xref: /linux/kernel/bpf/verifier.c (revision 793baff3f24f16dab9061045e23eea67724feae6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 #include <linux/trace_events.h>
32 #include <linux/kallsyms.h>
33 
34 #include "disasm.h"
35 
36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
38 	[_id] = & _name ## _verifier_ops,
39 #define BPF_MAP_TYPE(_id, _ops)
40 #define BPF_LINK_TYPE(_id, _name)
41 #include <linux/bpf_types.h>
42 #undef BPF_PROG_TYPE
43 #undef BPF_MAP_TYPE
44 #undef BPF_LINK_TYPE
45 };
46 
47 struct bpf_mem_alloc bpf_global_percpu_ma;
48 static bool bpf_global_percpu_ma_set;
49 
50 /* bpf_check() is a static code analyzer that walks eBPF program
51  * instruction by instruction and updates register/stack state.
52  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
53  *
54  * The first pass is depth-first-search to check that the program is a DAG.
55  * It rejects the following programs:
56  * - larger than BPF_MAXINSNS insns
57  * - if loop is present (detected via back-edge)
58  * - unreachable insns exist (shouldn't be a forest. program = one function)
59  * - out of bounds or malformed jumps
60  * The second pass is all possible path descent from the 1st insn.
61  * Since it's analyzing all paths through the program, the length of the
62  * analysis is limited to 64k insn, which may be hit even if total number of
63  * insn is less then 4K, but there are too many branches that change stack/regs.
64  * Number of 'branches to be analyzed' is limited to 1k
65  *
66  * On entry to each instruction, each register has a type, and the instruction
67  * changes the types of the registers depending on instruction semantics.
68  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
69  * copied to R1.
70  *
71  * All registers are 64-bit.
72  * R0 - return register
73  * R1-R5 argument passing registers
74  * R6-R9 callee saved registers
75  * R10 - frame pointer read-only
76  *
77  * At the start of BPF program the register R1 contains a pointer to bpf_context
78  * and has type PTR_TO_CTX.
79  *
80  * Verifier tracks arithmetic operations on pointers in case:
81  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
82  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
83  * 1st insn copies R10 (which has FRAME_PTR) type into R1
84  * and 2nd arithmetic instruction is pattern matched to recognize
85  * that it wants to construct a pointer to some element within stack.
86  * So after 2nd insn, the register R1 has type PTR_TO_STACK
87  * (and -20 constant is saved for further stack bounds checking).
88  * Meaning that this reg is a pointer to stack plus known immediate constant.
89  *
90  * Most of the time the registers have SCALAR_VALUE type, which
91  * means the register has some value, but it's not a valid pointer.
92  * (like pointer plus pointer becomes SCALAR_VALUE type)
93  *
94  * When verifier sees load or store instructions the type of base register
95  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
96  * four pointer types recognized by check_mem_access() function.
97  *
98  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
99  * and the range of [ptr, ptr + map's value_size) is accessible.
100  *
101  * registers used to pass values to function calls are checked against
102  * function argument constraints.
103  *
104  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
105  * It means that the register type passed to this function must be
106  * PTR_TO_STACK and it will be used inside the function as
107  * 'pointer to map element key'
108  *
109  * For example the argument constraints for bpf_map_lookup_elem():
110  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
111  *   .arg1_type = ARG_CONST_MAP_PTR,
112  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
113  *
114  * ret_type says that this function returns 'pointer to map elem value or null'
115  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
116  * 2nd argument should be a pointer to stack, which will be used inside
117  * the helper function as a pointer to map element key.
118  *
119  * On the kernel side the helper function looks like:
120  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
121  * {
122  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
123  *    void *key = (void *) (unsigned long) r2;
124  *    void *value;
125  *
126  *    here kernel can access 'key' and 'map' pointers safely, knowing that
127  *    [key, key + map->key_size) bytes are valid and were initialized on
128  *    the stack of eBPF program.
129  * }
130  *
131  * Corresponding eBPF program may look like:
132  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
133  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
134  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
135  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
136  * here verifier looks at prototype of map_lookup_elem() and sees:
137  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
138  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
139  *
140  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
141  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
142  * and were initialized prior to this call.
143  * If it's ok, then verifier allows this BPF_CALL insn and looks at
144  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
145  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
146  * returns either pointer to map value or NULL.
147  *
148  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
149  * insn, the register holding that pointer in the true branch changes state to
150  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
151  * branch. See check_cond_jmp_op().
152  *
153  * After the call R0 is set to return type of the function and registers R1-R5
154  * are set to NOT_INIT to indicate that they are no longer readable.
155  *
156  * The following reference types represent a potential reference to a kernel
157  * resource which, after first being allocated, must be checked and freed by
158  * the BPF program:
159  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
160  *
161  * When the verifier sees a helper call return a reference type, it allocates a
162  * pointer id for the reference and stores it in the current function state.
163  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
164  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
165  * passes through a NULL-check conditional. For the branch wherein the state is
166  * changed to CONST_IMM, the verifier releases the reference.
167  *
168  * For each helper function that allocates a reference, such as
169  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
170  * bpf_sk_release(). When a reference type passes into the release function,
171  * the verifier also releases the reference. If any unchecked or unreleased
172  * reference remains at the end of the program, the verifier rejects it.
173  */
174 
175 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
176 struct bpf_verifier_stack_elem {
177 	/* verifier state is 'st'
178 	 * before processing instruction 'insn_idx'
179 	 * and after processing instruction 'prev_insn_idx'
180 	 */
181 	struct bpf_verifier_state st;
182 	int insn_idx;
183 	int prev_insn_idx;
184 	struct bpf_verifier_stack_elem *next;
185 	/* length of verifier log at the time this state was pushed on stack */
186 	u32 log_pos;
187 };
188 
189 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
190 #define BPF_COMPLEXITY_LIMIT_STATES	64
191 
192 #define BPF_MAP_KEY_POISON	(1ULL << 63)
193 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
194 
195 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE  512
196 
197 #define BPF_PRIV_STACK_MIN_SIZE		64
198 
199 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
200 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
201 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
202 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
203 static int ref_set_non_owning(struct bpf_verifier_env *env,
204 			      struct bpf_reg_state *reg);
205 static void specialize_kfunc(struct bpf_verifier_env *env,
206 			     u32 func_id, u16 offset, unsigned long *addr);
207 static bool is_trusted_reg(const struct bpf_reg_state *reg);
208 
209 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
210 {
211 	return aux->map_ptr_state.poison;
212 }
213 
214 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
215 {
216 	return aux->map_ptr_state.unpriv;
217 }
218 
219 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
220 			      struct bpf_map *map,
221 			      bool unpriv, bool poison)
222 {
223 	unpriv |= bpf_map_ptr_unpriv(aux);
224 	aux->map_ptr_state.unpriv = unpriv;
225 	aux->map_ptr_state.poison = poison;
226 	aux->map_ptr_state.map_ptr = map;
227 }
228 
229 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
230 {
231 	return aux->map_key_state & BPF_MAP_KEY_POISON;
232 }
233 
234 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
235 {
236 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
237 }
238 
239 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
240 {
241 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
242 }
243 
244 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
245 {
246 	bool poisoned = bpf_map_key_poisoned(aux);
247 
248 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
249 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
250 }
251 
252 static bool bpf_helper_call(const struct bpf_insn *insn)
253 {
254 	return insn->code == (BPF_JMP | BPF_CALL) &&
255 	       insn->src_reg == 0;
256 }
257 
258 static bool bpf_pseudo_call(const struct bpf_insn *insn)
259 {
260 	return insn->code == (BPF_JMP | BPF_CALL) &&
261 	       insn->src_reg == BPF_PSEUDO_CALL;
262 }
263 
264 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
265 {
266 	return insn->code == (BPF_JMP | BPF_CALL) &&
267 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
268 }
269 
270 struct bpf_call_arg_meta {
271 	struct bpf_map *map_ptr;
272 	bool raw_mode;
273 	bool pkt_access;
274 	u8 release_regno;
275 	int regno;
276 	int access_size;
277 	int mem_size;
278 	u64 msize_max_value;
279 	int ref_obj_id;
280 	int dynptr_id;
281 	int map_uid;
282 	int func_id;
283 	struct btf *btf;
284 	u32 btf_id;
285 	struct btf *ret_btf;
286 	u32 ret_btf_id;
287 	u32 subprogno;
288 	struct btf_field *kptr_field;
289 };
290 
291 struct bpf_kfunc_call_arg_meta {
292 	/* In parameters */
293 	struct btf *btf;
294 	u32 func_id;
295 	u32 kfunc_flags;
296 	const struct btf_type *func_proto;
297 	const char *func_name;
298 	/* Out parameters */
299 	u32 ref_obj_id;
300 	u8 release_regno;
301 	bool r0_rdonly;
302 	u32 ret_btf_id;
303 	u64 r0_size;
304 	u32 subprogno;
305 	struct {
306 		u64 value;
307 		bool found;
308 	} arg_constant;
309 
310 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
311 	 * generally to pass info about user-defined local kptr types to later
312 	 * verification logic
313 	 *   bpf_obj_drop/bpf_percpu_obj_drop
314 	 *     Record the local kptr type to be drop'd
315 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
316 	 *     Record the local kptr type to be refcount_incr'd and use
317 	 *     arg_owning_ref to determine whether refcount_acquire should be
318 	 *     fallible
319 	 */
320 	struct btf *arg_btf;
321 	u32 arg_btf_id;
322 	bool arg_owning_ref;
323 
324 	struct {
325 		struct btf_field *field;
326 	} arg_list_head;
327 	struct {
328 		struct btf_field *field;
329 	} arg_rbtree_root;
330 	struct {
331 		enum bpf_dynptr_type type;
332 		u32 id;
333 		u32 ref_obj_id;
334 	} initialized_dynptr;
335 	struct {
336 		u8 spi;
337 		u8 frameno;
338 	} iter;
339 	struct {
340 		struct bpf_map *ptr;
341 		int uid;
342 	} map;
343 	u64 mem_size;
344 };
345 
346 struct btf *btf_vmlinux;
347 
348 static const char *btf_type_name(const struct btf *btf, u32 id)
349 {
350 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
351 }
352 
353 static DEFINE_MUTEX(bpf_verifier_lock);
354 static DEFINE_MUTEX(bpf_percpu_ma_lock);
355 
356 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
357 {
358 	struct bpf_verifier_env *env = private_data;
359 	va_list args;
360 
361 	if (!bpf_verifier_log_needed(&env->log))
362 		return;
363 
364 	va_start(args, fmt);
365 	bpf_verifier_vlog(&env->log, fmt, args);
366 	va_end(args);
367 }
368 
369 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
370 				   struct bpf_reg_state *reg,
371 				   struct bpf_retval_range range, const char *ctx,
372 				   const char *reg_name)
373 {
374 	bool unknown = true;
375 
376 	verbose(env, "%s the register %s has", ctx, reg_name);
377 	if (reg->smin_value > S64_MIN) {
378 		verbose(env, " smin=%lld", reg->smin_value);
379 		unknown = false;
380 	}
381 	if (reg->smax_value < S64_MAX) {
382 		verbose(env, " smax=%lld", reg->smax_value);
383 		unknown = false;
384 	}
385 	if (unknown)
386 		verbose(env, " unknown scalar value");
387 	verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
388 }
389 
390 static bool reg_not_null(const struct bpf_reg_state *reg)
391 {
392 	enum bpf_reg_type type;
393 
394 	type = reg->type;
395 	if (type_may_be_null(type))
396 		return false;
397 
398 	type = base_type(type);
399 	return type == PTR_TO_SOCKET ||
400 		type == PTR_TO_TCP_SOCK ||
401 		type == PTR_TO_MAP_VALUE ||
402 		type == PTR_TO_MAP_KEY ||
403 		type == PTR_TO_SOCK_COMMON ||
404 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
405 		type == PTR_TO_MEM;
406 }
407 
408 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
409 {
410 	struct btf_record *rec = NULL;
411 	struct btf_struct_meta *meta;
412 
413 	if (reg->type == PTR_TO_MAP_VALUE) {
414 		rec = reg->map_ptr->record;
415 	} else if (type_is_ptr_alloc_obj(reg->type)) {
416 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
417 		if (meta)
418 			rec = meta->record;
419 	}
420 	return rec;
421 }
422 
423 static bool mask_raw_tp_reg_cond(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) {
424 	return reg->type == (PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL) &&
425 	       bpf_prog_is_raw_tp(env->prog) && !reg->ref_obj_id;
426 }
427 
428 static bool mask_raw_tp_reg(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
429 {
430 	if (!mask_raw_tp_reg_cond(env, reg))
431 		return false;
432 	reg->type &= ~PTR_MAYBE_NULL;
433 	return true;
434 }
435 
436 static void unmask_raw_tp_reg(struct bpf_reg_state *reg, bool result)
437 {
438 	if (result)
439 		reg->type |= PTR_MAYBE_NULL;
440 }
441 
442 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
443 {
444 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
445 
446 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
447 }
448 
449 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
450 {
451 	struct bpf_func_info *info;
452 
453 	if (!env->prog->aux->func_info)
454 		return "";
455 
456 	info = &env->prog->aux->func_info[subprog];
457 	return btf_type_name(env->prog->aux->btf, info->type_id);
458 }
459 
460 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog)
461 {
462 	struct bpf_subprog_info *info = subprog_info(env, subprog);
463 
464 	info->is_cb = true;
465 	info->is_async_cb = true;
466 	info->is_exception_cb = true;
467 }
468 
469 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
470 {
471 	return subprog_info(env, subprog)->is_exception_cb;
472 }
473 
474 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
475 {
476 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
477 }
478 
479 static bool type_is_rdonly_mem(u32 type)
480 {
481 	return type & MEM_RDONLY;
482 }
483 
484 static bool is_acquire_function(enum bpf_func_id func_id,
485 				const struct bpf_map *map)
486 {
487 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
488 
489 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
490 	    func_id == BPF_FUNC_sk_lookup_udp ||
491 	    func_id == BPF_FUNC_skc_lookup_tcp ||
492 	    func_id == BPF_FUNC_ringbuf_reserve ||
493 	    func_id == BPF_FUNC_kptr_xchg)
494 		return true;
495 
496 	if (func_id == BPF_FUNC_map_lookup_elem &&
497 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
498 	     map_type == BPF_MAP_TYPE_SOCKHASH))
499 		return true;
500 
501 	return false;
502 }
503 
504 static bool is_ptr_cast_function(enum bpf_func_id func_id)
505 {
506 	return func_id == BPF_FUNC_tcp_sock ||
507 		func_id == BPF_FUNC_sk_fullsock ||
508 		func_id == BPF_FUNC_skc_to_tcp_sock ||
509 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
510 		func_id == BPF_FUNC_skc_to_udp6_sock ||
511 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
512 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
513 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
514 }
515 
516 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
517 {
518 	return func_id == BPF_FUNC_dynptr_data;
519 }
520 
521 static bool is_sync_callback_calling_kfunc(u32 btf_id);
522 static bool is_async_callback_calling_kfunc(u32 btf_id);
523 static bool is_callback_calling_kfunc(u32 btf_id);
524 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
525 
526 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id);
527 
528 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
529 {
530 	return func_id == BPF_FUNC_for_each_map_elem ||
531 	       func_id == BPF_FUNC_find_vma ||
532 	       func_id == BPF_FUNC_loop ||
533 	       func_id == BPF_FUNC_user_ringbuf_drain;
534 }
535 
536 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
537 {
538 	return func_id == BPF_FUNC_timer_set_callback;
539 }
540 
541 static bool is_callback_calling_function(enum bpf_func_id func_id)
542 {
543 	return is_sync_callback_calling_function(func_id) ||
544 	       is_async_callback_calling_function(func_id);
545 }
546 
547 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
548 {
549 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
550 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
551 }
552 
553 static bool is_async_callback_calling_insn(struct bpf_insn *insn)
554 {
555 	return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) ||
556 	       (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm));
557 }
558 
559 static bool is_may_goto_insn(struct bpf_insn *insn)
560 {
561 	return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO;
562 }
563 
564 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx)
565 {
566 	return is_may_goto_insn(&env->prog->insnsi[insn_idx]);
567 }
568 
569 static bool is_storage_get_function(enum bpf_func_id func_id)
570 {
571 	return func_id == BPF_FUNC_sk_storage_get ||
572 	       func_id == BPF_FUNC_inode_storage_get ||
573 	       func_id == BPF_FUNC_task_storage_get ||
574 	       func_id == BPF_FUNC_cgrp_storage_get;
575 }
576 
577 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
578 					const struct bpf_map *map)
579 {
580 	int ref_obj_uses = 0;
581 
582 	if (is_ptr_cast_function(func_id))
583 		ref_obj_uses++;
584 	if (is_acquire_function(func_id, map))
585 		ref_obj_uses++;
586 	if (is_dynptr_ref_function(func_id))
587 		ref_obj_uses++;
588 
589 	return ref_obj_uses > 1;
590 }
591 
592 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
593 {
594 	return BPF_CLASS(insn->code) == BPF_STX &&
595 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
596 	       insn->imm == BPF_CMPXCHG;
597 }
598 
599 static int __get_spi(s32 off)
600 {
601 	return (-off - 1) / BPF_REG_SIZE;
602 }
603 
604 static struct bpf_func_state *func(struct bpf_verifier_env *env,
605 				   const struct bpf_reg_state *reg)
606 {
607 	struct bpf_verifier_state *cur = env->cur_state;
608 
609 	return cur->frame[reg->frameno];
610 }
611 
612 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
613 {
614        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
615 
616        /* We need to check that slots between [spi - nr_slots + 1, spi] are
617 	* within [0, allocated_stack).
618 	*
619 	* Please note that the spi grows downwards. For example, a dynptr
620 	* takes the size of two stack slots; the first slot will be at
621 	* spi and the second slot will be at spi - 1.
622 	*/
623        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
624 }
625 
626 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
627 			          const char *obj_kind, int nr_slots)
628 {
629 	int off, spi;
630 
631 	if (!tnum_is_const(reg->var_off)) {
632 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
633 		return -EINVAL;
634 	}
635 
636 	off = reg->off + reg->var_off.value;
637 	if (off % BPF_REG_SIZE) {
638 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
639 		return -EINVAL;
640 	}
641 
642 	spi = __get_spi(off);
643 	if (spi + 1 < nr_slots) {
644 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
645 		return -EINVAL;
646 	}
647 
648 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
649 		return -ERANGE;
650 	return spi;
651 }
652 
653 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
654 {
655 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
656 }
657 
658 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
659 {
660 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
661 }
662 
663 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
664 {
665 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
666 	case DYNPTR_TYPE_LOCAL:
667 		return BPF_DYNPTR_TYPE_LOCAL;
668 	case DYNPTR_TYPE_RINGBUF:
669 		return BPF_DYNPTR_TYPE_RINGBUF;
670 	case DYNPTR_TYPE_SKB:
671 		return BPF_DYNPTR_TYPE_SKB;
672 	case DYNPTR_TYPE_XDP:
673 		return BPF_DYNPTR_TYPE_XDP;
674 	default:
675 		return BPF_DYNPTR_TYPE_INVALID;
676 	}
677 }
678 
679 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
680 {
681 	switch (type) {
682 	case BPF_DYNPTR_TYPE_LOCAL:
683 		return DYNPTR_TYPE_LOCAL;
684 	case BPF_DYNPTR_TYPE_RINGBUF:
685 		return DYNPTR_TYPE_RINGBUF;
686 	case BPF_DYNPTR_TYPE_SKB:
687 		return DYNPTR_TYPE_SKB;
688 	case BPF_DYNPTR_TYPE_XDP:
689 		return DYNPTR_TYPE_XDP;
690 	default:
691 		return 0;
692 	}
693 }
694 
695 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
696 {
697 	return type == BPF_DYNPTR_TYPE_RINGBUF;
698 }
699 
700 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
701 			      enum bpf_dynptr_type type,
702 			      bool first_slot, int dynptr_id);
703 
704 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
705 				struct bpf_reg_state *reg);
706 
707 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
708 				   struct bpf_reg_state *sreg1,
709 				   struct bpf_reg_state *sreg2,
710 				   enum bpf_dynptr_type type)
711 {
712 	int id = ++env->id_gen;
713 
714 	__mark_dynptr_reg(sreg1, type, true, id);
715 	__mark_dynptr_reg(sreg2, type, false, id);
716 }
717 
718 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
719 			       struct bpf_reg_state *reg,
720 			       enum bpf_dynptr_type type)
721 {
722 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
723 }
724 
725 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
726 				        struct bpf_func_state *state, int spi);
727 
728 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
729 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
730 {
731 	struct bpf_func_state *state = func(env, reg);
732 	enum bpf_dynptr_type type;
733 	int spi, i, err;
734 
735 	spi = dynptr_get_spi(env, reg);
736 	if (spi < 0)
737 		return spi;
738 
739 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
740 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
741 	 * to ensure that for the following example:
742 	 *	[d1][d1][d2][d2]
743 	 * spi    3   2   1   0
744 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
745 	 * case they do belong to same dynptr, second call won't see slot_type
746 	 * as STACK_DYNPTR and will simply skip destruction.
747 	 */
748 	err = destroy_if_dynptr_stack_slot(env, state, spi);
749 	if (err)
750 		return err;
751 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
752 	if (err)
753 		return err;
754 
755 	for (i = 0; i < BPF_REG_SIZE; i++) {
756 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
757 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
758 	}
759 
760 	type = arg_to_dynptr_type(arg_type);
761 	if (type == BPF_DYNPTR_TYPE_INVALID)
762 		return -EINVAL;
763 
764 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
765 			       &state->stack[spi - 1].spilled_ptr, type);
766 
767 	if (dynptr_type_refcounted(type)) {
768 		/* The id is used to track proper releasing */
769 		int id;
770 
771 		if (clone_ref_obj_id)
772 			id = clone_ref_obj_id;
773 		else
774 			id = acquire_reference_state(env, insn_idx);
775 
776 		if (id < 0)
777 			return id;
778 
779 		state->stack[spi].spilled_ptr.ref_obj_id = id;
780 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
781 	}
782 
783 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
784 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
785 
786 	return 0;
787 }
788 
789 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
790 {
791 	int i;
792 
793 	for (i = 0; i < BPF_REG_SIZE; i++) {
794 		state->stack[spi].slot_type[i] = STACK_INVALID;
795 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
796 	}
797 
798 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
799 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
800 
801 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
802 	 *
803 	 * While we don't allow reading STACK_INVALID, it is still possible to
804 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
805 	 * helpers or insns can do partial read of that part without failing,
806 	 * but check_stack_range_initialized, check_stack_read_var_off, and
807 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
808 	 * the slot conservatively. Hence we need to prevent those liveness
809 	 * marking walks.
810 	 *
811 	 * This was not a problem before because STACK_INVALID is only set by
812 	 * default (where the default reg state has its reg->parent as NULL), or
813 	 * in clean_live_states after REG_LIVE_DONE (at which point
814 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
815 	 * verifier state exploration (like we did above). Hence, for our case
816 	 * parentage chain will still be live (i.e. reg->parent may be
817 	 * non-NULL), while earlier reg->parent was NULL, so we need
818 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
819 	 * done later on reads or by mark_dynptr_read as well to unnecessary
820 	 * mark registers in verifier state.
821 	 */
822 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
823 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
824 }
825 
826 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
827 {
828 	struct bpf_func_state *state = func(env, reg);
829 	int spi, ref_obj_id, i;
830 
831 	spi = dynptr_get_spi(env, reg);
832 	if (spi < 0)
833 		return spi;
834 
835 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
836 		invalidate_dynptr(env, state, spi);
837 		return 0;
838 	}
839 
840 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
841 
842 	/* If the dynptr has a ref_obj_id, then we need to invalidate
843 	 * two things:
844 	 *
845 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
846 	 * 2) Any slices derived from this dynptr.
847 	 */
848 
849 	/* Invalidate any slices associated with this dynptr */
850 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
851 
852 	/* Invalidate any dynptr clones */
853 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
854 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
855 			continue;
856 
857 		/* it should always be the case that if the ref obj id
858 		 * matches then the stack slot also belongs to a
859 		 * dynptr
860 		 */
861 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
862 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
863 			return -EFAULT;
864 		}
865 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
866 			invalidate_dynptr(env, state, i);
867 	}
868 
869 	return 0;
870 }
871 
872 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
873 			       struct bpf_reg_state *reg);
874 
875 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
876 {
877 	if (!env->allow_ptr_leaks)
878 		__mark_reg_not_init(env, reg);
879 	else
880 		__mark_reg_unknown(env, reg);
881 }
882 
883 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
884 				        struct bpf_func_state *state, int spi)
885 {
886 	struct bpf_func_state *fstate;
887 	struct bpf_reg_state *dreg;
888 	int i, dynptr_id;
889 
890 	/* We always ensure that STACK_DYNPTR is never set partially,
891 	 * hence just checking for slot_type[0] is enough. This is
892 	 * different for STACK_SPILL, where it may be only set for
893 	 * 1 byte, so code has to use is_spilled_reg.
894 	 */
895 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
896 		return 0;
897 
898 	/* Reposition spi to first slot */
899 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
900 		spi = spi + 1;
901 
902 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
903 		verbose(env, "cannot overwrite referenced dynptr\n");
904 		return -EINVAL;
905 	}
906 
907 	mark_stack_slot_scratched(env, spi);
908 	mark_stack_slot_scratched(env, spi - 1);
909 
910 	/* Writing partially to one dynptr stack slot destroys both. */
911 	for (i = 0; i < BPF_REG_SIZE; i++) {
912 		state->stack[spi].slot_type[i] = STACK_INVALID;
913 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
914 	}
915 
916 	dynptr_id = state->stack[spi].spilled_ptr.id;
917 	/* Invalidate any slices associated with this dynptr */
918 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
919 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
920 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
921 			continue;
922 		if (dreg->dynptr_id == dynptr_id)
923 			mark_reg_invalid(env, dreg);
924 	}));
925 
926 	/* Do not release reference state, we are destroying dynptr on stack,
927 	 * not using some helper to release it. Just reset register.
928 	 */
929 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
930 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
931 
932 	/* Same reason as unmark_stack_slots_dynptr above */
933 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
934 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
935 
936 	return 0;
937 }
938 
939 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
940 {
941 	int spi;
942 
943 	if (reg->type == CONST_PTR_TO_DYNPTR)
944 		return false;
945 
946 	spi = dynptr_get_spi(env, reg);
947 
948 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
949 	 * error because this just means the stack state hasn't been updated yet.
950 	 * We will do check_mem_access to check and update stack bounds later.
951 	 */
952 	if (spi < 0 && spi != -ERANGE)
953 		return false;
954 
955 	/* We don't need to check if the stack slots are marked by previous
956 	 * dynptr initializations because we allow overwriting existing unreferenced
957 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
958 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
959 	 * touching are completely destructed before we reinitialize them for a new
960 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
961 	 * instead of delaying it until the end where the user will get "Unreleased
962 	 * reference" error.
963 	 */
964 	return true;
965 }
966 
967 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
968 {
969 	struct bpf_func_state *state = func(env, reg);
970 	int i, spi;
971 
972 	/* This already represents first slot of initialized bpf_dynptr.
973 	 *
974 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
975 	 * check_func_arg_reg_off's logic, so we don't need to check its
976 	 * offset and alignment.
977 	 */
978 	if (reg->type == CONST_PTR_TO_DYNPTR)
979 		return true;
980 
981 	spi = dynptr_get_spi(env, reg);
982 	if (spi < 0)
983 		return false;
984 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
985 		return false;
986 
987 	for (i = 0; i < BPF_REG_SIZE; i++) {
988 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
989 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
990 			return false;
991 	}
992 
993 	return true;
994 }
995 
996 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
997 				    enum bpf_arg_type arg_type)
998 {
999 	struct bpf_func_state *state = func(env, reg);
1000 	enum bpf_dynptr_type dynptr_type;
1001 	int spi;
1002 
1003 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1004 	if (arg_type == ARG_PTR_TO_DYNPTR)
1005 		return true;
1006 
1007 	dynptr_type = arg_to_dynptr_type(arg_type);
1008 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1009 		return reg->dynptr.type == dynptr_type;
1010 	} else {
1011 		spi = dynptr_get_spi(env, reg);
1012 		if (spi < 0)
1013 			return false;
1014 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1015 	}
1016 }
1017 
1018 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1019 
1020 static bool in_rcu_cs(struct bpf_verifier_env *env);
1021 
1022 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1023 
1024 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1025 				 struct bpf_kfunc_call_arg_meta *meta,
1026 				 struct bpf_reg_state *reg, int insn_idx,
1027 				 struct btf *btf, u32 btf_id, int nr_slots)
1028 {
1029 	struct bpf_func_state *state = func(env, reg);
1030 	int spi, i, j, id;
1031 
1032 	spi = iter_get_spi(env, reg, nr_slots);
1033 	if (spi < 0)
1034 		return spi;
1035 
1036 	id = acquire_reference_state(env, insn_idx);
1037 	if (id < 0)
1038 		return id;
1039 
1040 	for (i = 0; i < nr_slots; i++) {
1041 		struct bpf_stack_state *slot = &state->stack[spi - i];
1042 		struct bpf_reg_state *st = &slot->spilled_ptr;
1043 
1044 		__mark_reg_known_zero(st);
1045 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1046 		if (is_kfunc_rcu_protected(meta)) {
1047 			if (in_rcu_cs(env))
1048 				st->type |= MEM_RCU;
1049 			else
1050 				st->type |= PTR_UNTRUSTED;
1051 		}
1052 		st->live |= REG_LIVE_WRITTEN;
1053 		st->ref_obj_id = i == 0 ? id : 0;
1054 		st->iter.btf = btf;
1055 		st->iter.btf_id = btf_id;
1056 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1057 		st->iter.depth = 0;
1058 
1059 		for (j = 0; j < BPF_REG_SIZE; j++)
1060 			slot->slot_type[j] = STACK_ITER;
1061 
1062 		mark_stack_slot_scratched(env, spi - i);
1063 	}
1064 
1065 	return 0;
1066 }
1067 
1068 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1069 				   struct bpf_reg_state *reg, int nr_slots)
1070 {
1071 	struct bpf_func_state *state = func(env, reg);
1072 	int spi, i, j;
1073 
1074 	spi = iter_get_spi(env, reg, nr_slots);
1075 	if (spi < 0)
1076 		return spi;
1077 
1078 	for (i = 0; i < nr_slots; i++) {
1079 		struct bpf_stack_state *slot = &state->stack[spi - i];
1080 		struct bpf_reg_state *st = &slot->spilled_ptr;
1081 
1082 		if (i == 0)
1083 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1084 
1085 		__mark_reg_not_init(env, st);
1086 
1087 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1088 		st->live |= REG_LIVE_WRITTEN;
1089 
1090 		for (j = 0; j < BPF_REG_SIZE; j++)
1091 			slot->slot_type[j] = STACK_INVALID;
1092 
1093 		mark_stack_slot_scratched(env, spi - i);
1094 	}
1095 
1096 	return 0;
1097 }
1098 
1099 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1100 				     struct bpf_reg_state *reg, int nr_slots)
1101 {
1102 	struct bpf_func_state *state = func(env, reg);
1103 	int spi, i, j;
1104 
1105 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1106 	 * will do check_mem_access to check and update stack bounds later, so
1107 	 * return true for that case.
1108 	 */
1109 	spi = iter_get_spi(env, reg, nr_slots);
1110 	if (spi == -ERANGE)
1111 		return true;
1112 	if (spi < 0)
1113 		return false;
1114 
1115 	for (i = 0; i < nr_slots; i++) {
1116 		struct bpf_stack_state *slot = &state->stack[spi - i];
1117 
1118 		for (j = 0; j < BPF_REG_SIZE; j++)
1119 			if (slot->slot_type[j] == STACK_ITER)
1120 				return false;
1121 	}
1122 
1123 	return true;
1124 }
1125 
1126 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1127 				   struct btf *btf, u32 btf_id, int nr_slots)
1128 {
1129 	struct bpf_func_state *state = func(env, reg);
1130 	int spi, i, j;
1131 
1132 	spi = iter_get_spi(env, reg, nr_slots);
1133 	if (spi < 0)
1134 		return -EINVAL;
1135 
1136 	for (i = 0; i < nr_slots; i++) {
1137 		struct bpf_stack_state *slot = &state->stack[spi - i];
1138 		struct bpf_reg_state *st = &slot->spilled_ptr;
1139 
1140 		if (st->type & PTR_UNTRUSTED)
1141 			return -EPROTO;
1142 		/* only main (first) slot has ref_obj_id set */
1143 		if (i == 0 && !st->ref_obj_id)
1144 			return -EINVAL;
1145 		if (i != 0 && st->ref_obj_id)
1146 			return -EINVAL;
1147 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1148 			return -EINVAL;
1149 
1150 		for (j = 0; j < BPF_REG_SIZE; j++)
1151 			if (slot->slot_type[j] != STACK_ITER)
1152 				return -EINVAL;
1153 	}
1154 
1155 	return 0;
1156 }
1157 
1158 /* Check if given stack slot is "special":
1159  *   - spilled register state (STACK_SPILL);
1160  *   - dynptr state (STACK_DYNPTR);
1161  *   - iter state (STACK_ITER).
1162  */
1163 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1164 {
1165 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1166 
1167 	switch (type) {
1168 	case STACK_SPILL:
1169 	case STACK_DYNPTR:
1170 	case STACK_ITER:
1171 		return true;
1172 	case STACK_INVALID:
1173 	case STACK_MISC:
1174 	case STACK_ZERO:
1175 		return false;
1176 	default:
1177 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1178 		return true;
1179 	}
1180 }
1181 
1182 /* The reg state of a pointer or a bounded scalar was saved when
1183  * it was spilled to the stack.
1184  */
1185 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1186 {
1187 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1188 }
1189 
1190 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1191 {
1192 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1193 	       stack->spilled_ptr.type == SCALAR_VALUE;
1194 }
1195 
1196 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack)
1197 {
1198 	return stack->slot_type[0] == STACK_SPILL &&
1199 	       stack->spilled_ptr.type == SCALAR_VALUE;
1200 }
1201 
1202 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
1203  * case they are equivalent, or it's STACK_ZERO, in which case we preserve
1204  * more precise STACK_ZERO.
1205  * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take
1206  * env->allow_ptr_leaks into account and force STACK_MISC, if necessary.
1207  */
1208 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
1209 {
1210 	if (*stype == STACK_ZERO)
1211 		return;
1212 	if (env->allow_ptr_leaks && *stype == STACK_INVALID)
1213 		return;
1214 	*stype = STACK_MISC;
1215 }
1216 
1217 static void scrub_spilled_slot(u8 *stype)
1218 {
1219 	if (*stype != STACK_INVALID)
1220 		*stype = STACK_MISC;
1221 }
1222 
1223 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1224  * small to hold src. This is different from krealloc since we don't want to preserve
1225  * the contents of dst.
1226  *
1227  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1228  * not be allocated.
1229  */
1230 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1231 {
1232 	size_t alloc_bytes;
1233 	void *orig = dst;
1234 	size_t bytes;
1235 
1236 	if (ZERO_OR_NULL_PTR(src))
1237 		goto out;
1238 
1239 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1240 		return NULL;
1241 
1242 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1243 	dst = krealloc(orig, alloc_bytes, flags);
1244 	if (!dst) {
1245 		kfree(orig);
1246 		return NULL;
1247 	}
1248 
1249 	memcpy(dst, src, bytes);
1250 out:
1251 	return dst ? dst : ZERO_SIZE_PTR;
1252 }
1253 
1254 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1255  * small to hold new_n items. new items are zeroed out if the array grows.
1256  *
1257  * Contrary to krealloc_array, does not free arr if new_n is zero.
1258  */
1259 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1260 {
1261 	size_t alloc_size;
1262 	void *new_arr;
1263 
1264 	if (!new_n || old_n == new_n)
1265 		goto out;
1266 
1267 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1268 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1269 	if (!new_arr) {
1270 		kfree(arr);
1271 		return NULL;
1272 	}
1273 	arr = new_arr;
1274 
1275 	if (new_n > old_n)
1276 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1277 
1278 out:
1279 	return arr ? arr : ZERO_SIZE_PTR;
1280 }
1281 
1282 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1283 {
1284 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1285 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1286 	if (!dst->refs)
1287 		return -ENOMEM;
1288 
1289 	dst->active_locks = src->active_locks;
1290 	dst->acquired_refs = src->acquired_refs;
1291 	return 0;
1292 }
1293 
1294 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1295 {
1296 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1297 
1298 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1299 				GFP_KERNEL);
1300 	if (!dst->stack)
1301 		return -ENOMEM;
1302 
1303 	dst->allocated_stack = src->allocated_stack;
1304 	return 0;
1305 }
1306 
1307 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1308 {
1309 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1310 				    sizeof(struct bpf_reference_state));
1311 	if (!state->refs)
1312 		return -ENOMEM;
1313 
1314 	state->acquired_refs = n;
1315 	return 0;
1316 }
1317 
1318 /* Possibly update state->allocated_stack to be at least size bytes. Also
1319  * possibly update the function's high-water mark in its bpf_subprog_info.
1320  */
1321 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1322 {
1323 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
1324 
1325 	/* The stack size is always a multiple of BPF_REG_SIZE. */
1326 	size = round_up(size, BPF_REG_SIZE);
1327 	n = size / BPF_REG_SIZE;
1328 
1329 	if (old_n >= n)
1330 		return 0;
1331 
1332 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1333 	if (!state->stack)
1334 		return -ENOMEM;
1335 
1336 	state->allocated_stack = size;
1337 
1338 	/* update known max for given subprogram */
1339 	if (env->subprog_info[state->subprogno].stack_depth < size)
1340 		env->subprog_info[state->subprogno].stack_depth = size;
1341 
1342 	return 0;
1343 }
1344 
1345 /* Acquire a pointer id from the env and update the state->refs to include
1346  * this new pointer reference.
1347  * On success, returns a valid pointer id to associate with the register
1348  * On failure, returns a negative errno.
1349  */
1350 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1351 {
1352 	struct bpf_func_state *state = cur_func(env);
1353 	int new_ofs = state->acquired_refs;
1354 	int id, err;
1355 
1356 	err = resize_reference_state(state, state->acquired_refs + 1);
1357 	if (err)
1358 		return err;
1359 	id = ++env->id_gen;
1360 	state->refs[new_ofs].type = REF_TYPE_PTR;
1361 	state->refs[new_ofs].id = id;
1362 	state->refs[new_ofs].insn_idx = insn_idx;
1363 
1364 	return id;
1365 }
1366 
1367 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type,
1368 			      int id, void *ptr)
1369 {
1370 	struct bpf_func_state *state = cur_func(env);
1371 	int new_ofs = state->acquired_refs;
1372 	int err;
1373 
1374 	err = resize_reference_state(state, state->acquired_refs + 1);
1375 	if (err)
1376 		return err;
1377 	state->refs[new_ofs].type = type;
1378 	state->refs[new_ofs].id = id;
1379 	state->refs[new_ofs].insn_idx = insn_idx;
1380 	state->refs[new_ofs].ptr = ptr;
1381 
1382 	state->active_locks++;
1383 	return 0;
1384 }
1385 
1386 /* release function corresponding to acquire_reference_state(). Idempotent. */
1387 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1388 {
1389 	int i, last_idx;
1390 
1391 	last_idx = state->acquired_refs - 1;
1392 	for (i = 0; i < state->acquired_refs; i++) {
1393 		if (state->refs[i].type != REF_TYPE_PTR)
1394 			continue;
1395 		if (state->refs[i].id == ptr_id) {
1396 			if (last_idx && i != last_idx)
1397 				memcpy(&state->refs[i], &state->refs[last_idx],
1398 				       sizeof(*state->refs));
1399 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1400 			state->acquired_refs--;
1401 			return 0;
1402 		}
1403 	}
1404 	return -EINVAL;
1405 }
1406 
1407 static int release_lock_state(struct bpf_func_state *state, int type, int id, void *ptr)
1408 {
1409 	int i, last_idx;
1410 
1411 	last_idx = state->acquired_refs - 1;
1412 	for (i = 0; i < state->acquired_refs; i++) {
1413 		if (state->refs[i].type != type)
1414 			continue;
1415 		if (state->refs[i].id == id && state->refs[i].ptr == ptr) {
1416 			if (last_idx && i != last_idx)
1417 				memcpy(&state->refs[i], &state->refs[last_idx],
1418 				       sizeof(*state->refs));
1419 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1420 			state->acquired_refs--;
1421 			state->active_locks--;
1422 			return 0;
1423 		}
1424 	}
1425 	return -EINVAL;
1426 }
1427 
1428 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_env *env, enum ref_state_type type,
1429 						   int id, void *ptr)
1430 {
1431 	struct bpf_func_state *state = cur_func(env);
1432 	int i;
1433 
1434 	for (i = 0; i < state->acquired_refs; i++) {
1435 		struct bpf_reference_state *s = &state->refs[i];
1436 
1437 		if (s->type == REF_TYPE_PTR || s->type != type)
1438 			continue;
1439 
1440 		if (s->id == id && s->ptr == ptr)
1441 			return s;
1442 	}
1443 	return NULL;
1444 }
1445 
1446 static void free_func_state(struct bpf_func_state *state)
1447 {
1448 	if (!state)
1449 		return;
1450 	kfree(state->refs);
1451 	kfree(state->stack);
1452 	kfree(state);
1453 }
1454 
1455 static void free_verifier_state(struct bpf_verifier_state *state,
1456 				bool free_self)
1457 {
1458 	int i;
1459 
1460 	for (i = 0; i <= state->curframe; i++) {
1461 		free_func_state(state->frame[i]);
1462 		state->frame[i] = NULL;
1463 	}
1464 	if (free_self)
1465 		kfree(state);
1466 }
1467 
1468 /* copy verifier state from src to dst growing dst stack space
1469  * when necessary to accommodate larger src stack
1470  */
1471 static int copy_func_state(struct bpf_func_state *dst,
1472 			   const struct bpf_func_state *src)
1473 {
1474 	int err;
1475 
1476 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1477 	err = copy_reference_state(dst, src);
1478 	if (err)
1479 		return err;
1480 	return copy_stack_state(dst, src);
1481 }
1482 
1483 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1484 			       const struct bpf_verifier_state *src)
1485 {
1486 	struct bpf_func_state *dst;
1487 	int i, err;
1488 
1489 	/* if dst has more stack frames then src frame, free them, this is also
1490 	 * necessary in case of exceptional exits using bpf_throw.
1491 	 */
1492 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1493 		free_func_state(dst_state->frame[i]);
1494 		dst_state->frame[i] = NULL;
1495 	}
1496 	dst_state->speculative = src->speculative;
1497 	dst_state->active_rcu_lock = src->active_rcu_lock;
1498 	dst_state->active_preempt_lock = src->active_preempt_lock;
1499 	dst_state->in_sleepable = src->in_sleepable;
1500 	dst_state->curframe = src->curframe;
1501 	dst_state->branches = src->branches;
1502 	dst_state->parent = src->parent;
1503 	dst_state->first_insn_idx = src->first_insn_idx;
1504 	dst_state->last_insn_idx = src->last_insn_idx;
1505 	dst_state->insn_hist_start = src->insn_hist_start;
1506 	dst_state->insn_hist_end = src->insn_hist_end;
1507 	dst_state->dfs_depth = src->dfs_depth;
1508 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1509 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1510 	dst_state->may_goto_depth = src->may_goto_depth;
1511 	for (i = 0; i <= src->curframe; i++) {
1512 		dst = dst_state->frame[i];
1513 		if (!dst) {
1514 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1515 			if (!dst)
1516 				return -ENOMEM;
1517 			dst_state->frame[i] = dst;
1518 		}
1519 		err = copy_func_state(dst, src->frame[i]);
1520 		if (err)
1521 			return err;
1522 	}
1523 	return 0;
1524 }
1525 
1526 static u32 state_htab_size(struct bpf_verifier_env *env)
1527 {
1528 	return env->prog->len;
1529 }
1530 
1531 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1532 {
1533 	struct bpf_verifier_state *cur = env->cur_state;
1534 	struct bpf_func_state *state = cur->frame[cur->curframe];
1535 
1536 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1537 }
1538 
1539 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1540 {
1541 	int fr;
1542 
1543 	if (a->curframe != b->curframe)
1544 		return false;
1545 
1546 	for (fr = a->curframe; fr >= 0; fr--)
1547 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1548 			return false;
1549 
1550 	return true;
1551 }
1552 
1553 /* Open coded iterators allow back-edges in the state graph in order to
1554  * check unbounded loops that iterators.
1555  *
1556  * In is_state_visited() it is necessary to know if explored states are
1557  * part of some loops in order to decide whether non-exact states
1558  * comparison could be used:
1559  * - non-exact states comparison establishes sub-state relation and uses
1560  *   read and precision marks to do so, these marks are propagated from
1561  *   children states and thus are not guaranteed to be final in a loop;
1562  * - exact states comparison just checks if current and explored states
1563  *   are identical (and thus form a back-edge).
1564  *
1565  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1566  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1567  * algorithm for loop structure detection and gives an overview of
1568  * relevant terminology. It also has helpful illustrations.
1569  *
1570  * [1] https://api.semanticscholar.org/CorpusID:15784067
1571  *
1572  * We use a similar algorithm but because loop nested structure is
1573  * irrelevant for verifier ours is significantly simpler and resembles
1574  * strongly connected components algorithm from Sedgewick's textbook.
1575  *
1576  * Define topmost loop entry as a first node of the loop traversed in a
1577  * depth first search starting from initial state. The goal of the loop
1578  * tracking algorithm is to associate topmost loop entries with states
1579  * derived from these entries.
1580  *
1581  * For each step in the DFS states traversal algorithm needs to identify
1582  * the following situations:
1583  *
1584  *          initial                     initial                   initial
1585  *            |                           |                         |
1586  *            V                           V                         V
1587  *           ...                         ...           .---------> hdr
1588  *            |                           |            |            |
1589  *            V                           V            |            V
1590  *           cur                     .-> succ          |    .------...
1591  *            |                      |    |            |    |       |
1592  *            V                      |    V            |    V       V
1593  *           succ                    '-- cur           |   ...     ...
1594  *                                                     |    |       |
1595  *                                                     |    V       V
1596  *                                                     |   succ <- cur
1597  *                                                     |    |
1598  *                                                     |    V
1599  *                                                     |   ...
1600  *                                                     |    |
1601  *                                                     '----'
1602  *
1603  *  (A) successor state of cur   (B) successor state of cur or it's entry
1604  *      not yet traversed            are in current DFS path, thus cur and succ
1605  *                                   are members of the same outermost loop
1606  *
1607  *                      initial                  initial
1608  *                        |                        |
1609  *                        V                        V
1610  *                       ...                      ...
1611  *                        |                        |
1612  *                        V                        V
1613  *                .------...               .------...
1614  *                |       |                |       |
1615  *                V       V                V       V
1616  *           .-> hdr     ...              ...     ...
1617  *           |    |       |                |       |
1618  *           |    V       V                V       V
1619  *           |   succ <- cur              succ <- cur
1620  *           |    |                        |
1621  *           |    V                        V
1622  *           |   ...                      ...
1623  *           |    |                        |
1624  *           '----'                       exit
1625  *
1626  * (C) successor state of cur is a part of some loop but this loop
1627  *     does not include cur or successor state is not in a loop at all.
1628  *
1629  * Algorithm could be described as the following python code:
1630  *
1631  *     traversed = set()   # Set of traversed nodes
1632  *     entries = {}        # Mapping from node to loop entry
1633  *     depths = {}         # Depth level assigned to graph node
1634  *     path = set()        # Current DFS path
1635  *
1636  *     # Find outermost loop entry known for n
1637  *     def get_loop_entry(n):
1638  *         h = entries.get(n, None)
1639  *         while h in entries and entries[h] != h:
1640  *             h = entries[h]
1641  *         return h
1642  *
1643  *     # Update n's loop entry if h's outermost entry comes
1644  *     # before n's outermost entry in current DFS path.
1645  *     def update_loop_entry(n, h):
1646  *         n1 = get_loop_entry(n) or n
1647  *         h1 = get_loop_entry(h) or h
1648  *         if h1 in path and depths[h1] <= depths[n1]:
1649  *             entries[n] = h1
1650  *
1651  *     def dfs(n, depth):
1652  *         traversed.add(n)
1653  *         path.add(n)
1654  *         depths[n] = depth
1655  *         for succ in G.successors(n):
1656  *             if succ not in traversed:
1657  *                 # Case A: explore succ and update cur's loop entry
1658  *                 #         only if succ's entry is in current DFS path.
1659  *                 dfs(succ, depth + 1)
1660  *                 h = get_loop_entry(succ)
1661  *                 update_loop_entry(n, h)
1662  *             else:
1663  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1664  *                 update_loop_entry(n, succ)
1665  *         path.remove(n)
1666  *
1667  * To adapt this algorithm for use with verifier:
1668  * - use st->branch == 0 as a signal that DFS of succ had been finished
1669  *   and cur's loop entry has to be updated (case A), handle this in
1670  *   update_branch_counts();
1671  * - use st->branch > 0 as a signal that st is in the current DFS path;
1672  * - handle cases B and C in is_state_visited();
1673  * - update topmost loop entry for intermediate states in get_loop_entry().
1674  */
1675 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1676 {
1677 	struct bpf_verifier_state *topmost = st->loop_entry, *old;
1678 
1679 	while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1680 		topmost = topmost->loop_entry;
1681 	/* Update loop entries for intermediate states to avoid this
1682 	 * traversal in future get_loop_entry() calls.
1683 	 */
1684 	while (st && st->loop_entry != topmost) {
1685 		old = st->loop_entry;
1686 		st->loop_entry = topmost;
1687 		st = old;
1688 	}
1689 	return topmost;
1690 }
1691 
1692 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1693 {
1694 	struct bpf_verifier_state *cur1, *hdr1;
1695 
1696 	cur1 = get_loop_entry(cur) ?: cur;
1697 	hdr1 = get_loop_entry(hdr) ?: hdr;
1698 	/* The head1->branches check decides between cases B and C in
1699 	 * comment for get_loop_entry(). If hdr1->branches == 0 then
1700 	 * head's topmost loop entry is not in current DFS path,
1701 	 * hence 'cur' and 'hdr' are not in the same loop and there is
1702 	 * no need to update cur->loop_entry.
1703 	 */
1704 	if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1705 		cur->loop_entry = hdr;
1706 		hdr->used_as_loop_entry = true;
1707 	}
1708 }
1709 
1710 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1711 {
1712 	while (st) {
1713 		u32 br = --st->branches;
1714 
1715 		/* br == 0 signals that DFS exploration for 'st' is finished,
1716 		 * thus it is necessary to update parent's loop entry if it
1717 		 * turned out that st is a part of some loop.
1718 		 * This is a part of 'case A' in get_loop_entry() comment.
1719 		 */
1720 		if (br == 0 && st->parent && st->loop_entry)
1721 			update_loop_entry(st->parent, st->loop_entry);
1722 
1723 		/* WARN_ON(br > 1) technically makes sense here,
1724 		 * but see comment in push_stack(), hence:
1725 		 */
1726 		WARN_ONCE((int)br < 0,
1727 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1728 			  br);
1729 		if (br)
1730 			break;
1731 		st = st->parent;
1732 	}
1733 }
1734 
1735 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1736 		     int *insn_idx, bool pop_log)
1737 {
1738 	struct bpf_verifier_state *cur = env->cur_state;
1739 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1740 	int err;
1741 
1742 	if (env->head == NULL)
1743 		return -ENOENT;
1744 
1745 	if (cur) {
1746 		err = copy_verifier_state(cur, &head->st);
1747 		if (err)
1748 			return err;
1749 	}
1750 	if (pop_log)
1751 		bpf_vlog_reset(&env->log, head->log_pos);
1752 	if (insn_idx)
1753 		*insn_idx = head->insn_idx;
1754 	if (prev_insn_idx)
1755 		*prev_insn_idx = head->prev_insn_idx;
1756 	elem = head->next;
1757 	free_verifier_state(&head->st, false);
1758 	kfree(head);
1759 	env->head = elem;
1760 	env->stack_size--;
1761 	return 0;
1762 }
1763 
1764 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1765 					     int insn_idx, int prev_insn_idx,
1766 					     bool speculative)
1767 {
1768 	struct bpf_verifier_state *cur = env->cur_state;
1769 	struct bpf_verifier_stack_elem *elem;
1770 	int err;
1771 
1772 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1773 	if (!elem)
1774 		goto err;
1775 
1776 	elem->insn_idx = insn_idx;
1777 	elem->prev_insn_idx = prev_insn_idx;
1778 	elem->next = env->head;
1779 	elem->log_pos = env->log.end_pos;
1780 	env->head = elem;
1781 	env->stack_size++;
1782 	err = copy_verifier_state(&elem->st, cur);
1783 	if (err)
1784 		goto err;
1785 	elem->st.speculative |= speculative;
1786 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1787 		verbose(env, "The sequence of %d jumps is too complex.\n",
1788 			env->stack_size);
1789 		goto err;
1790 	}
1791 	if (elem->st.parent) {
1792 		++elem->st.parent->branches;
1793 		/* WARN_ON(branches > 2) technically makes sense here,
1794 		 * but
1795 		 * 1. speculative states will bump 'branches' for non-branch
1796 		 * instructions
1797 		 * 2. is_state_visited() heuristics may decide not to create
1798 		 * a new state for a sequence of branches and all such current
1799 		 * and cloned states will be pointing to a single parent state
1800 		 * which might have large 'branches' count.
1801 		 */
1802 	}
1803 	return &elem->st;
1804 err:
1805 	free_verifier_state(env->cur_state, true);
1806 	env->cur_state = NULL;
1807 	/* pop all elements and return */
1808 	while (!pop_stack(env, NULL, NULL, false));
1809 	return NULL;
1810 }
1811 
1812 #define CALLER_SAVED_REGS 6
1813 static const int caller_saved[CALLER_SAVED_REGS] = {
1814 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1815 };
1816 
1817 /* This helper doesn't clear reg->id */
1818 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1819 {
1820 	reg->var_off = tnum_const(imm);
1821 	reg->smin_value = (s64)imm;
1822 	reg->smax_value = (s64)imm;
1823 	reg->umin_value = imm;
1824 	reg->umax_value = imm;
1825 
1826 	reg->s32_min_value = (s32)imm;
1827 	reg->s32_max_value = (s32)imm;
1828 	reg->u32_min_value = (u32)imm;
1829 	reg->u32_max_value = (u32)imm;
1830 }
1831 
1832 /* Mark the unknown part of a register (variable offset or scalar value) as
1833  * known to have the value @imm.
1834  */
1835 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1836 {
1837 	/* Clear off and union(map_ptr, range) */
1838 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1839 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1840 	reg->id = 0;
1841 	reg->ref_obj_id = 0;
1842 	___mark_reg_known(reg, imm);
1843 }
1844 
1845 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1846 {
1847 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1848 	reg->s32_min_value = (s32)imm;
1849 	reg->s32_max_value = (s32)imm;
1850 	reg->u32_min_value = (u32)imm;
1851 	reg->u32_max_value = (u32)imm;
1852 }
1853 
1854 /* Mark the 'variable offset' part of a register as zero.  This should be
1855  * used only on registers holding a pointer type.
1856  */
1857 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1858 {
1859 	__mark_reg_known(reg, 0);
1860 }
1861 
1862 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1863 {
1864 	__mark_reg_known(reg, 0);
1865 	reg->type = SCALAR_VALUE;
1866 	/* all scalars are assumed imprecise initially (unless unprivileged,
1867 	 * in which case everything is forced to be precise)
1868 	 */
1869 	reg->precise = !env->bpf_capable;
1870 }
1871 
1872 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1873 				struct bpf_reg_state *regs, u32 regno)
1874 {
1875 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1876 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1877 		/* Something bad happened, let's kill all regs */
1878 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1879 			__mark_reg_not_init(env, regs + regno);
1880 		return;
1881 	}
1882 	__mark_reg_known_zero(regs + regno);
1883 }
1884 
1885 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1886 			      bool first_slot, int dynptr_id)
1887 {
1888 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1889 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1890 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1891 	 */
1892 	__mark_reg_known_zero(reg);
1893 	reg->type = CONST_PTR_TO_DYNPTR;
1894 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1895 	reg->id = dynptr_id;
1896 	reg->dynptr.type = type;
1897 	reg->dynptr.first_slot = first_slot;
1898 }
1899 
1900 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1901 {
1902 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1903 		const struct bpf_map *map = reg->map_ptr;
1904 
1905 		if (map->inner_map_meta) {
1906 			reg->type = CONST_PTR_TO_MAP;
1907 			reg->map_ptr = map->inner_map_meta;
1908 			/* transfer reg's id which is unique for every map_lookup_elem
1909 			 * as UID of the inner map.
1910 			 */
1911 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1912 				reg->map_uid = reg->id;
1913 			if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE))
1914 				reg->map_uid = reg->id;
1915 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1916 			reg->type = PTR_TO_XDP_SOCK;
1917 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1918 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1919 			reg->type = PTR_TO_SOCKET;
1920 		} else {
1921 			reg->type = PTR_TO_MAP_VALUE;
1922 		}
1923 		return;
1924 	}
1925 
1926 	reg->type &= ~PTR_MAYBE_NULL;
1927 }
1928 
1929 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1930 				struct btf_field_graph_root *ds_head)
1931 {
1932 	__mark_reg_known_zero(&regs[regno]);
1933 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1934 	regs[regno].btf = ds_head->btf;
1935 	regs[regno].btf_id = ds_head->value_btf_id;
1936 	regs[regno].off = ds_head->node_offset;
1937 }
1938 
1939 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1940 {
1941 	return type_is_pkt_pointer(reg->type);
1942 }
1943 
1944 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1945 {
1946 	return reg_is_pkt_pointer(reg) ||
1947 	       reg->type == PTR_TO_PACKET_END;
1948 }
1949 
1950 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1951 {
1952 	return base_type(reg->type) == PTR_TO_MEM &&
1953 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1954 }
1955 
1956 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1957 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1958 				    enum bpf_reg_type which)
1959 {
1960 	/* The register can already have a range from prior markings.
1961 	 * This is fine as long as it hasn't been advanced from its
1962 	 * origin.
1963 	 */
1964 	return reg->type == which &&
1965 	       reg->id == 0 &&
1966 	       reg->off == 0 &&
1967 	       tnum_equals_const(reg->var_off, 0);
1968 }
1969 
1970 /* Reset the min/max bounds of a register */
1971 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1972 {
1973 	reg->smin_value = S64_MIN;
1974 	reg->smax_value = S64_MAX;
1975 	reg->umin_value = 0;
1976 	reg->umax_value = U64_MAX;
1977 
1978 	reg->s32_min_value = S32_MIN;
1979 	reg->s32_max_value = S32_MAX;
1980 	reg->u32_min_value = 0;
1981 	reg->u32_max_value = U32_MAX;
1982 }
1983 
1984 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1985 {
1986 	reg->smin_value = S64_MIN;
1987 	reg->smax_value = S64_MAX;
1988 	reg->umin_value = 0;
1989 	reg->umax_value = U64_MAX;
1990 }
1991 
1992 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1993 {
1994 	reg->s32_min_value = S32_MIN;
1995 	reg->s32_max_value = S32_MAX;
1996 	reg->u32_min_value = 0;
1997 	reg->u32_max_value = U32_MAX;
1998 }
1999 
2000 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2001 {
2002 	struct tnum var32_off = tnum_subreg(reg->var_off);
2003 
2004 	/* min signed is max(sign bit) | min(other bits) */
2005 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2006 			var32_off.value | (var32_off.mask & S32_MIN));
2007 	/* max signed is min(sign bit) | max(other bits) */
2008 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2009 			var32_off.value | (var32_off.mask & S32_MAX));
2010 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2011 	reg->u32_max_value = min(reg->u32_max_value,
2012 				 (u32)(var32_off.value | var32_off.mask));
2013 }
2014 
2015 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2016 {
2017 	/* min signed is max(sign bit) | min(other bits) */
2018 	reg->smin_value = max_t(s64, reg->smin_value,
2019 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2020 	/* max signed is min(sign bit) | max(other bits) */
2021 	reg->smax_value = min_t(s64, reg->smax_value,
2022 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2023 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2024 	reg->umax_value = min(reg->umax_value,
2025 			      reg->var_off.value | reg->var_off.mask);
2026 }
2027 
2028 static void __update_reg_bounds(struct bpf_reg_state *reg)
2029 {
2030 	__update_reg32_bounds(reg);
2031 	__update_reg64_bounds(reg);
2032 }
2033 
2034 /* Uses signed min/max values to inform unsigned, and vice-versa */
2035 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2036 {
2037 	/* If upper 32 bits of u64/s64 range don't change, we can use lower 32
2038 	 * bits to improve our u32/s32 boundaries.
2039 	 *
2040 	 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
2041 	 * u64) is pretty trivial, it's obvious that in u32 we'll also have
2042 	 * [10, 20] range. But this property holds for any 64-bit range as
2043 	 * long as upper 32 bits in that entire range of values stay the same.
2044 	 *
2045 	 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
2046 	 * in decimal) has the same upper 32 bits throughout all the values in
2047 	 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
2048 	 * range.
2049 	 *
2050 	 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
2051 	 * following the rules outlined below about u64/s64 correspondence
2052 	 * (which equally applies to u32 vs s32 correspondence). In general it
2053 	 * depends on actual hexadecimal values of 32-bit range. They can form
2054 	 * only valid u32, or only valid s32 ranges in some cases.
2055 	 *
2056 	 * So we use all these insights to derive bounds for subregisters here.
2057 	 */
2058 	if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
2059 		/* u64 to u32 casting preserves validity of low 32 bits as
2060 		 * a range, if upper 32 bits are the same
2061 		 */
2062 		reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
2063 		reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
2064 
2065 		if ((s32)reg->umin_value <= (s32)reg->umax_value) {
2066 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2067 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2068 		}
2069 	}
2070 	if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
2071 		/* low 32 bits should form a proper u32 range */
2072 		if ((u32)reg->smin_value <= (u32)reg->smax_value) {
2073 			reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
2074 			reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
2075 		}
2076 		/* low 32 bits should form a proper s32 range */
2077 		if ((s32)reg->smin_value <= (s32)reg->smax_value) {
2078 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2079 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2080 		}
2081 	}
2082 	/* Special case where upper bits form a small sequence of two
2083 	 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
2084 	 * 0x00000000 is also valid), while lower bits form a proper s32 range
2085 	 * going from negative numbers to positive numbers. E.g., let's say we
2086 	 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
2087 	 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
2088 	 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
2089 	 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
2090 	 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
2091 	 * upper 32 bits. As a random example, s64 range
2092 	 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
2093 	 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
2094 	 */
2095 	if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
2096 	    (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
2097 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2098 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2099 	}
2100 	if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
2101 	    (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
2102 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2103 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2104 	}
2105 	/* if u32 range forms a valid s32 range (due to matching sign bit),
2106 	 * try to learn from that
2107 	 */
2108 	if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
2109 		reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
2110 		reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
2111 	}
2112 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2113 	 * are the same, so combine.  This works even in the negative case, e.g.
2114 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2115 	 */
2116 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2117 		reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
2118 		reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
2119 	}
2120 }
2121 
2122 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2123 {
2124 	/* If u64 range forms a valid s64 range (due to matching sign bit),
2125 	 * try to learn from that. Let's do a bit of ASCII art to see when
2126 	 * this is happening. Let's take u64 range first:
2127 	 *
2128 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2129 	 * |-------------------------------|--------------------------------|
2130 	 *
2131 	 * Valid u64 range is formed when umin and umax are anywhere in the
2132 	 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
2133 	 * straightforward. Let's see how s64 range maps onto the same range
2134 	 * of values, annotated below the line for comparison:
2135 	 *
2136 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2137 	 * |-------------------------------|--------------------------------|
2138 	 * 0                        S64_MAX S64_MIN                        -1
2139 	 *
2140 	 * So s64 values basically start in the middle and they are logically
2141 	 * contiguous to the right of it, wrapping around from -1 to 0, and
2142 	 * then finishing as S64_MAX (0x7fffffffffffffff) right before
2143 	 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
2144 	 * more visually as mapped to sign-agnostic range of hex values.
2145 	 *
2146 	 *  u64 start                                               u64 end
2147 	 *  _______________________________________________________________
2148 	 * /                                                               \
2149 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2150 	 * |-------------------------------|--------------------------------|
2151 	 * 0                        S64_MAX S64_MIN                        -1
2152 	 *                                / \
2153 	 * >------------------------------   ------------------------------->
2154 	 * s64 continues...        s64 end   s64 start          s64 "midpoint"
2155 	 *
2156 	 * What this means is that, in general, we can't always derive
2157 	 * something new about u64 from any random s64 range, and vice versa.
2158 	 *
2159 	 * But we can do that in two particular cases. One is when entire
2160 	 * u64/s64 range is *entirely* contained within left half of the above
2161 	 * diagram or when it is *entirely* contained in the right half. I.e.:
2162 	 *
2163 	 * |-------------------------------|--------------------------------|
2164 	 *     ^                   ^            ^                 ^
2165 	 *     A                   B            C                 D
2166 	 *
2167 	 * [A, B] and [C, D] are contained entirely in their respective halves
2168 	 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2169 	 * will be non-negative both as u64 and s64 (and in fact it will be
2170 	 * identical ranges no matter the signedness). [C, D] treated as s64
2171 	 * will be a range of negative values, while in u64 it will be
2172 	 * non-negative range of values larger than 0x8000000000000000.
2173 	 *
2174 	 * Now, any other range here can't be represented in both u64 and s64
2175 	 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2176 	 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2177 	 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2178 	 * for example. Similarly, valid s64 range [D, A] (going from negative
2179 	 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2180 	 * ranges as u64. Currently reg_state can't represent two segments per
2181 	 * numeric domain, so in such situations we can only derive maximal
2182 	 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2183 	 *
2184 	 * So we use these facts to derive umin/umax from smin/smax and vice
2185 	 * versa only if they stay within the same "half". This is equivalent
2186 	 * to checking sign bit: lower half will have sign bit as zero, upper
2187 	 * half have sign bit 1. Below in code we simplify this by just
2188 	 * casting umin/umax as smin/smax and checking if they form valid
2189 	 * range, and vice versa. Those are equivalent checks.
2190 	 */
2191 	if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2192 		reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2193 		reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2194 	}
2195 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2196 	 * are the same, so combine.  This works even in the negative case, e.g.
2197 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2198 	 */
2199 	if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2200 		reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2201 		reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2202 	}
2203 }
2204 
2205 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2206 {
2207 	/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2208 	 * values on both sides of 64-bit range in hope to have tighter range.
2209 	 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2210 	 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2211 	 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2212 	 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2213 	 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2214 	 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2215 	 * We just need to make sure that derived bounds we are intersecting
2216 	 * with are well-formed ranges in respective s64 or u64 domain, just
2217 	 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2218 	 */
2219 	__u64 new_umin, new_umax;
2220 	__s64 new_smin, new_smax;
2221 
2222 	/* u32 -> u64 tightening, it's always well-formed */
2223 	new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2224 	new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2225 	reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2226 	reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2227 	/* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2228 	new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2229 	new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2230 	reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2231 	reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2232 
2233 	/* if s32 can be treated as valid u32 range, we can use it as well */
2234 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2235 		/* s32 -> u64 tightening */
2236 		new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2237 		new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2238 		reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2239 		reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2240 		/* s32 -> s64 tightening */
2241 		new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2242 		new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2243 		reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2244 		reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2245 	}
2246 
2247 	/* Here we would like to handle a special case after sign extending load,
2248 	 * when upper bits for a 64-bit range are all 1s or all 0s.
2249 	 *
2250 	 * Upper bits are all 1s when register is in a range:
2251 	 *   [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff]
2252 	 * Upper bits are all 0s when register is in a range:
2253 	 *   [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff]
2254 	 * Together this forms are continuous range:
2255 	 *   [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff]
2256 	 *
2257 	 * Now, suppose that register range is in fact tighter:
2258 	 *   [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R)
2259 	 * Also suppose that it's 32-bit range is positive,
2260 	 * meaning that lower 32-bits of the full 64-bit register
2261 	 * are in the range:
2262 	 *   [0x0000_0000, 0x7fff_ffff] (W)
2263 	 *
2264 	 * If this happens, then any value in a range:
2265 	 *   [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff]
2266 	 * is smaller than a lowest bound of the range (R):
2267 	 *   0xffff_ffff_8000_0000
2268 	 * which means that upper bits of the full 64-bit register
2269 	 * can't be all 1s, when lower bits are in range (W).
2270 	 *
2271 	 * Note that:
2272 	 *  - 0xffff_ffff_8000_0000 == (s64)S32_MIN
2273 	 *  - 0x0000_0000_7fff_ffff == (s64)S32_MAX
2274 	 * These relations are used in the conditions below.
2275 	 */
2276 	if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) {
2277 		reg->smin_value = reg->s32_min_value;
2278 		reg->smax_value = reg->s32_max_value;
2279 		reg->umin_value = reg->s32_min_value;
2280 		reg->umax_value = reg->s32_max_value;
2281 		reg->var_off = tnum_intersect(reg->var_off,
2282 					      tnum_range(reg->smin_value, reg->smax_value));
2283 	}
2284 }
2285 
2286 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2287 {
2288 	__reg32_deduce_bounds(reg);
2289 	__reg64_deduce_bounds(reg);
2290 	__reg_deduce_mixed_bounds(reg);
2291 }
2292 
2293 /* Attempts to improve var_off based on unsigned min/max information */
2294 static void __reg_bound_offset(struct bpf_reg_state *reg)
2295 {
2296 	struct tnum var64_off = tnum_intersect(reg->var_off,
2297 					       tnum_range(reg->umin_value,
2298 							  reg->umax_value));
2299 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2300 					       tnum_range(reg->u32_min_value,
2301 							  reg->u32_max_value));
2302 
2303 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2304 }
2305 
2306 static void reg_bounds_sync(struct bpf_reg_state *reg)
2307 {
2308 	/* We might have learned new bounds from the var_off. */
2309 	__update_reg_bounds(reg);
2310 	/* We might have learned something about the sign bit. */
2311 	__reg_deduce_bounds(reg);
2312 	__reg_deduce_bounds(reg);
2313 	/* We might have learned some bits from the bounds. */
2314 	__reg_bound_offset(reg);
2315 	/* Intersecting with the old var_off might have improved our bounds
2316 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2317 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2318 	 */
2319 	__update_reg_bounds(reg);
2320 }
2321 
2322 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2323 				   struct bpf_reg_state *reg, const char *ctx)
2324 {
2325 	const char *msg;
2326 
2327 	if (reg->umin_value > reg->umax_value ||
2328 	    reg->smin_value > reg->smax_value ||
2329 	    reg->u32_min_value > reg->u32_max_value ||
2330 	    reg->s32_min_value > reg->s32_max_value) {
2331 		    msg = "range bounds violation";
2332 		    goto out;
2333 	}
2334 
2335 	if (tnum_is_const(reg->var_off)) {
2336 		u64 uval = reg->var_off.value;
2337 		s64 sval = (s64)uval;
2338 
2339 		if (reg->umin_value != uval || reg->umax_value != uval ||
2340 		    reg->smin_value != sval || reg->smax_value != sval) {
2341 			msg = "const tnum out of sync with range bounds";
2342 			goto out;
2343 		}
2344 	}
2345 
2346 	if (tnum_subreg_is_const(reg->var_off)) {
2347 		u32 uval32 = tnum_subreg(reg->var_off).value;
2348 		s32 sval32 = (s32)uval32;
2349 
2350 		if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2351 		    reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2352 			msg = "const subreg tnum out of sync with range bounds";
2353 			goto out;
2354 		}
2355 	}
2356 
2357 	return 0;
2358 out:
2359 	verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2360 		"s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n",
2361 		ctx, msg, reg->umin_value, reg->umax_value,
2362 		reg->smin_value, reg->smax_value,
2363 		reg->u32_min_value, reg->u32_max_value,
2364 		reg->s32_min_value, reg->s32_max_value,
2365 		reg->var_off.value, reg->var_off.mask);
2366 	if (env->test_reg_invariants)
2367 		return -EFAULT;
2368 	__mark_reg_unbounded(reg);
2369 	return 0;
2370 }
2371 
2372 static bool __reg32_bound_s64(s32 a)
2373 {
2374 	return a >= 0 && a <= S32_MAX;
2375 }
2376 
2377 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2378 {
2379 	reg->umin_value = reg->u32_min_value;
2380 	reg->umax_value = reg->u32_max_value;
2381 
2382 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2383 	 * be positive otherwise set to worse case bounds and refine later
2384 	 * from tnum.
2385 	 */
2386 	if (__reg32_bound_s64(reg->s32_min_value) &&
2387 	    __reg32_bound_s64(reg->s32_max_value)) {
2388 		reg->smin_value = reg->s32_min_value;
2389 		reg->smax_value = reg->s32_max_value;
2390 	} else {
2391 		reg->smin_value = 0;
2392 		reg->smax_value = U32_MAX;
2393 	}
2394 }
2395 
2396 /* Mark a register as having a completely unknown (scalar) value. */
2397 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg)
2398 {
2399 	/*
2400 	 * Clear type, off, and union(map_ptr, range) and
2401 	 * padding between 'type' and union
2402 	 */
2403 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2404 	reg->type = SCALAR_VALUE;
2405 	reg->id = 0;
2406 	reg->ref_obj_id = 0;
2407 	reg->var_off = tnum_unknown;
2408 	reg->frameno = 0;
2409 	reg->precise = false;
2410 	__mark_reg_unbounded(reg);
2411 }
2412 
2413 /* Mark a register as having a completely unknown (scalar) value,
2414  * initialize .precise as true when not bpf capable.
2415  */
2416 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2417 			       struct bpf_reg_state *reg)
2418 {
2419 	__mark_reg_unknown_imprecise(reg);
2420 	reg->precise = !env->bpf_capable;
2421 }
2422 
2423 static void mark_reg_unknown(struct bpf_verifier_env *env,
2424 			     struct bpf_reg_state *regs, u32 regno)
2425 {
2426 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2427 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2428 		/* Something bad happened, let's kill all regs except FP */
2429 		for (regno = 0; regno < BPF_REG_FP; regno++)
2430 			__mark_reg_not_init(env, regs + regno);
2431 		return;
2432 	}
2433 	__mark_reg_unknown(env, regs + regno);
2434 }
2435 
2436 static int __mark_reg_s32_range(struct bpf_verifier_env *env,
2437 				struct bpf_reg_state *regs,
2438 				u32 regno,
2439 				s32 s32_min,
2440 				s32 s32_max)
2441 {
2442 	struct bpf_reg_state *reg = regs + regno;
2443 
2444 	reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min);
2445 	reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max);
2446 
2447 	reg->smin_value = max_t(s64, reg->smin_value, s32_min);
2448 	reg->smax_value = min_t(s64, reg->smax_value, s32_max);
2449 
2450 	reg_bounds_sync(reg);
2451 
2452 	return reg_bounds_sanity_check(env, reg, "s32_range");
2453 }
2454 
2455 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2456 				struct bpf_reg_state *reg)
2457 {
2458 	__mark_reg_unknown(env, reg);
2459 	reg->type = NOT_INIT;
2460 }
2461 
2462 static void mark_reg_not_init(struct bpf_verifier_env *env,
2463 			      struct bpf_reg_state *regs, u32 regno)
2464 {
2465 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2466 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2467 		/* Something bad happened, let's kill all regs except FP */
2468 		for (regno = 0; regno < BPF_REG_FP; regno++)
2469 			__mark_reg_not_init(env, regs + regno);
2470 		return;
2471 	}
2472 	__mark_reg_not_init(env, regs + regno);
2473 }
2474 
2475 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2476 			    struct bpf_reg_state *regs, u32 regno,
2477 			    enum bpf_reg_type reg_type,
2478 			    struct btf *btf, u32 btf_id,
2479 			    enum bpf_type_flag flag)
2480 {
2481 	if (reg_type == SCALAR_VALUE) {
2482 		mark_reg_unknown(env, regs, regno);
2483 		return;
2484 	}
2485 	mark_reg_known_zero(env, regs, regno);
2486 	regs[regno].type = PTR_TO_BTF_ID | flag;
2487 	regs[regno].btf = btf;
2488 	regs[regno].btf_id = btf_id;
2489 	if (type_may_be_null(flag))
2490 		regs[regno].id = ++env->id_gen;
2491 }
2492 
2493 #define DEF_NOT_SUBREG	(0)
2494 static void init_reg_state(struct bpf_verifier_env *env,
2495 			   struct bpf_func_state *state)
2496 {
2497 	struct bpf_reg_state *regs = state->regs;
2498 	int i;
2499 
2500 	for (i = 0; i < MAX_BPF_REG; i++) {
2501 		mark_reg_not_init(env, regs, i);
2502 		regs[i].live = REG_LIVE_NONE;
2503 		regs[i].parent = NULL;
2504 		regs[i].subreg_def = DEF_NOT_SUBREG;
2505 	}
2506 
2507 	/* frame pointer */
2508 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2509 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2510 	regs[BPF_REG_FP].frameno = state->frameno;
2511 }
2512 
2513 static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
2514 {
2515 	return (struct bpf_retval_range){ minval, maxval };
2516 }
2517 
2518 #define BPF_MAIN_FUNC (-1)
2519 static void init_func_state(struct bpf_verifier_env *env,
2520 			    struct bpf_func_state *state,
2521 			    int callsite, int frameno, int subprogno)
2522 {
2523 	state->callsite = callsite;
2524 	state->frameno = frameno;
2525 	state->subprogno = subprogno;
2526 	state->callback_ret_range = retval_range(0, 0);
2527 	init_reg_state(env, state);
2528 	mark_verifier_state_scratched(env);
2529 }
2530 
2531 /* Similar to push_stack(), but for async callbacks */
2532 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2533 						int insn_idx, int prev_insn_idx,
2534 						int subprog, bool is_sleepable)
2535 {
2536 	struct bpf_verifier_stack_elem *elem;
2537 	struct bpf_func_state *frame;
2538 
2539 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2540 	if (!elem)
2541 		goto err;
2542 
2543 	elem->insn_idx = insn_idx;
2544 	elem->prev_insn_idx = prev_insn_idx;
2545 	elem->next = env->head;
2546 	elem->log_pos = env->log.end_pos;
2547 	env->head = elem;
2548 	env->stack_size++;
2549 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2550 		verbose(env,
2551 			"The sequence of %d jumps is too complex for async cb.\n",
2552 			env->stack_size);
2553 		goto err;
2554 	}
2555 	/* Unlike push_stack() do not copy_verifier_state().
2556 	 * The caller state doesn't matter.
2557 	 * This is async callback. It starts in a fresh stack.
2558 	 * Initialize it similar to do_check_common().
2559 	 * But we do need to make sure to not clobber insn_hist, so we keep
2560 	 * chaining insn_hist_start/insn_hist_end indices as for a normal
2561 	 * child state.
2562 	 */
2563 	elem->st.branches = 1;
2564 	elem->st.in_sleepable = is_sleepable;
2565 	elem->st.insn_hist_start = env->cur_state->insn_hist_end;
2566 	elem->st.insn_hist_end = elem->st.insn_hist_start;
2567 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2568 	if (!frame)
2569 		goto err;
2570 	init_func_state(env, frame,
2571 			BPF_MAIN_FUNC /* callsite */,
2572 			0 /* frameno within this callchain */,
2573 			subprog /* subprog number within this prog */);
2574 	elem->st.frame[0] = frame;
2575 	return &elem->st;
2576 err:
2577 	free_verifier_state(env->cur_state, true);
2578 	env->cur_state = NULL;
2579 	/* pop all elements and return */
2580 	while (!pop_stack(env, NULL, NULL, false));
2581 	return NULL;
2582 }
2583 
2584 
2585 enum reg_arg_type {
2586 	SRC_OP,		/* register is used as source operand */
2587 	DST_OP,		/* register is used as destination operand */
2588 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2589 };
2590 
2591 static int cmp_subprogs(const void *a, const void *b)
2592 {
2593 	return ((struct bpf_subprog_info *)a)->start -
2594 	       ((struct bpf_subprog_info *)b)->start;
2595 }
2596 
2597 static int find_subprog(struct bpf_verifier_env *env, int off)
2598 {
2599 	struct bpf_subprog_info *p;
2600 
2601 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2602 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2603 	if (!p)
2604 		return -ENOENT;
2605 	return p - env->subprog_info;
2606 
2607 }
2608 
2609 static int add_subprog(struct bpf_verifier_env *env, int off)
2610 {
2611 	int insn_cnt = env->prog->len;
2612 	int ret;
2613 
2614 	if (off >= insn_cnt || off < 0) {
2615 		verbose(env, "call to invalid destination\n");
2616 		return -EINVAL;
2617 	}
2618 	ret = find_subprog(env, off);
2619 	if (ret >= 0)
2620 		return ret;
2621 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2622 		verbose(env, "too many subprograms\n");
2623 		return -E2BIG;
2624 	}
2625 	/* determine subprog starts. The end is one before the next starts */
2626 	env->subprog_info[env->subprog_cnt++].start = off;
2627 	sort(env->subprog_info, env->subprog_cnt,
2628 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2629 	return env->subprog_cnt - 1;
2630 }
2631 
2632 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2633 {
2634 	struct bpf_prog_aux *aux = env->prog->aux;
2635 	struct btf *btf = aux->btf;
2636 	const struct btf_type *t;
2637 	u32 main_btf_id, id;
2638 	const char *name;
2639 	int ret, i;
2640 
2641 	/* Non-zero func_info_cnt implies valid btf */
2642 	if (!aux->func_info_cnt)
2643 		return 0;
2644 	main_btf_id = aux->func_info[0].type_id;
2645 
2646 	t = btf_type_by_id(btf, main_btf_id);
2647 	if (!t) {
2648 		verbose(env, "invalid btf id for main subprog in func_info\n");
2649 		return -EINVAL;
2650 	}
2651 
2652 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2653 	if (IS_ERR(name)) {
2654 		ret = PTR_ERR(name);
2655 		/* If there is no tag present, there is no exception callback */
2656 		if (ret == -ENOENT)
2657 			ret = 0;
2658 		else if (ret == -EEXIST)
2659 			verbose(env, "multiple exception callback tags for main subprog\n");
2660 		return ret;
2661 	}
2662 
2663 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2664 	if (ret < 0) {
2665 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2666 		return ret;
2667 	}
2668 	id = ret;
2669 	t = btf_type_by_id(btf, id);
2670 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2671 		verbose(env, "exception callback '%s' must have global linkage\n", name);
2672 		return -EINVAL;
2673 	}
2674 	ret = 0;
2675 	for (i = 0; i < aux->func_info_cnt; i++) {
2676 		if (aux->func_info[i].type_id != id)
2677 			continue;
2678 		ret = aux->func_info[i].insn_off;
2679 		/* Further func_info and subprog checks will also happen
2680 		 * later, so assume this is the right insn_off for now.
2681 		 */
2682 		if (!ret) {
2683 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2684 			ret = -EINVAL;
2685 		}
2686 	}
2687 	if (!ret) {
2688 		verbose(env, "exception callback type id not found in func_info\n");
2689 		ret = -EINVAL;
2690 	}
2691 	return ret;
2692 }
2693 
2694 #define MAX_KFUNC_DESCS 256
2695 #define MAX_KFUNC_BTFS	256
2696 
2697 struct bpf_kfunc_desc {
2698 	struct btf_func_model func_model;
2699 	u32 func_id;
2700 	s32 imm;
2701 	u16 offset;
2702 	unsigned long addr;
2703 };
2704 
2705 struct bpf_kfunc_btf {
2706 	struct btf *btf;
2707 	struct module *module;
2708 	u16 offset;
2709 };
2710 
2711 struct bpf_kfunc_desc_tab {
2712 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2713 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2714 	 * available, therefore at the end of verification do_misc_fixups()
2715 	 * sorts this by imm and offset.
2716 	 */
2717 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2718 	u32 nr_descs;
2719 };
2720 
2721 struct bpf_kfunc_btf_tab {
2722 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2723 	u32 nr_descs;
2724 };
2725 
2726 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2727 {
2728 	const struct bpf_kfunc_desc *d0 = a;
2729 	const struct bpf_kfunc_desc *d1 = b;
2730 
2731 	/* func_id is not greater than BTF_MAX_TYPE */
2732 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2733 }
2734 
2735 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2736 {
2737 	const struct bpf_kfunc_btf *d0 = a;
2738 	const struct bpf_kfunc_btf *d1 = b;
2739 
2740 	return d0->offset - d1->offset;
2741 }
2742 
2743 static const struct bpf_kfunc_desc *
2744 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2745 {
2746 	struct bpf_kfunc_desc desc = {
2747 		.func_id = func_id,
2748 		.offset = offset,
2749 	};
2750 	struct bpf_kfunc_desc_tab *tab;
2751 
2752 	tab = prog->aux->kfunc_tab;
2753 	return bsearch(&desc, tab->descs, tab->nr_descs,
2754 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2755 }
2756 
2757 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2758 		       u16 btf_fd_idx, u8 **func_addr)
2759 {
2760 	const struct bpf_kfunc_desc *desc;
2761 
2762 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2763 	if (!desc)
2764 		return -EFAULT;
2765 
2766 	*func_addr = (u8 *)desc->addr;
2767 	return 0;
2768 }
2769 
2770 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2771 					 s16 offset)
2772 {
2773 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2774 	struct bpf_kfunc_btf_tab *tab;
2775 	struct bpf_kfunc_btf *b;
2776 	struct module *mod;
2777 	struct btf *btf;
2778 	int btf_fd;
2779 
2780 	tab = env->prog->aux->kfunc_btf_tab;
2781 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2782 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2783 	if (!b) {
2784 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2785 			verbose(env, "too many different module BTFs\n");
2786 			return ERR_PTR(-E2BIG);
2787 		}
2788 
2789 		if (bpfptr_is_null(env->fd_array)) {
2790 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2791 			return ERR_PTR(-EPROTO);
2792 		}
2793 
2794 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2795 					    offset * sizeof(btf_fd),
2796 					    sizeof(btf_fd)))
2797 			return ERR_PTR(-EFAULT);
2798 
2799 		btf = btf_get_by_fd(btf_fd);
2800 		if (IS_ERR(btf)) {
2801 			verbose(env, "invalid module BTF fd specified\n");
2802 			return btf;
2803 		}
2804 
2805 		if (!btf_is_module(btf)) {
2806 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2807 			btf_put(btf);
2808 			return ERR_PTR(-EINVAL);
2809 		}
2810 
2811 		mod = btf_try_get_module(btf);
2812 		if (!mod) {
2813 			btf_put(btf);
2814 			return ERR_PTR(-ENXIO);
2815 		}
2816 
2817 		b = &tab->descs[tab->nr_descs++];
2818 		b->btf = btf;
2819 		b->module = mod;
2820 		b->offset = offset;
2821 
2822 		/* sort() reorders entries by value, so b may no longer point
2823 		 * to the right entry after this
2824 		 */
2825 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2826 		     kfunc_btf_cmp_by_off, NULL);
2827 	} else {
2828 		btf = b->btf;
2829 	}
2830 
2831 	return btf;
2832 }
2833 
2834 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2835 {
2836 	if (!tab)
2837 		return;
2838 
2839 	while (tab->nr_descs--) {
2840 		module_put(tab->descs[tab->nr_descs].module);
2841 		btf_put(tab->descs[tab->nr_descs].btf);
2842 	}
2843 	kfree(tab);
2844 }
2845 
2846 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2847 {
2848 	if (offset) {
2849 		if (offset < 0) {
2850 			/* In the future, this can be allowed to increase limit
2851 			 * of fd index into fd_array, interpreted as u16.
2852 			 */
2853 			verbose(env, "negative offset disallowed for kernel module function call\n");
2854 			return ERR_PTR(-EINVAL);
2855 		}
2856 
2857 		return __find_kfunc_desc_btf(env, offset);
2858 	}
2859 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2860 }
2861 
2862 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2863 {
2864 	const struct btf_type *func, *func_proto;
2865 	struct bpf_kfunc_btf_tab *btf_tab;
2866 	struct bpf_kfunc_desc_tab *tab;
2867 	struct bpf_prog_aux *prog_aux;
2868 	struct bpf_kfunc_desc *desc;
2869 	const char *func_name;
2870 	struct btf *desc_btf;
2871 	unsigned long call_imm;
2872 	unsigned long addr;
2873 	int err;
2874 
2875 	prog_aux = env->prog->aux;
2876 	tab = prog_aux->kfunc_tab;
2877 	btf_tab = prog_aux->kfunc_btf_tab;
2878 	if (!tab) {
2879 		if (!btf_vmlinux) {
2880 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2881 			return -ENOTSUPP;
2882 		}
2883 
2884 		if (!env->prog->jit_requested) {
2885 			verbose(env, "JIT is required for calling kernel function\n");
2886 			return -ENOTSUPP;
2887 		}
2888 
2889 		if (!bpf_jit_supports_kfunc_call()) {
2890 			verbose(env, "JIT does not support calling kernel function\n");
2891 			return -ENOTSUPP;
2892 		}
2893 
2894 		if (!env->prog->gpl_compatible) {
2895 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2896 			return -EINVAL;
2897 		}
2898 
2899 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2900 		if (!tab)
2901 			return -ENOMEM;
2902 		prog_aux->kfunc_tab = tab;
2903 	}
2904 
2905 	/* func_id == 0 is always invalid, but instead of returning an error, be
2906 	 * conservative and wait until the code elimination pass before returning
2907 	 * error, so that invalid calls that get pruned out can be in BPF programs
2908 	 * loaded from userspace.  It is also required that offset be untouched
2909 	 * for such calls.
2910 	 */
2911 	if (!func_id && !offset)
2912 		return 0;
2913 
2914 	if (!btf_tab && offset) {
2915 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2916 		if (!btf_tab)
2917 			return -ENOMEM;
2918 		prog_aux->kfunc_btf_tab = btf_tab;
2919 	}
2920 
2921 	desc_btf = find_kfunc_desc_btf(env, offset);
2922 	if (IS_ERR(desc_btf)) {
2923 		verbose(env, "failed to find BTF for kernel function\n");
2924 		return PTR_ERR(desc_btf);
2925 	}
2926 
2927 	if (find_kfunc_desc(env->prog, func_id, offset))
2928 		return 0;
2929 
2930 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2931 		verbose(env, "too many different kernel function calls\n");
2932 		return -E2BIG;
2933 	}
2934 
2935 	func = btf_type_by_id(desc_btf, func_id);
2936 	if (!func || !btf_type_is_func(func)) {
2937 		verbose(env, "kernel btf_id %u is not a function\n",
2938 			func_id);
2939 		return -EINVAL;
2940 	}
2941 	func_proto = btf_type_by_id(desc_btf, func->type);
2942 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2943 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2944 			func_id);
2945 		return -EINVAL;
2946 	}
2947 
2948 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2949 	addr = kallsyms_lookup_name(func_name);
2950 	if (!addr) {
2951 		verbose(env, "cannot find address for kernel function %s\n",
2952 			func_name);
2953 		return -EINVAL;
2954 	}
2955 	specialize_kfunc(env, func_id, offset, &addr);
2956 
2957 	if (bpf_jit_supports_far_kfunc_call()) {
2958 		call_imm = func_id;
2959 	} else {
2960 		call_imm = BPF_CALL_IMM(addr);
2961 		/* Check whether the relative offset overflows desc->imm */
2962 		if ((unsigned long)(s32)call_imm != call_imm) {
2963 			verbose(env, "address of kernel function %s is out of range\n",
2964 				func_name);
2965 			return -EINVAL;
2966 		}
2967 	}
2968 
2969 	if (bpf_dev_bound_kfunc_id(func_id)) {
2970 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2971 		if (err)
2972 			return err;
2973 	}
2974 
2975 	desc = &tab->descs[tab->nr_descs++];
2976 	desc->func_id = func_id;
2977 	desc->imm = call_imm;
2978 	desc->offset = offset;
2979 	desc->addr = addr;
2980 	err = btf_distill_func_proto(&env->log, desc_btf,
2981 				     func_proto, func_name,
2982 				     &desc->func_model);
2983 	if (!err)
2984 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2985 		     kfunc_desc_cmp_by_id_off, NULL);
2986 	return err;
2987 }
2988 
2989 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2990 {
2991 	const struct bpf_kfunc_desc *d0 = a;
2992 	const struct bpf_kfunc_desc *d1 = b;
2993 
2994 	if (d0->imm != d1->imm)
2995 		return d0->imm < d1->imm ? -1 : 1;
2996 	if (d0->offset != d1->offset)
2997 		return d0->offset < d1->offset ? -1 : 1;
2998 	return 0;
2999 }
3000 
3001 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
3002 {
3003 	struct bpf_kfunc_desc_tab *tab;
3004 
3005 	tab = prog->aux->kfunc_tab;
3006 	if (!tab)
3007 		return;
3008 
3009 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3010 	     kfunc_desc_cmp_by_imm_off, NULL);
3011 }
3012 
3013 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3014 {
3015 	return !!prog->aux->kfunc_tab;
3016 }
3017 
3018 const struct btf_func_model *
3019 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3020 			 const struct bpf_insn *insn)
3021 {
3022 	const struct bpf_kfunc_desc desc = {
3023 		.imm = insn->imm,
3024 		.offset = insn->off,
3025 	};
3026 	const struct bpf_kfunc_desc *res;
3027 	struct bpf_kfunc_desc_tab *tab;
3028 
3029 	tab = prog->aux->kfunc_tab;
3030 	res = bsearch(&desc, tab->descs, tab->nr_descs,
3031 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3032 
3033 	return res ? &res->func_model : NULL;
3034 }
3035 
3036 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3037 {
3038 	struct bpf_subprog_info *subprog = env->subprog_info;
3039 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
3040 	struct bpf_insn *insn = env->prog->insnsi;
3041 
3042 	/* Add entry function. */
3043 	ret = add_subprog(env, 0);
3044 	if (ret)
3045 		return ret;
3046 
3047 	for (i = 0; i < insn_cnt; i++, insn++) {
3048 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3049 		    !bpf_pseudo_kfunc_call(insn))
3050 			continue;
3051 
3052 		if (!env->bpf_capable) {
3053 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3054 			return -EPERM;
3055 		}
3056 
3057 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3058 			ret = add_subprog(env, i + insn->imm + 1);
3059 		else
3060 			ret = add_kfunc_call(env, insn->imm, insn->off);
3061 
3062 		if (ret < 0)
3063 			return ret;
3064 	}
3065 
3066 	ret = bpf_find_exception_callback_insn_off(env);
3067 	if (ret < 0)
3068 		return ret;
3069 	ex_cb_insn = ret;
3070 
3071 	/* If ex_cb_insn > 0, this means that the main program has a subprog
3072 	 * marked using BTF decl tag to serve as the exception callback.
