1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 #include <linux/trace_events.h> 32 #include <linux/kallsyms.h> 33 34 #include "disasm.h" 35 36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 38 [_id] = & _name ## _verifier_ops, 39 #define BPF_MAP_TYPE(_id, _ops) 40 #define BPF_LINK_TYPE(_id, _name) 41 #include <linux/bpf_types.h> 42 #undef BPF_PROG_TYPE 43 #undef BPF_MAP_TYPE 44 #undef BPF_LINK_TYPE 45 }; 46 47 struct bpf_mem_alloc bpf_global_percpu_ma; 48 static bool bpf_global_percpu_ma_set; 49 50 /* bpf_check() is a static code analyzer that walks eBPF program 51 * instruction by instruction and updates register/stack state. 52 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 53 * 54 * The first pass is depth-first-search to check that the program is a DAG. 55 * It rejects the following programs: 56 * - larger than BPF_MAXINSNS insns 57 * - if loop is present (detected via back-edge) 58 * - unreachable insns exist (shouldn't be a forest. program = one function) 59 * - out of bounds or malformed jumps 60 * The second pass is all possible path descent from the 1st insn. 61 * Since it's analyzing all paths through the program, the length of the 62 * analysis is limited to 64k insn, which may be hit even if total number of 63 * insn is less then 4K, but there are too many branches that change stack/regs. 64 * Number of 'branches to be analyzed' is limited to 1k 65 * 66 * On entry to each instruction, each register has a type, and the instruction 67 * changes the types of the registers depending on instruction semantics. 68 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 69 * copied to R1. 70 * 71 * All registers are 64-bit. 72 * R0 - return register 73 * R1-R5 argument passing registers 74 * R6-R9 callee saved registers 75 * R10 - frame pointer read-only 76 * 77 * At the start of BPF program the register R1 contains a pointer to bpf_context 78 * and has type PTR_TO_CTX. 79 * 80 * Verifier tracks arithmetic operations on pointers in case: 81 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 82 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 83 * 1st insn copies R10 (which has FRAME_PTR) type into R1 84 * and 2nd arithmetic instruction is pattern matched to recognize 85 * that it wants to construct a pointer to some element within stack. 86 * So after 2nd insn, the register R1 has type PTR_TO_STACK 87 * (and -20 constant is saved for further stack bounds checking). 88 * Meaning that this reg is a pointer to stack plus known immediate constant. 89 * 90 * Most of the time the registers have SCALAR_VALUE type, which 91 * means the register has some value, but it's not a valid pointer. 92 * (like pointer plus pointer becomes SCALAR_VALUE type) 93 * 94 * When verifier sees load or store instructions the type of base register 95 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 96 * four pointer types recognized by check_mem_access() function. 97 * 98 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 99 * and the range of [ptr, ptr + map's value_size) is accessible. 100 * 101 * registers used to pass values to function calls are checked against 102 * function argument constraints. 103 * 104 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 105 * It means that the register type passed to this function must be 106 * PTR_TO_STACK and it will be used inside the function as 107 * 'pointer to map element key' 108 * 109 * For example the argument constraints for bpf_map_lookup_elem(): 110 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 111 * .arg1_type = ARG_CONST_MAP_PTR, 112 * .arg2_type = ARG_PTR_TO_MAP_KEY, 113 * 114 * ret_type says that this function returns 'pointer to map elem value or null' 115 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 116 * 2nd argument should be a pointer to stack, which will be used inside 117 * the helper function as a pointer to map element key. 118 * 119 * On the kernel side the helper function looks like: 120 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 121 * { 122 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 123 * void *key = (void *) (unsigned long) r2; 124 * void *value; 125 * 126 * here kernel can access 'key' and 'map' pointers safely, knowing that 127 * [key, key + map->key_size) bytes are valid and were initialized on 128 * the stack of eBPF program. 129 * } 130 * 131 * Corresponding eBPF program may look like: 132 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 133 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 134 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 135 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 136 * here verifier looks at prototype of map_lookup_elem() and sees: 137 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 138 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 139 * 140 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 141 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 142 * and were initialized prior to this call. 143 * If it's ok, then verifier allows this BPF_CALL insn and looks at 144 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 145 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 146 * returns either pointer to map value or NULL. 147 * 148 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 149 * insn, the register holding that pointer in the true branch changes state to 150 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 151 * branch. See check_cond_jmp_op(). 152 * 153 * After the call R0 is set to return type of the function and registers R1-R5 154 * are set to NOT_INIT to indicate that they are no longer readable. 155 * 156 * The following reference types represent a potential reference to a kernel 157 * resource which, after first being allocated, must be checked and freed by 158 * the BPF program: 159 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 160 * 161 * When the verifier sees a helper call return a reference type, it allocates a 162 * pointer id for the reference and stores it in the current function state. 163 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 164 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 165 * passes through a NULL-check conditional. For the branch wherein the state is 166 * changed to CONST_IMM, the verifier releases the reference. 167 * 168 * For each helper function that allocates a reference, such as 169 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 170 * bpf_sk_release(). When a reference type passes into the release function, 171 * the verifier also releases the reference. If any unchecked or unreleased 172 * reference remains at the end of the program, the verifier rejects it. 173 */ 174 175 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 176 struct bpf_verifier_stack_elem { 177 /* verifier state is 'st' 178 * before processing instruction 'insn_idx' 179 * and after processing instruction 'prev_insn_idx' 180 */ 181 struct bpf_verifier_state st; 182 int insn_idx; 183 int prev_insn_idx; 184 struct bpf_verifier_stack_elem *next; 185 /* length of verifier log at the time this state was pushed on stack */ 186 u32 log_pos; 187 }; 188 189 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 190 #define BPF_COMPLEXITY_LIMIT_STATES 64 191 192 #define BPF_MAP_KEY_POISON (1ULL << 63) 193 #define BPF_MAP_KEY_SEEN (1ULL << 62) 194 195 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 196 197 #define BPF_PRIV_STACK_MIN_SIZE 64 198 199 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 200 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 201 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 202 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 203 static int ref_set_non_owning(struct bpf_verifier_env *env, 204 struct bpf_reg_state *reg); 205 static void specialize_kfunc(struct bpf_verifier_env *env, 206 u32 func_id, u16 offset, unsigned long *addr); 207 static bool is_trusted_reg(const struct bpf_reg_state *reg); 208 209 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_ptr_state.poison; 212 } 213 214 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 215 { 216 return aux->map_ptr_state.unpriv; 217 } 218 219 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 220 struct bpf_map *map, 221 bool unpriv, bool poison) 222 { 223 unpriv |= bpf_map_ptr_unpriv(aux); 224 aux->map_ptr_state.unpriv = unpriv; 225 aux->map_ptr_state.poison = poison; 226 aux->map_ptr_state.map_ptr = map; 227 } 228 229 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 230 { 231 return aux->map_key_state & BPF_MAP_KEY_POISON; 232 } 233 234 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 235 { 236 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 237 } 238 239 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 240 { 241 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 242 } 243 244 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 245 { 246 bool poisoned = bpf_map_key_poisoned(aux); 247 248 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 249 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 250 } 251 252 static bool bpf_helper_call(const struct bpf_insn *insn) 253 { 254 return insn->code == (BPF_JMP | BPF_CALL) && 255 insn->src_reg == 0; 256 } 257 258 static bool bpf_pseudo_call(const struct bpf_insn *insn) 259 { 260 return insn->code == (BPF_JMP | BPF_CALL) && 261 insn->src_reg == BPF_PSEUDO_CALL; 262 } 263 264 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 265 { 266 return insn->code == (BPF_JMP | BPF_CALL) && 267 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 268 } 269 270 struct bpf_call_arg_meta { 271 struct bpf_map *map_ptr; 272 bool raw_mode; 273 bool pkt_access; 274 u8 release_regno; 275 int regno; 276 int access_size; 277 int mem_size; 278 u64 msize_max_value; 279 int ref_obj_id; 280 int dynptr_id; 281 int map_uid; 282 int func_id; 283 struct btf *btf; 284 u32 btf_id; 285 struct btf *ret_btf; 286 u32 ret_btf_id; 287 u32 subprogno; 288 struct btf_field *kptr_field; 289 }; 290 291 struct bpf_kfunc_call_arg_meta { 292 /* In parameters */ 293 struct btf *btf; 294 u32 func_id; 295 u32 kfunc_flags; 296 const struct btf_type *func_proto; 297 const char *func_name; 298 /* Out parameters */ 299 u32 ref_obj_id; 300 u8 release_regno; 301 bool r0_rdonly; 302 u32 ret_btf_id; 303 u64 r0_size; 304 u32 subprogno; 305 struct { 306 u64 value; 307 bool found; 308 } arg_constant; 309 310 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 311 * generally to pass info about user-defined local kptr types to later 312 * verification logic 313 * bpf_obj_drop/bpf_percpu_obj_drop 314 * Record the local kptr type to be drop'd 315 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 316 * Record the local kptr type to be refcount_incr'd and use 317 * arg_owning_ref to determine whether refcount_acquire should be 318 * fallible 319 */ 320 struct btf *arg_btf; 321 u32 arg_btf_id; 322 bool arg_owning_ref; 323 324 struct { 325 struct btf_field *field; 326 } arg_list_head; 327 struct { 328 struct btf_field *field; 329 } arg_rbtree_root; 330 struct { 331 enum bpf_dynptr_type type; 332 u32 id; 333 u32 ref_obj_id; 334 } initialized_dynptr; 335 struct { 336 u8 spi; 337 u8 frameno; 338 } iter; 339 struct { 340 struct bpf_map *ptr; 341 int uid; 342 } map; 343 u64 mem_size; 344 }; 345 346 struct btf *btf_vmlinux; 347 348 static const char *btf_type_name(const struct btf *btf, u32 id) 349 { 350 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 351 } 352 353 static DEFINE_MUTEX(bpf_verifier_lock); 354 static DEFINE_MUTEX(bpf_percpu_ma_lock); 355 356 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 357 { 358 struct bpf_verifier_env *env = private_data; 359 va_list args; 360 361 if (!bpf_verifier_log_needed(&env->log)) 362 return; 363 364 va_start(args, fmt); 365 bpf_verifier_vlog(&env->log, fmt, args); 366 va_end(args); 367 } 368 369 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 370 struct bpf_reg_state *reg, 371 struct bpf_retval_range range, const char *ctx, 372 const char *reg_name) 373 { 374 bool unknown = true; 375 376 verbose(env, "%s the register %s has", ctx, reg_name); 377 if (reg->smin_value > S64_MIN) { 378 verbose(env, " smin=%lld", reg->smin_value); 379 unknown = false; 380 } 381 if (reg->smax_value < S64_MAX) { 382 verbose(env, " smax=%lld", reg->smax_value); 383 unknown = false; 384 } 385 if (unknown) 386 verbose(env, " unknown scalar value"); 387 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); 388 } 389 390 static bool reg_not_null(const struct bpf_reg_state *reg) 391 { 392 enum bpf_reg_type type; 393 394 type = reg->type; 395 if (type_may_be_null(type)) 396 return false; 397 398 type = base_type(type); 399 return type == PTR_TO_SOCKET || 400 type == PTR_TO_TCP_SOCK || 401 type == PTR_TO_MAP_VALUE || 402 type == PTR_TO_MAP_KEY || 403 type == PTR_TO_SOCK_COMMON || 404 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 405 type == PTR_TO_MEM; 406 } 407 408 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 409 { 410 struct btf_record *rec = NULL; 411 struct btf_struct_meta *meta; 412 413 if (reg->type == PTR_TO_MAP_VALUE) { 414 rec = reg->map_ptr->record; 415 } else if (type_is_ptr_alloc_obj(reg->type)) { 416 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 417 if (meta) 418 rec = meta->record; 419 } 420 return rec; 421 } 422 423 static bool mask_raw_tp_reg_cond(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) { 424 return reg->type == (PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL) && 425 bpf_prog_is_raw_tp(env->prog) && !reg->ref_obj_id; 426 } 427 428 static bool mask_raw_tp_reg(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 429 { 430 if (!mask_raw_tp_reg_cond(env, reg)) 431 return false; 432 reg->type &= ~PTR_MAYBE_NULL; 433 return true; 434 } 435 436 static void unmask_raw_tp_reg(struct bpf_reg_state *reg, bool result) 437 { 438 if (result) 439 reg->type |= PTR_MAYBE_NULL; 440 } 441 442 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 443 { 444 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 445 446 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 447 } 448 449 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 450 { 451 struct bpf_func_info *info; 452 453 if (!env->prog->aux->func_info) 454 return ""; 455 456 info = &env->prog->aux->func_info[subprog]; 457 return btf_type_name(env->prog->aux->btf, info->type_id); 458 } 459 460 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) 461 { 462 struct bpf_subprog_info *info = subprog_info(env, subprog); 463 464 info->is_cb = true; 465 info->is_async_cb = true; 466 info->is_exception_cb = true; 467 } 468 469 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) 470 { 471 return subprog_info(env, subprog)->is_exception_cb; 472 } 473 474 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 475 { 476 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 477 } 478 479 static bool type_is_rdonly_mem(u32 type) 480 { 481 return type & MEM_RDONLY; 482 } 483 484 static bool is_acquire_function(enum bpf_func_id func_id, 485 const struct bpf_map *map) 486 { 487 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 488 489 if (func_id == BPF_FUNC_sk_lookup_tcp || 490 func_id == BPF_FUNC_sk_lookup_udp || 491 func_id == BPF_FUNC_skc_lookup_tcp || 492 func_id == BPF_FUNC_ringbuf_reserve || 493 func_id == BPF_FUNC_kptr_xchg) 494 return true; 495 496 if (func_id == BPF_FUNC_map_lookup_elem && 497 (map_type == BPF_MAP_TYPE_SOCKMAP || 498 map_type == BPF_MAP_TYPE_SOCKHASH)) 499 return true; 500 501 return false; 502 } 503 504 static bool is_ptr_cast_function(enum bpf_func_id func_id) 505 { 506 return func_id == BPF_FUNC_tcp_sock || 507 func_id == BPF_FUNC_sk_fullsock || 508 func_id == BPF_FUNC_skc_to_tcp_sock || 509 func_id == BPF_FUNC_skc_to_tcp6_sock || 510 func_id == BPF_FUNC_skc_to_udp6_sock || 511 func_id == BPF_FUNC_skc_to_mptcp_sock || 512 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 513 func_id == BPF_FUNC_skc_to_tcp_request_sock; 514 } 515 516 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 517 { 518 return func_id == BPF_FUNC_dynptr_data; 519 } 520 521 static bool is_sync_callback_calling_kfunc(u32 btf_id); 522 static bool is_async_callback_calling_kfunc(u32 btf_id); 523 static bool is_callback_calling_kfunc(u32 btf_id); 524 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 525 526 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id); 527 528 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 529 { 530 return func_id == BPF_FUNC_for_each_map_elem || 531 func_id == BPF_FUNC_find_vma || 532 func_id == BPF_FUNC_loop || 533 func_id == BPF_FUNC_user_ringbuf_drain; 534 } 535 536 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 537 { 538 return func_id == BPF_FUNC_timer_set_callback; 539 } 540 541 static bool is_callback_calling_function(enum bpf_func_id func_id) 542 { 543 return is_sync_callback_calling_function(func_id) || 544 is_async_callback_calling_function(func_id); 545 } 546 547 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 548 { 549 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 550 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 551 } 552 553 static bool is_async_callback_calling_insn(struct bpf_insn *insn) 554 { 555 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) || 556 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm)); 557 } 558 559 static bool is_may_goto_insn(struct bpf_insn *insn) 560 { 561 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; 562 } 563 564 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) 565 { 566 return is_may_goto_insn(&env->prog->insnsi[insn_idx]); 567 } 568 569 static bool is_storage_get_function(enum bpf_func_id func_id) 570 { 571 return func_id == BPF_FUNC_sk_storage_get || 572 func_id == BPF_FUNC_inode_storage_get || 573 func_id == BPF_FUNC_task_storage_get || 574 func_id == BPF_FUNC_cgrp_storage_get; 575 } 576 577 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 578 const struct bpf_map *map) 579 { 580 int ref_obj_uses = 0; 581 582 if (is_ptr_cast_function(func_id)) 583 ref_obj_uses++; 584 if (is_acquire_function(func_id, map)) 585 ref_obj_uses++; 586 if (is_dynptr_ref_function(func_id)) 587 ref_obj_uses++; 588 589 return ref_obj_uses > 1; 590 } 591 592 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 593 { 594 return BPF_CLASS(insn->code) == BPF_STX && 595 BPF_MODE(insn->code) == BPF_ATOMIC && 596 insn->imm == BPF_CMPXCHG; 597 } 598 599 static int __get_spi(s32 off) 600 { 601 return (-off - 1) / BPF_REG_SIZE; 602 } 603 604 static struct bpf_func_state *func(struct bpf_verifier_env *env, 605 const struct bpf_reg_state *reg) 606 { 607 struct bpf_verifier_state *cur = env->cur_state; 608 609 return cur->frame[reg->frameno]; 610 } 611 612 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 613 { 614 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 615 616 /* We need to check that slots between [spi - nr_slots + 1, spi] are 617 * within [0, allocated_stack). 618 * 619 * Please note that the spi grows downwards. For example, a dynptr 620 * takes the size of two stack slots; the first slot will be at 621 * spi and the second slot will be at spi - 1. 622 */ 623 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 624 } 625 626 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 627 const char *obj_kind, int nr_slots) 628 { 629 int off, spi; 630 631 if (!tnum_is_const(reg->var_off)) { 632 verbose(env, "%s has to be at a constant offset\n", obj_kind); 633 return -EINVAL; 634 } 635 636 off = reg->off + reg->var_off.value; 637 if (off % BPF_REG_SIZE) { 638 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 639 return -EINVAL; 640 } 641 642 spi = __get_spi(off); 643 if (spi + 1 < nr_slots) { 644 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 645 return -EINVAL; 646 } 647 648 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 649 return -ERANGE; 650 return spi; 651 } 652 653 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 654 { 655 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 656 } 657 658 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 659 { 660 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 661 } 662 663 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 664 { 665 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 666 case DYNPTR_TYPE_LOCAL: 667 return BPF_DYNPTR_TYPE_LOCAL; 668 case DYNPTR_TYPE_RINGBUF: 669 return BPF_DYNPTR_TYPE_RINGBUF; 670 case DYNPTR_TYPE_SKB: 671 return BPF_DYNPTR_TYPE_SKB; 672 case DYNPTR_TYPE_XDP: 673 return BPF_DYNPTR_TYPE_XDP; 674 default: 675 return BPF_DYNPTR_TYPE_INVALID; 676 } 677 } 678 679 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 680 { 681 switch (type) { 682 case BPF_DYNPTR_TYPE_LOCAL: 683 return DYNPTR_TYPE_LOCAL; 684 case BPF_DYNPTR_TYPE_RINGBUF: 685 return DYNPTR_TYPE_RINGBUF; 686 case BPF_DYNPTR_TYPE_SKB: 687 return DYNPTR_TYPE_SKB; 688 case BPF_DYNPTR_TYPE_XDP: 689 return DYNPTR_TYPE_XDP; 690 default: 691 return 0; 692 } 693 } 694 695 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 696 { 697 return type == BPF_DYNPTR_TYPE_RINGBUF; 698 } 699 700 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 701 enum bpf_dynptr_type type, 702 bool first_slot, int dynptr_id); 703 704 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 705 struct bpf_reg_state *reg); 706 707 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 708 struct bpf_reg_state *sreg1, 709 struct bpf_reg_state *sreg2, 710 enum bpf_dynptr_type type) 711 { 712 int id = ++env->id_gen; 713 714 __mark_dynptr_reg(sreg1, type, true, id); 715 __mark_dynptr_reg(sreg2, type, false, id); 716 } 717 718 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 719 struct bpf_reg_state *reg, 720 enum bpf_dynptr_type type) 721 { 722 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 723 } 724 725 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 726 struct bpf_func_state *state, int spi); 727 728 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 729 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 730 { 731 struct bpf_func_state *state = func(env, reg); 732 enum bpf_dynptr_type type; 733 int spi, i, err; 734 735 spi = dynptr_get_spi(env, reg); 736 if (spi < 0) 737 return spi; 738 739 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 740 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 741 * to ensure that for the following example: 742 * [d1][d1][d2][d2] 743 * spi 3 2 1 0 744 * So marking spi = 2 should lead to destruction of both d1 and d2. In 745 * case they do belong to same dynptr, second call won't see slot_type 746 * as STACK_DYNPTR and will simply skip destruction. 747 */ 748 err = destroy_if_dynptr_stack_slot(env, state, spi); 749 if (err) 750 return err; 751 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 752 if (err) 753 return err; 754 755 for (i = 0; i < BPF_REG_SIZE; i++) { 756 state->stack[spi].slot_type[i] = STACK_DYNPTR; 757 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 758 } 759 760 type = arg_to_dynptr_type(arg_type); 761 if (type == BPF_DYNPTR_TYPE_INVALID) 762 return -EINVAL; 763 764 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 765 &state->stack[spi - 1].spilled_ptr, type); 766 767 if (dynptr_type_refcounted(type)) { 768 /* The id is used to track proper releasing */ 769 int id; 770 771 if (clone_ref_obj_id) 772 id = clone_ref_obj_id; 773 else 774 id = acquire_reference_state(env, insn_idx); 775 776 if (id < 0) 777 return id; 778 779 state->stack[spi].spilled_ptr.ref_obj_id = id; 780 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 781 } 782 783 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 784 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 785 786 return 0; 787 } 788 789 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 790 { 791 int i; 792 793 for (i = 0; i < BPF_REG_SIZE; i++) { 794 state->stack[spi].slot_type[i] = STACK_INVALID; 795 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 796 } 797 798 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 799 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 800 801 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 802 * 803 * While we don't allow reading STACK_INVALID, it is still possible to 804 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 805 * helpers or insns can do partial read of that part without failing, 806 * but check_stack_range_initialized, check_stack_read_var_off, and 807 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 808 * the slot conservatively. Hence we need to prevent those liveness 809 * marking walks. 810 * 811 * This was not a problem before because STACK_INVALID is only set by 812 * default (where the default reg state has its reg->parent as NULL), or 813 * in clean_live_states after REG_LIVE_DONE (at which point 814 * mark_reg_read won't walk reg->parent chain), but not randomly during 815 * verifier state exploration (like we did above). Hence, for our case 816 * parentage chain will still be live (i.e. reg->parent may be 817 * non-NULL), while earlier reg->parent was NULL, so we need 818 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 819 * done later on reads or by mark_dynptr_read as well to unnecessary 820 * mark registers in verifier state. 821 */ 822 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 823 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 824 } 825 826 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 827 { 828 struct bpf_func_state *state = func(env, reg); 829 int spi, ref_obj_id, i; 830 831 spi = dynptr_get_spi(env, reg); 832 if (spi < 0) 833 return spi; 834 835 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 836 invalidate_dynptr(env, state, spi); 837 return 0; 838 } 839 840 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 841 842 /* If the dynptr has a ref_obj_id, then we need to invalidate 843 * two things: 844 * 845 * 1) Any dynptrs with a matching ref_obj_id (clones) 846 * 2) Any slices derived from this dynptr. 847 */ 848 849 /* Invalidate any slices associated with this dynptr */ 850 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 851 852 /* Invalidate any dynptr clones */ 853 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 854 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 855 continue; 856 857 /* it should always be the case that if the ref obj id 858 * matches then the stack slot also belongs to a 859 * dynptr 860 */ 861 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 862 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 863 return -EFAULT; 864 } 865 if (state->stack[i].spilled_ptr.dynptr.first_slot) 866 invalidate_dynptr(env, state, i); 867 } 868 869 return 0; 870 } 871 872 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 873 struct bpf_reg_state *reg); 874 875 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 876 { 877 if (!env->allow_ptr_leaks) 878 __mark_reg_not_init(env, reg); 879 else 880 __mark_reg_unknown(env, reg); 881 } 882 883 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 884 struct bpf_func_state *state, int spi) 885 { 886 struct bpf_func_state *fstate; 887 struct bpf_reg_state *dreg; 888 int i, dynptr_id; 889 890 /* We always ensure that STACK_DYNPTR is never set partially, 891 * hence just checking for slot_type[0] is enough. This is 892 * different for STACK_SPILL, where it may be only set for 893 * 1 byte, so code has to use is_spilled_reg. 894 */ 895 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 896 return 0; 897 898 /* Reposition spi to first slot */ 899 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 900 spi = spi + 1; 901 902 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 903 verbose(env, "cannot overwrite referenced dynptr\n"); 904 return -EINVAL; 905 } 906 907 mark_stack_slot_scratched(env, spi); 908 mark_stack_slot_scratched(env, spi - 1); 909 910 /* Writing partially to one dynptr stack slot destroys both. */ 911 for (i = 0; i < BPF_REG_SIZE; i++) { 912 state->stack[spi].slot_type[i] = STACK_INVALID; 913 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 914 } 915 916 dynptr_id = state->stack[spi].spilled_ptr.id; 917 /* Invalidate any slices associated with this dynptr */ 918 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 919 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 920 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 921 continue; 922 if (dreg->dynptr_id == dynptr_id) 923 mark_reg_invalid(env, dreg); 924 })); 925 926 /* Do not release reference state, we are destroying dynptr on stack, 927 * not using some helper to release it. Just reset register. 928 */ 929 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 930 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 931 932 /* Same reason as unmark_stack_slots_dynptr above */ 933 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 934 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 935 936 return 0; 937 } 938 939 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 940 { 941 int spi; 942 943 if (reg->type == CONST_PTR_TO_DYNPTR) 944 return false; 945 946 spi = dynptr_get_spi(env, reg); 947 948 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 949 * error because this just means the stack state hasn't been updated yet. 950 * We will do check_mem_access to check and update stack bounds later. 951 */ 952 if (spi < 0 && spi != -ERANGE) 953 return false; 954 955 /* We don't need to check if the stack slots are marked by previous 956 * dynptr initializations because we allow overwriting existing unreferenced 957 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 958 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 959 * touching are completely destructed before we reinitialize them for a new 960 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 961 * instead of delaying it until the end where the user will get "Unreleased 962 * reference" error. 963 */ 964 return true; 965 } 966 967 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 968 { 969 struct bpf_func_state *state = func(env, reg); 970 int i, spi; 971 972 /* This already represents first slot of initialized bpf_dynptr. 973 * 974 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 975 * check_func_arg_reg_off's logic, so we don't need to check its 976 * offset and alignment. 977 */ 978 if (reg->type == CONST_PTR_TO_DYNPTR) 979 return true; 980 981 spi = dynptr_get_spi(env, reg); 982 if (spi < 0) 983 return false; 984 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 985 return false; 986 987 for (i = 0; i < BPF_REG_SIZE; i++) { 988 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 989 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 990 return false; 991 } 992 993 return true; 994 } 995 996 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 997 enum bpf_arg_type arg_type) 998 { 999 struct bpf_func_state *state = func(env, reg); 1000 enum bpf_dynptr_type dynptr_type; 1001 int spi; 1002 1003 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1004 if (arg_type == ARG_PTR_TO_DYNPTR) 1005 return true; 1006 1007 dynptr_type = arg_to_dynptr_type(arg_type); 1008 if (reg->type == CONST_PTR_TO_DYNPTR) { 1009 return reg->dynptr.type == dynptr_type; 1010 } else { 1011 spi = dynptr_get_spi(env, reg); 1012 if (spi < 0) 1013 return false; 1014 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1015 } 1016 } 1017 1018 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1019 1020 static bool in_rcu_cs(struct bpf_verifier_env *env); 1021 1022 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 1023 1024 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1025 struct bpf_kfunc_call_arg_meta *meta, 1026 struct bpf_reg_state *reg, int insn_idx, 1027 struct btf *btf, u32 btf_id, int nr_slots) 1028 { 1029 struct bpf_func_state *state = func(env, reg); 1030 int spi, i, j, id; 1031 1032 spi = iter_get_spi(env, reg, nr_slots); 1033 if (spi < 0) 1034 return spi; 1035 1036 id = acquire_reference_state(env, insn_idx); 1037 if (id < 0) 1038 return id; 1039 1040 for (i = 0; i < nr_slots; i++) { 1041 struct bpf_stack_state *slot = &state->stack[spi - i]; 1042 struct bpf_reg_state *st = &slot->spilled_ptr; 1043 1044 __mark_reg_known_zero(st); 1045 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1046 if (is_kfunc_rcu_protected(meta)) { 1047 if (in_rcu_cs(env)) 1048 st->type |= MEM_RCU; 1049 else 1050 st->type |= PTR_UNTRUSTED; 1051 } 1052 st->live |= REG_LIVE_WRITTEN; 1053 st->ref_obj_id = i == 0 ? id : 0; 1054 st->iter.btf = btf; 1055 st->iter.btf_id = btf_id; 1056 st->iter.state = BPF_ITER_STATE_ACTIVE; 1057 st->iter.depth = 0; 1058 1059 for (j = 0; j < BPF_REG_SIZE; j++) 1060 slot->slot_type[j] = STACK_ITER; 1061 1062 mark_stack_slot_scratched(env, spi - i); 1063 } 1064 1065 return 0; 1066 } 1067 1068 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1069 struct bpf_reg_state *reg, int nr_slots) 1070 { 1071 struct bpf_func_state *state = func(env, reg); 1072 int spi, i, j; 1073 1074 spi = iter_get_spi(env, reg, nr_slots); 1075 if (spi < 0) 1076 return spi; 1077 1078 for (i = 0; i < nr_slots; i++) { 1079 struct bpf_stack_state *slot = &state->stack[spi - i]; 1080 struct bpf_reg_state *st = &slot->spilled_ptr; 1081 1082 if (i == 0) 1083 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1084 1085 __mark_reg_not_init(env, st); 1086 1087 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1088 st->live |= REG_LIVE_WRITTEN; 1089 1090 for (j = 0; j < BPF_REG_SIZE; j++) 1091 slot->slot_type[j] = STACK_INVALID; 1092 1093 mark_stack_slot_scratched(env, spi - i); 1094 } 1095 1096 return 0; 1097 } 1098 1099 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1100 struct bpf_reg_state *reg, int nr_slots) 1101 { 1102 struct bpf_func_state *state = func(env, reg); 1103 int spi, i, j; 1104 1105 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1106 * will do check_mem_access to check and update stack bounds later, so 1107 * return true for that case. 1108 */ 1109 spi = iter_get_spi(env, reg, nr_slots); 1110 if (spi == -ERANGE) 1111 return true; 1112 if (spi < 0) 1113 return false; 1114 1115 for (i = 0; i < nr_slots; i++) { 1116 struct bpf_stack_state *slot = &state->stack[spi - i]; 1117 1118 for (j = 0; j < BPF_REG_SIZE; j++) 1119 if (slot->slot_type[j] == STACK_ITER) 1120 return false; 1121 } 1122 1123 return true; 1124 } 1125 1126 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1127 struct btf *btf, u32 btf_id, int nr_slots) 1128 { 1129 struct bpf_func_state *state = func(env, reg); 1130 int spi, i, j; 1131 1132 spi = iter_get_spi(env, reg, nr_slots); 1133 if (spi < 0) 1134 return -EINVAL; 1135 1136 for (i = 0; i < nr_slots; i++) { 1137 struct bpf_stack_state *slot = &state->stack[spi - i]; 1138 struct bpf_reg_state *st = &slot->spilled_ptr; 1139 1140 if (st->type & PTR_UNTRUSTED) 1141 return -EPROTO; 1142 /* only main (first) slot has ref_obj_id set */ 1143 if (i == 0 && !st->ref_obj_id) 1144 return -EINVAL; 1145 if (i != 0 && st->ref_obj_id) 1146 return -EINVAL; 1147 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1148 return -EINVAL; 1149 1150 for (j = 0; j < BPF_REG_SIZE; j++) 1151 if (slot->slot_type[j] != STACK_ITER) 1152 return -EINVAL; 1153 } 1154 1155 return 0; 1156 } 1157 1158 /* Check if given stack slot is "special": 1159 * - spilled register state (STACK_SPILL); 1160 * - dynptr state (STACK_DYNPTR); 1161 * - iter state (STACK_ITER). 1162 */ 1163 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1164 { 1165 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1166 1167 switch (type) { 1168 case STACK_SPILL: 1169 case STACK_DYNPTR: 1170 case STACK_ITER: 1171 return true; 1172 case STACK_INVALID: 1173 case STACK_MISC: 1174 case STACK_ZERO: 1175 return false; 1176 default: 1177 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1178 return true; 1179 } 1180 } 1181 1182 /* The reg state of a pointer or a bounded scalar was saved when 1183 * it was spilled to the stack. 1184 */ 1185 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1186 { 1187 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1188 } 1189 1190 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1191 { 1192 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1193 stack->spilled_ptr.type == SCALAR_VALUE; 1194 } 1195 1196 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) 1197 { 1198 return stack->slot_type[0] == STACK_SPILL && 1199 stack->spilled_ptr.type == SCALAR_VALUE; 1200 } 1201 1202 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which 1203 * case they are equivalent, or it's STACK_ZERO, in which case we preserve 1204 * more precise STACK_ZERO. 1205 * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take 1206 * env->allow_ptr_leaks into account and force STACK_MISC, if necessary. 1207 */ 1208 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) 1209 { 1210 if (*stype == STACK_ZERO) 1211 return; 1212 if (env->allow_ptr_leaks && *stype == STACK_INVALID) 1213 return; 1214 *stype = STACK_MISC; 1215 } 1216 1217 static void scrub_spilled_slot(u8 *stype) 1218 { 1219 if (*stype != STACK_INVALID) 1220 *stype = STACK_MISC; 1221 } 1222 1223 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1224 * small to hold src. This is different from krealloc since we don't want to preserve 1225 * the contents of dst. 1226 * 1227 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1228 * not be allocated. 1229 */ 1230 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1231 { 1232 size_t alloc_bytes; 1233 void *orig = dst; 1234 size_t bytes; 1235 1236 if (ZERO_OR_NULL_PTR(src)) 1237 goto out; 1238 1239 if (unlikely(check_mul_overflow(n, size, &bytes))) 1240 return NULL; 1241 1242 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1243 dst = krealloc(orig, alloc_bytes, flags); 1244 if (!dst) { 1245 kfree(orig); 1246 return NULL; 1247 } 1248 1249 memcpy(dst, src, bytes); 1250 out: 1251 return dst ? dst : ZERO_SIZE_PTR; 1252 } 1253 1254 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1255 * small to hold new_n items. new items are zeroed out if the array grows. 1256 * 1257 * Contrary to krealloc_array, does not free arr if new_n is zero. 1258 */ 1259 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1260 { 1261 size_t alloc_size; 1262 void *new_arr; 1263 1264 if (!new_n || old_n == new_n) 1265 goto out; 1266 1267 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1268 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1269 if (!new_arr) { 1270 kfree(arr); 1271 return NULL; 1272 } 1273 arr = new_arr; 1274 1275 if (new_n > old_n) 1276 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1277 1278 out: 1279 return arr ? arr : ZERO_SIZE_PTR; 1280 } 1281 1282 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1283 { 1284 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1285 sizeof(struct bpf_reference_state), GFP_KERNEL); 1286 if (!dst->refs) 1287 return -ENOMEM; 1288 1289 dst->active_locks = src->active_locks; 1290 dst->acquired_refs = src->acquired_refs; 1291 return 0; 1292 } 1293 1294 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1295 { 1296 size_t n = src->allocated_stack / BPF_REG_SIZE; 1297 1298 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1299 GFP_KERNEL); 1300 if (!dst->stack) 1301 return -ENOMEM; 1302 1303 dst->allocated_stack = src->allocated_stack; 1304 return 0; 1305 } 1306 1307 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1308 { 1309 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1310 sizeof(struct bpf_reference_state)); 1311 if (!state->refs) 1312 return -ENOMEM; 1313 1314 state->acquired_refs = n; 1315 return 0; 1316 } 1317 1318 /* Possibly update state->allocated_stack to be at least size bytes. Also 1319 * possibly update the function's high-water mark in its bpf_subprog_info. 1320 */ 1321 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1322 { 1323 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; 1324 1325 /* The stack size is always a multiple of BPF_REG_SIZE. */ 1326 size = round_up(size, BPF_REG_SIZE); 1327 n = size / BPF_REG_SIZE; 1328 1329 if (old_n >= n) 1330 return 0; 1331 1332 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1333 if (!state->stack) 1334 return -ENOMEM; 1335 1336 state->allocated_stack = size; 1337 1338 /* update known max for given subprogram */ 1339 if (env->subprog_info[state->subprogno].stack_depth < size) 1340 env->subprog_info[state->subprogno].stack_depth = size; 1341 1342 return 0; 1343 } 1344 1345 /* Acquire a pointer id from the env and update the state->refs to include 1346 * this new pointer reference. 1347 * On success, returns a valid pointer id to associate with the register 1348 * On failure, returns a negative errno. 1349 */ 1350 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1351 { 1352 struct bpf_func_state *state = cur_func(env); 1353 int new_ofs = state->acquired_refs; 1354 int id, err; 1355 1356 err = resize_reference_state(state, state->acquired_refs + 1); 1357 if (err) 1358 return err; 1359 id = ++env->id_gen; 1360 state->refs[new_ofs].type = REF_TYPE_PTR; 1361 state->refs[new_ofs].id = id; 1362 state->refs[new_ofs].insn_idx = insn_idx; 1363 1364 return id; 1365 } 1366 1367 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type, 1368 int id, void *ptr) 1369 { 1370 struct bpf_func_state *state = cur_func(env); 1371 int new_ofs = state->acquired_refs; 1372 int err; 1373 1374 err = resize_reference_state(state, state->acquired_refs + 1); 1375 if (err) 1376 return err; 1377 state->refs[new_ofs].type = type; 1378 state->refs[new_ofs].id = id; 1379 state->refs[new_ofs].insn_idx = insn_idx; 1380 state->refs[new_ofs].ptr = ptr; 1381 1382 state->active_locks++; 1383 return 0; 1384 } 1385 1386 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1387 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1388 { 1389 int i, last_idx; 1390 1391 last_idx = state->acquired_refs - 1; 1392 for (i = 0; i < state->acquired_refs; i++) { 1393 if (state->refs[i].type != REF_TYPE_PTR) 1394 continue; 1395 if (state->refs[i].id == ptr_id) { 1396 if (last_idx && i != last_idx) 1397 memcpy(&state->refs[i], &state->refs[last_idx], 1398 sizeof(*state->refs)); 1399 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1400 state->acquired_refs--; 1401 return 0; 1402 } 1403 } 1404 return -EINVAL; 1405 } 1406 1407 static int release_lock_state(struct bpf_func_state *state, int type, int id, void *ptr) 1408 { 1409 int i, last_idx; 1410 1411 last_idx = state->acquired_refs - 1; 1412 for (i = 0; i < state->acquired_refs; i++) { 1413 if (state->refs[i].type != type) 1414 continue; 1415 if (state->refs[i].id == id && state->refs[i].ptr == ptr) { 1416 if (last_idx && i != last_idx) 1417 memcpy(&state->refs[i], &state->refs[last_idx], 1418 sizeof(*state->refs)); 1419 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1420 state->acquired_refs--; 1421 state->active_locks--; 1422 return 0; 1423 } 1424 } 1425 return -EINVAL; 1426 } 1427 1428 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_env *env, enum ref_state_type type, 1429 int id, void *ptr) 1430 { 1431 struct bpf_func_state *state = cur_func(env); 1432 int i; 1433 1434 for (i = 0; i < state->acquired_refs; i++) { 1435 struct bpf_reference_state *s = &state->refs[i]; 1436 1437 if (s->type == REF_TYPE_PTR || s->type != type) 1438 continue; 1439 1440 if (s->id == id && s->ptr == ptr) 1441 return s; 1442 } 1443 return NULL; 1444 } 1445 1446 static void free_func_state(struct bpf_func_state *state) 1447 { 1448 if (!state) 1449 return; 1450 kfree(state->refs); 1451 kfree(state->stack); 1452 kfree(state); 1453 } 1454 1455 static void free_verifier_state(struct bpf_verifier_state *state, 1456 bool free_self) 1457 { 1458 int i; 1459 1460 for (i = 0; i <= state->curframe; i++) { 1461 free_func_state(state->frame[i]); 1462 state->frame[i] = NULL; 1463 } 1464 if (free_self) 1465 kfree(state); 1466 } 1467 1468 /* copy verifier state from src to dst growing dst stack space 1469 * when necessary to accommodate larger src stack 1470 */ 1471 static int copy_func_state(struct bpf_func_state *dst, 1472 const struct bpf_func_state *src) 1473 { 1474 int err; 1475 1476 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1477 err = copy_reference_state(dst, src); 1478 if (err) 1479 return err; 1480 return copy_stack_state(dst, src); 1481 } 1482 1483 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1484 const struct bpf_verifier_state *src) 1485 { 1486 struct bpf_func_state *dst; 1487 int i, err; 1488 1489 /* if dst has more stack frames then src frame, free them, this is also 1490 * necessary in case of exceptional exits using bpf_throw. 1491 */ 1492 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1493 free_func_state(dst_state->frame[i]); 1494 dst_state->frame[i] = NULL; 1495 } 1496 dst_state->speculative = src->speculative; 1497 dst_state->active_rcu_lock = src->active_rcu_lock; 1498 dst_state->active_preempt_lock = src->active_preempt_lock; 1499 dst_state->in_sleepable = src->in_sleepable; 1500 dst_state->curframe = src->curframe; 1501 dst_state->branches = src->branches; 1502 dst_state->parent = src->parent; 1503 dst_state->first_insn_idx = src->first_insn_idx; 1504 dst_state->last_insn_idx = src->last_insn_idx; 1505 dst_state->insn_hist_start = src->insn_hist_start; 1506 dst_state->insn_hist_end = src->insn_hist_end; 1507 dst_state->dfs_depth = src->dfs_depth; 1508 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1509 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1510 dst_state->may_goto_depth = src->may_goto_depth; 1511 for (i = 0; i <= src->curframe; i++) { 1512 dst = dst_state->frame[i]; 1513 if (!dst) { 1514 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1515 if (!dst) 1516 return -ENOMEM; 1517 dst_state->frame[i] = dst; 1518 } 1519 err = copy_func_state(dst, src->frame[i]); 1520 if (err) 1521 return err; 1522 } 1523 return 0; 1524 } 1525 1526 static u32 state_htab_size(struct bpf_verifier_env *env) 1527 { 1528 return env->prog->len; 1529 } 1530 1531 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1532 { 1533 struct bpf_verifier_state *cur = env->cur_state; 1534 struct bpf_func_state *state = cur->frame[cur->curframe]; 1535 1536 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1537 } 1538 1539 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1540 { 1541 int fr; 1542 1543 if (a->curframe != b->curframe) 1544 return false; 1545 1546 for (fr = a->curframe; fr >= 0; fr--) 1547 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1548 return false; 1549 1550 return true; 1551 } 1552 1553 /* Open coded iterators allow back-edges in the state graph in order to 1554 * check unbounded loops that iterators. 1555 * 1556 * In is_state_visited() it is necessary to know if explored states are 1557 * part of some loops in order to decide whether non-exact states 1558 * comparison could be used: 1559 * - non-exact states comparison establishes sub-state relation and uses 1560 * read and precision marks to do so, these marks are propagated from 1561 * children states and thus are not guaranteed to be final in a loop; 1562 * - exact states comparison just checks if current and explored states 1563 * are identical (and thus form a back-edge). 1564 * 1565 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1566 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1567 * algorithm for loop structure detection and gives an overview of 1568 * relevant terminology. It also has helpful illustrations. 1569 * 1570 * [1] https://api.semanticscholar.org/CorpusID:15784067 1571 * 1572 * We use a similar algorithm but because loop nested structure is 1573 * irrelevant for verifier ours is significantly simpler and resembles 1574 * strongly connected components algorithm from Sedgewick's textbook. 1575 * 1576 * Define topmost loop entry as a first node of the loop traversed in a 1577 * depth first search starting from initial state. The goal of the loop 1578 * tracking algorithm is to associate topmost loop entries with states 1579 * derived from these entries. 1580 * 1581 * For each step in the DFS states traversal algorithm needs to identify 1582 * the following situations: 1583 * 1584 * initial initial initial 1585 * | | | 1586 * V V V 1587 * ... ... .---------> hdr 1588 * | | | | 1589 * V V | V 1590 * cur .-> succ | .------... 1591 * | | | | | | 1592 * V | V | V V 1593 * succ '-- cur | ... ... 1594 * | | | 1595 * | V V 1596 * | succ <- cur 1597 * | | 1598 * | V 1599 * | ... 1600 * | | 1601 * '----' 1602 * 1603 * (A) successor state of cur (B) successor state of cur or it's entry 1604 * not yet traversed are in current DFS path, thus cur and succ 1605 * are members of the same outermost loop 1606 * 1607 * initial initial 1608 * | | 1609 * V V 1610 * ... ... 1611 * | | 1612 * V V 1613 * .------... .------... 1614 * | | | | 1615 * V V V V 1616 * .-> hdr ... ... ... 1617 * | | | | | 1618 * | V V V V 1619 * | succ <- cur succ <- cur 1620 * | | | 1621 * | V V 1622 * | ... ... 1623 * | | | 1624 * '----' exit 1625 * 1626 * (C) successor state of cur is a part of some loop but this loop 1627 * does not include cur or successor state is not in a loop at all. 1628 * 1629 * Algorithm could be described as the following python code: 1630 * 1631 * traversed = set() # Set of traversed nodes 1632 * entries = {} # Mapping from node to loop entry 1633 * depths = {} # Depth level assigned to graph node 1634 * path = set() # Current DFS path 1635 * 1636 * # Find outermost loop entry known for n 1637 * def get_loop_entry(n): 1638 * h = entries.get(n, None) 1639 * while h in entries and entries[h] != h: 1640 * h = entries[h] 1641 * return h 1642 * 1643 * # Update n's loop entry if h's outermost entry comes 1644 * # before n's outermost entry in current DFS path. 1645 * def update_loop_entry(n, h): 1646 * n1 = get_loop_entry(n) or n 1647 * h1 = get_loop_entry(h) or h 1648 * if h1 in path and depths[h1] <= depths[n1]: 1649 * entries[n] = h1 1650 * 1651 * def dfs(n, depth): 1652 * traversed.add(n) 1653 * path.add(n) 1654 * depths[n] = depth 1655 * for succ in G.successors(n): 1656 * if succ not in traversed: 1657 * # Case A: explore succ and update cur's loop entry 1658 * # only if succ's entry is in current DFS path. 1659 * dfs(succ, depth + 1) 1660 * h = get_loop_entry(succ) 1661 * update_loop_entry(n, h) 1662 * else: 1663 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1664 * update_loop_entry(n, succ) 1665 * path.remove(n) 1666 * 1667 * To adapt this algorithm for use with verifier: 1668 * - use st->branch == 0 as a signal that DFS of succ had been finished 1669 * and cur's loop entry has to be updated (case A), handle this in 1670 * update_branch_counts(); 1671 * - use st->branch > 0 as a signal that st is in the current DFS path; 1672 * - handle cases B and C in is_state_visited(); 1673 * - update topmost loop entry for intermediate states in get_loop_entry(). 1674 */ 1675 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1676 { 1677 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1678 1679 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1680 topmost = topmost->loop_entry; 1681 /* Update loop entries for intermediate states to avoid this 1682 * traversal in future get_loop_entry() calls. 1683 */ 1684 while (st && st->loop_entry != topmost) { 1685 old = st->loop_entry; 1686 st->loop_entry = topmost; 1687 st = old; 1688 } 1689 return topmost; 1690 } 1691 1692 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1693 { 1694 struct bpf_verifier_state *cur1, *hdr1; 1695 1696 cur1 = get_loop_entry(cur) ?: cur; 1697 hdr1 = get_loop_entry(hdr) ?: hdr; 1698 /* The head1->branches check decides between cases B and C in 1699 * comment for get_loop_entry(). If hdr1->branches == 0 then 1700 * head's topmost loop entry is not in current DFS path, 1701 * hence 'cur' and 'hdr' are not in the same loop and there is 1702 * no need to update cur->loop_entry. 1703 */ 1704 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1705 cur->loop_entry = hdr; 1706 hdr->used_as_loop_entry = true; 1707 } 1708 } 1709 1710 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1711 { 1712 while (st) { 1713 u32 br = --st->branches; 1714 1715 /* br == 0 signals that DFS exploration for 'st' is finished, 1716 * thus it is necessary to update parent's loop entry if it 1717 * turned out that st is a part of some loop. 1718 * This is a part of 'case A' in get_loop_entry() comment. 1719 */ 1720 if (br == 0 && st->parent && st->loop_entry) 1721 update_loop_entry(st->parent, st->loop_entry); 1722 1723 /* WARN_ON(br > 1) technically makes sense here, 1724 * but see comment in push_stack(), hence: 1725 */ 1726 WARN_ONCE((int)br < 0, 1727 "BUG update_branch_counts:branches_to_explore=%d\n", 1728 br); 1729 if (br) 1730 break; 1731 st = st->parent; 1732 } 1733 } 1734 1735 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1736 int *insn_idx, bool pop_log) 1737 { 1738 struct bpf_verifier_state *cur = env->cur_state; 1739 struct bpf_verifier_stack_elem *elem, *head = env->head; 1740 int err; 1741 1742 if (env->head == NULL) 1743 return -ENOENT; 1744 1745 if (cur) { 1746 err = copy_verifier_state(cur, &head->st); 1747 if (err) 1748 return err; 1749 } 1750 if (pop_log) 1751 bpf_vlog_reset(&env->log, head->log_pos); 1752 if (insn_idx) 1753 *insn_idx = head->insn_idx; 1754 if (prev_insn_idx) 1755 *prev_insn_idx = head->prev_insn_idx; 1756 elem = head->next; 1757 free_verifier_state(&head->st, false); 1758 kfree(head); 1759 env->head = elem; 1760 env->stack_size--; 1761 return 0; 1762 } 1763 1764 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1765 int insn_idx, int prev_insn_idx, 1766 bool speculative) 1767 { 1768 struct bpf_verifier_state *cur = env->cur_state; 1769 struct bpf_verifier_stack_elem *elem; 1770 int err; 1771 1772 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1773 if (!elem) 1774 goto err; 1775 1776 elem->insn_idx = insn_idx; 1777 elem->prev_insn_idx = prev_insn_idx; 1778 elem->next = env->head; 1779 elem->log_pos = env->log.end_pos; 1780 env->head = elem; 1781 env->stack_size++; 1782 err = copy_verifier_state(&elem->st, cur); 1783 if (err) 1784 goto err; 1785 elem->st.speculative |= speculative; 1786 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1787 verbose(env, "The sequence of %d jumps is too complex.\n", 1788 env->stack_size); 1789 goto err; 1790 } 1791 if (elem->st.parent) { 1792 ++elem->st.parent->branches; 1793 /* WARN_ON(branches > 2) technically makes sense here, 1794 * but 1795 * 1. speculative states will bump 'branches' for non-branch 1796 * instructions 1797 * 2. is_state_visited() heuristics may decide not to create 1798 * a new state for a sequence of branches and all such current 1799 * and cloned states will be pointing to a single parent state 1800 * which might have large 'branches' count. 1801 */ 1802 } 1803 return &elem->st; 1804 err: 1805 free_verifier_state(env->cur_state, true); 1806 env->cur_state = NULL; 1807 /* pop all elements and return */ 1808 while (!pop_stack(env, NULL, NULL, false)); 1809 return NULL; 1810 } 1811 1812 #define CALLER_SAVED_REGS 6 1813 static const int caller_saved[CALLER_SAVED_REGS] = { 1814 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1815 }; 1816 1817 /* This helper doesn't clear reg->id */ 1818 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1819 { 1820 reg->var_off = tnum_const(imm); 1821 reg->smin_value = (s64)imm; 1822 reg->smax_value = (s64)imm; 1823 reg->umin_value = imm; 1824 reg->umax_value = imm; 1825 1826 reg->s32_min_value = (s32)imm; 1827 reg->s32_max_value = (s32)imm; 1828 reg->u32_min_value = (u32)imm; 1829 reg->u32_max_value = (u32)imm; 1830 } 1831 1832 /* Mark the unknown part of a register (variable offset or scalar value) as 1833 * known to have the value @imm. 1834 */ 1835 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1836 { 1837 /* Clear off and union(map_ptr, range) */ 1838 memset(((u8 *)reg) + sizeof(reg->type), 0, 1839 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1840 reg->id = 0; 1841 reg->ref_obj_id = 0; 1842 ___mark_reg_known(reg, imm); 1843 } 1844 1845 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1846 { 1847 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1848 reg->s32_min_value = (s32)imm; 1849 reg->s32_max_value = (s32)imm; 1850 reg->u32_min_value = (u32)imm; 1851 reg->u32_max_value = (u32)imm; 1852 } 1853 1854 /* Mark the 'variable offset' part of a register as zero. This should be 1855 * used only on registers holding a pointer type. 1856 */ 1857 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1858 { 1859 __mark_reg_known(reg, 0); 1860 } 1861 1862 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1863 { 1864 __mark_reg_known(reg, 0); 1865 reg->type = SCALAR_VALUE; 1866 /* all scalars are assumed imprecise initially (unless unprivileged, 1867 * in which case everything is forced to be precise) 1868 */ 1869 reg->precise = !env->bpf_capable; 1870 } 1871 1872 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1873 struct bpf_reg_state *regs, u32 regno) 1874 { 1875 if (WARN_ON(regno >= MAX_BPF_REG)) { 1876 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1877 /* Something bad happened, let's kill all regs */ 1878 for (regno = 0; regno < MAX_BPF_REG; regno++) 1879 __mark_reg_not_init(env, regs + regno); 1880 return; 1881 } 1882 __mark_reg_known_zero(regs + regno); 1883 } 1884 1885 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1886 bool first_slot, int dynptr_id) 1887 { 1888 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1889 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1890 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1891 */ 1892 __mark_reg_known_zero(reg); 1893 reg->type = CONST_PTR_TO_DYNPTR; 1894 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1895 reg->id = dynptr_id; 1896 reg->dynptr.type = type; 1897 reg->dynptr.first_slot = first_slot; 1898 } 1899 1900 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1901 { 1902 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1903 const struct bpf_map *map = reg->map_ptr; 1904 1905 if (map->inner_map_meta) { 1906 reg->type = CONST_PTR_TO_MAP; 1907 reg->map_ptr = map->inner_map_meta; 1908 /* transfer reg's id which is unique for every map_lookup_elem 1909 * as UID of the inner map. 1910 */ 1911 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1912 reg->map_uid = reg->id; 1913 if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE)) 1914 reg->map_uid = reg->id; 1915 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1916 reg->type = PTR_TO_XDP_SOCK; 1917 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1918 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1919 reg->type = PTR_TO_SOCKET; 1920 } else { 1921 reg->type = PTR_TO_MAP_VALUE; 1922 } 1923 return; 1924 } 1925 1926 reg->type &= ~PTR_MAYBE_NULL; 1927 } 1928 1929 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1930 struct btf_field_graph_root *ds_head) 1931 { 1932 __mark_reg_known_zero(®s[regno]); 1933 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1934 regs[regno].btf = ds_head->btf; 1935 regs[regno].btf_id = ds_head->value_btf_id; 1936 regs[regno].off = ds_head->node_offset; 1937 } 1938 1939 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1940 { 1941 return type_is_pkt_pointer(reg->type); 1942 } 1943 1944 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1945 { 1946 return reg_is_pkt_pointer(reg) || 1947 reg->type == PTR_TO_PACKET_END; 1948 } 1949 1950 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 1951 { 1952 return base_type(reg->type) == PTR_TO_MEM && 1953 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 1954 } 1955 1956 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1957 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1958 enum bpf_reg_type which) 1959 { 1960 /* The register can already have a range from prior markings. 1961 * This is fine as long as it hasn't been advanced from its 1962 * origin. 1963 */ 1964 return reg->type == which && 1965 reg->id == 0 && 1966 reg->off == 0 && 1967 tnum_equals_const(reg->var_off, 0); 1968 } 1969 1970 /* Reset the min/max bounds of a register */ 1971 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1972 { 1973 reg->smin_value = S64_MIN; 1974 reg->smax_value = S64_MAX; 1975 reg->umin_value = 0; 1976 reg->umax_value = U64_MAX; 1977 1978 reg->s32_min_value = S32_MIN; 1979 reg->s32_max_value = S32_MAX; 1980 reg->u32_min_value = 0; 1981 reg->u32_max_value = U32_MAX; 1982 } 1983 1984 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1985 { 1986 reg->smin_value = S64_MIN; 1987 reg->smax_value = S64_MAX; 1988 reg->umin_value = 0; 1989 reg->umax_value = U64_MAX; 1990 } 1991 1992 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1993 { 1994 reg->s32_min_value = S32_MIN; 1995 reg->s32_max_value = S32_MAX; 1996 reg->u32_min_value = 0; 1997 reg->u32_max_value = U32_MAX; 1998 } 1999 2000 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2001 { 2002 struct tnum var32_off = tnum_subreg(reg->var_off); 2003 2004 /* min signed is max(sign bit) | min(other bits) */ 2005 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2006 var32_off.value | (var32_off.mask & S32_MIN)); 2007 /* max signed is min(sign bit) | max(other bits) */ 2008 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2009 var32_off.value | (var32_off.mask & S32_MAX)); 2010 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2011 reg->u32_max_value = min(reg->u32_max_value, 2012 (u32)(var32_off.value | var32_off.mask)); 2013 } 2014 2015 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2016 { 2017 /* min signed is max(sign bit) | min(other bits) */ 2018 reg->smin_value = max_t(s64, reg->smin_value, 2019 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2020 /* max signed is min(sign bit) | max(other bits) */ 2021 reg->smax_value = min_t(s64, reg->smax_value, 2022 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2023 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2024 reg->umax_value = min(reg->umax_value, 2025 reg->var_off.value | reg->var_off.mask); 2026 } 2027 2028 static void __update_reg_bounds(struct bpf_reg_state *reg) 2029 { 2030 __update_reg32_bounds(reg); 2031 __update_reg64_bounds(reg); 2032 } 2033 2034 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2035 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2036 { 2037 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 2038 * bits to improve our u32/s32 boundaries. 2039 * 2040 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 2041 * u64) is pretty trivial, it's obvious that in u32 we'll also have 2042 * [10, 20] range. But this property holds for any 64-bit range as 2043 * long as upper 32 bits in that entire range of values stay the same. 2044 * 2045 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 2046 * in decimal) has the same upper 32 bits throughout all the values in 2047 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 2048 * range. 2049 * 2050 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 2051 * following the rules outlined below about u64/s64 correspondence 2052 * (which equally applies to u32 vs s32 correspondence). In general it 2053 * depends on actual hexadecimal values of 32-bit range. They can form 2054 * only valid u32, or only valid s32 ranges in some cases. 2055 * 2056 * So we use all these insights to derive bounds for subregisters here. 2057 */ 2058 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 2059 /* u64 to u32 casting preserves validity of low 32 bits as 2060 * a range, if upper 32 bits are the same 2061 */ 2062 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 2063 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 2064 2065 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 2066 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2067 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2068 } 2069 } 2070 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 2071 /* low 32 bits should form a proper u32 range */ 2072 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 2073 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 2074 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 2075 } 2076 /* low 32 bits should form a proper s32 range */ 2077 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 2078 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2079 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2080 } 2081 } 2082 /* Special case where upper bits form a small sequence of two 2083 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 2084 * 0x00000000 is also valid), while lower bits form a proper s32 range 2085 * going from negative numbers to positive numbers. E.g., let's say we 2086 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 2087 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 2088 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 2089 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 2090 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 2091 * upper 32 bits. As a random example, s64 range 2092 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 2093 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 2094 */ 2095 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 2096 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 2097 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2098 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2099 } 2100 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 2101 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 2102 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2103 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2104 } 2105 /* if u32 range forms a valid s32 range (due to matching sign bit), 2106 * try to learn from that 2107 */ 2108 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 2109 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 2110 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 2111 } 2112 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2113 * are the same, so combine. This works even in the negative case, e.g. 2114 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2115 */ 2116 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2117 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 2118 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 2119 } 2120 } 2121 2122 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2123 { 2124 /* If u64 range forms a valid s64 range (due to matching sign bit), 2125 * try to learn from that. Let's do a bit of ASCII art to see when 2126 * this is happening. Let's take u64 range first: 2127 * 2128 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2129 * |-------------------------------|--------------------------------| 2130 * 2131 * Valid u64 range is formed when umin and umax are anywhere in the 2132 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 2133 * straightforward. Let's see how s64 range maps onto the same range 2134 * of values, annotated below the line for comparison: 2135 * 2136 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2137 * |-------------------------------|--------------------------------| 2138 * 0 S64_MAX S64_MIN -1 2139 * 2140 * So s64 values basically start in the middle and they are logically 2141 * contiguous to the right of it, wrapping around from -1 to 0, and 2142 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2143 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2144 * more visually as mapped to sign-agnostic range of hex values. 2145 * 2146 * u64 start u64 end 2147 * _______________________________________________________________ 2148 * / \ 2149 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2150 * |-------------------------------|--------------------------------| 2151 * 0 S64_MAX S64_MIN -1 2152 * / \ 2153 * >------------------------------ -------------------------------> 2154 * s64 continues... s64 end s64 start s64 "midpoint" 2155 * 2156 * What this means is that, in general, we can't always derive 2157 * something new about u64 from any random s64 range, and vice versa. 2158 * 2159 * But we can do that in two particular cases. One is when entire 2160 * u64/s64 range is *entirely* contained within left half of the above 2161 * diagram or when it is *entirely* contained in the right half. I.e.: 2162 * 2163 * |-------------------------------|--------------------------------| 2164 * ^ ^ ^ ^ 2165 * A B C D 2166 * 2167 * [A, B] and [C, D] are contained entirely in their respective halves 2168 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2169 * will be non-negative both as u64 and s64 (and in fact it will be 2170 * identical ranges no matter the signedness). [C, D] treated as s64 2171 * will be a range of negative values, while in u64 it will be 2172 * non-negative range of values larger than 0x8000000000000000. 2173 * 2174 * Now, any other range here can't be represented in both u64 and s64 2175 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2176 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2177 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2178 * for example. Similarly, valid s64 range [D, A] (going from negative 2179 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2180 * ranges as u64. Currently reg_state can't represent two segments per 2181 * numeric domain, so in such situations we can only derive maximal 2182 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2183 * 2184 * So we use these facts to derive umin/umax from smin/smax and vice 2185 * versa only if they stay within the same "half". This is equivalent 2186 * to checking sign bit: lower half will have sign bit as zero, upper 2187 * half have sign bit 1. Below in code we simplify this by just 2188 * casting umin/umax as smin/smax and checking if they form valid 2189 * range, and vice versa. Those are equivalent checks. 2190 */ 2191 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2192 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2193 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2194 } 2195 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2196 * are the same, so combine. This works even in the negative case, e.g. 2197 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2198 */ 2199 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2200 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2201 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2202 } 2203 } 2204 2205 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2206 { 2207 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2208 * values on both sides of 64-bit range in hope to have tighter range. 2209 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2210 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2211 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2212 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2213 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2214 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2215 * We just need to make sure that derived bounds we are intersecting 2216 * with are well-formed ranges in respective s64 or u64 domain, just 2217 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2218 */ 2219 __u64 new_umin, new_umax; 2220 __s64 new_smin, new_smax; 2221 2222 /* u32 -> u64 tightening, it's always well-formed */ 2223 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2224 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2225 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2226 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2227 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2228 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2229 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2230 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2231 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2232 2233 /* if s32 can be treated as valid u32 range, we can use it as well */ 2234 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2235 /* s32 -> u64 tightening */ 2236 new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2237 new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2238 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2239 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2240 /* s32 -> s64 tightening */ 2241 new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2242 new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2243 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2244 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2245 } 2246 2247 /* Here we would like to handle a special case after sign extending load, 2248 * when upper bits for a 64-bit range are all 1s or all 0s. 2249 * 2250 * Upper bits are all 1s when register is in a range: 2251 * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff] 2252 * Upper bits are all 0s when register is in a range: 2253 * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff] 2254 * Together this forms are continuous range: 2255 * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff] 2256 * 2257 * Now, suppose that register range is in fact tighter: 2258 * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R) 2259 * Also suppose that it's 32-bit range is positive, 2260 * meaning that lower 32-bits of the full 64-bit register 2261 * are in the range: 2262 * [0x0000_0000, 0x7fff_ffff] (W) 2263 * 2264 * If this happens, then any value in a range: 2265 * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff] 2266 * is smaller than a lowest bound of the range (R): 2267 * 0xffff_ffff_8000_0000 2268 * which means that upper bits of the full 64-bit register 2269 * can't be all 1s, when lower bits are in range (W). 