821 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7822 	 * kfunc is iter state pointer
7823 	 */
7824 	return arg == 0 && is_iter_kfunc(meta);
7825 }
7826 
7827 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7828 			    struct bpf_kfunc_call_arg_meta *meta)
7829 {
7830 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7831 	const struct btf_type *t;
7832 	const struct btf_param *arg;
7833 	int spi, err, i, nr_slots;
7834 	u32 btf_id;
7835 
7836 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7837 	arg = &btf_params(meta->func_proto)[0];
7838 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7839 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7840 	nr_slots = t->size / BPF_REG_SIZE;
7841 
7842 	if (is_iter_new_kfunc(meta)) {
7843 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7844 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7845 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7846 				iter_type_str(meta->btf, btf_id), regno);
7847 			return -EINVAL;
7848 		}
7849 
7850 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7851 			err = check_mem_access(env, insn_idx, regno,
7852 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7853 			if (err)
7854 				return err;
7855 		}
7856 
7857 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
7858 		if (err)
7859 			return err;
7860 	} else {
7861 		/* iter_next() or iter_destroy() expect initialized iter state*/
7862 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
7863 		switch (err) {
7864 		case 0:
7865 			break;
7866 		case -EINVAL:
7867 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7868 				iter_type_str(meta->btf, btf_id), regno);
7869 			return err;
7870 		case -EPROTO:
7871 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
7872 			return err;
7873 		default:
7874 			return err;
7875 		}
7876 
7877 		spi = iter_get_spi(env, reg, nr_slots);
7878 		if (spi < 0)
7879 			return spi;
7880 
7881 		err = mark_iter_read(env, reg, spi, nr_slots);
7882 		if (err)
7883 			return err;
7884 
7885 		/* remember meta->iter info for process_iter_next_call() */
7886 		meta->iter.spi = spi;
7887 		meta->iter.frameno = reg->frameno;
7888 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7889 
7890 		if (is_iter_destroy_kfunc(meta)) {
7891 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7892 			if (err)
7893 				return err;
7894 		}
7895 	}
7896 
7897 	return 0;
7898 }
7899 
7900 /* Look for a previous loop entry at insn_idx: nearest parent state
7901  * stopped at insn_idx with callsites matching those in cur->frame.
7902  */
7903 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7904 						  struct bpf_verifier_state *cur,
7905 						  int insn_idx)
7906 {
7907 	struct bpf_verifier_state_list *sl;
7908 	struct bpf_verifier_state *st;
7909 
7910 	/* Explored states are pushed in stack order, most recent states come first */
7911 	sl = *explored_state(env, insn_idx);
7912 	for (; sl; sl = sl->next) {
7913 		/* If st->branches != 0 state is a part of current DFS verification path,
7914 		 * hence cur & st for a loop.
7915 		 */
7916 		st = &sl->state;
7917 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7918 		    st->dfs_depth < cur->dfs_depth)
7919 			return st;
7920 	}
7921 
7922 	return NULL;
7923 }
7924 
7925 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7926 static bool regs_exact(const struct bpf_reg_state *rold,
7927 		       const struct bpf_reg_state *rcur,
7928 		       struct bpf_idmap *idmap);
7929 
7930 static void maybe_widen_reg(struct bpf_verifier_env *env,
7931 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7932 			    struct bpf_idmap *idmap)
7933 {
7934 	if (rold->type != SCALAR_VALUE)
7935 		return;
7936 	if (rold->type != rcur->type)
7937 		return;
7938 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7939 		return;
7940 	__mark_reg_unknown(env, rcur);
7941 }
7942 
7943 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7944 				   struct bpf_verifier_state *old,
7945 				   struct bpf_verifier_state *cur)
7946 {
7947 	struct bpf_func_state *fold, *fcur;
7948 	int i, fr;
7949 
7950 	reset_idmap_scratch(env);
7951 	for (fr = old->curframe; fr >= 0; fr--) {
7952 		fold = old->frame[fr];
7953 		fcur = cur->frame[fr];
7954 
7955 		for (i = 0; i < MAX_BPF_REG; i++)
7956 			maybe_widen_reg(env,
7957 					&fold->regs[i],
7958 					&fcur->regs[i],
7959 					&env->idmap_scratch);
7960 
7961 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
7962 			if (!is_spilled_reg(&fold->stack[i]) ||
7963 			    !is_spilled_reg(&fcur->stack[i]))
7964 				continue;
7965 
7966 			maybe_widen_reg(env,
7967 					&fold->stack[i].spilled_ptr,
7968 					&fcur->stack[i].spilled_ptr,
7969 					&env->idmap_scratch);
7970 		}
7971 	}
7972 	return 0;
7973 }
7974 
7975 /* process_iter_next_call() is called when verifier gets to iterator's next
7976  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7977  * to it as just "iter_next()" in comments below.
7978  *
7979  * BPF verifier relies on a crucial contract for any iter_next()
7980  * implementation: it should *eventually* return NULL, and once that happens
7981  * it should keep returning NULL. That is, once iterator exhausts elements to
7982  * iterate, it should never reset or spuriously return new elements.
7983  *
7984  * With the assumption of such contract, process_iter_next_call() simulates
7985  * a fork in the verifier state to validate loop logic correctness and safety
7986  * without having to simulate infinite amount of iterations.
7987  *
7988  * In current state, we first assume that iter_next() returned NULL and
7989  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7990  * conditions we should not form an infinite loop and should eventually reach
7991  * exit.
7992  *
7993  * Besides that, we also fork current state and enqueue it for later
7994  * verification. In a forked state we keep iterator state as ACTIVE
7995  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7996  * also bump iteration depth to prevent erroneous infinite loop detection
7997  * later on (see iter_active_depths_differ() comment for details). In this
7998  * state we assume that we'll eventually loop back to another iter_next()
7999  * calls (it could be in exactly same location or in some other instruction,
8000  * it doesn't matter, we don't make any unnecessary assumptions about this,
8001  * everything revolves around iterator state in a stack slot, not which
8002  * instruction is calling iter_next()). When that happens, we either will come
8003  * to iter_next() with equivalent state and can conclude that next iteration
8004  * will proceed in exactly the same way as we just verified, so it's safe to
8005  * assume that loop converges. If not, we'll go on another iteration
8006  * simulation with a different input state, until all possible starting states
8007  * are validated or we reach maximum number of instructions limit.
8008  *
8009  * This way, we will either exhaustively discover all possible input states
8010  * that iterator loop can start with and eventually will converge, or we'll
8011  * effectively regress into bounded loop simulation logic and either reach
8012  * maximum number of instructions if loop is not provably convergent, or there
8013  * is some statically known limit on number of iterations (e.g., if there is
8014  * an explicit `if n > 100 then break;` statement somewhere in the loop).
8015  *
8016  * Iteration convergence logic in is_state_visited() relies on exact
8017  * states comparison, which ignores read and precision marks.
8018  * This is necessary because read and precision marks are not finalized
8019  * while in the loop. Exact comparison might preclude convergence for
8020  * simple programs like below:
8021  *
8022  *     i = 0;
8023  *     while(iter_next(&it))
8024  *       i++;
8025  *
8026  * At each iteration step i++ would produce a new distinct state and
8027  * eventually instruction processing limit would be reached.
8028  *
8029  * To avoid such behavior speculatively forget (widen) range for
8030  * imprecise scalar registers, if those registers were not precise at the
8031  * end of the previous iteration and do not match exactly.
8032  *
8033  * This is a conservative heuristic that allows to verify wide range of programs,
8034  * however it precludes verification of programs that conjure an
8035  * imprecise value on the first loop iteration and use it as precise on a second.
8036  * For example, the following safe program would fail to verify:
8037  *
8038  *     struct bpf_num_iter it;
8039  *     int arr[10];
8040  *     int i = 0, a = 0;
8041  *     bpf_iter_num_new(&it, 0, 10);
8042  *     while (bpf_iter_num_next(&it)) {
8043  *       if (a == 0) {
8044  *         a = 1;
8045  *         i = 7; // Because i changed verifier would forget
8046  *                // it's range on second loop entry.
8047  *       } else {
8048  *         arr[i] = 42; // This would fail to verify.
8049  *       }
8050  *     }
8051  *     bpf_iter_num_destroy(&it);
8052  */
8053 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
8054 				  struct bpf_kfunc_call_arg_meta *meta)
8055 {
8056 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
8057 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
8058 	struct bpf_reg_state *cur_iter, *queued_iter;
8059 	int iter_frameno = meta->iter.frameno;
8060 	int iter_spi = meta->iter.spi;
8061 
8062 	BTF_TYPE_EMIT(struct bpf_iter);
8063 
8064 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8065 
8066 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
8067 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
8068 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
8069 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
8070 		return -EFAULT;
8071 	}
8072 
8073 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
8074 		/* Because iter_next() call is a checkpoint is_state_visitied()
8075 		 * should guarantee parent state with same call sites and insn_idx.
8076 		 */
8077 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
8078 		    !same_callsites(cur_st->parent, cur_st)) {
8079 			verbose(env, "bug: bad parent state for iter next call");
8080 			return -EFAULT;
8081 		}
8082 		/* Note cur_st->parent in the call below, it is necessary to skip
8083 		 * checkpoint created for cur_st by is_state_visited()
8084 		 * right at this instruction.
8085 		 */
8086 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
8087 		/* branch out active iter state */
8088 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
8089 		if (!queued_st)
8090 			return -ENOMEM;
8091 
8092 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8093 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
8094 		queued_iter->iter.depth++;
8095 		if (prev_st)
8096 			widen_imprecise_scalars(env, prev_st, queued_st);
8097 
8098 		queued_fr = queued_st->frame[queued_st->curframe];
8099 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
8100 	}
8101 
8102 	/* switch to DRAINED state, but keep the depth unchanged */
8103 	/* mark current iter state as drained and assume returned NULL */
8104 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8105 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
8106 
8107 	return 0;
8108 }
8109 
8110 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8111 {
8112 	return type == ARG_CONST_SIZE ||
8113 	       type == ARG_CONST_SIZE_OR_ZERO;
8114 }
8115 
8116 static bool arg_type_is_release(enum bpf_arg_type type)
8117 {
8118 	return type & OBJ_RELEASE;
8119 }
8120 
8121 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8122 {
8123 	return base_type(type) == ARG_PTR_TO_DYNPTR;
8124 }
8125 
8126 static int int_ptr_type_to_size(enum bpf_arg_type type)
8127 {
8128 	if (type == ARG_PTR_TO_INT)
8129 		return sizeof(u32);
8130 	else if (type == ARG_PTR_TO_LONG)
8131 		return sizeof(u64);
8132 
8133 	return -EINVAL;
8134 }
8135 
8136 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8137 				 const struct bpf_call_arg_meta *meta,
8138 				 enum bpf_arg_type *arg_type)
8139 {
8140 	if (!meta->map_ptr) {
8141 		/* kernel subsystem misconfigured verifier */
8142 		verbose(env, "invalid map_ptr to access map->type\n");
8143 		return -EACCES;
8144 	}
8145 
8146 	switch (meta->map_ptr->map_type) {
8147 	case BPF_MAP_TYPE_SOCKMAP:
8148 	case BPF_MAP_TYPE_SOCKHASH:
8149 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8150 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8151 		} else {
8152 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
8153 			return -EINVAL;
8154 		}
8155 		break;
8156 	case BPF_MAP_TYPE_BLOOM_FILTER:
8157 		if (meta->func_id == BPF_FUNC_map_peek_elem)
8158 			*arg_type = ARG_PTR_TO_MAP_VALUE;
8159 		break;
8160 	default:
8161 		break;
8162 	}
8163 	return 0;
8164 }
8165 
8166 struct bpf_reg_types {
8167 	const enum bpf_reg_type types[10];
8168 	u32 *btf_id;
8169 };
8170 
8171 static const struct bpf_reg_types sock_types = {
8172 	.types = {
8173 		PTR_TO_SOCK_COMMON,
8174 		PTR_TO_SOCKET,
8175 		PTR_TO_TCP_SOCK,
8176 		PTR_TO_XDP_SOCK,
8177 	},
8178 };
8179 
8180 #ifdef CONFIG_NET
8181 static const struct bpf_reg_types btf_id_sock_common_types = {
8182 	.types = {
8183 		PTR_TO_SOCK_COMMON,
8184 		PTR_TO_SOCKET,
8185 		PTR_TO_TCP_SOCK,
8186 		PTR_TO_XDP_SOCK,
8187 		PTR_TO_BTF_ID,
8188 		PTR_TO_BTF_ID | PTR_TRUSTED,
8189 	},
8190 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8191 };
8192 #endif
8193 
8194 static const struct bpf_reg_types mem_types = {
8195 	.types = {
8196 		PTR_TO_STACK,
8197 		PTR_TO_PACKET,
8198 		PTR_TO_PACKET_META,
8199 		PTR_TO_MAP_KEY,
8200 		PTR_TO_MAP_VALUE,
8201 		PTR_TO_MEM,
8202 		PTR_TO_MEM | MEM_RINGBUF,
8203 		PTR_TO_BUF,
8204 		PTR_TO_BTF_ID | PTR_TRUSTED,
8205 	},
8206 };
8207 
8208 static const struct bpf_reg_types int_ptr_types = {
8209 	.types = {
8210 		PTR_TO_STACK,
8211 		PTR_TO_PACKET,
8212 		PTR_TO_PACKET_META,
8213 		PTR_TO_MAP_KEY,
8214 		PTR_TO_MAP_VALUE,
8215 	},
8216 };
8217 
8218 static const struct bpf_reg_types spin_lock_types = {
8219 	.types = {
8220 		PTR_TO_MAP_VALUE,
8221 		PTR_TO_BTF_ID | MEM_ALLOC,
8222 	}
8223 };
8224 
8225 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8226 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8227 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8228 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8229 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8230 static const struct bpf_reg_types btf_ptr_types = {
8231 	.types = {
8232 		PTR_TO_BTF_ID,
8233 		PTR_TO_BTF_ID | PTR_TRUSTED,
8234 		PTR_TO_BTF_ID | MEM_RCU,
8235 	},
8236 };
8237 static const struct bpf_reg_types percpu_btf_ptr_types = {
8238 	.types = {
8239 		PTR_TO_BTF_ID | MEM_PERCPU,
8240 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
8241 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8242 	}
8243 };
8244 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8245 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8246 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8247 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8248 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8249 static const struct bpf_reg_types dynptr_types = {
8250 	.types = {
8251 		PTR_TO_STACK,
8252 		CONST_PTR_TO_DYNPTR,
8253 	}
8254 };
8255 
8256 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8257 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
8258 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
8259 	[ARG_CONST_SIZE]		= &scalar_types,
8260 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
8261 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
8262 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
8263 	[ARG_PTR_TO_CTX]		= &context_types,
8264 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
8265 #ifdef CONFIG_NET
8266 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
8267 #endif
8268 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
8269 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
8270 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
8271 	[ARG_PTR_TO_MEM]		= &mem_types,
8272 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
8273 	[ARG_PTR_TO_INT]		= &int_ptr_types,
8274 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
8275 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
8276 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
8277 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
8278 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
8279 	[ARG_PTR_TO_TIMER]		= &timer_types,
8280 	[ARG_PTR_TO_KPTR]		= &kptr_types,
8281 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
8282 };
8283 
8284 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8285 			  enum bpf_arg_type arg_type,
8286 			  const u32 *arg_btf_id,
8287 			  struct bpf_call_arg_meta *meta)
8288 {
8289 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8290 	enum bpf_reg_type expected, type = reg->type;
8291 	const struct bpf_reg_types *compatible;
8292 	int i, j;
8293 
8294 	compatible = compatible_reg_types[base_type(arg_type)];
8295 	if (!compatible) {
8296 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8297 		return -EFAULT;
8298 	}
8299 
8300 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8301 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8302 	 *
8303 	 * Same for MAYBE_NULL:
8304 	 *
8305 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8306 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8307 	 *
8308 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8309 	 *
8310 	 * Therefore we fold these flags depending on the arg_type before comparison.
8311 	 */
8312 	if (arg_type & MEM_RDONLY)
8313 		type &= ~MEM_RDONLY;
8314 	if (arg_type & PTR_MAYBE_NULL)
8315 		type &= ~PTR_MAYBE_NULL;
8316 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
8317 		type &= ~DYNPTR_TYPE_FLAG_MASK;
8318 
8319 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) {
8320 		type &= ~MEM_ALLOC;
8321 		type &= ~MEM_PERCPU;
8322 	}
8323 
8324 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8325 		expected = compatible->types[i];
8326 		if (expected == NOT_INIT)
8327 			break;
8328 
8329 		if (type == expected)
8330 			goto found;
8331 	}
8332 
8333 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8334 	for (j = 0; j + 1 < i; j++)
8335 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8336 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8337 	return -EACCES;
8338 
8339 found:
8340 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8341 		return 0;
8342 
8343 	if (compatible == &mem_types) {
8344 		if (!(arg_type & MEM_RDONLY)) {
8345 			verbose(env,
8346 				"%s() may write into memory pointed by R%d type=%s\n",
8347 				func_id_name(meta->func_id),
8348 				regno, reg_type_str(env, reg->type));
8349 			return -EACCES;
8350 		}
8351 		return 0;
8352 	}
8353 
8354 	switch ((int)reg->type) {
8355 	case PTR_TO_BTF_ID:
8356 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8357 	case PTR_TO_BTF_ID | MEM_RCU:
8358 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8359 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8360 	{
8361 		/* For bpf_sk_release, it needs to match against first member
8362 		 * 'struct sock_common', hence make an exception for it. This
8363 		 * allows bpf_sk_release to work for multiple socket types.
8364 		 */
8365 		bool strict_type_match = arg_type_is_release(arg_type) &&
8366 					 meta->func_id != BPF_FUNC_sk_release;
8367 
8368 		if (type_may_be_null(reg->type) &&
8369 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8370 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8371 			return -EACCES;
8372 		}
8373 
8374 		if (!arg_btf_id) {
8375 			if (!compatible->btf_id) {
8376 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8377 				return -EFAULT;
8378 			}
8379 			arg_btf_id = compatible->btf_id;
8380 		}
8381 
8382 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8383 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8384 				return -EACCES;
8385 		} else {
8386 			if (arg_btf_id == BPF_PTR_POISON) {
8387 				verbose(env, "verifier internal error:");
8388 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8389 					regno);
8390 				return -EACCES;
8391 			}
8392 
8393 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8394 						  btf_vmlinux, *arg_btf_id,
8395 						  strict_type_match)) {
8396 				verbose(env, "R%d is of type %s but %s is expected\n",
8397 					regno, btf_type_name(reg->btf, reg->btf_id),
8398 					btf_type_name(btf_vmlinux, *arg_btf_id));
8399 				return -EACCES;
8400 			}
8401 		}
8402 		break;
8403 	}
8404 	case PTR_TO_BTF_ID | MEM_ALLOC:
8405 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8406 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8407 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8408 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8409 			return -EFAULT;
8410 		}
8411 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8412 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8413 				return -EACCES;
8414 		}
8415 		break;
8416 	case PTR_TO_BTF_ID | MEM_PERCPU:
8417 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8418 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8419 		/* Handled by helper specific checks */
8420 		break;
8421 	default:
8422 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8423 		return -EFAULT;
8424 	}
8425 	return 0;
8426 }
8427 
8428 static struct btf_field *
8429 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8430 {
8431 	struct btf_field *field;
8432 	struct btf_record *rec;
8433 
8434 	rec = reg_btf_record(reg);
8435 	if (!rec)
8436 		return NULL;
8437 
8438 	field = btf_record_find(rec, off, fields);
8439 	if (!field)
8440 		return NULL;
8441 
8442 	return field;
8443 }
8444 
8445 int check_func_arg_reg_off(struct bpf_verifier_env *env,
8446 			   const struct bpf_reg_state *reg, int regno,
8447 			   enum bpf_arg_type arg_type)
8448 {
8449 	u32 type = reg->type;
8450 
8451 	/* When referenced register is passed to release function, its fixed
8452 	 * offset must be 0.
8453 	 *
8454 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8455 	 * meta->release_regno.
8456 	 */
8457 	if (arg_type_is_release(arg_type)) {
8458 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8459 		 * may not directly point to the object being released, but to
8460 		 * dynptr pointing to such object, which might be at some offset
8461 		 * on the stack. In that case, we simply to fallback to the
8462 		 * default handling.
8463 		 */
8464 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8465 			return 0;
8466 
8467 		/* Doing check_ptr_off_reg check for the offset will catch this
8468 		 * because fixed_off_ok is false, but checking here allows us
8469 		 * to give the user a better error message.
8470 		 */
8471 		if (reg->off) {
8472 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8473 				regno);
8474 			return -EINVAL;
8475 		}
8476 		return __check_ptr_off_reg(env, reg, regno, false);
8477 	}
8478 
8479 	switch (type) {
8480 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8481 	case PTR_TO_STACK:
8482 	case PTR_TO_PACKET:
8483 	case PTR_TO_PACKET_META:
8484 	case PTR_TO_MAP_KEY:
8485 	case PTR_TO_MAP_VALUE:
8486 	case PTR_TO_MEM:
8487 	case PTR_TO_MEM | MEM_RDONLY:
8488 	case PTR_TO_MEM | MEM_RINGBUF:
8489 	case PTR_TO_BUF:
8490 	case PTR_TO_BUF | MEM_RDONLY:
8491 	case SCALAR_VALUE:
8492 		return 0;
8493 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8494 	 * fixed offset.
8495 	 */
8496 	case PTR_TO_BTF_ID:
8497 	case PTR_TO_BTF_ID | MEM_ALLOC:
8498 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8499 	case PTR_TO_BTF_ID | MEM_RCU:
8500 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8501 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8502 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8503 		 * its fixed offset must be 0. In the other cases, fixed offset
8504 		 * can be non-zero. This was already checked above. So pass
8505 		 * fixed_off_ok as true to allow fixed offset for all other
8506 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8507 		 * still need to do checks instead of returning.
8508 		 */
8509 		return __check_ptr_off_reg(env, reg, regno, true);
8510 	default:
8511 		return __check_ptr_off_reg(env, reg, regno, false);
8512 	}
8513 }
8514 
8515 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8516 						const struct bpf_func_proto *fn,
8517 						struct bpf_reg_state *regs)
8518 {
8519 	struct bpf_reg_state *state = NULL;
8520 	int i;
8521 
8522 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8523 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8524 			if (state) {
8525 				verbose(env, "verifier internal error: multiple dynptr args\n");
8526 				return NULL;
8527 			}
8528 			state = &regs[BPF_REG_1 + i];
8529 		}
8530 
8531 	if (!state)
8532 		verbose(env, "verifier internal error: no dynptr arg found\n");
8533 
8534 	return state;
8535 }
8536 
8537 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8538 {
8539 	struct bpf_func_state *state = func(env, reg);
8540 	int spi;
8541 
8542 	if (reg->type == CONST_PTR_TO_DYNPTR)
8543 		return reg->id;
8544 	spi = dynptr_get_spi(env, reg);
8545 	if (spi < 0)
8546 		return spi;
8547 	return state->stack[spi].spilled_ptr.id;
8548 }
8549 
8550 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8551 {
8552 	struct bpf_func_state *state = func(env, reg);
8553 	int spi;
8554 
8555 	if (reg->type == CONST_PTR_TO_DYNPTR)
8556 		return reg->ref_obj_id;
8557 	spi = dynptr_get_spi(env, reg);
8558 	if (spi < 0)
8559 		return spi;
8560 	return state->stack[spi].spilled_ptr.ref_obj_id;
8561 }
8562 
8563 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8564 					    struct bpf_reg_state *reg)
8565 {
8566 	struct bpf_func_state *state = func(env, reg);
8567 	int spi;
8568 
8569 	if (reg->type == CONST_PTR_TO_DYNPTR)
8570 		return reg->dynptr.type;
8571 
8572 	spi = __get_spi(reg->off);
8573 	if (spi < 0) {
8574 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8575 		return BPF_DYNPTR_TYPE_INVALID;
8576 	}
8577 
8578 	return state->stack[spi].spilled_ptr.dynptr.type;
8579 }
8580 
8581 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8582 			  struct bpf_call_arg_meta *meta,
8583 			  const struct bpf_func_proto *fn,
8584 			  int insn_idx)
8585 {
8586 	u32 regno = BPF_REG_1 + arg;
8587 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8588 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8589 	enum bpf_reg_type type = reg->type;
8590 	u32 *arg_btf_id = NULL;
8591 	int err = 0;
8592 
8593 	if (arg_type == ARG_DONTCARE)
8594 		return 0;
8595 
8596 	err = check_reg_arg(env, regno, SRC_OP);
8597 	if (err)
8598 		return err;
8599 
8600 	if (arg_type == ARG_ANYTHING) {
8601 		if (is_pointer_value(env, regno)) {
8602 			verbose(env, "R%d leaks addr into helper function\n",
8603 				regno);
8604 			return -EACCES;
8605 		}
8606 		return 0;
8607 	}
8608 
8609 	if (type_is_pkt_pointer(type) &&
8610 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8611 		verbose(env, "helper access to the packet is not allowed\n");
8612 		return -EACCES;
8613 	}
8614 
8615 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8616 		err = resolve_map_arg_type(env, meta, &arg_type);
8617 		if (err)
8618 			return err;
8619 	}
8620 
8621 	if (register_is_null(reg) && type_may_be_null(arg_type))
8622 		/* A NULL register has a SCALAR_VALUE type, so skip
8623 		 * type checking.
8624 		 */
8625 		goto skip_type_check;
8626 
8627 	/* arg_btf_id and arg_size are in a union. */
8628 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8629 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8630 		arg_btf_id = fn->arg_btf_id[arg];
8631 
8632 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8633 	if (err)
8634 		return err;
8635 
8636 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8637 	if (err)
8638 		return err;
8639 
8640 skip_type_check:
8641 	if (arg_type_is_release(arg_type)) {
8642 		if (arg_type_is_dynptr(arg_type)) {
8643 			struct bpf_func_state *state = func(env, reg);
8644 			int spi;
8645 
8646 			/* Only dynptr created on stack can be released, thus
8647 			 * the get_spi and stack state checks for spilled_ptr
8648 			 * should only be done before process_dynptr_func for
8649 			 * PTR_TO_STACK.
8650 			 */
8651 			if (reg->type == PTR_TO_STACK) {
8652 				spi = dynptr_get_spi(env, reg);
8653 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8654 					verbose(env, "arg %d is an unacquired reference\n", regno);
8655 					return -EINVAL;
8656 				}
8657 			} else {
8658 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8659 				return -EINVAL;
8660 			}
8661 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8662 			verbose(env, "R%d must be referenced when passed to release function\n",
8663 				regno);
8664 			return -EINVAL;
8665 		}
8666 		if (meta->release_regno) {
8667 			verbose(env, "verifier internal error: more than one release argument\n");
8668 			return -EFAULT;
8669 		}
8670 		meta->release_regno = regno;
8671 	}
8672 
8673 	if (reg->ref_obj_id) {
8674 		if (meta->ref_obj_id) {
8675 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8676 				regno, reg->ref_obj_id,
8677 				meta->ref_obj_id);
8678 			return -EFAULT;
8679 		}
8680 		meta->ref_obj_id = reg->ref_obj_id;
8681 	}
8682 
8683 	switch (base_type(arg_type)) {
8684 	case ARG_CONST_MAP_PTR:
8685 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8686 		if (meta->map_ptr) {
8687 			/* Use map_uid (which is unique id of inner map) to reject:
8688 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8689 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8690 			 * if (inner_map1 && inner_map2) {
8691 			 *     timer = bpf_map_lookup_elem(inner_map1);
8692 			 *     if (timer)
8693 			 *         // mismatch would have been allowed
8694 			 *         bpf_timer_init(timer, inner_map2);
8695 			 * }
8696 			 *
8697 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8698 			 */
8699 			if (meta->map_ptr != reg->map_ptr ||
8700 			    meta->map_uid != reg->map_uid) {
8701 				verbose(env,
8702 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8703 					meta->map_uid, reg->map_uid);
8704 				return -EINVAL;
8705 			}
8706 		}
8707 		meta->map_ptr = reg->map_ptr;
8708 		meta->map_uid = reg->map_uid;
8709 		break;
8710 	case ARG_PTR_TO_MAP_KEY:
8711 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8712 		 * check that [key, key + map->key_size) are within
8713 		 * stack limits and initialized
8714 		 */
8715 		if (!meta->map_ptr) {
8716 			/* in function declaration map_ptr must come before
8717 			 * map_key, so that it's verified and known before
8718 			 * we have to check map_key here. Otherwise it means
8719 			 * that kernel subsystem misconfigured verifier
8720 			 */
8721 			verbose(env, "invalid map_ptr to access map->key\n");
8722 			return -EACCES;
8723 		}
8724 		err = check_helper_mem_access(env, regno,
8725 					      meta->map_ptr->key_size, false,
8726 					      NULL);
8727 		break;
8728 	case ARG_PTR_TO_MAP_VALUE:
8729 		if (type_may_be_null(arg_type) && register_is_null(reg))
8730 			return 0;
8731 
8732 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8733 		 * check [value, value + map->value_size) validity
8734 		 */
8735 		if (!meta->map_ptr) {
8736 			/* kernel subsystem misconfigured verifier */
8737 			verbose(env, "invalid map_ptr to access map->value\n");
8738 			return -EACCES;
8739 		}
8740 		meta->raw_mode = arg_type & MEM_UNINIT;
8741 		err = check_helper_mem_access(env, regno,
8742 					      meta->map_ptr->value_size, false,
8743 					      meta);
8744 		break;
8745 	case ARG_PTR_TO_PERCPU_BTF_ID:
8746 		if (!reg->btf_id) {
8747 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8748 			return -EACCES;
8749 		}
8750 		meta->ret_btf = reg->btf;
8751 		meta->ret_btf_id = reg->btf_id;
8752 		break;
8753 	case ARG_PTR_TO_SPIN_LOCK:
8754 		if (in_rbtree_lock_required_cb(env)) {
8755 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8756 			return -EACCES;
8757 		}
8758 		if (meta->func_id == BPF_FUNC_spin_lock) {
8759 			err = process_spin_lock(env, regno, true);
8760 			if (err)
8761 				return err;
8762 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8763 			err = process_spin_lock(env, regno, false);
8764 			if (err)
8765 				return err;
8766 		} else {
8767 			verbose(env, "verifier internal error\n");
8768 			return -EFAULT;
8769 		}
8770 		break;
8771 	case ARG_PTR_TO_TIMER:
8772 		err = process_timer_func(env, regno, meta);
8773 		if (err)
8774 			return err;
8775 		break;
8776 	case ARG_PTR_TO_FUNC:
8777 		meta->subprogno = reg->subprogno;
8778 		break;
8779 	case ARG_PTR_TO_MEM:
8780 		/* The access to this pointer is only checked when we hit the
8781 		 * next is_mem_size argument below.
8782 		 */
8783 		meta->raw_mode = arg_type & MEM_UNINIT;
8784 		if (arg_type & MEM_FIXED_SIZE) {
8785 			err = check_helper_mem_access(env, regno,
8786 						      fn->arg_size[arg], false,
8787 						      meta);
8788 		}
8789 		break;
8790 	case ARG_CONST_SIZE:
8791 		err = check_mem_size_reg(env, reg, regno, false, meta);
8792 		break;
8793 	case ARG_CONST_SIZE_OR_ZERO:
8794 		err = check_mem_size_reg(env, reg, regno, true, meta);
8795 		break;
8796 	case ARG_PTR_TO_DYNPTR:
8797 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8798 		if (err)
8799 			return err;
8800 		break;
8801 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8802 		if (!tnum_is_const(reg->var_off)) {
8803 			verbose(env, "R%d is not a known constant'\n",
8804 				regno);
8805 			return -EACCES;
8806 		}
8807 		meta->mem_size = reg->var_off.value;
8808 		err = mark_chain_precision(env, regno);
8809 		if (err)
8810 			return err;
8811 		break;
8812 	case ARG_PTR_TO_INT:
8813 	case ARG_PTR_TO_LONG:
8814 	{
8815 		int size = int_ptr_type_to_size(arg_type);
8816 
8817 		err = check_helper_mem_access(env, regno, size, false, meta);
8818 		if (err)
8819 			return err;
8820 		err = check_ptr_alignment(env, reg, 0, size, true);
8821 		break;
8822 	}
8823 	case ARG_PTR_TO_CONST_STR:
8824 	{
8825 		struct bpf_map *map = reg->map_ptr;
8826 		int map_off;
8827 		u64 map_addr;
8828 		char *str_ptr;
8829 
8830 		if (!bpf_map_is_rdonly(map)) {
8831 			verbose(env, "R%d does not point to a readonly map'\n", regno);
8832 			return -EACCES;
8833 		}
8834 
8835 		if (!tnum_is_const(reg->var_off)) {
8836 			verbose(env, "R%d is not a constant address'\n", regno);
8837 			return -EACCES;
8838 		}
8839 
8840 		if (!map->ops->map_direct_value_addr) {
8841 			verbose(env, "no direct value access support for this map type\n");
8842 			return -EACCES;
8843 		}
8844 
8845 		err = check_map_access(env, regno, reg->off,
8846 				       map->value_size - reg->off, false,
8847 				       ACCESS_HELPER);
8848 		if (err)
8849 			return err;
8850 
8851 		map_off = reg->off + reg->var_off.value;
8852 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8853 		if (err) {
8854 			verbose(env, "direct value access on string failed\n");
8855 			return err;
8856 		}
8857 
8858 		str_ptr = (char *)(long)(map_addr);
8859 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8860 			verbose(env, "string is not zero-terminated\n");
8861 			return -EINVAL;
8862 		}
8863 		break;
8864 	}
8865 	case ARG_PTR_TO_KPTR:
8866 		err = process_kptr_func(env, regno, meta);
8867 		if (err)
8868 			return err;
8869 		break;
8870 	}
8871 
8872 	return err;
8873 }
8874 
8875 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8876 {
8877 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8878 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8879 
8880 	if (func_id != BPF_FUNC_map_update_elem)
8881 		return false;
8882 
8883 	/* It's not possible to get access to a locked struct sock in these
8884 	 * contexts, so updating is safe.
8885 	 */
8886 	switch (type) {
8887 	case BPF_PROG_TYPE_TRACING:
8888 		if (eatype == BPF_TRACE_ITER)
8889 			return true;
8890 		break;
8891 	case BPF_PROG_TYPE_SOCKET_FILTER:
8892 	case BPF_PROG_TYPE_SCHED_CLS:
8893 	case BPF_PROG_TYPE_SCHED_ACT:
8894 	case BPF_PROG_TYPE_XDP:
8895 	case BPF_PROG_TYPE_SK_REUSEPORT:
8896 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8897 	case BPF_PROG_TYPE_SK_LOOKUP:
8898 		return true;
8899 	default:
8900 		break;
8901 	}
8902 
8903 	verbose(env, "cannot update sockmap in this context\n");
8904 	return false;
8905 }
8906 
8907 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8908 {
8909 	return env->prog->jit_requested &&
8910 	       bpf_jit_supports_subprog_tailcalls();
8911 }
8912 
8913 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8914 					struct bpf_map *map, int func_id)
8915 {
8916 	if (!map)
8917 		return 0;
8918 
8919 	/* We need a two way check, first is from map perspective ... */
8920 	switch (map->map_type) {
8921 	case BPF_MAP_TYPE_PROG_ARRAY:
8922 		if (func_id != BPF_FUNC_tail_call)
8923 			goto error;
8924 		break;
8925 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8926 		if (func_id != BPF_FUNC_perf_event_read &&
8927 		    func_id != BPF_FUNC_perf_event_output &&
8928 		    func_id != BPF_FUNC_skb_output &&
8929 		    func_id != BPF_FUNC_perf_event_read_value &&
8930 		    func_id != BPF_FUNC_xdp_output)
8931 			goto error;
8932 		break;
8933 	case BPF_MAP_TYPE_RINGBUF:
8934 		if (func_id != BPF_FUNC_ringbuf_output &&
8935 		    func_id != BPF_FUNC_ringbuf_reserve &&
8936 		    func_id != BPF_FUNC_ringbuf_query &&
8937 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8938 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8939 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8940 			goto error;
8941 		break;
8942 	case BPF_MAP_TYPE_USER_RINGBUF:
8943 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8944 			goto error;
8945 		break;
8946 	case BPF_MAP_TYPE_STACK_TRACE:
8947 		if (func_id != BPF_FUNC_get_stackid)
8948 			goto error;
8949 		break;
8950 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8951 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8952 		    func_id != BPF_FUNC_current_task_under_cgroup)
8953 			goto error;
8954 		break;
8955 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8956 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8957 		if (func_id != BPF_FUNC_get_local_storage)
8958 			goto error;
8959 		break;
8960 	case BPF_MAP_TYPE_DEVMAP:
8961 	case BPF_MAP_TYPE_DEVMAP_HASH:
8962 		if (func_id != BPF_FUNC_redirect_map &&
8963 		    func_id != BPF_FUNC_map_lookup_elem)
8964 			goto error;
8965 		break;
8966 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8967 	 * appear.
8968 	 */
8969 	case BPF_MAP_TYPE_CPUMAP:
8970 		if (func_id != BPF_FUNC_redirect_map)
8971 			goto error;
8972 		break;
8973 	case BPF_MAP_TYPE_XSKMAP:
8974 		if (func_id != BPF_FUNC_redirect_map &&
8975 		    func_id != BPF_FUNC_map_lookup_elem)
8976 			goto error;
8977 		break;
8978 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8979 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8980 		if (func_id != BPF_FUNC_map_lookup_elem)
8981 			goto error;
8982 		break;
8983 	case BPF_MAP_TYPE_SOCKMAP:
8984 		if (func_id != BPF_FUNC_sk_redirect_map &&
8985 		    func_id != BPF_FUNC_sock_map_update &&
8986 		    func_id != BPF_FUNC_map_delete_elem &&
8987 		    func_id != BPF_FUNC_msg_redirect_map &&
8988 		    func_id != BPF_FUNC_sk_select_reuseport &&
8989 		    func_id != BPF_FUNC_map_lookup_elem &&
8990 		    !may_update_sockmap(env, func_id))
8991 			goto error;
8992 		break;
8993 	case BPF_MAP_TYPE_SOCKHASH:
8994 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8995 		    func_id != BPF_FUNC_sock_hash_update &&
8996 		    func_id != BPF_FUNC_map_delete_elem &&
8997 		    func_id != BPF_FUNC_msg_redirect_hash &&
8998 		    func_id != BPF_FUNC_sk_select_reuseport &&
8999 		    func_id != BPF_FUNC_map_lookup_elem &&
9000 		    !may_update_sockmap(env, func_id))
9001 			goto error;
9002 		break;
9003 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
9004 		if (func_id != BPF_FUNC_sk_select_reuseport)
9005 			goto error;
9006 		break;
9007 	case BPF_MAP_TYPE_QUEUE:
9008 	case BPF_MAP_TYPE_STACK:
9009 		if (func_id != BPF_FUNC_map_peek_elem &&
9010 		    func_id != BPF_FUNC_map_pop_elem &&
9011 		    func_id != BPF_FUNC_map_push_elem)
9012 			goto error;
9013 		break;
9014 	case BPF_MAP_TYPE_SK_STORAGE:
9015 		if (func_id != BPF_FUNC_sk_storage_get &&
9016 		    func_id != BPF_FUNC_sk_storage_delete &&
9017 		    func_id != BPF_FUNC_kptr_xchg)
9018 			goto error;
9019 		break;
9020 	case BPF_MAP_TYPE_INODE_STORAGE:
9021 		if (func_id != BPF_FUNC_inode_storage_get &&
9022 		    func_id != BPF_FUNC_inode_storage_delete &&
9023 		    func_id != BPF_FUNC_kptr_xchg)
9024 			goto error;
9025 		break;
9026 	case BPF_MAP_TYPE_TASK_STORAGE:
9027 		if (func_id != BPF_FUNC_task_storage_get &&
9028 		    func_id != BPF_FUNC_task_storage_delete &&
9029 		    func_id != BPF_FUNC_kptr_xchg)
9030 			goto error;
9031 		break;
9032 	case BPF_MAP_TYPE_CGRP_STORAGE:
9033 		if (func_id != BPF_FUNC_cgrp_storage_get &&
9034 		    func_id != BPF_FUNC_cgrp_storage_delete &&
9035 		    func_id != BPF_FUNC_kptr_xchg)
9036 			goto error;
9037 		break;
9038 	case BPF_MAP_TYPE_BLOOM_FILTER:
9039 		if (func_id != BPF_FUNC_map_peek_elem &&
9040 		    func_id != BPF_FUNC_map_push_elem)
9041 			goto error;
9042 		break;
9043 	default:
9044 		break;
9045 	}
9046 
9047 	/* ... and second from the function itself. */
9048 	switch (func_id) {
9049 	case BPF_FUNC_tail_call:
9050 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
9051 			goto error;
9052 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
9053 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
9054 			return -EINVAL;
9055 		}
9056 		break;
9057 	case BPF_FUNC_perf_event_read:
9058 	case BPF_FUNC_perf_event_output:
9059 	case BPF_FUNC_perf_event_read_value:
9060 	case BPF_FUNC_skb_output:
9061 	case BPF_FUNC_xdp_output:
9062 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
9063 			goto error;
9064 		break;
9065 	case BPF_FUNC_ringbuf_output:
9066 	case BPF_FUNC_ringbuf_reserve:
9067 	case BPF_FUNC_ringbuf_query:
9068 	case BPF_FUNC_ringbuf_reserve_dynptr:
9069 	case BPF_FUNC_ringbuf_submit_dynptr:
9070 	case BPF_FUNC_ringbuf_discard_dynptr:
9071 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
9072 			goto error;
9073 		break;
9074 	case BPF_FUNC_user_ringbuf_drain:
9075 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
9076 			goto error;
9077 		break;
9078 	case BPF_FUNC_get_stackid:
9079 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
9080 			goto error;
9081 		break;
9082 	case BPF_FUNC_current_task_under_cgroup:
9083 	case BPF_FUNC_skb_under_cgroup:
9084 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
9085 			goto error;
9086 		break;
9087 	case BPF_FUNC_redirect_map:
9088 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
9089 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
9090 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
9091 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
9092 			goto error;
9093 		break;
9094 	case BPF_FUNC_sk_redirect_map:
9095 	case BPF_FUNC_msg_redirect_map:
9096 	case BPF_FUNC_sock_map_update:
9097 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
9098 			goto error;
9099 		break;
9100 	case BPF_FUNC_sk_redirect_hash:
9101 	case BPF_FUNC_msg_redirect_hash:
9102 	case BPF_FUNC_sock_hash_update:
9103 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
9104 			goto error;
9105 		break;
9106 	case BPF_FUNC_get_local_storage:
9107 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
9108 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
9109 			goto error;
9110 		break;
9111 	case BPF_FUNC_sk_select_reuseport:
9112 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
9113 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
9114 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
9115 			goto error;
9116 		break;
9117 	case BPF_FUNC_map_pop_elem:
9118 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9119 		    map->map_type != BPF_MAP_TYPE_STACK)
9120 			goto error;
9121 		break;
9122 	case BPF_FUNC_map_peek_elem:
9123 	case BPF_FUNC_map_push_elem:
9124 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9125 		    map->map_type != BPF_MAP_TYPE_STACK &&
9126 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9127 			goto error;
9128 		break;
9129 	case BPF_FUNC_map_lookup_percpu_elem:
9130 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9131 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9132 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9133 			goto error;
9134 		break;
9135 	case BPF_FUNC_sk_storage_get:
9136 	case BPF_FUNC_sk_storage_delete:
9137 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9138 			goto error;
9139 		break;
9140 	case BPF_FUNC_inode_storage_get:
9141 	case BPF_FUNC_inode_storage_delete:
9142 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9143 			goto error;
9144 		break;
9145 	case BPF_FUNC_task_storage_get:
9146 	case BPF_FUNC_task_storage_delete:
9147 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9148 			goto error;
9149 		break;
9150 	case BPF_FUNC_cgrp_storage_get:
9151 	case BPF_FUNC_cgrp_storage_delete:
9152 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9153 			goto error;
9154 		break;
9155 	default:
9156 		break;
9157 	}
9158 
9159 	return 0;
9160 error:
9161 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
9162 		map->map_type, func_id_name(func_id), func_id);
9163 	return -EINVAL;
9164 }
9165 
9166 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9167 {
9168 	int count = 0;
9169 
9170 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
9171 		count++;
9172 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
9173 		count++;
9174 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
9175 		count++;
9176 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
9177 		count++;
9178 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
9179 		count++;
9180 
9181 	/* We only support one arg being in raw mode at the moment,
9182 	 * which is sufficient for the helper functions we have
9183 	 * right now.
9184 	 */
9185 	return count <= 1;
9186 }
9187 
9188 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9189 {
9190 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9191 	bool has_size = fn->arg_size[arg] != 0;
9192 	bool is_next_size = false;
9193 
9194 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9195 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9196 
9197 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9198 		return is_next_size;
9199 
9200 	return has_size == is_next_size || is_next_size == is_fixed;
9201 }
9202 
9203 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9204 {
9205 	/* bpf_xxx(..., buf, len) call will access 'len'
9206 	 * bytes from memory 'buf'. Both arg types need
9207 	 * to be paired, so make sure there's no buggy
9208 	 * helper function specification.
9209 	 */
9210 	if (arg_type_is_mem_size(fn->arg1_type) ||
9211 	    check_args_pair_invalid(fn, 0) ||
9212 	    check_args_pair_invalid(fn, 1) ||
9213 	    check_args_pair_invalid(fn, 2) ||
9214 	    check_args_pair_invalid(fn, 3) ||
9215 	    check_args_pair_invalid(fn, 4))
9216 		return false;
9217 
9218 	return true;
9219 }
9220 
9221 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9222 {
9223 	int i;
9224 
9225 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9226 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9227 			return !!fn->arg_btf_id[i];
9228 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9229 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
9230 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9231 		    /* arg_btf_id and arg_size are in a union. */
9232 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9233 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9234 			return false;
9235 	}
9236 
9237 	return true;
9238 }
9239 
9240 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9241 {
9242 	return check_raw_mode_ok(fn) &&
9243 	       check_arg_pair_ok(fn) &&
9244 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
9245 }
9246 
9247 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9248  * are now invalid, so turn them into unknown SCALAR_VALUE.
9249  *
9250  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9251  * since these slices point to packet data.
9252  */
9253 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9254 {
9255 	struct bpf_func_state *state;
9256 	struct bpf_reg_state *reg;
9257 
9258 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9259 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9260 			mark_reg_invalid(env, reg);
9261 	}));
9262 }
9263 
9264 enum {
9265 	AT_PKT_END = -1,
9266 	BEYOND_PKT_END = -2,
9267 };
9268 
9269 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9270 {
9271 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9272 	struct bpf_reg_state *reg = &state->regs[regn];
9273 
9274 	if (reg->type != PTR_TO_PACKET)
9275 		/* PTR_TO_PACKET_META is not supported yet */
9276 		return;
9277 
9278 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9279 	 * How far beyond pkt_end it goes is unknown.
9280 	 * if (!range_open) it's the case of pkt >= pkt_end
9281 	 * if (range_open) it's the case of pkt > pkt_end
9282 	 * hence this pointer is at least 1 byte bigger than pkt_end
9283 	 */
9284 	if (range_open)
9285 		reg->range = BEYOND_PKT_END;
9286 	else
9287 		reg->range = AT_PKT_END;
9288 }
9289 
9290 /* The pointer with the specified id has released its reference to kernel
9291  * resources. Identify all copies of the same pointer and clear the reference.
9292  */
9293 static int release_reference(struct bpf_verifier_env *env,
9294 			     int ref_obj_id)
9295 {
9296 	struct bpf_func_state *state;
9297 	struct bpf_reg_state *reg;
9298 	int err;
9299 
9300 	err = release_reference_state(cur_func(env), ref_obj_id);
9301 	if (err)
9302 		return err;
9303 
9304 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9305 		if (reg->ref_obj_id == ref_obj_id)
9306 			mark_reg_invalid(env, reg);
9307 	}));
9308 
9309 	return 0;
9310 }
9311 
9312 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9313 {
9314 	struct bpf_func_state *unused;
9315 	struct bpf_reg_state *reg;
9316 
9317 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9318 		if (type_is_non_owning_ref(reg->type))
9319 			mark_reg_invalid(env, reg);
9320 	}));
9321 }
9322 
9323 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9324 				    struct bpf_reg_state *regs)
9325 {
9326 	int i;
9327 
9328 	/* after the call registers r0 - r5 were scratched */
9329 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9330 		mark_reg_not_init(env, regs, caller_saved[i]);
9331 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9332 	}
9333 }
9334 
9335 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9336 				   struct bpf_func_state *caller,
9337 				   struct bpf_func_state *callee,
9338 				   int insn_idx);
9339 
9340 static int set_callee_state(struct bpf_verifier_env *env,
9341 			    struct bpf_func_state *caller,
9342 			    struct bpf_func_state *callee, int insn_idx);
9343 
9344 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9345 			     int *insn_idx, int subprog,
9346 			     set_callee_state_fn set_callee_state_cb)
9347 {
9348 	struct bpf_verifier_state *state = env->cur_state;
9349 	struct bpf_func_state *caller, *callee;
9350 	int err;
9351 
9352 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9353 		verbose(env, "the call stack of %d frames is too deep\n",
9354 			state->curframe + 2);
9355 		return -E2BIG;
9356 	}
9357 
9358 	caller = state->frame[state->curframe];
9359 	if (state->frame[state->curframe + 1]) {
9360 		verbose(env, "verifier bug. Frame %d already allocated\n",
9361 			state->curframe + 1);
9362 		return -EFAULT;
9363 	}
9364 
9365 	err = btf_check_subprog_call(env, subprog, caller->regs);
9366 	if (err == -EFAULT)
9367 		return err;
9368 	if (subprog_is_global(env, subprog)) {
9369 		if (err) {
9370 			verbose(env, "Caller passes invalid args into func#%d\n",
9371 				subprog);
9372 			return err;
9373 		} else {
9374 			if (env->log.level & BPF_LOG_LEVEL)
9375 				verbose(env,
9376 					"Func#%d is global and valid. Skipping.\n",
9377 					subprog);
9378 			clear_caller_saved_regs(env, caller->regs);
9379 
9380 			/* All global functions return a 64-bit SCALAR_VALUE */
9381 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
9382 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9383 
9384 			/* continue with next insn after call */
9385 			return 0;
9386 		}
9387 	}
9388 
9389 	/* set_callee_state is used for direct subprog calls, but we are
9390 	 * interested in validating only BPF helpers that can call subprogs as
9391 	 * callbacks
9392 	 */
9393 	if (set_callee_state_cb != set_callee_state) {
9394 		env->subprog_info[subprog].is_cb = true;
9395 		if (bpf_pseudo_kfunc_call(insn) &&
9396 		    !is_callback_calling_kfunc(insn->imm)) {
9397 			verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9398 				func_id_name(insn->imm), insn->imm);
9399 			return -EFAULT;
9400 		} else if (!bpf_pseudo_kfunc_call(insn) &&
9401 			   !is_callback_calling_function(insn->imm)) { /* helper */
9402 			verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9403 				func_id_name(insn->imm), insn->imm);
9404 			return -EFAULT;
9405 		}
9406 	}
9407 
9408 	if (insn->code == (BPF_JMP | BPF_CALL) &&
9409 	    insn->src_reg == 0 &&
9410 	    insn->imm == BPF_FUNC_timer_set_callback) {
9411 		struct bpf_verifier_state *async_cb;
9412 
9413 		/* there is no real recursion here. timer callbacks are async */
9414 		env->subprog_info[subprog].is_async_cb = true;
9415 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9416 					 *insn_idx, subprog);
9417 		if (!async_cb)
9418 			return -EFAULT;
9419 		callee = async_cb->frame[0];
9420 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9421 
9422 		/* Convert bpf_timer_set_callback() args into timer callback args */
9423 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
9424 		if (err)
9425 			return err;
9426 
9427 		clear_caller_saved_regs(env, caller->regs);
9428 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
9429 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9430 		/* continue with next insn after call */
9431 		return 0;
9432 	}
9433 
9434 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9435 	if (!callee)
9436 		return -ENOMEM;
9437 	state->frame[state->curframe + 1] = callee;
9438 
9439 	/* callee cannot access r0, r6 - r9 for reading and has to write
9440 	 * into its own stack before reading from it.