3073 	 */
3074 	if (ex_cb_insn) {
3075 		ret = add_subprog(env, ex_cb_insn);
3076 		if (ret < 0)
3077 			return ret;
3078 		for (i = 1; i < env->subprog_cnt; i++) {
3079 			if (env->subprog_info[i].start != ex_cb_insn)
3080 				continue;
3081 			env->exception_callback_subprog = i;
3082 			mark_subprog_exc_cb(env, i);
3083 			break;
3084 		}
3085 	}
3086 
3087 	/* Add a fake 'exit' subprog which could simplify subprog iteration
3088 	 * logic. 'subprog_cnt' should not be increased.
3089 	 */
3090 	subprog[env->subprog_cnt].start = insn_cnt;
3091 
3092 	if (env->log.level & BPF_LOG_LEVEL2)
3093 		for (i = 0; i < env->subprog_cnt; i++)
3094 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
3095 
3096 	return 0;
3097 }
3098 
3099 static int check_subprogs(struct bpf_verifier_env *env)
3100 {
3101 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
3102 	struct bpf_subprog_info *subprog = env->subprog_info;
3103 	struct bpf_insn *insn = env->prog->insnsi;
3104 	int insn_cnt = env->prog->len;
3105 
3106 	/* now check that all jumps are within the same subprog */
3107 	subprog_start = subprog[cur_subprog].start;
3108 	subprog_end = subprog[cur_subprog + 1].start;
3109 	for (i = 0; i < insn_cnt; i++) {
3110 		u8 code = insn[i].code;
3111 
3112 		if (code == (BPF_JMP | BPF_CALL) &&
3113 		    insn[i].src_reg == 0 &&
3114 		    insn[i].imm == BPF_FUNC_tail_call) {
3115 			subprog[cur_subprog].has_tail_call = true;
3116 			subprog[cur_subprog].tail_call_reachable = true;
3117 		}
3118 		if (BPF_CLASS(code) == BPF_LD &&
3119 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3120 			subprog[cur_subprog].has_ld_abs = true;
3121 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3122 			goto next;
3123 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3124 			goto next;
3125 		if (code == (BPF_JMP32 | BPF_JA))
3126 			off = i + insn[i].imm + 1;
3127 		else
3128 			off = i + insn[i].off + 1;
3129 		if (off < subprog_start || off >= subprog_end) {
3130 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
3131 			return -EINVAL;
3132 		}
3133 next:
3134 		if (i == subprog_end - 1) {
3135 			/* to avoid fall-through from one subprog into another
3136 			 * the last insn of the subprog should be either exit
3137 			 * or unconditional jump back or bpf_throw call
3138 			 */
3139 			if (code != (BPF_JMP | BPF_EXIT) &&
3140 			    code != (BPF_JMP32 | BPF_JA) &&
3141 			    code != (BPF_JMP | BPF_JA)) {
3142 				verbose(env, "last insn is not an exit or jmp\n");
3143 				return -EINVAL;
3144 			}
3145 			subprog_start = subprog_end;
3146 			cur_subprog++;
3147 			if (cur_subprog < env->subprog_cnt)
3148 				subprog_end = subprog[cur_subprog + 1].start;
3149 		}
3150 	}
3151 	return 0;
3152 }
3153 
3154 /* Parentage chain of this register (or stack slot) should take care of all
3155  * issues like callee-saved registers, stack slot allocation time, etc.
3156  */
3157 static int mark_reg_read(struct bpf_verifier_env *env,
3158 			 const struct bpf_reg_state *state,
3159 			 struct bpf_reg_state *parent, u8 flag)
3160 {
3161 	bool writes = parent == state->parent; /* Observe write marks */
3162 	int cnt = 0;
3163 
3164 	while (parent) {
3165 		/* if read wasn't screened by an earlier write ... */
3166 		if (writes && state->live & REG_LIVE_WRITTEN)
3167 			break;
3168 		if (parent->live & REG_LIVE_DONE) {
3169 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3170 				reg_type_str(env, parent->type),
3171 				parent->var_off.value, parent->off);
3172 			return -EFAULT;
3173 		}
3174 		/* The first condition is more likely to be true than the
3175 		 * second, checked it first.
3176 		 */
3177 		if ((parent->live & REG_LIVE_READ) == flag ||
3178 		    parent->live & REG_LIVE_READ64)
3179 			/* The parentage chain never changes and
3180 			 * this parent was already marked as LIVE_READ.
3181 			 * There is no need to keep walking the chain again and
3182 			 * keep re-marking all parents as LIVE_READ.
3183 			 * This case happens when the same register is read
3184 			 * multiple times without writes into it in-between.
3185 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3186 			 * then no need to set the weak REG_LIVE_READ32.
3187 			 */
3188 			break;
3189 		/* ... then we depend on parent's value */
3190 		parent->live |= flag;
3191 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3192 		if (flag == REG_LIVE_READ64)
3193 			parent->live &= ~REG_LIVE_READ32;
3194 		state = parent;
3195 		parent = state->parent;
3196 		writes = true;
3197 		cnt++;
3198 	}
3199 
3200 	if (env->longest_mark_read_walk < cnt)
3201 		env->longest_mark_read_walk = cnt;
3202 	return 0;
3203 }
3204 
3205 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3206 {
3207 	struct bpf_func_state *state = func(env, reg);
3208 	int spi, ret;
3209 
3210 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3211 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3212 	 * check_kfunc_call.
3213 	 */
3214 	if (reg->type == CONST_PTR_TO_DYNPTR)
3215 		return 0;
3216 	spi = dynptr_get_spi(env, reg);
3217 	if (spi < 0)
3218 		return spi;
3219 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3220 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3221 	 * read.
3222 	 */
3223 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3224 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3225 	if (ret)
3226 		return ret;
3227 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3228 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3229 }
3230 
3231 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3232 			  int spi, int nr_slots)
3233 {
3234 	struct bpf_func_state *state = func(env, reg);
3235 	int err, i;
3236 
3237 	for (i = 0; i < nr_slots; i++) {
3238 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3239 
3240 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3241 		if (err)
3242 			return err;
3243 
3244 		mark_stack_slot_scratched(env, spi - i);
3245 	}
3246 
3247 	return 0;
3248 }
3249 
3250 /* This function is supposed to be used by the following 32-bit optimization
3251  * code only. It returns TRUE if the source or destination register operates
3252  * on 64-bit, otherwise return FALSE.
3253  */
3254 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3255 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3256 {
3257 	u8 code, class, op;
3258 
3259 	code = insn->code;
3260 	class = BPF_CLASS(code);
3261 	op = BPF_OP(code);
3262 	if (class == BPF_JMP) {
3263 		/* BPF_EXIT for "main" will reach here. Return TRUE
3264 		 * conservatively.
3265 		 */
3266 		if (op == BPF_EXIT)
3267 			return true;
3268 		if (op == BPF_CALL) {
3269 			/* BPF to BPF call will reach here because of marking
3270 			 * caller saved clobber with DST_OP_NO_MARK for which we
3271 			 * don't care the register def because they are anyway
3272 			 * marked as NOT_INIT already.
3273 			 */
3274 			if (insn->src_reg == BPF_PSEUDO_CALL)
3275 				return false;
3276 			/* Helper call will reach here because of arg type
3277 			 * check, conservatively return TRUE.
3278 			 */
3279 			if (t == SRC_OP)
3280 				return true;
3281 
3282 			return false;
3283 		}
3284 	}
3285 
3286 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3287 		return false;
3288 
3289 	if (class == BPF_ALU64 || class == BPF_JMP ||
3290 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3291 		return true;
3292 
3293 	if (class == BPF_ALU || class == BPF_JMP32)
3294 		return false;
3295 
3296 	if (class == BPF_LDX) {
3297 		if (t != SRC_OP)
3298 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3299 		/* LDX source must be ptr. */
3300 		return true;
3301 	}
3302 
3303 	if (class == BPF_STX) {
3304 		/* BPF_STX (including atomic variants) has multiple source
3305 		 * operands, one of which is a ptr. Check whether the caller is
3306 		 * asking about it.
3307 		 */
3308 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3309 			return true;
3310 		return BPF_SIZE(code) == BPF_DW;
3311 	}
3312 
3313 	if (class == BPF_LD) {
3314 		u8 mode = BPF_MODE(code);
3315 
3316 		/* LD_IMM64 */
3317 		if (mode == BPF_IMM)
3318 			return true;
3319 
3320 		/* Both LD_IND and LD_ABS return 32-bit data. */
3321 		if (t != SRC_OP)
3322 			return  false;
3323 
3324 		/* Implicit ctx ptr. */
3325 		if (regno == BPF_REG_6)
3326 			return true;
3327 
3328 		/* Explicit source could be any width. */
3329 		return true;
3330 	}
3331 
3332 	if (class == BPF_ST)
3333 		/* The only source register for BPF_ST is a ptr. */
3334 		return true;
3335 
3336 	/* Conservatively return true at default. */
3337 	return true;
3338 }
3339 
3340 /* Return the regno defined by the insn, or -1. */
3341 static int insn_def_regno(const struct bpf_insn *insn)
3342 {
3343 	switch (BPF_CLASS(insn->code)) {
3344 	case BPF_JMP:
3345 	case BPF_JMP32:
3346 	case BPF_ST:
3347 		return -1;
3348 	case BPF_STX:
3349 		if ((BPF_MODE(insn->code) == BPF_ATOMIC ||
3350 		     BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) &&
3351 		    (insn->imm & BPF_FETCH)) {
3352 			if (insn->imm == BPF_CMPXCHG)
3353 				return BPF_REG_0;
3354 			else
3355 				return insn->src_reg;
3356 		} else {
3357 			return -1;
3358 		}
3359 	default:
3360 		return insn->dst_reg;
3361 	}
3362 }
3363 
3364 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3365 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3366 {
3367 	int dst_reg = insn_def_regno(insn);
3368 
3369 	if (dst_reg == -1)
3370 		return false;
3371 
3372 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3373 }
3374 
3375 static void mark_insn_zext(struct bpf_verifier_env *env,
3376 			   struct bpf_reg_state *reg)
3377 {
3378 	s32 def_idx = reg->subreg_def;
3379 
3380 	if (def_idx == DEF_NOT_SUBREG)
3381 		return;
3382 
3383 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3384 	/* The dst will be zero extended, so won't be sub-register anymore. */
3385 	reg->subreg_def = DEF_NOT_SUBREG;
3386 }
3387 
3388 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3389 			   enum reg_arg_type t)
3390 {
3391 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3392 	struct bpf_reg_state *reg;
3393 	bool rw64;
3394 
3395 	if (regno >= MAX_BPF_REG) {
3396 		verbose(env, "R%d is invalid\n", regno);
3397 		return -EINVAL;
3398 	}
3399 
3400 	mark_reg_scratched(env, regno);
3401 
3402 	reg = &regs[regno];
3403 	rw64 = is_reg64(env, insn, regno, reg, t);
3404 	if (t == SRC_OP) {
3405 		/* check whether register used as source operand can be read */
3406 		if (reg->type == NOT_INIT) {
3407 			verbose(env, "R%d !read_ok\n", regno);
3408 			return -EACCES;
3409 		}
3410 		/* We don't need to worry about FP liveness because it's read-only */
3411 		if (regno == BPF_REG_FP)
3412 			return 0;
3413 
3414 		if (rw64)
3415 			mark_insn_zext(env, reg);
3416 
3417 		return mark_reg_read(env, reg, reg->parent,
3418 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3419 	} else {
3420 		/* check whether register used as dest operand can be written to */
3421 		if (regno == BPF_REG_FP) {
3422 			verbose(env, "frame pointer is read only\n");
3423 			return -EACCES;
3424 		}
3425 		reg->live |= REG_LIVE_WRITTEN;
3426 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3427 		if (t == DST_OP)
3428 			mark_reg_unknown(env, regs, regno);
3429 	}
3430 	return 0;
3431 }
3432 
3433 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3434 			 enum reg_arg_type t)
3435 {
3436 	struct bpf_verifier_state *vstate = env->cur_state;
3437 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3438 
3439 	return __check_reg_arg(env, state->regs, regno, t);
3440 }
3441 
3442 static int insn_stack_access_flags(int frameno, int spi)
3443 {
3444 	return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3445 }
3446 
3447 static int insn_stack_access_spi(int insn_flags)
3448 {
3449 	return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3450 }
3451 
3452 static int insn_stack_access_frameno(int insn_flags)
3453 {
3454 	return insn_flags & INSN_F_FRAMENO_MASK;
3455 }
3456 
3457 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3458 {
3459 	env->insn_aux_data[idx].jmp_point = true;
3460 }
3461 
3462 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3463 {
3464 	return env->insn_aux_data[insn_idx].jmp_point;
3465 }
3466 
3467 #define LR_FRAMENO_BITS	3
3468 #define LR_SPI_BITS	6
3469 #define LR_ENTRY_BITS	(LR_SPI_BITS + LR_FRAMENO_BITS + 1)
3470 #define LR_SIZE_BITS	4
3471 #define LR_FRAMENO_MASK	((1ull << LR_FRAMENO_BITS) - 1)
3472 #define LR_SPI_MASK	((1ull << LR_SPI_BITS)     - 1)
3473 #define LR_SIZE_MASK	((1ull << LR_SIZE_BITS)    - 1)
3474 #define LR_SPI_OFF	LR_FRAMENO_BITS
3475 #define LR_IS_REG_OFF	(LR_SPI_BITS + LR_FRAMENO_BITS)
3476 #define LINKED_REGS_MAX	6
3477 
3478 struct linked_reg {
3479 	u8 frameno;
3480 	union {
3481 		u8 spi;
3482 		u8 regno;
3483 	};
3484 	bool is_reg;
3485 };
3486 
3487 struct linked_regs {
3488 	int cnt;
3489 	struct linked_reg entries[LINKED_REGS_MAX];
3490 };
3491 
3492 static struct linked_reg *linked_regs_push(struct linked_regs *s)
3493 {
3494 	if (s->cnt < LINKED_REGS_MAX)
3495 		return &s->entries[s->cnt++];
3496 
3497 	return NULL;
3498 }
3499 
3500 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track
3501  * number of elements currently in stack.
3502  * Pack one history entry for linked registers as 10 bits in the following format:
3503  * - 3-bits frameno
3504  * - 6-bits spi_or_reg
3505  * - 1-bit  is_reg
3506  */
3507 static u64 linked_regs_pack(struct linked_regs *s)
3508 {
3509 	u64 val = 0;
3510 	int i;
3511 
3512 	for (i = 0; i < s->cnt; ++i) {
3513 		struct linked_reg *e = &s->entries[i];
3514 		u64 tmp = 0;
3515 
3516 		tmp |= e->frameno;
3517 		tmp |= e->spi << LR_SPI_OFF;
3518 		tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF;
3519 
3520 		val <<= LR_ENTRY_BITS;
3521 		val |= tmp;
3522 	}
3523 	val <<= LR_SIZE_BITS;
3524 	val |= s->cnt;
3525 	return val;
3526 }
3527 
3528 static void linked_regs_unpack(u64 val, struct linked_regs *s)
3529 {
3530 	int i;
3531 
3532 	s->cnt = val & LR_SIZE_MASK;
3533 	val >>= LR_SIZE_BITS;
3534 
3535 	for (i = 0; i < s->cnt; ++i) {
3536 		struct linked_reg *e = &s->entries[i];
3537 
3538 		e->frameno =  val & LR_FRAMENO_MASK;
3539 		e->spi     = (val >> LR_SPI_OFF) & LR_SPI_MASK;
3540 		e->is_reg  = (val >> LR_IS_REG_OFF) & 0x1;
3541 		val >>= LR_ENTRY_BITS;
3542 	}
3543 }
3544 
3545 /* for any branch, call, exit record the history of jmps in the given state */
3546 static int push_insn_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3547 			     int insn_flags, u64 linked_regs)
3548 {
3549 	struct bpf_insn_hist_entry *p;
3550 	size_t alloc_size;
3551 
3552 	/* combine instruction flags if we already recorded this instruction */
3553 	if (env->cur_hist_ent) {
3554 		/* atomic instructions push insn_flags twice, for READ and
3555 		 * WRITE sides, but they should agree on stack slot
3556 		 */
3557 		WARN_ONCE((env->cur_hist_ent->flags & insn_flags) &&
3558 			  (env->cur_hist_ent->flags & insn_flags) != insn_flags,
3559 			  "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n",
3560 			  env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3561 		env->cur_hist_ent->flags |= insn_flags;
3562 		WARN_ONCE(env->cur_hist_ent->linked_regs != 0,
3563 			  "verifier insn history bug: insn_idx %d linked_regs != 0: %#llx\n",
3564 			  env->insn_idx, env->cur_hist_ent->linked_regs);
3565 		env->cur_hist_ent->linked_regs = linked_regs;
3566 		return 0;
3567 	}
3568 
3569 	if (cur->insn_hist_end + 1 > env->insn_hist_cap) {
3570 		alloc_size = size_mul(cur->insn_hist_end + 1, sizeof(*p));
3571 		p = kvrealloc(env->insn_hist, alloc_size, GFP_USER);
3572 		if (!p)
3573 			return -ENOMEM;
3574 		env->insn_hist = p;
3575 		env->insn_hist_cap = alloc_size / sizeof(*p);
3576 	}
3577 
3578 	p = &env->insn_hist[cur->insn_hist_end];
3579 	p->idx = env->insn_idx;
3580 	p->prev_idx = env->prev_insn_idx;
3581 	p->flags = insn_flags;
3582 	p->linked_regs = linked_regs;
3583 
3584 	cur->insn_hist_end++;
3585 	env->cur_hist_ent = p;
3586 
3587 	return 0;
3588 }
3589 
3590 static struct bpf_insn_hist_entry *get_insn_hist_entry(struct bpf_verifier_env *env,
3591 						       u32 hist_start, u32 hist_end, int insn_idx)
3592 {
3593 	if (hist_end > hist_start && env->insn_hist[hist_end - 1].idx == insn_idx)
3594 		return &env->insn_hist[hist_end - 1];
3595 	return NULL;
3596 }
3597 
3598 /* Backtrack one insn at a time. If idx is not at the top of recorded
3599  * history then previous instruction came from straight line execution.
3600  * Return -ENOENT if we exhausted all instructions within given state.
3601  *
3602  * It's legal to have a bit of a looping with the same starting and ending
3603  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3604  * instruction index is the same as state's first_idx doesn't mean we are
3605  * done. If there is still some jump history left, we should keep going. We
3606  * need to take into account that we might have a jump history between given
3607  * state's parent and itself, due to checkpointing. In this case, we'll have
3608  * history entry recording a jump from last instruction of parent state and
3609  * first instruction of given state.
3610  */
3611 static int get_prev_insn_idx(const struct bpf_verifier_env *env,
3612 			     struct bpf_verifier_state *st,
3613 			     int insn_idx, u32 hist_start, u32 *hist_endp)
3614 {
3615 	u32 hist_end = *hist_endp;
3616 	u32 cnt = hist_end - hist_start;
3617 
3618 	if (insn_idx == st->first_insn_idx) {
3619 		if (cnt == 0)
3620 			return -ENOENT;
3621 		if (cnt == 1 && env->insn_hist[hist_start].idx == insn_idx)
3622 			return -ENOENT;
3623 	}
3624 
3625 	if (cnt && env->insn_hist[hist_end - 1].idx == insn_idx) {
3626 		(*hist_endp)--;
3627 		return env->insn_hist[hist_end - 1].prev_idx;
3628 	} else {
3629 		return insn_idx - 1;
3630 	}
3631 }
3632 
3633 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3634 {
3635 	const struct btf_type *func;
3636 	struct btf *desc_btf;
3637 
3638 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3639 		return NULL;
3640 
3641 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3642 	if (IS_ERR(desc_btf))
3643 		return "<error>";
3644 
3645 	func = btf_type_by_id(desc_btf, insn->imm);
3646 	return btf_name_by_offset(desc_btf, func->name_off);
3647 }
3648 
3649 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3650 {
3651 	bt->frame = frame;
3652 }
3653 
3654 static inline void bt_reset(struct backtrack_state *bt)
3655 {
3656 	struct bpf_verifier_env *env = bt->env;
3657 
3658 	memset(bt, 0, sizeof(*bt));
3659 	bt->env = env;
3660 }
3661 
3662 static inline u32 bt_empty(struct backtrack_state *bt)
3663 {
3664 	u64 mask = 0;
3665 	int i;
3666 
3667 	for (i = 0; i <= bt->frame; i++)
3668 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3669 
3670 	return mask == 0;
3671 }
3672 
3673 static inline int bt_subprog_enter(struct backtrack_state *bt)
3674 {
3675 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3676 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3677 		WARN_ONCE(1, "verifier backtracking bug");
3678 		return -EFAULT;
3679 	}
3680 	bt->frame++;
3681 	return 0;
3682 }
3683 
3684 static inline int bt_subprog_exit(struct backtrack_state *bt)
3685 {
3686 	if (bt->frame == 0) {
3687 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3688 		WARN_ONCE(1, "verifier backtracking bug");
3689 		return -EFAULT;
3690 	}
3691 	bt->frame--;
3692 	return 0;
3693 }
3694 
3695 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3696 {
3697 	bt->reg_masks[frame] |= 1 << reg;
3698 }
3699 
3700 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3701 {
3702 	bt->reg_masks[frame] &= ~(1 << reg);
3703 }
3704 
3705 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3706 {
3707 	bt_set_frame_reg(bt, bt->frame, reg);
3708 }
3709 
3710 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3711 {
3712 	bt_clear_frame_reg(bt, bt->frame, reg);
3713 }
3714 
3715 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3716 {
3717 	bt->stack_masks[frame] |= 1ull << slot;
3718 }
3719 
3720 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3721 {
3722 	bt->stack_masks[frame] &= ~(1ull << slot);
3723 }
3724 
3725 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3726 {
3727 	return bt->reg_masks[frame];
3728 }
3729 
3730 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3731 {
3732 	return bt->reg_masks[bt->frame];
3733 }
3734 
3735 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3736 {
3737 	return bt->stack_masks[frame];
3738 }
3739 
3740 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3741 {
3742 	return bt->stack_masks[bt->frame];
3743 }
3744 
3745 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3746 {
3747 	return bt->reg_masks[bt->frame] & (1 << reg);
3748 }
3749 
3750 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg)
3751 {
3752 	return bt->reg_masks[frame] & (1 << reg);
3753 }
3754 
3755 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
3756 {
3757 	return bt->stack_masks[frame] & (1ull << slot);
3758 }
3759 
3760 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3761 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3762 {
3763 	DECLARE_BITMAP(mask, 64);
3764 	bool first = true;
3765 	int i, n;
3766 
3767 	buf[0] = '\0';
3768 
3769 	bitmap_from_u64(mask, reg_mask);
3770 	for_each_set_bit(i, mask, 32) {
3771 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3772 		first = false;
3773 		buf += n;
3774 		buf_sz -= n;
3775 		if (buf_sz < 0)
3776 			break;
3777 	}
3778 }
3779 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3780 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3781 {
3782 	DECLARE_BITMAP(mask, 64);
3783 	bool first = true;
3784 	int i, n;
3785 
3786 	buf[0] = '\0';
3787 
3788 	bitmap_from_u64(mask, stack_mask);
3789 	for_each_set_bit(i, mask, 64) {
3790 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3791 		first = false;
3792 		buf += n;
3793 		buf_sz -= n;
3794 		if (buf_sz < 0)
3795 			break;
3796 	}
3797 }
3798 
3799 /* If any register R in hist->linked_regs is marked as precise in bt,
3800  * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs.
3801  */
3802 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_insn_hist_entry *hist)
3803 {
3804 	struct linked_regs linked_regs;
3805 	bool some_precise = false;
3806 	int i;
3807 
3808 	if (!hist || hist->linked_regs == 0)
3809 		return;
3810 
3811 	linked_regs_unpack(hist->linked_regs, &linked_regs);
3812 	for (i = 0; i < linked_regs.cnt; ++i) {
3813 		struct linked_reg *e = &linked_regs.entries[i];
3814 
3815 		if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) ||
3816 		    (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) {
3817 			some_precise = true;
3818 			break;
3819 		}
3820 	}
3821 
3822 	if (!some_precise)
3823 		return;
3824 
3825 	for (i = 0; i < linked_regs.cnt; ++i) {
3826 		struct linked_reg *e = &linked_regs.entries[i];
3827 
3828 		if (e->is_reg)
3829 			bt_set_frame_reg(bt, e->frameno, e->regno);
3830 		else
3831 			bt_set_frame_slot(bt, e->frameno, e->spi);
3832 	}
3833 }
3834 
3835 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3836 
3837 /* For given verifier state backtrack_insn() is called from the last insn to
3838  * the first insn. Its purpose is to compute a bitmask of registers and
3839  * stack slots that needs precision in the parent verifier state.
3840  *
3841  * @idx is an index of the instruction we are currently processing;
3842  * @subseq_idx is an index of the subsequent instruction that:
3843  *   - *would be* executed next, if jump history is viewed in forward order;
3844  *   - *was* processed previously during backtracking.
3845  */
3846 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3847 			  struct bpf_insn_hist_entry *hist, struct backtrack_state *bt)
3848 {
3849 	const struct bpf_insn_cbs cbs = {
3850 		.cb_call	= disasm_kfunc_name,
3851 		.cb_print	= verbose,
3852 		.private_data	= env,
3853 	};
3854 	struct bpf_insn *insn = env->prog->insnsi + idx;
3855 	u8 class = BPF_CLASS(insn->code);
3856 	u8 opcode = BPF_OP(insn->code);
3857 	u8 mode = BPF_MODE(insn->code);
3858 	u32 dreg = insn->dst_reg;
3859 	u32 sreg = insn->src_reg;
3860 	u32 spi, i, fr;
3861 
3862 	if (insn->code == 0)
3863 		return 0;
3864 	if (env->log.level & BPF_LOG_LEVEL2) {
3865 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3866 		verbose(env, "mark_precise: frame%d: regs=%s ",
3867 			bt->frame, env->tmp_str_buf);
3868 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3869 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3870 		verbose(env, "%d: ", idx);
3871 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3872 	}
3873 
3874 	/* If there is a history record that some registers gained range at this insn,
3875 	 * propagate precision marks to those registers, so that bt_is_reg_set()
3876 	 * accounts for these registers.
3877 	 */
3878 	bt_sync_linked_regs(bt, hist);
3879 
3880 	if (class == BPF_ALU || class == BPF_ALU64) {
3881 		if (!bt_is_reg_set(bt, dreg))
3882 			return 0;
3883 		if (opcode == BPF_END || opcode == BPF_NEG) {
3884 			/* sreg is reserved and unused
3885 			 * dreg still need precision before this insn
3886 			 */
3887 			return 0;
3888 		} else if (opcode == BPF_MOV) {
3889 			if (BPF_SRC(insn->code) == BPF_X) {
3890 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3891 				 * dreg needs precision after this insn
3892 				 * sreg needs precision before this insn
3893 				 */
3894 				bt_clear_reg(bt, dreg);
3895 				if (sreg != BPF_REG_FP)
3896 					bt_set_reg(bt, sreg);
3897 			} else {
3898 				/* dreg = K
3899 				 * dreg needs precision after this insn.
3900 				 * Corresponding register is already marked
3901 				 * as precise=true in this verifier state.
3902 				 * No further markings in parent are necessary
3903 				 */
3904 				bt_clear_reg(bt, dreg);
3905 			}
3906 		} else {
3907 			if (BPF_SRC(insn->code) == BPF_X) {
3908 				/* dreg += sreg
3909 				 * both dreg and sreg need precision
3910 				 * before this insn
3911 				 */
3912 				if (sreg != BPF_REG_FP)
3913 					bt_set_reg(bt, sreg);
3914 			} /* else dreg += K
3915 			   * dreg still needs precision before this insn
3916 			   */
3917 		}
3918 	} else if (class == BPF_LDX) {
3919 		if (!bt_is_reg_set(bt, dreg))
3920 			return 0;
3921 		bt_clear_reg(bt, dreg);
3922 
3923 		/* scalars can only be spilled into stack w/o losing precision.
3924 		 * Load from any other memory can be zero extended.
3925 		 * The desire to keep that precision is already indicated
3926 		 * by 'precise' mark in corresponding register of this state.
3927 		 * No further tracking necessary.
3928 		 */
3929 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3930 			return 0;
3931 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3932 		 * that [fp - off] slot contains scalar that needs to be
3933 		 * tracked with precision
3934 		 */
3935 		spi = insn_stack_access_spi(hist->flags);
3936 		fr = insn_stack_access_frameno(hist->flags);
3937 		bt_set_frame_slot(bt, fr, spi);
3938 	} else if (class == BPF_STX || class == BPF_ST) {
3939 		if (bt_is_reg_set(bt, dreg))
3940 			/* stx & st shouldn't be using _scalar_ dst_reg
3941 			 * to access memory. It means backtracking
3942 			 * encountered a case of pointer subtraction.
3943 			 */
3944 			return -ENOTSUPP;
3945 		/* scalars can only be spilled into stack */
3946 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3947 			return 0;
3948 		spi = insn_stack_access_spi(hist->flags);
3949 		fr = insn_stack_access_frameno(hist->flags);
3950 		if (!bt_is_frame_slot_set(bt, fr, spi))
3951 			return 0;
3952 		bt_clear_frame_slot(bt, fr, spi);
3953 		if (class == BPF_STX)
3954 			bt_set_reg(bt, sreg);
3955 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3956 		if (bpf_pseudo_call(insn)) {
3957 			int subprog_insn_idx, subprog;
3958 
3959 			subprog_insn_idx = idx + insn->imm + 1;
3960 			subprog = find_subprog(env, subprog_insn_idx);
3961 			if (subprog < 0)
3962 				return -EFAULT;
3963 
3964 			if (subprog_is_global(env, subprog)) {
3965 				/* check that jump history doesn't have any
3966 				 * extra instructions from subprog; the next
3967 				 * instruction after call to global subprog
3968 				 * should be literally next instruction in
3969 				 * caller program
3970 				 */
3971 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3972 				/* r1-r5 are invalidated after subprog call,
3973 				 * so for global func call it shouldn't be set
3974 				 * anymore
3975 				 */
3976 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3977 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3978 					WARN_ONCE(1, "verifier backtracking bug");
3979 					return -EFAULT;
3980 				}
3981 				/* global subprog always sets R0 */
3982 				bt_clear_reg(bt, BPF_REG_0);
3983 				return 0;
3984 			} else {
3985 				/* static subprog call instruction, which
3986 				 * means that we are exiting current subprog,
3987 				 * so only r1-r5 could be still requested as
3988 				 * precise, r0 and r6-r10 or any stack slot in
3989 				 * the current frame should be zero by now
3990 				 */
3991 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3992 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3993 					WARN_ONCE(1, "verifier backtracking bug");
3994 					return -EFAULT;
3995 				}
3996 				/* we are now tracking register spills correctly,
3997 				 * so any instance of leftover slots is a bug
3998 				 */
3999 				if (bt_stack_mask(bt) != 0) {
4000 					verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
4001 					WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)");
4002 					return -EFAULT;
4003 				}
4004 				/* propagate r1-r5 to the caller */
4005 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
4006 					if (bt_is_reg_set(bt, i)) {
4007 						bt_clear_reg(bt, i);
4008 						bt_set_frame_reg(bt, bt->frame - 1, i);
4009 					}
4010 				}
4011 				if (bt_subprog_exit(bt))
4012 					return -EFAULT;
4013 				return 0;
4014 			}
4015 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
4016 			/* exit from callback subprog to callback-calling helper or
4017 			 * kfunc call. Use idx/subseq_idx check to discern it from
4018 			 * straight line code backtracking.
4019 			 * Unlike the subprog call handling above, we shouldn't
4020 			 * propagate precision of r1-r5 (if any requested), as they are
4021 			 * not actually arguments passed directly to callback subprogs
4022 			 */
4023 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
4024 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
4025 				WARN_ONCE(1, "verifier backtracking bug");
4026 				return -EFAULT;
4027 			}
4028 			if (bt_stack_mask(bt) != 0) {
4029 				verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
4030 				WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)");
4031 				return -EFAULT;
4032 			}
4033 			/* clear r1-r5 in callback subprog's mask */
4034 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4035 				bt_clear_reg(bt, i);
4036 			if (bt_subprog_exit(bt))
4037 				return -EFAULT;
4038 			return 0;
4039 		} else if (opcode == BPF_CALL) {
4040 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
4041 			 * catch this error later. Make backtracking conservative
4042 			 * with ENOTSUPP.
4043 			 */
4044 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
4045 				return -ENOTSUPP;
4046 			/* regular helper call sets R0 */
4047 			bt_clear_reg(bt, BPF_REG_0);
4048 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4049 				/* if backtracing was looking for registers R1-R5
4050 				 * they should have been found already.
4051 				 */
4052 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
4053 				WARN_ONCE(1, "verifier backtracking bug");
4054 				return -EFAULT;
4055 			}
4056 		} else if (opcode == BPF_EXIT) {
4057 			bool r0_precise;
4058 
4059 			/* Backtracking to a nested function call, 'idx' is a part of
4060 			 * the inner frame 'subseq_idx' is a part of the outer frame.
4061 			 * In case of a regular function call, instructions giving
4062 			 * precision to registers R1-R5 should have been found already.
4063 			 * In case of a callback, it is ok to have R1-R5 marked for
4064 			 * backtracking, as these registers are set by the function
4065 			 * invoking callback.
4066 			 */
4067 			if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
4068 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4069 					bt_clear_reg(bt, i);
4070 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4071 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
4072 				WARN_ONCE(1, "verifier backtracking bug");
4073 				return -EFAULT;
4074 			}
4075 
4076 			/* BPF_EXIT in subprog or callback always returns
4077 			 * right after the call instruction, so by checking
4078 			 * whether the instruction at subseq_idx-1 is subprog
4079 			 * call or not we can distinguish actual exit from
4080 			 * *subprog* from exit from *callback*. In the former
4081 			 * case, we need to propagate r0 precision, if
4082 			 * necessary. In the former we never do that.
4083 			 */
4084 			r0_precise = subseq_idx - 1 >= 0 &&
4085 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
4086 				     bt_is_reg_set(bt, BPF_REG_0);
4087 
4088 			bt_clear_reg(bt, BPF_REG_0);
4089 			if (bt_subprog_enter(bt))
4090 				return -EFAULT;
4091 
4092 			if (r0_precise)
4093 				bt_set_reg(bt, BPF_REG_0);
4094 			/* r6-r9 and stack slots will stay set in caller frame
4095 			 * bitmasks until we return back from callee(s)
4096 			 */
4097 			return 0;
4098 		} else if (BPF_SRC(insn->code) == BPF_X) {
4099 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
4100 				return 0;
4101 			/* dreg <cond> sreg
4102 			 * Both dreg and sreg need precision before
4103 			 * this insn. If only sreg was marked precise
4104 			 * before it would be equally necessary to
4105 			 * propagate it to dreg.
4106 			 */
4107 			bt_set_reg(bt, dreg);
4108 			bt_set_reg(bt, sreg);
4109 		} else if (BPF_SRC(insn->code) == BPF_K) {
4110 			 /* dreg <cond> K
4111 			  * Only dreg still needs precision before
4112 			  * this insn, so for the K-based conditional
4113 			  * there is nothing new to be marked.
4114 			  */
4115 		}
4116 	} else if (class == BPF_LD) {
4117 		if (!bt_is_reg_set(bt, dreg))
4118 			return 0;
4119 		bt_clear_reg(bt, dreg);
4120 		/* It's ld_imm64 or ld_abs or ld_ind.
4121 		 * For ld_imm64 no further tracking of precision
4122 		 * into parent is necessary
4123 		 */
4124 		if (mode == BPF_IND || mode == BPF_ABS)
4125 			/* to be analyzed */
4126 			return -ENOTSUPP;
4127 	}
4128 	/* Propagate precision marks to linked registers, to account for
4129 	 * registers marked as precise in this function.
4130 	 */
4131 	bt_sync_linked_regs(bt, hist);
4132 	return 0;
4133 }
4134 
4135 /* the scalar precision tracking algorithm:
4136  * . at the start all registers have precise=false.
4137  * . scalar ranges are tracked as normal through alu and jmp insns.
4138  * . once precise value of the scalar register is used in:
4139  *   .  ptr + scalar alu
4140  *   . if (scalar cond K|scalar)
4141  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
4142  *   backtrack through the verifier states and mark all registers and
4143  *   stack slots with spilled constants that these scalar regisers
4144  *   should be precise.
4145  * . during state pruning two registers (or spilled stack slots)
4146  *   are equivalent if both are not precise.
4147  *
4148  * Note the verifier cannot simply walk register parentage chain,
4149  * since many different registers and stack slots could have been
4150  * used to compute single precise scalar.
4151  *
4152  * The approach of starting with precise=true for all registers and then
4153  * backtrack to mark a register as not precise when the verifier detects
4154  * that program doesn't care about specific value (e.g., when helper
4155  * takes register as ARG_ANYTHING parameter) is not safe.
4156  *
4157  * It's ok to walk single parentage chain of the verifier states.
4158  * It's possible that this backtracking will go all the way till 1st insn.
4159  * All other branches will be explored for needing precision later.
4160  *
4161  * The backtracking needs to deal with cases like:
4162  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
4163  * r9 -= r8
4164  * r5 = r9
4165  * if r5 > 0x79f goto pc+7
4166  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4167  * r5 += 1
4168  * ...
4169  * call bpf_perf_event_output#25
4170  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4171  *
4172  * and this case:
4173  * r6 = 1
4174  * call foo // uses callee's r6 inside to compute r0
4175  * r0 += r6
4176  * if r0 == 0 goto
4177  *
4178  * to track above reg_mask/stack_mask needs to be independent for each frame.
4179  *
4180  * Also if parent's curframe > frame where backtracking started,
4181  * the verifier need to mark registers in both frames, otherwise callees
4182  * may incorrectly prune callers. This is similar to
4183  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4184  *
4185  * For now backtracking falls back into conservative marking.
4186  */
4187 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4188 				     struct bpf_verifier_state *st)
4189 {
4190 	struct bpf_func_state *func;
4191 	struct bpf_reg_state *reg;
4192 	int i, j;
4193 
4194 	if (env->log.level & BPF_LOG_LEVEL2) {
4195 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4196 			st->curframe);
4197 	}
4198 
4199 	/* big hammer: mark all scalars precise in this path.
4200 	 * pop_stack may still get !precise scalars.
4201 	 * We also skip current state and go straight to first parent state,
4202 	 * because precision markings in current non-checkpointed state are
4203 	 * not needed. See why in the comment in __mark_chain_precision below.
4204 	 */
4205 	for (st = st->parent; st; st = st->parent) {
4206 		for (i = 0; i <= st->curframe; i++) {
4207 			func = st->frame[i];
4208 			for (j = 0; j < BPF_REG_FP; j++) {
4209 				reg = &func->regs[j];
4210 				if (reg->type != SCALAR_VALUE || reg->precise)
4211 					continue;
4212 				reg->precise = true;
4213 				if (env->log.level & BPF_LOG_LEVEL2) {
4214 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4215 						i, j);
4216 				}
4217 			}
4218 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4219 				if (!is_spilled_reg(&func->stack[j]))
4220 					continue;
4221 				reg = &func->stack[j].spilled_ptr;
4222 				if (reg->type != SCALAR_VALUE || reg->precise)
4223 					continue;
4224 				reg->precise = true;
4225 				if (env->log.level & BPF_LOG_LEVEL2) {
4226 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4227 						i, -(j + 1) * 8);
4228 				}
4229 			}
4230 		}
4231 	}
4232 }
4233 
4234 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4235 {
4236 	struct bpf_func_state *func;
4237 	struct bpf_reg_state *reg;
4238 	int i, j;
4239 
4240 	for (i = 0; i <= st->curframe; i++) {
4241 		func = st->frame[i];
4242 		for (j = 0; j < BPF_REG_FP; j++) {
4243 			reg = &func->regs[j];
4244 			if (reg->type != SCALAR_VALUE)
4245 				continue;
4246 			reg->precise = false;
4247 		}
4248 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4249 			if (!is_spilled_reg(&func->stack[j]))
4250 				continue;
4251 			reg = &func->stack[j].spilled_ptr;
4252 			if (reg->type != SCALAR_VALUE)
4253 				continue;
4254 			reg->precise = false;
4255 		}
4256 	}
4257 }
4258 
4259 /*
4260  * __mark_chain_precision() backtracks BPF program instruction sequence and
4261  * chain of verifier states making sure that register *regno* (if regno >= 0)
4262  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4263  * SCALARS, as well as any other registers and slots that contribute to
4264  * a tracked state of given registers/stack slots, depending on specific BPF
4265  * assembly instructions (see backtrack_insns() for exact instruction handling
4266  * logic). This backtracking relies on recorded insn_hist and is able to
4267  * traverse entire chain of parent states. This process ends only when all the
4268  * necessary registers/slots and their transitive dependencies are marked as
4269  * precise.
4270  *
4271  * One important and subtle aspect is that precise marks *do not matter* in
4272  * the currently verified state (current state). It is important to understand
4273  * why this is the case.
4274  *
4275  * First, note that current state is the state that is not yet "checkpointed",
4276  * i.e., it is not yet put into env->explored_states, and it has no children
4277  * states as well. It's ephemeral, and can end up either a) being discarded if
4278  * compatible explored state is found at some point or BPF_EXIT instruction is
4279  * reached or b) checkpointed and put into env->explored_states, branching out
4280  * into one or more children states.
4281  *
4282  * In the former case, precise markings in current state are completely
4283  * ignored by state comparison code (see regsafe() for details). Only
4284  * checkpointed ("old") state precise markings are important, and if old
4285  * state's register/slot is precise, regsafe() assumes current state's
4286  * register/slot as precise and checks value ranges exactly and precisely. If
4287  * states turn out to be compatible, current state's necessary precise
4288  * markings and any required parent states' precise markings are enforced
4289  * after the fact with propagate_precision() logic, after the fact. But it's
4290  * important to realize that in this case, even after marking current state
4291  * registers/slots as precise, we immediately discard current state. So what
4292  * actually matters is any of the precise markings propagated into current
4293  * state's parent states, which are always checkpointed (due to b) case above).
4294  * As such, for scenario a) it doesn't matter if current state has precise
4295  * markings set or not.
4296  *
4297  * Now, for the scenario b), checkpointing and forking into child(ren)
4298  * state(s). Note that before current state gets to checkpointing step, any
4299  * processed instruction always assumes precise SCALAR register/slot
4300  * knowledge: if precise value or range is useful to prune jump branch, BPF
4301  * verifier takes this opportunity enthusiastically. Similarly, when
4302  * register's value is used to calculate offset or memory address, exact
4303  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4304  * what we mentioned above about state comparison ignoring precise markings
4305  * during state comparison, BPF verifier ignores and also assumes precise
4306  * markings *at will* during instruction verification process. But as verifier
4307  * assumes precision, it also propagates any precision dependencies across
4308  * parent states, which are not yet finalized, so can be further restricted
4309  * based on new knowledge gained from restrictions enforced by their children
4310  * states. This is so that once those parent states are finalized, i.e., when
4311  * they have no more active children state, state comparison logic in
4312  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4313  * required for correctness.
4314  *
4315  * To build a bit more intuition, note also that once a state is checkpointed,
4316  * the path we took to get to that state is not important. This is crucial
4317  * property for state pruning. When state is checkpointed and finalized at
4318  * some instruction index, it can be correctly and safely used to "short
4319  * circuit" any *compatible* state that reaches exactly the same instruction
4320  * index. I.e., if we jumped to that instruction from a completely different
4321  * code path than original finalized state was derived from, it doesn't
4322  * matter, current state can be discarded because from that instruction
4323  * forward having a compatible state will ensure we will safely reach the
4324  * exit. States describe preconditions for further exploration, but completely
4325  * forget the history of how we got here.
4326  *
4327  * This also means that even if we needed precise SCALAR range to get to
4328  * finalized state, but from that point forward *that same* SCALAR register is
4329  * never used in a precise context (i.e., it's precise value is not needed for
4330  * correctness), it's correct and safe to mark such register as "imprecise"
4331  * (i.e., precise marking set to false). This is what we rely on when we do
4332  * not set precise marking in current state. If no child state requires
4333  * precision for any given SCALAR register, it's safe to dictate that it can
4334  * be imprecise. If any child state does require this register to be precise,
4335  * we'll mark it precise later retroactively during precise markings
4336  * propagation from child state to parent states.
4337  *
4338  * Skipping precise marking setting in current state is a mild version of
4339  * relying on the above observation. But we can utilize this property even
4340  * more aggressively by proactively forgetting any precise marking in the
4341  * current state (which we inherited from the parent state), right before we
4342  * checkpoint it and branch off into new child state. This is done by
4343  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4344  * finalized states which help in short circuiting more future states.
4345  */
4346 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4347 {
4348 	struct backtrack_state *bt = &env->bt;
4349 	struct bpf_verifier_state *st = env->cur_state;
4350 	int first_idx = st->first_insn_idx;
4351 	int last_idx = env->insn_idx;
4352 	int subseq_idx = -1;
4353 	struct bpf_func_state *func;
4354 	struct bpf_reg_state *reg;
4355 	bool skip_first = true;
4356 	int i, fr, err;
4357 
4358 	if (!env->bpf_capable)
4359 		return 0;
4360 
4361 	/* set frame number from which we are starting to backtrack */
4362 	bt_init(bt, env->cur_state->curframe);
4363 
4364 	/* Do sanity checks against current state of register and/or stack
4365 	 * slot, but don't set precise flag in current state, as precision
4366 	 * tracking in the current state is unnecessary.
4367 	 */
4368 	func = st->frame[bt->frame];
4369 	if (regno >= 0) {
4370 		reg = &func->regs[regno];
4371 		if (reg->type != SCALAR_VALUE) {
4372 			WARN_ONCE(1, "backtracing misuse");
4373 			return -EFAULT;
4374 		}
4375 		bt_set_reg(bt, regno);
4376 	}
4377 
4378 	if (bt_empty(bt))
4379 		return 0;
4380 
4381 	for (;;) {
4382 		DECLARE_BITMAP(mask, 64);
4383 		u32 hist_start = st->insn_hist_start;
4384 		u32 hist_end = st->insn_hist_end;
4385 		struct bpf_insn_hist_entry *hist;
4386 
4387 		if (env->log.level & BPF_LOG_LEVEL2) {
4388 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4389 				bt->frame, last_idx, first_idx, subseq_idx);
4390 		}
4391 
4392 		if (last_idx < 0) {
4393 			/* we are at the entry into subprog, which
4394 			 * is expected for global funcs, but only if
4395 			 * requested precise registers are R1-R5
4396 			 * (which are global func's input arguments)
4397 			 */
4398 			if (st->curframe == 0 &&
4399 			    st->frame[0]->subprogno > 0 &&
4400 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4401 			    bt_stack_mask(bt) == 0 &&
4402 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4403 				bitmap_from_u64(mask, bt_reg_mask(bt));
4404 				for_each_set_bit(i, mask, 32) {
4405 					reg = &st->frame[0]->regs[i];
4406 					bt_clear_reg(bt, i);
4407 					if (reg->type == SCALAR_VALUE)
4408 						reg->precise = true;
4409 				}
4410 				return 0;
4411 			}
4412 
4413 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4414 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4415 			WARN_ONCE(1, "verifier backtracking bug");
4416 			return -EFAULT;
4417 		}
4418 
4419 		for (i = last_idx;;) {
4420 			if (skip_first) {
4421 				err = 0;
4422 				skip_first = false;
4423 			} else {
4424 				hist = get_insn_hist_entry(env, hist_start, hist_end, i);
4425 				err = backtrack_insn(env, i, subseq_idx, hist, bt);
4426 			}
4427 			if (err == -ENOTSUPP) {
4428 				mark_all_scalars_precise(env, env->cur_state);
4429 				bt_reset(bt);
4430 				return 0;
4431 			} else if (err) {
4432 				return err;
4433 			}
4434 			if (bt_empty(bt))
4435 				/* Found assignment(s) into tracked register in this state.
4436 				 * Since this state is already marked, just return.
4437 				 * Nothing to be tracked further in the parent state.
4438 				 */
4439 				return 0;
4440 			subseq_idx = i;
4441 			i = get_prev_insn_idx(env, st, i, hist_start, &hist_end);
4442 			if (i == -ENOENT)
4443 				break;
4444 			if (i >= env->prog->len) {
4445 				/* This can happen if backtracking reached insn 0
4446 				 * and there are still reg_mask or stack_mask
4447 				 * to backtrack.
4448 				 * It means the backtracking missed the spot where
4449 				 * particular register was initialized with a constant.
4450 				 */
4451 				verbose(env, "BUG backtracking idx %d\n", i);
4452 				WARN_ONCE(1, "verifier backtracking bug");
4453 				return -EFAULT;
4454 			}
4455 		}
4456 		st = st->parent;
4457 		if (!st)
4458 			break;
4459 
4460 		for (fr = bt->frame; fr >= 0; fr--) {
4461 			func = st->frame[fr];
4462 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4463 			for_each_set_bit(i, mask, 32) {
4464 				reg = &func->regs[i];
4465 				if (reg->type != SCALAR_VALUE) {
4466 					bt_clear_frame_reg(bt, fr, i);
4467 					continue;
4468 				}
4469 				if (reg->precise)
4470 					bt_clear_frame_reg(bt, fr, i);
4471 				else
4472 					reg->precise = true;
4473 			}
4474 
4475 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4476 			for_each_set_bit(i, mask, 64) {
4477 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4478 					verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n",
4479 						i, func->allocated_stack / BPF_REG_SIZE);
4480 					WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)");
4481 					return -EFAULT;
4482 				}
4483 
4484 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4485 					bt_clear_frame_slot(bt, fr, i);
4486 					continue;
4487 				}
4488 				reg = &func->stack[i].spilled_ptr;
4489 				if (reg->precise)
4490 					bt_clear_frame_slot(bt, fr, i);
4491 				else
4492 					reg->precise = true;
4493 			}
4494 			if (env->log.level & BPF_LOG_LEVEL2) {
4495 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4496 					     bt_frame_reg_mask(bt, fr));
4497 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4498 					fr, env->tmp_str_buf);
4499 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4500 					       bt_frame_stack_mask(bt, fr));
4501 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4502 				print_verifier_state(env, func, true);
4503 			}
4504 		}
4505 
4506 		if (bt_empty(bt))
4507 			return 0;
4508 
4509 		subseq_idx = first_idx;
4510 		last_idx = st->last_insn_idx;
4511 		first_idx = st->first_insn_idx;
4512 	}
4513 
4514 	/* if we still have requested precise regs or slots, we missed
4515 	 * something (e.g., stack access through non-r10 register), so
4516 	 * fallback to marking all precise
4517 	 */
4518 	if (!bt_empty(bt)) {
4519 		mark_all_scalars_precise(env, env->cur_state);
4520 		bt_reset(bt);
4521 	}
4522 
4523 	return 0;
4524 }
4525 
4526 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4527 {
4528 	return __mark_chain_precision(env, regno);
4529 }
4530 
4531 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4532  * desired reg and stack masks across all relevant frames
4533  */
4534 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4535 {
4536 	return __mark_chain_precision(env, -1);
4537 }
4538 
4539 static bool is_spillable_regtype(enum bpf_reg_type type)
4540 {
4541 	switch (base_type(type)) {
4542 	case PTR_TO_MAP_VALUE:
4543 	case PTR_TO_STACK:
4544 	case PTR_TO_CTX:
4545 	case PTR_TO_PACKET:
4546 	case PTR_TO_PACKET_META:
4547 	case PTR_TO_PACKET_END:
4548 	case PTR_TO_FLOW_KEYS:
4549 	case CONST_PTR_TO_MAP:
4550 	case PTR_TO_SOCKET:
4551 	case PTR_TO_SOCK_COMMON:
4552 	case PTR_TO_TCP_SOCK:
4553 	case PTR_TO_XDP_SOCK:
4554 	case PTR_TO_BTF_ID:
4555 	case PTR_TO_BUF:
4556 	case PTR_TO_MEM:
4557 	case PTR_TO_FUNC:
4558 	case PTR_TO_MAP_KEY:
4559 	case PTR_TO_ARENA:
4560 		return true;
4561 	default:
4562 		return false;
4563 	}
4564 }
4565 
4566 /* Does this register contain a constant zero? */
4567 static bool register_is_null(struct bpf_reg_state *reg)
4568 {
4569 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4570 }
4571 
4572 /* check if register is a constant scalar value */
4573 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
4574 {
4575 	return reg->type == SCALAR_VALUE &&
4576 	       tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
4577 }
4578 
4579 /* assuming is_reg_const() is true, return constant value of a register */
4580 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
4581 {
4582 	return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
4583 }
4584 
4585 static bool __is_pointer_value(bool allow_ptr_leaks,
4586 			       const struct bpf_reg_state *reg)
4587 {
4588 	if (allow_ptr_leaks)
4589 		return false;
4590 
4591 	return reg->type != SCALAR_VALUE;
4592 }
4593 
4594 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env,
4595 					struct bpf_reg_state *src_reg)
4596 {
4597 	if (src_reg->type != SCALAR_VALUE)
4598 		return;
4599 
4600 	if (src_reg->id & BPF_ADD_CONST) {
4601 		/*
4602 		 * The verifier is processing rX = rY insn and
4603 		 * rY->id has special linked register already.
4604 		 * Cleared it, since multiple rX += const are not supported.
4605 		 */
4606 		src_reg->id = 0;
4607 		src_reg->off = 0;
4608 	}
4609 
4610 	if (!src_reg->id && !tnum_is_const(src_reg->var_off))
4611 		/* Ensure that src_reg has a valid ID that will be copied to
4612 		 * dst_reg and then will be used by sync_linked_regs() to
4613 		 * propagate min/max range.
4614 		 */
4615 		src_reg->id = ++env->id_gen;
4616 }
4617 
4618 /* Copy src state preserving dst->parent and dst->live fields */
4619 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4620 {
4621 	struct bpf_reg_state *parent = dst->parent;
4622 	enum bpf_reg_liveness live = dst->live;
4623 
4624 	*dst = *src;
4625 	dst->parent = parent;
4626 	dst->live = live;
4627 }
4628 
4629 static void save_register_state(struct bpf_verifier_env *env,
4630 				struct bpf_func_state *state,
4631 				int spi, struct bpf_reg_state *reg,
4632 				int size)
4633 {
4634 	int i;
4635 
4636 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4637 	if (size == BPF_REG_SIZE)
4638 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4639 
4640 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4641 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4642 
4643 	/* size < 8 bytes spill */
4644 	for (; i; i--)
4645 		mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
4646 }
4647 
4648 static bool is_bpf_st_mem(struct bpf_insn *insn)
4649 {
4650 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4651 }
4652 
4653 static int get_reg_width(struct bpf_reg_state *reg)
4654 {
4655 	return fls64(reg->umax_value);
4656 }
4657 
4658 /* See comment for mark_fastcall_pattern_for_call() */
4659 static void check_fastcall_stack_contract(struct bpf_verifier_env *env,
4660 					  struct bpf_func_state *state, int insn_idx, int off)
4661 {
4662 	struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno];
4663 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
4664 	int i;
4665 
4666 	if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern)
4667 		return;
4668 	/* access to the region [max_stack_depth .. fastcall_stack_off)
4669 	 * from something that is not a part of the fastcall pattern,
4670 	 * disable fastcall rewrites for current subprogram by setting
4671 	 * fastcall_stack_off to a value smaller than any possible offset.
4672 	 */
4673 	subprog->fastcall_stack_off = S16_MIN;
4674 	/* reset fastcall aux flags within subprogram,
4675 	 * happens at most once per subprogram
4676 	 */
4677 	for (i = subprog->start; i < (subprog + 1)->start; ++i) {
4678 		aux[i].fastcall_spills_num = 0;
4679 		aux[i].fastcall_pattern = 0;
4680 	}
4681 }
4682 
4683 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4684  * stack boundary and alignment are checked in check_mem_access()
4685  */
4686 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4687 				       /* stack frame we're writing to */
4688 				       struct bpf_func_state *state,
4689 				       int off, int size, int value_regno,
4690 				       int insn_idx)
4691 {
4692 	struct bpf_func_state *cur; /* state of the current function */
4693 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4694 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4695 	struct bpf_reg_state *reg = NULL;
4696 	int insn_flags = insn_stack_access_flags(state->frameno, spi);
4697 
4698 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4699 	 * so it's aligned access and [off, off + size) are within stack limits
4700 	 */
4701 	if (!env->allow_ptr_leaks &&
4702 	    is_spilled_reg(&state->stack[spi]) &&
4703 	    size != BPF_REG_SIZE) {
4704 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4705 		return -EACCES;
4706 	}
4707 
4708 	cur = env->cur_state->frame[env->cur_state->curframe];
4709 	if (value_regno >= 0)
4710 		reg = &cur->regs[value_regno];
4711 	if (!env->bypass_spec_v4) {
4712 		bool sanitize = reg && is_spillable_regtype(reg->type);
4713 
4714 		for (i = 0; i < size; i++) {
4715 			u8 type = state->stack[spi].slot_type[i];
4716 
4717 			if (type != STACK_MISC && type != STACK_ZERO) {
4718 				sanitize = true;
4719 				break;
4720 			}
4721 		}
4722 
4723 		if (sanitize)
4724 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4725 	}
4726 
4727 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4728 	if (err)
4729 		return err;
4730 
4731 	check_fastcall_stack_contract(env, state, insn_idx, off);
4732 	mark_stack_slot_scratched(env, spi);
4733 	if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) {
4734 		bool reg_value_fits;
4735 
4736 		reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size;
4737 		/* Make sure that reg had an ID to build a relation on spill. */
4738 		if (reg_value_fits)
4739 			assign_scalar_id_before_mov(env, reg);
4740 		save_register_state(env, state, spi, reg, size);
4741 		/* Break the relation on a narrowing spill. */
4742 		if (!reg_value_fits)
4743 			state->stack[spi].spilled_ptr.id = 0;
4744 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4745 		   env->bpf_capable) {
4746 		struct bpf_reg_state *tmp_reg = &env->fake_reg[0];
4747 
4748 		memset(tmp_reg, 0, sizeof(*tmp_reg));
4749 		__mark_reg_known(tmp_reg, insn->imm);
4750 		tmp_reg->type = SCALAR_VALUE;
4751 		save_register_state(env, state, spi, tmp_reg, size);
4752 	} else if (reg && is_spillable_regtype(reg->type)) {
4753 		/* register containing pointer is being spilled into stack */
4754 		if (size != BPF_REG_SIZE) {
4755 			verbose_linfo(env, insn_idx, "; ");
4756 			verbose(env, "invalid size of register spill\n");
4757 			return -EACCES;
4758 		}
4759 		if (state != cur && reg->type == PTR_TO_STACK) {
4760 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4761 			return -EINVAL;
4762 		}
4763 		save_register_state(env, state, spi, reg, size);
4764 	} else {
4765 		u8 type = STACK_MISC;
4766 
4767 		/* regular write of data into stack destroys any spilled ptr */
4768 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4769 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4770 		if (is_stack_slot_special(&state->stack[spi]))
4771 			for (i = 0; i < BPF_REG_SIZE; i++)
4772 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4773 
4774 		/* only mark the slot as written if all 8 bytes were written
4775 		 * otherwise read propagation may incorrectly stop too soon
4776 		 * when stack slots are partially written.
4777 		 * This heuristic means that read propagation will be
4778 		 * conservative, since it will add reg_live_read marks
4779 		 * to stack slots all the way to first state when programs
4780 		 * writes+reads less than 8 bytes
4781 		 */
4782 		if (size == BPF_REG_SIZE)
4783 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4784 
4785 		/* when we zero initialize stack slots mark them as such */
4786 		if ((reg && register_is_null(reg)) ||
4787 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4788 			/* STACK_ZERO case happened because register spill
4789 			 * wasn't properly aligned at the stack slot boundary,
4790 			 * so it's not a register spill anymore; force
4791 			 * originating register to be precise to make
4792 			 * STACK_ZERO correct for subsequent states
4793 			 */
4794 			err = mark_chain_precision(env, value_regno);
4795 			if (err)
4796 				return err;
4797 			type = STACK_ZERO;
4798 		}
4799 
4800 		/* Mark slots affected by this stack write. */
4801 		for (i = 0; i < size; i++)
4802 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
4803 		insn_flags = 0; /* not a register spill */
4804 	}
4805 
4806 	if (insn_flags)
4807 		return push_insn_history(env, env->cur_state, insn_flags, 0);
4808 	return 0;
4809 }
4810 
4811 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4812  * known to contain a variable offset.
4813  * This function checks whether the write is permitted and conservatively
4814  * tracks the effects of the write, considering that each stack slot in the
4815  * dynamic range is potentially written to.
4816  *
4817  * 'off' includes 'regno->off'.
4818  * 'value_regno' can be -1, meaning that an unknown value is being written to
4819  * the stack.
4820  *
4821  * Spilled pointers in range are not marked as written because we don't know
4822  * what's going to be actually written. This means that read propagation for
4823  * future reads cannot be terminated by this write.
4824  *
4825  * For privileged programs, uninitialized stack slots are considered
4826  * initialized by this write (even though we don't know exactly what offsets
4827  * are going to be written to). The idea is that we don't want the verifier to
4828  * reject future reads that access slots written to through variable offsets.
4829  */
4830 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4831 				     /* func where register points to */
4832 				     struct bpf_func_state *state,
4833 				     int ptr_regno, int off, int size,
4834 				     int value_regno, int insn_idx)
4835 {
4836 	struct bpf_func_state *cur; /* state of the current function */
4837 	int min_off, max_off;
4838 	int i, err;
4839 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4840 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4841 	bool writing_zero = false;
4842 	/* set if the fact that we're writing a zero is used to let any
4843 	 * stack slots remain STACK_ZERO
4844 	 */
4845 	bool zero_used = false;
4846 
4847 	cur = env->cur_state->frame[env->cur_state->curframe];
4848 	ptr_reg = &cur->regs[ptr_regno];
4849 	min_off = ptr_reg->smin_value + off;
4850 	max_off = ptr_reg->smax_value + off + size;
4851 	if (value_regno >= 0)
4852 		value_reg = &cur->regs[value_regno];
4853 	if ((value_reg && register_is_null(value_reg)) ||
4854 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4855 		writing_zero = true;
4856 
4857 	for (i = min_off; i < max_off; i++) {
4858 		int spi;
4859 
4860 		spi = __get_spi(i);
4861 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4862 		if (err)
4863 			return err;
4864 	}
4865 
4866 	check_fastcall_stack_contract(env, state, insn_idx, min_off);
4867 	/* Variable offset writes destroy any spilled pointers in range. */
4868 	for (i = min_off; i < max_off; i++) {
4869 		u8 new_type, *stype;
4870 		int slot, spi;
4871 
4872 		slot = -i - 1;
4873 		spi = slot / BPF_REG_SIZE;
4874 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4875 		mark_stack_slot_scratched(env, spi);
4876 
4877 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4878 			/* Reject the write if range we may write to has not
4879 			 * been initialized beforehand. If we didn't reject
4880 			 * here, the ptr status would be erased below (even
4881 			 * though not all slots are actually overwritten),
4882 			 * possibly opening the door to leaks.
4883 			 *
4884 			 * We do however catch STACK_INVALID case below, and
4885 			 * only allow reading possibly uninitialized memory
4886 			 * later for CAP_PERFMON, as the write may not happen to
4887 			 * that slot.
4888 			 */
4889 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4890 				insn_idx, i);
4891 			return -EINVAL;
4892 		}
4893 
4894 		/* If writing_zero and the spi slot contains a spill of value 0,
4895 		 * maintain the spill type.
4896 		 */
4897 		if (writing_zero && *stype == STACK_SPILL &&
4898 		    is_spilled_scalar_reg(&state->stack[spi])) {
4899 			struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr;
4900 
4901 			if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) {
4902 				zero_used = true;
4903 				continue;
4904 			}
4905 		}
4906 
4907 		/* Erase all other spilled pointers. */
4908 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4909 
4910 		/* Update the slot type. */
4911 		new_type = STACK_MISC;
4912 		if (writing_zero && *stype == STACK_ZERO) {
4913 			new_type = STACK_ZERO;
4914 			zero_used = true;
4915 		}
4916 		/* If the slot is STACK_INVALID, we check whether it's OK to
4917 		 * pretend that it will be initialized by this write. The slot
4918 		 * might not actually be written to, and so if we mark it as
4919 		 * initialized future reads might leak uninitialized memory.
4920 		 * For privileged programs, we will accept such reads to slots
4921 		 * that may or may not be written because, if we're reject
4922 		 * them, the error would be too confusing.
4923 		 */
4924 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4925 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4926 					insn_idx, i);
4927 			return -EINVAL;
4928 		}
4929 		*stype = new_type;
4930 	}
4931 	if (zero_used) {
4932 		/* backtracking doesn't work for STACK_ZERO yet. */
4933 		err = mark_chain_precision(env, value_regno);
4934 		if (err)
4935 			return err;
4936 	}
4937 	return 0;
4938 }
4939 
4940 /* When register 'dst_regno' is assigned some values from stack[min_off,
4941  * max_off), we set the register's type according to the types of the
4942  * respective stack slots. If all the stack values are known to be zeros, then
4943  * so is the destination reg. Otherwise, the register is considered to be
4944  * SCALAR. This function does not deal with register filling; the caller must
4945  * ensure that all spilled registers in the stack range have been marked as
4946  * read.
4947  */
4948 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4949 				/* func where src register points to */
4950 				struct bpf_func_state *ptr_state,
4951 				int min_off, int max_off, int dst_regno)
4952 {
4953 	struct bpf_verifier_state *vstate = env->cur_state;
4954 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4955 	int i, slot, spi;
4956 	u8 *stype;
4957 	int zeros = 0;
4958 
4959 	for (i = min_off; i < max_off; i++) {
4960 		slot = -i - 1;
4961 		spi = slot / BPF_REG_SIZE;
4962 		mark_stack_slot_scratched(env, spi);
4963 		stype = ptr_state->stack[spi].slot_type;
4964 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4965 			break;
4966 		zeros++;
4967 	}
4968 	if (zeros == max_off - min_off) {
4969 		/* Any access_size read into register is zero extended,
4970 		 * so the whole register == const_zero.
4971 		 */
4972 		__mark_reg_const_zero(env, &state->regs[dst_regno]);
4973 	} else {
4974 		/* have read misc data from the stack */
4975 		mark_reg_unknown(env, state->regs, dst_regno);
4976 	}
4977 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4978 }
4979 
4980 /* Read the stack at 'off' and put the results into the register indicated by
4981  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4982  * spilled reg.
4983  *
4984  * 'dst_regno' can be -1, meaning that the read value is not going to a
4985  * register.
4986  *
4987  * The access is assumed to be within the current stack bounds.
4988  */
4989 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4990 				      /* func where src register points to */
4991 				      struct bpf_func_state *reg_state,
4992 				      int off, int size, int dst_regno)
4993 {
4994 	struct bpf_verifier_state *vstate = env->cur_state;
4995 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4996 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4997 	struct bpf_reg_state *reg;
4998 	u8 *stype, type;
4999 	int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
5000 
5001 	stype = reg_state->stack[spi].slot_type;
5002 	reg = &reg_state->stack[spi].spilled_ptr;
5003 
5004 	mark_stack_slot_scratched(env, spi);
5005 	check_fastcall_stack_contract(env, state, env->insn_idx, off);
5006 
5007 	if (is_spilled_reg(&reg_state->stack[spi])) {
5008 		u8 spill_size = 1;
5009 
5010 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
5011 			spill_size++;
5012 
5013 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
5014 			if (reg->type != SCALAR_VALUE) {
5015 				verbose_linfo(env, env->insn_idx, "; ");
5016 				verbose(env, "invalid size of register fill\n");
5017 				return -EACCES;
5018 			}
5019 
5020 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5021 			if (dst_regno < 0)
5022 				return 0;
5023 
5024 			if (size <= spill_size &&
5025 			    bpf_stack_narrow_access_ok(off, size, spill_size)) {
5026 				/* The earlier check_reg_arg() has decided the
5027 				 * subreg_def for this insn.  Save it first.
5028 				 */
5029 				s32 subreg_def = state->regs[dst_regno].subreg_def;
5030 
5031 				copy_register_state(&state->regs[dst_regno], reg);
5032 				state->regs[dst_regno].subreg_def = subreg_def;
5033 
5034 				/* Break the relation on a narrowing fill.
5035 				 * coerce_reg_to_size will adjust the boundaries.
5036 				 */
5037 				if (get_reg_width(reg) > size * BITS_PER_BYTE)
5038 					state->regs[dst_regno].id = 0;
5039 			} else {
5040 				int spill_cnt = 0, zero_cnt = 0;
5041 
5042 				for (i = 0; i < size; i++) {
5043 					type = stype[(slot - i) % BPF_REG_SIZE];
5044 					if (type == STACK_SPILL) {
5045 						spill_cnt++;
5046 						continue;
5047 					}
5048 					if (type == STACK_MISC)
5049 						continue;
5050 					if (type == STACK_ZERO) {
5051 						zero_cnt++;
5052 						continue;
5053 					}
5054 					if (type == STACK_INVALID && env->allow_uninit_stack)
5055 						continue;
5056 					verbose(env, "invalid read from stack off %d+%d size %d\n",
5057 						off, i, size);
5058 					return -EACCES;
5059 				}
5060 
5061 				if (spill_cnt == size &&
5062 				    tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
5063 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
5064 					/* this IS register fill, so keep insn_flags */
5065 				} else if (zero_cnt == size) {
5066 					/* similarly to mark_reg_stack_read(), preserve zeroes */
5067 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
5068 					insn_flags = 0; /* not restoring original register state */
5069 				} else {
5070 					mark_reg_unknown(env, state->regs, dst_regno);
5071 					insn_flags = 0; /* not restoring original register state */
5072 				}
5073 			}
5074 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5075 		} else if (dst_regno >= 0) {
5076 			/* restore register state from stack */
5077 			copy_register_state(&state->regs[dst_regno], reg);
5078 			/* mark reg as written since spilled pointer state likely
5079 			 * has its liveness marks cleared by is_state_visited()
5080 			 * which resets stack/reg liveness for state transitions
5081 			 */
5082 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5083 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
5084 			/* If dst_regno==-1, the caller is asking us whether
5085 			 * it is acceptable to use this value as a SCALAR_VALUE
5086 			 * (e.g. for XADD).
5087 			 * We must not allow unprivileged callers to do that
5088 			 * with spilled pointers.
5089 			 */
5090 			verbose(env, "leaking pointer from stack off %d\n",
5091 				off);
5092 			return -EACCES;
5093 		}
5094 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5095 	} else {
5096 		for (i = 0; i < size; i++) {
5097 			type = stype[(slot - i) % BPF_REG_SIZE];
5098 			if (type == STACK_MISC)
5099 				continue;
5100 			if (type == STACK_ZERO)
5101 				continue;
5102 			if (type == STACK_INVALID && env->allow_uninit_stack)
5103 				continue;
5104 			verbose(env, "invalid read from stack off %d+%d size %d\n",
5105 				off, i, size);
5106 			return -EACCES;
5107 		}
5108 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5109 		if (dst_regno >= 0)
5110 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
5111 		insn_flags = 0; /* we are not restoring spilled register */
5112 	}
5113 	if (insn_flags)
5114 		return push_insn_history(env, env->cur_state, insn_flags, 0);
5115 	return 0;
5116 }
5117 
5118 enum bpf_access_src {
5119 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
5120 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
5121 };
5122 
5123 static int check_stack_range_initialized(struct bpf_verifier_env *env,
5124 					 int regno, int off, int access_size,
5125 					 bool zero_size_allowed,
5126 					 enum bpf_access_src type,
5127 					 struct bpf_call_arg_meta *meta);
5128 
5129 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
5130 {
5131 	return cur_regs(env) + regno;
5132 }
5133 
5134 /* Read the stack at 'ptr_regno + off' and put the result into the register
5135  * 'dst_regno'.
5136  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
5137  * but not its variable offset.
5138  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
5139  *
5140  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5141  * filling registers (i.e. reads of spilled register cannot be detected when
5142  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5143  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5144  * offset; for a fixed offset check_stack_read_fixed_off should be used
5145  * instead.
5146  */
5147 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5148 				    int ptr_regno, int off, int size, int dst_regno)
5149 {
5150 	/* The state of the source register. */
5151 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5152 	struct bpf_func_state *ptr_state = func(env, reg);
5153 	int err;
5154 	int min_off, max_off;
5155 
5156 	/* Note that we pass a NULL meta, so raw access will not be permitted.
5157 	 */
5158 	err = check_stack_range_initialized(env, ptr_regno, off, size,
5159 					    false, ACCESS_DIRECT, NULL);
5160 	if (err)
5161 		return err;
5162 
5163 	min_off = reg->smin_value + off;
5164 	max_off = reg->smax_value + off;
5165 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5166 	check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off);
5167 	return 0;
5168 }
5169 
5170 /* check_stack_read dispatches to check_stack_read_fixed_off or
5171  * check_stack_read_var_off.
5172  *
5173  * The caller must ensure that the offset falls within the allocated stack
5174  * bounds.
5175  *
5176  * 'dst_regno' is a register which will receive the value from the stack. It
5177  * can be -1, meaning that the read value is not going to a register.
5178  */
5179 static int check_stack_read(struct bpf_verifier_env *env,
5180 			    int ptr_regno, int off, int size,
5181 			    int dst_regno)
5182 {
5183 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5184 	struct bpf_func_state *state = func(env, reg);
5185 	int err;
5186 	/* Some accesses are only permitted with a static offset. */
5187 	bool var_off = !tnum_is_const(reg->var_off);
5188 
5189 	/* The offset is required to be static when reads don't go to a
5190 	 * register, in order to not leak pointers (see
5191 	 * check_stack_read_fixed_off).
5192 	 */
5193 	if (dst_regno < 0 && var_off) {
5194 		char tn_buf[48];
5195 
5196 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5197 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5198 			tn_buf, off, size);
5199 		return -EACCES;
5200 	}
5201 	/* Variable offset is prohibited for unprivileged mode for simplicity
5202 	 * since it requires corresponding support in Spectre masking for stack
5203 	 * ALU. See also retrieve_ptr_limit(). The check in
5204 	 * check_stack_access_for_ptr_arithmetic() called by
5205 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5206 	 * with variable offsets, therefore no check is required here. Further,
5207 	 * just checking it here would be insufficient as speculative stack
5208 	 * writes could still lead to unsafe speculative behaviour.
5209 	 */
5210 	if (!var_off) {
5211 		off += reg->var_off.value;
5212 		err = check_stack_read_fixed_off(env, state, off, size,
5213 						 dst_regno);
5214 	} else {
5215 		/* Variable offset stack reads need more conservative handling
5216 		 * than fixed offset ones. Note that dst_regno >= 0 on this
5217 		 * branch.
5218 		 */
5219 		err = check_stack_read_var_off(env, ptr_regno, off, size,
5220 					       dst_regno);
5221 	}
5222 	return err;
5223 }
5224 
5225 
5226 /* check_stack_write dispatches to check_stack_write_fixed_off or
5227  * check_stack_write_var_off.
5228  *
5229  * 'ptr_regno' is the register used as a pointer into the stack.
5230  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5231  * 'value_regno' is the register whose value we're writing to the stack. It can
5232  * be -1, meaning that we're not writing from a register.
5233  *
5234  * The caller must ensure that the offset falls within the maximum stack size.
5235  */
5236 static int check_stack_write(struct bpf_verifier_env *env,
5237 			     int ptr_regno, int off, int size,
5238 			     int value_regno, int insn_idx)
5239 {
5240 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5241 	struct bpf_func_state *state = func(env, reg);
5242 	int err;
5243 
5244 	if (tnum_is_const(reg->var_off)) {
5245 		off += reg->var_off.value;
5246 		err = check_stack_write_fixed_off(env, state, off, size,
5247 						  value_regno, insn_idx);
5248 	} else {
5249 		/* Variable offset stack reads need more conservative handling
5250 		 * than fixed offset ones.
5251 		 */
5252 		err = check_stack_write_var_off(env, state,
5253 						ptr_regno, off, size,
5254 						value_regno, insn_idx);
5255 	}
5256 	return err;
5257 }
5258 
5259 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5260 				 int off, int size, enum bpf_access_type type)
5261 {
5262 	struct bpf_reg_state *regs = cur_regs(env);
5263 	struct bpf_map *map = regs[regno].map_ptr;
5264 	u32 cap = bpf_map_flags_to_cap(map);
5265 
5266 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5267 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5268 			map->value_size, off, size);
5269 		return -EACCES;
5270 	}
5271 
5272 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5273 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5274 			map->value_size, off, size);
5275 		return -EACCES;
5276 	}
5277 
5278 	return 0;
5279 }
5280 
5281 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5282 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5283 			      int off, int size, u32 mem_size,
5284 			      bool zero_size_allowed)
5285 {
5286 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5287 	struct bpf_reg_state *reg;
5288 
5289 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5290 		return 0;
5291 
5292 	reg = &cur_regs(env)[regno];
5293 	switch (reg->type) {
5294 	case PTR_TO_MAP_KEY:
5295 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5296 			mem_size, off, size);
5297 		break;
5298 	case PTR_TO_MAP_VALUE:
5299 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5300 			mem_size, off, size);
5301 		break;
5302 	case PTR_TO_PACKET:
5303 	case PTR_TO_PACKET_META:
5304 	case PTR_TO_PACKET_END:
5305 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5306 			off, size, regno, reg->id, off, mem_size);
5307 		break;
5308 	case PTR_TO_MEM:
5309 	default:
5310 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5311 			mem_size, off, size);
5312 	}
5313 
5314 	return -EACCES;
5315 }
5316 
5317 /* check read/write into a memory region with possible variable offset */
5318 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5319 				   int off, int size, u32 mem_size,
5320 				   bool zero_size_allowed)
5321 {
5322 	struct bpf_verifier_state *vstate = env->cur_state;
5323 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5324 	struct bpf_reg_state *reg = &state->regs[regno];
5325 	int err;
5326 
5327 	/* We may have adjusted the register pointing to memory region, so we
5328 	 * need to try adding each of min_value and max_value to off
5329 	 * to make sure our theoretical access will be safe.
5330 	 *
5331 	 * The minimum value is only important with signed
5332 	 * comparisons where we can't assume the floor of a
5333 	 * value is 0.  If we are using signed variables for our
5334 	 * index'es we need to make sure that whatever we use
5335 	 * will have a set floor within our range.
5336 	 */
5337 	if (reg->smin_value < 0 &&
5338 	    (reg->smin_value == S64_MIN ||
5339 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5340 	      reg->smin_value + off < 0)) {
5341 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5342 			regno);
5343 		return -EACCES;
5344 	}
5345 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5346 				 mem_size, zero_size_allowed);
5347 	if (err) {
5348 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5349 			regno);
5350 		return err;
5351 	}
5352 
5353 	/* If we haven't set a max value then we need to bail since we can't be
5354 	 * sure we won't do bad things.
5355 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5356 	 */
5357 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5358 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5359 			regno);
5360 		return -EACCES;
5361 	}
5362 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5363 				 mem_size, zero_size_allowed);
5364 	if (err) {
5365 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5366 			regno);
5367 		return err;
5368 	}
5369 
5370 	return 0;
5371 }
5372 
5373 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5374 			       const struct bpf_reg_state *reg, int regno,
5375 			       bool fixed_off_ok)
5376 {
5377 	/* Access to this pointer-typed register or passing it to a helper
5378 	 * is only allowed in its original, unmodified form.
5379 	 */
5380 
5381 	if (reg->off < 0) {
5382 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5383 			reg_type_str(env, reg->type), regno, reg->off);
5384 		return -EACCES;
5385 	}
5386 
5387 	if (!fixed_off_ok && reg->off) {
5388 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5389 			reg_type_str(env, reg->type), regno, reg->off);
5390 		return -EACCES;
5391 	}
5392 
5393 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5394 		char tn_buf[48];
5395 
5396 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5397 		verbose(env, "variable %s access var_off=%s disallowed\n",
5398 			reg_type_str(env, reg->type), tn_buf);
5399 		return -EACCES;
5400 	}
5401 
5402 	return 0;
5403 }
5404 
5405 static int check_ptr_off_reg(struct bpf_verifier_env *env,
5406 		             const struct bpf_reg_state *reg, int regno)
5407 {
5408 	return __check_ptr_off_reg(env, reg, regno, false);
5409 }
5410 
5411 static int map_kptr_match_type(struct bpf_verifier_env *env,
5412 			       struct btf_field *kptr_field,
5413 			       struct bpf_reg_state *reg, u32 regno)
5414 {
5415 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5416 	int perm_flags;
5417 	const char *reg_name = "";
5418 
5419 	if (btf_is_kernel(reg->btf)) {
5420 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5421 
5422 		/* Only unreferenced case accepts untrusted pointers */
5423 		if (kptr_field->type == BPF_KPTR_UNREF)
5424 			perm_flags |= PTR_UNTRUSTED;
5425 	} else {
5426 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5427 		if (kptr_field->type == BPF_KPTR_PERCPU)
5428 			perm_flags |= MEM_PERCPU;
5429 	}
5430 
5431 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5432 		goto bad_type;
5433 
5434 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5435 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5436 
5437 	/* For ref_ptr case, release function check should ensure we get one
5438 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5439 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5440 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5441 	 * reg->off and reg->ref_obj_id are not needed here.
5442 	 */
5443 	if (__check_ptr_off_reg(env, reg, regno, true))
5444 		return -EACCES;
5445 
5446 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5447 	 * we also need to take into account the reg->off.
5448 	 *
5449 	 * We want to support cases like:
5450 	 *
5451 	 * struct foo {
5452 	 *         struct bar br;
5453 	 *         struct baz bz;
5454 	 * };
5455 	 *
5456 	 * struct foo *v;
5457 	 * v = func();	      // PTR_TO_BTF_ID
5458 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5459 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5460 	 *                    // first member type of struct after comparison fails
5461 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5462 	 *                    // to match type
5463 	 *
5464 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5465 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5466 	 * the struct to match type against first member of struct, i.e. reject
5467 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5468 	 * strict mode to true for type match.
5469 	 */
5470 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5471 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5472 				  kptr_field->type != BPF_KPTR_UNREF))
5473 		goto bad_type;
5474 	return 0;
5475 bad_type:
5476 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5477 		reg_type_str(env, reg->type), reg_name);
5478 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5479 	if (kptr_field->type == BPF_KPTR_UNREF)
5480 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5481 			targ_name);
5482 	else
5483 		verbose(env, "\n");
5484 	return -EINVAL;
5485 }
5486 
5487 static bool in_sleepable(struct bpf_verifier_env *env)
5488 {
5489 	return env->prog->sleepable ||
5490 	       (env->cur_state && env->cur_state->in_sleepable);
5491 }
5492 
5493 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5494  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5495  */
5496 static bool in_rcu_cs(struct bpf_verifier_env *env)
5497 {
5498 	return env->cur_state->active_rcu_lock ||
5499 	       cur_func(env)->active_locks ||
5500 	       !in_sleepable(env);
5501 }
5502 
5503 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5504 BTF_SET_START(rcu_protected_types)
5505 BTF_ID(struct, prog_test_ref_kfunc)
5506 #ifdef CONFIG_CGROUPS
5507 BTF_ID(struct, cgroup)
5508 #endif
5509 #ifdef CONFIG_BPF_JIT
5510 BTF_ID(struct, bpf_cpumask)
5511 #endif
5512 BTF_ID(struct, task_struct)
5513 BTF_ID(struct, bpf_crypto_ctx)
5514 BTF_SET_END(rcu_protected_types)
5515 
5516 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5517 {
5518 	if (!btf_is_kernel(btf))
5519 		return true;
5520 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5521 }
5522 
5523 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
5524 {
5525 	struct btf_struct_meta *meta;
5526 
5527 	if (btf_is_kernel(kptr_field->kptr.btf))
5528 		return NULL;
5529 
5530 	meta = btf_find_struct_meta(kptr_field->kptr.btf,
5531 				    kptr_field->kptr.btf_id);
5532 
5533 	return meta ? meta->record : NULL;
5534 }
5535 
5536 static bool rcu_safe_kptr(const struct btf_field *field)
5537 {
5538 	const struct btf_field_kptr *kptr = &field->kptr;
5539 
5540 	return field->type == BPF_KPTR_PERCPU ||
5541 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5542 }
5543 
5544 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5545 {
5546 	struct btf_record *rec;
5547 	u32 ret;
5548 
5549 	ret = PTR_MAYBE_NULL;
5550 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5551 		ret |= MEM_RCU;
5552 		if (kptr_field->type == BPF_KPTR_PERCPU)
5553 			ret |= MEM_PERCPU;
5554 		else if (!btf_is_kernel(kptr_field->kptr.btf))
5555 			ret |= MEM_ALLOC;
5556 
5557 		rec = kptr_pointee_btf_record(kptr_field);
5558 		if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
5559 			ret |= NON_OWN_REF;
5560 	} else {
5561 		ret |= PTR_UNTRUSTED;
5562 	}
5563 
5564 	return ret;
5565 }
5566 
5567 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno,
5568 			    struct btf_field *field)
5569 {
5570 	struct bpf_reg_state *reg;
5571 	const struct btf_type *t;
5572 
5573 	t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id);
5574 	mark_reg_known_zero(env, cur_regs(env), regno);
5575 	reg = reg_state(env, regno);
5576 	reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
5577 	reg->mem_size = t->size;
5578 	reg->id = ++env->id_gen;
5579 
5580 	return 0;
5581 }
5582 
5583 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5584 				 int value_regno, int insn_idx,
5585 				 struct btf_field *kptr_field)
5586 {
5587 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5588 	int class = BPF_CLASS(insn->code);
5589 	struct bpf_reg_state *val_reg;
5590 
5591 	/* Things we already checked for in check_map_access and caller:
5592 	 *  - Reject cases where variable offset may touch kptr
5593 	 *  - size of access (must be BPF_DW)
5594 	 *  - tnum_is_const(reg->var_off)
5595 	 *  - kptr_field->offset == off + reg->var_off.value
5596 	 */
5597 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5598 	if (BPF_MODE(insn->code) != BPF_MEM) {
5599 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5600 		return -EACCES;
5601 	}
5602 
5603 	/* We only allow loading referenced kptr, since it will be marked as
5604 	 * untrusted, similar to unreferenced kptr.
5605 	 */
5606 	if (class != BPF_LDX &&
5607 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5608 		verbose(env, "store to referenced kptr disallowed\n");
5609 		return -EACCES;
5610 	}
5611 	if (class != BPF_LDX && kptr_field->type == BPF_UPTR) {
5612 		verbose(env, "store to uptr disallowed\n");
5613 		return -EACCES;
5614 	}
5615 
5616 	if (class == BPF_LDX) {
5617 		if (kptr_field->type == BPF_UPTR)
5618 			return mark_uptr_ld_reg(env, value_regno, kptr_field);
5619 
5620 		/* We can simply mark the value_regno receiving the pointer
5621 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5622 		 */
5623 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5624 				kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5625 	} else if (class == BPF_STX) {
5626 		val_reg = reg_state(env, value_regno);
5627 		if (!register_is_null(val_reg) &&
5628 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5629 			return -EACCES;
5630 	} else if (class == BPF_ST) {
5631 		if (insn->imm) {
5632 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5633 				kptr_field->offset);
5634 			return -EACCES;
5635 		}
5636 	} else {
5637 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5638 		return -EACCES;
5639 	}
5640 	return 0;
5641 }
5642 
5643 /* check read/write into a map element with possible variable offset */
5644 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5645 			    int off, int size, bool zero_size_allowed,
5646 			    enum bpf_access_src src)
5647 {
5648 	struct bpf_verifier_state *vstate = env->cur_state;
5649 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5650 	struct bpf_reg_state *reg = &state->regs[regno];
5651 	struct bpf_map *map = reg->map_ptr;
5652 	struct btf_record *rec;
5653 	int err, i;
5654 
5655 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5656 				      zero_size_allowed);
5657 	if (err)
5658 		return err;
5659 
5660 	if (IS_ERR_OR_NULL(map->record))
5661 		return 0;
5662 	rec = map->record;
5663 	for (i = 0; i < rec->cnt; i++) {
5664 		struct btf_field *field = &rec->fields[i];
5665 		u32 p = field->offset;
5666 
5667 		/* If any part of a field  can be touched by load/store, reject
5668 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5669 		 * it is sufficient to check x1 < y2 && y1 < x2.
5670 		 */
5671 		if (reg->smin_value + off < p + field->size &&
5672 		    p < reg->umax_value + off + size) {
5673 			switch (field->type) {
5674 			case BPF_KPTR_UNREF:
5675 			case BPF_KPTR_REF:
5676 			case BPF_KPTR_PERCPU:
5677 			case BPF_UPTR:
5678 				if (src != ACCESS_DIRECT) {
5679 					verbose(env, "%s cannot be accessed indirectly by helper\n",
5680 						btf_field_type_name(field->type));
5681 					return -EACCES;
5682 				}
5683 				if (!tnum_is_const(reg->var_off)) {
5684 					verbose(env, "%s access cannot have variable offset\n",
5685 						btf_field_type_name(field->type));
5686 					return -EACCES;
5687 				}
5688 				if (p != off + reg->var_off.value) {
5689 					verbose(env, "%s access misaligned expected=%u off=%llu\n",
5690 						btf_field_type_name(field->type),
5691 						p, off + reg->var_off.value);
5692 					return -EACCES;
5693 				}
5694 				if (size != bpf_size_to_bytes(BPF_DW)) {
5695 					verbose(env, "%s access size must be BPF_DW\n",
5696 						btf_field_type_name(field->type));
5697 					return -EACCES;
5698 				}
5699 				break;
5700 			default:
5701 				verbose(env, "%s cannot be accessed directly by load/store\n",
5702 					btf_field_type_name(field->type));
5703 				return -EACCES;
5704 			}
5705 		}
5706 	}
5707 	return 0;
5708 }
5709 
5710 #define MAX_PACKET_OFF 0xffff
5711 
5712 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5713 				       const struct bpf_call_arg_meta *meta,
5714 				       enum bpf_access_type t)
5715 {
5716 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5717 
5718 	switch (prog_type) {
5719 	/* Program types only with direct read access go here! */
5720 	case BPF_PROG_TYPE_LWT_IN:
5721 	case BPF_PROG_TYPE_LWT_OUT:
5722 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5723 	case BPF_PROG_TYPE_SK_REUSEPORT:
5724 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5725 	case BPF_PROG_TYPE_CGROUP_SKB:
5726 		if (t == BPF_WRITE)
5727 			return false;
5728 		fallthrough;
5729 
5730 	/* Program types with direct read + write access go here! */
5731 	case BPF_PROG_TYPE_SCHED_CLS:
5732 	case BPF_PROG_TYPE_SCHED_ACT:
5733 	case BPF_PROG_TYPE_XDP:
5734 	case BPF_PROG_TYPE_LWT_XMIT:
5735 	case BPF_PROG_TYPE_SK_SKB:
5736 	case BPF_PROG_TYPE_SK_MSG:
5737 		if (meta)
5738 			return meta->pkt_access;
5739 
5740 		env->seen_direct_write = true;
5741 		return true;
5742 
5743 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5744 		if (t == BPF_WRITE)
5745 			env->seen_direct_write = true;
5746 
5747 		return true;
5748 
5749 	default:
5750 		return false;
5751 	}
5752 }
5753 
5754 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5755 			       int size, bool zero_size_allowed)
5756 {
5757 	struct bpf_reg_state *regs = cur_regs(env);
5758 	struct bpf_reg_state *reg = &regs[regno];
5759 	int err;
5760 
5761 	/* We may have added a variable offset to the packet pointer; but any
5762 	 * reg->range we have comes after that.  We are only checking the fixed
5763 	 * offset.
5764 	 */
5765 
5766 	/* We don't allow negative numbers, because we aren't tracking enough
5767 	 * detail to prove they're safe.
5768 	 */
5769 	if (reg->smin_value < 0) {
5770 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5771 			regno);
5772 		return -EACCES;
5773 	}
5774 
5775 	err = reg->range < 0 ? -EINVAL :
5776 	      __check_mem_access(env, regno, off, size, reg->range,
5777 				 zero_size_allowed);
5778 	if (err) {
5779 		verbose(env, "R%d offset is outside of the packet\n", regno);
5780 		return err;
5781 	}
5782 
5783 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5784 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5785 	 * otherwise find_good_pkt_pointers would have refused to set range info
5786 	 * that __check_mem_access would have rejected this pkt access.
5787 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5788 	 */
5789 	env->prog->aux->max_pkt_offset =
5790 		max_t(u32, env->prog->aux->max_pkt_offset,
5791 		      off + reg->umax_value + size - 1);
5792 
5793 	return err;
5794 }
5795 
5796 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5797 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5798 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5799 			    struct btf **btf, u32 *btf_id, bool *is_retval, bool is_ldsx)
5800 {
5801 	struct bpf_insn_access_aux info = {
5802 		.reg_type = *reg_type,
5803 		.log = &env->log,
5804 		.is_retval = false,
5805 		.is_ldsx = is_ldsx,
5806 	};
5807 
5808 	if (env->ops->is_valid_access &&
5809 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5810 		/* A non zero info.ctx_field_size indicates that this field is a
5811 		 * candidate for later verifier transformation to load the whole
5812 		 * field and then apply a mask when accessed with a narrower
5813 		 * access than actual ctx access size. A zero info.ctx_field_size
5814 		 * will only allow for whole field access and rejects any other
5815 		 * type of narrower access.