2270 * 2271 * Note that: 2272 * - 0xffff_ffff_8000_0000 == (s64)S32_MIN 2273 * - 0x0000_0000_7fff_ffff == (s64)S32_MAX 2274 * These relations are used in the conditions below. 2275 */ 2276 if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) { 2277 reg->smin_value = reg->s32_min_value; 2278 reg->smax_value = reg->s32_max_value; 2279 reg->umin_value = reg->s32_min_value; 2280 reg->umax_value = reg->s32_max_value; 2281 reg->var_off = tnum_intersect(reg->var_off, 2282 tnum_range(reg->smin_value, reg->smax_value)); 2283 } 2284 } 2285 2286 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2287 { 2288 __reg32_deduce_bounds(reg); 2289 __reg64_deduce_bounds(reg); 2290 __reg_deduce_mixed_bounds(reg); 2291 } 2292 2293 /* Attempts to improve var_off based on unsigned min/max information */ 2294 static void __reg_bound_offset(struct bpf_reg_state *reg) 2295 { 2296 struct tnum var64_off = tnum_intersect(reg->var_off, 2297 tnum_range(reg->umin_value, 2298 reg->umax_value)); 2299 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2300 tnum_range(reg->u32_min_value, 2301 reg->u32_max_value)); 2302 2303 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2304 } 2305 2306 static void reg_bounds_sync(struct bpf_reg_state *reg) 2307 { 2308 /* We might have learned new bounds from the var_off. */ 2309 __update_reg_bounds(reg); 2310 /* We might have learned something about the sign bit. */ 2311 __reg_deduce_bounds(reg); 2312 __reg_deduce_bounds(reg); 2313 /* We might have learned some bits from the bounds. */ 2314 __reg_bound_offset(reg); 2315 /* Intersecting with the old var_off might have improved our bounds 2316 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2317 * then new var_off is (0; 0x7f...fc) which improves our umax. 2318 */ 2319 __update_reg_bounds(reg); 2320 } 2321 2322 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2323 struct bpf_reg_state *reg, const char *ctx) 2324 { 2325 const char *msg; 2326 2327 if (reg->umin_value > reg->umax_value || 2328 reg->smin_value > reg->smax_value || 2329 reg->u32_min_value > reg->u32_max_value || 2330 reg->s32_min_value > reg->s32_max_value) { 2331 msg = "range bounds violation"; 2332 goto out; 2333 } 2334 2335 if (tnum_is_const(reg->var_off)) { 2336 u64 uval = reg->var_off.value; 2337 s64 sval = (s64)uval; 2338 2339 if (reg->umin_value != uval || reg->umax_value != uval || 2340 reg->smin_value != sval || reg->smax_value != sval) { 2341 msg = "const tnum out of sync with range bounds"; 2342 goto out; 2343 } 2344 } 2345 2346 if (tnum_subreg_is_const(reg->var_off)) { 2347 u32 uval32 = tnum_subreg(reg->var_off).value; 2348 s32 sval32 = (s32)uval32; 2349 2350 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2351 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2352 msg = "const subreg tnum out of sync with range bounds"; 2353 goto out; 2354 } 2355 } 2356 2357 return 0; 2358 out: 2359 verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2360 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n", 2361 ctx, msg, reg->umin_value, reg->umax_value, 2362 reg->smin_value, reg->smax_value, 2363 reg->u32_min_value, reg->u32_max_value, 2364 reg->s32_min_value, reg->s32_max_value, 2365 reg->var_off.value, reg->var_off.mask); 2366 if (env->test_reg_invariants) 2367 return -EFAULT; 2368 __mark_reg_unbounded(reg); 2369 return 0; 2370 } 2371 2372 static bool __reg32_bound_s64(s32 a) 2373 { 2374 return a >= 0 && a <= S32_MAX; 2375 } 2376 2377 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2378 { 2379 reg->umin_value = reg->u32_min_value; 2380 reg->umax_value = reg->u32_max_value; 2381 2382 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2383 * be positive otherwise set to worse case bounds and refine later 2384 * from tnum. 2385 */ 2386 if (__reg32_bound_s64(reg->s32_min_value) && 2387 __reg32_bound_s64(reg->s32_max_value)) { 2388 reg->smin_value = reg->s32_min_value; 2389 reg->smax_value = reg->s32_max_value; 2390 } else { 2391 reg->smin_value = 0; 2392 reg->smax_value = U32_MAX; 2393 } 2394 } 2395 2396 /* Mark a register as having a completely unknown (scalar) value. */ 2397 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) 2398 { 2399 /* 2400 * Clear type, off, and union(map_ptr, range) and 2401 * padding between 'type' and union 2402 */ 2403 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2404 reg->type = SCALAR_VALUE; 2405 reg->id = 0; 2406 reg->ref_obj_id = 0; 2407 reg->var_off = tnum_unknown; 2408 reg->frameno = 0; 2409 reg->precise = false; 2410 __mark_reg_unbounded(reg); 2411 } 2412 2413 /* Mark a register as having a completely unknown (scalar) value, 2414 * initialize .precise as true when not bpf capable. 2415 */ 2416 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2417 struct bpf_reg_state *reg) 2418 { 2419 __mark_reg_unknown_imprecise(reg); 2420 reg->precise = !env->bpf_capable; 2421 } 2422 2423 static void mark_reg_unknown(struct bpf_verifier_env *env, 2424 struct bpf_reg_state *regs, u32 regno) 2425 { 2426 if (WARN_ON(regno >= MAX_BPF_REG)) { 2427 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2428 /* Something bad happened, let's kill all regs except FP */ 2429 for (regno = 0; regno < BPF_REG_FP; regno++) 2430 __mark_reg_not_init(env, regs + regno); 2431 return; 2432 } 2433 __mark_reg_unknown(env, regs + regno); 2434 } 2435 2436 static int __mark_reg_s32_range(struct bpf_verifier_env *env, 2437 struct bpf_reg_state *regs, 2438 u32 regno, 2439 s32 s32_min, 2440 s32 s32_max) 2441 { 2442 struct bpf_reg_state *reg = regs + regno; 2443 2444 reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min); 2445 reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max); 2446 2447 reg->smin_value = max_t(s64, reg->smin_value, s32_min); 2448 reg->smax_value = min_t(s64, reg->smax_value, s32_max); 2449 2450 reg_bounds_sync(reg); 2451 2452 return reg_bounds_sanity_check(env, reg, "s32_range"); 2453 } 2454 2455 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2456 struct bpf_reg_state *reg) 2457 { 2458 __mark_reg_unknown(env, reg); 2459 reg->type = NOT_INIT; 2460 } 2461 2462 static void mark_reg_not_init(struct bpf_verifier_env *env, 2463 struct bpf_reg_state *regs, u32 regno) 2464 { 2465 if (WARN_ON(regno >= MAX_BPF_REG)) { 2466 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2467 /* Something bad happened, let's kill all regs except FP */ 2468 for (regno = 0; regno < BPF_REG_FP; regno++) 2469 __mark_reg_not_init(env, regs + regno); 2470 return; 2471 } 2472 __mark_reg_not_init(env, regs + regno); 2473 } 2474 2475 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2476 struct bpf_reg_state *regs, u32 regno, 2477 enum bpf_reg_type reg_type, 2478 struct btf *btf, u32 btf_id, 2479 enum bpf_type_flag flag) 2480 { 2481 if (reg_type == SCALAR_VALUE) { 2482 mark_reg_unknown(env, regs, regno); 2483 return; 2484 } 2485 mark_reg_known_zero(env, regs, regno); 2486 regs[regno].type = PTR_TO_BTF_ID | flag; 2487 regs[regno].btf = btf; 2488 regs[regno].btf_id = btf_id; 2489 if (type_may_be_null(flag)) 2490 regs[regno].id = ++env->id_gen; 2491 } 2492 2493 #define DEF_NOT_SUBREG (0) 2494 static void init_reg_state(struct bpf_verifier_env *env, 2495 struct bpf_func_state *state) 2496 { 2497 struct bpf_reg_state *regs = state->regs; 2498 int i; 2499 2500 for (i = 0; i < MAX_BPF_REG; i++) { 2501 mark_reg_not_init(env, regs, i); 2502 regs[i].live = REG_LIVE_NONE; 2503 regs[i].parent = NULL; 2504 regs[i].subreg_def = DEF_NOT_SUBREG; 2505 } 2506 2507 /* frame pointer */ 2508 regs[BPF_REG_FP].type = PTR_TO_STACK; 2509 mark_reg_known_zero(env, regs, BPF_REG_FP); 2510 regs[BPF_REG_FP].frameno = state->frameno; 2511 } 2512 2513 static struct bpf_retval_range retval_range(s32 minval, s32 maxval) 2514 { 2515 return (struct bpf_retval_range){ minval, maxval }; 2516 } 2517 2518 #define BPF_MAIN_FUNC (-1) 2519 static void init_func_state(struct bpf_verifier_env *env, 2520 struct bpf_func_state *state, 2521 int callsite, int frameno, int subprogno) 2522 { 2523 state->callsite = callsite; 2524 state->frameno = frameno; 2525 state->subprogno = subprogno; 2526 state->callback_ret_range = retval_range(0, 0); 2527 init_reg_state(env, state); 2528 mark_verifier_state_scratched(env); 2529 } 2530 2531 /* Similar to push_stack(), but for async callbacks */ 2532 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2533 int insn_idx, int prev_insn_idx, 2534 int subprog, bool is_sleepable) 2535 { 2536 struct bpf_verifier_stack_elem *elem; 2537 struct bpf_func_state *frame; 2538 2539 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2540 if (!elem) 2541 goto err; 2542 2543 elem->insn_idx = insn_idx; 2544 elem->prev_insn_idx = prev_insn_idx; 2545 elem->next = env->head; 2546 elem->log_pos = env->log.end_pos; 2547 env->head = elem; 2548 env->stack_size++; 2549 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2550 verbose(env, 2551 "The sequence of %d jumps is too complex for async cb.\n", 2552 env->stack_size); 2553 goto err; 2554 } 2555 /* Unlike push_stack() do not copy_verifier_state(). 2556 * The caller state doesn't matter. 2557 * This is async callback. It starts in a fresh stack. 2558 * Initialize it similar to do_check_common(). 2559 * But we do need to make sure to not clobber insn_hist, so we keep 2560 * chaining insn_hist_start/insn_hist_end indices as for a normal 2561 * child state. 2562 */ 2563 elem->st.branches = 1; 2564 elem->st.in_sleepable = is_sleepable; 2565 elem->st.insn_hist_start = env->cur_state->insn_hist_end; 2566 elem->st.insn_hist_end = elem->st.insn_hist_start; 2567 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2568 if (!frame) 2569 goto err; 2570 init_func_state(env, frame, 2571 BPF_MAIN_FUNC /* callsite */, 2572 0 /* frameno within this callchain */, 2573 subprog /* subprog number within this prog */); 2574 elem->st.frame[0] = frame; 2575 return &elem->st; 2576 err: 2577 free_verifier_state(env->cur_state, true); 2578 env->cur_state = NULL; 2579 /* pop all elements and return */ 2580 while (!pop_stack(env, NULL, NULL, false)); 2581 return NULL; 2582 } 2583 2584 2585 enum reg_arg_type { 2586 SRC_OP, /* register is used as source operand */ 2587 DST_OP, /* register is used as destination operand */ 2588 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2589 }; 2590 2591 static int cmp_subprogs(const void *a, const void *b) 2592 { 2593 return ((struct bpf_subprog_info *)a)->start - 2594 ((struct bpf_subprog_info *)b)->start; 2595 } 2596 2597 static int find_subprog(struct bpf_verifier_env *env, int off) 2598 { 2599 struct bpf_subprog_info *p; 2600 2601 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2602 sizeof(env->subprog_info[0]), cmp_subprogs); 2603 if (!p) 2604 return -ENOENT; 2605 return p - env->subprog_info; 2606 2607 } 2608 2609 static int add_subprog(struct bpf_verifier_env *env, int off) 2610 { 2611 int insn_cnt = env->prog->len; 2612 int ret; 2613 2614 if (off >= insn_cnt || off < 0) { 2615 verbose(env, "call to invalid destination\n"); 2616 return -EINVAL; 2617 } 2618 ret = find_subprog(env, off); 2619 if (ret >= 0) 2620 return ret; 2621 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2622 verbose(env, "too many subprograms\n"); 2623 return -E2BIG; 2624 } 2625 /* determine subprog starts. The end is one before the next starts */ 2626 env->subprog_info[env->subprog_cnt++].start = off; 2627 sort(env->subprog_info, env->subprog_cnt, 2628 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2629 return env->subprog_cnt - 1; 2630 } 2631 2632 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 2633 { 2634 struct bpf_prog_aux *aux = env->prog->aux; 2635 struct btf *btf = aux->btf; 2636 const struct btf_type *t; 2637 u32 main_btf_id, id; 2638 const char *name; 2639 int ret, i; 2640 2641 /* Non-zero func_info_cnt implies valid btf */ 2642 if (!aux->func_info_cnt) 2643 return 0; 2644 main_btf_id = aux->func_info[0].type_id; 2645 2646 t = btf_type_by_id(btf, main_btf_id); 2647 if (!t) { 2648 verbose(env, "invalid btf id for main subprog in func_info\n"); 2649 return -EINVAL; 2650 } 2651 2652 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 2653 if (IS_ERR(name)) { 2654 ret = PTR_ERR(name); 2655 /* If there is no tag present, there is no exception callback */ 2656 if (ret == -ENOENT) 2657 ret = 0; 2658 else if (ret == -EEXIST) 2659 verbose(env, "multiple exception callback tags for main subprog\n"); 2660 return ret; 2661 } 2662 2663 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 2664 if (ret < 0) { 2665 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 2666 return ret; 2667 } 2668 id = ret; 2669 t = btf_type_by_id(btf, id); 2670 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 2671 verbose(env, "exception callback '%s' must have global linkage\n", name); 2672 return -EINVAL; 2673 } 2674 ret = 0; 2675 for (i = 0; i < aux->func_info_cnt; i++) { 2676 if (aux->func_info[i].type_id != id) 2677 continue; 2678 ret = aux->func_info[i].insn_off; 2679 /* Further func_info and subprog checks will also happen 2680 * later, so assume this is the right insn_off for now. 2681 */ 2682 if (!ret) { 2683 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 2684 ret = -EINVAL; 2685 } 2686 } 2687 if (!ret) { 2688 verbose(env, "exception callback type id not found in func_info\n"); 2689 ret = -EINVAL; 2690 } 2691 return ret; 2692 } 2693 2694 #define MAX_KFUNC_DESCS 256 2695 #define MAX_KFUNC_BTFS 256 2696 2697 struct bpf_kfunc_desc { 2698 struct btf_func_model func_model; 2699 u32 func_id; 2700 s32 imm; 2701 u16 offset; 2702 unsigned long addr; 2703 }; 2704 2705 struct bpf_kfunc_btf { 2706 struct btf *btf; 2707 struct module *module; 2708 u16 offset; 2709 }; 2710 2711 struct bpf_kfunc_desc_tab { 2712 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2713 * verification. JITs do lookups by bpf_insn, where func_id may not be 2714 * available, therefore at the end of verification do_misc_fixups() 2715 * sorts this by imm and offset. 2716 */ 2717 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2718 u32 nr_descs; 2719 }; 2720 2721 struct bpf_kfunc_btf_tab { 2722 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2723 u32 nr_descs; 2724 }; 2725 2726 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2727 { 2728 const struct bpf_kfunc_desc *d0 = a; 2729 const struct bpf_kfunc_desc *d1 = b; 2730 2731 /* func_id is not greater than BTF_MAX_TYPE */ 2732 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2733 } 2734 2735 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2736 { 2737 const struct bpf_kfunc_btf *d0 = a; 2738 const struct bpf_kfunc_btf *d1 = b; 2739 2740 return d0->offset - d1->offset; 2741 } 2742 2743 static const struct bpf_kfunc_desc * 2744 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2745 { 2746 struct bpf_kfunc_desc desc = { 2747 .func_id = func_id, 2748 .offset = offset, 2749 }; 2750 struct bpf_kfunc_desc_tab *tab; 2751 2752 tab = prog->aux->kfunc_tab; 2753 return bsearch(&desc, tab->descs, tab->nr_descs, 2754 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2755 } 2756 2757 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2758 u16 btf_fd_idx, u8 **func_addr) 2759 { 2760 const struct bpf_kfunc_desc *desc; 2761 2762 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2763 if (!desc) 2764 return -EFAULT; 2765 2766 *func_addr = (u8 *)desc->addr; 2767 return 0; 2768 } 2769 2770 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2771 s16 offset) 2772 { 2773 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2774 struct bpf_kfunc_btf_tab *tab; 2775 struct bpf_kfunc_btf *b; 2776 struct module *mod; 2777 struct btf *btf; 2778 int btf_fd; 2779 2780 tab = env->prog->aux->kfunc_btf_tab; 2781 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2782 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2783 if (!b) { 2784 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2785 verbose(env, "too many different module BTFs\n"); 2786 return ERR_PTR(-E2BIG); 2787 } 2788 2789 if (bpfptr_is_null(env->fd_array)) { 2790 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2791 return ERR_PTR(-EPROTO); 2792 } 2793 2794 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2795 offset * sizeof(btf_fd), 2796 sizeof(btf_fd))) 2797 return ERR_PTR(-EFAULT); 2798 2799 btf = btf_get_by_fd(btf_fd); 2800 if (IS_ERR(btf)) { 2801 verbose(env, "invalid module BTF fd specified\n"); 2802 return btf; 2803 } 2804 2805 if (!btf_is_module(btf)) { 2806 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2807 btf_put(btf); 2808 return ERR_PTR(-EINVAL); 2809 } 2810 2811 mod = btf_try_get_module(btf); 2812 if (!mod) { 2813 btf_put(btf); 2814 return ERR_PTR(-ENXIO); 2815 } 2816 2817 b = &tab->descs[tab->nr_descs++]; 2818 b->btf = btf; 2819 b->module = mod; 2820 b->offset = offset; 2821 2822 /* sort() reorders entries by value, so b may no longer point 2823 * to the right entry after this 2824 */ 2825 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2826 kfunc_btf_cmp_by_off, NULL); 2827 } else { 2828 btf = b->btf; 2829 } 2830 2831 return btf; 2832 } 2833 2834 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2835 { 2836 if (!tab) 2837 return; 2838 2839 while (tab->nr_descs--) { 2840 module_put(tab->descs[tab->nr_descs].module); 2841 btf_put(tab->descs[tab->nr_descs].btf); 2842 } 2843 kfree(tab); 2844 } 2845 2846 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2847 { 2848 if (offset) { 2849 if (offset < 0) { 2850 /* In the future, this can be allowed to increase limit 2851 * of fd index into fd_array, interpreted as u16. 2852 */ 2853 verbose(env, "negative offset disallowed for kernel module function call\n"); 2854 return ERR_PTR(-EINVAL); 2855 } 2856 2857 return __find_kfunc_desc_btf(env, offset); 2858 } 2859 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2860 } 2861 2862 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2863 { 2864 const struct btf_type *func, *func_proto; 2865 struct bpf_kfunc_btf_tab *btf_tab; 2866 struct bpf_kfunc_desc_tab *tab; 2867 struct bpf_prog_aux *prog_aux; 2868 struct bpf_kfunc_desc *desc; 2869 const char *func_name; 2870 struct btf *desc_btf; 2871 unsigned long call_imm; 2872 unsigned long addr; 2873 int err; 2874 2875 prog_aux = env->prog->aux; 2876 tab = prog_aux->kfunc_tab; 2877 btf_tab = prog_aux->kfunc_btf_tab; 2878 if (!tab) { 2879 if (!btf_vmlinux) { 2880 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2881 return -ENOTSUPP; 2882 } 2883 2884 if (!env->prog->jit_requested) { 2885 verbose(env, "JIT is required for calling kernel function\n"); 2886 return -ENOTSUPP; 2887 } 2888 2889 if (!bpf_jit_supports_kfunc_call()) { 2890 verbose(env, "JIT does not support calling kernel function\n"); 2891 return -ENOTSUPP; 2892 } 2893 2894 if (!env->prog->gpl_compatible) { 2895 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2896 return -EINVAL; 2897 } 2898 2899 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2900 if (!tab) 2901 return -ENOMEM; 2902 prog_aux->kfunc_tab = tab; 2903 } 2904 2905 /* func_id == 0 is always invalid, but instead of returning an error, be 2906 * conservative and wait until the code elimination pass before returning 2907 * error, so that invalid calls that get pruned out can be in BPF programs 2908 * loaded from userspace. It is also required that offset be untouched 2909 * for such calls. 2910 */ 2911 if (!func_id && !offset) 2912 return 0; 2913 2914 if (!btf_tab && offset) { 2915 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2916 if (!btf_tab) 2917 return -ENOMEM; 2918 prog_aux->kfunc_btf_tab = btf_tab; 2919 } 2920 2921 desc_btf = find_kfunc_desc_btf(env, offset); 2922 if (IS_ERR(desc_btf)) { 2923 verbose(env, "failed to find BTF for kernel function\n"); 2924 return PTR_ERR(desc_btf); 2925 } 2926 2927 if (find_kfunc_desc(env->prog, func_id, offset)) 2928 return 0; 2929 2930 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2931 verbose(env, "too many different kernel function calls\n"); 2932 return -E2BIG; 2933 } 2934 2935 func = btf_type_by_id(desc_btf, func_id); 2936 if (!func || !btf_type_is_func(func)) { 2937 verbose(env, "kernel btf_id %u is not a function\n", 2938 func_id); 2939 return -EINVAL; 2940 } 2941 func_proto = btf_type_by_id(desc_btf, func->type); 2942 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2943 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2944 func_id); 2945 return -EINVAL; 2946 } 2947 2948 func_name = btf_name_by_offset(desc_btf, func->name_off); 2949 addr = kallsyms_lookup_name(func_name); 2950 if (!addr) { 2951 verbose(env, "cannot find address for kernel function %s\n", 2952 func_name); 2953 return -EINVAL; 2954 } 2955 specialize_kfunc(env, func_id, offset, &addr); 2956 2957 if (bpf_jit_supports_far_kfunc_call()) { 2958 call_imm = func_id; 2959 } else { 2960 call_imm = BPF_CALL_IMM(addr); 2961 /* Check whether the relative offset overflows desc->imm */ 2962 if ((unsigned long)(s32)call_imm != call_imm) { 2963 verbose(env, "address of kernel function %s is out of range\n", 2964 func_name); 2965 return -EINVAL; 2966 } 2967 } 2968 2969 if (bpf_dev_bound_kfunc_id(func_id)) { 2970 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2971 if (err) 2972 return err; 2973 } 2974 2975 desc = &tab->descs[tab->nr_descs++]; 2976 desc->func_id = func_id; 2977 desc->imm = call_imm; 2978 desc->offset = offset; 2979 desc->addr = addr; 2980 err = btf_distill_func_proto(&env->log, desc_btf, 2981 func_proto, func_name, 2982 &desc->func_model); 2983 if (!err) 2984 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2985 kfunc_desc_cmp_by_id_off, NULL); 2986 return err; 2987 } 2988 2989 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2990 { 2991 const struct bpf_kfunc_desc *d0 = a; 2992 const struct bpf_kfunc_desc *d1 = b; 2993 2994 if (d0->imm != d1->imm) 2995 return d0->imm < d1->imm ? -1 : 1; 2996 if (d0->offset != d1->offset) 2997 return d0->offset < d1->offset ? -1 : 1; 2998 return 0; 2999 } 3000 3001 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 3002 { 3003 struct bpf_kfunc_desc_tab *tab; 3004 3005 tab = prog->aux->kfunc_tab; 3006 if (!tab) 3007 return; 3008 3009 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3010 kfunc_desc_cmp_by_imm_off, NULL); 3011 } 3012 3013 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 3014 { 3015 return !!prog->aux->kfunc_tab; 3016 } 3017 3018 const struct btf_func_model * 3019 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 3020 const struct bpf_insn *insn) 3021 { 3022 const struct bpf_kfunc_desc desc = { 3023 .imm = insn->imm, 3024 .offset = insn->off, 3025 }; 3026 const struct bpf_kfunc_desc *res; 3027 struct bpf_kfunc_desc_tab *tab; 3028 3029 tab = prog->aux->kfunc_tab; 3030 res = bsearch(&desc, tab->descs, tab->nr_descs, 3031 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3032 3033 return res ? &res->func_model : NULL; 3034 } 3035 3036 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3037 { 3038 struct bpf_subprog_info *subprog = env->subprog_info; 3039 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 3040 struct bpf_insn *insn = env->prog->insnsi; 3041 3042 /* Add entry function. */ 3043 ret = add_subprog(env, 0); 3044 if (ret) 3045 return ret; 3046 3047 for (i = 0; i < insn_cnt; i++, insn++) { 3048 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3049 !bpf_pseudo_kfunc_call(insn)) 3050 continue; 3051 3052 if (!env->bpf_capable) { 3053 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3054 return -EPERM; 3055 } 3056 3057 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3058 ret = add_subprog(env, i + insn->imm + 1); 3059 else 3060 ret = add_kfunc_call(env, insn->imm, insn->off); 3061 3062 if (ret < 0) 3063 return ret; 3064 } 3065 3066 ret = bpf_find_exception_callback_insn_off(env); 3067 if (ret < 0) 3068 return ret; 3069 ex_cb_insn = ret; 3070 3071 /* If ex_cb_insn > 0, this means that the main program has a subprog 3072 * marked using BTF decl tag to serve as the exception callback. 3073 */ 3074 if (ex_cb_insn) { 3075 ret = add_subprog(env, ex_cb_insn); 3076 if (ret < 0) 3077 return ret; 3078 for (i = 1; i < env->subprog_cnt; i++) { 3079 if (env->subprog_info[i].start != ex_cb_insn) 3080 continue; 3081 env->exception_callback_subprog = i; 3082 mark_subprog_exc_cb(env, i); 3083 break; 3084 } 3085 } 3086 3087 /* Add a fake 'exit' subprog which could simplify subprog iteration 3088 * logic. 'subprog_cnt' should not be increased. 3089 */ 3090 subprog[env->subprog_cnt].start = insn_cnt; 3091 3092 if (env->log.level & BPF_LOG_LEVEL2) 3093 for (i = 0; i < env->subprog_cnt; i++) 3094 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3095 3096 return 0; 3097 } 3098 3099 static int check_subprogs(struct bpf_verifier_env *env) 3100 { 3101 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3102 struct bpf_subprog_info *subprog = env->subprog_info; 3103 struct bpf_insn *insn = env->prog->insnsi; 3104 int insn_cnt = env->prog->len; 3105 3106 /* now check that all jumps are within the same subprog */ 3107 subprog_start = subprog[cur_subprog].start; 3108 subprog_end = subprog[cur_subprog + 1].start; 3109 for (i = 0; i < insn_cnt; i++) { 3110 u8 code = insn[i].code; 3111 3112 if (code == (BPF_JMP | BPF_CALL) && 3113 insn[i].src_reg == 0 && 3114 insn[i].imm == BPF_FUNC_tail_call) { 3115 subprog[cur_subprog].has_tail_call = true; 3116 subprog[cur_subprog].tail_call_reachable = true; 3117 } 3118 if (BPF_CLASS(code) == BPF_LD && 3119 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3120 subprog[cur_subprog].has_ld_abs = true; 3121 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3122 goto next; 3123 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3124 goto next; 3125 if (code == (BPF_JMP32 | BPF_JA)) 3126 off = i + insn[i].imm + 1; 3127 else 3128 off = i + insn[i].off + 1; 3129 if (off < subprog_start || off >= subprog_end) { 3130 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3131 return -EINVAL; 3132 } 3133 next: 3134 if (i == subprog_end - 1) { 3135 /* to avoid fall-through from one subprog into another 3136 * the last insn of the subprog should be either exit 3137 * or unconditional jump back or bpf_throw call 3138 */ 3139 if (code != (BPF_JMP | BPF_EXIT) && 3140 code != (BPF_JMP32 | BPF_JA) && 3141 code != (BPF_JMP | BPF_JA)) { 3142 verbose(env, "last insn is not an exit or jmp\n"); 3143 return -EINVAL; 3144 } 3145 subprog_start = subprog_end; 3146 cur_subprog++; 3147 if (cur_subprog < env->subprog_cnt) 3148 subprog_end = subprog[cur_subprog + 1].start; 3149 } 3150 } 3151 return 0; 3152 } 3153 3154 /* Parentage chain of this register (or stack slot) should take care of all 3155 * issues like callee-saved registers, stack slot allocation time, etc. 3156 */ 3157 static int mark_reg_read(struct bpf_verifier_env *env, 3158 const struct bpf_reg_state *state, 3159 struct bpf_reg_state *parent, u8 flag) 3160 { 3161 bool writes = parent == state->parent; /* Observe write marks */ 3162 int cnt = 0; 3163 3164 while (parent) { 3165 /* if read wasn't screened by an earlier write ... */ 3166 if (writes && state->live & REG_LIVE_WRITTEN) 3167 break; 3168 if (parent->live & REG_LIVE_DONE) { 3169 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 3170 reg_type_str(env, parent->type), 3171 parent->var_off.value, parent->off); 3172 return -EFAULT; 3173 } 3174 /* The first condition is more likely to be true than the 3175 * second, checked it first. 3176 */ 3177 if ((parent->live & REG_LIVE_READ) == flag || 3178 parent->live & REG_LIVE_READ64) 3179 /* The parentage chain never changes and 3180 * this parent was already marked as LIVE_READ. 3181 * There is no need to keep walking the chain again and 3182 * keep re-marking all parents as LIVE_READ. 3183 * This case happens when the same register is read 3184 * multiple times without writes into it in-between. 3185 * Also, if parent has the stronger REG_LIVE_READ64 set, 3186 * then no need to set the weak REG_LIVE_READ32. 3187 */ 3188 break; 3189 /* ... then we depend on parent's value */ 3190 parent->live |= flag; 3191 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3192 if (flag == REG_LIVE_READ64) 3193 parent->live &= ~REG_LIVE_READ32; 3194 state = parent; 3195 parent = state->parent; 3196 writes = true; 3197 cnt++; 3198 } 3199 3200 if (env->longest_mark_read_walk < cnt) 3201 env->longest_mark_read_walk = cnt; 3202 return 0; 3203 } 3204 3205 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3206 { 3207 struct bpf_func_state *state = func(env, reg); 3208 int spi, ret; 3209 3210 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3211 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3212 * check_kfunc_call. 3213 */ 3214 if (reg->type == CONST_PTR_TO_DYNPTR) 3215 return 0; 3216 spi = dynptr_get_spi(env, reg); 3217 if (spi < 0) 3218 return spi; 3219 /* Caller ensures dynptr is valid and initialized, which means spi is in 3220 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3221 * read. 3222 */ 3223 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 3224 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 3225 if (ret) 3226 return ret; 3227 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 3228 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 3229 } 3230 3231 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3232 int spi, int nr_slots) 3233 { 3234 struct bpf_func_state *state = func(env, reg); 3235 int err, i; 3236 3237 for (i = 0; i < nr_slots; i++) { 3238 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3239 3240 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3241 if (err) 3242 return err; 3243 3244 mark_stack_slot_scratched(env, spi - i); 3245 } 3246 3247 return 0; 3248 } 3249 3250 /* This function is supposed to be used by the following 32-bit optimization 3251 * code only. It returns TRUE if the source or destination register operates 3252 * on 64-bit, otherwise return FALSE. 3253 */ 3254 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3255 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3256 { 3257 u8 code, class, op; 3258 3259 code = insn->code; 3260 class = BPF_CLASS(code); 3261 op = BPF_OP(code); 3262 if (class == BPF_JMP) { 3263 /* BPF_EXIT for "main" will reach here. Return TRUE 3264 * conservatively. 3265 */ 3266 if (op == BPF_EXIT) 3267 return true; 3268 if (op == BPF_CALL) { 3269 /* BPF to BPF call will reach here because of marking 3270 * caller saved clobber with DST_OP_NO_MARK for which we 3271 * don't care the register def because they are anyway 3272 * marked as NOT_INIT already. 3273 */ 3274 if (insn->src_reg == BPF_PSEUDO_CALL) 3275 return false; 3276 /* Helper call will reach here because of arg type 3277 * check, conservatively return TRUE. 3278 */ 3279 if (t == SRC_OP) 3280 return true; 3281 3282 return false; 3283 } 3284 } 3285 3286 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3287 return false; 3288 3289 if (class == BPF_ALU64 || class == BPF_JMP || 3290 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3291 return true; 3292 3293 if (class == BPF_ALU || class == BPF_JMP32) 3294 return false; 3295 3296 if (class == BPF_LDX) { 3297 if (t != SRC_OP) 3298 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3299 /* LDX source must be ptr. */ 3300 return true; 3301 } 3302 3303 if (class == BPF_STX) { 3304 /* BPF_STX (including atomic variants) has multiple source 3305 * operands, one of which is a ptr. Check whether the caller is 3306 * asking about it. 3307 */ 3308 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3309 return true; 3310 return BPF_SIZE(code) == BPF_DW; 3311 } 3312 3313 if (class == BPF_LD) { 3314 u8 mode = BPF_MODE(code); 3315 3316 /* LD_IMM64 */ 3317 if (mode == BPF_IMM) 3318 return true; 3319 3320 /* Both LD_IND and LD_ABS return 32-bit data. */ 3321 if (t != SRC_OP) 3322 return false; 3323 3324 /* Implicit ctx ptr. */ 3325 if (regno == BPF_REG_6) 3326 return true; 3327 3328 /* Explicit source could be any width. */ 3329 return true; 3330 } 3331 3332 if (class == BPF_ST) 3333 /* The only source register for BPF_ST is a ptr. */ 3334 return true; 3335 3336 /* Conservatively return true at default. */ 3337 return true; 3338 } 3339 3340 /* Return the regno defined by the insn, or -1. */ 3341 static int insn_def_regno(const struct bpf_insn *insn) 3342 { 3343 switch (BPF_CLASS(insn->code)) { 3344 case BPF_JMP: 3345 case BPF_JMP32: 3346 case BPF_ST: 3347 return -1; 3348 case BPF_STX: 3349 if ((BPF_MODE(insn->code) == BPF_ATOMIC || 3350 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) && 3351 (insn->imm & BPF_FETCH)) { 3352 if (insn->imm == BPF_CMPXCHG) 3353 return BPF_REG_0; 3354 else 3355 return insn->src_reg; 3356 } else { 3357 return -1; 3358 } 3359 default: 3360 return insn->dst_reg; 3361 } 3362 } 3363 3364 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3365 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3366 { 3367 int dst_reg = insn_def_regno(insn); 3368 3369 if (dst_reg == -1) 3370 return false; 3371 3372 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3373 } 3374 3375 static void mark_insn_zext(struct bpf_verifier_env *env, 3376 struct bpf_reg_state *reg) 3377 { 3378 s32 def_idx = reg->subreg_def; 3379 3380 if (def_idx == DEF_NOT_SUBREG) 3381 return; 3382 3383 env->insn_aux_data[def_idx - 1].zext_dst = true; 3384 /* The dst will be zero extended, so won't be sub-register anymore. */ 3385 reg->subreg_def = DEF_NOT_SUBREG; 3386 } 3387 3388 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3389 enum reg_arg_type t) 3390 { 3391 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3392 struct bpf_reg_state *reg; 3393 bool rw64; 3394 3395 if (regno >= MAX_BPF_REG) { 3396 verbose(env, "R%d is invalid\n", regno); 3397 return -EINVAL; 3398 } 3399 3400 mark_reg_scratched(env, regno); 3401 3402 reg = ®s[regno]; 3403 rw64 = is_reg64(env, insn, regno, reg, t); 3404 if (t == SRC_OP) { 3405 /* check whether register used as source operand can be read */ 3406 if (reg->type == NOT_INIT) { 3407 verbose(env, "R%d !read_ok\n", regno); 3408 return -EACCES; 3409 } 3410 /* We don't need to worry about FP liveness because it's read-only */ 3411 if (regno == BPF_REG_FP) 3412 return 0; 3413 3414 if (rw64) 3415 mark_insn_zext(env, reg); 3416 3417 return mark_reg_read(env, reg, reg->parent, 3418 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3419 } else { 3420 /* check whether register used as dest operand can be written to */ 3421 if (regno == BPF_REG_FP) { 3422 verbose(env, "frame pointer is read only\n"); 3423 return -EACCES; 3424 } 3425 reg->live |= REG_LIVE_WRITTEN; 3426 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3427 if (t == DST_OP) 3428 mark_reg_unknown(env, regs, regno); 3429 } 3430 return 0; 3431 } 3432 3433 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3434 enum reg_arg_type t) 3435 { 3436 struct bpf_verifier_state *vstate = env->cur_state; 3437 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3438 3439 return __check_reg_arg(env, state->regs, regno, t); 3440 } 3441 3442 static int insn_stack_access_flags(int frameno, int spi) 3443 { 3444 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; 3445 } 3446 3447 static int insn_stack_access_spi(int insn_flags) 3448 { 3449 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; 3450 } 3451 3452 static int insn_stack_access_frameno(int insn_flags) 3453 { 3454 return insn_flags & INSN_F_FRAMENO_MASK; 3455 } 3456 3457 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3458 { 3459 env->insn_aux_data[idx].jmp_point = true; 3460 } 3461 3462 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3463 { 3464 return env->insn_aux_data[insn_idx].jmp_point; 3465 } 3466 3467 #define LR_FRAMENO_BITS 3 3468 #define LR_SPI_BITS 6 3469 #define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1) 3470 #define LR_SIZE_BITS 4 3471 #define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1) 3472 #define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1) 3473 #define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1) 3474 #define LR_SPI_OFF LR_FRAMENO_BITS 3475 #define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS) 3476 #define LINKED_REGS_MAX 6 3477 3478 struct linked_reg { 3479 u8 frameno; 3480 union { 3481 u8 spi; 3482 u8 regno; 3483 }; 3484 bool is_reg; 3485 }; 3486 3487 struct linked_regs { 3488 int cnt; 3489 struct linked_reg entries[LINKED_REGS_MAX]; 3490 }; 3491 3492 static struct linked_reg *linked_regs_push(struct linked_regs *s) 3493 { 3494 if (s->cnt < LINKED_REGS_MAX) 3495 return &s->entries[s->cnt++]; 3496 3497 return NULL; 3498 } 3499 3500 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track 3501 * number of elements currently in stack. 3502 * Pack one history entry for linked registers as 10 bits in the following format: 3503 * - 3-bits frameno 3504 * - 6-bits spi_or_reg 3505 * - 1-bit is_reg 3506 */ 3507 static u64 linked_regs_pack(struct linked_regs *s) 3508 { 3509 u64 val = 0; 3510 int i; 3511 3512 for (i = 0; i < s->cnt; ++i) { 3513 struct linked_reg *e = &s->entries[i]; 3514 u64 tmp = 0; 3515 3516 tmp |= e->frameno; 3517 tmp |= e->spi << LR_SPI_OFF; 3518 tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF; 3519 3520 val <<= LR_ENTRY_BITS; 3521 val |= tmp; 3522 } 3523 val <<= LR_SIZE_BITS; 3524 val |= s->cnt; 3525 return val; 3526 } 3527 3528 static void linked_regs_unpack(u64 val, struct linked_regs *s) 3529 { 3530 int i; 3531 3532 s->cnt = val & LR_SIZE_MASK; 3533 val >>= LR_SIZE_BITS; 3534 3535 for (i = 0; i < s->cnt; ++i) { 3536 struct linked_reg *e = &s->entries[i]; 3537 3538 e->frameno = val & LR_FRAMENO_MASK; 3539 e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK; 3540 e->is_reg = (val >> LR_IS_REG_OFF) & 0x1; 3541 val >>= LR_ENTRY_BITS; 3542 } 3543 } 3544 3545 /* for any branch, call, exit record the history of jmps in the given state */ 3546 static int push_insn_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, 3547 int insn_flags, u64 linked_regs) 3548 { 3549 struct bpf_insn_hist_entry *p; 3550 size_t alloc_size; 3551 3552 /* combine instruction flags if we already recorded this instruction */ 3553 if (env->cur_hist_ent) { 3554 /* atomic instructions push insn_flags twice, for READ and 3555 * WRITE sides, but they should agree on stack slot 3556 */ 3557 WARN_ONCE((env->cur_hist_ent->flags & insn_flags) && 3558 (env->cur_hist_ent->flags & insn_flags) != insn_flags, 3559 "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n", 3560 env->insn_idx, env->cur_hist_ent->flags, insn_flags); 3561 env->cur_hist_ent->flags |= insn_flags; 3562 WARN_ONCE(env->cur_hist_ent->linked_regs != 0, 3563 "verifier insn history bug: insn_idx %d linked_regs != 0: %#llx\n", 3564 env->insn_idx, env->cur_hist_ent->linked_regs); 3565 env->cur_hist_ent->linked_regs = linked_regs; 3566 return 0; 3567 } 3568 3569 if (cur->insn_hist_end + 1 > env->insn_hist_cap) { 3570 alloc_size = size_mul(cur->insn_hist_end + 1, sizeof(*p)); 3571 p = kvrealloc(env->insn_hist, alloc_size, GFP_USER); 3572 if (!p) 3573 return -ENOMEM; 3574 env->insn_hist = p; 3575 env->insn_hist_cap = alloc_size / sizeof(*p); 3576 } 3577 3578 p = &env->insn_hist[cur->insn_hist_end]; 3579 p->idx = env->insn_idx; 3580 p->prev_idx = env->prev_insn_idx; 3581 p->flags = insn_flags; 3582 p->linked_regs = linked_regs; 3583 3584 cur->insn_hist_end++; 3585 env->cur_hist_ent = p; 3586 3587 return 0; 3588 } 3589 3590 static struct bpf_insn_hist_entry *get_insn_hist_entry(struct bpf_verifier_env *env, 3591 u32 hist_start, u32 hist_end, int insn_idx) 3592 { 3593 if (hist_end > hist_start && env->insn_hist[hist_end - 1].idx == insn_idx) 3594 return &env->insn_hist[hist_end - 1]; 3595 return NULL; 3596 } 3597 3598 /* Backtrack one insn at a time. If idx is not at the top of recorded 3599 * history then previous instruction came from straight line execution. 3600 * Return -ENOENT if we exhausted all instructions within given state. 3601 * 3602 * It's legal to have a bit of a looping with the same starting and ending 3603 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3604 * instruction index is the same as state's first_idx doesn't mean we are 3605 * done. If there is still some jump history left, we should keep going. We 3606 * need to take into account that we might have a jump history between given 3607 * state's parent and itself, due to checkpointing. In this case, we'll have 3608 * history entry recording a jump from last instruction of parent state and 3609 * first instruction of given state. 3610 */ 3611 static int get_prev_insn_idx(const struct bpf_verifier_env *env, 3612 struct bpf_verifier_state *st, 3613 int insn_idx, u32 hist_start, u32 *hist_endp) 3614 { 3615 u32 hist_end = *hist_endp; 3616 u32 cnt = hist_end - hist_start; 3617 3618 if (insn_idx == st->first_insn_idx) { 3619 if (cnt == 0) 3620 return -ENOENT; 3621 if (cnt == 1 && env->insn_hist[hist_start].idx == insn_idx) 3622 return -ENOENT; 3623 } 3624 3625 if (cnt && env->insn_hist[hist_end - 1].idx == insn_idx) { 3626 (*hist_endp)--; 3627 return env->insn_hist[hist_end - 1].prev_idx; 3628 } else { 3629 return insn_idx - 1; 3630 } 3631 } 3632 3633 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3634 { 3635 const struct btf_type *func; 3636 struct btf *desc_btf; 3637 3638 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3639 return NULL; 3640 3641 desc_btf = find_kfunc_desc_btf(data, insn->off); 3642 if (IS_ERR(desc_btf)) 3643 return "<error>"; 3644 3645 func = btf_type_by_id(desc_btf, insn->imm); 3646 return btf_name_by_offset(desc_btf, func->name_off); 3647 } 3648 3649 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3650 { 3651 bt->frame = frame; 3652 } 3653 3654 static inline void bt_reset(struct backtrack_state *bt) 3655 { 3656 struct bpf_verifier_env *env = bt->env; 3657 3658 memset(bt, 0, sizeof(*bt)); 3659 bt->env = env; 3660 } 3661 3662 static inline u32 bt_empty(struct backtrack_state *bt) 3663 { 3664 u64 mask = 0; 3665 int i; 3666 3667 for (i = 0; i <= bt->frame; i++) 3668 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3669 3670 return mask == 0; 3671 } 3672 3673 static inline int bt_subprog_enter(struct backtrack_state *bt) 3674 { 3675 if (bt->frame == MAX_CALL_FRAMES - 1) { 3676 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3677 WARN_ONCE(1, "verifier backtracking bug"); 3678 return -EFAULT; 3679 } 3680 bt->frame++; 3681 return 0; 3682 } 3683 3684 static inline int bt_subprog_exit(struct backtrack_state *bt) 3685 { 3686 if (bt->frame == 0) { 3687 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3688 WARN_ONCE(1, "verifier backtracking bug"); 3689 return -EFAULT; 3690 } 3691 bt->frame--; 3692 return 0; 3693 } 3694 3695 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3696 { 3697 bt->reg_masks[frame] |= 1 << reg; 3698 } 3699 3700 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3701 { 3702 bt->reg_masks[frame] &= ~(1 << reg); 3703 } 3704 3705 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3706 { 3707 bt_set_frame_reg(bt, bt->frame, reg); 3708 } 3709 3710 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3711 { 3712 bt_clear_frame_reg(bt, bt->frame, reg); 3713 } 3714 3715 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3716 { 3717 bt->stack_masks[frame] |= 1ull << slot; 3718 } 3719 3720 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3721 { 3722 bt->stack_masks[frame] &= ~(1ull << slot); 3723 } 3724 3725 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3726 { 3727 return bt->reg_masks[frame]; 3728 } 3729 3730 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3731 { 3732 return bt->reg_masks[bt->frame]; 3733 } 3734 3735 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3736 { 3737 return bt->stack_masks[frame]; 3738 } 3739 3740 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3741 { 3742 return bt->stack_masks[bt->frame]; 3743 } 3744 3745 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3746 { 3747 return bt->reg_masks[bt->frame] & (1 << reg); 3748 } 3749 3750 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg) 3751 { 3752 return bt->reg_masks[frame] & (1 << reg); 3753 } 3754 3755 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) 3756 { 3757 return bt->stack_masks[frame] & (1ull << slot); 3758 } 3759 3760 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3761 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3762 { 3763 DECLARE_BITMAP(mask, 64); 3764 bool first = true; 3765 int i, n; 3766 3767 buf[0] = '\0'; 3768 3769 bitmap_from_u64(mask, reg_mask); 3770 for_each_set_bit(i, mask, 32) { 3771 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3772 first = false; 3773 buf += n; 3774 buf_sz -= n; 3775 if (buf_sz < 0) 3776 break; 3777 } 3778 } 3779 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3780 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3781 { 3782 DECLARE_BITMAP(mask, 64); 3783 bool first = true; 3784 int i, n; 3785 3786 buf[0] = '\0'; 3787 3788 bitmap_from_u64(mask, stack_mask); 3789 for_each_set_bit(i, mask, 64) { 3790 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3791 first = false; 3792 buf += n; 3793 buf_sz -= n; 3794 if (buf_sz < 0) 3795 break; 3796 } 3797 } 3798 3799 /* If any register R in hist->linked_regs is marked as precise in bt, 3800 * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs. 3801 */ 3802 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_insn_hist_entry *hist) 3803 { 3804 struct linked_regs linked_regs; 3805 bool some_precise = false; 3806 int i; 3807 3808 if (!hist || hist->linked_regs == 0) 3809 return; 3810 3811 linked_regs_unpack(hist->linked_regs, &linked_regs); 3812 for (i = 0; i < linked_regs.cnt; ++i) { 3813 struct linked_reg *e = &linked_regs.entries[i]; 3814 3815 if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) || 3816 (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) { 3817 some_precise = true; 3818 break; 3819 } 3820 } 3821 3822 if (!some_precise) 3823 return; 3824 3825 for (i = 0; i < linked_regs.cnt; ++i) { 3826 struct linked_reg *e = &linked_regs.entries[i]; 3827 3828 if (e->is_reg) 3829 bt_set_frame_reg(bt, e->frameno, e->regno); 3830 else 3831 bt_set_frame_slot(bt, e->frameno, e->spi); 3832 } 3833 } 3834 3835 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 3836 3837 /* For given verifier state backtrack_insn() is called from the last insn to 3838 * the first insn. Its purpose is to compute a bitmask of registers and 3839 * stack slots that needs precision in the parent verifier state. 3840 * 3841 * @idx is an index of the instruction we are currently processing; 3842 * @subseq_idx is an index of the subsequent instruction that: 3843 * - *would be* executed next, if jump history is viewed in forward order; 3844 * - *was* processed previously during backtracking. 3845 */ 3846 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3847 struct bpf_insn_hist_entry *hist, struct backtrack_state *bt) 3848 { 3849 const struct bpf_insn_cbs cbs = { 3850 .cb_call = disasm_kfunc_name, 3851 .cb_print = verbose, 3852 .private_data = env, 3853 }; 3854 struct bpf_insn *insn = env->prog->insnsi + idx; 3855 u8 class = BPF_CLASS(insn->code); 3856 u8 opcode = BPF_OP(insn->code); 3857 u8 mode = BPF_MODE(insn->code); 3858 u32 dreg = insn->dst_reg; 3859 u32 sreg = insn->src_reg; 3860 u32 spi, i, fr; 3861 3862 if (insn->code == 0) 3863 return 0; 3864 if (env->log.level & BPF_LOG_LEVEL2) { 3865 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3866 verbose(env, "mark_precise: frame%d: regs=%s ", 3867 bt->frame, env->tmp_str_buf); 3868 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3869 verbose(env, "stack=%s before ", env->tmp_str_buf); 3870 verbose(env, "%d: ", idx); 3871 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3872 } 3873 3874 /* If there is a history record that some registers gained range at this insn, 3875 * propagate precision marks to those registers, so that bt_is_reg_set() 3876 * accounts for these registers. 3877 */ 3878 bt_sync_linked_regs(bt, hist); 3879 3880 if (class == BPF_ALU || class == BPF_ALU64) { 3881 if (!bt_is_reg_set(bt, dreg)) 3882 return 0; 3883 if (opcode == BPF_END || opcode == BPF_NEG) { 3884 /* sreg is reserved and unused 3885 * dreg still need precision before this insn 3886 */ 3887 return 0; 3888 } else if (opcode == BPF_MOV) { 3889 if (BPF_SRC(insn->code) == BPF_X) { 3890 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3891 * dreg needs precision after this insn 3892 * sreg needs precision before this insn 3893 */ 3894 bt_clear_reg(bt, dreg); 3895 if (sreg != BPF_REG_FP) 3896 bt_set_reg(bt, sreg); 3897 } else { 3898 /* dreg = K 3899 * dreg needs precision after this insn. 3900 * Corresponding register is already marked 3901 * as precise=true in this verifier state. 3902 * No further markings in parent are necessary 3903 */ 3904 bt_clear_reg(bt, dreg); 3905 } 3906 } else { 3907 if (BPF_SRC(insn->code) == BPF_X) { 3908 /* dreg += sreg 3909 * both dreg and sreg need precision 3910 * before this insn 3911 */ 3912 if (sreg != BPF_REG_FP) 3913 bt_set_reg(bt, sreg); 3914 } /* else dreg += K 3915 * dreg still needs precision before this insn 3916 */ 3917 } 3918 } else if (class == BPF_LDX) { 3919 if (!bt_is_reg_set(bt, dreg)) 3920 return 0; 3921 bt_clear_reg(bt, dreg); 3922 3923 /* scalars can only be spilled into stack w/o losing precision. 3924 * Load from any other memory can be zero extended. 3925 * The desire to keep that precision is already indicated 3926 * by 'precise' mark in corresponding register of this state. 3927 * No further tracking necessary. 3928 */ 3929 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 3930 return 0; 3931 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3932 * that [fp - off] slot contains scalar that needs to be 3933 * tracked with precision 3934 */ 3935 spi = insn_stack_access_spi(hist->flags); 3936 fr = insn_stack_access_frameno(hist->flags); 3937 bt_set_frame_slot(bt, fr, spi); 3938 } else if (class == BPF_STX || class == BPF_ST) { 3939 if (bt_is_reg_set(bt, dreg)) 3940 /* stx & st shouldn't be using _scalar_ dst_reg 3941 * to access memory. It means backtracking 3942 * encountered a case of pointer subtraction. 3943 */ 3944 return -ENOTSUPP; 3945 /* scalars can only be spilled into stack */ 3946 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 3947 return 0; 3948 spi = insn_stack_access_spi(hist->flags); 3949 fr = insn_stack_access_frameno(hist->flags); 3950 if (!bt_is_frame_slot_set(bt, fr, spi)) 3951 return 0; 3952 bt_clear_frame_slot(bt, fr, spi); 3953 if (class == BPF_STX) 3954 bt_set_reg(bt, sreg); 3955 } else if (class == BPF_JMP || class == BPF_JMP32) { 3956 if (bpf_pseudo_call(insn)) { 3957 int subprog_insn_idx, subprog; 3958 3959 subprog_insn_idx = idx + insn->imm + 1; 3960 subprog = find_subprog(env, subprog_insn_idx); 3961 if (subprog < 0) 3962 return -EFAULT; 3963 3964 if (subprog_is_global(env, subprog)) { 3965 /* check that jump history doesn't have any 3966 * extra instructions from subprog; the next 3967 * instruction after call to global subprog 3968 * should be literally next instruction in 3969 * caller program 3970 */ 3971 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3972 /* r1-r5 are invalidated after subprog call, 3973 * so for global func call it shouldn't be set 3974 * anymore 3975 */ 3976 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3977 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3978 WARN_ONCE(1, "verifier backtracking bug"); 3979 return -EFAULT; 3980 } 3981 /* global subprog always sets R0 */ 3982 bt_clear_reg(bt, BPF_REG_0); 3983 return 0; 3984 } else { 3985 /* static subprog call instruction, which 3986 * means that we are exiting current subprog, 3987 * so only r1-r5 could be still requested as 3988 * precise, r0 and r6-r10 or any stack slot in 3989 * the current frame should be zero by now 3990 */ 3991 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3992 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3993 WARN_ONCE(1, "verifier backtracking bug"); 3994 return -EFAULT; 3995 } 3996 /* we are now tracking register spills correctly, 3997 * so any instance of leftover slots is a bug 3998 */ 3999 if (bt_stack_mask(bt) != 0) { 4000 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 4001 WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)"); 4002 return -EFAULT; 4003 } 4004 /* propagate r1-r5 to the caller */ 4005 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 4006 if (bt_is_reg_set(bt, i)) { 4007 bt_clear_reg(bt, i); 4008 bt_set_frame_reg(bt, bt->frame - 1, i); 4009 } 4010 } 4011 if (bt_subprog_exit(bt)) 4012 return -EFAULT; 4013 return 0; 4014 } 4015 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 4016 /* exit from callback subprog to callback-calling helper or 4017 * kfunc call. Use idx/subseq_idx check to discern it from 4018 * straight line code backtracking. 4019 * Unlike the subprog call handling above, we shouldn't 4020 * propagate precision of r1-r5 (if any requested), as they are 4021 * not actually arguments passed directly to callback subprogs 4022 */ 4023 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4024 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4025 WARN_ONCE(1, "verifier backtracking bug"); 4026 return -EFAULT; 4027 } 4028 if (bt_stack_mask(bt) != 0) { 4029 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 4030 WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)"); 4031 return -EFAULT; 4032 } 4033 /* clear r1-r5 in callback subprog's mask */ 4034 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4035 bt_clear_reg(bt, i); 4036 if (bt_subprog_exit(bt)) 4037 return -EFAULT; 4038 return 0; 4039 } else if (opcode == BPF_CALL) { 4040 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 4041 * catch this error later. Make backtracking conservative 4042 * with ENOTSUPP. 4043 */ 4044 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 4045 return -ENOTSUPP; 4046 /* regular helper call sets R0 */ 4047 bt_clear_reg(bt, BPF_REG_0); 4048 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4049 /* if backtracing was looking for registers R1-R5 4050 * they should have been found already. 4051 */ 4052 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4053 WARN_ONCE(1, "verifier backtracking bug"); 4054 return -EFAULT; 4055 } 4056 } else if (opcode == BPF_EXIT) { 4057 bool r0_precise; 4058 4059 /* Backtracking to a nested function call, 'idx' is a part of 4060 * the inner frame 'subseq_idx' is a part of the outer frame. 4061 * In case of a regular function call, instructions giving 4062 * precision to registers R1-R5 should have been found already. 4063 * In case of a callback, it is ok to have R1-R5 marked for 4064 * backtracking, as these registers are set by the function 4065 * invoking callback. 4066 */ 4067 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 4068 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4069 bt_clear_reg(bt, i); 4070 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4071 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4072 WARN_ONCE(1, "verifier backtracking bug"); 4073 return -EFAULT; 4074 } 4075 4076 /* BPF_EXIT in subprog or callback always returns 4077 * right after the call instruction, so by checking 4078 * whether the instruction at subseq_idx-1 is subprog 4079 * call or not we can distinguish actual exit from 4080 * *subprog* from exit from *callback*. In the former 4081 * case, we need to propagate r0 precision, if 4082 * necessary. In the former we never do that. 4083 */ 4084 r0_precise = subseq_idx - 1 >= 0 && 4085 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 4086 bt_is_reg_set(bt, BPF_REG_0); 4087 4088 bt_clear_reg(bt, BPF_REG_0); 4089 if (bt_subprog_enter(bt)) 4090 return -EFAULT; 4091 4092 if (r0_precise) 4093 bt_set_reg(bt, BPF_REG_0); 4094 /* r6-r9 and stack slots will stay set in caller frame 4095 * bitmasks until we return back from callee(s) 4096 */ 4097 return 0; 4098 } else if (BPF_SRC(insn->code) == BPF_X) { 4099 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 4100 return 0; 4101 /* dreg <cond> sreg 4102 * Both dreg and sreg need precision before 4103 * this insn. If only sreg was marked precise 4104 * before it would be equally necessary to 4105 * propagate it to dreg. 4106 */ 4107 bt_set_reg(bt, dreg); 4108 bt_set_reg(bt, sreg); 4109 } else if (BPF_SRC(insn->code) == BPF_K) { 4110 /* dreg <cond> K 4111 * Only dreg still needs precision before 4112 * this insn, so for the K-based conditional 4113 * there is nothing new to be marked. 4114 */ 4115 } 4116 } else if (class == BPF_LD) { 4117 if (!bt_is_reg_set(bt, dreg)) 4118 return 0; 4119 bt_clear_reg(bt, dreg); 4120 /* It's ld_imm64 or ld_abs or ld_ind. 4121 * For ld_imm64 no further tracking of precision 4122 * into parent is necessary 4123 */ 4124 if (mode == BPF_IND || mode == BPF_ABS) 4125 /* to be analyzed */ 4126 return -ENOTSUPP; 4127 } 4128 /* Propagate precision marks to linked registers, to account for 4129 * registers marked as precise in this function. 4130 */ 4131 bt_sync_linked_regs(bt, hist); 4132 return 0; 4133 } 4134 4135 /* the scalar precision tracking algorithm: 4136 * . at the start all registers have precise=false. 4137 * . scalar ranges are tracked as normal through alu and jmp insns. 4138 * . once precise value of the scalar register is used in: 4139 * . ptr + scalar alu 4140 * . if (scalar cond K|scalar) 4141 * . helper_call(.., scalar, ...) where ARG_CONST is expected 4142 * backtrack through the verifier states and mark all registers and 4143 * stack slots with spilled constants that these scalar regisers 4144 * should be precise. 4145 * . during state pruning two registers (or spilled stack slots) 4146 * are equivalent if both are not precise. 4147 * 4148 * Note the verifier cannot simply walk register parentage chain, 4149 * since many different registers and stack slots could have been 4150 * used to compute single precise scalar. 4151 * 4152 * The approach of starting with precise=true for all registers and then 4153 * backtrack to mark a register as not precise when the verifier detects 4154 * that program doesn't care about specific value (e.g., when helper 4155 * takes register as ARG_ANYTHING parameter) is not safe. 4156 * 4157 * It's ok to walk single parentage chain of the verifier states. 4158 * It's possible that this backtracking will go all the way till 1st insn. 4159 * All other branches will be explored for needing precision later. 4160 * 4161 * The backtracking needs to deal with cases like: 4162 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 4163 * r9 -= r8 4164 * r5 = r9 4165 * if r5 > 0x79f goto pc+7 4166 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 4167 * r5 += 1 4168 * ... 4169 * call bpf_perf_event_output#25 4170 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 4171 * 4172 * and this case: 4173 * r6 = 1 4174 * call foo // uses callee's r6 inside to compute r0 4175 * r0 += r6 4176 * if r0 == 0 goto 4177 * 4178 * to track above reg_mask/stack_mask needs to be independent for each frame. 4179 * 4180 * Also if parent's curframe > frame where backtracking started, 4181 * the verifier need to mark registers in both frames, otherwise callees 4182 * may incorrectly prune callers. This is similar to 4183 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 4184 * 4185 * For now backtracking falls back into conservative marking. 4186 */ 4187 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 4188 struct bpf_verifier_state *st) 4189 { 4190 struct bpf_func_state *func; 4191 struct bpf_reg_state *reg; 4192 int i, j; 4193 4194 if (env->log.level & BPF_LOG_LEVEL2) { 4195 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 4196 st->curframe); 4197 } 4198 4199 /* big hammer: mark all scalars precise in this path. 4200 * pop_stack may still get !precise scalars. 4201 * We also skip current state and go straight to first parent state, 4202 * because precision markings in current non-checkpointed state are 4203 * not needed. See why in the comment in __mark_chain_precision below. 4204 */ 4205 for (st = st->parent; st; st = st->parent) { 4206 for (i = 0; i <= st->curframe; i++) { 4207 func = st->frame[i]; 4208 for (j = 0; j < BPF_REG_FP; j++) { 4209 reg = &func->regs[j]; 4210 if (reg->type != SCALAR_VALUE || reg->precise) 4211 continue; 4212 reg->precise = true; 4213 if (env->log.level & BPF_LOG_LEVEL2) { 4214 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 4215 i, j); 4216 } 4217 } 4218 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4219 if (!is_spilled_reg(&func->stack[j])) 4220 continue; 4221 reg = &func->stack[j].spilled_ptr; 4222 if (reg->type != SCALAR_VALUE || reg->precise) 4223 continue; 4224 reg->precise = true; 4225 if (env->log.level & BPF_LOG_LEVEL2) { 4226 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4227 i, -(j + 1) * 8); 4228 } 4229 } 4230 } 4231 } 4232 } 4233 4234 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4235 { 4236 struct bpf_func_state *func; 4237 struct bpf_reg_state *reg; 4238 int i, j; 4239 4240 for (i = 0; i <= st->curframe; i++) { 4241 func = st->frame[i]; 4242 for (j = 0; j < BPF_REG_FP; j++) { 4243 reg = &func->regs[j]; 4244 if (reg->type != SCALAR_VALUE) 4245 continue; 4246 reg->precise = false; 4247 } 4248 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4249 if (!is_spilled_reg(&func->stack[j])) 4250 continue; 4251 reg = &func->stack[j].spilled_ptr; 4252 if (reg->type != SCALAR_VALUE) 4253 continue; 4254 reg->precise = false; 4255 } 4256 } 4257 } 4258 4259 /* 4260 * __mark_chain_precision() backtracks BPF program instruction sequence and 4261 * chain of verifier states making sure that register *regno* (if regno >= 0) 4262 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4263 * SCALARS, as well as any other registers and slots that contribute to 4264 * a tracked state of given registers/stack slots, depending on specific BPF 4265 * assembly instructions (see backtrack_insns() for exact instruction handling 4266 * logic). This backtracking relies on recorded insn_hist and is able to 4267 * traverse entire chain of parent states. This process ends only when all the 4268 * necessary registers/slots and their transitive dependencies are marked as 4269 * precise. 4270 * 4271 * One important and subtle aspect is that precise marks *do not matter* in 4272 * the currently verified state (current state). It is important to understand 4273 * why this is the case. 4274 * 4275 * First, note that current state is the state that is not yet "checkpointed", 4276 * i.e., it is not yet put into env->explored_states, and it has no children 4277 * states as well. It's ephemeral, and can end up either a) being discarded if 4278 * compatible explored state is found at some point or BPF_EXIT instruction is 4279 * reached or b) checkpointed and put into env->explored_states, branching out 4280 * into one or more children states. 4281 * 4282 * In the former case, precise markings in current state are completely 4283 * ignored by state comparison code (see regsafe() for details). Only 4284 * checkpointed ("old") state precise markings are important, and if old 4285 * state's register/slot is precise, regsafe() assumes current state's 4286 * register/slot as precise and checks value ranges exactly and precisely. If 4287 * states turn out to be compatible, current state's necessary precise 4288 * markings and any required parent states' precise markings are enforced 4289 * after the fact with propagate_precision() logic, after the fact. But it's 4290 * important to realize that in this case, even after marking current state 4291 * registers/slots as precise, we immediately discard current state. So what 4292 * actually matters is any of the precise markings propagated into current 4293 * state's parent states, which are always checkpointed (due to b) case above). 4294 * As such, for scenario a) it doesn't matter if current state has precise 4295 * markings set or not. 4296 * 4297 * Now, for the scenario b), checkpointing and forking into child(ren) 4298 * state(s). Note that before current state gets to checkpointing step, any 4299 * processed instruction always assumes precise SCALAR register/slot 4300 * knowledge: if precise value or range is useful to prune jump branch, BPF 4301 * verifier takes this opportunity enthusiastically. Similarly, when 4302 * register's value is used to calculate offset or memory address, exact 4303 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4304 * what we mentioned above about state comparison ignoring precise markings 4305 * during state comparison, BPF verifier ignores and also assumes precise 4306 * markings *at will* during instruction verification process. But as verifier 4307 * assumes precision, it also propagates any precision dependencies across 4308 * parent states, which are not yet finalized, so can be further restricted 4309 * based on new knowledge gained from restrictions enforced by their children 4310 * states. This is so that once those parent states are finalized, i.e., when 4311 * they have no more active children state, state comparison logic in 4312 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4313 * required for correctness. 4314 * 4315 * To build a bit more intuition, note also that once a state is checkpointed, 4316 * the path we took to get to that state is not important. This is crucial 4317 * property for state pruning. When state is checkpointed and finalized at 4318 * some instruction index, it can be correctly and safely used to "short 4319 * circuit" any *compatible* state that reaches exactly the same instruction 4320 * index. I.e., if we jumped to that instruction from a completely different 4321 * code path than original finalized state was derived from, it doesn't 4322 * matter, current state can be discarded because from that instruction 4323 * forward having a compatible state will ensure we will safely reach the 4324 * exit. States describe preconditions for further exploration, but completely 4325 * forget the history of how we got here. 4326 * 4327 * This also means that even if we needed precise SCALAR range to get to 4328 * finalized state, but from that point forward *that same* SCALAR register is 4329 * never used in a precise context (i.e., it's precise value is not needed for 4330 * correctness), it's correct and safe to mark such register as "imprecise" 4331 * (i.e., precise marking set to false). This is what we rely on when we do 4332 * not set precise marking in current state. If no child state requires 4333 * precision for any given SCALAR register, it's safe to dictate that it can 4334 * be imprecise. If any child state does require this register to be precise, 4335 * we'll mark it precise later retroactively during precise markings 4336 * propagation from child state to parent states. 4337 * 4338 * Skipping precise marking setting in current state is a mild version of 4339 * relying on the above observation. But we can utilize this property even 4340 * more aggressively by proactively forgetting any precise marking in the 4341 * current state (which we inherited from the parent state), right before we 4342 * checkpoint it and branch off into new child state. This is done by 4343 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4344 * finalized states which help in short circuiting more future states. 4345 */ 4346 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4347 { 4348 struct backtrack_state *bt = &env->bt; 4349 struct bpf_verifier_state *st = env->cur_state; 4350 int first_idx = st->first_insn_idx; 4351 int last_idx = env->insn_idx; 4352 int subseq_idx = -1; 4353 struct bpf_func_state *func; 4354 struct bpf_reg_state *reg; 4355 bool skip_first = true; 4356 int i, fr, err; 4357 4358 if (!env->bpf_capable) 4359 return 0; 4360 4361 /* set frame number from which we are starting to backtrack */ 4362 bt_init(bt, env->cur_state->curframe); 4363 4364 /* Do sanity checks against current state of register and/or stack 4365 * slot, but don't set precise flag in current state, as precision 4366 * tracking in the current state is unnecessary. 4367 */ 4368 func = st->frame[bt->frame]; 4369 if (regno >= 0) { 4370 reg = &func->regs[regno]; 4371 if (reg->type != SCALAR_VALUE) { 4372 WARN_ONCE(1, "backtracing misuse"); 4373 return -EFAULT; 4374 } 4375 bt_set_reg(bt, regno); 4376 } 4377 4378 if (bt_empty(bt)) 4379 return 0; 4380 4381 for (;;) { 4382 DECLARE_BITMAP(mask, 64); 4383 u32 hist_start = st->insn_hist_start; 4384 u32 hist_end = st->insn_hist_end; 4385 struct bpf_insn_hist_entry *hist; 4386 4387 if (env->log.level & BPF_LOG_LEVEL2) { 4388 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4389 bt->frame, last_idx, first_idx, subseq_idx); 4390 } 4391 4392 if (last_idx < 0) { 4393 /* we are at the entry into subprog, which 4394 * is expected for global funcs, but only if 4395 * requested precise registers are R1-R5 4396 * (which are global func's input arguments) 4397 */ 4398 if (st->curframe == 0 && 4399 st->frame[0]->subprogno > 0 && 4400 st->frame[0]->callsite == BPF_MAIN_FUNC && 4401 bt_stack_mask(bt) == 0 && 4402 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4403 bitmap_from_u64(mask, bt_reg_mask(bt)); 4404 for_each_set_bit(i, mask, 32) { 4405 reg = &st->frame[0]->regs[i]; 4406 bt_clear_reg(bt, i); 4407 if (reg->type == SCALAR_VALUE) 4408 reg->precise = true; 4409 } 4410 return 0; 4411 } 4412 4413 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4414 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4415 WARN_ONCE(1, "verifier backtracking bug"); 4416 return -EFAULT; 4417 } 4418 4419 for (i = last_idx;;) { 4420 if (skip_first) { 4421 err = 0; 4422 skip_first = false; 4423 } else { 4424 hist = get_insn_hist_entry(env, hist_start, hist_end, i); 4425 err = backtrack_insn(env, i, subseq_idx, hist, bt); 4426 } 4427 if (err == -ENOTSUPP) { 4428 mark_all_scalars_precise(env, env->cur_state); 4429 bt_reset(bt); 4430 return 0; 4431 } else if (err) { 4432 return err; 4433 } 4434 if (bt_empty(bt)) 4435 /* Found assignment(s) into tracked register in this state. 4436 * Since this state is already marked, just return. 4437 * Nothing to be tracked further in the parent state. 4438 */ 4439 return 0; 4440 subseq_idx = i; 4441 i = get_prev_insn_idx(env, st, i, hist_start, &hist_end); 4442 if (i == -ENOENT) 4443 break; 4444 if (i >= env->prog->len) { 4445 /* This can happen if backtracking reached insn 0 4446 * and there are still reg_mask or stack_mask 4447 * to backtrack. 4448 * It means the backtracking missed the spot where 4449 * particular register was initialized with a constant. 4450 */ 4451 verbose(env, "BUG backtracking idx %d\n", i); 4452 WARN_ONCE(1, "verifier backtracking bug"); 4453 return -EFAULT; 4454 } 4455 } 4456 st = st->parent; 4457 if (!st) 4458 break; 4459 4460 for (fr = bt->frame; fr >= 0; fr--) { 4461 func = st->frame[fr]; 4462 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4463 for_each_set_bit(i, mask, 32) { 4464 reg = &func->regs[i]; 4465 if (reg->type != SCALAR_VALUE) { 4466 bt_clear_frame_reg(bt, fr, i); 4467 continue; 4468 } 4469 if (reg->precise) 4470 bt_clear_frame_reg(bt, fr, i); 4471 else 4472 reg->precise = true; 4473 } 4474 4475 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4476 for_each_set_bit(i, mask, 64) { 4477 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4478 verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n", 4479 i, func->allocated_stack / BPF_REG_SIZE); 4480 WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)"); 4481 return -EFAULT; 4482 } 4483 4484 if (!is_spilled_scalar_reg(&func->stack[i])) { 4485 bt_clear_frame_slot(bt, fr, i); 4486 continue; 4487 } 4488 reg = &func->stack[i].spilled_ptr; 4489 if (reg->precise) 4490 bt_clear_frame_slot(bt, fr, i); 4491 else 4492 reg->precise = true; 4493 } 4494 if (env->log.level & BPF_LOG_LEVEL2) { 4495 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4496 bt_frame_reg_mask(bt, fr)); 4497 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4498 fr, env->tmp_str_buf); 4499 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4500 bt_frame_stack_mask(bt, fr)); 4501 verbose(env, "stack=%s: ", env->tmp_str_buf); 4502 print_verifier_state(env, func, true); 4503 } 4504 } 4505 4506 if (bt_empty(bt)) 4507 return 0; 4508 4509 subseq_idx = first_idx; 4510 last_idx = st->last_insn_idx; 4511 first_idx = st->first_insn_idx; 4512 } 4513 4514 /* if we still have requested precise regs or slots, we missed 4515 * something (e.g., stack access through non-r10 register), so 4516 * fallback to marking all precise 4517 */ 4518 if (!bt_empty(bt)) { 4519 mark_all_scalars_precise(env, env->cur_state); 4520 bt_reset(bt); 4521 } 4522 4523 return 0; 4524 } 4525 4526 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4527 { 4528 return __mark_chain_precision(env, regno); 4529 } 4530 4531 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4532 * desired reg and stack masks across all relevant frames 4533 */ 4534 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4535 { 4536 return __mark_chain_precision(env, -1); 4537 } 4538 4539 static bool is_spillable_regtype(enum bpf_reg_type type) 4540 { 4541 switch (base_type(type)) { 4542 case PTR_TO_MAP_VALUE: 4543 case PTR_TO_STACK: 4544 case PTR_TO_CTX: 4545 case PTR_TO_PACKET: 4546 case PTR_TO_PACKET_META: 4547 case PTR_TO_PACKET_END: 4548 case PTR_TO_FLOW_KEYS: 4549 case CONST_PTR_TO_MAP: 4550 case PTR_TO_SOCKET: 4551 case PTR_TO_SOCK_COMMON: 4552 case PTR_TO_TCP_SOCK: 4553 case PTR_TO_XDP_SOCK: 4554 case PTR_TO_BTF_ID: 4555 case PTR_TO_BUF: 4556 case PTR_TO_MEM: 4557 case PTR_TO_FUNC: 4558 case PTR_TO_MAP_KEY: 4559 case PTR_TO_ARENA: 4560 return true; 4561 default: 4562 return false; 4563 } 4564 } 4565 4566 /* Does this register contain a constant zero? */ 4567 static bool register_is_null(struct bpf_reg_state *reg) 4568 { 4569 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4570 } 4571 4572 /* check if register is a constant scalar value */ 4573 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 4574 { 4575 return reg->type == SCALAR_VALUE && 4576 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 4577 } 4578 4579 /* assuming is_reg_const() is true, return constant value of a register */ 4580 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 4581 { 4582 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 4583 } 4584 4585 static bool __is_pointer_value(bool allow_ptr_leaks, 4586 const struct bpf_reg_state *reg) 4587 { 4588 if (allow_ptr_leaks) 4589 return false; 4590 4591 return reg->type != SCALAR_VALUE; 4592 } 4593 4594 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, 4595 struct bpf_reg_state *src_reg) 4596 { 4597 if (src_reg->type != SCALAR_VALUE) 4598 return; 4599 4600 if (src_reg->id & BPF_ADD_CONST) { 4601 /* 4602 * The verifier is processing rX = rY insn and 4603 * rY->id has special linked register already. 