9441 	 * callee can read/write into caller's stack
9442 	 */
9443 	init_func_state(env, callee,
9444 			/* remember the callsite, it will be used by bpf_exit */
9445 			*insn_idx /* callsite */,
9446 			state->curframe + 1 /* frameno within this callchain */,
9447 			subprog /* subprog number within this prog */);
9448 
9449 	/* Transfer references to the callee */
9450 	err = copy_reference_state(callee, caller);
9451 	if (err)
9452 		goto err_out;
9453 
9454 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
9455 	if (err)
9456 		goto err_out;
9457 
9458 	clear_caller_saved_regs(env, caller->regs);
9459 
9460 	/* only increment it after check_reg_arg() finished */
9461 	state->curframe++;
9462 
9463 	/* and go analyze first insn of the callee */
9464 	*insn_idx = env->subprog_info[subprog].start - 1;
9465 
9466 	if (env->log.level & BPF_LOG_LEVEL) {
9467 		verbose(env, "caller:\n");
9468 		print_verifier_state(env, caller, true);
9469 		verbose(env, "callee:\n");
9470 		print_verifier_state(env, callee, true);
9471 	}
9472 	return 0;
9473 
9474 err_out:
9475 	free_func_state(callee);
9476 	state->frame[state->curframe + 1] = NULL;
9477 	return err;
9478 }
9479 
9480 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9481 				   struct bpf_func_state *caller,
9482 				   struct bpf_func_state *callee)
9483 {
9484 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9485 	 *      void *callback_ctx, u64 flags);
9486 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9487 	 *      void *callback_ctx);
9488 	 */
9489 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9490 
9491 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9492 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9493 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9494 
9495 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9496 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9497 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9498 
9499 	/* pointer to stack or null */
9500 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9501 
9502 	/* unused */
9503 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9504 	return 0;
9505 }
9506 
9507 static int set_callee_state(struct bpf_verifier_env *env,
9508 			    struct bpf_func_state *caller,
9509 			    struct bpf_func_state *callee, int insn_idx)
9510 {
9511 	int i;
9512 
9513 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9514 	 * pointers, which connects us up to the liveness chain
9515 	 */
9516 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9517 		callee->regs[i] = caller->regs[i];
9518 	return 0;
9519 }
9520 
9521 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9522 			   int *insn_idx)
9523 {
9524 	int subprog, target_insn;
9525 
9526 	target_insn = *insn_idx + insn->imm + 1;
9527 	subprog = find_subprog(env, target_insn);
9528 	if (subprog < 0) {
9529 		verbose(env, "verifier bug. No program starts at insn %d\n",
9530 			target_insn);
9531 		return -EFAULT;
9532 	}
9533 
9534 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
9535 }
9536 
9537 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9538 				       struct bpf_func_state *caller,
9539 				       struct bpf_func_state *callee,
9540 				       int insn_idx)
9541 {
9542 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9543 	struct bpf_map *map;
9544 	int err;
9545 
9546 	if (bpf_map_ptr_poisoned(insn_aux)) {
9547 		verbose(env, "tail_call abusing map_ptr\n");
9548 		return -EINVAL;
9549 	}
9550 
9551 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9552 	if (!map->ops->map_set_for_each_callback_args ||
9553 	    !map->ops->map_for_each_callback) {
9554 		verbose(env, "callback function not allowed for map\n");
9555 		return -ENOTSUPP;
9556 	}
9557 
9558 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9559 	if (err)
9560 		return err;
9561 
9562 	callee->in_callback_fn = true;
9563 	callee->callback_ret_range = tnum_range(0, 1);
9564 	return 0;
9565 }
9566 
9567 static int set_loop_callback_state(struct bpf_verifier_env *env,
9568 				   struct bpf_func_state *caller,
9569 				   struct bpf_func_state *callee,
9570 				   int insn_idx)
9571 {
9572 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9573 	 *	    u64 flags);
9574 	 * callback_fn(u32 index, void *callback_ctx);
9575 	 */
9576 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9577 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9578 
9579 	/* unused */
9580 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9581 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9582 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9583 
9584 	callee->in_callback_fn = true;
9585 	callee->callback_ret_range = tnum_range(0, 1);
9586 	return 0;
9587 }
9588 
9589 static int set_timer_callback_state(struct bpf_verifier_env *env,
9590 				    struct bpf_func_state *caller,
9591 				    struct bpf_func_state *callee,
9592 				    int insn_idx)
9593 {
9594 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9595 
9596 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9597 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9598 	 */
9599 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9600 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9601 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9602 
9603 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9604 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9605 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9606 
9607 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9608 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9609 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9610 
9611 	/* unused */
9612 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9613 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9614 	callee->in_async_callback_fn = true;
9615 	callee->callback_ret_range = tnum_range(0, 1);
9616 	return 0;
9617 }
9618 
9619 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9620 				       struct bpf_func_state *caller,
9621 				       struct bpf_func_state *callee,
9622 				       int insn_idx)
9623 {
9624 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9625 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9626 	 * (callback_fn)(struct task_struct *task,
9627 	 *               struct vm_area_struct *vma, void *callback_ctx);
9628 	 */
9629 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9630 
9631 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9632 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9633 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9634 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9635 
9636 	/* pointer to stack or null */
9637 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9638 
9639 	/* unused */
9640 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9641 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9642 	callee->in_callback_fn = true;
9643 	callee->callback_ret_range = tnum_range(0, 1);
9644 	return 0;
9645 }
9646 
9647 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9648 					   struct bpf_func_state *caller,
9649 					   struct bpf_func_state *callee,
9650 					   int insn_idx)
9651 {
9652 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9653 	 *			  callback_ctx, u64 flags);
9654 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9655 	 */
9656 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9657 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9658 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9659 
9660 	/* unused */
9661 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9662 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9663 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9664 
9665 	callee->in_callback_fn = true;
9666 	callee->callback_ret_range = tnum_range(0, 1);
9667 	return 0;
9668 }
9669 
9670 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9671 					 struct bpf_func_state *caller,
9672 					 struct bpf_func_state *callee,
9673 					 int insn_idx)
9674 {
9675 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9676 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9677 	 *
9678 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9679 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9680 	 * by this point, so look at 'root'
9681 	 */
9682 	struct btf_field *field;
9683 
9684 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9685 				      BPF_RB_ROOT);
9686 	if (!field || !field->graph_root.value_btf_id)
9687 		return -EFAULT;
9688 
9689 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9690 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9691 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9692 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9693 
9694 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9695 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9696 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9697 	callee->in_callback_fn = true;
9698 	callee->callback_ret_range = tnum_range(0, 1);
9699 	return 0;
9700 }
9701 
9702 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9703 
9704 /* Are we currently verifying the callback for a rbtree helper that must
9705  * be called with lock held? If so, no need to complain about unreleased
9706  * lock
9707  */
9708 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9709 {
9710 	struct bpf_verifier_state *state = env->cur_state;
9711 	struct bpf_insn *insn = env->prog->insnsi;
9712 	struct bpf_func_state *callee;
9713 	int kfunc_btf_id;
9714 
9715 	if (!state->curframe)
9716 		return false;
9717 
9718 	callee = state->frame[state->curframe];
9719 
9720 	if (!callee->in_callback_fn)
9721 		return false;
9722 
9723 	kfunc_btf_id = insn[callee->callsite].imm;
9724 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9725 }
9726 
9727 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9728 {
9729 	struct bpf_verifier_state *state = env->cur_state;
9730 	struct bpf_func_state *caller, *callee;
9731 	struct bpf_reg_state *r0;
9732 	int err;
9733 
9734 	callee = state->frame[state->curframe];
9735 	r0 = &callee->regs[BPF_REG_0];
9736 	if (r0->type == PTR_TO_STACK) {
9737 		/* technically it's ok to return caller's stack pointer
9738 		 * (or caller's caller's pointer) back to the caller,
9739 		 * since these pointers are valid. Only current stack
9740 		 * pointer will be invalid as soon as function exits,
9741 		 * but let's be conservative
9742 		 */
9743 		verbose(env, "cannot return stack pointer to the caller\n");
9744 		return -EINVAL;
9745 	}
9746 
9747 	caller = state->frame[state->curframe - 1];
9748 	if (callee->in_callback_fn) {
9749 		/* enforce R0 return value range [0, 1]. */
9750 		struct tnum range = callee->callback_ret_range;
9751 
9752 		if (r0->type != SCALAR_VALUE) {
9753 			verbose(env, "R0 not a scalar value\n");
9754 			return -EACCES;
9755 		}
9756 		if (!tnum_in(range, r0->var_off)) {
9757 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9758 			return -EINVAL;
9759 		}
9760 	} else {
9761 		/* return to the caller whatever r0 had in the callee */
9762 		caller->regs[BPF_REG_0] = *r0;
9763 	}
9764 
9765 	/* callback_fn frame should have released its own additions to parent's
9766 	 * reference state at this point, or check_reference_leak would
9767 	 * complain, hence it must be the same as the caller. There is no need
9768 	 * to copy it back.
9769 	 */
9770 	if (!callee->in_callback_fn) {
9771 		/* Transfer references to the caller */
9772 		err = copy_reference_state(caller, callee);
9773 		if (err)
9774 			return err;
9775 	}
9776 
9777 	*insn_idx = callee->callsite + 1;
9778 	if (env->log.level & BPF_LOG_LEVEL) {
9779 		verbose(env, "returning from callee:\n");
9780 		print_verifier_state(env, callee, true);
9781 		verbose(env, "to caller at %d:\n", *insn_idx);
9782 		print_verifier_state(env, caller, true);
9783 	}
9784 	/* clear everything in the callee. In case of exceptional exits using
9785 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
9786 	free_func_state(callee);
9787 	state->frame[state->curframe--] = NULL;
9788 	return 0;
9789 }
9790 
9791 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9792 				   int func_id,
9793 				   struct bpf_call_arg_meta *meta)
9794 {
9795 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9796 
9797 	if (ret_type != RET_INTEGER)
9798 		return;
9799 
9800 	switch (func_id) {
9801 	case BPF_FUNC_get_stack:
9802 	case BPF_FUNC_get_task_stack:
9803 	case BPF_FUNC_probe_read_str:
9804 	case BPF_FUNC_probe_read_kernel_str:
9805 	case BPF_FUNC_probe_read_user_str:
9806 		ret_reg->smax_value = meta->msize_max_value;
9807 		ret_reg->s32_max_value = meta->msize_max_value;
9808 		ret_reg->smin_value = -MAX_ERRNO;
9809 		ret_reg->s32_min_value = -MAX_ERRNO;
9810 		reg_bounds_sync(ret_reg);
9811 		break;
9812 	case BPF_FUNC_get_smp_processor_id:
9813 		ret_reg->umax_value = nr_cpu_ids - 1;
9814 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9815 		ret_reg->smax_value = nr_cpu_ids - 1;
9816 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9817 		ret_reg->umin_value = 0;
9818 		ret_reg->u32_min_value = 0;
9819 		ret_reg->smin_value = 0;
9820 		ret_reg->s32_min_value = 0;
9821 		reg_bounds_sync(ret_reg);
9822 		break;
9823 	}
9824 }
9825 
9826 static int
9827 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9828 		int func_id, int insn_idx)
9829 {
9830 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9831 	struct bpf_map *map = meta->map_ptr;
9832 
9833 	if (func_id != BPF_FUNC_tail_call &&
9834 	    func_id != BPF_FUNC_map_lookup_elem &&
9835 	    func_id != BPF_FUNC_map_update_elem &&
9836 	    func_id != BPF_FUNC_map_delete_elem &&
9837 	    func_id != BPF_FUNC_map_push_elem &&
9838 	    func_id != BPF_FUNC_map_pop_elem &&
9839 	    func_id != BPF_FUNC_map_peek_elem &&
9840 	    func_id != BPF_FUNC_for_each_map_elem &&
9841 	    func_id != BPF_FUNC_redirect_map &&
9842 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9843 		return 0;
9844 
9845 	if (map == NULL) {
9846 		verbose(env, "kernel subsystem misconfigured verifier\n");
9847 		return -EINVAL;
9848 	}
9849 
9850 	/* In case of read-only, some additional restrictions
9851 	 * need to be applied in order to prevent altering the
9852 	 * state of the map from program side.
9853 	 */
9854 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9855 	    (func_id == BPF_FUNC_map_delete_elem ||
9856 	     func_id == BPF_FUNC_map_update_elem ||
9857 	     func_id == BPF_FUNC_map_push_elem ||
9858 	     func_id == BPF_FUNC_map_pop_elem)) {
9859 		verbose(env, "write into map forbidden\n");
9860 		return -EACCES;
9861 	}
9862 
9863 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9864 		bpf_map_ptr_store(aux, meta->map_ptr,
9865 				  !meta->map_ptr->bypass_spec_v1);
9866 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9867 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9868 				  !meta->map_ptr->bypass_spec_v1);
9869 	return 0;
9870 }
9871 
9872 static int
9873 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9874 		int func_id, int insn_idx)
9875 {
9876 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9877 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9878 	struct bpf_map *map = meta->map_ptr;
9879 	u64 val, max;
9880 	int err;
9881 
9882 	if (func_id != BPF_FUNC_tail_call)
9883 		return 0;
9884 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9885 		verbose(env, "kernel subsystem misconfigured verifier\n");
9886 		return -EINVAL;
9887 	}
9888 
9889 	reg = &regs[BPF_REG_3];
9890 	val = reg->var_off.value;
9891 	max = map->max_entries;
9892 
9893 	if (!(register_is_const(reg) && val < max)) {
9894 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9895 		return 0;
9896 	}
9897 
9898 	err = mark_chain_precision(env, BPF_REG_3);
9899 	if (err)
9900 		return err;
9901 	if (bpf_map_key_unseen(aux))
9902 		bpf_map_key_store(aux, val);
9903 	else if (!bpf_map_key_poisoned(aux) &&
9904 		  bpf_map_key_immediate(aux) != val)
9905 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9906 	return 0;
9907 }
9908 
9909 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
9910 {
9911 	struct bpf_func_state *state = cur_func(env);
9912 	bool refs_lingering = false;
9913 	int i;
9914 
9915 	if (!exception_exit && state->frameno && !state->in_callback_fn)
9916 		return 0;
9917 
9918 	for (i = 0; i < state->acquired_refs; i++) {
9919 		if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9920 			continue;
9921 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9922 			state->refs[i].id, state->refs[i].insn_idx);
9923 		refs_lingering = true;
9924 	}
9925 	return refs_lingering ? -EINVAL : 0;
9926 }
9927 
9928 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9929 				   struct bpf_reg_state *regs)
9930 {
9931 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9932 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9933 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
9934 	struct bpf_bprintf_data data = {};
9935 	int err, fmt_map_off, num_args;
9936 	u64 fmt_addr;
9937 	char *fmt;
9938 
9939 	/* data must be an array of u64 */
9940 	if (data_len_reg->var_off.value % 8)
9941 		return -EINVAL;
9942 	num_args = data_len_reg->var_off.value / 8;
9943 
9944 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9945 	 * and map_direct_value_addr is set.
9946 	 */
9947 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9948 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9949 						  fmt_map_off);
9950 	if (err) {
9951 		verbose(env, "verifier bug\n");
9952 		return -EFAULT;
9953 	}
9954 	fmt = (char *)(long)fmt_addr + fmt_map_off;
9955 
9956 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9957 	 * can focus on validating the format specifiers.
9958 	 */
9959 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9960 	if (err < 0)
9961 		verbose(env, "Invalid format string\n");
9962 
9963 	return err;
9964 }
9965 
9966 static int check_get_func_ip(struct bpf_verifier_env *env)
9967 {
9968 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9969 	int func_id = BPF_FUNC_get_func_ip;
9970 
9971 	if (type == BPF_PROG_TYPE_TRACING) {
9972 		if (!bpf_prog_has_trampoline(env->prog)) {
9973 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9974 				func_id_name(func_id), func_id);
9975 			return -ENOTSUPP;
9976 		}
9977 		return 0;
9978 	} else if (type == BPF_PROG_TYPE_KPROBE) {
9979 		return 0;
9980 	}
9981 
9982 	verbose(env, "func %s#%d not supported for program type %d\n",
9983 		func_id_name(func_id), func_id, type);
9984 	return -ENOTSUPP;
9985 }
9986 
9987 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9988 {
9989 	return &env->insn_aux_data[env->insn_idx];
9990 }
9991 
9992 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9993 {
9994 	struct bpf_reg_state *regs = cur_regs(env);
9995 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
9996 	bool reg_is_null = register_is_null(reg);
9997 
9998 	if (reg_is_null)
9999 		mark_chain_precision(env, BPF_REG_4);
10000 
10001 	return reg_is_null;
10002 }
10003 
10004 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
10005 {
10006 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
10007 
10008 	if (!state->initialized) {
10009 		state->initialized = 1;
10010 		state->fit_for_inline = loop_flag_is_zero(env);
10011 		state->callback_subprogno = subprogno;
10012 		return;
10013 	}
10014 
10015 	if (!state->fit_for_inline)
10016 		return;
10017 
10018 	state->fit_for_inline = (loop_flag_is_zero(env) &&
10019 				 state->callback_subprogno == subprogno);
10020 }
10021 
10022 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10023 			     int *insn_idx_p)
10024 {
10025 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10026 	bool returns_cpu_specific_alloc_ptr = false;
10027 	const struct bpf_func_proto *fn = NULL;
10028 	enum bpf_return_type ret_type;
10029 	enum bpf_type_flag ret_flag;
10030 	struct bpf_reg_state *regs;
10031 	struct bpf_call_arg_meta meta;
10032 	int insn_idx = *insn_idx_p;
10033 	bool changes_data;
10034 	int i, err, func_id;
10035 
10036 	/* find function prototype */
10037 	func_id = insn->imm;
10038 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
10039 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
10040 			func_id);
10041 		return -EINVAL;
10042 	}
10043 
10044 	if (env->ops->get_func_proto)
10045 		fn = env->ops->get_func_proto(func_id, env->prog);
10046 	if (!fn) {
10047 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
10048 			func_id);
10049 		return -EINVAL;
10050 	}
10051 
10052 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
10053 	if (!env->prog->gpl_compatible && fn->gpl_only) {
10054 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10055 		return -EINVAL;
10056 	}
10057 
10058 	if (fn->allowed && !fn->allowed(env->prog)) {
10059 		verbose(env, "helper call is not allowed in probe\n");
10060 		return -EINVAL;
10061 	}
10062 
10063 	if (!env->prog->aux->sleepable && fn->might_sleep) {
10064 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
10065 		return -EINVAL;
10066 	}
10067 
10068 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
10069 	changes_data = bpf_helper_changes_pkt_data(fn->func);
10070 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10071 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10072 			func_id_name(func_id), func_id);
10073 		return -EINVAL;
10074 	}
10075 
10076 	memset(&meta, 0, sizeof(meta));
10077 	meta.pkt_access = fn->pkt_access;
10078 
10079 	err = check_func_proto(fn, func_id);
10080 	if (err) {
10081 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10082 			func_id_name(func_id), func_id);
10083 		return err;
10084 	}
10085 
10086 	if (env->cur_state->active_rcu_lock) {
10087 		if (fn->might_sleep) {
10088 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10089 				func_id_name(func_id), func_id);
10090 			return -EINVAL;
10091 		}
10092 
10093 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
10094 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10095 	}
10096 
10097 	meta.func_id = func_id;
10098 	/* check args */
10099 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10100 		err = check_func_arg(env, i, &meta, fn, insn_idx);
10101 		if (err)
10102 			return err;
10103 	}
10104 
10105 	err = record_func_map(env, &meta, func_id, insn_idx);
10106 	if (err)
10107 		return err;
10108 
10109 	err = record_func_key(env, &meta, func_id, insn_idx);
10110 	if (err)
10111 		return err;
10112 
10113 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
10114 	 * is inferred from register state.
10115 	 */
10116 	for (i = 0; i < meta.access_size; i++) {
10117 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10118 				       BPF_WRITE, -1, false, false);
10119 		if (err)
10120 			return err;
10121 	}
10122 
10123 	regs = cur_regs(env);
10124 
10125 	if (meta.release_regno) {
10126 		err = -EINVAL;
10127 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10128 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10129 		 * is safe to do directly.
10130 		 */
10131 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10132 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10133 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10134 				return -EFAULT;
10135 			}
10136 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
10137 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
10138 			u32 ref_obj_id = meta.ref_obj_id;
10139 			bool in_rcu = in_rcu_cs(env);
10140 			struct bpf_func_state *state;
10141 			struct bpf_reg_state *reg;
10142 
10143 			err = release_reference_state(cur_func(env), ref_obj_id);
10144 			if (!err) {
10145 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10146 					if (reg->ref_obj_id == ref_obj_id) {
10147 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
10148 							reg->ref_obj_id = 0;
10149 							reg->type &= ~MEM_ALLOC;
10150 							reg->type |= MEM_RCU;
10151 						} else {
10152 							mark_reg_invalid(env, reg);
10153 						}
10154 					}
10155 				}));
10156 			}
10157 		} else if (meta.ref_obj_id) {
10158 			err = release_reference(env, meta.ref_obj_id);
10159 		} else if (register_is_null(&regs[meta.release_regno])) {
10160 			/* meta.ref_obj_id can only be 0 if register that is meant to be
10161 			 * released is NULL, which must be > R0.
10162 			 */
10163 			err = 0;
10164 		}
10165 		if (err) {
10166 			verbose(env, "func %s#%d reference has not been acquired before\n",
10167 				func_id_name(func_id), func_id);
10168 			return err;
10169 		}
10170 	}
10171 
10172 	switch (func_id) {
10173 	case BPF_FUNC_tail_call:
10174 		err = check_reference_leak(env, false);
10175 		if (err) {
10176 			verbose(env, "tail_call would lead to reference leak\n");
10177 			return err;
10178 		}
10179 		break;
10180 	case BPF_FUNC_get_local_storage:
10181 		/* check that flags argument in get_local_storage(map, flags) is 0,
10182 		 * this is required because get_local_storage() can't return an error.
10183 		 */
10184 		if (!register_is_null(&regs[BPF_REG_2])) {
10185 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10186 			return -EINVAL;
10187 		}
10188 		break;
10189 	case BPF_FUNC_for_each_map_elem:
10190 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10191 					set_map_elem_callback_state);
10192 		break;
10193 	case BPF_FUNC_timer_set_callback:
10194 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10195 					set_timer_callback_state);
10196 		break;
10197 	case BPF_FUNC_find_vma:
10198 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10199 					set_find_vma_callback_state);
10200 		break;
10201 	case BPF_FUNC_snprintf:
10202 		err = check_bpf_snprintf_call(env, regs);
10203 		break;
10204 	case BPF_FUNC_loop:
10205 		update_loop_inline_state(env, meta.subprogno);
10206 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10207 					set_loop_callback_state);
10208 		break;
10209 	case BPF_FUNC_dynptr_from_mem:
10210 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10211 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10212 				reg_type_str(env, regs[BPF_REG_1].type));
10213 			return -EACCES;
10214 		}
10215 		break;
10216 	case BPF_FUNC_set_retval:
10217 		if (prog_type == BPF_PROG_TYPE_LSM &&
10218 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10219 			if (!env->prog->aux->attach_func_proto->type) {
10220 				/* Make sure programs that attach to void
10221 				 * hooks don't try to modify return value.
10222 				 */
10223 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10224 				return -EINVAL;
10225 			}
10226 		}
10227 		break;
10228 	case BPF_FUNC_dynptr_data:
10229 	{
10230 		struct bpf_reg_state *reg;
10231 		int id, ref_obj_id;
10232 
10233 		reg = get_dynptr_arg_reg(env, fn, regs);
10234 		if (!reg)
10235 			return -EFAULT;
10236 
10237 
10238 		if (meta.dynptr_id) {
10239 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10240 			return -EFAULT;
10241 		}
10242 		if (meta.ref_obj_id) {
10243 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10244 			return -EFAULT;
10245 		}
10246 
10247 		id = dynptr_id(env, reg);
10248 		if (id < 0) {
10249 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10250 			return id;
10251 		}
10252 
10253 		ref_obj_id = dynptr_ref_obj_id(env, reg);
10254 		if (ref_obj_id < 0) {
10255 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10256 			return ref_obj_id;
10257 		}
10258 
10259 		meta.dynptr_id = id;
10260 		meta.ref_obj_id = ref_obj_id;
10261 
10262 		break;
10263 	}
10264 	case BPF_FUNC_dynptr_write:
10265 	{
10266 		enum bpf_dynptr_type dynptr_type;
10267 		struct bpf_reg_state *reg;
10268 
10269 		reg = get_dynptr_arg_reg(env, fn, regs);
10270 		if (!reg)
10271 			return -EFAULT;
10272 
10273 		dynptr_type = dynptr_get_type(env, reg);
10274 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10275 			return -EFAULT;
10276 
10277 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10278 			/* this will trigger clear_all_pkt_pointers(), which will
10279 			 * invalidate all dynptr slices associated with the skb
10280 			 */
10281 			changes_data = true;
10282 
10283 		break;
10284 	}
10285 	case BPF_FUNC_per_cpu_ptr:
10286 	case BPF_FUNC_this_cpu_ptr:
10287 	{
10288 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
10289 		const struct btf_type *type;
10290 
10291 		if (reg->type & MEM_RCU) {
10292 			type = btf_type_by_id(reg->btf, reg->btf_id);
10293 			if (!type || !btf_type_is_struct(type)) {
10294 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
10295 				return -EFAULT;
10296 			}
10297 			returns_cpu_specific_alloc_ptr = true;
10298 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
10299 		}
10300 		break;
10301 	}
10302 	case BPF_FUNC_user_ringbuf_drain:
10303 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10304 					set_user_ringbuf_callback_state);
10305 		break;
10306 	}
10307 
10308 	if (err)
10309 		return err;
10310 
10311 	/* reset caller saved regs */
10312 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10313 		mark_reg_not_init(env, regs, caller_saved[i]);
10314 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10315 	}
10316 
10317 	/* helper call returns 64-bit value. */
10318 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10319 
10320 	/* update return register (already marked as written above) */
10321 	ret_type = fn->ret_type;
10322 	ret_flag = type_flag(ret_type);
10323 
10324 	switch (base_type(ret_type)) {
10325 	case RET_INTEGER:
10326 		/* sets type to SCALAR_VALUE */
10327 		mark_reg_unknown(env, regs, BPF_REG_0);
10328 		break;
10329 	case RET_VOID:
10330 		regs[BPF_REG_0].type = NOT_INIT;
10331 		break;
10332 	case RET_PTR_TO_MAP_VALUE:
10333 		/* There is no offset yet applied, variable or fixed */
10334 		mark_reg_known_zero(env, regs, BPF_REG_0);
10335 		/* remember map_ptr, so that check_map_access()
10336 		 * can check 'value_size' boundary of memory access
10337 		 * to map element returned from bpf_map_lookup_elem()
10338 		 */
10339 		if (meta.map_ptr == NULL) {
10340 			verbose(env,
10341 				"kernel subsystem misconfigured verifier\n");
10342 			return -EINVAL;
10343 		}
10344 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
10345 		regs[BPF_REG_0].map_uid = meta.map_uid;
10346 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10347 		if (!type_may_be_null(ret_type) &&
10348 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10349 			regs[BPF_REG_0].id = ++env->id_gen;
10350 		}
10351 		break;
10352 	case RET_PTR_TO_SOCKET:
10353 		mark_reg_known_zero(env, regs, BPF_REG_0);
10354 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10355 		break;
10356 	case RET_PTR_TO_SOCK_COMMON:
10357 		mark_reg_known_zero(env, regs, BPF_REG_0);
10358 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10359 		break;
10360 	case RET_PTR_TO_TCP_SOCK:
10361 		mark_reg_known_zero(env, regs, BPF_REG_0);
10362 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10363 		break;
10364 	case RET_PTR_TO_MEM:
10365 		mark_reg_known_zero(env, regs, BPF_REG_0);
10366 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10367 		regs[BPF_REG_0].mem_size = meta.mem_size;
10368 		break;
10369 	case RET_PTR_TO_MEM_OR_BTF_ID:
10370 	{
10371 		const struct btf_type *t;
10372 
10373 		mark_reg_known_zero(env, regs, BPF_REG_0);
10374 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10375 		if (!btf_type_is_struct(t)) {
10376 			u32 tsize;
10377 			const struct btf_type *ret;
10378 			const char *tname;
10379 
10380 			/* resolve the type size of ksym. */
10381 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10382 			if (IS_ERR(ret)) {
10383 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10384 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
10385 					tname, PTR_ERR(ret));
10386 				return -EINVAL;
10387 			}
10388 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10389 			regs[BPF_REG_0].mem_size = tsize;
10390 		} else {
10391 			if (returns_cpu_specific_alloc_ptr) {
10392 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
10393 			} else {
10394 				/* MEM_RDONLY may be carried from ret_flag, but it
10395 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10396 				 * it will confuse the check of PTR_TO_BTF_ID in
10397 				 * check_mem_access().
10398 				 */
10399 				ret_flag &= ~MEM_RDONLY;
10400 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10401 			}
10402 
10403 			regs[BPF_REG_0].btf = meta.ret_btf;
10404 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10405 		}
10406 		break;
10407 	}
10408 	case RET_PTR_TO_BTF_ID:
10409 	{
10410 		struct btf *ret_btf;
10411 		int ret_btf_id;
10412 
10413 		mark_reg_known_zero(env, regs, BPF_REG_0);
10414 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10415 		if (func_id == BPF_FUNC_kptr_xchg) {
10416 			ret_btf = meta.kptr_field->kptr.btf;
10417 			ret_btf_id = meta.kptr_field->kptr.btf_id;
10418 			if (!btf_is_kernel(ret_btf)) {
10419 				regs[BPF_REG_0].type |= MEM_ALLOC;
10420 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
10421 					regs[BPF_REG_0].type |= MEM_PERCPU;
10422 			}
10423 		} else {
10424 			if (fn->ret_btf_id == BPF_PTR_POISON) {
10425 				verbose(env, "verifier internal error:");
10426 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10427 					func_id_name(func_id));
10428 				return -EINVAL;
10429 			}
10430 			ret_btf = btf_vmlinux;
10431 			ret_btf_id = *fn->ret_btf_id;
10432 		}
10433 		if (ret_btf_id == 0) {
10434 			verbose(env, "invalid return type %u of func %s#%d\n",
10435 				base_type(ret_type), func_id_name(func_id),
10436 				func_id);
10437 			return -EINVAL;
10438 		}
10439 		regs[BPF_REG_0].btf = ret_btf;
10440 		regs[BPF_REG_0].btf_id = ret_btf_id;
10441 		break;
10442 	}
10443 	default:
10444 		verbose(env, "unknown return type %u of func %s#%d\n",
10445 			base_type(ret_type), func_id_name(func_id), func_id);
10446 		return -EINVAL;
10447 	}
10448 
10449 	if (type_may_be_null(regs[BPF_REG_0].type))
10450 		regs[BPF_REG_0].id = ++env->id_gen;
10451 
10452 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10453 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10454 			func_id_name(func_id), func_id);
10455 		return -EFAULT;
10456 	}
10457 
10458 	if (is_dynptr_ref_function(func_id))
10459 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10460 
10461 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10462 		/* For release_reference() */
10463 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10464 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
10465 		int id = acquire_reference_state(env, insn_idx);
10466 
10467 		if (id < 0)
10468 			return id;
10469 		/* For mark_ptr_or_null_reg() */
10470 		regs[BPF_REG_0].id = id;
10471 		/* For release_reference() */
10472 		regs[BPF_REG_0].ref_obj_id = id;
10473 	}
10474 
10475 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
10476 
10477 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10478 	if (err)
10479 		return err;
10480 
10481 	if ((func_id == BPF_FUNC_get_stack ||
10482 	     func_id == BPF_FUNC_get_task_stack) &&
10483 	    !env->prog->has_callchain_buf) {
10484 		const char *err_str;
10485 
10486 #ifdef CONFIG_PERF_EVENTS
10487 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
10488 		err_str = "cannot get callchain buffer for func %s#%d\n";
10489 #else
10490 		err = -ENOTSUPP;
10491 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10492 #endif
10493 		if (err) {
10494 			verbose(env, err_str, func_id_name(func_id), func_id);
10495 			return err;
10496 		}
10497 
10498 		env->prog->has_callchain_buf = true;
10499 	}
10500 
10501 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10502 		env->prog->call_get_stack = true;
10503 
10504 	if (func_id == BPF_FUNC_get_func_ip) {
10505 		if (check_get_func_ip(env))
10506 			return -ENOTSUPP;
10507 		env->prog->call_get_func_ip = true;
10508 	}
10509 
10510 	if (changes_data)
10511 		clear_all_pkt_pointers(env);
10512 	return 0;
10513 }
10514 
10515 /* mark_btf_func_reg_size() is used when the reg size is determined by
10516  * the BTF func_proto's return value size and argument.
10517  */
10518 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10519 				   size_t reg_size)
10520 {
10521 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10522 
10523 	if (regno == BPF_REG_0) {
10524 		/* Function return value */
10525 		reg->live |= REG_LIVE_WRITTEN;
10526 		reg->subreg_def = reg_size == sizeof(u64) ?
10527 			DEF_NOT_SUBREG : env->insn_idx + 1;
10528 	} else {
10529 		/* Function argument */
10530 		if (reg_size == sizeof(u64)) {
10531 			mark_insn_zext(env, reg);
10532 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10533 		} else {
10534 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10535 		}
10536 	}
10537 }
10538 
10539 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10540 {
10541 	return meta->kfunc_flags & KF_ACQUIRE;
10542 }
10543 
10544 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10545 {
10546 	return meta->kfunc_flags & KF_RELEASE;
10547 }
10548 
10549 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10550 {
10551 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10552 }
10553 
10554 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10555 {
10556 	return meta->kfunc_flags & KF_SLEEPABLE;
10557 }
10558 
10559 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10560 {
10561 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10562 }
10563 
10564 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10565 {
10566 	return meta->kfunc_flags & KF_RCU;
10567 }
10568 
10569 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
10570 {
10571 	return meta->kfunc_flags & KF_RCU_PROTECTED;
10572 }
10573 
10574 static bool __kfunc_param_match_suffix(const struct btf *btf,
10575 				       const struct btf_param *arg,
10576 				       const char *suffix)
10577 {
10578 	int suffix_len = strlen(suffix), len;
10579 	const char *param_name;
10580 
10581 	/* In the future, this can be ported to use BTF tagging */
10582 	param_name = btf_name_by_offset(btf, arg->name_off);
10583 	if (str_is_empty(param_name))
10584 		return false;
10585 	len = strlen(param_name);
10586 	if (len < suffix_len)
10587 		return false;
10588 	param_name += len - suffix_len;
10589 	return !strncmp(param_name, suffix, suffix_len);
10590 }
10591 
10592 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10593 				  const struct btf_param *arg,
10594 				  const struct bpf_reg_state *reg)
10595 {
10596 	const struct btf_type *t;
10597 
10598 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10599 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10600 		return false;
10601 
10602 	return __kfunc_param_match_suffix(btf, arg, "__sz");
10603 }
10604 
10605 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10606 					const struct btf_param *arg,
10607 					const struct bpf_reg_state *reg)
10608 {
10609 	const struct btf_type *t;
10610 
10611 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10612 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10613 		return false;
10614 
10615 	return __kfunc_param_match_suffix(btf, arg, "__szk");
10616 }
10617 
10618 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10619 {
10620 	return __kfunc_param_match_suffix(btf, arg, "__opt");
10621 }
10622 
10623 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10624 {
10625 	return __kfunc_param_match_suffix(btf, arg, "__k");
10626 }
10627 
10628 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10629 {
10630 	return __kfunc_param_match_suffix(btf, arg, "__ign");
10631 }
10632 
10633 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10634 {
10635 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
10636 }
10637 
10638 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10639 {
10640 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
10641 }
10642 
10643 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10644 {
10645 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10646 }
10647 
10648 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
10649 {
10650 	return __kfunc_param_match_suffix(btf, arg, "__nullable");
10651 }
10652 
10653 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10654 					  const struct btf_param *arg,
10655 					  const char *name)
10656 {
10657 	int len, target_len = strlen(name);
10658 	const char *param_name;
10659 
10660 	param_name = btf_name_by_offset(btf, arg->name_off);
10661 	if (str_is_empty(param_name))
10662 		return false;
10663 	len = strlen(param_name);
10664 	if (len != target_len)
10665 		return false;
10666 	if (strcmp(param_name, name))
10667 		return false;
10668 
10669 	return true;
10670 }
10671 
10672 enum {
10673 	KF_ARG_DYNPTR_ID,
10674 	KF_ARG_LIST_HEAD_ID,
10675 	KF_ARG_LIST_NODE_ID,
10676 	KF_ARG_RB_ROOT_ID,
10677 	KF_ARG_RB_NODE_ID,
10678 };
10679 
10680 BTF_ID_LIST(kf_arg_btf_ids)
10681 BTF_ID(struct, bpf_dynptr_kern)
10682 BTF_ID(struct, bpf_list_head)
10683 BTF_ID(struct, bpf_list_node)
10684 BTF_ID(struct, bpf_rb_root)
10685 BTF_ID(struct, bpf_rb_node)
10686 
10687 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10688 				    const struct btf_param *arg, int type)
10689 {
10690 	const struct btf_type *t;
10691 	u32 res_id;
10692 
10693 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10694 	if (!t)
10695 		return false;
10696 	if (!btf_type_is_ptr(t))
10697 		return false;
10698 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10699 	if (!t)
10700 		return false;
10701 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10702 }
10703 
10704 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10705 {
10706 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10707 }
10708 
10709 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10710 {
10711 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10712 }
10713 
10714 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10715 {
10716 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10717 }
10718 
10719 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10720 {
10721 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10722 }
10723 
10724 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10725 {
10726 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10727 }
10728 
10729 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10730 				  const struct btf_param *arg)
10731 {
10732 	const struct btf_type *t;
10733 
10734 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10735 	if (!t)
10736 		return false;
10737 
10738 	return true;
10739 }
10740 
10741 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10742 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10743 					const struct btf *btf,
10744 					const struct btf_type *t, int rec)
10745 {
10746 	const struct btf_type *member_type;
10747 	const struct btf_member *member;
10748 	u32 i;
10749 
10750 	if (!btf_type_is_struct(t))
10751 		return false;
10752 
10753 	for_each_member(i, t, member) {
10754 		const struct btf_array *array;
10755 
10756 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10757 		if (btf_type_is_struct(member_type)) {
10758 			if (rec >= 3) {
10759 				verbose(env, "max struct nesting depth exceeded\n");
10760 				return false;
10761 			}
10762 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10763 				return false;
10764 			continue;
10765 		}
10766 		if (btf_type_is_array(member_type)) {
10767 			array = btf_array(member_type);
10768 			if (!array->nelems)
10769 				return false;
10770 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10771 			if (!btf_type_is_scalar(member_type))
10772 				return false;
10773 			continue;
10774 		}
10775 		if (!btf_type_is_scalar(member_type))
10776 			return false;
10777 	}
10778 	return true;
10779 }
10780 
10781 enum kfunc_ptr_arg_type {
10782 	KF_ARG_PTR_TO_CTX,
10783 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10784 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10785 	KF_ARG_PTR_TO_DYNPTR,
10786 	KF_ARG_PTR_TO_ITER,
10787 	KF_ARG_PTR_TO_LIST_HEAD,
10788 	KF_ARG_PTR_TO_LIST_NODE,
10789 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10790 	KF_ARG_PTR_TO_MEM,
10791 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10792 	KF_ARG_PTR_TO_CALLBACK,
10793 	KF_ARG_PTR_TO_RB_ROOT,
10794 	KF_ARG_PTR_TO_RB_NODE,
10795 	KF_ARG_PTR_TO_NULL,
10796 };
10797 
10798 enum special_kfunc_type {
10799 	KF_bpf_obj_new_impl,
10800 	KF_bpf_obj_drop_impl,
10801 	KF_bpf_refcount_acquire_impl,
10802 	KF_bpf_list_push_front_impl,
10803 	KF_bpf_list_push_back_impl,
10804 	KF_bpf_list_pop_front,
10805 	KF_bpf_list_pop_back,
10806 	KF_bpf_cast_to_kern_ctx,
10807 	KF_bpf_rdonly_cast,
10808 	KF_bpf_rcu_read_lock,
10809 	KF_bpf_rcu_read_unlock,
10810 	KF_bpf_rbtree_remove,
10811 	KF_bpf_rbtree_add_impl,
10812 	KF_bpf_rbtree_first,
10813 	KF_bpf_dynptr_from_skb,
10814 	KF_bpf_dynptr_from_xdp,
10815 	KF_bpf_dynptr_slice,
10816 	KF_bpf_dynptr_slice_rdwr,
10817 	KF_bpf_dynptr_clone,
10818 	KF_bpf_percpu_obj_new_impl,
10819 	KF_bpf_percpu_obj_drop_impl,
10820 	KF_bpf_throw,
10821 	KF_bpf_iter_css_task_new,
10822 };
10823 
10824 BTF_SET_START(special_kfunc_set)
10825 BTF_ID(func, bpf_obj_new_impl)
10826 BTF_ID(func, bpf_obj_drop_impl)
10827 BTF_ID(func, bpf_refcount_acquire_impl)
10828 BTF_ID(func, bpf_list_push_front_impl)
10829 BTF_ID(func, bpf_list_push_back_impl)
10830 BTF_ID(func, bpf_list_pop_front)
10831 BTF_ID(func, bpf_list_pop_back)
10832 BTF_ID(func, bpf_cast_to_kern_ctx)
10833 BTF_ID(func, bpf_rdonly_cast)
10834 BTF_ID(func, bpf_rbtree_remove)
10835 BTF_ID(func, bpf_rbtree_add_impl)
10836 BTF_ID(func, bpf_rbtree_first)
10837 BTF_ID(func, bpf_dynptr_from_skb)
10838 BTF_ID(func, bpf_dynptr_from_xdp)
10839 BTF_ID(func, bpf_dynptr_slice)
10840 BTF_ID(func, bpf_dynptr_slice_rdwr)
10841 BTF_ID(func, bpf_dynptr_clone)
10842 BTF_ID(func, bpf_percpu_obj_new_impl)
10843 BTF_ID(func, bpf_percpu_obj_drop_impl)
10844 BTF_ID(func, bpf_throw)
10845 #ifdef CONFIG_CGROUPS
10846 BTF_ID(func, bpf_iter_css_task_new)
10847 #endif
10848 BTF_SET_END(special_kfunc_set)
10849 
10850 BTF_ID_LIST(special_kfunc_list)
10851 BTF_ID(func, bpf_obj_new_impl)
10852 BTF_ID(func, bpf_obj_drop_impl)
10853 BTF_ID(func, bpf_refcount_acquire_impl)
10854 BTF_ID(func, bpf_list_push_front_impl)
10855 BTF_ID(func, bpf_list_push_back_impl)
10856 BTF_ID(func, bpf_list_pop_front)
10857 BTF_ID(func, bpf_list_pop_back)
10858 BTF_ID(func, bpf_cast_to_kern_ctx)
10859 BTF_ID(func, bpf_rdonly_cast)
10860 BTF_ID(func, bpf_rcu_read_lock)
10861 BTF_ID(func, bpf_rcu_read_unlock)
10862 BTF_ID(func, bpf_rbtree_remove)
10863 BTF_ID(func, bpf_rbtree_add_impl)
10864 BTF_ID(func, bpf_rbtree_first)
10865 BTF_ID(func, bpf_dynptr_from_skb)
10866 BTF_ID(func, bpf_dynptr_from_xdp)
10867 BTF_ID(func, bpf_dynptr_slice)
10868 BTF_ID(func, bpf_dynptr_slice_rdwr)
10869 BTF_ID(func, bpf_dynptr_clone)
10870 BTF_ID(func, bpf_percpu_obj_new_impl)
10871 BTF_ID(func, bpf_percpu_obj_drop_impl)
10872 BTF_ID(func, bpf_throw)
10873 #ifdef CONFIG_CGROUPS
10874 BTF_ID(func, bpf_iter_css_task_new)
10875 #else
10876 BTF_ID_UNUSED
10877 #endif
10878 
10879 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10880 {
10881 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10882 	    meta->arg_owning_ref) {
10883 		return false;
10884 	}
10885 
10886 	return meta->kfunc_flags & KF_RET_NULL;
10887 }
10888 
10889 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10890 {
10891 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10892 }
10893 
10894 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10895 {
10896 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10897 }
10898 
10899 static enum kfunc_ptr_arg_type
10900 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10901 		       struct bpf_kfunc_call_arg_meta *meta,
10902 		       const struct btf_type *t, const struct btf_type *ref_t,
10903 		       const char *ref_tname, const struct btf_param *args,
10904 		       int argno, int nargs)
10905 {
10906 	u32 regno = argno + 1;
10907 	struct bpf_reg_state *regs = cur_regs(env);
10908 	struct bpf_reg_state *reg = &regs[regno];
10909 	bool arg_mem_size = false;
10910 
10911 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10912 		return KF_ARG_PTR_TO_CTX;
10913 
10914 	/* In this function, we verify the kfunc's BTF as per the argument type,
10915 	 * leaving the rest of the verification with respect to the register
10916 	 * type to our caller. When a set of conditions hold in the BTF type of
10917 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10918 	 */
10919 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10920 		return KF_ARG_PTR_TO_CTX;
10921 
10922 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10923 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10924 
10925 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10926 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10927 
10928 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10929 		return KF_ARG_PTR_TO_DYNPTR;
10930 
10931 	if (is_kfunc_arg_iter(meta, argno))
10932 		return KF_ARG_PTR_TO_ITER;
10933 
10934 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10935 		return KF_ARG_PTR_TO_LIST_HEAD;
10936 
10937 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10938 		return KF_ARG_PTR_TO_LIST_NODE;
10939 
10940 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10941 		return KF_ARG_PTR_TO_RB_ROOT;
10942 
10943 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10944 		return KF_ARG_PTR_TO_RB_NODE;
10945 
10946 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10947 		if (!btf_type_is_struct(ref_t)) {
10948 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10949 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10950 			return -EINVAL;
10951 		}
10952 		return KF_ARG_PTR_TO_BTF_ID;
10953 	}
10954 
10955 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10956 		return KF_ARG_PTR_TO_CALLBACK;
10957 
10958 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
10959 		return KF_ARG_PTR_TO_NULL;
10960 
10961 	if (argno + 1 < nargs &&
10962 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10963 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
10964 		arg_mem_size = true;
10965 
10966 	/* This is the catch all argument type of register types supported by
10967 	 * check_helper_mem_access. However, we only allow when argument type is
10968 	 * pointer to scalar, or struct composed (recursively) of scalars. When
10969 	 * arg_mem_size is true, the pointer can be void *.
10970 	 */
10971 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10972 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10973 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10974 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10975 		return -EINVAL;
10976 	}
10977 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10978 }
10979 
10980 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10981 					struct bpf_reg_state *reg,
10982 					const struct btf_type *ref_t,
10983 					const char *ref_tname, u32 ref_id,
10984 					struct bpf_kfunc_call_arg_meta *meta,
10985 					int argno)
10986 {
10987 	const struct btf_type *reg_ref_t;
10988 	bool strict_type_match = false;
10989 	const struct btf *reg_btf;
10990 	const char *reg_ref_tname;
10991 	u32 reg_ref_id;
10992 
10993 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
10994 		reg_btf = reg->btf;
10995 		reg_ref_id = reg->btf_id;
10996 	} else {
10997 		reg_btf = btf_vmlinux;
10998 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10999 	}
11000 
11001 	/* Enforce strict type matching for calls to kfuncs that are acquiring
11002 	 * or releasing a reference, or are no-cast aliases. We do _not_
11003 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
11004 	 * as we want to enable BPF programs to pass types that are bitwise
11005 	 * equivalent without forcing them to explicitly cast with something
11006 	 * like bpf_cast_to_kern_ctx().
11007 	 *
11008 	 * For example, say we had a type like the following:
11009 	 *
11010 	 * struct bpf_cpumask {
11011 	 *	cpumask_t cpumask;
11012 	 *	refcount_t usage;
11013 	 * };
11014 	 *
11015 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
11016 	 * to a struct cpumask, so it would be safe to pass a struct
11017 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
11018 	 *
11019 	 * The philosophy here is similar to how we allow scalars of different
11020 	 * types to be passed to kfuncs as long as the size is the same. The
11021 	 * only difference here is that we're simply allowing
11022 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
11023 	 * resolve types.
11024 	 */
11025 	if (is_kfunc_acquire(meta) ||
11026 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
11027 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
11028 		strict_type_match = true;
11029 
11030 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
11031 
11032 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
11033 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
11034 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
11035 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
11036 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
11037 			btf_type_str(reg_ref_t), reg_ref_tname);
11038 		return -EINVAL;
11039 	}
11040 	return 0;
11041 }
11042 
11043 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11044 {
11045 	struct bpf_verifier_state *state = env->cur_state;
11046 	struct btf_record *rec = reg_btf_record(reg);
11047 
11048 	if (!state->active_lock.ptr) {
11049 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
11050 		return -EFAULT;
11051 	}
11052 
11053 	if (type_flag(reg->type) & NON_OWN_REF) {
11054 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
11055 		return -EFAULT;
11056 	}
11057 
11058 	reg->type |= NON_OWN_REF;
11059 	if (rec->refcount_off >= 0)
11060 		reg->type |= MEM_RCU;
11061 
11062 	return 0;
11063 }
11064 
11065 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
11066 {
11067 	struct bpf_func_state *state, *unused;
11068 	struct bpf_reg_state *reg;
11069 	int i;
11070 
11071 	state = cur_func(env);
11072 
11073 	if (!ref_obj_id) {
11074 		verbose(env, "verifier internal error: ref_obj_id is zero for "
11075 			     "owning -> non-owning conversion\n");
11076 		return -EFAULT;
11077 	}
11078 
11079 	for (i = 0; i < state->acquired_refs; i++) {
11080 		if (state->refs[i].id != ref_obj_id)
11081 			continue;
11082 
11083 		/* Clear ref_obj_id here so release_reference doesn't clobber
11084 		 * the whole reg
11085 		 */
11086 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
11087 			if (reg->ref_obj_id == ref_obj_id) {
11088 				reg->ref_obj_id = 0;
11089 				ref_set_non_owning(env, reg);
11090 			}
11091 		}));
11092 		return 0;
11093 	}
11094 
11095 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
11096 	return -EFAULT;
11097 }
11098 
11099 /* Implementation details:
11100  *
11101  * Each register points to some region of memory, which we define as an
11102  * allocation. Each allocation may embed a bpf_spin_lock which protects any
11103  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
11104  * allocation. The lock and the data it protects are colocated in the same
11105  * memory region.
11106  *
11107  * Hence, everytime a register holds a pointer value pointing to such
11108  * allocation, the verifier preserves a unique reg->id for it.
11109  *
11110  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
11111  * bpf_spin_lock is called.
11112  *
11113  * To enable this, lock state in the verifier captures two values:
11114  *	active_lock.ptr = Register's type specific pointer
11115  *	active_lock.id  = A unique ID for each register pointer value
11116  *
11117  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11118  * supported register types.
11119  *
11120  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11121  * allocated objects is the reg->btf pointer.
11122  *
11123  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11124  * can establish the provenance of the map value statically for each distinct
11125  * lookup into such maps. They always contain a single map value hence unique
11126  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11127  *
11128  * So, in case of global variables, they use array maps with max_entries = 1,
11129  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11130  * into the same map value as max_entries is 1, as described above).
11131  *
11132  * In case of inner map lookups, the inner map pointer has same map_ptr as the
11133  * outer map pointer (in verifier context), but each lookup into an inner map
11134  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11135  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11136  * will get different reg->id assigned to each lookup, hence different
11137  * active_lock.id.