5816 		 */
5817 		*reg_type = info.reg_type;
5818 		*is_retval = info.is_retval;
5819 
5820 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5821 			*btf = info.btf;
5822 			*btf_id = info.btf_id;
5823 		} else {
5824 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5825 		}
5826 		/* remember the offset of last byte accessed in ctx */
5827 		if (env->prog->aux->max_ctx_offset < off + size)
5828 			env->prog->aux->max_ctx_offset = off + size;
5829 		return 0;
5830 	}
5831 
5832 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5833 	return -EACCES;
5834 }
5835 
5836 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5837 				  int size)
5838 {
5839 	if (size < 0 || off < 0 ||
5840 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5841 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5842 			off, size);
5843 		return -EACCES;
5844 	}
5845 	return 0;
5846 }
5847 
5848 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5849 			     u32 regno, int off, int size,
5850 			     enum bpf_access_type t)
5851 {
5852 	struct bpf_reg_state *regs = cur_regs(env);
5853 	struct bpf_reg_state *reg = &regs[regno];
5854 	struct bpf_insn_access_aux info = {};
5855 	bool valid;
5856 
5857 	if (reg->smin_value < 0) {
5858 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5859 			regno);
5860 		return -EACCES;
5861 	}
5862 
5863 	switch (reg->type) {
5864 	case PTR_TO_SOCK_COMMON:
5865 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5866 		break;
5867 	case PTR_TO_SOCKET:
5868 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5869 		break;
5870 	case PTR_TO_TCP_SOCK:
5871 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5872 		break;
5873 	case PTR_TO_XDP_SOCK:
5874 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5875 		break;
5876 	default:
5877 		valid = false;
5878 	}
5879 
5880 
5881 	if (valid) {
5882 		env->insn_aux_data[insn_idx].ctx_field_size =
5883 			info.ctx_field_size;
5884 		return 0;
5885 	}
5886 
5887 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5888 		regno, reg_type_str(env, reg->type), off, size);
5889 
5890 	return -EACCES;
5891 }
5892 
5893 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5894 {
5895 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5896 }
5897 
5898 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5899 {
5900 	const struct bpf_reg_state *reg = reg_state(env, regno);
5901 
5902 	return reg->type == PTR_TO_CTX;
5903 }
5904 
5905 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5906 {
5907 	const struct bpf_reg_state *reg = reg_state(env, regno);
5908 
5909 	return type_is_sk_pointer(reg->type);
5910 }
5911 
5912 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5913 {
5914 	const struct bpf_reg_state *reg = reg_state(env, regno);
5915 
5916 	return type_is_pkt_pointer(reg->type);
5917 }
5918 
5919 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5920 {
5921 	const struct bpf_reg_state *reg = reg_state(env, regno);
5922 
5923 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5924 	return reg->type == PTR_TO_FLOW_KEYS;
5925 }
5926 
5927 static bool is_arena_reg(struct bpf_verifier_env *env, int regno)
5928 {
5929 	const struct bpf_reg_state *reg = reg_state(env, regno);
5930 
5931 	return reg->type == PTR_TO_ARENA;
5932 }
5933 
5934 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5935 #ifdef CONFIG_NET
5936 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5937 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5938 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5939 #endif
5940 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5941 };
5942 
5943 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5944 {
5945 	/* A referenced register is always trusted. */
5946 	if (reg->ref_obj_id)
5947 		return true;
5948 
5949 	/* Types listed in the reg2btf_ids are always trusted */
5950 	if (reg2btf_ids[base_type(reg->type)] &&
5951 	    !bpf_type_has_unsafe_modifiers(reg->type))
5952 		return true;
5953 
5954 	/* If a register is not referenced, it is trusted if it has the
5955 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5956 	 * other type modifiers may be safe, but we elect to take an opt-in
5957 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5958 	 * not.
5959 	 *
5960 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5961 	 * for whether a register is trusted.
5962 	 */
5963 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5964 	       !bpf_type_has_unsafe_modifiers(reg->type);
5965 }
5966 
5967 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5968 {
5969 	return reg->type & MEM_RCU;
5970 }
5971 
5972 static void clear_trusted_flags(enum bpf_type_flag *flag)
5973 {
5974 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5975 }
5976 
5977 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5978 				   const struct bpf_reg_state *reg,
5979 				   int off, int size, bool strict)
5980 {
5981 	struct tnum reg_off;
5982 	int ip_align;
5983 
5984 	/* Byte size accesses are always allowed. */
5985 	if (!strict || size == 1)
5986 		return 0;
5987 
5988 	/* For platforms that do not have a Kconfig enabling
5989 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5990 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5991 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5992 	 * to this code only in strict mode where we want to emulate
5993 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5994 	 * unconditional IP align value of '2'.
5995 	 */
5996 	ip_align = 2;
5997 
5998 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5999 	if (!tnum_is_aligned(reg_off, size)) {
6000 		char tn_buf[48];
6001 
6002 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6003 		verbose(env,
6004 			"misaligned packet access off %d+%s+%d+%d size %d\n",
6005 			ip_align, tn_buf, reg->off, off, size);
6006 		return -EACCES;
6007 	}
6008 
6009 	return 0;
6010 }
6011 
6012 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
6013 				       const struct bpf_reg_state *reg,
6014 				       const char *pointer_desc,
6015 				       int off, int size, bool strict)
6016 {
6017 	struct tnum reg_off;
6018 
6019 	/* Byte size accesses are always allowed. */
6020 	if (!strict || size == 1)
6021 		return 0;
6022 
6023 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
6024 	if (!tnum_is_aligned(reg_off, size)) {
6025 		char tn_buf[48];
6026 
6027 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6028 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
6029 			pointer_desc, tn_buf, reg->off, off, size);
6030 		return -EACCES;
6031 	}
6032 
6033 	return 0;
6034 }
6035 
6036 static int check_ptr_alignment(struct bpf_verifier_env *env,
6037 			       const struct bpf_reg_state *reg, int off,
6038 			       int size, bool strict_alignment_once)
6039 {
6040 	bool strict = env->strict_alignment || strict_alignment_once;
6041 	const char *pointer_desc = "";
6042 
6043 	switch (reg->type) {
6044 	case PTR_TO_PACKET:
6045 	case PTR_TO_PACKET_META:
6046 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
6047 		 * right in front, treat it the very same way.
6048 		 */
6049 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
6050 	case PTR_TO_FLOW_KEYS:
6051 		pointer_desc = "flow keys ";
6052 		break;
6053 	case PTR_TO_MAP_KEY:
6054 		pointer_desc = "key ";
6055 		break;
6056 	case PTR_TO_MAP_VALUE:
6057 		pointer_desc = "value ";
6058 		break;
6059 	case PTR_TO_CTX:
6060 		pointer_desc = "context ";
6061 		break;
6062 	case PTR_TO_STACK:
6063 		pointer_desc = "stack ";
6064 		/* The stack spill tracking logic in check_stack_write_fixed_off()
6065 		 * and check_stack_read_fixed_off() relies on stack accesses being
6066 		 * aligned.
6067 		 */
6068 		strict = true;
6069 		break;
6070 	case PTR_TO_SOCKET:
6071 		pointer_desc = "sock ";
6072 		break;
6073 	case PTR_TO_SOCK_COMMON:
6074 		pointer_desc = "sock_common ";
6075 		break;
6076 	case PTR_TO_TCP_SOCK:
6077 		pointer_desc = "tcp_sock ";
6078 		break;
6079 	case PTR_TO_XDP_SOCK:
6080 		pointer_desc = "xdp_sock ";
6081 		break;
6082 	case PTR_TO_ARENA:
6083 		return 0;
6084 	default:
6085 		break;
6086 	}
6087 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
6088 					   strict);
6089 }
6090 
6091 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog)
6092 {
6093 	if (!bpf_jit_supports_private_stack())
6094 		return NO_PRIV_STACK;
6095 
6096 	/* bpf_prog_check_recur() checks all prog types that use bpf trampoline
6097 	 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked
6098 	 * explicitly.
6099 	 */
6100 	switch (prog->type) {
6101 	case BPF_PROG_TYPE_KPROBE:
6102 	case BPF_PROG_TYPE_TRACEPOINT:
6103 	case BPF_PROG_TYPE_PERF_EVENT:
6104 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6105 		return PRIV_STACK_ADAPTIVE;
6106 	case BPF_PROG_TYPE_TRACING:
6107 	case BPF_PROG_TYPE_LSM:
6108 	case BPF_PROG_TYPE_STRUCT_OPS:
6109 		if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog))
6110 			return PRIV_STACK_ADAPTIVE;
6111 		fallthrough;
6112 	default:
6113 		break;
6114 	}
6115 
6116 	return NO_PRIV_STACK;
6117 }
6118 
6119 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth)
6120 {
6121 	if (env->prog->jit_requested)
6122 		return round_up(stack_depth, 16);
6123 
6124 	/* round up to 32-bytes, since this is granularity
6125 	 * of interpreter stack size
6126 	 */
6127 	return round_up(max_t(u32, stack_depth, 1), 32);
6128 }
6129 
6130 /* starting from main bpf function walk all instructions of the function
6131  * and recursively walk all callees that given function can call.
6132  * Ignore jump and exit insns.
6133  * Since recursion is prevented by check_cfg() this algorithm
6134  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
6135  */
6136 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx,
6137 					 bool priv_stack_supported)
6138 {
6139 	struct bpf_subprog_info *subprog = env->subprog_info;
6140 	struct bpf_insn *insn = env->prog->insnsi;
6141 	int depth = 0, frame = 0, i, subprog_end, subprog_depth;
6142 	bool tail_call_reachable = false;
6143 	int ret_insn[MAX_CALL_FRAMES];
6144 	int ret_prog[MAX_CALL_FRAMES];
6145 	int j;
6146 
6147 	i = subprog[idx].start;
6148 	if (!priv_stack_supported)
6149 		subprog[idx].priv_stack_mode = NO_PRIV_STACK;
6150 process_func:
6151 	/* protect against potential stack overflow that might happen when
6152 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
6153 	 * depth for such case down to 256 so that the worst case scenario
6154 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
6155 	 * 8k).
6156 	 *
6157 	 * To get the idea what might happen, see an example:
6158 	 * func1 -> sub rsp, 128
6159 	 *  subfunc1 -> sub rsp, 256
6160 	 *  tailcall1 -> add rsp, 256
6161 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
6162 	 *   subfunc2 -> sub rsp, 64
6163 	 *   subfunc22 -> sub rsp, 128
6164 	 *   tailcall2 -> add rsp, 128
6165 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
6166 	 *
6167 	 * tailcall will unwind the current stack frame but it will not get rid
6168 	 * of caller's stack as shown on the example above.
6169 	 */
6170 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
6171 		verbose(env,
6172 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
6173 			depth);
6174 		return -EACCES;
6175 	}
6176 
6177 	subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth);
6178 	if (priv_stack_supported) {
6179 		/* Request private stack support only if the subprog stack
6180 		 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to
6181 		 * avoid jit penalty if the stack usage is small.
6182 		 */
6183 		if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN &&
6184 		    subprog_depth >= BPF_PRIV_STACK_MIN_SIZE)
6185 			subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE;
6186 	}
6187 
6188 	if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
6189 		if (subprog_depth > MAX_BPF_STACK) {
6190 			verbose(env, "stack size of subprog %d is %d. Too large\n",
6191 				idx, subprog_depth);
6192 			return -EACCES;
6193 		}
6194 	} else {
6195 		depth += subprog_depth;
6196 		if (depth > MAX_BPF_STACK) {
6197 			verbose(env, "combined stack size of %d calls is %d. Too large\n",
6198 				frame + 1, depth);
6199 			return -EACCES;
6200 		}
6201 	}
6202 continue_func:
6203 	subprog_end = subprog[idx + 1].start;
6204 	for (; i < subprog_end; i++) {
6205 		int next_insn, sidx;
6206 
6207 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
6208 			bool err = false;
6209 
6210 			if (!is_bpf_throw_kfunc(insn + i))
6211 				continue;
6212 			if (subprog[idx].is_cb)
6213 				err = true;
6214 			for (int c = 0; c < frame && !err; c++) {
6215 				if (subprog[ret_prog[c]].is_cb) {
6216 					err = true;
6217 					break;
6218 				}
6219 			}
6220 			if (!err)
6221 				continue;
6222 			verbose(env,
6223 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
6224 				i, idx);
6225 			return -EINVAL;
6226 		}
6227 
6228 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
6229 			continue;
6230 		/* remember insn and function to return to */
6231 		ret_insn[frame] = i + 1;
6232 		ret_prog[frame] = idx;
6233 
6234 		/* find the callee */
6235 		next_insn = i + insn[i].imm + 1;
6236 		sidx = find_subprog(env, next_insn);
6237 		if (sidx < 0) {
6238 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6239 				  next_insn);
6240 			return -EFAULT;
6241 		}
6242 		if (subprog[sidx].is_async_cb) {
6243 			if (subprog[sidx].has_tail_call) {
6244 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
6245 				return -EFAULT;
6246 			}
6247 			/* async callbacks don't increase bpf prog stack size unless called directly */
6248 			if (!bpf_pseudo_call(insn + i))
6249 				continue;
6250 			if (subprog[sidx].is_exception_cb) {
6251 				verbose(env, "insn %d cannot call exception cb directly\n", i);
6252 				return -EINVAL;
6253 			}
6254 		}
6255 		i = next_insn;
6256 		idx = sidx;
6257 		if (!priv_stack_supported)
6258 			subprog[idx].priv_stack_mode = NO_PRIV_STACK;
6259 
6260 		if (subprog[idx].has_tail_call)
6261 			tail_call_reachable = true;
6262 
6263 		frame++;
6264 		if (frame >= MAX_CALL_FRAMES) {
6265 			verbose(env, "the call stack of %d frames is too deep !\n",
6266 				frame);
6267 			return -E2BIG;
6268 		}
6269 		goto process_func;
6270 	}
6271 	/* if tail call got detected across bpf2bpf calls then mark each of the
6272 	 * currently present subprog frames as tail call reachable subprogs;
6273 	 * this info will be utilized by JIT so that we will be preserving the
6274 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
6275 	 */
6276 	if (tail_call_reachable)
6277 		for (j = 0; j < frame; j++) {
6278 			if (subprog[ret_prog[j]].is_exception_cb) {
6279 				verbose(env, "cannot tail call within exception cb\n");
6280 				return -EINVAL;
6281 			}
6282 			subprog[ret_prog[j]].tail_call_reachable = true;
6283 		}
6284 	if (subprog[0].tail_call_reachable)
6285 		env->prog->aux->tail_call_reachable = true;
6286 
6287 	/* end of for() loop means the last insn of the 'subprog'
6288 	 * was reached. Doesn't matter whether it was JA or EXIT
6289 	 */
6290 	if (frame == 0)
6291 		return 0;
6292 	if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE)
6293 		depth -= round_up_stack_depth(env, subprog[idx].stack_depth);
6294 	frame--;
6295 	i = ret_insn[frame];
6296 	idx = ret_prog[frame];
6297 	goto continue_func;
6298 }
6299 
6300 static int check_max_stack_depth(struct bpf_verifier_env *env)
6301 {
6302 	enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN;
6303 	struct bpf_subprog_info *si = env->subprog_info;
6304 	bool priv_stack_supported;
6305 	int ret;
6306 
6307 	for (int i = 0; i < env->subprog_cnt; i++) {
6308 		if (si[i].has_tail_call) {
6309 			priv_stack_mode = NO_PRIV_STACK;
6310 			break;
6311 		}
6312 	}
6313 
6314 	if (priv_stack_mode == PRIV_STACK_UNKNOWN)
6315 		priv_stack_mode = bpf_enable_priv_stack(env->prog);
6316 
6317 	/* All async_cb subprogs use normal kernel stack. If a particular
6318 	 * subprog appears in both main prog and async_cb subtree, that
6319 	 * subprog will use normal kernel stack to avoid potential nesting.
6320 	 * The reverse subprog traversal ensures when main prog subtree is
6321 	 * checked, the subprogs appearing in async_cb subtrees are already
6322 	 * marked as using normal kernel stack, so stack size checking can
6323 	 * be done properly.
6324 	 */
6325 	for (int i = env->subprog_cnt - 1; i >= 0; i--) {
6326 		if (!i || si[i].is_async_cb) {
6327 			priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE;
6328 			ret = check_max_stack_depth_subprog(env, i, priv_stack_supported);
6329 			if (ret < 0)
6330 				return ret;
6331 		}
6332 	}
6333 
6334 	for (int i = 0; i < env->subprog_cnt; i++) {
6335 		if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
6336 			env->prog->aux->jits_use_priv_stack = true;
6337 			break;
6338 		}
6339 	}
6340 
6341 	return 0;
6342 }
6343 
6344 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6345 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6346 				  const struct bpf_insn *insn, int idx)
6347 {
6348 	int start = idx + insn->imm + 1, subprog;
6349 
6350 	subprog = find_subprog(env, start);
6351 	if (subprog < 0) {
6352 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6353 			  start);
6354 		return -EFAULT;
6355 	}
6356 	return env->subprog_info[subprog].stack_depth;
6357 }
6358 #endif
6359 
6360 static int __check_buffer_access(struct bpf_verifier_env *env,
6361 				 const char *buf_info,
6362 				 const struct bpf_reg_state *reg,
6363 				 int regno, int off, int size)
6364 {
6365 	if (off < 0) {
6366 		verbose(env,
6367 			"R%d invalid %s buffer access: off=%d, size=%d\n",
6368 			regno, buf_info, off, size);
6369 		return -EACCES;
6370 	}
6371 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6372 		char tn_buf[48];
6373 
6374 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6375 		verbose(env,
6376 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6377 			regno, off, tn_buf);
6378 		return -EACCES;
6379 	}
6380 
6381 	return 0;
6382 }
6383 
6384 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6385 				  const struct bpf_reg_state *reg,
6386 				  int regno, int off, int size)
6387 {
6388 	int err;
6389 
6390 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6391 	if (err)
6392 		return err;
6393 
6394 	if (off + size > env->prog->aux->max_tp_access)
6395 		env->prog->aux->max_tp_access = off + size;
6396 
6397 	return 0;
6398 }
6399 
6400 static int check_buffer_access(struct bpf_verifier_env *env,
6401 			       const struct bpf_reg_state *reg,
6402 			       int regno, int off, int size,
6403 			       bool zero_size_allowed,
6404 			       u32 *max_access)
6405 {
6406 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6407 	int err;
6408 
6409 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6410 	if (err)
6411 		return err;
6412 
6413 	if (off + size > *max_access)
6414 		*max_access = off + size;
6415 
6416 	return 0;
6417 }
6418 
6419 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6420 static void zext_32_to_64(struct bpf_reg_state *reg)
6421 {
6422 	reg->var_off = tnum_subreg(reg->var_off);
6423 	__reg_assign_32_into_64(reg);
6424 }
6425 
6426 /* truncate register to smaller size (in bytes)
6427  * must be called with size < BPF_REG_SIZE
6428  */
6429 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6430 {
6431 	u64 mask;
6432 
6433 	/* clear high bits in bit representation */
6434 	reg->var_off = tnum_cast(reg->var_off, size);
6435 
6436 	/* fix arithmetic bounds */
6437 	mask = ((u64)1 << (size * 8)) - 1;
6438 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6439 		reg->umin_value &= mask;
6440 		reg->umax_value &= mask;
6441 	} else {
6442 		reg->umin_value = 0;
6443 		reg->umax_value = mask;
6444 	}
6445 	reg->smin_value = reg->umin_value;
6446 	reg->smax_value = reg->umax_value;
6447 
6448 	/* If size is smaller than 32bit register the 32bit register
6449 	 * values are also truncated so we push 64-bit bounds into
6450 	 * 32-bit bounds. Above were truncated < 32-bits already.
6451 	 */
6452 	if (size < 4)
6453 		__mark_reg32_unbounded(reg);
6454 
6455 	reg_bounds_sync(reg);
6456 }
6457 
6458 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6459 {
6460 	if (size == 1) {
6461 		reg->smin_value = reg->s32_min_value = S8_MIN;
6462 		reg->smax_value = reg->s32_max_value = S8_MAX;
6463 	} else if (size == 2) {
6464 		reg->smin_value = reg->s32_min_value = S16_MIN;
6465 		reg->smax_value = reg->s32_max_value = S16_MAX;
6466 	} else {
6467 		/* size == 4 */
6468 		reg->smin_value = reg->s32_min_value = S32_MIN;
6469 		reg->smax_value = reg->s32_max_value = S32_MAX;
6470 	}
6471 	reg->umin_value = reg->u32_min_value = 0;
6472 	reg->umax_value = U64_MAX;
6473 	reg->u32_max_value = U32_MAX;
6474 	reg->var_off = tnum_unknown;
6475 }
6476 
6477 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6478 {
6479 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6480 	u64 top_smax_value, top_smin_value;
6481 	u64 num_bits = size * 8;
6482 
6483 	if (tnum_is_const(reg->var_off)) {
6484 		u64_cval = reg->var_off.value;
6485 		if (size == 1)
6486 			reg->var_off = tnum_const((s8)u64_cval);
6487 		else if (size == 2)
6488 			reg->var_off = tnum_const((s16)u64_cval);
6489 		else
6490 			/* size == 4 */
6491 			reg->var_off = tnum_const((s32)u64_cval);
6492 
6493 		u64_cval = reg->var_off.value;
6494 		reg->smax_value = reg->smin_value = u64_cval;
6495 		reg->umax_value = reg->umin_value = u64_cval;
6496 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6497 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6498 		return;
6499 	}
6500 
6501 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6502 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6503 
6504 	if (top_smax_value != top_smin_value)
6505 		goto out;
6506 
6507 	/* find the s64_min and s64_min after sign extension */
6508 	if (size == 1) {
6509 		init_s64_max = (s8)reg->smax_value;
6510 		init_s64_min = (s8)reg->smin_value;
6511 	} else if (size == 2) {
6512 		init_s64_max = (s16)reg->smax_value;
6513 		init_s64_min = (s16)reg->smin_value;
6514 	} else {
6515 		init_s64_max = (s32)reg->smax_value;
6516 		init_s64_min = (s32)reg->smin_value;
6517 	}
6518 
6519 	s64_max = max(init_s64_max, init_s64_min);
6520 	s64_min = min(init_s64_max, init_s64_min);
6521 
6522 	/* both of s64_max/s64_min positive or negative */
6523 	if ((s64_max >= 0) == (s64_min >= 0)) {
6524 		reg->s32_min_value = reg->smin_value = s64_min;
6525 		reg->s32_max_value = reg->smax_value = s64_max;
6526 		reg->u32_min_value = reg->umin_value = s64_min;
6527 		reg->u32_max_value = reg->umax_value = s64_max;
6528 		reg->var_off = tnum_range(s64_min, s64_max);
6529 		return;
6530 	}
6531 
6532 out:
6533 	set_sext64_default_val(reg, size);
6534 }
6535 
6536 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6537 {
6538 	if (size == 1) {
6539 		reg->s32_min_value = S8_MIN;
6540 		reg->s32_max_value = S8_MAX;
6541 	} else {
6542 		/* size == 2 */
6543 		reg->s32_min_value = S16_MIN;
6544 		reg->s32_max_value = S16_MAX;
6545 	}
6546 	reg->u32_min_value = 0;
6547 	reg->u32_max_value = U32_MAX;
6548 	reg->var_off = tnum_subreg(tnum_unknown);
6549 }
6550 
6551 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6552 {
6553 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6554 	u32 top_smax_value, top_smin_value;
6555 	u32 num_bits = size * 8;
6556 
6557 	if (tnum_is_const(reg->var_off)) {
6558 		u32_val = reg->var_off.value;
6559 		if (size == 1)
6560 			reg->var_off = tnum_const((s8)u32_val);
6561 		else
6562 			reg->var_off = tnum_const((s16)u32_val);
6563 
6564 		u32_val = reg->var_off.value;
6565 		reg->s32_min_value = reg->s32_max_value = u32_val;
6566 		reg->u32_min_value = reg->u32_max_value = u32_val;
6567 		return;
6568 	}
6569 
6570 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6571 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6572 
6573 	if (top_smax_value != top_smin_value)
6574 		goto out;
6575 
6576 	/* find the s32_min and s32_min after sign extension */
6577 	if (size == 1) {
6578 		init_s32_max = (s8)reg->s32_max_value;
6579 		init_s32_min = (s8)reg->s32_min_value;
6580 	} else {
6581 		/* size == 2 */
6582 		init_s32_max = (s16)reg->s32_max_value;
6583 		init_s32_min = (s16)reg->s32_min_value;
6584 	}
6585 	s32_max = max(init_s32_max, init_s32_min);
6586 	s32_min = min(init_s32_max, init_s32_min);
6587 
6588 	if ((s32_min >= 0) == (s32_max >= 0)) {
6589 		reg->s32_min_value = s32_min;
6590 		reg->s32_max_value = s32_max;
6591 		reg->u32_min_value = (u32)s32_min;
6592 		reg->u32_max_value = (u32)s32_max;
6593 		reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
6594 		return;
6595 	}
6596 
6597 out:
6598 	set_sext32_default_val(reg, size);
6599 }
6600 
6601 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6602 {
6603 	/* A map is considered read-only if the following condition are true:
6604 	 *
6605 	 * 1) BPF program side cannot change any of the map content. The
6606 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6607 	 *    and was set at map creation time.
6608 	 * 2) The map value(s) have been initialized from user space by a
6609 	 *    loader and then "frozen", such that no new map update/delete
6610 	 *    operations from syscall side are possible for the rest of
6611 	 *    the map's lifetime from that point onwards.
6612 	 * 3) Any parallel/pending map update/delete operations from syscall
6613 	 *    side have been completed. Only after that point, it's safe to
6614 	 *    assume that map value(s) are immutable.
6615 	 */
6616 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6617 	       READ_ONCE(map->frozen) &&
6618 	       !bpf_map_write_active(map);
6619 }
6620 
6621 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6622 			       bool is_ldsx)
6623 {
6624 	void *ptr;
6625 	u64 addr;
6626 	int err;
6627 
6628 	err = map->ops->map_direct_value_addr(map, &addr, off);
6629 	if (err)
6630 		return err;
6631 	ptr = (void *)(long)addr + off;
6632 
6633 	switch (size) {
6634 	case sizeof(u8):
6635 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6636 		break;
6637 	case sizeof(u16):
6638 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6639 		break;
6640 	case sizeof(u32):
6641 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6642 		break;
6643 	case sizeof(u64):
6644 		*val = *(u64 *)ptr;
6645 		break;
6646 	default:
6647 		return -EINVAL;
6648 	}
6649 	return 0;
6650 }
6651 
6652 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6653 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6654 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6655 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type)  __PASTE(__type, __safe_trusted_or_null)
6656 
6657 /*
6658  * Allow list few fields as RCU trusted or full trusted.
6659  * This logic doesn't allow mix tagging and will be removed once GCC supports
6660  * btf_type_tag.
6661  */
6662 
6663 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6664 BTF_TYPE_SAFE_RCU(struct task_struct) {
6665 	const cpumask_t *cpus_ptr;
6666 	struct css_set __rcu *cgroups;
6667 	struct task_struct __rcu *real_parent;
6668 	struct task_struct *group_leader;
6669 };
6670 
6671 BTF_TYPE_SAFE_RCU(struct cgroup) {
6672 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6673 	struct kernfs_node *kn;
6674 };
6675 
6676 BTF_TYPE_SAFE_RCU(struct css_set) {
6677 	struct cgroup *dfl_cgrp;
6678 };
6679 
6680 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6681 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6682 	struct file __rcu *exe_file;
6683 };
6684 
6685 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6686  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6687  */
6688 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6689 	struct sock *sk;
6690 };
6691 
6692 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6693 	struct sock *sk;
6694 };
6695 
6696 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6697 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6698 	struct seq_file *seq;
6699 };
6700 
6701 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6702 	struct bpf_iter_meta *meta;
6703 	struct task_struct *task;
6704 };
6705 
6706 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6707 	struct file *file;
6708 };
6709 
6710 BTF_TYPE_SAFE_TRUSTED(struct file) {
6711 	struct inode *f_inode;
6712 };
6713 
6714 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6715 	/* no negative dentry-s in places where bpf can see it */
6716 	struct inode *d_inode;
6717 };
6718 
6719 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
6720 	struct sock *sk;
6721 };
6722 
6723 static bool type_is_rcu(struct bpf_verifier_env *env,
6724 			struct bpf_reg_state *reg,
6725 			const char *field_name, u32 btf_id)
6726 {
6727 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6728 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6729 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6730 
6731 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6732 }
6733 
6734 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6735 				struct bpf_reg_state *reg,
6736 				const char *field_name, u32 btf_id)
6737 {
6738 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6739 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6740 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6741 
6742 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6743 }
6744 
6745 static bool type_is_trusted(struct bpf_verifier_env *env,
6746 			    struct bpf_reg_state *reg,
6747 			    const char *field_name, u32 btf_id)
6748 {
6749 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6750 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6751 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6752 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6753 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6754 
6755 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6756 }
6757 
6758 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
6759 				    struct bpf_reg_state *reg,
6760 				    const char *field_name, u32 btf_id)
6761 {
6762 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
6763 
6764 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
6765 					  "__safe_trusted_or_null");
6766 }
6767 
6768 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6769 				   struct bpf_reg_state *regs,
6770 				   int regno, int off, int size,
6771 				   enum bpf_access_type atype,
6772 				   int value_regno)
6773 {
6774 	struct bpf_reg_state *reg = regs + regno;
6775 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6776 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6777 	const char *field_name = NULL;
6778 	enum bpf_type_flag flag = 0;
6779 	u32 btf_id = 0;
6780 	bool mask;
6781 	int ret;
6782 
6783 	if (!env->allow_ptr_leaks) {
6784 		verbose(env,
6785 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6786 			tname);
6787 		return -EPERM;
6788 	}
6789 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6790 		verbose(env,
6791 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6792 			tname);
6793 		return -EINVAL;
6794 	}
6795 	if (off < 0) {
6796 		verbose(env,
6797 			"R%d is ptr_%s invalid negative access: off=%d\n",
6798 			regno, tname, off);
6799 		return -EACCES;
6800 	}
6801 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6802 		char tn_buf[48];
6803 
6804 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6805 		verbose(env,
6806 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6807 			regno, tname, off, tn_buf);
6808 		return -EACCES;
6809 	}
6810 
6811 	if (reg->type & MEM_USER) {
6812 		verbose(env,
6813 			"R%d is ptr_%s access user memory: off=%d\n",
6814 			regno, tname, off);
6815 		return -EACCES;
6816 	}
6817 
6818 	if (reg->type & MEM_PERCPU) {
6819 		verbose(env,
6820 			"R%d is ptr_%s access percpu memory: off=%d\n",
6821 			regno, tname, off);
6822 		return -EACCES;
6823 	}
6824 
6825 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6826 		if (!btf_is_kernel(reg->btf)) {
6827 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6828 			return -EFAULT;
6829 		}
6830 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6831 	} else {
6832 		/* Writes are permitted with default btf_struct_access for
6833 		 * program allocated objects (which always have ref_obj_id > 0),
6834 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6835 		 */
6836 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6837 			verbose(env, "only read is supported\n");
6838 			return -EACCES;
6839 		}
6840 
6841 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6842 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6843 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6844 			return -EFAULT;
6845 		}
6846 
6847 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6848 	}
6849 
6850 	if (ret < 0)
6851 		return ret;
6852 	/* For raw_tp progs, we allow dereference of PTR_MAYBE_NULL
6853 	 * trusted PTR_TO_BTF_ID, these are the ones that are possibly
6854 	 * arguments to the raw_tp. Since internal checks in for trusted
6855 	 * reg in check_ptr_to_btf_access would consider PTR_MAYBE_NULL
6856 	 * modifier as problematic, mask it out temporarily for the
6857 	 * check. Don't apply this to pointers with ref_obj_id > 0, as
6858 	 * those won't be raw_tp args.
6859 	 *
6860 	 * We may end up applying this relaxation to other trusted
6861 	 * PTR_TO_BTF_ID with maybe null flag, since we cannot
6862 	 * distinguish PTR_MAYBE_NULL tagged for arguments vs normal
6863 	 * tagging, but that should expand allowed behavior, and not
6864 	 * cause regression for existing behavior.
6865 	 */
6866 	mask = mask_raw_tp_reg(env, reg);
6867 	if (ret != PTR_TO_BTF_ID) {
6868 		/* just mark; */
6869 
6870 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6871 		/* If this is an untrusted pointer, all pointers formed by walking it
6872 		 * also inherit the untrusted flag.
6873 		 */
6874 		flag = PTR_UNTRUSTED;
6875 
6876 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6877 		/* By default any pointer obtained from walking a trusted pointer is no
6878 		 * longer trusted, unless the field being accessed has explicitly been
6879 		 * marked as inheriting its parent's state of trust (either full or RCU).
6880 		 * For example:
6881 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6882 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6883 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6884 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6885 		 *
6886 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6887 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6888 		 */
6889 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6890 			flag |= PTR_TRUSTED;
6891 		} else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
6892 			flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
6893 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6894 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6895 				/* ignore __rcu tag and mark it MEM_RCU */
6896 				flag |= MEM_RCU;
6897 			} else if (flag & MEM_RCU ||
6898 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6899 				/* __rcu tagged pointers can be NULL */
6900 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6901 
6902 				/* We always trust them */
6903 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6904 				    flag & PTR_UNTRUSTED)
6905 					flag &= ~PTR_UNTRUSTED;
6906 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6907 				/* keep as-is */
6908 			} else {
6909 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6910 				clear_trusted_flags(&flag);
6911 			}
6912 		} else {
6913 			/*
6914 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6915 			 * aggressively mark as untrusted otherwise such
6916 			 * pointers will be plain PTR_TO_BTF_ID without flags
6917 			 * and will be allowed to be passed into helpers for
6918 			 * compat reasons.
6919 			 */
6920 			flag = PTR_UNTRUSTED;
6921 		}
6922 	} else {
6923 		/* Old compat. Deprecated */
6924 		clear_trusted_flags(&flag);
6925 	}
6926 
6927 	if (atype == BPF_READ && value_regno >= 0) {
6928 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6929 		/* We've assigned a new type to regno, so don't undo masking. */
6930 		if (regno == value_regno)
6931 			mask = false;
6932 	}
6933 	unmask_raw_tp_reg(reg, mask);
6934 
6935 	return 0;
6936 }
6937 
6938 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6939 				   struct bpf_reg_state *regs,
6940 				   int regno, int off, int size,
6941 				   enum bpf_access_type atype,
6942 				   int value_regno)
6943 {
6944 	struct bpf_reg_state *reg = regs + regno;
6945 	struct bpf_map *map = reg->map_ptr;
6946 	struct bpf_reg_state map_reg;
6947 	enum bpf_type_flag flag = 0;
6948 	const struct btf_type *t;
6949 	const char *tname;
6950 	u32 btf_id;
6951 	int ret;
6952 
6953 	if (!btf_vmlinux) {
6954 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6955 		return -ENOTSUPP;
6956 	}
6957 
6958 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6959 		verbose(env, "map_ptr access not supported for map type %d\n",
6960 			map->map_type);
6961 		return -ENOTSUPP;
6962 	}
6963 
6964 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6965 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6966 
6967 	if (!env->allow_ptr_leaks) {
6968 		verbose(env,
6969 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6970 			tname);
6971 		return -EPERM;
6972 	}
6973 
6974 	if (off < 0) {
6975 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6976 			regno, tname, off);
6977 		return -EACCES;
6978 	}
6979 
6980 	if (atype != BPF_READ) {
6981 		verbose(env, "only read from %s is supported\n", tname);
6982 		return -EACCES;
6983 	}
6984 
6985 	/* Simulate access to a PTR_TO_BTF_ID */
6986 	memset(&map_reg, 0, sizeof(map_reg));
6987 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6988 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6989 	if (ret < 0)
6990 		return ret;
6991 
6992 	if (value_regno >= 0)
6993 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6994 
6995 	return 0;
6996 }
6997 
6998 /* Check that the stack access at the given offset is within bounds. The
6999  * maximum valid offset is -1.
7000  *
7001  * The minimum valid offset is -MAX_BPF_STACK for writes, and
7002  * -state->allocated_stack for reads.
7003  */
7004 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
7005                                           s64 off,
7006                                           struct bpf_func_state *state,
7007                                           enum bpf_access_type t)
7008 {
7009 	int min_valid_off;
7010 
7011 	if (t == BPF_WRITE || env->allow_uninit_stack)
7012 		min_valid_off = -MAX_BPF_STACK;
7013 	else
7014 		min_valid_off = -state->allocated_stack;
7015 
7016 	if (off < min_valid_off || off > -1)
7017 		return -EACCES;
7018 	return 0;
7019 }
7020 
7021 /* Check that the stack access at 'regno + off' falls within the maximum stack
7022  * bounds.
7023  *
7024  * 'off' includes `regno->offset`, but not its dynamic part (if any).
7025  */
7026 static int check_stack_access_within_bounds(
7027 		struct bpf_verifier_env *env,
7028 		int regno, int off, int access_size,
7029 		enum bpf_access_src src, enum bpf_access_type type)
7030 {
7031 	struct bpf_reg_state *regs = cur_regs(env);
7032 	struct bpf_reg_state *reg = regs + regno;
7033 	struct bpf_func_state *state = func(env, reg);
7034 	s64 min_off, max_off;
7035 	int err;
7036 	char *err_extra;
7037 
7038 	if (src == ACCESS_HELPER)
7039 		/* We don't know if helpers are reading or writing (or both). */
7040 		err_extra = " indirect access to";
7041 	else if (type == BPF_READ)
7042 		err_extra = " read from";
7043 	else
7044 		err_extra = " write to";
7045 
7046 	if (tnum_is_const(reg->var_off)) {
7047 		min_off = (s64)reg->var_off.value + off;
7048 		max_off = min_off + access_size;
7049 	} else {
7050 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
7051 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
7052 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
7053 				err_extra, regno);
7054 			return -EACCES;
7055 		}
7056 		min_off = reg->smin_value + off;
7057 		max_off = reg->smax_value + off + access_size;
7058 	}
7059 
7060 	err = check_stack_slot_within_bounds(env, min_off, state, type);
7061 	if (!err && max_off > 0)
7062 		err = -EINVAL; /* out of stack access into non-negative offsets */
7063 	if (!err && access_size < 0)
7064 		/* access_size should not be negative (or overflow an int); others checks
7065 		 * along the way should have prevented such an access.
7066 		 */
7067 		err = -EFAULT; /* invalid negative access size; integer overflow? */
7068 
7069 	if (err) {
7070 		if (tnum_is_const(reg->var_off)) {
7071 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
7072 				err_extra, regno, off, access_size);
7073 		} else {
7074 			char tn_buf[48];
7075 
7076 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7077 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
7078 				err_extra, regno, tn_buf, off, access_size);
7079 		}
7080 		return err;
7081 	}
7082 
7083 	/* Note that there is no stack access with offset zero, so the needed stack
7084 	 * size is -min_off, not -min_off+1.
7085 	 */
7086 	return grow_stack_state(env, state, -min_off /* size */);
7087 }
7088 
7089 static bool get_func_retval_range(struct bpf_prog *prog,
7090 				  struct bpf_retval_range *range)
7091 {
7092 	if (prog->type == BPF_PROG_TYPE_LSM &&
7093 		prog->expected_attach_type == BPF_LSM_MAC &&
7094 		!bpf_lsm_get_retval_range(prog, range)) {
7095 		return true;
7096 	}
7097 	return false;
7098 }
7099 
7100 /* check whether memory at (regno + off) is accessible for t = (read | write)
7101  * if t==write, value_regno is a register which value is stored into memory
7102  * if t==read, value_regno is a register which will receive the value from memory
7103  * if t==write && value_regno==-1, some unknown value is stored into memory
7104  * if t==read && value_regno==-1, don't care what we read from memory
7105  */
7106 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
7107 			    int off, int bpf_size, enum bpf_access_type t,
7108 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
7109 {
7110 	struct bpf_reg_state *regs = cur_regs(env);
7111 	struct bpf_reg_state *reg = regs + regno;
7112 	int size, err = 0;
7113 
7114 	size = bpf_size_to_bytes(bpf_size);
7115 	if (size < 0)
7116 		return size;
7117 
7118 	/* alignment checks will add in reg->off themselves */
7119 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
7120 	if (err)
7121 		return err;
7122 
7123 	/* for access checks, reg->off is just part of off */
7124 	off += reg->off;
7125 
7126 	if (reg->type == PTR_TO_MAP_KEY) {
7127 		if (t == BPF_WRITE) {
7128 			verbose(env, "write to change key R%d not allowed\n", regno);
7129 			return -EACCES;
7130 		}
7131 
7132 		err = check_mem_region_access(env, regno, off, size,
7133 					      reg->map_ptr->key_size, false);
7134 		if (err)
7135 			return err;
7136 		if (value_regno >= 0)
7137 			mark_reg_unknown(env, regs, value_regno);
7138 	} else if (reg->type == PTR_TO_MAP_VALUE) {
7139 		struct btf_field *kptr_field = NULL;
7140 
7141 		if (t == BPF_WRITE && value_regno >= 0 &&
7142 		    is_pointer_value(env, value_regno)) {
7143 			verbose(env, "R%d leaks addr into map\n", value_regno);
7144 			return -EACCES;
7145 		}
7146 		err = check_map_access_type(env, regno, off, size, t);
7147 		if (err)
7148 			return err;
7149 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
7150 		if (err)
7151 			return err;
7152 		if (tnum_is_const(reg->var_off))
7153 			kptr_field = btf_record_find(reg->map_ptr->record,
7154 						     off + reg->var_off.value, BPF_KPTR | BPF_UPTR);
7155 		if (kptr_field) {
7156 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
7157 		} else if (t == BPF_READ && value_regno >= 0) {
7158 			struct bpf_map *map = reg->map_ptr;
7159 
7160 			/* if map is read-only, track its contents as scalars */
7161 			if (tnum_is_const(reg->var_off) &&
7162 			    bpf_map_is_rdonly(map) &&
7163 			    map->ops->map_direct_value_addr) {
7164 				int map_off = off + reg->var_off.value;
7165 				u64 val = 0;
7166 
7167 				err = bpf_map_direct_read(map, map_off, size,
7168 							  &val, is_ldsx);
7169 				if (err)
7170 					return err;
7171 
7172 				regs[value_regno].type = SCALAR_VALUE;
7173 				__mark_reg_known(&regs[value_regno], val);
7174 			} else {
7175 				mark_reg_unknown(env, regs, value_regno);
7176 			}
7177 		}
7178 	} else if (base_type(reg->type) == PTR_TO_MEM) {
7179 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
7180 
7181 		if (type_may_be_null(reg->type)) {
7182 			verbose(env, "R%d invalid mem access '%s'\n", regno,
7183 				reg_type_str(env, reg->type));
7184 			return -EACCES;
7185 		}
7186 
7187 		if (t == BPF_WRITE && rdonly_mem) {
7188 			verbose(env, "R%d cannot write into %s\n",
7189 				regno, reg_type_str(env, reg->type));
7190 			return -EACCES;
7191 		}
7192 
7193 		if (t == BPF_WRITE && value_regno >= 0 &&
7194 		    is_pointer_value(env, value_regno)) {
7195 			verbose(env, "R%d leaks addr into mem\n", value_regno);
7196 			return -EACCES;
7197 		}
7198 
7199 		err = check_mem_region_access(env, regno, off, size,
7200 					      reg->mem_size, false);
7201 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
7202 			mark_reg_unknown(env, regs, value_regno);
7203 	} else if (reg->type == PTR_TO_CTX) {
7204 		bool is_retval = false;
7205 		struct bpf_retval_range range;
7206 		enum bpf_reg_type reg_type = SCALAR_VALUE;
7207 		struct btf *btf = NULL;
7208 		u32 btf_id = 0;
7209 
7210 		if (t == BPF_WRITE && value_regno >= 0 &&
7211 		    is_pointer_value(env, value_regno)) {
7212 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
7213 			return -EACCES;
7214 		}
7215 
7216 		err = check_ptr_off_reg(env, reg, regno);
7217 		if (err < 0)
7218 			return err;
7219 
7220 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
7221 				       &btf_id, &is_retval, is_ldsx);
7222 		if (err)
7223 			verbose_linfo(env, insn_idx, "; ");
7224 		if (!err && t == BPF_READ && value_regno >= 0) {
7225 			/* ctx access returns either a scalar, or a
7226 			 * PTR_TO_PACKET[_META,_END]. In the latter
7227 			 * case, we know the offset is zero.
7228 			 */
7229 			if (reg_type == SCALAR_VALUE) {
7230 				if (is_retval && get_func_retval_range(env->prog, &range)) {
7231 					err = __mark_reg_s32_range(env, regs, value_regno,
7232 								   range.minval, range.maxval);
7233 					if (err)
7234 						return err;
7235 				} else {
7236 					mark_reg_unknown(env, regs, value_regno);
7237 				}
7238 			} else {
7239 				mark_reg_known_zero(env, regs,
7240 						    value_regno);
7241 				if (type_may_be_null(reg_type))
7242 					regs[value_regno].id = ++env->id_gen;
7243 				/* A load of ctx field could have different
7244 				 * actual load size with the one encoded in the
7245 				 * insn. When the dst is PTR, it is for sure not
7246 				 * a sub-register.
7247 				 */
7248 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
7249 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
7250 					regs[value_regno].btf = btf;
7251 					regs[value_regno].btf_id = btf_id;
7252 				}
7253 			}
7254 			regs[value_regno].type = reg_type;
7255 		}
7256 
7257 	} else if (reg->type == PTR_TO_STACK) {
7258 		/* Basic bounds checks. */
7259 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
7260 		if (err)
7261 			return err;
7262 
7263 		if (t == BPF_READ)
7264 			err = check_stack_read(env, regno, off, size,
7265 					       value_regno);
7266 		else
7267 			err = check_stack_write(env, regno, off, size,
7268 						value_regno, insn_idx);
7269 	} else if (reg_is_pkt_pointer(reg)) {
7270 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
7271 			verbose(env, "cannot write into packet\n");
7272 			return -EACCES;
7273 		}
7274 		if (t == BPF_WRITE && value_regno >= 0 &&
7275 		    is_pointer_value(env, value_regno)) {
7276 			verbose(env, "R%d leaks addr into packet\n",
7277 				value_regno);
7278 			return -EACCES;
7279 		}
7280 		err = check_packet_access(env, regno, off, size, false);
7281 		if (!err && t == BPF_READ && value_regno >= 0)
7282 			mark_reg_unknown(env, regs, value_regno);
7283 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
7284 		if (t == BPF_WRITE && value_regno >= 0 &&
7285 		    is_pointer_value(env, value_regno)) {
7286 			verbose(env, "R%d leaks addr into flow keys\n",
7287 				value_regno);
7288 			return -EACCES;
7289 		}
7290 
7291 		err = check_flow_keys_access(env, off, size);
7292 		if (!err && t == BPF_READ && value_regno >= 0)
7293 			mark_reg_unknown(env, regs, value_regno);
7294 	} else if (type_is_sk_pointer(reg->type)) {
7295 		if (t == BPF_WRITE) {
7296 			verbose(env, "R%d cannot write into %s\n",
7297 				regno, reg_type_str(env, reg->type));
7298 			return -EACCES;
7299 		}
7300 		err = check_sock_access(env, insn_idx, regno, off, size, t);
7301 		if (!err && value_regno >= 0)
7302 			mark_reg_unknown(env, regs, value_regno);
7303 	} else if (reg->type == PTR_TO_TP_BUFFER) {
7304 		err = check_tp_buffer_access(env, reg, regno, off, size);
7305 		if (!err && t == BPF_READ && value_regno >= 0)
7306 			mark_reg_unknown(env, regs, value_regno);
7307 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
7308 		   (mask_raw_tp_reg_cond(env, reg) || !type_may_be_null(reg->type))) {
7309 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
7310 					      value_regno);
7311 	} else if (reg->type == CONST_PTR_TO_MAP) {
7312 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
7313 					      value_regno);
7314 	} else if (base_type(reg->type) == PTR_TO_BUF) {
7315 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
7316 		u32 *max_access;
7317 
7318 		if (rdonly_mem) {
7319 			if (t == BPF_WRITE) {
7320 				verbose(env, "R%d cannot write into %s\n",
7321 					regno, reg_type_str(env, reg->type));
7322 				return -EACCES;
7323 			}
7324 			max_access = &env->prog->aux->max_rdonly_access;
7325 		} else {
7326 			max_access = &env->prog->aux->max_rdwr_access;
7327 		}
7328 
7329 		err = check_buffer_access(env, reg, regno, off, size, false,
7330 					  max_access);
7331 
7332 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
7333 			mark_reg_unknown(env, regs, value_regno);
7334 	} else if (reg->type == PTR_TO_ARENA) {
7335 		if (t == BPF_READ && value_regno >= 0)
7336 			mark_reg_unknown(env, regs, value_regno);
7337 	} else {
7338 		verbose(env, "R%d invalid mem access '%s'\n", regno,
7339 			reg_type_str(env, reg->type));
7340 		return -EACCES;
7341 	}
7342 
7343 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
7344 	    regs[value_regno].type == SCALAR_VALUE) {
7345 		if (!is_ldsx)
7346 			/* b/h/w load zero-extends, mark upper bits as known 0 */
7347 			coerce_reg_to_size(&regs[value_regno], size);
7348 		else
7349 			coerce_reg_to_size_sx(&regs[value_regno], size);
7350 	}
7351 	return err;
7352 }
7353 
7354 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
7355 			     bool allow_trust_mismatch);
7356 
7357 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
7358 {
7359 	int load_reg;
7360 	int err;
7361 
7362 	switch (insn->imm) {
7363 	case BPF_ADD:
7364 	case BPF_ADD | BPF_FETCH:
7365 	case BPF_AND:
7366 	case BPF_AND | BPF_FETCH:
7367 	case BPF_OR:
7368 	case BPF_OR | BPF_FETCH:
7369 	case BPF_XOR:
7370 	case BPF_XOR | BPF_FETCH:
7371 	case BPF_XCHG:
7372 	case BPF_CMPXCHG:
7373 		break;
7374 	default:
7375 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
7376 		return -EINVAL;
7377 	}
7378 
7379 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7380 		verbose(env, "invalid atomic operand size\n");
7381 		return -EINVAL;
7382 	}
7383 
7384 	/* check src1 operand */
7385 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7386 	if (err)
7387 		return err;
7388 
7389 	/* check src2 operand */
7390 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7391 	if (err)
7392 		return err;
7393 
7394 	if (insn->imm == BPF_CMPXCHG) {
7395 		/* Check comparison of R0 with memory location */
7396 		const u32 aux_reg = BPF_REG_0;
7397 
7398 		err = check_reg_arg(env, aux_reg, SRC_OP);
7399 		if (err)
7400 			return err;
7401 
7402 		if (is_pointer_value(env, aux_reg)) {
7403 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
7404 			return -EACCES;
7405 		}
7406 	}
7407 
7408 	if (is_pointer_value(env, insn->src_reg)) {
7409 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7410 		return -EACCES;
7411 	}
7412 
7413 	if (is_ctx_reg(env, insn->dst_reg) ||
7414 	    is_pkt_reg(env, insn->dst_reg) ||
7415 	    is_flow_key_reg(env, insn->dst_reg) ||
7416 	    is_sk_reg(env, insn->dst_reg) ||
7417 	    (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) {
7418 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7419 			insn->dst_reg,
7420 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7421 		return -EACCES;
7422 	}
7423 
7424 	if (insn->imm & BPF_FETCH) {
7425 		if (insn->imm == BPF_CMPXCHG)
7426 			load_reg = BPF_REG_0;
7427 		else
7428 			load_reg = insn->src_reg;
7429 
7430 		/* check and record load of old value */
7431 		err = check_reg_arg(env, load_reg, DST_OP);
7432 		if (err)
7433 			return err;
7434 	} else {
7435 		/* This instruction accesses a memory location but doesn't
7436 		 * actually load it into a register.
7437 		 */
7438 		load_reg = -1;
7439 	}
7440 
7441 	/* Check whether we can read the memory, with second call for fetch
7442 	 * case to simulate the register fill.
7443 	 */
7444 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7445 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7446 	if (!err && load_reg >= 0)
7447 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7448 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
7449 				       true, false);
7450 	if (err)
7451 		return err;
7452 
7453 	if (is_arena_reg(env, insn->dst_reg)) {
7454 		err = save_aux_ptr_type(env, PTR_TO_ARENA, false);
7455 		if (err)
7456 			return err;
7457 	}
7458 	/* Check whether we can write into the same memory. */
7459 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7460 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7461 	if (err)
7462 		return err;
7463 	return 0;
7464 }
7465 
7466 /* When register 'regno' is used to read the stack (either directly or through
7467  * a helper function) make sure that it's within stack boundary and, depending
7468  * on the access type and privileges, that all elements of the stack are
7469  * initialized.
7470  *
7471  * 'off' includes 'regno->off', but not its dynamic part (if any).
7472  *
7473  * All registers that have been spilled on the stack in the slots within the
7474  * read offsets are marked as read.
7475  */
7476 static int check_stack_range_initialized(
7477 		struct bpf_verifier_env *env, int regno, int off,
7478 		int access_size, bool zero_size_allowed,
7479 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7480 {
7481 	struct bpf_reg_state *reg = reg_state(env, regno);
7482 	struct bpf_func_state *state = func(env, reg);
7483 	int err, min_off, max_off, i, j, slot, spi;
7484 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7485 	enum bpf_access_type bounds_check_type;
7486 	/* Some accesses can write anything into the stack, others are
7487 	 * read-only.
7488 	 */
7489 	bool clobber = false;
7490 
7491 	if (access_size == 0 && !zero_size_allowed) {
7492 		verbose(env, "invalid zero-sized read\n");
7493 		return -EACCES;
7494 	}
7495 
7496 	if (type == ACCESS_HELPER) {
7497 		/* The bounds checks for writes are more permissive than for
7498 		 * reads. However, if raw_mode is not set, we'll do extra
7499 		 * checks below.
7500 		 */
7501 		bounds_check_type = BPF_WRITE;
7502 		clobber = true;
7503 	} else {
7504 		bounds_check_type = BPF_READ;
7505 	}
7506 	err = check_stack_access_within_bounds(env, regno, off, access_size,
7507 					       type, bounds_check_type);
7508 	if (err)
7509 		return err;
7510 
7511 
7512 	if (tnum_is_const(reg->var_off)) {
7513 		min_off = max_off = reg->var_off.value + off;
7514 	} else {
7515 		/* Variable offset is prohibited for unprivileged mode for
7516 		 * simplicity since it requires corresponding support in
7517 		 * Spectre masking for stack ALU.
7518 		 * See also retrieve_ptr_limit().
7519 		 */
7520 		if (!env->bypass_spec_v1) {
7521 			char tn_buf[48];
7522 
7523 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7524 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7525 				regno, err_extra, tn_buf);
7526 			return -EACCES;
7527 		}
7528 		/* Only initialized buffer on stack is allowed to be accessed
7529 		 * with variable offset. With uninitialized buffer it's hard to
7530 		 * guarantee that whole memory is marked as initialized on
7531 		 * helper return since specific bounds are unknown what may
7532 		 * cause uninitialized stack leaking.
7533 		 */
7534 		if (meta && meta->raw_mode)
7535 			meta = NULL;
7536 
7537 		min_off = reg->smin_value + off;
7538 		max_off = reg->smax_value + off;
7539 	}
7540 
7541 	if (meta && meta->raw_mode) {
7542 		/* Ensure we won't be overwriting dynptrs when simulating byte
7543 		 * by byte access in check_helper_call using meta.access_size.
7544 		 * This would be a problem if we have a helper in the future
7545 		 * which takes:
7546 		 *
7547 		 *	helper(uninit_mem, len, dynptr)
7548 		 *
7549 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7550 		 * may end up writing to dynptr itself when touching memory from
7551 		 * arg 1. This can be relaxed on a case by case basis for known
7552 		 * safe cases, but reject due to the possibilitiy of aliasing by
7553 		 * default.
7554 		 */
7555 		for (i = min_off; i < max_off + access_size; i++) {
7556 			int stack_off = -i - 1;
7557 
7558 			spi = __get_spi(i);
7559 			/* raw_mode may write past allocated_stack */
7560 			if (state->allocated_stack <= stack_off)
7561 				continue;
7562 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7563 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7564 				return -EACCES;
7565 			}
7566 		}
7567 		meta->access_size = access_size;
7568 		meta->regno = regno;
7569 		return 0;
7570 	}
7571 
7572 	for (i = min_off; i < max_off + access_size; i++) {
7573 		u8 *stype;
7574 
7575 		slot = -i - 1;
7576 		spi = slot / BPF_REG_SIZE;
7577 		if (state->allocated_stack <= slot) {
7578 			verbose(env, "verifier bug: allocated_stack too small");
7579 			return -EFAULT;
7580 		}
7581 
7582 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7583 		if (*stype == STACK_MISC)
7584 			goto mark;
7585 		if ((*stype == STACK_ZERO) ||
7586 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7587 			if (clobber) {
7588 				/* helper can write anything into the stack */
7589 				*stype = STACK_MISC;
7590 			}
7591 			goto mark;
7592 		}
7593 
7594 		if (is_spilled_reg(&state->stack[spi]) &&
7595 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7596 		     env->allow_ptr_leaks)) {
7597 			if (clobber) {
7598 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7599 				for (j = 0; j < BPF_REG_SIZE; j++)
7600 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7601 			}
7602 			goto mark;
7603 		}
7604 
7605 		if (tnum_is_const(reg->var_off)) {
7606 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7607 				err_extra, regno, min_off, i - min_off, access_size);
7608 		} else {
7609 			char tn_buf[48];
7610 
7611 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7612 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7613 				err_extra, regno, tn_buf, i - min_off, access_size);
7614 		}
7615 		return -EACCES;
7616 mark:
7617 		/* reading any byte out of 8-byte 'spill_slot' will cause
7618 		 * the whole slot to be marked as 'read'
7619 		 */
7620 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7621 			      state->stack[spi].spilled_ptr.parent,
7622 			      REG_LIVE_READ64);
7623 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7624 		 * be sure that whether stack slot is written to or not. Hence,
7625 		 * we must still conservatively propagate reads upwards even if
7626 		 * helper may write to the entire memory range.
7627 		 */
7628 	}
7629 	return 0;
7630 }
7631 
7632 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7633 				   int access_size, enum bpf_access_type access_type,
7634 				   bool zero_size_allowed,
7635 				   struct bpf_call_arg_meta *meta)
7636 {
7637 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7638 	u32 *max_access;
7639 
7640 	switch (base_type(reg->type)) {
7641 	case PTR_TO_PACKET:
7642 	case PTR_TO_PACKET_META:
7643 		return check_packet_access(env, regno, reg->off, access_size,
7644 					   zero_size_allowed);
7645 	case PTR_TO_MAP_KEY:
7646 		if (access_type == BPF_WRITE) {
7647 			verbose(env, "R%d cannot write into %s\n", regno,
7648 				reg_type_str(env, reg->type));
7649 			return -EACCES;
7650 		}
7651 		return check_mem_region_access(env, regno, reg->off, access_size,
7652 					       reg->map_ptr->key_size, false);
7653 	case PTR_TO_MAP_VALUE:
7654 		if (check_map_access_type(env, regno, reg->off, access_size, access_type))
7655 			return -EACCES;
7656 		return check_map_access(env, regno, reg->off, access_size,
7657 					zero_size_allowed, ACCESS_HELPER);
7658 	case PTR_TO_MEM:
7659 		if (type_is_rdonly_mem(reg->type)) {
7660 			if (access_type == BPF_WRITE) {
7661 				verbose(env, "R%d cannot write into %s\n", regno,
7662 					reg_type_str(env, reg->type));
7663 				return -EACCES;
7664 			}
7665 		}
7666 		return check_mem_region_access(env, regno, reg->off,
7667 					       access_size, reg->mem_size,
7668 					       zero_size_allowed);
7669 	case PTR_TO_BUF:
7670 		if (type_is_rdonly_mem(reg->type)) {
7671 			if (access_type == BPF_WRITE) {
7672 				verbose(env, "R%d cannot write into %s\n", regno,
7673 					reg_type_str(env, reg->type));
7674 				return -EACCES;
7675 			}
7676 
7677 			max_access = &env->prog->aux->max_rdonly_access;
7678 		} else {
7679 			max_access = &env->prog->aux->max_rdwr_access;
7680 		}
7681 		return check_buffer_access(env, reg, regno, reg->off,
7682 					   access_size, zero_size_allowed,
7683 					   max_access);
7684 	case PTR_TO_STACK:
7685 		return check_stack_range_initialized(
7686 				env,
7687 				regno, reg->off, access_size,
7688 				zero_size_allowed, ACCESS_HELPER, meta);
7689 	case PTR_TO_BTF_ID:
7690 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7691 					       access_size, BPF_READ, -1);
7692 	case PTR_TO_CTX:
7693 		/* in case the function doesn't know how to access the context,
7694 		 * (because we are in a program of type SYSCALL for example), we
7695 		 * can not statically check its size.
7696 		 * Dynamically check it now.
7697 		 */
7698 		if (!env->ops->convert_ctx_access) {
7699 			int offset = access_size - 1;
7700 
7701 			/* Allow zero-byte read from PTR_TO_CTX */
7702 			if (access_size == 0)
7703 				return zero_size_allowed ? 0 : -EACCES;
7704 
7705 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7706 						access_type, -1, false, false);
7707 		}
7708 
7709 		fallthrough;
7710 	default: /* scalar_value or invalid ptr */
7711 		/* Allow zero-byte read from NULL, regardless of pointer type */
7712 		if (zero_size_allowed && access_size == 0 &&
7713 		    register_is_null(reg))
7714 			return 0;
7715 
7716 		verbose(env, "R%d type=%s ", regno,
7717 			reg_type_str(env, reg->type));
7718 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7719 		return -EACCES;
7720 	}
7721 }
7722 
7723 /* verify arguments to helpers or kfuncs consisting of a pointer and an access
7724  * size.
7725  *
7726  * @regno is the register containing the access size. regno-1 is the register
7727  * containing the pointer.
7728  */
7729 static int check_mem_size_reg(struct bpf_verifier_env *env,
7730 			      struct bpf_reg_state *reg, u32 regno,
7731 			      enum bpf_access_type access_type,
7732 			      bool zero_size_allowed,
7733 			      struct bpf_call_arg_meta *meta)
7734 {
7735 	int err;
7736 
7737 	/* This is used to refine r0 return value bounds for helpers
7738 	 * that enforce this value as an upper bound on return values.
7739 	 * See do_refine_retval_range() for helpers that can refine
7740 	 * the return value. C type of helper is u32 so we pull register
7741 	 * bound from umax_value however, if negative verifier errors
7742 	 * out. Only upper bounds can be learned because retval is an
7743 	 * int type and negative retvals are allowed.
7744 	 */
7745 	meta->msize_max_value = reg->umax_value;
7746 
7747 	/* The register is SCALAR_VALUE; the access check happens using
7748 	 * its boundaries. For unprivileged variable accesses, disable
7749 	 * raw mode so that the program is required to initialize all
7750 	 * the memory that the helper could just partially fill up.
7751 	 */
7752 	if (!tnum_is_const(reg->var_off))
7753 		meta = NULL;
7754 
7755 	if (reg->smin_value < 0) {
7756 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7757 			regno);
7758 		return -EACCES;
7759 	}
7760 
7761 	if (reg->umin_value == 0 && !zero_size_allowed) {
7762 		verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
7763 			regno, reg->umin_value, reg->umax_value);
7764 		return -EACCES;
7765 	}
7766 
7767 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7768 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7769 			regno);
7770 		return -EACCES;
7771 	}
7772 	err = check_helper_mem_access(env, regno - 1, reg->umax_value,
7773 				      access_type, zero_size_allowed, meta);
7774 	if (!err)
7775 		err = mark_chain_precision(env, regno);
7776 	return err;
7777 }
7778 
7779 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7780 			 u32 regno, u32 mem_size)
7781 {
7782 	bool may_be_null = type_may_be_null(reg->type);
7783 	struct bpf_reg_state saved_reg;
7784 	int err;
7785 
7786 	if (register_is_null(reg))
7787 		return 0;
7788 
7789 	/* Assuming that the register contains a value check if the memory
7790 	 * access is safe. Temporarily save and restore the register's state as
7791 	 * the conversion shouldn't be visible to a caller.
7792 	 */
7793 	if (may_be_null) {
7794 		saved_reg = *reg;
7795 		mark_ptr_not_null_reg(reg);
7796 	}
7797 
7798 	err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL);
7799 	err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL);
7800 
7801 	if (may_be_null)
7802 		*reg = saved_reg;
7803 
7804 	return err;
7805 }
7806 
7807 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7808 				    u32 regno)
7809 {
7810 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7811 	bool may_be_null = type_may_be_null(mem_reg->type);
7812 	struct bpf_reg_state saved_reg;
7813 	struct bpf_call_arg_meta meta;
7814 	int err;
7815 
7816 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7817 
7818 	memset(&meta, 0, sizeof(meta));
7819 
7820 	if (may_be_null) {
7821 		saved_reg = *mem_reg;
7822 		mark_ptr_not_null_reg(mem_reg);
7823 	}
7824 
7825 	err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta);
7826 	err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta);
7827 
7828 	if (may_be_null)
7829 		*mem_reg = saved_reg;
7830 
7831 	return err;
7832 }
7833 
7834 /* Implementation details:
7835  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7836  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7837  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7838  * Two separate bpf_obj_new will also have different reg->id.
7839  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7840  * clears reg->id after value_or_null->value transition, since the verifier only
7841  * cares about the range of access to valid map value pointer and doesn't care
7842  * about actual address of the map element.
7843  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7844  * reg->id > 0 after value_or_null->value transition. By doing so
7845  * two bpf_map_lookups will be considered two different pointers that
7846  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7847  * returned from bpf_obj_new.
7848  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7849  * dead-locks.
7850  * Since only one bpf_spin_lock is allowed the checks are simpler than
7851  * reg_is_refcounted() logic. The verifier needs to remember only
7852  * one spin_lock instead of array of acquired_refs.
7853  * cur_func(env)->active_locks remembers which map value element or allocated
7854  * object got locked and clears it after bpf_spin_unlock.
7855  */
7856 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7857 			     bool is_lock)
7858 {
7859 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7860 	bool is_const = tnum_is_const(reg->var_off);
7861 	struct bpf_func_state *cur = cur_func(env);
7862 	u64 val = reg->var_off.value;
7863 	struct bpf_map *map = NULL;
7864 	struct btf *btf = NULL;
7865 	struct btf_record *rec;
7866 	int err;
7867 
7868 	if (!is_const) {
7869 		verbose(env,
7870 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7871 			regno);
7872 		return -EINVAL;
7873 	}
7874 	if (reg->type == PTR_TO_MAP_VALUE) {
7875 		map = reg->map_ptr;
7876 		if (!map->btf) {
7877 			verbose(env,
7878 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7879 				map->name);
7880 			return -EINVAL;
7881 		}
7882 	} else {
7883 		btf = reg->btf;
7884 	}
7885 
7886 	rec = reg_btf_record(reg);
7887 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7888 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7889 			map ? map->name : "kptr");
7890 		return -EINVAL;
7891 	}
7892 	if (rec->spin_lock_off != val + reg->off) {
7893 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7894 			val + reg->off, rec->spin_lock_off);
7895 		return -EINVAL;
7896 	}
7897 	if (is_lock) {
7898 		void *ptr;
7899 
7900 		if (map)
7901 			ptr = map;
7902 		else
7903 			ptr = btf;
7904 
7905 		if (cur->active_locks) {
7906 			verbose(env,
7907 				"Locking two bpf_spin_locks are not allowed\n");
7908 			return -EINVAL;
7909 		}
7910 		err = acquire_lock_state(env, env->insn_idx, REF_TYPE_LOCK, reg->id, ptr);
7911 		if (err < 0) {
7912 			verbose(env, "Failed to acquire lock state\n");
7913 			return err;
7914 		}
7915 	} else {
7916 		void *ptr;
7917 
7918 		if (map)
7919 			ptr = map;
7920 		else
7921 			ptr = btf;
7922 
7923 		if (!cur->active_locks) {
7924 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7925 			return -EINVAL;
7926 		}
7927 
7928 		if (release_lock_state(cur_func(env), REF_TYPE_LOCK, reg->id, ptr)) {
7929 			verbose(env, "bpf_spin_unlock of different lock\n");
7930 			return -EINVAL;
7931 		}
7932 
7933 		invalidate_non_owning_refs(env);
7934 	}
7935 	return 0;
7936 }
7937 
7938 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7939 			      struct bpf_call_arg_meta *meta)
7940 {
7941 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7942 	bool is_const = tnum_is_const(reg->var_off);
7943 	struct bpf_map *map = reg->map_ptr;
7944 	u64 val = reg->var_off.value;
7945 
7946 	if (!is_const) {
7947 		verbose(env,
7948 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7949 			regno);
7950 		return -EINVAL;
7951 	}
7952 	if (!map->btf) {
7953 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7954 			map->name);
7955 		return -EINVAL;
7956 	}
7957 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7958 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7959 		return -EINVAL;
7960 	}
7961 	if (map->record->timer_off != val + reg->off) {
7962 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7963 			val + reg->off, map->record->timer_off);
7964 		return -EINVAL;
7965 	}
7966 	if (meta->map_ptr) {
7967 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7968 		return -EFAULT;
7969 	}
7970 	meta->map_uid = reg->map_uid;
7971 	meta->map_ptr = map;
7972 	return 0;
7973 }
7974 
7975 static int process_wq_func(struct bpf_verifier_env *env, int regno,
7976 			   struct bpf_kfunc_call_arg_meta *meta)
7977 {
7978 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7979 	struct bpf_map *map = reg->map_ptr;
7980 	u64 val = reg->var_off.value;
7981 
7982 	if (map->record->wq_off != val + reg->off) {
7983 		verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n",
7984 			val + reg->off, map->record->wq_off);
7985 		return -EINVAL;
7986 	}
7987 	meta->map.uid = reg->map_uid;
7988 	meta->map.ptr = map;
7989 	return 0;
7990 }
7991 
7992 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7993 			     struct bpf_call_arg_meta *meta)
7994 {
7995 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7996 	struct btf_field *kptr_field;
7997 	struct bpf_map *map_ptr;
7998 	struct btf_record *rec;
7999 	u32 kptr_off;
8000 
8001 	if (type_is_ptr_alloc_obj(reg->type)) {
8002 		rec = reg_btf_record(reg);
8003 	} else { /* PTR_TO_MAP_VALUE */
8004 		map_ptr = reg->map_ptr;
8005 		if (!map_ptr->btf) {
8006 			verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
8007 				map_ptr->name);
8008 			return -EINVAL;
8009 		}
8010 		rec = map_ptr->record;
8011 		meta->map_ptr = map_ptr;
8012 	}
8013 
8014 	if (!tnum_is_const(reg->var_off)) {
8015 		verbose(env,
8016 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
8017 			regno);
8018 		return -EINVAL;
8019 	}
8020 
8021 	if (!btf_record_has_field(rec, BPF_KPTR)) {
8022 		verbose(env, "R%d has no valid kptr\n", regno);
8023 		return -EINVAL;
8024 	}
8025 
8026 	kptr_off = reg->off + reg->var_off.value;
8027 	kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR);
8028 	if (!kptr_field) {
8029 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
8030 		return -EACCES;
8031 	}
8032 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
8033 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
8034 		return -EACCES;
8035 	}
8036 	meta->kptr_field = kptr_field;
8037 	return 0;
8038 }
8039 
8040 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
8041  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
8042  *
8043  * In both cases we deal with the first 8 bytes, but need to mark the next 8
8044  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
8045  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
8046  *
8047  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
8048  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
8049  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
8050  * mutate the view of the dynptr and also possibly destroy it. In the latter
8051  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
8052  * memory that dynptr points to.
8053  *
8054  * The verifier will keep track both levels of mutation (bpf_dynptr's in
8055  * reg->type and the memory's in reg->dynptr.type), but there is no support for
8056  * readonly dynptr view yet, hence only the first case is tracked and checked.
8057  *
8058  * This is consistent with how C applies the const modifier to a struct object,
8059  * where the pointer itself inside bpf_dynptr becomes const but not what it
8060  * points to.
8061  *
8062  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
8063  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
8064  */
8065 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
8066 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
8067 {
8068 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8069 	int err;
8070 
8071 	if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) {
8072 		verbose(env,
8073 			"arg#%d expected pointer to stack or const struct bpf_dynptr\n",
8074 			regno);
8075 		return -EINVAL;
8076 	}
8077 
8078 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
8079 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
8080 	 */
8081 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
8082 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
8083 		return -EFAULT;
8084 	}
8085 
8086 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
8087 	 *		 constructing a mutable bpf_dynptr object.
8088 	 *
8089 	 *		 Currently, this is only possible with PTR_TO_STACK
8090 	 *		 pointing to a region of at least 16 bytes which doesn't
8091 	 *		 contain an existing bpf_dynptr.
8092 	 *
8093 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
8094 	 *		 mutated or destroyed. However, the memory it points to
8095 	 *		 may be mutated.
8096 	 *
8097 	 *  None       - Points to a initialized dynptr that can be mutated and
8098 	 *		 destroyed, including mutation of the memory it points
8099 	 *		 to.
8100 	 */
8101 	if (arg_type & MEM_UNINIT) {
8102 		int i;
8103 
8104 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
8105 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
8106 			return -EINVAL;
8107 		}
8108 
8109 		/* we write BPF_DW bits (8 bytes) at a time */
8110 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
8111 			err = check_mem_access(env, insn_idx, regno,
8112 					       i, BPF_DW, BPF_WRITE, -1, false, false);
8113 			if (err)
8114 				return err;
8115 		}
8116 
8117 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
8118 	} else /* MEM_RDONLY and None case from above */ {
8119 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
8120 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
8121 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
8122 			return -EINVAL;
8123 		}
8124 
8125 		if (!is_dynptr_reg_valid_init(env, reg)) {
8126 			verbose(env,
8127 				"Expected an initialized dynptr as arg #%d\n",
8128 				regno);
8129 			return -EINVAL;
8130 		}
8131 
8132 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
8133 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
8134 			verbose(env,
8135 				"Expected a dynptr of type %s as arg #%d\n",
8136 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
8137 			return -EINVAL;
8138 		}
8139 
8140 		err = mark_dynptr_read(env, reg);
8141 	}
8142 	return err;
8143 }
8144 
8145 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
8146 {
8147 	struct bpf_func_state *state = func(env, reg);
8148 
8149 	return state->stack[spi].spilled_ptr.ref_obj_id;
8150 }
8151 
8152 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8153 {
8154 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8155 }
8156 
8157 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8158 {
8159 	return meta->kfunc_flags & KF_ITER_NEW;
8160 }
8161 
8162 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8163 {
8164 	return meta->kfunc_flags & KF_ITER_NEXT;
8165 }
8166 
8167 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8168 {
8169 	return meta->kfunc_flags & KF_ITER_DESTROY;
8170 }
8171 
8172 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx,
8173 			      const struct btf_param *arg)
8174 {
8175 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
8176 	 * kfunc is iter state pointer
8177 	 */
8178 	if (is_iter_kfunc(meta))
8179 		return arg_idx == 0;
8180 
8181 	/* iter passed as an argument to a generic kfunc */
8182 	return btf_param_match_suffix(meta->btf, arg, "__iter");
8183 }
8184 
8185 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
8186 			    struct bpf_kfunc_call_arg_meta *meta)
8187 {
8188 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8189 	const struct btf_type *t;
8190 	int spi, err, i, nr_slots, btf_id;
8191 
8192 	/* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs()
8193 	 * ensures struct convention, so we wouldn't need to do any BTF
8194 	 * validation here. But given iter state can be passed as a parameter
8195 	 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more
8196 	 * conservative here.
8197 	 */
8198 	btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1);
8199 	if (btf_id < 0) {
8200 		verbose(env, "expected valid iter pointer as arg #%d\n", regno);
8201 		return -EINVAL;
8202 	}
8203 	t = btf_type_by_id(meta->btf, btf_id);
8204 	nr_slots = t->size / BPF_REG_SIZE;
8205 
8206 	if (is_iter_new_kfunc(meta)) {
8207 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
8208 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
8209 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
8210 				iter_type_str(meta->btf, btf_id), regno);
8211 			return -EINVAL;
8212 		}
8213 
8214 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
8215 			err = check_mem_access(env, insn_idx, regno,
8216 					       i, BPF_DW, BPF_WRITE, -1, false, false);
8217 			if (err)
8218 				return err;
8219 		}
8220 
8221 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
8222 		if (err)
8223 			return err;
8224 	} else {
8225 		/* iter_next() or iter_destroy(), as well as any kfunc
8226 		 * accepting iter argument, expect initialized iter state
8227 		 */
8228 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
8229 		switch (err) {
8230 		case 0:
8231 			break;
8232 		case -EINVAL:
8233 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
8234 				iter_type_str(meta->btf, btf_id), regno);
8235 			return err;
8236 		case -EPROTO:
8237 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
8238 			return err;
8239 		default:
8240 			return err;
8241 		}
8242 
8243 		spi = iter_get_spi(env, reg, nr_slots);
8244 		if (spi < 0)
8245 			return spi;
8246 
8247 		err = mark_iter_read(env, reg, spi, nr_slots);
8248 		if (err)
8249 			return err;
8250 
8251 		/* remember meta->iter info for process_iter_next_call() */
8252 		meta->iter.spi = spi;
8253 		meta->iter.frameno = reg->frameno;
8254 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
8255 
8256 		if (is_iter_destroy_kfunc(meta)) {
8257 			err = unmark_stack_slots_iter(env, reg, nr_slots);
8258 			if (err)
8259 				return err;
8260 		}
8261 	}
8262 
8263 	return 0;
8264 }
8265 
8266 /* Look for a previous loop entry at insn_idx: nearest parent state
8267  * stopped at insn_idx with callsites matching those in cur->frame.
8268  */
8269 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
8270 						  struct bpf_verifier_state *cur,
8271 						  int insn_idx)
8272 {
8273 	struct bpf_verifier_state_list *sl;
8274 	struct bpf_verifier_state *st;
8275 
8276 	/* Explored states are pushed in stack order, most recent states come first */
8277 	sl = *explored_state(env, insn_idx);
8278 	for (; sl; sl = sl->next) {
8279 		/* If st->branches != 0 state is a part of current DFS verification path,
8280 		 * hence cur & st for a loop.
8281 		 */
8282 		st = &sl->state;
8283 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
8284 		    st->dfs_depth < cur->dfs_depth)
8285 			return st;
8286 	}
8287 
8288 	return NULL;
8289 }
8290 
8291 static void reset_idmap_scratch(struct bpf_verifier_env *env);
8292 static bool regs_exact(const struct bpf_reg_state *rold,
8293 		       const struct bpf_reg_state *rcur,
8294 		       struct bpf_idmap *idmap);
8295 
8296 static void maybe_widen_reg(struct bpf_verifier_env *env,
8297 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8298 			    struct bpf_idmap *idmap)
8299 {
8300 	if (rold->type != SCALAR_VALUE)
8301 		return;
8302 	if (rold->type != rcur->type)
8303 		return;
8304 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
8305 		return;
8306 	__mark_reg_unknown(env, rcur);
8307 }
8308 
8309 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
8310 				   struct bpf_verifier_state *old,
8311 				   struct bpf_verifier_state *cur)
8312 {
8313 	struct bpf_func_state *fold, *fcur;
8314 	int i, fr;
8315 
8316 	reset_idmap_scratch(env);
8317 	for (fr = old->curframe; fr >= 0; fr--) {
8318 		fold = old->frame[fr];
8319 		fcur = cur->frame[fr];
8320 
8321 		for (i = 0; i < MAX_BPF_REG; i++)
8322 			maybe_widen_reg(env,
8323 					&fold->regs[i],
8324 					&fcur->regs[i],
8325 					&env->idmap_scratch);
8326 
8327 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
8328 			if (!is_spilled_reg(&fold->stack[i]) ||
8329 			    !is_spilled_reg(&fcur->stack[i]))
8330 				continue;
8331 
8332 			maybe_widen_reg(env,
8333 					&fold->stack[i].spilled_ptr,
8334 					&fcur->stack[i].spilled_ptr,
8335 					&env->idmap_scratch);
8336 		}
8337 	}
8338 	return 0;
8339 }
8340 
8341 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st,
8342 						 struct bpf_kfunc_call_arg_meta *meta)
8343 {
8344 	int iter_frameno = meta->iter.frameno;
8345 	int iter_spi = meta->iter.spi;
8346 
8347 	return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8348 }
8349 
8350 /* process_iter_next_call() is called when verifier gets to iterator's next
8351  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
8352  * to it as just "iter_next()" in comments below.
8353  *
8354  * BPF verifier relies on a crucial contract for any iter_next()
8355  * implementation: it should *eventually* return NULL, and once that happens
8356  * it should keep returning NULL. That is, once iterator exhausts elements to
8357  * iterate, it should never reset or spuriously return new elements.
8358  *
8359  * With the assumption of such contract, process_iter_next_call() simulates
8360  * a fork in the verifier state to validate loop logic correctness and safety
8361  * without having to simulate infinite amount of iterations.
8362  *
8363  * In current state, we first assume that iter_next() returned NULL and
8364  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
8365  * conditions we should not form an infinite loop and should eventually reach
8366  * exit.
8367  *
8368  * Besides that, we also fork current state and enqueue it for later
8369  * verification. In a forked state we keep iterator state as ACTIVE
8370  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
8371  * also bump iteration depth to prevent erroneous infinite loop detection
8372  * later on (see iter_active_depths_differ() comment for details). In this
8373  * state we assume that we'll eventually loop back to another iter_next()
8374  * calls (it could be in exactly same location or in some other instruction,
8375  * it doesn't matter, we don't make any unnecessary assumptions about this,
8376  * everything revolves around iterator state in a stack slot, not which
8377  * instruction is calling iter_next()). When that happens, we either will come
8378  * to iter_next() with equivalent state and can conclude that next iteration
8379  * will proceed in exactly the same way as we just verified, so it's safe to
8380  * assume that loop converges. If not, we'll go on another iteration
8381  * simulation with a different input state, until all possible starting states
8382  * are validated or we reach maximum number of instructions limit.
8383  *
8384  * This way, we will either exhaustively discover all possible input states
8385  * that iterator loop can start with and eventually will converge, or we'll
8386  * effectively regress into bounded loop simulation logic and either reach
8387  * maximum number of instructions if loop is not provably convergent, or there
8388  * is some statically known limit on number of iterations (e.g., if there is
8389  * an explicit `if n > 100 then break;` statement somewhere in the loop).
8390  *
8391  * Iteration convergence logic in is_state_visited() relies on exact
8392  * states comparison, which ignores read and precision marks.
8393  * This is necessary because read and precision marks are not finalized
8394  * while in the loop. Exact comparison might preclude convergence for
8395  * simple programs like below:
8396  *
8397  *     i = 0;
8398  *     while(iter_next(&it))
8399  *       i++;
8400  *
8401  * At each iteration step i++ would produce a new distinct state and
8402  * eventually instruction processing limit would be reached.
8403  *
8404  * To avoid such behavior speculatively forget (widen) range for
8405  * imprecise scalar registers, if those registers were not precise at the
8406  * end of the previous iteration and do not match exactly.
8407  *
8408  * This is a conservative heuristic that allows to verify wide range of programs,
8409  * however it precludes verification of programs that conjure an
8410  * imprecise value on the first loop iteration and use it as precise on a second.
8411  * For example, the following safe program would fail to verify:
8412  *
8413  *     struct bpf_num_iter it;
8414  *     int arr[10];
8415  *     int i = 0, a = 0;
8416  *     bpf_iter_num_new(&it, 0, 10);
8417  *     while (bpf_iter_num_next(&it)) {
8418  *       if (a == 0) {
8419  *         a = 1;
8420  *         i = 7; // Because i changed verifier would forget
8421  *                // it's range on second loop entry.
8422  *       } else {
8423  *         arr[i] = 42; // This would fail to verify.
8424  *       }
8425  *     }
8426  *     bpf_iter_num_destroy(&it);
8427  */
8428 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
8429 				  struct bpf_kfunc_call_arg_meta *meta)
8430 {
8431 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
8432 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
8433 	struct bpf_reg_state *cur_iter, *queued_iter;
8434 
8435 	BTF_TYPE_EMIT(struct bpf_iter);
8436 
8437 	cur_iter = get_iter_from_state(cur_st, meta);
8438 
8439 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
8440 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
8441 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
8442 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
8443 		return -EFAULT;
8444 	}
8445 
8446 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
8447 		/* Because iter_next() call is a checkpoint is_state_visitied()
8448 		 * should guarantee parent state with same call sites and insn_idx.
8449 		 */
8450 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
8451 		    !same_callsites(cur_st->parent, cur_st)) {
8452 			verbose(env, "bug: bad parent state for iter next call");
8453 			return -EFAULT;
8454 		}
8455 		/* Note cur_st->parent in the call below, it is necessary to skip
8456 		 * checkpoint created for cur_st by is_state_visited()
8457 		 * right at this instruction.
8458 		 */
8459 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
8460 		/* branch out active iter state */
8461 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
8462 		if (!queued_st)
8463 			return -ENOMEM;
8464 
8465 		queued_iter = get_iter_from_state(queued_st, meta);
8466 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
8467 		queued_iter->iter.depth++;
8468 		if (prev_st)
8469 			widen_imprecise_scalars(env, prev_st, queued_st);
8470 
8471 		queued_fr = queued_st->frame[queued_st->curframe];
8472 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
8473 	}
8474 
8475 	/* switch to DRAINED state, but keep the depth unchanged */
8476 	/* mark current iter state as drained and assume returned NULL */
8477 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8478 	__mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]);
8479 
8480 	return 0;
8481 }
8482 
8483 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8484 {
8485 	return type == ARG_CONST_SIZE ||
8486 	       type == ARG_CONST_SIZE_OR_ZERO;
8487 }
8488 
8489 static bool arg_type_is_raw_mem(enum bpf_arg_type type)
8490 {
8491 	return base_type(type) == ARG_PTR_TO_MEM &&
8492 	       type & MEM_UNINIT;
8493 }
8494 
8495 static bool arg_type_is_release(enum bpf_arg_type type)
8496 {
8497 	return type & OBJ_RELEASE;
8498 }
8499 
8500 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8501 {
8502 	return base_type(type) == ARG_PTR_TO_DYNPTR;
8503 }
8504 
8505 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8506 				 const struct bpf_call_arg_meta *meta,
8507 				 enum bpf_arg_type *arg_type)
8508 {
8509 	if (!meta->map_ptr) {
8510 		/* kernel subsystem misconfigured verifier */
8511 		verbose(env, "invalid map_ptr to access map->type\n");
8512 		return -EACCES;
8513 	}
8514 
8515 	switch (meta->map_ptr->map_type) {
8516 	case BPF_MAP_TYPE_SOCKMAP:
8517 	case BPF_MAP_TYPE_SOCKHASH:
8518 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8519 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8520 		} else {
8521 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
8522 			return -EINVAL;
8523 		}
8524 		break;
8525 	case BPF_MAP_TYPE_BLOOM_FILTER:
8526 		if (meta->func_id == BPF_FUNC_map_peek_elem)
8527 			*arg_type = ARG_PTR_TO_MAP_VALUE;
8528 		break;
8529 	default:
8530 		break;
8531 	}
8532 	return 0;
8533 }
8534 
8535 struct bpf_reg_types {
8536 	const enum bpf_reg_type types[10];
8537 	u32 *btf_id;
8538 };
8539 
8540 static const struct bpf_reg_types sock_types = {
8541 	.types = {
8542 		PTR_TO_SOCK_COMMON,
8543 		PTR_TO_SOCKET,
8544 		PTR_TO_TCP_SOCK,
8545 		PTR_TO_XDP_SOCK,
8546 	},
8547 };
8548 
8549 #ifdef CONFIG_NET
8550 static const struct bpf_reg_types btf_id_sock_common_types = {
8551 	.types = {
8552 		PTR_TO_SOCK_COMMON,
8553 		PTR_TO_SOCKET,
8554 		PTR_TO_TCP_SOCK,
8555 		PTR_TO_XDP_SOCK,
8556 		PTR_TO_BTF_ID,
8557 		PTR_TO_BTF_ID | PTR_TRUSTED,
8558 	},
8559 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8560 };
8561 #endif
8562 
8563 static const struct bpf_reg_types mem_types = {
8564 	.types = {
8565 		PTR_TO_STACK,
8566 		PTR_TO_PACKET,
8567 		PTR_TO_PACKET_META,
8568 		PTR_TO_MAP_KEY,
8569 		PTR_TO_MAP_VALUE,
8570 		PTR_TO_MEM,
8571 		PTR_TO_MEM | MEM_RINGBUF,
8572 		PTR_TO_BUF,
8573 		PTR_TO_BTF_ID | PTR_TRUSTED,
8574 	},
8575 };
8576 
8577 static const struct bpf_reg_types spin_lock_types = {
8578 	.types = {
8579 		PTR_TO_MAP_VALUE,
8580 		PTR_TO_BTF_ID | MEM_ALLOC,
8581 	}
8582 };
8583 
8584 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8585 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8586 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8587 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8588 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8589 static const struct bpf_reg_types btf_ptr_types = {
8590 	.types = {
8591 		PTR_TO_BTF_ID,
8592 		PTR_TO_BTF_ID | PTR_TRUSTED,
8593 		PTR_TO_BTF_ID | MEM_RCU,
8594 	},
8595 };
8596 static const struct bpf_reg_types percpu_btf_ptr_types = {
8597 	.types = {
8598 		PTR_TO_BTF_ID | MEM_PERCPU,
8599 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
8600 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8601 	}
8602 };
8603 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8604 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8605 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8606 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8607 static const struct bpf_reg_types kptr_xchg_dest_types = {
8608 	.types = {
8609 		PTR_TO_MAP_VALUE,
8610 		PTR_TO_BTF_ID | MEM_ALLOC
8611 	}
8612 };
8613 static const struct bpf_reg_types dynptr_types = {
8614 	.types = {
8615 		PTR_TO_STACK,
8616 		CONST_PTR_TO_DYNPTR,
8617 	}
8618 };
8619 
8620 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8621 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
8622 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
8623 	[ARG_CONST_SIZE]		= &scalar_types,
8624 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
8625 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
8626 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
8627 	[ARG_PTR_TO_CTX]		= &context_types,
8628 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
8629 #ifdef CONFIG_NET
8630 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
8631 #endif
8632 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
8633 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
8634 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
8635 	[ARG_PTR_TO_MEM]		= &mem_types,
8636 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
8637 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
8638 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
8639 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
8640 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
8641 	[ARG_PTR_TO_TIMER]		= &timer_types,
8642 	[ARG_KPTR_XCHG_DEST]		= &kptr_xchg_dest_types,
8643 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
8644 };
8645 
8646 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8647 			  enum bpf_arg_type arg_type,
8648 			  const u32 *arg_btf_id,
8649 			  struct bpf_call_arg_meta *meta)
8650 {
8651 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8652 	enum bpf_reg_type expected, type = reg->type;
8653 	const struct bpf_reg_types *compatible;
8654 	int i, j;
8655 
8656 	compatible = compatible_reg_types[base_type(arg_type)];
8657 	if (!compatible) {
8658 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8659 		return -EFAULT;
8660 	}
8661 
8662 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8663 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8664 	 *
8665 	 * Same for MAYBE_NULL:
8666 	 *
8667 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8668 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8669 	 *
8670 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8671 	 *
8672 	 * Therefore we fold these flags depending on the arg_type before comparison.
8673 	 */
8674 	if (arg_type & MEM_RDONLY)
8675 		type &= ~MEM_RDONLY;
8676 	if (arg_type & PTR_MAYBE_NULL)
8677 		type &= ~PTR_MAYBE_NULL;
8678 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
8679 		type &= ~DYNPTR_TYPE_FLAG_MASK;
8680 
8681 	/* Local kptr types are allowed as the source argument of bpf_kptr_xchg */
8682 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) {
8683 		type &= ~MEM_ALLOC;
8684 		type &= ~MEM_PERCPU;
8685 	}
8686 
8687 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8688 		expected = compatible->types[i];
8689 		if (expected == NOT_INIT)
8690 			break;
8691 
8692 		if (type == expected)
8693 			goto found;
8694 	}
8695 
8696 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8697 	for (j = 0; j + 1 < i; j++)
8698 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8699 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8700 	return -EACCES;
8701 
8702 found:
8703 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8704 		return 0;
8705 
8706 	if (compatible == &mem_types) {
8707 		if (!(arg_type & MEM_RDONLY)) {
8708 			verbose(env,
8709 				"%s() may write into memory pointed by R%d type=%s\n",
8710 				func_id_name(meta->func_id),
8711 				regno, reg_type_str(env, reg->type));
8712 			return -EACCES;
8713 		}
8714 		return 0;
8715 	}
8716 
8717 	switch ((int)reg->type) {
8718 	case PTR_TO_BTF_ID:
8719 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8720 	case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL:
8721 	case PTR_TO_BTF_ID | MEM_RCU:
8722 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8723 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8724 	{
8725 		/* For bpf_sk_release, it needs to match against first member
8726 		 * 'struct sock_common', hence make an exception for it. This
8727 		 * allows bpf_sk_release to work for multiple socket types.