4604 * Cleared it, since multiple rX += const are not supported. 4605 */ 4606 src_reg->id = 0; 4607 src_reg->off = 0; 4608 } 4609 4610 if (!src_reg->id && !tnum_is_const(src_reg->var_off)) 4611 /* Ensure that src_reg has a valid ID that will be copied to 4612 * dst_reg and then will be used by sync_linked_regs() to 4613 * propagate min/max range. 4614 */ 4615 src_reg->id = ++env->id_gen; 4616 } 4617 4618 /* Copy src state preserving dst->parent and dst->live fields */ 4619 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4620 { 4621 struct bpf_reg_state *parent = dst->parent; 4622 enum bpf_reg_liveness live = dst->live; 4623 4624 *dst = *src; 4625 dst->parent = parent; 4626 dst->live = live; 4627 } 4628 4629 static void save_register_state(struct bpf_verifier_env *env, 4630 struct bpf_func_state *state, 4631 int spi, struct bpf_reg_state *reg, 4632 int size) 4633 { 4634 int i; 4635 4636 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4637 if (size == BPF_REG_SIZE) 4638 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4639 4640 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4641 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4642 4643 /* size < 8 bytes spill */ 4644 for (; i; i--) 4645 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); 4646 } 4647 4648 static bool is_bpf_st_mem(struct bpf_insn *insn) 4649 { 4650 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4651 } 4652 4653 static int get_reg_width(struct bpf_reg_state *reg) 4654 { 4655 return fls64(reg->umax_value); 4656 } 4657 4658 /* See comment for mark_fastcall_pattern_for_call() */ 4659 static void check_fastcall_stack_contract(struct bpf_verifier_env *env, 4660 struct bpf_func_state *state, int insn_idx, int off) 4661 { 4662 struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno]; 4663 struct bpf_insn_aux_data *aux = env->insn_aux_data; 4664 int i; 4665 4666 if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern) 4667 return; 4668 /* access to the region [max_stack_depth .. fastcall_stack_off) 4669 * from something that is not a part of the fastcall pattern, 4670 * disable fastcall rewrites for current subprogram by setting 4671 * fastcall_stack_off to a value smaller than any possible offset. 4672 */ 4673 subprog->fastcall_stack_off = S16_MIN; 4674 /* reset fastcall aux flags within subprogram, 4675 * happens at most once per subprogram 4676 */ 4677 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 4678 aux[i].fastcall_spills_num = 0; 4679 aux[i].fastcall_pattern = 0; 4680 } 4681 } 4682 4683 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4684 * stack boundary and alignment are checked in check_mem_access() 4685 */ 4686 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4687 /* stack frame we're writing to */ 4688 struct bpf_func_state *state, 4689 int off, int size, int value_regno, 4690 int insn_idx) 4691 { 4692 struct bpf_func_state *cur; /* state of the current function */ 4693 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4694 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4695 struct bpf_reg_state *reg = NULL; 4696 int insn_flags = insn_stack_access_flags(state->frameno, spi); 4697 4698 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4699 * so it's aligned access and [off, off + size) are within stack limits 4700 */ 4701 if (!env->allow_ptr_leaks && 4702 is_spilled_reg(&state->stack[spi]) && 4703 size != BPF_REG_SIZE) { 4704 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4705 return -EACCES; 4706 } 4707 4708 cur = env->cur_state->frame[env->cur_state->curframe]; 4709 if (value_regno >= 0) 4710 reg = &cur->regs[value_regno]; 4711 if (!env->bypass_spec_v4) { 4712 bool sanitize = reg && is_spillable_regtype(reg->type); 4713 4714 for (i = 0; i < size; i++) { 4715 u8 type = state->stack[spi].slot_type[i]; 4716 4717 if (type != STACK_MISC && type != STACK_ZERO) { 4718 sanitize = true; 4719 break; 4720 } 4721 } 4722 4723 if (sanitize) 4724 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4725 } 4726 4727 err = destroy_if_dynptr_stack_slot(env, state, spi); 4728 if (err) 4729 return err; 4730 4731 check_fastcall_stack_contract(env, state, insn_idx, off); 4732 mark_stack_slot_scratched(env, spi); 4733 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { 4734 bool reg_value_fits; 4735 4736 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; 4737 /* Make sure that reg had an ID to build a relation on spill. */ 4738 if (reg_value_fits) 4739 assign_scalar_id_before_mov(env, reg); 4740 save_register_state(env, state, spi, reg, size); 4741 /* Break the relation on a narrowing spill. */ 4742 if (!reg_value_fits) 4743 state->stack[spi].spilled_ptr.id = 0; 4744 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4745 env->bpf_capable) { 4746 struct bpf_reg_state *tmp_reg = &env->fake_reg[0]; 4747 4748 memset(tmp_reg, 0, sizeof(*tmp_reg)); 4749 __mark_reg_known(tmp_reg, insn->imm); 4750 tmp_reg->type = SCALAR_VALUE; 4751 save_register_state(env, state, spi, tmp_reg, size); 4752 } else if (reg && is_spillable_regtype(reg->type)) { 4753 /* register containing pointer is being spilled into stack */ 4754 if (size != BPF_REG_SIZE) { 4755 verbose_linfo(env, insn_idx, "; "); 4756 verbose(env, "invalid size of register spill\n"); 4757 return -EACCES; 4758 } 4759 if (state != cur && reg->type == PTR_TO_STACK) { 4760 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4761 return -EINVAL; 4762 } 4763 save_register_state(env, state, spi, reg, size); 4764 } else { 4765 u8 type = STACK_MISC; 4766 4767 /* regular write of data into stack destroys any spilled ptr */ 4768 state->stack[spi].spilled_ptr.type = NOT_INIT; 4769 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4770 if (is_stack_slot_special(&state->stack[spi])) 4771 for (i = 0; i < BPF_REG_SIZE; i++) 4772 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4773 4774 /* only mark the slot as written if all 8 bytes were written 4775 * otherwise read propagation may incorrectly stop too soon 4776 * when stack slots are partially written. 4777 * This heuristic means that read propagation will be 4778 * conservative, since it will add reg_live_read marks 4779 * to stack slots all the way to first state when programs 4780 * writes+reads less than 8 bytes 4781 */ 4782 if (size == BPF_REG_SIZE) 4783 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4784 4785 /* when we zero initialize stack slots mark them as such */ 4786 if ((reg && register_is_null(reg)) || 4787 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4788 /* STACK_ZERO case happened because register spill 4789 * wasn't properly aligned at the stack slot boundary, 4790 * so it's not a register spill anymore; force 4791 * originating register to be precise to make 4792 * STACK_ZERO correct for subsequent states 4793 */ 4794 err = mark_chain_precision(env, value_regno); 4795 if (err) 4796 return err; 4797 type = STACK_ZERO; 4798 } 4799 4800 /* Mark slots affected by this stack write. */ 4801 for (i = 0; i < size; i++) 4802 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 4803 insn_flags = 0; /* not a register spill */ 4804 } 4805 4806 if (insn_flags) 4807 return push_insn_history(env, env->cur_state, insn_flags, 0); 4808 return 0; 4809 } 4810 4811 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4812 * known to contain a variable offset. 4813 * This function checks whether the write is permitted and conservatively 4814 * tracks the effects of the write, considering that each stack slot in the 4815 * dynamic range is potentially written to. 4816 * 4817 * 'off' includes 'regno->off'. 4818 * 'value_regno' can be -1, meaning that an unknown value is being written to 4819 * the stack. 4820 * 4821 * Spilled pointers in range are not marked as written because we don't know 4822 * what's going to be actually written. This means that read propagation for 4823 * future reads cannot be terminated by this write. 4824 * 4825 * For privileged programs, uninitialized stack slots are considered 4826 * initialized by this write (even though we don't know exactly what offsets 4827 * are going to be written to). The idea is that we don't want the verifier to 4828 * reject future reads that access slots written to through variable offsets. 4829 */ 4830 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4831 /* func where register points to */ 4832 struct bpf_func_state *state, 4833 int ptr_regno, int off, int size, 4834 int value_regno, int insn_idx) 4835 { 4836 struct bpf_func_state *cur; /* state of the current function */ 4837 int min_off, max_off; 4838 int i, err; 4839 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4840 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4841 bool writing_zero = false; 4842 /* set if the fact that we're writing a zero is used to let any 4843 * stack slots remain STACK_ZERO 4844 */ 4845 bool zero_used = false; 4846 4847 cur = env->cur_state->frame[env->cur_state->curframe]; 4848 ptr_reg = &cur->regs[ptr_regno]; 4849 min_off = ptr_reg->smin_value + off; 4850 max_off = ptr_reg->smax_value + off + size; 4851 if (value_regno >= 0) 4852 value_reg = &cur->regs[value_regno]; 4853 if ((value_reg && register_is_null(value_reg)) || 4854 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4855 writing_zero = true; 4856 4857 for (i = min_off; i < max_off; i++) { 4858 int spi; 4859 4860 spi = __get_spi(i); 4861 err = destroy_if_dynptr_stack_slot(env, state, spi); 4862 if (err) 4863 return err; 4864 } 4865 4866 check_fastcall_stack_contract(env, state, insn_idx, min_off); 4867 /* Variable offset writes destroy any spilled pointers in range. */ 4868 for (i = min_off; i < max_off; i++) { 4869 u8 new_type, *stype; 4870 int slot, spi; 4871 4872 slot = -i - 1; 4873 spi = slot / BPF_REG_SIZE; 4874 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4875 mark_stack_slot_scratched(env, spi); 4876 4877 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4878 /* Reject the write if range we may write to has not 4879 * been initialized beforehand. If we didn't reject 4880 * here, the ptr status would be erased below (even 4881 * though not all slots are actually overwritten), 4882 * possibly opening the door to leaks. 4883 * 4884 * We do however catch STACK_INVALID case below, and 4885 * only allow reading possibly uninitialized memory 4886 * later for CAP_PERFMON, as the write may not happen to 4887 * that slot. 4888 */ 4889 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4890 insn_idx, i); 4891 return -EINVAL; 4892 } 4893 4894 /* If writing_zero and the spi slot contains a spill of value 0, 4895 * maintain the spill type. 4896 */ 4897 if (writing_zero && *stype == STACK_SPILL && 4898 is_spilled_scalar_reg(&state->stack[spi])) { 4899 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; 4900 4901 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { 4902 zero_used = true; 4903 continue; 4904 } 4905 } 4906 4907 /* Erase all other spilled pointers. */ 4908 state->stack[spi].spilled_ptr.type = NOT_INIT; 4909 4910 /* Update the slot type. */ 4911 new_type = STACK_MISC; 4912 if (writing_zero && *stype == STACK_ZERO) { 4913 new_type = STACK_ZERO; 4914 zero_used = true; 4915 } 4916 /* If the slot is STACK_INVALID, we check whether it's OK to 4917 * pretend that it will be initialized by this write. The slot 4918 * might not actually be written to, and so if we mark it as 4919 * initialized future reads might leak uninitialized memory. 4920 * For privileged programs, we will accept such reads to slots 4921 * that may or may not be written because, if we're reject 4922 * them, the error would be too confusing. 4923 */ 4924 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4925 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4926 insn_idx, i); 4927 return -EINVAL; 4928 } 4929 *stype = new_type; 4930 } 4931 if (zero_used) { 4932 /* backtracking doesn't work for STACK_ZERO yet. */ 4933 err = mark_chain_precision(env, value_regno); 4934 if (err) 4935 return err; 4936 } 4937 return 0; 4938 } 4939 4940 /* When register 'dst_regno' is assigned some values from stack[min_off, 4941 * max_off), we set the register's type according to the types of the 4942 * respective stack slots. If all the stack values are known to be zeros, then 4943 * so is the destination reg. Otherwise, the register is considered to be 4944 * SCALAR. This function does not deal with register filling; the caller must 4945 * ensure that all spilled registers in the stack range have been marked as 4946 * read. 4947 */ 4948 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4949 /* func where src register points to */ 4950 struct bpf_func_state *ptr_state, 4951 int min_off, int max_off, int dst_regno) 4952 { 4953 struct bpf_verifier_state *vstate = env->cur_state; 4954 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4955 int i, slot, spi; 4956 u8 *stype; 4957 int zeros = 0; 4958 4959 for (i = min_off; i < max_off; i++) { 4960 slot = -i - 1; 4961 spi = slot / BPF_REG_SIZE; 4962 mark_stack_slot_scratched(env, spi); 4963 stype = ptr_state->stack[spi].slot_type; 4964 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4965 break; 4966 zeros++; 4967 } 4968 if (zeros == max_off - min_off) { 4969 /* Any access_size read into register is zero extended, 4970 * so the whole register == const_zero. 4971 */ 4972 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4973 } else { 4974 /* have read misc data from the stack */ 4975 mark_reg_unknown(env, state->regs, dst_regno); 4976 } 4977 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4978 } 4979 4980 /* Read the stack at 'off' and put the results into the register indicated by 4981 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4982 * spilled reg. 4983 * 4984 * 'dst_regno' can be -1, meaning that the read value is not going to a 4985 * register. 4986 * 4987 * The access is assumed to be within the current stack bounds. 4988 */ 4989 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4990 /* func where src register points to */ 4991 struct bpf_func_state *reg_state, 4992 int off, int size, int dst_regno) 4993 { 4994 struct bpf_verifier_state *vstate = env->cur_state; 4995 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4996 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4997 struct bpf_reg_state *reg; 4998 u8 *stype, type; 4999 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); 5000 5001 stype = reg_state->stack[spi].slot_type; 5002 reg = ®_state->stack[spi].spilled_ptr; 5003 5004 mark_stack_slot_scratched(env, spi); 5005 check_fastcall_stack_contract(env, state, env->insn_idx, off); 5006 5007 if (is_spilled_reg(®_state->stack[spi])) { 5008 u8 spill_size = 1; 5009 5010 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 5011 spill_size++; 5012 5013 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 5014 if (reg->type != SCALAR_VALUE) { 5015 verbose_linfo(env, env->insn_idx, "; "); 5016 verbose(env, "invalid size of register fill\n"); 5017 return -EACCES; 5018 } 5019 5020 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5021 if (dst_regno < 0) 5022 return 0; 5023 5024 if (size <= spill_size && 5025 bpf_stack_narrow_access_ok(off, size, spill_size)) { 5026 /* The earlier check_reg_arg() has decided the 5027 * subreg_def for this insn. Save it first. 5028 */ 5029 s32 subreg_def = state->regs[dst_regno].subreg_def; 5030 5031 copy_register_state(&state->regs[dst_regno], reg); 5032 state->regs[dst_regno].subreg_def = subreg_def; 5033 5034 /* Break the relation on a narrowing fill. 5035 * coerce_reg_to_size will adjust the boundaries. 5036 */ 5037 if (get_reg_width(reg) > size * BITS_PER_BYTE) 5038 state->regs[dst_regno].id = 0; 5039 } else { 5040 int spill_cnt = 0, zero_cnt = 0; 5041 5042 for (i = 0; i < size; i++) { 5043 type = stype[(slot - i) % BPF_REG_SIZE]; 5044 if (type == STACK_SPILL) { 5045 spill_cnt++; 5046 continue; 5047 } 5048 if (type == STACK_MISC) 5049 continue; 5050 if (type == STACK_ZERO) { 5051 zero_cnt++; 5052 continue; 5053 } 5054 if (type == STACK_INVALID && env->allow_uninit_stack) 5055 continue; 5056 verbose(env, "invalid read from stack off %d+%d size %d\n", 5057 off, i, size); 5058 return -EACCES; 5059 } 5060 5061 if (spill_cnt == size && 5062 tnum_is_const(reg->var_off) && reg->var_off.value == 0) { 5063 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5064 /* this IS register fill, so keep insn_flags */ 5065 } else if (zero_cnt == size) { 5066 /* similarly to mark_reg_stack_read(), preserve zeroes */ 5067 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5068 insn_flags = 0; /* not restoring original register state */ 5069 } else { 5070 mark_reg_unknown(env, state->regs, dst_regno); 5071 insn_flags = 0; /* not restoring original register state */ 5072 } 5073 } 5074 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5075 } else if (dst_regno >= 0) { 5076 /* restore register state from stack */ 5077 copy_register_state(&state->regs[dst_regno], reg); 5078 /* mark reg as written since spilled pointer state likely 5079 * has its liveness marks cleared by is_state_visited() 5080 * which resets stack/reg liveness for state transitions 5081 */ 5082 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5083 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 5084 /* If dst_regno==-1, the caller is asking us whether 5085 * it is acceptable to use this value as a SCALAR_VALUE 5086 * (e.g. for XADD). 5087 * We must not allow unprivileged callers to do that 5088 * with spilled pointers. 5089 */ 5090 verbose(env, "leaking pointer from stack off %d\n", 5091 off); 5092 return -EACCES; 5093 } 5094 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5095 } else { 5096 for (i = 0; i < size; i++) { 5097 type = stype[(slot - i) % BPF_REG_SIZE]; 5098 if (type == STACK_MISC) 5099 continue; 5100 if (type == STACK_ZERO) 5101 continue; 5102 if (type == STACK_INVALID && env->allow_uninit_stack) 5103 continue; 5104 verbose(env, "invalid read from stack off %d+%d size %d\n", 5105 off, i, size); 5106 return -EACCES; 5107 } 5108 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5109 if (dst_regno >= 0) 5110 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 5111 insn_flags = 0; /* we are not restoring spilled register */ 5112 } 5113 if (insn_flags) 5114 return push_insn_history(env, env->cur_state, insn_flags, 0); 5115 return 0; 5116 } 5117 5118 enum bpf_access_src { 5119 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 5120 ACCESS_HELPER = 2, /* the access is performed by a helper */ 5121 }; 5122 5123 static int check_stack_range_initialized(struct bpf_verifier_env *env, 5124 int regno, int off, int access_size, 5125 bool zero_size_allowed, 5126 enum bpf_access_src type, 5127 struct bpf_call_arg_meta *meta); 5128 5129 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 5130 { 5131 return cur_regs(env) + regno; 5132 } 5133 5134 /* Read the stack at 'ptr_regno + off' and put the result into the register 5135 * 'dst_regno'. 5136 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 5137 * but not its variable offset. 5138 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 5139 * 5140 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 5141 * filling registers (i.e. reads of spilled register cannot be detected when 5142 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 5143 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 5144 * offset; for a fixed offset check_stack_read_fixed_off should be used 5145 * instead. 5146 */ 5147 static int check_stack_read_var_off(struct bpf_verifier_env *env, 5148 int ptr_regno, int off, int size, int dst_regno) 5149 { 5150 /* The state of the source register. */ 5151 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5152 struct bpf_func_state *ptr_state = func(env, reg); 5153 int err; 5154 int min_off, max_off; 5155 5156 /* Note that we pass a NULL meta, so raw access will not be permitted. 5157 */ 5158 err = check_stack_range_initialized(env, ptr_regno, off, size, 5159 false, ACCESS_DIRECT, NULL); 5160 if (err) 5161 return err; 5162 5163 min_off = reg->smin_value + off; 5164 max_off = reg->smax_value + off; 5165 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 5166 check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off); 5167 return 0; 5168 } 5169 5170 /* check_stack_read dispatches to check_stack_read_fixed_off or 5171 * check_stack_read_var_off. 5172 * 5173 * The caller must ensure that the offset falls within the allocated stack 5174 * bounds. 5175 * 5176 * 'dst_regno' is a register which will receive the value from the stack. It 5177 * can be -1, meaning that the read value is not going to a register. 5178 */ 5179 static int check_stack_read(struct bpf_verifier_env *env, 5180 int ptr_regno, int off, int size, 5181 int dst_regno) 5182 { 5183 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5184 struct bpf_func_state *state = func(env, reg); 5185 int err; 5186 /* Some accesses are only permitted with a static offset. */ 5187 bool var_off = !tnum_is_const(reg->var_off); 5188 5189 /* The offset is required to be static when reads don't go to a 5190 * register, in order to not leak pointers (see 5191 * check_stack_read_fixed_off). 5192 */ 5193 if (dst_regno < 0 && var_off) { 5194 char tn_buf[48]; 5195 5196 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5197 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5198 tn_buf, off, size); 5199 return -EACCES; 5200 } 5201 /* Variable offset is prohibited for unprivileged mode for simplicity 5202 * since it requires corresponding support in Spectre masking for stack 5203 * ALU. See also retrieve_ptr_limit(). The check in 5204 * check_stack_access_for_ptr_arithmetic() called by 5205 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5206 * with variable offsets, therefore no check is required here. Further, 5207 * just checking it here would be insufficient as speculative stack 5208 * writes could still lead to unsafe speculative behaviour. 5209 */ 5210 if (!var_off) { 5211 off += reg->var_off.value; 5212 err = check_stack_read_fixed_off(env, state, off, size, 5213 dst_regno); 5214 } else { 5215 /* Variable offset stack reads need more conservative handling 5216 * than fixed offset ones. Note that dst_regno >= 0 on this 5217 * branch. 5218 */ 5219 err = check_stack_read_var_off(env, ptr_regno, off, size, 5220 dst_regno); 5221 } 5222 return err; 5223 } 5224 5225 5226 /* check_stack_write dispatches to check_stack_write_fixed_off or 5227 * check_stack_write_var_off. 5228 * 5229 * 'ptr_regno' is the register used as a pointer into the stack. 5230 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5231 * 'value_regno' is the register whose value we're writing to the stack. It can 5232 * be -1, meaning that we're not writing from a register. 5233 * 5234 * The caller must ensure that the offset falls within the maximum stack size. 5235 */ 5236 static int check_stack_write(struct bpf_verifier_env *env, 5237 int ptr_regno, int off, int size, 5238 int value_regno, int insn_idx) 5239 { 5240 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5241 struct bpf_func_state *state = func(env, reg); 5242 int err; 5243 5244 if (tnum_is_const(reg->var_off)) { 5245 off += reg->var_off.value; 5246 err = check_stack_write_fixed_off(env, state, off, size, 5247 value_regno, insn_idx); 5248 } else { 5249 /* Variable offset stack reads need more conservative handling 5250 * than fixed offset ones. 5251 */ 5252 err = check_stack_write_var_off(env, state, 5253 ptr_regno, off, size, 5254 value_regno, insn_idx); 5255 } 5256 return err; 5257 } 5258 5259 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5260 int off, int size, enum bpf_access_type type) 5261 { 5262 struct bpf_reg_state *regs = cur_regs(env); 5263 struct bpf_map *map = regs[regno].map_ptr; 5264 u32 cap = bpf_map_flags_to_cap(map); 5265 5266 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5267 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5268 map->value_size, off, size); 5269 return -EACCES; 5270 } 5271 5272 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5273 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5274 map->value_size, off, size); 5275 return -EACCES; 5276 } 5277 5278 return 0; 5279 } 5280 5281 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5282 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5283 int off, int size, u32 mem_size, 5284 bool zero_size_allowed) 5285 { 5286 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5287 struct bpf_reg_state *reg; 5288 5289 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5290 return 0; 5291 5292 reg = &cur_regs(env)[regno]; 5293 switch (reg->type) { 5294 case PTR_TO_MAP_KEY: 5295 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5296 mem_size, off, size); 5297 break; 5298 case PTR_TO_MAP_VALUE: 5299 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5300 mem_size, off, size); 5301 break; 5302 case PTR_TO_PACKET: 5303 case PTR_TO_PACKET_META: 5304 case PTR_TO_PACKET_END: 5305 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5306 off, size, regno, reg->id, off, mem_size); 5307 break; 5308 case PTR_TO_MEM: 5309 default: 5310 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5311 mem_size, off, size); 5312 } 5313 5314 return -EACCES; 5315 } 5316 5317 /* check read/write into a memory region with possible variable offset */ 5318 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5319 int off, int size, u32 mem_size, 5320 bool zero_size_allowed) 5321 { 5322 struct bpf_verifier_state *vstate = env->cur_state; 5323 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5324 struct bpf_reg_state *reg = &state->regs[regno]; 5325 int err; 5326 5327 /* We may have adjusted the register pointing to memory region, so we 5328 * need to try adding each of min_value and max_value to off 5329 * to make sure our theoretical access will be safe. 5330 * 5331 * The minimum value is only important with signed 5332 * comparisons where we can't assume the floor of a 5333 * value is 0. If we are using signed variables for our 5334 * index'es we need to make sure that whatever we use 5335 * will have a set floor within our range. 5336 */ 5337 if (reg->smin_value < 0 && 5338 (reg->smin_value == S64_MIN || 5339 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5340 reg->smin_value + off < 0)) { 5341 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5342 regno); 5343 return -EACCES; 5344 } 5345 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5346 mem_size, zero_size_allowed); 5347 if (err) { 5348 verbose(env, "R%d min value is outside of the allowed memory range\n", 5349 regno); 5350 return err; 5351 } 5352 5353 /* If we haven't set a max value then we need to bail since we can't be 5354 * sure we won't do bad things. 5355 * If reg->umax_value + off could overflow, treat that as unbounded too. 5356 */ 5357 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5358 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5359 regno); 5360 return -EACCES; 5361 } 5362 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5363 mem_size, zero_size_allowed); 5364 if (err) { 5365 verbose(env, "R%d max value is outside of the allowed memory range\n", 5366 regno); 5367 return err; 5368 } 5369 5370 return 0; 5371 } 5372 5373 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5374 const struct bpf_reg_state *reg, int regno, 5375 bool fixed_off_ok) 5376 { 5377 /* Access to this pointer-typed register or passing it to a helper 5378 * is only allowed in its original, unmodified form. 5379 */ 5380 5381 if (reg->off < 0) { 5382 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5383 reg_type_str(env, reg->type), regno, reg->off); 5384 return -EACCES; 5385 } 5386 5387 if (!fixed_off_ok && reg->off) { 5388 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5389 reg_type_str(env, reg->type), regno, reg->off); 5390 return -EACCES; 5391 } 5392 5393 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5394 char tn_buf[48]; 5395 5396 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5397 verbose(env, "variable %s access var_off=%s disallowed\n", 5398 reg_type_str(env, reg->type), tn_buf); 5399 return -EACCES; 5400 } 5401 5402 return 0; 5403 } 5404 5405 static int check_ptr_off_reg(struct bpf_verifier_env *env, 5406 const struct bpf_reg_state *reg, int regno) 5407 { 5408 return __check_ptr_off_reg(env, reg, regno, false); 5409 } 5410 5411 static int map_kptr_match_type(struct bpf_verifier_env *env, 5412 struct btf_field *kptr_field, 5413 struct bpf_reg_state *reg, u32 regno) 5414 { 5415 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5416 int perm_flags; 5417 const char *reg_name = ""; 5418 5419 if (btf_is_kernel(reg->btf)) { 5420 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5421 5422 /* Only unreferenced case accepts untrusted pointers */ 5423 if (kptr_field->type == BPF_KPTR_UNREF) 5424 perm_flags |= PTR_UNTRUSTED; 5425 } else { 5426 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5427 if (kptr_field->type == BPF_KPTR_PERCPU) 5428 perm_flags |= MEM_PERCPU; 5429 } 5430 5431 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5432 goto bad_type; 5433 5434 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5435 reg_name = btf_type_name(reg->btf, reg->btf_id); 5436 5437 /* For ref_ptr case, release function check should ensure we get one 5438 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5439 * normal store of unreferenced kptr, we must ensure var_off is zero. 5440 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5441 * reg->off and reg->ref_obj_id are not needed here. 5442 */ 5443 if (__check_ptr_off_reg(env, reg, regno, true)) 5444 return -EACCES; 5445 5446 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5447 * we also need to take into account the reg->off. 5448 * 5449 * We want to support cases like: 5450 * 5451 * struct foo { 5452 * struct bar br; 5453 * struct baz bz; 5454 * }; 5455 * 5456 * struct foo *v; 5457 * v = func(); // PTR_TO_BTF_ID 5458 * val->foo = v; // reg->off is zero, btf and btf_id match type 5459 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5460 * // first member type of struct after comparison fails 5461 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5462 * // to match type 5463 * 5464 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5465 * is zero. We must also ensure that btf_struct_ids_match does not walk 5466 * the struct to match type against first member of struct, i.e. reject 5467 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5468 * strict mode to true for type match. 5469 */ 5470 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5471 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5472 kptr_field->type != BPF_KPTR_UNREF)) 5473 goto bad_type; 5474 return 0; 5475 bad_type: 5476 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5477 reg_type_str(env, reg->type), reg_name); 5478 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5479 if (kptr_field->type == BPF_KPTR_UNREF) 5480 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5481 targ_name); 5482 else 5483 verbose(env, "\n"); 5484 return -EINVAL; 5485 } 5486 5487 static bool in_sleepable(struct bpf_verifier_env *env) 5488 { 5489 return env->prog->sleepable || 5490 (env->cur_state && env->cur_state->in_sleepable); 5491 } 5492 5493 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5494 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5495 */ 5496 static bool in_rcu_cs(struct bpf_verifier_env *env) 5497 { 5498 return env->cur_state->active_rcu_lock || 5499 cur_func(env)->active_locks || 5500 !in_sleepable(env); 5501 } 5502 5503 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5504 BTF_SET_START(rcu_protected_types) 5505 BTF_ID(struct, prog_test_ref_kfunc) 5506 #ifdef CONFIG_CGROUPS 5507 BTF_ID(struct, cgroup) 5508 #endif 5509 #ifdef CONFIG_BPF_JIT 5510 BTF_ID(struct, bpf_cpumask) 5511 #endif 5512 BTF_ID(struct, task_struct) 5513 BTF_ID(struct, bpf_crypto_ctx) 5514 BTF_SET_END(rcu_protected_types) 5515 5516 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5517 { 5518 if (!btf_is_kernel(btf)) 5519 return true; 5520 return btf_id_set_contains(&rcu_protected_types, btf_id); 5521 } 5522 5523 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 5524 { 5525 struct btf_struct_meta *meta; 5526 5527 if (btf_is_kernel(kptr_field->kptr.btf)) 5528 return NULL; 5529 5530 meta = btf_find_struct_meta(kptr_field->kptr.btf, 5531 kptr_field->kptr.btf_id); 5532 5533 return meta ? meta->record : NULL; 5534 } 5535 5536 static bool rcu_safe_kptr(const struct btf_field *field) 5537 { 5538 const struct btf_field_kptr *kptr = &field->kptr; 5539 5540 return field->type == BPF_KPTR_PERCPU || 5541 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5542 } 5543 5544 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5545 { 5546 struct btf_record *rec; 5547 u32 ret; 5548 5549 ret = PTR_MAYBE_NULL; 5550 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5551 ret |= MEM_RCU; 5552 if (kptr_field->type == BPF_KPTR_PERCPU) 5553 ret |= MEM_PERCPU; 5554 else if (!btf_is_kernel(kptr_field->kptr.btf)) 5555 ret |= MEM_ALLOC; 5556 5557 rec = kptr_pointee_btf_record(kptr_field); 5558 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 5559 ret |= NON_OWN_REF; 5560 } else { 5561 ret |= PTR_UNTRUSTED; 5562 } 5563 5564 return ret; 5565 } 5566 5567 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno, 5568 struct btf_field *field) 5569 { 5570 struct bpf_reg_state *reg; 5571 const struct btf_type *t; 5572 5573 t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id); 5574 mark_reg_known_zero(env, cur_regs(env), regno); 5575 reg = reg_state(env, regno); 5576 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 5577 reg->mem_size = t->size; 5578 reg->id = ++env->id_gen; 5579 5580 return 0; 5581 } 5582 5583 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5584 int value_regno, int insn_idx, 5585 struct btf_field *kptr_field) 5586 { 5587 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5588 int class = BPF_CLASS(insn->code); 5589 struct bpf_reg_state *val_reg; 5590 5591 /* Things we already checked for in check_map_access and caller: 5592 * - Reject cases where variable offset may touch kptr 5593 * - size of access (must be BPF_DW) 5594 * - tnum_is_const(reg->var_off) 5595 * - kptr_field->offset == off + reg->var_off.value 5596 */ 5597 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5598 if (BPF_MODE(insn->code) != BPF_MEM) { 5599 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5600 return -EACCES; 5601 } 5602 5603 /* We only allow loading referenced kptr, since it will be marked as 5604 * untrusted, similar to unreferenced kptr. 5605 */ 5606 if (class != BPF_LDX && 5607 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 5608 verbose(env, "store to referenced kptr disallowed\n"); 5609 return -EACCES; 5610 } 5611 if (class != BPF_LDX && kptr_field->type == BPF_UPTR) { 5612 verbose(env, "store to uptr disallowed\n"); 5613 return -EACCES; 5614 } 5615 5616 if (class == BPF_LDX) { 5617 if (kptr_field->type == BPF_UPTR) 5618 return mark_uptr_ld_reg(env, value_regno, kptr_field); 5619 5620 /* We can simply mark the value_regno receiving the pointer 5621 * value from map as PTR_TO_BTF_ID, with the correct type. 5622 */ 5623 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5624 kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field)); 5625 } else if (class == BPF_STX) { 5626 val_reg = reg_state(env, value_regno); 5627 if (!register_is_null(val_reg) && 5628 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5629 return -EACCES; 5630 } else if (class == BPF_ST) { 5631 if (insn->imm) { 5632 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5633 kptr_field->offset); 5634 return -EACCES; 5635 } 5636 } else { 5637 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5638 return -EACCES; 5639 } 5640 return 0; 5641 } 5642 5643 /* check read/write into a map element with possible variable offset */ 5644 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5645 int off, int size, bool zero_size_allowed, 5646 enum bpf_access_src src) 5647 { 5648 struct bpf_verifier_state *vstate = env->cur_state; 5649 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5650 struct bpf_reg_state *reg = &state->regs[regno]; 5651 struct bpf_map *map = reg->map_ptr; 5652 struct btf_record *rec; 5653 int err, i; 5654 5655 err = check_mem_region_access(env, regno, off, size, map->value_size, 5656 zero_size_allowed); 5657 if (err) 5658 return err; 5659 5660 if (IS_ERR_OR_NULL(map->record)) 5661 return 0; 5662 rec = map->record; 5663 for (i = 0; i < rec->cnt; i++) { 5664 struct btf_field *field = &rec->fields[i]; 5665 u32 p = field->offset; 5666 5667 /* If any part of a field can be touched by load/store, reject 5668 * this program. To check that [x1, x2) overlaps with [y1, y2), 5669 * it is sufficient to check x1 < y2 && y1 < x2. 5670 */ 5671 if (reg->smin_value + off < p + field->size && 5672 p < reg->umax_value + off + size) { 5673 switch (field->type) { 5674 case BPF_KPTR_UNREF: 5675 case BPF_KPTR_REF: 5676 case BPF_KPTR_PERCPU: 5677 case BPF_UPTR: 5678 if (src != ACCESS_DIRECT) { 5679 verbose(env, "%s cannot be accessed indirectly by helper\n", 5680 btf_field_type_name(field->type)); 5681 return -EACCES; 5682 } 5683 if (!tnum_is_const(reg->var_off)) { 5684 verbose(env, "%s access cannot have variable offset\n", 5685 btf_field_type_name(field->type)); 5686 return -EACCES; 5687 } 5688 if (p != off + reg->var_off.value) { 5689 verbose(env, "%s access misaligned expected=%u off=%llu\n", 5690 btf_field_type_name(field->type), 5691 p, off + reg->var_off.value); 5692 return -EACCES; 5693 } 5694 if (size != bpf_size_to_bytes(BPF_DW)) { 5695 verbose(env, "%s access size must be BPF_DW\n", 5696 btf_field_type_name(field->type)); 5697 return -EACCES; 5698 } 5699 break; 5700 default: 5701 verbose(env, "%s cannot be accessed directly by load/store\n", 5702 btf_field_type_name(field->type)); 5703 return -EACCES; 5704 } 5705 } 5706 } 5707 return 0; 5708 } 5709 5710 #define MAX_PACKET_OFF 0xffff 5711 5712 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5713 const struct bpf_call_arg_meta *meta, 5714 enum bpf_access_type t) 5715 { 5716 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5717 5718 switch (prog_type) { 5719 /* Program types only with direct read access go here! */ 5720 case BPF_PROG_TYPE_LWT_IN: 5721 case BPF_PROG_TYPE_LWT_OUT: 5722 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5723 case BPF_PROG_TYPE_SK_REUSEPORT: 5724 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5725 case BPF_PROG_TYPE_CGROUP_SKB: 5726 if (t == BPF_WRITE) 5727 return false; 5728 fallthrough; 5729 5730 /* Program types with direct read + write access go here! */ 5731 case BPF_PROG_TYPE_SCHED_CLS: 5732 case BPF_PROG_TYPE_SCHED_ACT: 5733 case BPF_PROG_TYPE_XDP: 5734 case BPF_PROG_TYPE_LWT_XMIT: 5735 case BPF_PROG_TYPE_SK_SKB: 5736 case BPF_PROG_TYPE_SK_MSG: 5737 if (meta) 5738 return meta->pkt_access; 5739 5740 env->seen_direct_write = true; 5741 return true; 5742 5743 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5744 if (t == BPF_WRITE) 5745 env->seen_direct_write = true; 5746 5747 return true; 5748 5749 default: 5750 return false; 5751 } 5752 } 5753 5754 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5755 int size, bool zero_size_allowed) 5756 { 5757 struct bpf_reg_state *regs = cur_regs(env); 5758 struct bpf_reg_state *reg = ®s[regno]; 5759 int err; 5760 5761 /* We may have added a variable offset to the packet pointer; but any 5762 * reg->range we have comes after that. We are only checking the fixed 5763 * offset. 5764 */ 5765 5766 /* We don't allow negative numbers, because we aren't tracking enough 5767 * detail to prove they're safe. 5768 */ 5769 if (reg->smin_value < 0) { 5770 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5771 regno); 5772 return -EACCES; 5773 } 5774 5775 err = reg->range < 0 ? -EINVAL : 5776 __check_mem_access(env, regno, off, size, reg->range, 5777 zero_size_allowed); 5778 if (err) { 5779 verbose(env, "R%d offset is outside of the packet\n", regno); 5780 return err; 5781 } 5782 5783 /* __check_mem_access has made sure "off + size - 1" is within u16. 5784 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5785 * otherwise find_good_pkt_pointers would have refused to set range info 5786 * that __check_mem_access would have rejected this pkt access. 5787 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5788 */ 5789 env->prog->aux->max_pkt_offset = 5790 max_t(u32, env->prog->aux->max_pkt_offset, 5791 off + reg->umax_value + size - 1); 5792 5793 return err; 5794 } 5795 5796 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5797 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5798 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5799 struct btf **btf, u32 *btf_id, bool *is_retval, bool is_ldsx) 5800 { 5801 struct bpf_insn_access_aux info = { 5802 .reg_type = *reg_type, 5803 .log = &env->log, 5804 .is_retval = false, 5805 .is_ldsx = is_ldsx, 5806 }; 5807 5808 if (env->ops->is_valid_access && 5809 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5810 /* A non zero info.ctx_field_size indicates that this field is a 5811 * candidate for later verifier transformation to load the whole 5812 * field and then apply a mask when accessed with a narrower 5813 * access than actual ctx access size. A zero info.ctx_field_size 5814 * will only allow for whole field access and rejects any other 5815 * type of narrower access. 5816 */ 5817 *reg_type = info.reg_type; 5818 *is_retval = info.is_retval; 5819 5820 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5821 *btf = info.btf; 5822 *btf_id = info.btf_id; 5823 } else { 5824 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5825 } 5826 /* remember the offset of last byte accessed in ctx */ 5827 if (env->prog->aux->max_ctx_offset < off + size) 5828 env->prog->aux->max_ctx_offset = off + size; 5829 return 0; 5830 } 5831 5832 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5833 return -EACCES; 5834 } 5835 5836 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5837 int size) 5838 { 5839 if (size < 0 || off < 0 || 5840 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5841 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5842 off, size); 5843 return -EACCES; 5844 } 5845 return 0; 5846 } 5847 5848 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5849 u32 regno, int off, int size, 5850 enum bpf_access_type t) 5851 { 5852 struct bpf_reg_state *regs = cur_regs(env); 5853 struct bpf_reg_state *reg = ®s[regno]; 5854 struct bpf_insn_access_aux info = {}; 5855 bool valid; 5856 5857 if (reg->smin_value < 0) { 5858 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5859 regno); 5860 return -EACCES; 5861 } 5862 5863 switch (reg->type) { 5864 case PTR_TO_SOCK_COMMON: 5865 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5866 break; 5867 case PTR_TO_SOCKET: 5868 valid = bpf_sock_is_valid_access(off, size, t, &info); 5869 break; 5870 case PTR_TO_TCP_SOCK: 5871 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5872 break; 5873 case PTR_TO_XDP_SOCK: 5874 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5875 break; 5876 default: 5877 valid = false; 5878 } 5879 5880 5881 if (valid) { 5882 env->insn_aux_data[insn_idx].ctx_field_size = 5883 info.ctx_field_size; 5884 return 0; 5885 } 5886 5887 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5888 regno, reg_type_str(env, reg->type), off, size); 5889 5890 return -EACCES; 5891 } 5892 5893 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5894 { 5895 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5896 } 5897 5898 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5899 { 5900 const struct bpf_reg_state *reg = reg_state(env, regno); 5901 5902 return reg->type == PTR_TO_CTX; 5903 } 5904 5905 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5906 { 5907 const struct bpf_reg_state *reg = reg_state(env, regno); 5908 5909 return type_is_sk_pointer(reg->type); 5910 } 5911 5912 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5913 { 5914 const struct bpf_reg_state *reg = reg_state(env, regno); 5915 5916 return type_is_pkt_pointer(reg->type); 5917 } 5918 5919 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5920 { 5921 const struct bpf_reg_state *reg = reg_state(env, regno); 5922 5923 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5924 return reg->type == PTR_TO_FLOW_KEYS; 5925 } 5926 5927 static bool is_arena_reg(struct bpf_verifier_env *env, int regno) 5928 { 5929 const struct bpf_reg_state *reg = reg_state(env, regno); 5930 5931 return reg->type == PTR_TO_ARENA; 5932 } 5933 5934 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5935 #ifdef CONFIG_NET 5936 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5937 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5938 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5939 #endif 5940 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5941 }; 5942 5943 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5944 { 5945 /* A referenced register is always trusted. */ 5946 if (reg->ref_obj_id) 5947 return true; 5948 5949 /* Types listed in the reg2btf_ids are always trusted */ 5950 if (reg2btf_ids[base_type(reg->type)] && 5951 !bpf_type_has_unsafe_modifiers(reg->type)) 5952 return true; 5953 5954 /* If a register is not referenced, it is trusted if it has the 5955 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5956 * other type modifiers may be safe, but we elect to take an opt-in 5957 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5958 * not. 5959 * 5960 * Eventually, we should make PTR_TRUSTED the single source of truth 5961 * for whether a register is trusted. 5962 */ 5963 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5964 !bpf_type_has_unsafe_modifiers(reg->type); 5965 } 5966 5967 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5968 { 5969 return reg->type & MEM_RCU; 5970 } 5971 5972 static void clear_trusted_flags(enum bpf_type_flag *flag) 5973 { 5974 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5975 } 5976 5977 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5978 const struct bpf_reg_state *reg, 5979 int off, int size, bool strict) 5980 { 5981 struct tnum reg_off; 5982 int ip_align; 5983 5984 /* Byte size accesses are always allowed. */ 5985 if (!strict || size == 1) 5986 return 0; 5987 5988 /* For platforms that do not have a Kconfig enabling 5989 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5990 * NET_IP_ALIGN is universally set to '2'. And on platforms 5991 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5992 * to this code only in strict mode where we want to emulate 5993 * the NET_IP_ALIGN==2 checking. Therefore use an 5994 * unconditional IP align value of '2'. 5995 */ 5996 ip_align = 2; 5997 5998 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5999 if (!tnum_is_aligned(reg_off, size)) { 6000 char tn_buf[48]; 6001 6002 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6003 verbose(env, 6004 "misaligned packet access off %d+%s+%d+%d size %d\n", 6005 ip_align, tn_buf, reg->off, off, size); 6006 return -EACCES; 6007 } 6008 6009 return 0; 6010 } 6011 6012 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 6013 const struct bpf_reg_state *reg, 6014 const char *pointer_desc, 6015 int off, int size, bool strict) 6016 { 6017 struct tnum reg_off; 6018 6019 /* Byte size accesses are always allowed. */ 6020 if (!strict || size == 1) 6021 return 0; 6022 6023 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 6024 if (!tnum_is_aligned(reg_off, size)) { 6025 char tn_buf[48]; 6026 6027 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6028 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 6029 pointer_desc, tn_buf, reg->off, off, size); 6030 return -EACCES; 6031 } 6032 6033 return 0; 6034 } 6035 6036 static int check_ptr_alignment(struct bpf_verifier_env *env, 6037 const struct bpf_reg_state *reg, int off, 6038 int size, bool strict_alignment_once) 6039 { 6040 bool strict = env->strict_alignment || strict_alignment_once; 6041 const char *pointer_desc = ""; 6042 6043 switch (reg->type) { 6044 case PTR_TO_PACKET: 6045 case PTR_TO_PACKET_META: 6046 /* Special case, because of NET_IP_ALIGN. Given metadata sits 6047 * right in front, treat it the very same way. 6048 */ 6049 return check_pkt_ptr_alignment(env, reg, off, size, strict); 6050 case PTR_TO_FLOW_KEYS: 6051 pointer_desc = "flow keys "; 6052 break; 6053 case PTR_TO_MAP_KEY: 6054 pointer_desc = "key "; 6055 break; 6056 case PTR_TO_MAP_VALUE: 6057 pointer_desc = "value "; 6058 break; 6059 case PTR_TO_CTX: 6060 pointer_desc = "context "; 6061 break; 6062 case PTR_TO_STACK: 6063 pointer_desc = "stack "; 6064 /* The stack spill tracking logic in check_stack_write_fixed_off() 6065 * and check_stack_read_fixed_off() relies on stack accesses being 6066 * aligned. 6067 */ 6068 strict = true; 6069 break; 6070 case PTR_TO_SOCKET: 6071 pointer_desc = "sock "; 6072 break; 6073 case PTR_TO_SOCK_COMMON: 6074 pointer_desc = "sock_common "; 6075 break; 6076 case PTR_TO_TCP_SOCK: 6077 pointer_desc = "tcp_sock "; 6078 break; 6079 case PTR_TO_XDP_SOCK: 6080 pointer_desc = "xdp_sock "; 6081 break; 6082 case PTR_TO_ARENA: 6083 return 0; 6084 default: 6085 break; 6086 } 6087 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 6088 strict); 6089 } 6090 6091 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog) 6092 { 6093 if (!bpf_jit_supports_private_stack()) 6094 return NO_PRIV_STACK; 6095 6096 /* bpf_prog_check_recur() checks all prog types that use bpf trampoline 6097 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked 6098 * explicitly. 6099 */ 6100 switch (prog->type) { 6101 case BPF_PROG_TYPE_KPROBE: 6102 case BPF_PROG_TYPE_TRACEPOINT: 6103 case BPF_PROG_TYPE_PERF_EVENT: 6104 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6105 return PRIV_STACK_ADAPTIVE; 6106 case BPF_PROG_TYPE_TRACING: 6107 case BPF_PROG_TYPE_LSM: 6108 case BPF_PROG_TYPE_STRUCT_OPS: 6109 if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog)) 6110 return PRIV_STACK_ADAPTIVE; 6111 fallthrough; 6112 default: 6113 break; 6114 } 6115 6116 return NO_PRIV_STACK; 6117 } 6118 6119 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) 6120 { 6121 if (env->prog->jit_requested) 6122 return round_up(stack_depth, 16); 6123 6124 /* round up to 32-bytes, since this is granularity 6125 * of interpreter stack size 6126 */ 6127 return round_up(max_t(u32, stack_depth, 1), 32); 6128 } 6129 6130 /* starting from main bpf function walk all instructions of the function 6131 * and recursively walk all callees that given function can call. 6132 * Ignore jump and exit insns. 6133 * Since recursion is prevented by check_cfg() this algorithm 6134 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 6135 */ 6136 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx, 6137 bool priv_stack_supported) 6138 { 6139 struct bpf_subprog_info *subprog = env->subprog_info; 6140 struct bpf_insn *insn = env->prog->insnsi; 6141 int depth = 0, frame = 0, i, subprog_end, subprog_depth; 6142 bool tail_call_reachable = false; 6143 int ret_insn[MAX_CALL_FRAMES]; 6144 int ret_prog[MAX_CALL_FRAMES]; 6145 int j; 6146 6147 i = subprog[idx].start; 6148 if (!priv_stack_supported) 6149 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6150 process_func: 6151 /* protect against potential stack overflow that might happen when 6152 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 6153 * depth for such case down to 256 so that the worst case scenario 6154 * would result in 8k stack size (32 which is tailcall limit * 256 = 6155 * 8k). 6156 * 6157 * To get the idea what might happen, see an example: 6158 * func1 -> sub rsp, 128 6159 * subfunc1 -> sub rsp, 256 6160 * tailcall1 -> add rsp, 256 6161 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 6162 * subfunc2 -> sub rsp, 64 6163 * subfunc22 -> sub rsp, 128 6164 * tailcall2 -> add rsp, 128 6165 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 6166 * 6167 * tailcall will unwind the current stack frame but it will not get rid 6168 * of caller's stack as shown on the example above. 6169 */ 6170 if (idx && subprog[idx].has_tail_call && depth >= 256) { 6171 verbose(env, 6172 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 6173 depth); 6174 return -EACCES; 6175 } 6176 6177 subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth); 6178 if (priv_stack_supported) { 6179 /* Request private stack support only if the subprog stack 6180 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to 6181 * avoid jit penalty if the stack usage is small. 6182 */ 6183 if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN && 6184 subprog_depth >= BPF_PRIV_STACK_MIN_SIZE) 6185 subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE; 6186 } 6187 6188 if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6189 if (subprog_depth > MAX_BPF_STACK) { 6190 verbose(env, "stack size of subprog %d is %d. Too large\n", 6191 idx, subprog_depth); 6192 return -EACCES; 6193 } 6194 } else { 6195 depth += subprog_depth; 6196 if (depth > MAX_BPF_STACK) { 6197 verbose(env, "combined stack size of %d calls is %d. Too large\n", 6198 frame + 1, depth); 6199 return -EACCES; 6200 } 6201 } 6202 continue_func: 6203 subprog_end = subprog[idx + 1].start; 6204 for (; i < subprog_end; i++) { 6205 int next_insn, sidx; 6206 6207 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 6208 bool err = false; 6209 6210 if (!is_bpf_throw_kfunc(insn + i)) 6211 continue; 6212 if (subprog[idx].is_cb) 6213 err = true; 6214 for (int c = 0; c < frame && !err; c++) { 6215 if (subprog[ret_prog[c]].is_cb) { 6216 err = true; 6217 break; 6218 } 6219 } 6220 if (!err) 6221 continue; 6222 verbose(env, 6223 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 6224 i, idx); 6225 return -EINVAL; 6226 } 6227 6228 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 6229 continue; 6230 /* remember insn and function to return to */ 6231 ret_insn[frame] = i + 1; 6232 ret_prog[frame] = idx; 6233 6234 /* find the callee */ 6235 next_insn = i + insn[i].imm + 1; 6236 sidx = find_subprog(env, next_insn); 6237 if (sidx < 0) { 6238 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6239 next_insn); 6240 return -EFAULT; 6241 } 6242 if (subprog[sidx].is_async_cb) { 6243 if (subprog[sidx].has_tail_call) { 6244 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 6245 return -EFAULT; 6246 } 6247 /* async callbacks don't increase bpf prog stack size unless called directly */ 6248 if (!bpf_pseudo_call(insn + i)) 6249 continue; 6250 if (subprog[sidx].is_exception_cb) { 6251 verbose(env, "insn %d cannot call exception cb directly\n", i); 6252 return -EINVAL; 6253 } 6254 } 6255 i = next_insn; 6256 idx = sidx; 6257 if (!priv_stack_supported) 6258 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6259 6260 if (subprog[idx].has_tail_call) 6261 tail_call_reachable = true; 6262 6263 frame++; 6264 if (frame >= MAX_CALL_FRAMES) { 6265 verbose(env, "the call stack of %d frames is too deep !\n", 6266 frame); 6267 return -E2BIG; 6268 } 6269 goto process_func; 6270 } 6271 /* if tail call got detected across bpf2bpf calls then mark each of the 6272 * currently present subprog frames as tail call reachable subprogs; 6273 * this info will be utilized by JIT so that we will be preserving the 6274 * tail call counter throughout bpf2bpf calls combined with tailcalls 6275 */ 6276 if (tail_call_reachable) 6277 for (j = 0; j < frame; j++) { 6278 if (subprog[ret_prog[j]].is_exception_cb) { 6279 verbose(env, "cannot tail call within exception cb\n"); 6280 return -EINVAL; 6281 } 6282 subprog[ret_prog[j]].tail_call_reachable = true; 6283 } 6284 if (subprog[0].tail_call_reachable) 6285 env->prog->aux->tail_call_reachable = true; 6286 6287 /* end of for() loop means the last insn of the 'subprog' 6288 * was reached. Doesn't matter whether it was JA or EXIT 6289 */ 6290 if (frame == 0) 6291 return 0; 6292 if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE) 6293 depth -= round_up_stack_depth(env, subprog[idx].stack_depth); 6294 frame--; 6295 i = ret_insn[frame]; 6296 idx = ret_prog[frame]; 6297 goto continue_func; 6298 } 6299 6300 static int check_max_stack_depth(struct bpf_verifier_env *env) 6301 { 6302 enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN; 6303 struct bpf_subprog_info *si = env->subprog_info; 6304 bool priv_stack_supported; 6305 int ret; 6306 6307 for (int i = 0; i < env->subprog_cnt; i++) { 6308 if (si[i].has_tail_call) { 6309 priv_stack_mode = NO_PRIV_STACK; 6310 break; 6311 } 6312 } 6313 6314 if (priv_stack_mode == PRIV_STACK_UNKNOWN) 6315 priv_stack_mode = bpf_enable_priv_stack(env->prog); 6316 6317 /* All async_cb subprogs use normal kernel stack. If a particular 6318 * subprog appears in both main prog and async_cb subtree, that 6319 * subprog will use normal kernel stack to avoid potential nesting. 6320 * The reverse subprog traversal ensures when main prog subtree is 6321 * checked, the subprogs appearing in async_cb subtrees are already 6322 * marked as using normal kernel stack, so stack size checking can 6323 * be done properly. 6324 */ 6325 for (int i = env->subprog_cnt - 1; i >= 0; i--) { 6326 if (!i || si[i].is_async_cb) { 6327 priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE; 6328 ret = check_max_stack_depth_subprog(env, i, priv_stack_supported); 6329 if (ret < 0) 6330 return ret; 6331 } 6332 } 6333 6334 for (int i = 0; i < env->subprog_cnt; i++) { 6335 if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6336 env->prog->aux->jits_use_priv_stack = true; 6337 break; 6338 } 6339 } 6340 6341 return 0; 6342 } 6343 6344 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6345 static int get_callee_stack_depth(struct bpf_verifier_env *env, 6346 const struct bpf_insn *insn, int idx) 6347 { 6348 int start = idx + insn->imm + 1, subprog; 6349 6350 subprog = find_subprog(env, start); 6351 if (subprog < 0) { 6352 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6353 start); 6354 return -EFAULT; 6355 } 6356 return env->subprog_info[subprog].stack_depth; 6357 } 6358 #endif 6359 6360 static int __check_buffer_access(struct bpf_verifier_env *env, 6361 const char *buf_info, 6362 const struct bpf_reg_state *reg, 6363 int regno, int off, int size) 6364 { 6365 if (off < 0) { 6366 verbose(env, 6367 "R%d invalid %s buffer access: off=%d, size=%d\n", 6368 regno, buf_info, off, size); 6369 return -EACCES; 6370 } 6371 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6372 char tn_buf[48]; 6373 6374 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6375 verbose(env, 6376 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6377 regno, off, tn_buf); 6378 return -EACCES; 6379 } 6380 6381 return 0; 6382 } 6383 6384 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6385 const struct bpf_reg_state *reg, 6386 int regno, int off, int size) 6387 { 6388 int err; 6389 6390 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6391 if (err) 6392 return err; 6393 6394 if (off + size > env->prog->aux->max_tp_access) 6395 env->prog->aux->max_tp_access = off + size; 6396 6397 return 0; 6398 } 6399 6400 static int check_buffer_access(struct bpf_verifier_env *env, 6401 const struct bpf_reg_state *reg, 6402 int regno, int off, int size, 6403 bool zero_size_allowed, 6404 u32 *max_access) 6405 { 6406 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6407 int err; 6408 6409 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6410 if (err) 6411 return err; 6412 6413 if (off + size > *max_access) 6414 *max_access = off + size; 6415 6416 return 0; 6417 } 6418 6419 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6420 static void zext_32_to_64(struct bpf_reg_state *reg) 6421 { 6422 reg->var_off = tnum_subreg(reg->var_off); 6423 __reg_assign_32_into_64(reg); 6424 } 6425 6426 /* truncate register to smaller size (in bytes) 6427 * must be called with size < BPF_REG_SIZE 6428 */ 6429 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6430 { 6431 u64 mask; 6432 6433 /* clear high bits in bit representation */ 6434 reg->var_off = tnum_cast(reg->var_off, size); 6435 6436 /* fix arithmetic bounds */ 6437 mask = ((u64)1 << (size * 8)) - 1; 6438 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6439 reg->umin_value &= mask; 6440 reg->umax_value &= mask; 6441 } else { 6442 reg->umin_value = 0; 6443 reg->umax_value = mask; 6444 } 6445 reg->smin_value = reg->umin_value; 6446 reg->smax_value = reg->umax_value; 6447 6448 /* If size is smaller than 32bit register the 32bit register 6449 * values are also truncated so we push 64-bit bounds into 6450 * 32-bit bounds. Above were truncated < 32-bits already. 6451 */ 6452 if (size < 4) 6453 __mark_reg32_unbounded(reg); 6454 6455 reg_bounds_sync(reg); 6456 } 6457 6458 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6459 { 6460 if (size == 1) { 6461 reg->smin_value = reg->s32_min_value = S8_MIN; 6462 reg->smax_value = reg->s32_max_value = S8_MAX; 6463 } else if (size == 2) { 6464 reg->smin_value = reg->s32_min_value = S16_MIN; 6465 reg->smax_value = reg->s32_max_value = S16_MAX; 6466 } else { 6467 /* size == 4 */ 6468 reg->smin_value = reg->s32_min_value = S32_MIN; 6469 reg->smax_value = reg->s32_max_value = S32_MAX; 6470 } 6471 reg->umin_value = reg->u32_min_value = 0; 6472 reg->umax_value = U64_MAX; 6473 reg->u32_max_value = U32_MAX; 6474 reg->var_off = tnum_unknown; 6475 } 6476 6477 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6478 { 6479 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6480 u64 top_smax_value, top_smin_value; 6481 u64 num_bits = size * 8; 6482 6483 if (tnum_is_const(reg->var_off)) { 6484 u64_cval = reg->var_off.value; 6485 if (size == 1) 6486 reg->var_off = tnum_const((s8)u64_cval); 6487 else if (size == 2) 6488 reg->var_off = tnum_const((s16)u64_cval); 6489 else 6490 /* size == 4 */ 6491 reg->var_off = tnum_const((s32)u64_cval); 6492 6493 u64_cval = reg->var_off.value; 6494 reg->smax_value = reg->smin_value = u64_cval; 6495 reg->umax_value = reg->umin_value = u64_cval; 6496 reg->s32_max_value = reg->s32_min_value = u64_cval; 6497 reg->u32_max_value = reg->u32_min_value = u64_cval; 6498 return; 6499 } 6500 6501 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6502 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6503 6504 if (top_smax_value != top_smin_value) 6505 goto out; 6506 6507 /* find the s64_min and s64_min after sign extension */ 6508 if (size == 1) { 6509 init_s64_max = (s8)reg->smax_value; 6510 init_s64_min = (s8)reg->smin_value; 6511 } else if (size == 2) { 6512 init_s64_max = (s16)reg->smax_value; 6513 init_s64_min = (s16)reg->smin_value; 6514 } else { 6515 init_s64_max = (s32)reg->smax_value; 6516 init_s64_min = (s32)reg->smin_value; 6517 } 6518 6519 s64_max = max(init_s64_max, init_s64_min); 6520 s64_min = min(init_s64_max, init_s64_min); 6521 6522 /* both of s64_max/s64_min positive or negative */ 6523 if ((s64_max >= 0) == (s64_min >= 0)) { 6524 reg->s32_min_value = reg->smin_value = s64_min; 6525 reg->s32_max_value = reg->smax_value = s64_max; 6526 reg->u32_min_value = reg->umin_value = s64_min; 6527 reg->u32_max_value = reg->umax_value = s64_max; 6528 reg->var_off = tnum_range(s64_min, s64_max); 6529 return; 6530 } 6531 6532 out: 6533 set_sext64_default_val(reg, size); 6534 } 6535 6536 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6537 { 6538 if (size == 1) { 6539 reg->s32_min_value = S8_MIN; 6540 reg->s32_max_value = S8_MAX; 6541 } else { 6542 /* size == 2 */ 6543 reg->s32_min_value = S16_MIN; 6544 reg->s32_max_value = S16_MAX; 6545 } 6546 reg->u32_min_value = 0; 6547 reg->u32_max_value = U32_MAX; 6548 reg->var_off = tnum_subreg(tnum_unknown); 6549 } 6550 6551 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6552 { 6553 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6554 u32 top_smax_value, top_smin_value; 6555 u32 num_bits = size * 8; 6556 6557 if (tnum_is_const(reg->var_off)) { 6558 u32_val = reg->var_off.value; 6559 if (size == 1) 6560 reg->var_off = tnum_const((s8)u32_val); 6561 else 6562 reg->var_off = tnum_const((s16)u32_val); 6563 6564 u32_val = reg->var_off.value; 6565 reg->s32_min_value = reg->s32_max_value = u32_val; 6566 reg->u32_min_value = reg->u32_max_value = u32_val; 6567 return; 6568 } 6569 6570 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6571 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6572 6573 if (top_smax_value != top_smin_value) 6574 goto out; 6575 6576 /* find the s32_min and s32_min after sign extension */ 6577 if (size == 1) { 6578 init_s32_max = (s8)reg->s32_max_value; 6579 init_s32_min = (s8)reg->s32_min_value; 6580 } else { 6581 /* size == 2 */ 6582 init_s32_max = (s16)reg->s32_max_value; 6583 init_s32_min = (s16)reg->s32_min_value; 6584 } 6585 s32_max = max(init_s32_max, init_s32_min); 6586 s32_min = min(init_s32_max, init_s32_min); 6587 6588 if ((s32_min >= 0) == (s32_max >= 0)) { 6589 reg->s32_min_value = s32_min; 6590 reg->s32_max_value = s32_max; 6591 reg->u32_min_value = (u32)s32_min; 6592 reg->u32_max_value = (u32)s32_max; 6593 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); 6594 return; 6595 } 6596 6597 out: 6598 set_sext32_default_val(reg, size); 6599 } 6600 6601 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6602 { 6603 /* A map is considered read-only if the following condition are true: 6604 * 6605 * 1) BPF program side cannot change any of the map content. The 6606 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6607 * and was set at map creation time. 6608 * 2) The map value(s) have been initialized from user space by a 6609 * loader and then "frozen", such that no new map update/delete 6610 * operations from syscall side are possible for the rest of 6611 * the map's lifetime from that point onwards. 6612 * 3) Any parallel/pending map update/delete operations from syscall 6613 * side have been completed. Only after that point, it's safe to 6614 * assume that map value(s) are immutable. 6615 */ 6616 return (map->map_flags & BPF_F_RDONLY_PROG) && 6617 READ_ONCE(map->frozen) && 6618 !bpf_map_write_active(map); 6619 } 6620 6621 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6622 bool is_ldsx) 6623 { 6624 void *ptr; 6625 u64 addr; 6626 int err; 6627 6628 err = map->ops->map_direct_value_addr(map, &addr, off); 6629 if (err) 6630 return err; 6631 ptr = (void *)(long)addr + off; 6632 6633 switch (size) { 6634 case sizeof(u8): 6635 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6636 break; 6637 case sizeof(u16): 6638 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6639 break; 6640 case sizeof(u32): 6641 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6642 break; 6643 case sizeof(u64): 6644 *val = *(u64 *)ptr; 6645 break; 6646 default: 6647 return -EINVAL; 6648 } 6649 return 0; 6650 } 6651 6652 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6653 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6654 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6655 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) 6656 6657 /* 6658 * Allow list few fields as RCU trusted or full trusted. 6659 * This logic doesn't allow mix tagging and will be removed once GCC supports 6660 * btf_type_tag. 6661 */ 6662 6663 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6664 BTF_TYPE_SAFE_RCU(struct task_struct) { 6665 const cpumask_t *cpus_ptr; 6666 struct css_set __rcu *cgroups; 6667 struct task_struct __rcu *real_parent; 6668 struct task_struct *group_leader; 6669 }; 6670 6671 BTF_TYPE_SAFE_RCU(struct cgroup) { 6672 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6673 struct kernfs_node *kn; 6674 }; 6675 6676 BTF_TYPE_SAFE_RCU(struct css_set) { 6677 struct cgroup *dfl_cgrp; 6678 }; 6679 6680 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6681 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6682 struct file __rcu *exe_file; 6683 }; 6684 6685 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6686 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6687 */ 6688 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6689 struct sock *sk; 6690 }; 6691 6692 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6693 struct sock *sk; 6694 }; 6695 6696 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6697 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6698 struct seq_file *seq; 6699 }; 6700 6701 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6702 struct bpf_iter_meta *meta; 6703 struct task_struct *task; 6704 }; 6705 6706 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6707 struct file *file; 6708 }; 6709 6710 BTF_TYPE_SAFE_TRUSTED(struct file) { 6711 struct inode *f_inode; 6712 }; 6713 6714 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6715 /* no negative dentry-s in places where bpf can see it */ 6716 struct inode *d_inode; 6717 }; 6718 6719 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { 6720 struct sock *sk; 6721 }; 6722 6723 static bool type_is_rcu(struct bpf_verifier_env *env, 6724 struct bpf_reg_state *reg, 6725 const char *field_name, u32 btf_id) 6726 { 6727 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6728 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6729 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6730 6731 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6732 } 6733 6734 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6735 struct bpf_reg_state *reg, 6736 const char *field_name, u32 btf_id) 6737 { 6738 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6739 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6740 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6741 6742 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6743 } 6744 6745 static bool type_is_trusted(struct bpf_verifier_env *env, 6746 struct bpf_reg_state *reg, 6747 const char *field_name, u32 btf_id) 6748 { 6749 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6750 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6751 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6752 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6753 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6754 6755 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6756 } 6757 6758 static bool type_is_trusted_or_null(struct bpf_verifier_env *env, 6759 struct bpf_reg_state *reg, 6760 const char *field_name, u32 btf_id) 6761 { 6762 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); 6763 6764 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, 6765 "__safe_trusted_or_null"); 6766 } 6767 6768 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6769 struct bpf_reg_state *regs, 6770 int regno, int off, int size, 6771 enum bpf_access_type atype, 6772 int value_regno) 6773 { 6774 struct bpf_reg_state *reg = regs + regno; 6775 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6776 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6777 const char *field_name = NULL; 6778 enum bpf_type_flag flag = 0; 6779 u32 btf_id = 0; 6780 bool mask; 6781 int ret; 6782 6783 if (!env->allow_ptr_leaks) { 6784 verbose(env, 6785 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6786 tname); 6787 return -EPERM; 6788 } 6789 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6790 verbose(env, 6791 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6792 tname); 6793 return -EINVAL; 6794 } 6795 if (off < 0) { 6796 verbose(env, 6797 "R%d is ptr_%s invalid negative access: off=%d\n", 6798 regno, tname, off); 6799 return -EACCES; 6800 } 6801 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6802 char tn_buf[48]; 6803 6804 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6805 verbose(env, 6806 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6807 regno, tname, off, tn_buf); 6808 return -EACCES; 6809 } 6810 6811 if (reg->type & MEM_USER) { 6812 verbose(env, 6813 "R%d is ptr_%s access user memory: off=%d\n", 6814 regno, tname, off); 6815 return -EACCES; 6816 } 6817 6818 if (reg->type & MEM_PERCPU) { 6819 verbose(env, 6820 "R%d is ptr_%s access percpu memory: off=%d\n", 6821 regno, tname, off); 6822 return -EACCES; 6823 } 6824 6825 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6826 if (!btf_is_kernel(reg->btf)) { 6827 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6828 return -EFAULT; 6829 } 6830 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6831 } else { 6832 /* Writes are permitted with default btf_struct_access for 6833 * program allocated objects (which always have ref_obj_id > 0), 6834 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6835 */ 6836 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6837 verbose(env, "only read is supported\n"); 6838 return -EACCES; 6839 } 6840 6841 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6842 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 6843 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6844 return -EFAULT; 6845 } 6846 6847 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6848 } 6849 6850 if (ret < 0) 6851 return ret; 6852 /* For raw_tp progs, we allow dereference of PTR_MAYBE_NULL 6853 * trusted PTR_TO_BTF_ID, these are the ones that are possibly 6854 * arguments to the raw_tp. Since internal checks in for trusted 6855 * reg in check_ptr_to_btf_access would consider PTR_MAYBE_NULL 6856 * modifier as problematic, mask it out temporarily for the 6857 * check. Don't apply this to pointers with ref_obj_id > 0, as 6858 * those won't be raw_tp args. 6859 * 6860 * We may end up applying this relaxation to other trusted 6861 * PTR_TO_BTF_ID with maybe null flag, since we cannot 6862 * distinguish PTR_MAYBE_NULL tagged for arguments vs normal 6863 * tagging, but that should expand allowed behavior, and not 6864 * cause regression for existing behavior. 