11138  *
11139  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11140  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11141  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11142  */
11143 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11144 {
11145 	void *ptr;
11146 	u32 id;
11147 
11148 	switch ((int)reg->type) {
11149 	case PTR_TO_MAP_VALUE:
11150 		ptr = reg->map_ptr;
11151 		break;
11152 	case PTR_TO_BTF_ID | MEM_ALLOC:
11153 		ptr = reg->btf;
11154 		break;
11155 	default:
11156 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
11157 		return -EFAULT;
11158 	}
11159 	id = reg->id;
11160 
11161 	if (!env->cur_state->active_lock.ptr)
11162 		return -EINVAL;
11163 	if (env->cur_state->active_lock.ptr != ptr ||
11164 	    env->cur_state->active_lock.id != id) {
11165 		verbose(env, "held lock and object are not in the same allocation\n");
11166 		return -EINVAL;
11167 	}
11168 	return 0;
11169 }
11170 
11171 static bool is_bpf_list_api_kfunc(u32 btf_id)
11172 {
11173 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11174 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11175 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11176 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11177 }
11178 
11179 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11180 {
11181 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11182 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11183 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11184 }
11185 
11186 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11187 {
11188 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11189 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11190 }
11191 
11192 static bool is_callback_calling_kfunc(u32 btf_id)
11193 {
11194 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11195 }
11196 
11197 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
11198 {
11199 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
11200 	       insn->imm == special_kfunc_list[KF_bpf_throw];
11201 }
11202 
11203 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11204 {
11205 	return is_bpf_rbtree_api_kfunc(btf_id);
11206 }
11207 
11208 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11209 					  enum btf_field_type head_field_type,
11210 					  u32 kfunc_btf_id)
11211 {
11212 	bool ret;
11213 
11214 	switch (head_field_type) {
11215 	case BPF_LIST_HEAD:
11216 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11217 		break;
11218 	case BPF_RB_ROOT:
11219 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11220 		break;
11221 	default:
11222 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11223 			btf_field_type_name(head_field_type));
11224 		return false;
11225 	}
11226 
11227 	if (!ret)
11228 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11229 			btf_field_type_name(head_field_type));
11230 	return ret;
11231 }
11232 
11233 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11234 					  enum btf_field_type node_field_type,
11235 					  u32 kfunc_btf_id)
11236 {
11237 	bool ret;
11238 
11239 	switch (node_field_type) {
11240 	case BPF_LIST_NODE:
11241 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11242 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11243 		break;
11244 	case BPF_RB_NODE:
11245 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11246 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11247 		break;
11248 	default:
11249 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11250 			btf_field_type_name(node_field_type));
11251 		return false;
11252 	}
11253 
11254 	if (!ret)
11255 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11256 			btf_field_type_name(node_field_type));
11257 	return ret;
11258 }
11259 
11260 static int
11261 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11262 				   struct bpf_reg_state *reg, u32 regno,
11263 				   struct bpf_kfunc_call_arg_meta *meta,
11264 				   enum btf_field_type head_field_type,
11265 				   struct btf_field **head_field)
11266 {
11267 	const char *head_type_name;
11268 	struct btf_field *field;
11269 	struct btf_record *rec;
11270 	u32 head_off;
11271 
11272 	if (meta->btf != btf_vmlinux) {
11273 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11274 		return -EFAULT;
11275 	}
11276 
11277 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11278 		return -EFAULT;
11279 
11280 	head_type_name = btf_field_type_name(head_field_type);
11281 	if (!tnum_is_const(reg->var_off)) {
11282 		verbose(env,
11283 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11284 			regno, head_type_name);
11285 		return -EINVAL;
11286 	}
11287 
11288 	rec = reg_btf_record(reg);
11289 	head_off = reg->off + reg->var_off.value;
11290 	field = btf_record_find(rec, head_off, head_field_type);
11291 	if (!field) {
11292 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11293 		return -EINVAL;
11294 	}
11295 
11296 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11297 	if (check_reg_allocation_locked(env, reg)) {
11298 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11299 			rec->spin_lock_off, head_type_name);
11300 		return -EINVAL;
11301 	}
11302 
11303 	if (*head_field) {
11304 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11305 		return -EFAULT;
11306 	}
11307 	*head_field = field;
11308 	return 0;
11309 }
11310 
11311 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11312 					   struct bpf_reg_state *reg, u32 regno,
11313 					   struct bpf_kfunc_call_arg_meta *meta)
11314 {
11315 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11316 							  &meta->arg_list_head.field);
11317 }
11318 
11319 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11320 					     struct bpf_reg_state *reg, u32 regno,
11321 					     struct bpf_kfunc_call_arg_meta *meta)
11322 {
11323 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11324 							  &meta->arg_rbtree_root.field);
11325 }
11326 
11327 static int
11328 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11329 				   struct bpf_reg_state *reg, u32 regno,
11330 				   struct bpf_kfunc_call_arg_meta *meta,
11331 				   enum btf_field_type head_field_type,
11332 				   enum btf_field_type node_field_type,
11333 				   struct btf_field **node_field)
11334 {
11335 	const char *node_type_name;
11336 	const struct btf_type *et, *t;
11337 	struct btf_field *field;
11338 	u32 node_off;
11339 
11340 	if (meta->btf != btf_vmlinux) {
11341 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11342 		return -EFAULT;
11343 	}
11344 
11345 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11346 		return -EFAULT;
11347 
11348 	node_type_name = btf_field_type_name(node_field_type);
11349 	if (!tnum_is_const(reg->var_off)) {
11350 		verbose(env,
11351 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11352 			regno, node_type_name);
11353 		return -EINVAL;
11354 	}
11355 
11356 	node_off = reg->off + reg->var_off.value;
11357 	field = reg_find_field_offset(reg, node_off, node_field_type);
11358 	if (!field || field->offset != node_off) {
11359 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11360 		return -EINVAL;
11361 	}
11362 
11363 	field = *node_field;
11364 
11365 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11366 	t = btf_type_by_id(reg->btf, reg->btf_id);
11367 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11368 				  field->graph_root.value_btf_id, true)) {
11369 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11370 			"in struct %s, but arg is at offset=%d in struct %s\n",
11371 			btf_field_type_name(head_field_type),
11372 			btf_field_type_name(node_field_type),
11373 			field->graph_root.node_offset,
11374 			btf_name_by_offset(field->graph_root.btf, et->name_off),
11375 			node_off, btf_name_by_offset(reg->btf, t->name_off));
11376 		return -EINVAL;
11377 	}
11378 	meta->arg_btf = reg->btf;
11379 	meta->arg_btf_id = reg->btf_id;
11380 
11381 	if (node_off != field->graph_root.node_offset) {
11382 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11383 			node_off, btf_field_type_name(node_field_type),
11384 			field->graph_root.node_offset,
11385 			btf_name_by_offset(field->graph_root.btf, et->name_off));
11386 		return -EINVAL;
11387 	}
11388 
11389 	return 0;
11390 }
11391 
11392 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11393 					   struct bpf_reg_state *reg, u32 regno,
11394 					   struct bpf_kfunc_call_arg_meta *meta)
11395 {
11396 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11397 						  BPF_LIST_HEAD, BPF_LIST_NODE,
11398 						  &meta->arg_list_head.field);
11399 }
11400 
11401 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11402 					     struct bpf_reg_state *reg, u32 regno,
11403 					     struct bpf_kfunc_call_arg_meta *meta)
11404 {
11405 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11406 						  BPF_RB_ROOT, BPF_RB_NODE,
11407 						  &meta->arg_rbtree_root.field);
11408 }
11409 
11410 /*
11411  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
11412  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
11413  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
11414  * them can only be attached to some specific hook points.
11415  */
11416 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
11417 {
11418 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11419 
11420 	switch (prog_type) {
11421 	case BPF_PROG_TYPE_LSM:
11422 		return true;
11423 	case BPF_PROG_TYPE_TRACING:
11424 		if (env->prog->expected_attach_type == BPF_TRACE_ITER)
11425 			return true;
11426 		fallthrough;
11427 	default:
11428 		return env->prog->aux->sleepable;
11429 	}
11430 }
11431 
11432 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11433 			    int insn_idx)
11434 {
11435 	const char *func_name = meta->func_name, *ref_tname;
11436 	const struct btf *btf = meta->btf;
11437 	const struct btf_param *args;
11438 	struct btf_record *rec;
11439 	u32 i, nargs;
11440 	int ret;
11441 
11442 	args = (const struct btf_param *)(meta->func_proto + 1);
11443 	nargs = btf_type_vlen(meta->func_proto);
11444 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11445 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11446 			MAX_BPF_FUNC_REG_ARGS);
11447 		return -EINVAL;
11448 	}
11449 
11450 	/* Check that BTF function arguments match actual types that the
11451 	 * verifier sees.
11452 	 */
11453 	for (i = 0; i < nargs; i++) {
11454 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11455 		const struct btf_type *t, *ref_t, *resolve_ret;
11456 		enum bpf_arg_type arg_type = ARG_DONTCARE;
11457 		u32 regno = i + 1, ref_id, type_size;
11458 		bool is_ret_buf_sz = false;
11459 		int kf_arg_type;
11460 
11461 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11462 
11463 		if (is_kfunc_arg_ignore(btf, &args[i]))
11464 			continue;
11465 
11466 		if (btf_type_is_scalar(t)) {
11467 			if (reg->type != SCALAR_VALUE) {
11468 				verbose(env, "R%d is not a scalar\n", regno);
11469 				return -EINVAL;
11470 			}
11471 
11472 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11473 				if (meta->arg_constant.found) {
11474 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11475 					return -EFAULT;
11476 				}
11477 				if (!tnum_is_const(reg->var_off)) {
11478 					verbose(env, "R%d must be a known constant\n", regno);
11479 					return -EINVAL;
11480 				}
11481 				ret = mark_chain_precision(env, regno);
11482 				if (ret < 0)
11483 					return ret;
11484 				meta->arg_constant.found = true;
11485 				meta->arg_constant.value = reg->var_off.value;
11486 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11487 				meta->r0_rdonly = true;
11488 				is_ret_buf_sz = true;
11489 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11490 				is_ret_buf_sz = true;
11491 			}
11492 
11493 			if (is_ret_buf_sz) {
11494 				if (meta->r0_size) {
11495 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11496 					return -EINVAL;
11497 				}
11498 
11499 				if (!tnum_is_const(reg->var_off)) {
11500 					verbose(env, "R%d is not a const\n", regno);
11501 					return -EINVAL;
11502 				}
11503 
11504 				meta->r0_size = reg->var_off.value;
11505 				ret = mark_chain_precision(env, regno);
11506 				if (ret)
11507 					return ret;
11508 			}
11509 			continue;
11510 		}
11511 
11512 		if (!btf_type_is_ptr(t)) {
11513 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11514 			return -EINVAL;
11515 		}
11516 
11517 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11518 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
11519 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
11520 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11521 			return -EACCES;
11522 		}
11523 
11524 		if (reg->ref_obj_id) {
11525 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
11526 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11527 					regno, reg->ref_obj_id,
11528 					meta->ref_obj_id);
11529 				return -EFAULT;
11530 			}
11531 			meta->ref_obj_id = reg->ref_obj_id;
11532 			if (is_kfunc_release(meta))
11533 				meta->release_regno = regno;
11534 		}
11535 
11536 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11537 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11538 
11539 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11540 		if (kf_arg_type < 0)
11541 			return kf_arg_type;
11542 
11543 		switch (kf_arg_type) {
11544 		case KF_ARG_PTR_TO_NULL:
11545 			continue;
11546 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11547 		case KF_ARG_PTR_TO_BTF_ID:
11548 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11549 				break;
11550 
11551 			if (!is_trusted_reg(reg)) {
11552 				if (!is_kfunc_rcu(meta)) {
11553 					verbose(env, "R%d must be referenced or trusted\n", regno);
11554 					return -EINVAL;
11555 				}
11556 				if (!is_rcu_reg(reg)) {
11557 					verbose(env, "R%d must be a rcu pointer\n", regno);
11558 					return -EINVAL;
11559 				}
11560 			}
11561 
11562 			fallthrough;
11563 		case KF_ARG_PTR_TO_CTX:
11564 			/* Trusted arguments have the same offset checks as release arguments */
11565 			arg_type |= OBJ_RELEASE;
11566 			break;
11567 		case KF_ARG_PTR_TO_DYNPTR:
11568 		case KF_ARG_PTR_TO_ITER:
11569 		case KF_ARG_PTR_TO_LIST_HEAD:
11570 		case KF_ARG_PTR_TO_LIST_NODE:
11571 		case KF_ARG_PTR_TO_RB_ROOT:
11572 		case KF_ARG_PTR_TO_RB_NODE:
11573 		case KF_ARG_PTR_TO_MEM:
11574 		case KF_ARG_PTR_TO_MEM_SIZE:
11575 		case KF_ARG_PTR_TO_CALLBACK:
11576 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11577 			/* Trusted by default */
11578 			break;
11579 		default:
11580 			WARN_ON_ONCE(1);
11581 			return -EFAULT;
11582 		}
11583 
11584 		if (is_kfunc_release(meta) && reg->ref_obj_id)
11585 			arg_type |= OBJ_RELEASE;
11586 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11587 		if (ret < 0)
11588 			return ret;
11589 
11590 		switch (kf_arg_type) {
11591 		case KF_ARG_PTR_TO_CTX:
11592 			if (reg->type != PTR_TO_CTX) {
11593 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11594 				return -EINVAL;
11595 			}
11596 
11597 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11598 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11599 				if (ret < 0)
11600 					return -EINVAL;
11601 				meta->ret_btf_id  = ret;
11602 			}
11603 			break;
11604 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11605 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
11606 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
11607 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
11608 					return -EINVAL;
11609 				}
11610 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
11611 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
11612 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
11613 					return -EINVAL;
11614 				}
11615 			} else {
11616 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11617 				return -EINVAL;
11618 			}
11619 			if (!reg->ref_obj_id) {
11620 				verbose(env, "allocated object must be referenced\n");
11621 				return -EINVAL;
11622 			}
11623 			if (meta->btf == btf_vmlinux) {
11624 				meta->arg_btf = reg->btf;
11625 				meta->arg_btf_id = reg->btf_id;
11626 			}
11627 			break;
11628 		case KF_ARG_PTR_TO_DYNPTR:
11629 		{
11630 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11631 			int clone_ref_obj_id = 0;
11632 
11633 			if (reg->type != PTR_TO_STACK &&
11634 			    reg->type != CONST_PTR_TO_DYNPTR) {
11635 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11636 				return -EINVAL;
11637 			}
11638 
11639 			if (reg->type == CONST_PTR_TO_DYNPTR)
11640 				dynptr_arg_type |= MEM_RDONLY;
11641 
11642 			if (is_kfunc_arg_uninit(btf, &args[i]))
11643 				dynptr_arg_type |= MEM_UNINIT;
11644 
11645 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11646 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11647 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11648 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11649 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11650 				   (dynptr_arg_type & MEM_UNINIT)) {
11651 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11652 
11653 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11654 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11655 					return -EFAULT;
11656 				}
11657 
11658 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11659 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11660 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11661 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11662 					return -EFAULT;
11663 				}
11664 			}
11665 
11666 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11667 			if (ret < 0)
11668 				return ret;
11669 
11670 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11671 				int id = dynptr_id(env, reg);
11672 
11673 				if (id < 0) {
11674 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11675 					return id;
11676 				}
11677 				meta->initialized_dynptr.id = id;
11678 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11679 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11680 			}
11681 
11682 			break;
11683 		}
11684 		case KF_ARG_PTR_TO_ITER:
11685 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
11686 				if (!check_css_task_iter_allowlist(env)) {
11687 					verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
11688 					return -EINVAL;
11689 				}
11690 			}
11691 			ret = process_iter_arg(env, regno, insn_idx, meta);
11692 			if (ret < 0)
11693 				return ret;
11694 			break;
11695 		case KF_ARG_PTR_TO_LIST_HEAD:
11696 			if (reg->type != PTR_TO_MAP_VALUE &&
11697 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11698 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11699 				return -EINVAL;
11700 			}
11701 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11702 				verbose(env, "allocated object must be referenced\n");
11703 				return -EINVAL;
11704 			}
11705 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11706 			if (ret < 0)
11707 				return ret;
11708 			break;
11709 		case KF_ARG_PTR_TO_RB_ROOT:
11710 			if (reg->type != PTR_TO_MAP_VALUE &&
11711 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11712 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11713 				return -EINVAL;
11714 			}
11715 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11716 				verbose(env, "allocated object must be referenced\n");
11717 				return -EINVAL;
11718 			}
11719 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11720 			if (ret < 0)
11721 				return ret;
11722 			break;
11723 		case KF_ARG_PTR_TO_LIST_NODE:
11724 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11725 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11726 				return -EINVAL;
11727 			}
11728 			if (!reg->ref_obj_id) {
11729 				verbose(env, "allocated object must be referenced\n");
11730 				return -EINVAL;
11731 			}
11732 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11733 			if (ret < 0)
11734 				return ret;
11735 			break;
11736 		case KF_ARG_PTR_TO_RB_NODE:
11737 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11738 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11739 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11740 					return -EINVAL;
11741 				}
11742 				if (in_rbtree_lock_required_cb(env)) {
11743 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11744 					return -EINVAL;
11745 				}
11746 			} else {
11747 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11748 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11749 					return -EINVAL;
11750 				}
11751 				if (!reg->ref_obj_id) {
11752 					verbose(env, "allocated object must be referenced\n");
11753 					return -EINVAL;
11754 				}
11755 			}
11756 
11757 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11758 			if (ret < 0)
11759 				return ret;
11760 			break;
11761 		case KF_ARG_PTR_TO_BTF_ID:
11762 			/* Only base_type is checked, further checks are done here */
11763 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11764 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11765 			    !reg2btf_ids[base_type(reg->type)]) {
11766 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11767 				verbose(env, "expected %s or socket\n",
11768 					reg_type_str(env, base_type(reg->type) |
11769 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11770 				return -EINVAL;
11771 			}
11772 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11773 			if (ret < 0)
11774 				return ret;
11775 			break;
11776 		case KF_ARG_PTR_TO_MEM:
11777 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11778 			if (IS_ERR(resolve_ret)) {
11779 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11780 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11781 				return -EINVAL;
11782 			}
11783 			ret = check_mem_reg(env, reg, regno, type_size);
11784 			if (ret < 0)
11785 				return ret;
11786 			break;
11787 		case KF_ARG_PTR_TO_MEM_SIZE:
11788 		{
11789 			struct bpf_reg_state *buff_reg = &regs[regno];
11790 			const struct btf_param *buff_arg = &args[i];
11791 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11792 			const struct btf_param *size_arg = &args[i + 1];
11793 
11794 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11795 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11796 				if (ret < 0) {
11797 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11798 					return ret;
11799 				}
11800 			}
11801 
11802 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11803 				if (meta->arg_constant.found) {
11804 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11805 					return -EFAULT;
11806 				}
11807 				if (!tnum_is_const(size_reg->var_off)) {
11808 					verbose(env, "R%d must be a known constant\n", regno + 1);
11809 					return -EINVAL;
11810 				}
11811 				meta->arg_constant.found = true;
11812 				meta->arg_constant.value = size_reg->var_off.value;
11813 			}
11814 
11815 			/* Skip next '__sz' or '__szk' argument */
11816 			i++;
11817 			break;
11818 		}
11819 		case KF_ARG_PTR_TO_CALLBACK:
11820 			if (reg->type != PTR_TO_FUNC) {
11821 				verbose(env, "arg%d expected pointer to func\n", i);
11822 				return -EINVAL;
11823 			}
11824 			meta->subprogno = reg->subprogno;
11825 			break;
11826 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11827 			if (!type_is_ptr_alloc_obj(reg->type)) {
11828 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11829 				return -EINVAL;
11830 			}
11831 			if (!type_is_non_owning_ref(reg->type))
11832 				meta->arg_owning_ref = true;
11833 
11834 			rec = reg_btf_record(reg);
11835 			if (!rec) {
11836 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11837 				return -EFAULT;
11838 			}
11839 
11840 			if (rec->refcount_off < 0) {
11841 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11842 				return -EINVAL;
11843 			}
11844 
11845 			meta->arg_btf = reg->btf;
11846 			meta->arg_btf_id = reg->btf_id;
11847 			break;
11848 		}
11849 	}
11850 
11851 	if (is_kfunc_release(meta) && !meta->release_regno) {
11852 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11853 			func_name);
11854 		return -EINVAL;
11855 	}
11856 
11857 	return 0;
11858 }
11859 
11860 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11861 			    struct bpf_insn *insn,
11862 			    struct bpf_kfunc_call_arg_meta *meta,
11863 			    const char **kfunc_name)
11864 {
11865 	const struct btf_type *func, *func_proto;
11866 	u32 func_id, *kfunc_flags;
11867 	const char *func_name;
11868 	struct btf *desc_btf;
11869 
11870 	if (kfunc_name)
11871 		*kfunc_name = NULL;
11872 
11873 	if (!insn->imm)
11874 		return -EINVAL;
11875 
11876 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11877 	if (IS_ERR(desc_btf))
11878 		return PTR_ERR(desc_btf);
11879 
11880 	func_id = insn->imm;
11881 	func = btf_type_by_id(desc_btf, func_id);
11882 	func_name = btf_name_by_offset(desc_btf, func->name_off);
11883 	if (kfunc_name)
11884 		*kfunc_name = func_name;
11885 	func_proto = btf_type_by_id(desc_btf, func->type);
11886 
11887 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11888 	if (!kfunc_flags) {
11889 		return -EACCES;
11890 	}
11891 
11892 	memset(meta, 0, sizeof(*meta));
11893 	meta->btf = desc_btf;
11894 	meta->func_id = func_id;
11895 	meta->kfunc_flags = *kfunc_flags;
11896 	meta->func_proto = func_proto;
11897 	meta->func_name = func_name;
11898 
11899 	return 0;
11900 }
11901 
11902 static int check_return_code(struct bpf_verifier_env *env, int regno);
11903 
11904 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11905 			    int *insn_idx_p)
11906 {
11907 	const struct btf_type *t, *ptr_type;
11908 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
11909 	struct bpf_reg_state *regs = cur_regs(env);
11910 	const char *func_name, *ptr_type_name;
11911 	bool sleepable, rcu_lock, rcu_unlock;
11912 	struct bpf_kfunc_call_arg_meta meta;
11913 	struct bpf_insn_aux_data *insn_aux;
11914 	int err, insn_idx = *insn_idx_p;
11915 	const struct btf_param *args;
11916 	const struct btf_type *ret_t;
11917 	struct btf *desc_btf;
11918 
11919 	/* skip for now, but return error when we find this in fixup_kfunc_call */
11920 	if (!insn->imm)
11921 		return 0;
11922 
11923 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11924 	if (err == -EACCES && func_name)
11925 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
11926 	if (err)
11927 		return err;
11928 	desc_btf = meta.btf;
11929 	insn_aux = &env->insn_aux_data[insn_idx];
11930 
11931 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11932 
11933 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11934 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11935 		return -EACCES;
11936 	}
11937 
11938 	sleepable = is_kfunc_sleepable(&meta);
11939 	if (sleepable && !env->prog->aux->sleepable) {
11940 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11941 		return -EACCES;
11942 	}
11943 
11944 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11945 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11946 
11947 	if (env->cur_state->active_rcu_lock) {
11948 		struct bpf_func_state *state;
11949 		struct bpf_reg_state *reg;
11950 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
11951 
11952 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11953 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11954 			return -EACCES;
11955 		}
11956 
11957 		if (rcu_lock) {
11958 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11959 			return -EINVAL;
11960 		} else if (rcu_unlock) {
11961 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
11962 				if (reg->type & MEM_RCU) {
11963 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11964 					reg->type |= PTR_UNTRUSTED;
11965 				}
11966 			}));
11967 			env->cur_state->active_rcu_lock = false;
11968 		} else if (sleepable) {
11969 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11970 			return -EACCES;
11971 		}
11972 	} else if (rcu_lock) {
11973 		env->cur_state->active_rcu_lock = true;
11974 	} else if (rcu_unlock) {
11975 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11976 		return -EINVAL;
11977 	}
11978 
11979 	/* Check the arguments */
11980 	err = check_kfunc_args(env, &meta, insn_idx);
11981 	if (err < 0)
11982 		return err;
11983 	/* In case of release function, we get register number of refcounted
11984 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11985 	 */
11986 	if (meta.release_regno) {
11987 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11988 		if (err) {
11989 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11990 				func_name, meta.func_id);
11991 			return err;
11992 		}
11993 	}
11994 
11995 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11996 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11997 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11998 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11999 		insn_aux->insert_off = regs[BPF_REG_2].off;
12000 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
12001 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
12002 		if (err) {
12003 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
12004 				func_name, meta.func_id);
12005 			return err;
12006 		}
12007 
12008 		err = release_reference(env, release_ref_obj_id);
12009 		if (err) {
12010 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12011 				func_name, meta.func_id);
12012 			return err;
12013 		}
12014 	}
12015 
12016 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12017 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
12018 					set_rbtree_add_callback_state);
12019 		if (err) {
12020 			verbose(env, "kfunc %s#%d failed callback verification\n",
12021 				func_name, meta.func_id);
12022 			return err;
12023 		}
12024 	}
12025 
12026 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
12027 		if (!bpf_jit_supports_exceptions()) {
12028 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
12029 				func_name, meta.func_id);
12030 			return -ENOTSUPP;
12031 		}
12032 		env->seen_exception = true;
12033 
12034 		/* In the case of the default callback, the cookie value passed
12035 		 * to bpf_throw becomes the return value of the program.
12036 		 */
12037 		if (!env->exception_callback_subprog) {
12038 			err = check_return_code(env, BPF_REG_1);
12039 			if (err < 0)
12040 				return err;
12041 		}
12042 	}
12043 
12044 	for (i = 0; i < CALLER_SAVED_REGS; i++)
12045 		mark_reg_not_init(env, regs, caller_saved[i]);
12046 
12047 	/* Check return type */
12048 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
12049 
12050 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
12051 		/* Only exception is bpf_obj_new_impl */
12052 		if (meta.btf != btf_vmlinux ||
12053 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
12054 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
12055 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
12056 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
12057 			return -EINVAL;
12058 		}
12059 	}
12060 
12061 	if (btf_type_is_scalar(t)) {
12062 		mark_reg_unknown(env, regs, BPF_REG_0);
12063 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
12064 	} else if (btf_type_is_ptr(t)) {
12065 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
12066 
12067 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12068 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
12069 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12070 				struct btf_struct_meta *struct_meta;
12071 				struct btf *ret_btf;
12072 				u32 ret_btf_id;
12073 
12074 				if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
12075 					return -ENOMEM;
12076 
12077 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && !bpf_global_percpu_ma_set)
12078 					return -ENOMEM;
12079 
12080 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
12081 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
12082 					return -EINVAL;
12083 				}
12084 
12085 				ret_btf = env->prog->aux->btf;
12086 				ret_btf_id = meta.arg_constant.value;
12087 
12088 				/* This may be NULL due to user not supplying a BTF */
12089 				if (!ret_btf) {
12090 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
12091 					return -EINVAL;
12092 				}
12093 
12094 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
12095 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
12096 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
12097 					return -EINVAL;
12098 				}
12099 
12100 				struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
12101 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12102 					if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
12103 						verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
12104 						return -EINVAL;
12105 					}
12106 
12107 					if (struct_meta) {
12108 						verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
12109 						return -EINVAL;
12110 					}
12111 				}
12112 
12113 				mark_reg_known_zero(env, regs, BPF_REG_0);
12114 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12115 				regs[BPF_REG_0].btf = ret_btf;
12116 				regs[BPF_REG_0].btf_id = ret_btf_id;
12117 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
12118 					regs[BPF_REG_0].type |= MEM_PERCPU;
12119 
12120 				insn_aux->obj_new_size = ret_t->size;
12121 				insn_aux->kptr_struct_meta = struct_meta;
12122 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
12123 				mark_reg_known_zero(env, regs, BPF_REG_0);
12124 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12125 				regs[BPF_REG_0].btf = meta.arg_btf;
12126 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
12127 
12128 				insn_aux->kptr_struct_meta =
12129 					btf_find_struct_meta(meta.arg_btf,
12130 							     meta.arg_btf_id);
12131 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12132 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
12133 				struct btf_field *field = meta.arg_list_head.field;
12134 
12135 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12136 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12137 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12138 				struct btf_field *field = meta.arg_rbtree_root.field;
12139 
12140 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12141 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12142 				mark_reg_known_zero(env, regs, BPF_REG_0);
12143 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
12144 				regs[BPF_REG_0].btf = desc_btf;
12145 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
12146 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
12147 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
12148 				if (!ret_t || !btf_type_is_struct(ret_t)) {
12149 					verbose(env,
12150 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
12151 					return -EINVAL;
12152 				}
12153 
12154 				mark_reg_known_zero(env, regs, BPF_REG_0);
12155 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
12156 				regs[BPF_REG_0].btf = desc_btf;
12157 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
12158 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
12159 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
12160 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
12161 
12162 				mark_reg_known_zero(env, regs, BPF_REG_0);
12163 
12164 				if (!meta.arg_constant.found) {
12165 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
12166 					return -EFAULT;
12167 				}
12168 
12169 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
12170 
12171 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
12172 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
12173 
12174 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
12175 					regs[BPF_REG_0].type |= MEM_RDONLY;
12176 				} else {
12177 					/* this will set env->seen_direct_write to true */
12178 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
12179 						verbose(env, "the prog does not allow writes to packet data\n");
12180 						return -EINVAL;
12181 					}
12182 				}
12183 
12184 				if (!meta.initialized_dynptr.id) {
12185 					verbose(env, "verifier internal error: no dynptr id\n");
12186 					return -EFAULT;
12187 				}
12188 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
12189 
12190 				/* we don't need to set BPF_REG_0's ref obj id
12191 				 * because packet slices are not refcounted (see
12192 				 * dynptr_type_refcounted)
12193 				 */
12194 			} else {
12195 				verbose(env, "kernel function %s unhandled dynamic return type\n",
12196 					meta.func_name);
12197 				return -EFAULT;
12198 			}
12199 		} else if (!__btf_type_is_struct(ptr_type)) {
12200 			if (!meta.r0_size) {
12201 				__u32 sz;
12202 
12203 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
12204 					meta.r0_size = sz;
12205 					meta.r0_rdonly = true;
12206 				}
12207 			}
12208 			if (!meta.r0_size) {
12209 				ptr_type_name = btf_name_by_offset(desc_btf,
12210 								   ptr_type->name_off);
12211 				verbose(env,
12212 					"kernel function %s returns pointer type %s %s is not supported\n",
12213 					func_name,
12214 					btf_type_str(ptr_type),
12215 					ptr_type_name);
12216 				return -EINVAL;
12217 			}
12218 
12219 			mark_reg_known_zero(env, regs, BPF_REG_0);
12220 			regs[BPF_REG_0].type = PTR_TO_MEM;
12221 			regs[BPF_REG_0].mem_size = meta.r0_size;
12222 
12223 			if (meta.r0_rdonly)
12224 				regs[BPF_REG_0].type |= MEM_RDONLY;
12225 
12226 			/* Ensures we don't access the memory after a release_reference() */
12227 			if (meta.ref_obj_id)
12228 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12229 		} else {
12230 			mark_reg_known_zero(env, regs, BPF_REG_0);
12231 			regs[BPF_REG_0].btf = desc_btf;
12232 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12233 			regs[BPF_REG_0].btf_id = ptr_type_id;
12234 		}
12235 
12236 		if (is_kfunc_ret_null(&meta)) {
12237 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12238 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12239 			regs[BPF_REG_0].id = ++env->id_gen;
12240 		}
12241 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12242 		if (is_kfunc_acquire(&meta)) {
12243 			int id = acquire_reference_state(env, insn_idx);
12244 
12245 			if (id < 0)
12246 				return id;
12247 			if (is_kfunc_ret_null(&meta))
12248 				regs[BPF_REG_0].id = id;
12249 			regs[BPF_REG_0].ref_obj_id = id;
12250 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12251 			ref_set_non_owning(env, &regs[BPF_REG_0]);
12252 		}
12253 
12254 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
12255 			regs[BPF_REG_0].id = ++env->id_gen;
12256 	} else if (btf_type_is_void(t)) {
12257 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12258 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
12259 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12260 				insn_aux->kptr_struct_meta =
12261 					btf_find_struct_meta(meta.arg_btf,
12262 							     meta.arg_btf_id);
12263 			}
12264 		}
12265 	}
12266 
12267 	nargs = btf_type_vlen(meta.func_proto);
12268 	args = (const struct btf_param *)(meta.func_proto + 1);
12269 	for (i = 0; i < nargs; i++) {
12270 		u32 regno = i + 1;
12271 
12272 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12273 		if (btf_type_is_ptr(t))
12274 			mark_btf_func_reg_size(env, regno, sizeof(void *));
12275 		else
12276 			/* scalar. ensured by btf_check_kfunc_arg_match() */
12277 			mark_btf_func_reg_size(env, regno, t->size);
12278 	}
12279 
12280 	if (is_iter_next_kfunc(&meta)) {
12281 		err = process_iter_next_call(env, insn_idx, &meta);
12282 		if (err)
12283 			return err;
12284 	}
12285 
12286 	return 0;
12287 }
12288 
12289 static bool signed_add_overflows(s64 a, s64 b)
12290 {
12291 	/* Do the add in u64, where overflow is well-defined */
12292 	s64 res = (s64)((u64)a + (u64)b);
12293 
12294 	if (b < 0)
12295 		return res > a;
12296 	return res < a;
12297 }
12298 
12299 static bool signed_add32_overflows(s32 a, s32 b)
12300 {
12301 	/* Do the add in u32, where overflow is well-defined */
12302 	s32 res = (s32)((u32)a + (u32)b);
12303 
12304 	if (b < 0)
12305 		return res > a;
12306 	return res < a;
12307 }
12308 
12309 static bool signed_sub_overflows(s64 a, s64 b)
12310 {
12311 	/* Do the sub in u64, where overflow is well-defined */
12312 	s64 res = (s64)((u64)a - (u64)b);
12313 
12314 	if (b < 0)
12315 		return res < a;
12316 	return res > a;
12317 }
12318 
12319 static bool signed_sub32_overflows(s32 a, s32 b)
12320 {
12321 	/* Do the sub in u32, where overflow is well-defined */
12322 	s32 res = (s32)((u32)a - (u32)b);
12323 
12324 	if (b < 0)
12325 		return res < a;
12326 	return res > a;
12327 }
12328 
12329 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12330 				  const struct bpf_reg_state *reg,
12331 				  enum bpf_reg_type type)
12332 {
12333 	bool known = tnum_is_const(reg->var_off);
12334 	s64 val = reg->var_off.value;
12335 	s64 smin = reg->smin_value;
12336 
12337 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12338 		verbose(env, "math between %s pointer and %lld is not allowed\n",
12339 			reg_type_str(env, type), val);
12340 		return false;
12341 	}
12342 
12343 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12344 		verbose(env, "%s pointer offset %d is not allowed\n",
12345 			reg_type_str(env, type), reg->off);
12346 		return false;
12347 	}
12348 
12349 	if (smin == S64_MIN) {
12350 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12351 			reg_type_str(env, type));
12352 		return false;
12353 	}
12354 
12355 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12356 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
12357 			smin, reg_type_str(env, type));
12358 		return false;
12359 	}
12360 
12361 	return true;
12362 }
12363 
12364 enum {
12365 	REASON_BOUNDS	= -1,
12366 	REASON_TYPE	= -2,
12367 	REASON_PATHS	= -3,
12368 	REASON_LIMIT	= -4,
12369 	REASON_STACK	= -5,
12370 };
12371 
12372 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12373 			      u32 *alu_limit, bool mask_to_left)
12374 {
12375 	u32 max = 0, ptr_limit = 0;
12376 
12377 	switch (ptr_reg->type) {
12378 	case PTR_TO_STACK:
12379 		/* Offset 0 is out-of-bounds, but acceptable start for the
12380 		 * left direction, see BPF_REG_FP. Also, unknown scalar
12381 		 * offset where we would need to deal with min/max bounds is
12382 		 * currently prohibited for unprivileged.
12383 		 */
12384 		max = MAX_BPF_STACK + mask_to_left;
12385 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12386 		break;
12387 	case PTR_TO_MAP_VALUE:
12388 		max = ptr_reg->map_ptr->value_size;
12389 		ptr_limit = (mask_to_left ?
12390 			     ptr_reg->smin_value :
12391 			     ptr_reg->umax_value) + ptr_reg->off;
12392 		break;
12393 	default:
12394 		return REASON_TYPE;
12395 	}
12396 
12397 	if (ptr_limit >= max)
12398 		return REASON_LIMIT;
12399 	*alu_limit = ptr_limit;
12400 	return 0;
12401 }
12402 
12403 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12404 				    const struct bpf_insn *insn)
12405 {
12406 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12407 }
12408 
12409 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12410 				       u32 alu_state, u32 alu_limit)
12411 {
12412 	/* If we arrived here from different branches with different
12413 	 * state or limits to sanitize, then this won't work.
12414 	 */
12415 	if (aux->alu_state &&
12416 	    (aux->alu_state != alu_state ||
12417 	     aux->alu_limit != alu_limit))
12418 		return REASON_PATHS;
12419 
12420 	/* Corresponding fixup done in do_misc_fixups(). */
12421 	aux->alu_state = alu_state;
12422 	aux->alu_limit = alu_limit;
12423 	return 0;
12424 }
12425 
12426 static int sanitize_val_alu(struct bpf_verifier_env *env,
12427 			    struct bpf_insn *insn)
12428 {
12429 	struct bpf_insn_aux_data *aux = cur_aux(env);
12430 
12431 	if (can_skip_alu_sanitation(env, insn))
12432 		return 0;
12433 
12434 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12435 }
12436 
12437 static bool sanitize_needed(u8 opcode)
12438 {
12439 	return opcode == BPF_ADD || opcode == BPF_SUB;
12440 }
12441 
12442 struct bpf_sanitize_info {
12443 	struct bpf_insn_aux_data aux;
12444 	bool mask_to_left;
12445 };
12446 
12447 static struct bpf_verifier_state *
12448 sanitize_speculative_path(struct bpf_verifier_env *env,
12449 			  const struct bpf_insn *insn,
12450 			  u32 next_idx, u32 curr_idx)
12451 {
12452 	struct bpf_verifier_state *branch;
12453 	struct bpf_reg_state *regs;
12454 
12455 	branch = push_stack(env, next_idx, curr_idx, true);
12456 	if (branch && insn) {
12457 		regs = branch->frame[branch->curframe]->regs;
12458 		if (BPF_SRC(insn->code) == BPF_K) {
12459 			mark_reg_unknown(env, regs, insn->dst_reg);
12460 		} else if (BPF_SRC(insn->code) == BPF_X) {
12461 			mark_reg_unknown(env, regs, insn->dst_reg);
12462 			mark_reg_unknown(env, regs, insn->src_reg);
12463 		}
12464 	}
12465 	return branch;
12466 }
12467 
12468 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12469 			    struct bpf_insn *insn,
12470 			    const struct bpf_reg_state *ptr_reg,
12471 			    const struct bpf_reg_state *off_reg,
12472 			    struct bpf_reg_state *dst_reg,
12473 			    struct bpf_sanitize_info *info,
12474 			    const bool commit_window)
12475 {
12476 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12477 	struct bpf_verifier_state *vstate = env->cur_state;
12478 	bool off_is_imm = tnum_is_const(off_reg->var_off);
12479 	bool off_is_neg = off_reg->smin_value < 0;
12480 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
12481 	u8 opcode = BPF_OP(insn->code);
12482 	u32 alu_state, alu_limit;
12483 	struct bpf_reg_state tmp;
12484 	bool ret;
12485 	int err;
12486 
12487 	if (can_skip_alu_sanitation(env, insn))
12488 		return 0;
12489 
12490 	/* We already marked aux for masking from non-speculative
12491 	 * paths, thus we got here in the first place. We only care
12492 	 * to explore bad access from here.
12493 	 */
12494 	if (vstate->speculative)
12495 		goto do_sim;
12496 
12497 	if (!commit_window) {
12498 		if (!tnum_is_const(off_reg->var_off) &&
12499 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12500 			return REASON_BOUNDS;
12501 
12502 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
12503 				     (opcode == BPF_SUB && !off_is_neg);
12504 	}
12505 
12506 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12507 	if (err < 0)
12508 		return err;
12509 
12510 	if (commit_window) {
12511 		/* In commit phase we narrow the masking window based on
12512 		 * the observed pointer move after the simulated operation.
12513 		 */
12514 		alu_state = info->aux.alu_state;
12515 		alu_limit = abs(info->aux.alu_limit - alu_limit);
12516 	} else {
12517 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12518 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12519 		alu_state |= ptr_is_dst_reg ?
12520 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12521 
12522 		/* Limit pruning on unknown scalars to enable deep search for
12523 		 * potential masking differences from other program paths.
12524 		 */
12525 		if (!off_is_imm)
12526 			env->explore_alu_limits = true;
12527 	}
12528 
12529 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12530 	if (err < 0)
12531 		return err;
12532 do_sim:
12533 	/* If we're in commit phase, we're done here given we already
12534 	 * pushed the truncated dst_reg into the speculative verification
12535 	 * stack.
12536 	 *
12537 	 * Also, when register is a known constant, we rewrite register-based
12538 	 * operation to immediate-based, and thus do not need masking (and as
12539 	 * a consequence, do not need to simulate the zero-truncation either).
12540 	 */
12541 	if (commit_window || off_is_imm)
12542 		return 0;
12543 
12544 	/* Simulate and find potential out-of-bounds access under
12545 	 * speculative execution from truncation as a result of
12546 	 * masking when off was not within expected range. If off
12547 	 * sits in dst, then we temporarily need to move ptr there
12548 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12549 	 * for cases where we use K-based arithmetic in one direction
12550 	 * and truncated reg-based in the other in order to explore
12551 	 * bad access.
12552 	 */
12553 	if (!ptr_is_dst_reg) {
12554 		tmp = *dst_reg;
12555 		copy_register_state(dst_reg, ptr_reg);
12556 	}
12557 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12558 					env->insn_idx);
12559 	if (!ptr_is_dst_reg && ret)
12560 		*dst_reg = tmp;
12561 	return !ret ? REASON_STACK : 0;
12562 }
12563 
12564 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12565 {
12566 	struct bpf_verifier_state *vstate = env->cur_state;
12567 
12568 	/* If we simulate paths under speculation, we don't update the
12569 	 * insn as 'seen' such that when we verify unreachable paths in
12570 	 * the non-speculative domain, sanitize_dead_code() can still
12571 	 * rewrite/sanitize them.
12572 	 */
12573 	if (!vstate->speculative)
12574 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12575 }
12576 
12577 static int sanitize_err(struct bpf_verifier_env *env,
12578 			const struct bpf_insn *insn, int reason,
12579 			const struct bpf_reg_state *off_reg,
12580 			const struct bpf_reg_state *dst_reg)
12581 {
12582 	static const char *err = "pointer arithmetic with it prohibited for !root";
12583 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12584 	u32 dst = insn->dst_reg, src = insn->src_reg;
12585 
12586 	switch (reason) {
12587 	case REASON_BOUNDS:
12588 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12589 			off_reg == dst_reg ? dst : src, err);
12590 		break;
12591 	case REASON_TYPE:
12592 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12593 			off_reg == dst_reg ? src : dst, err);
12594 		break;
12595 	case REASON_PATHS:
12596 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12597 			dst, op, err);
12598 		break;
12599 	case REASON_LIMIT:
12600 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12601 			dst, op, err);
12602 		break;
12603 	case REASON_STACK:
12604 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12605 			dst, err);
12606 		break;
12607 	default:
12608 		verbose(env, "verifier internal error: unknown reason (%d)\n",
12609 			reason);
12610 		break;
12611 	}
12612 
12613 	return -EACCES;
12614 }
12615 
12616 /* check that stack access falls within stack limits and that 'reg' doesn't
12617  * have a variable offset.
12618  *
12619  * Variable offset is prohibited for unprivileged mode for simplicity since it
12620  * requires corresponding support in Spectre masking for stack ALU.  See also
12621  * retrieve_ptr_limit().
12622  *
12623  *
12624  * 'off' includes 'reg->off'.
12625  */
12626 static int check_stack_access_for_ptr_arithmetic(
12627 				struct bpf_verifier_env *env,
12628 				int regno,
12629 				const struct bpf_reg_state *reg,
12630 				int off)
12631 {
12632 	if (!tnum_is_const(reg->var_off)) {
12633 		char tn_buf[48];
12634 
12635 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12636 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12637 			regno, tn_buf, off);
12638 		return -EACCES;
12639 	}
12640 
12641 	if (off >= 0 || off < -MAX_BPF_STACK) {
12642 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
12643 			"prohibited for !root; off=%d\n", regno, off);
12644 		return -EACCES;
12645 	}
12646 
12647 	return 0;
12648 }
12649 
12650 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12651 				 const struct bpf_insn *insn,
12652 				 const struct bpf_reg_state *dst_reg)
12653 {
12654 	u32 dst = insn->dst_reg;
12655 
12656 	/* For unprivileged we require that resulting offset must be in bounds
12657 	 * in order to be able to sanitize access later on.
12658 	 */
12659 	if (env->bypass_spec_v1)
12660 		return 0;
12661 
12662 	switch (dst_reg->type) {
12663 	case PTR_TO_STACK:
12664 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12665 					dst_reg->off + dst_reg->var_off.value))
12666 			return -EACCES;
12667 		break;
12668 	case PTR_TO_MAP_VALUE:
12669 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12670 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12671 				"prohibited for !root\n", dst);
12672 			return -EACCES;
12673 		}
12674 		break;
12675 	default:
12676 		break;
12677 	}
12678 
12679 	return 0;
12680 }
12681 
12682 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12683  * Caller should also handle BPF_MOV case separately.
12684  * If we return -EACCES, caller may want to try again treating pointer as a
12685  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12686  */
12687 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12688 				   struct bpf_insn *insn,
12689 				   const struct bpf_reg_state *ptr_reg,
12690 				   const struct bpf_reg_state *off_reg)
12691 {
12692 	struct bpf_verifier_state *vstate = env->cur_state;
12693 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12694 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12695 	bool known = tnum_is_const(off_reg->var_off);
12696 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12697 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12698 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12699 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12700 	struct bpf_sanitize_info info = {};
12701 	u8 opcode = BPF_OP(insn->code);
12702 	u32 dst = insn->dst_reg;
12703 	int ret;
12704 
12705 	dst_reg = &regs[dst];
12706 
12707 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12708 	    smin_val > smax_val || umin_val > umax_val) {
12709 		/* Taint dst register if offset had invalid bounds derived from
12710 		 * e.g. dead branches.
12711 		 */
12712 		__mark_reg_unknown(env, dst_reg);
12713 		return 0;
12714 	}
12715 
12716 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12717 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12718 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12719 			__mark_reg_unknown(env, dst_reg);
12720 			return 0;
12721 		}
12722 
12723 		verbose(env,
12724 			"R%d 32-bit pointer arithmetic prohibited\n",
12725 			dst);
12726 		return -EACCES;
12727 	}
12728 
12729 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12730 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12731 			dst, reg_type_str(env, ptr_reg->type));
12732 		return -EACCES;
12733 	}
12734 
12735 	switch (base_type(ptr_reg->type)) {
12736 	case CONST_PTR_TO_MAP:
12737 		/* smin_val represents the known value */
12738 		if (known && smin_val == 0 && opcode == BPF_ADD)
12739 			break;
12740 		fallthrough;
12741 	case PTR_TO_PACKET_END:
12742 	case PTR_TO_SOCKET:
12743 	case PTR_TO_SOCK_COMMON:
12744 	case PTR_TO_TCP_SOCK:
12745 	case PTR_TO_XDP_SOCK:
12746 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12747 			dst, reg_type_str(env, ptr_reg->type));
12748 		return -EACCES;
12749 	default:
12750 		break;
12751 	}
12752 
12753 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12754 	 * The id may be overwritten later if we create a new variable offset.
12755 	 */
12756 	dst_reg->type = ptr_reg->type;
12757 	dst_reg->id = ptr_reg->id;
12758 
12759 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12760 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12761 		return -EINVAL;
12762 
12763 	/* pointer types do not carry 32-bit bounds at the moment. */
12764 	__mark_reg32_unbounded(dst_reg);
12765 
12766 	if (sanitize_needed(opcode)) {
12767 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12768 				       &info, false);
12769 		if (ret < 0)
12770 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12771 	}
12772 
12773 	switch (opcode) {
12774 	case BPF_ADD:
12775 		/* We can take a fixed offset as long as it doesn't overflow
12776 		 * the s32 'off' field
12777 		 */
12778 		if (known && (ptr_reg->off + smin_val ==
12779 			      (s64)(s32)(ptr_reg->off + smin_val))) {
12780 			/* pointer += K.  Accumulate it into fixed offset */
12781 			dst_reg->smin_value = smin_ptr;
12782 			dst_reg->smax_value = smax_ptr;
12783 			dst_reg->umin_value = umin_ptr;
12784 			dst_reg->umax_value = umax_ptr;
12785 			dst_reg->var_off = ptr_reg->var_off;
12786 			dst_reg->off = ptr_reg->off + smin_val;
12787 			dst_reg->raw = ptr_reg->raw;
12788 			break;
12789 		}
12790 		/* A new variable offset is created.  Note that off_reg->off
12791 		 * == 0, since it's a scalar.
12792 		 * dst_reg gets the pointer type and since some positive
12793 		 * integer value was added to the pointer, give it a new 'id'
12794 		 * if it's a PTR_TO_PACKET.
12795 		 * this creates a new 'base' pointer, off_reg (variable) gets
12796 		 * added into the variable offset, and we copy the fixed offset
12797 		 * from ptr_reg.
12798 		 */
12799 		if (signed_add_overflows(smin_ptr, smin_val) ||
12800 		    signed_add_overflows(smax_ptr, smax_val)) {
12801 			dst_reg->smin_value = S64_MIN;
12802 			dst_reg->smax_value = S64_MAX;
12803 		} else {
12804 			dst_reg->smin_value = smin_ptr + smin_val;
12805 			dst_reg->smax_value = smax_ptr + smax_val;
12806 		}
12807 		if (umin_ptr + umin_val < umin_ptr ||
12808 		    umax_ptr + umax_val < umax_ptr) {
12809 			dst_reg->umin_value = 0;
12810 			dst_reg->umax_value = U64_MAX;
12811 		} else {
12812 			dst_reg->umin_value = umin_ptr + umin_val;
12813 			dst_reg->umax_value = umax_ptr + umax_val;
12814 		}
12815 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12816 		dst_reg->off = ptr_reg->off;
12817 		dst_reg->raw = ptr_reg->raw;
12818 		if (reg_is_pkt_pointer(ptr_reg)) {
12819 			dst_reg->id = ++env->id_gen;
12820 			/* something was added to pkt_ptr, set range to zero */
12821 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12822 		}
12823 		break;
12824 	case BPF_SUB:
12825 		if (dst_reg == off_reg) {
12826 			/* scalar -= pointer.  Creates an unknown scalar */
12827 			verbose(env, "R%d tried to subtract pointer from scalar\n",
12828 				dst);
12829 			return -EACCES;
12830 		}
12831 		/* We don't allow subtraction from FP, because (according to
12832 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
12833 		 * be able to deal with it.
12834 		 */
12835 		if (ptr_reg->type == PTR_TO_STACK) {
12836 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
12837 				dst);
12838 			return -EACCES;
12839 		}
12840 		if (known && (ptr_reg->off - smin_val ==
12841 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12842 			/* pointer -= K.  Subtract it from fixed offset */
12843 			dst_reg->smin_value = smin_ptr;
12844 			dst_reg->smax_value = smax_ptr;
12845 			dst_reg->umin_value = umin_ptr;
12846 			dst_reg->umax_value = umax_ptr;
12847 			dst_reg->var_off = ptr_reg->var_off;
12848 			dst_reg->id = ptr_reg->id;
12849 			dst_reg->off = ptr_reg->off - smin_val;
12850 			dst_reg->raw = ptr_reg->raw;
12851 			break;
12852 		}
12853 		/* A new variable offset is created.  If the subtrahend is known
12854 		 * nonnegative, then any reg->range we had before is still good.