8728 		 */
8729 		bool strict_type_match = arg_type_is_release(arg_type) &&
8730 					 meta->func_id != BPF_FUNC_sk_release;
8731 
8732 		if (type_may_be_null(reg->type) &&
8733 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8734 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8735 			return -EACCES;
8736 		}
8737 
8738 		if (!arg_btf_id) {
8739 			if (!compatible->btf_id) {
8740 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8741 				return -EFAULT;
8742 			}
8743 			arg_btf_id = compatible->btf_id;
8744 		}
8745 
8746 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8747 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8748 				return -EACCES;
8749 		} else {
8750 			if (arg_btf_id == BPF_PTR_POISON) {
8751 				verbose(env, "verifier internal error:");
8752 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8753 					regno);
8754 				return -EACCES;
8755 			}
8756 
8757 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8758 						  btf_vmlinux, *arg_btf_id,
8759 						  strict_type_match)) {
8760 				verbose(env, "R%d is of type %s but %s is expected\n",
8761 					regno, btf_type_name(reg->btf, reg->btf_id),
8762 					btf_type_name(btf_vmlinux, *arg_btf_id));
8763 				return -EACCES;
8764 			}
8765 		}
8766 		break;
8767 	}
8768 	case PTR_TO_BTF_ID | MEM_ALLOC:
8769 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8770 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8771 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8772 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8773 			return -EFAULT;
8774 		}
8775 		/* Check if local kptr in src arg matches kptr in dst arg */
8776 		if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) {
8777 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8778 				return -EACCES;
8779 		}
8780 		break;
8781 	case PTR_TO_BTF_ID | MEM_PERCPU:
8782 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8783 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8784 		/* Handled by helper specific checks */
8785 		break;
8786 	default:
8787 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8788 		return -EFAULT;
8789 	}
8790 	return 0;
8791 }
8792 
8793 static struct btf_field *
8794 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8795 {
8796 	struct btf_field *field;
8797 	struct btf_record *rec;
8798 
8799 	rec = reg_btf_record(reg);
8800 	if (!rec)
8801 		return NULL;
8802 
8803 	field = btf_record_find(rec, off, fields);
8804 	if (!field)
8805 		return NULL;
8806 
8807 	return field;
8808 }
8809 
8810 static int check_func_arg_reg_off(struct bpf_verifier_env *env,
8811 				  const struct bpf_reg_state *reg, int regno,
8812 				  enum bpf_arg_type arg_type)
8813 {
8814 	u32 type = reg->type;
8815 
8816 	/* When referenced register is passed to release function, its fixed
8817 	 * offset must be 0.
8818 	 *
8819 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8820 	 * meta->release_regno.
8821 	 */
8822 	if (arg_type_is_release(arg_type)) {
8823 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8824 		 * may not directly point to the object being released, but to
8825 		 * dynptr pointing to such object, which might be at some offset
8826 		 * on the stack. In that case, we simply to fallback to the
8827 		 * default handling.
8828 		 */
8829 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8830 			return 0;
8831 
8832 		/* Doing check_ptr_off_reg check for the offset will catch this
8833 		 * because fixed_off_ok is false, but checking here allows us
8834 		 * to give the user a better error message.
8835 		 */
8836 		if (reg->off) {
8837 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8838 				regno);
8839 			return -EINVAL;
8840 		}
8841 		return __check_ptr_off_reg(env, reg, regno, false);
8842 	}
8843 
8844 	switch (type) {
8845 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8846 	case PTR_TO_STACK:
8847 	case PTR_TO_PACKET:
8848 	case PTR_TO_PACKET_META:
8849 	case PTR_TO_MAP_KEY:
8850 	case PTR_TO_MAP_VALUE:
8851 	case PTR_TO_MEM:
8852 	case PTR_TO_MEM | MEM_RDONLY:
8853 	case PTR_TO_MEM | MEM_RINGBUF:
8854 	case PTR_TO_BUF:
8855 	case PTR_TO_BUF | MEM_RDONLY:
8856 	case PTR_TO_ARENA:
8857 	case SCALAR_VALUE:
8858 		return 0;
8859 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8860 	 * fixed offset.
8861 	 */
8862 	case PTR_TO_BTF_ID:
8863 	case PTR_TO_BTF_ID | MEM_ALLOC:
8864 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8865 	case PTR_TO_BTF_ID | MEM_RCU:
8866 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8867 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8868 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8869 		 * its fixed offset must be 0. In the other cases, fixed offset
8870 		 * can be non-zero. This was already checked above. So pass
8871 		 * fixed_off_ok as true to allow fixed offset for all other
8872 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8873 		 * still need to do checks instead of returning.
8874 		 */
8875 		return __check_ptr_off_reg(env, reg, regno, true);
8876 	default:
8877 		return __check_ptr_off_reg(env, reg, regno, false);
8878 	}
8879 }
8880 
8881 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8882 						const struct bpf_func_proto *fn,
8883 						struct bpf_reg_state *regs)
8884 {
8885 	struct bpf_reg_state *state = NULL;
8886 	int i;
8887 
8888 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8889 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8890 			if (state) {
8891 				verbose(env, "verifier internal error: multiple dynptr args\n");
8892 				return NULL;
8893 			}
8894 			state = &regs[BPF_REG_1 + i];
8895 		}
8896 
8897 	if (!state)
8898 		verbose(env, "verifier internal error: no dynptr arg found\n");
8899 
8900 	return state;
8901 }
8902 
8903 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8904 {
8905 	struct bpf_func_state *state = func(env, reg);
8906 	int spi;
8907 
8908 	if (reg->type == CONST_PTR_TO_DYNPTR)
8909 		return reg->id;
8910 	spi = dynptr_get_spi(env, reg);
8911 	if (spi < 0)
8912 		return spi;
8913 	return state->stack[spi].spilled_ptr.id;
8914 }
8915 
8916 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8917 {
8918 	struct bpf_func_state *state = func(env, reg);
8919 	int spi;
8920 
8921 	if (reg->type == CONST_PTR_TO_DYNPTR)
8922 		return reg->ref_obj_id;
8923 	spi = dynptr_get_spi(env, reg);
8924 	if (spi < 0)
8925 		return spi;
8926 	return state->stack[spi].spilled_ptr.ref_obj_id;
8927 }
8928 
8929 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8930 					    struct bpf_reg_state *reg)
8931 {
8932 	struct bpf_func_state *state = func(env, reg);
8933 	int spi;
8934 
8935 	if (reg->type == CONST_PTR_TO_DYNPTR)
8936 		return reg->dynptr.type;
8937 
8938 	spi = __get_spi(reg->off);
8939 	if (spi < 0) {
8940 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8941 		return BPF_DYNPTR_TYPE_INVALID;
8942 	}
8943 
8944 	return state->stack[spi].spilled_ptr.dynptr.type;
8945 }
8946 
8947 static int check_reg_const_str(struct bpf_verifier_env *env,
8948 			       struct bpf_reg_state *reg, u32 regno)
8949 {
8950 	struct bpf_map *map = reg->map_ptr;
8951 	int err;
8952 	int map_off;
8953 	u64 map_addr;
8954 	char *str_ptr;
8955 
8956 	if (reg->type != PTR_TO_MAP_VALUE)
8957 		return -EINVAL;
8958 
8959 	if (!bpf_map_is_rdonly(map)) {
8960 		verbose(env, "R%d does not point to a readonly map'\n", regno);
8961 		return -EACCES;
8962 	}
8963 
8964 	if (!tnum_is_const(reg->var_off)) {
8965 		verbose(env, "R%d is not a constant address'\n", regno);
8966 		return -EACCES;
8967 	}
8968 
8969 	if (!map->ops->map_direct_value_addr) {
8970 		verbose(env, "no direct value access support for this map type\n");
8971 		return -EACCES;
8972 	}
8973 
8974 	err = check_map_access(env, regno, reg->off,
8975 			       map->value_size - reg->off, false,
8976 			       ACCESS_HELPER);
8977 	if (err)
8978 		return err;
8979 
8980 	map_off = reg->off + reg->var_off.value;
8981 	err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8982 	if (err) {
8983 		verbose(env, "direct value access on string failed\n");
8984 		return err;
8985 	}
8986 
8987 	str_ptr = (char *)(long)(map_addr);
8988 	if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8989 		verbose(env, "string is not zero-terminated\n");
8990 		return -EINVAL;
8991 	}
8992 	return 0;
8993 }
8994 
8995 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8996 			  struct bpf_call_arg_meta *meta,
8997 			  const struct bpf_func_proto *fn,
8998 			  int insn_idx)
8999 {
9000 	u32 regno = BPF_REG_1 + arg;
9001 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
9002 	enum bpf_arg_type arg_type = fn->arg_type[arg];
9003 	enum bpf_reg_type type = reg->type;
9004 	u32 *arg_btf_id = NULL;
9005 	int err = 0;
9006 	bool mask;
9007 
9008 	if (arg_type == ARG_DONTCARE)
9009 		return 0;
9010 
9011 	err = check_reg_arg(env, regno, SRC_OP);
9012 	if (err)
9013 		return err;
9014 
9015 	if (arg_type == ARG_ANYTHING) {
9016 		if (is_pointer_value(env, regno)) {
9017 			verbose(env, "R%d leaks addr into helper function\n",
9018 				regno);
9019 			return -EACCES;
9020 		}
9021 		return 0;
9022 	}
9023 
9024 	if (type_is_pkt_pointer(type) &&
9025 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
9026 		verbose(env, "helper access to the packet is not allowed\n");
9027 		return -EACCES;
9028 	}
9029 
9030 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
9031 		err = resolve_map_arg_type(env, meta, &arg_type);
9032 		if (err)
9033 			return err;
9034 	}
9035 
9036 	if (register_is_null(reg) && type_may_be_null(arg_type))
9037 		/* A NULL register has a SCALAR_VALUE type, so skip
9038 		 * type checking.
9039 		 */
9040 		goto skip_type_check;
9041 
9042 	/* arg_btf_id and arg_size are in a union. */
9043 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
9044 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
9045 		arg_btf_id = fn->arg_btf_id[arg];
9046 
9047 	mask = mask_raw_tp_reg(env, reg);
9048 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
9049 
9050 	err = err ?: check_func_arg_reg_off(env, reg, regno, arg_type);
9051 	unmask_raw_tp_reg(reg, mask);
9052 	if (err)
9053 		return err;
9054 
9055 skip_type_check:
9056 	if (arg_type_is_release(arg_type)) {
9057 		if (arg_type_is_dynptr(arg_type)) {
9058 			struct bpf_func_state *state = func(env, reg);
9059 			int spi;
9060 
9061 			/* Only dynptr created on stack can be released, thus
9062 			 * the get_spi and stack state checks for spilled_ptr
9063 			 * should only be done before process_dynptr_func for
9064 			 * PTR_TO_STACK.
9065 			 */
9066 			if (reg->type == PTR_TO_STACK) {
9067 				spi = dynptr_get_spi(env, reg);
9068 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
9069 					verbose(env, "arg %d is an unacquired reference\n", regno);
9070 					return -EINVAL;
9071 				}
9072 			} else {
9073 				verbose(env, "cannot release unowned const bpf_dynptr\n");
9074 				return -EINVAL;
9075 			}
9076 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
9077 			verbose(env, "R%d must be referenced when passed to release function\n",
9078 				regno);
9079 			return -EINVAL;
9080 		}
9081 		if (meta->release_regno) {
9082 			verbose(env, "verifier internal error: more than one release argument\n");
9083 			return -EFAULT;
9084 		}
9085 		meta->release_regno = regno;
9086 	}
9087 
9088 	if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) {
9089 		if (meta->ref_obj_id) {
9090 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
9091 				regno, reg->ref_obj_id,
9092 				meta->ref_obj_id);
9093 			return -EFAULT;
9094 		}
9095 		meta->ref_obj_id = reg->ref_obj_id;
9096 	}
9097 
9098 	switch (base_type(arg_type)) {
9099 	case ARG_CONST_MAP_PTR:
9100 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
9101 		if (meta->map_ptr) {
9102 			/* Use map_uid (which is unique id of inner map) to reject:
9103 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
9104 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
9105 			 * if (inner_map1 && inner_map2) {
9106 			 *     timer = bpf_map_lookup_elem(inner_map1);
9107 			 *     if (timer)
9108 			 *         // mismatch would have been allowed
9109 			 *         bpf_timer_init(timer, inner_map2);
9110 			 * }
9111 			 *
9112 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
9113 			 */
9114 			if (meta->map_ptr != reg->map_ptr ||
9115 			    meta->map_uid != reg->map_uid) {
9116 				verbose(env,
9117 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
9118 					meta->map_uid, reg->map_uid);
9119 				return -EINVAL;
9120 			}
9121 		}
9122 		meta->map_ptr = reg->map_ptr;
9123 		meta->map_uid = reg->map_uid;
9124 		break;
9125 	case ARG_PTR_TO_MAP_KEY:
9126 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
9127 		 * check that [key, key + map->key_size) are within
9128 		 * stack limits and initialized
9129 		 */
9130 		if (!meta->map_ptr) {
9131 			/* in function declaration map_ptr must come before
9132 			 * map_key, so that it's verified and known before
9133 			 * we have to check map_key here. Otherwise it means
9134 			 * that kernel subsystem misconfigured verifier
9135 			 */
9136 			verbose(env, "invalid map_ptr to access map->key\n");
9137 			return -EACCES;
9138 		}
9139 		err = check_helper_mem_access(env, regno, meta->map_ptr->key_size,
9140 					      BPF_READ, false, NULL);
9141 		break;
9142 	case ARG_PTR_TO_MAP_VALUE:
9143 		if (type_may_be_null(arg_type) && register_is_null(reg))
9144 			return 0;
9145 
9146 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
9147 		 * check [value, value + map->value_size) validity
9148 		 */
9149 		if (!meta->map_ptr) {
9150 			/* kernel subsystem misconfigured verifier */
9151 			verbose(env, "invalid map_ptr to access map->value\n");
9152 			return -EACCES;
9153 		}
9154 		meta->raw_mode = arg_type & MEM_UNINIT;
9155 		err = check_helper_mem_access(env, regno, meta->map_ptr->value_size,
9156 					      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
9157 					      false, meta);
9158 		break;
9159 	case ARG_PTR_TO_PERCPU_BTF_ID:
9160 		if (!reg->btf_id) {
9161 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
9162 			return -EACCES;
9163 		}
9164 		meta->ret_btf = reg->btf;
9165 		meta->ret_btf_id = reg->btf_id;
9166 		break;
9167 	case ARG_PTR_TO_SPIN_LOCK:
9168 		if (in_rbtree_lock_required_cb(env)) {
9169 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
9170 			return -EACCES;
9171 		}
9172 		if (meta->func_id == BPF_FUNC_spin_lock) {
9173 			err = process_spin_lock(env, regno, true);
9174 			if (err)
9175 				return err;
9176 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
9177 			err = process_spin_lock(env, regno, false);
9178 			if (err)
9179 				return err;
9180 		} else {
9181 			verbose(env, "verifier internal error\n");
9182 			return -EFAULT;
9183 		}
9184 		break;
9185 	case ARG_PTR_TO_TIMER:
9186 		err = process_timer_func(env, regno, meta);
9187 		if (err)
9188 			return err;
9189 		break;
9190 	case ARG_PTR_TO_FUNC:
9191 		meta->subprogno = reg->subprogno;
9192 		break;
9193 	case ARG_PTR_TO_MEM:
9194 		/* The access to this pointer is only checked when we hit the
9195 		 * next is_mem_size argument below.
9196 		 */
9197 		meta->raw_mode = arg_type & MEM_UNINIT;
9198 		if (arg_type & MEM_FIXED_SIZE) {
9199 			err = check_helper_mem_access(env, regno, fn->arg_size[arg],
9200 						      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
9201 						      false, meta);
9202 			if (err)
9203 				return err;
9204 			if (arg_type & MEM_ALIGNED)
9205 				err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true);
9206 		}
9207 		break;
9208 	case ARG_CONST_SIZE:
9209 		err = check_mem_size_reg(env, reg, regno,
9210 					 fn->arg_type[arg - 1] & MEM_WRITE ?
9211 					 BPF_WRITE : BPF_READ,
9212 					 false, meta);
9213 		break;
9214 	case ARG_CONST_SIZE_OR_ZERO:
9215 		err = check_mem_size_reg(env, reg, regno,
9216 					 fn->arg_type[arg - 1] & MEM_WRITE ?
9217 					 BPF_WRITE : BPF_READ,
9218 					 true, meta);
9219 		break;
9220 	case ARG_PTR_TO_DYNPTR:
9221 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
9222 		if (err)
9223 			return err;
9224 		break;
9225 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
9226 		if (!tnum_is_const(reg->var_off)) {
9227 			verbose(env, "R%d is not a known constant'\n",
9228 				regno);
9229 			return -EACCES;
9230 		}
9231 		meta->mem_size = reg->var_off.value;
9232 		err = mark_chain_precision(env, regno);
9233 		if (err)
9234 			return err;
9235 		break;
9236 	case ARG_PTR_TO_CONST_STR:
9237 	{
9238 		err = check_reg_const_str(env, reg, regno);
9239 		if (err)
9240 			return err;
9241 		break;
9242 	}
9243 	case ARG_KPTR_XCHG_DEST:
9244 		err = process_kptr_func(env, regno, meta);
9245 		if (err)
9246 			return err;
9247 		break;
9248 	}
9249 
9250 	return err;
9251 }
9252 
9253 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
9254 {
9255 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
9256 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9257 
9258 	if (func_id != BPF_FUNC_map_update_elem &&
9259 	    func_id != BPF_FUNC_map_delete_elem)
9260 		return false;
9261 
9262 	/* It's not possible to get access to a locked struct sock in these
9263 	 * contexts, so updating is safe.
9264 	 */
9265 	switch (type) {
9266 	case BPF_PROG_TYPE_TRACING:
9267 		if (eatype == BPF_TRACE_ITER)
9268 			return true;
9269 		break;
9270 	case BPF_PROG_TYPE_SOCK_OPS:
9271 		/* map_update allowed only via dedicated helpers with event type checks */
9272 		if (func_id == BPF_FUNC_map_delete_elem)
9273 			return true;
9274 		break;
9275 	case BPF_PROG_TYPE_SOCKET_FILTER:
9276 	case BPF_PROG_TYPE_SCHED_CLS:
9277 	case BPF_PROG_TYPE_SCHED_ACT:
9278 	case BPF_PROG_TYPE_XDP:
9279 	case BPF_PROG_TYPE_SK_REUSEPORT:
9280 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
9281 	case BPF_PROG_TYPE_SK_LOOKUP:
9282 		return true;
9283 	default:
9284 		break;
9285 	}
9286 
9287 	verbose(env, "cannot update sockmap in this context\n");
9288 	return false;
9289 }
9290 
9291 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
9292 {
9293 	return env->prog->jit_requested &&
9294 	       bpf_jit_supports_subprog_tailcalls();
9295 }
9296 
9297 static int check_map_func_compatibility(struct bpf_verifier_env *env,
9298 					struct bpf_map *map, int func_id)
9299 {
9300 	if (!map)
9301 		return 0;
9302 
9303 	/* We need a two way check, first is from map perspective ... */
9304 	switch (map->map_type) {
9305 	case BPF_MAP_TYPE_PROG_ARRAY:
9306 		if (func_id != BPF_FUNC_tail_call)
9307 			goto error;
9308 		break;
9309 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
9310 		if (func_id != BPF_FUNC_perf_event_read &&
9311 		    func_id != BPF_FUNC_perf_event_output &&
9312 		    func_id != BPF_FUNC_skb_output &&
9313 		    func_id != BPF_FUNC_perf_event_read_value &&
9314 		    func_id != BPF_FUNC_xdp_output)
9315 			goto error;
9316 		break;
9317 	case BPF_MAP_TYPE_RINGBUF:
9318 		if (func_id != BPF_FUNC_ringbuf_output &&
9319 		    func_id != BPF_FUNC_ringbuf_reserve &&
9320 		    func_id != BPF_FUNC_ringbuf_query &&
9321 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
9322 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
9323 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
9324 			goto error;
9325 		break;
9326 	case BPF_MAP_TYPE_USER_RINGBUF:
9327 		if (func_id != BPF_FUNC_user_ringbuf_drain)
9328 			goto error;
9329 		break;
9330 	case BPF_MAP_TYPE_STACK_TRACE:
9331 		if (func_id != BPF_FUNC_get_stackid)
9332 			goto error;
9333 		break;
9334 	case BPF_MAP_TYPE_CGROUP_ARRAY:
9335 		if (func_id != BPF_FUNC_skb_under_cgroup &&
9336 		    func_id != BPF_FUNC_current_task_under_cgroup)
9337 			goto error;
9338 		break;
9339 	case BPF_MAP_TYPE_CGROUP_STORAGE:
9340 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
9341 		if (func_id != BPF_FUNC_get_local_storage)
9342 			goto error;
9343 		break;
9344 	case BPF_MAP_TYPE_DEVMAP:
9345 	case BPF_MAP_TYPE_DEVMAP_HASH:
9346 		if (func_id != BPF_FUNC_redirect_map &&
9347 		    func_id != BPF_FUNC_map_lookup_elem)
9348 			goto error;
9349 		break;
9350 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
9351 	 * appear.
9352 	 */
9353 	case BPF_MAP_TYPE_CPUMAP:
9354 		if (func_id != BPF_FUNC_redirect_map)
9355 			goto error;
9356 		break;
9357 	case BPF_MAP_TYPE_XSKMAP:
9358 		if (func_id != BPF_FUNC_redirect_map &&
9359 		    func_id != BPF_FUNC_map_lookup_elem)
9360 			goto error;
9361 		break;
9362 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
9363 	case BPF_MAP_TYPE_HASH_OF_MAPS:
9364 		if (func_id != BPF_FUNC_map_lookup_elem)
9365 			goto error;
9366 		break;
9367 	case BPF_MAP_TYPE_SOCKMAP:
9368 		if (func_id != BPF_FUNC_sk_redirect_map &&
9369 		    func_id != BPF_FUNC_sock_map_update &&
9370 		    func_id != BPF_FUNC_msg_redirect_map &&
9371 		    func_id != BPF_FUNC_sk_select_reuseport &&
9372 		    func_id != BPF_FUNC_map_lookup_elem &&
9373 		    !may_update_sockmap(env, func_id))
9374 			goto error;
9375 		break;
9376 	case BPF_MAP_TYPE_SOCKHASH:
9377 		if (func_id != BPF_FUNC_sk_redirect_hash &&
9378 		    func_id != BPF_FUNC_sock_hash_update &&
9379 		    func_id != BPF_FUNC_msg_redirect_hash &&
9380 		    func_id != BPF_FUNC_sk_select_reuseport &&
9381 		    func_id != BPF_FUNC_map_lookup_elem &&
9382 		    !may_update_sockmap(env, func_id))
9383 			goto error;
9384 		break;
9385 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
9386 		if (func_id != BPF_FUNC_sk_select_reuseport)
9387 			goto error;
9388 		break;
9389 	case BPF_MAP_TYPE_QUEUE:
9390 	case BPF_MAP_TYPE_STACK:
9391 		if (func_id != BPF_FUNC_map_peek_elem &&
9392 		    func_id != BPF_FUNC_map_pop_elem &&
9393 		    func_id != BPF_FUNC_map_push_elem)
9394 			goto error;
9395 		break;
9396 	case BPF_MAP_TYPE_SK_STORAGE:
9397 		if (func_id != BPF_FUNC_sk_storage_get &&
9398 		    func_id != BPF_FUNC_sk_storage_delete &&
9399 		    func_id != BPF_FUNC_kptr_xchg)
9400 			goto error;
9401 		break;
9402 	case BPF_MAP_TYPE_INODE_STORAGE:
9403 		if (func_id != BPF_FUNC_inode_storage_get &&
9404 		    func_id != BPF_FUNC_inode_storage_delete &&
9405 		    func_id != BPF_FUNC_kptr_xchg)
9406 			goto error;
9407 		break;
9408 	case BPF_MAP_TYPE_TASK_STORAGE:
9409 		if (func_id != BPF_FUNC_task_storage_get &&
9410 		    func_id != BPF_FUNC_task_storage_delete &&
9411 		    func_id != BPF_FUNC_kptr_xchg)
9412 			goto error;
9413 		break;
9414 	case BPF_MAP_TYPE_CGRP_STORAGE:
9415 		if (func_id != BPF_FUNC_cgrp_storage_get &&
9416 		    func_id != BPF_FUNC_cgrp_storage_delete &&
9417 		    func_id != BPF_FUNC_kptr_xchg)
9418 			goto error;
9419 		break;
9420 	case BPF_MAP_TYPE_BLOOM_FILTER:
9421 		if (func_id != BPF_FUNC_map_peek_elem &&
9422 		    func_id != BPF_FUNC_map_push_elem)
9423 			goto error;
9424 		break;
9425 	default:
9426 		break;
9427 	}
9428 
9429 	/* ... and second from the function itself. */
9430 	switch (func_id) {
9431 	case BPF_FUNC_tail_call:
9432 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
9433 			goto error;
9434 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
9435 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
9436 			return -EINVAL;
9437 		}
9438 		break;
9439 	case BPF_FUNC_perf_event_read:
9440 	case BPF_FUNC_perf_event_output:
9441 	case BPF_FUNC_perf_event_read_value:
9442 	case BPF_FUNC_skb_output:
9443 	case BPF_FUNC_xdp_output:
9444 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
9445 			goto error;
9446 		break;
9447 	case BPF_FUNC_ringbuf_output:
9448 	case BPF_FUNC_ringbuf_reserve:
9449 	case BPF_FUNC_ringbuf_query:
9450 	case BPF_FUNC_ringbuf_reserve_dynptr:
9451 	case BPF_FUNC_ringbuf_submit_dynptr:
9452 	case BPF_FUNC_ringbuf_discard_dynptr:
9453 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
9454 			goto error;
9455 		break;
9456 	case BPF_FUNC_user_ringbuf_drain:
9457 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
9458 			goto error;
9459 		break;
9460 	case BPF_FUNC_get_stackid:
9461 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
9462 			goto error;
9463 		break;
9464 	case BPF_FUNC_current_task_under_cgroup:
9465 	case BPF_FUNC_skb_under_cgroup:
9466 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
9467 			goto error;
9468 		break;
9469 	case BPF_FUNC_redirect_map:
9470 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
9471 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
9472 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
9473 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
9474 			goto error;
9475 		break;
9476 	case BPF_FUNC_sk_redirect_map:
9477 	case BPF_FUNC_msg_redirect_map:
9478 	case BPF_FUNC_sock_map_update:
9479 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
9480 			goto error;
9481 		break;
9482 	case BPF_FUNC_sk_redirect_hash:
9483 	case BPF_FUNC_msg_redirect_hash:
9484 	case BPF_FUNC_sock_hash_update:
9485 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
9486 			goto error;
9487 		break;
9488 	case BPF_FUNC_get_local_storage:
9489 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
9490 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
9491 			goto error;
9492 		break;
9493 	case BPF_FUNC_sk_select_reuseport:
9494 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
9495 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
9496 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
9497 			goto error;
9498 		break;
9499 	case BPF_FUNC_map_pop_elem:
9500 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9501 		    map->map_type != BPF_MAP_TYPE_STACK)
9502 			goto error;
9503 		break;
9504 	case BPF_FUNC_map_peek_elem:
9505 	case BPF_FUNC_map_push_elem:
9506 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9507 		    map->map_type != BPF_MAP_TYPE_STACK &&
9508 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9509 			goto error;
9510 		break;
9511 	case BPF_FUNC_map_lookup_percpu_elem:
9512 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9513 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9514 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9515 			goto error;
9516 		break;
9517 	case BPF_FUNC_sk_storage_get:
9518 	case BPF_FUNC_sk_storage_delete:
9519 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9520 			goto error;
9521 		break;
9522 	case BPF_FUNC_inode_storage_get:
9523 	case BPF_FUNC_inode_storage_delete:
9524 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9525 			goto error;
9526 		break;
9527 	case BPF_FUNC_task_storage_get:
9528 	case BPF_FUNC_task_storage_delete:
9529 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9530 			goto error;
9531 		break;
9532 	case BPF_FUNC_cgrp_storage_get:
9533 	case BPF_FUNC_cgrp_storage_delete:
9534 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9535 			goto error;
9536 		break;
9537 	default:
9538 		break;
9539 	}
9540 
9541 	return 0;
9542 error:
9543 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
9544 		map->map_type, func_id_name(func_id), func_id);
9545 	return -EINVAL;
9546 }
9547 
9548 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9549 {
9550 	int count = 0;
9551 
9552 	if (arg_type_is_raw_mem(fn->arg1_type))
9553 		count++;
9554 	if (arg_type_is_raw_mem(fn->arg2_type))
9555 		count++;
9556 	if (arg_type_is_raw_mem(fn->arg3_type))
9557 		count++;
9558 	if (arg_type_is_raw_mem(fn->arg4_type))
9559 		count++;
9560 	if (arg_type_is_raw_mem(fn->arg5_type))
9561 		count++;
9562 
9563 	/* We only support one arg being in raw mode at the moment,
9564 	 * which is sufficient for the helper functions we have
9565 	 * right now.
9566 	 */
9567 	return count <= 1;
9568 }
9569 
9570 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9571 {
9572 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9573 	bool has_size = fn->arg_size[arg] != 0;
9574 	bool is_next_size = false;
9575 
9576 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9577 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9578 
9579 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9580 		return is_next_size;
9581 
9582 	return has_size == is_next_size || is_next_size == is_fixed;
9583 }
9584 
9585 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9586 {
9587 	/* bpf_xxx(..., buf, len) call will access 'len'
9588 	 * bytes from memory 'buf'. Both arg types need
9589 	 * to be paired, so make sure there's no buggy
9590 	 * helper function specification.
9591 	 */
9592 	if (arg_type_is_mem_size(fn->arg1_type) ||
9593 	    check_args_pair_invalid(fn, 0) ||
9594 	    check_args_pair_invalid(fn, 1) ||
9595 	    check_args_pair_invalid(fn, 2) ||
9596 	    check_args_pair_invalid(fn, 3) ||
9597 	    check_args_pair_invalid(fn, 4))
9598 		return false;
9599 
9600 	return true;
9601 }
9602 
9603 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9604 {
9605 	int i;
9606 
9607 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9608 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9609 			return !!fn->arg_btf_id[i];
9610 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9611 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
9612 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9613 		    /* arg_btf_id and arg_size are in a union. */
9614 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9615 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9616 			return false;
9617 	}
9618 
9619 	return true;
9620 }
9621 
9622 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9623 {
9624 	return check_raw_mode_ok(fn) &&
9625 	       check_arg_pair_ok(fn) &&
9626 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
9627 }
9628 
9629 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9630  * are now invalid, so turn them into unknown SCALAR_VALUE.
9631  *
9632  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9633  * since these slices point to packet data.
9634  */
9635 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9636 {
9637 	struct bpf_func_state *state;
9638 	struct bpf_reg_state *reg;
9639 
9640 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9641 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9642 			mark_reg_invalid(env, reg);
9643 	}));
9644 }
9645 
9646 enum {
9647 	AT_PKT_END = -1,
9648 	BEYOND_PKT_END = -2,
9649 };
9650 
9651 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9652 {
9653 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9654 	struct bpf_reg_state *reg = &state->regs[regn];
9655 
9656 	if (reg->type != PTR_TO_PACKET)
9657 		/* PTR_TO_PACKET_META is not supported yet */
9658 		return;
9659 
9660 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9661 	 * How far beyond pkt_end it goes is unknown.
9662 	 * if (!range_open) it's the case of pkt >= pkt_end
9663 	 * if (range_open) it's the case of pkt > pkt_end
9664 	 * hence this pointer is at least 1 byte bigger than pkt_end
9665 	 */
9666 	if (range_open)
9667 		reg->range = BEYOND_PKT_END;
9668 	else
9669 		reg->range = AT_PKT_END;
9670 }
9671 
9672 /* The pointer with the specified id has released its reference to kernel
9673  * resources. Identify all copies of the same pointer and clear the reference.
9674  */
9675 static int release_reference(struct bpf_verifier_env *env,
9676 			     int ref_obj_id)
9677 {
9678 	struct bpf_func_state *state;
9679 	struct bpf_reg_state *reg;
9680 	int err;
9681 
9682 	err = release_reference_state(cur_func(env), ref_obj_id);
9683 	if (err)
9684 		return err;
9685 
9686 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9687 		if (reg->ref_obj_id == ref_obj_id)
9688 			mark_reg_invalid(env, reg);
9689 	}));
9690 
9691 	return 0;
9692 }
9693 
9694 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9695 {
9696 	struct bpf_func_state *unused;
9697 	struct bpf_reg_state *reg;
9698 
9699 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9700 		if (type_is_non_owning_ref(reg->type))
9701 			mark_reg_invalid(env, reg);
9702 	}));
9703 }
9704 
9705 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9706 				    struct bpf_reg_state *regs)
9707 {
9708 	int i;
9709 
9710 	/* after the call registers r0 - r5 were scratched */
9711 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9712 		mark_reg_not_init(env, regs, caller_saved[i]);
9713 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9714 	}
9715 }
9716 
9717 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9718 				   struct bpf_func_state *caller,
9719 				   struct bpf_func_state *callee,
9720 				   int insn_idx);
9721 
9722 static int set_callee_state(struct bpf_verifier_env *env,
9723 			    struct bpf_func_state *caller,
9724 			    struct bpf_func_state *callee, int insn_idx);
9725 
9726 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9727 			    set_callee_state_fn set_callee_state_cb,
9728 			    struct bpf_verifier_state *state)
9729 {
9730 	struct bpf_func_state *caller, *callee;
9731 	int err;
9732 
9733 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9734 		verbose(env, "the call stack of %d frames is too deep\n",
9735 			state->curframe + 2);
9736 		return -E2BIG;
9737 	}
9738 
9739 	if (state->frame[state->curframe + 1]) {
9740 		verbose(env, "verifier bug. Frame %d already allocated\n",
9741 			state->curframe + 1);
9742 		return -EFAULT;
9743 	}
9744 
9745 	caller = state->frame[state->curframe];
9746 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9747 	if (!callee)
9748 		return -ENOMEM;
9749 	state->frame[state->curframe + 1] = callee;
9750 
9751 	/* callee cannot access r0, r6 - r9 for reading and has to write
9752 	 * into its own stack before reading from it.
9753 	 * callee can read/write into caller's stack
9754 	 */
9755 	init_func_state(env, callee,
9756 			/* remember the callsite, it will be used by bpf_exit */
9757 			callsite,
9758 			state->curframe + 1 /* frameno within this callchain */,
9759 			subprog /* subprog number within this prog */);
9760 	/* Transfer references to the callee */
9761 	err = copy_reference_state(callee, caller);
9762 	err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9763 	if (err)
9764 		goto err_out;
9765 
9766 	/* only increment it after check_reg_arg() finished */
9767 	state->curframe++;
9768 
9769 	return 0;
9770 
9771 err_out:
9772 	free_func_state(callee);
9773 	state->frame[state->curframe + 1] = NULL;
9774 	return err;
9775 }
9776 
9777 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
9778 				    const struct btf *btf,
9779 				    struct bpf_reg_state *regs)
9780 {
9781 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
9782 	struct bpf_verifier_log *log = &env->log;
9783 	u32 i;
9784 	int ret;
9785 
9786 	ret = btf_prepare_func_args(env, subprog);
9787 	if (ret)
9788 		return ret;
9789 
9790 	/* check that BTF function arguments match actual types that the
9791 	 * verifier sees.
9792 	 */
9793 	for (i = 0; i < sub->arg_cnt; i++) {
9794 		u32 regno = i + 1;
9795 		struct bpf_reg_state *reg = &regs[regno];
9796 		struct bpf_subprog_arg_info *arg = &sub->args[i];
9797 
9798 		if (arg->arg_type == ARG_ANYTHING) {
9799 			if (reg->type != SCALAR_VALUE) {
9800 				bpf_log(log, "R%d is not a scalar\n", regno);
9801 				return -EINVAL;
9802 			}
9803 		} else if (arg->arg_type == ARG_PTR_TO_CTX) {
9804 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9805 			if (ret < 0)
9806 				return ret;
9807 			/* If function expects ctx type in BTF check that caller
9808 			 * is passing PTR_TO_CTX.
9809 			 */
9810 			if (reg->type != PTR_TO_CTX) {
9811 				bpf_log(log, "arg#%d expects pointer to ctx\n", i);
9812 				return -EINVAL;
9813 			}
9814 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
9815 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9816 			if (ret < 0)
9817 				return ret;
9818 			if (check_mem_reg(env, reg, regno, arg->mem_size))
9819 				return -EINVAL;
9820 			if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) {
9821 				bpf_log(log, "arg#%d is expected to be non-NULL\n", i);
9822 				return -EINVAL;
9823 			}
9824 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
9825 			/*
9826 			 * Can pass any value and the kernel won't crash, but
9827 			 * only PTR_TO_ARENA or SCALAR make sense. Everything
9828 			 * else is a bug in the bpf program. Point it out to
9829 			 * the user at the verification time instead of
9830 			 * run-time debug nightmare.
9831 			 */
9832 			if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) {
9833 				bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno);
9834 				return -EINVAL;
9835 			}
9836 		} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
9837 			ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR);
9838 			if (ret)
9839 				return ret;
9840 
9841 			ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0);
9842 			if (ret)
9843 				return ret;
9844 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
9845 			struct bpf_call_arg_meta meta;
9846 			bool mask;
9847 			int err;
9848 
9849 			if (register_is_null(reg) && type_may_be_null(arg->arg_type))
9850 				continue;
9851 
9852 			memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */
9853 			mask = mask_raw_tp_reg(env, reg);
9854 			err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta);
9855 			err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type);
9856 			unmask_raw_tp_reg(reg, mask);
9857 			if (err)
9858 				return err;
9859 		} else {
9860 			bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n",
9861 				i, arg->arg_type);
9862 			return -EFAULT;
9863 		}
9864 	}
9865 
9866 	return 0;
9867 }
9868 
9869 /* Compare BTF of a function call with given bpf_reg_state.
9870  * Returns:
9871  * EFAULT - there is a verifier bug. Abort verification.
9872  * EINVAL - there is a type mismatch or BTF is not available.
9873  * 0 - BTF matches with what bpf_reg_state expects.
9874  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
9875  */
9876 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
9877 				  struct bpf_reg_state *regs)
9878 {
9879 	struct bpf_prog *prog = env->prog;
9880 	struct btf *btf = prog->aux->btf;
9881 	u32 btf_id;
9882 	int err;
9883 
9884 	if (!prog->aux->func_info)
9885 		return -EINVAL;
9886 
9887 	btf_id = prog->aux->func_info[subprog].type_id;
9888 	if (!btf_id)
9889 		return -EFAULT;
9890 
9891 	if (prog->aux->func_info_aux[subprog].unreliable)
9892 		return -EINVAL;
9893 
9894 	err = btf_check_func_arg_match(env, subprog, btf, regs);
9895 	/* Compiler optimizations can remove arguments from static functions
9896 	 * or mismatched type can be passed into a global function.
9897 	 * In such cases mark the function as unreliable from BTF point of view.
9898 	 */
9899 	if (err)
9900 		prog->aux->func_info_aux[subprog].unreliable = true;
9901 	return err;
9902 }
9903 
9904 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9905 			      int insn_idx, int subprog,
9906 			      set_callee_state_fn set_callee_state_cb)
9907 {
9908 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
9909 	struct bpf_func_state *caller, *callee;
9910 	int err;
9911 
9912 	caller = state->frame[state->curframe];
9913 	err = btf_check_subprog_call(env, subprog, caller->regs);
9914 	if (err == -EFAULT)
9915 		return err;
9916 
9917 	/* set_callee_state is used for direct subprog calls, but we are
9918 	 * interested in validating only BPF helpers that can call subprogs as
9919 	 * callbacks
9920 	 */
9921 	env->subprog_info[subprog].is_cb = true;
9922 	if (bpf_pseudo_kfunc_call(insn) &&
9923 	    !is_callback_calling_kfunc(insn->imm)) {
9924 		verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9925 			func_id_name(insn->imm), insn->imm);
9926 		return -EFAULT;
9927 	} else if (!bpf_pseudo_kfunc_call(insn) &&
9928 		   !is_callback_calling_function(insn->imm)) { /* helper */
9929 		verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9930 			func_id_name(insn->imm), insn->imm);
9931 		return -EFAULT;
9932 	}
9933 
9934 	if (is_async_callback_calling_insn(insn)) {
9935 		struct bpf_verifier_state *async_cb;
9936 
9937 		/* there is no real recursion here. timer and workqueue callbacks are async */
9938 		env->subprog_info[subprog].is_async_cb = true;
9939 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9940 					 insn_idx, subprog,
9941 					 is_bpf_wq_set_callback_impl_kfunc(insn->imm));
9942 		if (!async_cb)
9943 			return -EFAULT;
9944 		callee = async_cb->frame[0];
9945 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9946 
9947 		/* Convert bpf_timer_set_callback() args into timer callback args */
9948 		err = set_callee_state_cb(env, caller, callee, insn_idx);
9949 		if (err)
9950 			return err;
9951 
9952 		return 0;
9953 	}
9954 
9955 	/* for callback functions enqueue entry to callback and
9956 	 * proceed with next instruction within current frame.
9957 	 */
9958 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9959 	if (!callback_state)
9960 		return -ENOMEM;
9961 
9962 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9963 			       callback_state);
9964 	if (err)
9965 		return err;
9966 
9967 	callback_state->callback_unroll_depth++;
9968 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9969 	caller->callback_depth = 0;
9970 	return 0;
9971 }
9972 
9973 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9974 			   int *insn_idx)
9975 {
9976 	struct bpf_verifier_state *state = env->cur_state;
9977 	struct bpf_func_state *caller;
9978 	int err, subprog, target_insn;
9979 
9980 	target_insn = *insn_idx + insn->imm + 1;
9981 	subprog = find_subprog(env, target_insn);
9982 	if (subprog < 0) {
9983 		verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9984 		return -EFAULT;
9985 	}
9986 
9987 	caller = state->frame[state->curframe];
9988 	err = btf_check_subprog_call(env, subprog, caller->regs);
9989 	if (err == -EFAULT)
9990 		return err;
9991 	if (subprog_is_global(env, subprog)) {
9992 		const char *sub_name = subprog_name(env, subprog);
9993 
9994 		/* Only global subprogs cannot be called with a lock held. */
9995 		if (cur_func(env)->active_locks) {
9996 			verbose(env, "global function calls are not allowed while holding a lock,\n"
9997 				     "use static function instead\n");
9998 			return -EINVAL;
9999 		}
10000 
10001 		/* Only global subprogs cannot be called with preemption disabled. */
10002 		if (env->cur_state->active_preempt_lock) {
10003 			verbose(env, "global function calls are not allowed with preemption disabled,\n"
10004 				     "use static function instead\n");
10005 			return -EINVAL;
10006 		}
10007 
10008 		if (err) {
10009 			verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
10010 				subprog, sub_name);
10011 			return err;
10012 		}
10013 
10014 		verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
10015 			subprog, sub_name);
10016 		/* mark global subprog for verifying after main prog */
10017 		subprog_aux(env, subprog)->called = true;
10018 		clear_caller_saved_regs(env, caller->regs);
10019 
10020 		/* All global functions return a 64-bit SCALAR_VALUE */
10021 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
10022 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10023 
10024 		/* continue with next insn after call */
10025 		return 0;
10026 	}
10027 
10028 	/* for regular function entry setup new frame and continue
10029 	 * from that frame.
10030 	 */
10031 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
10032 	if (err)
10033 		return err;
10034 
10035 	clear_caller_saved_regs(env, caller->regs);
10036 
10037 	/* and go analyze first insn of the callee */
10038 	*insn_idx = env->subprog_info[subprog].start - 1;
10039 
10040 	if (env->log.level & BPF_LOG_LEVEL) {
10041 		verbose(env, "caller:\n");
10042 		print_verifier_state(env, caller, true);
10043 		verbose(env, "callee:\n");
10044 		print_verifier_state(env, state->frame[state->curframe], true);
10045 	}
10046 
10047 	return 0;
10048 }
10049 
10050 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
10051 				   struct bpf_func_state *caller,
10052 				   struct bpf_func_state *callee)
10053 {
10054 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
10055 	 *      void *callback_ctx, u64 flags);
10056 	 * callback_fn(struct bpf_map *map, void *key, void *value,
10057 	 *      void *callback_ctx);
10058 	 */
10059 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
10060 
10061 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10062 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10063 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
10064 
10065 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
10066 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
10067 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
10068 
10069 	/* pointer to stack or null */
10070 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
10071 
10072 	/* unused */
10073 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10074 	return 0;
10075 }
10076 
10077 static int set_callee_state(struct bpf_verifier_env *env,
10078 			    struct bpf_func_state *caller,
10079 			    struct bpf_func_state *callee, int insn_idx)
10080 {
10081 	int i;
10082 
10083 	/* copy r1 - r5 args that callee can access.  The copy includes parent
10084 	 * pointers, which connects us up to the liveness chain
10085 	 */
10086 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
10087 		callee->regs[i] = caller->regs[i];
10088 	return 0;
10089 }
10090 
10091 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
10092 				       struct bpf_func_state *caller,
10093 				       struct bpf_func_state *callee,
10094 				       int insn_idx)
10095 {
10096 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
10097 	struct bpf_map *map;
10098 	int err;
10099 
10100 	/* valid map_ptr and poison value does not matter */
10101 	map = insn_aux->map_ptr_state.map_ptr;
10102 	if (!map->ops->map_set_for_each_callback_args ||
10103 	    !map->ops->map_for_each_callback) {
10104 		verbose(env, "callback function not allowed for map\n");
10105 		return -ENOTSUPP;
10106 	}
10107 
10108 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
10109 	if (err)
10110 		return err;
10111 
10112 	callee->in_callback_fn = true;
10113 	callee->callback_ret_range = retval_range(0, 1);
10114 	return 0;
10115 }
10116 
10117 static int set_loop_callback_state(struct bpf_verifier_env *env,
10118 				   struct bpf_func_state *caller,
10119 				   struct bpf_func_state *callee,
10120 				   int insn_idx)
10121 {
10122 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
10123 	 *	    u64 flags);
10124 	 * callback_fn(u64 index, void *callback_ctx);
10125 	 */
10126 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
10127 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10128 
10129 	/* unused */
10130 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10131 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10132 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10133 
10134 	callee->in_callback_fn = true;
10135 	callee->callback_ret_range = retval_range(0, 1);
10136 	return 0;
10137 }
10138 
10139 static int set_timer_callback_state(struct bpf_verifier_env *env,
10140 				    struct bpf_func_state *caller,
10141 				    struct bpf_func_state *callee,
10142 				    int insn_idx)
10143 {
10144 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
10145 
10146 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
10147 	 * callback_fn(struct bpf_map *map, void *key, void *value);
10148 	 */
10149 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
10150 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
10151 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
10152 
10153 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10154 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10155 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
10156 
10157 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
10158 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
10159 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
10160 
10161 	/* unused */
10162 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10163 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10164 	callee->in_async_callback_fn = true;
10165 	callee->callback_ret_range = retval_range(0, 1);
10166 	return 0;
10167 }
10168 
10169 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
10170 				       struct bpf_func_state *caller,
10171 				       struct bpf_func_state *callee,
10172 				       int insn_idx)
10173 {
10174 	/* bpf_find_vma(struct task_struct *task, u64 addr,
10175 	 *               void *callback_fn, void *callback_ctx, u64 flags)
10176 	 * (callback_fn)(struct task_struct *task,
10177 	 *               struct vm_area_struct *vma, void *callback_ctx);
10178 	 */
10179 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
10180 
10181 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
10182 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10183 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
10184 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
10185 
10186 	/* pointer to stack or null */
10187 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
10188 
10189 	/* unused */
10190 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10191 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10192 	callee->in_callback_fn = true;
10193 	callee->callback_ret_range = retval_range(0, 1);
10194 	return 0;
10195 }
10196 
10197 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
10198 					   struct bpf_func_state *caller,
10199 					   struct bpf_func_state *callee,
10200 					   int insn_idx)
10201 {
10202 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
10203 	 *			  callback_ctx, u64 flags);
10204 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
10205 	 */
10206 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
10207 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
10208 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10209 
10210 	/* unused */
10211 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10212 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10213 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10214 
10215 	callee->in_callback_fn = true;
10216 	callee->callback_ret_range = retval_range(0, 1);
10217 	return 0;
10218 }
10219 
10220 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
10221 					 struct bpf_func_state *caller,
10222 					 struct bpf_func_state *callee,
10223 					 int insn_idx)
10224 {
10225 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
10226 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
10227 	 *
10228 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
10229 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
10230 	 * by this point, so look at 'root'
10231 	 */
10232 	struct btf_field *field;
10233 
10234 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
10235 				      BPF_RB_ROOT);
10236 	if (!field || !field->graph_root.value_btf_id)
10237 		return -EFAULT;
10238 
10239 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
10240 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
10241 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
10242 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
10243 
10244 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10245 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10246 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10247 	callee->in_callback_fn = true;
10248 	callee->callback_ret_range = retval_range(0, 1);
10249 	return 0;
10250 }
10251 
10252 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
10253 
10254 /* Are we currently verifying the callback for a rbtree helper that must
10255  * be called with lock held? If so, no need to complain about unreleased
10256  * lock
10257  */
10258 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
10259 {
10260 	struct bpf_verifier_state *state = env->cur_state;
10261 	struct bpf_insn *insn = env->prog->insnsi;
10262 	struct bpf_func_state *callee;
10263 	int kfunc_btf_id;
10264 
10265 	if (!state->curframe)
10266 		return false;
10267 
10268 	callee = state->frame[state->curframe];
10269 
10270 	if (!callee->in_callback_fn)
10271 		return false;
10272 
10273 	kfunc_btf_id = insn[callee->callsite].imm;
10274 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
10275 }
10276 
10277 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg,
10278 				bool return_32bit)
10279 {
10280 	if (return_32bit)
10281 		return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval;
10282 	else
10283 		return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
10284 }
10285 
10286 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
10287 {
10288 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
10289 	struct bpf_func_state *caller, *callee;
10290 	struct bpf_reg_state *r0;
10291 	bool in_callback_fn;
10292 	int err;
10293 
10294 	callee = state->frame[state->curframe];
10295 	r0 = &callee->regs[BPF_REG_0];
10296 	if (r0->type == PTR_TO_STACK) {
10297 		/* technically it's ok to return caller's stack pointer
10298 		 * (or caller's caller's pointer) back to the caller,
10299 		 * since these pointers are valid. Only current stack
10300 		 * pointer will be invalid as soon as function exits,
10301 		 * but let's be conservative
10302 		 */
10303 		verbose(env, "cannot return stack pointer to the caller\n");
10304 		return -EINVAL;
10305 	}
10306 
10307 	caller = state->frame[state->curframe - 1];
10308 	if (callee->in_callback_fn) {
10309 		if (r0->type != SCALAR_VALUE) {
10310 			verbose(env, "R0 not a scalar value\n");
10311 			return -EACCES;
10312 		}
10313 
10314 		/* we are going to rely on register's precise value */
10315 		err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
10316 		err = err ?: mark_chain_precision(env, BPF_REG_0);
10317 		if (err)
10318 			return err;
10319 
10320 		/* enforce R0 return value range, and bpf_callback_t returns 64bit */
10321 		if (!retval_range_within(callee->callback_ret_range, r0, false)) {
10322 			verbose_invalid_scalar(env, r0, callee->callback_ret_range,
10323 					       "At callback return", "R0");
10324 			return -EINVAL;
10325 		}
10326 		if (!calls_callback(env, callee->callsite)) {
10327 			verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
10328 				*insn_idx, callee->callsite);
10329 			return -EFAULT;
10330 		}
10331 	} else {
10332 		/* return to the caller whatever r0 had in the callee */
10333 		caller->regs[BPF_REG_0] = *r0;
10334 	}
10335 
10336 	/* Transfer references to the caller */
10337 	err = copy_reference_state(caller, callee);
10338 	if (err)
10339 		return err;
10340 
10341 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
10342 	 * there function call logic would reschedule callback visit. If iteration
10343 	 * converges is_state_visited() would prune that visit eventually.
10344 	 */
10345 	in_callback_fn = callee->in_callback_fn;
10346 	if (in_callback_fn)
10347 		*insn_idx = callee->callsite;
10348 	else
10349 		*insn_idx = callee->callsite + 1;
10350 
10351 	if (env->log.level & BPF_LOG_LEVEL) {
10352 		verbose(env, "returning from callee:\n");
10353 		print_verifier_state(env, callee, true);
10354 		verbose(env, "to caller at %d:\n", *insn_idx);
10355 		print_verifier_state(env, caller, true);
10356 	}
10357 	/* clear everything in the callee. In case of exceptional exits using
10358 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
10359 	free_func_state(callee);
10360 	state->frame[state->curframe--] = NULL;
10361 
10362 	/* for callbacks widen imprecise scalars to make programs like below verify:
10363 	 *
10364 	 *   struct ctx { int i; }
10365 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
10366 	 *   ...
10367 	 *   struct ctx = { .i = 0; }
10368 	 *   bpf_loop(100, cb, &ctx, 0);
10369 	 *
10370 	 * This is similar to what is done in process_iter_next_call() for open
10371 	 * coded iterators.
10372 	 */
10373 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
10374 	if (prev_st) {
10375 		err = widen_imprecise_scalars(env, prev_st, state);
10376 		if (err)
10377 			return err;
10378 	}
10379 	return 0;
10380 }
10381 
10382 static int do_refine_retval_range(struct bpf_verifier_env *env,
10383 				  struct bpf_reg_state *regs, int ret_type,
10384 				  int func_id,
10385 				  struct bpf_call_arg_meta *meta)
10386 {
10387 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
10388 
10389 	if (ret_type != RET_INTEGER)
10390 		return 0;
10391 
10392 	switch (func_id) {
10393 	case BPF_FUNC_get_stack:
10394 	case BPF_FUNC_get_task_stack:
10395 	case BPF_FUNC_probe_read_str:
10396 	case BPF_FUNC_probe_read_kernel_str:
10397 	case BPF_FUNC_probe_read_user_str:
10398 		ret_reg->smax_value = meta->msize_max_value;
10399 		ret_reg->s32_max_value = meta->msize_max_value;
10400 		ret_reg->smin_value = -MAX_ERRNO;
10401 		ret_reg->s32_min_value = -MAX_ERRNO;
10402 		reg_bounds_sync(ret_reg);
10403 		break;
10404 	case BPF_FUNC_get_smp_processor_id:
10405 		ret_reg->umax_value = nr_cpu_ids - 1;
10406 		ret_reg->u32_max_value = nr_cpu_ids - 1;
10407 		ret_reg->smax_value = nr_cpu_ids - 1;
10408 		ret_reg->s32_max_value = nr_cpu_ids - 1;
10409 		ret_reg->umin_value = 0;
10410 		ret_reg->u32_min_value = 0;
10411 		ret_reg->smin_value = 0;
10412 		ret_reg->s32_min_value = 0;
10413 		reg_bounds_sync(ret_reg);
10414 		break;
10415 	}
10416 
10417 	return reg_bounds_sanity_check(env, ret_reg, "retval");
10418 }
10419 
10420 static int
10421 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10422 		int func_id, int insn_idx)
10423 {
10424 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10425 	struct bpf_map *map = meta->map_ptr;
10426 
10427 	if (func_id != BPF_FUNC_tail_call &&
10428 	    func_id != BPF_FUNC_map_lookup_elem &&
10429 	    func_id != BPF_FUNC_map_update_elem &&
10430 	    func_id != BPF_FUNC_map_delete_elem &&
10431 	    func_id != BPF_FUNC_map_push_elem &&
10432 	    func_id != BPF_FUNC_map_pop_elem &&
10433 	    func_id != BPF_FUNC_map_peek_elem &&
10434 	    func_id != BPF_FUNC_for_each_map_elem &&
10435 	    func_id != BPF_FUNC_redirect_map &&
10436 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
10437 		return 0;
10438 
10439 	if (map == NULL) {
10440 		verbose(env, "kernel subsystem misconfigured verifier\n");
10441 		return -EINVAL;
10442 	}
10443 
10444 	/* In case of read-only, some additional restrictions
10445 	 * need to be applied in order to prevent altering the
10446 	 * state of the map from program side.
10447 	 */
10448 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
10449 	    (func_id == BPF_FUNC_map_delete_elem ||
10450 	     func_id == BPF_FUNC_map_update_elem ||
10451 	     func_id == BPF_FUNC_map_push_elem ||
10452 	     func_id == BPF_FUNC_map_pop_elem)) {
10453 		verbose(env, "write into map forbidden\n");
10454 		return -EACCES;
10455 	}
10456 
10457 	if (!aux->map_ptr_state.map_ptr)
10458 		bpf_map_ptr_store(aux, meta->map_ptr,
10459 				  !meta->map_ptr->bypass_spec_v1, false);
10460 	else if (aux->map_ptr_state.map_ptr != meta->map_ptr)
10461 		bpf_map_ptr_store(aux, meta->map_ptr,
10462 				  !meta->map_ptr->bypass_spec_v1, true);
10463 	return 0;
10464 }
10465 
10466 static int
10467 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10468 		int func_id, int insn_idx)
10469 {
10470 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10471 	struct bpf_reg_state *regs = cur_regs(env), *reg;
10472 	struct bpf_map *map = meta->map_ptr;
10473 	u64 val, max;
10474 	int err;
10475 
10476 	if (func_id != BPF_FUNC_tail_call)
10477 		return 0;
10478 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
10479 		verbose(env, "kernel subsystem misconfigured verifier\n");
10480 		return -EINVAL;
10481 	}
10482 
10483 	reg = &regs[BPF_REG_3];
10484 	val = reg->var_off.value;
10485 	max = map->max_entries;
10486 
10487 	if (!(is_reg_const(reg, false) && val < max)) {
10488 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10489 		return 0;
10490 	}
10491 
10492 	err = mark_chain_precision(env, BPF_REG_3);
10493 	if (err)
10494 		return err;
10495 	if (bpf_map_key_unseen(aux))
10496 		bpf_map_key_store(aux, val);
10497 	else if (!bpf_map_key_poisoned(aux) &&
10498 		  bpf_map_key_immediate(aux) != val)
10499 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10500 	return 0;
10501 }
10502 
10503 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
10504 {
10505 	struct bpf_func_state *state = cur_func(env);
10506 	bool refs_lingering = false;
10507 	int i;
10508 
10509 	if (!exception_exit && state->frameno)
10510 		return 0;
10511 
10512 	for (i = 0; i < state->acquired_refs; i++) {
10513 		if (state->refs[i].type != REF_TYPE_PTR)
10514 			continue;
10515 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
10516 			state->refs[i].id, state->refs[i].insn_idx);
10517 		refs_lingering = true;
10518 	}
10519 	return refs_lingering ? -EINVAL : 0;
10520 }
10521 
10522 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix)
10523 {
10524 	int err;
10525 
10526 	if (check_lock && cur_func(env)->active_locks) {
10527 		verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix);
10528 		return -EINVAL;
10529 	}
10530 
10531 	err = check_reference_leak(env, exception_exit);
10532 	if (err) {
10533 		verbose(env, "%s would lead to reference leak\n", prefix);
10534 		return err;
10535 	}
10536 
10537 	if (check_lock && env->cur_state->active_rcu_lock) {
10538 		verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix);
10539 		return -EINVAL;
10540 	}
10541 
10542 	if (check_lock && env->cur_state->active_preempt_lock) {
10543 		verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix);
10544 		return -EINVAL;
10545 	}
10546 
10547 	return 0;
10548 }
10549 
10550 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
10551 				   struct bpf_reg_state *regs)
10552 {
10553 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
10554 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
10555 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
10556 	struct bpf_bprintf_data data = {};
10557 	int err, fmt_map_off, num_args;
10558 	u64 fmt_addr;
10559 	char *fmt;
10560 
10561 	/* data must be an array of u64 */
10562 	if (data_len_reg->var_off.value % 8)
10563 		return -EINVAL;
10564 	num_args = data_len_reg->var_off.value / 8;
10565 
10566 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
10567 	 * and map_direct_value_addr is set.
10568 	 */
10569 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
10570 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
10571 						  fmt_map_off);
10572 	if (err) {
10573 		verbose(env, "verifier bug\n");
10574 		return -EFAULT;
10575 	}
10576 	fmt = (char *)(long)fmt_addr + fmt_map_off;
10577 
10578 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
10579 	 * can focus on validating the format specifiers.
10580 	 */
10581 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
10582 	if (err < 0)
10583 		verbose(env, "Invalid format string\n");
10584 
10585 	return err;
10586 }
10587 
10588 static int check_get_func_ip(struct bpf_verifier_env *env)
10589 {
10590 	enum bpf_prog_type type = resolve_prog_type(env->prog);
10591 	int func_id = BPF_FUNC_get_func_ip;
10592 
10593 	if (type == BPF_PROG_TYPE_TRACING) {
10594 		if (!bpf_prog_has_trampoline(env->prog)) {
10595 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
10596 				func_id_name(func_id), func_id);
10597 			return -ENOTSUPP;
10598 		}
10599 		return 0;
10600 	} else if (type == BPF_PROG_TYPE_KPROBE) {
10601 		return 0;
10602 	}
10603 
10604 	verbose(env, "func %s#%d not supported for program type %d\n",
10605 		func_id_name(func_id), func_id, type);
10606 	return -ENOTSUPP;
10607 }
10608 
10609 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
10610 {
10611 	return &env->insn_aux_data[env->insn_idx];
10612 }
10613 
10614 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
10615 {
10616 	struct bpf_reg_state *regs = cur_regs(env);
10617 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
10618 	bool reg_is_null = register_is_null(reg);
10619 
10620 	if (reg_is_null)
10621 		mark_chain_precision(env, BPF_REG_4);
10622 
10623 	return reg_is_null;
10624 }
10625 
10626 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
10627 {
10628 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
10629 
10630 	if (!state->initialized) {
10631 		state->initialized = 1;
10632 		state->fit_for_inline = loop_flag_is_zero(env);
10633 		state->callback_subprogno = subprogno;
10634 		return;
10635 	}
10636 
10637 	if (!state->fit_for_inline)
10638 		return;
10639 
10640 	state->fit_for_inline = (loop_flag_is_zero(env) &&
10641 				 state->callback_subprogno == subprogno);
10642 }
10643 
10644 static int get_helper_proto(struct bpf_verifier_env *env, int func_id,
10645 			    const struct bpf_func_proto **ptr)
10646 {
10647 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID)
10648 		return -ERANGE;
10649 
10650 	if (!env->ops->get_func_proto)
10651 		return -EINVAL;
10652 
10653 	*ptr = env->ops->get_func_proto(func_id, env->prog);
10654 	return *ptr ? 0 : -EINVAL;
10655 }
10656 
10657 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10658 			     int *insn_idx_p)
10659 {
10660 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10661 	bool returns_cpu_specific_alloc_ptr = false;
10662 	const struct bpf_func_proto *fn = NULL;
10663 	enum bpf_return_type ret_type;
10664 	enum bpf_type_flag ret_flag;
10665 	struct bpf_reg_state *regs;
10666 	struct bpf_call_arg_meta meta;
10667 	int insn_idx = *insn_idx_p;
10668 	bool changes_data;
10669 	int i, err, func_id;
10670 
10671 	/* find function prototype */
10672 	func_id = insn->imm;
10673 	err = get_helper_proto(env, insn->imm, &fn);
10674 	if (err == -ERANGE) {
10675 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id);
10676 		return -EINVAL;
10677 	}
10678 
10679 	if (err) {
10680 		verbose(env, "program of this type cannot use helper %s#%d\n",
10681 			func_id_name(func_id), func_id);
10682 		return err;
10683 	}
10684 
10685 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
10686 	if (!env->prog->gpl_compatible && fn->gpl_only) {
10687 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10688 		return -EINVAL;
10689 	}
10690 
10691 	if (fn->allowed && !fn->allowed(env->prog)) {
10692 		verbose(env, "helper call is not allowed in probe\n");
10693 		return -EINVAL;
10694 	}
10695 
10696 	if (!in_sleepable(env) && fn->might_sleep) {
10697 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
10698 		return -EINVAL;
10699 	}
10700 
10701 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
10702 	changes_data = bpf_helper_changes_pkt_data(fn->func);
10703 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10704 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10705 			func_id_name(func_id), func_id);
10706 		return -EINVAL;
10707 	}
10708 
10709 	memset(&meta, 0, sizeof(meta));
10710 	meta.pkt_access = fn->pkt_access;
10711 
10712 	err = check_func_proto(fn, func_id);
10713 	if (err) {
10714 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10715 			func_id_name(func_id), func_id);
10716 		return err;
10717 	}
10718 
10719 	if (env->cur_state->active_rcu_lock) {
10720 		if (fn->might_sleep) {
10721 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10722 				func_id_name(func_id), func_id);
10723 			return -EINVAL;
10724 		}
10725 
10726 		if (in_sleepable(env) && is_storage_get_function(func_id))
10727 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10728 	}
10729 
10730 	if (env->cur_state->active_preempt_lock) {
10731 		if (fn->might_sleep) {
10732 			verbose(env, "sleepable helper %s#%d in non-preemptible region\n",
10733 				func_id_name(func_id), func_id);
10734 			return -EINVAL;
10735 		}
10736 
10737 		if (in_sleepable(env) && is_storage_get_function(func_id))
10738 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10739 	}
10740 
10741 	meta.func_id = func_id;
10742 	/* check args */
10743 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10744 		err = check_func_arg(env, i, &meta, fn, insn_idx);
10745 		if (err)
10746 			return err;
10747 	}
10748 
10749 	err = record_func_map(env, &meta, func_id, insn_idx);
10750 	if (err)
10751 		return err;
10752 
10753 	err = record_func_key(env, &meta, func_id, insn_idx);
10754 	if (err)
10755 		return err;
10756 
10757 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
10758 	 * is inferred from register state.
10759 	 */
10760 	for (i = 0; i < meta.access_size; i++) {
10761 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10762 				       BPF_WRITE, -1, false, false);
10763 		if (err)
10764 			return err;
10765 	}
10766 
10767 	regs = cur_regs(env);
10768 
10769 	if (meta.release_regno) {
10770 		err = -EINVAL;
10771 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10772 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10773 		 * is safe to do directly.
10774 		 */
10775 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10776 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10777 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10778 				return -EFAULT;
10779 			}
10780 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
10781 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
10782 			u32 ref_obj_id = meta.ref_obj_id;
10783 			bool in_rcu = in_rcu_cs(env);
10784 			struct bpf_func_state *state;
10785 			struct bpf_reg_state *reg;
10786 
10787 			err = release_reference_state(cur_func(env), ref_obj_id);
10788 			if (!err) {
10789 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10790 					if (reg->ref_obj_id == ref_obj_id) {
10791 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
10792 							reg->ref_obj_id = 0;
10793 							reg->type &= ~MEM_ALLOC;
10794 							reg->type |= MEM_RCU;
10795 						} else {
10796 							mark_reg_invalid(env, reg);
10797 						}
10798 					}
10799 				}));
10800 			}
10801 		} else if (meta.ref_obj_id) {
10802 			err = release_reference(env, meta.ref_obj_id);
10803 		} else if (register_is_null(&regs[meta.release_regno])) {
10804 			/* meta.ref_obj_id can only be 0 if register that is meant to be
10805 			 * released is NULL, which must be > R0.
10806 			 */
10807 			err = 0;
10808 		}
10809 		if (err) {
10810 			verbose(env, "func %s#%d reference has not been acquired before\n",
10811 				func_id_name(func_id), func_id);
10812 			return err;
10813 		}
10814 	}
10815 
10816 	switch (func_id) {
10817 	case BPF_FUNC_tail_call:
10818 		err = check_resource_leak(env, false, true, "tail_call");
10819 		if (err)
10820 			return err;
10821 		break;
10822 	case BPF_FUNC_get_local_storage:
10823 		/* check that flags argument in get_local_storage(map, flags) is 0,
10824 		 * this is required because get_local_storage() can't return an error.
10825 		 */
10826 		if (!register_is_null(&regs[BPF_REG_2])) {
10827 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10828 			return -EINVAL;
10829 		}
10830 		break;
10831 	case BPF_FUNC_for_each_map_elem:
10832 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10833 					 set_map_elem_callback_state);
10834 		break;
10835 	case BPF_FUNC_timer_set_callback:
10836 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10837 					 set_timer_callback_state);
10838 		break;
10839 	case BPF_FUNC_find_vma:
10840 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10841 					 set_find_vma_callback_state);
10842 		break;
10843 	case BPF_FUNC_snprintf:
10844 		err = check_bpf_snprintf_call(env, regs);
10845 		break;
10846 	case BPF_FUNC_loop:
10847 		update_loop_inline_state(env, meta.subprogno);
10848 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
10849 		 * is finished, thus mark it precise.
10850 		 */
10851 		err = mark_chain_precision(env, BPF_REG_1);
10852 		if (err)
10853 			return err;
10854 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10855 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10856 						 set_loop_callback_state);
10857 		} else {
10858 			cur_func(env)->callback_depth = 0;
10859 			if (env->log.level & BPF_LOG_LEVEL2)
10860 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
10861 					env->cur_state->curframe);
10862 		}
10863 		break;
10864 	case BPF_FUNC_dynptr_from_mem:
10865 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10866 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10867 				reg_type_str(env, regs[BPF_REG_1].type));
10868 			return -EACCES;
10869 		}
10870 		break;
10871 	case BPF_FUNC_set_retval:
10872 		if (prog_type == BPF_PROG_TYPE_LSM &&
10873 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10874 			if (!env->prog->aux->attach_func_proto->type) {
10875 				/* Make sure programs that attach to void
10876 				 * hooks don't try to modify return value.
10877 				 */
10878 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10879 				return -EINVAL;
10880 			}
10881 		}
10882 		break;
10883 	case BPF_FUNC_dynptr_data:
10884 	{
10885 		struct bpf_reg_state *reg;
10886 		int id, ref_obj_id;
10887 
10888 		reg = get_dynptr_arg_reg(env, fn, regs);
10889 		if (!reg)
10890 			return -EFAULT;
10891 
10892 
10893 		if (meta.dynptr_id) {
10894 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10895 			return -EFAULT;
10896 		}
10897 		if (meta.ref_obj_id) {
10898 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10899 			return -EFAULT;
10900 		}
10901 
10902 		id = dynptr_id(env, reg);
10903 		if (id < 0) {
10904 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10905 			return id;
10906 		}
10907 
10908 		ref_obj_id = dynptr_ref_obj_id(env, reg);
10909 		if (ref_obj_id < 0) {
10910 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10911 			return ref_obj_id;
10912 		}
10913 
10914 		meta.dynptr_id = id;
10915 		meta.ref_obj_id = ref_obj_id;
10916 
10917 		break;
10918 	}
10919 	case BPF_FUNC_dynptr_write:
10920 	{
10921 		enum bpf_dynptr_type dynptr_type;
10922 		struct bpf_reg_state *reg;
10923 
10924 		reg = get_dynptr_arg_reg(env, fn, regs);
10925 		if (!reg)
10926 			return -EFAULT;
10927 
10928 		dynptr_type = dynptr_get_type(env, reg);
10929 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10930 			return -EFAULT;
10931 
10932 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10933 			/* this will trigger clear_all_pkt_pointers(), which will
10934 			 * invalidate all dynptr slices associated with the skb
10935 			 */
10936 			changes_data = true;
10937 
10938 		break;
10939 	}
10940 	case BPF_FUNC_per_cpu_ptr:
10941 	case BPF_FUNC_this_cpu_ptr:
10942 	{
10943 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
10944 		const struct btf_type *type;
10945 
10946 		if (reg->type & MEM_RCU) {
10947 			type = btf_type_by_id(reg->btf, reg->btf_id);
10948 			if (!type || !btf_type_is_struct(type)) {
10949 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
10950 				return -EFAULT;
10951 			}
10952 			returns_cpu_specific_alloc_ptr = true;
10953 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
10954 		}
10955 		break;
10956 	}
10957 	case BPF_FUNC_user_ringbuf_drain:
10958 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10959 					 set_user_ringbuf_callback_state);
10960 		break;
10961 	}
10962 
10963 	if (err)
10964 		return err;
10965 
10966 	/* reset caller saved regs */
10967 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10968 		mark_reg_not_init(env, regs, caller_saved[i]);
10969 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10970 	}
10971 
10972 	/* helper call returns 64-bit value. */
10973 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10974 
10975 	/* update return register (already marked as written above) */
10976 	ret_type = fn->ret_type;
10977 	ret_flag = type_flag(ret_type);
10978 
10979 	switch (base_type(ret_type)) {
10980 	case RET_INTEGER:
10981 		/* sets type to SCALAR_VALUE */
10982 		mark_reg_unknown(env, regs, BPF_REG_0);
10983 		break;
10984 	case RET_VOID:
10985 		regs[BPF_REG_0].type = NOT_INIT;
10986 		break;
10987 	case RET_PTR_TO_MAP_VALUE:
10988 		/* There is no offset yet applied, variable or fixed */
10989 		mark_reg_known_zero(env, regs, BPF_REG_0);
10990 		/* remember map_ptr, so that check_map_access()
10991 		 * can check 'value_size' boundary of memory access
10992 		 * to map element returned from bpf_map_lookup_elem()
10993 		 */
10994 		if (meta.map_ptr == NULL) {
10995 			verbose(env,
10996 				"kernel subsystem misconfigured verifier\n");
10997 			return -EINVAL;
10998 		}
10999 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
11000 		regs[BPF_REG_0].map_uid = meta.map_uid;
11001 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
11002 		if (!type_may_be_null(ret_type) &&
11003 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
11004 			regs[BPF_REG_0].id = ++env->id_gen;
11005 		}
11006 		break;
11007 	case RET_PTR_TO_SOCKET:
11008 		mark_reg_known_zero(env, regs, BPF_REG_0);
11009 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
11010 		break;
11011 	case RET_PTR_TO_SOCK_COMMON:
11012 		mark_reg_known_zero(env, regs, BPF_REG_0);
11013 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
11014 		break;
11015 	case RET_PTR_TO_TCP_SOCK:
11016 		mark_reg_known_zero(env, regs, BPF_REG_0);
11017 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
11018 		break;
11019 	case RET_PTR_TO_MEM:
11020 		mark_reg_known_zero(env, regs, BPF_REG_0);
11021 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
11022 		regs[BPF_REG_0].mem_size = meta.mem_size;
11023 		break;
11024 	case RET_PTR_TO_MEM_OR_BTF_ID:
11025 	{
11026 		const struct btf_type *t;
11027 
11028 		mark_reg_known_zero(env, regs, BPF_REG_0);
11029 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
11030 		if (!btf_type_is_struct(t)) {
11031 			u32 tsize;
11032 			const struct btf_type *ret;
11033 			const char *tname;
11034 
11035 			/* resolve the type size of ksym. */
11036 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
11037 			if (IS_ERR(ret)) {
11038 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
11039 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
11040 					tname, PTR_ERR(ret));
11041 				return -EINVAL;
11042 			}
11043 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
11044 			regs[BPF_REG_0].mem_size = tsize;
11045 		} else {
11046 			if (returns_cpu_specific_alloc_ptr) {
11047 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
11048 			} else {
11049 				/* MEM_RDONLY may be carried from ret_flag, but it
11050 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
11051 				 * it will confuse the check of PTR_TO_BTF_ID in
11052 				 * check_mem_access().
11053 				 */
11054 				ret_flag &= ~MEM_RDONLY;
11055 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
11056 			}
11057 
11058 			regs[BPF_REG_0].btf = meta.ret_btf;
11059 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11060 		}
11061 		break;
11062 	}
11063 	case RET_PTR_TO_BTF_ID:
11064 	{
11065 		struct btf *ret_btf;
11066 		int ret_btf_id;
11067 
11068 		mark_reg_known_zero(env, regs, BPF_REG_0);
11069 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
11070 		if (func_id == BPF_FUNC_kptr_xchg) {
11071 			ret_btf = meta.kptr_field->kptr.btf;
11072 			ret_btf_id = meta.kptr_field->kptr.btf_id;
11073 			if (!btf_is_kernel(ret_btf)) {
11074 				regs[BPF_REG_0].type |= MEM_ALLOC;
11075 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
11076 					regs[BPF_REG_0].type |= MEM_PERCPU;
11077 			}
11078 		} else {
11079 			if (fn->ret_btf_id == BPF_PTR_POISON) {
11080 				verbose(env, "verifier internal error:");
11081 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
11082 					func_id_name(func_id));
11083 				return -EINVAL;
11084 			}
11085 			ret_btf = btf_vmlinux;
11086 			ret_btf_id = *fn->ret_btf_id;
11087 		}
11088 		if (ret_btf_id == 0) {
11089 			verbose(env, "invalid return type %u of func %s#%d\n",
11090 				base_type(ret_type), func_id_name(func_id),
11091 				func_id);
11092 			return -EINVAL;
11093 		}
11094 		regs[BPF_REG_0].btf = ret_btf;
11095 		regs[BPF_REG_0].btf_id = ret_btf_id;
11096 		break;
11097 	}
11098 	default:
11099 		verbose(env, "unknown return type %u of func %s#%d\n",
11100 			base_type(ret_type), func_id_name(func_id), func_id);
11101 		return -EINVAL;
11102 	}
11103 
11104 	if (type_may_be_null(regs[BPF_REG_0].type))
11105 		regs[BPF_REG_0].id = ++env->id_gen;
11106 
11107 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
11108 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
11109 			func_id_name(func_id), func_id);
11110 		return -EFAULT;
11111 	}
11112 
11113 	if (is_dynptr_ref_function(func_id))
11114 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
11115 
11116 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
11117 		/* For release_reference() */
11118 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11119 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
11120 		int id = acquire_reference_state(env, insn_idx);
11121 
11122 		if (id < 0)
11123 			return id;
11124 		/* For mark_ptr_or_null_reg() */
11125 		regs[BPF_REG_0].id = id;
11126 		/* For release_reference() */
11127 		regs[BPF_REG_0].ref_obj_id = id;
11128 	}
11129 
11130 	err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
11131 	if (err)
11132 		return err;
11133 
11134 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
11135 	if (err)
11136 		return err;
11137 
11138 	if ((func_id == BPF_FUNC_get_stack ||
11139 	     func_id == BPF_FUNC_get_task_stack) &&
11140 	    !env->prog->has_callchain_buf) {
11141 		const char *err_str;
11142 
11143 #ifdef CONFIG_PERF_EVENTS
11144 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
11145 		err_str = "cannot get callchain buffer for func %s#%d\n";
11146 #else
11147 		err = -ENOTSUPP;
11148 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
11149 #endif
11150 		if (err) {
11151 			verbose(env, err_str, func_id_name(func_id), func_id);
11152 			return err;
11153 		}
11154 
11155 		env->prog->has_callchain_buf = true;
11156 	}
11157 
11158 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
11159 		env->prog->call_get_stack = true;
11160 
11161 	if (func_id == BPF_FUNC_get_func_ip) {
11162 		if (check_get_func_ip(env))
11163 			return -ENOTSUPP;
11164 		env->prog->call_get_func_ip = true;
11165 	}
11166 
11167 	if (changes_data)
11168 		clear_all_pkt_pointers(env);
11169 	return 0;
11170 }
11171 
11172 /* mark_btf_func_reg_size() is used when the reg size is determined by
11173  * the BTF func_proto's return value size and argument.
11174  */
11175 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
11176 				   size_t reg_size)
11177 {
11178 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
11179 
11180 	if (regno == BPF_REG_0) {
11181 		/* Function return value */
11182 		reg->live |= REG_LIVE_WRITTEN;
11183 		reg->subreg_def = reg_size == sizeof(u64) ?
11184 			DEF_NOT_SUBREG : env->insn_idx + 1;
11185 	} else {
11186 		/* Function argument */
11187 		if (reg_size == sizeof(u64)) {
11188 			mark_insn_zext(env, reg);
11189 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
11190 		} else {
11191 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
11192 		}
11193 	}
11194 }
11195 
11196 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
11197 {
11198 	return meta->kfunc_flags & KF_ACQUIRE;
11199 }
11200 
11201 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
11202 {
11203 	return meta->kfunc_flags & KF_RELEASE;
11204 }
11205 
11206 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
11207 {
11208 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
11209 }
11210 
11211 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
11212 {
11213 	return meta->kfunc_flags & KF_SLEEPABLE;
11214 }
11215 
11216 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
11217 {
11218 	return meta->kfunc_flags & KF_DESTRUCTIVE;
11219 }
11220 
11221 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
11222 {
11223 	return meta->kfunc_flags & KF_RCU;
11224 }
11225 
11226 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
11227 {
11228 	return meta->kfunc_flags & KF_RCU_PROTECTED;
11229 }
11230 
11231 static bool is_kfunc_arg_mem_size(const struct btf *btf,
11232 				  const struct btf_param *arg,
11233 				  const struct bpf_reg_state *reg)
11234 {
11235 	const struct btf_type *t;
11236 
11237 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11238 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11239 		return false;
11240 
11241 	return btf_param_match_suffix(btf, arg, "__sz");
11242 }
11243 
11244 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
11245 					const struct btf_param *arg,
11246 					const struct bpf_reg_state *reg)
11247 {
11248 	const struct btf_type *t;
11249 
11250 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11251 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11252 		return false;
11253 
11254 	return btf_param_match_suffix(btf, arg, "__szk");
11255 }
11256 
11257 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
11258 {
11259 	return btf_param_match_suffix(btf, arg, "__opt");
11260 }
11261 
11262 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
11263 {
11264 	return btf_param_match_suffix(btf, arg, "__k");
11265 }
11266 
11267 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
11268 {
11269 	return btf_param_match_suffix(btf, arg, "__ign");
11270 }
11271 
11272 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg)
11273 {
11274 	return btf_param_match_suffix(btf, arg, "__map");
11275 }
11276 
11277 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
11278 {
11279 	return btf_param_match_suffix(btf, arg, "__alloc");
11280 }
11281 
11282 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
11283 {
11284 	return btf_param_match_suffix(btf, arg, "__uninit");
11285 }
11286 
11287 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
11288 {
11289 	return btf_param_match_suffix(btf, arg, "__refcounted_kptr");
11290 }
11291 
11292 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
11293 {
11294 	return btf_param_match_suffix(btf, arg, "__nullable");
11295 }
11296 
11297 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
11298 {
11299 	return btf_param_match_suffix(btf, arg, "__str");
11300 }
11301 
11302 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
11303 					  const struct btf_param *arg,
11304 					  const char *name)
11305 {
11306 	int len, target_len = strlen(name);
11307 	const char *param_name;
11308 
11309 	param_name = btf_name_by_offset(btf, arg->name_off);
11310 	if (str_is_empty(param_name))
11311 		return false;
11312 	len = strlen(param_name);
11313 	if (len != target_len)
11314 		return false;
11315 	if (strcmp(param_name, name))
11316 		return false;
11317 
11318 	return true;
11319 }
11320 
11321 enum {
11322 	KF_ARG_DYNPTR_ID,
11323 	KF_ARG_LIST_HEAD_ID,
11324 	KF_ARG_LIST_NODE_ID,
11325 	KF_ARG_RB_ROOT_ID,
11326 	KF_ARG_RB_NODE_ID,
11327 	KF_ARG_WORKQUEUE_ID,
11328 };
11329 
11330 BTF_ID_LIST(kf_arg_btf_ids)
11331 BTF_ID(struct, bpf_dynptr)
11332 BTF_ID(struct, bpf_list_head)
11333 BTF_ID(struct, bpf_list_node)
11334 BTF_ID(struct, bpf_rb_root)
11335 BTF_ID(struct, bpf_rb_node)
11336 BTF_ID(struct, bpf_wq)
11337 
11338 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
11339 				    const struct btf_param *arg, int type)
11340 {
11341 	const struct btf_type *t;
11342 	u32 res_id;
11343 
11344 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11345 	if (!t)
11346 		return false;
11347 	if (!btf_type_is_ptr(t))
11348 		return false;
11349 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
11350 	if (!t)
11351 		return false;
11352 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
11353 }
11354 
11355 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
11356 {
11357 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
11358 }
11359 
11360 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
11361 {
11362 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
11363 }
11364 
11365 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
11366 {
11367 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
11368 }
11369 
11370 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
11371 {
11372 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
11373 }
11374 
11375 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
11376 {
11377 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
11378 }
11379 
11380 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg)
11381 {
11382 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID);
11383 }
11384 
11385 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
11386 				  const struct btf_param *arg)
11387 {
11388 	const struct btf_type *t;
11389 
11390 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
11391 	if (!t)
11392 		return false;
11393 
11394 	return true;
11395 }
11396 
11397 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
11398 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
11399 					const struct btf *btf,
11400 					const struct btf_type *t, int rec)
11401 {
11402 	const struct btf_type *member_type;
11403 	const struct btf_member *member;
11404 	u32 i;
11405 
11406 	if (!btf_type_is_struct(t))
11407 		return false;
11408 
11409 	for_each_member(i, t, member) {
11410 		const struct btf_array *array;
11411 
11412 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
11413 		if (btf_type_is_struct(member_type)) {
11414 			if (rec >= 3) {
11415 				verbose(env, "max struct nesting depth exceeded\n");
11416 				return false;
11417 			}
11418 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
11419 				return false;
11420 			continue;
11421 		}
11422 		if (btf_type_is_array(member_type)) {
11423 			array = btf_array(member_type);
11424 			if (!array->nelems)
11425 				return false;
11426 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
11427 			if (!btf_type_is_scalar(member_type))
11428 				return false;
11429 			continue;
11430 		}
11431 		if (!btf_type_is_scalar(member_type))
11432 			return false;
11433 	}
11434 	return true;
11435 }
11436 
11437 enum kfunc_ptr_arg_type {
11438 	KF_ARG_PTR_TO_CTX,
11439 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
11440 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
11441 	KF_ARG_PTR_TO_DYNPTR,
11442 	KF_ARG_PTR_TO_ITER,
11443 	KF_ARG_PTR_TO_LIST_HEAD,
11444 	KF_ARG_PTR_TO_LIST_NODE,
11445 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
11446 	KF_ARG_PTR_TO_MEM,
11447 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
11448 	KF_ARG_PTR_TO_CALLBACK,
11449 	KF_ARG_PTR_TO_RB_ROOT,
11450 	KF_ARG_PTR_TO_RB_NODE,
11451 	KF_ARG_PTR_TO_NULL,
11452 	KF_ARG_PTR_TO_CONST_STR,
11453 	KF_ARG_PTR_TO_MAP,
11454 	KF_ARG_PTR_TO_WORKQUEUE,
11455 };
11456 
11457 enum special_kfunc_type {
11458 	KF_bpf_obj_new_impl,
11459 	KF_bpf_obj_drop_impl,
11460 	KF_bpf_refcount_acquire_impl,
11461 	KF_bpf_list_push_front_impl,
11462 	KF_bpf_list_push_back_impl,
11463 	KF_bpf_list_pop_front,
11464 	KF_bpf_list_pop_back,
11465 	KF_bpf_cast_to_kern_ctx,
11466 	KF_bpf_rdonly_cast,
11467 	KF_bpf_rcu_read_lock,
11468 	KF_bpf_rcu_read_unlock,
11469 	KF_bpf_rbtree_remove,
11470 	KF_bpf_rbtree_add_impl,
11471 	KF_bpf_rbtree_first,
11472 	KF_bpf_dynptr_from_skb,
11473 	KF_bpf_dynptr_from_xdp,
11474 	KF_bpf_dynptr_slice,
11475 	KF_bpf_dynptr_slice_rdwr,
11476 	KF_bpf_dynptr_clone,
11477 	KF_bpf_percpu_obj_new_impl,
11478 	KF_bpf_percpu_obj_drop_impl,
11479 	KF_bpf_throw,
11480 	KF_bpf_wq_set_callback_impl,
11481 	KF_bpf_preempt_disable,
11482 	KF_bpf_preempt_enable,
11483 	KF_bpf_iter_css_task_new,
11484 	KF_bpf_session_cookie,
11485 	KF_bpf_get_kmem_cache,
11486 };
11487 
11488 BTF_SET_START(special_kfunc_set)
11489 BTF_ID(func, bpf_obj_new_impl)
11490 BTF_ID(func, bpf_obj_drop_impl)
11491 BTF_ID(func, bpf_refcount_acquire_impl)
11492 BTF_ID(func, bpf_list_push_front_impl)
11493 BTF_ID(func, bpf_list_push_back_impl)
11494 BTF_ID(func, bpf_list_pop_front)
11495 BTF_ID(func, bpf_list_pop_back)
11496 BTF_ID(func, bpf_cast_to_kern_ctx)
11497 BTF_ID(func, bpf_rdonly_cast)
11498 BTF_ID(func, bpf_rbtree_remove)
11499 BTF_ID(func, bpf_rbtree_add_impl)
11500 BTF_ID(func, bpf_rbtree_first)
11501 BTF_ID(func, bpf_dynptr_from_skb)
11502 BTF_ID(func, bpf_dynptr_from_xdp)
11503 BTF_ID(func, bpf_dynptr_slice)
11504 BTF_ID(func, bpf_dynptr_slice_rdwr)
11505 BTF_ID(func, bpf_dynptr_clone)
11506 BTF_ID(func, bpf_percpu_obj_new_impl)
11507 BTF_ID(func, bpf_percpu_obj_drop_impl)
11508 BTF_ID(func, bpf_throw)
11509 BTF_ID(func, bpf_wq_set_callback_impl)
11510 #ifdef CONFIG_CGROUPS
11511 BTF_ID(func, bpf_iter_css_task_new)
11512 #endif
11513 BTF_SET_END(special_kfunc_set)
11514 
11515 BTF_ID_LIST(special_kfunc_list)
11516 BTF_ID(func, bpf_obj_new_impl)
11517 BTF_ID(func, bpf_obj_drop_impl)
11518 BTF_ID(func, bpf_refcount_acquire_impl)
11519 BTF_ID(func, bpf_list_push_front_impl)
11520 BTF_ID(func, bpf_list_push_back_impl)
11521 BTF_ID(func, bpf_list_pop_front)
11522 BTF_ID(func, bpf_list_pop_back)
11523 BTF_ID(func, bpf_cast_to_kern_ctx)
11524 BTF_ID(func, bpf_rdonly_cast)
11525 BTF_ID(func, bpf_rcu_read_lock)
11526 BTF_ID(func, bpf_rcu_read_unlock)
11527 BTF_ID(func, bpf_rbtree_remove)
11528 BTF_ID(func, bpf_rbtree_add_impl)
11529 BTF_ID(func, bpf_rbtree_first)
11530 BTF_ID(func, bpf_dynptr_from_skb)
11531 BTF_ID(func, bpf_dynptr_from_xdp)
11532 BTF_ID(func, bpf_dynptr_slice)
11533 BTF_ID(func, bpf_dynptr_slice_rdwr)
11534 BTF_ID(func, bpf_dynptr_clone)
11535 BTF_ID(func, bpf_percpu_obj_new_impl)
11536 BTF_ID(func, bpf_percpu_obj_drop_impl)
11537 BTF_ID(func, bpf_throw)
11538 BTF_ID(func, bpf_wq_set_callback_impl)
11539 BTF_ID(func, bpf_preempt_disable)
11540 BTF_ID(func, bpf_preempt_enable)
11541 #ifdef CONFIG_CGROUPS
11542 BTF_ID(func, bpf_iter_css_task_new)
11543 #else
11544 BTF_ID_UNUSED
11545 #endif
11546 #ifdef CONFIG_BPF_EVENTS
11547 BTF_ID(func, bpf_session_cookie)
11548 #else
11549 BTF_ID_UNUSED
11550 #endif
11551 BTF_ID(func, bpf_get_kmem_cache)
11552 
11553 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
11554 {
11555 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
11556 	    meta->arg_owning_ref) {
11557 		return false;
11558 	}
11559 
11560 	return meta->kfunc_flags & KF_RET_NULL;
11561 }
11562 
11563 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
11564 {
11565 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
11566 }
11567 
11568 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
11569 {
11570 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
11571 }
11572 
11573 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta)
11574 {
11575 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable];
11576 }
11577 
11578 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta)
11579 {
11580 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable];
11581 }
11582 
11583 static enum kfunc_ptr_arg_type
11584 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
11585 		       struct bpf_kfunc_call_arg_meta *meta,
11586 		       const struct btf_type *t, const struct btf_type *ref_t,
11587 		       const char *ref_tname, const struct btf_param *args,
11588 		       int argno, int nargs)
11589 {
11590 	u32 regno = argno + 1;
11591 	struct bpf_reg_state *regs = cur_regs(env);
11592 	struct bpf_reg_state *reg = &regs[regno];
11593 	bool arg_mem_size = false;
11594 
11595 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
11596 		return KF_ARG_PTR_TO_CTX;
11597 
11598 	/* In this function, we verify the kfunc's BTF as per the argument type,
11599 	 * leaving the rest of the verification with respect to the register
11600 	 * type to our caller. When a set of conditions hold in the BTF type of
11601 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
11602 	 */
11603 	if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
11604 		return KF_ARG_PTR_TO_CTX;
11605 
11606 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
11607 		return KF_ARG_PTR_TO_NULL;
11608 
11609 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
11610 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
11611 
11612 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
11613 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
11614 
11615 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
11616 		return KF_ARG_PTR_TO_DYNPTR;
11617 
11618 	if (is_kfunc_arg_iter(meta, argno, &args[argno]))
11619 		return KF_ARG_PTR_TO_ITER;
11620 
11621 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
11622 		return KF_ARG_PTR_TO_LIST_HEAD;
11623 
11624 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
11625 		return KF_ARG_PTR_TO_LIST_NODE;
11626 
11627 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
11628 		return KF_ARG_PTR_TO_RB_ROOT;
11629 
11630 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
11631 		return KF_ARG_PTR_TO_RB_NODE;
11632 
11633 	if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
11634 		return KF_ARG_PTR_TO_CONST_STR;
11635 
11636 	if (is_kfunc_arg_map(meta->btf, &args[argno]))
11637 		return KF_ARG_PTR_TO_MAP;
11638 
11639 	if (is_kfunc_arg_wq(meta->btf, &args[argno]))
11640 		return KF_ARG_PTR_TO_WORKQUEUE;
11641 
11642 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
11643 		if (!btf_type_is_struct(ref_t)) {
11644 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
11645 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
11646 			return -EINVAL;
11647 		}
11648 		return KF_ARG_PTR_TO_BTF_ID;
11649 	}
11650 
11651 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
11652 		return KF_ARG_PTR_TO_CALLBACK;
11653 
11654 	if (argno + 1 < nargs &&
11655 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
11656 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
11657 		arg_mem_size = true;
11658 
11659 	/* This is the catch all argument type of register types supported by
11660 	 * check_helper_mem_access. However, we only allow when argument type is
11661 	 * pointer to scalar, or struct composed (recursively) of scalars. When
11662 	 * arg_mem_size is true, the pointer can be void *.