6865 */ 6866 mask = mask_raw_tp_reg(env, reg); 6867 if (ret != PTR_TO_BTF_ID) { 6868 /* just mark; */ 6869 6870 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6871 /* If this is an untrusted pointer, all pointers formed by walking it 6872 * also inherit the untrusted flag. 6873 */ 6874 flag = PTR_UNTRUSTED; 6875 6876 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6877 /* By default any pointer obtained from walking a trusted pointer is no 6878 * longer trusted, unless the field being accessed has explicitly been 6879 * marked as inheriting its parent's state of trust (either full or RCU). 6880 * For example: 6881 * 'cgroups' pointer is untrusted if task->cgroups dereference 6882 * happened in a sleepable program outside of bpf_rcu_read_lock() 6883 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6884 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6885 * 6886 * A regular RCU-protected pointer with __rcu tag can also be deemed 6887 * trusted if we are in an RCU CS. Such pointer can be NULL. 6888 */ 6889 if (type_is_trusted(env, reg, field_name, btf_id)) { 6890 flag |= PTR_TRUSTED; 6891 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { 6892 flag |= PTR_TRUSTED | PTR_MAYBE_NULL; 6893 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6894 if (type_is_rcu(env, reg, field_name, btf_id)) { 6895 /* ignore __rcu tag and mark it MEM_RCU */ 6896 flag |= MEM_RCU; 6897 } else if (flag & MEM_RCU || 6898 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6899 /* __rcu tagged pointers can be NULL */ 6900 flag |= MEM_RCU | PTR_MAYBE_NULL; 6901 6902 /* We always trust them */ 6903 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6904 flag & PTR_UNTRUSTED) 6905 flag &= ~PTR_UNTRUSTED; 6906 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6907 /* keep as-is */ 6908 } else { 6909 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6910 clear_trusted_flags(&flag); 6911 } 6912 } else { 6913 /* 6914 * If not in RCU CS or MEM_RCU pointer can be NULL then 6915 * aggressively mark as untrusted otherwise such 6916 * pointers will be plain PTR_TO_BTF_ID without flags 6917 * and will be allowed to be passed into helpers for 6918 * compat reasons. 6919 */ 6920 flag = PTR_UNTRUSTED; 6921 } 6922 } else { 6923 /* Old compat. Deprecated */ 6924 clear_trusted_flags(&flag); 6925 } 6926 6927 if (atype == BPF_READ && value_regno >= 0) { 6928 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6929 /* We've assigned a new type to regno, so don't undo masking. */ 6930 if (regno == value_regno) 6931 mask = false; 6932 } 6933 unmask_raw_tp_reg(reg, mask); 6934 6935 return 0; 6936 } 6937 6938 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6939 struct bpf_reg_state *regs, 6940 int regno, int off, int size, 6941 enum bpf_access_type atype, 6942 int value_regno) 6943 { 6944 struct bpf_reg_state *reg = regs + regno; 6945 struct bpf_map *map = reg->map_ptr; 6946 struct bpf_reg_state map_reg; 6947 enum bpf_type_flag flag = 0; 6948 const struct btf_type *t; 6949 const char *tname; 6950 u32 btf_id; 6951 int ret; 6952 6953 if (!btf_vmlinux) { 6954 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6955 return -ENOTSUPP; 6956 } 6957 6958 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6959 verbose(env, "map_ptr access not supported for map type %d\n", 6960 map->map_type); 6961 return -ENOTSUPP; 6962 } 6963 6964 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6965 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6966 6967 if (!env->allow_ptr_leaks) { 6968 verbose(env, 6969 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6970 tname); 6971 return -EPERM; 6972 } 6973 6974 if (off < 0) { 6975 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6976 regno, tname, off); 6977 return -EACCES; 6978 } 6979 6980 if (atype != BPF_READ) { 6981 verbose(env, "only read from %s is supported\n", tname); 6982 return -EACCES; 6983 } 6984 6985 /* Simulate access to a PTR_TO_BTF_ID */ 6986 memset(&map_reg, 0, sizeof(map_reg)); 6987 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6988 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6989 if (ret < 0) 6990 return ret; 6991 6992 if (value_regno >= 0) 6993 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6994 6995 return 0; 6996 } 6997 6998 /* Check that the stack access at the given offset is within bounds. The 6999 * maximum valid offset is -1. 7000 * 7001 * The minimum valid offset is -MAX_BPF_STACK for writes, and 7002 * -state->allocated_stack for reads. 7003 */ 7004 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 7005 s64 off, 7006 struct bpf_func_state *state, 7007 enum bpf_access_type t) 7008 { 7009 int min_valid_off; 7010 7011 if (t == BPF_WRITE || env->allow_uninit_stack) 7012 min_valid_off = -MAX_BPF_STACK; 7013 else 7014 min_valid_off = -state->allocated_stack; 7015 7016 if (off < min_valid_off || off > -1) 7017 return -EACCES; 7018 return 0; 7019 } 7020 7021 /* Check that the stack access at 'regno + off' falls within the maximum stack 7022 * bounds. 7023 * 7024 * 'off' includes `regno->offset`, but not its dynamic part (if any). 7025 */ 7026 static int check_stack_access_within_bounds( 7027 struct bpf_verifier_env *env, 7028 int regno, int off, int access_size, 7029 enum bpf_access_src src, enum bpf_access_type type) 7030 { 7031 struct bpf_reg_state *regs = cur_regs(env); 7032 struct bpf_reg_state *reg = regs + regno; 7033 struct bpf_func_state *state = func(env, reg); 7034 s64 min_off, max_off; 7035 int err; 7036 char *err_extra; 7037 7038 if (src == ACCESS_HELPER) 7039 /* We don't know if helpers are reading or writing (or both). */ 7040 err_extra = " indirect access to"; 7041 else if (type == BPF_READ) 7042 err_extra = " read from"; 7043 else 7044 err_extra = " write to"; 7045 7046 if (tnum_is_const(reg->var_off)) { 7047 min_off = (s64)reg->var_off.value + off; 7048 max_off = min_off + access_size; 7049 } else { 7050 if (reg->smax_value >= BPF_MAX_VAR_OFF || 7051 reg->smin_value <= -BPF_MAX_VAR_OFF) { 7052 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 7053 err_extra, regno); 7054 return -EACCES; 7055 } 7056 min_off = reg->smin_value + off; 7057 max_off = reg->smax_value + off + access_size; 7058 } 7059 7060 err = check_stack_slot_within_bounds(env, min_off, state, type); 7061 if (!err && max_off > 0) 7062 err = -EINVAL; /* out of stack access into non-negative offsets */ 7063 if (!err && access_size < 0) 7064 /* access_size should not be negative (or overflow an int); others checks 7065 * along the way should have prevented such an access. 7066 */ 7067 err = -EFAULT; /* invalid negative access size; integer overflow? */ 7068 7069 if (err) { 7070 if (tnum_is_const(reg->var_off)) { 7071 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 7072 err_extra, regno, off, access_size); 7073 } else { 7074 char tn_buf[48]; 7075 7076 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7077 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", 7078 err_extra, regno, tn_buf, off, access_size); 7079 } 7080 return err; 7081 } 7082 7083 /* Note that there is no stack access with offset zero, so the needed stack 7084 * size is -min_off, not -min_off+1. 7085 */ 7086 return grow_stack_state(env, state, -min_off /* size */); 7087 } 7088 7089 static bool get_func_retval_range(struct bpf_prog *prog, 7090 struct bpf_retval_range *range) 7091 { 7092 if (prog->type == BPF_PROG_TYPE_LSM && 7093 prog->expected_attach_type == BPF_LSM_MAC && 7094 !bpf_lsm_get_retval_range(prog, range)) { 7095 return true; 7096 } 7097 return false; 7098 } 7099 7100 /* check whether memory at (regno + off) is accessible for t = (read | write) 7101 * if t==write, value_regno is a register which value is stored into memory 7102 * if t==read, value_regno is a register which will receive the value from memory 7103 * if t==write && value_regno==-1, some unknown value is stored into memory 7104 * if t==read && value_regno==-1, don't care what we read from memory 7105 */ 7106 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 7107 int off, int bpf_size, enum bpf_access_type t, 7108 int value_regno, bool strict_alignment_once, bool is_ldsx) 7109 { 7110 struct bpf_reg_state *regs = cur_regs(env); 7111 struct bpf_reg_state *reg = regs + regno; 7112 int size, err = 0; 7113 7114 size = bpf_size_to_bytes(bpf_size); 7115 if (size < 0) 7116 return size; 7117 7118 /* alignment checks will add in reg->off themselves */ 7119 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 7120 if (err) 7121 return err; 7122 7123 /* for access checks, reg->off is just part of off */ 7124 off += reg->off; 7125 7126 if (reg->type == PTR_TO_MAP_KEY) { 7127 if (t == BPF_WRITE) { 7128 verbose(env, "write to change key R%d not allowed\n", regno); 7129 return -EACCES; 7130 } 7131 7132 err = check_mem_region_access(env, regno, off, size, 7133 reg->map_ptr->key_size, false); 7134 if (err) 7135 return err; 7136 if (value_regno >= 0) 7137 mark_reg_unknown(env, regs, value_regno); 7138 } else if (reg->type == PTR_TO_MAP_VALUE) { 7139 struct btf_field *kptr_field = NULL; 7140 7141 if (t == BPF_WRITE && value_regno >= 0 && 7142 is_pointer_value(env, value_regno)) { 7143 verbose(env, "R%d leaks addr into map\n", value_regno); 7144 return -EACCES; 7145 } 7146 err = check_map_access_type(env, regno, off, size, t); 7147 if (err) 7148 return err; 7149 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 7150 if (err) 7151 return err; 7152 if (tnum_is_const(reg->var_off)) 7153 kptr_field = btf_record_find(reg->map_ptr->record, 7154 off + reg->var_off.value, BPF_KPTR | BPF_UPTR); 7155 if (kptr_field) { 7156 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 7157 } else if (t == BPF_READ && value_regno >= 0) { 7158 struct bpf_map *map = reg->map_ptr; 7159 7160 /* if map is read-only, track its contents as scalars */ 7161 if (tnum_is_const(reg->var_off) && 7162 bpf_map_is_rdonly(map) && 7163 map->ops->map_direct_value_addr) { 7164 int map_off = off + reg->var_off.value; 7165 u64 val = 0; 7166 7167 err = bpf_map_direct_read(map, map_off, size, 7168 &val, is_ldsx); 7169 if (err) 7170 return err; 7171 7172 regs[value_regno].type = SCALAR_VALUE; 7173 __mark_reg_known(®s[value_regno], val); 7174 } else { 7175 mark_reg_unknown(env, regs, value_regno); 7176 } 7177 } 7178 } else if (base_type(reg->type) == PTR_TO_MEM) { 7179 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7180 7181 if (type_may_be_null(reg->type)) { 7182 verbose(env, "R%d invalid mem access '%s'\n", regno, 7183 reg_type_str(env, reg->type)); 7184 return -EACCES; 7185 } 7186 7187 if (t == BPF_WRITE && rdonly_mem) { 7188 verbose(env, "R%d cannot write into %s\n", 7189 regno, reg_type_str(env, reg->type)); 7190 return -EACCES; 7191 } 7192 7193 if (t == BPF_WRITE && value_regno >= 0 && 7194 is_pointer_value(env, value_regno)) { 7195 verbose(env, "R%d leaks addr into mem\n", value_regno); 7196 return -EACCES; 7197 } 7198 7199 err = check_mem_region_access(env, regno, off, size, 7200 reg->mem_size, false); 7201 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 7202 mark_reg_unknown(env, regs, value_regno); 7203 } else if (reg->type == PTR_TO_CTX) { 7204 bool is_retval = false; 7205 struct bpf_retval_range range; 7206 enum bpf_reg_type reg_type = SCALAR_VALUE; 7207 struct btf *btf = NULL; 7208 u32 btf_id = 0; 7209 7210 if (t == BPF_WRITE && value_regno >= 0 && 7211 is_pointer_value(env, value_regno)) { 7212 verbose(env, "R%d leaks addr into ctx\n", value_regno); 7213 return -EACCES; 7214 } 7215 7216 err = check_ptr_off_reg(env, reg, regno); 7217 if (err < 0) 7218 return err; 7219 7220 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 7221 &btf_id, &is_retval, is_ldsx); 7222 if (err) 7223 verbose_linfo(env, insn_idx, "; "); 7224 if (!err && t == BPF_READ && value_regno >= 0) { 7225 /* ctx access returns either a scalar, or a 7226 * PTR_TO_PACKET[_META,_END]. In the latter 7227 * case, we know the offset is zero. 7228 */ 7229 if (reg_type == SCALAR_VALUE) { 7230 if (is_retval && get_func_retval_range(env->prog, &range)) { 7231 err = __mark_reg_s32_range(env, regs, value_regno, 7232 range.minval, range.maxval); 7233 if (err) 7234 return err; 7235 } else { 7236 mark_reg_unknown(env, regs, value_regno); 7237 } 7238 } else { 7239 mark_reg_known_zero(env, regs, 7240 value_regno); 7241 if (type_may_be_null(reg_type)) 7242 regs[value_regno].id = ++env->id_gen; 7243 /* A load of ctx field could have different 7244 * actual load size with the one encoded in the 7245 * insn. When the dst is PTR, it is for sure not 7246 * a sub-register. 7247 */ 7248 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 7249 if (base_type(reg_type) == PTR_TO_BTF_ID) { 7250 regs[value_regno].btf = btf; 7251 regs[value_regno].btf_id = btf_id; 7252 } 7253 } 7254 regs[value_regno].type = reg_type; 7255 } 7256 7257 } else if (reg->type == PTR_TO_STACK) { 7258 /* Basic bounds checks. */ 7259 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 7260 if (err) 7261 return err; 7262 7263 if (t == BPF_READ) 7264 err = check_stack_read(env, regno, off, size, 7265 value_regno); 7266 else 7267 err = check_stack_write(env, regno, off, size, 7268 value_regno, insn_idx); 7269 } else if (reg_is_pkt_pointer(reg)) { 7270 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 7271 verbose(env, "cannot write into packet\n"); 7272 return -EACCES; 7273 } 7274 if (t == BPF_WRITE && value_regno >= 0 && 7275 is_pointer_value(env, value_regno)) { 7276 verbose(env, "R%d leaks addr into packet\n", 7277 value_regno); 7278 return -EACCES; 7279 } 7280 err = check_packet_access(env, regno, off, size, false); 7281 if (!err && t == BPF_READ && value_regno >= 0) 7282 mark_reg_unknown(env, regs, value_regno); 7283 } else if (reg->type == PTR_TO_FLOW_KEYS) { 7284 if (t == BPF_WRITE && value_regno >= 0 && 7285 is_pointer_value(env, value_regno)) { 7286 verbose(env, "R%d leaks addr into flow keys\n", 7287 value_regno); 7288 return -EACCES; 7289 } 7290 7291 err = check_flow_keys_access(env, off, size); 7292 if (!err && t == BPF_READ && value_regno >= 0) 7293 mark_reg_unknown(env, regs, value_regno); 7294 } else if (type_is_sk_pointer(reg->type)) { 7295 if (t == BPF_WRITE) { 7296 verbose(env, "R%d cannot write into %s\n", 7297 regno, reg_type_str(env, reg->type)); 7298 return -EACCES; 7299 } 7300 err = check_sock_access(env, insn_idx, regno, off, size, t); 7301 if (!err && value_regno >= 0) 7302 mark_reg_unknown(env, regs, value_regno); 7303 } else if (reg->type == PTR_TO_TP_BUFFER) { 7304 err = check_tp_buffer_access(env, reg, regno, off, size); 7305 if (!err && t == BPF_READ && value_regno >= 0) 7306 mark_reg_unknown(env, regs, value_regno); 7307 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 7308 (mask_raw_tp_reg_cond(env, reg) || !type_may_be_null(reg->type))) { 7309 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 7310 value_regno); 7311 } else if (reg->type == CONST_PTR_TO_MAP) { 7312 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 7313 value_regno); 7314 } else if (base_type(reg->type) == PTR_TO_BUF) { 7315 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7316 u32 *max_access; 7317 7318 if (rdonly_mem) { 7319 if (t == BPF_WRITE) { 7320 verbose(env, "R%d cannot write into %s\n", 7321 regno, reg_type_str(env, reg->type)); 7322 return -EACCES; 7323 } 7324 max_access = &env->prog->aux->max_rdonly_access; 7325 } else { 7326 max_access = &env->prog->aux->max_rdwr_access; 7327 } 7328 7329 err = check_buffer_access(env, reg, regno, off, size, false, 7330 max_access); 7331 7332 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 7333 mark_reg_unknown(env, regs, value_regno); 7334 } else if (reg->type == PTR_TO_ARENA) { 7335 if (t == BPF_READ && value_regno >= 0) 7336 mark_reg_unknown(env, regs, value_regno); 7337 } else { 7338 verbose(env, "R%d invalid mem access '%s'\n", regno, 7339 reg_type_str(env, reg->type)); 7340 return -EACCES; 7341 } 7342 7343 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 7344 regs[value_regno].type == SCALAR_VALUE) { 7345 if (!is_ldsx) 7346 /* b/h/w load zero-extends, mark upper bits as known 0 */ 7347 coerce_reg_to_size(®s[value_regno], size); 7348 else 7349 coerce_reg_to_size_sx(®s[value_regno], size); 7350 } 7351 return err; 7352 } 7353 7354 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 7355 bool allow_trust_mismatch); 7356 7357 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 7358 { 7359 int load_reg; 7360 int err; 7361 7362 switch (insn->imm) { 7363 case BPF_ADD: 7364 case BPF_ADD | BPF_FETCH: 7365 case BPF_AND: 7366 case BPF_AND | BPF_FETCH: 7367 case BPF_OR: 7368 case BPF_OR | BPF_FETCH: 7369 case BPF_XOR: 7370 case BPF_XOR | BPF_FETCH: 7371 case BPF_XCHG: 7372 case BPF_CMPXCHG: 7373 break; 7374 default: 7375 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 7376 return -EINVAL; 7377 } 7378 7379 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 7380 verbose(env, "invalid atomic operand size\n"); 7381 return -EINVAL; 7382 } 7383 7384 /* check src1 operand */ 7385 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7386 if (err) 7387 return err; 7388 7389 /* check src2 operand */ 7390 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7391 if (err) 7392 return err; 7393 7394 if (insn->imm == BPF_CMPXCHG) { 7395 /* Check comparison of R0 with memory location */ 7396 const u32 aux_reg = BPF_REG_0; 7397 7398 err = check_reg_arg(env, aux_reg, SRC_OP); 7399 if (err) 7400 return err; 7401 7402 if (is_pointer_value(env, aux_reg)) { 7403 verbose(env, "R%d leaks addr into mem\n", aux_reg); 7404 return -EACCES; 7405 } 7406 } 7407 7408 if (is_pointer_value(env, insn->src_reg)) { 7409 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 7410 return -EACCES; 7411 } 7412 7413 if (is_ctx_reg(env, insn->dst_reg) || 7414 is_pkt_reg(env, insn->dst_reg) || 7415 is_flow_key_reg(env, insn->dst_reg) || 7416 is_sk_reg(env, insn->dst_reg) || 7417 (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) { 7418 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7419 insn->dst_reg, 7420 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7421 return -EACCES; 7422 } 7423 7424 if (insn->imm & BPF_FETCH) { 7425 if (insn->imm == BPF_CMPXCHG) 7426 load_reg = BPF_REG_0; 7427 else 7428 load_reg = insn->src_reg; 7429 7430 /* check and record load of old value */ 7431 err = check_reg_arg(env, load_reg, DST_OP); 7432 if (err) 7433 return err; 7434 } else { 7435 /* This instruction accesses a memory location but doesn't 7436 * actually load it into a register. 7437 */ 7438 load_reg = -1; 7439 } 7440 7441 /* Check whether we can read the memory, with second call for fetch 7442 * case to simulate the register fill. 7443 */ 7444 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7445 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7446 if (!err && load_reg >= 0) 7447 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7448 BPF_SIZE(insn->code), BPF_READ, load_reg, 7449 true, false); 7450 if (err) 7451 return err; 7452 7453 if (is_arena_reg(env, insn->dst_reg)) { 7454 err = save_aux_ptr_type(env, PTR_TO_ARENA, false); 7455 if (err) 7456 return err; 7457 } 7458 /* Check whether we can write into the same memory. */ 7459 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7460 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7461 if (err) 7462 return err; 7463 return 0; 7464 } 7465 7466 /* When register 'regno' is used to read the stack (either directly or through 7467 * a helper function) make sure that it's within stack boundary and, depending 7468 * on the access type and privileges, that all elements of the stack are 7469 * initialized. 7470 * 7471 * 'off' includes 'regno->off', but not its dynamic part (if any). 7472 * 7473 * All registers that have been spilled on the stack in the slots within the 7474 * read offsets are marked as read. 7475 */ 7476 static int check_stack_range_initialized( 7477 struct bpf_verifier_env *env, int regno, int off, 7478 int access_size, bool zero_size_allowed, 7479 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 7480 { 7481 struct bpf_reg_state *reg = reg_state(env, regno); 7482 struct bpf_func_state *state = func(env, reg); 7483 int err, min_off, max_off, i, j, slot, spi; 7484 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 7485 enum bpf_access_type bounds_check_type; 7486 /* Some accesses can write anything into the stack, others are 7487 * read-only. 7488 */ 7489 bool clobber = false; 7490 7491 if (access_size == 0 && !zero_size_allowed) { 7492 verbose(env, "invalid zero-sized read\n"); 7493 return -EACCES; 7494 } 7495 7496 if (type == ACCESS_HELPER) { 7497 /* The bounds checks for writes are more permissive than for 7498 * reads. However, if raw_mode is not set, we'll do extra 7499 * checks below. 7500 */ 7501 bounds_check_type = BPF_WRITE; 7502 clobber = true; 7503 } else { 7504 bounds_check_type = BPF_READ; 7505 } 7506 err = check_stack_access_within_bounds(env, regno, off, access_size, 7507 type, bounds_check_type); 7508 if (err) 7509 return err; 7510 7511 7512 if (tnum_is_const(reg->var_off)) { 7513 min_off = max_off = reg->var_off.value + off; 7514 } else { 7515 /* Variable offset is prohibited for unprivileged mode for 7516 * simplicity since it requires corresponding support in 7517 * Spectre masking for stack ALU. 7518 * See also retrieve_ptr_limit(). 7519 */ 7520 if (!env->bypass_spec_v1) { 7521 char tn_buf[48]; 7522 7523 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7524 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 7525 regno, err_extra, tn_buf); 7526 return -EACCES; 7527 } 7528 /* Only initialized buffer on stack is allowed to be accessed 7529 * with variable offset. With uninitialized buffer it's hard to 7530 * guarantee that whole memory is marked as initialized on 7531 * helper return since specific bounds are unknown what may 7532 * cause uninitialized stack leaking. 7533 */ 7534 if (meta && meta->raw_mode) 7535 meta = NULL; 7536 7537 min_off = reg->smin_value + off; 7538 max_off = reg->smax_value + off; 7539 } 7540 7541 if (meta && meta->raw_mode) { 7542 /* Ensure we won't be overwriting dynptrs when simulating byte 7543 * by byte access in check_helper_call using meta.access_size. 7544 * This would be a problem if we have a helper in the future 7545 * which takes: 7546 * 7547 * helper(uninit_mem, len, dynptr) 7548 * 7549 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7550 * may end up writing to dynptr itself when touching memory from 7551 * arg 1. This can be relaxed on a case by case basis for known 7552 * safe cases, but reject due to the possibilitiy of aliasing by 7553 * default. 7554 */ 7555 for (i = min_off; i < max_off + access_size; i++) { 7556 int stack_off = -i - 1; 7557 7558 spi = __get_spi(i); 7559 /* raw_mode may write past allocated_stack */ 7560 if (state->allocated_stack <= stack_off) 7561 continue; 7562 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7563 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7564 return -EACCES; 7565 } 7566 } 7567 meta->access_size = access_size; 7568 meta->regno = regno; 7569 return 0; 7570 } 7571 7572 for (i = min_off; i < max_off + access_size; i++) { 7573 u8 *stype; 7574 7575 slot = -i - 1; 7576 spi = slot / BPF_REG_SIZE; 7577 if (state->allocated_stack <= slot) { 7578 verbose(env, "verifier bug: allocated_stack too small"); 7579 return -EFAULT; 7580 } 7581 7582 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7583 if (*stype == STACK_MISC) 7584 goto mark; 7585 if ((*stype == STACK_ZERO) || 7586 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7587 if (clobber) { 7588 /* helper can write anything into the stack */ 7589 *stype = STACK_MISC; 7590 } 7591 goto mark; 7592 } 7593 7594 if (is_spilled_reg(&state->stack[spi]) && 7595 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7596 env->allow_ptr_leaks)) { 7597 if (clobber) { 7598 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7599 for (j = 0; j < BPF_REG_SIZE; j++) 7600 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7601 } 7602 goto mark; 7603 } 7604 7605 if (tnum_is_const(reg->var_off)) { 7606 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 7607 err_extra, regno, min_off, i - min_off, access_size); 7608 } else { 7609 char tn_buf[48]; 7610 7611 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7612 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 7613 err_extra, regno, tn_buf, i - min_off, access_size); 7614 } 7615 return -EACCES; 7616 mark: 7617 /* reading any byte out of 8-byte 'spill_slot' will cause 7618 * the whole slot to be marked as 'read' 7619 */ 7620 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7621 state->stack[spi].spilled_ptr.parent, 7622 REG_LIVE_READ64); 7623 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7624 * be sure that whether stack slot is written to or not. Hence, 7625 * we must still conservatively propagate reads upwards even if 7626 * helper may write to the entire memory range. 7627 */ 7628 } 7629 return 0; 7630 } 7631 7632 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7633 int access_size, enum bpf_access_type access_type, 7634 bool zero_size_allowed, 7635 struct bpf_call_arg_meta *meta) 7636 { 7637 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7638 u32 *max_access; 7639 7640 switch (base_type(reg->type)) { 7641 case PTR_TO_PACKET: 7642 case PTR_TO_PACKET_META: 7643 return check_packet_access(env, regno, reg->off, access_size, 7644 zero_size_allowed); 7645 case PTR_TO_MAP_KEY: 7646 if (access_type == BPF_WRITE) { 7647 verbose(env, "R%d cannot write into %s\n", regno, 7648 reg_type_str(env, reg->type)); 7649 return -EACCES; 7650 } 7651 return check_mem_region_access(env, regno, reg->off, access_size, 7652 reg->map_ptr->key_size, false); 7653 case PTR_TO_MAP_VALUE: 7654 if (check_map_access_type(env, regno, reg->off, access_size, access_type)) 7655 return -EACCES; 7656 return check_map_access(env, regno, reg->off, access_size, 7657 zero_size_allowed, ACCESS_HELPER); 7658 case PTR_TO_MEM: 7659 if (type_is_rdonly_mem(reg->type)) { 7660 if (access_type == BPF_WRITE) { 7661 verbose(env, "R%d cannot write into %s\n", regno, 7662 reg_type_str(env, reg->type)); 7663 return -EACCES; 7664 } 7665 } 7666 return check_mem_region_access(env, regno, reg->off, 7667 access_size, reg->mem_size, 7668 zero_size_allowed); 7669 case PTR_TO_BUF: 7670 if (type_is_rdonly_mem(reg->type)) { 7671 if (access_type == BPF_WRITE) { 7672 verbose(env, "R%d cannot write into %s\n", regno, 7673 reg_type_str(env, reg->type)); 7674 return -EACCES; 7675 } 7676 7677 max_access = &env->prog->aux->max_rdonly_access; 7678 } else { 7679 max_access = &env->prog->aux->max_rdwr_access; 7680 } 7681 return check_buffer_access(env, reg, regno, reg->off, 7682 access_size, zero_size_allowed, 7683 max_access); 7684 case PTR_TO_STACK: 7685 return check_stack_range_initialized( 7686 env, 7687 regno, reg->off, access_size, 7688 zero_size_allowed, ACCESS_HELPER, meta); 7689 case PTR_TO_BTF_ID: 7690 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7691 access_size, BPF_READ, -1); 7692 case PTR_TO_CTX: 7693 /* in case the function doesn't know how to access the context, 7694 * (because we are in a program of type SYSCALL for example), we 7695 * can not statically check its size. 7696 * Dynamically check it now. 7697 */ 7698 if (!env->ops->convert_ctx_access) { 7699 int offset = access_size - 1; 7700 7701 /* Allow zero-byte read from PTR_TO_CTX */ 7702 if (access_size == 0) 7703 return zero_size_allowed ? 0 : -EACCES; 7704 7705 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7706 access_type, -1, false, false); 7707 } 7708 7709 fallthrough; 7710 default: /* scalar_value or invalid ptr */ 7711 /* Allow zero-byte read from NULL, regardless of pointer type */ 7712 if (zero_size_allowed && access_size == 0 && 7713 register_is_null(reg)) 7714 return 0; 7715 7716 verbose(env, "R%d type=%s ", regno, 7717 reg_type_str(env, reg->type)); 7718 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7719 return -EACCES; 7720 } 7721 } 7722 7723 /* verify arguments to helpers or kfuncs consisting of a pointer and an access 7724 * size. 7725 * 7726 * @regno is the register containing the access size. regno-1 is the register 7727 * containing the pointer. 7728 */ 7729 static int check_mem_size_reg(struct bpf_verifier_env *env, 7730 struct bpf_reg_state *reg, u32 regno, 7731 enum bpf_access_type access_type, 7732 bool zero_size_allowed, 7733 struct bpf_call_arg_meta *meta) 7734 { 7735 int err; 7736 7737 /* This is used to refine r0 return value bounds for helpers 7738 * that enforce this value as an upper bound on return values. 7739 * See do_refine_retval_range() for helpers that can refine 7740 * the return value. C type of helper is u32 so we pull register 7741 * bound from umax_value however, if negative verifier errors 7742 * out. Only upper bounds can be learned because retval is an 7743 * int type and negative retvals are allowed. 7744 */ 7745 meta->msize_max_value = reg->umax_value; 7746 7747 /* The register is SCALAR_VALUE; the access check happens using 7748 * its boundaries. For unprivileged variable accesses, disable 7749 * raw mode so that the program is required to initialize all 7750 * the memory that the helper could just partially fill up. 7751 */ 7752 if (!tnum_is_const(reg->var_off)) 7753 meta = NULL; 7754 7755 if (reg->smin_value < 0) { 7756 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7757 regno); 7758 return -EACCES; 7759 } 7760 7761 if (reg->umin_value == 0 && !zero_size_allowed) { 7762 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", 7763 regno, reg->umin_value, reg->umax_value); 7764 return -EACCES; 7765 } 7766 7767 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7768 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7769 regno); 7770 return -EACCES; 7771 } 7772 err = check_helper_mem_access(env, regno - 1, reg->umax_value, 7773 access_type, zero_size_allowed, meta); 7774 if (!err) 7775 err = mark_chain_precision(env, regno); 7776 return err; 7777 } 7778 7779 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7780 u32 regno, u32 mem_size) 7781 { 7782 bool may_be_null = type_may_be_null(reg->type); 7783 struct bpf_reg_state saved_reg; 7784 int err; 7785 7786 if (register_is_null(reg)) 7787 return 0; 7788 7789 /* Assuming that the register contains a value check if the memory 7790 * access is safe. Temporarily save and restore the register's state as 7791 * the conversion shouldn't be visible to a caller. 7792 */ 7793 if (may_be_null) { 7794 saved_reg = *reg; 7795 mark_ptr_not_null_reg(reg); 7796 } 7797 7798 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL); 7799 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL); 7800 7801 if (may_be_null) 7802 *reg = saved_reg; 7803 7804 return err; 7805 } 7806 7807 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7808 u32 regno) 7809 { 7810 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7811 bool may_be_null = type_may_be_null(mem_reg->type); 7812 struct bpf_reg_state saved_reg; 7813 struct bpf_call_arg_meta meta; 7814 int err; 7815 7816 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7817 7818 memset(&meta, 0, sizeof(meta)); 7819 7820 if (may_be_null) { 7821 saved_reg = *mem_reg; 7822 mark_ptr_not_null_reg(mem_reg); 7823 } 7824 7825 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta); 7826 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta); 7827 7828 if (may_be_null) 7829 *mem_reg = saved_reg; 7830 7831 return err; 7832 } 7833 7834 /* Implementation details: 7835 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7836 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7837 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7838 * Two separate bpf_obj_new will also have different reg->id. 7839 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7840 * clears reg->id after value_or_null->value transition, since the verifier only 7841 * cares about the range of access to valid map value pointer and doesn't care 7842 * about actual address of the map element. 7843 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7844 * reg->id > 0 after value_or_null->value transition. By doing so 7845 * two bpf_map_lookups will be considered two different pointers that 7846 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7847 * returned from bpf_obj_new. 7848 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7849 * dead-locks. 7850 * Since only one bpf_spin_lock is allowed the checks are simpler than 7851 * reg_is_refcounted() logic. The verifier needs to remember only 7852 * one spin_lock instead of array of acquired_refs. 7853 * cur_func(env)->active_locks remembers which map value element or allocated 7854 * object got locked and clears it after bpf_spin_unlock. 7855 */ 7856 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7857 bool is_lock) 7858 { 7859 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7860 bool is_const = tnum_is_const(reg->var_off); 7861 struct bpf_func_state *cur = cur_func(env); 7862 u64 val = reg->var_off.value; 7863 struct bpf_map *map = NULL; 7864 struct btf *btf = NULL; 7865 struct btf_record *rec; 7866 int err; 7867 7868 if (!is_const) { 7869 verbose(env, 7870 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7871 regno); 7872 return -EINVAL; 7873 } 7874 if (reg->type == PTR_TO_MAP_VALUE) { 7875 map = reg->map_ptr; 7876 if (!map->btf) { 7877 verbose(env, 7878 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7879 map->name); 7880 return -EINVAL; 7881 } 7882 } else { 7883 btf = reg->btf; 7884 } 7885 7886 rec = reg_btf_record(reg); 7887 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7888 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7889 map ? map->name : "kptr"); 7890 return -EINVAL; 7891 } 7892 if (rec->spin_lock_off != val + reg->off) { 7893 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7894 val + reg->off, rec->spin_lock_off); 7895 return -EINVAL; 7896 } 7897 if (is_lock) { 7898 void *ptr; 7899 7900 if (map) 7901 ptr = map; 7902 else 7903 ptr = btf; 7904 7905 if (cur->active_locks) { 7906 verbose(env, 7907 "Locking two bpf_spin_locks are not allowed\n"); 7908 return -EINVAL; 7909 } 7910 err = acquire_lock_state(env, env->insn_idx, REF_TYPE_LOCK, reg->id, ptr); 7911 if (err < 0) { 7912 verbose(env, "Failed to acquire lock state\n"); 7913 return err; 7914 } 7915 } else { 7916 void *ptr; 7917 7918 if (map) 7919 ptr = map; 7920 else 7921 ptr = btf; 7922 7923 if (!cur->active_locks) { 7924 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7925 return -EINVAL; 7926 } 7927 7928 if (release_lock_state(cur_func(env), REF_TYPE_LOCK, reg->id, ptr)) { 7929 verbose(env, "bpf_spin_unlock of different lock\n"); 7930 return -EINVAL; 7931 } 7932 7933 invalidate_non_owning_refs(env); 7934 } 7935 return 0; 7936 } 7937 7938 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7939 struct bpf_call_arg_meta *meta) 7940 { 7941 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7942 bool is_const = tnum_is_const(reg->var_off); 7943 struct bpf_map *map = reg->map_ptr; 7944 u64 val = reg->var_off.value; 7945 7946 if (!is_const) { 7947 verbose(env, 7948 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7949 regno); 7950 return -EINVAL; 7951 } 7952 if (!map->btf) { 7953 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7954 map->name); 7955 return -EINVAL; 7956 } 7957 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7958 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7959 return -EINVAL; 7960 } 7961 if (map->record->timer_off != val + reg->off) { 7962 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7963 val + reg->off, map->record->timer_off); 7964 return -EINVAL; 7965 } 7966 if (meta->map_ptr) { 7967 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7968 return -EFAULT; 7969 } 7970 meta->map_uid = reg->map_uid; 7971 meta->map_ptr = map; 7972 return 0; 7973 } 7974 7975 static int process_wq_func(struct bpf_verifier_env *env, int regno, 7976 struct bpf_kfunc_call_arg_meta *meta) 7977 { 7978 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7979 struct bpf_map *map = reg->map_ptr; 7980 u64 val = reg->var_off.value; 7981 7982 if (map->record->wq_off != val + reg->off) { 7983 verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n", 7984 val + reg->off, map->record->wq_off); 7985 return -EINVAL; 7986 } 7987 meta->map.uid = reg->map_uid; 7988 meta->map.ptr = map; 7989 return 0; 7990 } 7991 7992 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7993 struct bpf_call_arg_meta *meta) 7994 { 7995 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7996 struct btf_field *kptr_field; 7997 struct bpf_map *map_ptr; 7998 struct btf_record *rec; 7999 u32 kptr_off; 8000 8001 if (type_is_ptr_alloc_obj(reg->type)) { 8002 rec = reg_btf_record(reg); 8003 } else { /* PTR_TO_MAP_VALUE */ 8004 map_ptr = reg->map_ptr; 8005 if (!map_ptr->btf) { 8006 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 8007 map_ptr->name); 8008 return -EINVAL; 8009 } 8010 rec = map_ptr->record; 8011 meta->map_ptr = map_ptr; 8012 } 8013 8014 if (!tnum_is_const(reg->var_off)) { 8015 verbose(env, 8016 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 8017 regno); 8018 return -EINVAL; 8019 } 8020 8021 if (!btf_record_has_field(rec, BPF_KPTR)) { 8022 verbose(env, "R%d has no valid kptr\n", regno); 8023 return -EINVAL; 8024 } 8025 8026 kptr_off = reg->off + reg->var_off.value; 8027 kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR); 8028 if (!kptr_field) { 8029 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 8030 return -EACCES; 8031 } 8032 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 8033 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 8034 return -EACCES; 8035 } 8036 meta->kptr_field = kptr_field; 8037 return 0; 8038 } 8039 8040 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 8041 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 8042 * 8043 * In both cases we deal with the first 8 bytes, but need to mark the next 8 8044 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 8045 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 8046 * 8047 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 8048 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 8049 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 8050 * mutate the view of the dynptr and also possibly destroy it. In the latter 8051 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 8052 * memory that dynptr points to. 8053 * 8054 * The verifier will keep track both levels of mutation (bpf_dynptr's in 8055 * reg->type and the memory's in reg->dynptr.type), but there is no support for 8056 * readonly dynptr view yet, hence only the first case is tracked and checked. 8057 * 8058 * This is consistent with how C applies the const modifier to a struct object, 8059 * where the pointer itself inside bpf_dynptr becomes const but not what it 8060 * points to. 8061 * 8062 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 8063 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 8064 */ 8065 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 8066 enum bpf_arg_type arg_type, int clone_ref_obj_id) 8067 { 8068 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8069 int err; 8070 8071 if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) { 8072 verbose(env, 8073 "arg#%d expected pointer to stack or const struct bpf_dynptr\n", 8074 regno); 8075 return -EINVAL; 8076 } 8077 8078 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 8079 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 8080 */ 8081 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 8082 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 8083 return -EFAULT; 8084 } 8085 8086 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 8087 * constructing a mutable bpf_dynptr object. 8088 * 8089 * Currently, this is only possible with PTR_TO_STACK 8090 * pointing to a region of at least 16 bytes which doesn't 8091 * contain an existing bpf_dynptr. 8092 * 8093 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 8094 * mutated or destroyed. However, the memory it points to 8095 * may be mutated. 8096 * 8097 * None - Points to a initialized dynptr that can be mutated and 8098 * destroyed, including mutation of the memory it points 8099 * to. 8100 */ 8101 if (arg_type & MEM_UNINIT) { 8102 int i; 8103 8104 if (!is_dynptr_reg_valid_uninit(env, reg)) { 8105 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 8106 return -EINVAL; 8107 } 8108 8109 /* we write BPF_DW bits (8 bytes) at a time */ 8110 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 8111 err = check_mem_access(env, insn_idx, regno, 8112 i, BPF_DW, BPF_WRITE, -1, false, false); 8113 if (err) 8114 return err; 8115 } 8116 8117 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 8118 } else /* MEM_RDONLY and None case from above */ { 8119 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 8120 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 8121 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 8122 return -EINVAL; 8123 } 8124 8125 if (!is_dynptr_reg_valid_init(env, reg)) { 8126 verbose(env, 8127 "Expected an initialized dynptr as arg #%d\n", 8128 regno); 8129 return -EINVAL; 8130 } 8131 8132 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 8133 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 8134 verbose(env, 8135 "Expected a dynptr of type %s as arg #%d\n", 8136 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 8137 return -EINVAL; 8138 } 8139 8140 err = mark_dynptr_read(env, reg); 8141 } 8142 return err; 8143 } 8144 8145 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 8146 { 8147 struct bpf_func_state *state = func(env, reg); 8148 8149 return state->stack[spi].spilled_ptr.ref_obj_id; 8150 } 8151 8152 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8153 { 8154 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8155 } 8156 8157 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8158 { 8159 return meta->kfunc_flags & KF_ITER_NEW; 8160 } 8161 8162 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8163 { 8164 return meta->kfunc_flags & KF_ITER_NEXT; 8165 } 8166 8167 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8168 { 8169 return meta->kfunc_flags & KF_ITER_DESTROY; 8170 } 8171 8172 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx, 8173 const struct btf_param *arg) 8174 { 8175 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 8176 * kfunc is iter state pointer 8177 */ 8178 if (is_iter_kfunc(meta)) 8179 return arg_idx == 0; 8180 8181 /* iter passed as an argument to a generic kfunc */ 8182 return btf_param_match_suffix(meta->btf, arg, "__iter"); 8183 } 8184 8185 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 8186 struct bpf_kfunc_call_arg_meta *meta) 8187 { 8188 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8189 const struct btf_type *t; 8190 int spi, err, i, nr_slots, btf_id; 8191 8192 /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs() 8193 * ensures struct convention, so we wouldn't need to do any BTF 8194 * validation here. But given iter state can be passed as a parameter 8195 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more 8196 * conservative here. 8197 */ 8198 btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1); 8199 if (btf_id < 0) { 8200 verbose(env, "expected valid iter pointer as arg #%d\n", regno); 8201 return -EINVAL; 8202 } 8203 t = btf_type_by_id(meta->btf, btf_id); 8204 nr_slots = t->size / BPF_REG_SIZE; 8205 8206 if (is_iter_new_kfunc(meta)) { 8207 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 8208 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 8209 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 8210 iter_type_str(meta->btf, btf_id), regno); 8211 return -EINVAL; 8212 } 8213 8214 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 8215 err = check_mem_access(env, insn_idx, regno, 8216 i, BPF_DW, BPF_WRITE, -1, false, false); 8217 if (err) 8218 return err; 8219 } 8220 8221 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 8222 if (err) 8223 return err; 8224 } else { 8225 /* iter_next() or iter_destroy(), as well as any kfunc 8226 * accepting iter argument, expect initialized iter state 8227 */ 8228 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 8229 switch (err) { 8230 case 0: 8231 break; 8232 case -EINVAL: 8233 verbose(env, "expected an initialized iter_%s as arg #%d\n", 8234 iter_type_str(meta->btf, btf_id), regno); 8235 return err; 8236 case -EPROTO: 8237 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 8238 return err; 8239 default: 8240 return err; 8241 } 8242 8243 spi = iter_get_spi(env, reg, nr_slots); 8244 if (spi < 0) 8245 return spi; 8246 8247 err = mark_iter_read(env, reg, spi, nr_slots); 8248 if (err) 8249 return err; 8250 8251 /* remember meta->iter info for process_iter_next_call() */ 8252 meta->iter.spi = spi; 8253 meta->iter.frameno = reg->frameno; 8254 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 8255 8256 if (is_iter_destroy_kfunc(meta)) { 8257 err = unmark_stack_slots_iter(env, reg, nr_slots); 8258 if (err) 8259 return err; 8260 } 8261 } 8262 8263 return 0; 8264 } 8265 8266 /* Look for a previous loop entry at insn_idx: nearest parent state 8267 * stopped at insn_idx with callsites matching those in cur->frame. 8268 */ 8269 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 8270 struct bpf_verifier_state *cur, 8271 int insn_idx) 8272 { 8273 struct bpf_verifier_state_list *sl; 8274 struct bpf_verifier_state *st; 8275 8276 /* Explored states are pushed in stack order, most recent states come first */ 8277 sl = *explored_state(env, insn_idx); 8278 for (; sl; sl = sl->next) { 8279 /* If st->branches != 0 state is a part of current DFS verification path, 8280 * hence cur & st for a loop. 8281 */ 8282 st = &sl->state; 8283 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 8284 st->dfs_depth < cur->dfs_depth) 8285 return st; 8286 } 8287 8288 return NULL; 8289 } 8290 8291 static void reset_idmap_scratch(struct bpf_verifier_env *env); 8292 static bool regs_exact(const struct bpf_reg_state *rold, 8293 const struct bpf_reg_state *rcur, 8294 struct bpf_idmap *idmap); 8295 8296 static void maybe_widen_reg(struct bpf_verifier_env *env, 8297 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8298 struct bpf_idmap *idmap) 8299 { 8300 if (rold->type != SCALAR_VALUE) 8301 return; 8302 if (rold->type != rcur->type) 8303 return; 8304 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 8305 return; 8306 __mark_reg_unknown(env, rcur); 8307 } 8308 8309 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 8310 struct bpf_verifier_state *old, 8311 struct bpf_verifier_state *cur) 8312 { 8313 struct bpf_func_state *fold, *fcur; 8314 int i, fr; 8315 8316 reset_idmap_scratch(env); 8317 for (fr = old->curframe; fr >= 0; fr--) { 8318 fold = old->frame[fr]; 8319 fcur = cur->frame[fr]; 8320 8321 for (i = 0; i < MAX_BPF_REG; i++) 8322 maybe_widen_reg(env, 8323 &fold->regs[i], 8324 &fcur->regs[i], 8325 &env->idmap_scratch); 8326 8327 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 8328 if (!is_spilled_reg(&fold->stack[i]) || 8329 !is_spilled_reg(&fcur->stack[i])) 8330 continue; 8331 8332 maybe_widen_reg(env, 8333 &fold->stack[i].spilled_ptr, 8334 &fcur->stack[i].spilled_ptr, 8335 &env->idmap_scratch); 8336 } 8337 } 8338 return 0; 8339 } 8340 8341 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st, 8342 struct bpf_kfunc_call_arg_meta *meta) 8343 { 8344 int iter_frameno = meta->iter.frameno; 8345 int iter_spi = meta->iter.spi; 8346 8347 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 8348 } 8349 8350 /* process_iter_next_call() is called when verifier gets to iterator's next 8351 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 8352 * to it as just "iter_next()" in comments below. 8353 * 8354 * BPF verifier relies on a crucial contract for any iter_next() 8355 * implementation: it should *eventually* return NULL, and once that happens 8356 * it should keep returning NULL. That is, once iterator exhausts elements to 8357 * iterate, it should never reset or spuriously return new elements. 8358 * 8359 * With the assumption of such contract, process_iter_next_call() simulates 8360 * a fork in the verifier state to validate loop logic correctness and safety 8361 * without having to simulate infinite amount of iterations. 8362 * 8363 * In current state, we first assume that iter_next() returned NULL and 8364 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 8365 * conditions we should not form an infinite loop and should eventually reach 8366 * exit. 8367 * 8368 * Besides that, we also fork current state and enqueue it for later 8369 * verification. In a forked state we keep iterator state as ACTIVE 8370 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 8371 * also bump iteration depth to prevent erroneous infinite loop detection 8372 * later on (see iter_active_depths_differ() comment for details). In this 8373 * state we assume that we'll eventually loop back to another iter_next() 8374 * calls (it could be in exactly same location or in some other instruction, 8375 * it doesn't matter, we don't make any unnecessary assumptions about this, 8376 * everything revolves around iterator state in a stack slot, not which 8377 * instruction is calling iter_next()). When that happens, we either will come 8378 * to iter_next() with equivalent state and can conclude that next iteration 8379 * will proceed in exactly the same way as we just verified, so it's safe to 8380 * assume that loop converges. If not, we'll go on another iteration 8381 * simulation with a different input state, until all possible starting states 8382 * are validated or we reach maximum number of instructions limit. 8383 * 8384 * This way, we will either exhaustively discover all possible input states 8385 * that iterator loop can start with and eventually will converge, or we'll 8386 * effectively regress into bounded loop simulation logic and either reach 8387 * maximum number of instructions if loop is not provably convergent, or there 8388 * is some statically known limit on number of iterations (e.g., if there is 8389 * an explicit `if n > 100 then break;` statement somewhere in the loop). 8390 * 8391 * Iteration convergence logic in is_state_visited() relies on exact 8392 * states comparison, which ignores read and precision marks. 8393 * This is necessary because read and precision marks are not finalized 8394 * while in the loop. Exact comparison might preclude convergence for 8395 * simple programs like below: 8396 * 8397 * i = 0; 8398 * while(iter_next(&it)) 8399 * i++; 8400 * 8401 * At each iteration step i++ would produce a new distinct state and 8402 * eventually instruction processing limit would be reached. 8403 * 8404 * To avoid such behavior speculatively forget (widen) range for 8405 * imprecise scalar registers, if those registers were not precise at the 8406 * end of the previous iteration and do not match exactly. 8407 * 8408 * This is a conservative heuristic that allows to verify wide range of programs, 8409 * however it precludes verification of programs that conjure an 8410 * imprecise value on the first loop iteration and use it as precise on a second. 8411 * For example, the following safe program would fail to verify: 8412 * 8413 * struct bpf_num_iter it; 8414 * int arr[10]; 8415 * int i = 0, a = 0; 8416 * bpf_iter_num_new(&it, 0, 10); 8417 * while (bpf_iter_num_next(&it)) { 8418 * if (a == 0) { 8419 * a = 1; 8420 * i = 7; // Because i changed verifier would forget 8421 * // it's range on second loop entry. 8422 * } else { 8423 * arr[i] = 42; // This would fail to verify. 8424 * } 8425 * } 8426 * bpf_iter_num_destroy(&it); 8427 */ 8428 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 8429 struct bpf_kfunc_call_arg_meta *meta) 8430 { 8431 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 8432 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 8433 struct bpf_reg_state *cur_iter, *queued_iter; 8434 8435 BTF_TYPE_EMIT(struct bpf_iter); 8436 8437 cur_iter = get_iter_from_state(cur_st, meta); 8438 8439 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 8440 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 8441 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 8442 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 8443 return -EFAULT; 8444 } 8445 8446 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 8447 /* Because iter_next() call is a checkpoint is_state_visitied() 8448 * should guarantee parent state with same call sites and insn_idx. 8449 */ 8450 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 8451 !same_callsites(cur_st->parent, cur_st)) { 8452 verbose(env, "bug: bad parent state for iter next call"); 8453 return -EFAULT; 8454 } 8455 /* Note cur_st->parent in the call below, it is necessary to skip 8456 * checkpoint created for cur_st by is_state_visited() 8457 * right at this instruction. 8458 */ 8459 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 8460 /* branch out active iter state */ 8461 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 8462 if (!queued_st) 8463 return -ENOMEM; 8464 8465 queued_iter = get_iter_from_state(queued_st, meta); 8466 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 8467 queued_iter->iter.depth++; 8468 if (prev_st) 8469 widen_imprecise_scalars(env, prev_st, queued_st); 8470 8471 queued_fr = queued_st->frame[queued_st->curframe]; 8472 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 8473 } 8474 8475 /* switch to DRAINED state, but keep the depth unchanged */ 8476 /* mark current iter state as drained and assume returned NULL */ 8477 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 8478 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); 8479 8480 return 0; 8481 } 8482 8483 static bool arg_type_is_mem_size(enum bpf_arg_type type) 8484 { 8485 return type == ARG_CONST_SIZE || 8486 type == ARG_CONST_SIZE_OR_ZERO; 8487 } 8488 8489 static bool arg_type_is_raw_mem(enum bpf_arg_type type) 8490 { 8491 return base_type(type) == ARG_PTR_TO_MEM && 8492 type & MEM_UNINIT; 8493 } 8494 8495 static bool arg_type_is_release(enum bpf_arg_type type) 8496 { 8497 return type & OBJ_RELEASE; 8498 } 8499 8500 static bool arg_type_is_dynptr(enum bpf_arg_type type) 8501 { 8502 return base_type(type) == ARG_PTR_TO_DYNPTR; 8503 } 8504 8505 static int resolve_map_arg_type(struct bpf_verifier_env *env, 8506 const struct bpf_call_arg_meta *meta, 8507 enum bpf_arg_type *arg_type) 8508 { 8509 if (!meta->map_ptr) { 8510 /* kernel subsystem misconfigured verifier */ 8511 verbose(env, "invalid map_ptr to access map->type\n"); 8512 return -EACCES; 8513 } 8514 8515 switch (meta->map_ptr->map_type) { 8516 case BPF_MAP_TYPE_SOCKMAP: 8517 case BPF_MAP_TYPE_SOCKHASH: 8518 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8519 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8520 } else { 8521 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8522 return -EINVAL; 8523 } 8524 break; 8525 case BPF_MAP_TYPE_BLOOM_FILTER: 8526 if (meta->func_id == BPF_FUNC_map_peek_elem) 8527 *arg_type = ARG_PTR_TO_MAP_VALUE; 8528 break; 8529 default: 8530 break; 8531 } 8532 return 0; 8533 } 8534 8535 struct bpf_reg_types { 8536 const enum bpf_reg_type types[10]; 8537 u32 *btf_id; 8538 }; 8539 8540 static const struct bpf_reg_types sock_types = { 8541 .types = { 8542 PTR_TO_SOCK_COMMON, 8543 PTR_TO_SOCKET, 8544 PTR_TO_TCP_SOCK, 8545 PTR_TO_XDP_SOCK, 8546 }, 8547 }; 8548 8549 #ifdef CONFIG_NET 8550 static const struct bpf_reg_types btf_id_sock_common_types = { 8551 .types = { 8552 PTR_TO_SOCK_COMMON, 8553 PTR_TO_SOCKET, 8554 PTR_TO_TCP_SOCK, 8555 PTR_TO_XDP_SOCK, 8556 PTR_TO_BTF_ID, 8557 PTR_TO_BTF_ID | PTR_TRUSTED, 8558 }, 8559 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8560 }; 8561 #endif 8562 8563 static const struct bpf_reg_types mem_types = { 8564 .types = { 8565 PTR_TO_STACK, 8566 PTR_TO_PACKET, 8567 PTR_TO_PACKET_META, 8568 PTR_TO_MAP_KEY, 8569 PTR_TO_MAP_VALUE, 8570 PTR_TO_MEM, 8571 PTR_TO_MEM | MEM_RINGBUF, 8572 PTR_TO_BUF, 8573 PTR_TO_BTF_ID | PTR_TRUSTED, 8574 }, 8575 }; 8576 8577 static const struct bpf_reg_types spin_lock_types = { 8578 .types = { 8579 PTR_TO_MAP_VALUE, 8580 PTR_TO_BTF_ID | MEM_ALLOC, 8581 } 8582 }; 8583 8584 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8585 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8586 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8587 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8588 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8589 static const struct bpf_reg_types btf_ptr_types = { 8590 .types = { 8591 PTR_TO_BTF_ID, 8592 PTR_TO_BTF_ID | PTR_TRUSTED, 8593 PTR_TO_BTF_ID | MEM_RCU, 8594 }, 8595 }; 8596 static const struct bpf_reg_types percpu_btf_ptr_types = { 8597 .types = { 8598 PTR_TO_BTF_ID | MEM_PERCPU, 8599 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 8600 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8601 } 8602 }; 8603 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8604 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8605 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8606 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8607 static const struct bpf_reg_types kptr_xchg_dest_types = { 8608 .types = { 8609 PTR_TO_MAP_VALUE, 8610 PTR_TO_BTF_ID | MEM_ALLOC 8611 } 8612 }; 8613 static const struct bpf_reg_types dynptr_types = { 8614 .types = { 8615 PTR_TO_STACK, 8616 CONST_PTR_TO_DYNPTR, 8617 } 8618 }; 8619 8620 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8621 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8622 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8623 [ARG_CONST_SIZE] = &scalar_types, 8624 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8625 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8626 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8627 [ARG_PTR_TO_CTX] = &context_types, 8628 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8629 #ifdef CONFIG_NET 8630 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8631 #endif 8632 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8633 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8634 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8635 [ARG_PTR_TO_MEM] = &mem_types, 8636 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8637 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8638 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8639 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8640 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8641 [ARG_PTR_TO_TIMER] = &timer_types, 8642 [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types, 8643 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8644 }; 8645 8646 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8647 enum bpf_arg_type arg_type, 8648 const u32 *arg_btf_id, 8649 struct bpf_call_arg_meta *meta) 8650 { 8651 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8652 enum bpf_reg_type expected, type = reg->type; 8653 const struct bpf_reg_types *compatible; 8654 int i, j; 8655 8656 compatible = compatible_reg_types[base_type(arg_type)]; 8657 if (!compatible) { 8658 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8659 return -EFAULT; 8660 } 8661 8662 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8663 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8664 * 8665 * Same for MAYBE_NULL: 8666 * 8667 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8668 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8669 * 8670 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8671 * 8672 * Therefore we fold these flags depending on the arg_type before comparison. 8673 */ 8674 if (arg_type & MEM_RDONLY) 8675 type &= ~MEM_RDONLY; 8676 if (arg_type & PTR_MAYBE_NULL) 8677 type &= ~PTR_MAYBE_NULL; 8678 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8679 type &= ~DYNPTR_TYPE_FLAG_MASK; 8680 8681 /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */ 8682 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) { 8683 type &= ~MEM_ALLOC; 8684 type &= ~MEM_PERCPU; 8685 } 8686 8687 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8688 expected = compatible->types[i]; 8689 if (expected == NOT_INIT) 8690 break; 8691 8692 if (type == expected) 8693 goto found; 8694 } 8695 8696 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8697 for (j = 0; j + 1 < i; j++) 8698 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8699 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8700 return -EACCES; 8701 8702 found: 8703 if (base_type(reg->type) != PTR_TO_BTF_ID) 8704 return 0; 8705 8706 if (compatible == &mem_types) { 8707 if (!(arg_type & MEM_RDONLY)) { 8708 verbose(env, 8709 "%s() may write into memory pointed by R%d type=%s\n", 8710 func_id_name(meta->func_id), 8711 regno, reg_type_str(env, reg->type)); 8712 return -EACCES; 8713 } 8714 return 0; 8715 } 8716 8717 switch ((int)reg->type) { 8718 case PTR_TO_BTF_ID: 8719 case PTR_TO_BTF_ID | PTR_TRUSTED: 8720 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: 8721 case PTR_TO_BTF_ID | MEM_RCU: 8722 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8723 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8724 { 8725 /* For bpf_sk_release, it needs to match against first member 8726 * 'struct sock_common', hence make an exception for it. This 8727 * allows bpf_sk_release to work for multiple socket types. 8728 */ 8729 bool strict_type_match = arg_type_is_release(arg_type) && 8730 meta->func_id != BPF_FUNC_sk_release; 8731 8732 if (type_may_be_null(reg->type) && 8733 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8734 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8735 return -EACCES; 8736 } 8737 8738 if (!arg_btf_id) { 8739 if (!compatible->btf_id) { 8740 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8741 return -EFAULT; 8742 } 8743 arg_btf_id = compatible->btf_id; 8744 } 8745 8746 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8747 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8748 return -EACCES; 8749 } else { 8750 if (arg_btf_id == BPF_PTR_POISON) { 8751 verbose(env, "verifier internal error:"); 8752 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8753 regno); 8754 return -EACCES; 8755 } 8756 8757 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8758 btf_vmlinux, *arg_btf_id, 8759 strict_type_match)) { 8760 verbose(env, "R%d is of type %s but %s is expected\n", 8761 regno, btf_type_name(reg->btf, reg->btf_id), 8762 btf_type_name(btf_vmlinux, *arg_btf_id)); 8763 return -EACCES; 8764 } 8765 } 8766 break; 8767 } 8768 case PTR_TO_BTF_ID | MEM_ALLOC: 8769 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 8770 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8771 meta->func_id != BPF_FUNC_kptr_xchg) { 8772 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8773 return -EFAULT; 8774 } 8775 /* Check if local kptr in src arg matches kptr in dst arg */ 8776 if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) { 8777 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8778 return -EACCES; 8779 } 8780 break; 8781 case PTR_TO_BTF_ID | MEM_PERCPU: 8782 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 8783 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8784 /* Handled by helper specific checks */ 8785 break; 8786 default: 8787 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8788 return -EFAULT; 8789 } 8790 return 0; 8791 } 8792 8793 static struct btf_field * 8794 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8795 { 8796 struct btf_field *field; 8797 struct btf_record *rec; 8798 8799 rec = reg_btf_record(reg); 8800 if (!rec) 8801 return NULL; 8802 8803 field = btf_record_find(rec, off, fields); 8804 if (!field) 8805 return NULL; 8806 8807 return field; 8808 } 8809 8810 static int check_func_arg_reg_off(struct bpf_verifier_env *env, 8811 const struct bpf_reg_state *reg, int regno, 8812 enum bpf_arg_type arg_type) 8813 { 8814 u32 type = reg->type; 8815 8816 /* When referenced register is passed to release function, its fixed 8817 * offset must be 0. 8818 * 8819 * We will check arg_type_is_release reg has ref_obj_id when storing 8820 * meta->release_regno. 8821 */ 8822 if (arg_type_is_release(arg_type)) { 8823 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8824 * may not directly point to the object being released, but to 8825 * dynptr pointing to such object, which might be at some offset 8826 * on the stack. In that case, we simply to fallback to the 8827 * default handling. 8828 */ 8829 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8830 return 0; 8831 8832 /* Doing check_ptr_off_reg check for the offset will catch this 8833 * because fixed_off_ok is false, but checking here allows us 8834 * to give the user a better error message. 8835 */ 8836 if (reg->off) { 8837 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8838 regno); 8839 return -EINVAL; 8840 } 8841 return __check_ptr_off_reg(env, reg, regno, false); 8842 } 8843 8844 switch (type) { 8845 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8846 case PTR_TO_STACK: 8847 case PTR_TO_PACKET: 8848 case PTR_TO_PACKET_META: 8849 case PTR_TO_MAP_KEY: 8850 case PTR_TO_MAP_VALUE: 8851 case PTR_TO_MEM: 8852 case PTR_TO_MEM | MEM_RDONLY: 8853 case PTR_TO_MEM | MEM_RINGBUF: 8854 case PTR_TO_BUF: 8855 case PTR_TO_BUF | MEM_RDONLY: 8856 case PTR_TO_ARENA: 8857 case SCALAR_VALUE: 8858 return 0; 8859 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8860 * fixed offset. 8861 */ 8862 case PTR_TO_BTF_ID: 8863 case PTR_TO_BTF_ID | MEM_ALLOC: 8864 case PTR_TO_BTF_ID | PTR_TRUSTED: 8865 case PTR_TO_BTF_ID | MEM_RCU: 8866 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8867 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8868 /* When referenced PTR_TO_BTF_ID is passed to release function, 8869 * its fixed offset must be 0. In the other cases, fixed offset 8870 * can be non-zero. This was already checked above. So pass 8871 * fixed_off_ok as true to allow fixed offset for all other 8872 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8873 * still need to do checks instead of returning. 8874 */ 8875 return __check_ptr_off_reg(env, reg, regno, true); 8876 default: 8877 return __check_ptr_off_reg(env, reg, regno, false); 8878 } 8879 } 8880 8881 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8882 const struct bpf_func_proto *fn, 8883 struct bpf_reg_state *regs) 8884 { 8885 struct bpf_reg_state *state = NULL; 8886 int i; 8887 8888 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8889 if (arg_type_is_dynptr(fn->arg_type[i])) { 8890 if (state) { 8891 verbose(env, "verifier internal error: multiple dynptr args\n"); 8892 return NULL; 8893 } 8894 state = ®s[BPF_REG_1 + i]; 8895 } 8896 8897 if (!state) 8898 verbose(env, "verifier internal error: no dynptr arg found\n"); 8899 8900 return state; 8901 } 8902 8903 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8904 { 8905 struct bpf_func_state *state = func(env, reg); 8906 int spi; 8907 8908 if (reg->type == CONST_PTR_TO_DYNPTR) 8909 return reg->id; 8910 spi = dynptr_get_spi(env, reg); 8911 if (spi < 0) 8912 return spi; 8913 return state->stack[spi].spilled_ptr.id; 8914 } 8915 8916 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8917 { 8918 struct bpf_func_state *state = func(env, reg); 8919 int spi; 8920 8921 if (reg->type == CONST_PTR_TO_DYNPTR) 8922 return reg->ref_obj_id; 8923 spi = dynptr_get_spi(env, reg); 8924 if (spi < 0) 8925 return spi; 8926 return state->stack[spi].spilled_ptr.ref_obj_id; 8927 } 8928 8929 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8930 struct bpf_reg_state *reg) 8931 { 8932 struct bpf_func_state *state = func(env, reg); 8933 int spi; 8934 8935 if (reg->type == CONST_PTR_TO_DYNPTR) 8936 return reg->dynptr.type; 8937 8938 spi = __get_spi(reg->off); 8939 if (spi < 0) { 8940 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8941 return BPF_DYNPTR_TYPE_INVALID; 8942 } 8943 8944 return state->stack[spi].spilled_ptr.dynptr.type; 8945 } 8946 8947 static int check_reg_const_str(struct bpf_verifier_env *env, 8948 struct bpf_reg_state *reg, u32 regno) 8949 { 8950 struct bpf_map *map = reg->map_ptr; 8951 int err; 8952 int map_off; 8953 u64 map_addr; 8954 char *str_ptr; 8955 8956 if (reg->type != PTR_TO_MAP_VALUE) 8957 return -EINVAL; 8958 8959 if (!bpf_map_is_rdonly(map)) { 8960 verbose(env, "R%d does not point to a readonly map'\n", regno); 8961 return -EACCES; 8962 } 8963 8964 if (!tnum_is_const(reg->var_off)) { 8965 verbose(env, "R%d is not a constant address'\n", regno); 8966 return -EACCES; 8967 } 8968 8969 if (!map->ops->map_direct_value_addr) { 8970 verbose(env, "no direct value access support for this map type\n"); 8971 return -EACCES; 8972 } 8973 8974 err = check_map_access(env, regno, reg->off, 8975 map->value_size - reg->off, false, 8976 ACCESS_HELPER); 8977 if (err) 8978 return err; 8979 8980 map_off = reg->off + reg->var_off.value; 8981 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8982 if (err) { 8983 verbose(env, "direct value access on string failed\n"); 8984 return err; 8985 } 8986 8987 str_ptr = (char *)(long)(map_addr); 8988 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8989 verbose(env, "string is not zero-terminated\n"); 8990 return -EINVAL; 8991 } 8992 return 0; 8993 } 8994 8995 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8996 struct bpf_call_arg_meta *meta, 8997 const struct bpf_func_proto *fn, 8998 int insn_idx) 8999 { 9000 u32 regno = BPF_REG_1 + arg; 9001 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 9002 enum bpf_arg_type arg_type = fn->arg_type[arg]; 9003 enum bpf_reg_type type = reg->type; 9004 u32 *arg_btf_id = NULL; 9005 int err = 0; 9006 bool mask; 9007 9008 if (arg_type == ARG_DONTCARE) 9009 return 0; 9010 9011 err = check_reg_arg(env, regno, SRC_OP); 9012 if (err) 9013 return err; 9014 9015 if (arg_type == ARG_ANYTHING) { 9016 if (is_pointer_value(env, regno)) { 9017 verbose(env, "R%d leaks addr into helper function\n", 9018 regno); 9019 return -EACCES; 9020 } 9021 return 0; 9022 } 9023 9024 if (type_is_pkt_pointer(type) && 9025 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 9026 verbose(env, "helper access to the packet is not allowed\n"); 9027 return -EACCES; 9028 } 9029 9030 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 9031 err = resolve_map_arg_type(env, meta, &arg_type); 9032 if (err) 9033 return err; 9034 } 9035 9036 if (register_is_null(reg) && type_may_be_null(arg_type)) 9037 /* A NULL register has a SCALAR_VALUE type, so skip 9038 * type checking. 9039 */ 9040 goto skip_type_check; 9041 9042 /* arg_btf_id and arg_size are in a union. */ 9043 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 9044 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 9045 arg_btf_id = fn->arg_btf_id[arg]; 9046 9047 mask = mask_raw_tp_reg(env, reg); 9048 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 9049 9050 err = err ?: check_func_arg_reg_off(env, reg, regno, arg_type); 9051 unmask_raw_tp_reg(reg, mask); 9052 if (err) 9053 return err; 9054 9055 skip_type_check: 9056 if (arg_type_is_release(arg_type)) { 9057 if (arg_type_is_dynptr(arg_type)) { 9058 struct bpf_func_state *state = func(env, reg); 9059 int spi; 9060 9061 /* Only dynptr created on stack can be released, thus 9062 * the get_spi and stack state checks for spilled_ptr 9063 * should only be done before process_dynptr_func for 9064 * PTR_TO_STACK. 