12855 		 */
12856 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12857 		    signed_sub_overflows(smax_ptr, smin_val)) {
12858 			/* Overflow possible, we know nothing */
12859 			dst_reg->smin_value = S64_MIN;
12860 			dst_reg->smax_value = S64_MAX;
12861 		} else {
12862 			dst_reg->smin_value = smin_ptr - smax_val;
12863 			dst_reg->smax_value = smax_ptr - smin_val;
12864 		}
12865 		if (umin_ptr < umax_val) {
12866 			/* Overflow possible, we know nothing */
12867 			dst_reg->umin_value = 0;
12868 			dst_reg->umax_value = U64_MAX;
12869 		} else {
12870 			/* Cannot overflow (as long as bounds are consistent) */
12871 			dst_reg->umin_value = umin_ptr - umax_val;
12872 			dst_reg->umax_value = umax_ptr - umin_val;
12873 		}
12874 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12875 		dst_reg->off = ptr_reg->off;
12876 		dst_reg->raw = ptr_reg->raw;
12877 		if (reg_is_pkt_pointer(ptr_reg)) {
12878 			dst_reg->id = ++env->id_gen;
12879 			/* something was added to pkt_ptr, set range to zero */
12880 			if (smin_val < 0)
12881 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12882 		}
12883 		break;
12884 	case BPF_AND:
12885 	case BPF_OR:
12886 	case BPF_XOR:
12887 		/* bitwise ops on pointers are troublesome, prohibit. */
12888 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12889 			dst, bpf_alu_string[opcode >> 4]);
12890 		return -EACCES;
12891 	default:
12892 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
12893 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12894 			dst, bpf_alu_string[opcode >> 4]);
12895 		return -EACCES;
12896 	}
12897 
12898 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12899 		return -EINVAL;
12900 	reg_bounds_sync(dst_reg);
12901 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12902 		return -EACCES;
12903 	if (sanitize_needed(opcode)) {
12904 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12905 				       &info, true);
12906 		if (ret < 0)
12907 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12908 	}
12909 
12910 	return 0;
12911 }
12912 
12913 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12914 				 struct bpf_reg_state *src_reg)
12915 {
12916 	s32 smin_val = src_reg->s32_min_value;
12917 	s32 smax_val = src_reg->s32_max_value;
12918 	u32 umin_val = src_reg->u32_min_value;
12919 	u32 umax_val = src_reg->u32_max_value;
12920 
12921 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12922 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12923 		dst_reg->s32_min_value = S32_MIN;
12924 		dst_reg->s32_max_value = S32_MAX;
12925 	} else {
12926 		dst_reg->s32_min_value += smin_val;
12927 		dst_reg->s32_max_value += smax_val;
12928 	}
12929 	if (dst_reg->u32_min_value + umin_val < umin_val ||
12930 	    dst_reg->u32_max_value + umax_val < umax_val) {
12931 		dst_reg->u32_min_value = 0;
12932 		dst_reg->u32_max_value = U32_MAX;
12933 	} else {
12934 		dst_reg->u32_min_value += umin_val;
12935 		dst_reg->u32_max_value += umax_val;
12936 	}
12937 }
12938 
12939 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12940 			       struct bpf_reg_state *src_reg)
12941 {
12942 	s64 smin_val = src_reg->smin_value;
12943 	s64 smax_val = src_reg->smax_value;
12944 	u64 umin_val = src_reg->umin_value;
12945 	u64 umax_val = src_reg->umax_value;
12946 
12947 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12948 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
12949 		dst_reg->smin_value = S64_MIN;
12950 		dst_reg->smax_value = S64_MAX;
12951 	} else {
12952 		dst_reg->smin_value += smin_val;
12953 		dst_reg->smax_value += smax_val;
12954 	}
12955 	if (dst_reg->umin_value + umin_val < umin_val ||
12956 	    dst_reg->umax_value + umax_val < umax_val) {
12957 		dst_reg->umin_value = 0;
12958 		dst_reg->umax_value = U64_MAX;
12959 	} else {
12960 		dst_reg->umin_value += umin_val;
12961 		dst_reg->umax_value += umax_val;
12962 	}
12963 }
12964 
12965 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12966 				 struct bpf_reg_state *src_reg)
12967 {
12968 	s32 smin_val = src_reg->s32_min_value;
12969 	s32 smax_val = src_reg->s32_max_value;
12970 	u32 umin_val = src_reg->u32_min_value;
12971 	u32 umax_val = src_reg->u32_max_value;
12972 
12973 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12974 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12975 		/* Overflow possible, we know nothing */
12976 		dst_reg->s32_min_value = S32_MIN;
12977 		dst_reg->s32_max_value = S32_MAX;
12978 	} else {
12979 		dst_reg->s32_min_value -= smax_val;
12980 		dst_reg->s32_max_value -= smin_val;
12981 	}
12982 	if (dst_reg->u32_min_value < umax_val) {
12983 		/* Overflow possible, we know nothing */
12984 		dst_reg->u32_min_value = 0;
12985 		dst_reg->u32_max_value = U32_MAX;
12986 	} else {
12987 		/* Cannot overflow (as long as bounds are consistent) */
12988 		dst_reg->u32_min_value -= umax_val;
12989 		dst_reg->u32_max_value -= umin_val;
12990 	}
12991 }
12992 
12993 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12994 			       struct bpf_reg_state *src_reg)
12995 {
12996 	s64 smin_val = src_reg->smin_value;
12997 	s64 smax_val = src_reg->smax_value;
12998 	u64 umin_val = src_reg->umin_value;
12999 	u64 umax_val = src_reg->umax_value;
13000 
13001 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
13002 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
13003 		/* Overflow possible, we know nothing */
13004 		dst_reg->smin_value = S64_MIN;
13005 		dst_reg->smax_value = S64_MAX;
13006 	} else {
13007 		dst_reg->smin_value -= smax_val;
13008 		dst_reg->smax_value -= smin_val;
13009 	}
13010 	if (dst_reg->umin_value < umax_val) {
13011 		/* Overflow possible, we know nothing */
13012 		dst_reg->umin_value = 0;
13013 		dst_reg->umax_value = U64_MAX;
13014 	} else {
13015 		/* Cannot overflow (as long as bounds are consistent) */
13016 		dst_reg->umin_value -= umax_val;
13017 		dst_reg->umax_value -= umin_val;
13018 	}
13019 }
13020 
13021 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
13022 				 struct bpf_reg_state *src_reg)
13023 {
13024 	s32 smin_val = src_reg->s32_min_value;
13025 	u32 umin_val = src_reg->u32_min_value;
13026 	u32 umax_val = src_reg->u32_max_value;
13027 
13028 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
13029 		/* Ain't nobody got time to multiply that sign */
13030 		__mark_reg32_unbounded(dst_reg);
13031 		return;
13032 	}
13033 	/* Both values are positive, so we can work with unsigned and
13034 	 * copy the result to signed (unless it exceeds S32_MAX).
13035 	 */
13036 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
13037 		/* Potential overflow, we know nothing */
13038 		__mark_reg32_unbounded(dst_reg);
13039 		return;
13040 	}
13041 	dst_reg->u32_min_value *= umin_val;
13042 	dst_reg->u32_max_value *= umax_val;
13043 	if (dst_reg->u32_max_value > S32_MAX) {
13044 		/* Overflow possible, we know nothing */
13045 		dst_reg->s32_min_value = S32_MIN;
13046 		dst_reg->s32_max_value = S32_MAX;
13047 	} else {
13048 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13049 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13050 	}
13051 }
13052 
13053 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
13054 			       struct bpf_reg_state *src_reg)
13055 {
13056 	s64 smin_val = src_reg->smin_value;
13057 	u64 umin_val = src_reg->umin_value;
13058 	u64 umax_val = src_reg->umax_value;
13059 
13060 	if (smin_val < 0 || dst_reg->smin_value < 0) {
13061 		/* Ain't nobody got time to multiply that sign */
13062 		__mark_reg64_unbounded(dst_reg);
13063 		return;
13064 	}
13065 	/* Both values are positive, so we can work with unsigned and
13066 	 * copy the result to signed (unless it exceeds S64_MAX).
13067 	 */
13068 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
13069 		/* Potential overflow, we know nothing */
13070 		__mark_reg64_unbounded(dst_reg);
13071 		return;
13072 	}
13073 	dst_reg->umin_value *= umin_val;
13074 	dst_reg->umax_value *= umax_val;
13075 	if (dst_reg->umax_value > S64_MAX) {
13076 		/* Overflow possible, we know nothing */
13077 		dst_reg->smin_value = S64_MIN;
13078 		dst_reg->smax_value = S64_MAX;
13079 	} else {
13080 		dst_reg->smin_value = dst_reg->umin_value;
13081 		dst_reg->smax_value = dst_reg->umax_value;
13082 	}
13083 }
13084 
13085 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
13086 				 struct bpf_reg_state *src_reg)
13087 {
13088 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13089 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13090 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13091 	s32 smin_val = src_reg->s32_min_value;
13092 	u32 umax_val = src_reg->u32_max_value;
13093 
13094 	if (src_known && dst_known) {
13095 		__mark_reg32_known(dst_reg, var32_off.value);
13096 		return;
13097 	}
13098 
13099 	/* We get our minimum from the var_off, since that's inherently
13100 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13101 	 */
13102 	dst_reg->u32_min_value = var32_off.value;
13103 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
13104 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13105 		/* Lose signed bounds when ANDing negative numbers,
13106 		 * ain't nobody got time for that.
13107 		 */
13108 		dst_reg->s32_min_value = S32_MIN;
13109 		dst_reg->s32_max_value = S32_MAX;
13110 	} else {
13111 		/* ANDing two positives gives a positive, so safe to
13112 		 * cast result into s64.
13113 		 */
13114 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13115 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13116 	}
13117 }
13118 
13119 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
13120 			       struct bpf_reg_state *src_reg)
13121 {
13122 	bool src_known = tnum_is_const(src_reg->var_off);
13123 	bool dst_known = tnum_is_const(dst_reg->var_off);
13124 	s64 smin_val = src_reg->smin_value;
13125 	u64 umax_val = src_reg->umax_value;
13126 
13127 	if (src_known && dst_known) {
13128 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13129 		return;
13130 	}
13131 
13132 	/* We get our minimum from the var_off, since that's inherently
13133 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13134 	 */
13135 	dst_reg->umin_value = dst_reg->var_off.value;
13136 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
13137 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13138 		/* Lose signed bounds when ANDing negative numbers,
13139 		 * ain't nobody got time for that.
13140 		 */
13141 		dst_reg->smin_value = S64_MIN;
13142 		dst_reg->smax_value = S64_MAX;
13143 	} else {
13144 		/* ANDing two positives gives a positive, so safe to
13145 		 * cast result into s64.
13146 		 */
13147 		dst_reg->smin_value = dst_reg->umin_value;
13148 		dst_reg->smax_value = dst_reg->umax_value;
13149 	}
13150 	/* We may learn something more from the var_off */
13151 	__update_reg_bounds(dst_reg);
13152 }
13153 
13154 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
13155 				struct bpf_reg_state *src_reg)
13156 {
13157 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13158 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13159 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13160 	s32 smin_val = src_reg->s32_min_value;
13161 	u32 umin_val = src_reg->u32_min_value;
13162 
13163 	if (src_known && dst_known) {
13164 		__mark_reg32_known(dst_reg, var32_off.value);
13165 		return;
13166 	}
13167 
13168 	/* We get our maximum from the var_off, and our minimum is the
13169 	 * maximum of the operands' minima
13170 	 */
13171 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
13172 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13173 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13174 		/* Lose signed bounds when ORing negative numbers,
13175 		 * ain't nobody got time for that.
13176 		 */
13177 		dst_reg->s32_min_value = S32_MIN;
13178 		dst_reg->s32_max_value = S32_MAX;
13179 	} else {
13180 		/* ORing two positives gives a positive, so safe to
13181 		 * cast result into s64.
13182 		 */
13183 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13184 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13185 	}
13186 }
13187 
13188 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13189 			      struct bpf_reg_state *src_reg)
13190 {
13191 	bool src_known = tnum_is_const(src_reg->var_off);
13192 	bool dst_known = tnum_is_const(dst_reg->var_off);
13193 	s64 smin_val = src_reg->smin_value;
13194 	u64 umin_val = src_reg->umin_value;
13195 
13196 	if (src_known && dst_known) {
13197 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13198 		return;
13199 	}
13200 
13201 	/* We get our maximum from the var_off, and our minimum is the
13202 	 * maximum of the operands' minima
13203 	 */
13204 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13205 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13206 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13207 		/* Lose signed bounds when ORing negative numbers,
13208 		 * ain't nobody got time for that.
13209 		 */
13210 		dst_reg->smin_value = S64_MIN;
13211 		dst_reg->smax_value = S64_MAX;
13212 	} else {
13213 		/* ORing two positives gives a positive, so safe to
13214 		 * cast result into s64.
13215 		 */
13216 		dst_reg->smin_value = dst_reg->umin_value;
13217 		dst_reg->smax_value = dst_reg->umax_value;
13218 	}
13219 	/* We may learn something more from the var_off */
13220 	__update_reg_bounds(dst_reg);
13221 }
13222 
13223 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13224 				 struct bpf_reg_state *src_reg)
13225 {
13226 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13227 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13228 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13229 	s32 smin_val = src_reg->s32_min_value;
13230 
13231 	if (src_known && dst_known) {
13232 		__mark_reg32_known(dst_reg, var32_off.value);
13233 		return;
13234 	}
13235 
13236 	/* We get both minimum and maximum from the var32_off. */
13237 	dst_reg->u32_min_value = var32_off.value;
13238 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13239 
13240 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
13241 		/* XORing two positive sign numbers gives a positive,
13242 		 * so safe to cast u32 result into s32.
13243 		 */
13244 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13245 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13246 	} else {
13247 		dst_reg->s32_min_value = S32_MIN;
13248 		dst_reg->s32_max_value = S32_MAX;
13249 	}
13250 }
13251 
13252 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13253 			       struct bpf_reg_state *src_reg)
13254 {
13255 	bool src_known = tnum_is_const(src_reg->var_off);
13256 	bool dst_known = tnum_is_const(dst_reg->var_off);
13257 	s64 smin_val = src_reg->smin_value;
13258 
13259 	if (src_known && dst_known) {
13260 		/* dst_reg->var_off.value has been updated earlier */
13261 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13262 		return;
13263 	}
13264 
13265 	/* We get both minimum and maximum from the var_off. */
13266 	dst_reg->umin_value = dst_reg->var_off.value;
13267 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13268 
13269 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
13270 		/* XORing two positive sign numbers gives a positive,
13271 		 * so safe to cast u64 result into s64.
13272 		 */
13273 		dst_reg->smin_value = dst_reg->umin_value;
13274 		dst_reg->smax_value = dst_reg->umax_value;
13275 	} else {
13276 		dst_reg->smin_value = S64_MIN;
13277 		dst_reg->smax_value = S64_MAX;
13278 	}
13279 
13280 	__update_reg_bounds(dst_reg);
13281 }
13282 
13283 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13284 				   u64 umin_val, u64 umax_val)
13285 {
13286 	/* We lose all sign bit information (except what we can pick
13287 	 * up from var_off)
13288 	 */
13289 	dst_reg->s32_min_value = S32_MIN;
13290 	dst_reg->s32_max_value = S32_MAX;
13291 	/* If we might shift our top bit out, then we know nothing */
13292 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13293 		dst_reg->u32_min_value = 0;
13294 		dst_reg->u32_max_value = U32_MAX;
13295 	} else {
13296 		dst_reg->u32_min_value <<= umin_val;
13297 		dst_reg->u32_max_value <<= umax_val;
13298 	}
13299 }
13300 
13301 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13302 				 struct bpf_reg_state *src_reg)
13303 {
13304 	u32 umax_val = src_reg->u32_max_value;
13305 	u32 umin_val = src_reg->u32_min_value;
13306 	/* u32 alu operation will zext upper bits */
13307 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13308 
13309 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13310 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13311 	/* Not required but being careful mark reg64 bounds as unknown so
13312 	 * that we are forced to pick them up from tnum and zext later and
13313 	 * if some path skips this step we are still safe.
13314 	 */
13315 	__mark_reg64_unbounded(dst_reg);
13316 	__update_reg32_bounds(dst_reg);
13317 }
13318 
13319 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13320 				   u64 umin_val, u64 umax_val)
13321 {
13322 	/* Special case <<32 because it is a common compiler pattern to sign
13323 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13324 	 * positive we know this shift will also be positive so we can track
13325 	 * bounds correctly. Otherwise we lose all sign bit information except
13326 	 * what we can pick up from var_off. Perhaps we can generalize this
13327 	 * later to shifts of any length.
13328 	 */
13329 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13330 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13331 	else
13332 		dst_reg->smax_value = S64_MAX;
13333 
13334 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13335 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13336 	else
13337 		dst_reg->smin_value = S64_MIN;
13338 
13339 	/* If we might shift our top bit out, then we know nothing */
13340 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13341 		dst_reg->umin_value = 0;
13342 		dst_reg->umax_value = U64_MAX;
13343 	} else {
13344 		dst_reg->umin_value <<= umin_val;
13345 		dst_reg->umax_value <<= umax_val;
13346 	}
13347 }
13348 
13349 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13350 			       struct bpf_reg_state *src_reg)
13351 {
13352 	u64 umax_val = src_reg->umax_value;
13353 	u64 umin_val = src_reg->umin_value;
13354 
13355 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
13356 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13357 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13358 
13359 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13360 	/* We may learn something more from the var_off */
13361 	__update_reg_bounds(dst_reg);
13362 }
13363 
13364 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13365 				 struct bpf_reg_state *src_reg)
13366 {
13367 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13368 	u32 umax_val = src_reg->u32_max_value;
13369 	u32 umin_val = src_reg->u32_min_value;
13370 
13371 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13372 	 * be negative, then either:
13373 	 * 1) src_reg might be zero, so the sign bit of the result is
13374 	 *    unknown, so we lose our signed bounds
13375 	 * 2) it's known negative, thus the unsigned bounds capture the
13376 	 *    signed bounds
13377 	 * 3) the signed bounds cross zero, so they tell us nothing
13378 	 *    about the result
13379 	 * If the value in dst_reg is known nonnegative, then again the
13380 	 * unsigned bounds capture the signed bounds.
13381 	 * Thus, in all cases it suffices to blow away our signed bounds
13382 	 * and rely on inferring new ones from the unsigned bounds and
13383 	 * var_off of the result.
13384 	 */
13385 	dst_reg->s32_min_value = S32_MIN;
13386 	dst_reg->s32_max_value = S32_MAX;
13387 
13388 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
13389 	dst_reg->u32_min_value >>= umax_val;
13390 	dst_reg->u32_max_value >>= umin_val;
13391 
13392 	__mark_reg64_unbounded(dst_reg);
13393 	__update_reg32_bounds(dst_reg);
13394 }
13395 
13396 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13397 			       struct bpf_reg_state *src_reg)
13398 {
13399 	u64 umax_val = src_reg->umax_value;
13400 	u64 umin_val = src_reg->umin_value;
13401 
13402 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13403 	 * be negative, then either:
13404 	 * 1) src_reg might be zero, so the sign bit of the result is
13405 	 *    unknown, so we lose our signed bounds
13406 	 * 2) it's known negative, thus the unsigned bounds capture the
13407 	 *    signed bounds
13408 	 * 3) the signed bounds cross zero, so they tell us nothing
13409 	 *    about the result
13410 	 * If the value in dst_reg is known nonnegative, then again the
13411 	 * unsigned bounds capture the signed bounds.
13412 	 * Thus, in all cases it suffices to blow away our signed bounds
13413 	 * and rely on inferring new ones from the unsigned bounds and
13414 	 * var_off of the result.
13415 	 */
13416 	dst_reg->smin_value = S64_MIN;
13417 	dst_reg->smax_value = S64_MAX;
13418 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13419 	dst_reg->umin_value >>= umax_val;
13420 	dst_reg->umax_value >>= umin_val;
13421 
13422 	/* Its not easy to operate on alu32 bounds here because it depends
13423 	 * on bits being shifted in. Take easy way out and mark unbounded
13424 	 * so we can recalculate later from tnum.
13425 	 */
13426 	__mark_reg32_unbounded(dst_reg);
13427 	__update_reg_bounds(dst_reg);
13428 }
13429 
13430 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13431 				  struct bpf_reg_state *src_reg)
13432 {
13433 	u64 umin_val = src_reg->u32_min_value;
13434 
13435 	/* Upon reaching here, src_known is true and
13436 	 * umax_val is equal to umin_val.
13437 	 */
13438 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13439 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13440 
13441 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13442 
13443 	/* blow away the dst_reg umin_value/umax_value and rely on
13444 	 * dst_reg var_off to refine the result.
13445 	 */
13446 	dst_reg->u32_min_value = 0;
13447 	dst_reg->u32_max_value = U32_MAX;
13448 
13449 	__mark_reg64_unbounded(dst_reg);
13450 	__update_reg32_bounds(dst_reg);
13451 }
13452 
13453 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13454 				struct bpf_reg_state *src_reg)
13455 {
13456 	u64 umin_val = src_reg->umin_value;
13457 
13458 	/* Upon reaching here, src_known is true and umax_val is equal
13459 	 * to umin_val.
13460 	 */
13461 	dst_reg->smin_value >>= umin_val;
13462 	dst_reg->smax_value >>= umin_val;
13463 
13464 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13465 
13466 	/* blow away the dst_reg umin_value/umax_value and rely on
13467 	 * dst_reg var_off to refine the result.
13468 	 */
13469 	dst_reg->umin_value = 0;
13470 	dst_reg->umax_value = U64_MAX;
13471 
13472 	/* Its not easy to operate on alu32 bounds here because it depends
13473 	 * on bits being shifted in from upper 32-bits. Take easy way out
13474 	 * and mark unbounded so we can recalculate later from tnum.
13475 	 */
13476 	__mark_reg32_unbounded(dst_reg);
13477 	__update_reg_bounds(dst_reg);
13478 }
13479 
13480 /* WARNING: This function does calculations on 64-bit values, but the actual
13481  * execution may occur on 32-bit values. Therefore, things like bitshifts
13482  * need extra checks in the 32-bit case.
13483  */
13484 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13485 				      struct bpf_insn *insn,
13486 				      struct bpf_reg_state *dst_reg,
13487 				      struct bpf_reg_state src_reg)
13488 {
13489 	struct bpf_reg_state *regs = cur_regs(env);
13490 	u8 opcode = BPF_OP(insn->code);
13491 	bool src_known;
13492 	s64 smin_val, smax_val;
13493 	u64 umin_val, umax_val;
13494 	s32 s32_min_val, s32_max_val;
13495 	u32 u32_min_val, u32_max_val;
13496 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13497 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13498 	int ret;
13499 
13500 	smin_val = src_reg.smin_value;
13501 	smax_val = src_reg.smax_value;
13502 	umin_val = src_reg.umin_value;
13503 	umax_val = src_reg.umax_value;
13504 
13505 	s32_min_val = src_reg.s32_min_value;
13506 	s32_max_val = src_reg.s32_max_value;
13507 	u32_min_val = src_reg.u32_min_value;
13508 	u32_max_val = src_reg.u32_max_value;
13509 
13510 	if (alu32) {
13511 		src_known = tnum_subreg_is_const(src_reg.var_off);
13512 		if ((src_known &&
13513 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13514 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13515 			/* Taint dst register if offset had invalid bounds
13516 			 * derived from e.g. dead branches.
13517 			 */
13518 			__mark_reg_unknown(env, dst_reg);
13519 			return 0;
13520 		}
13521 	} else {
13522 		src_known = tnum_is_const(src_reg.var_off);
13523 		if ((src_known &&
13524 		     (smin_val != smax_val || umin_val != umax_val)) ||
13525 		    smin_val > smax_val || umin_val > umax_val) {
13526 			/* Taint dst register if offset had invalid bounds
13527 			 * derived from e.g. dead branches.
13528 			 */
13529 			__mark_reg_unknown(env, dst_reg);
13530 			return 0;
13531 		}
13532 	}
13533 
13534 	if (!src_known &&
13535 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13536 		__mark_reg_unknown(env, dst_reg);
13537 		return 0;
13538 	}
13539 
13540 	if (sanitize_needed(opcode)) {
13541 		ret = sanitize_val_alu(env, insn);
13542 		if (ret < 0)
13543 			return sanitize_err(env, insn, ret, NULL, NULL);
13544 	}
13545 
13546 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13547 	 * There are two classes of instructions: The first class we track both
13548 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
13549 	 * greatest amount of precision when alu operations are mixed with jmp32
13550 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13551 	 * and BPF_OR. This is possible because these ops have fairly easy to
13552 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13553 	 * See alu32 verifier tests for examples. The second class of
13554 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13555 	 * with regards to tracking sign/unsigned bounds because the bits may
13556 	 * cross subreg boundaries in the alu64 case. When this happens we mark
13557 	 * the reg unbounded in the subreg bound space and use the resulting
13558 	 * tnum to calculate an approximation of the sign/unsigned bounds.
13559 	 */
13560 	switch (opcode) {
13561 	case BPF_ADD:
13562 		scalar32_min_max_add(dst_reg, &src_reg);
13563 		scalar_min_max_add(dst_reg, &src_reg);
13564 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13565 		break;
13566 	case BPF_SUB:
13567 		scalar32_min_max_sub(dst_reg, &src_reg);
13568 		scalar_min_max_sub(dst_reg, &src_reg);
13569 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13570 		break;
13571 	case BPF_MUL:
13572 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13573 		scalar32_min_max_mul(dst_reg, &src_reg);
13574 		scalar_min_max_mul(dst_reg, &src_reg);
13575 		break;
13576 	case BPF_AND:
13577 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13578 		scalar32_min_max_and(dst_reg, &src_reg);
13579 		scalar_min_max_and(dst_reg, &src_reg);
13580 		break;
13581 	case BPF_OR:
13582 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13583 		scalar32_min_max_or(dst_reg, &src_reg);
13584 		scalar_min_max_or(dst_reg, &src_reg);
13585 		break;
13586 	case BPF_XOR:
13587 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13588 		scalar32_min_max_xor(dst_reg, &src_reg);
13589 		scalar_min_max_xor(dst_reg, &src_reg);
13590 		break;
13591 	case BPF_LSH:
13592 		if (umax_val >= insn_bitness) {
13593 			/* Shifts greater than 31 or 63 are undefined.
13594 			 * This includes shifts by a negative number.
13595 			 */
13596 			mark_reg_unknown(env, regs, insn->dst_reg);
13597 			break;
13598 		}
13599 		if (alu32)
13600 			scalar32_min_max_lsh(dst_reg, &src_reg);
13601 		else
13602 			scalar_min_max_lsh(dst_reg, &src_reg);
13603 		break;
13604 	case BPF_RSH:
13605 		if (umax_val >= insn_bitness) {
13606 			/* Shifts greater than 31 or 63 are undefined.
13607 			 * This includes shifts by a negative number.
13608 			 */
13609 			mark_reg_unknown(env, regs, insn->dst_reg);
13610 			break;
13611 		}
13612 		if (alu32)
13613 			scalar32_min_max_rsh(dst_reg, &src_reg);
13614 		else
13615 			scalar_min_max_rsh(dst_reg, &src_reg);
13616 		break;
13617 	case BPF_ARSH:
13618 		if (umax_val >= insn_bitness) {
13619 			/* Shifts greater than 31 or 63 are undefined.
13620 			 * This includes shifts by a negative number.
13621 			 */
13622 			mark_reg_unknown(env, regs, insn->dst_reg);
13623 			break;
13624 		}
13625 		if (alu32)
13626 			scalar32_min_max_arsh(dst_reg, &src_reg);
13627 		else
13628 			scalar_min_max_arsh(dst_reg, &src_reg);
13629 		break;
13630 	default:
13631 		mark_reg_unknown(env, regs, insn->dst_reg);
13632 		break;
13633 	}
13634 
13635 	/* ALU32 ops are zero extended into 64bit register */
13636 	if (alu32)
13637 		zext_32_to_64(dst_reg);
13638 	reg_bounds_sync(dst_reg);
13639 	return 0;
13640 }
13641 
13642 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13643  * and var_off.
13644  */
13645 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13646 				   struct bpf_insn *insn)
13647 {
13648 	struct bpf_verifier_state *vstate = env->cur_state;
13649 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13650 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13651 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13652 	u8 opcode = BPF_OP(insn->code);
13653 	int err;
13654 
13655 	dst_reg = &regs[insn->dst_reg];
13656 	src_reg = NULL;
13657 	if (dst_reg->type != SCALAR_VALUE)
13658 		ptr_reg = dst_reg;
13659 	else
13660 		/* Make sure ID is cleared otherwise dst_reg min/max could be
13661 		 * incorrectly propagated into other registers by find_equal_scalars()
13662 		 */
13663 		dst_reg->id = 0;
13664 	if (BPF_SRC(insn->code) == BPF_X) {
13665 		src_reg = &regs[insn->src_reg];
13666 		if (src_reg->type != SCALAR_VALUE) {
13667 			if (dst_reg->type != SCALAR_VALUE) {
13668 				/* Combining two pointers by any ALU op yields
13669 				 * an arbitrary scalar. Disallow all math except
13670 				 * pointer subtraction
13671 				 */
13672 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13673 					mark_reg_unknown(env, regs, insn->dst_reg);
13674 					return 0;
13675 				}
13676 				verbose(env, "R%d pointer %s pointer prohibited\n",
13677 					insn->dst_reg,
13678 					bpf_alu_string[opcode >> 4]);
13679 				return -EACCES;
13680 			} else {
13681 				/* scalar += pointer
13682 				 * This is legal, but we have to reverse our
13683 				 * src/dest handling in computing the range
13684 				 */
13685 				err = mark_chain_precision(env, insn->dst_reg);
13686 				if (err)
13687 					return err;
13688 				return adjust_ptr_min_max_vals(env, insn,
13689 							       src_reg, dst_reg);
13690 			}
13691 		} else if (ptr_reg) {
13692 			/* pointer += scalar */
13693 			err = mark_chain_precision(env, insn->src_reg);
13694 			if (err)
13695 				return err;
13696 			return adjust_ptr_min_max_vals(env, insn,
13697 						       dst_reg, src_reg);
13698 		} else if (dst_reg->precise) {
13699 			/* if dst_reg is precise, src_reg should be precise as well */
13700 			err = mark_chain_precision(env, insn->src_reg);
13701 			if (err)
13702 				return err;
13703 		}
13704 	} else {
13705 		/* Pretend the src is a reg with a known value, since we only
13706 		 * need to be able to read from this state.
13707 		 */
13708 		off_reg.type = SCALAR_VALUE;
13709 		__mark_reg_known(&off_reg, insn->imm);
13710 		src_reg = &off_reg;
13711 		if (ptr_reg) /* pointer += K */
13712 			return adjust_ptr_min_max_vals(env, insn,
13713 						       ptr_reg, src_reg);
13714 	}
13715 
13716 	/* Got here implies adding two SCALAR_VALUEs */
13717 	if (WARN_ON_ONCE(ptr_reg)) {
13718 		print_verifier_state(env, state, true);
13719 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13720 		return -EINVAL;
13721 	}
13722 	if (WARN_ON(!src_reg)) {
13723 		print_verifier_state(env, state, true);
13724 		verbose(env, "verifier internal error: no src_reg\n");
13725 		return -EINVAL;
13726 	}
13727 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13728 }
13729 
13730 /* check validity of 32-bit and 64-bit arithmetic operations */
13731 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13732 {
13733 	struct bpf_reg_state *regs = cur_regs(env);
13734 	u8 opcode = BPF_OP(insn->code);
13735 	int err;
13736 
13737 	if (opcode == BPF_END || opcode == BPF_NEG) {
13738 		if (opcode == BPF_NEG) {
13739 			if (BPF_SRC(insn->code) != BPF_K ||
13740 			    insn->src_reg != BPF_REG_0 ||
13741 			    insn->off != 0 || insn->imm != 0) {
13742 				verbose(env, "BPF_NEG uses reserved fields\n");
13743 				return -EINVAL;
13744 			}
13745 		} else {
13746 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13747 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13748 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13749 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13750 				verbose(env, "BPF_END uses reserved fields\n");
13751 				return -EINVAL;
13752 			}
13753 		}
13754 
13755 		/* check src operand */
13756 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13757 		if (err)
13758 			return err;
13759 
13760 		if (is_pointer_value(env, insn->dst_reg)) {
13761 			verbose(env, "R%d pointer arithmetic prohibited\n",
13762 				insn->dst_reg);
13763 			return -EACCES;
13764 		}
13765 
13766 		/* check dest operand */
13767 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
13768 		if (err)
13769 			return err;
13770 
13771 	} else if (opcode == BPF_MOV) {
13772 
13773 		if (BPF_SRC(insn->code) == BPF_X) {
13774 			if (insn->imm != 0) {
13775 				verbose(env, "BPF_MOV uses reserved fields\n");
13776 				return -EINVAL;
13777 			}
13778 
13779 			if (BPF_CLASS(insn->code) == BPF_ALU) {
13780 				if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13781 					verbose(env, "BPF_MOV uses reserved fields\n");
13782 					return -EINVAL;
13783 				}
13784 			} else {
13785 				if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13786 				    insn->off != 32) {
13787 					verbose(env, "BPF_MOV uses reserved fields\n");
13788 					return -EINVAL;
13789 				}
13790 			}
13791 
13792 			/* check src operand */
13793 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13794 			if (err)
13795 				return err;
13796 		} else {
13797 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13798 				verbose(env, "BPF_MOV uses reserved fields\n");
13799 				return -EINVAL;
13800 			}
13801 		}
13802 
13803 		/* check dest operand, mark as required later */
13804 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13805 		if (err)
13806 			return err;
13807 
13808 		if (BPF_SRC(insn->code) == BPF_X) {
13809 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
13810 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13811 			bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13812 				       !tnum_is_const(src_reg->var_off);
13813 
13814 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13815 				if (insn->off == 0) {
13816 					/* case: R1 = R2
13817 					 * copy register state to dest reg
13818 					 */
13819 					if (need_id)
13820 						/* Assign src and dst registers the same ID
13821 						 * that will be used by find_equal_scalars()
13822 						 * to propagate min/max range.
13823 						 */
13824 						src_reg->id = ++env->id_gen;
13825 					copy_register_state(dst_reg, src_reg);
13826 					dst_reg->live |= REG_LIVE_WRITTEN;
13827 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13828 				} else {
13829 					/* case: R1 = (s8, s16 s32)R2 */
13830 					if (is_pointer_value(env, insn->src_reg)) {
13831 						verbose(env,
13832 							"R%d sign-extension part of pointer\n",
13833 							insn->src_reg);
13834 						return -EACCES;
13835 					} else if (src_reg->type == SCALAR_VALUE) {
13836 						bool no_sext;
13837 
13838 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13839 						if (no_sext && need_id)
13840 							src_reg->id = ++env->id_gen;
13841 						copy_register_state(dst_reg, src_reg);
13842 						if (!no_sext)
13843 							dst_reg->id = 0;
13844 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13845 						dst_reg->live |= REG_LIVE_WRITTEN;
13846 						dst_reg->subreg_def = DEF_NOT_SUBREG;
13847 					} else {
13848 						mark_reg_unknown(env, regs, insn->dst_reg);
13849 					}
13850 				}
13851 			} else {
13852 				/* R1 = (u32) R2 */
13853 				if (is_pointer_value(env, insn->src_reg)) {
13854 					verbose(env,
13855 						"R%d partial copy of pointer\n",
13856 						insn->src_reg);
13857 					return -EACCES;
13858 				} else if (src_reg->type == SCALAR_VALUE) {
13859 					if (insn->off == 0) {
13860 						bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13861 
13862 						if (is_src_reg_u32 && need_id)
13863 							src_reg->id = ++env->id_gen;
13864 						copy_register_state(dst_reg, src_reg);
13865 						/* Make sure ID is cleared if src_reg is not in u32
13866 						 * range otherwise dst_reg min/max could be incorrectly
13867 						 * propagated into src_reg by find_equal_scalars()
13868 						 */
13869 						if (!is_src_reg_u32)
13870 							dst_reg->id = 0;
13871 						dst_reg->live |= REG_LIVE_WRITTEN;
13872 						dst_reg->subreg_def = env->insn_idx + 1;
13873 					} else {
13874 						/* case: W1 = (s8, s16)W2 */
13875 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13876 
13877 						if (no_sext && need_id)
13878 							src_reg->id = ++env->id_gen;
13879 						copy_register_state(dst_reg, src_reg);
13880 						if (!no_sext)
13881 							dst_reg->id = 0;
13882 						dst_reg->live |= REG_LIVE_WRITTEN;
13883 						dst_reg->subreg_def = env->insn_idx + 1;
13884 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13885 					}
13886 				} else {
13887 					mark_reg_unknown(env, regs,
13888 							 insn->dst_reg);
13889 				}
13890 				zext_32_to_64(dst_reg);
13891 				reg_bounds_sync(dst_reg);
13892 			}
13893 		} else {
13894 			/* case: R = imm
13895 			 * remember the value we stored into this reg
13896 			 */
13897 			/* clear any state __mark_reg_known doesn't set */
13898 			mark_reg_unknown(env, regs, insn->dst_reg);
13899 			regs[insn->dst_reg].type = SCALAR_VALUE;
13900 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13901 				__mark_reg_known(regs + insn->dst_reg,
13902 						 insn->imm);
13903 			} else {
13904 				__mark_reg_known(regs + insn->dst_reg,
13905 						 (u32)insn->imm);
13906 			}
13907 		}
13908 
13909 	} else if (opcode > BPF_END) {
13910 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13911 		return -EINVAL;
13912 
13913 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
13914 
13915 		if (BPF_SRC(insn->code) == BPF_X) {
13916 			if (insn->imm != 0 || insn->off > 1 ||
13917 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13918 				verbose(env, "BPF_ALU uses reserved fields\n");
13919 				return -EINVAL;
13920 			}
13921 			/* check src1 operand */
13922 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13923 			if (err)
13924 				return err;
13925 		} else {
13926 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13927 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13928 				verbose(env, "BPF_ALU uses reserved fields\n");
13929 				return -EINVAL;
13930 			}
13931 		}
13932 
13933 		/* check src2 operand */
13934 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13935 		if (err)
13936 			return err;
13937 
13938 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13939 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13940 			verbose(env, "div by zero\n");
13941 			return -EINVAL;
13942 		}
13943 
13944 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13945 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13946 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13947 
13948 			if (insn->imm < 0 || insn->imm >= size) {
13949 				verbose(env, "invalid shift %d\n", insn->imm);
13950 				return -EINVAL;
13951 			}
13952 		}
13953 
13954 		/* check dest operand */
13955 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13956 		if (err)
13957 			return err;
13958 
13959 		return adjust_reg_min_max_vals(env, insn);
13960 	}
13961 
13962 	return 0;
13963 }
13964 
13965 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13966 				   struct bpf_reg_state *dst_reg,
13967 				   enum bpf_reg_type type,
13968 				   bool range_right_open)
13969 {
13970 	struct bpf_func_state *state;
13971 	struct bpf_reg_state *reg;
13972 	int new_range;
13973 
13974 	if (dst_reg->off < 0 ||
13975 	    (dst_reg->off == 0 && range_right_open))
13976 		/* This doesn't give us any range */
13977 		return;
13978 
13979 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
13980 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13981 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
13982 		 * than pkt_end, but that's because it's also less than pkt.
13983 		 */
13984 		return;
13985 
13986 	new_range = dst_reg->off;
13987 	if (range_right_open)
13988 		new_range++;
13989 
13990 	/* Examples for register markings:
13991 	 *
13992 	 * pkt_data in dst register:
13993 	 *
13994 	 *   r2 = r3;
13995 	 *   r2 += 8;
13996 	 *   if (r2 > pkt_end) goto <handle exception>
13997 	 *   <access okay>
13998 	 *
13999 	 *   r2 = r3;
14000 	 *   r2 += 8;
14001 	 *   if (r2 < pkt_end) goto <access okay>
14002 	 *   <handle exception>
14003 	 *
14004 	 *   Where:
14005 	 *     r2 == dst_reg, pkt_end == src_reg
14006 	 *     r2=pkt(id=n,off=8,r=0)
14007 	 *     r3=pkt(id=n,off=0,r=0)
14008 	 *
14009 	 * pkt_data in src register:
14010 	 *
14011 	 *   r2 = r3;
14012 	 *   r2 += 8;
14013 	 *   if (pkt_end >= r2) goto <access okay>
14014 	 *   <handle exception>
14015 	 *
14016 	 *   r2 = r3;
14017 	 *   r2 += 8;
14018 	 *   if (pkt_end <= r2) goto <handle exception>
14019 	 *   <access okay>
14020 	 *
14021 	 *   Where:
14022 	 *     pkt_end == dst_reg, r2 == src_reg
14023 	 *     r2=pkt(id=n,off=8,r=0)
14024 	 *     r3=pkt(id=n,off=0,r=0)
14025 	 *
14026 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
14027 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
14028 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
14029 	 * the check.
14030 	 */
14031 
14032 	/* If our ids match, then we must have the same max_value.  And we
14033 	 * don't care about the other reg's fixed offset, since if it's too big
14034 	 * the range won't allow anything.
14035 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
14036 	 */
14037 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14038 		if (reg->type == type && reg->id == dst_reg->id)
14039 			/* keep the maximum range already checked */
14040 			reg->range = max(reg->range, new_range);
14041 	}));
14042 }
14043 
14044 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
14045 {
14046 	struct tnum subreg = tnum_subreg(reg->var_off);
14047 	s32 sval = (s32)val;
14048 
14049 	switch (opcode) {
14050 	case BPF_JEQ:
14051 		if (tnum_is_const(subreg))
14052 			return !!tnum_equals_const(subreg, val);
14053 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
14054 			return 0;
14055 		else if (sval < reg->s32_min_value || sval > reg->s32_max_value)
14056 			return 0;
14057 		break;
14058 	case BPF_JNE:
14059 		if (tnum_is_const(subreg))
14060 			return !tnum_equals_const(subreg, val);
14061 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
14062 			return 1;
14063 		else if (sval < reg->s32_min_value || sval > reg->s32_max_value)
14064 			return 1;
14065 		break;
14066 	case BPF_JSET:
14067 		if ((~subreg.mask & subreg.value) & val)
14068 			return 1;
14069 		if (!((subreg.mask | subreg.value) & val))
14070 			return 0;
14071 		break;
14072 	case BPF_JGT:
14073 		if (reg->u32_min_value > val)
14074 			return 1;
14075 		else if (reg->u32_max_value <= val)
14076 			return 0;
14077 		break;
14078 	case BPF_JSGT:
14079 		if (reg->s32_min_value > sval)
14080 			return 1;
14081 		else if (reg->s32_max_value <= sval)
14082 			return 0;
14083 		break;
14084 	case BPF_JLT:
14085 		if (reg->u32_max_value < val)
14086 			return 1;
14087 		else if (reg->u32_min_value >= val)
14088 			return 0;
14089 		break;
14090 	case BPF_JSLT:
14091 		if (reg->s32_max_value < sval)
14092 			return 1;
14093 		else if (reg->s32_min_value >= sval)
14094 			return 0;
14095 		break;
14096 	case BPF_JGE:
14097 		if (reg->u32_min_value >= val)
14098 			return 1;
14099 		else if (reg->u32_max_value < val)
14100 			return 0;
14101 		break;
14102 	case BPF_JSGE:
14103 		if (reg->s32_min_value >= sval)
14104 			return 1;
14105 		else if (reg->s32_max_value < sval)
14106 			return 0;
14107 		break;
14108 	case BPF_JLE:
14109 		if (reg->u32_max_value <= val)
14110 			return 1;
14111 		else if (reg->u32_min_value > val)
14112 			return 0;
14113 		break;
14114 	case BPF_JSLE:
14115 		if (reg->s32_max_value <= sval)
14116 			return 1;
14117 		else if (reg->s32_min_value > sval)
14118 			return 0;
14119 		break;
14120 	}
14121 
14122 	return -1;
14123 }
14124 
14125 
14126 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
14127 {
14128 	s64 sval = (s64)val;
14129 
14130 	switch (opcode) {
14131 	case BPF_JEQ:
14132 		if (tnum_is_const(reg->var_off))
14133 			return !!tnum_equals_const(reg->var_off, val);
14134 		else if (val < reg->umin_value || val > reg->umax_value)
14135 			return 0;
14136 		else if (sval < reg->smin_value || sval > reg->smax_value)
14137 			return 0;
14138 		break;
14139 	case BPF_JNE:
14140 		if (tnum_is_const(reg->var_off))
14141 			return !tnum_equals_const(reg->var_off, val);
14142 		else if (val < reg->umin_value || val > reg->umax_value)
14143 			return 1;
14144 		else if (sval < reg->smin_value || sval > reg->smax_value)
14145 			return 1;
14146 		break;
14147 	case BPF_JSET:
14148 		if ((~reg->var_off.mask & reg->var_off.value) & val)
14149 			return 1;
14150 		if (!((reg->var_off.mask | reg->var_off.value) & val))
14151 			return 0;
14152 		break;
14153 	case BPF_JGT:
14154 		if (reg->umin_value > val)
14155 			return 1;
14156 		else if (reg->umax_value <= val)
14157 			return 0;
14158 		break;
14159 	case BPF_JSGT:
14160 		if (reg->smin_value > sval)
14161 			return 1;
14162 		else if (reg->smax_value <= sval)
14163 			return 0;
14164 		break;
14165 	case BPF_JLT:
14166 		if (reg->umax_value < val)
14167 			return 1;
14168 		else if (reg->umin_value >= val)
14169 			return 0;
14170 		break;
14171 	case BPF_JSLT:
14172 		if (reg->smax_value < sval)
14173 			return 1;
14174 		else if (reg->smin_value >= sval)
14175 			return 0;
14176 		break;
14177 	case BPF_JGE:
14178 		if (reg->umin_value >= val)
14179 			return 1;
14180 		else if (reg->umax_value < val)
14181 			return 0;
14182 		break;
14183 	case BPF_JSGE:
14184 		if (reg->smin_value >= sval)
14185 			return 1;
14186 		else if (reg->smax_value < sval)
14187 			return 0;
14188 		break;
14189 	case BPF_JLE:
14190 		if (reg->umax_value <= val)
14191 			return 1;
14192 		else if (reg->umin_value > val)
14193 			return 0;
14194 		break;
14195 	case BPF_JSLE:
14196 		if (reg->smax_value <= sval)
14197 			return 1;
14198 		else if (reg->smin_value > sval)
14199 			return 0;
14200 		break;
14201 	}
14202 
14203 	return -1;
14204 }
14205 
14206 /* compute branch direction of the expression "if (reg opcode val) goto target;"
14207  * and return:
14208  *  1 - branch will be taken and "goto target" will be executed
14209  *  0 - branch will not be taken and fall-through to next insn
14210  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
14211  *      range [0,10]
14212  */
14213 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
14214 			   bool is_jmp32)
14215 {
14216 	if (__is_pointer_value(false, reg)) {
14217 		if (!reg_not_null(reg))
14218 			return -1;
14219 
14220 		/* If pointer is valid tests against zero will fail so we can
14221 		 * use this to direct branch taken.
14222 		 */
14223 		if (val != 0)
14224 			return -1;
14225 
14226 		switch (opcode) {
14227 		case BPF_JEQ:
14228 			return 0;
14229 		case BPF_JNE:
14230 			return 1;
14231 		default:
14232 			return -1;
14233 		}
14234 	}
14235 
14236 	if (is_jmp32)
14237 		return is_branch32_taken(reg, val, opcode);
14238 	return is_branch64_taken(reg, val, opcode);
14239 }
14240 
14241 static int flip_opcode(u32 opcode)
14242 {
14243 	/* How can we transform "a <op> b" into "b <op> a"? */
14244 	static const u8 opcode_flip[16] = {
14245 		/* these stay the same */
14246 		[BPF_JEQ  >> 4] = BPF_JEQ,
14247 		[BPF_JNE  >> 4] = BPF_JNE,
14248 		[BPF_JSET >> 4] = BPF_JSET,
14249 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
14250 		[BPF_JGE  >> 4] = BPF_JLE,
14251 		[BPF_JGT  >> 4] = BPF_JLT,
14252 		[BPF_JLE  >> 4] = BPF_JGE,
14253 		[BPF_JLT  >> 4] = BPF_JGT,
14254 		[BPF_JSGE >> 4] = BPF_JSLE,
14255 		[BPF_JSGT >> 4] = BPF_JSLT,
14256 		[BPF_JSLE >> 4] = BPF_JSGE,
14257 		[BPF_JSLT >> 4] = BPF_JSGT
14258 	};
14259 	return opcode_flip[opcode >> 4];
14260 }
14261 
14262 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14263 				   struct bpf_reg_state *src_reg,
14264 				   u8 opcode)
14265 {
14266 	struct bpf_reg_state *pkt;
14267 
14268 	if (src_reg->type == PTR_TO_PACKET_END) {
14269 		pkt = dst_reg;
14270 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
14271 		pkt = src_reg;
14272 		opcode = flip_opcode(opcode);
14273 	} else {
14274 		return -1;
14275 	}
14276 
14277 	if (pkt->range >= 0)
14278 		return -1;
14279 
14280 	switch (opcode) {
14281 	case BPF_JLE:
14282 		/* pkt <= pkt_end */
14283 		fallthrough;
14284 	case BPF_JGT:
14285 		/* pkt > pkt_end */
14286 		if (pkt->range == BEYOND_PKT_END)
14287 			/* pkt has at last one extra byte beyond pkt_end */
14288 			return opcode == BPF_JGT;
14289 		break;
14290 	case BPF_JLT:
14291 		/* pkt < pkt_end */
14292 		fallthrough;
14293 	case BPF_JGE:
14294 		/* pkt >= pkt_end */
14295 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14296 			return opcode == BPF_JGE;
14297 		break;
14298 	}
14299 	return -1;
14300 }
14301 
14302 /* Adjusts the register min/max values in the case that the dst_reg is the
14303  * variable register that we are working on, and src_reg is a constant or we're
14304  * simply doing a BPF_K check.
14305  * In JEQ/JNE cases we also adjust the var_off values.
14306  */
14307 static void reg_set_min_max(struct bpf_reg_state *true_reg,
14308 			    struct bpf_reg_state *false_reg,
14309 			    u64 val, u32 val32,
14310 			    u8 opcode, bool is_jmp32)
14311 {
14312 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
14313 	struct tnum false_64off = false_reg->var_off;
14314 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
14315 	struct tnum true_64off = true_reg->var_off;
14316 	s64 sval = (s64)val;
14317 	s32 sval32 = (s32)val32;
14318 
14319 	/* If the dst_reg is a pointer, we can't learn anything about its
14320 	 * variable offset from the compare (unless src_reg were a pointer into
14321 	 * the same object, but we don't bother with that.
14322 	 * Since false_reg and true_reg have the same type by construction, we
14323 	 * only need to check one of them for pointerness.
14324 	 */
14325 	if (__is_pointer_value(false, false_reg))
14326 		return;
14327 
14328 	switch (opcode) {
14329 	/* JEQ/JNE comparison doesn't change the register equivalence.
14330 	 *
14331 	 * r1 = r2;
14332 	 * if (r1 == 42) goto label;
14333 	 * ...
14334 	 * label: // here both r1 and r2 are known to be 42.
14335 	 *
14336 	 * Hence when marking register as known preserve it's ID.
14337 	 */
14338 	case BPF_JEQ:
14339 		if (is_jmp32) {
14340 			__mark_reg32_known(true_reg, val32);
14341 			true_32off = tnum_subreg(true_reg->var_off);
14342 		} else {
14343 			___mark_reg_known(true_reg, val);
14344 			true_64off = true_reg->var_off;
14345 		}
14346 		break;
14347 	case BPF_JNE:
14348 		if (is_jmp32) {
14349 			__mark_reg32_known(false_reg, val32);
14350 			false_32off = tnum_subreg(false_reg->var_off);
14351 		} else {
14352 			___mark_reg_known(false_reg, val);
14353 			false_64off = false_reg->var_off;
14354 		}
14355 		break;
14356 	case BPF_JSET:
14357 		if (is_jmp32) {
14358 			false_32off = tnum_and(false_32off, tnum_const(~val32));
14359 			if (is_power_of_2(val32))
14360 				true_32off = tnum_or(true_32off,
14361 						     tnum_const(val32));
14362 		} else {
14363 			false_64off = tnum_and(false_64off, tnum_const(~val));
14364 			if (is_power_of_2(val))
14365 				true_64off = tnum_or(true_64off,
14366 						     tnum_const(val));
14367 		}
14368 		break;
14369 	case BPF_JGE:
14370 	case BPF_JGT:
14371 	{
14372 		if (is_jmp32) {
14373 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
14374 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
14375 
14376 			false_reg->u32_max_value = min(false_reg->u32_max_value,
14377 						       false_umax);
14378 			true_reg->u32_min_value = max(true_reg->u32_min_value,
14379 						      true_umin);
14380 		} else {
14381 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
14382 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
14383 
14384 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
14385 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
14386 		}
14387 		break;
14388 	}
14389 	case BPF_JSGE:
14390 	case BPF_JSGT:
14391 	{
14392 		if (is_jmp32) {
14393 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
14394 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
14395 
14396 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
14397 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
14398 		} else {
14399 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
14400 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
14401 
14402 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
14403 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
14404 		}
14405 		break;
14406 	}
14407 	case BPF_JLE:
14408 	case BPF_JLT:
14409 	{
14410 		if (is_jmp32) {
14411 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
14412 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
14413 
14414 			false_reg->u32_min_value = max(false_reg->u32_min_value,
14415 						       false_umin);
14416 			true_reg->u32_max_value = min(true_reg->u32_max_value,
14417 						      true_umax);
14418 		} else {
14419 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
14420 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
14421 
14422 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
14423 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
14424 		}
14425 		break;
14426 	}
14427 	case BPF_JSLE:
14428 	case BPF_JSLT:
14429 	{
14430 		if (is_jmp32) {
14431 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
14432 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
14433 
14434 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
14435 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
14436 		} else {
14437 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
14438 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
14439 
14440 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
14441 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
14442 		}
14443 		break;
14444 	}
14445 	default:
14446 		return;
14447 	}
14448 
14449 	if (is_jmp32) {
14450 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
14451 					     tnum_subreg(false_32off));
14452 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
14453 					    tnum_subreg(true_32off));
14454 		__reg_combine_32_into_64(false_reg);
14455 		__reg_combine_32_into_64(true_reg);
14456 	} else {
14457 		false_reg->var_off = false_64off;
14458 		true_reg->var_off = true_64off;
14459 		__reg_combine_64_into_32(false_reg);
14460 		__reg_combine_64_into_32(true_reg);
14461 	}
14462 }
14463 
14464 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
14465  * the variable reg.