11663 	 */
11664 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
11665 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
11666 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
11667 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
11668 		return -EINVAL;
11669 	}
11670 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
11671 }
11672 
11673 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
11674 					struct bpf_reg_state *reg,
11675 					const struct btf_type *ref_t,
11676 					const char *ref_tname, u32 ref_id,
11677 					struct bpf_kfunc_call_arg_meta *meta,
11678 					int argno)
11679 {
11680 	const struct btf_type *reg_ref_t;
11681 	bool strict_type_match = false;
11682 	const struct btf *reg_btf;
11683 	const char *reg_ref_tname;
11684 	bool taking_projection;
11685 	bool struct_same;
11686 	u32 reg_ref_id;
11687 
11688 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
11689 		reg_btf = reg->btf;
11690 		reg_ref_id = reg->btf_id;
11691 	} else {
11692 		reg_btf = btf_vmlinux;
11693 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
11694 	}
11695 
11696 	/* Enforce strict type matching for calls to kfuncs that are acquiring
11697 	 * or releasing a reference, or are no-cast aliases. We do _not_
11698 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
11699 	 * as we want to enable BPF programs to pass types that are bitwise
11700 	 * equivalent without forcing them to explicitly cast with something
11701 	 * like bpf_cast_to_kern_ctx().
11702 	 *
11703 	 * For example, say we had a type like the following:
11704 	 *
11705 	 * struct bpf_cpumask {
11706 	 *	cpumask_t cpumask;
11707 	 *	refcount_t usage;
11708 	 * };
11709 	 *
11710 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
11711 	 * to a struct cpumask, so it would be safe to pass a struct
11712 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
11713 	 *
11714 	 * The philosophy here is similar to how we allow scalars of different
11715 	 * types to be passed to kfuncs as long as the size is the same. The
11716 	 * only difference here is that we're simply allowing
11717 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
11718 	 * resolve types.
11719 	 */
11720 	if ((is_kfunc_release(meta) && reg->ref_obj_id) ||
11721 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
11722 		strict_type_match = true;
11723 
11724 	WARN_ON_ONCE(is_kfunc_release(meta) &&
11725 		     (reg->off || !tnum_is_const(reg->var_off) ||
11726 		      reg->var_off.value));
11727 
11728 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
11729 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
11730 	struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match);
11731 	/* If kfunc is accepting a projection type (ie. __sk_buff), it cannot
11732 	 * actually use it -- it must cast to the underlying type. So we allow
11733 	 * caller to pass in the underlying type.
11734 	 */
11735 	taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname);
11736 	if (!taking_projection && !struct_same) {
11737 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
11738 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
11739 			btf_type_str(reg_ref_t), reg_ref_tname);
11740 		return -EINVAL;
11741 	}
11742 	return 0;
11743 }
11744 
11745 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11746 {
11747 	struct btf_record *rec = reg_btf_record(reg);
11748 
11749 	if (!cur_func(env)->active_locks) {
11750 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
11751 		return -EFAULT;
11752 	}
11753 
11754 	if (type_flag(reg->type) & NON_OWN_REF) {
11755 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
11756 		return -EFAULT;
11757 	}
11758 
11759 	reg->type |= NON_OWN_REF;
11760 	if (rec->refcount_off >= 0)
11761 		reg->type |= MEM_RCU;
11762 
11763 	return 0;
11764 }
11765 
11766 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
11767 {
11768 	struct bpf_func_state *state, *unused;
11769 	struct bpf_reg_state *reg;
11770 	int i;
11771 
11772 	state = cur_func(env);
11773 
11774 	if (!ref_obj_id) {
11775 		verbose(env, "verifier internal error: ref_obj_id is zero for "
11776 			     "owning -> non-owning conversion\n");
11777 		return -EFAULT;
11778 	}
11779 
11780 	for (i = 0; i < state->acquired_refs; i++) {
11781 		if (state->refs[i].id != ref_obj_id)
11782 			continue;
11783 
11784 		/* Clear ref_obj_id here so release_reference doesn't clobber
11785 		 * the whole reg
11786 		 */
11787 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
11788 			if (reg->ref_obj_id == ref_obj_id) {
11789 				reg->ref_obj_id = 0;
11790 				ref_set_non_owning(env, reg);
11791 			}
11792 		}));
11793 		return 0;
11794 	}
11795 
11796 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
11797 	return -EFAULT;
11798 }
11799 
11800 /* Implementation details:
11801  *
11802  * Each register points to some region of memory, which we define as an
11803  * allocation. Each allocation may embed a bpf_spin_lock which protects any
11804  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
11805  * allocation. The lock and the data it protects are colocated in the same
11806  * memory region.
11807  *
11808  * Hence, everytime a register holds a pointer value pointing to such
11809  * allocation, the verifier preserves a unique reg->id for it.
11810  *
11811  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
11812  * bpf_spin_lock is called.
11813  *
11814  * To enable this, lock state in the verifier captures two values:
11815  *	active_lock.ptr = Register's type specific pointer
11816  *	active_lock.id  = A unique ID for each register pointer value
11817  *
11818  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11819  * supported register types.
11820  *
11821  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11822  * allocated objects is the reg->btf pointer.
11823  *
11824  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11825  * can establish the provenance of the map value statically for each distinct
11826  * lookup into such maps. They always contain a single map value hence unique
11827  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11828  *
11829  * So, in case of global variables, they use array maps with max_entries = 1,
11830  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11831  * into the same map value as max_entries is 1, as described above).
11832  *
11833  * In case of inner map lookups, the inner map pointer has same map_ptr as the
11834  * outer map pointer (in verifier context), but each lookup into an inner map
11835  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11836  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11837  * will get different reg->id assigned to each lookup, hence different
11838  * active_lock.id.
11839  *
11840  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11841  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11842  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11843  */
11844 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11845 {
11846 	struct bpf_reference_state *s;
11847 	void *ptr;
11848 	u32 id;
11849 
11850 	switch ((int)reg->type) {
11851 	case PTR_TO_MAP_VALUE:
11852 		ptr = reg->map_ptr;
11853 		break;
11854 	case PTR_TO_BTF_ID | MEM_ALLOC:
11855 		ptr = reg->btf;
11856 		break;
11857 	default:
11858 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
11859 		return -EFAULT;
11860 	}
11861 	id = reg->id;
11862 
11863 	if (!cur_func(env)->active_locks)
11864 		return -EINVAL;
11865 	s = find_lock_state(env, REF_TYPE_LOCK, id, ptr);
11866 	if (!s) {
11867 		verbose(env, "held lock and object are not in the same allocation\n");
11868 		return -EINVAL;
11869 	}
11870 	return 0;
11871 }
11872 
11873 static bool is_bpf_list_api_kfunc(u32 btf_id)
11874 {
11875 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11876 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11877 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11878 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11879 }
11880 
11881 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11882 {
11883 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11884 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11885 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11886 }
11887 
11888 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11889 {
11890 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11891 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11892 }
11893 
11894 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11895 {
11896 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11897 }
11898 
11899 static bool is_async_callback_calling_kfunc(u32 btf_id)
11900 {
11901 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
11902 }
11903 
11904 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
11905 {
11906 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
11907 	       insn->imm == special_kfunc_list[KF_bpf_throw];
11908 }
11909 
11910 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)
11911 {
11912 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
11913 }
11914 
11915 static bool is_callback_calling_kfunc(u32 btf_id)
11916 {
11917 	return is_sync_callback_calling_kfunc(btf_id) ||
11918 	       is_async_callback_calling_kfunc(btf_id);
11919 }
11920 
11921 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11922 {
11923 	return is_bpf_rbtree_api_kfunc(btf_id);
11924 }
11925 
11926 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11927 					  enum btf_field_type head_field_type,
11928 					  u32 kfunc_btf_id)
11929 {
11930 	bool ret;
11931 
11932 	switch (head_field_type) {
11933 	case BPF_LIST_HEAD:
11934 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11935 		break;
11936 	case BPF_RB_ROOT:
11937 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11938 		break;
11939 	default:
11940 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11941 			btf_field_type_name(head_field_type));
11942 		return false;
11943 	}
11944 
11945 	if (!ret)
11946 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11947 			btf_field_type_name(head_field_type));
11948 	return ret;
11949 }
11950 
11951 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11952 					  enum btf_field_type node_field_type,
11953 					  u32 kfunc_btf_id)
11954 {
11955 	bool ret;
11956 
11957 	switch (node_field_type) {
11958 	case BPF_LIST_NODE:
11959 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11960 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11961 		break;
11962 	case BPF_RB_NODE:
11963 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11964 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11965 		break;
11966 	default:
11967 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11968 			btf_field_type_name(node_field_type));
11969 		return false;
11970 	}
11971 
11972 	if (!ret)
11973 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11974 			btf_field_type_name(node_field_type));
11975 	return ret;
11976 }
11977 
11978 static int
11979 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11980 				   struct bpf_reg_state *reg, u32 regno,
11981 				   struct bpf_kfunc_call_arg_meta *meta,
11982 				   enum btf_field_type head_field_type,
11983 				   struct btf_field **head_field)
11984 {
11985 	const char *head_type_name;
11986 	struct btf_field *field;
11987 	struct btf_record *rec;
11988 	u32 head_off;
11989 
11990 	if (meta->btf != btf_vmlinux) {
11991 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11992 		return -EFAULT;
11993 	}
11994 
11995 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11996 		return -EFAULT;
11997 
11998 	head_type_name = btf_field_type_name(head_field_type);
11999 	if (!tnum_is_const(reg->var_off)) {
12000 		verbose(env,
12001 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
12002 			regno, head_type_name);
12003 		return -EINVAL;
12004 	}
12005 
12006 	rec = reg_btf_record(reg);
12007 	head_off = reg->off + reg->var_off.value;
12008 	field = btf_record_find(rec, head_off, head_field_type);
12009 	if (!field) {
12010 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
12011 		return -EINVAL;
12012 	}
12013 
12014 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
12015 	if (check_reg_allocation_locked(env, reg)) {
12016 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
12017 			rec->spin_lock_off, head_type_name);
12018 		return -EINVAL;
12019 	}
12020 
12021 	if (*head_field) {
12022 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
12023 		return -EFAULT;
12024 	}
12025 	*head_field = field;
12026 	return 0;
12027 }
12028 
12029 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
12030 					   struct bpf_reg_state *reg, u32 regno,
12031 					   struct bpf_kfunc_call_arg_meta *meta)
12032 {
12033 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
12034 							  &meta->arg_list_head.field);
12035 }
12036 
12037 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
12038 					     struct bpf_reg_state *reg, u32 regno,
12039 					     struct bpf_kfunc_call_arg_meta *meta)
12040 {
12041 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
12042 							  &meta->arg_rbtree_root.field);
12043 }
12044 
12045 static int
12046 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
12047 				   struct bpf_reg_state *reg, u32 regno,
12048 				   struct bpf_kfunc_call_arg_meta *meta,
12049 				   enum btf_field_type head_field_type,
12050 				   enum btf_field_type node_field_type,
12051 				   struct btf_field **node_field)
12052 {
12053 	const char *node_type_name;
12054 	const struct btf_type *et, *t;
12055 	struct btf_field *field;
12056 	u32 node_off;
12057 
12058 	if (meta->btf != btf_vmlinux) {
12059 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
12060 		return -EFAULT;
12061 	}
12062 
12063 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
12064 		return -EFAULT;
12065 
12066 	node_type_name = btf_field_type_name(node_field_type);
12067 	if (!tnum_is_const(reg->var_off)) {
12068 		verbose(env,
12069 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
12070 			regno, node_type_name);
12071 		return -EINVAL;
12072 	}
12073 
12074 	node_off = reg->off + reg->var_off.value;
12075 	field = reg_find_field_offset(reg, node_off, node_field_type);
12076 	if (!field) {
12077 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
12078 		return -EINVAL;
12079 	}
12080 
12081 	field = *node_field;
12082 
12083 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
12084 	t = btf_type_by_id(reg->btf, reg->btf_id);
12085 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
12086 				  field->graph_root.value_btf_id, true)) {
12087 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
12088 			"in struct %s, but arg is at offset=%d in struct %s\n",
12089 			btf_field_type_name(head_field_type),
12090 			btf_field_type_name(node_field_type),
12091 			field->graph_root.node_offset,
12092 			btf_name_by_offset(field->graph_root.btf, et->name_off),
12093 			node_off, btf_name_by_offset(reg->btf, t->name_off));
12094 		return -EINVAL;
12095 	}
12096 	meta->arg_btf = reg->btf;
12097 	meta->arg_btf_id = reg->btf_id;
12098 
12099 	if (node_off != field->graph_root.node_offset) {
12100 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
12101 			node_off, btf_field_type_name(node_field_type),
12102 			field->graph_root.node_offset,
12103 			btf_name_by_offset(field->graph_root.btf, et->name_off));
12104 		return -EINVAL;
12105 	}
12106 
12107 	return 0;
12108 }
12109 
12110 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
12111 					   struct bpf_reg_state *reg, u32 regno,
12112 					   struct bpf_kfunc_call_arg_meta *meta)
12113 {
12114 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
12115 						  BPF_LIST_HEAD, BPF_LIST_NODE,
12116 						  &meta->arg_list_head.field);
12117 }
12118 
12119 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
12120 					     struct bpf_reg_state *reg, u32 regno,
12121 					     struct bpf_kfunc_call_arg_meta *meta)
12122 {
12123 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
12124 						  BPF_RB_ROOT, BPF_RB_NODE,
12125 						  &meta->arg_rbtree_root.field);
12126 }
12127 
12128 /*
12129  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
12130  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
12131  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
12132  * them can only be attached to some specific hook points.
12133  */
12134 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
12135 {
12136 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
12137 
12138 	switch (prog_type) {
12139 	case BPF_PROG_TYPE_LSM:
12140 		return true;
12141 	case BPF_PROG_TYPE_TRACING:
12142 		if (env->prog->expected_attach_type == BPF_TRACE_ITER)
12143 			return true;
12144 		fallthrough;
12145 	default:
12146 		return in_sleepable(env);
12147 	}
12148 }
12149 
12150 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
12151 			    int insn_idx)
12152 {
12153 	const char *func_name = meta->func_name, *ref_tname;
12154 	const struct btf *btf = meta->btf;
12155 	const struct btf_param *args;
12156 	struct btf_record *rec;
12157 	u32 i, nargs;
12158 	int ret;
12159 
12160 	args = (const struct btf_param *)(meta->func_proto + 1);
12161 	nargs = btf_type_vlen(meta->func_proto);
12162 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
12163 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
12164 			MAX_BPF_FUNC_REG_ARGS);
12165 		return -EINVAL;
12166 	}
12167 
12168 	/* Check that BTF function arguments match actual types that the
12169 	 * verifier sees.
12170 	 */
12171 	for (i = 0; i < nargs; i++) {
12172 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
12173 		const struct btf_type *t, *ref_t, *resolve_ret;
12174 		enum bpf_arg_type arg_type = ARG_DONTCARE;
12175 		u32 regno = i + 1, ref_id, type_size;
12176 		bool is_ret_buf_sz = false;
12177 		bool mask = false;
12178 		int kf_arg_type;
12179 
12180 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
12181 
12182 		if (is_kfunc_arg_ignore(btf, &args[i]))
12183 			continue;
12184 
12185 		if (btf_type_is_scalar(t)) {
12186 			if (reg->type != SCALAR_VALUE) {
12187 				verbose(env, "R%d is not a scalar\n", regno);
12188 				return -EINVAL;
12189 			}
12190 
12191 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
12192 				if (meta->arg_constant.found) {
12193 					verbose(env, "verifier internal error: only one constant argument permitted\n");
12194 					return -EFAULT;
12195 				}
12196 				if (!tnum_is_const(reg->var_off)) {
12197 					verbose(env, "R%d must be a known constant\n", regno);
12198 					return -EINVAL;
12199 				}
12200 				ret = mark_chain_precision(env, regno);
12201 				if (ret < 0)
12202 					return ret;
12203 				meta->arg_constant.found = true;
12204 				meta->arg_constant.value = reg->var_off.value;
12205 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
12206 				meta->r0_rdonly = true;
12207 				is_ret_buf_sz = true;
12208 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
12209 				is_ret_buf_sz = true;
12210 			}
12211 
12212 			if (is_ret_buf_sz) {
12213 				if (meta->r0_size) {
12214 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
12215 					return -EINVAL;
12216 				}
12217 
12218 				if (!tnum_is_const(reg->var_off)) {
12219 					verbose(env, "R%d is not a const\n", regno);
12220 					return -EINVAL;
12221 				}
12222 
12223 				meta->r0_size = reg->var_off.value;
12224 				ret = mark_chain_precision(env, regno);
12225 				if (ret)
12226 					return ret;
12227 			}
12228 			continue;
12229 		}
12230 
12231 		if (!btf_type_is_ptr(t)) {
12232 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
12233 			return -EINVAL;
12234 		}
12235 
12236 		mask = mask_raw_tp_reg(env, reg);
12237 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
12238 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
12239 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
12240 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
12241 			unmask_raw_tp_reg(reg, mask);
12242 			return -EACCES;
12243 		}
12244 		unmask_raw_tp_reg(reg, mask);
12245 
12246 		if (reg->ref_obj_id) {
12247 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
12248 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
12249 					regno, reg->ref_obj_id,
12250 					meta->ref_obj_id);
12251 				return -EFAULT;
12252 			}
12253 			meta->ref_obj_id = reg->ref_obj_id;
12254 			if (is_kfunc_release(meta))
12255 				meta->release_regno = regno;
12256 		}
12257 
12258 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
12259 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
12260 
12261 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
12262 		if (kf_arg_type < 0)
12263 			return kf_arg_type;
12264 
12265 		switch (kf_arg_type) {
12266 		case KF_ARG_PTR_TO_NULL:
12267 			continue;
12268 		case KF_ARG_PTR_TO_MAP:
12269 			if (!reg->map_ptr) {
12270 				verbose(env, "pointer in R%d isn't map pointer\n", regno);
12271 				return -EINVAL;
12272 			}
12273 			if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) {
12274 				/* Use map_uid (which is unique id of inner map) to reject:
12275 				 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
12276 				 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
12277 				 * if (inner_map1 && inner_map2) {
12278 				 *     wq = bpf_map_lookup_elem(inner_map1);
12279 				 *     if (wq)
12280 				 *         // mismatch would have been allowed
12281 				 *         bpf_wq_init(wq, inner_map2);
12282 				 * }
12283 				 *
12284 				 * Comparing map_ptr is enough to distinguish normal and outer maps.
12285 				 */
12286 				if (meta->map.ptr != reg->map_ptr ||
12287 				    meta->map.uid != reg->map_uid) {
12288 					verbose(env,
12289 						"workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
12290 						meta->map.uid, reg->map_uid);
12291 					return -EINVAL;
12292 				}
12293 			}
12294 			meta->map.ptr = reg->map_ptr;
12295 			meta->map.uid = reg->map_uid;
12296 			fallthrough;
12297 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
12298 		case KF_ARG_PTR_TO_BTF_ID:
12299 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
12300 				break;
12301 
12302 			/* Allow passing maybe NULL raw_tp arguments to
12303 			 * kfuncs for compatibility. Don't apply this to
12304 			 * arguments with ref_obj_id > 0.
12305 			 */
12306 			mask = mask_raw_tp_reg(env, reg);
12307 			if (!is_trusted_reg(reg)) {
12308 				if (!is_kfunc_rcu(meta)) {
12309 					verbose(env, "R%d must be referenced or trusted\n", regno);
12310 					unmask_raw_tp_reg(reg, mask);
12311 					return -EINVAL;
12312 				}
12313 				if (!is_rcu_reg(reg)) {
12314 					verbose(env, "R%d must be a rcu pointer\n", regno);
12315 					unmask_raw_tp_reg(reg, mask);
12316 					return -EINVAL;
12317 				}
12318 			}
12319 			unmask_raw_tp_reg(reg, mask);
12320 			fallthrough;
12321 		case KF_ARG_PTR_TO_CTX:
12322 		case KF_ARG_PTR_TO_DYNPTR:
12323 		case KF_ARG_PTR_TO_ITER:
12324 		case KF_ARG_PTR_TO_LIST_HEAD:
12325 		case KF_ARG_PTR_TO_LIST_NODE:
12326 		case KF_ARG_PTR_TO_RB_ROOT:
12327 		case KF_ARG_PTR_TO_RB_NODE:
12328 		case KF_ARG_PTR_TO_MEM:
12329 		case KF_ARG_PTR_TO_MEM_SIZE:
12330 		case KF_ARG_PTR_TO_CALLBACK:
12331 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
12332 		case KF_ARG_PTR_TO_CONST_STR:
12333 		case KF_ARG_PTR_TO_WORKQUEUE:
12334 			break;
12335 		default:
12336 			WARN_ON_ONCE(1);
12337 			return -EFAULT;
12338 		}
12339 
12340 		if (is_kfunc_release(meta) && reg->ref_obj_id)
12341 			arg_type |= OBJ_RELEASE;
12342 		mask = mask_raw_tp_reg(env, reg);
12343 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
12344 		unmask_raw_tp_reg(reg, mask);
12345 		if (ret < 0)
12346 			return ret;
12347 
12348 		switch (kf_arg_type) {
12349 		case KF_ARG_PTR_TO_CTX:
12350 			if (reg->type != PTR_TO_CTX) {
12351 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n",
12352 					i, reg_type_str(env, reg->type));
12353 				return -EINVAL;
12354 			}
12355 
12356 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12357 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
12358 				if (ret < 0)
12359 					return -EINVAL;
12360 				meta->ret_btf_id  = ret;
12361 			}
12362 			break;
12363 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
12364 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
12365 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
12366 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
12367 					return -EINVAL;
12368 				}
12369 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
12370 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12371 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
12372 					return -EINVAL;
12373 				}
12374 			} else {
12375 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
12376 				return -EINVAL;
12377 			}
12378 			if (!reg->ref_obj_id) {
12379 				verbose(env, "allocated object must be referenced\n");
12380 				return -EINVAL;
12381 			}
12382 			if (meta->btf == btf_vmlinux) {
12383 				meta->arg_btf = reg->btf;
12384 				meta->arg_btf_id = reg->btf_id;
12385 			}
12386 			break;
12387 		case KF_ARG_PTR_TO_DYNPTR:
12388 		{
12389 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
12390 			int clone_ref_obj_id = 0;
12391 
12392 			if (reg->type == CONST_PTR_TO_DYNPTR)
12393 				dynptr_arg_type |= MEM_RDONLY;
12394 
12395 			if (is_kfunc_arg_uninit(btf, &args[i]))
12396 				dynptr_arg_type |= MEM_UNINIT;
12397 
12398 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
12399 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
12400 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
12401 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
12402 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
12403 				   (dynptr_arg_type & MEM_UNINIT)) {
12404 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
12405 
12406 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
12407 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
12408 					return -EFAULT;
12409 				}
12410 
12411 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
12412 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
12413 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
12414 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
12415 					return -EFAULT;
12416 				}
12417 			}
12418 
12419 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
12420 			if (ret < 0)
12421 				return ret;
12422 
12423 			if (!(dynptr_arg_type & MEM_UNINIT)) {
12424 				int id = dynptr_id(env, reg);
12425 
12426 				if (id < 0) {
12427 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
12428 					return id;
12429 				}
12430 				meta->initialized_dynptr.id = id;
12431 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
12432 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
12433 			}
12434 
12435 			break;
12436 		}
12437 		case KF_ARG_PTR_TO_ITER:
12438 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
12439 				if (!check_css_task_iter_allowlist(env)) {
12440 					verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
12441 					return -EINVAL;
12442 				}
12443 			}
12444 			ret = process_iter_arg(env, regno, insn_idx, meta);
12445 			if (ret < 0)
12446 				return ret;
12447 			break;
12448 		case KF_ARG_PTR_TO_LIST_HEAD:
12449 			if (reg->type != PTR_TO_MAP_VALUE &&
12450 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12451 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
12452 				return -EINVAL;
12453 			}
12454 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
12455 				verbose(env, "allocated object must be referenced\n");
12456 				return -EINVAL;
12457 			}
12458 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
12459 			if (ret < 0)
12460 				return ret;
12461 			break;
12462 		case KF_ARG_PTR_TO_RB_ROOT:
12463 			if (reg->type != PTR_TO_MAP_VALUE &&
12464 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12465 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
12466 				return -EINVAL;
12467 			}
12468 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
12469 				verbose(env, "allocated object must be referenced\n");
12470 				return -EINVAL;
12471 			}
12472 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
12473 			if (ret < 0)
12474 				return ret;
12475 			break;
12476 		case KF_ARG_PTR_TO_LIST_NODE:
12477 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12478 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
12479 				return -EINVAL;
12480 			}
12481 			if (!reg->ref_obj_id) {
12482 				verbose(env, "allocated object must be referenced\n");
12483 				return -EINVAL;
12484 			}
12485 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
12486 			if (ret < 0)
12487 				return ret;
12488 			break;
12489 		case KF_ARG_PTR_TO_RB_NODE:
12490 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
12491 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
12492 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
12493 					return -EINVAL;
12494 				}
12495 				if (in_rbtree_lock_required_cb(env)) {
12496 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
12497 					return -EINVAL;
12498 				}
12499 			} else {
12500 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12501 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
12502 					return -EINVAL;
12503 				}
12504 				if (!reg->ref_obj_id) {
12505 					verbose(env, "allocated object must be referenced\n");
12506 					return -EINVAL;
12507 				}
12508 			}
12509 
12510 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
12511 			if (ret < 0)
12512 				return ret;
12513 			break;
12514 		case KF_ARG_PTR_TO_MAP:
12515 			/* If argument has '__map' suffix expect 'struct bpf_map *' */
12516 			ref_id = *reg2btf_ids[CONST_PTR_TO_MAP];
12517 			ref_t = btf_type_by_id(btf_vmlinux, ref_id);
12518 			ref_tname = btf_name_by_offset(btf, ref_t->name_off);
12519 			fallthrough;
12520 		case KF_ARG_PTR_TO_BTF_ID:
12521 			mask = mask_raw_tp_reg(env, reg);
12522 			/* Only base_type is checked, further checks are done here */
12523 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
12524 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
12525 			    !reg2btf_ids[base_type(reg->type)]) {
12526 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
12527 				verbose(env, "expected %s or socket\n",
12528 					reg_type_str(env, base_type(reg->type) |
12529 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
12530 				unmask_raw_tp_reg(reg, mask);
12531 				return -EINVAL;
12532 			}
12533 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
12534 			unmask_raw_tp_reg(reg, mask);
12535 			if (ret < 0)
12536 				return ret;
12537 			break;
12538 		case KF_ARG_PTR_TO_MEM:
12539 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
12540 			if (IS_ERR(resolve_ret)) {
12541 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
12542 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
12543 				return -EINVAL;
12544 			}
12545 			ret = check_mem_reg(env, reg, regno, type_size);
12546 			if (ret < 0)
12547 				return ret;
12548 			break;
12549 		case KF_ARG_PTR_TO_MEM_SIZE:
12550 		{
12551 			struct bpf_reg_state *buff_reg = &regs[regno];
12552 			const struct btf_param *buff_arg = &args[i];
12553 			struct bpf_reg_state *size_reg = &regs[regno + 1];
12554 			const struct btf_param *size_arg = &args[i + 1];
12555 
12556 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
12557 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
12558 				if (ret < 0) {
12559 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
12560 					return ret;
12561 				}
12562 			}
12563 
12564 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
12565 				if (meta->arg_constant.found) {
12566 					verbose(env, "verifier internal error: only one constant argument permitted\n");
12567 					return -EFAULT;
12568 				}
12569 				if (!tnum_is_const(size_reg->var_off)) {
12570 					verbose(env, "R%d must be a known constant\n", regno + 1);
12571 					return -EINVAL;
12572 				}
12573 				meta->arg_constant.found = true;
12574 				meta->arg_constant.value = size_reg->var_off.value;
12575 			}
12576 
12577 			/* Skip next '__sz' or '__szk' argument */
12578 			i++;
12579 			break;
12580 		}
12581 		case KF_ARG_PTR_TO_CALLBACK:
12582 			if (reg->type != PTR_TO_FUNC) {
12583 				verbose(env, "arg%d expected pointer to func\n", i);
12584 				return -EINVAL;
12585 			}
12586 			meta->subprogno = reg->subprogno;
12587 			break;
12588 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
12589 			if (!type_is_ptr_alloc_obj(reg->type)) {
12590 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
12591 				return -EINVAL;
12592 			}
12593 			if (!type_is_non_owning_ref(reg->type))
12594 				meta->arg_owning_ref = true;
12595 
12596 			rec = reg_btf_record(reg);
12597 			if (!rec) {
12598 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
12599 				return -EFAULT;
12600 			}
12601 
12602 			if (rec->refcount_off < 0) {
12603 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
12604 				return -EINVAL;
12605 			}
12606 
12607 			meta->arg_btf = reg->btf;
12608 			meta->arg_btf_id = reg->btf_id;
12609 			break;
12610 		case KF_ARG_PTR_TO_CONST_STR:
12611 			if (reg->type != PTR_TO_MAP_VALUE) {
12612 				verbose(env, "arg#%d doesn't point to a const string\n", i);
12613 				return -EINVAL;
12614 			}
12615 			ret = check_reg_const_str(env, reg, regno);
12616 			if (ret)
12617 				return ret;
12618 			break;
12619 		case KF_ARG_PTR_TO_WORKQUEUE:
12620 			if (reg->type != PTR_TO_MAP_VALUE) {
12621 				verbose(env, "arg#%d doesn't point to a map value\n", i);
12622 				return -EINVAL;
12623 			}
12624 			ret = process_wq_func(env, regno, meta);
12625 			if (ret < 0)
12626 				return ret;
12627 			break;
12628 		}
12629 	}
12630 
12631 	if (is_kfunc_release(meta) && !meta->release_regno) {
12632 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
12633 			func_name);
12634 		return -EINVAL;
12635 	}
12636 
12637 	return 0;
12638 }
12639 
12640 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
12641 			    struct bpf_insn *insn,
12642 			    struct bpf_kfunc_call_arg_meta *meta,
12643 			    const char **kfunc_name)
12644 {
12645 	const struct btf_type *func, *func_proto;
12646 	u32 func_id, *kfunc_flags;
12647 	const char *func_name;
12648 	struct btf *desc_btf;
12649 
12650 	if (kfunc_name)
12651 		*kfunc_name = NULL;
12652 
12653 	if (!insn->imm)
12654 		return -EINVAL;
12655 
12656 	desc_btf = find_kfunc_desc_btf(env, insn->off);
12657 	if (IS_ERR(desc_btf))
12658 		return PTR_ERR(desc_btf);
12659 
12660 	func_id = insn->imm;
12661 	func = btf_type_by_id(desc_btf, func_id);
12662 	func_name = btf_name_by_offset(desc_btf, func->name_off);
12663 	if (kfunc_name)
12664 		*kfunc_name = func_name;
12665 	func_proto = btf_type_by_id(desc_btf, func->type);
12666 
12667 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
12668 	if (!kfunc_flags) {
12669 		return -EACCES;
12670 	}
12671 
12672 	memset(meta, 0, sizeof(*meta));
12673 	meta->btf = desc_btf;
12674 	meta->func_id = func_id;
12675 	meta->kfunc_flags = *kfunc_flags;
12676 	meta->func_proto = func_proto;
12677 	meta->func_name = func_name;
12678 
12679 	return 0;
12680 }
12681 
12682 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
12683 
12684 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
12685 			    int *insn_idx_p)
12686 {
12687 	bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable;
12688 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
12689 	struct bpf_reg_state *regs = cur_regs(env);
12690 	const char *func_name, *ptr_type_name;
12691 	const struct btf_type *t, *ptr_type;
12692 	struct bpf_kfunc_call_arg_meta meta;
12693 	struct bpf_insn_aux_data *insn_aux;
12694 	int err, insn_idx = *insn_idx_p;
12695 	const struct btf_param *args;
12696 	const struct btf_type *ret_t;
12697 	struct btf *desc_btf;
12698 
12699 	/* skip for now, but return error when we find this in fixup_kfunc_call */
12700 	if (!insn->imm)
12701 		return 0;
12702 
12703 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
12704 	if (err == -EACCES && func_name)
12705 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
12706 	if (err)
12707 		return err;
12708 	desc_btf = meta.btf;
12709 	insn_aux = &env->insn_aux_data[insn_idx];
12710 
12711 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
12712 
12713 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
12714 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
12715 		return -EACCES;
12716 	}
12717 
12718 	sleepable = is_kfunc_sleepable(&meta);
12719 	if (sleepable && !in_sleepable(env)) {
12720 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
12721 		return -EACCES;
12722 	}
12723 
12724 	/* Check the arguments */
12725 	err = check_kfunc_args(env, &meta, insn_idx);
12726 	if (err < 0)
12727 		return err;
12728 
12729 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12730 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12731 					 set_rbtree_add_callback_state);
12732 		if (err) {
12733 			verbose(env, "kfunc %s#%d failed callback verification\n",
12734 				func_name, meta.func_id);
12735 			return err;
12736 		}
12737 	}
12738 
12739 	if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) {
12740 		meta.r0_size = sizeof(u64);
12741 		meta.r0_rdonly = false;
12742 	}
12743 
12744 	if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) {
12745 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12746 					 set_timer_callback_state);
12747 		if (err) {
12748 			verbose(env, "kfunc %s#%d failed callback verification\n",
12749 				func_name, meta.func_id);
12750 			return err;
12751 		}
12752 	}
12753 
12754 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
12755 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
12756 
12757 	preempt_disable = is_kfunc_bpf_preempt_disable(&meta);
12758 	preempt_enable = is_kfunc_bpf_preempt_enable(&meta);
12759 
12760 	if (env->cur_state->active_rcu_lock) {
12761 		struct bpf_func_state *state;
12762 		struct bpf_reg_state *reg;
12763 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
12764 
12765 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
12766 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
12767 			return -EACCES;
12768 		}
12769 
12770 		if (rcu_lock) {
12771 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
12772 			return -EINVAL;
12773 		} else if (rcu_unlock) {
12774 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
12775 				if (reg->type & MEM_RCU) {
12776 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
12777 					reg->type |= PTR_UNTRUSTED;
12778 				}
12779 			}));
12780 			env->cur_state->active_rcu_lock = false;
12781 		} else if (sleepable) {
12782 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
12783 			return -EACCES;
12784 		}
12785 	} else if (rcu_lock) {
12786 		env->cur_state->active_rcu_lock = true;
12787 	} else if (rcu_unlock) {
12788 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
12789 		return -EINVAL;
12790 	}
12791 
12792 	if (env->cur_state->active_preempt_lock) {
12793 		if (preempt_disable) {
12794 			env->cur_state->active_preempt_lock++;
12795 		} else if (preempt_enable) {
12796 			env->cur_state->active_preempt_lock--;
12797 		} else if (sleepable) {
12798 			verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name);
12799 			return -EACCES;
12800 		}
12801 	} else if (preempt_disable) {
12802 		env->cur_state->active_preempt_lock++;
12803 	} else if (preempt_enable) {
12804 		verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name);
12805 		return -EINVAL;
12806 	}
12807 
12808 	/* In case of release function, we get register number of refcounted
12809 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
12810 	 */
12811 	if (meta.release_regno) {
12812 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
12813 		if (err) {
12814 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12815 				func_name, meta.func_id);
12816 			return err;
12817 		}
12818 	}
12819 
12820 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12821 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12822 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12823 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
12824 		insn_aux->insert_off = regs[BPF_REG_2].off;
12825 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
12826 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
12827 		if (err) {
12828 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
12829 				func_name, meta.func_id);
12830 			return err;
12831 		}
12832 
12833 		err = release_reference(env, release_ref_obj_id);
12834 		if (err) {
12835 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12836 				func_name, meta.func_id);
12837 			return err;
12838 		}
12839 	}
12840 
12841 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
12842 		if (!bpf_jit_supports_exceptions()) {
12843 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
12844 				func_name, meta.func_id);
12845 			return -ENOTSUPP;
12846 		}
12847 		env->seen_exception = true;
12848 
12849 		/* In the case of the default callback, the cookie value passed
12850 		 * to bpf_throw becomes the return value of the program.
12851 		 */
12852 		if (!env->exception_callback_subprog) {
12853 			err = check_return_code(env, BPF_REG_1, "R1");
12854 			if (err < 0)
12855 				return err;
12856 		}
12857 	}
12858 
12859 	for (i = 0; i < CALLER_SAVED_REGS; i++)
12860 		mark_reg_not_init(env, regs, caller_saved[i]);
12861 
12862 	/* Check return type */
12863 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
12864 
12865 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
12866 		/* Only exception is bpf_obj_new_impl */
12867 		if (meta.btf != btf_vmlinux ||
12868 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
12869 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
12870 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
12871 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
12872 			return -EINVAL;
12873 		}
12874 	}
12875 
12876 	if (btf_type_is_scalar(t)) {
12877 		mark_reg_unknown(env, regs, BPF_REG_0);
12878 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
12879 	} else if (btf_type_is_ptr(t)) {
12880 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
12881 
12882 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12883 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
12884 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12885 				struct btf_struct_meta *struct_meta;
12886 				struct btf *ret_btf;
12887 				u32 ret_btf_id;
12888 
12889 				if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
12890 					return -ENOMEM;
12891 
12892 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
12893 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
12894 					return -EINVAL;
12895 				}
12896 
12897 				ret_btf = env->prog->aux->btf;
12898 				ret_btf_id = meta.arg_constant.value;
12899 
12900 				/* This may be NULL due to user not supplying a BTF */
12901 				if (!ret_btf) {
12902 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
12903 					return -EINVAL;
12904 				}
12905 
12906 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
12907 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
12908 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
12909 					return -EINVAL;
12910 				}
12911 
12912 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12913 					if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
12914 						verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
12915 							ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
12916 						return -EINVAL;
12917 					}
12918 
12919 					if (!bpf_global_percpu_ma_set) {
12920 						mutex_lock(&bpf_percpu_ma_lock);
12921 						if (!bpf_global_percpu_ma_set) {
12922 							/* Charge memory allocated with bpf_global_percpu_ma to
12923 							 * root memcg. The obj_cgroup for root memcg is NULL.
12924 							 */
12925 							err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
12926 							if (!err)
12927 								bpf_global_percpu_ma_set = true;
12928 						}
12929 						mutex_unlock(&bpf_percpu_ma_lock);
12930 						if (err)
12931 							return err;
12932 					}
12933 
12934 					mutex_lock(&bpf_percpu_ma_lock);
12935 					err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
12936 					mutex_unlock(&bpf_percpu_ma_lock);
12937 					if (err)
12938 						return err;
12939 				}
12940 
12941 				struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
12942 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12943 					if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
12944 						verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
12945 						return -EINVAL;
12946 					}
12947 
12948 					if (struct_meta) {
12949 						verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
12950 						return -EINVAL;
12951 					}
12952 				}
12953 
12954 				mark_reg_known_zero(env, regs, BPF_REG_0);
12955 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12956 				regs[BPF_REG_0].btf = ret_btf;
12957 				regs[BPF_REG_0].btf_id = ret_btf_id;
12958 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
12959 					regs[BPF_REG_0].type |= MEM_PERCPU;
12960 
12961 				insn_aux->obj_new_size = ret_t->size;
12962 				insn_aux->kptr_struct_meta = struct_meta;
12963 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
12964 				mark_reg_known_zero(env, regs, BPF_REG_0);
12965 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12966 				regs[BPF_REG_0].btf = meta.arg_btf;
12967 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
12968 
12969 				insn_aux->kptr_struct_meta =
12970 					btf_find_struct_meta(meta.arg_btf,
12971 							     meta.arg_btf_id);
12972 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12973 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
12974 				struct btf_field *field = meta.arg_list_head.field;
12975 
12976 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12977 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12978 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12979 				struct btf_field *field = meta.arg_rbtree_root.field;
12980 
12981 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12982 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12983 				mark_reg_known_zero(env, regs, BPF_REG_0);
12984 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
12985 				regs[BPF_REG_0].btf = desc_btf;
12986 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
12987 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
12988 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
12989 				if (!ret_t || !btf_type_is_struct(ret_t)) {
12990 					verbose(env,
12991 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
12992 					return -EINVAL;
12993 				}
12994 
12995 				mark_reg_known_zero(env, regs, BPF_REG_0);
12996 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
12997 				regs[BPF_REG_0].btf = desc_btf;
12998 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
12999 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
13000 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
13001 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
13002 
13003 				mark_reg_known_zero(env, regs, BPF_REG_0);
13004 
13005 				if (!meta.arg_constant.found) {
13006 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
13007 					return -EFAULT;
13008 				}
13009 
13010 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
13011 
13012 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
13013 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
13014 
13015 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
13016 					regs[BPF_REG_0].type |= MEM_RDONLY;
13017 				} else {
13018 					/* this will set env->seen_direct_write to true */
13019 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
13020 						verbose(env, "the prog does not allow writes to packet data\n");
13021 						return -EINVAL;
13022 					}
13023 				}
13024 
13025 				if (!meta.initialized_dynptr.id) {
13026 					verbose(env, "verifier internal error: no dynptr id\n");
13027 					return -EFAULT;
13028 				}
13029 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
13030 
13031 				/* we don't need to set BPF_REG_0's ref obj id
13032 				 * because packet slices are not refcounted (see
13033 				 * dynptr_type_refcounted)
13034 				 */
13035 			} else {
13036 				verbose(env, "kernel function %s unhandled dynamic return type\n",
13037 					meta.func_name);
13038 				return -EFAULT;
13039 			}
13040 		} else if (btf_type_is_void(ptr_type)) {
13041 			/* kfunc returning 'void *' is equivalent to returning scalar */
13042 			mark_reg_unknown(env, regs, BPF_REG_0);
13043 		} else if (!__btf_type_is_struct(ptr_type)) {
13044 			if (!meta.r0_size) {
13045 				__u32 sz;
13046 
13047 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
13048 					meta.r0_size = sz;
13049 					meta.r0_rdonly = true;
13050 				}
13051 			}
13052 			if (!meta.r0_size) {
13053 				ptr_type_name = btf_name_by_offset(desc_btf,
13054 								   ptr_type->name_off);
13055 				verbose(env,
13056 					"kernel function %s returns pointer type %s %s is not supported\n",
13057 					func_name,
13058 					btf_type_str(ptr_type),
13059 					ptr_type_name);
13060 				return -EINVAL;
13061 			}
13062 
13063 			mark_reg_known_zero(env, regs, BPF_REG_0);
13064 			regs[BPF_REG_0].type = PTR_TO_MEM;
13065 			regs[BPF_REG_0].mem_size = meta.r0_size;
13066 
13067 			if (meta.r0_rdonly)
13068 				regs[BPF_REG_0].type |= MEM_RDONLY;
13069 
13070 			/* Ensures we don't access the memory after a release_reference() */
13071 			if (meta.ref_obj_id)
13072 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
13073 		} else {
13074 			mark_reg_known_zero(env, regs, BPF_REG_0);
13075 			regs[BPF_REG_0].btf = desc_btf;
13076 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
13077 			regs[BPF_REG_0].btf_id = ptr_type_id;
13078 
13079 			if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache])
13080 				regs[BPF_REG_0].type |= PTR_UNTRUSTED;
13081 
13082 			if (is_iter_next_kfunc(&meta)) {
13083 				struct bpf_reg_state *cur_iter;
13084 
13085 				cur_iter = get_iter_from_state(env->cur_state, &meta);
13086 
13087 				if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */
13088 					regs[BPF_REG_0].type |= MEM_RCU;
13089 				else
13090 					regs[BPF_REG_0].type |= PTR_TRUSTED;
13091 			}
13092 		}
13093 
13094 		if (is_kfunc_ret_null(&meta)) {
13095 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
13096 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
13097 			regs[BPF_REG_0].id = ++env->id_gen;
13098 		}
13099 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
13100 		if (is_kfunc_acquire(&meta)) {
13101 			int id = acquire_reference_state(env, insn_idx);
13102 
13103 			if (id < 0)
13104 				return id;
13105 			if (is_kfunc_ret_null(&meta))
13106 				regs[BPF_REG_0].id = id;
13107 			regs[BPF_REG_0].ref_obj_id = id;
13108 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
13109 			ref_set_non_owning(env, &regs[BPF_REG_0]);
13110 		}
13111 
13112 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
13113 			regs[BPF_REG_0].id = ++env->id_gen;
13114 	} else if (btf_type_is_void(t)) {
13115 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
13116 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
13117 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
13118 				insn_aux->kptr_struct_meta =
13119 					btf_find_struct_meta(meta.arg_btf,
13120 							     meta.arg_btf_id);
13121 			}
13122 		}
13123 	}
13124 
13125 	nargs = btf_type_vlen(meta.func_proto);
13126 	args = (const struct btf_param *)(meta.func_proto + 1);
13127 	for (i = 0; i < nargs; i++) {
13128 		u32 regno = i + 1;
13129 
13130 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
13131 		if (btf_type_is_ptr(t))
13132 			mark_btf_func_reg_size(env, regno, sizeof(void *));
13133 		else
13134 			/* scalar. ensured by btf_check_kfunc_arg_match() */
13135 			mark_btf_func_reg_size(env, regno, t->size);
13136 	}
13137 
13138 	if (is_iter_next_kfunc(&meta)) {
13139 		err = process_iter_next_call(env, insn_idx, &meta);
13140 		if (err)
13141 			return err;
13142 	}
13143 
13144 	return 0;
13145 }
13146 
13147 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
13148 				  const struct bpf_reg_state *reg,
13149 				  enum bpf_reg_type type)
13150 {
13151 	bool known = tnum_is_const(reg->var_off);
13152 	s64 val = reg->var_off.value;
13153 	s64 smin = reg->smin_value;
13154 
13155 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
13156 		verbose(env, "math between %s pointer and %lld is not allowed\n",
13157 			reg_type_str(env, type), val);
13158 		return false;
13159 	}
13160 
13161 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
13162 		verbose(env, "%s pointer offset %d is not allowed\n",
13163 			reg_type_str(env, type), reg->off);
13164 		return false;
13165 	}
13166 
13167 	if (smin == S64_MIN) {
13168 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
13169 			reg_type_str(env, type));
13170 		return false;
13171 	}
13172 
13173 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
13174 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
13175 			smin, reg_type_str(env, type));
13176 		return false;
13177 	}
13178 
13179 	return true;
13180 }
13181 
13182 enum {
13183 	REASON_BOUNDS	= -1,
13184 	REASON_TYPE	= -2,
13185 	REASON_PATHS	= -3,
13186 	REASON_LIMIT	= -4,
13187 	REASON_STACK	= -5,
13188 };
13189 
13190 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
13191 			      u32 *alu_limit, bool mask_to_left)
13192 {
13193 	u32 max = 0, ptr_limit = 0;
13194 
13195 	switch (ptr_reg->type) {
13196 	case PTR_TO_STACK:
13197 		/* Offset 0 is out-of-bounds, but acceptable start for the
13198 		 * left direction, see BPF_REG_FP. Also, unknown scalar
13199 		 * offset where we would need to deal with min/max bounds is
13200 		 * currently prohibited for unprivileged.
13201 		 */
13202 		max = MAX_BPF_STACK + mask_to_left;
13203 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
13204 		break;
13205 	case PTR_TO_MAP_VALUE:
13206 		max = ptr_reg->map_ptr->value_size;
13207 		ptr_limit = (mask_to_left ?
13208 			     ptr_reg->smin_value :
13209 			     ptr_reg->umax_value) + ptr_reg->off;
13210 		break;
13211 	default:
13212 		return REASON_TYPE;
13213 	}
13214 
13215 	if (ptr_limit >= max)
13216 		return REASON_LIMIT;
13217 	*alu_limit = ptr_limit;
13218 	return 0;
13219 }
13220 
13221 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
13222 				    const struct bpf_insn *insn)
13223 {
13224 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
13225 }
13226 
13227 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
13228 				       u32 alu_state, u32 alu_limit)
13229 {
13230 	/* If we arrived here from different branches with different
13231 	 * state or limits to sanitize, then this won't work.
13232 	 */
13233 	if (aux->alu_state &&
13234 	    (aux->alu_state != alu_state ||
13235 	     aux->alu_limit != alu_limit))
13236 		return REASON_PATHS;
13237 
13238 	/* Corresponding fixup done in do_misc_fixups(). */
13239 	aux->alu_state = alu_state;
13240 	aux->alu_limit = alu_limit;
13241 	return 0;
13242 }
13243 
13244 static int sanitize_val_alu(struct bpf_verifier_env *env,
13245 			    struct bpf_insn *insn)
13246 {
13247 	struct bpf_insn_aux_data *aux = cur_aux(env);
13248 
13249 	if (can_skip_alu_sanitation(env, insn))
13250 		return 0;
13251 
13252 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
13253 }
13254 
13255 static bool sanitize_needed(u8 opcode)
13256 {
13257 	return opcode == BPF_ADD || opcode == BPF_SUB;
13258 }
13259 
13260 struct bpf_sanitize_info {
13261 	struct bpf_insn_aux_data aux;
13262 	bool mask_to_left;
13263 };
13264 
13265 static struct bpf_verifier_state *
13266 sanitize_speculative_path(struct bpf_verifier_env *env,
13267 			  const struct bpf_insn *insn,
13268 			  u32 next_idx, u32 curr_idx)
13269 {
13270 	struct bpf_verifier_state *branch;
13271 	struct bpf_reg_state *regs;
13272 
13273 	branch = push_stack(env, next_idx, curr_idx, true);
13274 	if (branch && insn) {
13275 		regs = branch->frame[branch->curframe]->regs;
13276 		if (BPF_SRC(insn->code) == BPF_K) {
13277 			mark_reg_unknown(env, regs, insn->dst_reg);
13278 		} else if (BPF_SRC(insn->code) == BPF_X) {
13279 			mark_reg_unknown(env, regs, insn->dst_reg);
13280 			mark_reg_unknown(env, regs, insn->src_reg);
13281 		}
13282 	}
13283 	return branch;
13284 }
13285 
13286 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
13287 			    struct bpf_insn *insn,
13288 			    const struct bpf_reg_state *ptr_reg,
13289 			    const struct bpf_reg_state *off_reg,
13290 			    struct bpf_reg_state *dst_reg,
13291 			    struct bpf_sanitize_info *info,
13292 			    const bool commit_window)
13293 {
13294 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
13295 	struct bpf_verifier_state *vstate = env->cur_state;
13296 	bool off_is_imm = tnum_is_const(off_reg->var_off);
13297 	bool off_is_neg = off_reg->smin_value < 0;
13298 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
13299 	u8 opcode = BPF_OP(insn->code);
13300 	u32 alu_state, alu_limit;
13301 	struct bpf_reg_state tmp;
13302 	bool ret;
13303 	int err;
13304 
13305 	if (can_skip_alu_sanitation(env, insn))
13306 		return 0;
13307 
13308 	/* We already marked aux for masking from non-speculative
13309 	 * paths, thus we got here in the first place. We only care
13310 	 * to explore bad access from here.
13311 	 */
13312 	if (vstate->speculative)
13313 		goto do_sim;
13314 
13315 	if (!commit_window) {
13316 		if (!tnum_is_const(off_reg->var_off) &&
13317 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
13318 			return REASON_BOUNDS;
13319 
13320 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
13321 				     (opcode == BPF_SUB && !off_is_neg);
13322 	}
13323 
13324 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
13325 	if (err < 0)
13326 		return err;
13327 
13328 	if (commit_window) {
13329 		/* In commit phase we narrow the masking window based on
13330 		 * the observed pointer move after the simulated operation.
13331 		 */
13332 		alu_state = info->aux.alu_state;
13333 		alu_limit = abs(info->aux.alu_limit - alu_limit);
13334 	} else {
13335 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
13336 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
13337 		alu_state |= ptr_is_dst_reg ?
13338 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
13339 
13340 		/* Limit pruning on unknown scalars to enable deep search for
13341 		 * potential masking differences from other program paths.
13342 		 */
13343 		if (!off_is_imm)
13344 			env->explore_alu_limits = true;
13345 	}
13346 
13347 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
13348 	if (err < 0)
13349 		return err;
13350 do_sim:
13351 	/* If we're in commit phase, we're done here given we already
13352 	 * pushed the truncated dst_reg into the speculative verification
13353 	 * stack.
13354 	 *
13355 	 * Also, when register is a known constant, we rewrite register-based
13356 	 * operation to immediate-based, and thus do not need masking (and as
13357 	 * a consequence, do not need to simulate the zero-truncation either).
13358 	 */
13359 	if (commit_window || off_is_imm)
13360 		return 0;
13361 
13362 	/* Simulate and find potential out-of-bounds access under
13363 	 * speculative execution from truncation as a result of
13364 	 * masking when off was not within expected range. If off
13365 	 * sits in dst, then we temporarily need to move ptr there
13366 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
13367 	 * for cases where we use K-based arithmetic in one direction
13368 	 * and truncated reg-based in the other in order to explore
13369 	 * bad access.
13370 	 */
13371 	if (!ptr_is_dst_reg) {
13372 		tmp = *dst_reg;
13373 		copy_register_state(dst_reg, ptr_reg);
13374 	}
13375 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
13376 					env->insn_idx);
13377 	if (!ptr_is_dst_reg && ret)
13378 		*dst_reg = tmp;
13379 	return !ret ? REASON_STACK : 0;
13380 }
13381 
13382 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
13383 {
13384 	struct bpf_verifier_state *vstate = env->cur_state;
13385 
13386 	/* If we simulate paths under speculation, we don't update the
13387 	 * insn as 'seen' such that when we verify unreachable paths in
13388 	 * the non-speculative domain, sanitize_dead_code() can still
13389 	 * rewrite/sanitize them.
13390 	 */
13391 	if (!vstate->speculative)
13392 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
13393 }
13394 
13395 static int sanitize_err(struct bpf_verifier_env *env,
13396 			const struct bpf_insn *insn, int reason,
13397 			const struct bpf_reg_state *off_reg,
13398 			const struct bpf_reg_state *dst_reg)
13399 {
13400 	static const char *err = "pointer arithmetic with it prohibited for !root";
13401 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
13402 	u32 dst = insn->dst_reg, src = insn->src_reg;
13403 
13404 	switch (reason) {
13405 	case REASON_BOUNDS:
13406 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
13407 			off_reg == dst_reg ? dst : src, err);
13408 		break;
13409 	case REASON_TYPE:
13410 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
13411 			off_reg == dst_reg ? src : dst, err);
13412 		break;
13413 	case REASON_PATHS:
13414 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
13415 			dst, op, err);
13416 		break;
13417 	case REASON_LIMIT:
13418 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
13419 			dst, op, err);
13420 		break;
13421 	case REASON_STACK:
13422 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
13423 			dst, err);
13424 		break;
13425 	default:
13426 		verbose(env, "verifier internal error: unknown reason (%d)\n",
13427 			reason);
13428 		break;
13429 	}
13430 
13431 	return -EACCES;
13432 }
13433 
13434 /* check that stack access falls within stack limits and that 'reg' doesn't
13435  * have a variable offset.
13436  *
13437  * Variable offset is prohibited for unprivileged mode for simplicity since it
13438  * requires corresponding support in Spectre masking for stack ALU.  See also
13439  * retrieve_ptr_limit().
13440  *
13441  *
13442  * 'off' includes 'reg->off'.
13443  */
13444 static int check_stack_access_for_ptr_arithmetic(
13445 				struct bpf_verifier_env *env,
13446 				int regno,
13447 				const struct bpf_reg_state *reg,
13448 				int off)
13449 {
13450 	if (!tnum_is_const(reg->var_off)) {
13451 		char tn_buf[48];
13452 
13453 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
13454 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
13455 			regno, tn_buf, off);
13456 		return -EACCES;
13457 	}
13458 
13459 	if (off >= 0 || off < -MAX_BPF_STACK) {
13460 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
13461 			"prohibited for !root; off=%d\n", regno, off);
13462 		return -EACCES;
13463 	}
13464 
13465 	return 0;
13466 }
13467 
13468 static int sanitize_check_bounds(struct bpf_verifier_env *env,
13469 				 const struct bpf_insn *insn,
13470 				 const struct bpf_reg_state *dst_reg)
13471 {
13472 	u32 dst = insn->dst_reg;
13473 
13474 	/* For unprivileged we require that resulting offset must be in bounds
13475 	 * in order to be able to sanitize access later on.
13476 	 */
13477 	if (env->bypass_spec_v1)
13478 		return 0;
13479 
13480 	switch (dst_reg->type) {
13481 	case PTR_TO_STACK:
13482 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
13483 					dst_reg->off + dst_reg->var_off.value))
13484 			return -EACCES;
13485 		break;
13486 	case PTR_TO_MAP_VALUE:
13487 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
13488 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
13489 				"prohibited for !root\n", dst);
13490 			return -EACCES;
13491 		}
13492 		break;
13493 	default:
13494 		break;
13495 	}
13496 
13497 	return 0;
13498 }
13499 
13500 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
13501  * Caller should also handle BPF_MOV case separately.
13502  * If we return -EACCES, caller may want to try again treating pointer as a
13503  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
13504  */
13505 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
13506 				   struct bpf_insn *insn,
13507 				   struct bpf_reg_state *ptr_reg,
13508 				   const struct bpf_reg_state *off_reg)
13509 {
13510 	struct bpf_verifier_state *vstate = env->cur_state;
13511 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13512 	struct bpf_reg_state *regs = state->regs, *dst_reg;
13513 	bool known = tnum_is_const(off_reg->var_off);
13514 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
13515 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
13516 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
13517 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
13518 	struct bpf_sanitize_info info = {};
13519 	u8 opcode = BPF_OP(insn->code);
13520 	u32 dst = insn->dst_reg;
13521 	bool mask;
13522 	int ret;
13523 
13524 	dst_reg = &regs[dst];
13525 
13526 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
13527 	    smin_val > smax_val || umin_val > umax_val) {
13528 		/* Taint dst register if offset had invalid bounds derived from
13529 		 * e.g. dead branches.
13530 		 */
13531 		__mark_reg_unknown(env, dst_reg);
13532 		return 0;
13533 	}
13534 
13535 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
13536 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
13537 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13538 			__mark_reg_unknown(env, dst_reg);
13539 			return 0;
13540 		}
13541 
13542 		verbose(env,
13543 			"R%d 32-bit pointer arithmetic prohibited\n",
13544 			dst);
13545 		return -EACCES;
13546 	}
13547 
13548 	mask = mask_raw_tp_reg(env, ptr_reg);
13549 	if (ptr_reg->type & PTR_MAYBE_NULL) {
13550 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
13551 			dst, reg_type_str(env, ptr_reg->type));
13552 		unmask_raw_tp_reg(ptr_reg, mask);
13553 		return -EACCES;
13554 	}
13555 	unmask_raw_tp_reg(ptr_reg, mask);
13556 
13557 	switch (base_type(ptr_reg->type)) {
13558 	case PTR_TO_CTX:
13559 	case PTR_TO_MAP_VALUE:
13560 	case PTR_TO_MAP_KEY:
13561 	case PTR_TO_STACK:
13562 	case PTR_TO_PACKET_META:
13563 	case PTR_TO_PACKET:
13564 	case PTR_TO_TP_BUFFER:
13565 	case PTR_TO_BTF_ID:
13566 	case PTR_TO_MEM:
13567 	case PTR_TO_BUF:
13568 	case PTR_TO_FUNC:
13569 	case CONST_PTR_TO_DYNPTR:
13570 		break;
13571 	case PTR_TO_FLOW_KEYS:
13572 		if (known)
13573 			break;
13574 		fallthrough;
13575 	case CONST_PTR_TO_MAP:
13576 		/* smin_val represents the known value */
13577 		if (known && smin_val == 0 && opcode == BPF_ADD)
13578 			break;
13579 		fallthrough;
13580 	default:
13581 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
13582 			dst, reg_type_str(env, ptr_reg->type));
13583 		return -EACCES;
13584 	}
13585 
13586 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
13587 	 * The id may be overwritten later if we create a new variable offset.
13588 	 */
13589 	dst_reg->type = ptr_reg->type;
13590 	dst_reg->id = ptr_reg->id;
13591 
13592 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
13593 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
13594 		return -EINVAL;
13595 
13596 	/* pointer types do not carry 32-bit bounds at the moment. */
13597 	__mark_reg32_unbounded(dst_reg);
13598 
13599 	if (sanitize_needed(opcode)) {
13600 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
13601 				       &info, false);
13602 		if (ret < 0)
13603 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
13604 	}
13605 
13606 	switch (opcode) {
13607 	case BPF_ADD:
13608 		/* We can take a fixed offset as long as it doesn't overflow
13609 		 * the s32 'off' field
13610 		 */
13611 		if (known && (ptr_reg->off + smin_val ==
13612 			      (s64)(s32)(ptr_reg->off + smin_val))) {
13613 			/* pointer += K.  Accumulate it into fixed offset */
13614 			dst_reg->smin_value = smin_ptr;
13615 			dst_reg->smax_value = smax_ptr;
13616 			dst_reg->umin_value = umin_ptr;
13617 			dst_reg->umax_value = umax_ptr;
13618 			dst_reg->var_off = ptr_reg->var_off;
13619 			dst_reg->off = ptr_reg->off + smin_val;
13620 			dst_reg->raw = ptr_reg->raw;
13621 			break;
13622 		}
13623 		/* A new variable offset is created.  Note that off_reg->off
13624 		 * == 0, since it's a scalar.
13625 		 * dst_reg gets the pointer type and since some positive
13626 		 * integer value was added to the pointer, give it a new 'id'
13627 		 * if it's a PTR_TO_PACKET.
13628 		 * this creates a new 'base' pointer, off_reg (variable) gets
13629 		 * added into the variable offset, and we copy the fixed offset
13630 		 * from ptr_reg.
13631 		 */
13632 		if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) ||
13633 		    check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) {
13634 			dst_reg->smin_value = S64_MIN;
13635 			dst_reg->smax_value = S64_MAX;
13636 		}
13637 		if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) ||
13638 		    check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) {
13639 			dst_reg->umin_value = 0;
13640 			dst_reg->umax_value = U64_MAX;
13641 		}
13642 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
13643 		dst_reg->off = ptr_reg->off;
13644 		dst_reg->raw = ptr_reg->raw;
13645 		if (reg_is_pkt_pointer(ptr_reg)) {
13646 			dst_reg->id = ++env->id_gen;
13647 			/* something was added to pkt_ptr, set range to zero */
13648 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13649 		}
13650 		break;
13651 	case BPF_SUB:
13652 		if (dst_reg == off_reg) {
13653 			/* scalar -= pointer.  Creates an unknown scalar */
13654 			verbose(env, "R%d tried to subtract pointer from scalar\n",
13655 				dst);
13656 			return -EACCES;
13657 		}
13658 		/* We don't allow subtraction from FP, because (according to
13659 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
13660 		 * be able to deal with it.
13661 		 */
13662 		if (ptr_reg->type == PTR_TO_STACK) {
13663 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
13664 				dst);
13665 			return -EACCES;
13666 		}
13667 		if (known && (ptr_reg->off - smin_val ==
13668 			      (s64)(s32)(ptr_reg->off - smin_val))) {
13669 			/* pointer -= K.  Subtract it from fixed offset */
13670 			dst_reg->smin_value = smin_ptr;
13671 			dst_reg->smax_value = smax_ptr;
13672 			dst_reg->umin_value = umin_ptr;
13673 			dst_reg->umax_value = umax_ptr;
13674 			dst_reg->var_off = ptr_reg->var_off;
13675 			dst_reg->id = ptr_reg->id;
13676 			dst_reg->off = ptr_reg->off - smin_val;
13677 			dst_reg->raw = ptr_reg->raw;
13678 			break;
13679 		}
13680 		/* A new variable offset is created.  If the subtrahend is known
13681 		 * nonnegative, then any reg->range we had before is still good.
13682 		 */
13683 		if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) ||
13684 		    check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) {
13685 			/* Overflow possible, we know nothing */
13686 			dst_reg->smin_value = S64_MIN;
13687 			dst_reg->smax_value = S64_MAX;
13688 		}
13689 		if (umin_ptr < umax_val) {
13690 			/* Overflow possible, we know nothing */
13691 			dst_reg->umin_value = 0;
13692 			dst_reg->umax_value = U64_MAX;
13693 		} else {
13694 			/* Cannot overflow (as long as bounds are consistent) */
13695 			dst_reg->umin_value = umin_ptr - umax_val;
13696 			dst_reg->umax_value = umax_ptr - umin_val;
13697 		}
13698 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
13699 		dst_reg->off = ptr_reg->off;
13700 		dst_reg->raw = ptr_reg->raw;
13701 		if (reg_is_pkt_pointer(ptr_reg)) {
13702 			dst_reg->id = ++env->id_gen;
13703 			/* something was added to pkt_ptr, set range to zero */
13704 			if (smin_val < 0)
13705 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13706 		}
13707 		break;
13708 	case BPF_AND:
13709 	case BPF_OR:
13710 	case BPF_XOR:
13711 		/* bitwise ops on pointers are troublesome, prohibit. */
13712 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
13713 			dst, bpf_alu_string[opcode >> 4]);
13714 		return -EACCES;
13715 	default:
13716 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
13717 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
13718 			dst, bpf_alu_string[opcode >> 4]);
13719 		return -EACCES;
13720 	}
13721 
13722 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
13723 		return -EINVAL;
13724 	reg_bounds_sync(dst_reg);
13725 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
13726 		return -EACCES;
13727 	if (sanitize_needed(opcode)) {
13728 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
13729 				       &info, true);
13730 		if (ret < 0)
13731 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
13732 	}
13733 
13734 	return 0;
13735 }
13736 
13737 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
13738 				 struct bpf_reg_state *src_reg)
13739 {
13740 	s32 *dst_smin = &dst_reg->s32_min_value;
13741 	s32 *dst_smax = &dst_reg->s32_max_value;
13742 	u32 *dst_umin = &dst_reg->u32_min_value;
13743 	u32 *dst_umax = &dst_reg->u32_max_value;
13744 
13745 	if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) ||
13746 	    check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) {
13747 		*dst_smin = S32_MIN;
13748 		*dst_smax = S32_MAX;
13749 	}
13750 	if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) ||
13751 	    check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) {
13752 		*dst_umin = 0;
13753 		*dst_umax = U32_MAX;
13754 	}
13755 }
13756 
13757 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
13758 			       struct bpf_reg_state *src_reg)
13759 {
13760 	s64 *dst_smin = &dst_reg->smin_value;
13761 	s64 *dst_smax = &dst_reg->smax_value;
13762 	u64 *dst_umin = &dst_reg->umin_value;
13763 	u64 *dst_umax = &dst_reg->umax_value;
13764 
13765 	if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) ||
13766 	    check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) {
13767 		*dst_smin = S64_MIN;
13768 		*dst_smax = S64_MAX;
13769 	}
13770 	if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) ||
13771 	    check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) {
13772 		*dst_umin = 0;
13773 		*dst_umax = U64_MAX;
13774 	}
13775 }
13776 
13777 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
13778 				 struct bpf_reg_state *src_reg)
13779 {
13780 	s32 *dst_smin = &dst_reg->s32_min_value;
13781 	s32 *dst_smax = &dst_reg->s32_max_value;
13782 	u32 umin_val = src_reg->u32_min_value;
13783 	u32 umax_val = src_reg->u32_max_value;
13784 
13785 	if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) ||
13786 	    check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) {
13787 		/* Overflow possible, we know nothing */
13788 		*dst_smin = S32_MIN;
13789 		*dst_smax = S32_MAX;
13790 	}
13791 	if (dst_reg->u32_min_value < umax_val) {
13792 		/* Overflow possible, we know nothing */
13793 		dst_reg->u32_min_value = 0;
13794 		dst_reg->u32_max_value = U32_MAX;
13795 	} else {
13796 		/* Cannot overflow (as long as bounds are consistent) */
13797 		dst_reg->u32_min_value -= umax_val;
13798 		dst_reg->u32_max_value -= umin_val;
13799 	}
13800 }
13801 
13802 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
13803 			       struct bpf_reg_state *src_reg)
13804 {
13805 	s64 *dst_smin = &dst_reg->smin_value;
13806 	s64 *dst_smax = &dst_reg->smax_value;
13807 	u64 umin_val = src_reg->umin_value;
13808 	u64 umax_val = src_reg->umax_value;
13809 
13810 	if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) ||
13811 	    check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) {
13812 		/* Overflow possible, we know nothing */
13813 		*dst_smin = S64_MIN;
13814 		*dst_smax = S64_MAX;
13815 	}
13816 	if (dst_reg->umin_value < umax_val) {
13817 		/* Overflow possible, we know nothing */
13818 		dst_reg->umin_value = 0;
13819 		dst_reg->umax_value = U64_MAX;
13820 	} else {
13821 		/* Cannot overflow (as long as bounds are consistent) */
13822 		dst_reg->umin_value -= umax_val;
13823 		dst_reg->umax_value -= umin_val;
13824 	}
13825 }
13826 
13827 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
13828 				 struct bpf_reg_state *src_reg)
13829 {
13830 	s32 smin_val = src_reg->s32_min_value;
13831 	u32 umin_val = src_reg->u32_min_value;
13832 	u32 umax_val = src_reg->u32_max_value;
13833 
13834 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
13835 		/* Ain't nobody got time to multiply that sign */
13836 		__mark_reg32_unbounded(dst_reg);
13837 		return;
13838 	}
13839 	/* Both values are positive, so we can work with unsigned and
13840 	 * copy the result to signed (unless it exceeds S32_MAX).
13841 	 */
13842 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
13843 		/* Potential overflow, we know nothing */
13844 		__mark_reg32_unbounded(dst_reg);
13845 		return;
13846 	}
13847 	dst_reg->u32_min_value *= umin_val;
13848 	dst_reg->u32_max_value *= umax_val;
13849 	if (dst_reg->u32_max_value > S32_MAX) {
13850 		/* Overflow possible, we know nothing */
13851 		dst_reg->s32_min_value = S32_MIN;
13852 		dst_reg->s32_max_value = S32_MAX;
13853 	} else {
13854 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13855 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13856 	}
13857 }
13858 
13859 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
13860 			       struct bpf_reg_state *src_reg)
13861 {
13862 	s64 smin_val = src_reg->smin_value;
13863 	u64 umin_val = src_reg->umin_value;
13864 	u64 umax_val = src_reg->umax_value;
13865 
13866 	if (smin_val < 0 || dst_reg->smin_value < 0) {
13867 		/* Ain't nobody got time to multiply that sign */
13868 		__mark_reg64_unbounded(dst_reg);
13869 		return;
13870 	}
13871 	/* Both values are positive, so we can work with unsigned and
13872 	 * copy the result to signed (unless it exceeds S64_MAX).
13873 	 */
13874 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
13875 		/* Potential overflow, we know nothing */
13876 		__mark_reg64_unbounded(dst_reg);
13877 		return;
13878 	}
13879 	dst_reg->umin_value *= umin_val;
13880 	dst_reg->umax_value *= umax_val;
13881 	if (dst_reg->umax_value > S64_MAX) {
13882 		/* Overflow possible, we know nothing */
13883 		dst_reg->smin_value = S64_MIN;
13884 		dst_reg->smax_value = S64_MAX;
13885 	} else {
13886 		dst_reg->smin_value = dst_reg->umin_value;
13887 		dst_reg->smax_value = dst_reg->umax_value;
13888 	}
13889 }
13890 
13891 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
13892 				 struct bpf_reg_state *src_reg)
13893 {
13894 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13895 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13896 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13897 	u32 umax_val = src_reg->u32_max_value;
13898 
13899 	if (src_known && dst_known) {
13900 		__mark_reg32_known(dst_reg, var32_off.value);
13901 		return;
13902 	}
13903 
13904 	/* We get our minimum from the var_off, since that's inherently
13905 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13906 	 */
13907 	dst_reg->u32_min_value = var32_off.value;
13908 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
13909 
13910 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
13911 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13912 	 */
13913 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13914 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13915 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13916 	} else {
13917 		dst_reg->s32_min_value = S32_MIN;
13918 		dst_reg->s32_max_value = S32_MAX;
13919 	}
13920 }
13921 
13922 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
13923 			       struct bpf_reg_state *src_reg)
13924 {
13925 	bool src_known = tnum_is_const(src_reg->var_off);
13926 	bool dst_known = tnum_is_const(dst_reg->var_off);
13927 	u64 umax_val = src_reg->umax_value;
13928 
13929 	if (src_known && dst_known) {
13930 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13931 		return;
13932 	}
13933 
13934 	/* We get our minimum from the var_off, since that's inherently
13935 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13936 	 */
13937 	dst_reg->umin_value = dst_reg->var_off.value;
13938 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
13939 
13940 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
13941 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13942 	 */
13943 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13944 		dst_reg->smin_value = dst_reg->umin_value;
13945 		dst_reg->smax_value = dst_reg->umax_value;
13946 	} else {
13947 		dst_reg->smin_value = S64_MIN;
13948 		dst_reg->smax_value = S64_MAX;
13949 	}
13950 	/* We may learn something more from the var_off */
13951 	__update_reg_bounds(dst_reg);
13952 }
13953 
13954 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
13955 				struct bpf_reg_state *src_reg)
13956 {
13957 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13958 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13959 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13960 	u32 umin_val = src_reg->u32_min_value;
13961 
13962 	if (src_known && dst_known) {
13963 		__mark_reg32_known(dst_reg, var32_off.value);
13964 		return;
13965 	}
13966 
13967 	/* We get our maximum from the var_off, and our minimum is the
13968 	 * maximum of the operands' minima
13969 	 */
13970 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
13971 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13972 
13973 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
13974 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13975 	 */
13976 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13977 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13978 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13979 	} else {
13980 		dst_reg->s32_min_value = S32_MIN;
13981 		dst_reg->s32_max_value = S32_MAX;
13982 	}
13983 }
13984 
13985 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13986 			      struct bpf_reg_state *src_reg)
13987 {
13988 	bool src_known = tnum_is_const(src_reg->var_off);
13989 	bool dst_known = tnum_is_const(dst_reg->var_off);
13990 	u64 umin_val = src_reg->umin_value;
13991 
13992 	if (src_known && dst_known) {
13993 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13994 		return;
13995 	}
13996 
13997 	/* We get our maximum from the var_off, and our minimum is the
13998 	 * maximum of the operands' minima
13999 	 */
14000 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
14001 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
14002 
14003 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
14004 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
14005 	 */
14006 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
14007 		dst_reg->smin_value = dst_reg->umin_value;
14008 		dst_reg->smax_value = dst_reg->umax_value;
14009 	} else {
14010 		dst_reg->smin_value = S64_MIN;
14011 		dst_reg->smax_value = S64_MAX;
14012 	}
14013 	/* We may learn something more from the var_off */
14014 	__update_reg_bounds(dst_reg);
14015 }
14016 
14017 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
14018 				 struct bpf_reg_state *src_reg)
14019 {
14020 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
14021 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
14022 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
14023 
14024 	if (src_known && dst_known) {
14025 		__mark_reg32_known(dst_reg, var32_off.value);
14026 		return;
14027 	}
14028 
14029 	/* We get both minimum and maximum from the var32_off. */
14030 	dst_reg->u32_min_value = var32_off.value;
14031 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
14032 
14033 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
14034 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
14035 	 */
14036 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
14037 		dst_reg->s32_min_value = dst_reg->u32_min_value;
14038 		dst_reg->s32_max_value = dst_reg->u32_max_value;
14039 	} else {
14040 		dst_reg->s32_min_value = S32_MIN;
14041 		dst_reg->s32_max_value = S32_MAX;
14042 	}
14043 }
14044 
14045 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
14046 			       struct bpf_reg_state *src_reg)
14047 {
14048 	bool src_known = tnum_is_const(src_reg->var_off);
14049 	bool dst_known = tnum_is_const(dst_reg->var_off);
14050 
14051 	if (src_known && dst_known) {
14052 		/* dst_reg->var_off.value has been updated earlier */
14053 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
14054 		return;
14055 	}
14056 
14057 	/* We get both minimum and maximum from the var_off. */
14058 	dst_reg->umin_value = dst_reg->var_off.value;
14059 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
14060 
14061 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
14062 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
14063 	 */
14064 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
14065 		dst_reg->smin_value = dst_reg->umin_value;
14066 		dst_reg->smax_value = dst_reg->umax_value;
14067 	} else {
14068 		dst_reg->smin_value = S64_MIN;
14069 		dst_reg->smax_value = S64_MAX;
14070 	}
14071 
14072 	__update_reg_bounds(dst_reg);
14073 }
14074 
14075 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
14076 				   u64 umin_val, u64 umax_val)
14077 {
14078 	/* We lose all sign bit information (except what we can pick
14079 	 * up from var_off)
14080 	 */
14081 	dst_reg->s32_min_value = S32_MIN;
14082 	dst_reg->s32_max_value = S32_MAX;
14083 	/* If we might shift our top bit out, then we know nothing */
14084 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
14085 		dst_reg->u32_min_value = 0;
14086 		dst_reg->u32_max_value = U32_MAX;
14087 	} else {
14088 		dst_reg->u32_min_value <<= umin_val;
14089 		dst_reg->u32_max_value <<= umax_val;
14090 	}
14091 }
14092 
14093 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
14094 				 struct bpf_reg_state *src_reg)
14095 {
14096 	u32 umax_val = src_reg->u32_max_value;
14097 	u32 umin_val = src_reg->u32_min_value;
14098 	/* u32 alu operation will zext upper bits */
14099 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
14100 
14101 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
14102 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
14103 	/* Not required but being careful mark reg64 bounds as unknown so
14104 	 * that we are forced to pick them up from tnum and zext later and
14105 	 * if some path skips this step we are still safe.
14106 	 */
14107 	__mark_reg64_unbounded(dst_reg);
14108 	__update_reg32_bounds(dst_reg);
14109 }
14110 
14111 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
14112 				   u64 umin_val, u64 umax_val)
14113 {
14114 	/* Special case <<32 because it is a common compiler pattern to sign
14115 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
14116 	 * positive we know this shift will also be positive so we can track
14117 	 * bounds correctly. Otherwise we lose all sign bit information except
14118 	 * what we can pick up from var_off. Perhaps we can generalize this
14119 	 * later to shifts of any length.
14120 	 */
14121 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
14122 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
14123 	else
14124 		dst_reg->smax_value = S64_MAX;
14125 
14126 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
14127 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
14128 	else
14129 		dst_reg->smin_value = S64_MIN;
14130 
14131 	/* If we might shift our top bit out, then we know nothing */
14132 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
14133 		dst_reg->umin_value = 0;
14134 		dst_reg->umax_value = U64_MAX;
14135 	} else {
14136 		dst_reg->umin_value <<= umin_val;
14137 		dst_reg->umax_value <<= umax_val;
14138 	}
14139 }
14140 
14141 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
14142 			       struct bpf_reg_state *src_reg)
14143 {
14144 	u64 umax_val = src_reg->umax_value;
14145 	u64 umin_val = src_reg->umin_value;
14146 
14147 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
14148 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
14149 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
14150 
14151 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
14152 	/* We may learn something more from the var_off */
14153 	__update_reg_bounds(dst_reg);
14154 }
14155 
14156 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
14157 				 struct bpf_reg_state *src_reg)
14158 {
14159 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
14160 	u32 umax_val = src_reg->u32_max_value;
14161 	u32 umin_val = src_reg->u32_min_value;
14162 
14163 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
14164 	 * be negative, then either:
14165 	 * 1) src_reg might be zero, so the sign bit of the result is
14166 	 *    unknown, so we lose our signed bounds
14167 	 * 2) it's known negative, thus the unsigned bounds capture the
14168 	 *    signed bounds
14169 	 * 3) the signed bounds cross zero, so they tell us nothing
14170 	 *    about the result
14171 	 * If the value in dst_reg is known nonnegative, then again the
14172 	 * unsigned bounds capture the signed bounds.
14173 	 * Thus, in all cases it suffices to blow away our signed bounds
14174 	 * and rely on inferring new ones from the unsigned bounds and
14175 	 * var_off of the result.
14176 	 */
14177 	dst_reg->s32_min_value = S32_MIN;
14178 	dst_reg->s32_max_value = S32_MAX;
14179 
14180 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
14181 	dst_reg->u32_min_value >>= umax_val;
14182 	dst_reg->u32_max_value >>= umin_val;
14183 
14184 	__mark_reg64_unbounded(dst_reg);
14185 	__update_reg32_bounds(dst_reg);
14186 }
14187 
14188 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
14189 			       struct bpf_reg_state *src_reg)
14190 {
14191 	u64 umax_val = src_reg->umax_value;
14192 	u64 umin_val = src_reg->umin_value;
14193 
14194 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
14195 	 * be negative, then either:
14196 	 * 1) src_reg might be zero, so the sign bit of the result is
14197 	 *    unknown, so we lose our signed bounds
14198 	 * 2) it's known negative, thus the unsigned bounds capture the
14199 	 *    signed bounds
14200 	 * 3) the signed bounds cross zero, so they tell us nothing
14201 	 *    about the result
14202 	 * If the value in dst_reg is known nonnegative, then again the
14203 	 * unsigned bounds capture the signed bounds.
14204 	 * Thus, in all cases it suffices to blow away our signed bounds
14205 	 * and rely on inferring new ones from the unsigned bounds and
14206 	 * var_off of the result.
14207 	 */
14208 	dst_reg->smin_value = S64_MIN;
14209 	dst_reg->smax_value = S64_MAX;
14210 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
14211 	dst_reg->umin_value >>= umax_val;
14212 	dst_reg->umax_value >>= umin_val;
14213 
14214 	/* Its not easy to operate on alu32 bounds here because it depends
14215 	 * on bits being shifted in. Take easy way out and mark unbounded
14216 	 * so we can recalculate later from tnum.
14217 	 */
14218 	__mark_reg32_unbounded(dst_reg);
14219 	__update_reg_bounds(dst_reg);
14220 }
14221 
14222 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
14223 				  struct bpf_reg_state *src_reg)
14224 {
14225 	u64 umin_val = src_reg->u32_min_value;
14226 
14227 	/* Upon reaching here, src_known is true and
14228 	 * umax_val is equal to umin_val.
14229 	 */
14230 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
14231 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
14232 
14233 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
14234 
14235 	/* blow away the dst_reg umin_value/umax_value and rely on
14236 	 * dst_reg var_off to refine the result.
14237 	 */
14238 	dst_reg->u32_min_value = 0;
14239 	dst_reg->u32_max_value = U32_MAX;
14240 
14241 	__mark_reg64_unbounded(dst_reg);
14242 	__update_reg32_bounds(dst_reg);
14243 }
14244 
14245 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
14246 				struct bpf_reg_state *src_reg)
14247 {
14248 	u64 umin_val = src_reg->umin_value;
14249 
14250 	/* Upon reaching here, src_known is true and umax_val is equal
14251 	 * to umin_val.
14252 	 */
14253 	dst_reg->smin_value >>= umin_val;
14254 	dst_reg->smax_value >>= umin_val;
14255 
14256 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
14257 
14258 	/* blow away the dst_reg umin_value/umax_value and rely on
14259 	 * dst_reg var_off to refine the result.
14260 	 */
14261 	dst_reg->umin_value = 0;
14262 	dst_reg->umax_value = U64_MAX;
14263 
14264 	/* Its not easy to operate on alu32 bounds here because it depends
14265 	 * on bits being shifted in from upper 32-bits. Take easy way out
14266 	 * and mark unbounded so we can recalculate later from tnum.
14267 	 */
14268 	__mark_reg32_unbounded(dst_reg);
14269 	__update_reg_bounds(dst_reg);
14270 }
14271 
14272 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn,
14273 					     const struct bpf_reg_state *src_reg)
14274 {
14275 	bool src_is_const = false;
14276 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
14277 
14278 	if (insn_bitness == 32) {
14279 		if (tnum_subreg_is_const(src_reg->var_off)
14280 		    && src_reg->s32_min_value == src_reg->s32_max_value
14281 		    && src_reg->u32_min_value == src_reg->u32_max_value)
14282 			src_is_const = true;
14283 	} else {
14284 		if (tnum_is_const(src_reg->var_off)
14285 		    && src_reg->smin_value == src_reg->smax_value
14286 		    && src_reg->umin_value == src_reg->umax_value)
14287 			src_is_const = true;
14288 	}
14289 
14290 	switch (BPF_OP(insn->code)) {
14291 	case BPF_ADD:
14292 	case BPF_SUB:
14293 	case BPF_AND:
14294 	case BPF_XOR:
14295 	case BPF_OR:
14296 	case BPF_MUL:
14297 		return true;
14298 
14299 	/* Shift operators range is only computable if shift dimension operand
14300 	 * is a constant. Shifts greater than 31 or 63 are undefined. This
14301 	 * includes shifts by a negative number.
14302 	 */
14303 	case BPF_LSH:
14304 	case BPF_RSH:
14305 	case BPF_ARSH:
14306 		return (src_is_const && src_reg->umax_value < insn_bitness);
14307 	default:
14308 		return false;
14309 	}
14310 }
14311 
14312 /* WARNING: This function does calculations on 64-bit values, but the actual
14313  * execution may occur on 32-bit values. Therefore, things like bitshifts
14314  * need extra checks in the 32-bit case.
14315  */
14316 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
14317 				      struct bpf_insn *insn,
14318 				      struct bpf_reg_state *dst_reg,
14319 				      struct bpf_reg_state src_reg)
14320 {
14321 	u8 opcode = BPF_OP(insn->code);
14322 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
14323 	int ret;
14324 
14325 	if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) {
14326 		__mark_reg_unknown(env, dst_reg);
14327 		return 0;
14328 	}
14329 
14330 	if (sanitize_needed(opcode)) {
14331 		ret = sanitize_val_alu(env, insn);
14332 		if (ret < 0)
14333 			return sanitize_err(env, insn, ret, NULL, NULL);
14334 	}
14335 
14336 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
14337 	 * There are two classes of instructions: The first class we track both
14338 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
14339 	 * greatest amount of precision when alu operations are mixed with jmp32
14340 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
14341 	 * and BPF_OR. This is possible because these ops have fairly easy to
14342 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
14343 	 * See alu32 verifier tests for examples. The second class of
14344 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
14345 	 * with regards to tracking sign/unsigned bounds because the bits may
14346 	 * cross subreg boundaries in the alu64 case. When this happens we mark
14347 	 * the reg unbounded in the subreg bound space and use the resulting
14348 	 * tnum to calculate an approximation of the sign/unsigned bounds.
14349 	 */
14350 	switch (opcode) {
14351 	case BPF_ADD:
14352 		scalar32_min_max_add(dst_reg, &src_reg);
14353 		scalar_min_max_add(dst_reg, &src_reg);
14354 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
14355 		break;
14356 	case BPF_SUB:
14357 		scalar32_min_max_sub(dst_reg, &src_reg);
14358 		scalar_min_max_sub(dst_reg, &src_reg);
14359 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
14360 		break;
14361 	case BPF_MUL:
14362 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
14363 		scalar32_min_max_mul(dst_reg, &src_reg);
14364 		scalar_min_max_mul(dst_reg, &src_reg);
14365 		break;
14366 	case BPF_AND:
14367 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
14368 		scalar32_min_max_and(dst_reg, &src_reg);
14369 		scalar_min_max_and(dst_reg, &src_reg);
14370 		break;
14371 	case BPF_OR:
14372 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
14373 		scalar32_min_max_or(dst_reg, &src_reg);
14374 		scalar_min_max_or(dst_reg, &src_reg);
14375 		break;
14376 	case BPF_XOR:
14377 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
14378 		scalar32_min_max_xor(dst_reg, &src_reg);
14379 		scalar_min_max_xor(dst_reg, &src_reg);
14380 		break;
14381 	case BPF_LSH:
14382 		if (alu32)
14383 			scalar32_min_max_lsh(dst_reg, &src_reg);
14384 		else
14385 			scalar_min_max_lsh(dst_reg, &src_reg);
14386 		break;
14387 	case BPF_RSH:
14388 		if (alu32)
14389 			scalar32_min_max_rsh(dst_reg, &src_reg);
14390 		else
14391 			scalar_min_max_rsh(dst_reg, &src_reg);
14392 		break;
14393 	case BPF_ARSH:
14394 		if (alu32)
14395 			scalar32_min_max_arsh(dst_reg, &src_reg);
14396 		else
14397 			scalar_min_max_arsh(dst_reg, &src_reg);
14398 		break;
14399 	default:
14400 		break;
14401 	}
14402 
14403 	/* ALU32 ops are zero extended into 64bit register */
14404 	if (alu32)
14405 		zext_32_to_64(dst_reg);
14406 	reg_bounds_sync(dst_reg);
14407 	return 0;
14408 }
14409 
14410 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
14411  * and var_off.
14412  */
14413 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
14414 				   struct bpf_insn *insn)
14415 {
14416 	struct bpf_verifier_state *vstate = env->cur_state;
14417 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14418 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
14419 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
14420 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
14421 	u8 opcode = BPF_OP(insn->code);
14422 	int err;
14423 
14424 	dst_reg = &regs[insn->dst_reg];
14425 	src_reg = NULL;
14426 
14427 	if (dst_reg->type == PTR_TO_ARENA) {
14428 		struct bpf_insn_aux_data *aux = cur_aux(env);
14429 
14430 		if (BPF_CLASS(insn->code) == BPF_ALU64)
14431 			/*
14432 			 * 32-bit operations zero upper bits automatically.
14433 			 * 64-bit operations need to be converted to 32.
14434 			 */
14435 			aux->needs_zext = true;
14436 
14437 		/* Any arithmetic operations are allowed on arena pointers */
14438 		return 0;
14439 	}
14440 
14441 	if (dst_reg->type != SCALAR_VALUE)
14442 		ptr_reg = dst_reg;
14443 
14444 	if (BPF_SRC(insn->code) == BPF_X) {
14445 		src_reg = &regs[insn->src_reg];
14446 		if (src_reg->type != SCALAR_VALUE) {
14447 			if (dst_reg->type != SCALAR_VALUE) {
14448 				/* Combining two pointers by any ALU op yields
14449 				 * an arbitrary scalar. Disallow all math except
14450 				 * pointer subtraction
14451 				 */
14452 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
14453 					mark_reg_unknown(env, regs, insn->dst_reg);
14454 					return 0;
14455 				}
14456 				verbose(env, "R%d pointer %s pointer prohibited\n",
14457 					insn->dst_reg,
14458 					bpf_alu_string[opcode >> 4]);
14459 				return -EACCES;
14460 			} else {
14461 				/* scalar += pointer
14462 				 * This is legal, but we have to reverse our
14463 				 * src/dest handling in computing the range
14464 				 */
14465 				err = mark_chain_precision(env, insn->dst_reg);
14466 				if (err)
14467 					return err;
14468 				return adjust_ptr_min_max_vals(env, insn,
14469 							       src_reg, dst_reg);
14470 			}
14471 		} else if (ptr_reg) {
14472 			/* pointer += scalar */
14473 			err = mark_chain_precision(env, insn->src_reg);
14474 			if (err)
14475 				return err;
14476 			return adjust_ptr_min_max_vals(env, insn,
14477 						       dst_reg, src_reg);
14478 		} else if (dst_reg->precise) {
14479 			/* if dst_reg is precise, src_reg should be precise as well */
14480 			err = mark_chain_precision(env, insn->src_reg);
14481 			if (err)
14482 				return err;
14483 		}
14484 	} else {
14485 		/* Pretend the src is a reg with a known value, since we only
14486 		 * need to be able to read from this state.
14487 		 */
14488 		off_reg.type = SCALAR_VALUE;
14489 		__mark_reg_known(&off_reg, insn->imm);
14490 		src_reg = &off_reg;
14491 		if (ptr_reg) /* pointer += K */
14492 			return adjust_ptr_min_max_vals(env, insn,
14493 						       ptr_reg, src_reg);
14494 	}
14495 
14496 	/* Got here implies adding two SCALAR_VALUEs */
14497 	if (WARN_ON_ONCE(ptr_reg)) {
14498 		print_verifier_state(env, state, true);
14499 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
14500 		return -EINVAL;
14501 	}
14502 	if (WARN_ON(!src_reg)) {
14503 		print_verifier_state(env, state, true);
14504 		verbose(env, "verifier internal error: no src_reg\n");
14505 		return -EINVAL;
14506 	}
14507 	err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
14508 	if (err)
14509 		return err;
14510 	/*
14511 	 * Compilers can generate the code
14512 	 * r1 = r2
14513 	 * r1 += 0x1
14514 	 * if r2 < 1000 goto ...
14515 	 * use r1 in memory access
14516 	 * So for 64-bit alu remember constant delta between r2 and r1 and
14517 	 * update r1 after 'if' condition.
14518 	 */
14519 	if (env->bpf_capable &&
14520 	    BPF_OP(insn->code) == BPF_ADD && !alu32 &&
14521 	    dst_reg->id && is_reg_const(src_reg, false)) {
14522 		u64 val = reg_const_value(src_reg, false);
14523 
14524 		if ((dst_reg->id & BPF_ADD_CONST) ||
14525 		    /* prevent overflow in sync_linked_regs() later */
14526 		    val > (u32)S32_MAX) {
14527 			/*
14528 			 * If the register already went through rX += val
14529 			 * we cannot accumulate another val into rx->off.