9065 */ 9066 if (reg->type == PTR_TO_STACK) { 9067 spi = dynptr_get_spi(env, reg); 9068 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 9069 verbose(env, "arg %d is an unacquired reference\n", regno); 9070 return -EINVAL; 9071 } 9072 } else { 9073 verbose(env, "cannot release unowned const bpf_dynptr\n"); 9074 return -EINVAL; 9075 } 9076 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 9077 verbose(env, "R%d must be referenced when passed to release function\n", 9078 regno); 9079 return -EINVAL; 9080 } 9081 if (meta->release_regno) { 9082 verbose(env, "verifier internal error: more than one release argument\n"); 9083 return -EFAULT; 9084 } 9085 meta->release_regno = regno; 9086 } 9087 9088 if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) { 9089 if (meta->ref_obj_id) { 9090 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 9091 regno, reg->ref_obj_id, 9092 meta->ref_obj_id); 9093 return -EFAULT; 9094 } 9095 meta->ref_obj_id = reg->ref_obj_id; 9096 } 9097 9098 switch (base_type(arg_type)) { 9099 case ARG_CONST_MAP_PTR: 9100 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 9101 if (meta->map_ptr) { 9102 /* Use map_uid (which is unique id of inner map) to reject: 9103 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 9104 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 9105 * if (inner_map1 && inner_map2) { 9106 * timer = bpf_map_lookup_elem(inner_map1); 9107 * if (timer) 9108 * // mismatch would have been allowed 9109 * bpf_timer_init(timer, inner_map2); 9110 * } 9111 * 9112 * Comparing map_ptr is enough to distinguish normal and outer maps. 9113 */ 9114 if (meta->map_ptr != reg->map_ptr || 9115 meta->map_uid != reg->map_uid) { 9116 verbose(env, 9117 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 9118 meta->map_uid, reg->map_uid); 9119 return -EINVAL; 9120 } 9121 } 9122 meta->map_ptr = reg->map_ptr; 9123 meta->map_uid = reg->map_uid; 9124 break; 9125 case ARG_PTR_TO_MAP_KEY: 9126 /* bpf_map_xxx(..., map_ptr, ..., key) call: 9127 * check that [key, key + map->key_size) are within 9128 * stack limits and initialized 9129 */ 9130 if (!meta->map_ptr) { 9131 /* in function declaration map_ptr must come before 9132 * map_key, so that it's verified and known before 9133 * we have to check map_key here. Otherwise it means 9134 * that kernel subsystem misconfigured verifier 9135 */ 9136 verbose(env, "invalid map_ptr to access map->key\n"); 9137 return -EACCES; 9138 } 9139 err = check_helper_mem_access(env, regno, meta->map_ptr->key_size, 9140 BPF_READ, false, NULL); 9141 break; 9142 case ARG_PTR_TO_MAP_VALUE: 9143 if (type_may_be_null(arg_type) && register_is_null(reg)) 9144 return 0; 9145 9146 /* bpf_map_xxx(..., map_ptr, ..., value) call: 9147 * check [value, value + map->value_size) validity 9148 */ 9149 if (!meta->map_ptr) { 9150 /* kernel subsystem misconfigured verifier */ 9151 verbose(env, "invalid map_ptr to access map->value\n"); 9152 return -EACCES; 9153 } 9154 meta->raw_mode = arg_type & MEM_UNINIT; 9155 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size, 9156 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9157 false, meta); 9158 break; 9159 case ARG_PTR_TO_PERCPU_BTF_ID: 9160 if (!reg->btf_id) { 9161 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 9162 return -EACCES; 9163 } 9164 meta->ret_btf = reg->btf; 9165 meta->ret_btf_id = reg->btf_id; 9166 break; 9167 case ARG_PTR_TO_SPIN_LOCK: 9168 if (in_rbtree_lock_required_cb(env)) { 9169 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 9170 return -EACCES; 9171 } 9172 if (meta->func_id == BPF_FUNC_spin_lock) { 9173 err = process_spin_lock(env, regno, true); 9174 if (err) 9175 return err; 9176 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 9177 err = process_spin_lock(env, regno, false); 9178 if (err) 9179 return err; 9180 } else { 9181 verbose(env, "verifier internal error\n"); 9182 return -EFAULT; 9183 } 9184 break; 9185 case ARG_PTR_TO_TIMER: 9186 err = process_timer_func(env, regno, meta); 9187 if (err) 9188 return err; 9189 break; 9190 case ARG_PTR_TO_FUNC: 9191 meta->subprogno = reg->subprogno; 9192 break; 9193 case ARG_PTR_TO_MEM: 9194 /* The access to this pointer is only checked when we hit the 9195 * next is_mem_size argument below. 9196 */ 9197 meta->raw_mode = arg_type & MEM_UNINIT; 9198 if (arg_type & MEM_FIXED_SIZE) { 9199 err = check_helper_mem_access(env, regno, fn->arg_size[arg], 9200 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9201 false, meta); 9202 if (err) 9203 return err; 9204 if (arg_type & MEM_ALIGNED) 9205 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true); 9206 } 9207 break; 9208 case ARG_CONST_SIZE: 9209 err = check_mem_size_reg(env, reg, regno, 9210 fn->arg_type[arg - 1] & MEM_WRITE ? 9211 BPF_WRITE : BPF_READ, 9212 false, meta); 9213 break; 9214 case ARG_CONST_SIZE_OR_ZERO: 9215 err = check_mem_size_reg(env, reg, regno, 9216 fn->arg_type[arg - 1] & MEM_WRITE ? 9217 BPF_WRITE : BPF_READ, 9218 true, meta); 9219 break; 9220 case ARG_PTR_TO_DYNPTR: 9221 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 9222 if (err) 9223 return err; 9224 break; 9225 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 9226 if (!tnum_is_const(reg->var_off)) { 9227 verbose(env, "R%d is not a known constant'\n", 9228 regno); 9229 return -EACCES; 9230 } 9231 meta->mem_size = reg->var_off.value; 9232 err = mark_chain_precision(env, regno); 9233 if (err) 9234 return err; 9235 break; 9236 case ARG_PTR_TO_CONST_STR: 9237 { 9238 err = check_reg_const_str(env, reg, regno); 9239 if (err) 9240 return err; 9241 break; 9242 } 9243 case ARG_KPTR_XCHG_DEST: 9244 err = process_kptr_func(env, regno, meta); 9245 if (err) 9246 return err; 9247 break; 9248 } 9249 9250 return err; 9251 } 9252 9253 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 9254 { 9255 enum bpf_attach_type eatype = env->prog->expected_attach_type; 9256 enum bpf_prog_type type = resolve_prog_type(env->prog); 9257 9258 if (func_id != BPF_FUNC_map_update_elem && 9259 func_id != BPF_FUNC_map_delete_elem) 9260 return false; 9261 9262 /* It's not possible to get access to a locked struct sock in these 9263 * contexts, so updating is safe. 9264 */ 9265 switch (type) { 9266 case BPF_PROG_TYPE_TRACING: 9267 if (eatype == BPF_TRACE_ITER) 9268 return true; 9269 break; 9270 case BPF_PROG_TYPE_SOCK_OPS: 9271 /* map_update allowed only via dedicated helpers with event type checks */ 9272 if (func_id == BPF_FUNC_map_delete_elem) 9273 return true; 9274 break; 9275 case BPF_PROG_TYPE_SOCKET_FILTER: 9276 case BPF_PROG_TYPE_SCHED_CLS: 9277 case BPF_PROG_TYPE_SCHED_ACT: 9278 case BPF_PROG_TYPE_XDP: 9279 case BPF_PROG_TYPE_SK_REUSEPORT: 9280 case BPF_PROG_TYPE_FLOW_DISSECTOR: 9281 case BPF_PROG_TYPE_SK_LOOKUP: 9282 return true; 9283 default: 9284 break; 9285 } 9286 9287 verbose(env, "cannot update sockmap in this context\n"); 9288 return false; 9289 } 9290 9291 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 9292 { 9293 return env->prog->jit_requested && 9294 bpf_jit_supports_subprog_tailcalls(); 9295 } 9296 9297 static int check_map_func_compatibility(struct bpf_verifier_env *env, 9298 struct bpf_map *map, int func_id) 9299 { 9300 if (!map) 9301 return 0; 9302 9303 /* We need a two way check, first is from map perspective ... */ 9304 switch (map->map_type) { 9305 case BPF_MAP_TYPE_PROG_ARRAY: 9306 if (func_id != BPF_FUNC_tail_call) 9307 goto error; 9308 break; 9309 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 9310 if (func_id != BPF_FUNC_perf_event_read && 9311 func_id != BPF_FUNC_perf_event_output && 9312 func_id != BPF_FUNC_skb_output && 9313 func_id != BPF_FUNC_perf_event_read_value && 9314 func_id != BPF_FUNC_xdp_output) 9315 goto error; 9316 break; 9317 case BPF_MAP_TYPE_RINGBUF: 9318 if (func_id != BPF_FUNC_ringbuf_output && 9319 func_id != BPF_FUNC_ringbuf_reserve && 9320 func_id != BPF_FUNC_ringbuf_query && 9321 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 9322 func_id != BPF_FUNC_ringbuf_submit_dynptr && 9323 func_id != BPF_FUNC_ringbuf_discard_dynptr) 9324 goto error; 9325 break; 9326 case BPF_MAP_TYPE_USER_RINGBUF: 9327 if (func_id != BPF_FUNC_user_ringbuf_drain) 9328 goto error; 9329 break; 9330 case BPF_MAP_TYPE_STACK_TRACE: 9331 if (func_id != BPF_FUNC_get_stackid) 9332 goto error; 9333 break; 9334 case BPF_MAP_TYPE_CGROUP_ARRAY: 9335 if (func_id != BPF_FUNC_skb_under_cgroup && 9336 func_id != BPF_FUNC_current_task_under_cgroup) 9337 goto error; 9338 break; 9339 case BPF_MAP_TYPE_CGROUP_STORAGE: 9340 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 9341 if (func_id != BPF_FUNC_get_local_storage) 9342 goto error; 9343 break; 9344 case BPF_MAP_TYPE_DEVMAP: 9345 case BPF_MAP_TYPE_DEVMAP_HASH: 9346 if (func_id != BPF_FUNC_redirect_map && 9347 func_id != BPF_FUNC_map_lookup_elem) 9348 goto error; 9349 break; 9350 /* Restrict bpf side of cpumap and xskmap, open when use-cases 9351 * appear. 9352 */ 9353 case BPF_MAP_TYPE_CPUMAP: 9354 if (func_id != BPF_FUNC_redirect_map) 9355 goto error; 9356 break; 9357 case BPF_MAP_TYPE_XSKMAP: 9358 if (func_id != BPF_FUNC_redirect_map && 9359 func_id != BPF_FUNC_map_lookup_elem) 9360 goto error; 9361 break; 9362 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 9363 case BPF_MAP_TYPE_HASH_OF_MAPS: 9364 if (func_id != BPF_FUNC_map_lookup_elem) 9365 goto error; 9366 break; 9367 case BPF_MAP_TYPE_SOCKMAP: 9368 if (func_id != BPF_FUNC_sk_redirect_map && 9369 func_id != BPF_FUNC_sock_map_update && 9370 func_id != BPF_FUNC_msg_redirect_map && 9371 func_id != BPF_FUNC_sk_select_reuseport && 9372 func_id != BPF_FUNC_map_lookup_elem && 9373 !may_update_sockmap(env, func_id)) 9374 goto error; 9375 break; 9376 case BPF_MAP_TYPE_SOCKHASH: 9377 if (func_id != BPF_FUNC_sk_redirect_hash && 9378 func_id != BPF_FUNC_sock_hash_update && 9379 func_id != BPF_FUNC_msg_redirect_hash && 9380 func_id != BPF_FUNC_sk_select_reuseport && 9381 func_id != BPF_FUNC_map_lookup_elem && 9382 !may_update_sockmap(env, func_id)) 9383 goto error; 9384 break; 9385 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 9386 if (func_id != BPF_FUNC_sk_select_reuseport) 9387 goto error; 9388 break; 9389 case BPF_MAP_TYPE_QUEUE: 9390 case BPF_MAP_TYPE_STACK: 9391 if (func_id != BPF_FUNC_map_peek_elem && 9392 func_id != BPF_FUNC_map_pop_elem && 9393 func_id != BPF_FUNC_map_push_elem) 9394 goto error; 9395 break; 9396 case BPF_MAP_TYPE_SK_STORAGE: 9397 if (func_id != BPF_FUNC_sk_storage_get && 9398 func_id != BPF_FUNC_sk_storage_delete && 9399 func_id != BPF_FUNC_kptr_xchg) 9400 goto error; 9401 break; 9402 case BPF_MAP_TYPE_INODE_STORAGE: 9403 if (func_id != BPF_FUNC_inode_storage_get && 9404 func_id != BPF_FUNC_inode_storage_delete && 9405 func_id != BPF_FUNC_kptr_xchg) 9406 goto error; 9407 break; 9408 case BPF_MAP_TYPE_TASK_STORAGE: 9409 if (func_id != BPF_FUNC_task_storage_get && 9410 func_id != BPF_FUNC_task_storage_delete && 9411 func_id != BPF_FUNC_kptr_xchg) 9412 goto error; 9413 break; 9414 case BPF_MAP_TYPE_CGRP_STORAGE: 9415 if (func_id != BPF_FUNC_cgrp_storage_get && 9416 func_id != BPF_FUNC_cgrp_storage_delete && 9417 func_id != BPF_FUNC_kptr_xchg) 9418 goto error; 9419 break; 9420 case BPF_MAP_TYPE_BLOOM_FILTER: 9421 if (func_id != BPF_FUNC_map_peek_elem && 9422 func_id != BPF_FUNC_map_push_elem) 9423 goto error; 9424 break; 9425 default: 9426 break; 9427 } 9428 9429 /* ... and second from the function itself. */ 9430 switch (func_id) { 9431 case BPF_FUNC_tail_call: 9432 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 9433 goto error; 9434 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 9435 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 9436 return -EINVAL; 9437 } 9438 break; 9439 case BPF_FUNC_perf_event_read: 9440 case BPF_FUNC_perf_event_output: 9441 case BPF_FUNC_perf_event_read_value: 9442 case BPF_FUNC_skb_output: 9443 case BPF_FUNC_xdp_output: 9444 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9445 goto error; 9446 break; 9447 case BPF_FUNC_ringbuf_output: 9448 case BPF_FUNC_ringbuf_reserve: 9449 case BPF_FUNC_ringbuf_query: 9450 case BPF_FUNC_ringbuf_reserve_dynptr: 9451 case BPF_FUNC_ringbuf_submit_dynptr: 9452 case BPF_FUNC_ringbuf_discard_dynptr: 9453 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 9454 goto error; 9455 break; 9456 case BPF_FUNC_user_ringbuf_drain: 9457 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 9458 goto error; 9459 break; 9460 case BPF_FUNC_get_stackid: 9461 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 9462 goto error; 9463 break; 9464 case BPF_FUNC_current_task_under_cgroup: 9465 case BPF_FUNC_skb_under_cgroup: 9466 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 9467 goto error; 9468 break; 9469 case BPF_FUNC_redirect_map: 9470 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 9471 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 9472 map->map_type != BPF_MAP_TYPE_CPUMAP && 9473 map->map_type != BPF_MAP_TYPE_XSKMAP) 9474 goto error; 9475 break; 9476 case BPF_FUNC_sk_redirect_map: 9477 case BPF_FUNC_msg_redirect_map: 9478 case BPF_FUNC_sock_map_update: 9479 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 9480 goto error; 9481 break; 9482 case BPF_FUNC_sk_redirect_hash: 9483 case BPF_FUNC_msg_redirect_hash: 9484 case BPF_FUNC_sock_hash_update: 9485 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 9486 goto error; 9487 break; 9488 case BPF_FUNC_get_local_storage: 9489 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 9490 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 9491 goto error; 9492 break; 9493 case BPF_FUNC_sk_select_reuseport: 9494 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 9495 map->map_type != BPF_MAP_TYPE_SOCKMAP && 9496 map->map_type != BPF_MAP_TYPE_SOCKHASH) 9497 goto error; 9498 break; 9499 case BPF_FUNC_map_pop_elem: 9500 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9501 map->map_type != BPF_MAP_TYPE_STACK) 9502 goto error; 9503 break; 9504 case BPF_FUNC_map_peek_elem: 9505 case BPF_FUNC_map_push_elem: 9506 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9507 map->map_type != BPF_MAP_TYPE_STACK && 9508 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 9509 goto error; 9510 break; 9511 case BPF_FUNC_map_lookup_percpu_elem: 9512 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 9513 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9514 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 9515 goto error; 9516 break; 9517 case BPF_FUNC_sk_storage_get: 9518 case BPF_FUNC_sk_storage_delete: 9519 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 9520 goto error; 9521 break; 9522 case BPF_FUNC_inode_storage_get: 9523 case BPF_FUNC_inode_storage_delete: 9524 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 9525 goto error; 9526 break; 9527 case BPF_FUNC_task_storage_get: 9528 case BPF_FUNC_task_storage_delete: 9529 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 9530 goto error; 9531 break; 9532 case BPF_FUNC_cgrp_storage_get: 9533 case BPF_FUNC_cgrp_storage_delete: 9534 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 9535 goto error; 9536 break; 9537 default: 9538 break; 9539 } 9540 9541 return 0; 9542 error: 9543 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9544 map->map_type, func_id_name(func_id), func_id); 9545 return -EINVAL; 9546 } 9547 9548 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9549 { 9550 int count = 0; 9551 9552 if (arg_type_is_raw_mem(fn->arg1_type)) 9553 count++; 9554 if (arg_type_is_raw_mem(fn->arg2_type)) 9555 count++; 9556 if (arg_type_is_raw_mem(fn->arg3_type)) 9557 count++; 9558 if (arg_type_is_raw_mem(fn->arg4_type)) 9559 count++; 9560 if (arg_type_is_raw_mem(fn->arg5_type)) 9561 count++; 9562 9563 /* We only support one arg being in raw mode at the moment, 9564 * which is sufficient for the helper functions we have 9565 * right now. 9566 */ 9567 return count <= 1; 9568 } 9569 9570 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9571 { 9572 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9573 bool has_size = fn->arg_size[arg] != 0; 9574 bool is_next_size = false; 9575 9576 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9577 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9578 9579 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9580 return is_next_size; 9581 9582 return has_size == is_next_size || is_next_size == is_fixed; 9583 } 9584 9585 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9586 { 9587 /* bpf_xxx(..., buf, len) call will access 'len' 9588 * bytes from memory 'buf'. Both arg types need 9589 * to be paired, so make sure there's no buggy 9590 * helper function specification. 9591 */ 9592 if (arg_type_is_mem_size(fn->arg1_type) || 9593 check_args_pair_invalid(fn, 0) || 9594 check_args_pair_invalid(fn, 1) || 9595 check_args_pair_invalid(fn, 2) || 9596 check_args_pair_invalid(fn, 3) || 9597 check_args_pair_invalid(fn, 4)) 9598 return false; 9599 9600 return true; 9601 } 9602 9603 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9604 { 9605 int i; 9606 9607 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9608 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9609 return !!fn->arg_btf_id[i]; 9610 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9611 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9612 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9613 /* arg_btf_id and arg_size are in a union. */ 9614 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9615 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9616 return false; 9617 } 9618 9619 return true; 9620 } 9621 9622 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9623 { 9624 return check_raw_mode_ok(fn) && 9625 check_arg_pair_ok(fn) && 9626 check_btf_id_ok(fn) ? 0 : -EINVAL; 9627 } 9628 9629 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9630 * are now invalid, so turn them into unknown SCALAR_VALUE. 9631 * 9632 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9633 * since these slices point to packet data. 9634 */ 9635 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9636 { 9637 struct bpf_func_state *state; 9638 struct bpf_reg_state *reg; 9639 9640 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9641 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9642 mark_reg_invalid(env, reg); 9643 })); 9644 } 9645 9646 enum { 9647 AT_PKT_END = -1, 9648 BEYOND_PKT_END = -2, 9649 }; 9650 9651 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9652 { 9653 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9654 struct bpf_reg_state *reg = &state->regs[regn]; 9655 9656 if (reg->type != PTR_TO_PACKET) 9657 /* PTR_TO_PACKET_META is not supported yet */ 9658 return; 9659 9660 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9661 * How far beyond pkt_end it goes is unknown. 9662 * if (!range_open) it's the case of pkt >= pkt_end 9663 * if (range_open) it's the case of pkt > pkt_end 9664 * hence this pointer is at least 1 byte bigger than pkt_end 9665 */ 9666 if (range_open) 9667 reg->range = BEYOND_PKT_END; 9668 else 9669 reg->range = AT_PKT_END; 9670 } 9671 9672 /* The pointer with the specified id has released its reference to kernel 9673 * resources. Identify all copies of the same pointer and clear the reference. 9674 */ 9675 static int release_reference(struct bpf_verifier_env *env, 9676 int ref_obj_id) 9677 { 9678 struct bpf_func_state *state; 9679 struct bpf_reg_state *reg; 9680 int err; 9681 9682 err = release_reference_state(cur_func(env), ref_obj_id); 9683 if (err) 9684 return err; 9685 9686 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9687 if (reg->ref_obj_id == ref_obj_id) 9688 mark_reg_invalid(env, reg); 9689 })); 9690 9691 return 0; 9692 } 9693 9694 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9695 { 9696 struct bpf_func_state *unused; 9697 struct bpf_reg_state *reg; 9698 9699 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9700 if (type_is_non_owning_ref(reg->type)) 9701 mark_reg_invalid(env, reg); 9702 })); 9703 } 9704 9705 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9706 struct bpf_reg_state *regs) 9707 { 9708 int i; 9709 9710 /* after the call registers r0 - r5 were scratched */ 9711 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9712 mark_reg_not_init(env, regs, caller_saved[i]); 9713 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9714 } 9715 } 9716 9717 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9718 struct bpf_func_state *caller, 9719 struct bpf_func_state *callee, 9720 int insn_idx); 9721 9722 static int set_callee_state(struct bpf_verifier_env *env, 9723 struct bpf_func_state *caller, 9724 struct bpf_func_state *callee, int insn_idx); 9725 9726 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9727 set_callee_state_fn set_callee_state_cb, 9728 struct bpf_verifier_state *state) 9729 { 9730 struct bpf_func_state *caller, *callee; 9731 int err; 9732 9733 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9734 verbose(env, "the call stack of %d frames is too deep\n", 9735 state->curframe + 2); 9736 return -E2BIG; 9737 } 9738 9739 if (state->frame[state->curframe + 1]) { 9740 verbose(env, "verifier bug. Frame %d already allocated\n", 9741 state->curframe + 1); 9742 return -EFAULT; 9743 } 9744 9745 caller = state->frame[state->curframe]; 9746 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9747 if (!callee) 9748 return -ENOMEM; 9749 state->frame[state->curframe + 1] = callee; 9750 9751 /* callee cannot access r0, r6 - r9 for reading and has to write 9752 * into its own stack before reading from it. 9753 * callee can read/write into caller's stack 9754 */ 9755 init_func_state(env, callee, 9756 /* remember the callsite, it will be used by bpf_exit */ 9757 callsite, 9758 state->curframe + 1 /* frameno within this callchain */, 9759 subprog /* subprog number within this prog */); 9760 /* Transfer references to the callee */ 9761 err = copy_reference_state(callee, caller); 9762 err = err ?: set_callee_state_cb(env, caller, callee, callsite); 9763 if (err) 9764 goto err_out; 9765 9766 /* only increment it after check_reg_arg() finished */ 9767 state->curframe++; 9768 9769 return 0; 9770 9771 err_out: 9772 free_func_state(callee); 9773 state->frame[state->curframe + 1] = NULL; 9774 return err; 9775 } 9776 9777 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 9778 const struct btf *btf, 9779 struct bpf_reg_state *regs) 9780 { 9781 struct bpf_subprog_info *sub = subprog_info(env, subprog); 9782 struct bpf_verifier_log *log = &env->log; 9783 u32 i; 9784 int ret; 9785 9786 ret = btf_prepare_func_args(env, subprog); 9787 if (ret) 9788 return ret; 9789 9790 /* check that BTF function arguments match actual types that the 9791 * verifier sees. 9792 */ 9793 for (i = 0; i < sub->arg_cnt; i++) { 9794 u32 regno = i + 1; 9795 struct bpf_reg_state *reg = ®s[regno]; 9796 struct bpf_subprog_arg_info *arg = &sub->args[i]; 9797 9798 if (arg->arg_type == ARG_ANYTHING) { 9799 if (reg->type != SCALAR_VALUE) { 9800 bpf_log(log, "R%d is not a scalar\n", regno); 9801 return -EINVAL; 9802 } 9803 } else if (arg->arg_type == ARG_PTR_TO_CTX) { 9804 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 9805 if (ret < 0) 9806 return ret; 9807 /* If function expects ctx type in BTF check that caller 9808 * is passing PTR_TO_CTX. 9809 */ 9810 if (reg->type != PTR_TO_CTX) { 9811 bpf_log(log, "arg#%d expects pointer to ctx\n", i); 9812 return -EINVAL; 9813 } 9814 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 9815 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 9816 if (ret < 0) 9817 return ret; 9818 if (check_mem_reg(env, reg, regno, arg->mem_size)) 9819 return -EINVAL; 9820 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { 9821 bpf_log(log, "arg#%d is expected to be non-NULL\n", i); 9822 return -EINVAL; 9823 } 9824 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 9825 /* 9826 * Can pass any value and the kernel won't crash, but 9827 * only PTR_TO_ARENA or SCALAR make sense. Everything 9828 * else is a bug in the bpf program. Point it out to 9829 * the user at the verification time instead of 9830 * run-time debug nightmare. 9831 */ 9832 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { 9833 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); 9834 return -EINVAL; 9835 } 9836 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 9837 ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR); 9838 if (ret) 9839 return ret; 9840 9841 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); 9842 if (ret) 9843 return ret; 9844 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 9845 struct bpf_call_arg_meta meta; 9846 bool mask; 9847 int err; 9848 9849 if (register_is_null(reg) && type_may_be_null(arg->arg_type)) 9850 continue; 9851 9852 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ 9853 mask = mask_raw_tp_reg(env, reg); 9854 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); 9855 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); 9856 unmask_raw_tp_reg(reg, mask); 9857 if (err) 9858 return err; 9859 } else { 9860 bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n", 9861 i, arg->arg_type); 9862 return -EFAULT; 9863 } 9864 } 9865 9866 return 0; 9867 } 9868 9869 /* Compare BTF of a function call with given bpf_reg_state. 9870 * Returns: 9871 * EFAULT - there is a verifier bug. Abort verification. 9872 * EINVAL - there is a type mismatch or BTF is not available. 9873 * 0 - BTF matches with what bpf_reg_state expects. 9874 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 9875 */ 9876 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 9877 struct bpf_reg_state *regs) 9878 { 9879 struct bpf_prog *prog = env->prog; 9880 struct btf *btf = prog->aux->btf; 9881 u32 btf_id; 9882 int err; 9883 9884 if (!prog->aux->func_info) 9885 return -EINVAL; 9886 9887 btf_id = prog->aux->func_info[subprog].type_id; 9888 if (!btf_id) 9889 return -EFAULT; 9890 9891 if (prog->aux->func_info_aux[subprog].unreliable) 9892 return -EINVAL; 9893 9894 err = btf_check_func_arg_match(env, subprog, btf, regs); 9895 /* Compiler optimizations can remove arguments from static functions 9896 * or mismatched type can be passed into a global function. 9897 * In such cases mark the function as unreliable from BTF point of view. 9898 */ 9899 if (err) 9900 prog->aux->func_info_aux[subprog].unreliable = true; 9901 return err; 9902 } 9903 9904 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9905 int insn_idx, int subprog, 9906 set_callee_state_fn set_callee_state_cb) 9907 { 9908 struct bpf_verifier_state *state = env->cur_state, *callback_state; 9909 struct bpf_func_state *caller, *callee; 9910 int err; 9911 9912 caller = state->frame[state->curframe]; 9913 err = btf_check_subprog_call(env, subprog, caller->regs); 9914 if (err == -EFAULT) 9915 return err; 9916 9917 /* set_callee_state is used for direct subprog calls, but we are 9918 * interested in validating only BPF helpers that can call subprogs as 9919 * callbacks 9920 */ 9921 env->subprog_info[subprog].is_cb = true; 9922 if (bpf_pseudo_kfunc_call(insn) && 9923 !is_callback_calling_kfunc(insn->imm)) { 9924 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 9925 func_id_name(insn->imm), insn->imm); 9926 return -EFAULT; 9927 } else if (!bpf_pseudo_kfunc_call(insn) && 9928 !is_callback_calling_function(insn->imm)) { /* helper */ 9929 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 9930 func_id_name(insn->imm), insn->imm); 9931 return -EFAULT; 9932 } 9933 9934 if (is_async_callback_calling_insn(insn)) { 9935 struct bpf_verifier_state *async_cb; 9936 9937 /* there is no real recursion here. timer and workqueue callbacks are async */ 9938 env->subprog_info[subprog].is_async_cb = true; 9939 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 9940 insn_idx, subprog, 9941 is_bpf_wq_set_callback_impl_kfunc(insn->imm)); 9942 if (!async_cb) 9943 return -EFAULT; 9944 callee = async_cb->frame[0]; 9945 callee->async_entry_cnt = caller->async_entry_cnt + 1; 9946 9947 /* Convert bpf_timer_set_callback() args into timer callback args */ 9948 err = set_callee_state_cb(env, caller, callee, insn_idx); 9949 if (err) 9950 return err; 9951 9952 return 0; 9953 } 9954 9955 /* for callback functions enqueue entry to callback and 9956 * proceed with next instruction within current frame. 9957 */ 9958 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 9959 if (!callback_state) 9960 return -ENOMEM; 9961 9962 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 9963 callback_state); 9964 if (err) 9965 return err; 9966 9967 callback_state->callback_unroll_depth++; 9968 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 9969 caller->callback_depth = 0; 9970 return 0; 9971 } 9972 9973 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9974 int *insn_idx) 9975 { 9976 struct bpf_verifier_state *state = env->cur_state; 9977 struct bpf_func_state *caller; 9978 int err, subprog, target_insn; 9979 9980 target_insn = *insn_idx + insn->imm + 1; 9981 subprog = find_subprog(env, target_insn); 9982 if (subprog < 0) { 9983 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 9984 return -EFAULT; 9985 } 9986 9987 caller = state->frame[state->curframe]; 9988 err = btf_check_subprog_call(env, subprog, caller->regs); 9989 if (err == -EFAULT) 9990 return err; 9991 if (subprog_is_global(env, subprog)) { 9992 const char *sub_name = subprog_name(env, subprog); 9993 9994 /* Only global subprogs cannot be called with a lock held. */ 9995 if (cur_func(env)->active_locks) { 9996 verbose(env, "global function calls are not allowed while holding a lock,\n" 9997 "use static function instead\n"); 9998 return -EINVAL; 9999 } 10000 10001 /* Only global subprogs cannot be called with preemption disabled. */ 10002 if (env->cur_state->active_preempt_lock) { 10003 verbose(env, "global function calls are not allowed with preemption disabled,\n" 10004 "use static function instead\n"); 10005 return -EINVAL; 10006 } 10007 10008 if (err) { 10009 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 10010 subprog, sub_name); 10011 return err; 10012 } 10013 10014 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 10015 subprog, sub_name); 10016 /* mark global subprog for verifying after main prog */ 10017 subprog_aux(env, subprog)->called = true; 10018 clear_caller_saved_regs(env, caller->regs); 10019 10020 /* All global functions return a 64-bit SCALAR_VALUE */ 10021 mark_reg_unknown(env, caller->regs, BPF_REG_0); 10022 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10023 10024 /* continue with next insn after call */ 10025 return 0; 10026 } 10027 10028 /* for regular function entry setup new frame and continue 10029 * from that frame. 10030 */ 10031 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 10032 if (err) 10033 return err; 10034 10035 clear_caller_saved_regs(env, caller->regs); 10036 10037 /* and go analyze first insn of the callee */ 10038 *insn_idx = env->subprog_info[subprog].start - 1; 10039 10040 if (env->log.level & BPF_LOG_LEVEL) { 10041 verbose(env, "caller:\n"); 10042 print_verifier_state(env, caller, true); 10043 verbose(env, "callee:\n"); 10044 print_verifier_state(env, state->frame[state->curframe], true); 10045 } 10046 10047 return 0; 10048 } 10049 10050 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 10051 struct bpf_func_state *caller, 10052 struct bpf_func_state *callee) 10053 { 10054 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 10055 * void *callback_ctx, u64 flags); 10056 * callback_fn(struct bpf_map *map, void *key, void *value, 10057 * void *callback_ctx); 10058 */ 10059 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10060 10061 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10062 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10063 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10064 10065 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10066 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10067 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10068 10069 /* pointer to stack or null */ 10070 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 10071 10072 /* unused */ 10073 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10074 return 0; 10075 } 10076 10077 static int set_callee_state(struct bpf_verifier_env *env, 10078 struct bpf_func_state *caller, 10079 struct bpf_func_state *callee, int insn_idx) 10080 { 10081 int i; 10082 10083 /* copy r1 - r5 args that callee can access. The copy includes parent 10084 * pointers, which connects us up to the liveness chain 10085 */ 10086 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 10087 callee->regs[i] = caller->regs[i]; 10088 return 0; 10089 } 10090 10091 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 10092 struct bpf_func_state *caller, 10093 struct bpf_func_state *callee, 10094 int insn_idx) 10095 { 10096 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 10097 struct bpf_map *map; 10098 int err; 10099 10100 /* valid map_ptr and poison value does not matter */ 10101 map = insn_aux->map_ptr_state.map_ptr; 10102 if (!map->ops->map_set_for_each_callback_args || 10103 !map->ops->map_for_each_callback) { 10104 verbose(env, "callback function not allowed for map\n"); 10105 return -ENOTSUPP; 10106 } 10107 10108 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 10109 if (err) 10110 return err; 10111 10112 callee->in_callback_fn = true; 10113 callee->callback_ret_range = retval_range(0, 1); 10114 return 0; 10115 } 10116 10117 static int set_loop_callback_state(struct bpf_verifier_env *env, 10118 struct bpf_func_state *caller, 10119 struct bpf_func_state *callee, 10120 int insn_idx) 10121 { 10122 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 10123 * u64 flags); 10124 * callback_fn(u64 index, void *callback_ctx); 10125 */ 10126 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 10127 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10128 10129 /* unused */ 10130 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10131 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10132 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10133 10134 callee->in_callback_fn = true; 10135 callee->callback_ret_range = retval_range(0, 1); 10136 return 0; 10137 } 10138 10139 static int set_timer_callback_state(struct bpf_verifier_env *env, 10140 struct bpf_func_state *caller, 10141 struct bpf_func_state *callee, 10142 int insn_idx) 10143 { 10144 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 10145 10146 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 10147 * callback_fn(struct bpf_map *map, void *key, void *value); 10148 */ 10149 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 10150 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 10151 callee->regs[BPF_REG_1].map_ptr = map_ptr; 10152 10153 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10154 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10155 callee->regs[BPF_REG_2].map_ptr = map_ptr; 10156 10157 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10158 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10159 callee->regs[BPF_REG_3].map_ptr = map_ptr; 10160 10161 /* unused */ 10162 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10163 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10164 callee->in_async_callback_fn = true; 10165 callee->callback_ret_range = retval_range(0, 1); 10166 return 0; 10167 } 10168 10169 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 10170 struct bpf_func_state *caller, 10171 struct bpf_func_state *callee, 10172 int insn_idx) 10173 { 10174 /* bpf_find_vma(struct task_struct *task, u64 addr, 10175 * void *callback_fn, void *callback_ctx, u64 flags) 10176 * (callback_fn)(struct task_struct *task, 10177 * struct vm_area_struct *vma, void *callback_ctx); 10178 */ 10179 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10180 10181 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 10182 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10183 callee->regs[BPF_REG_2].btf = btf_vmlinux; 10184 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; 10185 10186 /* pointer to stack or null */ 10187 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 10188 10189 /* unused */ 10190 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10191 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10192 callee->in_callback_fn = true; 10193 callee->callback_ret_range = retval_range(0, 1); 10194 return 0; 10195 } 10196 10197 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 10198 struct bpf_func_state *caller, 10199 struct bpf_func_state *callee, 10200 int insn_idx) 10201 { 10202 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 10203 * callback_ctx, u64 flags); 10204 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 10205 */ 10206 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 10207 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 10208 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10209 10210 /* unused */ 10211 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10212 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10213 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10214 10215 callee->in_callback_fn = true; 10216 callee->callback_ret_range = retval_range(0, 1); 10217 return 0; 10218 } 10219 10220 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 10221 struct bpf_func_state *caller, 10222 struct bpf_func_state *callee, 10223 int insn_idx) 10224 { 10225 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 10226 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 10227 * 10228 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 10229 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 10230 * by this point, so look at 'root' 10231 */ 10232 struct btf_field *field; 10233 10234 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 10235 BPF_RB_ROOT); 10236 if (!field || !field->graph_root.value_btf_id) 10237 return -EFAULT; 10238 10239 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 10240 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 10241 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 10242 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 10243 10244 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10245 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10246 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10247 callee->in_callback_fn = true; 10248 callee->callback_ret_range = retval_range(0, 1); 10249 return 0; 10250 } 10251 10252 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 10253 10254 /* Are we currently verifying the callback for a rbtree helper that must 10255 * be called with lock held? If so, no need to complain about unreleased 10256 * lock 10257 */ 10258 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 10259 { 10260 struct bpf_verifier_state *state = env->cur_state; 10261 struct bpf_insn *insn = env->prog->insnsi; 10262 struct bpf_func_state *callee; 10263 int kfunc_btf_id; 10264 10265 if (!state->curframe) 10266 return false; 10267 10268 callee = state->frame[state->curframe]; 10269 10270 if (!callee->in_callback_fn) 10271 return false; 10272 10273 kfunc_btf_id = insn[callee->callsite].imm; 10274 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 10275 } 10276 10277 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg, 10278 bool return_32bit) 10279 { 10280 if (return_32bit) 10281 return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval; 10282 else 10283 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; 10284 } 10285 10286 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 10287 { 10288 struct bpf_verifier_state *state = env->cur_state, *prev_st; 10289 struct bpf_func_state *caller, *callee; 10290 struct bpf_reg_state *r0; 10291 bool in_callback_fn; 10292 int err; 10293 10294 callee = state->frame[state->curframe]; 10295 r0 = &callee->regs[BPF_REG_0]; 10296 if (r0->type == PTR_TO_STACK) { 10297 /* technically it's ok to return caller's stack pointer 10298 * (or caller's caller's pointer) back to the caller, 10299 * since these pointers are valid. Only current stack 10300 * pointer will be invalid as soon as function exits, 10301 * but let's be conservative 10302 */ 10303 verbose(env, "cannot return stack pointer to the caller\n"); 10304 return -EINVAL; 10305 } 10306 10307 caller = state->frame[state->curframe - 1]; 10308 if (callee->in_callback_fn) { 10309 if (r0->type != SCALAR_VALUE) { 10310 verbose(env, "R0 not a scalar value\n"); 10311 return -EACCES; 10312 } 10313 10314 /* we are going to rely on register's precise value */ 10315 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 10316 err = err ?: mark_chain_precision(env, BPF_REG_0); 10317 if (err) 10318 return err; 10319 10320 /* enforce R0 return value range, and bpf_callback_t returns 64bit */ 10321 if (!retval_range_within(callee->callback_ret_range, r0, false)) { 10322 verbose_invalid_scalar(env, r0, callee->callback_ret_range, 10323 "At callback return", "R0"); 10324 return -EINVAL; 10325 } 10326 if (!calls_callback(env, callee->callsite)) { 10327 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 10328 *insn_idx, callee->callsite); 10329 return -EFAULT; 10330 } 10331 } else { 10332 /* return to the caller whatever r0 had in the callee */ 10333 caller->regs[BPF_REG_0] = *r0; 10334 } 10335 10336 /* Transfer references to the caller */ 10337 err = copy_reference_state(caller, callee); 10338 if (err) 10339 return err; 10340 10341 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 10342 * there function call logic would reschedule callback visit. If iteration 10343 * converges is_state_visited() would prune that visit eventually. 10344 */ 10345 in_callback_fn = callee->in_callback_fn; 10346 if (in_callback_fn) 10347 *insn_idx = callee->callsite; 10348 else 10349 *insn_idx = callee->callsite + 1; 10350 10351 if (env->log.level & BPF_LOG_LEVEL) { 10352 verbose(env, "returning from callee:\n"); 10353 print_verifier_state(env, callee, true); 10354 verbose(env, "to caller at %d:\n", *insn_idx); 10355 print_verifier_state(env, caller, true); 10356 } 10357 /* clear everything in the callee. In case of exceptional exits using 10358 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 10359 free_func_state(callee); 10360 state->frame[state->curframe--] = NULL; 10361 10362 /* for callbacks widen imprecise scalars to make programs like below verify: 10363 * 10364 * struct ctx { int i; } 10365 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 10366 * ... 10367 * struct ctx = { .i = 0; } 10368 * bpf_loop(100, cb, &ctx, 0); 10369 * 10370 * This is similar to what is done in process_iter_next_call() for open 10371 * coded iterators. 10372 */ 10373 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 10374 if (prev_st) { 10375 err = widen_imprecise_scalars(env, prev_st, state); 10376 if (err) 10377 return err; 10378 } 10379 return 0; 10380 } 10381 10382 static int do_refine_retval_range(struct bpf_verifier_env *env, 10383 struct bpf_reg_state *regs, int ret_type, 10384 int func_id, 10385 struct bpf_call_arg_meta *meta) 10386 { 10387 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 10388 10389 if (ret_type != RET_INTEGER) 10390 return 0; 10391 10392 switch (func_id) { 10393 case BPF_FUNC_get_stack: 10394 case BPF_FUNC_get_task_stack: 10395 case BPF_FUNC_probe_read_str: 10396 case BPF_FUNC_probe_read_kernel_str: 10397 case BPF_FUNC_probe_read_user_str: 10398 ret_reg->smax_value = meta->msize_max_value; 10399 ret_reg->s32_max_value = meta->msize_max_value; 10400 ret_reg->smin_value = -MAX_ERRNO; 10401 ret_reg->s32_min_value = -MAX_ERRNO; 10402 reg_bounds_sync(ret_reg); 10403 break; 10404 case BPF_FUNC_get_smp_processor_id: 10405 ret_reg->umax_value = nr_cpu_ids - 1; 10406 ret_reg->u32_max_value = nr_cpu_ids - 1; 10407 ret_reg->smax_value = nr_cpu_ids - 1; 10408 ret_reg->s32_max_value = nr_cpu_ids - 1; 10409 ret_reg->umin_value = 0; 10410 ret_reg->u32_min_value = 0; 10411 ret_reg->smin_value = 0; 10412 ret_reg->s32_min_value = 0; 10413 reg_bounds_sync(ret_reg); 10414 break; 10415 } 10416 10417 return reg_bounds_sanity_check(env, ret_reg, "retval"); 10418 } 10419 10420 static int 10421 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10422 int func_id, int insn_idx) 10423 { 10424 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10425 struct bpf_map *map = meta->map_ptr; 10426 10427 if (func_id != BPF_FUNC_tail_call && 10428 func_id != BPF_FUNC_map_lookup_elem && 10429 func_id != BPF_FUNC_map_update_elem && 10430 func_id != BPF_FUNC_map_delete_elem && 10431 func_id != BPF_FUNC_map_push_elem && 10432 func_id != BPF_FUNC_map_pop_elem && 10433 func_id != BPF_FUNC_map_peek_elem && 10434 func_id != BPF_FUNC_for_each_map_elem && 10435 func_id != BPF_FUNC_redirect_map && 10436 func_id != BPF_FUNC_map_lookup_percpu_elem) 10437 return 0; 10438 10439 if (map == NULL) { 10440 verbose(env, "kernel subsystem misconfigured verifier\n"); 10441 return -EINVAL; 10442 } 10443 10444 /* In case of read-only, some additional restrictions 10445 * need to be applied in order to prevent altering the 10446 * state of the map from program side. 10447 */ 10448 if ((map->map_flags & BPF_F_RDONLY_PROG) && 10449 (func_id == BPF_FUNC_map_delete_elem || 10450 func_id == BPF_FUNC_map_update_elem || 10451 func_id == BPF_FUNC_map_push_elem || 10452 func_id == BPF_FUNC_map_pop_elem)) { 10453 verbose(env, "write into map forbidden\n"); 10454 return -EACCES; 10455 } 10456 10457 if (!aux->map_ptr_state.map_ptr) 10458 bpf_map_ptr_store(aux, meta->map_ptr, 10459 !meta->map_ptr->bypass_spec_v1, false); 10460 else if (aux->map_ptr_state.map_ptr != meta->map_ptr) 10461 bpf_map_ptr_store(aux, meta->map_ptr, 10462 !meta->map_ptr->bypass_spec_v1, true); 10463 return 0; 10464 } 10465 10466 static int 10467 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10468 int func_id, int insn_idx) 10469 { 10470 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10471 struct bpf_reg_state *regs = cur_regs(env), *reg; 10472 struct bpf_map *map = meta->map_ptr; 10473 u64 val, max; 10474 int err; 10475 10476 if (func_id != BPF_FUNC_tail_call) 10477 return 0; 10478 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 10479 verbose(env, "kernel subsystem misconfigured verifier\n"); 10480 return -EINVAL; 10481 } 10482 10483 reg = ®s[BPF_REG_3]; 10484 val = reg->var_off.value; 10485 max = map->max_entries; 10486 10487 if (!(is_reg_const(reg, false) && val < max)) { 10488 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10489 return 0; 10490 } 10491 10492 err = mark_chain_precision(env, BPF_REG_3); 10493 if (err) 10494 return err; 10495 if (bpf_map_key_unseen(aux)) 10496 bpf_map_key_store(aux, val); 10497 else if (!bpf_map_key_poisoned(aux) && 10498 bpf_map_key_immediate(aux) != val) 10499 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10500 return 0; 10501 } 10502 10503 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 10504 { 10505 struct bpf_func_state *state = cur_func(env); 10506 bool refs_lingering = false; 10507 int i; 10508 10509 if (!exception_exit && state->frameno) 10510 return 0; 10511 10512 for (i = 0; i < state->acquired_refs; i++) { 10513 if (state->refs[i].type != REF_TYPE_PTR) 10514 continue; 10515 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 10516 state->refs[i].id, state->refs[i].insn_idx); 10517 refs_lingering = true; 10518 } 10519 return refs_lingering ? -EINVAL : 0; 10520 } 10521 10522 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix) 10523 { 10524 int err; 10525 10526 if (check_lock && cur_func(env)->active_locks) { 10527 verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix); 10528 return -EINVAL; 10529 } 10530 10531 err = check_reference_leak(env, exception_exit); 10532 if (err) { 10533 verbose(env, "%s would lead to reference leak\n", prefix); 10534 return err; 10535 } 10536 10537 if (check_lock && env->cur_state->active_rcu_lock) { 10538 verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix); 10539 return -EINVAL; 10540 } 10541 10542 if (check_lock && env->cur_state->active_preempt_lock) { 10543 verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix); 10544 return -EINVAL; 10545 } 10546 10547 return 0; 10548 } 10549 10550 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 10551 struct bpf_reg_state *regs) 10552 { 10553 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 10554 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 10555 struct bpf_map *fmt_map = fmt_reg->map_ptr; 10556 struct bpf_bprintf_data data = {}; 10557 int err, fmt_map_off, num_args; 10558 u64 fmt_addr; 10559 char *fmt; 10560 10561 /* data must be an array of u64 */ 10562 if (data_len_reg->var_off.value % 8) 10563 return -EINVAL; 10564 num_args = data_len_reg->var_off.value / 8; 10565 10566 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 10567 * and map_direct_value_addr is set. 10568 */ 10569 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 10570 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 10571 fmt_map_off); 10572 if (err) { 10573 verbose(env, "verifier bug\n"); 10574 return -EFAULT; 10575 } 10576 fmt = (char *)(long)fmt_addr + fmt_map_off; 10577 10578 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 10579 * can focus on validating the format specifiers. 10580 */ 10581 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 10582 if (err < 0) 10583 verbose(env, "Invalid format string\n"); 10584 10585 return err; 10586 } 10587 10588 static int check_get_func_ip(struct bpf_verifier_env *env) 10589 { 10590 enum bpf_prog_type type = resolve_prog_type(env->prog); 10591 int func_id = BPF_FUNC_get_func_ip; 10592 10593 if (type == BPF_PROG_TYPE_TRACING) { 10594 if (!bpf_prog_has_trampoline(env->prog)) { 10595 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 10596 func_id_name(func_id), func_id); 10597 return -ENOTSUPP; 10598 } 10599 return 0; 10600 } else if (type == BPF_PROG_TYPE_KPROBE) { 10601 return 0; 10602 } 10603 10604 verbose(env, "func %s#%d not supported for program type %d\n", 10605 func_id_name(func_id), func_id, type); 10606 return -ENOTSUPP; 10607 } 10608 10609 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 10610 { 10611 return &env->insn_aux_data[env->insn_idx]; 10612 } 10613 10614 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 10615 { 10616 struct bpf_reg_state *regs = cur_regs(env); 10617 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 10618 bool reg_is_null = register_is_null(reg); 10619 10620 if (reg_is_null) 10621 mark_chain_precision(env, BPF_REG_4); 10622 10623 return reg_is_null; 10624 } 10625 10626 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 10627 { 10628 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 10629 10630 if (!state->initialized) { 10631 state->initialized = 1; 10632 state->fit_for_inline = loop_flag_is_zero(env); 10633 state->callback_subprogno = subprogno; 10634 return; 10635 } 10636 10637 if (!state->fit_for_inline) 10638 return; 10639 10640 state->fit_for_inline = (loop_flag_is_zero(env) && 10641 state->callback_subprogno == subprogno); 10642 } 10643 10644 static int get_helper_proto(struct bpf_verifier_env *env, int func_id, 10645 const struct bpf_func_proto **ptr) 10646 { 10647 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) 10648 return -ERANGE; 10649 10650 if (!env->ops->get_func_proto) 10651 return -EINVAL; 10652 10653 *ptr = env->ops->get_func_proto(func_id, env->prog); 10654 return *ptr ? 0 : -EINVAL; 10655 } 10656 10657 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10658 int *insn_idx_p) 10659 { 10660 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10661 bool returns_cpu_specific_alloc_ptr = false; 10662 const struct bpf_func_proto *fn = NULL; 10663 enum bpf_return_type ret_type; 10664 enum bpf_type_flag ret_flag; 10665 struct bpf_reg_state *regs; 10666 struct bpf_call_arg_meta meta; 10667 int insn_idx = *insn_idx_p; 10668 bool changes_data; 10669 int i, err, func_id; 10670 10671 /* find function prototype */ 10672 func_id = insn->imm; 10673 err = get_helper_proto(env, insn->imm, &fn); 10674 if (err == -ERANGE) { 10675 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id); 10676 return -EINVAL; 10677 } 10678 10679 if (err) { 10680 verbose(env, "program of this type cannot use helper %s#%d\n", 10681 func_id_name(func_id), func_id); 10682 return err; 10683 } 10684 10685 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 10686 if (!env->prog->gpl_compatible && fn->gpl_only) { 10687 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 10688 return -EINVAL; 10689 } 10690 10691 if (fn->allowed && !fn->allowed(env->prog)) { 10692 verbose(env, "helper call is not allowed in probe\n"); 10693 return -EINVAL; 10694 } 10695 10696 if (!in_sleepable(env) && fn->might_sleep) { 10697 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 10698 return -EINVAL; 10699 } 10700 10701 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 10702 changes_data = bpf_helper_changes_pkt_data(fn->func); 10703 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 10704 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 10705 func_id_name(func_id), func_id); 10706 return -EINVAL; 10707 } 10708 10709 memset(&meta, 0, sizeof(meta)); 10710 meta.pkt_access = fn->pkt_access; 10711 10712 err = check_func_proto(fn, func_id); 10713 if (err) { 10714 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 10715 func_id_name(func_id), func_id); 10716 return err; 10717 } 10718 10719 if (env->cur_state->active_rcu_lock) { 10720 if (fn->might_sleep) { 10721 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 10722 func_id_name(func_id), func_id); 10723 return -EINVAL; 10724 } 10725 10726 if (in_sleepable(env) && is_storage_get_function(func_id)) 10727 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10728 } 10729 10730 if (env->cur_state->active_preempt_lock) { 10731 if (fn->might_sleep) { 10732 verbose(env, "sleepable helper %s#%d in non-preemptible region\n", 10733 func_id_name(func_id), func_id); 10734 return -EINVAL; 10735 } 10736 10737 if (in_sleepable(env) && is_storage_get_function(func_id)) 10738 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10739 } 10740 10741 meta.func_id = func_id; 10742 /* check args */ 10743 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 10744 err = check_func_arg(env, i, &meta, fn, insn_idx); 10745 if (err) 10746 return err; 10747 } 10748 10749 err = record_func_map(env, &meta, func_id, insn_idx); 10750 if (err) 10751 return err; 10752 10753 err = record_func_key(env, &meta, func_id, insn_idx); 10754 if (err) 10755 return err; 10756 10757 /* Mark slots with STACK_MISC in case of raw mode, stack offset 10758 * is inferred from register state. 10759 */ 10760 for (i = 0; i < meta.access_size; i++) { 10761 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 10762 BPF_WRITE, -1, false, false); 10763 if (err) 10764 return err; 10765 } 10766 10767 regs = cur_regs(env); 10768 10769 if (meta.release_regno) { 10770 err = -EINVAL; 10771 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 10772 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 10773 * is safe to do directly. 10774 */ 10775 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 10776 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 10777 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 10778 return -EFAULT; 10779 } 10780 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 10781 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 10782 u32 ref_obj_id = meta.ref_obj_id; 10783 bool in_rcu = in_rcu_cs(env); 10784 struct bpf_func_state *state; 10785 struct bpf_reg_state *reg; 10786 10787 err = release_reference_state(cur_func(env), ref_obj_id); 10788 if (!err) { 10789 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10790 if (reg->ref_obj_id == ref_obj_id) { 10791 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 10792 reg->ref_obj_id = 0; 10793 reg->type &= ~MEM_ALLOC; 10794 reg->type |= MEM_RCU; 10795 } else { 10796 mark_reg_invalid(env, reg); 10797 } 10798 } 10799 })); 10800 } 10801 } else if (meta.ref_obj_id) { 10802 err = release_reference(env, meta.ref_obj_id); 10803 } else if (register_is_null(®s[meta.release_regno])) { 10804 /* meta.ref_obj_id can only be 0 if register that is meant to be 10805 * released is NULL, which must be > R0. 10806 */ 10807 err = 0; 10808 } 10809 if (err) { 10810 verbose(env, "func %s#%d reference has not been acquired before\n", 10811 func_id_name(func_id), func_id); 10812 return err; 10813 } 10814 } 10815 10816 switch (func_id) { 10817 case BPF_FUNC_tail_call: 10818 err = check_resource_leak(env, false, true, "tail_call"); 10819 if (err) 10820 return err; 10821 break; 10822 case BPF_FUNC_get_local_storage: 10823 /* check that flags argument in get_local_storage(map, flags) is 0, 10824 * this is required because get_local_storage() can't return an error. 10825 */ 10826 if (!register_is_null(®s[BPF_REG_2])) { 10827 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 10828 return -EINVAL; 10829 } 10830 break; 10831 case BPF_FUNC_for_each_map_elem: 10832 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10833 set_map_elem_callback_state); 10834 break; 10835 case BPF_FUNC_timer_set_callback: 10836 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10837 set_timer_callback_state); 10838 break; 10839 case BPF_FUNC_find_vma: 10840 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10841 set_find_vma_callback_state); 10842 break; 10843 case BPF_FUNC_snprintf: 10844 err = check_bpf_snprintf_call(env, regs); 10845 break; 10846 case BPF_FUNC_loop: 10847 update_loop_inline_state(env, meta.subprogno); 10848 /* Verifier relies on R1 value to determine if bpf_loop() iteration 10849 * is finished, thus mark it precise. 10850 */ 10851 err = mark_chain_precision(env, BPF_REG_1); 10852 if (err) 10853 return err; 10854 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 10855 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10856 set_loop_callback_state); 10857 } else { 10858 cur_func(env)->callback_depth = 0; 10859 if (env->log.level & BPF_LOG_LEVEL2) 10860 verbose(env, "frame%d bpf_loop iteration limit reached\n", 10861 env->cur_state->curframe); 10862 } 10863 break; 10864 case BPF_FUNC_dynptr_from_mem: 10865 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 10866 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 10867 reg_type_str(env, regs[BPF_REG_1].type)); 10868 return -EACCES; 10869 } 10870 break; 10871 case BPF_FUNC_set_retval: 10872 if (prog_type == BPF_PROG_TYPE_LSM && 10873 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 10874 if (!env->prog->aux->attach_func_proto->type) { 10875 /* Make sure programs that attach to void 10876 * hooks don't try to modify return value. 10877 */ 10878 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10879 return -EINVAL; 10880 } 10881 } 10882 break; 10883 case BPF_FUNC_dynptr_data: 10884 { 10885 struct bpf_reg_state *reg; 10886 int id, ref_obj_id; 10887 10888 reg = get_dynptr_arg_reg(env, fn, regs); 10889 if (!reg) 10890 return -EFAULT; 10891 10892 10893 if (meta.dynptr_id) { 10894 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 10895 return -EFAULT; 10896 } 10897 if (meta.ref_obj_id) { 10898 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 10899 return -EFAULT; 10900 } 10901 10902 id = dynptr_id(env, reg); 10903 if (id < 0) { 10904 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10905 return id; 10906 } 10907 10908 ref_obj_id = dynptr_ref_obj_id(env, reg); 10909 if (ref_obj_id < 0) { 10910 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 10911 return ref_obj_id; 10912 } 10913 10914 meta.dynptr_id = id; 10915 meta.ref_obj_id = ref_obj_id; 10916 10917 break; 10918 } 10919 case BPF_FUNC_dynptr_write: 10920 { 10921 enum bpf_dynptr_type dynptr_type; 10922 struct bpf_reg_state *reg; 10923 10924 reg = get_dynptr_arg_reg(env, fn, regs); 10925 if (!reg) 10926 return -EFAULT; 10927 10928 dynptr_type = dynptr_get_type(env, reg); 10929 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 10930 return -EFAULT; 10931 10932 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 10933 /* this will trigger clear_all_pkt_pointers(), which will 10934 * invalidate all dynptr slices associated with the skb 10935 */ 10936 changes_data = true; 10937 10938 break; 10939 } 10940 case BPF_FUNC_per_cpu_ptr: 10941 case BPF_FUNC_this_cpu_ptr: 10942 { 10943 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 10944 const struct btf_type *type; 10945 10946 if (reg->type & MEM_RCU) { 10947 type = btf_type_by_id(reg->btf, reg->btf_id); 10948 if (!type || !btf_type_is_struct(type)) { 10949 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 10950 return -EFAULT; 10951 } 10952 returns_cpu_specific_alloc_ptr = true; 10953 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 10954 } 10955 break; 10956 } 10957 case BPF_FUNC_user_ringbuf_drain: 10958 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10959 set_user_ringbuf_callback_state); 10960 break; 10961 } 10962 10963 if (err) 10964 return err; 10965 10966 /* reset caller saved regs */ 10967 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10968 mark_reg_not_init(env, regs, caller_saved[i]); 10969 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10970 } 10971 10972 /* helper call returns 64-bit value. */ 10973 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10974 10975 /* update return register (already marked as written above) */ 10976 ret_type = fn->ret_type; 10977 ret_flag = type_flag(ret_type); 10978 10979 switch (base_type(ret_type)) { 10980 case RET_INTEGER: 10981 /* sets type to SCALAR_VALUE */ 10982 mark_reg_unknown(env, regs, BPF_REG_0); 10983 break; 10984 case RET_VOID: 10985 regs[BPF_REG_0].type = NOT_INIT; 10986 break; 10987 case RET_PTR_TO_MAP_VALUE: 10988 /* There is no offset yet applied, variable or fixed */ 10989 mark_reg_known_zero(env, regs, BPF_REG_0); 10990 /* remember map_ptr, so that check_map_access() 10991 * can check 'value_size' boundary of memory access 10992 * to map element returned from bpf_map_lookup_elem() 10993 */ 10994 if (meta.map_ptr == NULL) { 10995 verbose(env, 10996 "kernel subsystem misconfigured verifier\n"); 10997 return -EINVAL; 10998 } 10999 regs[BPF_REG_0].map_ptr = meta.map_ptr; 11000 regs[BPF_REG_0].map_uid = meta.map_uid; 11001 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 11002 if (!type_may_be_null(ret_type) && 11003 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 11004 regs[BPF_REG_0].id = ++env->id_gen; 11005 } 11006 break; 11007 case RET_PTR_TO_SOCKET: 11008 mark_reg_known_zero(env, regs, BPF_REG_0); 11009 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 11010 break; 11011 case RET_PTR_TO_SOCK_COMMON: 11012 mark_reg_known_zero(env, regs, BPF_REG_0); 11013 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 11014 break; 11015 case RET_PTR_TO_TCP_SOCK: 11016 mark_reg_known_zero(env, regs, BPF_REG_0); 11017 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 11018 break; 11019 case RET_PTR_TO_MEM: 11020 mark_reg_known_zero(env, regs, BPF_REG_0); 11021 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11022 regs[BPF_REG_0].mem_size = meta.mem_size; 11023 break; 11024 case RET_PTR_TO_MEM_OR_BTF_ID: 11025 { 11026 const struct btf_type *t; 11027 11028 mark_reg_known_zero(env, regs, BPF_REG_0); 11029 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 11030 if (!btf_type_is_struct(t)) { 11031 u32 tsize; 11032 const struct btf_type *ret; 11033 const char *tname; 11034 11035 /* resolve the type size of ksym. */ 11036 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 11037 if (IS_ERR(ret)) { 11038 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 11039 verbose(env, "unable to resolve the size of type '%s': %ld\n", 11040 tname, PTR_ERR(ret)); 11041 return -EINVAL; 11042 } 11043 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11044 regs[BPF_REG_0].mem_size = tsize; 11045 } else { 11046 if (returns_cpu_specific_alloc_ptr) { 11047 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 11048 } else { 11049 /* MEM_RDONLY may be carried from ret_flag, but it 11050 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 11051 * it will confuse the check of PTR_TO_BTF_ID in 11052 * check_mem_access(). 11053 */ 11054 ret_flag &= ~MEM_RDONLY; 11055 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11056 } 11057 11058 regs[BPF_REG_0].btf = meta.ret_btf; 11059 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11060 } 11061 break; 11062 } 11063 case RET_PTR_TO_BTF_ID: 11064 { 11065 struct btf *ret_btf; 11066 int ret_btf_id; 11067 11068 mark_reg_known_zero(env, regs, BPF_REG_0); 11069 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11070 if (func_id == BPF_FUNC_kptr_xchg) { 11071 ret_btf = meta.kptr_field->kptr.btf; 11072 ret_btf_id = meta.kptr_field->kptr.btf_id; 11073 if (!btf_is_kernel(ret_btf)) { 11074 regs[BPF_REG_0].type |= MEM_ALLOC; 11075 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 11076 regs[BPF_REG_0].type |= MEM_PERCPU; 11077 } 11078 } else { 11079 if (fn->ret_btf_id == BPF_PTR_POISON) { 11080 verbose(env, "verifier internal error:"); 11081 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 11082 func_id_name(func_id)); 11083 return -EINVAL; 11084 } 11085 ret_btf = btf_vmlinux; 11086 ret_btf_id = *fn->ret_btf_id; 11087 } 11088 if (ret_btf_id == 0) { 11089 verbose(env, "invalid return type %u of func %s#%d\n", 11090 base_type(ret_type), func_id_name(func_id), 11091 func_id); 11092 return -EINVAL; 11093 } 11094 regs[BPF_REG_0].btf = ret_btf; 11095 regs[BPF_REG_0].btf_id = ret_btf_id; 11096 break; 11097 } 11098 default: 11099 verbose(env, "unknown return type %u of func %s#%d\n", 11100 base_type(ret_type), func_id_name(func_id), func_id); 11101 return -EINVAL; 11102 } 11103 11104 if (type_may_be_null(regs[BPF_REG_0].type)) 11105 regs[BPF_REG_0].id = ++env->id_gen; 11106 11107 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 11108 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 11109 func_id_name(func_id), func_id); 11110 return -EFAULT; 11111 } 11112 11113 if (is_dynptr_ref_function(func_id)) 11114 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 11115 11116 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 11117 /* For release_reference() */ 11118 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11119 } else if (is_acquire_function(func_id, meta.map_ptr)) { 11120 int id = acquire_reference_state(env, insn_idx); 11121 11122 if (id < 0) 11123 return id; 11124 /* For mark_ptr_or_null_reg() */ 11125 regs[BPF_REG_0].id = id; 11126 /* For release_reference() */ 11127 regs[BPF_REG_0].ref_obj_id = id; 11128 } 11129 11130 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 11131 if (err) 11132 return err; 11133 11134 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 11135 if (err) 11136 return err; 11137 11138 if ((func_id == BPF_FUNC_get_stack || 11139 func_id == BPF_FUNC_get_task_stack) && 11140 !env->prog->has_callchain_buf) { 11141 const char *err_str; 11142 11143 #ifdef CONFIG_PERF_EVENTS 11144 err = get_callchain_buffers(sysctl_perf_event_max_stack); 11145 err_str = "cannot get callchain buffer for func %s#%d\n"; 11146 #else 11147 err = -ENOTSUPP; 11148 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 11149 #endif 11150 if (err) { 11151 verbose(env, err_str, func_id_name(func_id), func_id); 11152 return err; 11153 } 11154 11155 env->prog->has_callchain_buf = true; 11156 } 11157 11158 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 11159 env->prog->call_get_stack = true; 11160 11161 if (func_id == BPF_FUNC_get_func_ip) { 11162 if (check_get_func_ip(env)) 11163 return -ENOTSUPP; 11164 env->prog->call_get_func_ip = true; 11165 } 11166 11167 if (changes_data) 11168 clear_all_pkt_pointers(env); 11169 return 0; 11170 } 11171 11172 /* mark_btf_func_reg_size() is used when the reg size is determined by 11173 * the BTF func_proto's return value size and argument. 11174 */ 11175 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 11176 size_t reg_size) 11177 { 11178 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 11179 11180 if (regno == BPF_REG_0) { 11181 /* Function return value */ 11182 reg->live |= REG_LIVE_WRITTEN; 11183 reg->subreg_def = reg_size == sizeof(u64) ? 