14466  */
14467 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
14468 				struct bpf_reg_state *false_reg,
14469 				u64 val, u32 val32,
14470 				u8 opcode, bool is_jmp32)
14471 {
14472 	opcode = flip_opcode(opcode);
14473 	/* This uses zero as "not present in table"; luckily the zero opcode,
14474 	 * BPF_JA, can't get here.
14475 	 */
14476 	if (opcode)
14477 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
14478 }
14479 
14480 /* Regs are known to be equal, so intersect their min/max/var_off */
14481 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
14482 				  struct bpf_reg_state *dst_reg)
14483 {
14484 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
14485 							dst_reg->umin_value);
14486 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
14487 							dst_reg->umax_value);
14488 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
14489 							dst_reg->smin_value);
14490 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
14491 							dst_reg->smax_value);
14492 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
14493 							     dst_reg->var_off);
14494 	reg_bounds_sync(src_reg);
14495 	reg_bounds_sync(dst_reg);
14496 }
14497 
14498 static void reg_combine_min_max(struct bpf_reg_state *true_src,
14499 				struct bpf_reg_state *true_dst,
14500 				struct bpf_reg_state *false_src,
14501 				struct bpf_reg_state *false_dst,
14502 				u8 opcode)
14503 {
14504 	switch (opcode) {
14505 	case BPF_JEQ:
14506 		__reg_combine_min_max(true_src, true_dst);
14507 		break;
14508 	case BPF_JNE:
14509 		__reg_combine_min_max(false_src, false_dst);
14510 		break;
14511 	}
14512 }
14513 
14514 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14515 				 struct bpf_reg_state *reg, u32 id,
14516 				 bool is_null)
14517 {
14518 	if (type_may_be_null(reg->type) && reg->id == id &&
14519 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14520 		/* Old offset (both fixed and variable parts) should have been
14521 		 * known-zero, because we don't allow pointer arithmetic on
14522 		 * pointers that might be NULL. If we see this happening, don't
14523 		 * convert the register.
14524 		 *
14525 		 * But in some cases, some helpers that return local kptrs
14526 		 * advance offset for the returned pointer. In those cases, it
14527 		 * is fine to expect to see reg->off.
14528 		 */
14529 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14530 			return;
14531 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14532 		    WARN_ON_ONCE(reg->off))
14533 			return;
14534 
14535 		if (is_null) {
14536 			reg->type = SCALAR_VALUE;
14537 			/* We don't need id and ref_obj_id from this point
14538 			 * onwards anymore, thus we should better reset it,
14539 			 * so that state pruning has chances to take effect.
14540 			 */
14541 			reg->id = 0;
14542 			reg->ref_obj_id = 0;
14543 
14544 			return;
14545 		}
14546 
14547 		mark_ptr_not_null_reg(reg);
14548 
14549 		if (!reg_may_point_to_spin_lock(reg)) {
14550 			/* For not-NULL ptr, reg->ref_obj_id will be reset
14551 			 * in release_reference().
14552 			 *
14553 			 * reg->id is still used by spin_lock ptr. Other
14554 			 * than spin_lock ptr type, reg->id can be reset.
14555 			 */
14556 			reg->id = 0;
14557 		}
14558 	}
14559 }
14560 
14561 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14562  * be folded together at some point.
14563  */
14564 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14565 				  bool is_null)
14566 {
14567 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14568 	struct bpf_reg_state *regs = state->regs, *reg;
14569 	u32 ref_obj_id = regs[regno].ref_obj_id;
14570 	u32 id = regs[regno].id;
14571 
14572 	if (ref_obj_id && ref_obj_id == id && is_null)
14573 		/* regs[regno] is in the " == NULL" branch.
14574 		 * No one could have freed the reference state before
14575 		 * doing the NULL check.
14576 		 */
14577 		WARN_ON_ONCE(release_reference_state(state, id));
14578 
14579 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14580 		mark_ptr_or_null_reg(state, reg, id, is_null);
14581 	}));
14582 }
14583 
14584 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14585 				   struct bpf_reg_state *dst_reg,
14586 				   struct bpf_reg_state *src_reg,
14587 				   struct bpf_verifier_state *this_branch,
14588 				   struct bpf_verifier_state *other_branch)
14589 {
14590 	if (BPF_SRC(insn->code) != BPF_X)
14591 		return false;
14592 
14593 	/* Pointers are always 64-bit. */
14594 	if (BPF_CLASS(insn->code) == BPF_JMP32)
14595 		return false;
14596 
14597 	switch (BPF_OP(insn->code)) {
14598 	case BPF_JGT:
14599 		if ((dst_reg->type == PTR_TO_PACKET &&
14600 		     src_reg->type == PTR_TO_PACKET_END) ||
14601 		    (dst_reg->type == PTR_TO_PACKET_META &&
14602 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14603 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14604 			find_good_pkt_pointers(this_branch, dst_reg,
14605 					       dst_reg->type, false);
14606 			mark_pkt_end(other_branch, insn->dst_reg, true);
14607 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14608 			    src_reg->type == PTR_TO_PACKET) ||
14609 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14610 			    src_reg->type == PTR_TO_PACKET_META)) {
14611 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
14612 			find_good_pkt_pointers(other_branch, src_reg,
14613 					       src_reg->type, true);
14614 			mark_pkt_end(this_branch, insn->src_reg, false);
14615 		} else {
14616 			return false;
14617 		}
14618 		break;
14619 	case BPF_JLT:
14620 		if ((dst_reg->type == PTR_TO_PACKET &&
14621 		     src_reg->type == PTR_TO_PACKET_END) ||
14622 		    (dst_reg->type == PTR_TO_PACKET_META &&
14623 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14624 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14625 			find_good_pkt_pointers(other_branch, dst_reg,
14626 					       dst_reg->type, true);
14627 			mark_pkt_end(this_branch, insn->dst_reg, false);
14628 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14629 			    src_reg->type == PTR_TO_PACKET) ||
14630 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14631 			    src_reg->type == PTR_TO_PACKET_META)) {
14632 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
14633 			find_good_pkt_pointers(this_branch, src_reg,
14634 					       src_reg->type, false);
14635 			mark_pkt_end(other_branch, insn->src_reg, true);
14636 		} else {
14637 			return false;
14638 		}
14639 		break;
14640 	case BPF_JGE:
14641 		if ((dst_reg->type == PTR_TO_PACKET &&
14642 		     src_reg->type == PTR_TO_PACKET_END) ||
14643 		    (dst_reg->type == PTR_TO_PACKET_META &&
14644 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14645 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14646 			find_good_pkt_pointers(this_branch, dst_reg,
14647 					       dst_reg->type, true);
14648 			mark_pkt_end(other_branch, insn->dst_reg, false);
14649 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14650 			    src_reg->type == PTR_TO_PACKET) ||
14651 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14652 			    src_reg->type == PTR_TO_PACKET_META)) {
14653 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14654 			find_good_pkt_pointers(other_branch, src_reg,
14655 					       src_reg->type, false);
14656 			mark_pkt_end(this_branch, insn->src_reg, true);
14657 		} else {
14658 			return false;
14659 		}
14660 		break;
14661 	case BPF_JLE:
14662 		if ((dst_reg->type == PTR_TO_PACKET &&
14663 		     src_reg->type == PTR_TO_PACKET_END) ||
14664 		    (dst_reg->type == PTR_TO_PACKET_META &&
14665 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14666 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14667 			find_good_pkt_pointers(other_branch, dst_reg,
14668 					       dst_reg->type, false);
14669 			mark_pkt_end(this_branch, insn->dst_reg, true);
14670 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14671 			    src_reg->type == PTR_TO_PACKET) ||
14672 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14673 			    src_reg->type == PTR_TO_PACKET_META)) {
14674 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14675 			find_good_pkt_pointers(this_branch, src_reg,
14676 					       src_reg->type, true);
14677 			mark_pkt_end(other_branch, insn->src_reg, false);
14678 		} else {
14679 			return false;
14680 		}
14681 		break;
14682 	default:
14683 		return false;
14684 	}
14685 
14686 	return true;
14687 }
14688 
14689 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14690 			       struct bpf_reg_state *known_reg)
14691 {
14692 	struct bpf_func_state *state;
14693 	struct bpf_reg_state *reg;
14694 
14695 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14696 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14697 			copy_register_state(reg, known_reg);
14698 	}));
14699 }
14700 
14701 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14702 			     struct bpf_insn *insn, int *insn_idx)
14703 {
14704 	struct bpf_verifier_state *this_branch = env->cur_state;
14705 	struct bpf_verifier_state *other_branch;
14706 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14707 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14708 	struct bpf_reg_state *eq_branch_regs;
14709 	u8 opcode = BPF_OP(insn->code);
14710 	bool is_jmp32;
14711 	int pred = -1;
14712 	int err;
14713 
14714 	/* Only conditional jumps are expected to reach here. */
14715 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
14716 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14717 		return -EINVAL;
14718 	}
14719 
14720 	/* check src2 operand */
14721 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14722 	if (err)
14723 		return err;
14724 
14725 	dst_reg = &regs[insn->dst_reg];
14726 	if (BPF_SRC(insn->code) == BPF_X) {
14727 		if (insn->imm != 0) {
14728 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14729 			return -EINVAL;
14730 		}
14731 
14732 		/* check src1 operand */
14733 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14734 		if (err)
14735 			return err;
14736 
14737 		src_reg = &regs[insn->src_reg];
14738 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14739 		    is_pointer_value(env, insn->src_reg)) {
14740 			verbose(env, "R%d pointer comparison prohibited\n",
14741 				insn->src_reg);
14742 			return -EACCES;
14743 		}
14744 	} else {
14745 		if (insn->src_reg != BPF_REG_0) {
14746 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14747 			return -EINVAL;
14748 		}
14749 	}
14750 
14751 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14752 
14753 	if (BPF_SRC(insn->code) == BPF_K) {
14754 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14755 	} else if (src_reg->type == SCALAR_VALUE &&
14756 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14757 		pred = is_branch_taken(dst_reg,
14758 				       tnum_subreg(src_reg->var_off).value,
14759 				       opcode,
14760 				       is_jmp32);
14761 	} else if (src_reg->type == SCALAR_VALUE &&
14762 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14763 		pred = is_branch_taken(dst_reg,
14764 				       src_reg->var_off.value,
14765 				       opcode,
14766 				       is_jmp32);
14767 	} else if (dst_reg->type == SCALAR_VALUE &&
14768 		   is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14769 		pred = is_branch_taken(src_reg,
14770 				       tnum_subreg(dst_reg->var_off).value,
14771 				       flip_opcode(opcode),
14772 				       is_jmp32);
14773 	} else if (dst_reg->type == SCALAR_VALUE &&
14774 		   !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14775 		pred = is_branch_taken(src_reg,
14776 				       dst_reg->var_off.value,
14777 				       flip_opcode(opcode),
14778 				       is_jmp32);
14779 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
14780 		   reg_is_pkt_pointer_any(src_reg) &&
14781 		   !is_jmp32) {
14782 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14783 	}
14784 
14785 	if (pred >= 0) {
14786 		/* If we get here with a dst_reg pointer type it is because
14787 		 * above is_branch_taken() special cased the 0 comparison.
14788 		 */
14789 		if (!__is_pointer_value(false, dst_reg))
14790 			err = mark_chain_precision(env, insn->dst_reg);
14791 		if (BPF_SRC(insn->code) == BPF_X && !err &&
14792 		    !__is_pointer_value(false, src_reg))
14793 			err = mark_chain_precision(env, insn->src_reg);
14794 		if (err)
14795 			return err;
14796 	}
14797 
14798 	if (pred == 1) {
14799 		/* Only follow the goto, ignore fall-through. If needed, push
14800 		 * the fall-through branch for simulation under speculative
14801 		 * execution.
14802 		 */
14803 		if (!env->bypass_spec_v1 &&
14804 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
14805 					       *insn_idx))
14806 			return -EFAULT;
14807 		if (env->log.level & BPF_LOG_LEVEL)
14808 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14809 		*insn_idx += insn->off;
14810 		return 0;
14811 	} else if (pred == 0) {
14812 		/* Only follow the fall-through branch, since that's where the
14813 		 * program will go. If needed, push the goto branch for
14814 		 * simulation under speculative execution.
14815 		 */
14816 		if (!env->bypass_spec_v1 &&
14817 		    !sanitize_speculative_path(env, insn,
14818 					       *insn_idx + insn->off + 1,
14819 					       *insn_idx))
14820 			return -EFAULT;
14821 		if (env->log.level & BPF_LOG_LEVEL)
14822 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14823 		return 0;
14824 	}
14825 
14826 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14827 				  false);
14828 	if (!other_branch)
14829 		return -EFAULT;
14830 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14831 
14832 	/* detect if we are comparing against a constant value so we can adjust
14833 	 * our min/max values for our dst register.
14834 	 * this is only legit if both are scalars (or pointers to the same
14835 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14836 	 * because otherwise the different base pointers mean the offsets aren't
14837 	 * comparable.
14838 	 */
14839 	if (BPF_SRC(insn->code) == BPF_X) {
14840 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
14841 
14842 		if (dst_reg->type == SCALAR_VALUE &&
14843 		    src_reg->type == SCALAR_VALUE) {
14844 			if (tnum_is_const(src_reg->var_off) ||
14845 			    (is_jmp32 &&
14846 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
14847 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
14848 						dst_reg,
14849 						src_reg->var_off.value,
14850 						tnum_subreg(src_reg->var_off).value,
14851 						opcode, is_jmp32);
14852 			else if (tnum_is_const(dst_reg->var_off) ||
14853 				 (is_jmp32 &&
14854 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
14855 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14856 						    src_reg,
14857 						    dst_reg->var_off.value,
14858 						    tnum_subreg(dst_reg->var_off).value,
14859 						    opcode, is_jmp32);
14860 			else if (!is_jmp32 &&
14861 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
14862 				/* Comparing for equality, we can combine knowledge */
14863 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
14864 						    &other_branch_regs[insn->dst_reg],
14865 						    src_reg, dst_reg, opcode);
14866 			if (src_reg->id &&
14867 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14868 				find_equal_scalars(this_branch, src_reg);
14869 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14870 			}
14871 
14872 		}
14873 	} else if (dst_reg->type == SCALAR_VALUE) {
14874 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
14875 					dst_reg, insn->imm, (u32)insn->imm,
14876 					opcode, is_jmp32);
14877 	}
14878 
14879 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14880 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14881 		find_equal_scalars(this_branch, dst_reg);
14882 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14883 	}
14884 
14885 	/* if one pointer register is compared to another pointer
14886 	 * register check if PTR_MAYBE_NULL could be lifted.
14887 	 * E.g. register A - maybe null
14888 	 *      register B - not null
14889 	 * for JNE A, B, ... - A is not null in the false branch;
14890 	 * for JEQ A, B, ... - A is not null in the true branch.
14891 	 *
14892 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
14893 	 * not need to be null checked by the BPF program, i.e.,
14894 	 * could be null even without PTR_MAYBE_NULL marking, so
14895 	 * only propagate nullness when neither reg is that type.
14896 	 */
14897 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14898 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14899 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14900 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
14901 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14902 		eq_branch_regs = NULL;
14903 		switch (opcode) {
14904 		case BPF_JEQ:
14905 			eq_branch_regs = other_branch_regs;
14906 			break;
14907 		case BPF_JNE:
14908 			eq_branch_regs = regs;
14909 			break;
14910 		default:
14911 			/* do nothing */
14912 			break;
14913 		}
14914 		if (eq_branch_regs) {
14915 			if (type_may_be_null(src_reg->type))
14916 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14917 			else
14918 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14919 		}
14920 	}
14921 
14922 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14923 	 * NOTE: these optimizations below are related with pointer comparison
14924 	 *       which will never be JMP32.
14925 	 */
14926 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14927 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14928 	    type_may_be_null(dst_reg->type)) {
14929 		/* Mark all identical registers in each branch as either
14930 		 * safe or unknown depending R == 0 or R != 0 conditional.
14931 		 */
14932 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14933 				      opcode == BPF_JNE);
14934 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14935 				      opcode == BPF_JEQ);
14936 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14937 					   this_branch, other_branch) &&
14938 		   is_pointer_value(env, insn->dst_reg)) {
14939 		verbose(env, "R%d pointer comparison prohibited\n",
14940 			insn->dst_reg);
14941 		return -EACCES;
14942 	}
14943 	if (env->log.level & BPF_LOG_LEVEL)
14944 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
14945 	return 0;
14946 }
14947 
14948 /* verify BPF_LD_IMM64 instruction */
14949 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14950 {
14951 	struct bpf_insn_aux_data *aux = cur_aux(env);
14952 	struct bpf_reg_state *regs = cur_regs(env);
14953 	struct bpf_reg_state *dst_reg;
14954 	struct bpf_map *map;
14955 	int err;
14956 
14957 	if (BPF_SIZE(insn->code) != BPF_DW) {
14958 		verbose(env, "invalid BPF_LD_IMM insn\n");
14959 		return -EINVAL;
14960 	}
14961 	if (insn->off != 0) {
14962 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14963 		return -EINVAL;
14964 	}
14965 
14966 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
14967 	if (err)
14968 		return err;
14969 
14970 	dst_reg = &regs[insn->dst_reg];
14971 	if (insn->src_reg == 0) {
14972 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14973 
14974 		dst_reg->type = SCALAR_VALUE;
14975 		__mark_reg_known(&regs[insn->dst_reg], imm);
14976 		return 0;
14977 	}
14978 
14979 	/* All special src_reg cases are listed below. From this point onwards
14980 	 * we either succeed and assign a corresponding dst_reg->type after
14981 	 * zeroing the offset, or fail and reject the program.
14982 	 */
14983 	mark_reg_known_zero(env, regs, insn->dst_reg);
14984 
14985 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14986 		dst_reg->type = aux->btf_var.reg_type;
14987 		switch (base_type(dst_reg->type)) {
14988 		case PTR_TO_MEM:
14989 			dst_reg->mem_size = aux->btf_var.mem_size;
14990 			break;
14991 		case PTR_TO_BTF_ID:
14992 			dst_reg->btf = aux->btf_var.btf;
14993 			dst_reg->btf_id = aux->btf_var.btf_id;
14994 			break;
14995 		default:
14996 			verbose(env, "bpf verifier is misconfigured\n");
14997 			return -EFAULT;
14998 		}
14999 		return 0;
15000 	}
15001 
15002 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
15003 		struct bpf_prog_aux *aux = env->prog->aux;
15004 		u32 subprogno = find_subprog(env,
15005 					     env->insn_idx + insn->imm + 1);
15006 
15007 		if (!aux->func_info) {
15008 			verbose(env, "missing btf func_info\n");
15009 			return -EINVAL;
15010 		}
15011 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
15012 			verbose(env, "callback function not static\n");
15013 			return -EINVAL;
15014 		}
15015 
15016 		dst_reg->type = PTR_TO_FUNC;
15017 		dst_reg->subprogno = subprogno;
15018 		return 0;
15019 	}
15020 
15021 	map = env->used_maps[aux->map_index];
15022 	dst_reg->map_ptr = map;
15023 
15024 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
15025 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
15026 		dst_reg->type = PTR_TO_MAP_VALUE;
15027 		dst_reg->off = aux->map_off;
15028 		WARN_ON_ONCE(map->max_entries != 1);
15029 		/* We want reg->id to be same (0) as map_value is not distinct */
15030 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
15031 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
15032 		dst_reg->type = CONST_PTR_TO_MAP;
15033 	} else {
15034 		verbose(env, "bpf verifier is misconfigured\n");
15035 		return -EINVAL;
15036 	}
15037 
15038 	return 0;
15039 }
15040 
15041 static bool may_access_skb(enum bpf_prog_type type)
15042 {
15043 	switch (type) {
15044 	case BPF_PROG_TYPE_SOCKET_FILTER:
15045 	case BPF_PROG_TYPE_SCHED_CLS:
15046 	case BPF_PROG_TYPE_SCHED_ACT:
15047 		return true;
15048 	default:
15049 		return false;
15050 	}
15051 }
15052 
15053 /* verify safety of LD_ABS|LD_IND instructions:
15054  * - they can only appear in the programs where ctx == skb
15055  * - since they are wrappers of function calls, they scratch R1-R5 registers,
15056  *   preserve R6-R9, and store return value into R0
15057  *
15058  * Implicit input:
15059  *   ctx == skb == R6 == CTX
15060  *
15061  * Explicit input:
15062  *   SRC == any register
15063  *   IMM == 32-bit immediate
15064  *
15065  * Output:
15066  *   R0 - 8/16/32-bit skb data converted to cpu endianness
15067  */
15068 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
15069 {
15070 	struct bpf_reg_state *regs = cur_regs(env);
15071 	static const int ctx_reg = BPF_REG_6;
15072 	u8 mode = BPF_MODE(insn->code);
15073 	int i, err;
15074 
15075 	if (!may_access_skb(resolve_prog_type(env->prog))) {
15076 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
15077 		return -EINVAL;
15078 	}
15079 
15080 	if (!env->ops->gen_ld_abs) {
15081 		verbose(env, "bpf verifier is misconfigured\n");
15082 		return -EINVAL;
15083 	}
15084 
15085 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
15086 	    BPF_SIZE(insn->code) == BPF_DW ||
15087 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
15088 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
15089 		return -EINVAL;
15090 	}
15091 
15092 	/* check whether implicit source operand (register R6) is readable */
15093 	err = check_reg_arg(env, ctx_reg, SRC_OP);
15094 	if (err)
15095 		return err;
15096 
15097 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
15098 	 * gen_ld_abs() may terminate the program at runtime, leading to
15099 	 * reference leak.
15100 	 */
15101 	err = check_reference_leak(env, false);
15102 	if (err) {
15103 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
15104 		return err;
15105 	}
15106 
15107 	if (env->cur_state->active_lock.ptr) {
15108 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
15109 		return -EINVAL;
15110 	}
15111 
15112 	if (env->cur_state->active_rcu_lock) {
15113 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
15114 		return -EINVAL;
15115 	}
15116 
15117 	if (regs[ctx_reg].type != PTR_TO_CTX) {
15118 		verbose(env,
15119 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
15120 		return -EINVAL;
15121 	}
15122 
15123 	if (mode == BPF_IND) {
15124 		/* check explicit source operand */
15125 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15126 		if (err)
15127 			return err;
15128 	}
15129 
15130 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
15131 	if (err < 0)
15132 		return err;
15133 
15134 	/* reset caller saved regs to unreadable */
15135 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
15136 		mark_reg_not_init(env, regs, caller_saved[i]);
15137 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
15138 	}
15139 
15140 	/* mark destination R0 register as readable, since it contains
15141 	 * the value fetched from the packet.
15142 	 * Already marked as written above.
15143 	 */
15144 	mark_reg_unknown(env, regs, BPF_REG_0);
15145 	/* ld_abs load up to 32-bit skb data. */
15146 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
15147 	return 0;
15148 }
15149 
15150 static int check_return_code(struct bpf_verifier_env *env, int regno)
15151 {
15152 	struct tnum enforce_attach_type_range = tnum_unknown;
15153 	const struct bpf_prog *prog = env->prog;
15154 	struct bpf_reg_state *reg;
15155 	struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
15156 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
15157 	int err;
15158 	struct bpf_func_state *frame = env->cur_state->frame[0];
15159 	const bool is_subprog = frame->subprogno;
15160 
15161 	/* LSM and struct_ops func-ptr's return type could be "void" */
15162 	if (!is_subprog || frame->in_exception_callback_fn) {
15163 		switch (prog_type) {
15164 		case BPF_PROG_TYPE_LSM:
15165 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
15166 				/* See below, can be 0 or 0-1 depending on hook. */
15167 				break;
15168 			fallthrough;
15169 		case BPF_PROG_TYPE_STRUCT_OPS:
15170 			if (!prog->aux->attach_func_proto->type)
15171 				return 0;
15172 			break;
15173 		default:
15174 			break;
15175 		}
15176 	}
15177 
15178 	/* eBPF calling convention is such that R0 is used
15179 	 * to return the value from eBPF program.
15180 	 * Make sure that it's readable at this time
15181 	 * of bpf_exit, which means that program wrote
15182 	 * something into it earlier
15183 	 */
15184 	err = check_reg_arg(env, regno, SRC_OP);
15185 	if (err)
15186 		return err;
15187 
15188 	if (is_pointer_value(env, regno)) {
15189 		verbose(env, "R%d leaks addr as return value\n", regno);
15190 		return -EACCES;
15191 	}
15192 
15193 	reg = cur_regs(env) + regno;
15194 
15195 	if (frame->in_async_callback_fn) {
15196 		/* enforce return zero from async callbacks like timer */
15197 		if (reg->type != SCALAR_VALUE) {
15198 			verbose(env, "In async callback the register R%d is not a known value (%s)\n",
15199 				regno, reg_type_str(env, reg->type));
15200 			return -EINVAL;
15201 		}
15202 
15203 		if (!tnum_in(const_0, reg->var_off)) {
15204 			verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
15205 			return -EINVAL;
15206 		}
15207 		return 0;
15208 	}
15209 
15210 	if (is_subprog && !frame->in_exception_callback_fn) {
15211 		if (reg->type != SCALAR_VALUE) {
15212 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
15213 				regno, reg_type_str(env, reg->type));
15214 			return -EINVAL;
15215 		}
15216 		return 0;
15217 	}
15218 
15219 	switch (prog_type) {
15220 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15221 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15222 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15223 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
15224 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15225 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15226 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
15227 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15228 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
15229 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
15230 			range = tnum_range(1, 1);
15231 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15232 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15233 			range = tnum_range(0, 3);
15234 		break;
15235 	case BPF_PROG_TYPE_CGROUP_SKB:
15236 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15237 			range = tnum_range(0, 3);
15238 			enforce_attach_type_range = tnum_range(2, 3);
15239 		}
15240 		break;
15241 	case BPF_PROG_TYPE_CGROUP_SOCK:
15242 	case BPF_PROG_TYPE_SOCK_OPS:
15243 	case BPF_PROG_TYPE_CGROUP_DEVICE:
15244 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
15245 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15246 		break;
15247 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
15248 		if (!env->prog->aux->attach_btf_id)
15249 			return 0;
15250 		range = tnum_const(0);
15251 		break;
15252 	case BPF_PROG_TYPE_TRACING:
15253 		switch (env->prog->expected_attach_type) {
15254 		case BPF_TRACE_FENTRY:
15255 		case BPF_TRACE_FEXIT:
15256 			range = tnum_const(0);
15257 			break;
15258 		case BPF_TRACE_RAW_TP:
15259 		case BPF_MODIFY_RETURN:
15260 			return 0;
15261 		case BPF_TRACE_ITER:
15262 			break;
15263 		default:
15264 			return -ENOTSUPP;
15265 		}
15266 		break;
15267 	case BPF_PROG_TYPE_SK_LOOKUP:
15268 		range = tnum_range(SK_DROP, SK_PASS);
15269 		break;
15270 
15271 	case BPF_PROG_TYPE_LSM:
15272 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15273 			/* Regular BPF_PROG_TYPE_LSM programs can return
15274 			 * any value.
15275 			 */
15276 			return 0;
15277 		}
15278 		if (!env->prog->aux->attach_func_proto->type) {
15279 			/* Make sure programs that attach to void
15280 			 * hooks don't try to modify return value.
15281 			 */
15282 			range = tnum_range(1, 1);
15283 		}
15284 		break;
15285 
15286 	case BPF_PROG_TYPE_NETFILTER:
15287 		range = tnum_range(NF_DROP, NF_ACCEPT);
15288 		break;
15289 	case BPF_PROG_TYPE_EXT:
15290 		/* freplace program can return anything as its return value
15291 		 * depends on the to-be-replaced kernel func or bpf program.
15292 		 */
15293 	default:
15294 		return 0;
15295 	}
15296 
15297 	if (reg->type != SCALAR_VALUE) {
15298 		verbose(env, "At program exit the register R%d is not a known value (%s)\n",
15299 			regno, reg_type_str(env, reg->type));
15300 		return -EINVAL;
15301 	}
15302 
15303 	if (!tnum_in(range, reg->var_off)) {
15304 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
15305 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
15306 		    prog_type == BPF_PROG_TYPE_LSM &&
15307 		    !prog->aux->attach_func_proto->type)
15308 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15309 		return -EINVAL;
15310 	}
15311 
15312 	if (!tnum_is_unknown(enforce_attach_type_range) &&
15313 	    tnum_in(enforce_attach_type_range, reg->var_off))
15314 		env->prog->enforce_expected_attach_type = 1;
15315 	return 0;
15316 }
15317 
15318 /* non-recursive DFS pseudo code
15319  * 1  procedure DFS-iterative(G,v):
15320  * 2      label v as discovered
15321  * 3      let S be a stack
15322  * 4      S.push(v)
15323  * 5      while S is not empty
15324  * 6            t <- S.peek()
15325  * 7            if t is what we're looking for:
15326  * 8                return t
15327  * 9            for all edges e in G.adjacentEdges(t) do
15328  * 10               if edge e is already labelled
15329  * 11                   continue with the next edge
15330  * 12               w <- G.adjacentVertex(t,e)
15331  * 13               if vertex w is not discovered and not explored
15332  * 14                   label e as tree-edge
15333  * 15                   label w as discovered
15334  * 16                   S.push(w)
15335  * 17                   continue at 5
15336  * 18               else if vertex w is discovered
15337  * 19                   label e as back-edge
15338  * 20               else
15339  * 21                   // vertex w is explored
15340  * 22                   label e as forward- or cross-edge
15341  * 23           label t as explored
15342  * 24           S.pop()
15343  *
15344  * convention:
15345  * 0x10 - discovered
15346  * 0x11 - discovered and fall-through edge labelled
15347  * 0x12 - discovered and fall-through and branch edges labelled
15348  * 0x20 - explored
15349  */
15350 
15351 enum {
15352 	DISCOVERED = 0x10,
15353 	EXPLORED = 0x20,
15354 	FALLTHROUGH = 1,
15355 	BRANCH = 2,
15356 };
15357 
15358 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15359 {
15360 	env->insn_aux_data[idx].prune_point = true;
15361 }
15362 
15363 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15364 {
15365 	return env->insn_aux_data[insn_idx].prune_point;
15366 }
15367 
15368 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15369 {
15370 	env->insn_aux_data[idx].force_checkpoint = true;
15371 }
15372 
15373 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15374 {
15375 	return env->insn_aux_data[insn_idx].force_checkpoint;
15376 }
15377 
15378 
15379 enum {
15380 	DONE_EXPLORING = 0,
15381 	KEEP_EXPLORING = 1,
15382 };
15383 
15384 /* t, w, e - match pseudo-code above:
15385  * t - index of current instruction
15386  * w - next instruction
15387  * e - edge
15388  */
15389 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
15390 		     bool loop_ok)
15391 {
15392 	int *insn_stack = env->cfg.insn_stack;
15393 	int *insn_state = env->cfg.insn_state;
15394 
15395 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15396 		return DONE_EXPLORING;
15397 
15398 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15399 		return DONE_EXPLORING;
15400 
15401 	if (w < 0 || w >= env->prog->len) {
15402 		verbose_linfo(env, t, "%d: ", t);
15403 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
15404 		return -EINVAL;
15405 	}
15406 
15407 	if (e == BRANCH) {
15408 		/* mark branch target for state pruning */
15409 		mark_prune_point(env, w);
15410 		mark_jmp_point(env, w);
15411 	}
15412 
15413 	if (insn_state[w] == 0) {
15414 		/* tree-edge */
15415 		insn_state[t] = DISCOVERED | e;
15416 		insn_state[w] = DISCOVERED;
15417 		if (env->cfg.cur_stack >= env->prog->len)
15418 			return -E2BIG;
15419 		insn_stack[env->cfg.cur_stack++] = w;
15420 		return KEEP_EXPLORING;
15421 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15422 		if (loop_ok && env->bpf_capable)
15423 			return DONE_EXPLORING;
15424 		verbose_linfo(env, t, "%d: ", t);
15425 		verbose_linfo(env, w, "%d: ", w);
15426 		verbose(env, "back-edge from insn %d to %d\n", t, w);
15427 		return -EINVAL;
15428 	} else if (insn_state[w] == EXPLORED) {
15429 		/* forward- or cross-edge */
15430 		insn_state[t] = DISCOVERED | e;
15431 	} else {
15432 		verbose(env, "insn state internal bug\n");
15433 		return -EFAULT;
15434 	}
15435 	return DONE_EXPLORING;
15436 }
15437 
15438 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15439 				struct bpf_verifier_env *env,
15440 				bool visit_callee)
15441 {
15442 	int ret;
15443 
15444 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
15445 	if (ret)
15446 		return ret;
15447 
15448 	mark_prune_point(env, t + 1);
15449 	/* when we exit from subprog, we need to record non-linear history */
15450 	mark_jmp_point(env, t + 1);
15451 
15452 	if (visit_callee) {
15453 		mark_prune_point(env, t);
15454 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
15455 				/* It's ok to allow recursion from CFG point of
15456 				 * view. __check_func_call() will do the actual
15457 				 * check.
15458 				 */
15459 				bpf_pseudo_func(insns + t));
15460 	}
15461 	return ret;
15462 }
15463 
15464 /* Visits the instruction at index t and returns one of the following:
15465  *  < 0 - an error occurred
15466  *  DONE_EXPLORING - the instruction was fully explored
15467  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
15468  */
15469 static int visit_insn(int t, struct bpf_verifier_env *env)
15470 {
15471 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15472 	int ret, off;
15473 
15474 	if (bpf_pseudo_func(insn))
15475 		return visit_func_call_insn(t, insns, env, true);
15476 
15477 	/* All non-branch instructions have a single fall-through edge. */
15478 	if (BPF_CLASS(insn->code) != BPF_JMP &&
15479 	    BPF_CLASS(insn->code) != BPF_JMP32)
15480 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
15481 
15482 	switch (BPF_OP(insn->code)) {
15483 	case BPF_EXIT:
15484 		return DONE_EXPLORING;
15485 
15486 	case BPF_CALL:
15487 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
15488 			/* Mark this call insn as a prune point to trigger
15489 			 * is_state_visited() check before call itself is
15490 			 * processed by __check_func_call(). Otherwise new
15491 			 * async state will be pushed for further exploration.
15492 			 */
15493 			mark_prune_point(env, t);
15494 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15495 			struct bpf_kfunc_call_arg_meta meta;
15496 
15497 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15498 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
15499 				mark_prune_point(env, t);
15500 				/* Checking and saving state checkpoints at iter_next() call
15501 				 * is crucial for fast convergence of open-coded iterator loop
15502 				 * logic, so we need to force it. If we don't do that,
15503 				 * is_state_visited() might skip saving a checkpoint, causing
15504 				 * unnecessarily long sequence of not checkpointed
15505 				 * instructions and jumps, leading to exhaustion of jump
15506 				 * history buffer, and potentially other undesired outcomes.
15507 				 * It is expected that with correct open-coded iterators
15508 				 * convergence will happen quickly, so we don't run a risk of
15509 				 * exhausting memory.
15510 				 */
15511 				mark_force_checkpoint(env, t);
15512 			}
15513 		}
15514 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15515 
15516 	case BPF_JA:
15517 		if (BPF_SRC(insn->code) != BPF_K)
15518 			return -EINVAL;
15519 
15520 		if (BPF_CLASS(insn->code) == BPF_JMP)
15521 			off = insn->off;
15522 		else
15523 			off = insn->imm;
15524 
15525 		/* unconditional jump with single edge */
15526 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env,
15527 				true);
15528 		if (ret)
15529 			return ret;
15530 
15531 		mark_prune_point(env, t + off + 1);
15532 		mark_jmp_point(env, t + off + 1);
15533 
15534 		return ret;
15535 
15536 	default:
15537 		/* conditional jump with two edges */
15538 		mark_prune_point(env, t);
15539 
15540 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
15541 		if (ret)
15542 			return ret;
15543 
15544 		return push_insn(t, t + insn->off + 1, BRANCH, env, true);
15545 	}
15546 }
15547 
15548 /* non-recursive depth-first-search to detect loops in BPF program
15549  * loop == back-edge in directed graph
15550  */
15551 static int check_cfg(struct bpf_verifier_env *env)
15552 {
15553 	int insn_cnt = env->prog->len;
15554 	int *insn_stack, *insn_state;
15555 	int ex_insn_beg, i, ret = 0;
15556 	bool ex_done = false;
15557 
15558 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15559 	if (!insn_state)
15560 		return -ENOMEM;
15561 
15562 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15563 	if (!insn_stack) {
15564 		kvfree(insn_state);
15565 		return -ENOMEM;
15566 	}
15567 
15568 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15569 	insn_stack[0] = 0; /* 0 is the first instruction */
15570 	env->cfg.cur_stack = 1;
15571 
15572 walk_cfg:
15573 	while (env->cfg.cur_stack > 0) {
15574 		int t = insn_stack[env->cfg.cur_stack - 1];
15575 
15576 		ret = visit_insn(t, env);
15577 		switch (ret) {
15578 		case DONE_EXPLORING:
15579 			insn_state[t] = EXPLORED;
15580 			env->cfg.cur_stack--;
15581 			break;
15582 		case KEEP_EXPLORING:
15583 			break;
15584 		default:
15585 			if (ret > 0) {
15586 				verbose(env, "visit_insn internal bug\n");
15587 				ret = -EFAULT;
15588 			}
15589 			goto err_free;
15590 		}
15591 	}
15592 
15593 	if (env->cfg.cur_stack < 0) {
15594 		verbose(env, "pop stack internal bug\n");
15595 		ret = -EFAULT;
15596 		goto err_free;
15597 	}
15598 
15599 	if (env->exception_callback_subprog && !ex_done) {
15600 		ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
15601 
15602 		insn_state[ex_insn_beg] = DISCOVERED;
15603 		insn_stack[0] = ex_insn_beg;
15604 		env->cfg.cur_stack = 1;
15605 		ex_done = true;
15606 		goto walk_cfg;
15607 	}
15608 
15609 	for (i = 0; i < insn_cnt; i++) {
15610 		if (insn_state[i] != EXPLORED) {
15611 			verbose(env, "unreachable insn %d\n", i);
15612 			ret = -EINVAL;
15613 			goto err_free;
15614 		}
15615 	}
15616 	ret = 0; /* cfg looks good */
15617 
15618 err_free:
15619 	kvfree(insn_state);
15620 	kvfree(insn_stack);
15621 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
15622 	return ret;
15623 }
15624 
15625 static int check_abnormal_return(struct bpf_verifier_env *env)
15626 {
15627 	int i;
15628 
15629 	for (i = 1; i < env->subprog_cnt; i++) {
15630 		if (env->subprog_info[i].has_ld_abs) {
15631 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15632 			return -EINVAL;
15633 		}
15634 		if (env->subprog_info[i].has_tail_call) {
15635 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15636 			return -EINVAL;
15637 		}
15638 	}
15639 	return 0;
15640 }
15641 
15642 /* The minimum supported BTF func info size */
15643 #define MIN_BPF_FUNCINFO_SIZE	8
15644 #define MAX_FUNCINFO_REC_SIZE	252
15645 
15646 static int check_btf_func_early(struct bpf_verifier_env *env,
15647 				const union bpf_attr *attr,
15648 				bpfptr_t uattr)
15649 {
15650 	u32 krec_size = sizeof(struct bpf_func_info);
15651 	const struct btf_type *type, *func_proto;
15652 	u32 i, nfuncs, urec_size, min_size;
15653 	struct bpf_func_info *krecord;
15654 	struct bpf_prog *prog;
15655 	const struct btf *btf;
15656 	u32 prev_offset = 0;
15657 	bpfptr_t urecord;
15658 	int ret = -ENOMEM;
15659 
15660 	nfuncs = attr->func_info_cnt;
15661 	if (!nfuncs) {
15662 		if (check_abnormal_return(env))
15663 			return -EINVAL;
15664 		return 0;
15665 	}
15666 
15667 	urec_size = attr->func_info_rec_size;
15668 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15669 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
15670 	    urec_size % sizeof(u32)) {
15671 		verbose(env, "invalid func info rec size %u\n", urec_size);
15672 		return -EINVAL;
15673 	}
15674 
15675 	prog = env->prog;
15676 	btf = prog->aux->btf;
15677 
15678 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15679 	min_size = min_t(u32, krec_size, urec_size);
15680 
15681 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15682 	if (!krecord)
15683 		return -ENOMEM;
15684 
15685 	for (i = 0; i < nfuncs; i++) {
15686 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15687 		if (ret) {
15688 			if (ret == -E2BIG) {
15689 				verbose(env, "nonzero tailing record in func info");
15690 				/* set the size kernel expects so loader can zero
15691 				 * out the rest of the record.
15692 				 */
15693 				if (copy_to_bpfptr_offset(uattr,
15694 							  offsetof(union bpf_attr, func_info_rec_size),
15695 							  &min_size, sizeof(min_size)))
15696 					ret = -EFAULT;
15697 			}
15698 			goto err_free;
15699 		}
15700 
15701 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15702 			ret = -EFAULT;
15703 			goto err_free;
15704 		}
15705 
15706 		/* check insn_off */
15707 		ret = -EINVAL;
15708 		if (i == 0) {
15709 			if (krecord[i].insn_off) {
15710 				verbose(env,
15711 					"nonzero insn_off %u for the first func info record",
15712 					krecord[i].insn_off);
15713 				goto err_free;
15714 			}
15715 		} else if (krecord[i].insn_off <= prev_offset) {
15716 			verbose(env,
15717 				"same or smaller insn offset (%u) than previous func info record (%u)",
15718 				krecord[i].insn_off, prev_offset);
15719 			goto err_free;
15720 		}
15721 
15722 		/* check type_id */
15723 		type = btf_type_by_id(btf, krecord[i].type_id);
15724 		if (!type || !btf_type_is_func(type)) {
15725 			verbose(env, "invalid type id %d in func info",
15726 				krecord[i].type_id);
15727 			goto err_free;
15728 		}
15729 
15730 		func_proto = btf_type_by_id(btf, type->type);
15731 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15732 			/* btf_func_check() already verified it during BTF load */
15733 			goto err_free;
15734 
15735 		prev_offset = krecord[i].insn_off;
15736 		bpfptr_add(&urecord, urec_size);
15737 	}
15738 
15739 	prog->aux->func_info = krecord;
15740 	prog->aux->func_info_cnt = nfuncs;
15741 	return 0;
15742 
15743 err_free:
15744 	kvfree(krecord);
15745 	return ret;
15746 }
15747 
15748 static int check_btf_func(struct bpf_verifier_env *env,
15749 			  const union bpf_attr *attr,
15750 			  bpfptr_t uattr)
15751 {
15752 	const struct btf_type *type, *func_proto, *ret_type;
15753 	u32 i, nfuncs, urec_size;
15754 	struct bpf_func_info *krecord;
15755 	struct bpf_func_info_aux *info_aux = NULL;
15756 	struct bpf_prog *prog;
15757 	const struct btf *btf;
15758 	bpfptr_t urecord;
15759 	bool scalar_return;
15760 	int ret = -ENOMEM;
15761 
15762 	nfuncs = attr->func_info_cnt;
15763 	if (!nfuncs) {
15764 		if (check_abnormal_return(env))
15765 			return -EINVAL;
15766 		return 0;
15767 	}
15768 	if (nfuncs != env->subprog_cnt) {
15769 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15770 		return -EINVAL;
15771 	}
15772 
15773 	urec_size = attr->func_info_rec_size;
15774 
15775 	prog = env->prog;
15776 	btf = prog->aux->btf;
15777 
15778 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15779 
15780 	krecord = prog->aux->func_info;
15781 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15782 	if (!info_aux)
15783 		return -ENOMEM;
15784 
15785 	for (i = 0; i < nfuncs; i++) {
15786 		/* check insn_off */
15787 		ret = -EINVAL;
15788 
15789 		if (env->subprog_info[i].start != krecord[i].insn_off) {
15790 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15791 			goto err_free;
15792 		}
15793 
15794 		/* Already checked type_id */
15795 		type = btf_type_by_id(btf, krecord[i].type_id);
15796 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15797 		/* Already checked func_proto */
15798 		func_proto = btf_type_by_id(btf, type->type);
15799 
15800 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15801 		scalar_return =
15802 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15803 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15804 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15805 			goto err_free;
15806 		}
15807 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15808 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15809 			goto err_free;
15810 		}
15811 
15812 		bpfptr_add(&urecord, urec_size);
15813 	}
15814 
15815 	prog->aux->func_info_aux = info_aux;
15816 	return 0;
15817 
15818 err_free:
15819 	kfree(info_aux);
15820 	return ret;
15821 }
15822 
15823 static void adjust_btf_func(struct bpf_verifier_env *env)
15824 {
15825 	struct bpf_prog_aux *aux = env->prog->aux;
15826 	int i;
15827 
15828 	if (!aux->func_info)
15829 		return;
15830 
15831 	/* func_info is not available for hidden subprogs */
15832 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
15833 		aux->func_info[i].insn_off = env->subprog_info[i].start;
15834 }
15835 
15836 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
15837 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
15838 
15839 static int check_btf_line(struct bpf_verifier_env *env,
15840 			  const union bpf_attr *attr,
15841 			  bpfptr_t uattr)
15842 {
15843 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15844 	struct bpf_subprog_info *sub;
15845 	struct bpf_line_info *linfo;
15846 	struct bpf_prog *prog;
15847 	const struct btf *btf;
15848 	bpfptr_t ulinfo;
15849 	int err;
15850 
15851 	nr_linfo = attr->line_info_cnt;
15852 	if (!nr_linfo)
15853 		return 0;
15854 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15855 		return -EINVAL;
15856 
15857 	rec_size = attr->line_info_rec_size;
15858 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15859 	    rec_size > MAX_LINEINFO_REC_SIZE ||
15860 	    rec_size & (sizeof(u32) - 1))
15861 		return -EINVAL;
15862 
15863 	/* Need to zero it in case the userspace may
15864 	 * pass in a smaller bpf_line_info object.
15865 	 */
15866 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15867 			 GFP_KERNEL | __GFP_NOWARN);
15868 	if (!linfo)
15869 		return -ENOMEM;
15870 
15871 	prog = env->prog;
15872 	btf = prog->aux->btf;
15873 
15874 	s = 0;
15875 	sub = env->subprog_info;
15876 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15877 	expected_size = sizeof(struct bpf_line_info);
15878 	ncopy = min_t(u32, expected_size, rec_size);
15879 	for (i = 0; i < nr_linfo; i++) {
15880 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15881 		if (err) {
15882 			if (err == -E2BIG) {
15883 				verbose(env, "nonzero tailing record in line_info");
15884 				if (copy_to_bpfptr_offset(uattr,
15885 							  offsetof(union bpf_attr, line_info_rec_size),
15886 							  &expected_size, sizeof(expected_size)))
15887 					err = -EFAULT;
15888 			}
15889 			goto err_free;
15890 		}
15891 
15892 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15893 			err = -EFAULT;
15894 			goto err_free;
15895 		}
15896 
15897 		/*
15898 		 * Check insn_off to ensure
15899 		 * 1) strictly increasing AND
15900 		 * 2) bounded by prog->len
15901 		 *
15902 		 * The linfo[0].insn_off == 0 check logically falls into
15903 		 * the later "missing bpf_line_info for func..." case
15904 		 * because the first linfo[0].insn_off must be the
15905 		 * first sub also and the first sub must have
15906 		 * subprog_info[0].start == 0.
15907 		 */
15908 		if ((i && linfo[i].insn_off <= prev_offset) ||
15909 		    linfo[i].insn_off >= prog->len) {
15910 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15911 				i, linfo[i].insn_off, prev_offset,
15912 				prog->len);
15913 			err = -EINVAL;
15914 			goto err_free;
15915 		}
15916 
15917 		if (!prog->insnsi[linfo[i].insn_off].code) {
15918 			verbose(env,
15919 				"Invalid insn code at line_info[%u].insn_off\n",
15920 				i);
15921 			err = -EINVAL;
15922 			goto err_free;
15923 		}
15924 
15925 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15926 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15927 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15928 			err = -EINVAL;
15929 			goto err_free;
15930 		}
15931 
15932 		if (s != env->subprog_cnt) {
15933 			if (linfo[i].insn_off == sub[s].start) {
15934 				sub[s].linfo_idx = i;
15935 				s++;
15936 			} else if (sub[s].start < linfo[i].insn_off) {
15937 				verbose(env, "missing bpf_line_info for func#%u\n", s);
15938 				err = -EINVAL;
15939 				goto err_free;
15940 			}
15941 		}
15942 
15943 		prev_offset = linfo[i].insn_off;
15944 		bpfptr_add(&ulinfo, rec_size);
15945 	}
15946 
15947 	if (s != env->subprog_cnt) {
15948 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15949 			env->subprog_cnt - s, s);
15950 		err = -EINVAL;
15951 		goto err_free;
15952 	}
15953 
15954 	prog->aux->linfo = linfo;
15955 	prog->aux->nr_linfo = nr_linfo;
15956 
15957 	return 0;
15958 
15959 err_free:
15960 	kvfree(linfo);
15961 	return err;
15962 }
15963 
15964 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
15965 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
15966 
15967 static int check_core_relo(struct bpf_verifier_env *env,
15968 			   const union bpf_attr *attr,
15969 			   bpfptr_t uattr)
15970 {
15971 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15972 	struct bpf_core_relo core_relo = {};
15973 	struct bpf_prog *prog = env->prog;
15974 	const struct btf *btf = prog->aux->btf;
15975 	struct bpf_core_ctx ctx = {
15976 		.log = &env->log,
15977 		.btf = btf,
15978 	};
15979 	bpfptr_t u_core_relo;
15980 	int err;
15981 
15982 	nr_core_relo = attr->core_relo_cnt;
15983 	if (!nr_core_relo)
15984 		return 0;
15985 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15986 		return -EINVAL;
15987 
15988 	rec_size = attr->core_relo_rec_size;
15989 	if (rec_size < MIN_CORE_RELO_SIZE ||
15990 	    rec_size > MAX_CORE_RELO_SIZE ||
15991 	    rec_size % sizeof(u32))
15992 		return -EINVAL;
15993 
15994 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15995 	expected_size = sizeof(struct bpf_core_relo);
15996 	ncopy = min_t(u32, expected_size, rec_size);
15997 
15998 	/* Unlike func_info and line_info, copy and apply each CO-RE
15999 	 * relocation record one at a time.
16000 	 */
16001 	for (i = 0; i < nr_core_relo; i++) {
16002 		/* future proofing when sizeof(bpf_core_relo) changes */
16003 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
16004 		if (err) {
16005 			if (err == -E2BIG) {
16006 				verbose(env, "nonzero tailing record in core_relo");
16007 				if (copy_to_bpfptr_offset(uattr,
16008 							  offsetof(union bpf_attr, core_relo_rec_size),
16009 							  &expected_size, sizeof(expected_size)))
16010 					err = -EFAULT;
16011 			}
16012 			break;
16013 		}
16014 
16015 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
16016 			err = -EFAULT;
16017 			break;
16018 		}
16019 
16020 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
16021 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
16022 				i, core_relo.insn_off, prog->len);
16023 			err = -EINVAL;
16024 			break;
16025 		}
16026 
16027 		err = bpf_core_apply(&ctx, &core_relo, i,
16028 				     &prog->insnsi[core_relo.insn_off / 8]);
16029 		if (err)
16030 			break;
16031 		bpfptr_add(&u_core_relo, rec_size);
16032 	}
16033 	return err;
16034 }
16035 
16036 static int check_btf_info_early(struct bpf_verifier_env *env,
16037 				const union bpf_attr *attr,
16038 				bpfptr_t uattr)
16039 {
16040 	struct btf *btf;
16041 	int err;
16042 
16043 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16044 		if (check_abnormal_return(env))
16045 			return -EINVAL;
16046 		return 0;
16047 	}
16048 
16049 	btf = btf_get_by_fd(attr->prog_btf_fd);
16050 	if (IS_ERR(btf))
16051 		return PTR_ERR(btf);
16052 	if (btf_is_kernel(btf)) {
16053 		btf_put(btf);
16054 		return -EACCES;
16055 	}
16056 	env->prog->aux->btf = btf;
16057 
16058 	err = check_btf_func_early(env, attr, uattr);
16059 	if (err)
16060 		return err;
16061 	return 0;
16062 }
16063 
16064 static int check_btf_info(struct bpf_verifier_env *env,
16065 			  const union bpf_attr *attr,
16066 			  bpfptr_t uattr)
16067 {
16068 	int err;
16069 
16070 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16071 		if (check_abnormal_return(env))
16072 			return -EINVAL;
16073 		return 0;
16074 	}
16075 
16076 	err = check_btf_func(env, attr, uattr);
16077 	if (err)
16078 		return err;
16079 
16080 	err = check_btf_line(env, attr, uattr);
16081 	if (err)
16082 		return err;
16083 
16084 	err = check_core_relo(env, attr, uattr);
16085 	if (err)
16086 		return err;
16087 
16088 	return 0;
16089 }
16090 
16091 /* check %cur's range satisfies %old's */
16092 static bool range_within(struct bpf_reg_state *old,
16093 			 struct bpf_reg_state *cur)
16094 {
16095 	return old->umin_value <= cur->umin_value &&
16096 	       old->umax_value >= cur->umax_value &&
16097 	       old->smin_value <= cur->smin_value &&
16098 	       old->smax_value >= cur->smax_value &&
16099 	       old->u32_min_value <= cur->u32_min_value &&
16100 	       old->u32_max_value >= cur->u32_max_value &&
16101 	       old->s32_min_value <= cur->s32_min_value &&
16102 	       old->s32_max_value >= cur->s32_max_value;
16103 }
16104 
16105 /* If in the old state two registers had the same id, then they need to have
16106  * the same id in the new state as well.  But that id could be different from
16107  * the old state, so we need to track the mapping from old to new ids.