14530 			 */
14531 			dst_reg->off = 0;
14532 			dst_reg->id = 0;
14533 		} else {
14534 			dst_reg->id |= BPF_ADD_CONST;
14535 			dst_reg->off = val;
14536 		}
14537 	} else {
14538 		/*
14539 		 * Make sure ID is cleared otherwise dst_reg min/max could be
14540 		 * incorrectly propagated into other registers by sync_linked_regs()
14541 		 */
14542 		dst_reg->id = 0;
14543 	}
14544 	return 0;
14545 }
14546 
14547 /* check validity of 32-bit and 64-bit arithmetic operations */
14548 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
14549 {
14550 	struct bpf_reg_state *regs = cur_regs(env);
14551 	u8 opcode = BPF_OP(insn->code);
14552 	int err;
14553 
14554 	if (opcode == BPF_END || opcode == BPF_NEG) {
14555 		if (opcode == BPF_NEG) {
14556 			if (BPF_SRC(insn->code) != BPF_K ||
14557 			    insn->src_reg != BPF_REG_0 ||
14558 			    insn->off != 0 || insn->imm != 0) {
14559 				verbose(env, "BPF_NEG uses reserved fields\n");
14560 				return -EINVAL;
14561 			}
14562 		} else {
14563 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
14564 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
14565 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
14566 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
14567 				verbose(env, "BPF_END uses reserved fields\n");
14568 				return -EINVAL;
14569 			}
14570 		}
14571 
14572 		/* check src operand */
14573 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14574 		if (err)
14575 			return err;
14576 
14577 		if (is_pointer_value(env, insn->dst_reg)) {
14578 			verbose(env, "R%d pointer arithmetic prohibited\n",
14579 				insn->dst_reg);
14580 			return -EACCES;
14581 		}
14582 
14583 		/* check dest operand */
14584 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
14585 		if (err)
14586 			return err;
14587 
14588 	} else if (opcode == BPF_MOV) {
14589 
14590 		if (BPF_SRC(insn->code) == BPF_X) {
14591 			if (BPF_CLASS(insn->code) == BPF_ALU) {
14592 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16) ||
14593 				    insn->imm) {
14594 					verbose(env, "BPF_MOV uses reserved fields\n");
14595 					return -EINVAL;
14596 				}
14597 			} else if (insn->off == BPF_ADDR_SPACE_CAST) {
14598 				if (insn->imm != 1 && insn->imm != 1u << 16) {
14599 					verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n");
14600 					return -EINVAL;
14601 				}
14602 				if (!env->prog->aux->arena) {
14603 					verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n");
14604 					return -EINVAL;
14605 				}
14606 			} else {
14607 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16 &&
14608 				     insn->off != 32) || insn->imm) {
14609 					verbose(env, "BPF_MOV uses reserved fields\n");
14610 					return -EINVAL;
14611 				}
14612 			}
14613 
14614 			/* check src operand */
14615 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14616 			if (err)
14617 				return err;
14618 		} else {
14619 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
14620 				verbose(env, "BPF_MOV uses reserved fields\n");
14621 				return -EINVAL;
14622 			}
14623 		}
14624 
14625 		/* check dest operand, mark as required later */
14626 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14627 		if (err)
14628 			return err;
14629 
14630 		if (BPF_SRC(insn->code) == BPF_X) {
14631 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
14632 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
14633 
14634 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
14635 				if (insn->imm) {
14636 					/* off == BPF_ADDR_SPACE_CAST */
14637 					mark_reg_unknown(env, regs, insn->dst_reg);
14638 					if (insn->imm == 1) { /* cast from as(1) to as(0) */
14639 						dst_reg->type = PTR_TO_ARENA;
14640 						/* PTR_TO_ARENA is 32-bit */
14641 						dst_reg->subreg_def = env->insn_idx + 1;
14642 					}
14643 				} else if (insn->off == 0) {
14644 					/* case: R1 = R2
14645 					 * copy register state to dest reg
14646 					 */
14647 					assign_scalar_id_before_mov(env, src_reg);
14648 					copy_register_state(dst_reg, src_reg);
14649 					dst_reg->live |= REG_LIVE_WRITTEN;
14650 					dst_reg->subreg_def = DEF_NOT_SUBREG;
14651 				} else {
14652 					/* case: R1 = (s8, s16 s32)R2 */
14653 					if (is_pointer_value(env, insn->src_reg)) {
14654 						verbose(env,
14655 							"R%d sign-extension part of pointer\n",
14656 							insn->src_reg);
14657 						return -EACCES;
14658 					} else if (src_reg->type == SCALAR_VALUE) {
14659 						bool no_sext;
14660 
14661 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14662 						if (no_sext)
14663 							assign_scalar_id_before_mov(env, src_reg);
14664 						copy_register_state(dst_reg, src_reg);
14665 						if (!no_sext)
14666 							dst_reg->id = 0;
14667 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
14668 						dst_reg->live |= REG_LIVE_WRITTEN;
14669 						dst_reg->subreg_def = DEF_NOT_SUBREG;
14670 					} else {
14671 						mark_reg_unknown(env, regs, insn->dst_reg);
14672 					}
14673 				}
14674 			} else {
14675 				/* R1 = (u32) R2 */
14676 				if (is_pointer_value(env, insn->src_reg)) {
14677 					verbose(env,
14678 						"R%d partial copy of pointer\n",
14679 						insn->src_reg);
14680 					return -EACCES;
14681 				} else if (src_reg->type == SCALAR_VALUE) {
14682 					if (insn->off == 0) {
14683 						bool is_src_reg_u32 = get_reg_width(src_reg) <= 32;
14684 
14685 						if (is_src_reg_u32)
14686 							assign_scalar_id_before_mov(env, src_reg);
14687 						copy_register_state(dst_reg, src_reg);
14688 						/* Make sure ID is cleared if src_reg is not in u32
14689 						 * range otherwise dst_reg min/max could be incorrectly
14690 						 * propagated into src_reg by sync_linked_regs()
14691 						 */
14692 						if (!is_src_reg_u32)
14693 							dst_reg->id = 0;
14694 						dst_reg->live |= REG_LIVE_WRITTEN;
14695 						dst_reg->subreg_def = env->insn_idx + 1;
14696 					} else {
14697 						/* case: W1 = (s8, s16)W2 */
14698 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14699 
14700 						if (no_sext)
14701 							assign_scalar_id_before_mov(env, src_reg);
14702 						copy_register_state(dst_reg, src_reg);
14703 						if (!no_sext)
14704 							dst_reg->id = 0;
14705 						dst_reg->live |= REG_LIVE_WRITTEN;
14706 						dst_reg->subreg_def = env->insn_idx + 1;
14707 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
14708 					}
14709 				} else {
14710 					mark_reg_unknown(env, regs,
14711 							 insn->dst_reg);
14712 				}
14713 				zext_32_to_64(dst_reg);
14714 				reg_bounds_sync(dst_reg);
14715 			}
14716 		} else {
14717 			/* case: R = imm
14718 			 * remember the value we stored into this reg
14719 			 */
14720 			/* clear any state __mark_reg_known doesn't set */
14721 			mark_reg_unknown(env, regs, insn->dst_reg);
14722 			regs[insn->dst_reg].type = SCALAR_VALUE;
14723 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
14724 				__mark_reg_known(regs + insn->dst_reg,
14725 						 insn->imm);
14726 			} else {
14727 				__mark_reg_known(regs + insn->dst_reg,
14728 						 (u32)insn->imm);
14729 			}
14730 		}
14731 
14732 	} else if (opcode > BPF_END) {
14733 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
14734 		return -EINVAL;
14735 
14736 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
14737 
14738 		if (BPF_SRC(insn->code) == BPF_X) {
14739 			if (insn->imm != 0 || insn->off > 1 ||
14740 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14741 				verbose(env, "BPF_ALU uses reserved fields\n");
14742 				return -EINVAL;
14743 			}
14744 			/* check src1 operand */
14745 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14746 			if (err)
14747 				return err;
14748 		} else {
14749 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
14750 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14751 				verbose(env, "BPF_ALU uses reserved fields\n");
14752 				return -EINVAL;
14753 			}
14754 		}
14755 
14756 		/* check src2 operand */
14757 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14758 		if (err)
14759 			return err;
14760 
14761 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
14762 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
14763 			verbose(env, "div by zero\n");
14764 			return -EINVAL;
14765 		}
14766 
14767 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
14768 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
14769 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
14770 
14771 			if (insn->imm < 0 || insn->imm >= size) {
14772 				verbose(env, "invalid shift %d\n", insn->imm);
14773 				return -EINVAL;
14774 			}
14775 		}
14776 
14777 		/* check dest operand */
14778 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14779 		err = err ?: adjust_reg_min_max_vals(env, insn);
14780 		if (err)
14781 			return err;
14782 	}
14783 
14784 	return reg_bounds_sanity_check(env, &regs[insn->dst_reg], "alu");
14785 }
14786 
14787 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
14788 				   struct bpf_reg_state *dst_reg,
14789 				   enum bpf_reg_type type,
14790 				   bool range_right_open)
14791 {
14792 	struct bpf_func_state *state;
14793 	struct bpf_reg_state *reg;
14794 	int new_range;
14795 
14796 	if (dst_reg->off < 0 ||
14797 	    (dst_reg->off == 0 && range_right_open))
14798 		/* This doesn't give us any range */
14799 		return;
14800 
14801 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
14802 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
14803 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
14804 		 * than pkt_end, but that's because it's also less than pkt.
14805 		 */
14806 		return;
14807 
14808 	new_range = dst_reg->off;
14809 	if (range_right_open)
14810 		new_range++;
14811 
14812 	/* Examples for register markings:
14813 	 *
14814 	 * pkt_data in dst register:
14815 	 *
14816 	 *   r2 = r3;
14817 	 *   r2 += 8;
14818 	 *   if (r2 > pkt_end) goto <handle exception>
14819 	 *   <access okay>
14820 	 *
14821 	 *   r2 = r3;
14822 	 *   r2 += 8;
14823 	 *   if (r2 < pkt_end) goto <access okay>
14824 	 *   <handle exception>
14825 	 *
14826 	 *   Where:
14827 	 *     r2 == dst_reg, pkt_end == src_reg
14828 	 *     r2=pkt(id=n,off=8,r=0)
14829 	 *     r3=pkt(id=n,off=0,r=0)
14830 	 *
14831 	 * pkt_data in src register:
14832 	 *
14833 	 *   r2 = r3;
14834 	 *   r2 += 8;
14835 	 *   if (pkt_end >= r2) goto <access okay>
14836 	 *   <handle exception>
14837 	 *
14838 	 *   r2 = r3;
14839 	 *   r2 += 8;
14840 	 *   if (pkt_end <= r2) goto <handle exception>
14841 	 *   <access okay>
14842 	 *
14843 	 *   Where:
14844 	 *     pkt_end == dst_reg, r2 == src_reg
14845 	 *     r2=pkt(id=n,off=8,r=0)
14846 	 *     r3=pkt(id=n,off=0,r=0)
14847 	 *
14848 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
14849 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
14850 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
14851 	 * the check.
14852 	 */
14853 
14854 	/* If our ids match, then we must have the same max_value.  And we
14855 	 * don't care about the other reg's fixed offset, since if it's too big
14856 	 * the range won't allow anything.
14857 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
14858 	 */
14859 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14860 		if (reg->type == type && reg->id == dst_reg->id)
14861 			/* keep the maximum range already checked */
14862 			reg->range = max(reg->range, new_range);
14863 	}));
14864 }
14865 
14866 /*
14867  * <reg1> <op> <reg2>, currently assuming reg2 is a constant
14868  */
14869 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14870 				  u8 opcode, bool is_jmp32)
14871 {
14872 	struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
14873 	struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
14874 	u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
14875 	u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
14876 	s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
14877 	s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
14878 	u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
14879 	u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
14880 	s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
14881 	s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
14882 
14883 	switch (opcode) {
14884 	case BPF_JEQ:
14885 		/* constants, umin/umax and smin/smax checks would be
14886 		 * redundant in this case because they all should match
14887 		 */
14888 		if (tnum_is_const(t1) && tnum_is_const(t2))
14889 			return t1.value == t2.value;
14890 		/* non-overlapping ranges */
14891 		if (umin1 > umax2 || umax1 < umin2)
14892 			return 0;
14893 		if (smin1 > smax2 || smax1 < smin2)
14894 			return 0;
14895 		if (!is_jmp32) {
14896 			/* if 64-bit ranges are inconclusive, see if we can
14897 			 * utilize 32-bit subrange knowledge to eliminate
14898 			 * branches that can't be taken a priori
14899 			 */
14900 			if (reg1->u32_min_value > reg2->u32_max_value ||
14901 			    reg1->u32_max_value < reg2->u32_min_value)
14902 				return 0;
14903 			if (reg1->s32_min_value > reg2->s32_max_value ||
14904 			    reg1->s32_max_value < reg2->s32_min_value)
14905 				return 0;
14906 		}
14907 		break;
14908 	case BPF_JNE:
14909 		/* constants, umin/umax and smin/smax checks would be
14910 		 * redundant in this case because they all should match
14911 		 */
14912 		if (tnum_is_const(t1) && tnum_is_const(t2))
14913 			return t1.value != t2.value;
14914 		/* non-overlapping ranges */
14915 		if (umin1 > umax2 || umax1 < umin2)
14916 			return 1;
14917 		if (smin1 > smax2 || smax1 < smin2)
14918 			return 1;
14919 		if (!is_jmp32) {
14920 			/* if 64-bit ranges are inconclusive, see if we can
14921 			 * utilize 32-bit subrange knowledge to eliminate
14922 			 * branches that can't be taken a priori
14923 			 */
14924 			if (reg1->u32_min_value > reg2->u32_max_value ||
14925 			    reg1->u32_max_value < reg2->u32_min_value)
14926 				return 1;
14927 			if (reg1->s32_min_value > reg2->s32_max_value ||
14928 			    reg1->s32_max_value < reg2->s32_min_value)
14929 				return 1;
14930 		}
14931 		break;
14932 	case BPF_JSET:
14933 		if (!is_reg_const(reg2, is_jmp32)) {
14934 			swap(reg1, reg2);
14935 			swap(t1, t2);
14936 		}
14937 		if (!is_reg_const(reg2, is_jmp32))
14938 			return -1;
14939 		if ((~t1.mask & t1.value) & t2.value)
14940 			return 1;
14941 		if (!((t1.mask | t1.value) & t2.value))
14942 			return 0;
14943 		break;
14944 	case BPF_JGT:
14945 		if (umin1 > umax2)
14946 			return 1;
14947 		else if (umax1 <= umin2)
14948 			return 0;
14949 		break;
14950 	case BPF_JSGT:
14951 		if (smin1 > smax2)
14952 			return 1;
14953 		else if (smax1 <= smin2)
14954 			return 0;
14955 		break;
14956 	case BPF_JLT:
14957 		if (umax1 < umin2)
14958 			return 1;
14959 		else if (umin1 >= umax2)
14960 			return 0;
14961 		break;
14962 	case BPF_JSLT:
14963 		if (smax1 < smin2)
14964 			return 1;
14965 		else if (smin1 >= smax2)
14966 			return 0;
14967 		break;
14968 	case BPF_JGE:
14969 		if (umin1 >= umax2)
14970 			return 1;
14971 		else if (umax1 < umin2)
14972 			return 0;
14973 		break;
14974 	case BPF_JSGE:
14975 		if (smin1 >= smax2)
14976 			return 1;
14977 		else if (smax1 < smin2)
14978 			return 0;
14979 		break;
14980 	case BPF_JLE:
14981 		if (umax1 <= umin2)
14982 			return 1;
14983 		else if (umin1 > umax2)
14984 			return 0;
14985 		break;
14986 	case BPF_JSLE:
14987 		if (smax1 <= smin2)
14988 			return 1;
14989 		else if (smin1 > smax2)
14990 			return 0;
14991 		break;
14992 	}
14993 
14994 	return -1;
14995 }
14996 
14997 static int flip_opcode(u32 opcode)
14998 {
14999 	/* How can we transform "a <op> b" into "b <op> a"? */
15000 	static const u8 opcode_flip[16] = {
15001 		/* these stay the same */
15002 		[BPF_JEQ  >> 4] = BPF_JEQ,
15003 		[BPF_JNE  >> 4] = BPF_JNE,
15004 		[BPF_JSET >> 4] = BPF_JSET,
15005 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
15006 		[BPF_JGE  >> 4] = BPF_JLE,
15007 		[BPF_JGT  >> 4] = BPF_JLT,
15008 		[BPF_JLE  >> 4] = BPF_JGE,
15009 		[BPF_JLT  >> 4] = BPF_JGT,
15010 		[BPF_JSGE >> 4] = BPF_JSLE,
15011 		[BPF_JSGT >> 4] = BPF_JSLT,
15012 		[BPF_JSLE >> 4] = BPF_JSGE,
15013 		[BPF_JSLT >> 4] = BPF_JSGT
15014 	};
15015 	return opcode_flip[opcode >> 4];
15016 }
15017 
15018 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
15019 				   struct bpf_reg_state *src_reg,
15020 				   u8 opcode)
15021 {
15022 	struct bpf_reg_state *pkt;
15023 
15024 	if (src_reg->type == PTR_TO_PACKET_END) {
15025 		pkt = dst_reg;
15026 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
15027 		pkt = src_reg;
15028 		opcode = flip_opcode(opcode);
15029 	} else {
15030 		return -1;
15031 	}
15032 
15033 	if (pkt->range >= 0)
15034 		return -1;
15035 
15036 	switch (opcode) {
15037 	case BPF_JLE:
15038 		/* pkt <= pkt_end */
15039 		fallthrough;
15040 	case BPF_JGT:
15041 		/* pkt > pkt_end */
15042 		if (pkt->range == BEYOND_PKT_END)
15043 			/* pkt has at last one extra byte beyond pkt_end */
15044 			return opcode == BPF_JGT;
15045 		break;
15046 	case BPF_JLT:
15047 		/* pkt < pkt_end */
15048 		fallthrough;
15049 	case BPF_JGE:
15050 		/* pkt >= pkt_end */
15051 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
15052 			return opcode == BPF_JGE;
15053 		break;
15054 	}
15055 	return -1;
15056 }
15057 
15058 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
15059  * and return:
15060  *  1 - branch will be taken and "goto target" will be executed
15061  *  0 - branch will not be taken and fall-through to next insn
15062  * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
15063  *      range [0,10]
15064  */
15065 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
15066 			   u8 opcode, bool is_jmp32)
15067 {
15068 	if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
15069 		return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
15070 
15071 	if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
15072 		u64 val;
15073 
15074 		/* arrange that reg2 is a scalar, and reg1 is a pointer */
15075 		if (!is_reg_const(reg2, is_jmp32)) {
15076 			opcode = flip_opcode(opcode);
15077 			swap(reg1, reg2);
15078 		}
15079 		/* and ensure that reg2 is a constant */
15080 		if (!is_reg_const(reg2, is_jmp32))
15081 			return -1;
15082 
15083 		if (!reg_not_null(reg1))
15084 			return -1;
15085 
15086 		/* If pointer is valid tests against zero will fail so we can
15087 		 * use this to direct branch taken.
15088 		 */
15089 		val = reg_const_value(reg2, is_jmp32);
15090 		if (val != 0)
15091 			return -1;
15092 
15093 		switch (opcode) {
15094 		case BPF_JEQ:
15095 			return 0;
15096 		case BPF_JNE:
15097 			return 1;
15098 		default:
15099 			return -1;
15100 		}
15101 	}
15102 
15103 	/* now deal with two scalars, but not necessarily constants */
15104 	return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
15105 }
15106 
15107 /* Opcode that corresponds to a *false* branch condition.
15108  * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
15109  */
15110 static u8 rev_opcode(u8 opcode)
15111 {
15112 	switch (opcode) {
15113 	case BPF_JEQ:		return BPF_JNE;
15114 	case BPF_JNE:		return BPF_JEQ;
15115 	/* JSET doesn't have it's reverse opcode in BPF, so add
15116 	 * BPF_X flag to denote the reverse of that operation
15117 	 */
15118 	case BPF_JSET:		return BPF_JSET | BPF_X;
15119 	case BPF_JSET | BPF_X:	return BPF_JSET;
15120 	case BPF_JGE:		return BPF_JLT;
15121 	case BPF_JGT:		return BPF_JLE;
15122 	case BPF_JLE:		return BPF_JGT;
15123 	case BPF_JLT:		return BPF_JGE;
15124 	case BPF_JSGE:		return BPF_JSLT;
15125 	case BPF_JSGT:		return BPF_JSLE;
15126 	case BPF_JSLE:		return BPF_JSGT;
15127 	case BPF_JSLT:		return BPF_JSGE;
15128 	default:		return 0;
15129 	}
15130 }
15131 
15132 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
15133 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
15134 				u8 opcode, bool is_jmp32)
15135 {
15136 	struct tnum t;
15137 	u64 val;
15138 
15139 	/* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */
15140 	switch (opcode) {
15141 	case BPF_JGE:
15142 	case BPF_JGT:
15143 	case BPF_JSGE:
15144 	case BPF_JSGT:
15145 		opcode = flip_opcode(opcode);
15146 		swap(reg1, reg2);
15147 		break;
15148 	default:
15149 		break;
15150 	}
15151 
15152 	switch (opcode) {
15153 	case BPF_JEQ:
15154 		if (is_jmp32) {
15155 			reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
15156 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
15157 			reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
15158 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
15159 			reg2->u32_min_value = reg1->u32_min_value;
15160 			reg2->u32_max_value = reg1->u32_max_value;
15161 			reg2->s32_min_value = reg1->s32_min_value;
15162 			reg2->s32_max_value = reg1->s32_max_value;
15163 
15164 			t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
15165 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
15166 			reg2->var_off = tnum_with_subreg(reg2->var_off, t);
15167 		} else {
15168 			reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
15169 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
15170 			reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
15171 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
15172 			reg2->umin_value = reg1->umin_value;
15173 			reg2->umax_value = reg1->umax_value;
15174 			reg2->smin_value = reg1->smin_value;
15175 			reg2->smax_value = reg1->smax_value;
15176 
15177 			reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
15178 			reg2->var_off = reg1->var_off;
15179 		}
15180 		break;
15181 	case BPF_JNE:
15182 		if (!is_reg_const(reg2, is_jmp32))
15183 			swap(reg1, reg2);
15184 		if (!is_reg_const(reg2, is_jmp32))
15185 			break;
15186 
15187 		/* try to recompute the bound of reg1 if reg2 is a const and
15188 		 * is exactly the edge of reg1.
15189 		 */
15190 		val = reg_const_value(reg2, is_jmp32);
15191 		if (is_jmp32) {
15192 			/* u32_min_value is not equal to 0xffffffff at this point,
15193 			 * because otherwise u32_max_value is 0xffffffff as well,
15194 			 * in such a case both reg1 and reg2 would be constants,
15195 			 * jump would be predicted and reg_set_min_max() won't
15196 			 * be called.
15197 			 *
15198 			 * Same reasoning works for all {u,s}{min,max}{32,64} cases
15199 			 * below.
15200 			 */
15201 			if (reg1->u32_min_value == (u32)val)
15202 				reg1->u32_min_value++;
15203 			if (reg1->u32_max_value == (u32)val)
15204 				reg1->u32_max_value--;
15205 			if (reg1->s32_min_value == (s32)val)
15206 				reg1->s32_min_value++;
15207 			if (reg1->s32_max_value == (s32)val)
15208 				reg1->s32_max_value--;
15209 		} else {
15210 			if (reg1->umin_value == (u64)val)
15211 				reg1->umin_value++;
15212 			if (reg1->umax_value == (u64)val)
15213 				reg1->umax_value--;
15214 			if (reg1->smin_value == (s64)val)
15215 				reg1->smin_value++;
15216 			if (reg1->smax_value == (s64)val)
15217 				reg1->smax_value--;
15218 		}
15219 		break;
15220 	case BPF_JSET:
15221 		if (!is_reg_const(reg2, is_jmp32))
15222 			swap(reg1, reg2);
15223 		if (!is_reg_const(reg2, is_jmp32))
15224 			break;
15225 		val = reg_const_value(reg2, is_jmp32);
15226 		/* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
15227 		 * requires single bit to learn something useful. E.g., if we
15228 		 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
15229 		 * are actually set? We can learn something definite only if
15230 		 * it's a single-bit value to begin with.
15231 		 *
15232 		 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
15233 		 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
15234 		 * bit 1 is set, which we can readily use in adjustments.
15235 		 */
15236 		if (!is_power_of_2(val))
15237 			break;
15238 		if (is_jmp32) {
15239 			t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
15240 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
15241 		} else {
15242 			reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
15243 		}
15244 		break;
15245 	case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
15246 		if (!is_reg_const(reg2, is_jmp32))
15247 			swap(reg1, reg2);
15248 		if (!is_reg_const(reg2, is_jmp32))
15249 			break;
15250 		val = reg_const_value(reg2, is_jmp32);
15251 		if (is_jmp32) {
15252 			t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
15253 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
15254 		} else {
15255 			reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
15256 		}
15257 		break;
15258 	case BPF_JLE:
15259 		if (is_jmp32) {
15260 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
15261 			reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
15262 		} else {
15263 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
15264 			reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
15265 		}
15266 		break;
15267 	case BPF_JLT:
15268 		if (is_jmp32) {
15269 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
15270 			reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
15271 		} else {
15272 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
15273 			reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
15274 		}
15275 		break;
15276 	case BPF_JSLE:
15277 		if (is_jmp32) {
15278 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
15279 			reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
15280 		} else {
15281 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
15282 			reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
15283 		}
15284 		break;
15285 	case BPF_JSLT:
15286 		if (is_jmp32) {
15287 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
15288 			reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
15289 		} else {
15290 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
15291 			reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
15292 		}
15293 		break;
15294 	default:
15295 		return;
15296 	}
15297 }
15298 
15299 /* Adjusts the register min/max values in the case that the dst_reg and
15300  * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
15301  * check, in which case we have a fake SCALAR_VALUE representing insn->imm).
15302  * Technically we can do similar adjustments for pointers to the same object,
15303  * but we don't support that right now.
15304  */
15305 static int reg_set_min_max(struct bpf_verifier_env *env,
15306 			   struct bpf_reg_state *true_reg1,
15307 			   struct bpf_reg_state *true_reg2,
15308 			   struct bpf_reg_state *false_reg1,
15309 			   struct bpf_reg_state *false_reg2,
15310 			   u8 opcode, bool is_jmp32)
15311 {
15312 	int err;
15313 
15314 	/* If either register is a pointer, we can't learn anything about its
15315 	 * variable offset from the compare (unless they were a pointer into
15316 	 * the same object, but we don't bother with that).
15317 	 */
15318 	if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
15319 		return 0;
15320 
15321 	/* fallthrough (FALSE) branch */
15322 	regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
15323 	reg_bounds_sync(false_reg1);
15324 	reg_bounds_sync(false_reg2);
15325 
15326 	/* jump (TRUE) branch */
15327 	regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
15328 	reg_bounds_sync(true_reg1);
15329 	reg_bounds_sync(true_reg2);
15330 
15331 	err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
15332 	err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
15333 	err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
15334 	err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
15335 	return err;
15336 }
15337 
15338 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
15339 				 struct bpf_reg_state *reg, u32 id,
15340 				 bool is_null)
15341 {
15342 	if (type_may_be_null(reg->type) && reg->id == id &&
15343 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
15344 		/* Old offset (both fixed and variable parts) should have been
15345 		 * known-zero, because we don't allow pointer arithmetic on
15346 		 * pointers that might be NULL. If we see this happening, don't
15347 		 * convert the register.
15348 		 *
15349 		 * But in some cases, some helpers that return local kptrs
15350 		 * advance offset for the returned pointer. In those cases, it
15351 		 * is fine to expect to see reg->off.
15352 		 */
15353 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
15354 			return;
15355 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
15356 		    WARN_ON_ONCE(reg->off))
15357 			return;
15358 
15359 		if (is_null) {
15360 			reg->type = SCALAR_VALUE;
15361 			/* We don't need id and ref_obj_id from this point
15362 			 * onwards anymore, thus we should better reset it,
15363 			 * so that state pruning has chances to take effect.
15364 			 */
15365 			reg->id = 0;
15366 			reg->ref_obj_id = 0;
15367 
15368 			return;
15369 		}
15370 
15371 		mark_ptr_not_null_reg(reg);
15372 
15373 		if (!reg_may_point_to_spin_lock(reg)) {
15374 			/* For not-NULL ptr, reg->ref_obj_id will be reset
15375 			 * in release_reference().
15376 			 *
15377 			 * reg->id is still used by spin_lock ptr. Other
15378 			 * than spin_lock ptr type, reg->id can be reset.
15379 			 */
15380 			reg->id = 0;
15381 		}
15382 	}
15383 }
15384 
15385 /* The logic is similar to find_good_pkt_pointers(), both could eventually
15386  * be folded together at some point.
15387  */
15388 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
15389 				  bool is_null)
15390 {
15391 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
15392 	struct bpf_reg_state *regs = state->regs, *reg;
15393 	u32 ref_obj_id = regs[regno].ref_obj_id;
15394 	u32 id = regs[regno].id;
15395 
15396 	if (ref_obj_id && ref_obj_id == id && is_null)
15397 		/* regs[regno] is in the " == NULL" branch.
15398 		 * No one could have freed the reference state before
15399 		 * doing the NULL check.
15400 		 */
15401 		WARN_ON_ONCE(release_reference_state(state, id));
15402 
15403 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
15404 		mark_ptr_or_null_reg(state, reg, id, is_null);
15405 	}));
15406 }
15407 
15408 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
15409 				   struct bpf_reg_state *dst_reg,
15410 				   struct bpf_reg_state *src_reg,
15411 				   struct bpf_verifier_state *this_branch,
15412 				   struct bpf_verifier_state *other_branch)
15413 {
15414 	if (BPF_SRC(insn->code) != BPF_X)
15415 		return false;
15416 
15417 	/* Pointers are always 64-bit. */
15418 	if (BPF_CLASS(insn->code) == BPF_JMP32)
15419 		return false;
15420 
15421 	switch (BPF_OP(insn->code)) {
15422 	case BPF_JGT:
15423 		if ((dst_reg->type == PTR_TO_PACKET &&
15424 		     src_reg->type == PTR_TO_PACKET_END) ||
15425 		    (dst_reg->type == PTR_TO_PACKET_META &&
15426 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15427 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
15428 			find_good_pkt_pointers(this_branch, dst_reg,
15429 					       dst_reg->type, false);
15430 			mark_pkt_end(other_branch, insn->dst_reg, true);
15431 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15432 			    src_reg->type == PTR_TO_PACKET) ||
15433 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15434 			    src_reg->type == PTR_TO_PACKET_META)) {
15435 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
15436 			find_good_pkt_pointers(other_branch, src_reg,
15437 					       src_reg->type, true);
15438 			mark_pkt_end(this_branch, insn->src_reg, false);
15439 		} else {
15440 			return false;
15441 		}
15442 		break;
15443 	case BPF_JLT:
15444 		if ((dst_reg->type == PTR_TO_PACKET &&
15445 		     src_reg->type == PTR_TO_PACKET_END) ||
15446 		    (dst_reg->type == PTR_TO_PACKET_META &&
15447 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15448 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
15449 			find_good_pkt_pointers(other_branch, dst_reg,
15450 					       dst_reg->type, true);
15451 			mark_pkt_end(this_branch, insn->dst_reg, false);
15452 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15453 			    src_reg->type == PTR_TO_PACKET) ||
15454 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15455 			    src_reg->type == PTR_TO_PACKET_META)) {
15456 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
15457 			find_good_pkt_pointers(this_branch, src_reg,
15458 					       src_reg->type, false);
15459 			mark_pkt_end(other_branch, insn->src_reg, true);
15460 		} else {
15461 			return false;
15462 		}
15463 		break;
15464 	case BPF_JGE:
15465 		if ((dst_reg->type == PTR_TO_PACKET &&
15466 		     src_reg->type == PTR_TO_PACKET_END) ||
15467 		    (dst_reg->type == PTR_TO_PACKET_META &&
15468 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15469 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
15470 			find_good_pkt_pointers(this_branch, dst_reg,
15471 					       dst_reg->type, true);
15472 			mark_pkt_end(other_branch, insn->dst_reg, false);
15473 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15474 			    src_reg->type == PTR_TO_PACKET) ||
15475 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15476 			    src_reg->type == PTR_TO_PACKET_META)) {
15477 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
15478 			find_good_pkt_pointers(other_branch, src_reg,
15479 					       src_reg->type, false);
15480 			mark_pkt_end(this_branch, insn->src_reg, true);
15481 		} else {
15482 			return false;
15483 		}
15484 		break;
15485 	case BPF_JLE:
15486 		if ((dst_reg->type == PTR_TO_PACKET &&
15487 		     src_reg->type == PTR_TO_PACKET_END) ||
15488 		    (dst_reg->type == PTR_TO_PACKET_META &&
15489 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15490 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
15491 			find_good_pkt_pointers(other_branch, dst_reg,
15492 					       dst_reg->type, false);
15493 			mark_pkt_end(this_branch, insn->dst_reg, true);
15494 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15495 			    src_reg->type == PTR_TO_PACKET) ||
15496 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15497 			    src_reg->type == PTR_TO_PACKET_META)) {
15498 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
15499 			find_good_pkt_pointers(this_branch, src_reg,
15500 					       src_reg->type, true);
15501 			mark_pkt_end(other_branch, insn->src_reg, false);
15502 		} else {
15503 			return false;
15504 		}
15505 		break;
15506 	default:
15507 		return false;
15508 	}
15509 
15510 	return true;
15511 }
15512 
15513 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg,
15514 				  u32 id, u32 frameno, u32 spi_or_reg, bool is_reg)
15515 {
15516 	struct linked_reg *e;
15517 
15518 	if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id)
15519 		return;
15520 
15521 	e = linked_regs_push(reg_set);
15522 	if (e) {
15523 		e->frameno = frameno;
15524 		e->is_reg = is_reg;
15525 		e->regno = spi_or_reg;
15526 	} else {
15527 		reg->id = 0;
15528 	}
15529 }
15530 
15531 /* For all R being scalar registers or spilled scalar registers
15532  * in verifier state, save R in linked_regs if R->id == id.
15533  * If there are too many Rs sharing same id, reset id for leftover Rs.
15534  */
15535 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id,
15536 				struct linked_regs *linked_regs)
15537 {
15538 	struct bpf_func_state *func;
15539 	struct bpf_reg_state *reg;
15540 	int i, j;
15541 
15542 	id = id & ~BPF_ADD_CONST;
15543 	for (i = vstate->curframe; i >= 0; i--) {
15544 		func = vstate->frame[i];
15545 		for (j = 0; j < BPF_REG_FP; j++) {
15546 			reg = &func->regs[j];
15547 			__collect_linked_regs(linked_regs, reg, id, i, j, true);
15548 		}
15549 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
15550 			if (!is_spilled_reg(&func->stack[j]))
15551 				continue;
15552 			reg = &func->stack[j].spilled_ptr;
15553 			__collect_linked_regs(linked_regs, reg, id, i, j, false);
15554 		}
15555 	}
15556 }
15557 
15558 /* For all R in linked_regs, copy known_reg range into R
15559  * if R->id == known_reg->id.
15560  */
15561 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg,
15562 			     struct linked_regs *linked_regs)
15563 {
15564 	struct bpf_reg_state fake_reg;
15565 	struct bpf_reg_state *reg;
15566 	struct linked_reg *e;
15567 	int i;
15568 
15569 	for (i = 0; i < linked_regs->cnt; ++i) {
15570 		e = &linked_regs->entries[i];
15571 		reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno]
15572 				: &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr;
15573 		if (reg->type != SCALAR_VALUE || reg == known_reg)
15574 			continue;
15575 		if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST))
15576 			continue;
15577 		if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) ||
15578 		    reg->off == known_reg->off) {
15579 			s32 saved_subreg_def = reg->subreg_def;
15580 
15581 			copy_register_state(reg, known_reg);
15582 			reg->subreg_def = saved_subreg_def;
15583 		} else {
15584 			s32 saved_subreg_def = reg->subreg_def;
15585 			s32 saved_off = reg->off;
15586 
15587 			fake_reg.type = SCALAR_VALUE;
15588 			__mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off);
15589 
15590 			/* reg = known_reg; reg += delta */
15591 			copy_register_state(reg, known_reg);
15592 			/*
15593 			 * Must preserve off, id and add_const flag,
15594 			 * otherwise another sync_linked_regs() will be incorrect.
15595 			 */
15596 			reg->off = saved_off;
15597 			reg->subreg_def = saved_subreg_def;
15598 
15599 			scalar32_min_max_add(reg, &fake_reg);
15600 			scalar_min_max_add(reg, &fake_reg);
15601 			reg->var_off = tnum_add(reg->var_off, fake_reg.var_off);
15602 		}
15603 	}
15604 }
15605 
15606 static int check_cond_jmp_op(struct bpf_verifier_env *env,
15607 			     struct bpf_insn *insn, int *insn_idx)
15608 {
15609 	struct bpf_verifier_state *this_branch = env->cur_state;
15610 	struct bpf_verifier_state *other_branch;
15611 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
15612 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
15613 	struct bpf_reg_state *eq_branch_regs;
15614 	struct linked_regs linked_regs = {};
15615 	u8 opcode = BPF_OP(insn->code);
15616 	bool is_jmp32;
15617 	int pred = -1;
15618 	int err;
15619 
15620 	/* Only conditional jumps are expected to reach here. */
15621 	if (opcode == BPF_JA || opcode > BPF_JCOND) {
15622 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
15623 		return -EINVAL;
15624 	}
15625 
15626 	if (opcode == BPF_JCOND) {
15627 		struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
15628 		int idx = *insn_idx;
15629 
15630 		if (insn->code != (BPF_JMP | BPF_JCOND) ||
15631 		    insn->src_reg != BPF_MAY_GOTO ||
15632 		    insn->dst_reg || insn->imm || insn->off == 0) {
15633 			verbose(env, "invalid may_goto off %d imm %d\n",
15634 				insn->off, insn->imm);
15635 			return -EINVAL;
15636 		}
15637 		prev_st = find_prev_entry(env, cur_st->parent, idx);
15638 
15639 		/* branch out 'fallthrough' insn as a new state to explore */
15640 		queued_st = push_stack(env, idx + 1, idx, false);
15641 		if (!queued_st)
15642 			return -ENOMEM;
15643 
15644 		queued_st->may_goto_depth++;
15645 		if (prev_st)
15646 			widen_imprecise_scalars(env, prev_st, queued_st);
15647 		*insn_idx += insn->off;
15648 		return 0;
15649 	}
15650 
15651 	/* check src2 operand */
15652 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15653 	if (err)
15654 		return err;
15655 
15656 	dst_reg = &regs[insn->dst_reg];
15657 	if (BPF_SRC(insn->code) == BPF_X) {
15658 		if (insn->imm != 0) {
15659 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
15660 			return -EINVAL;
15661 		}
15662 
15663 		/* check src1 operand */
15664 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15665 		if (err)
15666 			return err;
15667 
15668 		src_reg = &regs[insn->src_reg];
15669 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
15670 		    is_pointer_value(env, insn->src_reg)) {
15671 			verbose(env, "R%d pointer comparison prohibited\n",
15672 				insn->src_reg);
15673 			return -EACCES;
15674 		}
15675 	} else {
15676 		if (insn->src_reg != BPF_REG_0) {
15677 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
15678 			return -EINVAL;
15679 		}
15680 		src_reg = &env->fake_reg[0];
15681 		memset(src_reg, 0, sizeof(*src_reg));
15682 		src_reg->type = SCALAR_VALUE;
15683 		__mark_reg_known(src_reg, insn->imm);
15684 	}
15685 
15686 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
15687 	pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
15688 	if (pred >= 0) {
15689 		/* If we get here with a dst_reg pointer type it is because
15690 		 * above is_branch_taken() special cased the 0 comparison.
15691 		 */
15692 		if (!__is_pointer_value(false, dst_reg))
15693 			err = mark_chain_precision(env, insn->dst_reg);
15694 		if (BPF_SRC(insn->code) == BPF_X && !err &&
15695 		    !__is_pointer_value(false, src_reg))
15696 			err = mark_chain_precision(env, insn->src_reg);
15697 		if (err)
15698 			return err;
15699 	}
15700 
15701 	if (pred == 1) {
15702 		/* Only follow the goto, ignore fall-through. If needed, push
15703 		 * the fall-through branch for simulation under speculative
15704 		 * execution.
15705 		 */
15706 		if (!env->bypass_spec_v1 &&
15707 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
15708 					       *insn_idx))
15709 			return -EFAULT;
15710 		if (env->log.level & BPF_LOG_LEVEL)
15711 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
15712 		*insn_idx += insn->off;
15713 		return 0;
15714 	} else if (pred == 0) {
15715 		/* Only follow the fall-through branch, since that's where the
15716 		 * program will go. If needed, push the goto branch for
15717 		 * simulation under speculative execution.
15718 		 */
15719 		if (!env->bypass_spec_v1 &&
15720 		    !sanitize_speculative_path(env, insn,
15721 					       *insn_idx + insn->off + 1,
15722 					       *insn_idx))
15723 			return -EFAULT;
15724 		if (env->log.level & BPF_LOG_LEVEL)
15725 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
15726 		return 0;
15727 	}
15728 
15729 	/* Push scalar registers sharing same ID to jump history,
15730 	 * do this before creating 'other_branch', so that both
15731 	 * 'this_branch' and 'other_branch' share this history
15732 	 * if parent state is created.
15733 	 */
15734 	if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id)
15735 		collect_linked_regs(this_branch, src_reg->id, &linked_regs);
15736 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id)
15737 		collect_linked_regs(this_branch, dst_reg->id, &linked_regs);
15738 	if (linked_regs.cnt > 1) {
15739 		err = push_insn_history(env, this_branch, 0, linked_regs_pack(&linked_regs));
15740 		if (err)
15741 			return err;
15742 	}
15743 
15744 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
15745 				  false);
15746 	if (!other_branch)
15747 		return -EFAULT;
15748 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
15749 
15750 	if (BPF_SRC(insn->code) == BPF_X) {
15751 		err = reg_set_min_max(env,
15752 				      &other_branch_regs[insn->dst_reg],
15753 				      &other_branch_regs[insn->src_reg],
15754 				      dst_reg, src_reg, opcode, is_jmp32);
15755 	} else /* BPF_SRC(insn->code) == BPF_K */ {
15756 		/* reg_set_min_max() can mangle the fake_reg. Make a copy
15757 		 * so that these are two different memory locations. The
15758 		 * src_reg is not used beyond here in context of K.
15759 		 */
15760 		memcpy(&env->fake_reg[1], &env->fake_reg[0],
15761 		       sizeof(env->fake_reg[0]));
15762 		err = reg_set_min_max(env,
15763 				      &other_branch_regs[insn->dst_reg],
15764 				      &env->fake_reg[0],
15765 				      dst_reg, &env->fake_reg[1],
15766 				      opcode, is_jmp32);
15767 	}
15768 	if (err)
15769 		return err;
15770 
15771 	if (BPF_SRC(insn->code) == BPF_X &&
15772 	    src_reg->type == SCALAR_VALUE && src_reg->id &&
15773 	    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
15774 		sync_linked_regs(this_branch, src_reg, &linked_regs);
15775 		sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs);
15776 	}
15777 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
15778 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
15779 		sync_linked_regs(this_branch, dst_reg, &linked_regs);
15780 		sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs);
15781 	}
15782 
15783 	/* if one pointer register is compared to another pointer
15784 	 * register check if PTR_MAYBE_NULL could be lifted.
15785 	 * E.g. register A - maybe null
15786 	 *      register B - not null
15787 	 * for JNE A, B, ... - A is not null in the false branch;
15788 	 * for JEQ A, B, ... - A is not null in the true branch.
15789 	 *
15790 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
15791 	 * not need to be null checked by the BPF program, i.e.,
15792 	 * could be null even without PTR_MAYBE_NULL marking, so
15793 	 * only propagate nullness when neither reg is that type.
15794 	 */
15795 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
15796 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
15797 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
15798 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
15799 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
15800 		eq_branch_regs = NULL;
15801 		switch (opcode) {
15802 		case BPF_JEQ:
15803 			eq_branch_regs = other_branch_regs;
15804 			break;
15805 		case BPF_JNE:
15806 			eq_branch_regs = regs;
15807 			break;
15808 		default:
15809 			/* do nothing */
15810 			break;
15811 		}
15812 		if (eq_branch_regs) {
15813 			if (type_may_be_null(src_reg->type))
15814 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
15815 			else
15816 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
15817 		}
15818 	}
15819 
15820 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
15821 	 * NOTE: these optimizations below are related with pointer comparison
15822 	 *       which will never be JMP32.
15823 	 */
15824 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
15825 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
15826 	    type_may_be_null(dst_reg->type)) {
15827 		/* Mark all identical registers in each branch as either
15828 		 * safe or unknown depending R == 0 or R != 0 conditional.
15829 		 */
15830 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
15831 				      opcode == BPF_JNE);
15832 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
15833 				      opcode == BPF_JEQ);
15834 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
15835 					   this_branch, other_branch) &&
15836 		   is_pointer_value(env, insn->dst_reg)) {
15837 		verbose(env, "R%d pointer comparison prohibited\n",
15838 			insn->dst_reg);
15839 		return -EACCES;
15840 	}
15841 	if (env->log.level & BPF_LOG_LEVEL)
15842 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
15843 	return 0;
15844 }
15845 
15846 /* verify BPF_LD_IMM64 instruction */
15847 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
15848 {
15849 	struct bpf_insn_aux_data *aux = cur_aux(env);
15850 	struct bpf_reg_state *regs = cur_regs(env);
15851 	struct bpf_reg_state *dst_reg;
15852 	struct bpf_map *map;
15853 	int err;
15854 
15855 	if (BPF_SIZE(insn->code) != BPF_DW) {
15856 		verbose(env, "invalid BPF_LD_IMM insn\n");
15857 		return -EINVAL;
15858 	}
15859 	if (insn->off != 0) {
15860 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
15861 		return -EINVAL;
15862 	}
15863 
15864 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
15865 	if (err)
15866 		return err;
15867 
15868 	dst_reg = &regs[insn->dst_reg];
15869 	if (insn->src_reg == 0) {
15870 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
15871 
15872 		dst_reg->type = SCALAR_VALUE;
15873 		__mark_reg_known(&regs[insn->dst_reg], imm);
15874 		return 0;
15875 	}
15876 
15877 	/* All special src_reg cases are listed below. From this point onwards
15878 	 * we either succeed and assign a corresponding dst_reg->type after
15879 	 * zeroing the offset, or fail and reject the program.
15880 	 */
15881 	mark_reg_known_zero(env, regs, insn->dst_reg);
15882 
15883 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
15884 		dst_reg->type = aux->btf_var.reg_type;
15885 		switch (base_type(dst_reg->type)) {
15886 		case PTR_TO_MEM:
15887 			dst_reg->mem_size = aux->btf_var.mem_size;
15888 			break;
15889 		case PTR_TO_BTF_ID:
15890 			dst_reg->btf = aux->btf_var.btf;
15891 			dst_reg->btf_id = aux->btf_var.btf_id;
15892 			break;
15893 		default:
15894 			verbose(env, "bpf verifier is misconfigured\n");
15895 			return -EFAULT;
15896 		}
15897 		return 0;
15898 	}
15899 
15900 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
15901 		struct bpf_prog_aux *aux = env->prog->aux;
15902 		u32 subprogno = find_subprog(env,
15903 					     env->insn_idx + insn->imm + 1);
15904 
15905 		if (!aux->func_info) {
15906 			verbose(env, "missing btf func_info\n");
15907 			return -EINVAL;
15908 		}
15909 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
15910 			verbose(env, "callback function not static\n");
15911 			return -EINVAL;
15912 		}
15913 
15914 		dst_reg->type = PTR_TO_FUNC;
15915 		dst_reg->subprogno = subprogno;
15916 		return 0;
15917 	}
15918 
15919 	map = env->used_maps[aux->map_index];
15920 	dst_reg->map_ptr = map;
15921 
15922 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
15923 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
15924 		if (map->map_type == BPF_MAP_TYPE_ARENA) {
15925 			__mark_reg_unknown(env, dst_reg);
15926 			return 0;
15927 		}
15928 		dst_reg->type = PTR_TO_MAP_VALUE;
15929 		dst_reg->off = aux->map_off;
15930 		WARN_ON_ONCE(map->max_entries != 1);
15931 		/* We want reg->id to be same (0) as map_value is not distinct */
15932 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
15933 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
15934 		dst_reg->type = CONST_PTR_TO_MAP;
15935 	} else {
15936 		verbose(env, "bpf verifier is misconfigured\n");
15937 		return -EINVAL;
15938 	}
15939 
15940 	return 0;
15941 }
15942 
15943 static bool may_access_skb(enum bpf_prog_type type)
15944 {
15945 	switch (type) {
15946 	case BPF_PROG_TYPE_SOCKET_FILTER:
15947 	case BPF_PROG_TYPE_SCHED_CLS:
15948 	case BPF_PROG_TYPE_SCHED_ACT:
15949 		return true;
15950 	default:
15951 		return false;
15952 	}
15953 }
15954 
15955 /* verify safety of LD_ABS|LD_IND instructions:
15956  * - they can only appear in the programs where ctx == skb
15957  * - since they are wrappers of function calls, they scratch R1-R5 registers,
15958  *   preserve R6-R9, and store return value into R0
15959  *
15960  * Implicit input:
15961  *   ctx == skb == R6 == CTX
15962  *
15963  * Explicit input:
15964  *   SRC == any register
15965  *   IMM == 32-bit immediate
15966  *
15967  * Output:
15968  *   R0 - 8/16/32-bit skb data converted to cpu endianness
15969  */
15970 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
15971 {
15972 	struct bpf_reg_state *regs = cur_regs(env);
15973 	static const int ctx_reg = BPF_REG_6;
15974 	u8 mode = BPF_MODE(insn->code);
15975 	int i, err;
15976 
15977 	if (!may_access_skb(resolve_prog_type(env->prog))) {
15978 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
15979 		return -EINVAL;
15980 	}
15981 
15982 	if (!env->ops->gen_ld_abs) {
15983 		verbose(env, "bpf verifier is misconfigured\n");
15984 		return -EINVAL;
15985 	}
15986 
15987 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
15988 	    BPF_SIZE(insn->code) == BPF_DW ||
15989 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
15990 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
15991 		return -EINVAL;
15992 	}
15993 
15994 	/* check whether implicit source operand (register R6) is readable */
15995 	err = check_reg_arg(env, ctx_reg, SRC_OP);
15996 	if (err)
15997 		return err;
15998 
15999 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
16000 	 * gen_ld_abs() may terminate the program at runtime, leading to
16001 	 * reference leak.
16002 	 */
16003 	err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]");
16004 	if (err)
16005 		return err;
16006 
16007 	if (regs[ctx_reg].type != PTR_TO_CTX) {
16008 		verbose(env,
16009 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
16010 		return -EINVAL;
16011 	}
16012 
16013 	if (mode == BPF_IND) {
16014 		/* check explicit source operand */
16015 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
16016 		if (err)
16017 			return err;
16018 	}
16019 
16020 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
16021 	if (err < 0)
16022 		return err;
16023 
16024 	/* reset caller saved regs to unreadable */
16025 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
16026 		mark_reg_not_init(env, regs, caller_saved[i]);
16027 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
16028 	}
16029 
16030 	/* mark destination R0 register as readable, since it contains
16031 	 * the value fetched from the packet.
16032 	 * Already marked as written above.
16033 	 */
16034 	mark_reg_unknown(env, regs, BPF_REG_0);
16035 	/* ld_abs load up to 32-bit skb data. */
16036 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
16037 	return 0;
16038 }
16039 
16040 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
16041 {
16042 	const char *exit_ctx = "At program exit";
16043 	struct tnum enforce_attach_type_range = tnum_unknown;
16044 	const struct bpf_prog *prog = env->prog;
16045 	struct bpf_reg_state *reg;
16046 	struct bpf_retval_range range = retval_range(0, 1);
16047 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
16048 	int err;
16049 	struct bpf_func_state *frame = env->cur_state->frame[0];
16050 	const bool is_subprog = frame->subprogno;
16051 	bool return_32bit = false;
16052 
16053 	/* LSM and struct_ops func-ptr's return type could be "void" */
16054 	if (!is_subprog || frame->in_exception_callback_fn) {
16055 		switch (prog_type) {
16056 		case BPF_PROG_TYPE_LSM:
16057 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
16058 				/* See below, can be 0 or 0-1 depending on hook. */
16059 				break;
16060 			fallthrough;
16061 		case BPF_PROG_TYPE_STRUCT_OPS:
16062 			if (!prog->aux->attach_func_proto->type)
16063 				return 0;
16064 			break;
16065 		default:
16066 			break;
16067 		}
16068 	}
16069 
16070 	/* eBPF calling convention is such that R0 is used
16071 	 * to return the value from eBPF program.
16072 	 * Make sure that it's readable at this time
16073 	 * of bpf_exit, which means that program wrote
16074 	 * something into it earlier
16075 	 */
16076 	err = check_reg_arg(env, regno, SRC_OP);
16077 	if (err)
16078 		return err;
16079 
16080 	if (is_pointer_value(env, regno)) {
16081 		verbose(env, "R%d leaks addr as return value\n", regno);
16082 		return -EACCES;
16083 	}
16084 
16085 	reg = cur_regs(env) + regno;
16086 
16087 	if (frame->in_async_callback_fn) {
16088 		/* enforce return zero from async callbacks like timer */
16089 		exit_ctx = "At async callback return";
16090 		range = retval_range(0, 0);
16091 		goto enforce_retval;
16092 	}
16093 
16094 	if (is_subprog && !frame->in_exception_callback_fn) {
16095 		if (reg->type != SCALAR_VALUE) {
16096 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
16097 				regno, reg_type_str(env, reg->type));
16098 			return -EINVAL;
16099 		}
16100 		return 0;
16101 	}
16102 
16103 	switch (prog_type) {
16104 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
16105 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
16106 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
16107 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
16108 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
16109 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
16110 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
16111 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
16112 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
16113 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
16114 			range = retval_range(1, 1);
16115 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
16116 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
16117 			range = retval_range(0, 3);
16118 		break;
16119 	case BPF_PROG_TYPE_CGROUP_SKB:
16120 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
16121 			range = retval_range(0, 3);
16122 			enforce_attach_type_range = tnum_range(2, 3);
16123 		}
16124 		break;
16125 	case BPF_PROG_TYPE_CGROUP_SOCK:
16126 	case BPF_PROG_TYPE_SOCK_OPS:
16127 	case BPF_PROG_TYPE_CGROUP_DEVICE:
16128 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
16129 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
16130 		break;
16131 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
16132 		if (!env->prog->aux->attach_btf_id)
16133 			return 0;
16134 		range = retval_range(0, 0);
16135 		break;
16136 	case BPF_PROG_TYPE_TRACING:
16137 		switch (env->prog->expected_attach_type) {
16138 		case BPF_TRACE_FENTRY:
16139 		case BPF_TRACE_FEXIT:
16140 			range = retval_range(0, 0);
16141 			break;
16142 		case BPF_TRACE_RAW_TP:
16143 		case BPF_MODIFY_RETURN:
16144 			return 0;
16145 		case BPF_TRACE_ITER:
16146 			break;
16147 		default:
16148 			return -ENOTSUPP;
16149 		}
16150 		break;
16151 	case BPF_PROG_TYPE_KPROBE:
16152 		switch (env->prog->expected_attach_type) {
16153 		case BPF_TRACE_KPROBE_SESSION:
16154 		case BPF_TRACE_UPROBE_SESSION:
16155 			range = retval_range(0, 1);
16156 			break;
16157 		default:
16158 			return 0;
16159 		}
16160 		break;
16161 	case BPF_PROG_TYPE_SK_LOOKUP:
16162 		range = retval_range(SK_DROP, SK_PASS);
16163 		break;
16164 
16165 	case BPF_PROG_TYPE_LSM:
16166 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
16167 			/* no range found, any return value is allowed */
16168 			if (!get_func_retval_range(env->prog, &range))
16169 				return 0;
16170 			/* no restricted range, any return value is allowed */
16171 			if (range.minval == S32_MIN && range.maxval == S32_MAX)
16172 				return 0;
16173 			return_32bit = true;
16174 		} else if (!env->prog->aux->attach_func_proto->type) {
16175 			/* Make sure programs that attach to void
16176 			 * hooks don't try to modify return value.
16177 			 */
16178 			range = retval_range(1, 1);
16179 		}
16180 		break;
16181 
16182 	case BPF_PROG_TYPE_NETFILTER:
16183 		range = retval_range(NF_DROP, NF_ACCEPT);
16184 		break;
16185 	case BPF_PROG_TYPE_EXT:
16186 		/* freplace program can return anything as its return value
16187 		 * depends on the to-be-replaced kernel func or bpf program.
16188 		 */
16189 	default:
16190 		return 0;
16191 	}
16192 
16193 enforce_retval:
16194 	if (reg->type != SCALAR_VALUE) {
16195 		verbose(env, "%s the register R%d is not a known value (%s)\n",
16196 			exit_ctx, regno, reg_type_str(env, reg->type));
16197 		return -EINVAL;
16198 	}
16199 
16200 	err = mark_chain_precision(env, regno);
16201 	if (err)
16202 		return err;
16203 
16204 	if (!retval_range_within(range, reg, return_32bit)) {
16205 		verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
16206 		if (!is_subprog &&
16207 		    prog->expected_attach_type == BPF_LSM_CGROUP &&
16208 		    prog_type == BPF_PROG_TYPE_LSM &&
16209 		    !prog->aux->attach_func_proto->type)
16210 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
16211 		return -EINVAL;
16212 	}
16213 
16214 	if (!tnum_is_unknown(enforce_attach_type_range) &&
16215 	    tnum_in(enforce_attach_type_range, reg->var_off))
16216 		env->prog->enforce_expected_attach_type = 1;
16217 	return 0;
16218 }
16219 
16220 /* non-recursive DFS pseudo code
16221  * 1  procedure DFS-iterative(G,v):
16222  * 2      label v as discovered
16223  * 3      let S be a stack
16224  * 4      S.push(v)
16225  * 5      while S is not empty
16226  * 6            t <- S.peek()
16227  * 7            if t is what we're looking for:
16228  * 8                return t
16229  * 9            for all edges e in G.adjacentEdges(t) do
16230  * 10               if edge e is already labelled
16231  * 11                   continue with the next edge
16232  * 12               w <- G.adjacentVertex(t,e)
16233  * 13               if vertex w is not discovered and not explored
16234  * 14                   label e as tree-edge
16235  * 15                   label w as discovered
16236  * 16                   S.push(w)
16237  * 17                   continue at 5
16238  * 18               else if vertex w is discovered
16239  * 19                   label e as back-edge
16240  * 20               else
16241  * 21                   // vertex w is explored
16242  * 22                   label e as forward- or cross-edge
16243  * 23           label t as explored
16244  * 24           S.pop()
16245  *
16246  * convention:
16247  * 0x10 - discovered
16248  * 0x11 - discovered and fall-through edge labelled
16249  * 0x12 - discovered and fall-through and branch edges labelled
16250  * 0x20 - explored
16251  */
16252 
16253 enum {
16254 	DISCOVERED = 0x10,
16255 	EXPLORED = 0x20,
16256 	FALLTHROUGH = 1,
16257 	BRANCH = 2,
16258 };
16259 
16260 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
16261 {
16262 	env->insn_aux_data[idx].prune_point = true;
16263 }
16264 
16265 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
16266 {
16267 	return env->insn_aux_data[insn_idx].prune_point;
16268 }
16269 
16270 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
16271 {
16272 	env->insn_aux_data[idx].force_checkpoint = true;
16273 }
16274 
16275 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
16276 {
16277 	return env->insn_aux_data[insn_idx].force_checkpoint;
16278 }
16279 
16280 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
16281 {
16282 	env->insn_aux_data[idx].calls_callback = true;
16283 }
16284 
16285 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
16286 {
16287 	return env->insn_aux_data[insn_idx].calls_callback;
16288 }
16289 
16290 enum {
16291 	DONE_EXPLORING = 0,
16292 	KEEP_EXPLORING = 1,
16293 };
16294 
16295 /* t, w, e - match pseudo-code above:
16296  * t - index of current instruction
16297  * w - next instruction
16298  * e - edge
16299  */
16300 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
16301 {
16302 	int *insn_stack = env->cfg.insn_stack;
16303 	int *insn_state = env->cfg.insn_state;
16304 
16305 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
16306 		return DONE_EXPLORING;
16307 
16308 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
16309 		return DONE_EXPLORING;
16310 
16311 	if (w < 0 || w >= env->prog->len) {
16312 		verbose_linfo(env, t, "%d: ", t);
16313 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
16314 		return -EINVAL;
16315 	}
16316 
16317 	if (e == BRANCH) {
16318 		/* mark branch target for state pruning */
16319 		mark_prune_point(env, w);
16320 		mark_jmp_point(env, w);
16321 	}
16322 
16323 	if (insn_state[w] == 0) {
16324 		/* tree-edge */
16325 		insn_state[t] = DISCOVERED | e;
16326 		insn_state[w] = DISCOVERED;
16327 		if (env->cfg.cur_stack >= env->prog->len)
16328 			return -E2BIG;
16329 		insn_stack[env->cfg.cur_stack++] = w;
16330 		return KEEP_EXPLORING;
16331 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
16332 		if (env->bpf_capable)
16333 			return DONE_EXPLORING;
16334 		verbose_linfo(env, t, "%d: ", t);
16335 		verbose_linfo(env, w, "%d: ", w);
16336 		verbose(env, "back-edge from insn %d to %d\n", t, w);
16337 		return -EINVAL;
16338 	} else if (insn_state[w] == EXPLORED) {
16339 		/* forward- or cross-edge */
16340 		insn_state[t] = DISCOVERED | e;
16341 	} else {
16342 		verbose(env, "insn state internal bug\n");
16343 		return -EFAULT;
16344 	}
16345 	return DONE_EXPLORING;
16346 }
16347 
16348 static int visit_func_call_insn(int t, struct bpf_insn *insns,
16349 				struct bpf_verifier_env *env,
16350 				bool visit_callee)
16351 {
16352 	int ret, insn_sz;
16353 
16354 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
16355 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
16356 	if (ret)
16357 		return ret;
16358 
16359 	mark_prune_point(env, t + insn_sz);
16360 	/* when we exit from subprog, we need to record non-linear history */
16361 	mark_jmp_point(env, t + insn_sz);
16362 
16363 	if (visit_callee) {
16364 		mark_prune_point(env, t);
16365 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
16366 	}
16367 	return ret;
16368 }
16369 
16370 /* Bitmask with 1s for all caller saved registers */
16371 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
16372 
16373 /* Return a bitmask specifying which caller saved registers are
16374  * clobbered by a call to a helper *as if* this helper follows
16375  * bpf_fastcall contract:
16376  * - includes R0 if function is non-void;
16377  * - includes R1-R5 if corresponding parameter has is described
16378  *   in the function prototype.
16379  */
16380 static u32 helper_fastcall_clobber_mask(const struct bpf_func_proto *fn)
16381 {
16382 	u32 mask;
16383 	int i;
16384 
16385 	mask = 0;
16386 	if (fn->ret_type != RET_VOID)
16387 		mask |= BIT(BPF_REG_0);
16388 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i)
16389 		if (fn->arg_type[i] != ARG_DONTCARE)
16390 			mask |= BIT(BPF_REG_1 + i);
16391 	return mask;
16392 }
16393 
16394 /* True if do_misc_fixups() replaces calls to helper number 'imm',
16395  * replacement patch is presumed to follow bpf_fastcall contract
16396  * (see mark_fastcall_pattern_for_call() below).
16397  */
16398 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm)
16399 {
16400 	switch (imm) {
16401 #ifdef CONFIG_X86_64
16402 	case BPF_FUNC_get_smp_processor_id:
16403 		return env->prog->jit_requested && bpf_jit_supports_percpu_insn();
16404 #endif
16405 	default:
16406 		return false;
16407 	}
16408 }
16409 
16410 /* Same as helper_fastcall_clobber_mask() but for kfuncs, see comment above */
16411 static u32 kfunc_fastcall_clobber_mask(struct bpf_kfunc_call_arg_meta *meta)
16412 {
16413 	u32 vlen, i, mask;
16414 
16415 	vlen = btf_type_vlen(meta->func_proto);
16416 	mask = 0;
16417 	if (!btf_type_is_void(btf_type_by_id(meta->btf, meta->func_proto->type)))
16418 		mask |= BIT(BPF_REG_0);
16419 	for (i = 0; i < vlen; ++i)
16420 		mask |= BIT(BPF_REG_1 + i);
16421 	return mask;
16422 }
16423 
16424 /* Same as verifier_inlines_helper_call() but for kfuncs, see comment above */
16425 static bool is_fastcall_kfunc_call(struct bpf_kfunc_call_arg_meta *meta)
16426 {
16427 	return meta->kfunc_flags & KF_FASTCALL;
16428 }
16429 
16430 /* LLVM define a bpf_fastcall function attribute.
16431  * This attribute means that function scratches only some of
16432  * the caller saved registers defined by ABI.
16433  * For BPF the set of such registers could be defined as follows:
16434  * - R0 is scratched only if function is non-void;
16435  * - R1-R5 are scratched only if corresponding parameter type is defined
16436  *   in the function prototype.
16437  *
16438  * The contract between kernel and clang allows to simultaneously use
16439  * such functions and maintain backwards compatibility with old
16440  * kernels that don't understand bpf_fastcall calls:
16441  *
16442  * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5
16443  *   registers are not scratched by the call;
16444  *
16445  * - as a post-processing step, clang visits each bpf_fastcall call and adds
16446  *   spill/fill for every live r0-r5;
16447  *
16448  * - stack offsets used for the spill/fill are allocated as lowest
16449  *   stack offsets in whole function and are not used for any other
16450  *   purposes;
16451  *
16452  * - when kernel loads a program, it looks for such patterns
16453  *   (bpf_fastcall function surrounded by spills/fills) and checks if
16454  *   spill/fill stack offsets are used exclusively in fastcall patterns;
16455  *
16456  * - if so, and if verifier or current JIT inlines the call to the
16457  *   bpf_fastcall function (e.g. a helper call), kernel removes unnecessary
16458  *   spill/fill pairs;
16459  *
16460  * - when old kernel loads a program, presence of spill/fill pairs
16461  *   keeps BPF program valid, albeit slightly less efficient.
16462  *
16463  * For example:
16464  *
16465  *   r1 = 1;
16466  *   r2 = 2;
16467  *   *(u64 *)(r10 - 8)  = r1;            r1 = 1;
16468  *   *(u64 *)(r10 - 16) = r2;            r2 = 2;
16469  *   call %[to_be_inlined]         -->   call %[to_be_inlined]
16470  *   r2 = *(u64 *)(r10 - 16);            r0 = r1;
16471  *   r1 = *(u64 *)(r10 - 8);             r0 += r2;
16472  *   r0 = r1;                            exit;
16473  *   r0 += r2;
16474  *   exit;
16475  *
16476  * The purpose of mark_fastcall_pattern_for_call is to:
16477  * - look for such patterns;
16478  * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern;
16479  * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction;
16480  * - update env->subprog_info[*]->fastcall_stack_off to find an offset
16481  *   at which bpf_fastcall spill/fill stack slots start;
16482  * - update env->subprog_info[*]->keep_fastcall_stack.
16483  *
16484  * The .fastcall_pattern and .fastcall_stack_off are used by
16485  * check_fastcall_stack_contract() to check if every stack access to
16486  * fastcall spill/fill stack slot originates from spill/fill
16487  * instructions, members of fastcall patterns.
16488  *
16489  * If such condition holds true for a subprogram, fastcall patterns could
16490  * be rewritten by remove_fastcall_spills_fills().
16491  * Otherwise bpf_fastcall patterns are not changed in the subprogram
16492  * (code, presumably, generated by an older clang version).
16493  *
16494  * For example, it is *not* safe to remove spill/fill below:
16495  *
16496  *   r1 = 1;
16497  *   *(u64 *)(r10 - 8)  = r1;            r1 = 1;
16498  *   call %[to_be_inlined]         -->   call %[to_be_inlined]
16499  *   r1 = *(u64 *)(r10 - 8);             r0 = *(u64 *)(r10 - 8);  <---- wrong !!!
16500  *   r0 = *(u64 *)(r10 - 8);             r0 += r1;
16501  *   r0 += r1;                           exit;
16502  *   exit;
16503  */
16504 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env,
16505 					   struct bpf_subprog_info *subprog,
16506 					   int insn_idx, s16 lowest_off)
16507 {
16508 	struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx;
16509 	struct bpf_insn *call = &env->prog->insnsi[insn_idx];
16510 	const struct bpf_func_proto *fn;
16511 	u32 clobbered_regs_mask = ALL_CALLER_SAVED_REGS;
16512 	u32 expected_regs_mask;
16513 	bool can_be_inlined = false;
16514 	s16 off;
16515 	int i;
16516 
16517 	if (bpf_helper_call(call)) {
16518 		if (get_helper_proto(env, call->imm, &fn) < 0)
16519 			/* error would be reported later */
16520 			return;
16521 		clobbered_regs_mask = helper_fastcall_clobber_mask(fn);
16522 		can_be_inlined = fn->allow_fastcall &&
16523 				 (verifier_inlines_helper_call(env, call->imm) ||
16524 				  bpf_jit_inlines_helper_call(call->imm));
16525 	}
16526 
16527 	if (bpf_pseudo_kfunc_call(call)) {
16528 		struct bpf_kfunc_call_arg_meta meta;
16529 		int err;
16530 
16531 		err = fetch_kfunc_meta(env, call, &meta, NULL);
16532 		if (err < 0)
16533 			/* error would be reported later */
16534 			return;
16535 
16536 		clobbered_regs_mask = kfunc_fastcall_clobber_mask(&meta);
16537 		can_be_inlined = is_fastcall_kfunc_call(&meta);
16538 	}
16539 
16540 	if (clobbered_regs_mask == ALL_CALLER_SAVED_REGS)
16541 		return;
16542 
16543 	/* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */
16544 	expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS;
16545 
16546 	/* match pairs of form:
16547 	 *
16548 	 * *(u64 *)(r10 - Y) = rX   (where Y % 8 == 0)
16549 	 * ...
16550 	 * call %[to_be_inlined]
16551 	 * ...
16552 	 * rX = *(u64 *)(r10 - Y)
16553 	 */
16554 	for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) {
16555 		if (insn_idx - i < 0 || insn_idx + i >= env->prog->len)
16556 			break;
16557 		stx = &insns[insn_idx - i];
16558 		ldx = &insns[insn_idx + i];
16559 		/* must be a stack spill/fill pair */
16560 		if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) ||
16561 		    ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) ||
16562 		    stx->dst_reg != BPF_REG_10 ||
16563 		    ldx->src_reg != BPF_REG_10)
16564 			break;
16565 		/* must be a spill/fill for the same reg */
16566 		if (stx->src_reg != ldx->dst_reg)
16567 			break;
16568 		/* must be one of the previously unseen registers */
16569 		if ((BIT(stx->src_reg) & expected_regs_mask) == 0)
16570 			break;
16571 		/* must be a spill/fill for the same expected offset,
16572 		 * no need to check offset alignment, BPF_DW stack access
16573 		 * is always 8-byte aligned.
16574 		 */
16575 		if (stx->off != off || ldx->off != off)
16576 			break;
16577 		expected_regs_mask &= ~BIT(stx->src_reg);
16578 		env->insn_aux_data[insn_idx - i].fastcall_pattern = 1;
16579 		env->insn_aux_data[insn_idx + i].fastcall_pattern = 1;
16580 	}
16581 	if (i == 1)
16582 		return;
16583 
16584 	/* Conditionally set 'fastcall_spills_num' to allow forward
16585 	 * compatibility when more helper functions are marked as
16586 	 * bpf_fastcall at compile time than current kernel supports, e.g:
16587 	 *
16588 	 *   1: *(u64 *)(r10 - 8) = r1
16589 	 *   2: call A                  ;; assume A is bpf_fastcall for current kernel
16590 	 *   3: r1 = *(u64 *)(r10 - 8)
16591 	 *   4: *(u64 *)(r10 - 8) = r1
16592 	 *   5: call B                  ;; assume B is not bpf_fastcall for current kernel
16593 	 *   6: r1 = *(u64 *)(r10 - 8)
16594 	 *
16595 	 * There is no need to block bpf_fastcall rewrite for such program.
16596 	 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy,
16597 	 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills()
16598 	 * does not remove spill/fill pair {4,6}.
16599 	 */
16600 	if (can_be_inlined)
16601 		env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1;
16602 	else
16603 		subprog->keep_fastcall_stack = 1;
16604 	subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off);
16605 }
16606 
16607 static int mark_fastcall_patterns(struct bpf_verifier_env *env)
16608 {
16609 	struct bpf_subprog_info *subprog = env->subprog_info;
16610 	struct bpf_insn *insn;
16611 	s16 lowest_off;
16612 	int s, i;
16613 
16614 	for (s = 0; s < env->subprog_cnt; ++s, ++subprog) {
16615 		/* find lowest stack spill offset used in this subprog */
16616 		lowest_off = 0;
16617 		for (i = subprog->start; i < (subprog + 1)->start; ++i) {
16618 			insn = env->prog->insnsi + i;
16619 			if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) ||
16620 			    insn->dst_reg != BPF_REG_10)
16621 				continue;
16622 			lowest_off = min(lowest_off, insn->off);
16623 		}
16624 		/* use this offset to find fastcall patterns */
16625 		for (i = subprog->start; i < (subprog + 1)->start; ++i) {
16626 			insn = env->prog->insnsi + i;
16627 			if (insn->code != (BPF_JMP | BPF_CALL))
16628 				continue;
16629 			mark_fastcall_pattern_for_call(env, subprog, i, lowest_off);
16630 		}
16631 	}
16632 	return 0;
16633 }
16634 
16635 /* Visits the instruction at index t and returns one of the following:
16636  *  < 0 - an error occurred
16637  *  DONE_EXPLORING - the instruction was fully explored
16638  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
16639  */
16640 static int visit_insn(int t, struct bpf_verifier_env *env)
16641 {
16642 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
16643 	int ret, off, insn_sz;
16644 
16645 	if (bpf_pseudo_func(insn))
16646 		return visit_func_call_insn(t, insns, env, true);
16647 
16648 	/* All non-branch instructions have a single fall-through edge. */
16649 	if (BPF_CLASS(insn->code) != BPF_JMP &&
16650 	    BPF_CLASS(insn->code) != BPF_JMP32) {
16651 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
16652 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
16653 	}
16654 
16655 	switch (BPF_OP(insn->code)) {
16656 	case BPF_EXIT:
16657 		return DONE_EXPLORING;
16658 
16659 	case BPF_CALL:
16660 		if (is_async_callback_calling_insn(insn))
16661 			/* Mark this call insn as a prune point to trigger
16662 			 * is_state_visited() check before call itself is
16663 			 * processed by __check_func_call(). Otherwise new
16664 			 * async state will be pushed for further exploration.
16665 			 */
16666 			mark_prune_point(env, t);
16667 		/* For functions that invoke callbacks it is not known how many times
16668 		 * callback would be called. Verifier models callback calling functions
16669 		 * by repeatedly visiting callback bodies and returning to origin call
16670 		 * instruction.
16671 		 * In order to stop such iteration verifier needs to identify when a
16672 		 * state identical some state from a previous iteration is reached.
16673 		 * Check below forces creation of checkpoint before callback calling
16674 		 * instruction to allow search for such identical states.
16675 		 */
16676 		if (is_sync_callback_calling_insn(insn)) {
16677 			mark_calls_callback(env, t);
16678 			mark_force_checkpoint(env, t);
16679 			mark_prune_point(env, t);
16680 			mark_jmp_point(env, t);
16681 		}
16682 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
16683 			struct bpf_kfunc_call_arg_meta meta;
16684 
16685 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
16686 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
16687 				mark_prune_point(env, t);
16688 				/* Checking and saving state checkpoints at iter_next() call
16689 				 * is crucial for fast convergence of open-coded iterator loop
16690 				 * logic, so we need to force it. If we don't do that,
16691 				 * is_state_visited() might skip saving a checkpoint, causing
16692 				 * unnecessarily long sequence of not checkpointed
16693 				 * instructions and jumps, leading to exhaustion of jump
16694 				 * history buffer, and potentially other undesired outcomes.
16695 				 * It is expected that with correct open-coded iterators
16696 				 * convergence will happen quickly, so we don't run a risk of
16697 				 * exhausting memory.
16698 				 */
16699 				mark_force_checkpoint(env, t);
16700 			}
16701 		}
16702 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
16703 
16704 	case BPF_JA:
16705 		if (BPF_SRC(insn->code) != BPF_K)
16706 			return -EINVAL;
16707 
16708 		if (BPF_CLASS(insn->code) == BPF_JMP)
16709 			off = insn->off;
16710 		else
16711 			off = insn->imm;
16712 
16713 		/* unconditional jump with single edge */
16714 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
16715 		if (ret)
16716 			return ret;
16717 
16718 		mark_prune_point(env, t + off + 1);
16719 		mark_jmp_point(env, t + off + 1);
16720 
16721 		return ret;
16722 
16723 	default:
16724 		/* conditional jump with two edges */
16725 		mark_prune_point(env, t);
16726 		if (is_may_goto_insn(insn))
16727 			mark_force_checkpoint(env, t);
16728 
16729 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
16730 		if (ret)
16731 			return ret;
16732 
16733 		return push_insn(t, t + insn->off + 1, BRANCH, env);
16734 	}
16735 }
16736 
16737 /* non-recursive depth-first-search to detect loops in BPF program
16738  * loop == back-edge in directed graph
16739  */
16740 static int check_cfg(struct bpf_verifier_env *env)
16741 {
16742 	int insn_cnt = env->prog->len;
16743 	int *insn_stack, *insn_state;
16744 	int ex_insn_beg, i, ret = 0;
16745 	bool ex_done = false;
16746 
16747 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
16748 	if (!insn_state)
16749 		return -ENOMEM;
16750 
16751 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
16752 	if (!insn_stack) {
16753 		kvfree(insn_state);
16754 		return -ENOMEM;
16755 	}
16756 
16757 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
16758 	insn_stack[0] = 0; /* 0 is the first instruction */
16759 	env->cfg.cur_stack = 1;
16760 
16761 walk_cfg:
16762 	while (env->cfg.cur_stack > 0) {
16763 		int t = insn_stack[env->cfg.cur_stack - 1];
16764 
16765 		ret = visit_insn(t, env);
16766 		switch (ret) {
16767 		case DONE_EXPLORING:
16768 			insn_state[t] = EXPLORED;
16769 			env->cfg.cur_stack--;
16770 			break;
16771 		case KEEP_EXPLORING:
16772 			break;
16773 		default:
16774 			if (ret > 0) {
16775 				verbose(env, "visit_insn internal bug\n");
16776 				ret = -EFAULT;
16777 			}
16778 			goto err_free;
16779 		}
16780 	}
16781 
16782 	if (env->cfg.cur_stack < 0) {
16783 		verbose(env, "pop stack internal bug\n");
16784 		ret = -EFAULT;
16785 		goto err_free;
16786 	}
16787 
16788 	if (env->exception_callback_subprog && !ex_done) {
16789 		ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
16790 
16791 		insn_state[ex_insn_beg] = DISCOVERED;
16792 		insn_stack[0] = ex_insn_beg;
16793 		env->cfg.cur_stack = 1;
16794 		ex_done = true;
16795 		goto walk_cfg;
16796 	}
16797 
16798 	for (i = 0; i < insn_cnt; i++) {
16799 		struct bpf_insn *insn = &env->prog->insnsi[i];
16800 
16801 		if (insn_state[i] != EXPLORED) {
16802 			verbose(env, "unreachable insn %d\n", i);
16803 			ret = -EINVAL;
16804 			goto err_free;
16805 		}
16806 		if (bpf_is_ldimm64(insn)) {
16807 			if (insn_state[i + 1] != 0) {
16808 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
16809 				ret = -EINVAL;
16810 				goto err_free;
16811 			}
16812 			i++; /* skip second half of ldimm64 */
16813 		}
16814 	}
16815 	ret = 0; /* cfg looks good */
16816 
16817 err_free:
16818 	kvfree(insn_state);
16819 	kvfree(insn_stack);
16820 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
16821 	return ret;
16822 }
16823 
16824 static int check_abnormal_return(struct bpf_verifier_env *env)
16825 {
16826 	int i;
16827 
16828 	for (i = 1; i < env->subprog_cnt; i++) {
16829 		if (env->subprog_info[i].has_ld_abs) {
16830 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
16831 			return -EINVAL;
16832 		}
16833 		if (env->subprog_info[i].has_tail_call) {
16834 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
16835 			return -EINVAL;
16836 		}
16837 	}
16838 	return 0;
16839 }
16840 
16841 /* The minimum supported BTF func info size */
16842 #define MIN_BPF_FUNCINFO_SIZE	8
16843 #define MAX_FUNCINFO_REC_SIZE	252
16844 
16845 static int check_btf_func_early(struct bpf_verifier_env *env,
16846 				const union bpf_attr *attr,
16847 				bpfptr_t uattr)
16848 {
16849 	u32 krec_size = sizeof(struct bpf_func_info);
16850 	const struct btf_type *type, *func_proto;
16851 	u32 i, nfuncs, urec_size, min_size;
16852 	struct bpf_func_info *krecord;
16853 	struct bpf_prog *prog;
16854 	const struct btf *btf;
16855 	u32 prev_offset = 0;
16856 	bpfptr_t urecord;
16857 	int ret = -ENOMEM;
16858 
16859 	nfuncs = attr->func_info_cnt;
16860 	if (!nfuncs) {
16861 		if (check_abnormal_return(env))
16862 			return -EINVAL;
16863 		return 0;
16864 	}
16865 
16866 	urec_size = attr->func_info_rec_size;
16867 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
16868 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
16869 	    urec_size % sizeof(u32)) {
16870 		verbose(env, "invalid func info rec size %u\n", urec_size);
16871 		return -EINVAL;
16872 	}
16873 
16874 	prog = env->prog;
16875 	btf = prog->aux->btf;
16876 
16877 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
16878 	min_size = min_t(u32, krec_size, urec_size);
16879 
16880 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
16881 	if (!krecord)
16882 		return -ENOMEM;
16883 
16884 	for (i = 0; i < nfuncs; i++) {
16885 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
16886 		if (ret) {
16887 			if (ret == -E2BIG) {
16888 				verbose(env, "nonzero tailing record in func info");
16889 				/* set the size kernel expects so loader can zero
16890 				 * out the rest of the record.
16891 				 */
16892 				if (copy_to_bpfptr_offset(uattr,
16893 							  offsetof(union bpf_attr, func_info_rec_size),
16894 							  &min_size, sizeof(min_size)))
16895 					ret = -EFAULT;
16896 			}
16897 			goto err_free;
16898 		}
16899 
16900 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
16901 			ret = -EFAULT;
16902 			goto err_free;
16903 		}
16904 
16905 		/* check insn_off */
16906 		ret = -EINVAL;
16907 		if (i == 0) {
16908 			if (krecord[i].insn_off) {
16909 				verbose(env,
16910 					"nonzero insn_off %u for the first func info record",
16911 					krecord[i].insn_off);
16912 				goto err_free;
16913 			}
16914 		} else if (krecord[i].insn_off <= prev_offset) {
16915 			verbose(env,
16916 				"same or smaller insn offset (%u) than previous func info record (%u)",
16917 				krecord[i].insn_off, prev_offset);
16918 			goto err_free;
16919 		}
16920 
16921 		/* check type_id */
16922 		type = btf_type_by_id(btf, krecord[i].type_id);
16923 		if (!type || !btf_type_is_func(type)) {
16924 			verbose(env, "invalid type id %d in func info",
16925 				krecord[i].type_id);
16926 			goto err_free;
16927 		}
16928 
16929 		func_proto = btf_type_by_id(btf, type->type);
16930 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
16931 			/* btf_func_check() already verified it during BTF load */
16932 			goto err_free;
16933 
16934 		prev_offset = krecord[i].insn_off;
16935 		bpfptr_add(&urecord, urec_size);
16936 	}
16937 
16938 	prog->aux->func_info = krecord;
16939 	prog->aux->func_info_cnt = nfuncs;
16940 	return 0;
16941 
16942 err_free:
16943 	kvfree(krecord);
16944 	return ret;
16945 }
16946 
16947 static int check_btf_func(struct bpf_verifier_env *env,
16948 			  const union bpf_attr *attr,
16949 			  bpfptr_t uattr)
16950 {
16951 	const struct btf_type *type, *func_proto, *ret_type;
16952 	u32 i, nfuncs, urec_size;
16953 	struct bpf_func_info *krecord;
16954 	struct bpf_func_info_aux *info_aux = NULL;
16955 	struct bpf_prog *prog;
16956 	const struct btf *btf;
16957 	bpfptr_t urecord;
16958 	bool scalar_return;
16959 	int ret = -ENOMEM;
16960 
16961 	nfuncs = attr->func_info_cnt;
16962 	if (!nfuncs) {
16963 		if (check_abnormal_return(env))
16964 			return -EINVAL;
16965 		return 0;
16966 	}
16967 	if (nfuncs != env->subprog_cnt) {
16968 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
16969 		return -EINVAL;
16970 	}
16971 
16972 	urec_size = attr->func_info_rec_size;
16973 
16974 	prog = env->prog;
16975 	btf = prog->aux->btf;
16976 
16977 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
16978 
16979 	krecord = prog->aux->func_info;
16980 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
16981 	if (!info_aux)
16982 		return -ENOMEM;
16983 
16984 	for (i = 0; i < nfuncs; i++) {
16985 		/* check insn_off */
16986 		ret = -EINVAL;
16987 
16988 		if (env->subprog_info[i].start != krecord[i].insn_off) {
16989 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
16990 			goto err_free;
16991 		}
16992 
16993 		/* Already checked type_id */
16994 		type = btf_type_by_id(btf, krecord[i].type_id);
16995 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
16996 		/* Already checked func_proto */
16997 		func_proto = btf_type_by_id(btf, type->type);
16998 
16999 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
17000 		scalar_return =
17001 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
17002 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
17003 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
17004 			goto err_free;
17005 		}
17006 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
17007 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
17008 			goto err_free;
17009 		}
17010 
17011 		bpfptr_add(&urecord, urec_size);
17012 	}
17013 
17014 	prog->aux->func_info_aux = info_aux;
17015 	return 0;
17016 
17017 err_free:
17018 	kfree(info_aux);
17019 	return ret;
17020 }
17021 
17022 static void adjust_btf_func(struct bpf_verifier_env *env)
17023 {
17024 	struct bpf_prog_aux *aux = env->prog->aux;
17025 	int i;
17026 
17027 	if (!aux->func_info)
17028 		return;
17029 
17030 	/* func_info is not available for hidden subprogs */
17031 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
17032 		aux->func_info[i].insn_off = env->subprog_info[i].start;
17033 }
17034 
17035 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
17036 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
17037 
17038 static int check_btf_line(struct bpf_verifier_env *env,
17039 			  const union bpf_attr *attr,
17040 			  bpfptr_t uattr)
17041 {
17042 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
17043 	struct bpf_subprog_info *sub;
17044 	struct bpf_line_info *linfo;
17045 	struct bpf_prog *prog;
17046 	const struct btf *btf;
17047 	bpfptr_t ulinfo;
17048 	int err;
17049 
17050 	nr_linfo = attr->line_info_cnt;
17051 	if (!nr_linfo)
17052 		return 0;
17053 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
17054 		return -EINVAL;
17055 
17056 	rec_size = attr->line_info_rec_size;
17057 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
17058 	    rec_size > MAX_LINEINFO_REC_SIZE ||
17059 	    rec_size & (sizeof(u32) - 1))
17060 		return -EINVAL;
17061 
17062 	/* Need to zero it in case the userspace may
17063 	 * pass in a smaller bpf_line_info object.
17064 	 */
17065 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
17066 			 GFP_KERNEL | __GFP_NOWARN);
17067 	if (!linfo)
17068 		return -ENOMEM;
17069 
17070 	prog = env->prog;
17071 	btf = prog->aux->btf;
17072 
17073 	s = 0;
17074 	sub = env->subprog_info;
17075 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
17076 	expected_size = sizeof(struct bpf_line_info);
17077 	ncopy = min_t(u32, expected_size, rec_size);
17078 	for (i = 0; i < nr_linfo; i++) {
17079 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
17080 		if (err) {
17081 			if (err == -E2BIG) {
17082 				verbose(env, "nonzero tailing record in line_info");
17083 				if (copy_to_bpfptr_offset(uattr,
17084 							  offsetof(union bpf_attr, line_info_rec_size),
17085 							  &expected_size, sizeof(expected_size)))
17086 					err = -EFAULT;
17087 			}
17088 			goto err_free;
17089 		}
17090 
17091 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
17092 			err = -EFAULT;
17093 			goto err_free;
17094 		}
17095 
17096 		/*
17097 		 * Check insn_off to ensure
17098 		 * 1) strictly increasing AND
17099 		 * 2) bounded by prog->len
17100 		 *
17101 		 * The linfo[0].insn_off == 0 check logically falls into
17102 		 * the later "missing bpf_line_info for func..." case
17103 		 * because the first linfo[0].insn_off must be the
17104 		 * first sub also and the first sub must have
17105 		 * subprog_info[0].start == 0.
17106 		 */
17107 		if ((i && linfo[i].insn_off <= prev_offset) ||
17108 		    linfo[i].insn_off >= prog->len) {
17109 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
17110 				i, linfo[i].insn_off, prev_offset,
17111 				prog->len);
17112 			err = -EINVAL;
17113 			goto err_free;
17114 		}
17115 
17116 		if (!prog->insnsi[linfo[i].insn_off].code) {
17117 			verbose(env,
17118 				"Invalid insn code at line_info[%u].insn_off\n",
17119 				i);
17120 			err = -EINVAL;
17121 			goto err_free;
17122 		}
17123 
17124 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
17125 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
17126 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
17127 			err = -EINVAL;
17128 			goto err_free;
17129 		}
17130 
17131 		if (s != env->subprog_cnt) {
17132 			if (linfo[i].insn_off == sub[s].start) {
17133 				sub[s].linfo_idx = i;
17134 				s++;
17135 			} else if (sub[s].start < linfo[i].insn_off) {
17136 				verbose(env, "missing bpf_line_info for func#%u\n", s);
17137 				err = -EINVAL;
17138 				goto err_free;
17139 			}
17140 		}
17141 
17142 		prev_offset = linfo[i].insn_off;
17143 		bpfptr_add(&ulinfo, rec_size);
17144 	}
17145 
17146 	if (s != env->subprog_cnt) {
17147 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
17148 			env->subprog_cnt - s, s);
17149 		err = -EINVAL;
17150 		goto err_free;
17151 	}
17152 
17153 	prog->aux->linfo = linfo;
17154 	prog->aux->nr_linfo = nr_linfo;
17155 
17156 	return 0;
17157 
17158 err_free:
17159 	kvfree(linfo);
17160 	return err;
17161 }
17162 
17163 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
17164 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
17165 
17166 static int check_core_relo(struct bpf_verifier_env *env,
17167 			   const union bpf_attr *attr,
17168 			   bpfptr_t uattr)
17169 {
17170 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
17171 	struct bpf_core_relo core_relo = {};
17172 	struct bpf_prog *prog = env->prog;
17173 	const struct btf *btf = prog->aux->btf;
17174 	struct bpf_core_ctx ctx = {
17175 		.log = &env->log,
17176 		.btf = btf,
17177 	};
17178 	bpfptr_t u_core_relo;
17179 	int err;
17180 
17181 	nr_core_relo = attr->core_relo_cnt;
17182 	if (!nr_core_relo)
17183 		return 0;
17184 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
17185 		return -EINVAL;
17186 
17187 	rec_size = attr->core_relo_rec_size;
17188 	if (rec_size < MIN_CORE_RELO_SIZE ||
17189 	    rec_size > MAX_CORE_RELO_SIZE ||
17190 	    rec_size % sizeof(u32))
17191 		return -EINVAL;
17192 
17193 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
17194 	expected_size = sizeof(struct bpf_core_relo);
17195 	ncopy = min_t(u32, expected_size, rec_size);
17196 
17197 	/* Unlike func_info and line_info, copy and apply each CO-RE
17198 	 * relocation record one at a time.
17199 	 */
17200 	for (i = 0; i < nr_core_relo; i++) {
17201 		/* future proofing when sizeof(bpf_core_relo) changes */
17202 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
17203 		if (err) {
17204 			if (err == -E2BIG) {
17205 				verbose(env, "nonzero tailing record in core_relo");
17206 				if (copy_to_bpfptr_offset(uattr,
17207 							  offsetof(union bpf_attr, core_relo_rec_size),
17208 							  &expected_size, sizeof(expected_size)))
17209 					err = -EFAULT;
17210 			}
17211 			break;
17212 		}
17213 
17214 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
17215 			err = -EFAULT;
17216 			break;
17217 		}
17218 
17219 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
17220 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
17221 				i, core_relo.insn_off, prog->len);
17222 			err = -EINVAL;
17223 			break;
17224 		}
17225 
17226 		err = bpf_core_apply(&ctx, &core_relo, i,
17227 				     &prog->insnsi[core_relo.insn_off / 8]);
17228 		if (err)
17229 			break;
17230 		bpfptr_add(&u_core_relo, rec_size);
17231 	}
17232 	return err;
17233 }
17234 
17235 static int check_btf_info_early(struct bpf_verifier_env *env,
17236 				const union bpf_attr *attr,
17237 				bpfptr_t uattr)
17238 {
17239 	struct btf *btf;
17240 	int err;
17241 
17242 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
17243 		if (check_abnormal_return(env))
17244 			return -EINVAL;
17245 		return 0;
17246 	}
17247 
17248 	btf = btf_get_by_fd(attr->prog_btf_fd);
17249 	if (IS_ERR(btf))
17250 		return PTR_ERR(btf);
17251 	if (btf_is_kernel(btf)) {
17252 		btf_put(btf);
17253 		return -EACCES;
17254 	}
17255 	env->prog->aux->btf = btf;
17256 
17257 	err = check_btf_func_early(env, attr, uattr);
17258 	if (err)
17259 		return err;
17260 	return 0;
17261 }
17262 
17263 static int check_btf_info(struct bpf_verifier_env *env,
17264 			  const union bpf_attr *attr,
17265 			  bpfptr_t uattr)
17266 {
17267 	int err;
17268 
17269 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
17270 		if (check_abnormal_return(env))
17271 			return -EINVAL;
17272 		return 0;
17273 	}
17274 
17275 	err = check_btf_func(env, attr, uattr);
17276 	if (err)
17277 		return err;
17278 
17279 	err = check_btf_line(env, attr, uattr);
17280 	if (err)
17281 		return err;
17282 
17283 	err = check_core_relo(env, attr, uattr);
17284 	if (err)
17285 		return err;
17286 
17287 	return 0;
17288 }
17289 
17290 /* check %cur's range satisfies %old's */
17291 static bool range_within(const struct bpf_reg_state *old,
17292 			 const struct bpf_reg_state *cur)
17293 {
17294 	return old->umin_value <= cur->umin_value &&
17295 	       old->umax_value >= cur->umax_value &&
17296 	       old->smin_value <= cur->smin_value &&
17297 	       old->smax_value >= cur->smax_value &&
17298 	       old->u32_min_value <= cur->u32_min_value &&
17299 	       old->u32_max_value >= cur->u32_max_value &&
17300 	       old->s32_min_value <= cur->s32_min_value &&
17301 	       old->s32_max_value >= cur->s32_max_value;
17302 }
17303 
17304 /* If in the old state two registers had the same id, then they need to have
17305  * the same id in the new state as well.  But that id could be different from
17306  * the old state, so we need to track the mapping from old to new ids.