11184 DEF_NOT_SUBREG : env->insn_idx + 1; 11185 } else { 11186 /* Function argument */ 11187 if (reg_size == sizeof(u64)) { 11188 mark_insn_zext(env, reg); 11189 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 11190 } else { 11191 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 11192 } 11193 } 11194 } 11195 11196 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 11197 { 11198 return meta->kfunc_flags & KF_ACQUIRE; 11199 } 11200 11201 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 11202 { 11203 return meta->kfunc_flags & KF_RELEASE; 11204 } 11205 11206 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 11207 { 11208 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 11209 } 11210 11211 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 11212 { 11213 return meta->kfunc_flags & KF_SLEEPABLE; 11214 } 11215 11216 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 11217 { 11218 return meta->kfunc_flags & KF_DESTRUCTIVE; 11219 } 11220 11221 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 11222 { 11223 return meta->kfunc_flags & KF_RCU; 11224 } 11225 11226 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 11227 { 11228 return meta->kfunc_flags & KF_RCU_PROTECTED; 11229 } 11230 11231 static bool is_kfunc_arg_mem_size(const struct btf *btf, 11232 const struct btf_param *arg, 11233 const struct bpf_reg_state *reg) 11234 { 11235 const struct btf_type *t; 11236 11237 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11238 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11239 return false; 11240 11241 return btf_param_match_suffix(btf, arg, "__sz"); 11242 } 11243 11244 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 11245 const struct btf_param *arg, 11246 const struct bpf_reg_state *reg) 11247 { 11248 const struct btf_type *t; 11249 11250 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11251 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11252 return false; 11253 11254 return btf_param_match_suffix(btf, arg, "__szk"); 11255 } 11256 11257 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 11258 { 11259 return btf_param_match_suffix(btf, arg, "__opt"); 11260 } 11261 11262 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 11263 { 11264 return btf_param_match_suffix(btf, arg, "__k"); 11265 } 11266 11267 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 11268 { 11269 return btf_param_match_suffix(btf, arg, "__ign"); 11270 } 11271 11272 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) 11273 { 11274 return btf_param_match_suffix(btf, arg, "__map"); 11275 } 11276 11277 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 11278 { 11279 return btf_param_match_suffix(btf, arg, "__alloc"); 11280 } 11281 11282 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 11283 { 11284 return btf_param_match_suffix(btf, arg, "__uninit"); 11285 } 11286 11287 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 11288 { 11289 return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); 11290 } 11291 11292 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 11293 { 11294 return btf_param_match_suffix(btf, arg, "__nullable"); 11295 } 11296 11297 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 11298 { 11299 return btf_param_match_suffix(btf, arg, "__str"); 11300 } 11301 11302 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 11303 const struct btf_param *arg, 11304 const char *name) 11305 { 11306 int len, target_len = strlen(name); 11307 const char *param_name; 11308 11309 param_name = btf_name_by_offset(btf, arg->name_off); 11310 if (str_is_empty(param_name)) 11311 return false; 11312 len = strlen(param_name); 11313 if (len != target_len) 11314 return false; 11315 if (strcmp(param_name, name)) 11316 return false; 11317 11318 return true; 11319 } 11320 11321 enum { 11322 KF_ARG_DYNPTR_ID, 11323 KF_ARG_LIST_HEAD_ID, 11324 KF_ARG_LIST_NODE_ID, 11325 KF_ARG_RB_ROOT_ID, 11326 KF_ARG_RB_NODE_ID, 11327 KF_ARG_WORKQUEUE_ID, 11328 }; 11329 11330 BTF_ID_LIST(kf_arg_btf_ids) 11331 BTF_ID(struct, bpf_dynptr) 11332 BTF_ID(struct, bpf_list_head) 11333 BTF_ID(struct, bpf_list_node) 11334 BTF_ID(struct, bpf_rb_root) 11335 BTF_ID(struct, bpf_rb_node) 11336 BTF_ID(struct, bpf_wq) 11337 11338 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 11339 const struct btf_param *arg, int type) 11340 { 11341 const struct btf_type *t; 11342 u32 res_id; 11343 11344 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11345 if (!t) 11346 return false; 11347 if (!btf_type_is_ptr(t)) 11348 return false; 11349 t = btf_type_skip_modifiers(btf, t->type, &res_id); 11350 if (!t) 11351 return false; 11352 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 11353 } 11354 11355 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 11356 { 11357 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 11358 } 11359 11360 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 11361 { 11362 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 11363 } 11364 11365 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 11366 { 11367 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 11368 } 11369 11370 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 11371 { 11372 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 11373 } 11374 11375 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 11376 { 11377 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 11378 } 11379 11380 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) 11381 { 11382 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); 11383 } 11384 11385 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 11386 const struct btf_param *arg) 11387 { 11388 const struct btf_type *t; 11389 11390 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 11391 if (!t) 11392 return false; 11393 11394 return true; 11395 } 11396 11397 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 11398 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 11399 const struct btf *btf, 11400 const struct btf_type *t, int rec) 11401 { 11402 const struct btf_type *member_type; 11403 const struct btf_member *member; 11404 u32 i; 11405 11406 if (!btf_type_is_struct(t)) 11407 return false; 11408 11409 for_each_member(i, t, member) { 11410 const struct btf_array *array; 11411 11412 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 11413 if (btf_type_is_struct(member_type)) { 11414 if (rec >= 3) { 11415 verbose(env, "max struct nesting depth exceeded\n"); 11416 return false; 11417 } 11418 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 11419 return false; 11420 continue; 11421 } 11422 if (btf_type_is_array(member_type)) { 11423 array = btf_array(member_type); 11424 if (!array->nelems) 11425 return false; 11426 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 11427 if (!btf_type_is_scalar(member_type)) 11428 return false; 11429 continue; 11430 } 11431 if (!btf_type_is_scalar(member_type)) 11432 return false; 11433 } 11434 return true; 11435 } 11436 11437 enum kfunc_ptr_arg_type { 11438 KF_ARG_PTR_TO_CTX, 11439 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 11440 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 11441 KF_ARG_PTR_TO_DYNPTR, 11442 KF_ARG_PTR_TO_ITER, 11443 KF_ARG_PTR_TO_LIST_HEAD, 11444 KF_ARG_PTR_TO_LIST_NODE, 11445 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 11446 KF_ARG_PTR_TO_MEM, 11447 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 11448 KF_ARG_PTR_TO_CALLBACK, 11449 KF_ARG_PTR_TO_RB_ROOT, 11450 KF_ARG_PTR_TO_RB_NODE, 11451 KF_ARG_PTR_TO_NULL, 11452 KF_ARG_PTR_TO_CONST_STR, 11453 KF_ARG_PTR_TO_MAP, 11454 KF_ARG_PTR_TO_WORKQUEUE, 11455 }; 11456 11457 enum special_kfunc_type { 11458 KF_bpf_obj_new_impl, 11459 KF_bpf_obj_drop_impl, 11460 KF_bpf_refcount_acquire_impl, 11461 KF_bpf_list_push_front_impl, 11462 KF_bpf_list_push_back_impl, 11463 KF_bpf_list_pop_front, 11464 KF_bpf_list_pop_back, 11465 KF_bpf_cast_to_kern_ctx, 11466 KF_bpf_rdonly_cast, 11467 KF_bpf_rcu_read_lock, 11468 KF_bpf_rcu_read_unlock, 11469 KF_bpf_rbtree_remove, 11470 KF_bpf_rbtree_add_impl, 11471 KF_bpf_rbtree_first, 11472 KF_bpf_dynptr_from_skb, 11473 KF_bpf_dynptr_from_xdp, 11474 KF_bpf_dynptr_slice, 11475 KF_bpf_dynptr_slice_rdwr, 11476 KF_bpf_dynptr_clone, 11477 KF_bpf_percpu_obj_new_impl, 11478 KF_bpf_percpu_obj_drop_impl, 11479 KF_bpf_throw, 11480 KF_bpf_wq_set_callback_impl, 11481 KF_bpf_preempt_disable, 11482 KF_bpf_preempt_enable, 11483 KF_bpf_iter_css_task_new, 11484 KF_bpf_session_cookie, 11485 KF_bpf_get_kmem_cache, 11486 }; 11487 11488 BTF_SET_START(special_kfunc_set) 11489 BTF_ID(func, bpf_obj_new_impl) 11490 BTF_ID(func, bpf_obj_drop_impl) 11491 BTF_ID(func, bpf_refcount_acquire_impl) 11492 BTF_ID(func, bpf_list_push_front_impl) 11493 BTF_ID(func, bpf_list_push_back_impl) 11494 BTF_ID(func, bpf_list_pop_front) 11495 BTF_ID(func, bpf_list_pop_back) 11496 BTF_ID(func, bpf_cast_to_kern_ctx) 11497 BTF_ID(func, bpf_rdonly_cast) 11498 BTF_ID(func, bpf_rbtree_remove) 11499 BTF_ID(func, bpf_rbtree_add_impl) 11500 BTF_ID(func, bpf_rbtree_first) 11501 BTF_ID(func, bpf_dynptr_from_skb) 11502 BTF_ID(func, bpf_dynptr_from_xdp) 11503 BTF_ID(func, bpf_dynptr_slice) 11504 BTF_ID(func, bpf_dynptr_slice_rdwr) 11505 BTF_ID(func, bpf_dynptr_clone) 11506 BTF_ID(func, bpf_percpu_obj_new_impl) 11507 BTF_ID(func, bpf_percpu_obj_drop_impl) 11508 BTF_ID(func, bpf_throw) 11509 BTF_ID(func, bpf_wq_set_callback_impl) 11510 #ifdef CONFIG_CGROUPS 11511 BTF_ID(func, bpf_iter_css_task_new) 11512 #endif 11513 BTF_SET_END(special_kfunc_set) 11514 11515 BTF_ID_LIST(special_kfunc_list) 11516 BTF_ID(func, bpf_obj_new_impl) 11517 BTF_ID(func, bpf_obj_drop_impl) 11518 BTF_ID(func, bpf_refcount_acquire_impl) 11519 BTF_ID(func, bpf_list_push_front_impl) 11520 BTF_ID(func, bpf_list_push_back_impl) 11521 BTF_ID(func, bpf_list_pop_front) 11522 BTF_ID(func, bpf_list_pop_back) 11523 BTF_ID(func, bpf_cast_to_kern_ctx) 11524 BTF_ID(func, bpf_rdonly_cast) 11525 BTF_ID(func, bpf_rcu_read_lock) 11526 BTF_ID(func, bpf_rcu_read_unlock) 11527 BTF_ID(func, bpf_rbtree_remove) 11528 BTF_ID(func, bpf_rbtree_add_impl) 11529 BTF_ID(func, bpf_rbtree_first) 11530 BTF_ID(func, bpf_dynptr_from_skb) 11531 BTF_ID(func, bpf_dynptr_from_xdp) 11532 BTF_ID(func, bpf_dynptr_slice) 11533 BTF_ID(func, bpf_dynptr_slice_rdwr) 11534 BTF_ID(func, bpf_dynptr_clone) 11535 BTF_ID(func, bpf_percpu_obj_new_impl) 11536 BTF_ID(func, bpf_percpu_obj_drop_impl) 11537 BTF_ID(func, bpf_throw) 11538 BTF_ID(func, bpf_wq_set_callback_impl) 11539 BTF_ID(func, bpf_preempt_disable) 11540 BTF_ID(func, bpf_preempt_enable) 11541 #ifdef CONFIG_CGROUPS 11542 BTF_ID(func, bpf_iter_css_task_new) 11543 #else 11544 BTF_ID_UNUSED 11545 #endif 11546 #ifdef CONFIG_BPF_EVENTS 11547 BTF_ID(func, bpf_session_cookie) 11548 #else 11549 BTF_ID_UNUSED 11550 #endif 11551 BTF_ID(func, bpf_get_kmem_cache) 11552 11553 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 11554 { 11555 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 11556 meta->arg_owning_ref) { 11557 return false; 11558 } 11559 11560 return meta->kfunc_flags & KF_RET_NULL; 11561 } 11562 11563 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 11564 { 11565 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 11566 } 11567 11568 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 11569 { 11570 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 11571 } 11572 11573 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta) 11574 { 11575 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable]; 11576 } 11577 11578 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta) 11579 { 11580 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable]; 11581 } 11582 11583 static enum kfunc_ptr_arg_type 11584 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 11585 struct bpf_kfunc_call_arg_meta *meta, 11586 const struct btf_type *t, const struct btf_type *ref_t, 11587 const char *ref_tname, const struct btf_param *args, 11588 int argno, int nargs) 11589 { 11590 u32 regno = argno + 1; 11591 struct bpf_reg_state *regs = cur_regs(env); 11592 struct bpf_reg_state *reg = ®s[regno]; 11593 bool arg_mem_size = false; 11594 11595 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 11596 return KF_ARG_PTR_TO_CTX; 11597 11598 /* In this function, we verify the kfunc's BTF as per the argument type, 11599 * leaving the rest of the verification with respect to the register 11600 * type to our caller. When a set of conditions hold in the BTF type of 11601 * arguments, we resolve it to a known kfunc_ptr_arg_type. 11602 */ 11603 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 11604 return KF_ARG_PTR_TO_CTX; 11605 11606 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 11607 return KF_ARG_PTR_TO_NULL; 11608 11609 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 11610 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 11611 11612 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 11613 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 11614 11615 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 11616 return KF_ARG_PTR_TO_DYNPTR; 11617 11618 if (is_kfunc_arg_iter(meta, argno, &args[argno])) 11619 return KF_ARG_PTR_TO_ITER; 11620 11621 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 11622 return KF_ARG_PTR_TO_LIST_HEAD; 11623 11624 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 11625 return KF_ARG_PTR_TO_LIST_NODE; 11626 11627 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 11628 return KF_ARG_PTR_TO_RB_ROOT; 11629 11630 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 11631 return KF_ARG_PTR_TO_RB_NODE; 11632 11633 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 11634 return KF_ARG_PTR_TO_CONST_STR; 11635 11636 if (is_kfunc_arg_map(meta->btf, &args[argno])) 11637 return KF_ARG_PTR_TO_MAP; 11638 11639 if (is_kfunc_arg_wq(meta->btf, &args[argno])) 11640 return KF_ARG_PTR_TO_WORKQUEUE; 11641 11642 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 11643 if (!btf_type_is_struct(ref_t)) { 11644 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 11645 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 11646 return -EINVAL; 11647 } 11648 return KF_ARG_PTR_TO_BTF_ID; 11649 } 11650 11651 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 11652 return KF_ARG_PTR_TO_CALLBACK; 11653 11654 if (argno + 1 < nargs && 11655 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 11656 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 11657 arg_mem_size = true; 11658 11659 /* This is the catch all argument type of register types supported by 11660 * check_helper_mem_access. However, we only allow when argument type is 11661 * pointer to scalar, or struct composed (recursively) of scalars. When 11662 * arg_mem_size is true, the pointer can be void *. 11663 */ 11664 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 11665 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 11666 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 11667 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 11668 return -EINVAL; 11669 } 11670 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 11671 } 11672 11673 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 11674 struct bpf_reg_state *reg, 11675 const struct btf_type *ref_t, 11676 const char *ref_tname, u32 ref_id, 11677 struct bpf_kfunc_call_arg_meta *meta, 11678 int argno) 11679 { 11680 const struct btf_type *reg_ref_t; 11681 bool strict_type_match = false; 11682 const struct btf *reg_btf; 11683 const char *reg_ref_tname; 11684 bool taking_projection; 11685 bool struct_same; 11686 u32 reg_ref_id; 11687 11688 if (base_type(reg->type) == PTR_TO_BTF_ID) { 11689 reg_btf = reg->btf; 11690 reg_ref_id = reg->btf_id; 11691 } else { 11692 reg_btf = btf_vmlinux; 11693 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 11694 } 11695 11696 /* Enforce strict type matching for calls to kfuncs that are acquiring 11697 * or releasing a reference, or are no-cast aliases. We do _not_ 11698 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 11699 * as we want to enable BPF programs to pass types that are bitwise 11700 * equivalent without forcing them to explicitly cast with something 11701 * like bpf_cast_to_kern_ctx(). 11702 * 11703 * For example, say we had a type like the following: 11704 * 11705 * struct bpf_cpumask { 11706 * cpumask_t cpumask; 11707 * refcount_t usage; 11708 * }; 11709 * 11710 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 11711 * to a struct cpumask, so it would be safe to pass a struct 11712 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 11713 * 11714 * The philosophy here is similar to how we allow scalars of different 11715 * types to be passed to kfuncs as long as the size is the same. The 11716 * only difference here is that we're simply allowing 11717 * btf_struct_ids_match() to walk the struct at the 0th offset, and 11718 * resolve types. 11719 */ 11720 if ((is_kfunc_release(meta) && reg->ref_obj_id) || 11721 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 11722 strict_type_match = true; 11723 11724 WARN_ON_ONCE(is_kfunc_release(meta) && 11725 (reg->off || !tnum_is_const(reg->var_off) || 11726 reg->var_off.value)); 11727 11728 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 11729 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 11730 struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match); 11731 /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot 11732 * actually use it -- it must cast to the underlying type. So we allow 11733 * caller to pass in the underlying type. 11734 */ 11735 taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname); 11736 if (!taking_projection && !struct_same) { 11737 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 11738 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 11739 btf_type_str(reg_ref_t), reg_ref_tname); 11740 return -EINVAL; 11741 } 11742 return 0; 11743 } 11744 11745 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11746 { 11747 struct btf_record *rec = reg_btf_record(reg); 11748 11749 if (!cur_func(env)->active_locks) { 11750 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 11751 return -EFAULT; 11752 } 11753 11754 if (type_flag(reg->type) & NON_OWN_REF) { 11755 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 11756 return -EFAULT; 11757 } 11758 11759 reg->type |= NON_OWN_REF; 11760 if (rec->refcount_off >= 0) 11761 reg->type |= MEM_RCU; 11762 11763 return 0; 11764 } 11765 11766 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 11767 { 11768 struct bpf_func_state *state, *unused; 11769 struct bpf_reg_state *reg; 11770 int i; 11771 11772 state = cur_func(env); 11773 11774 if (!ref_obj_id) { 11775 verbose(env, "verifier internal error: ref_obj_id is zero for " 11776 "owning -> non-owning conversion\n"); 11777 return -EFAULT; 11778 } 11779 11780 for (i = 0; i < state->acquired_refs; i++) { 11781 if (state->refs[i].id != ref_obj_id) 11782 continue; 11783 11784 /* Clear ref_obj_id here so release_reference doesn't clobber 11785 * the whole reg 11786 */ 11787 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 11788 if (reg->ref_obj_id == ref_obj_id) { 11789 reg->ref_obj_id = 0; 11790 ref_set_non_owning(env, reg); 11791 } 11792 })); 11793 return 0; 11794 } 11795 11796 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 11797 return -EFAULT; 11798 } 11799 11800 /* Implementation details: 11801 * 11802 * Each register points to some region of memory, which we define as an 11803 * allocation. Each allocation may embed a bpf_spin_lock which protects any 11804 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 11805 * allocation. The lock and the data it protects are colocated in the same 11806 * memory region. 11807 * 11808 * Hence, everytime a register holds a pointer value pointing to such 11809 * allocation, the verifier preserves a unique reg->id for it. 11810 * 11811 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 11812 * bpf_spin_lock is called. 11813 * 11814 * To enable this, lock state in the verifier captures two values: 11815 * active_lock.ptr = Register's type specific pointer 11816 * active_lock.id = A unique ID for each register pointer value 11817 * 11818 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 11819 * supported register types. 11820 * 11821 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 11822 * allocated objects is the reg->btf pointer. 11823 * 11824 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 11825 * can establish the provenance of the map value statically for each distinct 11826 * lookup into such maps. They always contain a single map value hence unique 11827 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 11828 * 11829 * So, in case of global variables, they use array maps with max_entries = 1, 11830 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 11831 * into the same map value as max_entries is 1, as described above). 11832 * 11833 * In case of inner map lookups, the inner map pointer has same map_ptr as the 11834 * outer map pointer (in verifier context), but each lookup into an inner map 11835 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 11836 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 11837 * will get different reg->id assigned to each lookup, hence different 11838 * active_lock.id. 11839 * 11840 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 11841 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 11842 * returned from bpf_obj_new. Each allocation receives a new reg->id. 11843 */ 11844 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11845 { 11846 struct bpf_reference_state *s; 11847 void *ptr; 11848 u32 id; 11849 11850 switch ((int)reg->type) { 11851 case PTR_TO_MAP_VALUE: 11852 ptr = reg->map_ptr; 11853 break; 11854 case PTR_TO_BTF_ID | MEM_ALLOC: 11855 ptr = reg->btf; 11856 break; 11857 default: 11858 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 11859 return -EFAULT; 11860 } 11861 id = reg->id; 11862 11863 if (!cur_func(env)->active_locks) 11864 return -EINVAL; 11865 s = find_lock_state(env, REF_TYPE_LOCK, id, ptr); 11866 if (!s) { 11867 verbose(env, "held lock and object are not in the same allocation\n"); 11868 return -EINVAL; 11869 } 11870 return 0; 11871 } 11872 11873 static bool is_bpf_list_api_kfunc(u32 btf_id) 11874 { 11875 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11876 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11877 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 11878 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 11879 } 11880 11881 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 11882 { 11883 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 11884 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11885 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 11886 } 11887 11888 static bool is_bpf_graph_api_kfunc(u32 btf_id) 11889 { 11890 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 11891 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 11892 } 11893 11894 static bool is_sync_callback_calling_kfunc(u32 btf_id) 11895 { 11896 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 11897 } 11898 11899 static bool is_async_callback_calling_kfunc(u32 btf_id) 11900 { 11901 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 11902 } 11903 11904 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 11905 { 11906 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 11907 insn->imm == special_kfunc_list[KF_bpf_throw]; 11908 } 11909 11910 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id) 11911 { 11912 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 11913 } 11914 11915 static bool is_callback_calling_kfunc(u32 btf_id) 11916 { 11917 return is_sync_callback_calling_kfunc(btf_id) || 11918 is_async_callback_calling_kfunc(btf_id); 11919 } 11920 11921 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 11922 { 11923 return is_bpf_rbtree_api_kfunc(btf_id); 11924 } 11925 11926 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 11927 enum btf_field_type head_field_type, 11928 u32 kfunc_btf_id) 11929 { 11930 bool ret; 11931 11932 switch (head_field_type) { 11933 case BPF_LIST_HEAD: 11934 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 11935 break; 11936 case BPF_RB_ROOT: 11937 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 11938 break; 11939 default: 11940 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 11941 btf_field_type_name(head_field_type)); 11942 return false; 11943 } 11944 11945 if (!ret) 11946 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 11947 btf_field_type_name(head_field_type)); 11948 return ret; 11949 } 11950 11951 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 11952 enum btf_field_type node_field_type, 11953 u32 kfunc_btf_id) 11954 { 11955 bool ret; 11956 11957 switch (node_field_type) { 11958 case BPF_LIST_NODE: 11959 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11960 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 11961 break; 11962 case BPF_RB_NODE: 11963 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11964 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 11965 break; 11966 default: 11967 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 11968 btf_field_type_name(node_field_type)); 11969 return false; 11970 } 11971 11972 if (!ret) 11973 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 11974 btf_field_type_name(node_field_type)); 11975 return ret; 11976 } 11977 11978 static int 11979 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 11980 struct bpf_reg_state *reg, u32 regno, 11981 struct bpf_kfunc_call_arg_meta *meta, 11982 enum btf_field_type head_field_type, 11983 struct btf_field **head_field) 11984 { 11985 const char *head_type_name; 11986 struct btf_field *field; 11987 struct btf_record *rec; 11988 u32 head_off; 11989 11990 if (meta->btf != btf_vmlinux) { 11991 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11992 return -EFAULT; 11993 } 11994 11995 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 11996 return -EFAULT; 11997 11998 head_type_name = btf_field_type_name(head_field_type); 11999 if (!tnum_is_const(reg->var_off)) { 12000 verbose(env, 12001 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 12002 regno, head_type_name); 12003 return -EINVAL; 12004 } 12005 12006 rec = reg_btf_record(reg); 12007 head_off = reg->off + reg->var_off.value; 12008 field = btf_record_find(rec, head_off, head_field_type); 12009 if (!field) { 12010 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 12011 return -EINVAL; 12012 } 12013 12014 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 12015 if (check_reg_allocation_locked(env, reg)) { 12016 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 12017 rec->spin_lock_off, head_type_name); 12018 return -EINVAL; 12019 } 12020 12021 if (*head_field) { 12022 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 12023 return -EFAULT; 12024 } 12025 *head_field = field; 12026 return 0; 12027 } 12028 12029 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 12030 struct bpf_reg_state *reg, u32 regno, 12031 struct bpf_kfunc_call_arg_meta *meta) 12032 { 12033 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 12034 &meta->arg_list_head.field); 12035 } 12036 12037 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 12038 struct bpf_reg_state *reg, u32 regno, 12039 struct bpf_kfunc_call_arg_meta *meta) 12040 { 12041 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 12042 &meta->arg_rbtree_root.field); 12043 } 12044 12045 static int 12046 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 12047 struct bpf_reg_state *reg, u32 regno, 12048 struct bpf_kfunc_call_arg_meta *meta, 12049 enum btf_field_type head_field_type, 12050 enum btf_field_type node_field_type, 12051 struct btf_field **node_field) 12052 { 12053 const char *node_type_name; 12054 const struct btf_type *et, *t; 12055 struct btf_field *field; 12056 u32 node_off; 12057 12058 if (meta->btf != btf_vmlinux) { 12059 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 12060 return -EFAULT; 12061 } 12062 12063 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 12064 return -EFAULT; 12065 12066 node_type_name = btf_field_type_name(node_field_type); 12067 if (!tnum_is_const(reg->var_off)) { 12068 verbose(env, 12069 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 12070 regno, node_type_name); 12071 return -EINVAL; 12072 } 12073 12074 node_off = reg->off + reg->var_off.value; 12075 field = reg_find_field_offset(reg, node_off, node_field_type); 12076 if (!field) { 12077 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 12078 return -EINVAL; 12079 } 12080 12081 field = *node_field; 12082 12083 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 12084 t = btf_type_by_id(reg->btf, reg->btf_id); 12085 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 12086 field->graph_root.value_btf_id, true)) { 12087 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 12088 "in struct %s, but arg is at offset=%d in struct %s\n", 12089 btf_field_type_name(head_field_type), 12090 btf_field_type_name(node_field_type), 12091 field->graph_root.node_offset, 12092 btf_name_by_offset(field->graph_root.btf, et->name_off), 12093 node_off, btf_name_by_offset(reg->btf, t->name_off)); 12094 return -EINVAL; 12095 } 12096 meta->arg_btf = reg->btf; 12097 meta->arg_btf_id = reg->btf_id; 12098 12099 if (node_off != field->graph_root.node_offset) { 12100 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 12101 node_off, btf_field_type_name(node_field_type), 12102 field->graph_root.node_offset, 12103 btf_name_by_offset(field->graph_root.btf, et->name_off)); 12104 return -EINVAL; 12105 } 12106 12107 return 0; 12108 } 12109 12110 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 12111 struct bpf_reg_state *reg, u32 regno, 12112 struct bpf_kfunc_call_arg_meta *meta) 12113 { 12114 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 12115 BPF_LIST_HEAD, BPF_LIST_NODE, 12116 &meta->arg_list_head.field); 12117 } 12118 12119 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 12120 struct bpf_reg_state *reg, u32 regno, 12121 struct bpf_kfunc_call_arg_meta *meta) 12122 { 12123 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 12124 BPF_RB_ROOT, BPF_RB_NODE, 12125 &meta->arg_rbtree_root.field); 12126 } 12127 12128 /* 12129 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 12130 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 12131 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 12132 * them can only be attached to some specific hook points. 12133 */ 12134 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 12135 { 12136 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 12137 12138 switch (prog_type) { 12139 case BPF_PROG_TYPE_LSM: 12140 return true; 12141 case BPF_PROG_TYPE_TRACING: 12142 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 12143 return true; 12144 fallthrough; 12145 default: 12146 return in_sleepable(env); 12147 } 12148 } 12149 12150 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 12151 int insn_idx) 12152 { 12153 const char *func_name = meta->func_name, *ref_tname; 12154 const struct btf *btf = meta->btf; 12155 const struct btf_param *args; 12156 struct btf_record *rec; 12157 u32 i, nargs; 12158 int ret; 12159 12160 args = (const struct btf_param *)(meta->func_proto + 1); 12161 nargs = btf_type_vlen(meta->func_proto); 12162 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 12163 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 12164 MAX_BPF_FUNC_REG_ARGS); 12165 return -EINVAL; 12166 } 12167 12168 /* Check that BTF function arguments match actual types that the 12169 * verifier sees. 12170 */ 12171 for (i = 0; i < nargs; i++) { 12172 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 12173 const struct btf_type *t, *ref_t, *resolve_ret; 12174 enum bpf_arg_type arg_type = ARG_DONTCARE; 12175 u32 regno = i + 1, ref_id, type_size; 12176 bool is_ret_buf_sz = false; 12177 bool mask = false; 12178 int kf_arg_type; 12179 12180 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 12181 12182 if (is_kfunc_arg_ignore(btf, &args[i])) 12183 continue; 12184 12185 if (btf_type_is_scalar(t)) { 12186 if (reg->type != SCALAR_VALUE) { 12187 verbose(env, "R%d is not a scalar\n", regno); 12188 return -EINVAL; 12189 } 12190 12191 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 12192 if (meta->arg_constant.found) { 12193 verbose(env, "verifier internal error: only one constant argument permitted\n"); 12194 return -EFAULT; 12195 } 12196 if (!tnum_is_const(reg->var_off)) { 12197 verbose(env, "R%d must be a known constant\n", regno); 12198 return -EINVAL; 12199 } 12200 ret = mark_chain_precision(env, regno); 12201 if (ret < 0) 12202 return ret; 12203 meta->arg_constant.found = true; 12204 meta->arg_constant.value = reg->var_off.value; 12205 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 12206 meta->r0_rdonly = true; 12207 is_ret_buf_sz = true; 12208 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 12209 is_ret_buf_sz = true; 12210 } 12211 12212 if (is_ret_buf_sz) { 12213 if (meta->r0_size) { 12214 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 12215 return -EINVAL; 12216 } 12217 12218 if (!tnum_is_const(reg->var_off)) { 12219 verbose(env, "R%d is not a const\n", regno); 12220 return -EINVAL; 12221 } 12222 12223 meta->r0_size = reg->var_off.value; 12224 ret = mark_chain_precision(env, regno); 12225 if (ret) 12226 return ret; 12227 } 12228 continue; 12229 } 12230 12231 if (!btf_type_is_ptr(t)) { 12232 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 12233 return -EINVAL; 12234 } 12235 12236 mask = mask_raw_tp_reg(env, reg); 12237 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 12238 (register_is_null(reg) || type_may_be_null(reg->type)) && 12239 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 12240 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 12241 unmask_raw_tp_reg(reg, mask); 12242 return -EACCES; 12243 } 12244 unmask_raw_tp_reg(reg, mask); 12245 12246 if (reg->ref_obj_id) { 12247 if (is_kfunc_release(meta) && meta->ref_obj_id) { 12248 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 12249 regno, reg->ref_obj_id, 12250 meta->ref_obj_id); 12251 return -EFAULT; 12252 } 12253 meta->ref_obj_id = reg->ref_obj_id; 12254 if (is_kfunc_release(meta)) 12255 meta->release_regno = regno; 12256 } 12257 12258 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 12259 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 12260 12261 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 12262 if (kf_arg_type < 0) 12263 return kf_arg_type; 12264 12265 switch (kf_arg_type) { 12266 case KF_ARG_PTR_TO_NULL: 12267 continue; 12268 case KF_ARG_PTR_TO_MAP: 12269 if (!reg->map_ptr) { 12270 verbose(env, "pointer in R%d isn't map pointer\n", regno); 12271 return -EINVAL; 12272 } 12273 if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) { 12274 /* Use map_uid (which is unique id of inner map) to reject: 12275 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 12276 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 12277 * if (inner_map1 && inner_map2) { 12278 * wq = bpf_map_lookup_elem(inner_map1); 12279 * if (wq) 12280 * // mismatch would have been allowed 12281 * bpf_wq_init(wq, inner_map2); 12282 * } 12283 * 12284 * Comparing map_ptr is enough to distinguish normal and outer maps. 12285 */ 12286 if (meta->map.ptr != reg->map_ptr || 12287 meta->map.uid != reg->map_uid) { 12288 verbose(env, 12289 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 12290 meta->map.uid, reg->map_uid); 12291 return -EINVAL; 12292 } 12293 } 12294 meta->map.ptr = reg->map_ptr; 12295 meta->map.uid = reg->map_uid; 12296 fallthrough; 12297 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 12298 case KF_ARG_PTR_TO_BTF_ID: 12299 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 12300 break; 12301 12302 /* Allow passing maybe NULL raw_tp arguments to 12303 * kfuncs for compatibility. Don't apply this to 12304 * arguments with ref_obj_id > 0. 12305 */ 12306 mask = mask_raw_tp_reg(env, reg); 12307 if (!is_trusted_reg(reg)) { 12308 if (!is_kfunc_rcu(meta)) { 12309 verbose(env, "R%d must be referenced or trusted\n", regno); 12310 unmask_raw_tp_reg(reg, mask); 12311 return -EINVAL; 12312 } 12313 if (!is_rcu_reg(reg)) { 12314 verbose(env, "R%d must be a rcu pointer\n", regno); 12315 unmask_raw_tp_reg(reg, mask); 12316 return -EINVAL; 12317 } 12318 } 12319 unmask_raw_tp_reg(reg, mask); 12320 fallthrough; 12321 case KF_ARG_PTR_TO_CTX: 12322 case KF_ARG_PTR_TO_DYNPTR: 12323 case KF_ARG_PTR_TO_ITER: 12324 case KF_ARG_PTR_TO_LIST_HEAD: 12325 case KF_ARG_PTR_TO_LIST_NODE: 12326 case KF_ARG_PTR_TO_RB_ROOT: 12327 case KF_ARG_PTR_TO_RB_NODE: 12328 case KF_ARG_PTR_TO_MEM: 12329 case KF_ARG_PTR_TO_MEM_SIZE: 12330 case KF_ARG_PTR_TO_CALLBACK: 12331 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 12332 case KF_ARG_PTR_TO_CONST_STR: 12333 case KF_ARG_PTR_TO_WORKQUEUE: 12334 break; 12335 default: 12336 WARN_ON_ONCE(1); 12337 return -EFAULT; 12338 } 12339 12340 if (is_kfunc_release(meta) && reg->ref_obj_id) 12341 arg_type |= OBJ_RELEASE; 12342 mask = mask_raw_tp_reg(env, reg); 12343 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 12344 unmask_raw_tp_reg(reg, mask); 12345 if (ret < 0) 12346 return ret; 12347 12348 switch (kf_arg_type) { 12349 case KF_ARG_PTR_TO_CTX: 12350 if (reg->type != PTR_TO_CTX) { 12351 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", 12352 i, reg_type_str(env, reg->type)); 12353 return -EINVAL; 12354 } 12355 12356 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 12357 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 12358 if (ret < 0) 12359 return -EINVAL; 12360 meta->ret_btf_id = ret; 12361 } 12362 break; 12363 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 12364 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 12365 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 12366 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 12367 return -EINVAL; 12368 } 12369 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 12370 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 12371 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 12372 return -EINVAL; 12373 } 12374 } else { 12375 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12376 return -EINVAL; 12377 } 12378 if (!reg->ref_obj_id) { 12379 verbose(env, "allocated object must be referenced\n"); 12380 return -EINVAL; 12381 } 12382 if (meta->btf == btf_vmlinux) { 12383 meta->arg_btf = reg->btf; 12384 meta->arg_btf_id = reg->btf_id; 12385 } 12386 break; 12387 case KF_ARG_PTR_TO_DYNPTR: 12388 { 12389 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 12390 int clone_ref_obj_id = 0; 12391 12392 if (reg->type == CONST_PTR_TO_DYNPTR) 12393 dynptr_arg_type |= MEM_RDONLY; 12394 12395 if (is_kfunc_arg_uninit(btf, &args[i])) 12396 dynptr_arg_type |= MEM_UNINIT; 12397 12398 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 12399 dynptr_arg_type |= DYNPTR_TYPE_SKB; 12400 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 12401 dynptr_arg_type |= DYNPTR_TYPE_XDP; 12402 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 12403 (dynptr_arg_type & MEM_UNINIT)) { 12404 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 12405 12406 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 12407 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 12408 return -EFAULT; 12409 } 12410 12411 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 12412 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 12413 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 12414 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 12415 return -EFAULT; 12416 } 12417 } 12418 12419 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 12420 if (ret < 0) 12421 return ret; 12422 12423 if (!(dynptr_arg_type & MEM_UNINIT)) { 12424 int id = dynptr_id(env, reg); 12425 12426 if (id < 0) { 12427 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 12428 return id; 12429 } 12430 meta->initialized_dynptr.id = id; 12431 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 12432 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 12433 } 12434 12435 break; 12436 } 12437 case KF_ARG_PTR_TO_ITER: 12438 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 12439 if (!check_css_task_iter_allowlist(env)) { 12440 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 12441 return -EINVAL; 12442 } 12443 } 12444 ret = process_iter_arg(env, regno, insn_idx, meta); 12445 if (ret < 0) 12446 return ret; 12447 break; 12448 case KF_ARG_PTR_TO_LIST_HEAD: 12449 if (reg->type != PTR_TO_MAP_VALUE && 12450 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12451 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 12452 return -EINVAL; 12453 } 12454 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 12455 verbose(env, "allocated object must be referenced\n"); 12456 return -EINVAL; 12457 } 12458 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 12459 if (ret < 0) 12460 return ret; 12461 break; 12462 case KF_ARG_PTR_TO_RB_ROOT: 12463 if (reg->type != PTR_TO_MAP_VALUE && 12464 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12465 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 12466 return -EINVAL; 12467 } 12468 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 12469 verbose(env, "allocated object must be referenced\n"); 12470 return -EINVAL; 12471 } 12472 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 12473 if (ret < 0) 12474 return ret; 12475 break; 12476 case KF_ARG_PTR_TO_LIST_NODE: 12477 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12478 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12479 return -EINVAL; 12480 } 12481 if (!reg->ref_obj_id) { 12482 verbose(env, "allocated object must be referenced\n"); 12483 return -EINVAL; 12484 } 12485 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 12486 if (ret < 0) 12487 return ret; 12488 break; 12489 case KF_ARG_PTR_TO_RB_NODE: 12490 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 12491 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 12492 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 12493 return -EINVAL; 12494 } 12495 if (in_rbtree_lock_required_cb(env)) { 12496 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 12497 return -EINVAL; 12498 } 12499 } else { 12500 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12501 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12502 return -EINVAL; 12503 } 12504 if (!reg->ref_obj_id) { 12505 verbose(env, "allocated object must be referenced\n"); 12506 return -EINVAL; 12507 } 12508 } 12509 12510 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 12511 if (ret < 0) 12512 return ret; 12513 break; 12514 case KF_ARG_PTR_TO_MAP: 12515 /* If argument has '__map' suffix expect 'struct bpf_map *' */ 12516 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; 12517 ref_t = btf_type_by_id(btf_vmlinux, ref_id); 12518 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 12519 fallthrough; 12520 case KF_ARG_PTR_TO_BTF_ID: 12521 mask = mask_raw_tp_reg(env, reg); 12522 /* Only base_type is checked, further checks are done here */ 12523 if ((base_type(reg->type) != PTR_TO_BTF_ID || 12524 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 12525 !reg2btf_ids[base_type(reg->type)]) { 12526 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 12527 verbose(env, "expected %s or socket\n", 12528 reg_type_str(env, base_type(reg->type) | 12529 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 12530 unmask_raw_tp_reg(reg, mask); 12531 return -EINVAL; 12532 } 12533 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 12534 unmask_raw_tp_reg(reg, mask); 12535 if (ret < 0) 12536 return ret; 12537 break; 12538 case KF_ARG_PTR_TO_MEM: 12539 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 12540 if (IS_ERR(resolve_ret)) { 12541 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 12542 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 12543 return -EINVAL; 12544 } 12545 ret = check_mem_reg(env, reg, regno, type_size); 12546 if (ret < 0) 12547 return ret; 12548 break; 12549 case KF_ARG_PTR_TO_MEM_SIZE: 12550 { 12551 struct bpf_reg_state *buff_reg = ®s[regno]; 12552 const struct btf_param *buff_arg = &args[i]; 12553 struct bpf_reg_state *size_reg = ®s[regno + 1]; 12554 const struct btf_param *size_arg = &args[i + 1]; 12555 12556 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 12557 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 12558 if (ret < 0) { 12559 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 12560 return ret; 12561 } 12562 } 12563 12564 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 12565 if (meta->arg_constant.found) { 12566 verbose(env, "verifier internal error: only one constant argument permitted\n"); 12567 return -EFAULT; 12568 } 12569 if (!tnum_is_const(size_reg->var_off)) { 12570 verbose(env, "R%d must be a known constant\n", regno + 1); 12571 return -EINVAL; 12572 } 12573 meta->arg_constant.found = true; 12574 meta->arg_constant.value = size_reg->var_off.value; 12575 } 12576 12577 /* Skip next '__sz' or '__szk' argument */ 12578 i++; 12579 break; 12580 } 12581 case KF_ARG_PTR_TO_CALLBACK: 12582 if (reg->type != PTR_TO_FUNC) { 12583 verbose(env, "arg%d expected pointer to func\n", i); 12584 return -EINVAL; 12585 } 12586 meta->subprogno = reg->subprogno; 12587 break; 12588 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 12589 if (!type_is_ptr_alloc_obj(reg->type)) { 12590 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 12591 return -EINVAL; 12592 } 12593 if (!type_is_non_owning_ref(reg->type)) 12594 meta->arg_owning_ref = true; 12595 12596 rec = reg_btf_record(reg); 12597 if (!rec) { 12598 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 12599 return -EFAULT; 12600 } 12601 12602 if (rec->refcount_off < 0) { 12603 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 12604 return -EINVAL; 12605 } 12606 12607 meta->arg_btf = reg->btf; 12608 meta->arg_btf_id = reg->btf_id; 12609 break; 12610 case KF_ARG_PTR_TO_CONST_STR: 12611 if (reg->type != PTR_TO_MAP_VALUE) { 12612 verbose(env, "arg#%d doesn't point to a const string\n", i); 12613 return -EINVAL; 12614 } 12615 ret = check_reg_const_str(env, reg, regno); 12616 if (ret) 12617 return ret; 12618 break; 12619 case KF_ARG_PTR_TO_WORKQUEUE: 12620 if (reg->type != PTR_TO_MAP_VALUE) { 12621 verbose(env, "arg#%d doesn't point to a map value\n", i); 12622 return -EINVAL; 12623 } 12624 ret = process_wq_func(env, regno, meta); 12625 if (ret < 0) 12626 return ret; 12627 break; 12628 } 12629 } 12630 12631 if (is_kfunc_release(meta) && !meta->release_regno) { 12632 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 12633 func_name); 12634 return -EINVAL; 12635 } 12636 12637 return 0; 12638 } 12639 12640 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 12641 struct bpf_insn *insn, 12642 struct bpf_kfunc_call_arg_meta *meta, 12643 const char **kfunc_name) 12644 { 12645 const struct btf_type *func, *func_proto; 12646 u32 func_id, *kfunc_flags; 12647 const char *func_name; 12648 struct btf *desc_btf; 12649 12650 if (kfunc_name) 12651 *kfunc_name = NULL; 12652 12653 if (!insn->imm) 12654 return -EINVAL; 12655 12656 desc_btf = find_kfunc_desc_btf(env, insn->off); 12657 if (IS_ERR(desc_btf)) 12658 return PTR_ERR(desc_btf); 12659 12660 func_id = insn->imm; 12661 func = btf_type_by_id(desc_btf, func_id); 12662 func_name = btf_name_by_offset(desc_btf, func->name_off); 12663 if (kfunc_name) 12664 *kfunc_name = func_name; 12665 func_proto = btf_type_by_id(desc_btf, func->type); 12666 12667 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 12668 if (!kfunc_flags) { 12669 return -EACCES; 12670 } 12671 12672 memset(meta, 0, sizeof(*meta)); 12673 meta->btf = desc_btf; 12674 meta->func_id = func_id; 12675 meta->kfunc_flags = *kfunc_flags; 12676 meta->func_proto = func_proto; 12677 meta->func_name = func_name; 12678 12679 return 0; 12680 } 12681 12682 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); 12683 12684 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 12685 int *insn_idx_p) 12686 { 12687 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable; 12688 u32 i, nargs, ptr_type_id, release_ref_obj_id; 12689 struct bpf_reg_state *regs = cur_regs(env); 12690 const char *func_name, *ptr_type_name; 12691 const struct btf_type *t, *ptr_type; 12692 struct bpf_kfunc_call_arg_meta meta; 12693 struct bpf_insn_aux_data *insn_aux; 12694 int err, insn_idx = *insn_idx_p; 12695 const struct btf_param *args; 12696 const struct btf_type *ret_t; 12697 struct btf *desc_btf; 12698 12699 /* skip for now, but return error when we find this in fixup_kfunc_call */ 12700 if (!insn->imm) 12701 return 0; 12702 12703 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 12704 if (err == -EACCES && func_name) 12705 verbose(env, "calling kernel function %s is not allowed\n", func_name); 12706 if (err) 12707 return err; 12708 desc_btf = meta.btf; 12709 insn_aux = &env->insn_aux_data[insn_idx]; 12710 12711 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 12712 12713 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 12714 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 12715 return -EACCES; 12716 } 12717 12718 sleepable = is_kfunc_sleepable(&meta); 12719 if (sleepable && !in_sleepable(env)) { 12720 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 12721 return -EACCES; 12722 } 12723 12724 /* Check the arguments */ 12725 err = check_kfunc_args(env, &meta, insn_idx); 12726 if (err < 0) 12727 return err; 12728 12729 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12730 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 12731 set_rbtree_add_callback_state); 12732 if (err) { 12733 verbose(env, "kfunc %s#%d failed callback verification\n", 12734 func_name, meta.func_id); 12735 return err; 12736 } 12737 } 12738 12739 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) { 12740 meta.r0_size = sizeof(u64); 12741 meta.r0_rdonly = false; 12742 } 12743 12744 if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) { 12745 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 12746 set_timer_callback_state); 12747 if (err) { 12748 verbose(env, "kfunc %s#%d failed callback verification\n", 12749 func_name, meta.func_id); 12750 return err; 12751 } 12752 } 12753 12754 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 12755 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 12756 12757 preempt_disable = is_kfunc_bpf_preempt_disable(&meta); 12758 preempt_enable = is_kfunc_bpf_preempt_enable(&meta); 12759 12760 if (env->cur_state->active_rcu_lock) { 12761 struct bpf_func_state *state; 12762 struct bpf_reg_state *reg; 12763 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 12764 12765 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 12766 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 12767 return -EACCES; 12768 } 12769 12770 if (rcu_lock) { 12771 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 12772 return -EINVAL; 12773 } else if (rcu_unlock) { 12774 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 12775 if (reg->type & MEM_RCU) { 12776 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 12777 reg->type |= PTR_UNTRUSTED; 12778 } 12779 })); 12780 env->cur_state->active_rcu_lock = false; 12781 } else if (sleepable) { 12782 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 12783 return -EACCES; 12784 } 12785 } else if (rcu_lock) { 12786 env->cur_state->active_rcu_lock = true; 12787 } else if (rcu_unlock) { 12788 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 12789 return -EINVAL; 12790 } 12791 12792 if (env->cur_state->active_preempt_lock) { 12793 if (preempt_disable) { 12794 env->cur_state->active_preempt_lock++; 12795 } else if (preempt_enable) { 12796 env->cur_state->active_preempt_lock--; 12797 } else if (sleepable) { 12798 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name); 12799 return -EACCES; 12800 } 12801 } else if (preempt_disable) { 12802 env->cur_state->active_preempt_lock++; 12803 } else if (preempt_enable) { 12804 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name); 12805 return -EINVAL; 12806 } 12807 12808 /* In case of release function, we get register number of refcounted 12809 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 12810 */ 12811 if (meta.release_regno) { 12812 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 12813 if (err) { 12814 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12815 func_name, meta.func_id); 12816 return err; 12817 } 12818 } 12819 12820 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12821 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12822 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12823 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 12824 insn_aux->insert_off = regs[BPF_REG_2].off; 12825 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 12826 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 12827 if (err) { 12828 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 12829 func_name, meta.func_id); 12830 return err; 12831 } 12832 12833 err = release_reference(env, release_ref_obj_id); 12834 if (err) { 12835 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12836 func_name, meta.func_id); 12837 return err; 12838 } 12839 } 12840 12841 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 12842 if (!bpf_jit_supports_exceptions()) { 12843 verbose(env, "JIT does not support calling kfunc %s#%d\n", 12844 func_name, meta.func_id); 12845 return -ENOTSUPP; 12846 } 12847 env->seen_exception = true; 12848 12849 /* In the case of the default callback, the cookie value passed 12850 * to bpf_throw becomes the return value of the program. 12851 */ 12852 if (!env->exception_callback_subprog) { 12853 err = check_return_code(env, BPF_REG_1, "R1"); 12854 if (err < 0) 12855 return err; 12856 } 12857 } 12858 12859 for (i = 0; i < CALLER_SAVED_REGS; i++) 12860 mark_reg_not_init(env, regs, caller_saved[i]); 12861 12862 /* Check return type */ 12863 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 12864 12865 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 12866 /* Only exception is bpf_obj_new_impl */ 12867 if (meta.btf != btf_vmlinux || 12868 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 12869 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 12870 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 12871 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 12872 return -EINVAL; 12873 } 12874 } 12875 12876 if (btf_type_is_scalar(t)) { 12877 mark_reg_unknown(env, regs, BPF_REG_0); 12878 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 12879 } else if (btf_type_is_ptr(t)) { 12880 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 12881 12882 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12883 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 12884 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12885 struct btf_struct_meta *struct_meta; 12886 struct btf *ret_btf; 12887 u32 ret_btf_id; 12888 12889 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 12890 return -ENOMEM; 12891 12892 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 12893 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 12894 return -EINVAL; 12895 } 12896 12897 ret_btf = env->prog->aux->btf; 12898 ret_btf_id = meta.arg_constant.value; 12899 12900 /* This may be NULL due to user not supplying a BTF */ 12901 if (!ret_btf) { 12902 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 12903 return -EINVAL; 12904 } 12905 12906 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 12907 if (!ret_t || !__btf_type_is_struct(ret_t)) { 12908 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 12909 return -EINVAL; 12910 } 12911 12912 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12913 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { 12914 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", 12915 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); 12916 return -EINVAL; 12917 } 12918 12919 if (!bpf_global_percpu_ma_set) { 12920 mutex_lock(&bpf_percpu_ma_lock); 12921 if (!bpf_global_percpu_ma_set) { 12922 /* Charge memory allocated with bpf_global_percpu_ma to 12923 * root memcg. The obj_cgroup for root memcg is NULL. 12924 */ 12925 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); 12926 if (!err) 12927 bpf_global_percpu_ma_set = true; 12928 } 12929 mutex_unlock(&bpf_percpu_ma_lock); 12930 if (err) 12931 return err; 12932 } 12933 12934 mutex_lock(&bpf_percpu_ma_lock); 12935 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); 12936 mutex_unlock(&bpf_percpu_ma_lock); 12937 if (err) 12938 return err; 12939 } 12940 12941 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 12942 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12943 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 12944 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 12945 return -EINVAL; 12946 } 12947 12948 if (struct_meta) { 12949 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 12950 return -EINVAL; 12951 } 12952 } 12953 12954 mark_reg_known_zero(env, regs, BPF_REG_0); 12955 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12956 regs[BPF_REG_0].btf = ret_btf; 12957 regs[BPF_REG_0].btf_id = ret_btf_id; 12958 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 12959 regs[BPF_REG_0].type |= MEM_PERCPU; 12960 12961 insn_aux->obj_new_size = ret_t->size; 12962 insn_aux->kptr_struct_meta = struct_meta; 12963 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 12964 mark_reg_known_zero(env, regs, BPF_REG_0); 12965 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12966 regs[BPF_REG_0].btf = meta.arg_btf; 12967 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 12968 12969 insn_aux->kptr_struct_meta = 12970 btf_find_struct_meta(meta.arg_btf, 12971 meta.arg_btf_id); 12972 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 12973 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 12974 struct btf_field *field = meta.arg_list_head.field; 12975 12976 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12977 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12978 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12979 struct btf_field *field = meta.arg_rbtree_root.field; 12980 12981 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12982 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 12983 mark_reg_known_zero(env, regs, BPF_REG_0); 12984 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 12985 regs[BPF_REG_0].btf = desc_btf; 12986 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 12987 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 12988 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 12989 if (!ret_t || !btf_type_is_struct(ret_t)) { 12990 verbose(env, 12991 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 12992 return -EINVAL; 12993 } 12994 12995 mark_reg_known_zero(env, regs, BPF_REG_0); 12996 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 12997 regs[BPF_REG_0].btf = desc_btf; 12998 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 12999 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 13000 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 13001 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 13002 13003 mark_reg_known_zero(env, regs, BPF_REG_0); 13004 13005 if (!meta.arg_constant.found) { 13006 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 13007 return -EFAULT; 13008 } 13009 13010 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 13011 13012 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 13013 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 13014 13015 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 13016 regs[BPF_REG_0].type |= MEM_RDONLY; 13017 } else { 13018 /* this will set env->seen_direct_write to true */ 13019 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 13020 verbose(env, "the prog does not allow writes to packet data\n"); 13021 return -EINVAL; 13022 } 13023 } 13024 13025 if (!meta.initialized_dynptr.id) { 13026 verbose(env, "verifier internal error: no dynptr id\n"); 13027 return -EFAULT; 13028 } 13029 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 13030 13031 /* we don't need to set BPF_REG_0's ref obj id 13032 * because packet slices are not refcounted (see 13033 * dynptr_type_refcounted) 13034 */ 13035 } else { 13036 verbose(env, "kernel function %s unhandled dynamic return type\n", 13037 meta.func_name); 13038 return -EFAULT; 13039 } 13040 } else if (btf_type_is_void(ptr_type)) { 13041 /* kfunc returning 'void *' is equivalent to returning scalar */ 13042 mark_reg_unknown(env, regs, BPF_REG_0); 13043 } else if (!__btf_type_is_struct(ptr_type)) { 13044 if (!meta.r0_size) { 13045 __u32 sz; 13046 13047 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 13048 meta.r0_size = sz; 13049 meta.r0_rdonly = true; 13050 } 13051 } 13052 if (!meta.r0_size) { 13053 ptr_type_name = btf_name_by_offset(desc_btf, 13054 ptr_type->name_off); 13055 verbose(env, 13056 "kernel function %s returns pointer type %s %s is not supported\n", 13057 func_name, 13058 btf_type_str(ptr_type), 13059 ptr_type_name); 13060 return -EINVAL; 13061 } 13062 13063 mark_reg_known_zero(env, regs, BPF_REG_0); 13064 regs[BPF_REG_0].type = PTR_TO_MEM; 13065 regs[BPF_REG_0].mem_size = meta.r0_size; 13066 13067 if (meta.r0_rdonly) 13068 regs[BPF_REG_0].type |= MEM_RDONLY; 13069 13070 /* Ensures we don't access the memory after a release_reference() */ 13071 if (meta.ref_obj_id) 13072 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 13073 } else { 13074 mark_reg_known_zero(env, regs, BPF_REG_0); 13075 regs[BPF_REG_0].btf = desc_btf; 13076 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 13077 regs[BPF_REG_0].btf_id = ptr_type_id; 13078 13079 if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache]) 13080 regs[BPF_REG_0].type |= PTR_UNTRUSTED; 13081 13082 if (is_iter_next_kfunc(&meta)) { 13083 struct bpf_reg_state *cur_iter; 13084 13085 cur_iter = get_iter_from_state(env->cur_state, &meta); 13086 13087 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */ 13088 regs[BPF_REG_0].type |= MEM_RCU; 13089 else 13090 regs[BPF_REG_0].type |= PTR_TRUSTED; 13091 } 13092 } 13093 13094 if (is_kfunc_ret_null(&meta)) { 13095 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 13096 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 13097 regs[BPF_REG_0].id = ++env->id_gen; 13098 } 13099 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 13100 if (is_kfunc_acquire(&meta)) { 13101 int id = acquire_reference_state(env, insn_idx); 13102 13103 if (id < 0) 13104 return id; 13105 if (is_kfunc_ret_null(&meta)) 13106 regs[BPF_REG_0].id = id; 13107 regs[BPF_REG_0].ref_obj_id = id; 13108 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 13109 ref_set_non_owning(env, ®s[BPF_REG_0]); 13110 } 13111 13112 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 13113 regs[BPF_REG_0].id = ++env->id_gen; 13114 } else if (btf_type_is_void(t)) { 13115 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 13116 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 13117 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 13118 insn_aux->kptr_struct_meta = 13119 btf_find_struct_meta(meta.arg_btf, 13120 meta.arg_btf_id); 13121 } 13122 } 13123 } 13124 13125 nargs = btf_type_vlen(meta.func_proto); 13126 args = (const struct btf_param *)(meta.func_proto + 1); 13127 for (i = 0; i < nargs; i++) { 13128 u32 regno = i + 1; 13129 13130 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 13131 if (btf_type_is_ptr(t)) 13132 mark_btf_func_reg_size(env, regno, sizeof(void *)); 13133 else 13134 /* scalar. ensured by btf_check_kfunc_arg_match() */ 13135 mark_btf_func_reg_size(env, regno, t->size); 13136 } 13137 13138 if (is_iter_next_kfunc(&meta)) { 13139 err = process_iter_next_call(env, insn_idx, &meta); 13140 if (err) 13141 return err; 13142 } 13143 13144 return 0; 13145 } 13146 13147 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 13148 const struct bpf_reg_state *reg, 13149 enum bpf_reg_type type) 13150 { 13151 bool known = tnum_is_const(reg->var_off); 13152 s64 val = reg->var_off.value; 13153 s64 smin = reg->smin_value; 13154 13155 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 13156 verbose(env, "math between %s pointer and %lld is not allowed\n", 13157 reg_type_str(env, type), val); 13158 return false; 13159 } 13160 13161 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 13162 verbose(env, "%s pointer offset %d is not allowed\n", 13163 reg_type_str(env, type), reg->off); 13164 return false; 13165 } 13166 13167 if (smin == S64_MIN) { 13168 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 13169 reg_type_str(env, type)); 13170 return false; 13171 } 13172 13173 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 13174 verbose(env, "value %lld makes %s pointer be out of bounds\n", 13175 smin, reg_type_str(env, type)); 13176 return false; 13177 } 13178 13179 return true; 13180 } 13181 13182 enum { 13183 REASON_BOUNDS = -1, 13184 REASON_TYPE = -2, 13185 REASON_PATHS = -3, 13186 REASON_LIMIT = -4, 13187 REASON_STACK = -5, 13188 }; 13189 13190 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 13191 u32 *alu_limit, bool mask_to_left) 13192 { 13193 u32 max = 0, ptr_limit = 0; 13194 13195 switch (ptr_reg->type) { 13196 case PTR_TO_STACK: 13197 /* Offset 0 is out-of-bounds, but acceptable start for the 13198 * left direction, see BPF_REG_FP. Also, unknown scalar 13199 * offset where we would need to deal with min/max bounds is 13200 * currently prohibited for unprivileged. 13201 */ 13202 max = MAX_BPF_STACK + mask_to_left; 13203 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 13204 break; 13205 case PTR_TO_MAP_VALUE: 13206 max = ptr_reg->map_ptr->value_size; 13207 ptr_limit = (mask_to_left ? 13208 ptr_reg->smin_value : 13209 ptr_reg->umax_value) + ptr_reg->off; 13210 break; 13211 default: 13212 return REASON_TYPE; 13213 } 13214 13215 if (ptr_limit >= max) 13216 return REASON_LIMIT; 13217 *alu_limit = ptr_limit; 13218 return 0; 13219 } 13220 13221 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 13222 const struct bpf_insn *insn) 13223 { 13224 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 13225 } 13226 13227 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 13228 u32 alu_state, u32 alu_limit) 13229 { 13230 /* If we arrived here from different branches with different 13231 * state or limits to sanitize, then this won't work. 13232 */ 13233 if (aux->alu_state && 13234 (aux->alu_state != alu_state || 13235 aux->alu_limit != alu_limit)) 13236 return REASON_PATHS; 13237 13238 /* Corresponding fixup done in do_misc_fixups(). */ 13239 aux->alu_state = alu_state; 13240 aux->alu_limit = alu_limit; 13241 return 0; 13242 } 13243 13244 static int sanitize_val_alu(struct bpf_verifier_env *env, 13245 struct bpf_insn *insn) 13246 { 13247 struct bpf_insn_aux_data *aux = cur_aux(env); 13248 13249 if (can_skip_alu_sanitation(env, insn)) 13250 return 0; 13251 13252 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 13253 } 13254 13255 static bool sanitize_needed(u8 opcode) 13256 { 13257 return opcode == BPF_ADD || opcode == BPF_SUB; 13258 } 13259 13260 struct bpf_sanitize_info { 13261 struct bpf_insn_aux_data aux; 13262 bool mask_to_left; 13263 }; 13264 13265 static struct bpf_verifier_state * 13266 sanitize_speculative_path(struct bpf_verifier_env *env, 13267 const struct bpf_insn *insn, 13268 u32 next_idx, u32 curr_idx) 13269 { 13270 struct bpf_verifier_state *branch; 13271 struct bpf_reg_state *regs; 13272 13273 branch = push_stack(env, next_idx, curr_idx, true); 13274 if (branch && insn) { 13275 regs = branch->frame[branch->curframe]->regs; 13276 if (BPF_SRC(insn->code) == BPF_K) { 13277 mark_reg_unknown(env, regs, insn->dst_reg); 13278 } else if (BPF_SRC(insn->code) == BPF_X) { 13279 mark_reg_unknown(env, regs, insn->dst_reg); 13280 mark_reg_unknown(env, regs, insn->src_reg); 13281 } 13282 } 13283 return branch; 13284 } 13285 13286 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 13287 struct bpf_insn *insn, 13288 const struct bpf_reg_state *ptr_reg, 13289 const struct bpf_reg_state *off_reg, 13290 struct bpf_reg_state *dst_reg, 13291 struct bpf_sanitize_info *info, 13292 const bool commit_window) 13293 { 13294 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 13295 struct bpf_verifier_state *vstate = env->cur_state; 13296 bool off_is_imm = tnum_is_const(off_reg->var_off); 13297 bool off_is_neg = off_reg->smin_value < 0; 13298 bool ptr_is_dst_reg = ptr_reg == dst_reg; 13299 u8 opcode = BPF_OP(insn->code); 13300 u32 alu_state, alu_limit; 13301 struct bpf_reg_state tmp; 13302 bool ret; 13303 int err; 13304 13305 if (can_skip_alu_sanitation(env, insn)) 13306 return 0; 13307 13308 /* We already marked aux for masking from non-speculative 13309 * paths, thus we got here in the first place. We only care 13310 * to explore bad access from here. 13311 */ 13312 if (vstate->speculative) 13313 goto do_sim; 13314 13315 if (!commit_window) { 13316 if (!tnum_is_const(off_reg->var_off) && 13317 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 13318 return REASON_BOUNDS; 13319 13320 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 13321 (opcode == BPF_SUB && !off_is_neg); 13322 } 13323 13324 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 13325 if (err < 0) 13326 return err; 13327 13328 if (commit_window) { 13329 /* In commit phase we narrow the masking window based on 13330 * the observed pointer move after the simulated operation. 13331 */ 13332 alu_state = info->aux.alu_state; 13333 alu_limit = abs(info->aux.alu_limit - alu_limit); 13334 } else { 13335 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 13336 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 13337 alu_state |= ptr_is_dst_reg ? 13338 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 13339 13340 /* Limit pruning on unknown scalars to enable deep search for 13341 * potential masking differences from other program paths. 13342 */ 13343 if (!off_is_imm) 13344 env->explore_alu_limits = true; 13345 } 13346 13347 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 13348 if (err < 0) 13349 return err; 13350 do_sim: 13351 /* If we're in commit phase, we're done here given we already 13352 * pushed the truncated dst_reg into the speculative verification 13353 * stack. 13354 * 13355 * Also, when register is a known constant, we rewrite register-based 13356 * operation to immediate-based, and thus do not need masking (and as 13357 * a consequence, do not need to simulate the zero-truncation either). 13358 */ 13359 if (commit_window || off_is_imm) 13360 return 0; 13361 13362 /* Simulate and find potential out-of-bounds access under 13363 * speculative execution from truncation as a result of 13364 * masking when off was not within expected range. If off 13365 * sits in dst, then we temporarily need to move ptr there 13366 * to simulate dst (== 0) +/-= ptr. Needed, for example, 13367 * for cases where we use K-based arithmetic in one direction 13368 * and truncated reg-based in the other in order to explore 13369 * bad access. 13370 */ 13371 if (!ptr_is_dst_reg) { 13372 tmp = *dst_reg; 13373 copy_register_state(dst_reg, ptr_reg); 13374 } 13375 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 13376 env->insn_idx); 13377 if (!ptr_is_dst_reg && ret) 13378 *dst_reg = tmp; 13379 return !ret ? REASON_STACK : 0; 13380 } 13381 13382 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 13383 { 13384 struct bpf_verifier_state *vstate = env->cur_state; 13385 13386 /* If we simulate paths under speculation, we don't update the 13387 * insn as 'seen' such that when we verify unreachable paths in 13388 * the non-speculative domain, sanitize_dead_code() can still 13389 * rewrite/sanitize them. 13390 */ 13391 if (!vstate->speculative) 13392 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 13393 } 13394 13395 static int sanitize_err(struct bpf_verifier_env *env, 13396 const struct bpf_insn *insn, int reason, 13397 const struct bpf_reg_state *off_reg, 13398 const struct bpf_reg_state *dst_reg) 13399 { 13400 static const char *err = "pointer arithmetic with it prohibited for !root"; 13401 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 13402 u32 dst = insn->dst_reg, src = insn->src_reg; 13403 13404 switch (reason) { 13405 case REASON_BOUNDS: 13406 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 13407 off_reg == dst_reg ? dst : src, err); 13408 break; 13409 case REASON_TYPE: 13410 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 13411 off_reg == dst_reg ? src : dst, err); 13412 break; 13413 case REASON_PATHS: 13414 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 13415 dst, op, err); 13416 break; 13417 case REASON_LIMIT: 13418 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 13419 dst, op, err); 13420 break; 13421 case REASON_STACK: 13422 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 13423 dst, err); 13424 break; 13425 default: 13426 verbose(env, "verifier internal error: unknown reason (%d)\n", 13427 reason); 13428 break; 13429 } 13430 13431 return -EACCES; 13432 } 13433 13434 /* check that stack access falls within stack limits and that 'reg' doesn't 13435 * have a variable offset. 13436 * 13437 * Variable offset is prohibited for unprivileged mode for simplicity since it 13438 * requires corresponding support in Spectre masking for stack ALU. See also 13439 * retrieve_ptr_limit(). 13440 * 13441 * 13442 * 'off' includes 'reg->off'. 13443 */ 13444 static int check_stack_access_for_ptr_arithmetic( 13445 struct bpf_verifier_env *env, 13446 int regno, 13447 const struct bpf_reg_state *reg, 13448 int off) 13449 { 13450 if (!tnum_is_const(reg->var_off)) { 13451 char tn_buf[48]; 13452 13453 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 13454 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 13455 regno, tn_buf, off); 13456 return -EACCES; 13457 } 13458 13459 if (off >= 0 || off < -MAX_BPF_STACK) { 13460 verbose(env, "R%d stack pointer arithmetic goes out of range, " 13461 "prohibited for !root; off=%d\n", regno, off); 13462 return -EACCES; 13463 } 13464 13465 return 0; 13466 } 13467 13468 static int sanitize_check_bounds(struct bpf_verifier_env *env, 13469 const struct bpf_insn *insn, 13470 const struct bpf_reg_state *dst_reg) 13471 { 13472 u32 dst = insn->dst_reg; 13473 13474 /* For unprivileged we require that resulting offset must be in bounds 13475 * in order to be able to sanitize access later on. 13476 */ 13477 if (env->bypass_spec_v1) 13478 return 0; 13479 13480 switch (dst_reg->type) { 13481 case PTR_TO_STACK: 13482 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 13483 dst_reg->off + dst_reg->var_off.value)) 13484 return -EACCES; 13485 break; 13486 case PTR_TO_MAP_VALUE: 13487 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 13488 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 13489 "prohibited for !root\n", dst); 13490 return -EACCES; 13491 } 13492 break; 13493 default: 13494 break; 13495 } 13496 13497 return 0; 13498 } 13499 13500 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 13501 * Caller should also handle BPF_MOV case separately. 13502 * If we return -EACCES, caller may want to try again treating pointer as a 13503 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 13504 */ 13505 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 13506 struct bpf_insn *insn, 13507 struct bpf_reg_state *ptr_reg, 13508 const struct bpf_reg_state *off_reg) 13509 { 13510 struct bpf_verifier_state *vstate = env->cur_state; 13511 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13512 struct bpf_reg_state *regs = state->regs, *dst_reg; 13513 bool known = tnum_is_const(off_reg->var_off); 13514 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 13515 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 13516 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 13517 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 13518 struct bpf_sanitize_info info = {}; 13519 u8 opcode = BPF_OP(insn->code); 13520 u32 dst = insn->dst_reg; 13521 bool mask; 13522 int ret; 13523 13524 dst_reg = ®s[dst]; 13525 13526 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 13527 smin_val > smax_val || umin_val > umax_val) { 13528 /* Taint dst register if offset had invalid bounds derived from 13529 * e.g. dead branches. 13530 */ 13531 __mark_reg_unknown(env, dst_reg); 13532 return 0; 13533 } 13534 13535 if (BPF_CLASS(insn->code) != BPF_ALU64) { 13536 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 13537 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13538 __mark_reg_unknown(env, dst_reg); 13539 return 0; 13540 } 13541 13542 verbose(env, 13543 "R%d 32-bit pointer arithmetic prohibited\n", 13544 dst); 13545 return -EACCES; 13546 } 13547 13548 mask = mask_raw_tp_reg(env, ptr_reg); 13549 if (ptr_reg->type & PTR_MAYBE_NULL) { 13550 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 13551 dst, reg_type_str(env, ptr_reg->type)); 13552 unmask_raw_tp_reg(ptr_reg, mask); 13553 return -EACCES; 13554 } 13555 unmask_raw_tp_reg(ptr_reg, mask); 13556 13557 switch (base_type(ptr_reg->type)) { 13558 case PTR_TO_CTX: 13559 case PTR_TO_MAP_VALUE: 13560 case PTR_TO_MAP_KEY: 13561 case PTR_TO_STACK: 13562 case PTR_TO_PACKET_META: 13563 case PTR_TO_PACKET: 13564 case PTR_TO_TP_BUFFER: 13565 case PTR_TO_BTF_ID: 13566 case PTR_TO_MEM: 13567 case PTR_TO_BUF: 13568 case PTR_TO_FUNC: 13569 case CONST_PTR_TO_DYNPTR: 13570 break; 13571 case PTR_TO_FLOW_KEYS: 13572 if (known) 13573 break; 13574 fallthrough; 13575 case CONST_PTR_TO_MAP: 13576 /* smin_val represents the known value */ 13577 if (known && smin_val == 0 && opcode == BPF_ADD) 13578 break; 13579 fallthrough; 13580 default: 13581 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 13582 dst, reg_type_str(env, ptr_reg->type)); 13583 return -EACCES; 13584 } 13585 13586 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 13587 * The id may be overwritten later if we create a new variable offset. 