16108  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
16109  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
16110  * regs with a different old id could still have new id 9, we don't care about
16111  * that.
16112  * So we look through our idmap to see if this old id has been seen before.  If
16113  * so, we require the new id to match; otherwise, we add the id pair to the map.
16114  */
16115 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16116 {
16117 	struct bpf_id_pair *map = idmap->map;
16118 	unsigned int i;
16119 
16120 	/* either both IDs should be set or both should be zero */
16121 	if (!!old_id != !!cur_id)
16122 		return false;
16123 
16124 	if (old_id == 0) /* cur_id == 0 as well */
16125 		return true;
16126 
16127 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
16128 		if (!map[i].old) {
16129 			/* Reached an empty slot; haven't seen this id before */
16130 			map[i].old = old_id;
16131 			map[i].cur = cur_id;
16132 			return true;
16133 		}
16134 		if (map[i].old == old_id)
16135 			return map[i].cur == cur_id;
16136 		if (map[i].cur == cur_id)
16137 			return false;
16138 	}
16139 	/* We ran out of idmap slots, which should be impossible */
16140 	WARN_ON_ONCE(1);
16141 	return false;
16142 }
16143 
16144 /* Similar to check_ids(), but allocate a unique temporary ID
16145  * for 'old_id' or 'cur_id' of zero.
16146  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
16147  */
16148 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16149 {
16150 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
16151 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
16152 
16153 	return check_ids(old_id, cur_id, idmap);
16154 }
16155 
16156 static void clean_func_state(struct bpf_verifier_env *env,
16157 			     struct bpf_func_state *st)
16158 {
16159 	enum bpf_reg_liveness live;
16160 	int i, j;
16161 
16162 	for (i = 0; i < BPF_REG_FP; i++) {
16163 		live = st->regs[i].live;
16164 		/* liveness must not touch this register anymore */
16165 		st->regs[i].live |= REG_LIVE_DONE;
16166 		if (!(live & REG_LIVE_READ))
16167 			/* since the register is unused, clear its state
16168 			 * to make further comparison simpler
16169 			 */
16170 			__mark_reg_not_init(env, &st->regs[i]);
16171 	}
16172 
16173 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
16174 		live = st->stack[i].spilled_ptr.live;
16175 		/* liveness must not touch this stack slot anymore */
16176 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
16177 		if (!(live & REG_LIVE_READ)) {
16178 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
16179 			for (j = 0; j < BPF_REG_SIZE; j++)
16180 				st->stack[i].slot_type[j] = STACK_INVALID;
16181 		}
16182 	}
16183 }
16184 
16185 static void clean_verifier_state(struct bpf_verifier_env *env,
16186 				 struct bpf_verifier_state *st)
16187 {
16188 	int i;
16189 
16190 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
16191 		/* all regs in this state in all frames were already marked */
16192 		return;
16193 
16194 	for (i = 0; i <= st->curframe; i++)
16195 		clean_func_state(env, st->frame[i]);
16196 }
16197 
16198 /* the parentage chains form a tree.
16199  * the verifier states are added to state lists at given insn and
16200  * pushed into state stack for future exploration.
16201  * when the verifier reaches bpf_exit insn some of the verifer states
16202  * stored in the state lists have their final liveness state already,
16203  * but a lot of states will get revised from liveness point of view when
16204  * the verifier explores other branches.
16205  * Example:
16206  * 1: r0 = 1
16207  * 2: if r1 == 100 goto pc+1
16208  * 3: r0 = 2
16209  * 4: exit
16210  * when the verifier reaches exit insn the register r0 in the state list of
16211  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
16212  * of insn 2 and goes exploring further. At the insn 4 it will walk the
16213  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
16214  *
16215  * Since the verifier pushes the branch states as it sees them while exploring
16216  * the program the condition of walking the branch instruction for the second
16217  * time means that all states below this branch were already explored and
16218  * their final liveness marks are already propagated.
16219  * Hence when the verifier completes the search of state list in is_state_visited()
16220  * we can call this clean_live_states() function to mark all liveness states
16221  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
16222  * will not be used.
16223  * This function also clears the registers and stack for states that !READ
16224  * to simplify state merging.
16225  *
16226  * Important note here that walking the same branch instruction in the callee
16227  * doesn't meant that the states are DONE. The verifier has to compare
16228  * the callsites
16229  */
16230 static void clean_live_states(struct bpf_verifier_env *env, int insn,
16231 			      struct bpf_verifier_state *cur)
16232 {
16233 	struct bpf_verifier_state_list *sl;
16234 
16235 	sl = *explored_state(env, insn);
16236 	while (sl) {
16237 		if (sl->state.branches)
16238 			goto next;
16239 		if (sl->state.insn_idx != insn ||
16240 		    !same_callsites(&sl->state, cur))
16241 			goto next;
16242 		clean_verifier_state(env, &sl->state);
16243 next:
16244 		sl = sl->next;
16245 	}
16246 }
16247 
16248 static bool regs_exact(const struct bpf_reg_state *rold,
16249 		       const struct bpf_reg_state *rcur,
16250 		       struct bpf_idmap *idmap)
16251 {
16252 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16253 	       check_ids(rold->id, rcur->id, idmap) &&
16254 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16255 }
16256 
16257 /* Returns true if (rold safe implies rcur safe) */
16258 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
16259 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact)
16260 {
16261 	if (exact)
16262 		return regs_exact(rold, rcur, idmap);
16263 
16264 	if (!(rold->live & REG_LIVE_READ))
16265 		/* explored state didn't use this */
16266 		return true;
16267 	if (rold->type == NOT_INIT)
16268 		/* explored state can't have used this */
16269 		return true;
16270 	if (rcur->type == NOT_INIT)
16271 		return false;
16272 
16273 	/* Enforce that register types have to match exactly, including their
16274 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
16275 	 * rule.
16276 	 *
16277 	 * One can make a point that using a pointer register as unbounded
16278 	 * SCALAR would be technically acceptable, but this could lead to
16279 	 * pointer leaks because scalars are allowed to leak while pointers
16280 	 * are not. We could make this safe in special cases if root is
16281 	 * calling us, but it's probably not worth the hassle.
16282 	 *
16283 	 * Also, register types that are *not* MAYBE_NULL could technically be
16284 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
16285 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
16286 	 * to the same map).
16287 	 * However, if the old MAYBE_NULL register then got NULL checked,
16288 	 * doing so could have affected others with the same id, and we can't
16289 	 * check for that because we lost the id when we converted to
16290 	 * a non-MAYBE_NULL variant.
16291 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
16292 	 * non-MAYBE_NULL registers as well.
16293 	 */
16294 	if (rold->type != rcur->type)
16295 		return false;
16296 
16297 	switch (base_type(rold->type)) {
16298 	case SCALAR_VALUE:
16299 		if (env->explore_alu_limits) {
16300 			/* explore_alu_limits disables tnum_in() and range_within()
16301 			 * logic and requires everything to be strict
16302 			 */
16303 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16304 			       check_scalar_ids(rold->id, rcur->id, idmap);
16305 		}
16306 		if (!rold->precise)
16307 			return true;
16308 		/* Why check_ids() for scalar registers?
16309 		 *
16310 		 * Consider the following BPF code:
16311 		 *   1: r6 = ... unbound scalar, ID=a ...
16312 		 *   2: r7 = ... unbound scalar, ID=b ...
16313 		 *   3: if (r6 > r7) goto +1
16314 		 *   4: r6 = r7
16315 		 *   5: if (r6 > X) goto ...
16316 		 *   6: ... memory operation using r7 ...
16317 		 *
16318 		 * First verification path is [1-6]:
16319 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16320 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16321 		 *   r7 <= X, because r6 and r7 share same id.
16322 		 * Next verification path is [1-4, 6].
16323 		 *
16324 		 * Instruction (6) would be reached in two states:
16325 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
16326 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16327 		 *
16328 		 * Use check_ids() to distinguish these states.
16329 		 * ---
16330 		 * Also verify that new value satisfies old value range knowledge.
16331 		 */
16332 		return range_within(rold, rcur) &&
16333 		       tnum_in(rold->var_off, rcur->var_off) &&
16334 		       check_scalar_ids(rold->id, rcur->id, idmap);
16335 	case PTR_TO_MAP_KEY:
16336 	case PTR_TO_MAP_VALUE:
16337 	case PTR_TO_MEM:
16338 	case PTR_TO_BUF:
16339 	case PTR_TO_TP_BUFFER:
16340 		/* If the new min/max/var_off satisfy the old ones and
16341 		 * everything else matches, we are OK.
16342 		 */
16343 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16344 		       range_within(rold, rcur) &&
16345 		       tnum_in(rold->var_off, rcur->var_off) &&
16346 		       check_ids(rold->id, rcur->id, idmap) &&
16347 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16348 	case PTR_TO_PACKET_META:
16349 	case PTR_TO_PACKET:
16350 		/* We must have at least as much range as the old ptr
16351 		 * did, so that any accesses which were safe before are
16352 		 * still safe.  This is true even if old range < old off,
16353 		 * since someone could have accessed through (ptr - k), or
16354 		 * even done ptr -= k in a register, to get a safe access.
16355 		 */
16356 		if (rold->range > rcur->range)
16357 			return false;
16358 		/* If the offsets don't match, we can't trust our alignment;
16359 		 * nor can we be sure that we won't fall out of range.
16360 		 */
16361 		if (rold->off != rcur->off)
16362 			return false;
16363 		/* id relations must be preserved */
16364 		if (!check_ids(rold->id, rcur->id, idmap))
16365 			return false;
16366 		/* new val must satisfy old val knowledge */
16367 		return range_within(rold, rcur) &&
16368 		       tnum_in(rold->var_off, rcur->var_off);
16369 	case PTR_TO_STACK:
16370 		/* two stack pointers are equal only if they're pointing to
16371 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
16372 		 */
16373 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16374 	default:
16375 		return regs_exact(rold, rcur, idmap);
16376 	}
16377 }
16378 
16379 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16380 		      struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact)
16381 {
16382 	int i, spi;
16383 
16384 	/* walk slots of the explored stack and ignore any additional
16385 	 * slots in the current stack, since explored(safe) state
16386 	 * didn't use them
16387 	 */
16388 	for (i = 0; i < old->allocated_stack; i++) {
16389 		struct bpf_reg_state *old_reg, *cur_reg;
16390 
16391 		spi = i / BPF_REG_SIZE;
16392 
16393 		if (exact &&
16394 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16395 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16396 			return false;
16397 
16398 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) {
16399 			i += BPF_REG_SIZE - 1;
16400 			/* explored state didn't use this */
16401 			continue;
16402 		}
16403 
16404 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16405 			continue;
16406 
16407 		if (env->allow_uninit_stack &&
16408 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16409 			continue;
16410 
16411 		/* explored stack has more populated slots than current stack
16412 		 * and these slots were used
16413 		 */
16414 		if (i >= cur->allocated_stack)
16415 			return false;
16416 
16417 		/* if old state was safe with misc data in the stack
16418 		 * it will be safe with zero-initialized stack.
16419 		 * The opposite is not true
16420 		 */
16421 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16422 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16423 			continue;
16424 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16425 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16426 			/* Ex: old explored (safe) state has STACK_SPILL in
16427 			 * this stack slot, but current has STACK_MISC ->
16428 			 * this verifier states are not equivalent,
16429 			 * return false to continue verification of this path
16430 			 */
16431 			return false;
16432 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16433 			continue;
16434 		/* Both old and cur are having same slot_type */
16435 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16436 		case STACK_SPILL:
16437 			/* when explored and current stack slot are both storing
16438 			 * spilled registers, check that stored pointers types
16439 			 * are the same as well.
16440 			 * Ex: explored safe path could have stored
16441 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16442 			 * but current path has stored:
16443 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16444 			 * such verifier states are not equivalent.
16445 			 * return false to continue verification of this path
16446 			 */
16447 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
16448 				     &cur->stack[spi].spilled_ptr, idmap, exact))
16449 				return false;
16450 			break;
16451 		case STACK_DYNPTR:
16452 			old_reg = &old->stack[spi].spilled_ptr;
16453 			cur_reg = &cur->stack[spi].spilled_ptr;
16454 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16455 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16456 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16457 				return false;
16458 			break;
16459 		case STACK_ITER:
16460 			old_reg = &old->stack[spi].spilled_ptr;
16461 			cur_reg = &cur->stack[spi].spilled_ptr;
16462 			/* iter.depth is not compared between states as it
16463 			 * doesn't matter for correctness and would otherwise
16464 			 * prevent convergence; we maintain it only to prevent
16465 			 * infinite loop check triggering, see
16466 			 * iter_active_depths_differ()
16467 			 */
16468 			if (old_reg->iter.btf != cur_reg->iter.btf ||
16469 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16470 			    old_reg->iter.state != cur_reg->iter.state ||
16471 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
16472 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16473 				return false;
16474 			break;
16475 		case STACK_MISC:
16476 		case STACK_ZERO:
16477 		case STACK_INVALID:
16478 			continue;
16479 		/* Ensure that new unhandled slot types return false by default */
16480 		default:
16481 			return false;
16482 		}
16483 	}
16484 	return true;
16485 }
16486 
16487 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16488 		    struct bpf_idmap *idmap)
16489 {
16490 	int i;
16491 
16492 	if (old->acquired_refs != cur->acquired_refs)
16493 		return false;
16494 
16495 	for (i = 0; i < old->acquired_refs; i++) {
16496 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16497 			return false;
16498 	}
16499 
16500 	return true;
16501 }
16502 
16503 /* compare two verifier states
16504  *
16505  * all states stored in state_list are known to be valid, since
16506  * verifier reached 'bpf_exit' instruction through them
16507  *
16508  * this function is called when verifier exploring different branches of
16509  * execution popped from the state stack. If it sees an old state that has
16510  * more strict register state and more strict stack state then this execution
16511  * branch doesn't need to be explored further, since verifier already
16512  * concluded that more strict state leads to valid finish.
16513  *
16514  * Therefore two states are equivalent if register state is more conservative
16515  * and explored stack state is more conservative than the current one.
16516  * Example:
16517  *       explored                   current
16518  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16519  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16520  *
16521  * In other words if current stack state (one being explored) has more
16522  * valid slots than old one that already passed validation, it means
16523  * the verifier can stop exploring and conclude that current state is valid too
16524  *
16525  * Similarly with registers. If explored state has register type as invalid
16526  * whereas register type in current state is meaningful, it means that
16527  * the current state will reach 'bpf_exit' instruction safely
16528  */
16529 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16530 			      struct bpf_func_state *cur, bool exact)
16531 {
16532 	int i;
16533 
16534 	for (i = 0; i < MAX_BPF_REG; i++)
16535 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
16536 			     &env->idmap_scratch, exact))
16537 			return false;
16538 
16539 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
16540 		return false;
16541 
16542 	if (!refsafe(old, cur, &env->idmap_scratch))
16543 		return false;
16544 
16545 	return true;
16546 }
16547 
16548 static void reset_idmap_scratch(struct bpf_verifier_env *env)
16549 {
16550 	env->idmap_scratch.tmp_id_gen = env->id_gen;
16551 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16552 }
16553 
16554 static bool states_equal(struct bpf_verifier_env *env,
16555 			 struct bpf_verifier_state *old,
16556 			 struct bpf_verifier_state *cur,
16557 			 bool exact)
16558 {
16559 	int i;
16560 
16561 	if (old->curframe != cur->curframe)
16562 		return false;
16563 
16564 	reset_idmap_scratch(env);
16565 
16566 	/* Verification state from speculative execution simulation
16567 	 * must never prune a non-speculative execution one.
16568 	 */
16569 	if (old->speculative && !cur->speculative)
16570 		return false;
16571 
16572 	if (old->active_lock.ptr != cur->active_lock.ptr)
16573 		return false;
16574 
16575 	/* Old and cur active_lock's have to be either both present
16576 	 * or both absent.
16577 	 */
16578 	if (!!old->active_lock.id != !!cur->active_lock.id)
16579 		return false;
16580 
16581 	if (old->active_lock.id &&
16582 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16583 		return false;
16584 
16585 	if (old->active_rcu_lock != cur->active_rcu_lock)
16586 		return false;
16587 
16588 	/* for states to be equal callsites have to be the same
16589 	 * and all frame states need to be equivalent
16590 	 */
16591 	for (i = 0; i <= old->curframe; i++) {
16592 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
16593 			return false;
16594 		if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
16595 			return false;
16596 	}
16597 	return true;
16598 }
16599 
16600 /* Return 0 if no propagation happened. Return negative error code if error
16601  * happened. Otherwise, return the propagated bit.
16602  */
16603 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16604 				  struct bpf_reg_state *reg,
16605 				  struct bpf_reg_state *parent_reg)
16606 {
16607 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16608 	u8 flag = reg->live & REG_LIVE_READ;
16609 	int err;
16610 
16611 	/* When comes here, read flags of PARENT_REG or REG could be any of
16612 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16613 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16614 	 */
16615 	if (parent_flag == REG_LIVE_READ64 ||
16616 	    /* Or if there is no read flag from REG. */
16617 	    !flag ||
16618 	    /* Or if the read flag from REG is the same as PARENT_REG. */
16619 	    parent_flag == flag)
16620 		return 0;
16621 
16622 	err = mark_reg_read(env, reg, parent_reg, flag);
16623 	if (err)
16624 		return err;
16625 
16626 	return flag;
16627 }
16628 
16629 /* A write screens off any subsequent reads; but write marks come from the
16630  * straight-line code between a state and its parent.  When we arrive at an
16631  * equivalent state (jump target or such) we didn't arrive by the straight-line
16632  * code, so read marks in the state must propagate to the parent regardless
16633  * of the state's write marks. That's what 'parent == state->parent' comparison
16634  * in mark_reg_read() is for.
16635  */
16636 static int propagate_liveness(struct bpf_verifier_env *env,
16637 			      const struct bpf_verifier_state *vstate,
16638 			      struct bpf_verifier_state *vparent)
16639 {
16640 	struct bpf_reg_state *state_reg, *parent_reg;
16641 	struct bpf_func_state *state, *parent;
16642 	int i, frame, err = 0;
16643 
16644 	if (vparent->curframe != vstate->curframe) {
16645 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
16646 		     vparent->curframe, vstate->curframe);
16647 		return -EFAULT;
16648 	}
16649 	/* Propagate read liveness of registers... */
16650 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16651 	for (frame = 0; frame <= vstate->curframe; frame++) {
16652 		parent = vparent->frame[frame];
16653 		state = vstate->frame[frame];
16654 		parent_reg = parent->regs;
16655 		state_reg = state->regs;
16656 		/* We don't need to worry about FP liveness, it's read-only */
16657 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16658 			err = propagate_liveness_reg(env, &state_reg[i],
16659 						     &parent_reg[i]);
16660 			if (err < 0)
16661 				return err;
16662 			if (err == REG_LIVE_READ64)
16663 				mark_insn_zext(env, &parent_reg[i]);
16664 		}
16665 
16666 		/* Propagate stack slots. */
16667 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16668 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16669 			parent_reg = &parent->stack[i].spilled_ptr;
16670 			state_reg = &state->stack[i].spilled_ptr;
16671 			err = propagate_liveness_reg(env, state_reg,
16672 						     parent_reg);
16673 			if (err < 0)
16674 				return err;
16675 		}
16676 	}
16677 	return 0;
16678 }
16679 
16680 /* find precise scalars in the previous equivalent state and
16681  * propagate them into the current state
16682  */
16683 static int propagate_precision(struct bpf_verifier_env *env,
16684 			       const struct bpf_verifier_state *old)
16685 {
16686 	struct bpf_reg_state *state_reg;
16687 	struct bpf_func_state *state;
16688 	int i, err = 0, fr;
16689 	bool first;
16690 
16691 	for (fr = old->curframe; fr >= 0; fr--) {
16692 		state = old->frame[fr];
16693 		state_reg = state->regs;
16694 		first = true;
16695 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
16696 			if (state_reg->type != SCALAR_VALUE ||
16697 			    !state_reg->precise ||
16698 			    !(state_reg->live & REG_LIVE_READ))
16699 				continue;
16700 			if (env->log.level & BPF_LOG_LEVEL2) {
16701 				if (first)
16702 					verbose(env, "frame %d: propagating r%d", fr, i);
16703 				else
16704 					verbose(env, ",r%d", i);
16705 			}
16706 			bt_set_frame_reg(&env->bt, fr, i);
16707 			first = false;
16708 		}
16709 
16710 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16711 			if (!is_spilled_reg(&state->stack[i]))
16712 				continue;
16713 			state_reg = &state->stack[i].spilled_ptr;
16714 			if (state_reg->type != SCALAR_VALUE ||
16715 			    !state_reg->precise ||
16716 			    !(state_reg->live & REG_LIVE_READ))
16717 				continue;
16718 			if (env->log.level & BPF_LOG_LEVEL2) {
16719 				if (first)
16720 					verbose(env, "frame %d: propagating fp%d",
16721 						fr, (-i - 1) * BPF_REG_SIZE);
16722 				else
16723 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16724 			}
16725 			bt_set_frame_slot(&env->bt, fr, i);
16726 			first = false;
16727 		}
16728 		if (!first)
16729 			verbose(env, "\n");
16730 	}
16731 
16732 	err = mark_chain_precision_batch(env);
16733 	if (err < 0)
16734 		return err;
16735 
16736 	return 0;
16737 }
16738 
16739 static bool states_maybe_looping(struct bpf_verifier_state *old,
16740 				 struct bpf_verifier_state *cur)
16741 {
16742 	struct bpf_func_state *fold, *fcur;
16743 	int i, fr = cur->curframe;
16744 
16745 	if (old->curframe != fr)
16746 		return false;
16747 
16748 	fold = old->frame[fr];
16749 	fcur = cur->frame[fr];
16750 	for (i = 0; i < MAX_BPF_REG; i++)
16751 		if (memcmp(&fold->regs[i], &fcur->regs[i],
16752 			   offsetof(struct bpf_reg_state, parent)))
16753 			return false;
16754 	return true;
16755 }
16756 
16757 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16758 {
16759 	return env->insn_aux_data[insn_idx].is_iter_next;
16760 }
16761 
16762 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16763  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16764  * states to match, which otherwise would look like an infinite loop. So while
16765  * iter_next() calls are taken care of, we still need to be careful and
16766  * prevent erroneous and too eager declaration of "ininite loop", when
16767  * iterators are involved.
16768  *
16769  * Here's a situation in pseudo-BPF assembly form:
16770  *
16771  *   0: again:                          ; set up iter_next() call args
16772  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16773  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16774  *   3:   if r0 == 0 goto done
16775  *   4:   ... something useful here ...
16776  *   5:   goto again                    ; another iteration
16777  *   6: done:
16778  *   7:   r1 = &it
16779  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16780  *   9:   exit
16781  *
16782  * This is a typical loop. Let's assume that we have a prune point at 1:,
16783  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16784  * again`, assuming other heuristics don't get in a way).
16785  *
16786  * When we first time come to 1:, let's say we have some state X. We proceed
16787  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16788  * Now we come back to validate that forked ACTIVE state. We proceed through
16789  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16790  * are converging. But the problem is that we don't know that yet, as this
16791  * convergence has to happen at iter_next() call site only. So if nothing is
16792  * done, at 1: verifier will use bounded loop logic and declare infinite
16793  * looping (and would be *technically* correct, if not for iterator's
16794  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16795  * don't want that. So what we do in process_iter_next_call() when we go on
16796  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16797  * a different iteration. So when we suspect an infinite loop, we additionally
16798  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16799  * pretend we are not looping and wait for next iter_next() call.
16800  *
16801  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16802  * loop, because that would actually mean infinite loop, as DRAINED state is
16803  * "sticky", and so we'll keep returning into the same instruction with the
16804  * same state (at least in one of possible code paths).
16805  *
16806  * This approach allows to keep infinite loop heuristic even in the face of
16807  * active iterator. E.g., C snippet below is and will be detected as
16808  * inifintely looping:
16809  *
16810  *   struct bpf_iter_num it;
16811  *   int *p, x;
16812  *
16813  *   bpf_iter_num_new(&it, 0, 10);
16814  *   while ((p = bpf_iter_num_next(&t))) {
16815  *       x = p;
16816  *       while (x--) {} // <<-- infinite loop here
16817  *   }
16818  *
16819  */
16820 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16821 {
16822 	struct bpf_reg_state *slot, *cur_slot;
16823 	struct bpf_func_state *state;
16824 	int i, fr;
16825 
16826 	for (fr = old->curframe; fr >= 0; fr--) {
16827 		state = old->frame[fr];
16828 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16829 			if (state->stack[i].slot_type[0] != STACK_ITER)
16830 				continue;
16831 
16832 			slot = &state->stack[i].spilled_ptr;
16833 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16834 				continue;
16835 
16836 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16837 			if (cur_slot->iter.depth != slot->iter.depth)
16838 				return true;
16839 		}
16840 	}
16841 	return false;
16842 }
16843 
16844 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16845 {
16846 	struct bpf_verifier_state_list *new_sl;
16847 	struct bpf_verifier_state_list *sl, **pprev;
16848 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
16849 	int i, j, n, err, states_cnt = 0;
16850 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16851 	bool add_new_state = force_new_state;
16852 	bool force_exact;
16853 
16854 	/* bpf progs typically have pruning point every 4 instructions
16855 	 * http://vger.kernel.org/bpfconf2019.html#session-1
16856 	 * Do not add new state for future pruning if the verifier hasn't seen
16857 	 * at least 2 jumps and at least 8 instructions.
16858 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16859 	 * In tests that amounts to up to 50% reduction into total verifier
16860 	 * memory consumption and 20% verifier time speedup.
16861 	 */
16862 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16863 	    env->insn_processed - env->prev_insn_processed >= 8)
16864 		add_new_state = true;
16865 
16866 	pprev = explored_state(env, insn_idx);
16867 	sl = *pprev;
16868 
16869 	clean_live_states(env, insn_idx, cur);
16870 
16871 	while (sl) {
16872 		states_cnt++;
16873 		if (sl->state.insn_idx != insn_idx)
16874 			goto next;
16875 
16876 		if (sl->state.branches) {
16877 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16878 
16879 			if (frame->in_async_callback_fn &&
16880 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16881 				/* Different async_entry_cnt means that the verifier is
16882 				 * processing another entry into async callback.
16883 				 * Seeing the same state is not an indication of infinite
16884 				 * loop or infinite recursion.
16885 				 * But finding the same state doesn't mean that it's safe
16886 				 * to stop processing the current state. The previous state
16887 				 * hasn't yet reached bpf_exit, since state.branches > 0.
16888 				 * Checking in_async_callback_fn alone is not enough either.
16889 				 * Since the verifier still needs to catch infinite loops
16890 				 * inside async callbacks.
16891 				 */
16892 				goto skip_inf_loop_check;
16893 			}
16894 			/* BPF open-coded iterators loop detection is special.
16895 			 * states_maybe_looping() logic is too simplistic in detecting
16896 			 * states that *might* be equivalent, because it doesn't know
16897 			 * about ID remapping, so don't even perform it.
16898 			 * See process_iter_next_call() and iter_active_depths_differ()
16899 			 * for overview of the logic. When current and one of parent
16900 			 * states are detected as equivalent, it's a good thing: we prove
16901 			 * convergence and can stop simulating further iterations.
16902 			 * It's safe to assume that iterator loop will finish, taking into
16903 			 * account iter_next() contract of eventually returning
16904 			 * sticky NULL result.
16905 			 *
16906 			 * Note, that states have to be compared exactly in this case because
16907 			 * read and precision marks might not be finalized inside the loop.
16908 			 * E.g. as in the program below:
16909 			 *
16910 			 *     1. r7 = -16
16911 			 *     2. r6 = bpf_get_prandom_u32()
16912 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
16913 			 *     4.   if (r6 != 42) {
16914 			 *     5.     r7 = -32
16915 			 *     6.     r6 = bpf_get_prandom_u32()
16916 			 *     7.     continue
16917 			 *     8.   }
16918 			 *     9.   r0 = r10
16919 			 *    10.   r0 += r7
16920 			 *    11.   r8 = *(u64 *)(r0 + 0)
16921 			 *    12.   r6 = bpf_get_prandom_u32()
16922 			 *    13. }
16923 			 *
16924 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
16925 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
16926 			 * not have read or precision mark for r7 yet, thus inexact states
16927 			 * comparison would discard current state with r7=-32
16928 			 * => unsafe memory access at 11 would not be caught.
16929 			 */
16930 			if (is_iter_next_insn(env, insn_idx)) {
16931 				if (states_equal(env, &sl->state, cur, true)) {
16932 					struct bpf_func_state *cur_frame;
16933 					struct bpf_reg_state *iter_state, *iter_reg;
16934 					int spi;
16935 
16936 					cur_frame = cur->frame[cur->curframe];
16937 					/* btf_check_iter_kfuncs() enforces that
16938 					 * iter state pointer is always the first arg
16939 					 */
16940 					iter_reg = &cur_frame->regs[BPF_REG_1];
16941 					/* current state is valid due to states_equal(),
16942 					 * so we can assume valid iter and reg state,
16943 					 * no need for extra (re-)validations
16944 					 */
16945 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16946 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16947 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
16948 						update_loop_entry(cur, &sl->state);
16949 						goto hit;
16950 					}
16951 				}
16952 				goto skip_inf_loop_check;
16953 			}
16954 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
16955 			if (states_maybe_looping(&sl->state, cur) &&
16956 			    states_equal(env, &sl->state, cur, false) &&
16957 			    !iter_active_depths_differ(&sl->state, cur)) {
16958 				verbose_linfo(env, insn_idx, "; ");
16959 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16960 				verbose(env, "cur state:");
16961 				print_verifier_state(env, cur->frame[cur->curframe], true);
16962 				verbose(env, "old state:");
16963 				print_verifier_state(env, sl->state.frame[cur->curframe], true);
16964 				return -EINVAL;
16965 			}
16966 			/* if the verifier is processing a loop, avoid adding new state
16967 			 * too often, since different loop iterations have distinct
16968 			 * states and may not help future pruning.
16969 			 * This threshold shouldn't be too low to make sure that
16970 			 * a loop with large bound will be rejected quickly.
16971 			 * The most abusive loop will be:
16972 			 * r1 += 1
16973 			 * if r1 < 1000000 goto pc-2
16974 			 * 1M insn_procssed limit / 100 == 10k peak states.
16975 			 * This threshold shouldn't be too high either, since states
16976 			 * at the end of the loop are likely to be useful in pruning.
16977 			 */
16978 skip_inf_loop_check:
16979 			if (!force_new_state &&
16980 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
16981 			    env->insn_processed - env->prev_insn_processed < 100)
16982 				add_new_state = false;
16983 			goto miss;
16984 		}
16985 		/* If sl->state is a part of a loop and this loop's entry is a part of
16986 		 * current verification path then states have to be compared exactly.
16987 		 * 'force_exact' is needed to catch the following case:
16988 		 *
16989 		 *                initial     Here state 'succ' was processed first,
16990 		 *                  |         it was eventually tracked to produce a
16991 		 *                  V         state identical to 'hdr'.
16992 		 *     .---------> hdr        All branches from 'succ' had been explored
16993 		 *     |            |         and thus 'succ' has its .branches == 0.
16994 		 *     |            V
16995 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
16996 		 *     |    |       |         to the same instruction + callsites.
16997 		 *     |    V       V         In such case it is necessary to check
16998 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
16999 		 *     |    |       |         If 'succ' and 'cur' are a part of the
17000 		 *     |    V       V         same loop exact flag has to be set.
17001 		 *     |   succ <- cur        To check if that is the case, verify
17002 		 *     |    |                 if loop entry of 'succ' is in current
17003 		 *     |    V                 DFS path.
17004 		 *     |   ...
17005 		 *     |    |
17006 		 *     '----'
17007 		 *
17008 		 * Additional details are in the comment before get_loop_entry().
17009 		 */
17010 		loop_entry = get_loop_entry(&sl->state);
17011 		force_exact = loop_entry && loop_entry->branches > 0;
17012 		if (states_equal(env, &sl->state, cur, force_exact)) {
17013 			if (force_exact)
17014 				update_loop_entry(cur, loop_entry);
17015 hit:
17016 			sl->hit_cnt++;
17017 			/* reached equivalent register/stack state,
17018 			 * prune the search.
17019 			 * Registers read by the continuation are read by us.
17020 			 * If we have any write marks in env->cur_state, they
17021 			 * will prevent corresponding reads in the continuation
17022 			 * from reaching our parent (an explored_state).  Our
17023 			 * own state will get the read marks recorded, but
17024 			 * they'll be immediately forgotten as we're pruning
17025 			 * this state and will pop a new one.
17026 			 */
17027 			err = propagate_liveness(env, &sl->state, cur);
17028 
17029 			/* if previous state reached the exit with precision and
17030 			 * current state is equivalent to it (except precsion marks)
17031 			 * the precision needs to be propagated back in
17032 			 * the current state.
17033 			 */
17034 			err = err ? : push_jmp_history(env, cur);
17035 			err = err ? : propagate_precision(env, &sl->state);
17036 			if (err)
17037 				return err;
17038 			return 1;
17039 		}
17040 miss:
17041 		/* when new state is not going to be added do not increase miss count.
17042 		 * Otherwise several loop iterations will remove the state
17043 		 * recorded earlier. The goal of these heuristics is to have
17044 		 * states from some iterations of the loop (some in the beginning
17045 		 * and some at the end) to help pruning.
17046 		 */
17047 		if (add_new_state)
17048 			sl->miss_cnt++;
17049 		/* heuristic to determine whether this state is beneficial
17050 		 * to keep checking from state equivalence point of view.
17051 		 * Higher numbers increase max_states_per_insn and verification time,
17052 		 * but do not meaningfully decrease insn_processed.
17053 		 * 'n' controls how many times state could miss before eviction.
17054 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
17055 		 * too early would hinder iterator convergence.
17056 		 */
17057 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
17058 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
17059 			/* the state is unlikely to be useful. Remove it to
17060 			 * speed up verification
17061 			 */
17062 			*pprev = sl->next;
17063 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
17064 			    !sl->state.used_as_loop_entry) {
17065 				u32 br = sl->state.branches;
17066 
17067 				WARN_ONCE(br,
17068 					  "BUG live_done but branches_to_explore %d\n",
17069 					  br);
17070 				free_verifier_state(&sl->state, false);
17071 				kfree(sl);
17072 				env->peak_states--;
17073 			} else {
17074 				/* cannot free this state, since parentage chain may
17075 				 * walk it later. Add it for free_list instead to
17076 				 * be freed at the end of verification
17077 				 */
17078 				sl->next = env->free_list;
17079 				env->free_list = sl;
17080 			}
17081 			sl = *pprev;
17082 			continue;
17083 		}
17084 next:
17085 		pprev = &sl->next;
17086 		sl = *pprev;
17087 	}
17088 
17089 	if (env->max_states_per_insn < states_cnt)
17090 		env->max_states_per_insn = states_cnt;
17091 
17092 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
17093 		return 0;
17094 
17095 	if (!add_new_state)
17096 		return 0;
17097 
17098 	/* There were no equivalent states, remember the current one.
17099 	 * Technically the current state is not proven to be safe yet,
17100 	 * but it will either reach outer most bpf_exit (which means it's safe)
17101 	 * or it will be rejected. When there are no loops the verifier won't be
17102 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
17103 	 * again on the way to bpf_exit.
17104 	 * When looping the sl->state.branches will be > 0 and this state
17105 	 * will not be considered for equivalence until branches == 0.
17106 	 */
17107 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
17108 	if (!new_sl)
17109 		return -ENOMEM;
17110 	env->total_states++;
17111 	env->peak_states++;
17112 	env->prev_jmps_processed = env->jmps_processed;
17113 	env->prev_insn_processed = env->insn_processed;
17114 
17115 	/* forget precise markings we inherited, see __mark_chain_precision */
17116 	if (env->bpf_capable)
17117 		mark_all_scalars_imprecise(env, cur);
17118 
17119 	/* add new state to the head of linked list */
17120 	new = &new_sl->state;
17121 	err = copy_verifier_state(new, cur);
17122 	if (err) {
17123 		free_verifier_state(new, false);
17124 		kfree(new_sl);
17125 		return err;
17126 	}
17127 	new->insn_idx = insn_idx;
17128 	WARN_ONCE(new->branches != 1,
17129 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
17130 
17131 	cur->parent = new;
17132 	cur->first_insn_idx = insn_idx;
17133 	cur->dfs_depth = new->dfs_depth + 1;
17134 	clear_jmp_history(cur);
17135 	new_sl->next = *explored_state(env, insn_idx);
17136 	*explored_state(env, insn_idx) = new_sl;
17137 	/* connect new state to parentage chain. Current frame needs all
17138 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
17139 	 * to the stack implicitly by JITs) so in callers' frames connect just
17140 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
17141 	 * the state of the call instruction (with WRITTEN set), and r0 comes
17142 	 * from callee with its full parentage chain, anyway.
17143 	 */
17144 	/* clear write marks in current state: the writes we did are not writes
17145 	 * our child did, so they don't screen off its reads from us.
17146 	 * (There are no read marks in current state, because reads always mark
17147 	 * their parent and current state never has children yet.  Only
17148 	 * explored_states can get read marks.)
17149 	 */
17150 	for (j = 0; j <= cur->curframe; j++) {
17151 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
17152 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
17153 		for (i = 0; i < BPF_REG_FP; i++)
17154 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
17155 	}
17156 
17157 	/* all stack frames are accessible from callee, clear them all */
17158 	for (j = 0; j <= cur->curframe; j++) {
17159 		struct bpf_func_state *frame = cur->frame[j];
17160 		struct bpf_func_state *newframe = new->frame[j];
17161 
17162 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
17163 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
17164 			frame->stack[i].spilled_ptr.parent =
17165 						&newframe->stack[i].spilled_ptr;
17166 		}
17167 	}
17168 	return 0;
17169 }
17170 
17171 /* Return true if it's OK to have the same insn return a different type. */
17172 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
17173 {
17174 	switch (base_type(type)) {
17175 	case PTR_TO_CTX:
17176 	case PTR_TO_SOCKET:
17177 	case PTR_TO_SOCK_COMMON:
17178 	case PTR_TO_TCP_SOCK:
17179 	case PTR_TO_XDP_SOCK:
17180 	case PTR_TO_BTF_ID:
17181 		return false;
17182 	default:
17183 		return true;
17184 	}
17185 }
17186 
17187 /* If an instruction was previously used with particular pointer types, then we
17188  * need to be careful to avoid cases such as the below, where it may be ok
17189  * for one branch accessing the pointer, but not ok for the other branch:
17190  *
17191  * R1 = sock_ptr
17192  * goto X;
17193  * ...
17194  * R1 = some_other_valid_ptr;
17195  * goto X;
17196  * ...
17197  * R2 = *(u32 *)(R1 + 0);
17198  */
17199 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
17200 {
17201 	return src != prev && (!reg_type_mismatch_ok(src) ||
17202 			       !reg_type_mismatch_ok(prev));
17203 }
17204 
17205 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
17206 			     bool allow_trust_missmatch)
17207 {
17208 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
17209 
17210 	if (*prev_type == NOT_INIT) {
17211 		/* Saw a valid insn
17212 		 * dst_reg = *(u32 *)(src_reg + off)
17213 		 * save type to validate intersecting paths
17214 		 */
17215 		*prev_type = type;
17216 	} else if (reg_type_mismatch(type, *prev_type)) {
17217 		/* Abuser program is trying to use the same insn
17218 		 * dst_reg = *(u32*) (src_reg + off)
17219 		 * with different pointer types:
17220 		 * src_reg == ctx in one branch and
17221 		 * src_reg == stack|map in some other branch.
17222 		 * Reject it.
17223 		 */
17224 		if (allow_trust_missmatch &&
17225 		    base_type(type) == PTR_TO_BTF_ID &&
17226 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
17227 			/*
17228 			 * Have to support a use case when one path through
17229 			 * the program yields TRUSTED pointer while another
17230 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
17231 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
17232 			 */
17233 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
17234 		} else {
17235 			verbose(env, "same insn cannot be used with different pointers\n");
17236 			return -EINVAL;
17237 		}
17238 	}
17239 
17240 	return 0;
17241 }
17242 
17243 static int do_check(struct bpf_verifier_env *env)
17244 {
17245 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
17246 	struct bpf_verifier_state *state = env->cur_state;
17247 	struct bpf_insn *insns = env->prog->insnsi;
17248 	struct bpf_reg_state *regs;
17249 	int insn_cnt = env->prog->len;
17250 	bool do_print_state = false;
17251 	int prev_insn_idx = -1;
17252 
17253 	for (;;) {
17254 		bool exception_exit = false;
17255 		struct bpf_insn *insn;
17256 		u8 class;
17257 		int err;
17258 
17259 		env->prev_insn_idx = prev_insn_idx;
17260 		if (env->insn_idx >= insn_cnt) {
17261 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
17262 				env->insn_idx, insn_cnt);
17263 			return -EFAULT;
17264 		}
17265 
17266 		insn = &insns[env->insn_idx];
17267 		class = BPF_CLASS(insn->code);
17268 
17269 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17270 			verbose(env,
17271 				"BPF program is too large. Processed %d insn\n",
17272 				env->insn_processed);
17273 			return -E2BIG;
17274 		}
17275 
17276 		state->last_insn_idx = env->prev_insn_idx;
17277 
17278 		if (is_prune_point(env, env->insn_idx)) {
17279 			err = is_state_visited(env, env->insn_idx);
17280 			if (err < 0)
17281 				return err;
17282 			if (err == 1) {
17283 				/* found equivalent state, can prune the search */
17284 				if (env->log.level & BPF_LOG_LEVEL) {
17285 					if (do_print_state)
17286 						verbose(env, "\nfrom %d to %d%s: safe\n",
17287 							env->prev_insn_idx, env->insn_idx,
17288 							env->cur_state->speculative ?
17289 							" (speculative execution)" : "");
17290 					else
17291 						verbose(env, "%d: safe\n", env->insn_idx);
17292 				}
17293 				goto process_bpf_exit;
17294 			}
17295 		}
17296 
17297 		if (is_jmp_point(env, env->insn_idx)) {
17298 			err = push_jmp_history(env, state);
17299 			if (err)
17300 				return err;
17301 		}
17302 
17303 		if (signal_pending(current))
17304 			return -EAGAIN;
17305 
17306 		if (need_resched())
17307 			cond_resched();
17308 
17309 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17310 			verbose(env, "\nfrom %d to %d%s:",
17311 				env->prev_insn_idx, env->insn_idx,
17312 				env->cur_state->speculative ?
17313 				" (speculative execution)" : "");
17314 			print_verifier_state(env, state->frame[state->curframe], true);
17315 			do_print_state = false;
17316 		}
17317 
17318 		if (env->log.level & BPF_LOG_LEVEL) {
17319 			const struct bpf_insn_cbs cbs = {
17320 				.cb_call	= disasm_kfunc_name,
17321 				.cb_print	= verbose,
17322 				.private_data	= env,
17323 			};
17324 
17325 			if (verifier_state_scratched(env))
17326 				print_insn_state(env, state->frame[state->curframe]);
17327 
17328 			verbose_linfo(env, env->insn_idx, "; ");
17329 			env->prev_log_pos = env->log.end_pos;
17330 			verbose(env, "%d: ", env->insn_idx);
17331 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17332 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17333 			env->prev_log_pos = env->log.end_pos;
17334 		}
17335 
17336 		if (bpf_prog_is_offloaded(env->prog->aux)) {
17337 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17338 							   env->prev_insn_idx);
17339 			if (err)
17340 				return err;
17341 		}
17342 
17343 		regs = cur_regs(env);
17344 		sanitize_mark_insn_seen(env);
17345 		prev_insn_idx = env->insn_idx;
17346 
17347 		if (class == BPF_ALU || class == BPF_ALU64) {
17348 			err = check_alu_op(env, insn);
17349 			if (err)
17350 				return err;
17351 
17352 		} else if (class == BPF_LDX) {
17353 			enum bpf_reg_type src_reg_type;
17354 
17355 			/* check for reserved fields is already done */
17356 
17357 			/* check src operand */
17358 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17359 			if (err)
17360 				return err;
17361 
17362 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17363 			if (err)
17364 				return err;
17365 
17366 			src_reg_type = regs[insn->src_reg].type;
17367 
17368 			/* check that memory (src_reg + off) is readable,
17369 			 * the state of dst_reg will be updated by this func
17370 			 */
17371 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
17372 					       insn->off, BPF_SIZE(insn->code),
17373 					       BPF_READ, insn->dst_reg, false,
17374 					       BPF_MODE(insn->code) == BPF_MEMSX);
17375 			if (err)
17376 				return err;
17377 
17378 			err = save_aux_ptr_type(env, src_reg_type, true);
17379 			if (err)
17380 				return err;
17381 		} else if (class == BPF_STX) {
17382 			enum bpf_reg_type dst_reg_type;
17383 
17384 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17385 				err = check_atomic(env, env->insn_idx, insn);
17386 				if (err)
17387 					return err;
17388 				env->insn_idx++;
17389 				continue;
17390 			}
17391 
17392 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17393 				verbose(env, "BPF_STX uses reserved fields\n");
17394 				return -EINVAL;
17395 			}
17396 
17397 			/* check src1 operand */
17398 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17399 			if (err)
17400 				return err;
17401 			/* check src2 operand */
17402 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17403 			if (err)
17404 				return err;
17405 
17406 			dst_reg_type = regs[insn->dst_reg].type;
17407 
17408 			/* check that memory (dst_reg + off) is writeable */
17409 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17410 					       insn->off, BPF_SIZE(insn->code),
17411 					       BPF_WRITE, insn->src_reg, false, false);
17412 			if (err)
17413 				return err;
17414 
17415 			err = save_aux_ptr_type(env, dst_reg_type, false);
17416 			if (err)
17417 				return err;
17418 		} else if (class == BPF_ST) {
17419 			enum bpf_reg_type dst_reg_type;
17420 
17421 			if (BPF_MODE(insn->code) != BPF_MEM ||
17422 			    insn->src_reg != BPF_REG_0) {
17423 				verbose(env, "BPF_ST uses reserved fields\n");
17424 				return -EINVAL;
17425 			}
17426 			/* check src operand */
17427 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17428 			if (err)
17429 				return err;
17430 
17431 			dst_reg_type = regs[insn->dst_reg].type;
17432 
17433 			/* check that memory (dst_reg + off) is writeable */
17434 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17435 					       insn->off, BPF_SIZE(insn->code),
17436 					       BPF_WRITE, -1, false, false);
17437 			if (err)
17438 				return err;
17439 
17440 			err = save_aux_ptr_type(env, dst_reg_type, false);
17441 			if (err)
17442 				return err;
17443 		} else if (class == BPF_JMP || class == BPF_JMP32) {
17444 			u8 opcode = BPF_OP(insn->code);
17445 
17446 			env->jmps_processed++;
17447 			if (opcode == BPF_CALL) {
17448 				if (BPF_SRC(insn->code) != BPF_K ||
17449 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17450 				     && insn->off != 0) ||
17451 				    (insn->src_reg != BPF_REG_0 &&
17452 				     insn->src_reg != BPF_PSEUDO_CALL &&
17453 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17454 				    insn->dst_reg != BPF_REG_0 ||
17455 				    class == BPF_JMP32) {
17456 					verbose(env, "BPF_CALL uses reserved fields\n");
17457 					return -EINVAL;
17458 				}
17459 
17460 				if (env->cur_state->active_lock.ptr) {
17461 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17462 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
17463 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17464 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17465 						verbose(env, "function calls are not allowed while holding a lock\n");
17466 						return -EINVAL;
17467 					}
17468 				}
17469 				if (insn->src_reg == BPF_PSEUDO_CALL) {
17470 					err = check_func_call(env, insn, &env->insn_idx);
17471 				} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17472 					err = check_kfunc_call(env, insn, &env->insn_idx);
17473 					if (!err && is_bpf_throw_kfunc(insn)) {
17474 						exception_exit = true;
17475 						goto process_bpf_exit_full;
17476 					}
17477 				} else {
17478 					err = check_helper_call(env, insn, &env->insn_idx);
17479 				}
17480 				if (err)
17481 					return err;
17482 
17483 				mark_reg_scratched(env, BPF_REG_0);
17484 			} else if (opcode == BPF_JA) {
17485 				if (BPF_SRC(insn->code) != BPF_K ||
17486 				    insn->src_reg != BPF_REG_0 ||
17487 				    insn->dst_reg != BPF_REG_0 ||
17488 				    (class == BPF_JMP && insn->imm != 0) ||
17489 				    (class == BPF_JMP32 && insn->off != 0)) {
17490 					verbose(env, "BPF_JA uses reserved fields\n");
17491 					return -EINVAL;
17492 				}
17493 
17494 				if (class == BPF_JMP)
17495 					env->insn_idx += insn->off + 1;
17496 				else
17497 					env->insn_idx += insn->imm + 1;
17498 				continue;
17499 
17500 			} else if (opcode == BPF_EXIT) {
17501 				if (BPF_SRC(insn->code) != BPF_K ||
17502 				    insn->imm != 0 ||
17503 				    insn->src_reg != BPF_REG_0 ||
17504 				    insn->dst_reg != BPF_REG_0 ||
17505 				    class == BPF_JMP32) {
17506 					verbose(env, "BPF_EXIT uses reserved fields\n");
17507 					return -EINVAL;
17508 				}
17509 process_bpf_exit_full:
17510 				if (env->cur_state->active_lock.ptr &&
17511 				    !in_rbtree_lock_required_cb(env)) {
17512 					verbose(env, "bpf_spin_unlock is missing\n");
17513 					return -EINVAL;
17514 				}
17515 
17516 				if (env->cur_state->active_rcu_lock &&
17517 				    !in_rbtree_lock_required_cb(env)) {
17518 					verbose(env, "bpf_rcu_read_unlock is missing\n");
17519 					return -EINVAL;
17520 				}
17521 
17522 				/* We must do check_reference_leak here before
17523 				 * prepare_func_exit to handle the case when
17524 				 * state->curframe > 0, it may be a callback
17525 				 * function, for which reference_state must
17526 				 * match caller reference state when it exits.
17527 				 */
17528 				err = check_reference_leak(env, exception_exit);
17529 				if (err)
17530 					return err;
17531 
17532 				/* The side effect of the prepare_func_exit
17533 				 * which is being skipped is that it frees
17534 				 * bpf_func_state. Typically, process_bpf_exit
17535 				 * will only be hit with outermost exit.
17536 				 * copy_verifier_state in pop_stack will handle
17537 				 * freeing of any extra bpf_func_state left over
17538 				 * from not processing all nested function
17539 				 * exits. We also skip return code checks as
17540 				 * they are not needed for exceptional exits.