17307  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
17308  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
17309  * regs with a different old id could still have new id 9, we don't care about
17310  * that.
17311  * So we look through our idmap to see if this old id has been seen before.  If
17312  * so, we require the new id to match; otherwise, we add the id pair to the map.
17313  */
17314 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
17315 {
17316 	struct bpf_id_pair *map = idmap->map;
17317 	unsigned int i;
17318 
17319 	/* either both IDs should be set or both should be zero */
17320 	if (!!old_id != !!cur_id)
17321 		return false;
17322 
17323 	if (old_id == 0) /* cur_id == 0 as well */
17324 		return true;
17325 
17326 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
17327 		if (!map[i].old) {
17328 			/* Reached an empty slot; haven't seen this id before */
17329 			map[i].old = old_id;
17330 			map[i].cur = cur_id;
17331 			return true;
17332 		}
17333 		if (map[i].old == old_id)
17334 			return map[i].cur == cur_id;
17335 		if (map[i].cur == cur_id)
17336 			return false;
17337 	}
17338 	/* We ran out of idmap slots, which should be impossible */
17339 	WARN_ON_ONCE(1);
17340 	return false;
17341 }
17342 
17343 /* Similar to check_ids(), but allocate a unique temporary ID
17344  * for 'old_id' or 'cur_id' of zero.
17345  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
17346  */
17347 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
17348 {
17349 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
17350 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
17351 
17352 	return check_ids(old_id, cur_id, idmap);
17353 }
17354 
17355 static void clean_func_state(struct bpf_verifier_env *env,
17356 			     struct bpf_func_state *st)
17357 {
17358 	enum bpf_reg_liveness live;
17359 	int i, j;
17360 
17361 	for (i = 0; i < BPF_REG_FP; i++) {
17362 		live = st->regs[i].live;
17363 		/* liveness must not touch this register anymore */
17364 		st->regs[i].live |= REG_LIVE_DONE;
17365 		if (!(live & REG_LIVE_READ))
17366 			/* since the register is unused, clear its state
17367 			 * to make further comparison simpler
17368 			 */
17369 			__mark_reg_not_init(env, &st->regs[i]);
17370 	}
17371 
17372 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
17373 		live = st->stack[i].spilled_ptr.live;
17374 		/* liveness must not touch this stack slot anymore */
17375 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
17376 		if (!(live & REG_LIVE_READ)) {
17377 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
17378 			for (j = 0; j < BPF_REG_SIZE; j++)
17379 				st->stack[i].slot_type[j] = STACK_INVALID;
17380 		}
17381 	}
17382 }
17383 
17384 static void clean_verifier_state(struct bpf_verifier_env *env,
17385 				 struct bpf_verifier_state *st)
17386 {
17387 	int i;
17388 
17389 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
17390 		/* all regs in this state in all frames were already marked */
17391 		return;
17392 
17393 	for (i = 0; i <= st->curframe; i++)
17394 		clean_func_state(env, st->frame[i]);
17395 }
17396 
17397 /* the parentage chains form a tree.
17398  * the verifier states are added to state lists at given insn and
17399  * pushed into state stack for future exploration.
17400  * when the verifier reaches bpf_exit insn some of the verifer states
17401  * stored in the state lists have their final liveness state already,
17402  * but a lot of states will get revised from liveness point of view when
17403  * the verifier explores other branches.
17404  * Example:
17405  * 1: r0 = 1
17406  * 2: if r1 == 100 goto pc+1
17407  * 3: r0 = 2
17408  * 4: exit
17409  * when the verifier reaches exit insn the register r0 in the state list of
17410  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
17411  * of insn 2 and goes exploring further. At the insn 4 it will walk the
17412  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
17413  *
17414  * Since the verifier pushes the branch states as it sees them while exploring
17415  * the program the condition of walking the branch instruction for the second
17416  * time means that all states below this branch were already explored and
17417  * their final liveness marks are already propagated.
17418  * Hence when the verifier completes the search of state list in is_state_visited()
17419  * we can call this clean_live_states() function to mark all liveness states
17420  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
17421  * will not be used.
17422  * This function also clears the registers and stack for states that !READ
17423  * to simplify state merging.
17424  *
17425  * Important note here that walking the same branch instruction in the callee
17426  * doesn't meant that the states are DONE. The verifier has to compare
17427  * the callsites
17428  */
17429 static void clean_live_states(struct bpf_verifier_env *env, int insn,
17430 			      struct bpf_verifier_state *cur)
17431 {
17432 	struct bpf_verifier_state_list *sl;
17433 
17434 	sl = *explored_state(env, insn);
17435 	while (sl) {
17436 		if (sl->state.branches)
17437 			goto next;
17438 		if (sl->state.insn_idx != insn ||
17439 		    !same_callsites(&sl->state, cur))
17440 			goto next;
17441 		clean_verifier_state(env, &sl->state);
17442 next:
17443 		sl = sl->next;
17444 	}
17445 }
17446 
17447 static bool regs_exact(const struct bpf_reg_state *rold,
17448 		       const struct bpf_reg_state *rcur,
17449 		       struct bpf_idmap *idmap)
17450 {
17451 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
17452 	       check_ids(rold->id, rcur->id, idmap) &&
17453 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
17454 }
17455 
17456 enum exact_level {
17457 	NOT_EXACT,
17458 	EXACT,
17459 	RANGE_WITHIN
17460 };
17461 
17462 /* Returns true if (rold safe implies rcur safe) */
17463 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
17464 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap,
17465 		    enum exact_level exact)
17466 {
17467 	if (exact == EXACT)
17468 		return regs_exact(rold, rcur, idmap);
17469 
17470 	if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT)
17471 		/* explored state didn't use this */
17472 		return true;
17473 	if (rold->type == NOT_INIT) {
17474 		if (exact == NOT_EXACT || rcur->type == NOT_INIT)
17475 			/* explored state can't have used this */
17476 			return true;
17477 	}
17478 
17479 	/* Enforce that register types have to match exactly, including their
17480 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
17481 	 * rule.
17482 	 *
17483 	 * One can make a point that using a pointer register as unbounded
17484 	 * SCALAR would be technically acceptable, but this could lead to
17485 	 * pointer leaks because scalars are allowed to leak while pointers
17486 	 * are not. We could make this safe in special cases if root is
17487 	 * calling us, but it's probably not worth the hassle.
17488 	 *
17489 	 * Also, register types that are *not* MAYBE_NULL could technically be
17490 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
17491 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
17492 	 * to the same map).
17493 	 * However, if the old MAYBE_NULL register then got NULL checked,
17494 	 * doing so could have affected others with the same id, and we can't
17495 	 * check for that because we lost the id when we converted to
17496 	 * a non-MAYBE_NULL variant.
17497 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
17498 	 * non-MAYBE_NULL registers as well.
17499 	 */
17500 	if (rold->type != rcur->type)
17501 		return false;
17502 
17503 	switch (base_type(rold->type)) {
17504 	case SCALAR_VALUE:
17505 		if (env->explore_alu_limits) {
17506 			/* explore_alu_limits disables tnum_in() and range_within()
17507 			 * logic and requires everything to be strict
17508 			 */
17509 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
17510 			       check_scalar_ids(rold->id, rcur->id, idmap);
17511 		}
17512 		if (!rold->precise && exact == NOT_EXACT)
17513 			return true;
17514 		if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST))
17515 			return false;
17516 		if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off))
17517 			return false;
17518 		/* Why check_ids() for scalar registers?
17519 		 *
17520 		 * Consider the following BPF code:
17521 		 *   1: r6 = ... unbound scalar, ID=a ...
17522 		 *   2: r7 = ... unbound scalar, ID=b ...
17523 		 *   3: if (r6 > r7) goto +1
17524 		 *   4: r6 = r7
17525 		 *   5: if (r6 > X) goto ...
17526 		 *   6: ... memory operation using r7 ...
17527 		 *
17528 		 * First verification path is [1-6]:
17529 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
17530 		 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark
17531 		 *   r7 <= X, because r6 and r7 share same id.
17532 		 * Next verification path is [1-4, 6].
17533 		 *
17534 		 * Instruction (6) would be reached in two states:
17535 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
17536 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
17537 		 *
17538 		 * Use check_ids() to distinguish these states.
17539 		 * ---
17540 		 * Also verify that new value satisfies old value range knowledge.
17541 		 */
17542 		return range_within(rold, rcur) &&
17543 		       tnum_in(rold->var_off, rcur->var_off) &&
17544 		       check_scalar_ids(rold->id, rcur->id, idmap);
17545 	case PTR_TO_MAP_KEY:
17546 	case PTR_TO_MAP_VALUE:
17547 	case PTR_TO_MEM:
17548 	case PTR_TO_BUF:
17549 	case PTR_TO_TP_BUFFER:
17550 		/* If the new min/max/var_off satisfy the old ones and
17551 		 * everything else matches, we are OK.
17552 		 */
17553 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
17554 		       range_within(rold, rcur) &&
17555 		       tnum_in(rold->var_off, rcur->var_off) &&
17556 		       check_ids(rold->id, rcur->id, idmap) &&
17557 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
17558 	case PTR_TO_PACKET_META:
17559 	case PTR_TO_PACKET:
17560 		/* We must have at least as much range as the old ptr
17561 		 * did, so that any accesses which were safe before are
17562 		 * still safe.  This is true even if old range < old off,
17563 		 * since someone could have accessed through (ptr - k), or
17564 		 * even done ptr -= k in a register, to get a safe access.
17565 		 */
17566 		if (rold->range > rcur->range)
17567 			return false;
17568 		/* If the offsets don't match, we can't trust our alignment;
17569 		 * nor can we be sure that we won't fall out of range.
17570 		 */
17571 		if (rold->off != rcur->off)
17572 			return false;
17573 		/* id relations must be preserved */
17574 		if (!check_ids(rold->id, rcur->id, idmap))
17575 			return false;
17576 		/* new val must satisfy old val knowledge */
17577 		return range_within(rold, rcur) &&
17578 		       tnum_in(rold->var_off, rcur->var_off);
17579 	case PTR_TO_STACK:
17580 		/* two stack pointers are equal only if they're pointing to
17581 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
17582 		 */
17583 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
17584 	case PTR_TO_ARENA:
17585 		return true;
17586 	default:
17587 		return regs_exact(rold, rcur, idmap);
17588 	}
17589 }
17590 
17591 static struct bpf_reg_state unbound_reg;
17592 
17593 static __init int unbound_reg_init(void)
17594 {
17595 	__mark_reg_unknown_imprecise(&unbound_reg);
17596 	unbound_reg.live |= REG_LIVE_READ;
17597 	return 0;
17598 }
17599 late_initcall(unbound_reg_init);
17600 
17601 static bool is_stack_all_misc(struct bpf_verifier_env *env,
17602 			      struct bpf_stack_state *stack)
17603 {
17604 	u32 i;
17605 
17606 	for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) {
17607 		if ((stack->slot_type[i] == STACK_MISC) ||
17608 		    (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack))
17609 			continue;
17610 		return false;
17611 	}
17612 
17613 	return true;
17614 }
17615 
17616 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env,
17617 						  struct bpf_stack_state *stack)
17618 {
17619 	if (is_spilled_scalar_reg64(stack))
17620 		return &stack->spilled_ptr;
17621 
17622 	if (is_stack_all_misc(env, stack))
17623 		return &unbound_reg;
17624 
17625 	return NULL;
17626 }
17627 
17628 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
17629 		      struct bpf_func_state *cur, struct bpf_idmap *idmap,
17630 		      enum exact_level exact)
17631 {
17632 	int i, spi;
17633 
17634 	/* walk slots of the explored stack and ignore any additional
17635 	 * slots in the current stack, since explored(safe) state
17636 	 * didn't use them
17637 	 */
17638 	for (i = 0; i < old->allocated_stack; i++) {
17639 		struct bpf_reg_state *old_reg, *cur_reg;
17640 
17641 		spi = i / BPF_REG_SIZE;
17642 
17643 		if (exact != NOT_EXACT &&
17644 		    (i >= cur->allocated_stack ||
17645 		     old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
17646 		     cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
17647 			return false;
17648 
17649 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)
17650 		    && exact == NOT_EXACT) {
17651 			i += BPF_REG_SIZE - 1;
17652 			/* explored state didn't use this */
17653 			continue;
17654 		}
17655 
17656 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
17657 			continue;
17658 
17659 		if (env->allow_uninit_stack &&
17660 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
17661 			continue;
17662 
17663 		/* explored stack has more populated slots than current stack
17664 		 * and these slots were used
17665 		 */
17666 		if (i >= cur->allocated_stack)
17667 			return false;
17668 
17669 		/* 64-bit scalar spill vs all slots MISC and vice versa.
17670 		 * Load from all slots MISC produces unbound scalar.
17671 		 * Construct a fake register for such stack and call
17672 		 * regsafe() to ensure scalar ids are compared.
17673 		 */
17674 		old_reg = scalar_reg_for_stack(env, &old->stack[spi]);
17675 		cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]);
17676 		if (old_reg && cur_reg) {
17677 			if (!regsafe(env, old_reg, cur_reg, idmap, exact))
17678 				return false;
17679 			i += BPF_REG_SIZE - 1;
17680 			continue;
17681 		}
17682 
17683 		/* if old state was safe with misc data in the stack
17684 		 * it will be safe with zero-initialized stack.
17685 		 * The opposite is not true
17686 		 */
17687 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
17688 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
17689 			continue;
17690 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
17691 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
17692 			/* Ex: old explored (safe) state has STACK_SPILL in
17693 			 * this stack slot, but current has STACK_MISC ->
17694 			 * this verifier states are not equivalent,
17695 			 * return false to continue verification of this path
17696 			 */
17697 			return false;
17698 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
17699 			continue;
17700 		/* Both old and cur are having same slot_type */
17701 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
17702 		case STACK_SPILL:
17703 			/* when explored and current stack slot are both storing
17704 			 * spilled registers, check that stored pointers types
17705 			 * are the same as well.
17706 			 * Ex: explored safe path could have stored
17707 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
17708 			 * but current path has stored:
17709 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
17710 			 * such verifier states are not equivalent.
17711 			 * return false to continue verification of this path
17712 			 */
17713 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
17714 				     &cur->stack[spi].spilled_ptr, idmap, exact))
17715 				return false;
17716 			break;
17717 		case STACK_DYNPTR:
17718 			old_reg = &old->stack[spi].spilled_ptr;
17719 			cur_reg = &cur->stack[spi].spilled_ptr;
17720 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
17721 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
17722 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
17723 				return false;
17724 			break;
17725 		case STACK_ITER:
17726 			old_reg = &old->stack[spi].spilled_ptr;
17727 			cur_reg = &cur->stack[spi].spilled_ptr;
17728 			/* iter.depth is not compared between states as it
17729 			 * doesn't matter for correctness and would otherwise
17730 			 * prevent convergence; we maintain it only to prevent
17731 			 * infinite loop check triggering, see
17732 			 * iter_active_depths_differ()
17733 			 */
17734 			if (old_reg->iter.btf != cur_reg->iter.btf ||
17735 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
17736 			    old_reg->iter.state != cur_reg->iter.state ||
17737 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
17738 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
17739 				return false;
17740 			break;
17741 		case STACK_MISC:
17742 		case STACK_ZERO:
17743 		case STACK_INVALID:
17744 			continue;
17745 		/* Ensure that new unhandled slot types return false by default */
17746 		default:
17747 			return false;
17748 		}
17749 	}
17750 	return true;
17751 }
17752 
17753 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
17754 		    struct bpf_idmap *idmap)
17755 {
17756 	int i;
17757 
17758 	if (old->acquired_refs != cur->acquired_refs)
17759 		return false;
17760 
17761 	for (i = 0; i < old->acquired_refs; i++) {
17762 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) ||
17763 		    old->refs[i].type != cur->refs[i].type)
17764 			return false;
17765 		switch (old->refs[i].type) {
17766 		case REF_TYPE_PTR:
17767 			break;
17768 		case REF_TYPE_LOCK:
17769 			if (old->refs[i].ptr != cur->refs[i].ptr)
17770 				return false;
17771 			break;
17772 		default:
17773 			WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type);
17774 			return false;
17775 		}
17776 	}
17777 
17778 	return true;
17779 }
17780 
17781 /* compare two verifier states
17782  *
17783  * all states stored in state_list are known to be valid, since
17784  * verifier reached 'bpf_exit' instruction through them
17785  *
17786  * this function is called when verifier exploring different branches of
17787  * execution popped from the state stack. If it sees an old state that has
17788  * more strict register state and more strict stack state then this execution
17789  * branch doesn't need to be explored further, since verifier already
17790  * concluded that more strict state leads to valid finish.
17791  *
17792  * Therefore two states are equivalent if register state is more conservative
17793  * and explored stack state is more conservative than the current one.
17794  * Example:
17795  *       explored                   current
17796  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
17797  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
17798  *
17799  * In other words if current stack state (one being explored) has more
17800  * valid slots than old one that already passed validation, it means
17801  * the verifier can stop exploring and conclude that current state is valid too
17802  *
17803  * Similarly with registers. If explored state has register type as invalid
17804  * whereas register type in current state is meaningful, it means that
17805  * the current state will reach 'bpf_exit' instruction safely
17806  */
17807 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
17808 			      struct bpf_func_state *cur, enum exact_level exact)
17809 {
17810 	int i;
17811 
17812 	if (old->callback_depth > cur->callback_depth)
17813 		return false;
17814 
17815 	for (i = 0; i < MAX_BPF_REG; i++)
17816 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
17817 			     &env->idmap_scratch, exact))
17818 			return false;
17819 
17820 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
17821 		return false;
17822 
17823 	if (!refsafe(old, cur, &env->idmap_scratch))
17824 		return false;
17825 
17826 	return true;
17827 }
17828 
17829 static void reset_idmap_scratch(struct bpf_verifier_env *env)
17830 {
17831 	env->idmap_scratch.tmp_id_gen = env->id_gen;
17832 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
17833 }
17834 
17835 static bool states_equal(struct bpf_verifier_env *env,
17836 			 struct bpf_verifier_state *old,
17837 			 struct bpf_verifier_state *cur,
17838 			 enum exact_level exact)
17839 {
17840 	int i;
17841 
17842 	if (old->curframe != cur->curframe)
17843 		return false;
17844 
17845 	reset_idmap_scratch(env);
17846 
17847 	/* Verification state from speculative execution simulation
17848 	 * must never prune a non-speculative execution one.
17849 	 */
17850 	if (old->speculative && !cur->speculative)
17851 		return false;
17852 
17853 	if (old->active_rcu_lock != cur->active_rcu_lock)
17854 		return false;
17855 
17856 	if (old->active_preempt_lock != cur->active_preempt_lock)
17857 		return false;
17858 
17859 	if (old->in_sleepable != cur->in_sleepable)
17860 		return false;
17861 
17862 	/* for states to be equal callsites have to be the same
17863 	 * and all frame states need to be equivalent
17864 	 */
17865 	for (i = 0; i <= old->curframe; i++) {
17866 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
17867 			return false;
17868 		if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
17869 			return false;
17870 	}
17871 	return true;
17872 }
17873 
17874 /* Return 0 if no propagation happened. Return negative error code if error
17875  * happened. Otherwise, return the propagated bit.
17876  */
17877 static int propagate_liveness_reg(struct bpf_verifier_env *env,
17878 				  struct bpf_reg_state *reg,
17879 				  struct bpf_reg_state *parent_reg)
17880 {
17881 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
17882 	u8 flag = reg->live & REG_LIVE_READ;
17883 	int err;
17884 
17885 	/* When comes here, read flags of PARENT_REG or REG could be any of
17886 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
17887 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
17888 	 */
17889 	if (parent_flag == REG_LIVE_READ64 ||
17890 	    /* Or if there is no read flag from REG. */
17891 	    !flag ||
17892 	    /* Or if the read flag from REG is the same as PARENT_REG. */
17893 	    parent_flag == flag)
17894 		return 0;
17895 
17896 	err = mark_reg_read(env, reg, parent_reg, flag);
17897 	if (err)
17898 		return err;
17899 
17900 	return flag;
17901 }
17902 
17903 /* A write screens off any subsequent reads; but write marks come from the
17904  * straight-line code between a state and its parent.  When we arrive at an
17905  * equivalent state (jump target or such) we didn't arrive by the straight-line
17906  * code, so read marks in the state must propagate to the parent regardless
17907  * of the state's write marks. That's what 'parent == state->parent' comparison
17908  * in mark_reg_read() is for.
17909  */
17910 static int propagate_liveness(struct bpf_verifier_env *env,
17911 			      const struct bpf_verifier_state *vstate,
17912 			      struct bpf_verifier_state *vparent)
17913 {
17914 	struct bpf_reg_state *state_reg, *parent_reg;
17915 	struct bpf_func_state *state, *parent;
17916 	int i, frame, err = 0;
17917 
17918 	if (vparent->curframe != vstate->curframe) {
17919 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
17920 		     vparent->curframe, vstate->curframe);
17921 		return -EFAULT;
17922 	}
17923 	/* Propagate read liveness of registers... */
17924 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
17925 	for (frame = 0; frame <= vstate->curframe; frame++) {
17926 		parent = vparent->frame[frame];
17927 		state = vstate->frame[frame];
17928 		parent_reg = parent->regs;
17929 		state_reg = state->regs;
17930 		/* We don't need to worry about FP liveness, it's read-only */
17931 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
17932 			err = propagate_liveness_reg(env, &state_reg[i],
17933 						     &parent_reg[i]);
17934 			if (err < 0)
17935 				return err;
17936 			if (err == REG_LIVE_READ64)
17937 				mark_insn_zext(env, &parent_reg[i]);
17938 		}
17939 
17940 		/* Propagate stack slots. */
17941 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
17942 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
17943 			parent_reg = &parent->stack[i].spilled_ptr;
17944 			state_reg = &state->stack[i].spilled_ptr;
17945 			err = propagate_liveness_reg(env, state_reg,
17946 						     parent_reg);
17947 			if (err < 0)
17948 				return err;
17949 		}
17950 	}
17951 	return 0;
17952 }
17953 
17954 /* find precise scalars in the previous equivalent state and
17955  * propagate them into the current state
17956  */
17957 static int propagate_precision(struct bpf_verifier_env *env,
17958 			       const struct bpf_verifier_state *old)
17959 {
17960 	struct bpf_reg_state *state_reg;
17961 	struct bpf_func_state *state;
17962 	int i, err = 0, fr;
17963 	bool first;
17964 
17965 	for (fr = old->curframe; fr >= 0; fr--) {
17966 		state = old->frame[fr];
17967 		state_reg = state->regs;
17968 		first = true;
17969 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
17970 			if (state_reg->type != SCALAR_VALUE ||
17971 			    !state_reg->precise ||
17972 			    !(state_reg->live & REG_LIVE_READ))
17973 				continue;
17974 			if (env->log.level & BPF_LOG_LEVEL2) {
17975 				if (first)
17976 					verbose(env, "frame %d: propagating r%d", fr, i);
17977 				else
17978 					verbose(env, ",r%d", i);
17979 			}
17980 			bt_set_frame_reg(&env->bt, fr, i);
17981 			first = false;
17982 		}
17983 
17984 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
17985 			if (!is_spilled_reg(&state->stack[i]))
17986 				continue;
17987 			state_reg = &state->stack[i].spilled_ptr;
17988 			if (state_reg->type != SCALAR_VALUE ||
17989 			    !state_reg->precise ||
17990 			    !(state_reg->live & REG_LIVE_READ))
17991 				continue;
17992 			if (env->log.level & BPF_LOG_LEVEL2) {
17993 				if (first)
17994 					verbose(env, "frame %d: propagating fp%d",
17995 						fr, (-i - 1) * BPF_REG_SIZE);
17996 				else
17997 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
17998 			}
17999 			bt_set_frame_slot(&env->bt, fr, i);
18000 			first = false;
18001 		}
18002 		if (!first)
18003 			verbose(env, "\n");
18004 	}
18005 
18006 	err = mark_chain_precision_batch(env);
18007 	if (err < 0)
18008 		return err;
18009 
18010 	return 0;
18011 }
18012 
18013 static bool states_maybe_looping(struct bpf_verifier_state *old,
18014 				 struct bpf_verifier_state *cur)
18015 {
18016 	struct bpf_func_state *fold, *fcur;
18017 	int i, fr = cur->curframe;
18018 
18019 	if (old->curframe != fr)
18020 		return false;
18021 
18022 	fold = old->frame[fr];
18023 	fcur = cur->frame[fr];
18024 	for (i = 0; i < MAX_BPF_REG; i++)
18025 		if (memcmp(&fold->regs[i], &fcur->regs[i],
18026 			   offsetof(struct bpf_reg_state, parent)))
18027 			return false;
18028 	return true;
18029 }
18030 
18031 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
18032 {
18033 	return env->insn_aux_data[insn_idx].is_iter_next;
18034 }
18035 
18036 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
18037  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
18038  * states to match, which otherwise would look like an infinite loop. So while
18039  * iter_next() calls are taken care of, we still need to be careful and
18040  * prevent erroneous and too eager declaration of "ininite loop", when
18041  * iterators are involved.
18042  *
18043  * Here's a situation in pseudo-BPF assembly form:
18044  *
18045  *   0: again:                          ; set up iter_next() call args
18046  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
18047  *   2:   call bpf_iter_num_next        ; this is iter_next() call
18048  *   3:   if r0 == 0 goto done
18049  *   4:   ... something useful here ...
18050  *   5:   goto again                    ; another iteration
18051  *   6: done:
18052  *   7:   r1 = &it
18053  *   8:   call bpf_iter_num_destroy     ; clean up iter state
18054  *   9:   exit
18055  *
18056  * This is a typical loop. Let's assume that we have a prune point at 1:,
18057  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
18058  * again`, assuming other heuristics don't get in a way).
18059  *
18060  * When we first time come to 1:, let's say we have some state X. We proceed
18061  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
18062  * Now we come back to validate that forked ACTIVE state. We proceed through
18063  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
18064  * are converging. But the problem is that we don't know that yet, as this
18065  * convergence has to happen at iter_next() call site only. So if nothing is
18066  * done, at 1: verifier will use bounded loop logic and declare infinite
18067  * looping (and would be *technically* correct, if not for iterator's
18068  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
18069  * don't want that. So what we do in process_iter_next_call() when we go on
18070  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
18071  * a different iteration. So when we suspect an infinite loop, we additionally
18072  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
18073  * pretend we are not looping and wait for next iter_next() call.
18074  *
18075  * This only applies to ACTIVE state. In DRAINED state we don't expect to
18076  * loop, because that would actually mean infinite loop, as DRAINED state is
18077  * "sticky", and so we'll keep returning into the same instruction with the
18078  * same state (at least in one of possible code paths).
18079  *
18080  * This approach allows to keep infinite loop heuristic even in the face of
18081  * active iterator. E.g., C snippet below is and will be detected as
18082  * inifintely looping:
18083  *
18084  *   struct bpf_iter_num it;
18085  *   int *p, x;
18086  *
18087  *   bpf_iter_num_new(&it, 0, 10);
18088  *   while ((p = bpf_iter_num_next(&t))) {
18089  *       x = p;
18090  *       while (x--) {} // <<-- infinite loop here
18091  *   }
18092  *
18093  */
18094 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
18095 {
18096 	struct bpf_reg_state *slot, *cur_slot;
18097 	struct bpf_func_state *state;
18098 	int i, fr;
18099 
18100 	for (fr = old->curframe; fr >= 0; fr--) {
18101 		state = old->frame[fr];
18102 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
18103 			if (state->stack[i].slot_type[0] != STACK_ITER)
18104 				continue;
18105 
18106 			slot = &state->stack[i].spilled_ptr;
18107 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
18108 				continue;
18109 
18110 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
18111 			if (cur_slot->iter.depth != slot->iter.depth)
18112 				return true;
18113 		}
18114 	}
18115 	return false;
18116 }
18117 
18118 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
18119 {
18120 	struct bpf_verifier_state_list *new_sl;
18121 	struct bpf_verifier_state_list *sl, **pprev;
18122 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
18123 	int i, j, n, err, states_cnt = 0;
18124 	bool force_new_state, add_new_state, force_exact;
18125 
18126 	force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
18127 			  /* Avoid accumulating infinitely long jmp history */
18128 			  cur->insn_hist_end - cur->insn_hist_start > 40;
18129 
18130 	/* bpf progs typically have pruning point every 4 instructions
18131 	 * http://vger.kernel.org/bpfconf2019.html#session-1
18132 	 * Do not add new state for future pruning if the verifier hasn't seen
18133 	 * at least 2 jumps and at least 8 instructions.
18134 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
18135 	 * In tests that amounts to up to 50% reduction into total verifier
18136 	 * memory consumption and 20% verifier time speedup.
18137 	 */
18138 	add_new_state = force_new_state;
18139 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
18140 	    env->insn_processed - env->prev_insn_processed >= 8)
18141 		add_new_state = true;
18142 
18143 	pprev = explored_state(env, insn_idx);
18144 	sl = *pprev;
18145 
18146 	clean_live_states(env, insn_idx, cur);
18147 
18148 	while (sl) {
18149 		states_cnt++;
18150 		if (sl->state.insn_idx != insn_idx)
18151 			goto next;
18152 
18153 		if (sl->state.branches) {
18154 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
18155 
18156 			if (frame->in_async_callback_fn &&
18157 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
18158 				/* Different async_entry_cnt means that the verifier is
18159 				 * processing another entry into async callback.
18160 				 * Seeing the same state is not an indication of infinite
18161 				 * loop or infinite recursion.
18162 				 * But finding the same state doesn't mean that it's safe
18163 				 * to stop processing the current state. The previous state
18164 				 * hasn't yet reached bpf_exit, since state.branches > 0.
18165 				 * Checking in_async_callback_fn alone is not enough either.
18166 				 * Since the verifier still needs to catch infinite loops
18167 				 * inside async callbacks.
18168 				 */
18169 				goto skip_inf_loop_check;
18170 			}
18171 			/* BPF open-coded iterators loop detection is special.
18172 			 * states_maybe_looping() logic is too simplistic in detecting
18173 			 * states that *might* be equivalent, because it doesn't know
18174 			 * about ID remapping, so don't even perform it.
18175 			 * See process_iter_next_call() and iter_active_depths_differ()
18176 			 * for overview of the logic. When current and one of parent
18177 			 * states are detected as equivalent, it's a good thing: we prove
18178 			 * convergence and can stop simulating further iterations.
18179 			 * It's safe to assume that iterator loop will finish, taking into
18180 			 * account iter_next() contract of eventually returning
18181 			 * sticky NULL result.
18182 			 *
18183 			 * Note, that states have to be compared exactly in this case because
18184 			 * read and precision marks might not be finalized inside the loop.
18185 			 * E.g. as in the program below:
18186 			 *
18187 			 *     1. r7 = -16
18188 			 *     2. r6 = bpf_get_prandom_u32()
18189 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
18190 			 *     4.   if (r6 != 42) {
18191 			 *     5.     r7 = -32
18192 			 *     6.     r6 = bpf_get_prandom_u32()
18193 			 *     7.     continue
18194 			 *     8.   }
18195 			 *     9.   r0 = r10
18196 			 *    10.   r0 += r7
18197 			 *    11.   r8 = *(u64 *)(r0 + 0)
18198 			 *    12.   r6 = bpf_get_prandom_u32()
18199 			 *    13. }
18200 			 *
18201 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
18202 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
18203 			 * not have read or precision mark for r7 yet, thus inexact states
18204 			 * comparison would discard current state with r7=-32
18205 			 * => unsafe memory access at 11 would not be caught.
18206 			 */
18207 			if (is_iter_next_insn(env, insn_idx)) {
18208 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
18209 					struct bpf_func_state *cur_frame;
18210 					struct bpf_reg_state *iter_state, *iter_reg;
18211 					int spi;
18212 
18213 					cur_frame = cur->frame[cur->curframe];
18214 					/* btf_check_iter_kfuncs() enforces that
18215 					 * iter state pointer is always the first arg
18216 					 */
18217 					iter_reg = &cur_frame->regs[BPF_REG_1];
18218 					/* current state is valid due to states_equal(),
18219 					 * so we can assume valid iter and reg state,
18220 					 * no need for extra (re-)validations
18221 					 */
18222 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
18223 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
18224 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
18225 						update_loop_entry(cur, &sl->state);
18226 						goto hit;
18227 					}
18228 				}
18229 				goto skip_inf_loop_check;
18230 			}
18231 			if (is_may_goto_insn_at(env, insn_idx)) {
18232 				if (sl->state.may_goto_depth != cur->may_goto_depth &&
18233 				    states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
18234 					update_loop_entry(cur, &sl->state);
18235 					goto hit;
18236 				}
18237 			}
18238 			if (calls_callback(env, insn_idx)) {
18239 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN))
18240 					goto hit;
18241 				goto skip_inf_loop_check;
18242 			}
18243 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
18244 			if (states_maybe_looping(&sl->state, cur) &&
18245 			    states_equal(env, &sl->state, cur, EXACT) &&
18246 			    !iter_active_depths_differ(&sl->state, cur) &&
18247 			    sl->state.may_goto_depth == cur->may_goto_depth &&
18248 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
18249 				verbose_linfo(env, insn_idx, "; ");
18250 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
18251 				verbose(env, "cur state:");
18252 				print_verifier_state(env, cur->frame[cur->curframe], true);
18253 				verbose(env, "old state:");
18254 				print_verifier_state(env, sl->state.frame[cur->curframe], true);
18255 				return -EINVAL;
18256 			}
18257 			/* if the verifier is processing a loop, avoid adding new state
18258 			 * too often, since different loop iterations have distinct
18259 			 * states and may not help future pruning.
18260 			 * This threshold shouldn't be too low to make sure that
18261 			 * a loop with large bound will be rejected quickly.
18262 			 * The most abusive loop will be:
18263 			 * r1 += 1
18264 			 * if r1 < 1000000 goto pc-2
18265 			 * 1M insn_procssed limit / 100 == 10k peak states.
18266 			 * This threshold shouldn't be too high either, since states
18267 			 * at the end of the loop are likely to be useful in pruning.
18268 			 */
18269 skip_inf_loop_check:
18270 			if (!force_new_state &&
18271 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
18272 			    env->insn_processed - env->prev_insn_processed < 100)
18273 				add_new_state = false;
18274 			goto miss;
18275 		}
18276 		/* If sl->state is a part of a loop and this loop's entry is a part of
18277 		 * current verification path then states have to be compared exactly.
18278 		 * 'force_exact' is needed to catch the following case:
18279 		 *
18280 		 *                initial     Here state 'succ' was processed first,
18281 		 *                  |         it was eventually tracked to produce a
18282 		 *                  V         state identical to 'hdr'.
18283 		 *     .---------> hdr        All branches from 'succ' had been explored
18284 		 *     |            |         and thus 'succ' has its .branches == 0.
18285 		 *     |            V
18286 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
18287 		 *     |    |       |         to the same instruction + callsites.
18288 		 *     |    V       V         In such case it is necessary to check
18289 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
18290 		 *     |    |       |         If 'succ' and 'cur' are a part of the
18291 		 *     |    V       V         same loop exact flag has to be set.
18292 		 *     |   succ <- cur        To check if that is the case, verify
18293 		 *     |    |                 if loop entry of 'succ' is in current
18294 		 *     |    V                 DFS path.
18295 		 *     |   ...
18296 		 *     |    |
18297 		 *     '----'
18298 		 *
18299 		 * Additional details are in the comment before get_loop_entry().
18300 		 */
18301 		loop_entry = get_loop_entry(&sl->state);
18302 		force_exact = loop_entry && loop_entry->branches > 0;
18303 		if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) {
18304 			if (force_exact)
18305 				update_loop_entry(cur, loop_entry);
18306 hit:
18307 			sl->hit_cnt++;
18308 			/* reached equivalent register/stack state,
18309 			 * prune the search.
18310 			 * Registers read by the continuation are read by us.
18311 			 * If we have any write marks in env->cur_state, they
18312 			 * will prevent corresponding reads in the continuation
18313 			 * from reaching our parent (an explored_state).  Our
18314 			 * own state will get the read marks recorded, but
18315 			 * they'll be immediately forgotten as we're pruning
18316 			 * this state and will pop a new one.
18317 			 */
18318 			err = propagate_liveness(env, &sl->state, cur);
18319 
18320 			/* if previous state reached the exit with precision and
18321 			 * current state is equivalent to it (except precision marks)
18322 			 * the precision needs to be propagated back in
18323 			 * the current state.
18324 			 */
18325 			if (is_jmp_point(env, env->insn_idx))
18326 				err = err ? : push_insn_history(env, cur, 0, 0);
18327 			err = err ? : propagate_precision(env, &sl->state);
18328 			if (err)
18329 				return err;
18330 			return 1;
18331 		}
18332 miss:
18333 		/* when new state is not going to be added do not increase miss count.
18334 		 * Otherwise several loop iterations will remove the state
18335 		 * recorded earlier. The goal of these heuristics is to have
18336 		 * states from some iterations of the loop (some in the beginning
18337 		 * and some at the end) to help pruning.
18338 		 */
18339 		if (add_new_state)
18340 			sl->miss_cnt++;
18341 		/* heuristic to determine whether this state is beneficial
18342 		 * to keep checking from state equivalence point of view.
18343 		 * Higher numbers increase max_states_per_insn and verification time,
18344 		 * but do not meaningfully decrease insn_processed.
18345 		 * 'n' controls how many times state could miss before eviction.
18346 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
18347 		 * too early would hinder iterator convergence.
18348 		 */
18349 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
18350 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
18351 			/* the state is unlikely to be useful. Remove it to
18352 			 * speed up verification
18353 			 */
18354 			*pprev = sl->next;
18355 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
18356 			    !sl->state.used_as_loop_entry) {
18357 				u32 br = sl->state.branches;
18358 
18359 				WARN_ONCE(br,
18360 					  "BUG live_done but branches_to_explore %d\n",
18361 					  br);
18362 				free_verifier_state(&sl->state, false);
18363 				kfree(sl);
18364 				env->peak_states--;
18365 			} else {
18366 				/* cannot free this state, since parentage chain may
18367 				 * walk it later. Add it for free_list instead to
18368 				 * be freed at the end of verification
18369 				 */
18370 				sl->next = env->free_list;
18371 				env->free_list = sl;
18372 			}
18373 			sl = *pprev;
18374 			continue;
18375 		}
18376 next:
18377 		pprev = &sl->next;
18378 		sl = *pprev;
18379 	}
18380 
18381 	if (env->max_states_per_insn < states_cnt)
18382 		env->max_states_per_insn = states_cnt;
18383 
18384 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
18385 		return 0;
18386 
18387 	if (!add_new_state)
18388 		return 0;
18389 
18390 	/* There were no equivalent states, remember the current one.
18391 	 * Technically the current state is not proven to be safe yet,
18392 	 * but it will either reach outer most bpf_exit (which means it's safe)
18393 	 * or it will be rejected. When there are no loops the verifier won't be
18394 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
18395 	 * again on the way to bpf_exit.
18396 	 * When looping the sl->state.branches will be > 0 and this state
18397 	 * will not be considered for equivalence until branches == 0.
18398 	 */
18399 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
18400 	if (!new_sl)
18401 		return -ENOMEM;
18402 	env->total_states++;
18403 	env->peak_states++;
18404 	env->prev_jmps_processed = env->jmps_processed;
18405 	env->prev_insn_processed = env->insn_processed;
18406 
18407 	/* forget precise markings we inherited, see __mark_chain_precision */
18408 	if (env->bpf_capable)
18409 		mark_all_scalars_imprecise(env, cur);
18410 
18411 	/* add new state to the head of linked list */
18412 	new = &new_sl->state;
18413 	err = copy_verifier_state(new, cur);
18414 	if (err) {
18415 		free_verifier_state(new, false);
18416 		kfree(new_sl);
18417 		return err;
18418 	}
18419 	new->insn_idx = insn_idx;
18420 	WARN_ONCE(new->branches != 1,
18421 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
18422 
18423 	cur->parent = new;
18424 	cur->first_insn_idx = insn_idx;
18425 	cur->insn_hist_start = cur->insn_hist_end;
18426 	cur->dfs_depth = new->dfs_depth + 1;
18427 	new_sl->next = *explored_state(env, insn_idx);
18428 	*explored_state(env, insn_idx) = new_sl;
18429 	/* connect new state to parentage chain. Current frame needs all
18430 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
18431 	 * to the stack implicitly by JITs) so in callers' frames connect just
18432 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
18433 	 * the state of the call instruction (with WRITTEN set), and r0 comes
18434 	 * from callee with its full parentage chain, anyway.
18435 	 */
18436 	/* clear write marks in current state: the writes we did are not writes
18437 	 * our child did, so they don't screen off its reads from us.
18438 	 * (There are no read marks in current state, because reads always mark
18439 	 * their parent and current state never has children yet.  Only
18440 	 * explored_states can get read marks.)
18441 	 */
18442 	for (j = 0; j <= cur->curframe; j++) {
18443 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
18444 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
18445 		for (i = 0; i < BPF_REG_FP; i++)
18446 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
18447 	}
18448 
18449 	/* all stack frames are accessible from callee, clear them all */
18450 	for (j = 0; j <= cur->curframe; j++) {
18451 		struct bpf_func_state *frame = cur->frame[j];
18452 		struct bpf_func_state *newframe = new->frame[j];
18453 
18454 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
18455 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
18456 			frame->stack[i].spilled_ptr.parent =
18457 						&newframe->stack[i].spilled_ptr;
18458 		}
18459 	}
18460 	return 0;
18461 }
18462 
18463 /* Return true if it's OK to have the same insn return a different type. */
18464 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
18465 {
18466 	switch (base_type(type)) {
18467 	case PTR_TO_CTX:
18468 	case PTR_TO_SOCKET:
18469 	case PTR_TO_SOCK_COMMON:
18470 	case PTR_TO_TCP_SOCK:
18471 	case PTR_TO_XDP_SOCK:
18472 	case PTR_TO_BTF_ID:
18473 	case PTR_TO_ARENA:
18474 		return false;
18475 	default:
18476 		return true;
18477 	}
18478 }
18479 
18480 /* If an instruction was previously used with particular pointer types, then we
18481  * need to be careful to avoid cases such as the below, where it may be ok
18482  * for one branch accessing the pointer, but not ok for the other branch:
18483  *
18484  * R1 = sock_ptr
18485  * goto X;
18486  * ...
18487  * R1 = some_other_valid_ptr;
18488  * goto X;
18489  * ...
18490  * R2 = *(u32 *)(R1 + 0);
18491  */
18492 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
18493 {
18494 	return src != prev && (!reg_type_mismatch_ok(src) ||
18495 			       !reg_type_mismatch_ok(prev));
18496 }
18497 
18498 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
18499 			     bool allow_trust_mismatch)
18500 {
18501 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
18502 
18503 	if (*prev_type == NOT_INIT) {
18504 		/* Saw a valid insn
18505 		 * dst_reg = *(u32 *)(src_reg + off)
18506 		 * save type to validate intersecting paths
18507 		 */
18508 		*prev_type = type;
18509 	} else if (reg_type_mismatch(type, *prev_type)) {
18510 		/* Abuser program is trying to use the same insn
18511 		 * dst_reg = *(u32*) (src_reg + off)
18512 		 * with different pointer types:
18513 		 * src_reg == ctx in one branch and
18514 		 * src_reg == stack|map in some other branch.
18515 		 * Reject it.
18516 		 */
18517 		if (allow_trust_mismatch &&
18518 		    base_type(type) == PTR_TO_BTF_ID &&
18519 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
18520 			/*
18521 			 * Have to support a use case when one path through
18522 			 * the program yields TRUSTED pointer while another
18523 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
18524 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
18525 			 */
18526 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
18527 		} else {
18528 			verbose(env, "same insn cannot be used with different pointers\n");
18529 			return -EINVAL;
18530 		}
18531 	}
18532 
18533 	return 0;
18534 }
18535 
18536 static int do_check(struct bpf_verifier_env *env)
18537 {
18538 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
18539 	struct bpf_verifier_state *state = env->cur_state;
18540 	struct bpf_insn *insns = env->prog->insnsi;
18541 	struct bpf_reg_state *regs;
18542 	int insn_cnt = env->prog->len;
18543 	bool do_print_state = false;
18544 	int prev_insn_idx = -1;
18545 
18546 	for (;;) {
18547 		bool exception_exit = false;
18548 		struct bpf_insn *insn;
18549 		u8 class;
18550 		int err;
18551 
18552 		/* reset current history entry on each new instruction */
18553 		env->cur_hist_ent = NULL;
18554 
18555 		env->prev_insn_idx = prev_insn_idx;
18556 		if (env->insn_idx >= insn_cnt) {
18557 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
18558 				env->insn_idx, insn_cnt);
18559 			return -EFAULT;
18560 		}
18561 
18562 		insn = &insns[env->insn_idx];
18563 		class = BPF_CLASS(insn->code);
18564 
18565 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
18566 			verbose(env,
18567 				"BPF program is too large. Processed %d insn\n",
18568 				env->insn_processed);
18569 			return -E2BIG;
18570 		}
18571 
18572 		state->last_insn_idx = env->prev_insn_idx;
18573 
18574 		if (is_prune_point(env, env->insn_idx)) {
18575 			err = is_state_visited(env, env->insn_idx);
18576 			if (err < 0)
18577 				return err;
18578 			if (err == 1) {
18579 				/* found equivalent state, can prune the search */
18580 				if (env->log.level & BPF_LOG_LEVEL) {
18581 					if (do_print_state)
18582 						verbose(env, "\nfrom %d to %d%s: safe\n",
18583 							env->prev_insn_idx, env->insn_idx,
18584 							env->cur_state->speculative ?
18585 							" (speculative execution)" : "");
18586 					else
18587 						verbose(env, "%d: safe\n", env->insn_idx);
18588 				}
18589 				goto process_bpf_exit;
18590 			}
18591 		}
18592 
18593 		if (is_jmp_point(env, env->insn_idx)) {
18594 			err = push_insn_history(env, state, 0, 0);
18595 			if (err)
18596 				return err;
18597 		}
18598 
18599 		if (signal_pending(current))
18600 			return -EAGAIN;
18601 
18602 		if (need_resched())
18603 			cond_resched();
18604 
18605 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
18606 			verbose(env, "\nfrom %d to %d%s:",
18607 				env->prev_insn_idx, env->insn_idx,
18608 				env->cur_state->speculative ?
18609 				" (speculative execution)" : "");
18610 			print_verifier_state(env, state->frame[state->curframe], true);
18611 			do_print_state = false;
18612 		}
18613 
18614 		if (env->log.level & BPF_LOG_LEVEL) {
18615 			const struct bpf_insn_cbs cbs = {
18616 				.cb_call	= disasm_kfunc_name,
18617 				.cb_print	= verbose,
18618 				.private_data	= env,
18619 			};
18620 
18621 			if (verifier_state_scratched(env))
18622 				print_insn_state(env, state->frame[state->curframe]);
18623 
18624 			verbose_linfo(env, env->insn_idx, "; ");
18625 			env->prev_log_pos = env->log.end_pos;
18626 			verbose(env, "%d: ", env->insn_idx);
18627 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
18628 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
18629 			env->prev_log_pos = env->log.end_pos;
18630 		}
18631 
18632 		if (bpf_prog_is_offloaded(env->prog->aux)) {
18633 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
18634 							   env->prev_insn_idx);
18635 			if (err)
18636 				return err;
18637 		}
18638 
18639 		regs = cur_regs(env);
18640 		sanitize_mark_insn_seen(env);
18641 		prev_insn_idx = env->insn_idx;
18642 
18643 		if (class == BPF_ALU || class == BPF_ALU64) {
18644 			err = check_alu_op(env, insn);
18645 			if (err)
18646 				return err;
18647 
18648 		} else if (class == BPF_LDX) {
18649 			enum bpf_reg_type src_reg_type;
18650 
18651 			/* check for reserved fields is already done */
18652 
18653 			/* check src operand */
18654 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
18655 			if (err)
18656 				return err;
18657 
18658 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
18659 			if (err)
18660 				return err;
18661 
18662 			src_reg_type = regs[insn->src_reg].type;
18663 
18664 			/* check that memory (src_reg + off) is readable,
18665 			 * the state of dst_reg will be updated by this func
18666 			 */
18667 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
18668 					       insn->off, BPF_SIZE(insn->code),
18669 					       BPF_READ, insn->dst_reg, false,
18670 					       BPF_MODE(insn->code) == BPF_MEMSX);
18671 			err = err ?: save_aux_ptr_type(env, src_reg_type, true);
18672 			err = err ?: reg_bounds_sanity_check(env, &regs[insn->dst_reg], "ldx");
18673 			if (err)
18674 				return err;
18675 		} else if (class == BPF_STX) {
18676 			enum bpf_reg_type dst_reg_type;
18677 
18678 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
18679 				err = check_atomic(env, env->insn_idx, insn);
18680 				if (err)
18681 					return err;
18682 				env->insn_idx++;
18683 				continue;
18684 			}
18685 
18686 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
18687 				verbose(env, "BPF_STX uses reserved fields\n");
18688 				return -EINVAL;
18689 			}
18690 
18691 			/* check src1 operand */
18692 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
18693 			if (err)
18694 				return err;
18695 			/* check src2 operand */
18696 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
18697 			if (err)
18698 				return err;
18699 
18700 			dst_reg_type = regs[insn->dst_reg].type;
18701 
18702 			/* check that memory (dst_reg + off) is writeable */
18703 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
18704 					       insn->off, BPF_SIZE(insn->code),
18705 					       BPF_WRITE, insn->src_reg, false, false);
18706 			if (err)
18707 				return err;
18708 
18709 			err = save_aux_ptr_type(env, dst_reg_type, false);
18710 			if (err)
18711 				return err;
18712 		} else if (class == BPF_ST) {
18713 			enum bpf_reg_type dst_reg_type;
18714 
18715 			if (BPF_MODE(insn->code) != BPF_MEM ||
18716 			    insn->src_reg != BPF_REG_0) {
18717 				verbose(env, "BPF_ST uses reserved fields\n");
18718 				return -EINVAL;
18719 			}
18720 			/* check src operand */
18721 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
18722 			if (err)
18723 				return err;
18724 
18725 			dst_reg_type = regs[insn->dst_reg].type;
18726 
18727 			/* check that memory (dst_reg + off) is writeable */
18728 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
18729 					       insn->off, BPF_SIZE(insn->code),
18730 					       BPF_WRITE, -1, false, false);
18731 			if (err)
18732 				return err;
18733 
18734 			err = save_aux_ptr_type(env, dst_reg_type, false);
18735 			if (err)
18736 				return err;
18737 		} else if (class == BPF_JMP || class == BPF_JMP32) {
18738 			u8 opcode = BPF_OP(insn->code);
18739 
18740 			env->jmps_processed++;
18741 			if (opcode == BPF_CALL) {
18742 				if (BPF_SRC(insn->code) != BPF_K ||
18743 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
18744 				     && insn->off != 0) ||
18745 				    (insn->src_reg != BPF_REG_0 &&
18746 				     insn->src_reg != BPF_PSEUDO_CALL &&
18747 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
18748 				    insn->dst_reg != BPF_REG_0 ||
18749 				    class == BPF_JMP32) {
18750 					verbose(env, "BPF_CALL uses reserved fields\n");
18751 					return -EINVAL;
18752 				}
18753 
18754 				if (cur_func(env)->active_locks) {
18755 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
18756 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
18757 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
18758 						verbose(env, "function calls are not allowed while holding a lock\n");
18759 						return -EINVAL;
18760 					}
18761 				}
18762 				if (insn->src_reg == BPF_PSEUDO_CALL) {
18763 					err = check_func_call(env, insn, &env->insn_idx);
18764 				} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18765 					err = check_kfunc_call(env, insn, &env->insn_idx);
18766 					if (!err && is_bpf_throw_kfunc(insn)) {
18767 						exception_exit = true;
18768 						goto process_bpf_exit_full;
18769 					}
18770 				} else {
18771 					err = check_helper_call(env, insn, &env->insn_idx);
18772 				}
18773 				if (err)
18774 					return err;
18775 
18776 				mark_reg_scratched(env, BPF_REG_0);
18777 			} else if (opcode == BPF_JA) {
18778 				if (BPF_SRC(insn->code) != BPF_K ||
18779 				    insn->src_reg != BPF_REG_0 ||
18780 				    insn->dst_reg != BPF_REG_0 ||
18781 				    (class == BPF_JMP && insn->imm != 0) ||
18782 				    (class == BPF_JMP32 && insn->off != 0)) {
18783 					verbose(env, "BPF_JA uses reserved fields\n");
18784 					return -EINVAL;
18785 				}
18786 
18787 				if (class == BPF_JMP)
18788 					env->insn_idx += insn->off + 1;
18789 				else
18790 					env->insn_idx += insn->imm + 1;
18791 				continue;
18792 
18793 			} else if (opcode == BPF_EXIT) {
18794 				if (BPF_SRC(insn->code) != BPF_K ||
18795 				    insn->imm != 0 ||
18796 				    insn->src_reg != BPF_REG_0 ||
18797 				    insn->dst_reg != BPF_REG_0 ||
18798 				    class == BPF_JMP32) {
18799 					verbose(env, "BPF_EXIT uses reserved fields\n");
18800 					return -EINVAL;
18801 				}
18802 process_bpf_exit_full:
18803 				/* We must do check_reference_leak here before
18804 				 * prepare_func_exit to handle the case when
18805 				 * state->curframe > 0, it may be a callback
18806 				 * function, for which reference_state must
18807 				 * match caller reference state when it exits.
18808 				 */
18809 				err = check_resource_leak(env, exception_exit, !env->cur_state->curframe,
18810 							  "BPF_EXIT instruction");
18811 				if (err)
18812 					return err;
18813 
18814 				/* The side effect of the prepare_func_exit
18815 				 * which is being skipped is that it frees
18816 				 * bpf_func_state. Typically, process_bpf_exit
18817 				 * will only be hit with outermost exit.
18818 				 * copy_verifier_state in pop_stack will handle
18819 				 * freeing of any extra bpf_func_state left over
18820 				 * from not processing all nested function
18821 				 * exits. We also skip return code checks as
18822 				 * they are not needed for exceptional exits.
18823 				 */
18824 				if (exception_exit)
18825 					goto process_bpf_exit;
18826 
18827 				if (state->curframe) {
18828 					/* exit from nested function */
18829 					err = prepare_func_exit(env, &env->insn_idx);
18830 					if (err)
18831 						return err;
18832 					do_print_state = true;
18833 					continue;
18834 				}
18835 
18836 				err = check_return_code(env, BPF_REG_0, "R0");
18837 				if (err)
18838 					return err;
18839 process_bpf_exit:
18840 				mark_verifier_state_scratched(env);
18841 				update_branch_counts(env, env->cur_state);
18842 				err = pop_stack(env, &prev_insn_idx,
18843 						&env->insn_idx, pop_log);
18844 				if (err < 0) {
18845 					if (err != -ENOENT)
18846 						return err;
18847 					break;
18848 				} else {
18849 					do_print_state = true;
18850 					continue;
18851 				}
18852 			} else {
18853 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
18854 				if (err)
18855 					return err;
18856 			}
18857 		} else if (class == BPF_LD) {
18858 			u8 mode = BPF_MODE(insn->code);
18859 
18860 			if (mode == BPF_ABS || mode == BPF_IND) {
18861 				err = check_ld_abs(env, insn);
18862 				if (err)
18863 					return err;
18864 
18865 			} else if (mode == BPF_IMM) {
18866 				err = check_ld_imm(env, insn);
18867 				if (err)
18868 					return err;
18869 
18870 				env->insn_idx++;
18871 				sanitize_mark_insn_seen(env);
18872 			} else {
18873 				verbose(env, "invalid BPF_LD mode\n");
18874 				return -EINVAL;
18875 			}
18876 		} else {
18877 			verbose(env, "unknown insn class %d\n", class);
18878 			return -EINVAL;
18879 		}
18880 
18881 		env->insn_idx++;
18882 	}
18883 
18884 	return 0;
18885 }
18886 
18887 static int find_btf_percpu_datasec(struct btf *btf)
18888 {
18889 	const struct btf_type *t;
18890 	const char *tname;
18891 	int i, n;
18892 
18893 	/*
18894 	 * Both vmlinux and module each have their own ".data..percpu"
18895 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
18896 	 * types to look at only module's own BTF types.
18897 	 */
18898 	n = btf_nr_types(btf);
18899 	if (btf_is_module(btf))
18900 		i = btf_nr_types(btf_vmlinux);
18901 	else
18902 		i = 1;
18903 
18904 	for(; i < n; i++) {
18905 		t = btf_type_by_id(btf, i);
18906 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
18907 			continue;
18908 
18909 		tname = btf_name_by_offset(btf, t->name_off);
18910 		if (!strcmp(tname, ".data..percpu"))
18911 			return i;
18912 	}
18913 
18914 	return -ENOENT;
18915 }
18916 
18917 /* replace pseudo btf_id with kernel symbol address */
18918 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
18919 			       struct bpf_insn *insn,
18920 			       struct bpf_insn_aux_data *aux)
18921 {
18922 	const struct btf_var_secinfo *vsi;
18923 	const struct btf_type *datasec;
18924 	struct btf_mod_pair *btf_mod;
18925 	const struct btf_type *t;
18926 	const char *sym_name;
18927 	bool percpu = false;
18928 	u32 type, id = insn->imm;
18929 	struct btf *btf;
18930 	s32 datasec_id;
18931 	u64 addr;
18932 	int i, btf_fd, err;
18933 
18934 	btf_fd = insn[1].imm;
18935 	if (btf_fd) {
18936 		btf = btf_get_by_fd(btf_fd);
18937 		if (IS_ERR(btf)) {
18938 			verbose(env, "invalid module BTF object FD specified.\n");
18939 			return -EINVAL;
18940 		}
18941 	} else {
18942 		if (!btf_vmlinux) {
18943 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
18944 			return -EINVAL;
18945 		}
18946 		btf = btf_vmlinux;
18947 		btf_get(btf);
18948 	}
18949 
18950 	t = btf_type_by_id(btf, id);
18951 	if (!t) {
18952 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
18953 		err = -ENOENT;
18954 		goto err_put;
18955 	}
18956 
18957 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
18958 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
18959 		err = -EINVAL;
18960 		goto err_put;
18961 	}
18962 
18963 	sym_name = btf_name_by_offset(btf, t->name_off);
18964 	addr = kallsyms_lookup_name(sym_name);
18965 	if (!addr) {
18966 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
18967 			sym_name);
18968 		err = -ENOENT;
18969 		goto err_put;
18970 	}
18971 	insn[0].imm = (u32)addr;
18972 	insn[1].imm = addr >> 32;
18973 
18974 	if (btf_type_is_func(t)) {
18975 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
18976 		aux->btf_var.mem_size = 0;
18977 		goto check_btf;
18978 	}
18979 
18980 	datasec_id = find_btf_percpu_datasec(btf);
18981 	if (datasec_id > 0) {
18982 		datasec = btf_type_by_id(btf, datasec_id);
18983 		for_each_vsi(i, datasec, vsi) {
18984 			if (vsi->type == id) {
18985 				percpu = true;
18986 				break;
18987 			}
18988 		}
18989 	}
18990 
18991 	type = t->type;
18992 	t = btf_type_skip_modifiers(btf, type, NULL);
18993 	if (percpu) {
18994 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
18995 		aux->btf_var.btf = btf;
18996 		aux->btf_var.btf_id = type;
18997 	} else if (!btf_type_is_struct(t)) {
18998 		const struct btf_type *ret;
18999 		const char *tname;
19000 		u32 tsize;
19001 
19002 		/* resolve the type size of ksym. */
19003 		ret = btf_resolve_size(btf, t, &tsize);
19004 		if (IS_ERR(ret)) {
19005 			tname = btf_name_by_offset(btf, t->name_off);
19006 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
19007 				tname, PTR_ERR(ret));
19008 			err = -EINVAL;
19009 			goto err_put;
19010 		}
19011 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
19012 		aux->btf_var.mem_size = tsize;
19013 	} else {
19014 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
19015 		aux->btf_var.btf = btf;
19016 		aux->btf_var.btf_id = type;
19017 	}
19018 check_btf:
19019 	/* check whether we recorded this BTF (and maybe module) already */
19020 	for (i = 0; i < env->used_btf_cnt; i++) {
19021 		if (env->used_btfs[i].btf == btf) {
19022 			btf_put(btf);
19023 			return 0;
19024 		}
19025 	}
19026 
19027 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
19028 		err = -E2BIG;
19029 		goto err_put;
19030 	}
19031 
19032 	btf_mod = &env->used_btfs[env->used_btf_cnt];
19033 	btf_mod->btf = btf;
19034 	btf_mod->module = NULL;
19035 
19036 	/* if we reference variables from kernel module, bump its refcount */
19037 	if (btf_is_module(btf)) {
19038 		btf_mod->module = btf_try_get_module(btf);
19039 		if (!btf_mod->module) {
19040 			err = -ENXIO;
19041 			goto err_put;
19042 		}
19043 	}
19044 
19045 	env->used_btf_cnt++;
19046 
19047 	return 0;
19048 err_put:
19049 	btf_put(btf);
19050 	return err;
19051 }
19052 
19053 static bool is_tracing_prog_type(enum bpf_prog_type type)
19054 {
19055 	switch (type) {
19056 	case BPF_PROG_TYPE_KPROBE:
19057 	case BPF_PROG_TYPE_TRACEPOINT:
19058 	case BPF_PROG_TYPE_PERF_EVENT:
19059 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
19060 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
19061 		return true;
19062 	default:
19063 		return false;
19064 	}
19065 }
19066 
19067 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
19068 					struct bpf_map *map,
19069 					struct bpf_prog *prog)
19070 
19071 {
19072 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
19073 
19074 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
19075 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
19076 		if (is_tracing_prog_type(prog_type)) {
19077 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
19078 			return -EINVAL;
19079 		}
19080 	}
19081 
19082 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
19083 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
19084 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
19085 			return -EINVAL;
19086 		}
19087 
19088 		if (is_tracing_prog_type(prog_type)) {
19089 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
19090 			return -EINVAL;
19091 		}
19092 	}
19093 
19094 	if (btf_record_has_field(map->record, BPF_TIMER)) {
19095 		if (is_tracing_prog_type(prog_type)) {
19096 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
19097 			return -EINVAL;
19098 		}
19099 	}
19100 
19101 	if (btf_record_has_field(map->record, BPF_WORKQUEUE)) {
19102 		if (is_tracing_prog_type(prog_type)) {
19103 			verbose(env, "tracing progs cannot use bpf_wq yet\n");
19104 			return -EINVAL;
19105 		}
19106 	}
19107 
19108 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
19109 	    !bpf_offload_prog_map_match(prog, map)) {
19110 		verbose(env, "offload device mismatch between prog and map\n");
19111 		return -EINVAL;
19112 	}
19113 
19114 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
19115 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
19116 		return -EINVAL;
19117 	}
19118 
19119 	if (prog->sleepable)
19120 		switch (map->map_type) {
19121 		case BPF_MAP_TYPE_HASH:
19122 		case BPF_MAP_TYPE_LRU_HASH:
19123 		case BPF_MAP_TYPE_ARRAY:
19124 		case BPF_MAP_TYPE_PERCPU_HASH:
19125 		case BPF_MAP_TYPE_PERCPU_ARRAY:
19126 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
19127 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
19128 		case BPF_MAP_TYPE_HASH_OF_MAPS:
19129 		case BPF_MAP_TYPE_RINGBUF:
19130 		case BPF_MAP_TYPE_USER_RINGBUF:
19131 		case BPF_MAP_TYPE_INODE_STORAGE:
19132 		case BPF_MAP_TYPE_SK_STORAGE:
19133 		case BPF_MAP_TYPE_TASK_STORAGE:
19134 		case BPF_MAP_TYPE_CGRP_STORAGE:
19135 		case BPF_MAP_TYPE_QUEUE:
19136 		case BPF_MAP_TYPE_STACK:
19137 		case BPF_MAP_TYPE_ARENA:
19138 			break;
19139 		default:
19140 			verbose(env,
19141 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
19142 			return -EINVAL;
19143 		}
19144 
19145 	return 0;
19146 }
19147 
19148 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
19149 {
19150 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
19151 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
19152 }
19153 
19154 /* Add map behind fd to used maps list, if it's not already there, and return
19155  * its index. Also set *reused to true if this map was already in the list of
19156  * used maps.
19157  * Returns <0 on error, or >= 0 index, on success.
19158  */
19159 static int add_used_map_from_fd(struct bpf_verifier_env *env, int fd, bool *reused)
19160 {
19161 	CLASS(fd, f)(fd);
19162 	struct bpf_map *map;
19163 	int i;
19164 
19165 	map = __bpf_map_get(f);
19166 	if (IS_ERR(map)) {
19167 		verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
19168 		return PTR_ERR(map);
19169 	}
19170 
19171 	/* check whether we recorded this map already */
19172 	for (i = 0; i < env->used_map_cnt; i++) {
19173 		if (env->used_maps[i] == map) {
19174 			*reused = true;
19175 			return i;
19176 		}
19177 	}
19178 
19179 	if (env->used_map_cnt >= MAX_USED_MAPS) {
19180 		verbose(env, "The total number of maps per program has reached the limit of %u\n",
19181 			MAX_USED_MAPS);
19182 		return -E2BIG;
19183 	}
19184 
19185 	if (env->prog->sleepable)
19186 		atomic64_inc(&map->sleepable_refcnt);
19187 
19188 	/* hold the map. If the program is rejected by verifier,
19189 	 * the map will be released by release_maps() or it
19190 	 * will be used by the valid program until it's unloaded
19191 	 * and all maps are released in bpf_free_used_maps()
19192 	 */
19193 	bpf_map_inc(map);
19194 
19195 	*reused = false;
19196 	env->used_maps[env->used_map_cnt++] = map;
19197 
19198 	return env->used_map_cnt - 1;
19199 }
19200 
19201 /* find and rewrite pseudo imm in ld_imm64 instructions:
19202  *
19203  * 1. if it accesses map FD, replace it with actual map pointer.
19204  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
19205  *
19206  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
19207  */
19208 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
19209 {
19210 	struct bpf_insn *insn = env->prog->insnsi;
19211 	int insn_cnt = env->prog->len;
19212 	int i, err;
19213 
19214 	err = bpf_prog_calc_tag(env->prog);
19215 	if (err)
19216 		return err;
19217 
19218 	for (i = 0; i < insn_cnt; i++, insn++) {
19219 		if (BPF_CLASS(insn->code) == BPF_LDX &&
19220 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
19221 		    insn->imm != 0)) {
19222 			verbose(env, "BPF_LDX uses reserved fields\n");
19223 			return -EINVAL;
19224 		}
19225 
19226 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
19227 			struct bpf_insn_aux_data *aux;
19228 			struct bpf_map *map;
19229 			int map_idx;
19230 			u64 addr;
19231 			u32 fd;
19232 			bool reused;
19233 
19234 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
19235 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
19236 			    insn[1].off != 0) {
19237 				verbose(env, "invalid bpf_ld_imm64 insn\n");
19238 				return -EINVAL;
19239 			}
19240 
19241 			if (insn[0].src_reg == 0)
19242 				/* valid generic load 64-bit imm */
19243 				goto next_insn;
19244 
19245 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
19246 				aux = &env->insn_aux_data[i];
19247 				err = check_pseudo_btf_id(env, insn, aux);
19248 				if (err)
19249 					return err;
19250 				goto next_insn;
19251 			}
19252 
19253 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
19254 				aux = &env->insn_aux_data[i];
19255 				aux->ptr_type = PTR_TO_FUNC;
19256 				goto next_insn;
19257 			}
19258 
19259 			/* In final convert_pseudo_ld_imm64() step, this is
19260 			 * converted into regular 64-bit imm load insn.
19261 			 */
19262 			switch (insn[0].src_reg) {
19263 			case BPF_PSEUDO_MAP_VALUE:
19264 			case BPF_PSEUDO_MAP_IDX_VALUE:
19265 				break;
19266 			case BPF_PSEUDO_MAP_FD:
19267 			case BPF_PSEUDO_MAP_IDX:
19268 				if (insn[1].imm == 0)
19269 					break;
19270 				fallthrough;
19271 			default:
19272 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
19273 				return -EINVAL;
19274 			}
19275 
19276 			switch (insn[0].src_reg) {
19277 			case BPF_PSEUDO_MAP_IDX_VALUE:
19278 			case BPF_PSEUDO_MAP_IDX:
19279 				if (bpfptr_is_null(env->fd_array)) {
19280 					verbose(env, "fd_idx without fd_array is invalid\n");
19281 					return -EPROTO;
19282 				}
19283 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
19284 							    insn[0].imm * sizeof(fd),
19285 							    sizeof(fd)))
19286 					return -EFAULT;
19287 				break;
19288 			default:
19289 				fd = insn[0].imm;
19290 				break;
19291 			}
19292 
19293 			map_idx = add_used_map_from_fd(env, fd, &reused);
19294 			if (map_idx < 0)
19295 				return map_idx;
19296 			map = env->used_maps[map_idx];
19297 
19298 			aux = &env->insn_aux_data[i];
19299 			aux->map_index = map_idx;
19300 
19301 			err = check_map_prog_compatibility(env, map, env->prog);
19302 			if (err)
19303 				return err;
19304 
19305 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
19306 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
19307 				addr = (unsigned long)map;
19308 			} else {
19309 				u32 off = insn[1].imm;
19310 
19311 				if (off >= BPF_MAX_VAR_OFF) {
19312 					verbose(env, "direct value offset of %u is not allowed\n", off);
19313 					return -EINVAL;
19314 				}
19315 
19316 				if (!map->ops->map_direct_value_addr) {
19317 					verbose(env, "no direct value access support for this map type\n");
19318 					return -EINVAL;
19319 				}
19320 
19321 				err = map->ops->map_direct_value_addr(map, &addr, off);
19322 				if (err) {
19323 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
19324 						map->value_size, off);
19325 					return err;
19326 				}
19327 
19328 				aux->map_off = off;
19329 				addr += off;
19330 			}
19331 
19332 			insn[0].imm = (u32)addr;
19333 			insn[1].imm = addr >> 32;
19334 
19335 			/* proceed with extra checks only if its newly added used map */
19336 			if (reused)
19337 				goto next_insn;
19338 
19339 			if (bpf_map_is_cgroup_storage(map) &&
19340 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
19341 				verbose(env, "only one cgroup storage of each type is allowed\n");
19342 				return -EBUSY;
19343 			}
19344 			if (map->map_type == BPF_MAP_TYPE_ARENA) {
19345 				if (env->prog->aux->arena) {
19346 					verbose(env, "Only one arena per program\n");
19347 					return -EBUSY;
19348 				}
19349 				if (!env->allow_ptr_leaks || !env->bpf_capable) {
19350 					verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n");
19351 					return -EPERM;
19352 				}
19353 				if (!env->prog->jit_requested) {
19354 					verbose(env, "JIT is required to use arena\n");
19355 					return -EOPNOTSUPP;
19356 				}
19357 				if (!bpf_jit_supports_arena()) {
19358 					verbose(env, "JIT doesn't support arena\n");
19359 					return -EOPNOTSUPP;
19360 				}
19361 				env->prog->aux->arena = (void *)map;
19362 				if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) {
19363 					verbose(env, "arena's user address must be set via map_extra or mmap()\n");
19364 					return -EINVAL;
19365 				}
19366 			}
19367 
19368 next_insn:
19369 			insn++;
19370 			i++;
19371 			continue;
19372 		}
19373 
19374 		/* Basic sanity check before we invest more work here. */
19375 		if (!bpf_opcode_in_insntable(insn->code)) {
19376 			verbose(env, "unknown opcode %02x\n", insn->code);
19377 			return -EINVAL;
19378 		}
19379 	}
19380 
19381 	/* now all pseudo BPF_LD_IMM64 instructions load valid
19382 	 * 'struct bpf_map *' into a register instead of user map_fd.
19383 	 * These pointers will be used later by verifier to validate map access.
19384 	 */
19385 	return 0;
19386 }
19387 
19388 /* drop refcnt of maps used by the rejected program */
19389 static void release_maps(struct bpf_verifier_env *env)
19390 {
19391 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
19392 			     env->used_map_cnt);
19393 }
19394 
19395 /* drop refcnt of maps used by the rejected program */
19396 static void release_btfs(struct bpf_verifier_env *env)
19397 {
19398 	__bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt);
19399 }
19400 
19401 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
19402 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
19403 {
19404 	struct bpf_insn *insn = env->prog->insnsi;
19405 	int insn_cnt = env->prog->len;
19406 	int i;
19407 
19408 	for (i = 0; i < insn_cnt; i++, insn++) {
19409 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
19410 			continue;
19411 		if (insn->src_reg == BPF_PSEUDO_FUNC)
19412 			continue;
19413 		insn->src_reg = 0;
19414 	}
19415 }
19416 
19417 /* single env->prog->insni[off] instruction was replaced with the range
19418  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
19419  * [0, off) and [off, end) to new locations, so the patched range stays zero
19420  */
19421 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
19422 				 struct bpf_insn_aux_data *new_data,
19423 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
19424 {
19425 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
19426 	struct bpf_insn *insn = new_prog->insnsi;
19427 	u32 old_seen = old_data[off].seen;
19428 	u32 prog_len;
19429 	int i;
19430 
19431 	/* aux info at OFF always needs adjustment, no matter fast path
19432 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
19433 	 * original insn at old prog.
19434 	 */
19435 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
19436 
19437 	if (cnt == 1)
19438 		return;
19439 	prog_len = new_prog->len;
19440 
19441 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
19442 	memcpy(new_data + off + cnt - 1, old_data + off,
19443 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
19444 	for (i = off; i < off + cnt - 1; i++) {
19445 		/* Expand insni[off]'s seen count to the patched range. */
19446 		new_data[i].seen = old_seen;
19447 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
19448 	}
19449 	env->insn_aux_data = new_data;
19450 	vfree(old_data);
19451 }
19452 
19453 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
19454 {
19455 	int i;
19456 
19457 	if (len == 1)
19458 		return;
19459 	/* NOTE: fake 'exit' subprog should be updated as well. */
19460 	for (i = 0; i <= env->subprog_cnt; i++) {
19461 		if (env->subprog_info[i].start <= off)
19462 			continue;
19463 		env->subprog_info[i].start += len - 1;
19464 	}
19465 }
19466 
19467 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
19468 {
19469 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
19470 	int i, sz = prog->aux->size_poke_tab;
19471 	struct bpf_jit_poke_descriptor *desc;
19472 
19473 	for (i = 0; i < sz; i++) {
19474 		desc = &tab[i];
19475 		if (desc->insn_idx <= off)
19476 			continue;
19477 		desc->insn_idx += len - 1;
19478 	}
19479 }
19480 
19481 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
19482 					    const struct bpf_insn *patch, u32 len)
19483 {
19484 	struct bpf_prog *new_prog;
19485 	struct bpf_insn_aux_data *new_data = NULL;
19486 
19487 	if (len > 1) {
19488 		new_data = vzalloc(array_size(env->prog->len + len - 1,
19489 					      sizeof(struct bpf_insn_aux_data)));
19490 		if (!new_data)
19491 			return NULL;
19492 	}
19493 
19494 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
19495 	if (IS_ERR(new_prog)) {
19496 		if (PTR_ERR(new_prog) == -ERANGE)
19497 			verbose(env,
19498 				"insn %d cannot be patched due to 16-bit range\n",
19499 				env->insn_aux_data[off].orig_idx);
19500 		vfree(new_data);
19501 		return NULL;
19502 	}
19503 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
19504 	adjust_subprog_starts(env, off, len);
19505 	adjust_poke_descs(new_prog, off, len);
19506 	return new_prog;
19507 }
19508 
19509 /*
19510  * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the
19511  * jump offset by 'delta'.
19512  */
19513 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta)
19514 {
19515 	struct bpf_insn *insn = prog->insnsi;
19516 	u32 insn_cnt = prog->len, i;
19517 	s32 imm;
19518 	s16 off;
19519 
19520 	for (i = 0; i < insn_cnt; i++, insn++) {
19521 		u8 code = insn->code;
19522 
19523 		if (tgt_idx <= i && i < tgt_idx + delta)
19524 			continue;
19525 
19526 		if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) ||
19527 		    BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT)
19528 			continue;
19529 
19530 		if (insn->code == (BPF_JMP32 | BPF_JA)) {
19531 			if (i + 1 + insn->imm != tgt_idx)
19532 				continue;
19533 			if (check_add_overflow(insn->imm, delta, &imm))
19534 				return -ERANGE;
19535 			insn->imm = imm;
19536 		} else {
19537 			if (i + 1 + insn->off != tgt_idx)
19538 				continue;
19539 			if (check_add_overflow(insn->off, delta, &off))
19540 				return -ERANGE;
19541 			insn->off = off;
19542 		}
19543 	}
19544 	return 0;
19545 }
19546 
19547 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
19548 					      u32 off, u32 cnt)
19549 {
19550 	int i, j;
19551 
19552 	/* find first prog starting at or after off (first to remove) */
19553 	for (i = 0; i < env->subprog_cnt; i++)
19554 		if (env->subprog_info[i].start >= off)
19555 			break;
19556 	/* find first prog starting at or after off + cnt (first to stay) */
19557 	for (j = i; j < env->subprog_cnt; j++)
19558 		if (env->subprog_info[j].start >= off + cnt)
19559 			break;
19560 	/* if j doesn't start exactly at off + cnt, we are just removing
19561 	 * the front of previous prog
19562 	 */
19563 	if (env->subprog_info[j].start != off + cnt)
19564 		j--;
19565 
19566 	if (j > i) {
19567 		struct bpf_prog_aux *aux = env->prog->aux;
19568 		int move;
19569 
19570 		/* move fake 'exit' subprog as well */
19571 		move = env->subprog_cnt + 1 - j;
19572 
19573 		memmove(env->subprog_info + i,
19574 			env->subprog_info + j,
19575 			sizeof(*env->subprog_info) * move);
19576 		env->subprog_cnt -= j - i;
19577 
19578 		/* remove func_info */
19579 		if (aux->func_info) {
19580 			move = aux->func_info_cnt - j;
19581 
19582 			memmove(aux->func_info + i,
19583 				aux->func_info + j,
19584 				sizeof(*aux->func_info) * move);
19585 			aux->func_info_cnt -= j - i;
19586 			/* func_info->insn_off is set after all code rewrites,
19587 			 * in adjust_btf_func() - no need to adjust
19588 			 */
19589 		}
19590 	} else {
19591 		/* convert i from "first prog to remove" to "first to adjust" */
19592 		if (env->subprog_info[i].start == off)
19593 			i++;
19594 	}
19595 
19596 	/* update fake 'exit' subprog as well */
19597 	for (; i <= env->subprog_cnt; i++)
19598 		env->subprog_info[i].start -= cnt;
19599 
19600 	return 0;
19601 }
19602 
19603 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
19604 				      u32 cnt)
19605 {
19606 	struct bpf_prog *prog = env->prog;
19607 	u32 i, l_off, l_cnt, nr_linfo;
19608 	struct bpf_line_info *linfo;
19609 
19610 	nr_linfo = prog->aux->nr_linfo;
19611 	if (!nr_linfo)
19612 		return 0;
19613 
19614 	linfo = prog->aux->linfo;
19615 
19616 	/* find first line info to remove, count lines to be removed */
19617 	for (i = 0; i < nr_linfo; i++)
19618 		if (linfo[i].insn_off >= off)
19619 			break;
19620 
19621 	l_off = i;
19622 	l_cnt = 0;
19623 	for (; i < nr_linfo; i++)
19624 		if (linfo[i].insn_off < off + cnt)
19625 			l_cnt++;
19626 		else
19627 			break;
19628 
19629 	/* First live insn doesn't match first live linfo, it needs to "inherit"
19630 	 * last removed linfo.  prog is already modified, so prog->len == off
19631 	 * means no live instructions after (tail of the program was removed).
19632 	 */
19633 	if (prog->len != off && l_cnt &&
19634 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
19635 		l_cnt--;
19636 		linfo[--i].insn_off = off + cnt;
19637 	}
19638 
19639 	/* remove the line info which refer to the removed instructions */
19640 	if (l_cnt) {
19641 		memmove(linfo + l_off, linfo + i,
19642 			sizeof(*linfo) * (nr_linfo - i));
19643 
19644 		prog->aux->nr_linfo -= l_cnt;
19645 		nr_linfo = prog->aux->nr_linfo;
19646 	}
19647 
19648 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
19649 	for (i = l_off; i < nr_linfo; i++)
19650 		linfo[i].insn_off -= cnt;
19651 
19652 	/* fix up all subprogs (incl. 'exit') which start >= off */
19653 	for (i = 0; i <= env->subprog_cnt; i++)
19654 		if (env->subprog_info[i].linfo_idx > l_off) {
19655 			/* program may have started in the removed region but
19656 			 * may not be fully removed
19657 			 */
19658 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
19659 				env->subprog_info[i].linfo_idx -= l_cnt;
19660 			else
19661 				env->subprog_info[i].linfo_idx = l_off;
19662 		}
19663 
19664 	return 0;
19665 }
19666 
19667 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
19668 {
19669 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19670 	unsigned int orig_prog_len = env->prog->len;
19671 	int err;
19672 
19673 	if (bpf_prog_is_offloaded(env->prog->aux))
19674 		bpf_prog_offload_remove_insns(env, off, cnt);
19675 
19676 	err = bpf_remove_insns(env->prog, off, cnt);
19677 	if (err)
19678 		return err;
19679 
19680 	err = adjust_subprog_starts_after_remove(env, off, cnt);
19681 	if (err)
19682 		return err;
19683 
19684 	err = bpf_adj_linfo_after_remove(env, off, cnt);
19685 	if (err)
19686 		return err;
19687 
19688 	memmove(aux_data + off,	aux_data + off + cnt,
19689 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
19690 
19691 	return 0;
19692 }
19693 
19694 /* The verifier does more data flow analysis than llvm and will not
19695  * explore branches that are dead at run time. Malicious programs can
19696  * have dead code too. Therefore replace all dead at-run-time code
19697  * with 'ja -1'.
19698  *
19699  * Just nops are not optimal, e.g. if they would sit at the end of the
19700  * program and through another bug we would manage to jump there, then
19701  * we'd execute beyond program memory otherwise. Returning exception
19702  * code also wouldn't work since we can have subprogs where the dead
19703  * code could be located.
19704  */
19705 static void sanitize_dead_code(struct bpf_verifier_env *env)
19706 {
19707 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19708 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
19709 	struct bpf_insn *insn = env->prog->insnsi;
19710 	const int insn_cnt = env->prog->len;
19711 	int i;
19712 
19713 	for (i = 0; i < insn_cnt; i++) {
19714 		if (aux_data[i].seen)
19715 			continue;
19716 		memcpy(insn + i, &trap, sizeof(trap));
19717 		aux_data[i].zext_dst = false;
19718 	}
19719 }
19720 
19721 static bool insn_is_cond_jump(u8 code)
19722 {
19723 	u8 op;
19724 
19725 	op = BPF_OP(code);
19726 	if (BPF_CLASS(code) == BPF_JMP32)
19727 		return op != BPF_JA;
19728 
19729 	if (BPF_CLASS(code) != BPF_JMP)
19730 		return false;
19731 
19732 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
19733 }
19734 
19735 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
19736 {
19737 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19738 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
19739 	struct bpf_insn *insn = env->prog->insnsi;
19740 	const int insn_cnt = env->prog->len;
19741 	int i;
19742 
19743 	for (i = 0; i < insn_cnt; i++, insn++) {
19744 		if (!insn_is_cond_jump(insn->code))
19745 			continue;
19746 
19747 		if (!aux_data[i + 1].seen)
19748 			ja.off = insn->off;
19749 		else if (!aux_data[i + 1 + insn->off].seen)
19750 			ja.off = 0;
19751 		else
19752 			continue;
19753 
19754 		if (bpf_prog_is_offloaded(env->prog->aux))
19755 			bpf_prog_offload_replace_insn(env, i, &ja);
19756 
19757 		memcpy(insn, &ja, sizeof(ja));
19758 	}
19759 }
19760 
19761 static int opt_remove_dead_code(struct bpf_verifier_env *env)
19762 {
19763 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19764 	int insn_cnt = env->prog->len;
19765 	int i, err;
19766 
19767 	for (i = 0; i < insn_cnt; i++) {
19768 		int j;
19769 
19770 		j = 0;
19771 		while (i + j < insn_cnt && !aux_data[i + j].seen)
19772 			j++;
19773 		if (!j)
19774 			continue;
19775 
19776 		err = verifier_remove_insns(env, i, j);
19777 		if (err)
19778 			return err;
19779 		insn_cnt = env->prog->len;
19780 	}
19781 
19782 	return 0;
19783 }
19784 
19785 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
19786 
19787 static int opt_remove_nops(struct bpf_verifier_env *env)
19788 {
19789 	const struct bpf_insn ja = NOP;
19790 	struct bpf_insn *insn = env->prog->insnsi;
19791 	int insn_cnt = env->prog->len;
19792 	int i, err;
19793 
19794 	for (i = 0; i < insn_cnt; i++) {
19795 		if (memcmp(&insn[i], &ja, sizeof(ja)))
19796 			continue;
19797 
19798 		err = verifier_remove_insns(env, i, 1);
19799 		if (err)
19800 			return err;
19801 		insn_cnt--;
19802 		i--;
19803 	}
19804 
19805 	return 0;
19806 }
19807 
19808 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
19809 					 const union bpf_attr *attr)
19810 {
19811 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
19812 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
19813 	int i, patch_len, delta = 0, len = env->prog->len;
19814 	struct bpf_insn *insns = env->prog->insnsi;
19815 	struct bpf_prog *new_prog;
19816 	bool rnd_hi32;
19817 
19818 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
19819 	zext_patch[1] = BPF_ZEXT_REG(0);
19820 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
19821 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
19822 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
19823 	for (i = 0; i < len; i++) {
19824 		int adj_idx = i + delta;
19825 		struct bpf_insn insn;
19826 		int load_reg;
19827 
19828 		insn = insns[adj_idx];
19829 		load_reg = insn_def_regno(&insn);
19830 		if (!aux[adj_idx].zext_dst) {
19831 			u8 code, class;
19832 			u32 imm_rnd;
19833 
19834 			if (!rnd_hi32)
19835 				continue;
19836 
19837 			code = insn.code;
19838 			class = BPF_CLASS(code);
19839 			if (load_reg == -1)
19840 				continue;
19841 
19842 			/* NOTE: arg "reg" (the fourth one) is only used for
19843 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
19844 			 *       here.
19845 			 */
19846 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
19847 				if (class == BPF_LD &&
19848 				    BPF_MODE(code) == BPF_IMM)
19849 					i++;
19850 				continue;
19851 			}
19852 
19853 			/* ctx load could be transformed into wider load. */
19854 			if (class == BPF_LDX &&
19855 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
19856 				continue;
19857 
19858 			imm_rnd = get_random_u32();
19859 			rnd_hi32_patch[0] = insn;
19860 			rnd_hi32_patch[1].imm = imm_rnd;
19861 			rnd_hi32_patch[3].dst_reg = load_reg;
19862 			patch = rnd_hi32_patch;
19863 			patch_len = 4;
19864 			goto apply_patch_buffer;
19865 		}
19866 
19867 		/* Add in an zero-extend instruction if a) the JIT has requested
19868 		 * it or b) it's a CMPXCHG.
19869 		 *
19870 		 * The latter is because: BPF_CMPXCHG always loads a value into
19871 		 * R0, therefore always zero-extends. However some archs'
19872 		 * equivalent instruction only does this load when the
19873 		 * comparison is successful. This detail of CMPXCHG is
19874 		 * orthogonal to the general zero-extension behaviour of the
19875 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
19876 		 */
19877 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
19878 			continue;
19879 
19880 		/* Zero-extension is done by the caller. */
19881 		if (bpf_pseudo_kfunc_call(&insn))
19882 			continue;
19883 
19884 		if (WARN_ON(load_reg == -1)) {
19885 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
19886 			return -EFAULT;
19887 		}
19888 
19889 		zext_patch[0] = insn;
19890 		zext_patch[1].dst_reg = load_reg;
19891 		zext_patch[1].src_reg = load_reg;
19892 		patch = zext_patch;
19893 		patch_len = 2;
19894 apply_patch_buffer:
19895 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
19896 		if (!new_prog)
19897 			return -ENOMEM;
19898 		env->prog = new_prog;
19899 		insns = new_prog->insnsi;
19900 		aux = env->insn_aux_data;
19901 		delta += patch_len - 1;
19902 	}
19903 
19904 	return 0;
19905 }
19906 
19907 /* convert load instructions that access fields of a context type into a
19908  * sequence of instructions that access fields of the underlying structure:
19909  *     struct __sk_buff    -> struct sk_buff
19910  *     struct bpf_sock_ops -> struct sock
19911  */
19912 static int convert_ctx_accesses(struct bpf_verifier_env *env)
19913 {
19914 	struct bpf_subprog_info *subprogs = env->subprog_info;
19915 	const struct bpf_verifier_ops *ops = env->ops;
19916 	int i, cnt, size, ctx_field_size, delta = 0, epilogue_cnt = 0;
19917 	const int insn_cnt = env->prog->len;
19918 	struct bpf_insn *epilogue_buf = env->epilogue_buf;
19919 	struct bpf_insn *insn_buf = env->insn_buf;
19920 	struct bpf_insn *insn;
19921 	u32 target_size, size_default, off;
19922 	struct bpf_prog *new_prog;
19923 	enum bpf_access_type type;
19924 	bool is_narrower_load;
19925 	int epilogue_idx = 0;
19926 
19927 	if (ops->gen_epilogue) {
19928 		epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog,
19929 						 -(subprogs[0].stack_depth + 8));
19930 		if (epilogue_cnt >= INSN_BUF_SIZE) {
19931 			verbose(env, "bpf verifier is misconfigured\n");
19932 			return -EINVAL;
19933 		} else if (epilogue_cnt) {
19934 			/* Save the ARG_PTR_TO_CTX for the epilogue to use */
19935 			cnt = 0;
19936 			subprogs[0].stack_depth += 8;
19937 			insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1,
19938 						      -subprogs[0].stack_depth);
19939 			insn_buf[cnt++] = env->prog->insnsi[0];
19940 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
19941 			if (!new_prog)
19942 				return -ENOMEM;
19943 			env->prog = new_prog;
19944 			delta += cnt - 1;
19945 		}
19946 	}
19947 
19948 	if (ops->gen_prologue || env->seen_direct_write) {
19949 		if (!ops->gen_prologue) {
19950 			verbose(env, "bpf verifier is misconfigured\n");
19951 			return -EINVAL;
19952 		}
19953 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
19954 					env->prog);
19955 		if (cnt >= INSN_BUF_SIZE) {
19956 			verbose(env, "bpf verifier is misconfigured\n");
19957 			return -EINVAL;
19958 		} else if (cnt) {
19959 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
19960 			if (!new_prog)
19961 				return -ENOMEM;
19962 
19963 			env->prog = new_prog;
19964 			delta += cnt - 1;
19965 		}
19966 	}
19967 
19968 	if (delta)
19969 		WARN_ON(adjust_jmp_off(env->prog, 0, delta));
19970 
19971 	if (bpf_prog_is_offloaded(env->prog->aux))
19972 		return 0;
19973 
19974 	insn = env->prog->insnsi + delta;
19975 
19976 	for (i = 0; i < insn_cnt; i++, insn++) {
19977 		bpf_convert_ctx_access_t convert_ctx_access;
19978 		u8 mode;
19979 
19980 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
19981 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
19982 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
19983 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
19984 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
19985 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
19986 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
19987 			type = BPF_READ;
19988 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
19989 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
19990 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
19991 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
19992 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
19993 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
19994 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
19995 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
19996 			type = BPF_WRITE;
19997 		} else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) ||
19998 			    insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) &&
19999 			   env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) {
20000 			insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code);
20001 			env->prog->aux->num_exentries++;
20002 			continue;
20003 		} else if (insn->code == (BPF_JMP | BPF_EXIT) &&
20004 			   epilogue_cnt &&
20005 			   i + delta < subprogs[1].start) {
20006 			/* Generate epilogue for the main prog */
20007 			if (epilogue_idx) {
20008 				/* jump back to the earlier generated epilogue */
20009 				insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1);
20010 				cnt = 1;
20011 			} else {
20012 				memcpy(insn_buf, epilogue_buf,
20013 				       epilogue_cnt * sizeof(*epilogue_buf));
20014 				cnt = epilogue_cnt;
20015 				/* epilogue_idx cannot be 0. It must have at
20016 				 * least one ctx ptr saving insn before the
20017 				 * epilogue.