13588 */ 13589 dst_reg->type = ptr_reg->type; 13590 dst_reg->id = ptr_reg->id; 13591 13592 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 13593 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 13594 return -EINVAL; 13595 13596 /* pointer types do not carry 32-bit bounds at the moment. */ 13597 __mark_reg32_unbounded(dst_reg); 13598 13599 if (sanitize_needed(opcode)) { 13600 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 13601 &info, false); 13602 if (ret < 0) 13603 return sanitize_err(env, insn, ret, off_reg, dst_reg); 13604 } 13605 13606 switch (opcode) { 13607 case BPF_ADD: 13608 /* We can take a fixed offset as long as it doesn't overflow 13609 * the s32 'off' field 13610 */ 13611 if (known && (ptr_reg->off + smin_val == 13612 (s64)(s32)(ptr_reg->off + smin_val))) { 13613 /* pointer += K. Accumulate it into fixed offset */ 13614 dst_reg->smin_value = smin_ptr; 13615 dst_reg->smax_value = smax_ptr; 13616 dst_reg->umin_value = umin_ptr; 13617 dst_reg->umax_value = umax_ptr; 13618 dst_reg->var_off = ptr_reg->var_off; 13619 dst_reg->off = ptr_reg->off + smin_val; 13620 dst_reg->raw = ptr_reg->raw; 13621 break; 13622 } 13623 /* A new variable offset is created. Note that off_reg->off 13624 * == 0, since it's a scalar. 13625 * dst_reg gets the pointer type and since some positive 13626 * integer value was added to the pointer, give it a new 'id' 13627 * if it's a PTR_TO_PACKET. 13628 * this creates a new 'base' pointer, off_reg (variable) gets 13629 * added into the variable offset, and we copy the fixed offset 13630 * from ptr_reg. 13631 */ 13632 if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) || 13633 check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) { 13634 dst_reg->smin_value = S64_MIN; 13635 dst_reg->smax_value = S64_MAX; 13636 } 13637 if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) || 13638 check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) { 13639 dst_reg->umin_value = 0; 13640 dst_reg->umax_value = U64_MAX; 13641 } 13642 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 13643 dst_reg->off = ptr_reg->off; 13644 dst_reg->raw = ptr_reg->raw; 13645 if (reg_is_pkt_pointer(ptr_reg)) { 13646 dst_reg->id = ++env->id_gen; 13647 /* something was added to pkt_ptr, set range to zero */ 13648 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 13649 } 13650 break; 13651 case BPF_SUB: 13652 if (dst_reg == off_reg) { 13653 /* scalar -= pointer. Creates an unknown scalar */ 13654 verbose(env, "R%d tried to subtract pointer from scalar\n", 13655 dst); 13656 return -EACCES; 13657 } 13658 /* We don't allow subtraction from FP, because (according to 13659 * test_verifier.c test "invalid fp arithmetic", JITs might not 13660 * be able to deal with it. 13661 */ 13662 if (ptr_reg->type == PTR_TO_STACK) { 13663 verbose(env, "R%d subtraction from stack pointer prohibited\n", 13664 dst); 13665 return -EACCES; 13666 } 13667 if (known && (ptr_reg->off - smin_val == 13668 (s64)(s32)(ptr_reg->off - smin_val))) { 13669 /* pointer -= K. Subtract it from fixed offset */ 13670 dst_reg->smin_value = smin_ptr; 13671 dst_reg->smax_value = smax_ptr; 13672 dst_reg->umin_value = umin_ptr; 13673 dst_reg->umax_value = umax_ptr; 13674 dst_reg->var_off = ptr_reg->var_off; 13675 dst_reg->id = ptr_reg->id; 13676 dst_reg->off = ptr_reg->off - smin_val; 13677 dst_reg->raw = ptr_reg->raw; 13678 break; 13679 } 13680 /* A new variable offset is created. If the subtrahend is known 13681 * nonnegative, then any reg->range we had before is still good. 13682 */ 13683 if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) || 13684 check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) { 13685 /* Overflow possible, we know nothing */ 13686 dst_reg->smin_value = S64_MIN; 13687 dst_reg->smax_value = S64_MAX; 13688 } 13689 if (umin_ptr < umax_val) { 13690 /* Overflow possible, we know nothing */ 13691 dst_reg->umin_value = 0; 13692 dst_reg->umax_value = U64_MAX; 13693 } else { 13694 /* Cannot overflow (as long as bounds are consistent) */ 13695 dst_reg->umin_value = umin_ptr - umax_val; 13696 dst_reg->umax_value = umax_ptr - umin_val; 13697 } 13698 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 13699 dst_reg->off = ptr_reg->off; 13700 dst_reg->raw = ptr_reg->raw; 13701 if (reg_is_pkt_pointer(ptr_reg)) { 13702 dst_reg->id = ++env->id_gen; 13703 /* something was added to pkt_ptr, set range to zero */ 13704 if (smin_val < 0) 13705 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 13706 } 13707 break; 13708 case BPF_AND: 13709 case BPF_OR: 13710 case BPF_XOR: 13711 /* bitwise ops on pointers are troublesome, prohibit. */ 13712 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 13713 dst, bpf_alu_string[opcode >> 4]); 13714 return -EACCES; 13715 default: 13716 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 13717 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 13718 dst, bpf_alu_string[opcode >> 4]); 13719 return -EACCES; 13720 } 13721 13722 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 13723 return -EINVAL; 13724 reg_bounds_sync(dst_reg); 13725 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 13726 return -EACCES; 13727 if (sanitize_needed(opcode)) { 13728 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 13729 &info, true); 13730 if (ret < 0) 13731 return sanitize_err(env, insn, ret, off_reg, dst_reg); 13732 } 13733 13734 return 0; 13735 } 13736 13737 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 13738 struct bpf_reg_state *src_reg) 13739 { 13740 s32 *dst_smin = &dst_reg->s32_min_value; 13741 s32 *dst_smax = &dst_reg->s32_max_value; 13742 u32 *dst_umin = &dst_reg->u32_min_value; 13743 u32 *dst_umax = &dst_reg->u32_max_value; 13744 13745 if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) || 13746 check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) { 13747 *dst_smin = S32_MIN; 13748 *dst_smax = S32_MAX; 13749 } 13750 if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) || 13751 check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) { 13752 *dst_umin = 0; 13753 *dst_umax = U32_MAX; 13754 } 13755 } 13756 13757 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 13758 struct bpf_reg_state *src_reg) 13759 { 13760 s64 *dst_smin = &dst_reg->smin_value; 13761 s64 *dst_smax = &dst_reg->smax_value; 13762 u64 *dst_umin = &dst_reg->umin_value; 13763 u64 *dst_umax = &dst_reg->umax_value; 13764 13765 if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) || 13766 check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) { 13767 *dst_smin = S64_MIN; 13768 *dst_smax = S64_MAX; 13769 } 13770 if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) || 13771 check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) { 13772 *dst_umin = 0; 13773 *dst_umax = U64_MAX; 13774 } 13775 } 13776 13777 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 13778 struct bpf_reg_state *src_reg) 13779 { 13780 s32 *dst_smin = &dst_reg->s32_min_value; 13781 s32 *dst_smax = &dst_reg->s32_max_value; 13782 u32 umin_val = src_reg->u32_min_value; 13783 u32 umax_val = src_reg->u32_max_value; 13784 13785 if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) || 13786 check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) { 13787 /* Overflow possible, we know nothing */ 13788 *dst_smin = S32_MIN; 13789 *dst_smax = S32_MAX; 13790 } 13791 if (dst_reg->u32_min_value < umax_val) { 13792 /* Overflow possible, we know nothing */ 13793 dst_reg->u32_min_value = 0; 13794 dst_reg->u32_max_value = U32_MAX; 13795 } else { 13796 /* Cannot overflow (as long as bounds are consistent) */ 13797 dst_reg->u32_min_value -= umax_val; 13798 dst_reg->u32_max_value -= umin_val; 13799 } 13800 } 13801 13802 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 13803 struct bpf_reg_state *src_reg) 13804 { 13805 s64 *dst_smin = &dst_reg->smin_value; 13806 s64 *dst_smax = &dst_reg->smax_value; 13807 u64 umin_val = src_reg->umin_value; 13808 u64 umax_val = src_reg->umax_value; 13809 13810 if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) || 13811 check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) { 13812 /* Overflow possible, we know nothing */ 13813 *dst_smin = S64_MIN; 13814 *dst_smax = S64_MAX; 13815 } 13816 if (dst_reg->umin_value < umax_val) { 13817 /* Overflow possible, we know nothing */ 13818 dst_reg->umin_value = 0; 13819 dst_reg->umax_value = U64_MAX; 13820 } else { 13821 /* Cannot overflow (as long as bounds are consistent) */ 13822 dst_reg->umin_value -= umax_val; 13823 dst_reg->umax_value -= umin_val; 13824 } 13825 } 13826 13827 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 13828 struct bpf_reg_state *src_reg) 13829 { 13830 s32 smin_val = src_reg->s32_min_value; 13831 u32 umin_val = src_reg->u32_min_value; 13832 u32 umax_val = src_reg->u32_max_value; 13833 13834 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 13835 /* Ain't nobody got time to multiply that sign */ 13836 __mark_reg32_unbounded(dst_reg); 13837 return; 13838 } 13839 /* Both values are positive, so we can work with unsigned and 13840 * copy the result to signed (unless it exceeds S32_MAX). 13841 */ 13842 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 13843 /* Potential overflow, we know nothing */ 13844 __mark_reg32_unbounded(dst_reg); 13845 return; 13846 } 13847 dst_reg->u32_min_value *= umin_val; 13848 dst_reg->u32_max_value *= umax_val; 13849 if (dst_reg->u32_max_value > S32_MAX) { 13850 /* Overflow possible, we know nothing */ 13851 dst_reg->s32_min_value = S32_MIN; 13852 dst_reg->s32_max_value = S32_MAX; 13853 } else { 13854 dst_reg->s32_min_value = dst_reg->u32_min_value; 13855 dst_reg->s32_max_value = dst_reg->u32_max_value; 13856 } 13857 } 13858 13859 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 13860 struct bpf_reg_state *src_reg) 13861 { 13862 s64 smin_val = src_reg->smin_value; 13863 u64 umin_val = src_reg->umin_value; 13864 u64 umax_val = src_reg->umax_value; 13865 13866 if (smin_val < 0 || dst_reg->smin_value < 0) { 13867 /* Ain't nobody got time to multiply that sign */ 13868 __mark_reg64_unbounded(dst_reg); 13869 return; 13870 } 13871 /* Both values are positive, so we can work with unsigned and 13872 * copy the result to signed (unless it exceeds S64_MAX). 13873 */ 13874 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 13875 /* Potential overflow, we know nothing */ 13876 __mark_reg64_unbounded(dst_reg); 13877 return; 13878 } 13879 dst_reg->umin_value *= umin_val; 13880 dst_reg->umax_value *= umax_val; 13881 if (dst_reg->umax_value > S64_MAX) { 13882 /* Overflow possible, we know nothing */ 13883 dst_reg->smin_value = S64_MIN; 13884 dst_reg->smax_value = S64_MAX; 13885 } else { 13886 dst_reg->smin_value = dst_reg->umin_value; 13887 dst_reg->smax_value = dst_reg->umax_value; 13888 } 13889 } 13890 13891 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 13892 struct bpf_reg_state *src_reg) 13893 { 13894 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13895 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13896 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13897 u32 umax_val = src_reg->u32_max_value; 13898 13899 if (src_known && dst_known) { 13900 __mark_reg32_known(dst_reg, var32_off.value); 13901 return; 13902 } 13903 13904 /* We get our minimum from the var_off, since that's inherently 13905 * bitwise. Our maximum is the minimum of the operands' maxima. 13906 */ 13907 dst_reg->u32_min_value = var32_off.value; 13908 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 13909 13910 /* Safe to set s32 bounds by casting u32 result into s32 when u32 13911 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 13912 */ 13913 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 13914 dst_reg->s32_min_value = dst_reg->u32_min_value; 13915 dst_reg->s32_max_value = dst_reg->u32_max_value; 13916 } else { 13917 dst_reg->s32_min_value = S32_MIN; 13918 dst_reg->s32_max_value = S32_MAX; 13919 } 13920 } 13921 13922 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 13923 struct bpf_reg_state *src_reg) 13924 { 13925 bool src_known = tnum_is_const(src_reg->var_off); 13926 bool dst_known = tnum_is_const(dst_reg->var_off); 13927 u64 umax_val = src_reg->umax_value; 13928 13929 if (src_known && dst_known) { 13930 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13931 return; 13932 } 13933 13934 /* We get our minimum from the var_off, since that's inherently 13935 * bitwise. Our maximum is the minimum of the operands' maxima. 13936 */ 13937 dst_reg->umin_value = dst_reg->var_off.value; 13938 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 13939 13940 /* Safe to set s64 bounds by casting u64 result into s64 when u64 13941 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 13942 */ 13943 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 13944 dst_reg->smin_value = dst_reg->umin_value; 13945 dst_reg->smax_value = dst_reg->umax_value; 13946 } else { 13947 dst_reg->smin_value = S64_MIN; 13948 dst_reg->smax_value = S64_MAX; 13949 } 13950 /* We may learn something more from the var_off */ 13951 __update_reg_bounds(dst_reg); 13952 } 13953 13954 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 13955 struct bpf_reg_state *src_reg) 13956 { 13957 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13958 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13959 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13960 u32 umin_val = src_reg->u32_min_value; 13961 13962 if (src_known && dst_known) { 13963 __mark_reg32_known(dst_reg, var32_off.value); 13964 return; 13965 } 13966 13967 /* We get our maximum from the var_off, and our minimum is the 13968 * maximum of the operands' minima 13969 */ 13970 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 13971 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13972 13973 /* Safe to set s32 bounds by casting u32 result into s32 when u32 13974 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 13975 */ 13976 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 13977 dst_reg->s32_min_value = dst_reg->u32_min_value; 13978 dst_reg->s32_max_value = dst_reg->u32_max_value; 13979 } else { 13980 dst_reg->s32_min_value = S32_MIN; 13981 dst_reg->s32_max_value = S32_MAX; 13982 } 13983 } 13984 13985 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 13986 struct bpf_reg_state *src_reg) 13987 { 13988 bool src_known = tnum_is_const(src_reg->var_off); 13989 bool dst_known = tnum_is_const(dst_reg->var_off); 13990 u64 umin_val = src_reg->umin_value; 13991 13992 if (src_known && dst_known) { 13993 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13994 return; 13995 } 13996 13997 /* We get our maximum from the var_off, and our minimum is the 13998 * maximum of the operands' minima 13999 */ 14000 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 14001 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 14002 14003 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14004 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 14005 */ 14006 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 14007 dst_reg->smin_value = dst_reg->umin_value; 14008 dst_reg->smax_value = dst_reg->umax_value; 14009 } else { 14010 dst_reg->smin_value = S64_MIN; 14011 dst_reg->smax_value = S64_MAX; 14012 } 14013 /* We may learn something more from the var_off */ 14014 __update_reg_bounds(dst_reg); 14015 } 14016 14017 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 14018 struct bpf_reg_state *src_reg) 14019 { 14020 bool src_known = tnum_subreg_is_const(src_reg->var_off); 14021 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 14022 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 14023 14024 if (src_known && dst_known) { 14025 __mark_reg32_known(dst_reg, var32_off.value); 14026 return; 14027 } 14028 14029 /* We get both minimum and maximum from the var32_off. */ 14030 dst_reg->u32_min_value = var32_off.value; 14031 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 14032 14033 /* Safe to set s32 bounds by casting u32 result into s32 when u32 14034 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 14035 */ 14036 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 14037 dst_reg->s32_min_value = dst_reg->u32_min_value; 14038 dst_reg->s32_max_value = dst_reg->u32_max_value; 14039 } else { 14040 dst_reg->s32_min_value = S32_MIN; 14041 dst_reg->s32_max_value = S32_MAX; 14042 } 14043 } 14044 14045 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 14046 struct bpf_reg_state *src_reg) 14047 { 14048 bool src_known = tnum_is_const(src_reg->var_off); 14049 bool dst_known = tnum_is_const(dst_reg->var_off); 14050 14051 if (src_known && dst_known) { 14052 /* dst_reg->var_off.value has been updated earlier */ 14053 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14054 return; 14055 } 14056 14057 /* We get both minimum and maximum from the var_off. */ 14058 dst_reg->umin_value = dst_reg->var_off.value; 14059 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 14060 14061 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14062 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 14063 */ 14064 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 14065 dst_reg->smin_value = dst_reg->umin_value; 14066 dst_reg->smax_value = dst_reg->umax_value; 14067 } else { 14068 dst_reg->smin_value = S64_MIN; 14069 dst_reg->smax_value = S64_MAX; 14070 } 14071 14072 __update_reg_bounds(dst_reg); 14073 } 14074 14075 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 14076 u64 umin_val, u64 umax_val) 14077 { 14078 /* We lose all sign bit information (except what we can pick 14079 * up from var_off) 14080 */ 14081 dst_reg->s32_min_value = S32_MIN; 14082 dst_reg->s32_max_value = S32_MAX; 14083 /* If we might shift our top bit out, then we know nothing */ 14084 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 14085 dst_reg->u32_min_value = 0; 14086 dst_reg->u32_max_value = U32_MAX; 14087 } else { 14088 dst_reg->u32_min_value <<= umin_val; 14089 dst_reg->u32_max_value <<= umax_val; 14090 } 14091 } 14092 14093 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 14094 struct bpf_reg_state *src_reg) 14095 { 14096 u32 umax_val = src_reg->u32_max_value; 14097 u32 umin_val = src_reg->u32_min_value; 14098 /* u32 alu operation will zext upper bits */ 14099 struct tnum subreg = tnum_subreg(dst_reg->var_off); 14100 14101 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 14102 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 14103 /* Not required but being careful mark reg64 bounds as unknown so 14104 * that we are forced to pick them up from tnum and zext later and 14105 * if some path skips this step we are still safe. 14106 */ 14107 __mark_reg64_unbounded(dst_reg); 14108 __update_reg32_bounds(dst_reg); 14109 } 14110 14111 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 14112 u64 umin_val, u64 umax_val) 14113 { 14114 /* Special case <<32 because it is a common compiler pattern to sign 14115 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 14116 * positive we know this shift will also be positive so we can track 14117 * bounds correctly. Otherwise we lose all sign bit information except 14118 * what we can pick up from var_off. Perhaps we can generalize this 14119 * later to shifts of any length. 14120 */ 14121 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 14122 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 14123 else 14124 dst_reg->smax_value = S64_MAX; 14125 14126 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 14127 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 14128 else 14129 dst_reg->smin_value = S64_MIN; 14130 14131 /* If we might shift our top bit out, then we know nothing */ 14132 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 14133 dst_reg->umin_value = 0; 14134 dst_reg->umax_value = U64_MAX; 14135 } else { 14136 dst_reg->umin_value <<= umin_val; 14137 dst_reg->umax_value <<= umax_val; 14138 } 14139 } 14140 14141 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 14142 struct bpf_reg_state *src_reg) 14143 { 14144 u64 umax_val = src_reg->umax_value; 14145 u64 umin_val = src_reg->umin_value; 14146 14147 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 14148 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 14149 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 14150 14151 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 14152 /* We may learn something more from the var_off */ 14153 __update_reg_bounds(dst_reg); 14154 } 14155 14156 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 14157 struct bpf_reg_state *src_reg) 14158 { 14159 struct tnum subreg = tnum_subreg(dst_reg->var_off); 14160 u32 umax_val = src_reg->u32_max_value; 14161 u32 umin_val = src_reg->u32_min_value; 14162 14163 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 14164 * be negative, then either: 14165 * 1) src_reg might be zero, so the sign bit of the result is 14166 * unknown, so we lose our signed bounds 14167 * 2) it's known negative, thus the unsigned bounds capture the 14168 * signed bounds 14169 * 3) the signed bounds cross zero, so they tell us nothing 14170 * about the result 14171 * If the value in dst_reg is known nonnegative, then again the 14172 * unsigned bounds capture the signed bounds. 14173 * Thus, in all cases it suffices to blow away our signed bounds 14174 * and rely on inferring new ones from the unsigned bounds and 14175 * var_off of the result. 14176 */ 14177 dst_reg->s32_min_value = S32_MIN; 14178 dst_reg->s32_max_value = S32_MAX; 14179 14180 dst_reg->var_off = tnum_rshift(subreg, umin_val); 14181 dst_reg->u32_min_value >>= umax_val; 14182 dst_reg->u32_max_value >>= umin_val; 14183 14184 __mark_reg64_unbounded(dst_reg); 14185 __update_reg32_bounds(dst_reg); 14186 } 14187 14188 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 14189 struct bpf_reg_state *src_reg) 14190 { 14191 u64 umax_val = src_reg->umax_value; 14192 u64 umin_val = src_reg->umin_value; 14193 14194 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 14195 * be negative, then either: 14196 * 1) src_reg might be zero, so the sign bit of the result is 14197 * unknown, so we lose our signed bounds 14198 * 2) it's known negative, thus the unsigned bounds capture the 14199 * signed bounds 14200 * 3) the signed bounds cross zero, so they tell us nothing 14201 * about the result 14202 * If the value in dst_reg is known nonnegative, then again the 14203 * unsigned bounds capture the signed bounds. 14204 * Thus, in all cases it suffices to blow away our signed bounds 14205 * and rely on inferring new ones from the unsigned bounds and 14206 * var_off of the result. 14207 */ 14208 dst_reg->smin_value = S64_MIN; 14209 dst_reg->smax_value = S64_MAX; 14210 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 14211 dst_reg->umin_value >>= umax_val; 14212 dst_reg->umax_value >>= umin_val; 14213 14214 /* Its not easy to operate on alu32 bounds here because it depends 14215 * on bits being shifted in. Take easy way out and mark unbounded 14216 * so we can recalculate later from tnum. 14217 */ 14218 __mark_reg32_unbounded(dst_reg); 14219 __update_reg_bounds(dst_reg); 14220 } 14221 14222 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 14223 struct bpf_reg_state *src_reg) 14224 { 14225 u64 umin_val = src_reg->u32_min_value; 14226 14227 /* Upon reaching here, src_known is true and 14228 * umax_val is equal to umin_val. 14229 */ 14230 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 14231 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 14232 14233 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 14234 14235 /* blow away the dst_reg umin_value/umax_value and rely on 14236 * dst_reg var_off to refine the result. 14237 */ 14238 dst_reg->u32_min_value = 0; 14239 dst_reg->u32_max_value = U32_MAX; 14240 14241 __mark_reg64_unbounded(dst_reg); 14242 __update_reg32_bounds(dst_reg); 14243 } 14244 14245 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 14246 struct bpf_reg_state *src_reg) 14247 { 14248 u64 umin_val = src_reg->umin_value; 14249 14250 /* Upon reaching here, src_known is true and umax_val is equal 14251 * to umin_val. 14252 */ 14253 dst_reg->smin_value >>= umin_val; 14254 dst_reg->smax_value >>= umin_val; 14255 14256 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 14257 14258 /* blow away the dst_reg umin_value/umax_value and rely on 14259 * dst_reg var_off to refine the result. 14260 */ 14261 dst_reg->umin_value = 0; 14262 dst_reg->umax_value = U64_MAX; 14263 14264 /* Its not easy to operate on alu32 bounds here because it depends 14265 * on bits being shifted in from upper 32-bits. Take easy way out 14266 * and mark unbounded so we can recalculate later from tnum. 14267 */ 14268 __mark_reg32_unbounded(dst_reg); 14269 __update_reg_bounds(dst_reg); 14270 } 14271 14272 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn, 14273 const struct bpf_reg_state *src_reg) 14274 { 14275 bool src_is_const = false; 14276 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 14277 14278 if (insn_bitness == 32) { 14279 if (tnum_subreg_is_const(src_reg->var_off) 14280 && src_reg->s32_min_value == src_reg->s32_max_value 14281 && src_reg->u32_min_value == src_reg->u32_max_value) 14282 src_is_const = true; 14283 } else { 14284 if (tnum_is_const(src_reg->var_off) 14285 && src_reg->smin_value == src_reg->smax_value 14286 && src_reg->umin_value == src_reg->umax_value) 14287 src_is_const = true; 14288 } 14289 14290 switch (BPF_OP(insn->code)) { 14291 case BPF_ADD: 14292 case BPF_SUB: 14293 case BPF_AND: 14294 case BPF_XOR: 14295 case BPF_OR: 14296 case BPF_MUL: 14297 return true; 14298 14299 /* Shift operators range is only computable if shift dimension operand 14300 * is a constant. Shifts greater than 31 or 63 are undefined. This 14301 * includes shifts by a negative number. 14302 */ 14303 case BPF_LSH: 14304 case BPF_RSH: 14305 case BPF_ARSH: 14306 return (src_is_const && src_reg->umax_value < insn_bitness); 14307 default: 14308 return false; 14309 } 14310 } 14311 14312 /* WARNING: This function does calculations on 64-bit values, but the actual 14313 * execution may occur on 32-bit values. Therefore, things like bitshifts 14314 * need extra checks in the 32-bit case. 14315 */ 14316 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 14317 struct bpf_insn *insn, 14318 struct bpf_reg_state *dst_reg, 14319 struct bpf_reg_state src_reg) 14320 { 14321 u8 opcode = BPF_OP(insn->code); 14322 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 14323 int ret; 14324 14325 if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) { 14326 __mark_reg_unknown(env, dst_reg); 14327 return 0; 14328 } 14329 14330 if (sanitize_needed(opcode)) { 14331 ret = sanitize_val_alu(env, insn); 14332 if (ret < 0) 14333 return sanitize_err(env, insn, ret, NULL, NULL); 14334 } 14335 14336 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 14337 * There are two classes of instructions: The first class we track both 14338 * alu32 and alu64 sign/unsigned bounds independently this provides the 14339 * greatest amount of precision when alu operations are mixed with jmp32 14340 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 14341 * and BPF_OR. This is possible because these ops have fairly easy to 14342 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 14343 * See alu32 verifier tests for examples. The second class of 14344 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 14345 * with regards to tracking sign/unsigned bounds because the bits may 14346 * cross subreg boundaries in the alu64 case. When this happens we mark 14347 * the reg unbounded in the subreg bound space and use the resulting 14348 * tnum to calculate an approximation of the sign/unsigned bounds. 14349 */ 14350 switch (opcode) { 14351 case BPF_ADD: 14352 scalar32_min_max_add(dst_reg, &src_reg); 14353 scalar_min_max_add(dst_reg, &src_reg); 14354 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 14355 break; 14356 case BPF_SUB: 14357 scalar32_min_max_sub(dst_reg, &src_reg); 14358 scalar_min_max_sub(dst_reg, &src_reg); 14359 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 14360 break; 14361 case BPF_MUL: 14362 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 14363 scalar32_min_max_mul(dst_reg, &src_reg); 14364 scalar_min_max_mul(dst_reg, &src_reg); 14365 break; 14366 case BPF_AND: 14367 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 14368 scalar32_min_max_and(dst_reg, &src_reg); 14369 scalar_min_max_and(dst_reg, &src_reg); 14370 break; 14371 case BPF_OR: 14372 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 14373 scalar32_min_max_or(dst_reg, &src_reg); 14374 scalar_min_max_or(dst_reg, &src_reg); 14375 break; 14376 case BPF_XOR: 14377 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 14378 scalar32_min_max_xor(dst_reg, &src_reg); 14379 scalar_min_max_xor(dst_reg, &src_reg); 14380 break; 14381 case BPF_LSH: 14382 if (alu32) 14383 scalar32_min_max_lsh(dst_reg, &src_reg); 14384 else 14385 scalar_min_max_lsh(dst_reg, &src_reg); 14386 break; 14387 case BPF_RSH: 14388 if (alu32) 14389 scalar32_min_max_rsh(dst_reg, &src_reg); 14390 else 14391 scalar_min_max_rsh(dst_reg, &src_reg); 14392 break; 14393 case BPF_ARSH: 14394 if (alu32) 14395 scalar32_min_max_arsh(dst_reg, &src_reg); 14396 else 14397 scalar_min_max_arsh(dst_reg, &src_reg); 14398 break; 14399 default: 14400 break; 14401 } 14402 14403 /* ALU32 ops are zero extended into 64bit register */ 14404 if (alu32) 14405 zext_32_to_64(dst_reg); 14406 reg_bounds_sync(dst_reg); 14407 return 0; 14408 } 14409 14410 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 14411 * and var_off. 14412 */ 14413 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 14414 struct bpf_insn *insn) 14415 { 14416 struct bpf_verifier_state *vstate = env->cur_state; 14417 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14418 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 14419 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 14420 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 14421 u8 opcode = BPF_OP(insn->code); 14422 int err; 14423 14424 dst_reg = ®s[insn->dst_reg]; 14425 src_reg = NULL; 14426 14427 if (dst_reg->type == PTR_TO_ARENA) { 14428 struct bpf_insn_aux_data *aux = cur_aux(env); 14429 14430 if (BPF_CLASS(insn->code) == BPF_ALU64) 14431 /* 14432 * 32-bit operations zero upper bits automatically. 14433 * 64-bit operations need to be converted to 32. 14434 */ 14435 aux->needs_zext = true; 14436 14437 /* Any arithmetic operations are allowed on arena pointers */ 14438 return 0; 14439 } 14440 14441 if (dst_reg->type != SCALAR_VALUE) 14442 ptr_reg = dst_reg; 14443 14444 if (BPF_SRC(insn->code) == BPF_X) { 14445 src_reg = ®s[insn->src_reg]; 14446 if (src_reg->type != SCALAR_VALUE) { 14447 if (dst_reg->type != SCALAR_VALUE) { 14448 /* Combining two pointers by any ALU op yields 14449 * an arbitrary scalar. Disallow all math except 14450 * pointer subtraction 14451 */ 14452 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 14453 mark_reg_unknown(env, regs, insn->dst_reg); 14454 return 0; 14455 } 14456 verbose(env, "R%d pointer %s pointer prohibited\n", 14457 insn->dst_reg, 14458 bpf_alu_string[opcode >> 4]); 14459 return -EACCES; 14460 } else { 14461 /* scalar += pointer 14462 * This is legal, but we have to reverse our 14463 * src/dest handling in computing the range 14464 */ 14465 err = mark_chain_precision(env, insn->dst_reg); 14466 if (err) 14467 return err; 14468 return adjust_ptr_min_max_vals(env, insn, 14469 src_reg, dst_reg); 14470 } 14471 } else if (ptr_reg) { 14472 /* pointer += scalar */ 14473 err = mark_chain_precision(env, insn->src_reg); 14474 if (err) 14475 return err; 14476 return adjust_ptr_min_max_vals(env, insn, 14477 dst_reg, src_reg); 14478 } else if (dst_reg->precise) { 14479 /* if dst_reg is precise, src_reg should be precise as well */ 14480 err = mark_chain_precision(env, insn->src_reg); 14481 if (err) 14482 return err; 14483 } 14484 } else { 14485 /* Pretend the src is a reg with a known value, since we only 14486 * need to be able to read from this state. 14487 */ 14488 off_reg.type = SCALAR_VALUE; 14489 __mark_reg_known(&off_reg, insn->imm); 14490 src_reg = &off_reg; 14491 if (ptr_reg) /* pointer += K */ 14492 return adjust_ptr_min_max_vals(env, insn, 14493 ptr_reg, src_reg); 14494 } 14495 14496 /* Got here implies adding two SCALAR_VALUEs */ 14497 if (WARN_ON_ONCE(ptr_reg)) { 14498 print_verifier_state(env, state, true); 14499 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 14500 return -EINVAL; 14501 } 14502 if (WARN_ON(!src_reg)) { 14503 print_verifier_state(env, state, true); 14504 verbose(env, "verifier internal error: no src_reg\n"); 14505 return -EINVAL; 14506 } 14507 err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 14508 if (err) 14509 return err; 14510 /* 14511 * Compilers can generate the code 14512 * r1 = r2 14513 * r1 += 0x1 14514 * if r2 < 1000 goto ... 14515 * use r1 in memory access 14516 * So for 64-bit alu remember constant delta between r2 and r1 and 14517 * update r1 after 'if' condition. 14518 */ 14519 if (env->bpf_capable && 14520 BPF_OP(insn->code) == BPF_ADD && !alu32 && 14521 dst_reg->id && is_reg_const(src_reg, false)) { 14522 u64 val = reg_const_value(src_reg, false); 14523 14524 if ((dst_reg->id & BPF_ADD_CONST) || 14525 /* prevent overflow in sync_linked_regs() later */ 14526 val > (u32)S32_MAX) { 14527 /* 14528 * If the register already went through rX += val 14529 * we cannot accumulate another val into rx->off. 14530 */ 14531 dst_reg->off = 0; 14532 dst_reg->id = 0; 14533 } else { 14534 dst_reg->id |= BPF_ADD_CONST; 14535 dst_reg->off = val; 14536 } 14537 } else { 14538 /* 14539 * Make sure ID is cleared otherwise dst_reg min/max could be 14540 * incorrectly propagated into other registers by sync_linked_regs() 14541 */ 14542 dst_reg->id = 0; 14543 } 14544 return 0; 14545 } 14546 14547 /* check validity of 32-bit and 64-bit arithmetic operations */ 14548 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 14549 { 14550 struct bpf_reg_state *regs = cur_regs(env); 14551 u8 opcode = BPF_OP(insn->code); 14552 int err; 14553 14554 if (opcode == BPF_END || opcode == BPF_NEG) { 14555 if (opcode == BPF_NEG) { 14556 if (BPF_SRC(insn->code) != BPF_K || 14557 insn->src_reg != BPF_REG_0 || 14558 insn->off != 0 || insn->imm != 0) { 14559 verbose(env, "BPF_NEG uses reserved fields\n"); 14560 return -EINVAL; 14561 } 14562 } else { 14563 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 14564 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 14565 (BPF_CLASS(insn->code) == BPF_ALU64 && 14566 BPF_SRC(insn->code) != BPF_TO_LE)) { 14567 verbose(env, "BPF_END uses reserved fields\n"); 14568 return -EINVAL; 14569 } 14570 } 14571 14572 /* check src operand */ 14573 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14574 if (err) 14575 return err; 14576 14577 if (is_pointer_value(env, insn->dst_reg)) { 14578 verbose(env, "R%d pointer arithmetic prohibited\n", 14579 insn->dst_reg); 14580 return -EACCES; 14581 } 14582 14583 /* check dest operand */ 14584 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14585 if (err) 14586 return err; 14587 14588 } else if (opcode == BPF_MOV) { 14589 14590 if (BPF_SRC(insn->code) == BPF_X) { 14591 if (BPF_CLASS(insn->code) == BPF_ALU) { 14592 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || 14593 insn->imm) { 14594 verbose(env, "BPF_MOV uses reserved fields\n"); 14595 return -EINVAL; 14596 } 14597 } else if (insn->off == BPF_ADDR_SPACE_CAST) { 14598 if (insn->imm != 1 && insn->imm != 1u << 16) { 14599 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); 14600 return -EINVAL; 14601 } 14602 if (!env->prog->aux->arena) { 14603 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n"); 14604 return -EINVAL; 14605 } 14606 } else { 14607 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && 14608 insn->off != 32) || insn->imm) { 14609 verbose(env, "BPF_MOV uses reserved fields\n"); 14610 return -EINVAL; 14611 } 14612 } 14613 14614 /* check src operand */ 14615 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14616 if (err) 14617 return err; 14618 } else { 14619 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 14620 verbose(env, "BPF_MOV uses reserved fields\n"); 14621 return -EINVAL; 14622 } 14623 } 14624 14625 /* check dest operand, mark as required later */ 14626 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14627 if (err) 14628 return err; 14629 14630 if (BPF_SRC(insn->code) == BPF_X) { 14631 struct bpf_reg_state *src_reg = regs + insn->src_reg; 14632 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 14633 14634 if (BPF_CLASS(insn->code) == BPF_ALU64) { 14635 if (insn->imm) { 14636 /* off == BPF_ADDR_SPACE_CAST */ 14637 mark_reg_unknown(env, regs, insn->dst_reg); 14638 if (insn->imm == 1) { /* cast from as(1) to as(0) */ 14639 dst_reg->type = PTR_TO_ARENA; 14640 /* PTR_TO_ARENA is 32-bit */ 14641 dst_reg->subreg_def = env->insn_idx + 1; 14642 } 14643 } else if (insn->off == 0) { 14644 /* case: R1 = R2 14645 * copy register state to dest reg 14646 */ 14647 assign_scalar_id_before_mov(env, src_reg); 14648 copy_register_state(dst_reg, src_reg); 14649 dst_reg->live |= REG_LIVE_WRITTEN; 14650 dst_reg->subreg_def = DEF_NOT_SUBREG; 14651 } else { 14652 /* case: R1 = (s8, s16 s32)R2 */ 14653 if (is_pointer_value(env, insn->src_reg)) { 14654 verbose(env, 14655 "R%d sign-extension part of pointer\n", 14656 insn->src_reg); 14657 return -EACCES; 14658 } else if (src_reg->type == SCALAR_VALUE) { 14659 bool no_sext; 14660 14661 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 14662 if (no_sext) 14663 assign_scalar_id_before_mov(env, src_reg); 14664 copy_register_state(dst_reg, src_reg); 14665 if (!no_sext) 14666 dst_reg->id = 0; 14667 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 14668 dst_reg->live |= REG_LIVE_WRITTEN; 14669 dst_reg->subreg_def = DEF_NOT_SUBREG; 14670 } else { 14671 mark_reg_unknown(env, regs, insn->dst_reg); 14672 } 14673 } 14674 } else { 14675 /* R1 = (u32) R2 */ 14676 if (is_pointer_value(env, insn->src_reg)) { 14677 verbose(env, 14678 "R%d partial copy of pointer\n", 14679 insn->src_reg); 14680 return -EACCES; 14681 } else if (src_reg->type == SCALAR_VALUE) { 14682 if (insn->off == 0) { 14683 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; 14684 14685 if (is_src_reg_u32) 14686 assign_scalar_id_before_mov(env, src_reg); 14687 copy_register_state(dst_reg, src_reg); 14688 /* Make sure ID is cleared if src_reg is not in u32 14689 * range otherwise dst_reg min/max could be incorrectly 14690 * propagated into src_reg by sync_linked_regs() 14691 */ 14692 if (!is_src_reg_u32) 14693 dst_reg->id = 0; 14694 dst_reg->live |= REG_LIVE_WRITTEN; 14695 dst_reg->subreg_def = env->insn_idx + 1; 14696 } else { 14697 /* case: W1 = (s8, s16)W2 */ 14698 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 14699 14700 if (no_sext) 14701 assign_scalar_id_before_mov(env, src_reg); 14702 copy_register_state(dst_reg, src_reg); 14703 if (!no_sext) 14704 dst_reg->id = 0; 14705 dst_reg->live |= REG_LIVE_WRITTEN; 14706 dst_reg->subreg_def = env->insn_idx + 1; 14707 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 14708 } 14709 } else { 14710 mark_reg_unknown(env, regs, 14711 insn->dst_reg); 14712 } 14713 zext_32_to_64(dst_reg); 14714 reg_bounds_sync(dst_reg); 14715 } 14716 } else { 14717 /* case: R = imm 14718 * remember the value we stored into this reg 14719 */ 14720 /* clear any state __mark_reg_known doesn't set */ 14721 mark_reg_unknown(env, regs, insn->dst_reg); 14722 regs[insn->dst_reg].type = SCALAR_VALUE; 14723 if (BPF_CLASS(insn->code) == BPF_ALU64) { 14724 __mark_reg_known(regs + insn->dst_reg, 14725 insn->imm); 14726 } else { 14727 __mark_reg_known(regs + insn->dst_reg, 14728 (u32)insn->imm); 14729 } 14730 } 14731 14732 } else if (opcode > BPF_END) { 14733 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 14734 return -EINVAL; 14735 14736 } else { /* all other ALU ops: and, sub, xor, add, ... */ 14737 14738 if (BPF_SRC(insn->code) == BPF_X) { 14739 if (insn->imm != 0 || insn->off > 1 || 14740 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14741 verbose(env, "BPF_ALU uses reserved fields\n"); 14742 return -EINVAL; 14743 } 14744 /* check src1 operand */ 14745 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14746 if (err) 14747 return err; 14748 } else { 14749 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 14750 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14751 verbose(env, "BPF_ALU uses reserved fields\n"); 14752 return -EINVAL; 14753 } 14754 } 14755 14756 /* check src2 operand */ 14757 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14758 if (err) 14759 return err; 14760 14761 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 14762 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 14763 verbose(env, "div by zero\n"); 14764 return -EINVAL; 14765 } 14766 14767 if ((opcode == BPF_LSH || opcode == BPF_RSH || 14768 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 14769 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 14770 14771 if (insn->imm < 0 || insn->imm >= size) { 14772 verbose(env, "invalid shift %d\n", insn->imm); 14773 return -EINVAL; 14774 } 14775 } 14776 14777 /* check dest operand */ 14778 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14779 err = err ?: adjust_reg_min_max_vals(env, insn); 14780 if (err) 14781 return err; 14782 } 14783 14784 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 14785 } 14786 14787 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 14788 struct bpf_reg_state *dst_reg, 14789 enum bpf_reg_type type, 14790 bool range_right_open) 14791 { 14792 struct bpf_func_state *state; 14793 struct bpf_reg_state *reg; 14794 int new_range; 14795 14796 if (dst_reg->off < 0 || 14797 (dst_reg->off == 0 && range_right_open)) 14798 /* This doesn't give us any range */ 14799 return; 14800 14801 if (dst_reg->umax_value > MAX_PACKET_OFF || 14802 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 14803 /* Risk of overflow. For instance, ptr + (1<<63) may be less 14804 * than pkt_end, but that's because it's also less than pkt. 14805 */ 14806 return; 14807 14808 new_range = dst_reg->off; 14809 if (range_right_open) 14810 new_range++; 14811 14812 /* Examples for register markings: 14813 * 14814 * pkt_data in dst register: 14815 * 14816 * r2 = r3; 14817 * r2 += 8; 14818 * if (r2 > pkt_end) goto <handle exception> 14819 * <access okay> 14820 * 14821 * r2 = r3; 14822 * r2 += 8; 14823 * if (r2 < pkt_end) goto <access okay> 14824 * <handle exception> 14825 * 14826 * Where: 14827 * r2 == dst_reg, pkt_end == src_reg 14828 * r2=pkt(id=n,off=8,r=0) 14829 * r3=pkt(id=n,off=0,r=0) 14830 * 14831 * pkt_data in src register: 14832 * 14833 * r2 = r3; 14834 * r2 += 8; 14835 * if (pkt_end >= r2) goto <access okay> 14836 * <handle exception> 14837 * 14838 * r2 = r3; 14839 * r2 += 8; 14840 * if (pkt_end <= r2) goto <handle exception> 14841 * <access okay> 14842 * 14843 * Where: 14844 * pkt_end == dst_reg, r2 == src_reg 14845 * r2=pkt(id=n,off=8,r=0) 14846 * r3=pkt(id=n,off=0,r=0) 14847 * 14848 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 14849 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 14850 * and [r3, r3 + 8-1) respectively is safe to access depending on 14851 * the check. 14852 */ 14853 14854 /* If our ids match, then we must have the same max_value. And we 14855 * don't care about the other reg's fixed offset, since if it's too big 14856 * the range won't allow anything. 14857 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 14858 */ 14859 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14860 if (reg->type == type && reg->id == dst_reg->id) 14861 /* keep the maximum range already checked */ 14862 reg->range = max(reg->range, new_range); 14863 })); 14864 } 14865 14866 /* 14867 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 14868 */ 14869 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14870 u8 opcode, bool is_jmp32) 14871 { 14872 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 14873 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 14874 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 14875 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 14876 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 14877 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 14878 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 14879 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 14880 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 14881 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 14882 14883 switch (opcode) { 14884 case BPF_JEQ: 14885 /* constants, umin/umax and smin/smax checks would be 14886 * redundant in this case because they all should match 14887 */ 14888 if (tnum_is_const(t1) && tnum_is_const(t2)) 14889 return t1.value == t2.value; 14890 /* non-overlapping ranges */ 14891 if (umin1 > umax2 || umax1 < umin2) 14892 return 0; 14893 if (smin1 > smax2 || smax1 < smin2) 14894 return 0; 14895 if (!is_jmp32) { 14896 /* if 64-bit ranges are inconclusive, see if we can 14897 * utilize 32-bit subrange knowledge to eliminate 14898 * branches that can't be taken a priori 14899 */ 14900 if (reg1->u32_min_value > reg2->u32_max_value || 14901 reg1->u32_max_value < reg2->u32_min_value) 14902 return 0; 14903 if (reg1->s32_min_value > reg2->s32_max_value || 14904 reg1->s32_max_value < reg2->s32_min_value) 14905 return 0; 14906 } 14907 break; 14908 case BPF_JNE: 14909 /* constants, umin/umax and smin/smax checks would be 14910 * redundant in this case because they all should match 14911 */ 14912 if (tnum_is_const(t1) && tnum_is_const(t2)) 14913 return t1.value != t2.value; 14914 /* non-overlapping ranges */ 14915 if (umin1 > umax2 || umax1 < umin2) 14916 return 1; 14917 if (smin1 > smax2 || smax1 < smin2) 14918 return 1; 14919 if (!is_jmp32) { 14920 /* if 64-bit ranges are inconclusive, see if we can 14921 * utilize 32-bit subrange knowledge to eliminate 14922 * branches that can't be taken a priori 14923 */ 14924 if (reg1->u32_min_value > reg2->u32_max_value || 14925 reg1->u32_max_value < reg2->u32_min_value) 14926 return 1; 14927 if (reg1->s32_min_value > reg2->s32_max_value || 14928 reg1->s32_max_value < reg2->s32_min_value) 14929 return 1; 14930 } 14931 break; 14932 case BPF_JSET: 14933 if (!is_reg_const(reg2, is_jmp32)) { 14934 swap(reg1, reg2); 14935 swap(t1, t2); 14936 } 14937 if (!is_reg_const(reg2, is_jmp32)) 14938 return -1; 14939 if ((~t1.mask & t1.value) & t2.value) 14940 return 1; 14941 if (!((t1.mask | t1.value) & t2.value)) 14942 return 0; 14943 break; 14944 case BPF_JGT: 14945 if (umin1 > umax2) 14946 return 1; 14947 else if (umax1 <= umin2) 14948 return 0; 14949 break; 14950 case BPF_JSGT: 14951 if (smin1 > smax2) 14952 return 1; 14953 else if (smax1 <= smin2) 14954 return 0; 14955 break; 14956 case BPF_JLT: 14957 if (umax1 < umin2) 14958 return 1; 14959 else if (umin1 >= umax2) 14960 return 0; 14961 break; 14962 case BPF_JSLT: 14963 if (smax1 < smin2) 14964 return 1; 14965 else if (smin1 >= smax2) 14966 return 0; 14967 break; 14968 case BPF_JGE: 14969 if (umin1 >= umax2) 14970 return 1; 14971 else if (umax1 < umin2) 14972 return 0; 14973 break; 14974 case BPF_JSGE: 14975 if (smin1 >= smax2) 14976 return 1; 14977 else if (smax1 < smin2) 14978 return 0; 14979 break; 14980 case BPF_JLE: 14981 if (umax1 <= umin2) 14982 return 1; 14983 else if (umin1 > umax2) 14984 return 0; 14985 break; 14986 case BPF_JSLE: 14987 if (smax1 <= smin2) 14988 return 1; 14989 else if (smin1 > smax2) 14990 return 0; 14991 break; 14992 } 14993 14994 return -1; 14995 } 14996 14997 static int flip_opcode(u32 opcode) 14998 { 14999 /* How can we transform "a <op> b" into "b <op> a"? */ 15000 static const u8 opcode_flip[16] = { 15001 /* these stay the same */ 15002 [BPF_JEQ >> 4] = BPF_JEQ, 15003 [BPF_JNE >> 4] = BPF_JNE, 15004 [BPF_JSET >> 4] = BPF_JSET, 15005 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 15006 [BPF_JGE >> 4] = BPF_JLE, 15007 [BPF_JGT >> 4] = BPF_JLT, 15008 [BPF_JLE >> 4] = BPF_JGE, 15009 [BPF_JLT >> 4] = BPF_JGT, 15010 [BPF_JSGE >> 4] = BPF_JSLE, 15011 [BPF_JSGT >> 4] = BPF_JSLT, 15012 [BPF_JSLE >> 4] = BPF_JSGE, 15013 [BPF_JSLT >> 4] = BPF_JSGT 15014 }; 15015 return opcode_flip[opcode >> 4]; 15016 } 15017 15018 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 15019 struct bpf_reg_state *src_reg, 15020 u8 opcode) 15021 { 15022 struct bpf_reg_state *pkt; 15023 15024 if (src_reg->type == PTR_TO_PACKET_END) { 15025 pkt = dst_reg; 15026 } else if (dst_reg->type == PTR_TO_PACKET_END) { 15027 pkt = src_reg; 15028 opcode = flip_opcode(opcode); 15029 } else { 15030 return -1; 15031 } 15032 15033 if (pkt->range >= 0) 15034 return -1; 15035 15036 switch (opcode) { 15037 case BPF_JLE: 15038 /* pkt <= pkt_end */ 15039 fallthrough; 15040 case BPF_JGT: 15041 /* pkt > pkt_end */ 15042 if (pkt->range == BEYOND_PKT_END) 15043 /* pkt has at last one extra byte beyond pkt_end */ 15044 return opcode == BPF_JGT; 15045 break; 15046 case BPF_JLT: 15047 /* pkt < pkt_end */ 15048 fallthrough; 15049 case BPF_JGE: 15050 /* pkt >= pkt_end */ 15051 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 15052 return opcode == BPF_JGE; 15053 break; 15054 } 15055 return -1; 15056 } 15057 15058 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 15059 * and return: 15060 * 1 - branch will be taken and "goto target" will be executed 15061 * 0 - branch will not be taken and fall-through to next insn 15062 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 15063 * range [0,10] 15064 */ 15065 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15066 u8 opcode, bool is_jmp32) 15067 { 15068 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 15069 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 15070 15071 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 15072 u64 val; 15073 15074 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 15075 if (!is_reg_const(reg2, is_jmp32)) { 15076 opcode = flip_opcode(opcode); 15077 swap(reg1, reg2); 15078 } 15079 /* and ensure that reg2 is a constant */ 15080 if (!is_reg_const(reg2, is_jmp32)) 15081 return -1; 15082 15083 if (!reg_not_null(reg1)) 15084 return -1; 15085 15086 /* If pointer is valid tests against zero will fail so we can 15087 * use this to direct branch taken. 15088 */ 15089 val = reg_const_value(reg2, is_jmp32); 15090 if (val != 0) 15091 return -1; 15092 15093 switch (opcode) { 15094 case BPF_JEQ: 15095 return 0; 15096 case BPF_JNE: 15097 return 1; 15098 default: 15099 return -1; 15100 } 15101 } 15102 15103 /* now deal with two scalars, but not necessarily constants */ 15104 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 15105 } 15106 15107 /* Opcode that corresponds to a *false* branch condition. 15108 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 15109 */ 15110 static u8 rev_opcode(u8 opcode) 15111 { 15112 switch (opcode) { 15113 case BPF_JEQ: return BPF_JNE; 15114 case BPF_JNE: return BPF_JEQ; 15115 /* JSET doesn't have it's reverse opcode in BPF, so add 15116 * BPF_X flag to denote the reverse of that operation 15117 */ 15118 case BPF_JSET: return BPF_JSET | BPF_X; 15119 case BPF_JSET | BPF_X: return BPF_JSET; 15120 case BPF_JGE: return BPF_JLT; 15121 case BPF_JGT: return BPF_JLE; 15122 case BPF_JLE: return BPF_JGT; 15123 case BPF_JLT: return BPF_JGE; 15124 case BPF_JSGE: return BPF_JSLT; 15125 case BPF_JSGT: return BPF_JSLE; 15126 case BPF_JSLE: return BPF_JSGT; 15127 case BPF_JSLT: return BPF_JSGE; 15128 default: return 0; 15129 } 15130 } 15131 15132 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 15133 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15134 u8 opcode, bool is_jmp32) 15135 { 15136 struct tnum t; 15137 u64 val; 15138 15139 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */ 15140 switch (opcode) { 15141 case BPF_JGE: 15142 case BPF_JGT: 15143 case BPF_JSGE: 15144 case BPF_JSGT: 15145 opcode = flip_opcode(opcode); 15146 swap(reg1, reg2); 15147 break; 15148 default: 15149 break; 15150 } 15151 15152 switch (opcode) { 15153 case BPF_JEQ: 15154 if (is_jmp32) { 15155 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 15156 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 15157 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 15158 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 15159 reg2->u32_min_value = reg1->u32_min_value; 15160 reg2->u32_max_value = reg1->u32_max_value; 15161 reg2->s32_min_value = reg1->s32_min_value; 15162 reg2->s32_max_value = reg1->s32_max_value; 15163 15164 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 15165 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 15166 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 15167 } else { 15168 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 15169 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 15170 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 15171 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 15172 reg2->umin_value = reg1->umin_value; 15173 reg2->umax_value = reg1->umax_value; 15174 reg2->smin_value = reg1->smin_value; 15175 reg2->smax_value = reg1->smax_value; 15176 15177 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 15178 reg2->var_off = reg1->var_off; 15179 } 15180 break; 15181 case BPF_JNE: 15182 if (!is_reg_const(reg2, is_jmp32)) 15183 swap(reg1, reg2); 15184 if (!is_reg_const(reg2, is_jmp32)) 15185 break; 15186 15187 /* try to recompute the bound of reg1 if reg2 is a const and 15188 * is exactly the edge of reg1. 15189 */ 15190 val = reg_const_value(reg2, is_jmp32); 15191 if (is_jmp32) { 15192 /* u32_min_value is not equal to 0xffffffff at this point, 15193 * because otherwise u32_max_value is 0xffffffff as well, 15194 * in such a case both reg1 and reg2 would be constants, 15195 * jump would be predicted and reg_set_min_max() won't 15196 * be called. 15197 * 15198 * Same reasoning works for all {u,s}{min,max}{32,64} cases 15199 * below. 15200 */ 15201 if (reg1->u32_min_value == (u32)val) 15202 reg1->u32_min_value++; 15203 if (reg1->u32_max_value == (u32)val) 15204 reg1->u32_max_value--; 15205 if (reg1->s32_min_value == (s32)val) 15206 reg1->s32_min_value++; 15207 if (reg1->s32_max_value == (s32)val) 15208 reg1->s32_max_value--; 15209 } else { 15210 if (reg1->umin_value == (u64)val) 15211 reg1->umin_value++; 15212 if (reg1->umax_value == (u64)val) 15213 reg1->umax_value--; 15214 if (reg1->smin_value == (s64)val) 15215 reg1->smin_value++; 15216 if (reg1->smax_value == (s64)val) 15217 reg1->smax_value--; 15218 } 15219 break; 15220 case BPF_JSET: 15221 if (!is_reg_const(reg2, is_jmp32)) 15222 swap(reg1, reg2); 15223 if (!is_reg_const(reg2, is_jmp32)) 15224 break; 15225 val = reg_const_value(reg2, is_jmp32); 15226 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 15227 * requires single bit to learn something useful. E.g., if we 15228 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 15229 * are actually set? We can learn something definite only if 15230 * it's a single-bit value to begin with. 15231 * 15232 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 15233 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 15234 * bit 1 is set, which we can readily use in adjustments. 15235 */ 15236 if (!is_power_of_2(val)) 15237 break; 15238 if (is_jmp32) { 15239 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 15240 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 15241 } else { 15242 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 15243 } 15244 break; 15245 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 15246 if (!is_reg_const(reg2, is_jmp32)) 15247 swap(reg1, reg2); 15248 if (!is_reg_const(reg2, is_jmp32)) 15249 break; 15250 val = reg_const_value(reg2, is_jmp32); 15251 if (is_jmp32) { 15252 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 15253 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 15254 } else { 15255 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 15256 } 15257 break; 15258 case BPF_JLE: 15259 if (is_jmp32) { 15260 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 15261 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 15262 } else { 15263 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 15264 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 15265 } 15266 break; 15267 case BPF_JLT: 15268 if (is_jmp32) { 15269 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 15270 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 15271 } else { 15272 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 15273 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 15274 } 15275 break; 15276 case BPF_JSLE: 15277 if (is_jmp32) { 15278 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 15279 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 15280 } else { 15281 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 15282 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 15283 } 15284 break; 15285 case BPF_JSLT: 15286 if (is_jmp32) { 15287 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 15288 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 15289 } else { 15290 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 15291 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 15292 } 15293 break; 15294 default: 15295 return; 15296 } 15297 } 15298 15299 /* Adjusts the register min/max values in the case that the dst_reg and 15300 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 15301 * check, in which case we have a fake SCALAR_VALUE representing insn->imm). 15302 * Technically we can do similar adjustments for pointers to the same object, 15303 * but we don't support that right now. 15304 */ 15305 static int reg_set_min_max(struct bpf_verifier_env *env, 15306 struct bpf_reg_state *true_reg1, 15307 struct bpf_reg_state *true_reg2, 15308 struct bpf_reg_state *false_reg1, 15309 struct bpf_reg_state *false_reg2, 15310 u8 opcode, bool is_jmp32) 15311 { 15312 int err; 15313 15314 /* If either register is a pointer, we can't learn anything about its 15315 * variable offset from the compare (unless they were a pointer into 15316 * the same object, but we don't bother with that). 15317 */ 15318 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 15319 return 0; 15320 15321 /* fallthrough (FALSE) branch */ 15322 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 15323 reg_bounds_sync(false_reg1); 15324 reg_bounds_sync(false_reg2); 15325 15326 /* jump (TRUE) branch */ 15327 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 15328 reg_bounds_sync(true_reg1); 15329 reg_bounds_sync(true_reg2); 15330 15331 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 15332 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 15333 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 15334 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 15335 return err; 15336 } 15337 15338 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 15339 struct bpf_reg_state *reg, u32 id, 15340 bool is_null) 15341 { 15342 if (type_may_be_null(reg->type) && reg->id == id && 15343 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 15344 /* Old offset (both fixed and variable parts) should have been 15345 * known-zero, because we don't allow pointer arithmetic on 15346 * pointers that might be NULL. If we see this happening, don't 15347 * convert the register. 15348 * 15349 * But in some cases, some helpers that return local kptrs 15350 * advance offset for the returned pointer. In those cases, it 15351 * is fine to expect to see reg->off. 15352 */ 15353 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 15354 return; 15355 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 15356 WARN_ON_ONCE(reg->off)) 15357 return; 15358 15359 if (is_null) { 15360 reg->type = SCALAR_VALUE; 15361 /* We don't need id and ref_obj_id from this point 15362 * onwards anymore, thus we should better reset it, 15363 * so that state pruning has chances to take effect. 15364 */ 15365 reg->id = 0; 15366 reg->ref_obj_id = 0; 15367 15368 return; 15369 } 15370 15371 mark_ptr_not_null_reg(reg); 15372 15373 if (!reg_may_point_to_spin_lock(reg)) { 15374 /* For not-NULL ptr, reg->ref_obj_id will be reset 15375 * in release_reference(). 15376 * 15377 * reg->id is still used by spin_lock ptr. Other 15378 * than spin_lock ptr type, reg->id can be reset. 15379 */ 15380 reg->id = 0; 15381 } 15382 } 15383 } 15384 15385 /* The logic is similar to find_good_pkt_pointers(), both could eventually 15386 * be folded together at some point. 15387 */ 15388 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 15389 bool is_null) 15390 { 15391 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 15392 struct bpf_reg_state *regs = state->regs, *reg; 15393 u32 ref_obj_id = regs[regno].ref_obj_id; 15394 u32 id = regs[regno].id; 15395 15396 if (ref_obj_id && ref_obj_id == id && is_null) 15397 /* regs[regno] is in the " == NULL" branch. 15398 * No one could have freed the reference state before 15399 * doing the NULL check. 15400 */ 15401 WARN_ON_ONCE(release_reference_state(state, id)); 15402 15403 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 15404 mark_ptr_or_null_reg(state, reg, id, is_null); 15405 })); 15406 } 15407 15408 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 15409 struct bpf_reg_state *dst_reg, 15410 struct bpf_reg_state *src_reg, 15411 struct bpf_verifier_state *this_branch, 15412 struct bpf_verifier_state *other_branch) 15413 { 15414 if (BPF_SRC(insn->code) != BPF_X) 15415 return false; 15416 15417 /* Pointers are always 64-bit. */ 15418 if (BPF_CLASS(insn->code) == BPF_JMP32) 15419 return false; 15420 15421 switch (BPF_OP(insn->code)) { 15422 case BPF_JGT: 15423 if ((dst_reg->type == PTR_TO_PACKET && 15424 src_reg->type == PTR_TO_PACKET_END) || 15425 (dst_reg->type == PTR_TO_PACKET_META && 15426 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15427 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 15428 find_good_pkt_pointers(this_branch, dst_reg, 15429 dst_reg->type, false); 15430 mark_pkt_end(other_branch, insn->dst_reg, true); 15431 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15432 src_reg->type == PTR_TO_PACKET) || 15433 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15434 src_reg->type == PTR_TO_PACKET_META)) { 15435 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 15436 find_good_pkt_pointers(other_branch, src_reg, 15437 src_reg->type, true); 15438 mark_pkt_end(this_branch, insn->src_reg, false); 15439 } else { 15440 return false; 15441 } 15442 break; 15443 case BPF_JLT: 15444 if ((dst_reg->type == PTR_TO_PACKET && 15445 src_reg->type == PTR_TO_PACKET_END) || 15446 (dst_reg->type == PTR_TO_PACKET_META && 15447 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15448 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 15449 find_good_pkt_pointers(other_branch, dst_reg, 15450 dst_reg->type, true); 15451 mark_pkt_end(this_branch, insn->dst_reg, false); 15452 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15453 src_reg->type == PTR_TO_PACKET) || 15454 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15455 src_reg->type == PTR_TO_PACKET_META)) { 15456 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 15457 find_good_pkt_pointers(this_branch, src_reg, 15458 src_reg->type, false); 15459 mark_pkt_end(other_branch, insn->src_reg, true); 15460 } else { 15461 return false; 15462 } 15463 break; 15464 case BPF_JGE: 15465 if ((dst_reg->type == PTR_TO_PACKET && 15466 src_reg->type == PTR_TO_PACKET_END) || 15467 (dst_reg->type == PTR_TO_PACKET_META && 15468 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15469 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 15470 find_good_pkt_pointers(this_branch, dst_reg, 15471 dst_reg->type, true); 15472 mark_pkt_end(other_branch, insn->dst_reg, false); 15473 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15474 src_reg->type == PTR_TO_PACKET) || 15475 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15476 src_reg->type == PTR_TO_PACKET_META)) { 15477 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 15478 find_good_pkt_pointers(other_branch, src_reg, 15479 src_reg->type, false); 15480 mark_pkt_end(this_branch, insn->src_reg, true); 15481 } else { 15482 return false; 15483 } 15484 break; 15485 case BPF_JLE: 15486 if ((dst_reg->type == PTR_TO_PACKET && 15487 src_reg->type == PTR_TO_PACKET_END) || 15488 (dst_reg->type == PTR_TO_PACKET_META && 15489 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15490 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 15491 find_good_pkt_pointers(other_branch, dst_reg, 15492 dst_reg->type, false); 15493 mark_pkt_end(this_branch, insn->dst_reg, true); 15494 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15495 src_reg->type == PTR_TO_PACKET) || 15496 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15497 src_reg->type == PTR_TO_PACKET_META)) { 15498 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 15499 find_good_pkt_pointers(this_branch, src_reg, 15500 src_reg->type, true); 15501 mark_pkt_end(other_branch, insn->src_reg, false); 15502 } else { 15503 return false; 15504 } 15505 break; 15506 default: 15507 return false; 15508 } 15509 15510 return true; 15511 } 15512 15513 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg, 15514 u32 id, u32 frameno, u32 spi_or_reg, bool is_reg) 15515 { 15516 struct linked_reg *e; 15517 15518 if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id) 15519 return; 15520 15521 e = linked_regs_push(reg_set); 15522 if (e) { 15523 e->frameno = frameno; 15524 e->is_reg = is_reg; 15525 e->regno = spi_or_reg; 15526 } else { 15527 reg->id = 0; 15528 } 15529 } 15530 15531 /* For all R being scalar registers or spilled scalar registers 15532 * in verifier state, save R in linked_regs if R->id == id. 15533 * If there are too many Rs sharing same id, reset id for leftover Rs. 15534 */ 15535 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id, 15536 struct linked_regs *linked_regs) 15537 { 15538 struct bpf_func_state *func; 15539 struct bpf_reg_state *reg; 15540 int i, j; 15541 15542 id = id & ~BPF_ADD_CONST; 15543 for (i = vstate->curframe; i >= 0; i--) { 15544 func = vstate->frame[i]; 15545 for (j = 0; j < BPF_REG_FP; j++) { 15546 reg = &func->regs[j]; 15547 __collect_linked_regs(linked_regs, reg, id, i, j, true); 15548 } 15549 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 15550 if (!is_spilled_reg(&func->stack[j])) 15551 continue; 15552 reg = &func->stack[j].spilled_ptr; 15553 __collect_linked_regs(linked_regs, reg, id, i, j, false); 15554 } 15555 } 15556 } 15557 15558 /* For all R in linked_regs, copy known_reg range into R 15559 * if R->id == known_reg->id. 15560 */ 15561 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg, 15562 struct linked_regs *linked_regs) 15563 { 15564 struct bpf_reg_state fake_reg; 15565 struct bpf_reg_state *reg; 15566 struct linked_reg *e; 15567 int i; 15568 15569 for (i = 0; i < linked_regs->cnt; ++i) { 15570 e = &linked_regs->entries[i]; 15571 reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno] 15572 : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr; 15573 if (reg->type != SCALAR_VALUE || reg == known_reg) 15574 continue; 15575 if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST)) 15576 continue; 15577 if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) || 15578 reg->off == known_reg->off) { 15579 s32 saved_subreg_def = reg->subreg_def; 15580 15581 copy_register_state(reg, known_reg); 15582 reg->subreg_def = saved_subreg_def; 15583 } else { 15584 s32 saved_subreg_def = reg->subreg_def; 15585 s32 saved_off = reg->off; 15586 15587 fake_reg.type = SCALAR_VALUE; 15588 __mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off); 15589 15590 /* reg = known_reg; reg += delta */ 15591 copy_register_state(reg, known_reg); 15592 /* 15593 * Must preserve off, id and add_const flag, 15594 * otherwise another sync_linked_regs() will be incorrect. 15595 */ 15596 reg->off = saved_off; 15597 reg->subreg_def = saved_subreg_def; 15598 15599 scalar32_min_max_add(reg, &fake_reg); 15600 scalar_min_max_add(reg, &fake_reg); 15601 reg->var_off = tnum_add(reg->var_off, fake_reg.var_off); 15602 } 15603 } 15604 } 15605 15606 static int check_cond_jmp_op(struct bpf_verifier_env *env, 15607 struct bpf_insn *insn, int *insn_idx) 15608 { 15609 struct bpf_verifier_state *this_branch = env->cur_state; 15610 struct bpf_verifier_state *other_branch; 15611 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 15612 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 15613 struct bpf_reg_state *eq_branch_regs; 15614 struct linked_regs linked_regs = {}; 15615 u8 opcode = BPF_OP(insn->code); 15616 bool is_jmp32; 15617 int pred = -1; 15618 int err; 15619 15620 /* Only conditional jumps are expected to reach here. */ 15621 if (opcode == BPF_JA || opcode > BPF_JCOND) { 15622 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 15623 return -EINVAL; 15624 } 15625 15626 if (opcode == BPF_JCOND) { 15627 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 15628 int idx = *insn_idx; 15629 15630 if (insn->code != (BPF_JMP | BPF_JCOND) || 15631 insn->src_reg != BPF_MAY_GOTO || 15632 insn->dst_reg || insn->imm || insn->off == 0) { 15633 verbose(env, "invalid may_goto off %d imm %d\n", 15634 insn->off, insn->imm); 15635 return -EINVAL; 15636 } 15637 prev_st = find_prev_entry(env, cur_st->parent, idx); 15638 15639 /* branch out 'fallthrough' insn as a new state to explore */ 15640 queued_st = push_stack(env, idx + 1, idx, false); 15641 if (!queued_st) 15642 return -ENOMEM; 15643 15644 queued_st->may_goto_depth++; 15645 if (prev_st) 15646 widen_imprecise_scalars(env, prev_st, queued_st); 15647 *insn_idx += insn->off; 15648 return 0; 15649 } 15650 15651 /* check src2 operand */ 15652 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15653 if (err) 15654 return err; 15655 15656 dst_reg = ®s[insn->dst_reg]; 15657 if (BPF_SRC(insn->code) == BPF_X) { 15658 if (insn->imm != 0) { 15659 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 15660 return -EINVAL; 15661 } 15662 15663 /* check src1 operand */ 15664 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15665 if (err) 15666 return err; 15667 15668 src_reg = ®s[insn->src_reg]; 15669 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 15670 is_pointer_value(env, insn->src_reg)) { 15671 verbose(env, "R%d pointer comparison prohibited\n", 15672 insn->src_reg); 15673 return -EACCES; 15674 } 15675 } else { 15676 if (insn->src_reg != BPF_REG_0) { 15677 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 15678 return -EINVAL; 15679 } 15680 src_reg = &env->fake_reg[0]; 15681 memset(src_reg, 0, sizeof(*src_reg)); 15682 src_reg->type = SCALAR_VALUE; 15683 __mark_reg_known(src_reg, insn->imm); 15684 } 15685 15686 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 15687 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 15688 if (pred >= 0) { 15689 /* If we get here with a dst_reg pointer type it is because 15690 * above is_branch_taken() special cased the 0 comparison. 15691 */ 15692 if (!__is_pointer_value(false, dst_reg)) 15693 err = mark_chain_precision(env, insn->dst_reg); 15694 if (BPF_SRC(insn->code) == BPF_X && !err && 15695 !__is_pointer_value(false, src_reg)) 15696 err = mark_chain_precision(env, insn->src_reg); 15697 if (err) 15698 return err; 15699 } 15700 15701 if (pred == 1) { 15702 /* Only follow the goto, ignore fall-through. If needed, push 15703 * the fall-through branch for simulation under speculative 15704 * execution. 15705 */ 15706 if (!env->bypass_spec_v1 && 15707 !sanitize_speculative_path(env, insn, *insn_idx + 1, 15708 *insn_idx)) 15709 return -EFAULT; 15710 if (env->log.level & BPF_LOG_LEVEL) 15711 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15712 *insn_idx += insn->off; 15713 return 0; 15714 } else if (pred == 0) { 15715 /* Only follow the fall-through branch, since that's where the 15716 * program will go. If needed, push the goto branch for 15717 * simulation under speculative execution. 15718 */ 15719 if (!env->bypass_spec_v1 && 15720 !sanitize_speculative_path(env, insn, 15721 *insn_idx + insn->off + 1, 15722 *insn_idx)) 15723 return -EFAULT; 15724 if (env->log.level & BPF_LOG_LEVEL) 15725 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15726 return 0; 15727 } 15728 15729 /* Push scalar registers sharing same ID to jump history, 15730 * do this before creating 'other_branch', so that both 15731 * 'this_branch' and 'other_branch' share this history 15732 * if parent state is created. 15733 */ 15734 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id) 15735 collect_linked_regs(this_branch, src_reg->id, &linked_regs); 15736 if (dst_reg->type == SCALAR_VALUE && dst_reg->id) 15737 collect_linked_regs(this_branch, dst_reg->id, &linked_regs); 15738 if (linked_regs.cnt > 1) { 15739 err = push_insn_history(env, this_branch, 0, linked_regs_pack(&linked_regs)); 15740 if (err) 15741 return err; 15742 } 15743 15744 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 15745 false); 15746 if (!other_branch) 15747 return -EFAULT; 15748 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 15749 15750 if (BPF_SRC(insn->code) == BPF_X) { 15751 err = reg_set_min_max(env, 15752 &other_branch_regs[insn->dst_reg], 15753 &other_branch_regs[insn->src_reg], 15754 dst_reg, src_reg, opcode, is_jmp32); 15755 } else /* BPF_SRC(insn->code) == BPF_K */ { 15756 /* reg_set_min_max() can mangle the fake_reg. Make a copy 15757 * so that these are two different memory locations. The 15758 * src_reg is not used beyond here in context of K. 15759 */ 15760 memcpy(&env->fake_reg[1], &env->fake_reg[0], 15761 sizeof(env->fake_reg[0])); 15762 err = reg_set_min_max(env, 15763 &other_branch_regs[insn->dst_reg], 15764 &env->fake_reg[0], 15765 dst_reg, &env->fake_reg[1], 15766 opcode, is_jmp32); 15767 } 15768 if (err) 15769 return err; 15770 15771 if (BPF_SRC(insn->code) == BPF_X && 15772 src_reg->type == SCALAR_VALUE && src_reg->id && 15773 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 15774 sync_linked_regs(this_branch, src_reg, &linked_regs); 15775 sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs); 15776 } 15777 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 15778 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 15779 sync_linked_regs(this_branch, dst_reg, &linked_regs); 15780 sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs); 15781 } 15782 15783 /* if one pointer register is compared to another pointer 15784 * register check if PTR_MAYBE_NULL could be lifted. 