17541 				 */
17542 				if (exception_exit)
17543 					goto process_bpf_exit;
17544 
17545 				if (state->curframe) {
17546 					/* exit from nested function */
17547 					err = prepare_func_exit(env, &env->insn_idx);
17548 					if (err)
17549 						return err;
17550 					do_print_state = true;
17551 					continue;
17552 				}
17553 
17554 				err = check_return_code(env, BPF_REG_0);
17555 				if (err)
17556 					return err;
17557 process_bpf_exit:
17558 				mark_verifier_state_scratched(env);
17559 				update_branch_counts(env, env->cur_state);
17560 				err = pop_stack(env, &prev_insn_idx,
17561 						&env->insn_idx, pop_log);
17562 				if (err < 0) {
17563 					if (err != -ENOENT)
17564 						return err;
17565 					break;
17566 				} else {
17567 					do_print_state = true;
17568 					continue;
17569 				}
17570 			} else {
17571 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
17572 				if (err)
17573 					return err;
17574 			}
17575 		} else if (class == BPF_LD) {
17576 			u8 mode = BPF_MODE(insn->code);
17577 
17578 			if (mode == BPF_ABS || mode == BPF_IND) {
17579 				err = check_ld_abs(env, insn);
17580 				if (err)
17581 					return err;
17582 
17583 			} else if (mode == BPF_IMM) {
17584 				err = check_ld_imm(env, insn);
17585 				if (err)
17586 					return err;
17587 
17588 				env->insn_idx++;
17589 				sanitize_mark_insn_seen(env);
17590 			} else {
17591 				verbose(env, "invalid BPF_LD mode\n");
17592 				return -EINVAL;
17593 			}
17594 		} else {
17595 			verbose(env, "unknown insn class %d\n", class);
17596 			return -EINVAL;
17597 		}
17598 
17599 		env->insn_idx++;
17600 	}
17601 
17602 	return 0;
17603 }
17604 
17605 static int find_btf_percpu_datasec(struct btf *btf)
17606 {
17607 	const struct btf_type *t;
17608 	const char *tname;
17609 	int i, n;
17610 
17611 	/*
17612 	 * Both vmlinux and module each have their own ".data..percpu"
17613 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17614 	 * types to look at only module's own BTF types.
17615 	 */
17616 	n = btf_nr_types(btf);
17617 	if (btf_is_module(btf))
17618 		i = btf_nr_types(btf_vmlinux);
17619 	else
17620 		i = 1;
17621 
17622 	for(; i < n; i++) {
17623 		t = btf_type_by_id(btf, i);
17624 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17625 			continue;
17626 
17627 		tname = btf_name_by_offset(btf, t->name_off);
17628 		if (!strcmp(tname, ".data..percpu"))
17629 			return i;
17630 	}
17631 
17632 	return -ENOENT;
17633 }
17634 
17635 /* replace pseudo btf_id with kernel symbol address */
17636 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17637 			       struct bpf_insn *insn,
17638 			       struct bpf_insn_aux_data *aux)
17639 {
17640 	const struct btf_var_secinfo *vsi;
17641 	const struct btf_type *datasec;
17642 	struct btf_mod_pair *btf_mod;
17643 	const struct btf_type *t;
17644 	const char *sym_name;
17645 	bool percpu = false;
17646 	u32 type, id = insn->imm;
17647 	struct btf *btf;
17648 	s32 datasec_id;
17649 	u64 addr;
17650 	int i, btf_fd, err;
17651 
17652 	btf_fd = insn[1].imm;
17653 	if (btf_fd) {
17654 		btf = btf_get_by_fd(btf_fd);
17655 		if (IS_ERR(btf)) {
17656 			verbose(env, "invalid module BTF object FD specified.\n");
17657 			return -EINVAL;
17658 		}
17659 	} else {
17660 		if (!btf_vmlinux) {
17661 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17662 			return -EINVAL;
17663 		}
17664 		btf = btf_vmlinux;
17665 		btf_get(btf);
17666 	}
17667 
17668 	t = btf_type_by_id(btf, id);
17669 	if (!t) {
17670 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
17671 		err = -ENOENT;
17672 		goto err_put;
17673 	}
17674 
17675 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
17676 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
17677 		err = -EINVAL;
17678 		goto err_put;
17679 	}
17680 
17681 	sym_name = btf_name_by_offset(btf, t->name_off);
17682 	addr = kallsyms_lookup_name(sym_name);
17683 	if (!addr) {
17684 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
17685 			sym_name);
17686 		err = -ENOENT;
17687 		goto err_put;
17688 	}
17689 	insn[0].imm = (u32)addr;
17690 	insn[1].imm = addr >> 32;
17691 
17692 	if (btf_type_is_func(t)) {
17693 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17694 		aux->btf_var.mem_size = 0;
17695 		goto check_btf;
17696 	}
17697 
17698 	datasec_id = find_btf_percpu_datasec(btf);
17699 	if (datasec_id > 0) {
17700 		datasec = btf_type_by_id(btf, datasec_id);
17701 		for_each_vsi(i, datasec, vsi) {
17702 			if (vsi->type == id) {
17703 				percpu = true;
17704 				break;
17705 			}
17706 		}
17707 	}
17708 
17709 	type = t->type;
17710 	t = btf_type_skip_modifiers(btf, type, NULL);
17711 	if (percpu) {
17712 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
17713 		aux->btf_var.btf = btf;
17714 		aux->btf_var.btf_id = type;
17715 	} else if (!btf_type_is_struct(t)) {
17716 		const struct btf_type *ret;
17717 		const char *tname;
17718 		u32 tsize;
17719 
17720 		/* resolve the type size of ksym. */
17721 		ret = btf_resolve_size(btf, t, &tsize);
17722 		if (IS_ERR(ret)) {
17723 			tname = btf_name_by_offset(btf, t->name_off);
17724 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
17725 				tname, PTR_ERR(ret));
17726 			err = -EINVAL;
17727 			goto err_put;
17728 		}
17729 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17730 		aux->btf_var.mem_size = tsize;
17731 	} else {
17732 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
17733 		aux->btf_var.btf = btf;
17734 		aux->btf_var.btf_id = type;
17735 	}
17736 check_btf:
17737 	/* check whether we recorded this BTF (and maybe module) already */
17738 	for (i = 0; i < env->used_btf_cnt; i++) {
17739 		if (env->used_btfs[i].btf == btf) {
17740 			btf_put(btf);
17741 			return 0;
17742 		}
17743 	}
17744 
17745 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
17746 		err = -E2BIG;
17747 		goto err_put;
17748 	}
17749 
17750 	btf_mod = &env->used_btfs[env->used_btf_cnt];
17751 	btf_mod->btf = btf;
17752 	btf_mod->module = NULL;
17753 
17754 	/* if we reference variables from kernel module, bump its refcount */
17755 	if (btf_is_module(btf)) {
17756 		btf_mod->module = btf_try_get_module(btf);
17757 		if (!btf_mod->module) {
17758 			err = -ENXIO;
17759 			goto err_put;
17760 		}
17761 	}
17762 
17763 	env->used_btf_cnt++;
17764 
17765 	return 0;
17766 err_put:
17767 	btf_put(btf);
17768 	return err;
17769 }
17770 
17771 static bool is_tracing_prog_type(enum bpf_prog_type type)
17772 {
17773 	switch (type) {
17774 	case BPF_PROG_TYPE_KPROBE:
17775 	case BPF_PROG_TYPE_TRACEPOINT:
17776 	case BPF_PROG_TYPE_PERF_EVENT:
17777 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
17778 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
17779 		return true;
17780 	default:
17781 		return false;
17782 	}
17783 }
17784 
17785 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
17786 					struct bpf_map *map,
17787 					struct bpf_prog *prog)
17788 
17789 {
17790 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
17791 
17792 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
17793 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
17794 		if (is_tracing_prog_type(prog_type)) {
17795 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17796 			return -EINVAL;
17797 		}
17798 	}
17799 
17800 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17801 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17802 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17803 			return -EINVAL;
17804 		}
17805 
17806 		if (is_tracing_prog_type(prog_type)) {
17807 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17808 			return -EINVAL;
17809 		}
17810 	}
17811 
17812 	if (btf_record_has_field(map->record, BPF_TIMER)) {
17813 		if (is_tracing_prog_type(prog_type)) {
17814 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
17815 			return -EINVAL;
17816 		}
17817 	}
17818 
17819 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17820 	    !bpf_offload_prog_map_match(prog, map)) {
17821 		verbose(env, "offload device mismatch between prog and map\n");
17822 		return -EINVAL;
17823 	}
17824 
17825 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17826 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17827 		return -EINVAL;
17828 	}
17829 
17830 	if (prog->aux->sleepable)
17831 		switch (map->map_type) {
17832 		case BPF_MAP_TYPE_HASH:
17833 		case BPF_MAP_TYPE_LRU_HASH:
17834 		case BPF_MAP_TYPE_ARRAY:
17835 		case BPF_MAP_TYPE_PERCPU_HASH:
17836 		case BPF_MAP_TYPE_PERCPU_ARRAY:
17837 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17838 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17839 		case BPF_MAP_TYPE_HASH_OF_MAPS:
17840 		case BPF_MAP_TYPE_RINGBUF:
17841 		case BPF_MAP_TYPE_USER_RINGBUF:
17842 		case BPF_MAP_TYPE_INODE_STORAGE:
17843 		case BPF_MAP_TYPE_SK_STORAGE:
17844 		case BPF_MAP_TYPE_TASK_STORAGE:
17845 		case BPF_MAP_TYPE_CGRP_STORAGE:
17846 			break;
17847 		default:
17848 			verbose(env,
17849 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17850 			return -EINVAL;
17851 		}
17852 
17853 	return 0;
17854 }
17855 
17856 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17857 {
17858 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17859 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17860 }
17861 
17862 /* find and rewrite pseudo imm in ld_imm64 instructions:
17863  *
17864  * 1. if it accesses map FD, replace it with actual map pointer.
17865  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17866  *
17867  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17868  */
17869 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17870 {
17871 	struct bpf_insn *insn = env->prog->insnsi;
17872 	int insn_cnt = env->prog->len;
17873 	int i, j, err;
17874 
17875 	err = bpf_prog_calc_tag(env->prog);
17876 	if (err)
17877 		return err;
17878 
17879 	for (i = 0; i < insn_cnt; i++, insn++) {
17880 		if (BPF_CLASS(insn->code) == BPF_LDX &&
17881 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17882 		    insn->imm != 0)) {
17883 			verbose(env, "BPF_LDX uses reserved fields\n");
17884 			return -EINVAL;
17885 		}
17886 
17887 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17888 			struct bpf_insn_aux_data *aux;
17889 			struct bpf_map *map;
17890 			struct fd f;
17891 			u64 addr;
17892 			u32 fd;
17893 
17894 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
17895 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17896 			    insn[1].off != 0) {
17897 				verbose(env, "invalid bpf_ld_imm64 insn\n");
17898 				return -EINVAL;
17899 			}
17900 
17901 			if (insn[0].src_reg == 0)
17902 				/* valid generic load 64-bit imm */
17903 				goto next_insn;
17904 
17905 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17906 				aux = &env->insn_aux_data[i];
17907 				err = check_pseudo_btf_id(env, insn, aux);
17908 				if (err)
17909 					return err;
17910 				goto next_insn;
17911 			}
17912 
17913 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17914 				aux = &env->insn_aux_data[i];
17915 				aux->ptr_type = PTR_TO_FUNC;
17916 				goto next_insn;
17917 			}
17918 
17919 			/* In final convert_pseudo_ld_imm64() step, this is
17920 			 * converted into regular 64-bit imm load insn.
17921 			 */
17922 			switch (insn[0].src_reg) {
17923 			case BPF_PSEUDO_MAP_VALUE:
17924 			case BPF_PSEUDO_MAP_IDX_VALUE:
17925 				break;
17926 			case BPF_PSEUDO_MAP_FD:
17927 			case BPF_PSEUDO_MAP_IDX:
17928 				if (insn[1].imm == 0)
17929 					break;
17930 				fallthrough;
17931 			default:
17932 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17933 				return -EINVAL;
17934 			}
17935 
17936 			switch (insn[0].src_reg) {
17937 			case BPF_PSEUDO_MAP_IDX_VALUE:
17938 			case BPF_PSEUDO_MAP_IDX:
17939 				if (bpfptr_is_null(env->fd_array)) {
17940 					verbose(env, "fd_idx without fd_array is invalid\n");
17941 					return -EPROTO;
17942 				}
17943 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
17944 							    insn[0].imm * sizeof(fd),
17945 							    sizeof(fd)))
17946 					return -EFAULT;
17947 				break;
17948 			default:
17949 				fd = insn[0].imm;
17950 				break;
17951 			}
17952 
17953 			f = fdget(fd);
17954 			map = __bpf_map_get(f);
17955 			if (IS_ERR(map)) {
17956 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
17957 					insn[0].imm);
17958 				return PTR_ERR(map);
17959 			}
17960 
17961 			err = check_map_prog_compatibility(env, map, env->prog);
17962 			if (err) {
17963 				fdput(f);
17964 				return err;
17965 			}
17966 
17967 			aux = &env->insn_aux_data[i];
17968 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17969 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17970 				addr = (unsigned long)map;
17971 			} else {
17972 				u32 off = insn[1].imm;
17973 
17974 				if (off >= BPF_MAX_VAR_OFF) {
17975 					verbose(env, "direct value offset of %u is not allowed\n", off);
17976 					fdput(f);
17977 					return -EINVAL;
17978 				}
17979 
17980 				if (!map->ops->map_direct_value_addr) {
17981 					verbose(env, "no direct value access support for this map type\n");
17982 					fdput(f);
17983 					return -EINVAL;
17984 				}
17985 
17986 				err = map->ops->map_direct_value_addr(map, &addr, off);
17987 				if (err) {
17988 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17989 						map->value_size, off);
17990 					fdput(f);
17991 					return err;
17992 				}
17993 
17994 				aux->map_off = off;
17995 				addr += off;
17996 			}
17997 
17998 			insn[0].imm = (u32)addr;
17999 			insn[1].imm = addr >> 32;
18000 
18001 			/* check whether we recorded this map already */
18002 			for (j = 0; j < env->used_map_cnt; j++) {
18003 				if (env->used_maps[j] == map) {
18004 					aux->map_index = j;
18005 					fdput(f);
18006 					goto next_insn;
18007 				}
18008 			}
18009 
18010 			if (env->used_map_cnt >= MAX_USED_MAPS) {
18011 				fdput(f);
18012 				return -E2BIG;
18013 			}
18014 
18015 			/* hold the map. If the program is rejected by verifier,
18016 			 * the map will be released by release_maps() or it
18017 			 * will be used by the valid program until it's unloaded
18018 			 * and all maps are released in free_used_maps()
18019 			 */
18020 			bpf_map_inc(map);
18021 
18022 			aux->map_index = env->used_map_cnt;
18023 			env->used_maps[env->used_map_cnt++] = map;
18024 
18025 			if (bpf_map_is_cgroup_storage(map) &&
18026 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
18027 				verbose(env, "only one cgroup storage of each type is allowed\n");
18028 				fdput(f);
18029 				return -EBUSY;
18030 			}
18031 
18032 			fdput(f);
18033 next_insn:
18034 			insn++;
18035 			i++;
18036 			continue;
18037 		}
18038 
18039 		/* Basic sanity check before we invest more work here. */
18040 		if (!bpf_opcode_in_insntable(insn->code)) {
18041 			verbose(env, "unknown opcode %02x\n", insn->code);
18042 			return -EINVAL;
18043 		}
18044 	}
18045 
18046 	/* now all pseudo BPF_LD_IMM64 instructions load valid
18047 	 * 'struct bpf_map *' into a register instead of user map_fd.
18048 	 * These pointers will be used later by verifier to validate map access.
18049 	 */
18050 	return 0;
18051 }
18052 
18053 /* drop refcnt of maps used by the rejected program */
18054 static void release_maps(struct bpf_verifier_env *env)
18055 {
18056 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
18057 			     env->used_map_cnt);
18058 }
18059 
18060 /* drop refcnt of maps used by the rejected program */
18061 static void release_btfs(struct bpf_verifier_env *env)
18062 {
18063 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
18064 			     env->used_btf_cnt);
18065 }
18066 
18067 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
18068 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
18069 {
18070 	struct bpf_insn *insn = env->prog->insnsi;
18071 	int insn_cnt = env->prog->len;
18072 	int i;
18073 
18074 	for (i = 0; i < insn_cnt; i++, insn++) {
18075 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
18076 			continue;
18077 		if (insn->src_reg == BPF_PSEUDO_FUNC)
18078 			continue;
18079 		insn->src_reg = 0;
18080 	}
18081 }
18082 
18083 /* single env->prog->insni[off] instruction was replaced with the range
18084  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
18085  * [0, off) and [off, end) to new locations, so the patched range stays zero
18086  */
18087 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
18088 				 struct bpf_insn_aux_data *new_data,
18089 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
18090 {
18091 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
18092 	struct bpf_insn *insn = new_prog->insnsi;
18093 	u32 old_seen = old_data[off].seen;
18094 	u32 prog_len;
18095 	int i;
18096 
18097 	/* aux info at OFF always needs adjustment, no matter fast path
18098 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
18099 	 * original insn at old prog.
18100 	 */
18101 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
18102 
18103 	if (cnt == 1)
18104 		return;
18105 	prog_len = new_prog->len;
18106 
18107 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
18108 	memcpy(new_data + off + cnt - 1, old_data + off,
18109 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
18110 	for (i = off; i < off + cnt - 1; i++) {
18111 		/* Expand insni[off]'s seen count to the patched range. */
18112 		new_data[i].seen = old_seen;
18113 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
18114 	}
18115 	env->insn_aux_data = new_data;
18116 	vfree(old_data);
18117 }
18118 
18119 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
18120 {
18121 	int i;
18122 
18123 	if (len == 1)
18124 		return;
18125 	/* NOTE: fake 'exit' subprog should be updated as well. */
18126 	for (i = 0; i <= env->subprog_cnt; i++) {
18127 		if (env->subprog_info[i].start <= off)
18128 			continue;
18129 		env->subprog_info[i].start += len - 1;
18130 	}
18131 }
18132 
18133 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
18134 {
18135 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
18136 	int i, sz = prog->aux->size_poke_tab;
18137 	struct bpf_jit_poke_descriptor *desc;
18138 
18139 	for (i = 0; i < sz; i++) {
18140 		desc = &tab[i];
18141 		if (desc->insn_idx <= off)
18142 			continue;
18143 		desc->insn_idx += len - 1;
18144 	}
18145 }
18146 
18147 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
18148 					    const struct bpf_insn *patch, u32 len)
18149 {
18150 	struct bpf_prog *new_prog;
18151 	struct bpf_insn_aux_data *new_data = NULL;
18152 
18153 	if (len > 1) {
18154 		new_data = vzalloc(array_size(env->prog->len + len - 1,
18155 					      sizeof(struct bpf_insn_aux_data)));
18156 		if (!new_data)
18157 			return NULL;
18158 	}
18159 
18160 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
18161 	if (IS_ERR(new_prog)) {
18162 		if (PTR_ERR(new_prog) == -ERANGE)
18163 			verbose(env,
18164 				"insn %d cannot be patched due to 16-bit range\n",
18165 				env->insn_aux_data[off].orig_idx);
18166 		vfree(new_data);
18167 		return NULL;
18168 	}
18169 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
18170 	adjust_subprog_starts(env, off, len);
18171 	adjust_poke_descs(new_prog, off, len);
18172 	return new_prog;
18173 }
18174 
18175 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
18176 					      u32 off, u32 cnt)
18177 {
18178 	int i, j;
18179 
18180 	/* find first prog starting at or after off (first to remove) */
18181 	for (i = 0; i < env->subprog_cnt; i++)
18182 		if (env->subprog_info[i].start >= off)
18183 			break;
18184 	/* find first prog starting at or after off + cnt (first to stay) */
18185 	for (j = i; j < env->subprog_cnt; j++)
18186 		if (env->subprog_info[j].start >= off + cnt)
18187 			break;
18188 	/* if j doesn't start exactly at off + cnt, we are just removing
18189 	 * the front of previous prog
18190 	 */
18191 	if (env->subprog_info[j].start != off + cnt)
18192 		j--;
18193 
18194 	if (j > i) {
18195 		struct bpf_prog_aux *aux = env->prog->aux;
18196 		int move;
18197 
18198 		/* move fake 'exit' subprog as well */
18199 		move = env->subprog_cnt + 1 - j;
18200 
18201 		memmove(env->subprog_info + i,
18202 			env->subprog_info + j,
18203 			sizeof(*env->subprog_info) * move);
18204 		env->subprog_cnt -= j - i;
18205 
18206 		/* remove func_info */
18207 		if (aux->func_info) {
18208 			move = aux->func_info_cnt - j;
18209 
18210 			memmove(aux->func_info + i,
18211 				aux->func_info + j,
18212 				sizeof(*aux->func_info) * move);
18213 			aux->func_info_cnt -= j - i;
18214 			/* func_info->insn_off is set after all code rewrites,
18215 			 * in adjust_btf_func() - no need to adjust
18216 			 */
18217 		}
18218 	} else {
18219 		/* convert i from "first prog to remove" to "first to adjust" */
18220 		if (env->subprog_info[i].start == off)
18221 			i++;
18222 	}
18223 
18224 	/* update fake 'exit' subprog as well */
18225 	for (; i <= env->subprog_cnt; i++)
18226 		env->subprog_info[i].start -= cnt;
18227 
18228 	return 0;
18229 }
18230 
18231 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
18232 				      u32 cnt)
18233 {
18234 	struct bpf_prog *prog = env->prog;
18235 	u32 i, l_off, l_cnt, nr_linfo;
18236 	struct bpf_line_info *linfo;
18237 
18238 	nr_linfo = prog->aux->nr_linfo;
18239 	if (!nr_linfo)
18240 		return 0;
18241 
18242 	linfo = prog->aux->linfo;
18243 
18244 	/* find first line info to remove, count lines to be removed */
18245 	for (i = 0; i < nr_linfo; i++)
18246 		if (linfo[i].insn_off >= off)
18247 			break;
18248 
18249 	l_off = i;
18250 	l_cnt = 0;
18251 	for (; i < nr_linfo; i++)
18252 		if (linfo[i].insn_off < off + cnt)
18253 			l_cnt++;
18254 		else
18255 			break;
18256 
18257 	/* First live insn doesn't match first live linfo, it needs to "inherit"
18258 	 * last removed linfo.  prog is already modified, so prog->len == off
18259 	 * means no live instructions after (tail of the program was removed).
18260 	 */
18261 	if (prog->len != off && l_cnt &&
18262 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
18263 		l_cnt--;
18264 		linfo[--i].insn_off = off + cnt;
18265 	}
18266 
18267 	/* remove the line info which refer to the removed instructions */
18268 	if (l_cnt) {
18269 		memmove(linfo + l_off, linfo + i,
18270 			sizeof(*linfo) * (nr_linfo - i));
18271 
18272 		prog->aux->nr_linfo -= l_cnt;
18273 		nr_linfo = prog->aux->nr_linfo;
18274 	}
18275 
18276 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
18277 	for (i = l_off; i < nr_linfo; i++)
18278 		linfo[i].insn_off -= cnt;
18279 
18280 	/* fix up all subprogs (incl. 'exit') which start >= off */
18281 	for (i = 0; i <= env->subprog_cnt; i++)
18282 		if (env->subprog_info[i].linfo_idx > l_off) {
18283 			/* program may have started in the removed region but
18284 			 * may not be fully removed
18285 			 */
18286 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
18287 				env->subprog_info[i].linfo_idx -= l_cnt;
18288 			else
18289 				env->subprog_info[i].linfo_idx = l_off;
18290 		}
18291 
18292 	return 0;
18293 }
18294 
18295 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
18296 {
18297 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18298 	unsigned int orig_prog_len = env->prog->len;
18299 	int err;
18300 
18301 	if (bpf_prog_is_offloaded(env->prog->aux))
18302 		bpf_prog_offload_remove_insns(env, off, cnt);
18303 
18304 	err = bpf_remove_insns(env->prog, off, cnt);
18305 	if (err)
18306 		return err;
18307 
18308 	err = adjust_subprog_starts_after_remove(env, off, cnt);
18309 	if (err)
18310 		return err;
18311 
18312 	err = bpf_adj_linfo_after_remove(env, off, cnt);
18313 	if (err)
18314 		return err;
18315 
18316 	memmove(aux_data + off,	aux_data + off + cnt,
18317 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
18318 
18319 	return 0;
18320 }
18321 
18322 /* The verifier does more data flow analysis than llvm and will not
18323  * explore branches that are dead at run time. Malicious programs can
18324  * have dead code too. Therefore replace all dead at-run-time code
18325  * with 'ja -1'.
18326  *
18327  * Just nops are not optimal, e.g. if they would sit at the end of the
18328  * program and through another bug we would manage to jump there, then
18329  * we'd execute beyond program memory otherwise. Returning exception
18330  * code also wouldn't work since we can have subprogs where the dead
18331  * code could be located.
18332  */
18333 static void sanitize_dead_code(struct bpf_verifier_env *env)
18334 {
18335 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18336 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18337 	struct bpf_insn *insn = env->prog->insnsi;
18338 	const int insn_cnt = env->prog->len;
18339 	int i;
18340 
18341 	for (i = 0; i < insn_cnt; i++) {
18342 		if (aux_data[i].seen)
18343 			continue;
18344 		memcpy(insn + i, &trap, sizeof(trap));
18345 		aux_data[i].zext_dst = false;
18346 	}
18347 }
18348 
18349 static bool insn_is_cond_jump(u8 code)
18350 {
18351 	u8 op;
18352 
18353 	op = BPF_OP(code);
18354 	if (BPF_CLASS(code) == BPF_JMP32)
18355 		return op != BPF_JA;
18356 
18357 	if (BPF_CLASS(code) != BPF_JMP)
18358 		return false;
18359 
18360 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18361 }
18362 
18363 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18364 {
18365 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18366 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18367 	struct bpf_insn *insn = env->prog->insnsi;
18368 	const int insn_cnt = env->prog->len;
18369 	int i;
18370 
18371 	for (i = 0; i < insn_cnt; i++, insn++) {
18372 		if (!insn_is_cond_jump(insn->code))
18373 			continue;
18374 
18375 		if (!aux_data[i + 1].seen)
18376 			ja.off = insn->off;
18377 		else if (!aux_data[i + 1 + insn->off].seen)
18378 			ja.off = 0;
18379 		else
18380 			continue;
18381 
18382 		if (bpf_prog_is_offloaded(env->prog->aux))
18383 			bpf_prog_offload_replace_insn(env, i, &ja);
18384 
18385 		memcpy(insn, &ja, sizeof(ja));
18386 	}
18387 }
18388 
18389 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18390 {
18391 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18392 	int insn_cnt = env->prog->len;
18393 	int i, err;
18394 
18395 	for (i = 0; i < insn_cnt; i++) {
18396 		int j;
18397 
18398 		j = 0;
18399 		while (i + j < insn_cnt && !aux_data[i + j].seen)
18400 			j++;
18401 		if (!j)
18402 			continue;
18403 
18404 		err = verifier_remove_insns(env, i, j);
18405 		if (err)
18406 			return err;
18407 		insn_cnt = env->prog->len;
18408 	}
18409 
18410 	return 0;
18411 }
18412 
18413 static int opt_remove_nops(struct bpf_verifier_env *env)
18414 {
18415 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18416 	struct bpf_insn *insn = env->prog->insnsi;
18417 	int insn_cnt = env->prog->len;
18418 	int i, err;
18419 
18420 	for (i = 0; i < insn_cnt; i++) {
18421 		if (memcmp(&insn[i], &ja, sizeof(ja)))
18422 			continue;
18423 
18424 		err = verifier_remove_insns(env, i, 1);
18425 		if (err)
18426 			return err;
18427 		insn_cnt--;
18428 		i--;
18429 	}
18430 
18431 	return 0;
18432 }
18433 
18434 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
18435 					 const union bpf_attr *attr)
18436 {
18437 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
18438 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
18439 	int i, patch_len, delta = 0, len = env->prog->len;
18440 	struct bpf_insn *insns = env->prog->insnsi;
18441 	struct bpf_prog *new_prog;
18442 	bool rnd_hi32;
18443 
18444 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
18445 	zext_patch[1] = BPF_ZEXT_REG(0);
18446 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
18447 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
18448 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
18449 	for (i = 0; i < len; i++) {
18450 		int adj_idx = i + delta;
18451 		struct bpf_insn insn;
18452 		int load_reg;
18453 
18454 		insn = insns[adj_idx];
18455 		load_reg = insn_def_regno(&insn);
18456 		if (!aux[adj_idx].zext_dst) {
18457 			u8 code, class;
18458 			u32 imm_rnd;
18459 
18460 			if (!rnd_hi32)
18461 				continue;
18462 
18463 			code = insn.code;
18464 			class = BPF_CLASS(code);
18465 			if (load_reg == -1)
18466 				continue;
18467 
18468 			/* NOTE: arg "reg" (the fourth one) is only used for
18469 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
18470 			 *       here.
18471 			 */
18472 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
18473 				if (class == BPF_LD &&
18474 				    BPF_MODE(code) == BPF_IMM)
18475 					i++;
18476 				continue;
18477 			}
18478 
18479 			/* ctx load could be transformed into wider load. */
18480 			if (class == BPF_LDX &&
18481 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
18482 				continue;
18483 
18484 			imm_rnd = get_random_u32();
18485 			rnd_hi32_patch[0] = insn;
18486 			rnd_hi32_patch[1].imm = imm_rnd;
18487 			rnd_hi32_patch[3].dst_reg = load_reg;
18488 			patch = rnd_hi32_patch;
18489 			patch_len = 4;
18490 			goto apply_patch_buffer;
18491 		}
18492 
18493 		/* Add in an zero-extend instruction if a) the JIT has requested
18494 		 * it or b) it's a CMPXCHG.
18495 		 *
18496 		 * The latter is because: BPF_CMPXCHG always loads a value into
18497 		 * R0, therefore always zero-extends. However some archs'
18498 		 * equivalent instruction only does this load when the
18499 		 * comparison is successful. This detail of CMPXCHG is
18500 		 * orthogonal to the general zero-extension behaviour of the
18501 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
18502 		 */
18503 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18504 			continue;
18505 
18506 		/* Zero-extension is done by the caller. */
18507 		if (bpf_pseudo_kfunc_call(&insn))
18508 			continue;
18509 
18510 		if (WARN_ON(load_reg == -1)) {
18511 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18512 			return -EFAULT;
18513 		}
18514 
18515 		zext_patch[0] = insn;
18516 		zext_patch[1].dst_reg = load_reg;
18517 		zext_patch[1].src_reg = load_reg;
18518 		patch = zext_patch;
18519 		patch_len = 2;
18520 apply_patch_buffer:
18521 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18522 		if (!new_prog)
18523 			return -ENOMEM;
18524 		env->prog = new_prog;
18525 		insns = new_prog->insnsi;
18526 		aux = env->insn_aux_data;
18527 		delta += patch_len - 1;
18528 	}
18529 
18530 	return 0;
18531 }
18532 
18533 /* convert load instructions that access fields of a context type into a
18534  * sequence of instructions that access fields of the underlying structure:
18535  *     struct __sk_buff    -> struct sk_buff
18536  *     struct bpf_sock_ops -> struct sock
18537  */
18538 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18539 {
18540 	const struct bpf_verifier_ops *ops = env->ops;
18541 	int i, cnt, size, ctx_field_size, delta = 0;
18542 	const int insn_cnt = env->prog->len;
18543 	struct bpf_insn insn_buf[16], *insn;
18544 	u32 target_size, size_default, off;
18545 	struct bpf_prog *new_prog;
18546 	enum bpf_access_type type;
18547 	bool is_narrower_load;
18548 
18549 	if (ops->gen_prologue || env->seen_direct_write) {
18550 		if (!ops->gen_prologue) {
18551 			verbose(env, "bpf verifier is misconfigured\n");
18552 			return -EINVAL;
18553 		}
18554 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18555 					env->prog);
18556 		if (cnt >= ARRAY_SIZE(insn_buf)) {
18557 			verbose(env, "bpf verifier is misconfigured\n");
18558 			return -EINVAL;
18559 		} else if (cnt) {
18560 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18561 			if (!new_prog)
18562 				return -ENOMEM;
18563 
18564 			env->prog = new_prog;
18565 			delta += cnt - 1;
18566 		}
18567 	}
18568 
18569 	if (bpf_prog_is_offloaded(env->prog->aux))
18570 		return 0;
18571 
18572 	insn = env->prog->insnsi + delta;
18573 
18574 	for (i = 0; i < insn_cnt; i++, insn++) {
18575 		bpf_convert_ctx_access_t convert_ctx_access;
18576 		u8 mode;
18577 
18578 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18579 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18580 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18581 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18582 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18583 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18584 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18585 			type = BPF_READ;
18586 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18587 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18588 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18589 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18590 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18591 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18592 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18593 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18594 			type = BPF_WRITE;
18595 		} else {
18596 			continue;
18597 		}
18598 
18599 		if (type == BPF_WRITE &&
18600 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
18601 			struct bpf_insn patch[] = {
18602 				*insn,
18603 				BPF_ST_NOSPEC(),
18604 			};
18605 
18606 			cnt = ARRAY_SIZE(patch);
18607 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18608 			if (!new_prog)
18609 				return -ENOMEM;
18610 
18611 			delta    += cnt - 1;
18612 			env->prog = new_prog;
18613 			insn      = new_prog->insnsi + i + delta;
18614 			continue;
18615 		}
18616 
18617 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18618 		case PTR_TO_CTX:
18619 			if (!ops->convert_ctx_access)
18620 				continue;
18621 			convert_ctx_access = ops->convert_ctx_access;
18622 			break;
18623 		case PTR_TO_SOCKET:
18624 		case PTR_TO_SOCK_COMMON:
18625 			convert_ctx_access = bpf_sock_convert_ctx_access;
18626 			break;
18627 		case PTR_TO_TCP_SOCK:
18628 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18629 			break;
18630 		case PTR_TO_XDP_SOCK:
18631 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18632 			break;
18633 		case PTR_TO_BTF_ID:
18634 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18635 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18636 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
18637 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
18638 		 * any faults for loads into such types. BPF_WRITE is disallowed
18639 		 * for this case.
18640 		 */
18641 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
18642 			if (type == BPF_READ) {
18643 				if (BPF_MODE(insn->code) == BPF_MEM)
18644 					insn->code = BPF_LDX | BPF_PROBE_MEM |
18645 						     BPF_SIZE((insn)->code);
18646 				else
18647 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
18648 						     BPF_SIZE((insn)->code);
18649 				env->prog->aux->num_exentries++;
18650 			}
18651 			continue;
18652 		default:
18653 			continue;
18654 		}
18655 
18656 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
18657 		size = BPF_LDST_BYTES(insn);
18658 		mode = BPF_MODE(insn->code);
18659 
18660 		/* If the read access is a narrower load of the field,
18661 		 * convert to a 4/8-byte load, to minimum program type specific
18662 		 * convert_ctx_access changes. If conversion is successful,
18663 		 * we will apply proper mask to the result.
18664 		 */
18665 		is_narrower_load = size < ctx_field_size;
18666 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
18667 		off = insn->off;
18668 		if (is_narrower_load) {
18669 			u8 size_code;
18670 
18671 			if (type == BPF_WRITE) {
18672 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
18673 				return -EINVAL;
18674 			}
18675 
18676 			size_code = BPF_H;
18677 			if (ctx_field_size == 4)
18678 				size_code = BPF_W;
18679 			else if (ctx_field_size == 8)
18680 				size_code = BPF_DW;
18681 
18682 			insn->off = off & ~(size_default - 1);
18683 			insn->code = BPF_LDX | BPF_MEM | size_code;
18684 		}
18685 
18686 		target_size = 0;
18687 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
18688 					 &target_size);
18689 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
18690 		    (ctx_field_size && !target_size)) {
18691 			verbose(env, "bpf verifier is misconfigured\n");
18692 			return -EINVAL;
18693 		}
18694 
18695 		if (is_narrower_load && size < target_size) {
18696 			u8 shift = bpf_ctx_narrow_access_offset(
18697 				off, size, size_default) * 8;
18698 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
18699 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
18700 				return -EINVAL;
18701 			}
18702 			if (ctx_field_size <= 4) {
18703 				if (shift)
18704 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
18705 									insn->dst_reg,
18706 									shift);
18707 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18708 								(1 << size * 8) - 1);
18709 			} else {
18710 				if (shift)
18711 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
18712 									insn->dst_reg,
18713 									shift);
18714 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18715 								(1ULL << size * 8) - 1);
18716 			}
18717 		}
18718 		if (mode == BPF_MEMSX)
18719 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
18720 						       insn->dst_reg, insn->dst_reg,
18721 						       size * 8, 0);
18722 
18723 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18724 		if (!new_prog)
18725 			return -ENOMEM;
18726 
18727 		delta += cnt - 1;
18728 
18729 		/* keep walking new program and skip insns we just inserted */
18730 		env->prog = new_prog;
18731 		insn      = new_prog->insnsi + i + delta;
18732 	}
18733 
18734 	return 0;
18735 }
18736 
18737 static int jit_subprogs(struct bpf_verifier_env *env)
18738 {
18739 	struct bpf_prog *prog = env->prog, **func, *tmp;
18740 	int i, j, subprog_start, subprog_end = 0, len, subprog;
18741 	struct bpf_map *map_ptr;
18742 	struct bpf_insn *insn;
18743 	void *old_bpf_func;
18744 	int err, num_exentries;
18745 
18746 	if (env->subprog_cnt <= 1)
18747 		return 0;
18748 
18749 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18750 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
18751 			continue;
18752 
18753 		/* Upon error here we cannot fall back to interpreter but
18754 		 * need a hard reject of the program. Thus -EFAULT is
18755 		 * propagated in any case.
18756 		 */
18757 		subprog = find_subprog(env, i + insn->imm + 1);
18758 		if (subprog < 0) {
18759 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
18760 				  i + insn->imm + 1);
18761 			return -EFAULT;
18762 		}
18763 		/* temporarily remember subprog id inside insn instead of
18764 		 * aux_data, since next loop will split up all insns into funcs
18765 		 */
18766 		insn->off = subprog;
18767 		/* remember original imm in case JIT fails and fallback
18768 		 * to interpreter will be needed
18769 		 */
18770 		env->insn_aux_data[i].call_imm = insn->imm;
18771 		/* point imm to __bpf_call_base+1 from JITs point of view */
18772 		insn->imm = 1;
18773 		if (bpf_pseudo_func(insn))
18774 			/* jit (e.g. x86_64) may emit fewer instructions
18775 			 * if it learns a u32 imm is the same as a u64 imm.
18776 			 * Force a non zero here.
18777 			 */
18778 			insn[1].imm = 1;
18779 	}
18780 
18781 	err = bpf_prog_alloc_jited_linfo(prog);
18782 	if (err)
18783 		goto out_undo_insn;
18784 
18785 	err = -ENOMEM;
18786 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
18787 	if (!func)
18788 		goto out_undo_insn;
18789 
18790 	for (i = 0; i < env->subprog_cnt; i++) {
18791 		subprog_start = subprog_end;
18792 		subprog_end = env->subprog_info[i + 1].start;
18793 
18794 		len = subprog_end - subprog_start;
18795 		/* bpf_prog_run() doesn't call subprogs directly,
18796 		 * hence main prog stats include the runtime of subprogs.
18797 		 * subprogs don't have IDs and not reachable via prog_get_next_id
18798 		 * func[i]->stats will never be accessed and stays NULL
18799 		 */
18800 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18801 		if (!func[i])
18802 			goto out_free;
18803 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18804 		       len * sizeof(struct bpf_insn));
18805 		func[i]->type = prog->type;
18806 		func[i]->len = len;
18807 		if (bpf_prog_calc_tag(func[i]))
18808 			goto out_free;
18809 		func[i]->is_func = 1;
18810 		func[i]->aux->func_idx = i;
18811 		/* Below members will be freed only at prog->aux */
18812 		func[i]->aux->btf = prog->aux->btf;
18813 		func[i]->aux->func_info = prog->aux->func_info;
18814 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18815 		func[i]->aux->poke_tab = prog->aux->poke_tab;
18816 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18817 
18818 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
18819 			struct bpf_jit_poke_descriptor *poke;
18820 
18821 			poke = &prog->aux->poke_tab[j];
18822 			if (poke->insn_idx < subprog_end &&
18823 			    poke->insn_idx >= subprog_start)
18824 				poke->aux = func[i]->aux;
18825 		}
18826 
18827 		func[i]->aux->name[0] = 'F';
18828 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18829 		func[i]->jit_requested = 1;
18830 		func[i]->blinding_requested = prog->blinding_requested;
18831 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18832 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18833 		func[i]->aux->linfo = prog->aux->linfo;
18834 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18835 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18836 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18837 		num_exentries = 0;
18838 		insn = func[i]->insnsi;
18839 		for (j = 0; j < func[i]->len; j++, insn++) {
18840 			if (BPF_CLASS(insn->code) == BPF_LDX &&
18841 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18842 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18843 				num_exentries++;
18844 		}
18845 		func[i]->aux->num_exentries = num_exentries;
18846 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18847 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
18848 		if (!i)
18849 			func[i]->aux->exception_boundary = env->seen_exception;
18850 		func[i] = bpf_int_jit_compile(func[i]);
18851 		if (!func[i]->jited) {
18852 			err = -ENOTSUPP;
18853 			goto out_free;
18854 		}
18855 		cond_resched();
18856 	}
18857 
18858 	/* at this point all bpf functions were successfully JITed
18859 	 * now populate all bpf_calls with correct addresses and
18860 	 * run last pass of JIT
18861 	 */
18862 	for (i = 0; i < env->subprog_cnt; i++) {
18863 		insn = func[i]->insnsi;
18864 		for (j = 0; j < func[i]->len; j++, insn++) {
18865 			if (bpf_pseudo_func(insn)) {
18866 				subprog = insn->off;
18867 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18868 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18869 				continue;
18870 			}
18871 			if (!bpf_pseudo_call(insn))
18872 				continue;
18873 			subprog = insn->off;
18874 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18875 		}
18876 
18877 		/* we use the aux data to keep a list of the start addresses
18878 		 * of the JITed images for each function in the program
18879 		 *
18880 		 * for some architectures, such as powerpc64, the imm field
18881 		 * might not be large enough to hold the offset of the start
18882 		 * address of the callee's JITed image from __bpf_call_base
18883 		 *
18884 		 * in such cases, we can lookup the start address of a callee
18885 		 * by using its subprog id, available from the off field of
18886 		 * the call instruction, as an index for this list
18887 		 */
18888 		func[i]->aux->func = func;
18889 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
18890 		func[i]->aux->real_func_cnt = env->subprog_cnt;
18891 	}
18892 	for (i = 0; i < env->subprog_cnt; i++) {
18893 		old_bpf_func = func[i]->bpf_func;
18894 		tmp = bpf_int_jit_compile(func[i]);
18895 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18896 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18897 			err = -ENOTSUPP;
18898 			goto out_free;
18899 		}
18900 		cond_resched();
18901 	}
18902 
18903 	/* finally lock prog and jit images for all functions and
18904 	 * populate kallsysm. Begin at the first subprogram, since
18905 	 * bpf_prog_load will add the kallsyms for the main program.
18906 	 */
18907 	for (i = 1; i < env->subprog_cnt; i++) {
18908 		bpf_prog_lock_ro(func[i]);
18909 		bpf_prog_kallsyms_add(func[i]);
18910 	}
18911 
18912 	/* Last step: make now unused interpreter insns from main
18913 	 * prog consistent for later dump requests, so they can
18914 	 * later look the same as if they were interpreted only.
18915 	 */
18916 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18917 		if (bpf_pseudo_func(insn)) {
18918 			insn[0].imm = env->insn_aux_data[i].call_imm;
18919 			insn[1].imm = insn->off;
18920 			insn->off = 0;
18921 			continue;
18922 		}
18923 		if (!bpf_pseudo_call(insn))
18924 			continue;
18925 		insn->off = env->insn_aux_data[i].call_imm;
18926 		subprog = find_subprog(env, i + insn->off + 1);
18927 		insn->imm = subprog;
18928 	}
18929 
18930 	prog->jited = 1;
18931 	prog->bpf_func = func[0]->bpf_func;
18932 	prog->jited_len = func[0]->jited_len;
18933 	prog->aux->extable = func[0]->aux->extable;
18934 	prog->aux->num_exentries = func[0]->aux->num_exentries;
18935 	prog->aux->func = func;
18936 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
18937 	prog->aux->real_func_cnt = env->subprog_cnt;
18938 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
18939 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
18940 	bpf_prog_jit_attempt_done(prog);
18941 	return 0;
18942 out_free:
18943 	/* We failed JIT'ing, so at this point we need to unregister poke
18944 	 * descriptors from subprogs, so that kernel is not attempting to
18945 	 * patch it anymore as we're freeing the subprog JIT memory.
18946 	 */
18947 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18948 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18949 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18950 	}
18951 	/* At this point we're guaranteed that poke descriptors are not
18952 	 * live anymore. We can just unlink its descriptor table as it's
18953 	 * released with the main prog.
18954 	 */
18955 	for (i = 0; i < env->subprog_cnt; i++) {
18956 		if (!func[i])
18957 			continue;
18958 		func[i]->aux->poke_tab = NULL;
18959 		bpf_jit_free(func[i]);
18960 	}
18961 	kfree(func);
18962 out_undo_insn:
18963 	/* cleanup main prog to be interpreted */
18964 	prog->jit_requested = 0;
18965 	prog->blinding_requested = 0;
18966 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18967 		if (!bpf_pseudo_call(insn))
18968 			continue;
18969 		insn->off = 0;
18970 		insn->imm = env->insn_aux_data[i].call_imm;
18971 	}
18972 	bpf_prog_jit_attempt_done(prog);
18973 	return err;
18974 }
18975 
18976 static int fixup_call_args(struct bpf_verifier_env *env)
18977 {
18978 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18979 	struct bpf_prog *prog = env->prog;
18980 	struct bpf_insn *insn = prog->insnsi;
18981 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18982 	int i, depth;
18983 #endif
18984 	int err = 0;
18985 
18986 	if (env->prog->jit_requested &&
18987 	    !bpf_prog_is_offloaded(env->prog->aux)) {
18988 		err = jit_subprogs(env);
18989 		if (err == 0)
18990 			return 0;
18991 		if (err == -EFAULT)
18992 			return err;
18993 	}
18994 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18995 	if (has_kfunc_call) {
18996 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18997 		return -EINVAL;
18998 	}
18999 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
19000 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
19001 		 * have to be rejected, since interpreter doesn't support them yet.
19002 		 */
19003 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
19004 		return -EINVAL;
19005 	}
19006 	for (i = 0; i < prog->len; i++, insn++) {
19007 		if (bpf_pseudo_func(insn)) {
19008 			/* When JIT fails the progs with callback calls
19009 			 * have to be rejected, since interpreter doesn't support them yet.
19010 			 */
19011 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
19012 			return -EINVAL;
19013 		}
19014 
19015 		if (!bpf_pseudo_call(insn))
19016 			continue;
19017 		depth = get_callee_stack_depth(env, insn, i);
19018 		if (depth < 0)
19019 			return depth;
19020 		bpf_patch_call_args(insn, depth);
19021 	}
19022 	err = 0;
19023 #endif
19024 	return err;
19025 }
19026 
19027 /* replace a generic kfunc with a specialized version if necessary */
19028 static void specialize_kfunc(struct bpf_verifier_env *env,
19029 			     u32 func_id, u16 offset, unsigned long *addr)
19030 {
19031 	struct bpf_prog *prog = env->prog;
19032 	bool seen_direct_write;
19033 	void *xdp_kfunc;
19034 	bool is_rdonly;
19035 
19036 	if (bpf_dev_bound_kfunc_id(func_id)) {
19037 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
19038 		if (xdp_kfunc) {
19039 			*addr = (unsigned long)xdp_kfunc;
19040 			return;
19041 		}
19042 		/* fallback to default kfunc when not supported by netdev */
19043 	}
19044 
19045 	if (offset)
19046 		return;
19047 
19048 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
19049 		seen_direct_write = env->seen_direct_write;
19050 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
19051 
19052 		if (is_rdonly)
19053 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
19054 
19055 		/* restore env->seen_direct_write to its original value, since
19056 		 * may_access_direct_pkt_data mutates it
19057 		 */
19058 		env->seen_direct_write = seen_direct_write;
19059 	}
19060 }
19061 
19062 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
19063 					    u16 struct_meta_reg,
19064 					    u16 node_offset_reg,
19065 					    struct bpf_insn *insn,
19066 					    struct bpf_insn *insn_buf,
19067 					    int *cnt)
19068 {
19069 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
19070 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
19071 
19072 	insn_buf[0] = addr[0];
19073 	insn_buf[1] = addr[1];
19074 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
19075 	insn_buf[3] = *insn;
19076 	*cnt = 4;
19077 }
19078 
19079 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
19080 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
19081 {
19082 	const struct bpf_kfunc_desc *desc;
19083 
19084 	if (!insn->imm) {
19085 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
19086 		return -EINVAL;
19087 	}
19088 
19089 	*cnt = 0;
19090 
19091 	/* insn->imm has the btf func_id. Replace it with an offset relative to
19092 	 * __bpf_call_base, unless the JIT needs to call functions that are
19093 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
19094 	 */
19095 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
19096 	if (!desc) {
19097 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
19098 			insn->imm);
19099 		return -EFAULT;
19100 	}
19101 
19102 	if (!bpf_jit_supports_far_kfunc_call())
19103 		insn->imm = BPF_CALL_IMM(desc->addr);
19104 	if (insn->off)
19105 		return 0;
19106 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
19107 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
19108 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19109 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19110 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
19111 
19112 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
19113 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19114 				insn_idx);
19115 			return -EFAULT;
19116 		}
19117 
19118 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
19119 		insn_buf[1] = addr[0];
19120 		insn_buf[2] = addr[1];
19121 		insn_buf[3] = *insn;
19122 		*cnt = 4;
19123 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
19124 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
19125 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
19126 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19127 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19128 
19129 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
19130 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19131 				insn_idx);
19132 			return -EFAULT;
19133 		}
19134 
19135 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
19136 		    !kptr_struct_meta) {
19137 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19138 				insn_idx);
19139 			return -EFAULT;
19140 		}
19141 
19142 		insn_buf[0] = addr[0];
19143 		insn_buf[1] = addr[1];
19144 		insn_buf[2] = *insn;
19145 		*cnt = 3;
19146 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
19147 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
19148 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19149 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19150 		int struct_meta_reg = BPF_REG_3;
19151 		int node_offset_reg = BPF_REG_4;
19152 
19153 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
19154 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19155 			struct_meta_reg = BPF_REG_4;
19156 			node_offset_reg = BPF_REG_5;
19157 		}
19158 
19159 		if (!kptr_struct_meta) {
19160 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19161 				insn_idx);
19162 			return -EFAULT;
19163 		}
19164 
19165 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
19166 						node_offset_reg, insn, insn_buf, cnt);
19167 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
19168 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
19169 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
19170 		*cnt = 1;
19171 	}
19172 	return 0;
19173 }
19174 
19175 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
19176 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
19177 {
19178 	struct bpf_subprog_info *info = env->subprog_info;
19179 	int cnt = env->subprog_cnt;
19180 	struct bpf_prog *prog;
19181 
19182 	/* We only reserve one slot for hidden subprogs in subprog_info. */
19183 	if (env->hidden_subprog_cnt) {
19184 		verbose(env, "verifier internal error: only one hidden subprog supported\n");
19185 		return -EFAULT;
19186 	}
19187 	/* We're not patching any existing instruction, just appending the new
19188 	 * ones for the hidden subprog. Hence all of the adjustment operations
19189 	 * in bpf_patch_insn_data are no-ops.
19190 	 */
19191 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
19192 	if (!prog)
19193 		return -ENOMEM;
19194 	env->prog = prog;
19195 	info[cnt + 1].start = info[cnt].start;
19196 	info[cnt].start = prog->len - len + 1;
19197 	env->subprog_cnt++;
19198 	env->hidden_subprog_cnt++;
19199 	return 0;
19200 }
19201 
19202 /* Do various post-verification rewrites in a single program pass.
19203  * These rewrites simplify JIT and interpreter implementations.