20018 				 */
20019 				epilogue_idx = i + delta;
20020 			}
20021 			goto patch_insn_buf;
20022 		} else {
20023 			continue;
20024 		}
20025 
20026 		if (type == BPF_WRITE &&
20027 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
20028 			struct bpf_insn patch[] = {
20029 				*insn,
20030 				BPF_ST_NOSPEC(),
20031 			};
20032 
20033 			cnt = ARRAY_SIZE(patch);
20034 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
20035 			if (!new_prog)
20036 				return -ENOMEM;
20037 
20038 			delta    += cnt - 1;
20039 			env->prog = new_prog;
20040 			insn      = new_prog->insnsi + i + delta;
20041 			continue;
20042 		}
20043 
20044 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
20045 		case PTR_TO_CTX:
20046 			if (!ops->convert_ctx_access)
20047 				continue;
20048 			convert_ctx_access = ops->convert_ctx_access;
20049 			break;
20050 		case PTR_TO_SOCKET:
20051 		case PTR_TO_SOCK_COMMON:
20052 			convert_ctx_access = bpf_sock_convert_ctx_access;
20053 			break;
20054 		case PTR_TO_TCP_SOCK:
20055 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
20056 			break;
20057 		case PTR_TO_XDP_SOCK:
20058 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
20059 			break;
20060 		case PTR_TO_BTF_ID:
20061 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
20062 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
20063 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
20064 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
20065 		 * any faults for loads into such types. BPF_WRITE is disallowed
20066 		 * for this case.
20067 		 */
20068 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
20069 		case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL:
20070 			if (type == BPF_READ) {
20071 				if (BPF_MODE(insn->code) == BPF_MEM)
20072 					insn->code = BPF_LDX | BPF_PROBE_MEM |
20073 						     BPF_SIZE((insn)->code);
20074 				else
20075 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
20076 						     BPF_SIZE((insn)->code);
20077 				env->prog->aux->num_exentries++;
20078 			}
20079 			continue;
20080 		case PTR_TO_ARENA:
20081 			if (BPF_MODE(insn->code) == BPF_MEMSX) {
20082 				verbose(env, "sign extending loads from arena are not supported yet\n");
20083 				return -EOPNOTSUPP;
20084 			}
20085 			insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code);
20086 			env->prog->aux->num_exentries++;
20087 			continue;
20088 		default:
20089 			continue;
20090 		}
20091 
20092 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
20093 		size = BPF_LDST_BYTES(insn);
20094 		mode = BPF_MODE(insn->code);
20095 
20096 		/* If the read access is a narrower load of the field,
20097 		 * convert to a 4/8-byte load, to minimum program type specific
20098 		 * convert_ctx_access changes. If conversion is successful,
20099 		 * we will apply proper mask to the result.
20100 		 */
20101 		is_narrower_load = size < ctx_field_size;
20102 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
20103 		off = insn->off;
20104 		if (is_narrower_load) {
20105 			u8 size_code;
20106 
20107 			if (type == BPF_WRITE) {
20108 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
20109 				return -EINVAL;
20110 			}
20111 
20112 			size_code = BPF_H;
20113 			if (ctx_field_size == 4)
20114 				size_code = BPF_W;
20115 			else if (ctx_field_size == 8)
20116 				size_code = BPF_DW;
20117 
20118 			insn->off = off & ~(size_default - 1);
20119 			insn->code = BPF_LDX | BPF_MEM | size_code;
20120 		}
20121 
20122 		target_size = 0;
20123 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
20124 					 &target_size);
20125 		if (cnt == 0 || cnt >= INSN_BUF_SIZE ||
20126 		    (ctx_field_size && !target_size)) {
20127 			verbose(env, "bpf verifier is misconfigured\n");
20128 			return -EINVAL;
20129 		}
20130 
20131 		if (is_narrower_load && size < target_size) {
20132 			u8 shift = bpf_ctx_narrow_access_offset(
20133 				off, size, size_default) * 8;
20134 			if (shift && cnt + 1 >= INSN_BUF_SIZE) {
20135 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
20136 				return -EINVAL;
20137 			}
20138 			if (ctx_field_size <= 4) {
20139 				if (shift)
20140 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
20141 									insn->dst_reg,
20142 									shift);
20143 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
20144 								(1 << size * 8) - 1);
20145 			} else {
20146 				if (shift)
20147 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
20148 									insn->dst_reg,
20149 									shift);
20150 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
20151 								(1ULL << size * 8) - 1);
20152 			}
20153 		}
20154 		if (mode == BPF_MEMSX)
20155 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
20156 						       insn->dst_reg, insn->dst_reg,
20157 						       size * 8, 0);
20158 
20159 patch_insn_buf:
20160 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20161 		if (!new_prog)
20162 			return -ENOMEM;
20163 
20164 		delta += cnt - 1;
20165 
20166 		/* keep walking new program and skip insns we just inserted */
20167 		env->prog = new_prog;
20168 		insn      = new_prog->insnsi + i + delta;
20169 	}
20170 
20171 	return 0;
20172 }
20173 
20174 static int jit_subprogs(struct bpf_verifier_env *env)
20175 {
20176 	struct bpf_prog *prog = env->prog, **func, *tmp;
20177 	int i, j, subprog_start, subprog_end = 0, len, subprog;
20178 	struct bpf_map *map_ptr;
20179 	struct bpf_insn *insn;
20180 	void *old_bpf_func;
20181 	int err, num_exentries;
20182 
20183 	if (env->subprog_cnt <= 1)
20184 		return 0;
20185 
20186 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
20187 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
20188 			continue;
20189 
20190 		/* Upon error here we cannot fall back to interpreter but
20191 		 * need a hard reject of the program. Thus -EFAULT is
20192 		 * propagated in any case.
20193 		 */
20194 		subprog = find_subprog(env, i + insn->imm + 1);
20195 		if (subprog < 0) {
20196 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
20197 				  i + insn->imm + 1);
20198 			return -EFAULT;
20199 		}
20200 		/* temporarily remember subprog id inside insn instead of
20201 		 * aux_data, since next loop will split up all insns into funcs
20202 		 */
20203 		insn->off = subprog;
20204 		/* remember original imm in case JIT fails and fallback
20205 		 * to interpreter will be needed
20206 		 */
20207 		env->insn_aux_data[i].call_imm = insn->imm;
20208 		/* point imm to __bpf_call_base+1 from JITs point of view */
20209 		insn->imm = 1;
20210 		if (bpf_pseudo_func(insn)) {
20211 #if defined(MODULES_VADDR)
20212 			u64 addr = MODULES_VADDR;
20213 #else
20214 			u64 addr = VMALLOC_START;
20215 #endif
20216 			/* jit (e.g. x86_64) may emit fewer instructions
20217 			 * if it learns a u32 imm is the same as a u64 imm.
20218 			 * Set close enough to possible prog address.
20219 			 */
20220 			insn[0].imm = (u32)addr;
20221 			insn[1].imm = addr >> 32;
20222 		}
20223 	}
20224 
20225 	err = bpf_prog_alloc_jited_linfo(prog);
20226 	if (err)
20227 		goto out_undo_insn;
20228 
20229 	err = -ENOMEM;
20230 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
20231 	if (!func)
20232 		goto out_undo_insn;
20233 
20234 	for (i = 0; i < env->subprog_cnt; i++) {
20235 		subprog_start = subprog_end;
20236 		subprog_end = env->subprog_info[i + 1].start;
20237 
20238 		len = subprog_end - subprog_start;
20239 		/* bpf_prog_run() doesn't call subprogs directly,
20240 		 * hence main prog stats include the runtime of subprogs.
20241 		 * subprogs don't have IDs and not reachable via prog_get_next_id
20242 		 * func[i]->stats will never be accessed and stays NULL
20243 		 */
20244 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
20245 		if (!func[i])
20246 			goto out_free;
20247 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
20248 		       len * sizeof(struct bpf_insn));
20249 		func[i]->type = prog->type;
20250 		func[i]->len = len;
20251 		if (bpf_prog_calc_tag(func[i]))
20252 			goto out_free;
20253 		func[i]->is_func = 1;
20254 		func[i]->sleepable = prog->sleepable;
20255 		func[i]->aux->func_idx = i;
20256 		/* Below members will be freed only at prog->aux */
20257 		func[i]->aux->btf = prog->aux->btf;
20258 		func[i]->aux->func_info = prog->aux->func_info;
20259 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
20260 		func[i]->aux->poke_tab = prog->aux->poke_tab;
20261 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
20262 
20263 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
20264 			struct bpf_jit_poke_descriptor *poke;
20265 
20266 			poke = &prog->aux->poke_tab[j];
20267 			if (poke->insn_idx < subprog_end &&
20268 			    poke->insn_idx >= subprog_start)
20269 				poke->aux = func[i]->aux;
20270 		}
20271 
20272 		func[i]->aux->name[0] = 'F';
20273 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
20274 		if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE)
20275 			func[i]->aux->jits_use_priv_stack = true;
20276 
20277 		func[i]->jit_requested = 1;
20278 		func[i]->blinding_requested = prog->blinding_requested;
20279 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
20280 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
20281 		func[i]->aux->linfo = prog->aux->linfo;
20282 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
20283 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
20284 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
20285 		func[i]->aux->arena = prog->aux->arena;
20286 		num_exentries = 0;
20287 		insn = func[i]->insnsi;
20288 		for (j = 0; j < func[i]->len; j++, insn++) {
20289 			if (BPF_CLASS(insn->code) == BPF_LDX &&
20290 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
20291 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32 ||
20292 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
20293 				num_exentries++;
20294 			if ((BPF_CLASS(insn->code) == BPF_STX ||
20295 			     BPF_CLASS(insn->code) == BPF_ST) &&
20296 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32)
20297 				num_exentries++;
20298 			if (BPF_CLASS(insn->code) == BPF_STX &&
20299 			     BPF_MODE(insn->code) == BPF_PROBE_ATOMIC)
20300 				num_exentries++;
20301 		}
20302 		func[i]->aux->num_exentries = num_exentries;
20303 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
20304 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
20305 		if (!i)
20306 			func[i]->aux->exception_boundary = env->seen_exception;
20307 		func[i] = bpf_int_jit_compile(func[i]);
20308 		if (!func[i]->jited) {
20309 			err = -ENOTSUPP;
20310 			goto out_free;
20311 		}
20312 		cond_resched();
20313 	}
20314 
20315 	/* at this point all bpf functions were successfully JITed
20316 	 * now populate all bpf_calls with correct addresses and
20317 	 * run last pass of JIT
20318 	 */
20319 	for (i = 0; i < env->subprog_cnt; i++) {
20320 		insn = func[i]->insnsi;
20321 		for (j = 0; j < func[i]->len; j++, insn++) {
20322 			if (bpf_pseudo_func(insn)) {
20323 				subprog = insn->off;
20324 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
20325 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
20326 				continue;
20327 			}
20328 			if (!bpf_pseudo_call(insn))
20329 				continue;
20330 			subprog = insn->off;
20331 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
20332 		}
20333 
20334 		/* we use the aux data to keep a list of the start addresses
20335 		 * of the JITed images for each function in the program
20336 		 *
20337 		 * for some architectures, such as powerpc64, the imm field
20338 		 * might not be large enough to hold the offset of the start
20339 		 * address of the callee's JITed image from __bpf_call_base
20340 		 *
20341 		 * in such cases, we can lookup the start address of a callee
20342 		 * by using its subprog id, available from the off field of
20343 		 * the call instruction, as an index for this list
20344 		 */
20345 		func[i]->aux->func = func;
20346 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
20347 		func[i]->aux->real_func_cnt = env->subprog_cnt;
20348 	}
20349 	for (i = 0; i < env->subprog_cnt; i++) {
20350 		old_bpf_func = func[i]->bpf_func;
20351 		tmp = bpf_int_jit_compile(func[i]);
20352 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
20353 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
20354 			err = -ENOTSUPP;
20355 			goto out_free;
20356 		}
20357 		cond_resched();
20358 	}
20359 
20360 	/* finally lock prog and jit images for all functions and
20361 	 * populate kallsysm. Begin at the first subprogram, since
20362 	 * bpf_prog_load will add the kallsyms for the main program.
20363 	 */
20364 	for (i = 1; i < env->subprog_cnt; i++) {
20365 		err = bpf_prog_lock_ro(func[i]);
20366 		if (err)
20367 			goto out_free;
20368 	}
20369 
20370 	for (i = 1; i < env->subprog_cnt; i++)
20371 		bpf_prog_kallsyms_add(func[i]);
20372 
20373 	/* Last step: make now unused interpreter insns from main
20374 	 * prog consistent for later dump requests, so they can
20375 	 * later look the same as if they were interpreted only.
20376 	 */
20377 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
20378 		if (bpf_pseudo_func(insn)) {
20379 			insn[0].imm = env->insn_aux_data[i].call_imm;
20380 			insn[1].imm = insn->off;
20381 			insn->off = 0;
20382 			continue;
20383 		}
20384 		if (!bpf_pseudo_call(insn))
20385 			continue;
20386 		insn->off = env->insn_aux_data[i].call_imm;
20387 		subprog = find_subprog(env, i + insn->off + 1);
20388 		insn->imm = subprog;
20389 	}
20390 
20391 	prog->jited = 1;
20392 	prog->bpf_func = func[0]->bpf_func;
20393 	prog->jited_len = func[0]->jited_len;
20394 	prog->aux->extable = func[0]->aux->extable;
20395 	prog->aux->num_exentries = func[0]->aux->num_exentries;
20396 	prog->aux->func = func;
20397 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
20398 	prog->aux->real_func_cnt = env->subprog_cnt;
20399 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
20400 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
20401 	bpf_prog_jit_attempt_done(prog);
20402 	return 0;
20403 out_free:
20404 	/* We failed JIT'ing, so at this point we need to unregister poke
20405 	 * descriptors from subprogs, so that kernel is not attempting to
20406 	 * patch it anymore as we're freeing the subprog JIT memory.
20407 	 */
20408 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
20409 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
20410 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
20411 	}
20412 	/* At this point we're guaranteed that poke descriptors are not
20413 	 * live anymore. We can just unlink its descriptor table as it's
20414 	 * released with the main prog.
20415 	 */
20416 	for (i = 0; i < env->subprog_cnt; i++) {
20417 		if (!func[i])
20418 			continue;
20419 		func[i]->aux->poke_tab = NULL;
20420 		bpf_jit_free(func[i]);
20421 	}
20422 	kfree(func);
20423 out_undo_insn:
20424 	/* cleanup main prog to be interpreted */
20425 	prog->jit_requested = 0;
20426 	prog->blinding_requested = 0;
20427 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
20428 		if (!bpf_pseudo_call(insn))
20429 			continue;
20430 		insn->off = 0;
20431 		insn->imm = env->insn_aux_data[i].call_imm;
20432 	}
20433 	bpf_prog_jit_attempt_done(prog);
20434 	return err;
20435 }
20436 
20437 static int fixup_call_args(struct bpf_verifier_env *env)
20438 {
20439 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
20440 	struct bpf_prog *prog = env->prog;
20441 	struct bpf_insn *insn = prog->insnsi;
20442 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
20443 	int i, depth;
20444 #endif
20445 	int err = 0;
20446 
20447 	if (env->prog->jit_requested &&
20448 	    !bpf_prog_is_offloaded(env->prog->aux)) {
20449 		err = jit_subprogs(env);
20450 		if (err == 0)
20451 			return 0;
20452 		if (err == -EFAULT)
20453 			return err;
20454 	}
20455 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
20456 	if (has_kfunc_call) {
20457 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
20458 		return -EINVAL;
20459 	}
20460 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
20461 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
20462 		 * have to be rejected, since interpreter doesn't support them yet.
20463 		 */
20464 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
20465 		return -EINVAL;
20466 	}
20467 	for (i = 0; i < prog->len; i++, insn++) {
20468 		if (bpf_pseudo_func(insn)) {
20469 			/* When JIT fails the progs with callback calls
20470 			 * have to be rejected, since interpreter doesn't support them yet.
20471 			 */
20472 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
20473 			return -EINVAL;
20474 		}
20475 
20476 		if (!bpf_pseudo_call(insn))
20477 			continue;
20478 		depth = get_callee_stack_depth(env, insn, i);
20479 		if (depth < 0)
20480 			return depth;
20481 		bpf_patch_call_args(insn, depth);
20482 	}
20483 	err = 0;
20484 #endif
20485 	return err;
20486 }
20487 
20488 /* replace a generic kfunc with a specialized version if necessary */
20489 static void specialize_kfunc(struct bpf_verifier_env *env,
20490 			     u32 func_id, u16 offset, unsigned long *addr)
20491 {
20492 	struct bpf_prog *prog = env->prog;
20493 	bool seen_direct_write;
20494 	void *xdp_kfunc;
20495 	bool is_rdonly;
20496 
20497 	if (bpf_dev_bound_kfunc_id(func_id)) {
20498 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
20499 		if (xdp_kfunc) {
20500 			*addr = (unsigned long)xdp_kfunc;
20501 			return;
20502 		}
20503 		/* fallback to default kfunc when not supported by netdev */
20504 	}
20505 
20506 	if (offset)
20507 		return;
20508 
20509 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
20510 		seen_direct_write = env->seen_direct_write;
20511 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
20512 
20513 		if (is_rdonly)
20514 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
20515 
20516 		/* restore env->seen_direct_write to its original value, since
20517 		 * may_access_direct_pkt_data mutates it
20518 		 */
20519 		env->seen_direct_write = seen_direct_write;
20520 	}
20521 }
20522 
20523 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
20524 					    u16 struct_meta_reg,
20525 					    u16 node_offset_reg,
20526 					    struct bpf_insn *insn,
20527 					    struct bpf_insn *insn_buf,
20528 					    int *cnt)
20529 {
20530 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
20531 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
20532 
20533 	insn_buf[0] = addr[0];
20534 	insn_buf[1] = addr[1];
20535 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
20536 	insn_buf[3] = *insn;
20537 	*cnt = 4;
20538 }
20539 
20540 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
20541 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
20542 {
20543 	const struct bpf_kfunc_desc *desc;
20544 
20545 	if (!insn->imm) {
20546 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
20547 		return -EINVAL;
20548 	}
20549 
20550 	*cnt = 0;
20551 
20552 	/* insn->imm has the btf func_id. Replace it with an offset relative to
20553 	 * __bpf_call_base, unless the JIT needs to call functions that are
20554 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
20555 	 */
20556 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
20557 	if (!desc) {
20558 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
20559 			insn->imm);
20560 		return -EFAULT;
20561 	}
20562 
20563 	if (!bpf_jit_supports_far_kfunc_call())
20564 		insn->imm = BPF_CALL_IMM(desc->addr);
20565 	if (insn->off)
20566 		return 0;
20567 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
20568 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
20569 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
20570 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
20571 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
20572 
20573 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
20574 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
20575 				insn_idx);
20576 			return -EFAULT;
20577 		}
20578 
20579 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
20580 		insn_buf[1] = addr[0];
20581 		insn_buf[2] = addr[1];
20582 		insn_buf[3] = *insn;
20583 		*cnt = 4;
20584 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
20585 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
20586 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
20587 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
20588 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
20589 
20590 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
20591 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
20592 				insn_idx);
20593 			return -EFAULT;
20594 		}
20595 
20596 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
20597 		    !kptr_struct_meta) {
20598 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
20599 				insn_idx);
20600 			return -EFAULT;
20601 		}
20602 
20603 		insn_buf[0] = addr[0];
20604 		insn_buf[1] = addr[1];
20605 		insn_buf[2] = *insn;
20606 		*cnt = 3;
20607 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
20608 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
20609 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
20610 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
20611 		int struct_meta_reg = BPF_REG_3;
20612 		int node_offset_reg = BPF_REG_4;
20613 
20614 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
20615 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
20616 			struct_meta_reg = BPF_REG_4;
20617 			node_offset_reg = BPF_REG_5;
20618 		}
20619 
20620 		if (!kptr_struct_meta) {
20621 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
20622 				insn_idx);
20623 			return -EFAULT;
20624 		}
20625 
20626 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
20627 						node_offset_reg, insn, insn_buf, cnt);
20628 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
20629 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
20630 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
20631 		*cnt = 1;
20632 	} else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) {
20633 		struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) };
20634 
20635 		insn_buf[0] = ld_addrs[0];
20636 		insn_buf[1] = ld_addrs[1];
20637 		insn_buf[2] = *insn;
20638 		*cnt = 3;
20639 	}
20640 	return 0;
20641 }
20642 
20643 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
20644 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
20645 {
20646 	struct bpf_subprog_info *info = env->subprog_info;
20647 	int cnt = env->subprog_cnt;
20648 	struct bpf_prog *prog;
20649 
20650 	/* We only reserve one slot for hidden subprogs in subprog_info. */
20651 	if (env->hidden_subprog_cnt) {
20652 		verbose(env, "verifier internal error: only one hidden subprog supported\n");
20653 		return -EFAULT;
20654 	}
20655 	/* We're not patching any existing instruction, just appending the new
20656 	 * ones for the hidden subprog. Hence all of the adjustment operations
20657 	 * in bpf_patch_insn_data are no-ops.
20658 	 */
20659 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
20660 	if (!prog)
20661 		return -ENOMEM;
20662 	env->prog = prog;
20663 	info[cnt + 1].start = info[cnt].start;
20664 	info[cnt].start = prog->len - len + 1;
20665 	env->subprog_cnt++;
20666 	env->hidden_subprog_cnt++;
20667 	return 0;
20668 }
20669 
20670 /* Do various post-verification rewrites in a single program pass.
20671  * These rewrites simplify JIT and interpreter implementations.
20672  */
20673 static int do_misc_fixups(struct bpf_verifier_env *env)
20674 {
20675 	struct bpf_prog *prog = env->prog;
20676 	enum bpf_attach_type eatype = prog->expected_attach_type;
20677 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
20678 	struct bpf_insn *insn = prog->insnsi;
20679 	const struct bpf_func_proto *fn;
20680 	const int insn_cnt = prog->len;
20681 	const struct bpf_map_ops *ops;
20682 	struct bpf_insn_aux_data *aux;
20683 	struct bpf_insn *insn_buf = env->insn_buf;
20684 	struct bpf_prog *new_prog;
20685 	struct bpf_map *map_ptr;
20686 	int i, ret, cnt, delta = 0, cur_subprog = 0;
20687 	struct bpf_subprog_info *subprogs = env->subprog_info;
20688 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
20689 	u16 stack_depth_extra = 0;
20690 
20691 	if (env->seen_exception && !env->exception_callback_subprog) {
20692 		struct bpf_insn patch[] = {
20693 			env->prog->insnsi[insn_cnt - 1],
20694 			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
20695 			BPF_EXIT_INSN(),
20696 		};
20697 
20698 		ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
20699 		if (ret < 0)
20700 			return ret;
20701 		prog = env->prog;
20702 		insn = prog->insnsi;
20703 
20704 		env->exception_callback_subprog = env->subprog_cnt - 1;
20705 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
20706 		mark_subprog_exc_cb(env, env->exception_callback_subprog);
20707 	}
20708 
20709 	for (i = 0; i < insn_cnt;) {
20710 		if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) {
20711 			if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) ||
20712 			    (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) {
20713 				/* convert to 32-bit mov that clears upper 32-bit */
20714 				insn->code = BPF_ALU | BPF_MOV | BPF_X;
20715 				/* clear off and imm, so it's a normal 'wX = wY' from JIT pov */
20716 				insn->off = 0;
20717 				insn->imm = 0;
20718 			} /* cast from as(0) to as(1) should be handled by JIT */
20719 			goto next_insn;
20720 		}
20721 
20722 		if (env->insn_aux_data[i + delta].needs_zext)
20723 			/* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */
20724 			insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code);
20725 
20726 		/* Make sdiv/smod divide-by-minus-one exceptions impossible. */
20727 		if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) ||
20728 		     insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) ||
20729 		     insn->code == (BPF_ALU | BPF_MOD | BPF_K) ||
20730 		     insn->code == (BPF_ALU | BPF_DIV | BPF_K)) &&
20731 		    insn->off == 1 && insn->imm == -1) {
20732 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
20733 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
20734 			struct bpf_insn *patchlet;
20735 			struct bpf_insn chk_and_sdiv[] = {
20736 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20737 					     BPF_NEG | BPF_K, insn->dst_reg,
20738 					     0, 0, 0),
20739 			};
20740 			struct bpf_insn chk_and_smod[] = {
20741 				BPF_MOV32_IMM(insn->dst_reg, 0),
20742 			};
20743 
20744 			patchlet = isdiv ? chk_and_sdiv : chk_and_smod;
20745 			cnt = isdiv ? ARRAY_SIZE(chk_and_sdiv) : ARRAY_SIZE(chk_and_smod);
20746 
20747 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
20748 			if (!new_prog)
20749 				return -ENOMEM;
20750 
20751 			delta    += cnt - 1;
20752 			env->prog = prog = new_prog;
20753 			insn      = new_prog->insnsi + i + delta;
20754 			goto next_insn;
20755 		}
20756 
20757 		/* Make divide-by-zero and divide-by-minus-one exceptions impossible. */
20758 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
20759 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
20760 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
20761 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
20762 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
20763 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
20764 			bool is_sdiv = isdiv && insn->off == 1;
20765 			bool is_smod = !isdiv && insn->off == 1;
20766 			struct bpf_insn *patchlet;
20767 			struct bpf_insn chk_and_div[] = {
20768 				/* [R,W]x div 0 -> 0 */
20769 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20770 					     BPF_JNE | BPF_K, insn->src_reg,
20771 					     0, 2, 0),
20772 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
20773 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20774 				*insn,
20775 			};
20776 			struct bpf_insn chk_and_mod[] = {
20777 				/* [R,W]x mod 0 -> [R,W]x */
20778 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20779 					     BPF_JEQ | BPF_K, insn->src_reg,
20780 					     0, 1 + (is64 ? 0 : 1), 0),
20781 				*insn,
20782 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20783 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
20784 			};
20785 			struct bpf_insn chk_and_sdiv[] = {
20786 				/* [R,W]x sdiv 0 -> 0
20787 				 * LLONG_MIN sdiv -1 -> LLONG_MIN
20788 				 * INT_MIN sdiv -1 -> INT_MIN
20789 				 */
20790 				BPF_MOV64_REG(BPF_REG_AX, insn->src_reg),
20791 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20792 					     BPF_ADD | BPF_K, BPF_REG_AX,
20793 					     0, 0, 1),
20794 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20795 					     BPF_JGT | BPF_K, BPF_REG_AX,
20796 					     0, 4, 1),
20797 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20798 					     BPF_JEQ | BPF_K, BPF_REG_AX,
20799 					     0, 1, 0),
20800 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20801 					     BPF_MOV | BPF_K, insn->dst_reg,
20802 					     0, 0, 0),
20803 				/* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */
20804 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20805 					     BPF_NEG | BPF_K, insn->dst_reg,
20806 					     0, 0, 0),
20807 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20808 				*insn,
20809 			};
20810 			struct bpf_insn chk_and_smod[] = {
20811 				/* [R,W]x mod 0 -> [R,W]x */
20812 				/* [R,W]x mod -1 -> 0 */
20813 				BPF_MOV64_REG(BPF_REG_AX, insn->src_reg),
20814 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20815 					     BPF_ADD | BPF_K, BPF_REG_AX,
20816 					     0, 0, 1),
20817 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20818 					     BPF_JGT | BPF_K, BPF_REG_AX,
20819 					     0, 3, 1),
20820 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20821 					     BPF_JEQ | BPF_K, BPF_REG_AX,
20822 					     0, 3 + (is64 ? 0 : 1), 1),
20823 				BPF_MOV32_IMM(insn->dst_reg, 0),
20824 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20825 				*insn,
20826 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20827 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
20828 			};
20829 
20830 			if (is_sdiv) {
20831 				patchlet = chk_and_sdiv;
20832 				cnt = ARRAY_SIZE(chk_and_sdiv);
20833 			} else if (is_smod) {
20834 				patchlet = chk_and_smod;
20835 				cnt = ARRAY_SIZE(chk_and_smod) - (is64 ? 2 : 0);
20836 			} else {
20837 				patchlet = isdiv ? chk_and_div : chk_and_mod;
20838 				cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
20839 					      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
20840 			}
20841 
20842 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
20843 			if (!new_prog)
20844 				return -ENOMEM;
20845 
20846 			delta    += cnt - 1;
20847 			env->prog = prog = new_prog;
20848 			insn      = new_prog->insnsi + i + delta;
20849 			goto next_insn;
20850 		}
20851 
20852 		/* Make it impossible to de-reference a userspace address */
20853 		if (BPF_CLASS(insn->code) == BPF_LDX &&
20854 		    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
20855 		     BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) {
20856 			struct bpf_insn *patch = &insn_buf[0];
20857 			u64 uaddress_limit = bpf_arch_uaddress_limit();
20858 
20859 			if (!uaddress_limit)
20860 				goto next_insn;
20861 
20862 			*patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
20863 			if (insn->off)
20864 				*patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off);
20865 			*patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32);
20866 			*patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2);
20867 			*patch++ = *insn;
20868 			*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
20869 			*patch++ = BPF_MOV64_IMM(insn->dst_reg, 0);
20870 
20871 			cnt = patch - insn_buf;
20872 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20873 			if (!new_prog)
20874 				return -ENOMEM;
20875 
20876 			delta    += cnt - 1;
20877 			env->prog = prog = new_prog;
20878 			insn      = new_prog->insnsi + i + delta;
20879 			goto next_insn;
20880 		}
20881 
20882 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
20883 		if (BPF_CLASS(insn->code) == BPF_LD &&
20884 		    (BPF_MODE(insn->code) == BPF_ABS ||
20885 		     BPF_MODE(insn->code) == BPF_IND)) {
20886 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
20887 			if (cnt == 0 || cnt >= INSN_BUF_SIZE) {
20888 				verbose(env, "bpf verifier is misconfigured\n");
20889 				return -EINVAL;
20890 			}
20891 
20892 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20893 			if (!new_prog)
20894 				return -ENOMEM;
20895 
20896 			delta    += cnt - 1;
20897 			env->prog = prog = new_prog;
20898 			insn      = new_prog->insnsi + i + delta;
20899 			goto next_insn;
20900 		}
20901 
20902 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
20903 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
20904 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
20905 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
20906 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
20907 			struct bpf_insn *patch = &insn_buf[0];
20908 			bool issrc, isneg, isimm;
20909 			u32 off_reg;
20910 
20911 			aux = &env->insn_aux_data[i + delta];
20912 			if (!aux->alu_state ||
20913 			    aux->alu_state == BPF_ALU_NON_POINTER)
20914 				goto next_insn;
20915 
20916 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
20917 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
20918 				BPF_ALU_SANITIZE_SRC;
20919 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
20920 
20921 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
20922 			if (isimm) {
20923 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
20924 			} else {
20925 				if (isneg)
20926 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
20927 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
20928 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
20929 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
20930 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
20931 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
20932 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
20933 			}
20934 			if (!issrc)
20935 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
20936 			insn->src_reg = BPF_REG_AX;
20937 			if (isneg)
20938 				insn->code = insn->code == code_add ?
20939 					     code_sub : code_add;
20940 			*patch++ = *insn;
20941 			if (issrc && isneg && !isimm)
20942 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
20943 			cnt = patch - insn_buf;
20944 
20945 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20946 			if (!new_prog)
20947 				return -ENOMEM;
20948 
20949 			delta    += cnt - 1;
20950 			env->prog = prog = new_prog;
20951 			insn      = new_prog->insnsi + i + delta;
20952 			goto next_insn;
20953 		}
20954 
20955 		if (is_may_goto_insn(insn)) {
20956 			int stack_off = -stack_depth - 8;
20957 
20958 			stack_depth_extra = 8;
20959 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off);
20960 			if (insn->off >= 0)
20961 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2);
20962 			else
20963 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
20964 			insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
20965 			insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off);
20966 			cnt = 4;
20967 
20968 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20969 			if (!new_prog)
20970 				return -ENOMEM;
20971 
20972 			delta += cnt - 1;
20973 			env->prog = prog = new_prog;
20974 			insn = new_prog->insnsi + i + delta;
20975 			goto next_insn;
20976 		}
20977 
20978 		if (insn->code != (BPF_JMP | BPF_CALL))
20979 			goto next_insn;
20980 		if (insn->src_reg == BPF_PSEUDO_CALL)
20981 			goto next_insn;
20982 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
20983 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
20984 			if (ret)
20985 				return ret;
20986 			if (cnt == 0)
20987 				goto next_insn;
20988 
20989 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20990 			if (!new_prog)
20991 				return -ENOMEM;
20992 
20993 			delta	 += cnt - 1;
20994 			env->prog = prog = new_prog;
20995 			insn	  = new_prog->insnsi + i + delta;
20996 			goto next_insn;
20997 		}
20998 
20999 		/* Skip inlining the helper call if the JIT does it. */
21000 		if (bpf_jit_inlines_helper_call(insn->imm))
21001 			goto next_insn;
21002 
21003 		if (insn->imm == BPF_FUNC_get_route_realm)
21004 			prog->dst_needed = 1;
21005 		if (insn->imm == BPF_FUNC_get_prandom_u32)
21006 			bpf_user_rnd_init_once();
21007 		if (insn->imm == BPF_FUNC_override_return)
21008 			prog->kprobe_override = 1;
21009 		if (insn->imm == BPF_FUNC_tail_call) {
21010 			/* If we tail call into other programs, we
21011 			 * cannot make any assumptions since they can
21012 			 * be replaced dynamically during runtime in
21013 			 * the program array.
21014 			 */
21015 			prog->cb_access = 1;
21016 			if (!allow_tail_call_in_subprogs(env))
21017 				prog->aux->stack_depth = MAX_BPF_STACK;
21018 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
21019 
21020 			/* mark bpf_tail_call as different opcode to avoid
21021 			 * conditional branch in the interpreter for every normal
21022 			 * call and to prevent accidental JITing by JIT compiler
21023 			 * that doesn't support bpf_tail_call yet
21024 			 */
21025 			insn->imm = 0;
21026 			insn->code = BPF_JMP | BPF_TAIL_CALL;
21027 
21028 			aux = &env->insn_aux_data[i + delta];
21029 			if (env->bpf_capable && !prog->blinding_requested &&
21030 			    prog->jit_requested &&
21031 			    !bpf_map_key_poisoned(aux) &&
21032 			    !bpf_map_ptr_poisoned(aux) &&
21033 			    !bpf_map_ptr_unpriv(aux)) {
21034 				struct bpf_jit_poke_descriptor desc = {
21035 					.reason = BPF_POKE_REASON_TAIL_CALL,
21036 					.tail_call.map = aux->map_ptr_state.map_ptr,
21037 					.tail_call.key = bpf_map_key_immediate(aux),
21038 					.insn_idx = i + delta,
21039 				};
21040 
21041 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
21042 				if (ret < 0) {
21043 					verbose(env, "adding tail call poke descriptor failed\n");
21044 					return ret;
21045 				}
21046 
21047 				insn->imm = ret + 1;
21048 				goto next_insn;
21049 			}
21050 
21051 			if (!bpf_map_ptr_unpriv(aux))
21052 				goto next_insn;
21053 
21054 			/* instead of changing every JIT dealing with tail_call
21055 			 * emit two extra insns:
21056 			 * if (index >= max_entries) goto out;
21057 			 * index &= array->index_mask;
21058 			 * to avoid out-of-bounds cpu speculation
21059 			 */
21060 			if (bpf_map_ptr_poisoned(aux)) {
21061 				verbose(env, "tail_call abusing map_ptr\n");
21062 				return -EINVAL;
21063 			}
21064 
21065 			map_ptr = aux->map_ptr_state.map_ptr;
21066 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
21067 						  map_ptr->max_entries, 2);
21068 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
21069 						    container_of(map_ptr,
21070 								 struct bpf_array,
21071 								 map)->index_mask);
21072 			insn_buf[2] = *insn;
21073 			cnt = 3;
21074 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21075 			if (!new_prog)
21076 				return -ENOMEM;
21077 
21078 			delta    += cnt - 1;
21079 			env->prog = prog = new_prog;
21080 			insn      = new_prog->insnsi + i + delta;
21081 			goto next_insn;
21082 		}
21083 
21084 		if (insn->imm == BPF_FUNC_timer_set_callback) {
21085 			/* The verifier will process callback_fn as many times as necessary
21086 			 * with different maps and the register states prepared by
21087 			 * set_timer_callback_state will be accurate.
21088 			 *
21089 			 * The following use case is valid:
21090 			 *   map1 is shared by prog1, prog2, prog3.
21091 			 *   prog1 calls bpf_timer_init for some map1 elements
21092 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
21093 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
21094 			 *   prog3 calls bpf_timer_start for some map1 elements.
21095 			 *     Those that were not both bpf_timer_init-ed and
21096 			 *     bpf_timer_set_callback-ed will return -EINVAL.
21097 			 */
21098 			struct bpf_insn ld_addrs[2] = {
21099 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
21100 			};
21101 
21102 			insn_buf[0] = ld_addrs[0];
21103 			insn_buf[1] = ld_addrs[1];
21104 			insn_buf[2] = *insn;
21105 			cnt = 3;
21106 
21107 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21108 			if (!new_prog)
21109 				return -ENOMEM;
21110 
21111 			delta    += cnt - 1;
21112 			env->prog = prog = new_prog;
21113 			insn      = new_prog->insnsi + i + delta;
21114 			goto patch_call_imm;
21115 		}
21116 
21117 		if (is_storage_get_function(insn->imm)) {
21118 			if (!in_sleepable(env) ||
21119 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
21120 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
21121 			else
21122 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
21123 			insn_buf[1] = *insn;
21124 			cnt = 2;
21125 
21126 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21127 			if (!new_prog)
21128 				return -ENOMEM;
21129 
21130 			delta += cnt - 1;
21131 			env->prog = prog = new_prog;
21132 			insn = new_prog->insnsi + i + delta;
21133 			goto patch_call_imm;
21134 		}
21135 
21136 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
21137 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
21138 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
21139 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
21140 			 */
21141 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
21142 			insn_buf[1] = *insn;
21143 			cnt = 2;
21144 
21145 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21146 			if (!new_prog)
21147 				return -ENOMEM;
21148 
21149 			delta += cnt - 1;
21150 			env->prog = prog = new_prog;
21151 			insn = new_prog->insnsi + i + delta;
21152 			goto patch_call_imm;
21153 		}
21154 
21155 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
21156 		 * and other inlining handlers are currently limited to 64 bit
21157 		 * only.
21158 		 */
21159 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
21160 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
21161 		     insn->imm == BPF_FUNC_map_update_elem ||
21162 		     insn->imm == BPF_FUNC_map_delete_elem ||
21163 		     insn->imm == BPF_FUNC_map_push_elem   ||
21164 		     insn->imm == BPF_FUNC_map_pop_elem    ||
21165 		     insn->imm == BPF_FUNC_map_peek_elem   ||
21166 		     insn->imm == BPF_FUNC_redirect_map    ||
21167 		     insn->imm == BPF_FUNC_for_each_map_elem ||
21168 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
21169 			aux = &env->insn_aux_data[i + delta];
21170 			if (bpf_map_ptr_poisoned(aux))
21171 				goto patch_call_imm;
21172 
21173 			map_ptr = aux->map_ptr_state.map_ptr;
21174 			ops = map_ptr->ops;
21175 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
21176 			    ops->map_gen_lookup) {
21177 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
21178 				if (cnt == -EOPNOTSUPP)
21179 					goto patch_map_ops_generic;
21180 				if (cnt <= 0 || cnt >= INSN_BUF_SIZE) {
21181 					verbose(env, "bpf verifier is misconfigured\n");
21182 					return -EINVAL;
21183 				}
21184 
21185 				new_prog = bpf_patch_insn_data(env, i + delta,
21186 							       insn_buf, cnt);
21187 				if (!new_prog)
21188 					return -ENOMEM;
21189 
21190 				delta    += cnt - 1;
21191 				env->prog = prog = new_prog;
21192 				insn      = new_prog->insnsi + i + delta;
21193 				goto next_insn;
21194 			}
21195 
21196 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
21197 				     (void *(*)(struct bpf_map *map, void *key))NULL));
21198 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
21199 				     (long (*)(struct bpf_map *map, void *key))NULL));
21200 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
21201 				     (long (*)(struct bpf_map *map, void *key, void *value,
21202 					      u64 flags))NULL));
21203 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
21204 				     (long (*)(struct bpf_map *map, void *value,
21205 					      u64 flags))NULL));
21206 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
21207 				     (long (*)(struct bpf_map *map, void *value))NULL));
21208 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
21209 				     (long (*)(struct bpf_map *map, void *value))NULL));
21210 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
21211 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
21212 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
21213 				     (long (*)(struct bpf_map *map,
21214 					      bpf_callback_t callback_fn,
21215 					      void *callback_ctx,
21216 					      u64 flags))NULL));
21217 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
21218 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
21219 
21220 patch_map_ops_generic:
21221 			switch (insn->imm) {
21222 			case BPF_FUNC_map_lookup_elem:
21223 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
21224 				goto next_insn;
21225 			case BPF_FUNC_map_update_elem:
21226 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
21227 				goto next_insn;
21228 			case BPF_FUNC_map_delete_elem:
21229 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
21230 				goto next_insn;
21231 			case BPF_FUNC_map_push_elem:
21232 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
21233 				goto next_insn;
21234 			case BPF_FUNC_map_pop_elem:
21235 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
21236 				goto next_insn;
21237 			case BPF_FUNC_map_peek_elem:
21238 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
21239 				goto next_insn;
21240 			case BPF_FUNC_redirect_map:
21241 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
21242 				goto next_insn;
21243 			case BPF_FUNC_for_each_map_elem:
21244 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
21245 				goto next_insn;
21246 			case BPF_FUNC_map_lookup_percpu_elem:
21247 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
21248 				goto next_insn;
21249 			}
21250 
21251 			goto patch_call_imm;
21252 		}
21253 
21254 		/* Implement bpf_jiffies64 inline. */
21255 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
21256 		    insn->imm == BPF_FUNC_jiffies64) {
21257 			struct bpf_insn ld_jiffies_addr[2] = {
21258 				BPF_LD_IMM64(BPF_REG_0,
21259 					     (unsigned long)&jiffies),
21260 			};
21261 
21262 			insn_buf[0] = ld_jiffies_addr[0];
21263 			insn_buf[1] = ld_jiffies_addr[1];
21264 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
21265 						  BPF_REG_0, 0);
21266 			cnt = 3;
21267 
21268 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
21269 						       cnt);
21270 			if (!new_prog)
21271 				return -ENOMEM;
21272 
21273 			delta    += cnt - 1;
21274 			env->prog = prog = new_prog;
21275 			insn      = new_prog->insnsi + i + delta;
21276 			goto next_insn;
21277 		}
21278 
21279 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
21280 		/* Implement bpf_get_smp_processor_id() inline. */
21281 		if (insn->imm == BPF_FUNC_get_smp_processor_id &&
21282 		    verifier_inlines_helper_call(env, insn->imm)) {
21283 			/* BPF_FUNC_get_smp_processor_id inlining is an
21284 			 * optimization, so if pcpu_hot.cpu_number is ever
21285 			 * changed in some incompatible and hard to support
21286 			 * way, it's fine to back out this inlining logic
21287 			 */
21288 			insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number);
21289 			insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
21290 			insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0);
21291 			cnt = 3;
21292 
21293 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21294 			if (!new_prog)
21295 				return -ENOMEM;
21296 
21297 			delta    += cnt - 1;
21298 			env->prog = prog = new_prog;
21299 			insn      = new_prog->insnsi + i + delta;
21300 			goto next_insn;
21301 		}
21302 #endif
21303 		/* Implement bpf_get_func_arg inline. */
21304 		if (prog_type == BPF_PROG_TYPE_TRACING &&
21305 		    insn->imm == BPF_FUNC_get_func_arg) {
21306 			/* Load nr_args from ctx - 8 */
21307 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
21308 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
21309 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
21310 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
21311 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
21312 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
21313 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
21314 			insn_buf[7] = BPF_JMP_A(1);
21315 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
21316 			cnt = 9;
21317 
21318 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21319 			if (!new_prog)
21320 				return -ENOMEM;
21321 
21322 			delta    += cnt - 1;
21323 			env->prog = prog = new_prog;
21324 			insn      = new_prog->insnsi + i + delta;
21325 			goto next_insn;
21326 		}
21327 
21328 		/* Implement bpf_get_func_ret inline. */
21329 		if (prog_type == BPF_PROG_TYPE_TRACING &&
21330 		    insn->imm == BPF_FUNC_get_func_ret) {
21331 			if (eatype == BPF_TRACE_FEXIT ||
21332 			    eatype == BPF_MODIFY_RETURN) {
21333 				/* Load nr_args from ctx - 8 */
21334 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
21335 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
21336 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
21337 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
21338 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
21339 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
21340 				cnt = 6;
21341 			} else {
21342 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
21343 				cnt = 1;
21344 			}
21345 
21346 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21347 			if (!new_prog)
21348 				return -ENOMEM;
21349 
21350 			delta    += cnt - 1;
21351 			env->prog = prog = new_prog;
21352 			insn      = new_prog->insnsi + i + delta;
21353 			goto next_insn;
21354 		}
21355 
21356 		/* Implement get_func_arg_cnt inline. */
21357 		if (prog_type == BPF_PROG_TYPE_TRACING &&
21358 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
21359 			/* Load nr_args from ctx - 8 */
21360 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
21361 
21362 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
21363 			if (!new_prog)
21364 				return -ENOMEM;
21365 
21366 			env->prog = prog = new_prog;
21367 			insn      = new_prog->insnsi + i + delta;
21368 			goto next_insn;
21369 		}
21370 
21371 		/* Implement bpf_get_func_ip inline. */
21372 		if (prog_type == BPF_PROG_TYPE_TRACING &&
21373 		    insn->imm == BPF_FUNC_get_func_ip) {
21374 			/* Load IP address from ctx - 16 */
21375 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
21376 
21377 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
21378 			if (!new_prog)
21379 				return -ENOMEM;
21380 
21381 			env->prog = prog = new_prog;
21382 			insn      = new_prog->insnsi + i + delta;
21383 			goto next_insn;
21384 		}
21385 
21386 		/* Implement bpf_get_branch_snapshot inline. */
21387 		if (IS_ENABLED(CONFIG_PERF_EVENTS) &&
21388 		    prog->jit_requested && BITS_PER_LONG == 64 &&
21389 		    insn->imm == BPF_FUNC_get_branch_snapshot) {
21390 			/* We are dealing with the following func protos:
21391 			 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags);
21392 			 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt);
21393 			 */
21394 			const u32 br_entry_size = sizeof(struct perf_branch_entry);
21395 
21396 			/* struct perf_branch_entry is part of UAPI and is
21397 			 * used as an array element, so extremely unlikely to
21398 			 * ever grow or shrink
21399 			 */
21400 			BUILD_BUG_ON(br_entry_size != 24);
21401 
21402 			/* if (unlikely(flags)) return -EINVAL */
21403 			insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7);
21404 
21405 			/* Transform size (bytes) into number of entries (cnt = size / 24).
21406 			 * But to avoid expensive division instruction, we implement
21407 			 * divide-by-3 through multiplication, followed by further
21408 			 * division by 8 through 3-bit right shift.
21409 			 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr.,
21410 			 * p. 227, chapter "Unsigned Division by 3" for details and proofs.
21411 			 *
21412 			 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab.
21413 			 */
21414 			insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab);
21415 			insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0);
21416 			insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36);
21417 
21418 			/* call perf_snapshot_branch_stack implementation */
21419 			insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack));
21420 			/* if (entry_cnt == 0) return -ENOENT */
21421 			insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4);
21422 			/* return entry_cnt * sizeof(struct perf_branch_entry) */
21423 			insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size);
21424 			insn_buf[7] = BPF_JMP_A(3);
21425 			/* return -EINVAL; */
21426 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
21427 			insn_buf[9] = BPF_JMP_A(1);
21428 			/* return -ENOENT; */
21429 			insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT);
21430 			cnt = 11;
21431 
21432 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21433 			if (!new_prog)
21434 				return -ENOMEM;
21435 
21436 			delta    += cnt - 1;
21437 			env->prog = prog = new_prog;
21438 			insn      = new_prog->insnsi + i + delta;
21439 			goto next_insn;
21440 		}
21441 
21442 		/* Implement bpf_kptr_xchg inline */
21443 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
21444 		    insn->imm == BPF_FUNC_kptr_xchg &&
21445 		    bpf_jit_supports_ptr_xchg()) {
21446 			insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2);
21447 			insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0);
21448 			cnt = 2;
21449 
21450 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21451 			if (!new_prog)
21452 				return -ENOMEM;
21453 
21454 			delta    += cnt - 1;
21455 			env->prog = prog = new_prog;
21456 			insn      = new_prog->insnsi + i + delta;
21457 			goto next_insn;
21458 		}
21459 patch_call_imm:
21460 		fn = env->ops->get_func_proto(insn->imm, env->prog);
21461 		/* all functions that have prototype and verifier allowed
21462 		 * programs to call them, must be real in-kernel functions
21463 		 */
21464 		if (!fn->func) {
21465 			verbose(env,
21466 				"kernel subsystem misconfigured func %s#%d\n",
21467 				func_id_name(insn->imm), insn->imm);
21468 			return -EFAULT;
21469 		}
21470 		insn->imm = fn->func - __bpf_call_base;
21471 next_insn:
21472 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
21473 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
21474 			subprogs[cur_subprog].stack_extra = stack_depth_extra;
21475 			cur_subprog++;
21476 			stack_depth = subprogs[cur_subprog].stack_depth;
21477 			stack_depth_extra = 0;
21478 		}
21479 		i++;
21480 		insn++;
21481 	}
21482 
21483 	env->prog->aux->stack_depth = subprogs[0].stack_depth;
21484 	for (i = 0; i < env->subprog_cnt; i++) {
21485 		int subprog_start = subprogs[i].start;
21486 		int stack_slots = subprogs[i].stack_extra / 8;
21487 
21488 		if (!stack_slots)
21489 			continue;
21490 		if (stack_slots > 1) {
21491 			verbose(env, "verifier bug: stack_slots supports may_goto only\n");
21492 			return -EFAULT;
21493 		}
21494 
21495 		/* Add ST insn to subprog prologue to init extra stack */
21496 		insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP,
21497 					 -subprogs[i].stack_depth, BPF_MAX_LOOPS);
21498 		/* Copy first actual insn to preserve it */
21499 		insn_buf[1] = env->prog->insnsi[subprog_start];
21500 
21501 		new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2);
21502 		if (!new_prog)
21503 			return -ENOMEM;
21504 		env->prog = prog = new_prog;
21505 		/*
21506 		 * If may_goto is a first insn of a prog there could be a jmp
21507 		 * insn that points to it, hence adjust all such jmps to point
21508 		 * to insn after BPF_ST that inits may_goto count.
21509 		 * Adjustment will succeed because bpf_patch_insn_data() didn't fail.
21510 		 */
21511 		WARN_ON(adjust_jmp_off(env->prog, subprog_start, 1));
21512 	}
21513 
21514 	/* Since poke tab is now finalized, publish aux to tracker. */
21515 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
21516 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
21517 		if (!map_ptr->ops->map_poke_track ||
21518 		    !map_ptr->ops->map_poke_untrack ||
21519 		    !map_ptr->ops->map_poke_run) {
21520 			verbose(env, "bpf verifier is misconfigured\n");
21521 			return -EINVAL;
21522 		}
21523 
21524 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
21525 		if (ret < 0) {
21526 			verbose(env, "tracking tail call prog failed\n");
21527 			return ret;
21528 		}
21529 	}
21530 
21531 	sort_kfunc_descs_by_imm_off(env->prog);
21532 
21533 	return 0;
21534 }
21535 
21536 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
21537 					int position,
21538 					s32 stack_base,
21539 					u32 callback_subprogno,
21540 					u32 *total_cnt)
21541 {
21542 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
21543 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
21544 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
21545 	int reg_loop_max = BPF_REG_6;
21546 	int reg_loop_cnt = BPF_REG_7;
21547 	int reg_loop_ctx = BPF_REG_8;
21548 
21549 	struct bpf_insn *insn_buf = env->insn_buf;
21550 	struct bpf_prog *new_prog;
21551 	u32 callback_start;
21552 	u32 call_insn_offset;
21553 	s32 callback_offset;
21554 	u32 cnt = 0;
21555 
21556 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
21557 	 * be careful to modify this code in sync.
21558 	 */
21559 
21560 	/* Return error and jump to the end of the patch if
21561 	 * expected number of iterations is too big.
21562 	 */
21563 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2);
21564 	insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG);
21565 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16);
21566 	/* spill R6, R7, R8 to use these as loop vars */
21567 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset);
21568 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset);
21569 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset);
21570 	/* initialize loop vars */
21571 	insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1);
21572 	insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0);
21573 	insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3);
21574 	/* loop header,
21575 	 * if reg_loop_cnt >= reg_loop_max skip the loop body
21576 	 */
21577 	insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5);
21578 	/* callback call,
21579 	 * correct callback offset would be set after patching
21580 	 */
21581 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt);
21582 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx);
21583 	insn_buf[cnt++] = BPF_CALL_REL(0);
21584 	/* increment loop counter */
21585 	insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1);
21586 	/* jump to loop header if callback returned 0 */
21587 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6);
21588 	/* return value of bpf_loop,
21589 	 * set R0 to the number of iterations
21590 	 */
21591 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt);
21592 	/* restore original values of R6, R7, R8 */
21593 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset);
21594 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset);
21595 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset);
21596 
21597 	*total_cnt = cnt;
21598 	new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt);
21599 	if (!new_prog)
21600 		return new_prog;
21601 
21602 	/* callback start is known only after patching */
21603 	callback_start = env->subprog_info[callback_subprogno].start;
21604 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
21605 	call_insn_offset = position + 12;
21606 	callback_offset = callback_start - call_insn_offset - 1;
21607 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
21608 
21609 	return new_prog;
21610 }
21611 
21612 static bool is_bpf_loop_call(struct bpf_insn *insn)
21613 {
21614 	return insn->code == (BPF_JMP | BPF_CALL) &&
21615 		insn->src_reg == 0 &&
21616 		insn->imm == BPF_FUNC_loop;
21617 }
21618 
21619 /* For all sub-programs in the program (including main) check
21620  * insn_aux_data to see if there are bpf_loop calls that require
21621  * inlining. If such calls are found the calls are replaced with a
21622  * sequence of instructions produced by `inline_bpf_loop` function and
21623  * subprog stack_depth is increased by the size of 3 registers.
21624  * This stack space is used to spill values of the R6, R7, R8.  These
21625  * registers are used to store the loop bound, counter and context
21626  * variables.
21627  */
21628 static int optimize_bpf_loop(struct bpf_verifier_env *env)
21629 {
21630 	struct bpf_subprog_info *subprogs = env->subprog_info;
21631 	int i, cur_subprog = 0, cnt, delta = 0;
21632 	struct bpf_insn *insn = env->prog->insnsi;
21633 	int insn_cnt = env->prog->len;
21634 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
21635 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
21636 	u16 stack_depth_extra = 0;
21637 
21638 	for (i = 0; i < insn_cnt; i++, insn++) {
21639 		struct bpf_loop_inline_state *inline_state =
21640 			&env->insn_aux_data[i + delta].loop_inline_state;
21641 
21642 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
21643 			struct bpf_prog *new_prog;
21644 
21645 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
21646 			new_prog = inline_bpf_loop(env,
21647 						   i + delta,
21648 						   -(stack_depth + stack_depth_extra),
21649 						   inline_state->callback_subprogno,
21650 						   &cnt);
21651 			if (!new_prog)
21652 				return -ENOMEM;
21653 
21654 			delta     += cnt - 1;
21655 			env->prog  = new_prog;
21656 			insn       = new_prog->insnsi + i + delta;
21657 		}
21658 
21659 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
21660 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
21661 			cur_subprog++;
21662 			stack_depth = subprogs[cur_subprog].stack_depth;
21663 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
21664 			stack_depth_extra = 0;
21665 		}
21666 	}
21667 
21668 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
21669 
21670 	return 0;
21671 }
21672 
21673 /* Remove unnecessary spill/fill pairs, members of fastcall pattern,
21674  * adjust subprograms stack depth when possible.
21675  */
21676 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env)
21677 {
21678 	struct bpf_subprog_info *subprog = env->subprog_info;
21679 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
21680 	struct bpf_insn *insn = env->prog->insnsi;
21681 	int insn_cnt = env->prog->len;
21682 	u32 spills_num;
21683 	bool modified = false;
21684 	int i, j;
21685 
21686 	for (i = 0; i < insn_cnt; i++, insn++) {
21687 		if (aux[i].fastcall_spills_num > 0) {
21688 			spills_num = aux[i].fastcall_spills_num;
21689 			/* NOPs would be removed by opt_remove_nops() */
21690 			for (j = 1; j <= spills_num; ++j) {
21691 				*(insn - j) = NOP;
21692 				*(insn + j) = NOP;
21693 			}
21694 			modified = true;
21695 		}
21696 		if ((subprog + 1)->start == i + 1) {
21697 			if (modified && !subprog->keep_fastcall_stack)
21698 				subprog->stack_depth = -subprog->fastcall_stack_off;
21699 			subprog++;
21700 			modified = false;
21701 		}
21702 	}
21703 
21704 	return 0;
21705 }
21706 
21707 static void free_states(struct bpf_verifier_env *env)
21708 {
21709 	struct bpf_verifier_state_list *sl, *sln;
21710 	int i;
21711 
21712 	sl = env->free_list;
21713 	while (sl) {
21714 		sln = sl->next;
21715 		free_verifier_state(&sl->state, false);
21716 		kfree(sl);
21717 		sl = sln;
21718 	}
21719 	env->free_list = NULL;
21720 
21721 	if (!env->explored_states)
21722 		return;
21723 
21724 	for (i = 0; i < state_htab_size(env); i++) {
21725 		sl = env->explored_states[i];
21726 
21727 		while (sl) {
21728 			sln = sl->next;
21729 			free_verifier_state(&sl->state, false);
21730 			kfree(sl);
21731 			sl = sln;
21732 		}
21733 		env->explored_states[i] = NULL;
21734 	}
21735 }
21736 
21737 static int do_check_common(struct bpf_verifier_env *env, int subprog)
21738 {
21739 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
21740 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
21741 	struct bpf_verifier_state *state;
21742 	struct bpf_reg_state *regs;
21743 	int ret, i;
21744 
21745 	env->prev_linfo = NULL;
21746 	env->pass_cnt++;
21747 
21748 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
21749 	if (!state)
21750 		return -ENOMEM;
21751 	state->curframe = 0;
21752 	state->speculative = false;
21753 	state->branches = 1;
21754 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
21755 	if (!state->frame[0]) {
21756 		kfree(state);
21757 		return -ENOMEM;
21758 	}
21759 	env->cur_state = state;
21760 	init_func_state(env, state->frame[0],
21761 			BPF_MAIN_FUNC /* callsite */,
21762 			0 /* frameno */,
21763 			subprog);
21764 	state->first_insn_idx = env->subprog_info[subprog].start;
21765 	state->last_insn_idx = -1;
21766 
21767 	regs = state->frame[state->curframe]->regs;
21768 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
21769 		const char *sub_name = subprog_name(env, subprog);
21770 		struct bpf_subprog_arg_info *arg;
21771 		struct bpf_reg_state *reg;
21772 
21773 		verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
21774 		ret = btf_prepare_func_args(env, subprog);
21775 		if (ret)
21776 			goto out;
21777 
21778 		if (subprog_is_exc_cb(env, subprog)) {
21779 			state->frame[0]->in_exception_callback_fn = true;
21780 			/* We have already ensured that the callback returns an integer, just
21781 			 * like all global subprogs. We need to determine it only has a single
21782 			 * scalar argument.
21783 			 */
21784 			if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) {
21785 				verbose(env, "exception cb only supports single integer argument\n");
21786 				ret = -EINVAL;
21787 				goto out;
21788 			}
21789 		}
21790 		for (i = BPF_REG_1; i <= sub->arg_cnt; i++) {
21791 			arg = &sub->args[i - BPF_REG_1];
21792 			reg = &regs[i];
21793 
21794 			if (arg->arg_type == ARG_PTR_TO_CTX) {
21795 				reg->type = PTR_TO_CTX;
21796 				mark_reg_known_zero(env, regs, i);
21797 			} else if (arg->arg_type == ARG_ANYTHING) {
21798 				reg->type = SCALAR_VALUE;
21799 				mark_reg_unknown(env, regs, i);
21800 			} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
21801 				/* assume unspecial LOCAL dynptr type */
21802 				__mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen);
21803 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
21804 				reg->type = PTR_TO_MEM;
21805 				if (arg->arg_type & PTR_MAYBE_NULL)
21806 					reg->type |= PTR_MAYBE_NULL;
21807 				mark_reg_known_zero(env, regs, i);
21808 				reg->mem_size = arg->mem_size;
21809 				reg->id = ++env->id_gen;
21810 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
21811 				reg->type = PTR_TO_BTF_ID;
21812 				if (arg->arg_type & PTR_MAYBE_NULL)
21813 					reg->type |= PTR_MAYBE_NULL;
21814 				if (arg->arg_type & PTR_UNTRUSTED)
21815 					reg->type |= PTR_UNTRUSTED;
21816 				if (arg->arg_type & PTR_TRUSTED)
21817 					reg->type |= PTR_TRUSTED;
21818 				mark_reg_known_zero(env, regs, i);
21819 				reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */
21820 				reg->btf_id = arg->btf_id;
21821 				reg->id = ++env->id_gen;
21822 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
21823 				/* caller can pass either PTR_TO_ARENA or SCALAR */
21824 				mark_reg_unknown(env, regs, i);
21825 			} else {
21826 				WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n",
21827 					  i - BPF_REG_1, arg->arg_type);
21828 				ret = -EFAULT;
21829 				goto out;
21830 			}
21831 		}
21832 	} else {
21833 		/* if main BPF program has associated BTF info, validate that
21834 		 * it's matching expected signature, and otherwise mark BTF
21835 		 * info for main program as unreliable
21836 		 */
21837 		if (env->prog->aux->func_info_aux) {
21838 			ret = btf_prepare_func_args(env, 0);
21839 			if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX)
21840 				env->prog->aux->func_info_aux[0].unreliable = true;
21841 		}
21842 
21843 		/* 1st arg to a function */
21844 		regs[BPF_REG_1].type = PTR_TO_CTX;
21845 		mark_reg_known_zero(env, regs, BPF_REG_1);
21846 	}
21847 
21848 	ret = do_check(env);
21849 out:
21850 	/* check for NULL is necessary, since cur_state can be freed inside
21851 	 * do_check() under memory pressure.
21852 	 */
21853 	if (env->cur_state) {
21854 		free_verifier_state(env->cur_state, true);
21855 		env->cur_state = NULL;
21856 	}
21857 	while (!pop_stack(env, NULL, NULL, false));
21858 	if (!ret && pop_log)
21859 		bpf_vlog_reset(&env->log, 0);
21860 	free_states(env);
21861 	return ret;
21862 }
21863 
21864 /* Lazily verify all global functions based on their BTF, if they are called
21865  * from main BPF program or any of subprograms transitively.
21866  * BPF global subprogs called from dead code are not validated.
21867  * All callable global functions must pass verification.
21868  * Otherwise the whole program is rejected.
21869  * Consider:
21870  * int bar(int);
21871  * int foo(int f)
21872  * {
21873  *    return bar(f);
21874  * }
21875  * int bar(int b)
21876  * {
21877  *    ...
21878  * }
21879  * foo() will be verified first for R1=any_scalar_value. During verification it
21880  * will be assumed that bar() already verified successfully and call to bar()
21881  * from foo() will be checked for type match only. Later bar() will be verified
21882  * independently to check that it's safe for R1=any_scalar_value.
21883  */
21884 static int do_check_subprogs(struct bpf_verifier_env *env)
21885 {
21886 	struct bpf_prog_aux *aux = env->prog->aux;
21887 	struct bpf_func_info_aux *sub_aux;
21888 	int i, ret, new_cnt;
21889 
21890 	if (!aux->func_info)
21891 		return 0;
21892 
21893 	/* exception callback is presumed to be always called */
21894 	if (env->exception_callback_subprog)
21895 		subprog_aux(env, env->exception_callback_subprog)->called = true;
21896 
21897 again:
21898 	new_cnt = 0;
21899 	for (i = 1; i < env->subprog_cnt; i++) {
21900 		if (!subprog_is_global(env, i))
21901 			continue;
21902 
21903 		sub_aux = subprog_aux(env, i);
21904 		if (!sub_aux->called || sub_aux->verified)
21905 			continue;
21906 
21907 		env->insn_idx = env->subprog_info[i].start;
21908 		WARN_ON_ONCE(env->insn_idx == 0);
21909 		ret = do_check_common(env, i);
21910 		if (ret) {
21911 			return ret;
21912 		} else if (env->log.level & BPF_LOG_LEVEL) {
21913 			verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
21914 				i, subprog_name(env, i));
21915 		}
21916 
21917 		/* We verified new global subprog, it might have called some
21918 		 * more global subprogs that we haven't verified yet, so we
21919 		 * need to do another pass over subprogs to verify those.
21920 		 */
21921 		sub_aux->verified = true;
21922 		new_cnt++;
21923 	}
21924 
21925 	/* We can't loop forever as we verify at least one global subprog on
21926 	 * each pass.
21927 	 */
21928 	if (new_cnt)
21929 		goto again;
21930 
21931 	return 0;
21932 }
21933 
21934 static int do_check_main(struct bpf_verifier_env *env)
21935 {
21936 	int ret;
21937 
21938 	env->insn_idx = 0;
21939 	ret = do_check_common(env, 0);
21940 	if (!ret)
21941 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
21942 	return ret;
21943 }
21944 
21945 
21946 static void print_verification_stats(struct bpf_verifier_env *env)
21947 {
21948 	int i;
21949 
21950 	if (env->log.level & BPF_LOG_STATS) {
21951 		verbose(env, "verification time %lld usec\n",
21952 			div_u64(env->verification_time, 1000));
21953 		verbose(env, "stack depth ");
21954 		for (i = 0; i < env->subprog_cnt; i++) {
21955 			u32 depth = env->subprog_info[i].stack_depth;
21956 
21957 			verbose(env, "%d", depth);
21958 			if (i + 1 < env->subprog_cnt)
21959 				verbose(env, "+");
21960 		}
21961 		verbose(env, "\n");
21962 	}
21963 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
21964 		"total_states %d peak_states %d mark_read %d\n",
21965 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
21966 		env->max_states_per_insn, env->total_states,
21967 		env->peak_states, env->longest_mark_read_walk);
21968 }
21969 
21970 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
21971 {
21972 	const struct btf_type *t, *func_proto;
21973 	const struct bpf_struct_ops_desc *st_ops_desc;
21974 	const struct bpf_struct_ops *st_ops;
21975 	const struct btf_member *member;
21976 	struct bpf_prog *prog = env->prog;
21977 	u32 btf_id, member_idx;
21978 	struct btf *btf;
21979 	const char *mname;
21980 	int err;
21981 
21982 	if (!prog->gpl_compatible) {
21983 		verbose(env, "struct ops programs must have a GPL compatible license\n");
21984 		return -EINVAL;
21985 	}
21986 
21987 	if (!prog->aux->attach_btf_id)
21988 		return -ENOTSUPP;
21989 
21990 	btf = prog->aux->attach_btf;
21991 	if (btf_is_module(btf)) {
21992 		/* Make sure st_ops is valid through the lifetime of env */
21993 		env->attach_btf_mod = btf_try_get_module(btf);
21994 		if (!env->attach_btf_mod) {
21995 			verbose(env, "struct_ops module %s is not found\n",
21996 				btf_get_name(btf));
21997 			return -ENOTSUPP;
21998 		}
21999 	}
22000 
22001 	btf_id = prog->aux->attach_btf_id;
22002 	st_ops_desc = bpf_struct_ops_find(btf, btf_id);
22003 	if (!st_ops_desc) {
22004 		verbose(env, "attach_btf_id %u is not a supported struct\n",
22005 			btf_id);
22006 		return -ENOTSUPP;
22007 	}
22008 	st_ops = st_ops_desc->st_ops;
22009 
22010 	t = st_ops_desc->type;
22011 	member_idx = prog->expected_attach_type;
22012 	if (member_idx >= btf_type_vlen(t)) {
22013 		verbose(env, "attach to invalid member idx %u of struct %s\n",
22014 			member_idx, st_ops->name);
22015 		return -EINVAL;
22016 	}
22017 
22018 	member = &btf_type_member(t)[member_idx];
22019 	mname = btf_name_by_offset(btf, member->name_off);
22020 	func_proto = btf_type_resolve_func_ptr(btf, member->type,
22021 					       NULL);
22022 	if (!func_proto) {
22023 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
22024 			mname, member_idx, st_ops->name);
22025 		return -EINVAL;
22026 	}
22027 
22028 	err = bpf_struct_ops_supported(st_ops, __btf_member_bit_offset(t, member) / 8);
22029 	if (err) {
22030 		verbose(env, "attach to unsupported member %s of struct %s\n",
22031 			mname, st_ops->name);
22032 		return err;
22033 	}
22034 
22035 	if (st_ops->check_member) {
22036 		err = st_ops->check_member(t, member, prog);
22037 
22038 		if (err) {
22039 			verbose(env, "attach to unsupported member %s of struct %s\n",
22040 				mname, st_ops->name);
22041 			return err;
22042 		}
22043 	}
22044 
22045 	if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) {
22046 		verbose(env, "Private stack not supported by jit\n");
22047 		return -EACCES;
22048 	}
22049 
22050 	/* btf_ctx_access() used this to provide argument type info */
22051 	prog->aux->ctx_arg_info =
22052 		st_ops_desc->arg_info[member_idx].info;
22053 	prog->aux->ctx_arg_info_size =
22054 		st_ops_desc->arg_info[member_idx].cnt;
22055 
22056 	prog->aux->attach_func_proto = func_proto;
22057 	prog->aux->attach_func_name = mname;
22058 	env->ops = st_ops->verifier_ops;
22059 
22060 	return 0;
22061 }
22062 #define SECURITY_PREFIX "security_"
22063 
22064 static int check_attach_modify_return(unsigned long addr, const char *func_name)
22065 {
22066 	if (within_error_injection_list(addr) ||
22067 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
22068 		return 0;
22069 
22070 	return -EINVAL;
22071 }
22072 
22073 /* list of non-sleepable functions that are otherwise on
22074  * ALLOW_ERROR_INJECTION list
22075  */
22076 BTF_SET_START(btf_non_sleepable_error_inject)
22077 /* Three functions below can be called from sleepable and non-sleepable context.
22078  * Assume non-sleepable from bpf safety point of view.
22079  */
22080 BTF_ID(func, __filemap_add_folio)
22081 #ifdef CONFIG_FAIL_PAGE_ALLOC
22082 BTF_ID(func, should_fail_alloc_page)
22083 #endif
22084 #ifdef CONFIG_FAILSLAB
22085 BTF_ID(func, should_failslab)
22086 #endif
22087 BTF_SET_END(btf_non_sleepable_error_inject)
22088 
22089 static int check_non_sleepable_error_inject(u32 btf_id)
22090 {
22091 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
22092 }
22093 
22094 int bpf_check_attach_target(struct bpf_verifier_log *log,
22095 			    const struct bpf_prog *prog,
22096 			    const struct bpf_prog *tgt_prog,
22097 			    u32 btf_id,
22098 			    struct bpf_attach_target_info *tgt_info)
22099 {
22100 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
22101 	bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING;
22102 	char trace_symbol[KSYM_SYMBOL_LEN];
22103 	const char prefix[] = "btf_trace_";
22104 	struct bpf_raw_event_map *btp;
22105 	int ret = 0, subprog = -1, i;
22106 	const struct btf_type *t;
22107 	bool conservative = true;
22108 	const char *tname, *fname;
22109 	struct btf *btf;
22110 	long addr = 0;
22111 	struct module *mod = NULL;
22112 
22113 	if (!btf_id) {
22114 		bpf_log(log, "Tracing programs must provide btf_id\n");
22115 		return -EINVAL;
22116 	}
22117 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
22118 	if (!btf) {
22119 		bpf_log(log,
22120 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
22121 		return -EINVAL;
22122 	}
22123 	t = btf_type_by_id(btf, btf_id);
22124 	if (!t) {
22125 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
22126 		return -EINVAL;
22127 	}
22128 	tname = btf_name_by_offset(btf, t->name_off);
22129 	if (!tname) {
22130 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
22131 		return -EINVAL;
22132 	}
22133 	if (tgt_prog) {
22134 		struct bpf_prog_aux *aux = tgt_prog->aux;
22135 
22136 		if (bpf_prog_is_dev_bound(prog->aux) &&
22137 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
22138 			bpf_log(log, "Target program bound device mismatch");
22139 			return -EINVAL;
22140 		}
22141 
22142 		for (i = 0; i < aux->func_info_cnt; i++)
22143 			if (aux->func_info[i].type_id == btf_id) {
22144 				subprog = i;
22145 				break;
22146 			}
22147 		if (subprog == -1) {
22148 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
22149 			return -EINVAL;
22150 		}
22151 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
22152 			bpf_log(log,
22153 				"%s programs cannot attach to exception callback\n",
22154 				prog_extension ? "Extension" : "FENTRY/FEXIT");
22155 			return -EINVAL;
22156 		}
22157 		conservative = aux->func_info_aux[subprog].unreliable;
22158 		if (prog_extension) {
22159 			if (conservative) {
22160 				bpf_log(log,
22161 					"Cannot replace static functions\n");
22162 				return -EINVAL;
22163 			}
22164 			if (!prog->jit_requested) {
22165 				bpf_log(log,
22166 					"Extension programs should be JITed\n");
22167 				return -EINVAL;
22168 			}
22169 		}
22170 		if (!tgt_prog->jited) {
22171 			bpf_log(log, "Can attach to only JITed progs\n");
22172 			return -EINVAL;
22173 		}
22174 		if (prog_tracing) {
22175 			if (aux->attach_tracing_prog) {
22176 				/*
22177 				 * Target program is an fentry/fexit which is already attached
22178 				 * to another tracing program. More levels of nesting
22179 				 * attachment are not allowed.
22180 				 */
22181 				bpf_log(log, "Cannot nest tracing program attach more than once\n");
22182 				return -EINVAL;
22183 			}
22184 		} else if (tgt_prog->type == prog->type) {
22185 			/*
22186 			 * To avoid potential call chain cycles, prevent attaching of a
22187 			 * program extension to another extension. It's ok to attach
22188 			 * fentry/fexit to extension program.
22189 			 */
22190 			bpf_log(log, "Cannot recursively attach\n");
22191 			return -EINVAL;
22192 		}
22193 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
22194 		    prog_extension &&
22195 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
22196 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
22197 			/* Program extensions can extend all program types
22198 			 * except fentry/fexit. The reason is the following.
22199 			 * The fentry/fexit programs are used for performance
22200 			 * analysis, stats and can be attached to any program
22201 			 * type. When extension program is replacing XDP function
22202 			 * it is necessary to allow performance analysis of all
22203 			 * functions. Both original XDP program and its program
22204 			 * extension. Hence attaching fentry/fexit to
22205 			 * BPF_PROG_TYPE_EXT is allowed. If extending of
22206 			 * fentry/fexit was allowed it would be possible to create
22207 			 * long call chain fentry->extension->fentry->extension
22208 			 * beyond reasonable stack size. Hence extending fentry
22209 			 * is not allowed.
22210 			 */
22211 			bpf_log(log, "Cannot extend fentry/fexit\n");
22212 			return -EINVAL;
22213 		}
22214 	} else {
22215 		if (prog_extension) {
22216 			bpf_log(log, "Cannot replace kernel functions\n");
22217 			return -EINVAL;
22218 		}
22219 	}
22220 
22221 	switch (prog->expected_attach_type) {
22222 	case BPF_TRACE_RAW_TP:
22223 		if (tgt_prog) {
22224 			bpf_log(log,
22225 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
22226 			return -EINVAL;
22227 		}
22228 		if (!btf_type_is_typedef(t)) {
22229 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
22230 				btf_id);
22231 			return -EINVAL;
22232 		}
22233 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
22234 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
22235 				btf_id, tname);
22236 			return -EINVAL;
22237 		}
22238 		tname += sizeof(prefix) - 1;
22239 
22240 		/* The func_proto of "btf_trace_##tname" is generated from typedef without argument
22241 		 * names. Thus using bpf_raw_event_map to get argument names.
22242 		 */
22243 		btp = bpf_get_raw_tracepoint(tname);
22244 		if (!btp)
22245 			return -EINVAL;
22246 		fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL,
22247 					trace_symbol);
22248 		bpf_put_raw_tracepoint(btp);
22249 
22250 		if (fname)
22251 			ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC);
22252 
22253 		if (!fname || ret < 0) {
22254 			bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n",
22255 				prefix, tname);
22256 			t = btf_type_by_id(btf, t->type);
22257 			if (!btf_type_is_ptr(t))
22258 				/* should never happen in valid vmlinux build */
22259 				return -EINVAL;
22260 		} else {
22261 			t = btf_type_by_id(btf, ret);
22262 			if (!btf_type_is_func(t))
22263 				/* should never happen in valid vmlinux build */
22264 				return -EINVAL;
22265 		}
22266 
22267 		t = btf_type_by_id(btf, t->type);
22268 		if (!btf_type_is_func_proto(t))
22269 			/* should never happen in valid vmlinux build */
22270 			return -EINVAL;
22271 
22272 		break;
22273 	case BPF_TRACE_ITER:
22274 		if (!btf_type_is_func(t)) {
22275 			bpf_log(log, "attach_btf_id %u is not a function\n",
22276 				btf_id);
22277 			return -EINVAL;
22278 		}
22279 		t = btf_type_by_id(btf, t->type);
22280 		if (!btf_type_is_func_proto(t))
22281 			return -EINVAL;
22282 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
22283 		if (ret)
22284 			return ret;
22285 		break;
22286 	default:
22287 		if (!prog_extension)
22288 			return -EINVAL;
22289 		fallthrough;
22290 	case BPF_MODIFY_RETURN:
22291 	case BPF_LSM_MAC:
22292 	case BPF_LSM_CGROUP:
22293 	case BPF_TRACE_FENTRY:
22294 	case BPF_TRACE_FEXIT:
22295 		if (!btf_type_is_func(t)) {
22296 			bpf_log(log, "attach_btf_id %u is not a function\n",
22297 				btf_id);
22298 			return -EINVAL;
22299 		}
22300 		if (prog_extension &&
22301 		    btf_check_type_match(log, prog, btf, t))
22302 			return -EINVAL;
22303 		t = btf_type_by_id(btf, t->type);
22304 		if (!btf_type_is_func_proto(t))
22305 			return -EINVAL;
22306 
22307 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
22308 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
22309 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
22310 			return -EINVAL;
22311 
22312 		if (tgt_prog && conservative)
22313 			t = NULL;
22314 
22315 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
22316 		if (ret < 0)
22317 			return ret;
22318 
22319 		if (tgt_prog) {
22320 			if (subprog == 0)
22321 				addr = (long) tgt_prog->bpf_func;
22322 			else
22323 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
22324 		} else {
22325 			if (btf_is_module(btf)) {
22326 				mod = btf_try_get_module(btf);
22327 				if (mod)
22328 					addr = find_kallsyms_symbol_value(mod, tname);
22329 				else
22330 					addr = 0;
22331 			} else {
22332 				addr = kallsyms_lookup_name(tname);
22333 			}
22334 			if (!addr) {
22335 				module_put(mod);
22336 				bpf_log(log,
22337 					"The address of function %s cannot be found\n",
22338 					tname);
22339 				return -ENOENT;
22340 			}
22341 		}
22342 
22343 		if (prog->sleepable) {
22344 			ret = -EINVAL;
22345 			switch (prog->type) {
22346 			case BPF_PROG_TYPE_TRACING:
22347 
22348 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
22349 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
22350 				 */
22351 				if (!check_non_sleepable_error_inject(btf_id) &&
22352 				    within_error_injection_list(addr))
22353 					ret = 0;
22354 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
22355 				 * in the fmodret id set with the KF_SLEEPABLE flag.
22356 				 */
22357 				else {
22358 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
22359 										prog);
22360 
22361 					if (flags && (*flags & KF_SLEEPABLE))
22362 						ret = 0;
22363 				}
22364 				break;
22365 			case BPF_PROG_TYPE_LSM:
22366 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
22367 				 * Only some of them are sleepable.
22368 				 */
22369 				if (bpf_lsm_is_sleepable_hook(btf_id))
22370 					ret = 0;
22371 				break;
22372 			default:
22373 				break;
22374 			}
22375 			if (ret) {
22376 				module_put(mod);
22377 				bpf_log(log, "%s is not sleepable\n", tname);
22378 				return ret;
22379 			}
22380 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
22381 			if (tgt_prog) {
22382 				module_put(mod);
22383 				bpf_log(log, "can't modify return codes of BPF programs\n");
22384 				return -EINVAL;
22385 			}
22386 			ret = -EINVAL;
22387 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
22388 			    !check_attach_modify_return(addr, tname))
22389 				ret = 0;
22390 			if (ret) {
22391 				module_put(mod);
22392 				bpf_log(log, "%s() is not modifiable\n", tname);
22393 				return ret;
22394 			}
22395 		}
22396 
22397 		break;
22398 	}
22399 	tgt_info->tgt_addr = addr;
22400 	tgt_info->tgt_name = tname;
22401 	tgt_info->tgt_type = t;
22402 	tgt_info->tgt_mod = mod;
22403 	return 0;
22404 }
22405 
22406 BTF_SET_START(btf_id_deny)
22407 BTF_ID_UNUSED
22408 #ifdef CONFIG_SMP
22409 BTF_ID(func, migrate_disable)
22410 BTF_ID(func, migrate_enable)
22411 #endif
22412 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
22413 BTF_ID(func, rcu_read_unlock_strict)
22414 #endif
22415 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
22416 BTF_ID(func, preempt_count_add)
22417 BTF_ID(func, preempt_count_sub)
22418 #endif
22419 #ifdef CONFIG_PREEMPT_RCU
22420 BTF_ID(func, __rcu_read_lock)
22421 BTF_ID(func, __rcu_read_unlock)
22422 #endif
22423 BTF_SET_END(btf_id_deny)
22424 
22425 static bool can_be_sleepable(struct bpf_prog *prog)
22426 {
22427 	if (prog->type == BPF_PROG_TYPE_TRACING) {
22428 		switch (prog->expected_attach_type) {
22429 		case BPF_TRACE_FENTRY:
22430 		case BPF_TRACE_FEXIT:
22431 		case BPF_MODIFY_RETURN:
22432 		case BPF_TRACE_ITER:
22433 			return true;
22434 		default:
22435 			return false;
22436 		}
22437 	}
22438 	return prog->type == BPF_PROG_TYPE_LSM ||
22439 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
22440 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
22441 }
22442 
22443 static int check_attach_btf_id(struct bpf_verifier_env *env)
22444 {
22445 	struct bpf_prog *prog = env->prog;
22446 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
22447 	struct bpf_attach_target_info tgt_info = {};
22448 	u32 btf_id = prog->aux->attach_btf_id;
22449 	struct bpf_trampoline *tr;
22450 	int ret;
22451 	u64 key;
22452 
22453 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
22454 		if (prog->sleepable)
22455 			/* attach_btf_id checked to be zero already */
22456 			return 0;
22457 		verbose(env, "Syscall programs can only be sleepable\n");
22458 		return -EINVAL;
22459 	}
22460 
22461 	if (prog->sleepable && !can_be_sleepable(prog)) {
22462 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
22463 		return -EINVAL;
22464 	}
22465 
22466 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
22467 		return check_struct_ops_btf_id(env);
22468 
22469 	if (prog->type != BPF_PROG_TYPE_TRACING &&
22470 	    prog->type != BPF_PROG_TYPE_LSM &&
22471 	    prog->type != BPF_PROG_TYPE_EXT)
22472 		return 0;
22473 
22474 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
22475 	if (ret)
22476 		return ret;
22477 
22478 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
22479 		/* to make freplace equivalent to their targets, they need to
22480 		 * inherit env->ops and expected_attach_type for the rest of the
22481 		 * verification
22482 		 */
22483 		env->ops = bpf_verifier_ops[tgt_prog->type];
22484 		prog->expected_attach_type = tgt_prog->expected_attach_type;
22485 	}
22486 
22487 	/* store info about the attachment target that will be used later */
22488 	prog->aux->attach_func_proto = tgt_info.tgt_type;
22489 	prog->aux->attach_func_name = tgt_info.tgt_name;
22490 	prog->aux->mod = tgt_info.tgt_mod;
22491 
22492 	if (tgt_prog) {
22493 		prog->aux->saved_dst_prog_type = tgt_prog->type;
22494 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
22495 	}
22496 
22497 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
22498 		prog->aux->attach_btf_trace = true;
22499 		return 0;
22500 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
22501 		if (!bpf_iter_prog_supported(prog))
22502 			return -EINVAL;
22503 		return 0;
22504 	}
22505 
22506 	if (prog->type == BPF_PROG_TYPE_LSM) {
22507 		ret = bpf_lsm_verify_prog(&env->log, prog);
22508 		if (ret < 0)
22509 			return ret;
22510 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
22511 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
22512 		return -EINVAL;
22513 	}
22514 
22515 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
22516 	tr = bpf_trampoline_get(key, &tgt_info);
22517 	if (!tr)
22518 		return -ENOMEM;
22519 
22520 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
22521 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
22522 
22523 	prog->aux->dst_trampoline = tr;
22524 	return 0;
22525 }
22526 
22527 struct btf *bpf_get_btf_vmlinux(void)
22528 {
22529 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
22530 		mutex_lock(&bpf_verifier_lock);
22531 		if (!btf_vmlinux)
22532 			btf_vmlinux = btf_parse_vmlinux();
22533 		mutex_unlock(&bpf_verifier_lock);
22534 	}
22535 	return btf_vmlinux;
22536 }
22537 
22538 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
22539 {
22540 	u64 start_time = ktime_get_ns();
22541 	struct bpf_verifier_env *env;
22542 	int i, len, ret = -EINVAL, err;
22543 	u32 log_true_size;
22544 	bool is_priv;
22545 
22546 	/* no program is valid */
22547 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
22548 		return -EINVAL;
22549 
22550 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
22551 	 * allocate/free it every time bpf_check() is called
22552 	 */
22553 	env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
22554 	if (!env)
22555 		return -ENOMEM;
22556 
22557 	env->bt.env = env;
22558 
22559 	len = (*prog)->len;
22560 	env->insn_aux_data =
22561 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
22562 	ret = -ENOMEM;
22563 	if (!env->insn_aux_data)
22564 		goto err_free_env;
22565 	for (i = 0; i < len; i++)
22566 		env->insn_aux_data[i].orig_idx = i;
22567 	env->prog = *prog;
22568 	env->ops = bpf_verifier_ops[env->prog->type];
22569 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
22570 
22571 	env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token);
22572 	env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token);
22573 	env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token);
22574 	env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token);
22575 	env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF);
22576 
22577 	bpf_get_btf_vmlinux();
22578 
22579 	/* grab the mutex to protect few globals used by verifier */
22580 	if (!is_priv)
22581 		mutex_lock(&bpf_verifier_lock);
22582 
22583 	/* user could have requested verbose verifier output
22584 	 * and supplied buffer to store the verification trace
22585 	 */
22586 	ret = bpf_vlog_init(&env->log, attr->log_level,
22587 			    (char __user *) (unsigned long) attr->log_buf,
22588 			    attr->log_size);
22589 	if (ret)
22590 		goto err_unlock;
22591 
22592 	mark_verifier_state_clean(env);
22593 
22594 	if (IS_ERR(btf_vmlinux)) {
22595 		/* Either gcc or pahole or kernel are broken. */
22596 		verbose(env, "in-kernel BTF is malformed\n");
22597 		ret = PTR_ERR(btf_vmlinux);
22598 		goto skip_full_check;
22599 	}
22600 
22601 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
22602 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
22603 		env->strict_alignment = true;
22604 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
22605 		env->strict_alignment = false;
22606 
22607 	if (is_priv)
22608 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
22609 	env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
22610 
22611 	env->explored_states = kvcalloc(state_htab_size(env),
22612 				       sizeof(struct bpf_verifier_state_list *),
22613 				       GFP_USER);
22614 	ret = -ENOMEM;
22615 	if (!env->explored_states)
22616 		goto skip_full_check;
22617 
22618 	ret = check_btf_info_early(env, attr, uattr);
22619 	if (ret < 0)
22620 		goto skip_full_check;
22621 
22622 	ret = add_subprog_and_kfunc(env);
22623 	if (ret < 0)
22624 		goto skip_full_check;
22625 
22626 	ret = check_subprogs(env);
22627 	if (ret < 0)
22628 		goto skip_full_check;
22629 
22630 	ret = check_btf_info(env, attr, uattr);
22631 	if (ret < 0)
22632 		goto skip_full_check;
22633 
22634 	ret = check_attach_btf_id(env);
22635 	if (ret)
22636 		goto skip_full_check;
22637 
22638 	ret = resolve_pseudo_ldimm64(env);
22639 	if (ret < 0)
22640 		goto skip_full_check;
22641 
22642 	if (bpf_prog_is_offloaded(env->prog->aux)) {
22643 		ret = bpf_prog_offload_verifier_prep(env->prog);
22644 		if (ret)
22645 			goto skip_full_check;
22646 	}
22647 
22648 	ret = check_cfg(env);
22649 	if (ret < 0)
22650 		goto skip_full_check;
22651 
22652 	ret = mark_fastcall_patterns(env);
22653 	if (ret < 0)
22654 		goto skip_full_check;
22655 
22656 	ret = do_check_main(env);
22657 	ret = ret ?: do_check_subprogs(env);
22658 
22659 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
22660 		ret = bpf_prog_offload_finalize(env);
22661 
22662 skip_full_check:
22663 	kvfree(env->explored_states);
22664 
22665 	/* might decrease stack depth, keep it before passes that
22666 	 * allocate additional slots.
22667 	 */
22668 	if (ret == 0)
22669 		ret = remove_fastcall_spills_fills(env);
22670 
22671 	if (ret == 0)
22672 		ret = check_max_stack_depth(env);
22673 
22674 	/* instruction rewrites happen after this point */
22675 	if (ret == 0)
22676 		ret = optimize_bpf_loop(env);
22677 
22678 	if (is_priv) {
22679 		if (ret == 0)
22680 			opt_hard_wire_dead_code_branches(env);
22681 		if (ret == 0)
22682 			ret = opt_remove_dead_code(env);
22683 		if (ret == 0)
22684 			ret = opt_remove_nops(env);
22685 	} else {
22686 		if (ret == 0)
22687 			sanitize_dead_code(env);
22688 	}
22689 
22690 	if (ret == 0)
22691 		/* program is valid, convert *(u32*)(ctx + off) accesses */
22692 		ret = convert_ctx_accesses(env);
22693 
22694 	if (ret == 0)
22695 		ret = do_misc_fixups(env);
22696 
22697 	/* do 32-bit optimization after insn patching has done so those patched
22698 	 * insns could be handled correctly.
22699 	 */
22700 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
22701 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
22702 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
22703 								     : false;
22704 	}
22705 
22706 	if (ret == 0)
22707 		ret = fixup_call_args(env);
22708 
22709 	env->verification_time = ktime_get_ns() - start_time;
22710 	print_verification_stats(env);
22711 	env->prog->aux->verified_insns = env->insn_processed;
22712 
22713 	/* preserve original error even if log finalization is successful */
22714 	err = bpf_vlog_finalize(&env->log, &log_true_size);
22715 	if (err)
22716 		ret = err;
22717 
22718 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
22719 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
22720 				  &log_true_size, sizeof(log_true_size))) {
22721 		ret = -EFAULT;
22722 		goto err_release_maps;
22723 	}
22724 
22725 	if (ret)
22726 		goto err_release_maps;
22727 
22728 	if (env->used_map_cnt) {
22729 		/* if program passed verifier, update used_maps in bpf_prog_info */
22730 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
22731 							  sizeof(env->used_maps[0]),
22732 							  GFP_KERNEL);
22733 
22734 		if (!env->prog->aux->used_maps) {
22735 			ret = -ENOMEM;
22736 			goto err_release_maps;
22737 		}
22738 
22739 		memcpy(env->prog->aux->used_maps, env->used_maps,
22740 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
22741 		env->prog->aux->used_map_cnt = env->used_map_cnt;
22742 	}
22743 	if (env->used_btf_cnt) {
22744 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
22745 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
22746 							  sizeof(env->used_btfs[0]),
22747 							  GFP_KERNEL);
22748 		if (!env->prog->aux->used_btfs) {
22749 			ret = -ENOMEM;
22750 			goto err_release_maps;
22751 		}
22752 
22753 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
22754 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
22755 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
22756 	}
22757 	if (env->used_map_cnt || env->used_btf_cnt) {
22758 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
22759 		 * bpf_ld_imm64 instructions
22760 		 */
22761 		convert_pseudo_ld_imm64(env);
22762 	}
22763 
22764 	adjust_btf_func(env);
22765 
22766 err_release_maps:
22767 	if (!env->prog->aux->used_maps)
22768 		/* if we didn't copy map pointers into bpf_prog_info, release
22769 		 * them now. Otherwise free_used_maps() will release them.
22770 		 */
22771 		release_maps(env);
22772 	if (!env->prog->aux->used_btfs)
22773 		release_btfs(env);
22774 
22775 	/* extension progs temporarily inherit the attach_type of their targets
22776 	   for verification purposes, so set it back to zero before returning
22777 	 */
22778 	if (env->prog->type == BPF_PROG_TYPE_EXT)
22779 		env->prog->expected_attach_type = 0;
22780 
22781 	*prog = env->prog;
22782 
22783 	module_put(env->attach_btf_mod);
22784 err_unlock:
22785 	if (!is_priv)
22786 		mutex_unlock(&bpf_verifier_lock);
22787 	vfree(env->insn_aux_data);
22788 	kvfree(env->insn_hist);
22789 err_free_env:
22790 	kvfree(env);
22791 	return ret;
22792 }
22793