19204  */
19205 static int do_misc_fixups(struct bpf_verifier_env *env)
19206 {
19207 	struct bpf_prog *prog = env->prog;
19208 	enum bpf_attach_type eatype = prog->expected_attach_type;
19209 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
19210 	struct bpf_insn *insn = prog->insnsi;
19211 	const struct bpf_func_proto *fn;
19212 	const int insn_cnt = prog->len;
19213 	const struct bpf_map_ops *ops;
19214 	struct bpf_insn_aux_data *aux;
19215 	struct bpf_insn insn_buf[16];
19216 	struct bpf_prog *new_prog;
19217 	struct bpf_map *map_ptr;
19218 	int i, ret, cnt, delta = 0;
19219 
19220 	if (env->seen_exception && !env->exception_callback_subprog) {
19221 		struct bpf_insn patch[] = {
19222 			env->prog->insnsi[insn_cnt - 1],
19223 			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
19224 			BPF_EXIT_INSN(),
19225 		};
19226 
19227 		ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
19228 		if (ret < 0)
19229 			return ret;
19230 		prog = env->prog;
19231 		insn = prog->insnsi;
19232 
19233 		env->exception_callback_subprog = env->subprog_cnt - 1;
19234 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
19235 		env->subprog_info[env->exception_callback_subprog].is_cb = true;
19236 		env->subprog_info[env->exception_callback_subprog].is_async_cb = true;
19237 		env->subprog_info[env->exception_callback_subprog].is_exception_cb = true;
19238 	}
19239 
19240 	for (i = 0; i < insn_cnt; i++, insn++) {
19241 		/* Make divide-by-zero exceptions impossible. */
19242 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
19243 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
19244 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
19245 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
19246 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
19247 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
19248 			struct bpf_insn *patchlet;
19249 			struct bpf_insn chk_and_div[] = {
19250 				/* [R,W]x div 0 -> 0 */
19251 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19252 					     BPF_JNE | BPF_K, insn->src_reg,
19253 					     0, 2, 0),
19254 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
19255 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19256 				*insn,
19257 			};
19258 			struct bpf_insn chk_and_mod[] = {
19259 				/* [R,W]x mod 0 -> [R,W]x */
19260 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19261 					     BPF_JEQ | BPF_K, insn->src_reg,
19262 					     0, 1 + (is64 ? 0 : 1), 0),
19263 				*insn,
19264 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19265 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
19266 			};
19267 
19268 			patchlet = isdiv ? chk_and_div : chk_and_mod;
19269 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
19270 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
19271 
19272 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
19273 			if (!new_prog)
19274 				return -ENOMEM;
19275 
19276 			delta    += cnt - 1;
19277 			env->prog = prog = new_prog;
19278 			insn      = new_prog->insnsi + i + delta;
19279 			continue;
19280 		}
19281 
19282 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
19283 		if (BPF_CLASS(insn->code) == BPF_LD &&
19284 		    (BPF_MODE(insn->code) == BPF_ABS ||
19285 		     BPF_MODE(insn->code) == BPF_IND)) {
19286 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
19287 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19288 				verbose(env, "bpf verifier is misconfigured\n");
19289 				return -EINVAL;
19290 			}
19291 
19292 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19293 			if (!new_prog)
19294 				return -ENOMEM;
19295 
19296 			delta    += cnt - 1;
19297 			env->prog = prog = new_prog;
19298 			insn      = new_prog->insnsi + i + delta;
19299 			continue;
19300 		}
19301 
19302 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
19303 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
19304 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
19305 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
19306 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
19307 			struct bpf_insn *patch = &insn_buf[0];
19308 			bool issrc, isneg, isimm;
19309 			u32 off_reg;
19310 
19311 			aux = &env->insn_aux_data[i + delta];
19312 			if (!aux->alu_state ||
19313 			    aux->alu_state == BPF_ALU_NON_POINTER)
19314 				continue;
19315 
19316 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
19317 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
19318 				BPF_ALU_SANITIZE_SRC;
19319 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
19320 
19321 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
19322 			if (isimm) {
19323 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19324 			} else {
19325 				if (isneg)
19326 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19327 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19328 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
19329 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
19330 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
19331 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
19332 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
19333 			}
19334 			if (!issrc)
19335 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
19336 			insn->src_reg = BPF_REG_AX;
19337 			if (isneg)
19338 				insn->code = insn->code == code_add ?
19339 					     code_sub : code_add;
19340 			*patch++ = *insn;
19341 			if (issrc && isneg && !isimm)
19342 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19343 			cnt = patch - insn_buf;
19344 
19345 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19346 			if (!new_prog)
19347 				return -ENOMEM;
19348 
19349 			delta    += cnt - 1;
19350 			env->prog = prog = new_prog;
19351 			insn      = new_prog->insnsi + i + delta;
19352 			continue;
19353 		}
19354 
19355 		if (insn->code != (BPF_JMP | BPF_CALL))
19356 			continue;
19357 		if (insn->src_reg == BPF_PSEUDO_CALL)
19358 			continue;
19359 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19360 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
19361 			if (ret)
19362 				return ret;
19363 			if (cnt == 0)
19364 				continue;
19365 
19366 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19367 			if (!new_prog)
19368 				return -ENOMEM;
19369 
19370 			delta	 += cnt - 1;
19371 			env->prog = prog = new_prog;
19372 			insn	  = new_prog->insnsi + i + delta;
19373 			continue;
19374 		}
19375 
19376 		if (insn->imm == BPF_FUNC_get_route_realm)
19377 			prog->dst_needed = 1;
19378 		if (insn->imm == BPF_FUNC_get_prandom_u32)
19379 			bpf_user_rnd_init_once();
19380 		if (insn->imm == BPF_FUNC_override_return)
19381 			prog->kprobe_override = 1;
19382 		if (insn->imm == BPF_FUNC_tail_call) {
19383 			/* If we tail call into other programs, we
19384 			 * cannot make any assumptions since they can
19385 			 * be replaced dynamically during runtime in
19386 			 * the program array.
19387 			 */
19388 			prog->cb_access = 1;
19389 			if (!allow_tail_call_in_subprogs(env))
19390 				prog->aux->stack_depth = MAX_BPF_STACK;
19391 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
19392 
19393 			/* mark bpf_tail_call as different opcode to avoid
19394 			 * conditional branch in the interpreter for every normal
19395 			 * call and to prevent accidental JITing by JIT compiler
19396 			 * that doesn't support bpf_tail_call yet
19397 			 */
19398 			insn->imm = 0;
19399 			insn->code = BPF_JMP | BPF_TAIL_CALL;
19400 
19401 			aux = &env->insn_aux_data[i + delta];
19402 			if (env->bpf_capable && !prog->blinding_requested &&
19403 			    prog->jit_requested &&
19404 			    !bpf_map_key_poisoned(aux) &&
19405 			    !bpf_map_ptr_poisoned(aux) &&
19406 			    !bpf_map_ptr_unpriv(aux)) {
19407 				struct bpf_jit_poke_descriptor desc = {
19408 					.reason = BPF_POKE_REASON_TAIL_CALL,
19409 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
19410 					.tail_call.key = bpf_map_key_immediate(aux),
19411 					.insn_idx = i + delta,
19412 				};
19413 
19414 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
19415 				if (ret < 0) {
19416 					verbose(env, "adding tail call poke descriptor failed\n");
19417 					return ret;
19418 				}
19419 
19420 				insn->imm = ret + 1;
19421 				continue;
19422 			}
19423 
19424 			if (!bpf_map_ptr_unpriv(aux))
19425 				continue;
19426 
19427 			/* instead of changing every JIT dealing with tail_call
19428 			 * emit two extra insns:
19429 			 * if (index >= max_entries) goto out;
19430 			 * index &= array->index_mask;
19431 			 * to avoid out-of-bounds cpu speculation
19432 			 */
19433 			if (bpf_map_ptr_poisoned(aux)) {
19434 				verbose(env, "tail_call abusing map_ptr\n");
19435 				return -EINVAL;
19436 			}
19437 
19438 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19439 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
19440 						  map_ptr->max_entries, 2);
19441 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
19442 						    container_of(map_ptr,
19443 								 struct bpf_array,
19444 								 map)->index_mask);
19445 			insn_buf[2] = *insn;
19446 			cnt = 3;
19447 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19448 			if (!new_prog)
19449 				return -ENOMEM;
19450 
19451 			delta    += cnt - 1;
19452 			env->prog = prog = new_prog;
19453 			insn      = new_prog->insnsi + i + delta;
19454 			continue;
19455 		}
19456 
19457 		if (insn->imm == BPF_FUNC_timer_set_callback) {
19458 			/* The verifier will process callback_fn as many times as necessary
19459 			 * with different maps and the register states prepared by
19460 			 * set_timer_callback_state will be accurate.
19461 			 *
19462 			 * The following use case is valid:
19463 			 *   map1 is shared by prog1, prog2, prog3.
19464 			 *   prog1 calls bpf_timer_init for some map1 elements
19465 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
19466 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
19467 			 *   prog3 calls bpf_timer_start for some map1 elements.
19468 			 *     Those that were not both bpf_timer_init-ed and
19469 			 *     bpf_timer_set_callback-ed will return -EINVAL.
19470 			 */
19471 			struct bpf_insn ld_addrs[2] = {
19472 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
19473 			};
19474 
19475 			insn_buf[0] = ld_addrs[0];
19476 			insn_buf[1] = ld_addrs[1];
19477 			insn_buf[2] = *insn;
19478 			cnt = 3;
19479 
19480 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19481 			if (!new_prog)
19482 				return -ENOMEM;
19483 
19484 			delta    += cnt - 1;
19485 			env->prog = prog = new_prog;
19486 			insn      = new_prog->insnsi + i + delta;
19487 			goto patch_call_imm;
19488 		}
19489 
19490 		if (is_storage_get_function(insn->imm)) {
19491 			if (!env->prog->aux->sleepable ||
19492 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
19493 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19494 			else
19495 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19496 			insn_buf[1] = *insn;
19497 			cnt = 2;
19498 
19499 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19500 			if (!new_prog)
19501 				return -ENOMEM;
19502 
19503 			delta += cnt - 1;
19504 			env->prog = prog = new_prog;
19505 			insn = new_prog->insnsi + i + delta;
19506 			goto patch_call_imm;
19507 		}
19508 
19509 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
19510 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
19511 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
19512 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
19513 			 */
19514 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
19515 			insn_buf[1] = *insn;
19516 			cnt = 2;
19517 
19518 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19519 			if (!new_prog)
19520 				return -ENOMEM;
19521 
19522 			delta += cnt - 1;
19523 			env->prog = prog = new_prog;
19524 			insn = new_prog->insnsi + i + delta;
19525 			goto patch_call_imm;
19526 		}
19527 
19528 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19529 		 * and other inlining handlers are currently limited to 64 bit
19530 		 * only.
19531 		 */
19532 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19533 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
19534 		     insn->imm == BPF_FUNC_map_update_elem ||
19535 		     insn->imm == BPF_FUNC_map_delete_elem ||
19536 		     insn->imm == BPF_FUNC_map_push_elem   ||
19537 		     insn->imm == BPF_FUNC_map_pop_elem    ||
19538 		     insn->imm == BPF_FUNC_map_peek_elem   ||
19539 		     insn->imm == BPF_FUNC_redirect_map    ||
19540 		     insn->imm == BPF_FUNC_for_each_map_elem ||
19541 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19542 			aux = &env->insn_aux_data[i + delta];
19543 			if (bpf_map_ptr_poisoned(aux))
19544 				goto patch_call_imm;
19545 
19546 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19547 			ops = map_ptr->ops;
19548 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
19549 			    ops->map_gen_lookup) {
19550 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19551 				if (cnt == -EOPNOTSUPP)
19552 					goto patch_map_ops_generic;
19553 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19554 					verbose(env, "bpf verifier is misconfigured\n");
19555 					return -EINVAL;
19556 				}
19557 
19558 				new_prog = bpf_patch_insn_data(env, i + delta,
19559 							       insn_buf, cnt);
19560 				if (!new_prog)
19561 					return -ENOMEM;
19562 
19563 				delta    += cnt - 1;
19564 				env->prog = prog = new_prog;
19565 				insn      = new_prog->insnsi + i + delta;
19566 				continue;
19567 			}
19568 
19569 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19570 				     (void *(*)(struct bpf_map *map, void *key))NULL));
19571 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19572 				     (long (*)(struct bpf_map *map, void *key))NULL));
19573 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19574 				     (long (*)(struct bpf_map *map, void *key, void *value,
19575 					      u64 flags))NULL));
19576 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19577 				     (long (*)(struct bpf_map *map, void *value,
19578 					      u64 flags))NULL));
19579 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19580 				     (long (*)(struct bpf_map *map, void *value))NULL));
19581 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19582 				     (long (*)(struct bpf_map *map, void *value))NULL));
19583 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
19584 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19585 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
19586 				     (long (*)(struct bpf_map *map,
19587 					      bpf_callback_t callback_fn,
19588 					      void *callback_ctx,
19589 					      u64 flags))NULL));
19590 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
19591 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
19592 
19593 patch_map_ops_generic:
19594 			switch (insn->imm) {
19595 			case BPF_FUNC_map_lookup_elem:
19596 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
19597 				continue;
19598 			case BPF_FUNC_map_update_elem:
19599 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
19600 				continue;
19601 			case BPF_FUNC_map_delete_elem:
19602 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
19603 				continue;
19604 			case BPF_FUNC_map_push_elem:
19605 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
19606 				continue;
19607 			case BPF_FUNC_map_pop_elem:
19608 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
19609 				continue;
19610 			case BPF_FUNC_map_peek_elem:
19611 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
19612 				continue;
19613 			case BPF_FUNC_redirect_map:
19614 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
19615 				continue;
19616 			case BPF_FUNC_for_each_map_elem:
19617 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
19618 				continue;
19619 			case BPF_FUNC_map_lookup_percpu_elem:
19620 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
19621 				continue;
19622 			}
19623 
19624 			goto patch_call_imm;
19625 		}
19626 
19627 		/* Implement bpf_jiffies64 inline. */
19628 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19629 		    insn->imm == BPF_FUNC_jiffies64) {
19630 			struct bpf_insn ld_jiffies_addr[2] = {
19631 				BPF_LD_IMM64(BPF_REG_0,
19632 					     (unsigned long)&jiffies),
19633 			};
19634 
19635 			insn_buf[0] = ld_jiffies_addr[0];
19636 			insn_buf[1] = ld_jiffies_addr[1];
19637 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
19638 						  BPF_REG_0, 0);
19639 			cnt = 3;
19640 
19641 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
19642 						       cnt);
19643 			if (!new_prog)
19644 				return -ENOMEM;
19645 
19646 			delta    += cnt - 1;
19647 			env->prog = prog = new_prog;
19648 			insn      = new_prog->insnsi + i + delta;
19649 			continue;
19650 		}
19651 
19652 		/* Implement bpf_get_func_arg inline. */
19653 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19654 		    insn->imm == BPF_FUNC_get_func_arg) {
19655 			/* Load nr_args from ctx - 8 */
19656 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19657 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
19658 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
19659 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
19660 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
19661 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19662 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
19663 			insn_buf[7] = BPF_JMP_A(1);
19664 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
19665 			cnt = 9;
19666 
19667 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19668 			if (!new_prog)
19669 				return -ENOMEM;
19670 
19671 			delta    += cnt - 1;
19672 			env->prog = prog = new_prog;
19673 			insn      = new_prog->insnsi + i + delta;
19674 			continue;
19675 		}
19676 
19677 		/* Implement bpf_get_func_ret inline. */
19678 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19679 		    insn->imm == BPF_FUNC_get_func_ret) {
19680 			if (eatype == BPF_TRACE_FEXIT ||
19681 			    eatype == BPF_MODIFY_RETURN) {
19682 				/* Load nr_args from ctx - 8 */
19683 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19684 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
19685 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
19686 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19687 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
19688 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
19689 				cnt = 6;
19690 			} else {
19691 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
19692 				cnt = 1;
19693 			}
19694 
19695 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19696 			if (!new_prog)
19697 				return -ENOMEM;
19698 
19699 			delta    += cnt - 1;
19700 			env->prog = prog = new_prog;
19701 			insn      = new_prog->insnsi + i + delta;
19702 			continue;
19703 		}
19704 
19705 		/* Implement get_func_arg_cnt inline. */
19706 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19707 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
19708 			/* Load nr_args from ctx - 8 */
19709 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19710 
19711 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19712 			if (!new_prog)
19713 				return -ENOMEM;
19714 
19715 			env->prog = prog = new_prog;
19716 			insn      = new_prog->insnsi + i + delta;
19717 			continue;
19718 		}
19719 
19720 		/* Implement bpf_get_func_ip inline. */
19721 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19722 		    insn->imm == BPF_FUNC_get_func_ip) {
19723 			/* Load IP address from ctx - 16 */
19724 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
19725 
19726 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19727 			if (!new_prog)
19728 				return -ENOMEM;
19729 
19730 			env->prog = prog = new_prog;
19731 			insn      = new_prog->insnsi + i + delta;
19732 			continue;
19733 		}
19734 
19735 patch_call_imm:
19736 		fn = env->ops->get_func_proto(insn->imm, env->prog);
19737 		/* all functions that have prototype and verifier allowed
19738 		 * programs to call them, must be real in-kernel functions
19739 		 */
19740 		if (!fn->func) {
19741 			verbose(env,
19742 				"kernel subsystem misconfigured func %s#%d\n",
19743 				func_id_name(insn->imm), insn->imm);
19744 			return -EFAULT;
19745 		}
19746 		insn->imm = fn->func - __bpf_call_base;
19747 	}
19748 
19749 	/* Since poke tab is now finalized, publish aux to tracker. */
19750 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19751 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19752 		if (!map_ptr->ops->map_poke_track ||
19753 		    !map_ptr->ops->map_poke_untrack ||
19754 		    !map_ptr->ops->map_poke_run) {
19755 			verbose(env, "bpf verifier is misconfigured\n");
19756 			return -EINVAL;
19757 		}
19758 
19759 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
19760 		if (ret < 0) {
19761 			verbose(env, "tracking tail call prog failed\n");
19762 			return ret;
19763 		}
19764 	}
19765 
19766 	sort_kfunc_descs_by_imm_off(env->prog);
19767 
19768 	return 0;
19769 }
19770 
19771 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
19772 					int position,
19773 					s32 stack_base,
19774 					u32 callback_subprogno,
19775 					u32 *cnt)
19776 {
19777 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
19778 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
19779 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
19780 	int reg_loop_max = BPF_REG_6;
19781 	int reg_loop_cnt = BPF_REG_7;
19782 	int reg_loop_ctx = BPF_REG_8;
19783 
19784 	struct bpf_prog *new_prog;
19785 	u32 callback_start;
19786 	u32 call_insn_offset;
19787 	s32 callback_offset;
19788 
19789 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
19790 	 * be careful to modify this code in sync.
19791 	 */
19792 	struct bpf_insn insn_buf[] = {
19793 		/* Return error and jump to the end of the patch if
19794 		 * expected number of iterations is too big.
19795 		 */
19796 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
19797 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
19798 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
19799 		/* spill R6, R7, R8 to use these as loop vars */
19800 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
19801 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
19802 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
19803 		/* initialize loop vars */
19804 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
19805 		BPF_MOV32_IMM(reg_loop_cnt, 0),
19806 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
19807 		/* loop header,
19808 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
19809 		 */
19810 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
19811 		/* callback call,
19812 		 * correct callback offset would be set after patching
19813 		 */
19814 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
19815 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
19816 		BPF_CALL_REL(0),
19817 		/* increment loop counter */
19818 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
19819 		/* jump to loop header if callback returned 0 */
19820 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
19821 		/* return value of bpf_loop,
19822 		 * set R0 to the number of iterations
19823 		 */
19824 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
19825 		/* restore original values of R6, R7, R8 */
19826 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
19827 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
19828 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
19829 	};
19830 
19831 	*cnt = ARRAY_SIZE(insn_buf);
19832 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
19833 	if (!new_prog)
19834 		return new_prog;
19835 
19836 	/* callback start is known only after patching */
19837 	callback_start = env->subprog_info[callback_subprogno].start;
19838 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
19839 	call_insn_offset = position + 12;
19840 	callback_offset = callback_start - call_insn_offset - 1;
19841 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
19842 
19843 	return new_prog;
19844 }
19845 
19846 static bool is_bpf_loop_call(struct bpf_insn *insn)
19847 {
19848 	return insn->code == (BPF_JMP | BPF_CALL) &&
19849 		insn->src_reg == 0 &&
19850 		insn->imm == BPF_FUNC_loop;
19851 }
19852 
19853 /* For all sub-programs in the program (including main) check
19854  * insn_aux_data to see if there are bpf_loop calls that require
19855  * inlining. If such calls are found the calls are replaced with a
19856  * sequence of instructions produced by `inline_bpf_loop` function and
19857  * subprog stack_depth is increased by the size of 3 registers.
19858  * This stack space is used to spill values of the R6, R7, R8.  These
19859  * registers are used to store the loop bound, counter and context
19860  * variables.
19861  */
19862 static int optimize_bpf_loop(struct bpf_verifier_env *env)
19863 {
19864 	struct bpf_subprog_info *subprogs = env->subprog_info;
19865 	int i, cur_subprog = 0, cnt, delta = 0;
19866 	struct bpf_insn *insn = env->prog->insnsi;
19867 	int insn_cnt = env->prog->len;
19868 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
19869 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19870 	u16 stack_depth_extra = 0;
19871 
19872 	for (i = 0; i < insn_cnt; i++, insn++) {
19873 		struct bpf_loop_inline_state *inline_state =
19874 			&env->insn_aux_data[i + delta].loop_inline_state;
19875 
19876 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
19877 			struct bpf_prog *new_prog;
19878 
19879 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
19880 			new_prog = inline_bpf_loop(env,
19881 						   i + delta,
19882 						   -(stack_depth + stack_depth_extra),
19883 						   inline_state->callback_subprogno,
19884 						   &cnt);
19885 			if (!new_prog)
19886 				return -ENOMEM;
19887 
19888 			delta     += cnt - 1;
19889 			env->prog  = new_prog;
19890 			insn       = new_prog->insnsi + i + delta;
19891 		}
19892 
19893 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19894 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
19895 			cur_subprog++;
19896 			stack_depth = subprogs[cur_subprog].stack_depth;
19897 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19898 			stack_depth_extra = 0;
19899 		}
19900 	}
19901 
19902 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19903 
19904 	return 0;
19905 }
19906 
19907 static void free_states(struct bpf_verifier_env *env)
19908 {
19909 	struct bpf_verifier_state_list *sl, *sln;
19910 	int i;
19911 
19912 	sl = env->free_list;
19913 	while (sl) {
19914 		sln = sl->next;
19915 		free_verifier_state(&sl->state, false);
19916 		kfree(sl);
19917 		sl = sln;
19918 	}
19919 	env->free_list = NULL;
19920 
19921 	if (!env->explored_states)
19922 		return;
19923 
19924 	for (i = 0; i < state_htab_size(env); i++) {
19925 		sl = env->explored_states[i];
19926 
19927 		while (sl) {
19928 			sln = sl->next;
19929 			free_verifier_state(&sl->state, false);
19930 			kfree(sl);
19931 			sl = sln;
19932 		}
19933 		env->explored_states[i] = NULL;
19934 	}
19935 }
19936 
19937 static int do_check_common(struct bpf_verifier_env *env, int subprog, bool is_ex_cb)
19938 {
19939 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19940 	struct bpf_verifier_state *state;
19941 	struct bpf_reg_state *regs;
19942 	int ret, i;
19943 
19944 	env->prev_linfo = NULL;
19945 	env->pass_cnt++;
19946 
19947 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19948 	if (!state)
19949 		return -ENOMEM;
19950 	state->curframe = 0;
19951 	state->speculative = false;
19952 	state->branches = 1;
19953 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19954 	if (!state->frame[0]) {
19955 		kfree(state);
19956 		return -ENOMEM;
19957 	}
19958 	env->cur_state = state;
19959 	init_func_state(env, state->frame[0],
19960 			BPF_MAIN_FUNC /* callsite */,
19961 			0 /* frameno */,
19962 			subprog);
19963 	state->first_insn_idx = env->subprog_info[subprog].start;
19964 	state->last_insn_idx = -1;
19965 
19966 	regs = state->frame[state->curframe]->regs;
19967 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19968 		ret = btf_prepare_func_args(env, subprog, regs, is_ex_cb);
19969 		if (ret)
19970 			goto out;
19971 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19972 			if (regs[i].type == PTR_TO_CTX)
19973 				mark_reg_known_zero(env, regs, i);
19974 			else if (regs[i].type == SCALAR_VALUE)
19975 				mark_reg_unknown(env, regs, i);
19976 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
19977 				const u32 mem_size = regs[i].mem_size;
19978 
19979 				mark_reg_known_zero(env, regs, i);
19980 				regs[i].mem_size = mem_size;
19981 				regs[i].id = ++env->id_gen;
19982 			}
19983 		}
19984 		if (is_ex_cb) {
19985 			state->frame[0]->in_exception_callback_fn = true;
19986 			env->subprog_info[subprog].is_cb = true;
19987 			env->subprog_info[subprog].is_async_cb = true;
19988 			env->subprog_info[subprog].is_exception_cb = true;
19989 		}
19990 	} else {
19991 		/* 1st arg to a function */
19992 		regs[BPF_REG_1].type = PTR_TO_CTX;
19993 		mark_reg_known_zero(env, regs, BPF_REG_1);
19994 		ret = btf_check_subprog_arg_match(env, subprog, regs);
19995 		if (ret == -EFAULT)
19996 			/* unlikely verifier bug. abort.
19997 			 * ret == 0 and ret < 0 are sadly acceptable for
19998 			 * main() function due to backward compatibility.
19999 			 * Like socket filter program may be written as:
20000 			 * int bpf_prog(struct pt_regs *ctx)
20001 			 * and never dereference that ctx in the program.
20002 			 * 'struct pt_regs' is a type mismatch for socket
20003 			 * filter that should be using 'struct __sk_buff'.
20004 			 */
20005 			goto out;
20006 	}
20007 
20008 	ret = do_check(env);
20009 out:
20010 	/* check for NULL is necessary, since cur_state can be freed inside
20011 	 * do_check() under memory pressure.
20012 	 */
20013 	if (env->cur_state) {
20014 		free_verifier_state(env->cur_state, true);
20015 		env->cur_state = NULL;
20016 	}
20017 	while (!pop_stack(env, NULL, NULL, false));
20018 	if (!ret && pop_log)
20019 		bpf_vlog_reset(&env->log, 0);
20020 	free_states(env);
20021 	return ret;
20022 }
20023 
20024 /* Verify all global functions in a BPF program one by one based on their BTF.
20025  * All global functions must pass verification. Otherwise the whole program is rejected.
20026  * Consider:
20027  * int bar(int);
20028  * int foo(int f)
20029  * {
20030  *    return bar(f);
20031  * }
20032  * int bar(int b)
20033  * {
20034  *    ...
20035  * }
20036  * foo() will be verified first for R1=any_scalar_value. During verification it
20037  * will be assumed that bar() already verified successfully and call to bar()
20038  * from foo() will be checked for type match only. Later bar() will be verified
20039  * independently to check that it's safe for R1=any_scalar_value.
20040  */
20041 static int do_check_subprogs(struct bpf_verifier_env *env)
20042 {
20043 	struct bpf_prog_aux *aux = env->prog->aux;
20044 	int i, ret;
20045 
20046 	if (!aux->func_info)
20047 		return 0;
20048 
20049 	for (i = 1; i < env->subprog_cnt; i++) {
20050 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
20051 			continue;
20052 		env->insn_idx = env->subprog_info[i].start;
20053 		WARN_ON_ONCE(env->insn_idx == 0);
20054 		ret = do_check_common(env, i, env->exception_callback_subprog == i);
20055 		if (ret) {
20056 			return ret;
20057 		} else if (env->log.level & BPF_LOG_LEVEL) {
20058 			verbose(env,
20059 				"Func#%d is safe for any args that match its prototype\n",
20060 				i);
20061 		}
20062 	}
20063 	return 0;
20064 }
20065 
20066 static int do_check_main(struct bpf_verifier_env *env)
20067 {
20068 	int ret;
20069 
20070 	env->insn_idx = 0;
20071 	ret = do_check_common(env, 0, false);
20072 	if (!ret)
20073 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
20074 	return ret;
20075 }
20076 
20077 
20078 static void print_verification_stats(struct bpf_verifier_env *env)
20079 {
20080 	int i;
20081 
20082 	if (env->log.level & BPF_LOG_STATS) {
20083 		verbose(env, "verification time %lld usec\n",
20084 			div_u64(env->verification_time, 1000));
20085 		verbose(env, "stack depth ");
20086 		for (i = 0; i < env->subprog_cnt; i++) {
20087 			u32 depth = env->subprog_info[i].stack_depth;
20088 
20089 			verbose(env, "%d", depth);
20090 			if (i + 1 < env->subprog_cnt)
20091 				verbose(env, "+");
20092 		}
20093 		verbose(env, "\n");
20094 	}
20095 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
20096 		"total_states %d peak_states %d mark_read %d\n",
20097 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
20098 		env->max_states_per_insn, env->total_states,
20099 		env->peak_states, env->longest_mark_read_walk);
20100 }
20101 
20102 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
20103 {
20104 	const struct btf_type *t, *func_proto;
20105 	const struct bpf_struct_ops *st_ops;
20106 	const struct btf_member *member;
20107 	struct bpf_prog *prog = env->prog;
20108 	u32 btf_id, member_idx;
20109 	const char *mname;
20110 
20111 	if (!prog->gpl_compatible) {
20112 		verbose(env, "struct ops programs must have a GPL compatible license\n");
20113 		return -EINVAL;
20114 	}
20115 
20116 	btf_id = prog->aux->attach_btf_id;
20117 	st_ops = bpf_struct_ops_find(btf_id);
20118 	if (!st_ops) {
20119 		verbose(env, "attach_btf_id %u is not a supported struct\n",
20120 			btf_id);
20121 		return -ENOTSUPP;
20122 	}
20123 
20124 	t = st_ops->type;
20125 	member_idx = prog->expected_attach_type;
20126 	if (member_idx >= btf_type_vlen(t)) {
20127 		verbose(env, "attach to invalid member idx %u of struct %s\n",
20128 			member_idx, st_ops->name);
20129 		return -EINVAL;
20130 	}
20131 
20132 	member = &btf_type_member(t)[member_idx];
20133 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
20134 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
20135 					       NULL);
20136 	if (!func_proto) {
20137 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
20138 			mname, member_idx, st_ops->name);
20139 		return -EINVAL;
20140 	}
20141 
20142 	if (st_ops->check_member) {
20143 		int err = st_ops->check_member(t, member, prog);
20144 
20145 		if (err) {
20146 			verbose(env, "attach to unsupported member %s of struct %s\n",
20147 				mname, st_ops->name);
20148 			return err;
20149 		}
20150 	}
20151 
20152 	prog->aux->attach_func_proto = func_proto;
20153 	prog->aux->attach_func_name = mname;
20154 	env->ops = st_ops->verifier_ops;
20155 
20156 	return 0;
20157 }
20158 #define SECURITY_PREFIX "security_"
20159 
20160 static int check_attach_modify_return(unsigned long addr, const char *func_name)
20161 {
20162 	if (within_error_injection_list(addr) ||
20163 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
20164 		return 0;
20165 
20166 	return -EINVAL;
20167 }
20168 
20169 /* list of non-sleepable functions that are otherwise on
20170  * ALLOW_ERROR_INJECTION list
20171  */
20172 BTF_SET_START(btf_non_sleepable_error_inject)
20173 /* Three functions below can be called from sleepable and non-sleepable context.
20174  * Assume non-sleepable from bpf safety point of view.
20175  */
20176 BTF_ID(func, __filemap_add_folio)
20177 BTF_ID(func, should_fail_alloc_page)
20178 BTF_ID(func, should_failslab)
20179 BTF_SET_END(btf_non_sleepable_error_inject)
20180 
20181 static int check_non_sleepable_error_inject(u32 btf_id)
20182 {
20183 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
20184 }
20185 
20186 int bpf_check_attach_target(struct bpf_verifier_log *log,
20187 			    const struct bpf_prog *prog,
20188 			    const struct bpf_prog *tgt_prog,
20189 			    u32 btf_id,
20190 			    struct bpf_attach_target_info *tgt_info)
20191 {
20192 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
20193 	const char prefix[] = "btf_trace_";
20194 	int ret = 0, subprog = -1, i;
20195 	const struct btf_type *t;
20196 	bool conservative = true;
20197 	const char *tname;
20198 	struct btf *btf;
20199 	long addr = 0;
20200 	struct module *mod = NULL;
20201 
20202 	if (!btf_id) {
20203 		bpf_log(log, "Tracing programs must provide btf_id\n");
20204 		return -EINVAL;
20205 	}
20206 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
20207 	if (!btf) {
20208 		bpf_log(log,
20209 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
20210 		return -EINVAL;
20211 	}
20212 	t = btf_type_by_id(btf, btf_id);
20213 	if (!t) {
20214 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
20215 		return -EINVAL;
20216 	}
20217 	tname = btf_name_by_offset(btf, t->name_off);
20218 	if (!tname) {
20219 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
20220 		return -EINVAL;
20221 	}
20222 	if (tgt_prog) {
20223 		struct bpf_prog_aux *aux = tgt_prog->aux;
20224 
20225 		if (bpf_prog_is_dev_bound(prog->aux) &&
20226 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
20227 			bpf_log(log, "Target program bound device mismatch");
20228 			return -EINVAL;
20229 		}
20230 
20231 		for (i = 0; i < aux->func_info_cnt; i++)
20232 			if (aux->func_info[i].type_id == btf_id) {
20233 				subprog = i;
20234 				break;
20235 			}
20236 		if (subprog == -1) {
20237 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
20238 			return -EINVAL;
20239 		}
20240 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
20241 			bpf_log(log,
20242 				"%s programs cannot attach to exception callback\n",
20243 				prog_extension ? "Extension" : "FENTRY/FEXIT");
20244 			return -EINVAL;
20245 		}
20246 		conservative = aux->func_info_aux[subprog].unreliable;
20247 		if (prog_extension) {
20248 			if (conservative) {
20249 				bpf_log(log,
20250 					"Cannot replace static functions\n");
20251 				return -EINVAL;
20252 			}
20253 			if (!prog->jit_requested) {
20254 				bpf_log(log,
20255 					"Extension programs should be JITed\n");
20256 				return -EINVAL;
20257 			}
20258 		}
20259 		if (!tgt_prog->jited) {
20260 			bpf_log(log, "Can attach to only JITed progs\n");
20261 			return -EINVAL;
20262 		}
20263 		if (tgt_prog->type == prog->type) {
20264 			/* Cannot fentry/fexit another fentry/fexit program.
20265 			 * Cannot attach program extension to another extension.
20266 			 * It's ok to attach fentry/fexit to extension program.
20267 			 */
20268 			bpf_log(log, "Cannot recursively attach\n");
20269 			return -EINVAL;
20270 		}
20271 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
20272 		    prog_extension &&
20273 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
20274 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
20275 			/* Program extensions can extend all program types
20276 			 * except fentry/fexit. The reason is the following.
20277 			 * The fentry/fexit programs are used for performance
20278 			 * analysis, stats and can be attached to any program
20279 			 * type except themselves. When extension program is
20280 			 * replacing XDP function it is necessary to allow
20281 			 * performance analysis of all functions. Both original
20282 			 * XDP program and its program extension. Hence
20283 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
20284 			 * allowed. If extending of fentry/fexit was allowed it
20285 			 * would be possible to create long call chain
20286 			 * fentry->extension->fentry->extension beyond
20287 			 * reasonable stack size. Hence extending fentry is not
20288 			 * allowed.
20289 			 */
20290 			bpf_log(log, "Cannot extend fentry/fexit\n");
20291 			return -EINVAL;
20292 		}
20293 	} else {
20294 		if (prog_extension) {
20295 			bpf_log(log, "Cannot replace kernel functions\n");
20296 			return -EINVAL;
20297 		}
20298 	}
20299 
20300 	switch (prog->expected_attach_type) {
20301 	case BPF_TRACE_RAW_TP:
20302 		if (tgt_prog) {
20303 			bpf_log(log,
20304 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
20305 			return -EINVAL;
20306 		}
20307 		if (!btf_type_is_typedef(t)) {
20308 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
20309 				btf_id);
20310 			return -EINVAL;
20311 		}
20312 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
20313 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
20314 				btf_id, tname);
20315 			return -EINVAL;
20316 		}
20317 		tname += sizeof(prefix) - 1;
20318 		t = btf_type_by_id(btf, t->type);
20319 		if (!btf_type_is_ptr(t))
20320 			/* should never happen in valid vmlinux build */
20321 			return -EINVAL;
20322 		t = btf_type_by_id(btf, t->type);
20323 		if (!btf_type_is_func_proto(t))
20324 			/* should never happen in valid vmlinux build */
20325 			return -EINVAL;
20326 
20327 		break;
20328 	case BPF_TRACE_ITER:
20329 		if (!btf_type_is_func(t)) {
20330 			bpf_log(log, "attach_btf_id %u is not a function\n",
20331 				btf_id);
20332 			return -EINVAL;
20333 		}
20334 		t = btf_type_by_id(btf, t->type);
20335 		if (!btf_type_is_func_proto(t))
20336 			return -EINVAL;
20337 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20338 		if (ret)
20339 			return ret;
20340 		break;
20341 	default:
20342 		if (!prog_extension)
20343 			return -EINVAL;
20344 		fallthrough;
20345 	case BPF_MODIFY_RETURN:
20346 	case BPF_LSM_MAC:
20347 	case BPF_LSM_CGROUP:
20348 	case BPF_TRACE_FENTRY:
20349 	case BPF_TRACE_FEXIT:
20350 		if (!btf_type_is_func(t)) {
20351 			bpf_log(log, "attach_btf_id %u is not a function\n",
20352 				btf_id);
20353 			return -EINVAL;
20354 		}
20355 		if (prog_extension &&
20356 		    btf_check_type_match(log, prog, btf, t))
20357 			return -EINVAL;
20358 		t = btf_type_by_id(btf, t->type);
20359 		if (!btf_type_is_func_proto(t))
20360 			return -EINVAL;
20361 
20362 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
20363 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
20364 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
20365 			return -EINVAL;
20366 
20367 		if (tgt_prog && conservative)
20368 			t = NULL;
20369 
20370 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20371 		if (ret < 0)
20372 			return ret;
20373 
20374 		if (tgt_prog) {
20375 			if (subprog == 0)
20376 				addr = (long) tgt_prog->bpf_func;
20377 			else
20378 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
20379 		} else {
20380 			if (btf_is_module(btf)) {
20381 				mod = btf_try_get_module(btf);
20382 				if (mod)
20383 					addr = find_kallsyms_symbol_value(mod, tname);
20384 				else
20385 					addr = 0;
20386 			} else {
20387 				addr = kallsyms_lookup_name(tname);
20388 			}
20389 			if (!addr) {
20390 				module_put(mod);
20391 				bpf_log(log,
20392 					"The address of function %s cannot be found\n",
20393 					tname);
20394 				return -ENOENT;
20395 			}
20396 		}
20397 
20398 		if (prog->aux->sleepable) {
20399 			ret = -EINVAL;
20400 			switch (prog->type) {
20401 			case BPF_PROG_TYPE_TRACING:
20402 
20403 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
20404 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
20405 				 */
20406 				if (!check_non_sleepable_error_inject(btf_id) &&
20407 				    within_error_injection_list(addr))
20408 					ret = 0;
20409 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
20410 				 * in the fmodret id set with the KF_SLEEPABLE flag.
20411 				 */
20412 				else {
20413 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
20414 										prog);
20415 
20416 					if (flags && (*flags & KF_SLEEPABLE))
20417 						ret = 0;
20418 				}
20419 				break;
20420 			case BPF_PROG_TYPE_LSM:
20421 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
20422 				 * Only some of them are sleepable.
20423 				 */
20424 				if (bpf_lsm_is_sleepable_hook(btf_id))
20425 					ret = 0;
20426 				break;
20427 			default:
20428 				break;
20429 			}
20430 			if (ret) {
20431 				module_put(mod);
20432 				bpf_log(log, "%s is not sleepable\n", tname);
20433 				return ret;
20434 			}
20435 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
20436 			if (tgt_prog) {
20437 				module_put(mod);
20438 				bpf_log(log, "can't modify return codes of BPF programs\n");
20439 				return -EINVAL;
20440 			}
20441 			ret = -EINVAL;
20442 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
20443 			    !check_attach_modify_return(addr, tname))
20444 				ret = 0;
20445 			if (ret) {
20446 				module_put(mod);
20447 				bpf_log(log, "%s() is not modifiable\n", tname);
20448 				return ret;
20449 			}
20450 		}
20451 
20452 		break;
20453 	}
20454 	tgt_info->tgt_addr = addr;
20455 	tgt_info->tgt_name = tname;
20456 	tgt_info->tgt_type = t;
20457 	tgt_info->tgt_mod = mod;
20458 	return 0;
20459 }
20460 
20461 BTF_SET_START(btf_id_deny)
20462 BTF_ID_UNUSED
20463 #ifdef CONFIG_SMP
20464 BTF_ID(func, migrate_disable)
20465 BTF_ID(func, migrate_enable)
20466 #endif
20467 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
20468 BTF_ID(func, rcu_read_unlock_strict)
20469 #endif
20470 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
20471 BTF_ID(func, preempt_count_add)
20472 BTF_ID(func, preempt_count_sub)
20473 #endif
20474 #ifdef CONFIG_PREEMPT_RCU
20475 BTF_ID(func, __rcu_read_lock)
20476 BTF_ID(func, __rcu_read_unlock)
20477 #endif
20478 BTF_SET_END(btf_id_deny)
20479 
20480 static bool can_be_sleepable(struct bpf_prog *prog)
20481 {
20482 	if (prog->type == BPF_PROG_TYPE_TRACING) {
20483 		switch (prog->expected_attach_type) {
20484 		case BPF_TRACE_FENTRY:
20485 		case BPF_TRACE_FEXIT:
20486 		case BPF_MODIFY_RETURN:
20487 		case BPF_TRACE_ITER:
20488 			return true;
20489 		default:
20490 			return false;
20491 		}
20492 	}
20493 	return prog->type == BPF_PROG_TYPE_LSM ||
20494 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
20495 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
20496 }
20497 
20498 static int check_attach_btf_id(struct bpf_verifier_env *env)
20499 {
20500 	struct bpf_prog *prog = env->prog;
20501 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
20502 	struct bpf_attach_target_info tgt_info = {};
20503 	u32 btf_id = prog->aux->attach_btf_id;
20504 	struct bpf_trampoline *tr;
20505 	int ret;
20506 	u64 key;
20507 
20508 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
20509 		if (prog->aux->sleepable)
20510 			/* attach_btf_id checked to be zero already */
20511 			return 0;
20512 		verbose(env, "Syscall programs can only be sleepable\n");
20513 		return -EINVAL;
20514 	}
20515 
20516 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
20517 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
20518 		return -EINVAL;
20519 	}
20520 
20521 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
20522 		return check_struct_ops_btf_id(env);
20523 
20524 	if (prog->type != BPF_PROG_TYPE_TRACING &&
20525 	    prog->type != BPF_PROG_TYPE_LSM &&
20526 	    prog->type != BPF_PROG_TYPE_EXT)
20527 		return 0;
20528 
20529 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
20530 	if (ret)
20531 		return ret;
20532 
20533 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
20534 		/* to make freplace equivalent to their targets, they need to
20535 		 * inherit env->ops and expected_attach_type for the rest of the
20536 		 * verification
20537 		 */
20538 		env->ops = bpf_verifier_ops[tgt_prog->type];
20539 		prog->expected_attach_type = tgt_prog->expected_attach_type;
20540 	}
20541 
20542 	/* store info about the attachment target that will be used later */
20543 	prog->aux->attach_func_proto = tgt_info.tgt_type;
20544 	prog->aux->attach_func_name = tgt_info.tgt_name;
20545 	prog->aux->mod = tgt_info.tgt_mod;
20546 
20547 	if (tgt_prog) {
20548 		prog->aux->saved_dst_prog_type = tgt_prog->type;
20549 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
20550 	}
20551 
20552 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
20553 		prog->aux->attach_btf_trace = true;
20554 		return 0;
20555 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
20556 		if (!bpf_iter_prog_supported(prog))
20557 			return -EINVAL;
20558 		return 0;
20559 	}
20560 
20561 	if (prog->type == BPF_PROG_TYPE_LSM) {
20562 		ret = bpf_lsm_verify_prog(&env->log, prog);
20563 		if (ret < 0)
20564 			return ret;
20565 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
20566 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
20567 		return -EINVAL;
20568 	}
20569 
20570 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
20571 	tr = bpf_trampoline_get(key, &tgt_info);
20572 	if (!tr)
20573 		return -ENOMEM;
20574 
20575 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
20576 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
20577 
20578 	prog->aux->dst_trampoline = tr;
20579 	return 0;
20580 }
20581 
20582 struct btf *bpf_get_btf_vmlinux(void)
20583 {
20584 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
20585 		mutex_lock(&bpf_verifier_lock);
20586 		if (!btf_vmlinux)
20587 			btf_vmlinux = btf_parse_vmlinux();
20588 		mutex_unlock(&bpf_verifier_lock);
20589 	}
20590 	return btf_vmlinux;
20591 }
20592 
20593 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
20594 {
20595 	u64 start_time = ktime_get_ns();
20596 	struct bpf_verifier_env *env;
20597 	int i, len, ret = -EINVAL, err;
20598 	u32 log_true_size;
20599 	bool is_priv;
20600 
20601 	/* no program is valid */
20602 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
20603 		return -EINVAL;
20604 
20605 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
20606 	 * allocate/free it every time bpf_check() is called
20607 	 */
20608 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
20609 	if (!env)
20610 		return -ENOMEM;
20611 
20612 	env->bt.env = env;
20613 
20614 	len = (*prog)->len;
20615 	env->insn_aux_data =
20616 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
20617 	ret = -ENOMEM;
20618 	if (!env->insn_aux_data)
20619 		goto err_free_env;
20620 	for (i = 0; i < len; i++)
20621 		env->insn_aux_data[i].orig_idx = i;
20622 	env->prog = *prog;
20623 	env->ops = bpf_verifier_ops[env->prog->type];
20624 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
20625 	is_priv = bpf_capable();
20626 
20627 	bpf_get_btf_vmlinux();
20628 
20629 	/* grab the mutex to protect few globals used by verifier */
20630 	if (!is_priv)
20631 		mutex_lock(&bpf_verifier_lock);
20632 
20633 	/* user could have requested verbose verifier output
20634 	 * and supplied buffer to store the verification trace
20635 	 */
20636 	ret = bpf_vlog_init(&env->log, attr->log_level,
20637 			    (char __user *) (unsigned long) attr->log_buf,
20638 			    attr->log_size);
20639 	if (ret)
20640 		goto err_unlock;
20641 
20642 	mark_verifier_state_clean(env);
20643 
20644 	if (IS_ERR(btf_vmlinux)) {
20645 		/* Either gcc or pahole or kernel are broken. */
20646 		verbose(env, "in-kernel BTF is malformed\n");
20647 		ret = PTR_ERR(btf_vmlinux);
20648 		goto skip_full_check;
20649 	}
20650 
20651 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
20652 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
20653 		env->strict_alignment = true;
20654 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
20655 		env->strict_alignment = false;
20656 
20657 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
20658 	env->allow_uninit_stack = bpf_allow_uninit_stack();
20659 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
20660 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
20661 	env->bpf_capable = bpf_capable();
20662 
20663 	if (is_priv)
20664 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
20665 
20666 	env->explored_states = kvcalloc(state_htab_size(env),
20667 				       sizeof(struct bpf_verifier_state_list *),
20668 				       GFP_USER);
20669 	ret = -ENOMEM;
20670 	if (!env->explored_states)
20671 		goto skip_full_check;
20672 
20673 	ret = check_btf_info_early(env, attr, uattr);
20674 	if (ret < 0)
20675 		goto skip_full_check;
20676 
20677 	ret = add_subprog_and_kfunc(env);
20678 	if (ret < 0)
20679 		goto skip_full_check;
20680 
20681 	ret = check_subprogs(env);
20682 	if (ret < 0)
20683 		goto skip_full_check;
20684 
20685 	ret = check_btf_info(env, attr, uattr);
20686 	if (ret < 0)
20687 		goto skip_full_check;
20688 
20689 	ret = check_attach_btf_id(env);
20690 	if (ret)
20691 		goto skip_full_check;
20692 
20693 	ret = resolve_pseudo_ldimm64(env);
20694 	if (ret < 0)
20695 		goto skip_full_check;
20696 
20697 	if (bpf_prog_is_offloaded(env->prog->aux)) {
20698 		ret = bpf_prog_offload_verifier_prep(env->prog);
20699 		if (ret)
20700 			goto skip_full_check;
20701 	}
20702 
20703 	ret = check_cfg(env);
20704 	if (ret < 0)
20705 		goto skip_full_check;
20706 
20707 	ret = do_check_subprogs(env);
20708 	ret = ret ?: do_check_main(env);
20709 
20710 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
20711 		ret = bpf_prog_offload_finalize(env);
20712 
20713 skip_full_check:
20714 	kvfree(env->explored_states);
20715 
20716 	if (ret == 0)
20717 		ret = check_max_stack_depth(env);
20718 
20719 	/* instruction rewrites happen after this point */
20720 	if (ret == 0)
20721 		ret = optimize_bpf_loop(env);
20722 
20723 	if (is_priv) {
20724 		if (ret == 0)
20725 			opt_hard_wire_dead_code_branches(env);
20726 		if (ret == 0)
20727 			ret = opt_remove_dead_code(env);
20728 		if (ret == 0)
20729 			ret = opt_remove_nops(env);
20730 	} else {
20731 		if (ret == 0)
20732 			sanitize_dead_code(env);
20733 	}
20734 
20735 	if (ret == 0)
20736 		/* program is valid, convert *(u32*)(ctx + off) accesses */
20737 		ret = convert_ctx_accesses(env);
20738 
20739 	if (ret == 0)
20740 		ret = do_misc_fixups(env);
20741 
20742 	/* do 32-bit optimization after insn patching has done so those patched
20743 	 * insns could be handled correctly.
20744 	 */
20745 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
20746 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
20747 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
20748 								     : false;
20749 	}
20750 
20751 	if (ret == 0)
20752 		ret = fixup_call_args(env);
20753 
20754 	env->verification_time = ktime_get_ns() - start_time;
20755 	print_verification_stats(env);
20756 	env->prog->aux->verified_insns = env->insn_processed;
20757 
20758 	/* preserve original error even if log finalization is successful */
20759 	err = bpf_vlog_finalize(&env->log, &log_true_size);
20760 	if (err)
20761 		ret = err;
20762 
20763 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
20764 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
20765 				  &log_true_size, sizeof(log_true_size))) {
20766 		ret = -EFAULT;
20767 		goto err_release_maps;
20768 	}
20769 
20770 	if (ret)
20771 		goto err_release_maps;
20772 
20773 	if (env->used_map_cnt) {
20774 		/* if program passed verifier, update used_maps in bpf_prog_info */
20775 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
20776 							  sizeof(env->used_maps[0]),
20777 							  GFP_KERNEL);
20778 
20779 		if (!env->prog->aux->used_maps) {
20780 			ret = -ENOMEM;
20781 			goto err_release_maps;
20782 		}
20783 
20784 		memcpy(env->prog->aux->used_maps, env->used_maps,
20785 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
20786 		env->prog->aux->used_map_cnt = env->used_map_cnt;
20787 	}
20788 	if (env->used_btf_cnt) {
20789 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
20790 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
20791 							  sizeof(env->used_btfs[0]),
20792 							  GFP_KERNEL);
20793 		if (!env->prog->aux->used_btfs) {
20794 			ret = -ENOMEM;
20795 			goto err_release_maps;
20796 		}
20797 
20798 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
20799 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
20800 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
20801 	}
20802 	if (env->used_map_cnt || env->used_btf_cnt) {
20803 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
20804 		 * bpf_ld_imm64 instructions
20805 		 */
20806 		convert_pseudo_ld_imm64(env);
20807 	}
20808 
20809 	adjust_btf_func(env);
20810 
20811 err_release_maps:
20812 	if (!env->prog->aux->used_maps)
20813 		/* if we didn't copy map pointers into bpf_prog_info, release
20814 		 * them now. Otherwise free_used_maps() will release them.
20815 		 */
20816 		release_maps(env);
20817 	if (!env->prog->aux->used_btfs)
20818 		release_btfs(env);
20819 
20820 	/* extension progs temporarily inherit the attach_type of their targets
20821 	   for verification purposes, so set it back to zero before returning
20822 	 */
20823 	if (env->prog->type == BPF_PROG_TYPE_EXT)
20824 		env->prog->expected_attach_type = 0;
20825 
20826 	*prog = env->prog;
20827 err_unlock:
20828 	if (!is_priv)
20829 		mutex_unlock(&bpf_verifier_lock);
20830 	vfree(env->insn_aux_data);
20831 err_free_env:
20832 	kfree(env);
20833 	return ret;
20834 }
20835