15785 * E.g. register A - maybe null 15786 * register B - not null 15787 * for JNE A, B, ... - A is not null in the false branch; 15788 * for JEQ A, B, ... - A is not null in the true branch. 15789 * 15790 * Since PTR_TO_BTF_ID points to a kernel struct that does 15791 * not need to be null checked by the BPF program, i.e., 15792 * could be null even without PTR_MAYBE_NULL marking, so 15793 * only propagate nullness when neither reg is that type. 15794 */ 15795 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 15796 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 15797 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 15798 base_type(src_reg->type) != PTR_TO_BTF_ID && 15799 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 15800 eq_branch_regs = NULL; 15801 switch (opcode) { 15802 case BPF_JEQ: 15803 eq_branch_regs = other_branch_regs; 15804 break; 15805 case BPF_JNE: 15806 eq_branch_regs = regs; 15807 break; 15808 default: 15809 /* do nothing */ 15810 break; 15811 } 15812 if (eq_branch_regs) { 15813 if (type_may_be_null(src_reg->type)) 15814 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 15815 else 15816 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 15817 } 15818 } 15819 15820 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 15821 * NOTE: these optimizations below are related with pointer comparison 15822 * which will never be JMP32. 15823 */ 15824 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 15825 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 15826 type_may_be_null(dst_reg->type)) { 15827 /* Mark all identical registers in each branch as either 15828 * safe or unknown depending R == 0 or R != 0 conditional. 15829 */ 15830 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 15831 opcode == BPF_JNE); 15832 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 15833 opcode == BPF_JEQ); 15834 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 15835 this_branch, other_branch) && 15836 is_pointer_value(env, insn->dst_reg)) { 15837 verbose(env, "R%d pointer comparison prohibited\n", 15838 insn->dst_reg); 15839 return -EACCES; 15840 } 15841 if (env->log.level & BPF_LOG_LEVEL) 15842 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15843 return 0; 15844 } 15845 15846 /* verify BPF_LD_IMM64 instruction */ 15847 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 15848 { 15849 struct bpf_insn_aux_data *aux = cur_aux(env); 15850 struct bpf_reg_state *regs = cur_regs(env); 15851 struct bpf_reg_state *dst_reg; 15852 struct bpf_map *map; 15853 int err; 15854 15855 if (BPF_SIZE(insn->code) != BPF_DW) { 15856 verbose(env, "invalid BPF_LD_IMM insn\n"); 15857 return -EINVAL; 15858 } 15859 if (insn->off != 0) { 15860 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 15861 return -EINVAL; 15862 } 15863 15864 err = check_reg_arg(env, insn->dst_reg, DST_OP); 15865 if (err) 15866 return err; 15867 15868 dst_reg = ®s[insn->dst_reg]; 15869 if (insn->src_reg == 0) { 15870 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 15871 15872 dst_reg->type = SCALAR_VALUE; 15873 __mark_reg_known(®s[insn->dst_reg], imm); 15874 return 0; 15875 } 15876 15877 /* All special src_reg cases are listed below. From this point onwards 15878 * we either succeed and assign a corresponding dst_reg->type after 15879 * zeroing the offset, or fail and reject the program. 15880 */ 15881 mark_reg_known_zero(env, regs, insn->dst_reg); 15882 15883 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 15884 dst_reg->type = aux->btf_var.reg_type; 15885 switch (base_type(dst_reg->type)) { 15886 case PTR_TO_MEM: 15887 dst_reg->mem_size = aux->btf_var.mem_size; 15888 break; 15889 case PTR_TO_BTF_ID: 15890 dst_reg->btf = aux->btf_var.btf; 15891 dst_reg->btf_id = aux->btf_var.btf_id; 15892 break; 15893 default: 15894 verbose(env, "bpf verifier is misconfigured\n"); 15895 return -EFAULT; 15896 } 15897 return 0; 15898 } 15899 15900 if (insn->src_reg == BPF_PSEUDO_FUNC) { 15901 struct bpf_prog_aux *aux = env->prog->aux; 15902 u32 subprogno = find_subprog(env, 15903 env->insn_idx + insn->imm + 1); 15904 15905 if (!aux->func_info) { 15906 verbose(env, "missing btf func_info\n"); 15907 return -EINVAL; 15908 } 15909 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 15910 verbose(env, "callback function not static\n"); 15911 return -EINVAL; 15912 } 15913 15914 dst_reg->type = PTR_TO_FUNC; 15915 dst_reg->subprogno = subprogno; 15916 return 0; 15917 } 15918 15919 map = env->used_maps[aux->map_index]; 15920 dst_reg->map_ptr = map; 15921 15922 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 15923 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 15924 if (map->map_type == BPF_MAP_TYPE_ARENA) { 15925 __mark_reg_unknown(env, dst_reg); 15926 return 0; 15927 } 15928 dst_reg->type = PTR_TO_MAP_VALUE; 15929 dst_reg->off = aux->map_off; 15930 WARN_ON_ONCE(map->max_entries != 1); 15931 /* We want reg->id to be same (0) as map_value is not distinct */ 15932 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 15933 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 15934 dst_reg->type = CONST_PTR_TO_MAP; 15935 } else { 15936 verbose(env, "bpf verifier is misconfigured\n"); 15937 return -EINVAL; 15938 } 15939 15940 return 0; 15941 } 15942 15943 static bool may_access_skb(enum bpf_prog_type type) 15944 { 15945 switch (type) { 15946 case BPF_PROG_TYPE_SOCKET_FILTER: 15947 case BPF_PROG_TYPE_SCHED_CLS: 15948 case BPF_PROG_TYPE_SCHED_ACT: 15949 return true; 15950 default: 15951 return false; 15952 } 15953 } 15954 15955 /* verify safety of LD_ABS|LD_IND instructions: 15956 * - they can only appear in the programs where ctx == skb 15957 * - since they are wrappers of function calls, they scratch R1-R5 registers, 15958 * preserve R6-R9, and store return value into R0 15959 * 15960 * Implicit input: 15961 * ctx == skb == R6 == CTX 15962 * 15963 * Explicit input: 15964 * SRC == any register 15965 * IMM == 32-bit immediate 15966 * 15967 * Output: 15968 * R0 - 8/16/32-bit skb data converted to cpu endianness 15969 */ 15970 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 15971 { 15972 struct bpf_reg_state *regs = cur_regs(env); 15973 static const int ctx_reg = BPF_REG_6; 15974 u8 mode = BPF_MODE(insn->code); 15975 int i, err; 15976 15977 if (!may_access_skb(resolve_prog_type(env->prog))) { 15978 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 15979 return -EINVAL; 15980 } 15981 15982 if (!env->ops->gen_ld_abs) { 15983 verbose(env, "bpf verifier is misconfigured\n"); 15984 return -EINVAL; 15985 } 15986 15987 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 15988 BPF_SIZE(insn->code) == BPF_DW || 15989 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 15990 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 15991 return -EINVAL; 15992 } 15993 15994 /* check whether implicit source operand (register R6) is readable */ 15995 err = check_reg_arg(env, ctx_reg, SRC_OP); 15996 if (err) 15997 return err; 15998 15999 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 16000 * gen_ld_abs() may terminate the program at runtime, leading to 16001 * reference leak. 16002 */ 16003 err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]"); 16004 if (err) 16005 return err; 16006 16007 if (regs[ctx_reg].type != PTR_TO_CTX) { 16008 verbose(env, 16009 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 16010 return -EINVAL; 16011 } 16012 16013 if (mode == BPF_IND) { 16014 /* check explicit source operand */ 16015 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16016 if (err) 16017 return err; 16018 } 16019 16020 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 16021 if (err < 0) 16022 return err; 16023 16024 /* reset caller saved regs to unreadable */ 16025 for (i = 0; i < CALLER_SAVED_REGS; i++) { 16026 mark_reg_not_init(env, regs, caller_saved[i]); 16027 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 16028 } 16029 16030 /* mark destination R0 register as readable, since it contains 16031 * the value fetched from the packet. 16032 * Already marked as written above. 16033 */ 16034 mark_reg_unknown(env, regs, BPF_REG_0); 16035 /* ld_abs load up to 32-bit skb data. */ 16036 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 16037 return 0; 16038 } 16039 16040 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) 16041 { 16042 const char *exit_ctx = "At program exit"; 16043 struct tnum enforce_attach_type_range = tnum_unknown; 16044 const struct bpf_prog *prog = env->prog; 16045 struct bpf_reg_state *reg; 16046 struct bpf_retval_range range = retval_range(0, 1); 16047 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 16048 int err; 16049 struct bpf_func_state *frame = env->cur_state->frame[0]; 16050 const bool is_subprog = frame->subprogno; 16051 bool return_32bit = false; 16052 16053 /* LSM and struct_ops func-ptr's return type could be "void" */ 16054 if (!is_subprog || frame->in_exception_callback_fn) { 16055 switch (prog_type) { 16056 case BPF_PROG_TYPE_LSM: 16057 if (prog->expected_attach_type == BPF_LSM_CGROUP) 16058 /* See below, can be 0 or 0-1 depending on hook. */ 16059 break; 16060 fallthrough; 16061 case BPF_PROG_TYPE_STRUCT_OPS: 16062 if (!prog->aux->attach_func_proto->type) 16063 return 0; 16064 break; 16065 default: 16066 break; 16067 } 16068 } 16069 16070 /* eBPF calling convention is such that R0 is used 16071 * to return the value from eBPF program. 16072 * Make sure that it's readable at this time 16073 * of bpf_exit, which means that program wrote 16074 * something into it earlier 16075 */ 16076 err = check_reg_arg(env, regno, SRC_OP); 16077 if (err) 16078 return err; 16079 16080 if (is_pointer_value(env, regno)) { 16081 verbose(env, "R%d leaks addr as return value\n", regno); 16082 return -EACCES; 16083 } 16084 16085 reg = cur_regs(env) + regno; 16086 16087 if (frame->in_async_callback_fn) { 16088 /* enforce return zero from async callbacks like timer */ 16089 exit_ctx = "At async callback return"; 16090 range = retval_range(0, 0); 16091 goto enforce_retval; 16092 } 16093 16094 if (is_subprog && !frame->in_exception_callback_fn) { 16095 if (reg->type != SCALAR_VALUE) { 16096 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 16097 regno, reg_type_str(env, reg->type)); 16098 return -EINVAL; 16099 } 16100 return 0; 16101 } 16102 16103 switch (prog_type) { 16104 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 16105 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 16106 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 16107 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 16108 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 16109 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 16110 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 16111 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 16112 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 16113 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 16114 range = retval_range(1, 1); 16115 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 16116 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 16117 range = retval_range(0, 3); 16118 break; 16119 case BPF_PROG_TYPE_CGROUP_SKB: 16120 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 16121 range = retval_range(0, 3); 16122 enforce_attach_type_range = tnum_range(2, 3); 16123 } 16124 break; 16125 case BPF_PROG_TYPE_CGROUP_SOCK: 16126 case BPF_PROG_TYPE_SOCK_OPS: 16127 case BPF_PROG_TYPE_CGROUP_DEVICE: 16128 case BPF_PROG_TYPE_CGROUP_SYSCTL: 16129 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 16130 break; 16131 case BPF_PROG_TYPE_RAW_TRACEPOINT: 16132 if (!env->prog->aux->attach_btf_id) 16133 return 0; 16134 range = retval_range(0, 0); 16135 break; 16136 case BPF_PROG_TYPE_TRACING: 16137 switch (env->prog->expected_attach_type) { 16138 case BPF_TRACE_FENTRY: 16139 case BPF_TRACE_FEXIT: 16140 range = retval_range(0, 0); 16141 break; 16142 case BPF_TRACE_RAW_TP: 16143 case BPF_MODIFY_RETURN: 16144 return 0; 16145 case BPF_TRACE_ITER: 16146 break; 16147 default: 16148 return -ENOTSUPP; 16149 } 16150 break; 16151 case BPF_PROG_TYPE_KPROBE: 16152 switch (env->prog->expected_attach_type) { 16153 case BPF_TRACE_KPROBE_SESSION: 16154 case BPF_TRACE_UPROBE_SESSION: 16155 range = retval_range(0, 1); 16156 break; 16157 default: 16158 return 0; 16159 } 16160 break; 16161 case BPF_PROG_TYPE_SK_LOOKUP: 16162 range = retval_range(SK_DROP, SK_PASS); 16163 break; 16164 16165 case BPF_PROG_TYPE_LSM: 16166 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 16167 /* no range found, any return value is allowed */ 16168 if (!get_func_retval_range(env->prog, &range)) 16169 return 0; 16170 /* no restricted range, any return value is allowed */ 16171 if (range.minval == S32_MIN && range.maxval == S32_MAX) 16172 return 0; 16173 return_32bit = true; 16174 } else if (!env->prog->aux->attach_func_proto->type) { 16175 /* Make sure programs that attach to void 16176 * hooks don't try to modify return value. 16177 */ 16178 range = retval_range(1, 1); 16179 } 16180 break; 16181 16182 case BPF_PROG_TYPE_NETFILTER: 16183 range = retval_range(NF_DROP, NF_ACCEPT); 16184 break; 16185 case BPF_PROG_TYPE_EXT: 16186 /* freplace program can return anything as its return value 16187 * depends on the to-be-replaced kernel func or bpf program. 16188 */ 16189 default: 16190 return 0; 16191 } 16192 16193 enforce_retval: 16194 if (reg->type != SCALAR_VALUE) { 16195 verbose(env, "%s the register R%d is not a known value (%s)\n", 16196 exit_ctx, regno, reg_type_str(env, reg->type)); 16197 return -EINVAL; 16198 } 16199 16200 err = mark_chain_precision(env, regno); 16201 if (err) 16202 return err; 16203 16204 if (!retval_range_within(range, reg, return_32bit)) { 16205 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); 16206 if (!is_subprog && 16207 prog->expected_attach_type == BPF_LSM_CGROUP && 16208 prog_type == BPF_PROG_TYPE_LSM && 16209 !prog->aux->attach_func_proto->type) 16210 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 16211 return -EINVAL; 16212 } 16213 16214 if (!tnum_is_unknown(enforce_attach_type_range) && 16215 tnum_in(enforce_attach_type_range, reg->var_off)) 16216 env->prog->enforce_expected_attach_type = 1; 16217 return 0; 16218 } 16219 16220 /* non-recursive DFS pseudo code 16221 * 1 procedure DFS-iterative(G,v): 16222 * 2 label v as discovered 16223 * 3 let S be a stack 16224 * 4 S.push(v) 16225 * 5 while S is not empty 16226 * 6 t <- S.peek() 16227 * 7 if t is what we're looking for: 16228 * 8 return t 16229 * 9 for all edges e in G.adjacentEdges(t) do 16230 * 10 if edge e is already labelled 16231 * 11 continue with the next edge 16232 * 12 w <- G.adjacentVertex(t,e) 16233 * 13 if vertex w is not discovered and not explored 16234 * 14 label e as tree-edge 16235 * 15 label w as discovered 16236 * 16 S.push(w) 16237 * 17 continue at 5 16238 * 18 else if vertex w is discovered 16239 * 19 label e as back-edge 16240 * 20 else 16241 * 21 // vertex w is explored 16242 * 22 label e as forward- or cross-edge 16243 * 23 label t as explored 16244 * 24 S.pop() 16245 * 16246 * convention: 16247 * 0x10 - discovered 16248 * 0x11 - discovered and fall-through edge labelled 16249 * 0x12 - discovered and fall-through and branch edges labelled 16250 * 0x20 - explored 16251 */ 16252 16253 enum { 16254 DISCOVERED = 0x10, 16255 EXPLORED = 0x20, 16256 FALLTHROUGH = 1, 16257 BRANCH = 2, 16258 }; 16259 16260 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 16261 { 16262 env->insn_aux_data[idx].prune_point = true; 16263 } 16264 16265 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 16266 { 16267 return env->insn_aux_data[insn_idx].prune_point; 16268 } 16269 16270 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 16271 { 16272 env->insn_aux_data[idx].force_checkpoint = true; 16273 } 16274 16275 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 16276 { 16277 return env->insn_aux_data[insn_idx].force_checkpoint; 16278 } 16279 16280 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 16281 { 16282 env->insn_aux_data[idx].calls_callback = true; 16283 } 16284 16285 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 16286 { 16287 return env->insn_aux_data[insn_idx].calls_callback; 16288 } 16289 16290 enum { 16291 DONE_EXPLORING = 0, 16292 KEEP_EXPLORING = 1, 16293 }; 16294 16295 /* t, w, e - match pseudo-code above: 16296 * t - index of current instruction 16297 * w - next instruction 16298 * e - edge 16299 */ 16300 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 16301 { 16302 int *insn_stack = env->cfg.insn_stack; 16303 int *insn_state = env->cfg.insn_state; 16304 16305 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 16306 return DONE_EXPLORING; 16307 16308 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 16309 return DONE_EXPLORING; 16310 16311 if (w < 0 || w >= env->prog->len) { 16312 verbose_linfo(env, t, "%d: ", t); 16313 verbose(env, "jump out of range from insn %d to %d\n", t, w); 16314 return -EINVAL; 16315 } 16316 16317 if (e == BRANCH) { 16318 /* mark branch target for state pruning */ 16319 mark_prune_point(env, w); 16320 mark_jmp_point(env, w); 16321 } 16322 16323 if (insn_state[w] == 0) { 16324 /* tree-edge */ 16325 insn_state[t] = DISCOVERED | e; 16326 insn_state[w] = DISCOVERED; 16327 if (env->cfg.cur_stack >= env->prog->len) 16328 return -E2BIG; 16329 insn_stack[env->cfg.cur_stack++] = w; 16330 return KEEP_EXPLORING; 16331 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 16332 if (env->bpf_capable) 16333 return DONE_EXPLORING; 16334 verbose_linfo(env, t, "%d: ", t); 16335 verbose_linfo(env, w, "%d: ", w); 16336 verbose(env, "back-edge from insn %d to %d\n", t, w); 16337 return -EINVAL; 16338 } else if (insn_state[w] == EXPLORED) { 16339 /* forward- or cross-edge */ 16340 insn_state[t] = DISCOVERED | e; 16341 } else { 16342 verbose(env, "insn state internal bug\n"); 16343 return -EFAULT; 16344 } 16345 return DONE_EXPLORING; 16346 } 16347 16348 static int visit_func_call_insn(int t, struct bpf_insn *insns, 16349 struct bpf_verifier_env *env, 16350 bool visit_callee) 16351 { 16352 int ret, insn_sz; 16353 16354 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 16355 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 16356 if (ret) 16357 return ret; 16358 16359 mark_prune_point(env, t + insn_sz); 16360 /* when we exit from subprog, we need to record non-linear history */ 16361 mark_jmp_point(env, t + insn_sz); 16362 16363 if (visit_callee) { 16364 mark_prune_point(env, t); 16365 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 16366 } 16367 return ret; 16368 } 16369 16370 /* Bitmask with 1s for all caller saved registers */ 16371 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 16372 16373 /* Return a bitmask specifying which caller saved registers are 16374 * clobbered by a call to a helper *as if* this helper follows 16375 * bpf_fastcall contract: 16376 * - includes R0 if function is non-void; 16377 * - includes R1-R5 if corresponding parameter has is described 16378 * in the function prototype. 16379 */ 16380 static u32 helper_fastcall_clobber_mask(const struct bpf_func_proto *fn) 16381 { 16382 u32 mask; 16383 int i; 16384 16385 mask = 0; 16386 if (fn->ret_type != RET_VOID) 16387 mask |= BIT(BPF_REG_0); 16388 for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) 16389 if (fn->arg_type[i] != ARG_DONTCARE) 16390 mask |= BIT(BPF_REG_1 + i); 16391 return mask; 16392 } 16393 16394 /* True if do_misc_fixups() replaces calls to helper number 'imm', 16395 * replacement patch is presumed to follow bpf_fastcall contract 16396 * (see mark_fastcall_pattern_for_call() below). 16397 */ 16398 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm) 16399 { 16400 switch (imm) { 16401 #ifdef CONFIG_X86_64 16402 case BPF_FUNC_get_smp_processor_id: 16403 return env->prog->jit_requested && bpf_jit_supports_percpu_insn(); 16404 #endif 16405 default: 16406 return false; 16407 } 16408 } 16409 16410 /* Same as helper_fastcall_clobber_mask() but for kfuncs, see comment above */ 16411 static u32 kfunc_fastcall_clobber_mask(struct bpf_kfunc_call_arg_meta *meta) 16412 { 16413 u32 vlen, i, mask; 16414 16415 vlen = btf_type_vlen(meta->func_proto); 16416 mask = 0; 16417 if (!btf_type_is_void(btf_type_by_id(meta->btf, meta->func_proto->type))) 16418 mask |= BIT(BPF_REG_0); 16419 for (i = 0; i < vlen; ++i) 16420 mask |= BIT(BPF_REG_1 + i); 16421 return mask; 16422 } 16423 16424 /* Same as verifier_inlines_helper_call() but for kfuncs, see comment above */ 16425 static bool is_fastcall_kfunc_call(struct bpf_kfunc_call_arg_meta *meta) 16426 { 16427 return meta->kfunc_flags & KF_FASTCALL; 16428 } 16429 16430 /* LLVM define a bpf_fastcall function attribute. 16431 * This attribute means that function scratches only some of 16432 * the caller saved registers defined by ABI. 16433 * For BPF the set of such registers could be defined as follows: 16434 * - R0 is scratched only if function is non-void; 16435 * - R1-R5 are scratched only if corresponding parameter type is defined 16436 * in the function prototype. 16437 * 16438 * The contract between kernel and clang allows to simultaneously use 16439 * such functions and maintain backwards compatibility with old 16440 * kernels that don't understand bpf_fastcall calls: 16441 * 16442 * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5 16443 * registers are not scratched by the call; 16444 * 16445 * - as a post-processing step, clang visits each bpf_fastcall call and adds 16446 * spill/fill for every live r0-r5; 16447 * 16448 * - stack offsets used for the spill/fill are allocated as lowest 16449 * stack offsets in whole function and are not used for any other 16450 * purposes; 16451 * 16452 * - when kernel loads a program, it looks for such patterns 16453 * (bpf_fastcall function surrounded by spills/fills) and checks if 16454 * spill/fill stack offsets are used exclusively in fastcall patterns; 16455 * 16456 * - if so, and if verifier or current JIT inlines the call to the 16457 * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary 16458 * spill/fill pairs; 16459 * 16460 * - when old kernel loads a program, presence of spill/fill pairs 16461 * keeps BPF program valid, albeit slightly less efficient. 16462 * 16463 * For example: 16464 * 16465 * r1 = 1; 16466 * r2 = 2; 16467 * *(u64 *)(r10 - 8) = r1; r1 = 1; 16468 * *(u64 *)(r10 - 16) = r2; r2 = 2; 16469 * call %[to_be_inlined] --> call %[to_be_inlined] 16470 * r2 = *(u64 *)(r10 - 16); r0 = r1; 16471 * r1 = *(u64 *)(r10 - 8); r0 += r2; 16472 * r0 = r1; exit; 16473 * r0 += r2; 16474 * exit; 16475 * 16476 * The purpose of mark_fastcall_pattern_for_call is to: 16477 * - look for such patterns; 16478 * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern; 16479 * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction; 16480 * - update env->subprog_info[*]->fastcall_stack_off to find an offset 16481 * at which bpf_fastcall spill/fill stack slots start; 16482 * - update env->subprog_info[*]->keep_fastcall_stack. 16483 * 16484 * The .fastcall_pattern and .fastcall_stack_off are used by 16485 * check_fastcall_stack_contract() to check if every stack access to 16486 * fastcall spill/fill stack slot originates from spill/fill 16487 * instructions, members of fastcall patterns. 16488 * 16489 * If such condition holds true for a subprogram, fastcall patterns could 16490 * be rewritten by remove_fastcall_spills_fills(). 16491 * Otherwise bpf_fastcall patterns are not changed in the subprogram 16492 * (code, presumably, generated by an older clang version). 16493 * 16494 * For example, it is *not* safe to remove spill/fill below: 16495 * 16496 * r1 = 1; 16497 * *(u64 *)(r10 - 8) = r1; r1 = 1; 16498 * call %[to_be_inlined] --> call %[to_be_inlined] 16499 * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!! 16500 * r0 = *(u64 *)(r10 - 8); r0 += r1; 16501 * r0 += r1; exit; 16502 * exit; 16503 */ 16504 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env, 16505 struct bpf_subprog_info *subprog, 16506 int insn_idx, s16 lowest_off) 16507 { 16508 struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx; 16509 struct bpf_insn *call = &env->prog->insnsi[insn_idx]; 16510 const struct bpf_func_proto *fn; 16511 u32 clobbered_regs_mask = ALL_CALLER_SAVED_REGS; 16512 u32 expected_regs_mask; 16513 bool can_be_inlined = false; 16514 s16 off; 16515 int i; 16516 16517 if (bpf_helper_call(call)) { 16518 if (get_helper_proto(env, call->imm, &fn) < 0) 16519 /* error would be reported later */ 16520 return; 16521 clobbered_regs_mask = helper_fastcall_clobber_mask(fn); 16522 can_be_inlined = fn->allow_fastcall && 16523 (verifier_inlines_helper_call(env, call->imm) || 16524 bpf_jit_inlines_helper_call(call->imm)); 16525 } 16526 16527 if (bpf_pseudo_kfunc_call(call)) { 16528 struct bpf_kfunc_call_arg_meta meta; 16529 int err; 16530 16531 err = fetch_kfunc_meta(env, call, &meta, NULL); 16532 if (err < 0) 16533 /* error would be reported later */ 16534 return; 16535 16536 clobbered_regs_mask = kfunc_fastcall_clobber_mask(&meta); 16537 can_be_inlined = is_fastcall_kfunc_call(&meta); 16538 } 16539 16540 if (clobbered_regs_mask == ALL_CALLER_SAVED_REGS) 16541 return; 16542 16543 /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */ 16544 expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS; 16545 16546 /* match pairs of form: 16547 * 16548 * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0) 16549 * ... 16550 * call %[to_be_inlined] 16551 * ... 16552 * rX = *(u64 *)(r10 - Y) 16553 */ 16554 for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) { 16555 if (insn_idx - i < 0 || insn_idx + i >= env->prog->len) 16556 break; 16557 stx = &insns[insn_idx - i]; 16558 ldx = &insns[insn_idx + i]; 16559 /* must be a stack spill/fill pair */ 16560 if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) || 16561 ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) || 16562 stx->dst_reg != BPF_REG_10 || 16563 ldx->src_reg != BPF_REG_10) 16564 break; 16565 /* must be a spill/fill for the same reg */ 16566 if (stx->src_reg != ldx->dst_reg) 16567 break; 16568 /* must be one of the previously unseen registers */ 16569 if ((BIT(stx->src_reg) & expected_regs_mask) == 0) 16570 break; 16571 /* must be a spill/fill for the same expected offset, 16572 * no need to check offset alignment, BPF_DW stack access 16573 * is always 8-byte aligned. 16574 */ 16575 if (stx->off != off || ldx->off != off) 16576 break; 16577 expected_regs_mask &= ~BIT(stx->src_reg); 16578 env->insn_aux_data[insn_idx - i].fastcall_pattern = 1; 16579 env->insn_aux_data[insn_idx + i].fastcall_pattern = 1; 16580 } 16581 if (i == 1) 16582 return; 16583 16584 /* Conditionally set 'fastcall_spills_num' to allow forward 16585 * compatibility when more helper functions are marked as 16586 * bpf_fastcall at compile time than current kernel supports, e.g: 16587 * 16588 * 1: *(u64 *)(r10 - 8) = r1 16589 * 2: call A ;; assume A is bpf_fastcall for current kernel 16590 * 3: r1 = *(u64 *)(r10 - 8) 16591 * 4: *(u64 *)(r10 - 8) = r1 16592 * 5: call B ;; assume B is not bpf_fastcall for current kernel 16593 * 6: r1 = *(u64 *)(r10 - 8) 16594 * 16595 * There is no need to block bpf_fastcall rewrite for such program. 16596 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy, 16597 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills() 16598 * does not remove spill/fill pair {4,6}. 16599 */ 16600 if (can_be_inlined) 16601 env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1; 16602 else 16603 subprog->keep_fastcall_stack = 1; 16604 subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off); 16605 } 16606 16607 static int mark_fastcall_patterns(struct bpf_verifier_env *env) 16608 { 16609 struct bpf_subprog_info *subprog = env->subprog_info; 16610 struct bpf_insn *insn; 16611 s16 lowest_off; 16612 int s, i; 16613 16614 for (s = 0; s < env->subprog_cnt; ++s, ++subprog) { 16615 /* find lowest stack spill offset used in this subprog */ 16616 lowest_off = 0; 16617 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 16618 insn = env->prog->insnsi + i; 16619 if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) || 16620 insn->dst_reg != BPF_REG_10) 16621 continue; 16622 lowest_off = min(lowest_off, insn->off); 16623 } 16624 /* use this offset to find fastcall patterns */ 16625 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 16626 insn = env->prog->insnsi + i; 16627 if (insn->code != (BPF_JMP | BPF_CALL)) 16628 continue; 16629 mark_fastcall_pattern_for_call(env, subprog, i, lowest_off); 16630 } 16631 } 16632 return 0; 16633 } 16634 16635 /* Visits the instruction at index t and returns one of the following: 16636 * < 0 - an error occurred 16637 * DONE_EXPLORING - the instruction was fully explored 16638 * KEEP_EXPLORING - there is still work to be done before it is fully explored 16639 */ 16640 static int visit_insn(int t, struct bpf_verifier_env *env) 16641 { 16642 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 16643 int ret, off, insn_sz; 16644 16645 if (bpf_pseudo_func(insn)) 16646 return visit_func_call_insn(t, insns, env, true); 16647 16648 /* All non-branch instructions have a single fall-through edge. */ 16649 if (BPF_CLASS(insn->code) != BPF_JMP && 16650 BPF_CLASS(insn->code) != BPF_JMP32) { 16651 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 16652 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 16653 } 16654 16655 switch (BPF_OP(insn->code)) { 16656 case BPF_EXIT: 16657 return DONE_EXPLORING; 16658 16659 case BPF_CALL: 16660 if (is_async_callback_calling_insn(insn)) 16661 /* Mark this call insn as a prune point to trigger 16662 * is_state_visited() check before call itself is 16663 * processed by __check_func_call(). Otherwise new 16664 * async state will be pushed for further exploration. 16665 */ 16666 mark_prune_point(env, t); 16667 /* For functions that invoke callbacks it is not known how many times 16668 * callback would be called. Verifier models callback calling functions 16669 * by repeatedly visiting callback bodies and returning to origin call 16670 * instruction. 16671 * In order to stop such iteration verifier needs to identify when a 16672 * state identical some state from a previous iteration is reached. 16673 * Check below forces creation of checkpoint before callback calling 16674 * instruction to allow search for such identical states. 16675 */ 16676 if (is_sync_callback_calling_insn(insn)) { 16677 mark_calls_callback(env, t); 16678 mark_force_checkpoint(env, t); 16679 mark_prune_point(env, t); 16680 mark_jmp_point(env, t); 16681 } 16682 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 16683 struct bpf_kfunc_call_arg_meta meta; 16684 16685 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 16686 if (ret == 0 && is_iter_next_kfunc(&meta)) { 16687 mark_prune_point(env, t); 16688 /* Checking and saving state checkpoints at iter_next() call 16689 * is crucial for fast convergence of open-coded iterator loop 16690 * logic, so we need to force it. If we don't do that, 16691 * is_state_visited() might skip saving a checkpoint, causing 16692 * unnecessarily long sequence of not checkpointed 16693 * instructions and jumps, leading to exhaustion of jump 16694 * history buffer, and potentially other undesired outcomes. 16695 * It is expected that with correct open-coded iterators 16696 * convergence will happen quickly, so we don't run a risk of 16697 * exhausting memory. 16698 */ 16699 mark_force_checkpoint(env, t); 16700 } 16701 } 16702 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 16703 16704 case BPF_JA: 16705 if (BPF_SRC(insn->code) != BPF_K) 16706 return -EINVAL; 16707 16708 if (BPF_CLASS(insn->code) == BPF_JMP) 16709 off = insn->off; 16710 else 16711 off = insn->imm; 16712 16713 /* unconditional jump with single edge */ 16714 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 16715 if (ret) 16716 return ret; 16717 16718 mark_prune_point(env, t + off + 1); 16719 mark_jmp_point(env, t + off + 1); 16720 16721 return ret; 16722 16723 default: 16724 /* conditional jump with two edges */ 16725 mark_prune_point(env, t); 16726 if (is_may_goto_insn(insn)) 16727 mark_force_checkpoint(env, t); 16728 16729 ret = push_insn(t, t + 1, FALLTHROUGH, env); 16730 if (ret) 16731 return ret; 16732 16733 return push_insn(t, t + insn->off + 1, BRANCH, env); 16734 } 16735 } 16736 16737 /* non-recursive depth-first-search to detect loops in BPF program 16738 * loop == back-edge in directed graph 16739 */ 16740 static int check_cfg(struct bpf_verifier_env *env) 16741 { 16742 int insn_cnt = env->prog->len; 16743 int *insn_stack, *insn_state; 16744 int ex_insn_beg, i, ret = 0; 16745 bool ex_done = false; 16746 16747 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 16748 if (!insn_state) 16749 return -ENOMEM; 16750 16751 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 16752 if (!insn_stack) { 16753 kvfree(insn_state); 16754 return -ENOMEM; 16755 } 16756 16757 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 16758 insn_stack[0] = 0; /* 0 is the first instruction */ 16759 env->cfg.cur_stack = 1; 16760 16761 walk_cfg: 16762 while (env->cfg.cur_stack > 0) { 16763 int t = insn_stack[env->cfg.cur_stack - 1]; 16764 16765 ret = visit_insn(t, env); 16766 switch (ret) { 16767 case DONE_EXPLORING: 16768 insn_state[t] = EXPLORED; 16769 env->cfg.cur_stack--; 16770 break; 16771 case KEEP_EXPLORING: 16772 break; 16773 default: 16774 if (ret > 0) { 16775 verbose(env, "visit_insn internal bug\n"); 16776 ret = -EFAULT; 16777 } 16778 goto err_free; 16779 } 16780 } 16781 16782 if (env->cfg.cur_stack < 0) { 16783 verbose(env, "pop stack internal bug\n"); 16784 ret = -EFAULT; 16785 goto err_free; 16786 } 16787 16788 if (env->exception_callback_subprog && !ex_done) { 16789 ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start; 16790 16791 insn_state[ex_insn_beg] = DISCOVERED; 16792 insn_stack[0] = ex_insn_beg; 16793 env->cfg.cur_stack = 1; 16794 ex_done = true; 16795 goto walk_cfg; 16796 } 16797 16798 for (i = 0; i < insn_cnt; i++) { 16799 struct bpf_insn *insn = &env->prog->insnsi[i]; 16800 16801 if (insn_state[i] != EXPLORED) { 16802 verbose(env, "unreachable insn %d\n", i); 16803 ret = -EINVAL; 16804 goto err_free; 16805 } 16806 if (bpf_is_ldimm64(insn)) { 16807 if (insn_state[i + 1] != 0) { 16808 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 16809 ret = -EINVAL; 16810 goto err_free; 16811 } 16812 i++; /* skip second half of ldimm64 */ 16813 } 16814 } 16815 ret = 0; /* cfg looks good */ 16816 16817 err_free: 16818 kvfree(insn_state); 16819 kvfree(insn_stack); 16820 env->cfg.insn_state = env->cfg.insn_stack = NULL; 16821 return ret; 16822 } 16823 16824 static int check_abnormal_return(struct bpf_verifier_env *env) 16825 { 16826 int i; 16827 16828 for (i = 1; i < env->subprog_cnt; i++) { 16829 if (env->subprog_info[i].has_ld_abs) { 16830 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 16831 return -EINVAL; 16832 } 16833 if (env->subprog_info[i].has_tail_call) { 16834 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 16835 return -EINVAL; 16836 } 16837 } 16838 return 0; 16839 } 16840 16841 /* The minimum supported BTF func info size */ 16842 #define MIN_BPF_FUNCINFO_SIZE 8 16843 #define MAX_FUNCINFO_REC_SIZE 252 16844 16845 static int check_btf_func_early(struct bpf_verifier_env *env, 16846 const union bpf_attr *attr, 16847 bpfptr_t uattr) 16848 { 16849 u32 krec_size = sizeof(struct bpf_func_info); 16850 const struct btf_type *type, *func_proto; 16851 u32 i, nfuncs, urec_size, min_size; 16852 struct bpf_func_info *krecord; 16853 struct bpf_prog *prog; 16854 const struct btf *btf; 16855 u32 prev_offset = 0; 16856 bpfptr_t urecord; 16857 int ret = -ENOMEM; 16858 16859 nfuncs = attr->func_info_cnt; 16860 if (!nfuncs) { 16861 if (check_abnormal_return(env)) 16862 return -EINVAL; 16863 return 0; 16864 } 16865 16866 urec_size = attr->func_info_rec_size; 16867 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 16868 urec_size > MAX_FUNCINFO_REC_SIZE || 16869 urec_size % sizeof(u32)) { 16870 verbose(env, "invalid func info rec size %u\n", urec_size); 16871 return -EINVAL; 16872 } 16873 16874 prog = env->prog; 16875 btf = prog->aux->btf; 16876 16877 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 16878 min_size = min_t(u32, krec_size, urec_size); 16879 16880 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 16881 if (!krecord) 16882 return -ENOMEM; 16883 16884 for (i = 0; i < nfuncs; i++) { 16885 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 16886 if (ret) { 16887 if (ret == -E2BIG) { 16888 verbose(env, "nonzero tailing record in func info"); 16889 /* set the size kernel expects so loader can zero 16890 * out the rest of the record. 16891 */ 16892 if (copy_to_bpfptr_offset(uattr, 16893 offsetof(union bpf_attr, func_info_rec_size), 16894 &min_size, sizeof(min_size))) 16895 ret = -EFAULT; 16896 } 16897 goto err_free; 16898 } 16899 16900 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 16901 ret = -EFAULT; 16902 goto err_free; 16903 } 16904 16905 /* check insn_off */ 16906 ret = -EINVAL; 16907 if (i == 0) { 16908 if (krecord[i].insn_off) { 16909 verbose(env, 16910 "nonzero insn_off %u for the first func info record", 16911 krecord[i].insn_off); 16912 goto err_free; 16913 } 16914 } else if (krecord[i].insn_off <= prev_offset) { 16915 verbose(env, 16916 "same or smaller insn offset (%u) than previous func info record (%u)", 16917 krecord[i].insn_off, prev_offset); 16918 goto err_free; 16919 } 16920 16921 /* check type_id */ 16922 type = btf_type_by_id(btf, krecord[i].type_id); 16923 if (!type || !btf_type_is_func(type)) { 16924 verbose(env, "invalid type id %d in func info", 16925 krecord[i].type_id); 16926 goto err_free; 16927 } 16928 16929 func_proto = btf_type_by_id(btf, type->type); 16930 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 16931 /* btf_func_check() already verified it during BTF load */ 16932 goto err_free; 16933 16934 prev_offset = krecord[i].insn_off; 16935 bpfptr_add(&urecord, urec_size); 16936 } 16937 16938 prog->aux->func_info = krecord; 16939 prog->aux->func_info_cnt = nfuncs; 16940 return 0; 16941 16942 err_free: 16943 kvfree(krecord); 16944 return ret; 16945 } 16946 16947 static int check_btf_func(struct bpf_verifier_env *env, 16948 const union bpf_attr *attr, 16949 bpfptr_t uattr) 16950 { 16951 const struct btf_type *type, *func_proto, *ret_type; 16952 u32 i, nfuncs, urec_size; 16953 struct bpf_func_info *krecord; 16954 struct bpf_func_info_aux *info_aux = NULL; 16955 struct bpf_prog *prog; 16956 const struct btf *btf; 16957 bpfptr_t urecord; 16958 bool scalar_return; 16959 int ret = -ENOMEM; 16960 16961 nfuncs = attr->func_info_cnt; 16962 if (!nfuncs) { 16963 if (check_abnormal_return(env)) 16964 return -EINVAL; 16965 return 0; 16966 } 16967 if (nfuncs != env->subprog_cnt) { 16968 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 16969 return -EINVAL; 16970 } 16971 16972 urec_size = attr->func_info_rec_size; 16973 16974 prog = env->prog; 16975 btf = prog->aux->btf; 16976 16977 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 16978 16979 krecord = prog->aux->func_info; 16980 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 16981 if (!info_aux) 16982 return -ENOMEM; 16983 16984 for (i = 0; i < nfuncs; i++) { 16985 /* check insn_off */ 16986 ret = -EINVAL; 16987 16988 if (env->subprog_info[i].start != krecord[i].insn_off) { 16989 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 16990 goto err_free; 16991 } 16992 16993 /* Already checked type_id */ 16994 type = btf_type_by_id(btf, krecord[i].type_id); 16995 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 16996 /* Already checked func_proto */ 16997 func_proto = btf_type_by_id(btf, type->type); 16998 16999 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 17000 scalar_return = 17001 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 17002 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 17003 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 17004 goto err_free; 17005 } 17006 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 17007 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 17008 goto err_free; 17009 } 17010 17011 bpfptr_add(&urecord, urec_size); 17012 } 17013 17014 prog->aux->func_info_aux = info_aux; 17015 return 0; 17016 17017 err_free: 17018 kfree(info_aux); 17019 return ret; 17020 } 17021 17022 static void adjust_btf_func(struct bpf_verifier_env *env) 17023 { 17024 struct bpf_prog_aux *aux = env->prog->aux; 17025 int i; 17026 17027 if (!aux->func_info) 17028 return; 17029 17030 /* func_info is not available for hidden subprogs */ 17031 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 17032 aux->func_info[i].insn_off = env->subprog_info[i].start; 17033 } 17034 17035 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 17036 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 17037 17038 static int check_btf_line(struct bpf_verifier_env *env, 17039 const union bpf_attr *attr, 17040 bpfptr_t uattr) 17041 { 17042 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 17043 struct bpf_subprog_info *sub; 17044 struct bpf_line_info *linfo; 17045 struct bpf_prog *prog; 17046 const struct btf *btf; 17047 bpfptr_t ulinfo; 17048 int err; 17049 17050 nr_linfo = attr->line_info_cnt; 17051 if (!nr_linfo) 17052 return 0; 17053 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 17054 return -EINVAL; 17055 17056 rec_size = attr->line_info_rec_size; 17057 if (rec_size < MIN_BPF_LINEINFO_SIZE || 17058 rec_size > MAX_LINEINFO_REC_SIZE || 17059 rec_size & (sizeof(u32) - 1)) 17060 return -EINVAL; 17061 17062 /* Need to zero it in case the userspace may 17063 * pass in a smaller bpf_line_info object. 17064 */ 17065 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 17066 GFP_KERNEL | __GFP_NOWARN); 17067 if (!linfo) 17068 return -ENOMEM; 17069 17070 prog = env->prog; 17071 btf = prog->aux->btf; 17072 17073 s = 0; 17074 sub = env->subprog_info; 17075 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 17076 expected_size = sizeof(struct bpf_line_info); 17077 ncopy = min_t(u32, expected_size, rec_size); 17078 for (i = 0; i < nr_linfo; i++) { 17079 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 17080 if (err) { 17081 if (err == -E2BIG) { 17082 verbose(env, "nonzero tailing record in line_info"); 17083 if (copy_to_bpfptr_offset(uattr, 17084 offsetof(union bpf_attr, line_info_rec_size), 17085 &expected_size, sizeof(expected_size))) 17086 err = -EFAULT; 17087 } 17088 goto err_free; 17089 } 17090 17091 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 17092 err = -EFAULT; 17093 goto err_free; 17094 } 17095 17096 /* 17097 * Check insn_off to ensure 17098 * 1) strictly increasing AND 17099 * 2) bounded by prog->len 17100 * 17101 * The linfo[0].insn_off == 0 check logically falls into 17102 * the later "missing bpf_line_info for func..." case 17103 * because the first linfo[0].insn_off must be the 17104 * first sub also and the first sub must have 17105 * subprog_info[0].start == 0. 17106 */ 17107 if ((i && linfo[i].insn_off <= prev_offset) || 17108 linfo[i].insn_off >= prog->len) { 17109 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 17110 i, linfo[i].insn_off, prev_offset, 17111 prog->len); 17112 err = -EINVAL; 17113 goto err_free; 17114 } 17115 17116 if (!prog->insnsi[linfo[i].insn_off].code) { 17117 verbose(env, 17118 "Invalid insn code at line_info[%u].insn_off\n", 17119 i); 17120 err = -EINVAL; 17121 goto err_free; 17122 } 17123 17124 if (!btf_name_by_offset(btf, linfo[i].line_off) || 17125 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 17126 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 17127 err = -EINVAL; 17128 goto err_free; 17129 } 17130 17131 if (s != env->subprog_cnt) { 17132 if (linfo[i].insn_off == sub[s].start) { 17133 sub[s].linfo_idx = i; 17134 s++; 17135 } else if (sub[s].start < linfo[i].insn_off) { 17136 verbose(env, "missing bpf_line_info for func#%u\n", s); 17137 err = -EINVAL; 17138 goto err_free; 17139 } 17140 } 17141 17142 prev_offset = linfo[i].insn_off; 17143 bpfptr_add(&ulinfo, rec_size); 17144 } 17145 17146 if (s != env->subprog_cnt) { 17147 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 17148 env->subprog_cnt - s, s); 17149 err = -EINVAL; 17150 goto err_free; 17151 } 17152 17153 prog->aux->linfo = linfo; 17154 prog->aux->nr_linfo = nr_linfo; 17155 17156 return 0; 17157 17158 err_free: 17159 kvfree(linfo); 17160 return err; 17161 } 17162 17163 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 17164 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 17165 17166 static int check_core_relo(struct bpf_verifier_env *env, 17167 const union bpf_attr *attr, 17168 bpfptr_t uattr) 17169 { 17170 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 17171 struct bpf_core_relo core_relo = {}; 17172 struct bpf_prog *prog = env->prog; 17173 const struct btf *btf = prog->aux->btf; 17174 struct bpf_core_ctx ctx = { 17175 .log = &env->log, 17176 .btf = btf, 17177 }; 17178 bpfptr_t u_core_relo; 17179 int err; 17180 17181 nr_core_relo = attr->core_relo_cnt; 17182 if (!nr_core_relo) 17183 return 0; 17184 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 17185 return -EINVAL; 17186 17187 rec_size = attr->core_relo_rec_size; 17188 if (rec_size < MIN_CORE_RELO_SIZE || 17189 rec_size > MAX_CORE_RELO_SIZE || 17190 rec_size % sizeof(u32)) 17191 return -EINVAL; 17192 17193 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 17194 expected_size = sizeof(struct bpf_core_relo); 17195 ncopy = min_t(u32, expected_size, rec_size); 17196 17197 /* Unlike func_info and line_info, copy and apply each CO-RE 17198 * relocation record one at a time. 17199 */ 17200 for (i = 0; i < nr_core_relo; i++) { 17201 /* future proofing when sizeof(bpf_core_relo) changes */ 17202 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 17203 if (err) { 17204 if (err == -E2BIG) { 17205 verbose(env, "nonzero tailing record in core_relo"); 17206 if (copy_to_bpfptr_offset(uattr, 17207 offsetof(union bpf_attr, core_relo_rec_size), 17208 &expected_size, sizeof(expected_size))) 17209 err = -EFAULT; 17210 } 17211 break; 17212 } 17213 17214 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 17215 err = -EFAULT; 17216 break; 17217 } 17218 17219 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 17220 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 17221 i, core_relo.insn_off, prog->len); 17222 err = -EINVAL; 17223 break; 17224 } 17225 17226 err = bpf_core_apply(&ctx, &core_relo, i, 17227 &prog->insnsi[core_relo.insn_off / 8]); 17228 if (err) 17229 break; 17230 bpfptr_add(&u_core_relo, rec_size); 17231 } 17232 return err; 17233 } 17234 17235 static int check_btf_info_early(struct bpf_verifier_env *env, 17236 const union bpf_attr *attr, 17237 bpfptr_t uattr) 17238 { 17239 struct btf *btf; 17240 int err; 17241 17242 if (!attr->func_info_cnt && !attr->line_info_cnt) { 17243 if (check_abnormal_return(env)) 17244 return -EINVAL; 17245 return 0; 17246 } 17247 17248 btf = btf_get_by_fd(attr->prog_btf_fd); 17249 if (IS_ERR(btf)) 17250 return PTR_ERR(btf); 17251 if (btf_is_kernel(btf)) { 17252 btf_put(btf); 17253 return -EACCES; 17254 } 17255 env->prog->aux->btf = btf; 17256 17257 err = check_btf_func_early(env, attr, uattr); 17258 if (err) 17259 return err; 17260 return 0; 17261 } 17262 17263 static int check_btf_info(struct bpf_verifier_env *env, 17264 const union bpf_attr *attr, 17265 bpfptr_t uattr) 17266 { 17267 int err; 17268 17269 if (!attr->func_info_cnt && !attr->line_info_cnt) { 17270 if (check_abnormal_return(env)) 17271 return -EINVAL; 17272 return 0; 17273 } 17274 17275 err = check_btf_func(env, attr, uattr); 17276 if (err) 17277 return err; 17278 17279 err = check_btf_line(env, attr, uattr); 17280 if (err) 17281 return err; 17282 17283 err = check_core_relo(env, attr, uattr); 17284 if (err) 17285 return err; 17286 17287 return 0; 17288 } 17289 17290 /* check %cur's range satisfies %old's */ 17291 static bool range_within(const struct bpf_reg_state *old, 17292 const struct bpf_reg_state *cur) 17293 { 17294 return old->umin_value <= cur->umin_value && 17295 old->umax_value >= cur->umax_value && 17296 old->smin_value <= cur->smin_value && 17297 old->smax_value >= cur->smax_value && 17298 old->u32_min_value <= cur->u32_min_value && 17299 old->u32_max_value >= cur->u32_max_value && 17300 old->s32_min_value <= cur->s32_min_value && 17301 old->s32_max_value >= cur->s32_max_value; 17302 } 17303 17304 /* If in the old state two registers had the same id, then they need to have 17305 * the same id in the new state as well. But that id could be different from 17306 * the old state, so we need to track the mapping from old to new ids. 17307 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 17308 * regs with old id 5 must also have new id 9 for the new state to be safe. But 17309 * regs with a different old id could still have new id 9, we don't care about 17310 * that. 17311 * So we look through our idmap to see if this old id has been seen before. If 17312 * so, we require the new id to match; otherwise, we add the id pair to the map. 17313 */ 17314 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 17315 { 17316 struct bpf_id_pair *map = idmap->map; 17317 unsigned int i; 17318 17319 /* either both IDs should be set or both should be zero */ 17320 if (!!old_id != !!cur_id) 17321 return false; 17322 17323 if (old_id == 0) /* cur_id == 0 as well */ 17324 return true; 17325 17326 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 17327 if (!map[i].old) { 17328 /* Reached an empty slot; haven't seen this id before */ 17329 map[i].old = old_id; 17330 map[i].cur = cur_id; 17331 return true; 17332 } 17333 if (map[i].old == old_id) 17334 return map[i].cur == cur_id; 17335 if (map[i].cur == cur_id) 17336 return false; 17337 } 17338 /* We ran out of idmap slots, which should be impossible */ 17339 WARN_ON_ONCE(1); 17340 return false; 17341 } 17342 17343 /* Similar to check_ids(), but allocate a unique temporary ID 17344 * for 'old_id' or 'cur_id' of zero. 17345 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 17346 */ 17347 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 17348 { 17349 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 17350 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 17351 17352 return check_ids(old_id, cur_id, idmap); 17353 } 17354 17355 static void clean_func_state(struct bpf_verifier_env *env, 17356 struct bpf_func_state *st) 17357 { 17358 enum bpf_reg_liveness live; 17359 int i, j; 17360 17361 for (i = 0; i < BPF_REG_FP; i++) { 17362 live = st->regs[i].live; 17363 /* liveness must not touch this register anymore */ 17364 st->regs[i].live |= REG_LIVE_DONE; 17365 if (!(live & REG_LIVE_READ)) 17366 /* since the register is unused, clear its state 17367 * to make further comparison simpler 17368 */ 17369 __mark_reg_not_init(env, &st->regs[i]); 17370 } 17371 17372 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 17373 live = st->stack[i].spilled_ptr.live; 17374 /* liveness must not touch this stack slot anymore */ 17375 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 17376 if (!(live & REG_LIVE_READ)) { 17377 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 17378 for (j = 0; j < BPF_REG_SIZE; j++) 17379 st->stack[i].slot_type[j] = STACK_INVALID; 17380 } 17381 } 17382 } 17383 17384 static void clean_verifier_state(struct bpf_verifier_env *env, 17385 struct bpf_verifier_state *st) 17386 { 17387 int i; 17388 17389 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 17390 /* all regs in this state in all frames were already marked */ 17391 return; 17392 17393 for (i = 0; i <= st->curframe; i++) 17394 clean_func_state(env, st->frame[i]); 17395 } 17396 17397 /* the parentage chains form a tree. 17398 * the verifier states are added to state lists at given insn and 17399 * pushed into state stack for future exploration. 17400 * when the verifier reaches bpf_exit insn some of the verifer states 17401 * stored in the state lists have their final liveness state already, 17402 * but a lot of states will get revised from liveness point of view when 17403 * the verifier explores other branches. 17404 * Example: 17405 * 1: r0 = 1 17406 * 2: if r1 == 100 goto pc+1 17407 * 3: r0 = 2 17408 * 4: exit 17409 * when the verifier reaches exit insn the register r0 in the state list of 17410 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 17411 * of insn 2 and goes exploring further. At the insn 4 it will walk the 17412 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 17413 * 17414 * Since the verifier pushes the branch states as it sees them while exploring 17415 * the program the condition of walking the branch instruction for the second 17416 * time means that all states below this branch were already explored and 17417 * their final liveness marks are already propagated. 17418 * Hence when the verifier completes the search of state list in is_state_visited() 17419 * we can call this clean_live_states() function to mark all liveness states 17420 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 17421 * will not be used. 17422 * This function also clears the registers and stack for states that !READ 17423 * to simplify state merging. 17424 * 17425 * Important note here that walking the same branch instruction in the callee 17426 * doesn't meant that the states are DONE. The verifier has to compare 17427 * the callsites 17428 */ 17429 static void clean_live_states(struct bpf_verifier_env *env, int insn, 17430 struct bpf_verifier_state *cur) 17431 { 17432 struct bpf_verifier_state_list *sl; 17433 17434 sl = *explored_state(env, insn); 17435 while (sl) { 17436 if (sl->state.branches) 17437 goto next; 17438 if (sl->state.insn_idx != insn || 17439 !same_callsites(&sl->state, cur)) 17440 goto next; 17441 clean_verifier_state(env, &sl->state); 17442 next: 17443 sl = sl->next; 17444 } 17445 } 17446 17447 static bool regs_exact(const struct bpf_reg_state *rold, 17448 const struct bpf_reg_state *rcur, 17449 struct bpf_idmap *idmap) 17450 { 17451 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 17452 check_ids(rold->id, rcur->id, idmap) && 17453 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 17454 } 17455 17456 enum exact_level { 17457 NOT_EXACT, 17458 EXACT, 17459 RANGE_WITHIN 17460 }; 17461 17462 /* Returns true if (rold safe implies rcur safe) */ 17463 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 17464 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, 17465 enum exact_level exact) 17466 { 17467 if (exact == EXACT) 17468 return regs_exact(rold, rcur, idmap); 17469 17470 if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT) 17471 /* explored state didn't use this */ 17472 return true; 17473 if (rold->type == NOT_INIT) { 17474 if (exact == NOT_EXACT || rcur->type == NOT_INIT) 17475 /* explored state can't have used this */ 17476 return true; 17477 } 17478 17479 /* Enforce that register types have to match exactly, including their 17480 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 17481 * rule. 17482 * 17483 * One can make a point that using a pointer register as unbounded 17484 * SCALAR would be technically acceptable, but this could lead to 17485 * pointer leaks because scalars are allowed to leak while pointers 17486 * are not. We could make this safe in special cases if root is 17487 * calling us, but it's probably not worth the hassle. 17488 * 17489 * Also, register types that are *not* MAYBE_NULL could technically be 17490 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 17491 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 17492 * to the same map). 17493 * However, if the old MAYBE_NULL register then got NULL checked, 17494 * doing so could have affected others with the same id, and we can't 17495 * check for that because we lost the id when we converted to 17496 * a non-MAYBE_NULL variant. 17497 * So, as a general rule we don't allow mixing MAYBE_NULL and 17498 * non-MAYBE_NULL registers as well. 17499 */ 17500 if (rold->type != rcur->type) 17501 return false; 17502 17503 switch (base_type(rold->type)) { 17504 case SCALAR_VALUE: 17505 if (env->explore_alu_limits) { 17506 /* explore_alu_limits disables tnum_in() and range_within() 17507 * logic and requires everything to be strict 17508 */ 17509 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 17510 check_scalar_ids(rold->id, rcur->id, idmap); 17511 } 17512 if (!rold->precise && exact == NOT_EXACT) 17513 return true; 17514 if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST)) 17515 return false; 17516 if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off)) 17517 return false; 17518 /* Why check_ids() for scalar registers? 17519 * 17520 * Consider the following BPF code: 17521 * 1: r6 = ... unbound scalar, ID=a ... 17522 * 2: r7 = ... unbound scalar, ID=b ... 17523 * 3: if (r6 > r7) goto +1 17524 * 4: r6 = r7 17525 * 5: if (r6 > X) goto ... 17526 * 6: ... memory operation using r7 ... 17527 * 17528 * First verification path is [1-6]: 17529 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 17530 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark 17531 * r7 <= X, because r6 and r7 share same id. 17532 * Next verification path is [1-4, 6]. 17533 * 17534 * Instruction (6) would be reached in two states: 17535 * I. r6{.id=b}, r7{.id=b} via path 1-6; 17536 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 17537 * 17538 * Use check_ids() to distinguish these states. 17539 * --- 17540 * Also verify that new value satisfies old value range knowledge. 17541 */ 17542 return range_within(rold, rcur) && 17543 tnum_in(rold->var_off, rcur->var_off) && 17544 check_scalar_ids(rold->id, rcur->id, idmap); 17545 case PTR_TO_MAP_KEY: 17546 case PTR_TO_MAP_VALUE: 17547 case PTR_TO_MEM: 17548 case PTR_TO_BUF: 17549 case PTR_TO_TP_BUFFER: 17550 /* If the new min/max/var_off satisfy the old ones and 17551 * everything else matches, we are OK. 17552 */ 17553 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 17554 range_within(rold, rcur) && 17555 tnum_in(rold->var_off, rcur->var_off) && 17556 check_ids(rold->id, rcur->id, idmap) && 17557 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 17558 case PTR_TO_PACKET_META: 17559 case PTR_TO_PACKET: 17560 /* We must have at least as much range as the old ptr 17561 * did, so that any accesses which were safe before are 17562 * still safe. This is true even if old range < old off, 17563 * since someone could have accessed through (ptr - k), or 17564 * even done ptr -= k in a register, to get a safe access. 17565 */ 17566 if (rold->range > rcur->range) 17567 return false; 17568 /* If the offsets don't match, we can't trust our alignment; 17569 * nor can we be sure that we won't fall out of range. 17570 */ 17571 if (rold->off != rcur->off) 17572 return false; 17573 /* id relations must be preserved */ 17574 if (!check_ids(rold->id, rcur->id, idmap)) 17575 return false; 17576 /* new val must satisfy old val knowledge */ 17577 return range_within(rold, rcur) && 17578 tnum_in(rold->var_off, rcur->var_off); 17579 case PTR_TO_STACK: 17580 /* two stack pointers are equal only if they're pointing to 17581 * the same stack frame, since fp-8 in foo != fp-8 in bar 17582 */ 17583 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 17584 case PTR_TO_ARENA: 17585 return true; 17586 default: 17587 return regs_exact(rold, rcur, idmap); 17588 } 17589 } 17590 17591 static struct bpf_reg_state unbound_reg; 17592 17593 static __init int unbound_reg_init(void) 17594 { 17595 __mark_reg_unknown_imprecise(&unbound_reg); 17596 unbound_reg.live |= REG_LIVE_READ; 17597 return 0; 17598 } 17599 late_initcall(unbound_reg_init); 17600 17601 static bool is_stack_all_misc(struct bpf_verifier_env *env, 17602 struct bpf_stack_state *stack) 17603 { 17604 u32 i; 17605 17606 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { 17607 if ((stack->slot_type[i] == STACK_MISC) || 17608 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) 17609 continue; 17610 return false; 17611 } 17612 17613 return true; 17614 } 17615 17616 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, 17617 struct bpf_stack_state *stack) 17618 { 17619 if (is_spilled_scalar_reg64(stack)) 17620 return &stack->spilled_ptr; 17621 17622 if (is_stack_all_misc(env, stack)) 17623 return &unbound_reg; 17624 17625 return NULL; 17626 } 17627 17628 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 17629 struct bpf_func_state *cur, struct bpf_idmap *idmap, 17630 enum exact_level exact) 17631 { 17632 int i, spi; 17633 17634 /* walk slots of the explored stack and ignore any additional 17635 * slots in the current stack, since explored(safe) state 17636 * didn't use them 17637 */ 17638 for (i = 0; i < old->allocated_stack; i++) { 17639 struct bpf_reg_state *old_reg, *cur_reg; 17640 17641 spi = i / BPF_REG_SIZE; 17642 17643 if (exact != NOT_EXACT && 17644 (i >= cur->allocated_stack || 17645 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 17646 cur->stack[spi].slot_type[i % BPF_REG_SIZE])) 17647 return false; 17648 17649 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) 17650 && exact == NOT_EXACT) { 17651 i += BPF_REG_SIZE - 1; 17652 /* explored state didn't use this */ 17653 continue; 17654 } 17655 17656 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 17657 continue; 17658 17659 if (env->allow_uninit_stack && 17660 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 17661 continue; 17662 17663 /* explored stack has more populated slots than current stack 17664 * and these slots were used 17665 */ 17666 if (i >= cur->allocated_stack) 17667 return false; 17668 17669 /* 64-bit scalar spill vs all slots MISC and vice versa. 17670 * Load from all slots MISC produces unbound scalar. 17671 * Construct a fake register for such stack and call 17672 * regsafe() to ensure scalar ids are compared. 17673 */ 17674 old_reg = scalar_reg_for_stack(env, &old->stack[spi]); 17675 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); 17676 if (old_reg && cur_reg) { 17677 if (!regsafe(env, old_reg, cur_reg, idmap, exact)) 17678 return false; 17679 i += BPF_REG_SIZE - 1; 17680 continue; 17681 } 17682 17683 /* if old state was safe with misc data in the stack 17684 * it will be safe with zero-initialized stack. 17685 * The opposite is not true 17686 */ 17687 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 17688 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 17689 continue; 17690 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 17691 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 17692 /* Ex: old explored (safe) state has STACK_SPILL in 17693 * this stack slot, but current has STACK_MISC -> 17694 * this verifier states are not equivalent, 17695 * return false to continue verification of this path 17696 */ 17697 return false; 17698 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 17699 continue; 17700 /* Both old and cur are having same slot_type */ 17701 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 17702 case STACK_SPILL: 17703 /* when explored and current stack slot are both storing 17704 * spilled registers, check that stored pointers types 17705 * are the same as well. 17706 * Ex: explored safe path could have stored 17707 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 17708 * but current path has stored: 17709 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 17710 * such verifier states are not equivalent. 17711 * return false to continue verification of this path 17712 */ 17713 if (!regsafe(env, &old->stack[spi].spilled_ptr, 17714 &cur->stack[spi].spilled_ptr, idmap, exact)) 17715 return false; 17716 break; 17717 case STACK_DYNPTR: 17718 old_reg = &old->stack[spi].spilled_ptr; 17719 cur_reg = &cur->stack[spi].spilled_ptr; 17720 if (old_reg->dynptr.type != cur_reg->dynptr.type || 17721 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 17722 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 17723 return false; 17724 break; 17725 case STACK_ITER: 17726 old_reg = &old->stack[spi].spilled_ptr; 17727 cur_reg = &cur->stack[spi].spilled_ptr; 17728 /* iter.depth is not compared between states as it 17729 * doesn't matter for correctness and would otherwise 17730 * prevent convergence; we maintain it only to prevent 17731 * infinite loop check triggering, see 17732 * iter_active_depths_differ() 17733 */ 17734 if (old_reg->iter.btf != cur_reg->iter.btf || 17735 old_reg->iter.btf_id != cur_reg->iter.btf_id || 17736 old_reg->iter.state != cur_reg->iter.state || 17737 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 17738 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 17739 return false; 17740 break; 17741 case STACK_MISC: 17742 case STACK_ZERO: 17743 case STACK_INVALID: 17744 continue; 17745 /* Ensure that new unhandled slot types return false by default */ 17746 default: 17747 return false; 17748 } 17749 } 17750 return true; 17751 } 17752 17753 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 17754 struct bpf_idmap *idmap) 17755 { 17756 int i; 17757 17758 if (old->acquired_refs != cur->acquired_refs) 17759 return false; 17760 17761 for (i = 0; i < old->acquired_refs; i++) { 17762 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) || 17763 old->refs[i].type != cur->refs[i].type) 17764 return false; 17765 switch (old->refs[i].type) { 17766 case REF_TYPE_PTR: 17767 break; 17768 case REF_TYPE_LOCK: 17769 if (old->refs[i].ptr != cur->refs[i].ptr) 17770 return false; 17771 break; 17772 default: 17773 WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type); 17774 return false; 17775 } 17776 } 17777 17778 return true; 17779 } 17780 17781 /* compare two verifier states 17782 * 17783 * all states stored in state_list are known to be valid, since 17784 * verifier reached 'bpf_exit' instruction through them 17785 * 17786 * this function is called when verifier exploring different branches of 17787 * execution popped from the state stack. If it sees an old state that has 17788 * more strict register state and more strict stack state then this execution 17789 * branch doesn't need to be explored further, since verifier already 17790 * concluded that more strict state leads to valid finish. 17791 * 17792 * Therefore two states are equivalent if register state is more conservative 17793 * and explored stack state is more conservative than the current one. 17794 * Example: 17795 * explored current 17796 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 17797 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 17798 * 17799 * In other words if current stack state (one being explored) has more 17800 * valid slots than old one that already passed validation, it means 17801 * the verifier can stop exploring and conclude that current state is valid too 17802 * 17803 * Similarly with registers. If explored state has register type as invalid 17804 * whereas register type in current state is meaningful, it means that 17805 * the current state will reach 'bpf_exit' instruction safely 17806 */ 17807 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 17808 struct bpf_func_state *cur, enum exact_level exact) 17809 { 17810 int i; 17811 17812 if (old->callback_depth > cur->callback_depth) 17813 return false; 17814 17815 for (i = 0; i < MAX_BPF_REG; i++) 17816 if (!regsafe(env, &old->regs[i], &cur->regs[i], 17817 &env->idmap_scratch, exact)) 17818 return false; 17819 17820 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 17821 return false; 17822 17823 if (!refsafe(old, cur, &env->idmap_scratch)) 17824 return false; 17825 17826 return true; 17827 } 17828 17829 static void reset_idmap_scratch(struct bpf_verifier_env *env) 17830 { 17831 env->idmap_scratch.tmp_id_gen = env->id_gen; 17832 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 17833 } 17834 17835 static bool states_equal(struct bpf_verifier_env *env, 17836 struct bpf_verifier_state *old, 17837 struct bpf_verifier_state *cur, 17838 enum exact_level exact) 17839 { 17840 int i; 17841 17842 if (old->curframe != cur->curframe) 17843 return false; 17844 17845 reset_idmap_scratch(env); 17846 17847 /* Verification state from speculative execution simulation 17848 * must never prune a non-speculative execution one. 17849 */ 17850 if (old->speculative && !cur->speculative) 17851 return false; 17852 17853 if (old->active_rcu_lock != cur->active_rcu_lock) 17854 return false; 17855 17856 if (old->active_preempt_lock != cur->active_preempt_lock) 17857 return false; 17858 17859 if (old->in_sleepable != cur->in_sleepable) 17860 return false; 17861 17862 /* for states to be equal callsites have to be the same 17863 * and all frame states need to be equivalent 17864 */ 17865 for (i = 0; i <= old->curframe; i++) { 17866 if (old->frame[i]->callsite != cur->frame[i]->callsite) 17867 return false; 17868 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 17869 return false; 17870 } 17871 return true; 17872 } 17873 17874 /* Return 0 if no propagation happened. Return negative error code if error 17875 * happened. Otherwise, return the propagated bit. 17876 */ 17877 static int propagate_liveness_reg(struct bpf_verifier_env *env, 17878 struct bpf_reg_state *reg, 17879 struct bpf_reg_state *parent_reg) 17880 { 17881 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 17882 u8 flag = reg->live & REG_LIVE_READ; 17883 int err; 17884 17885 /* When comes here, read flags of PARENT_REG or REG could be any of 17886 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 17887 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 17888 */ 17889 if (parent_flag == REG_LIVE_READ64 || 17890 /* Or if there is no read flag from REG. */ 17891 !flag || 17892 /* Or if the read flag from REG is the same as PARENT_REG. */ 17893 parent_flag == flag) 17894 return 0; 17895 17896 err = mark_reg_read(env, reg, parent_reg, flag); 17897 if (err) 17898 return err; 17899 17900 return flag; 17901 } 17902 17903 /* A write screens off any subsequent reads; but write marks come from the 17904 * straight-line code between a state and its parent. When we arrive at an 17905 * equivalent state (jump target or such) we didn't arrive by the straight-line 17906 * code, so read marks in the state must propagate to the parent regardless 17907 * of the state's write marks. That's what 'parent == state->parent' comparison 17908 * in mark_reg_read() is for. 17909 */ 17910 static int propagate_liveness(struct bpf_verifier_env *env, 17911 const struct bpf_verifier_state *vstate, 17912 struct bpf_verifier_state *vparent) 17913 { 17914 struct bpf_reg_state *state_reg, *parent_reg; 17915 struct bpf_func_state *state, *parent; 17916 int i, frame, err = 0; 17917 17918 if (vparent->curframe != vstate->curframe) { 17919 WARN(1, "propagate_live: parent frame %d current frame %d\n", 17920 vparent->curframe, vstate->curframe); 17921 return -EFAULT; 17922 } 17923 /* Propagate read liveness of registers... */ 17924 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 17925 for (frame = 0; frame <= vstate->curframe; frame++) { 17926 parent = vparent->frame[frame]; 17927 state = vstate->frame[frame]; 17928 parent_reg = parent->regs; 17929 state_reg = state->regs; 17930 /* We don't need to worry about FP liveness, it's read-only */ 17931 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 17932 err = propagate_liveness_reg(env, &state_reg[i], 17933 &parent_reg[i]); 17934 if (err < 0) 17935 return err; 17936 if (err == REG_LIVE_READ64) 17937 mark_insn_zext(env, &parent_reg[i]); 17938 } 17939 17940 /* Propagate stack slots. */ 17941 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 17942 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 17943 parent_reg = &parent->stack[i].spilled_ptr; 17944 state_reg = &state->stack[i].spilled_ptr; 17945 err = propagate_liveness_reg(env, state_reg, 17946 parent_reg); 17947 if (err < 0) 17948 return err; 17949 } 17950 } 17951 return 0; 17952 } 17953 17954 /* find precise scalars in the previous equivalent state and 17955 * propagate them into the current state 17956 */ 17957 static int propagate_precision(struct bpf_verifier_env *env, 17958 const struct bpf_verifier_state *old) 17959 { 17960 struct bpf_reg_state *state_reg; 17961 struct bpf_func_state *state; 17962 int i, err = 0, fr; 17963 bool first; 17964 17965 for (fr = old->curframe; fr >= 0; fr--) { 17966 state = old->frame[fr]; 17967 state_reg = state->regs; 17968 first = true; 17969 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 17970 if (state_reg->type != SCALAR_VALUE || 17971 !state_reg->precise || 17972 !(state_reg->live & REG_LIVE_READ)) 17973 continue; 17974 if (env->log.level & BPF_LOG_LEVEL2) { 17975 if (first) 17976 verbose(env, "frame %d: propagating r%d", fr, i); 17977 else 17978 verbose(env, ",r%d", i); 17979 } 17980 bt_set_frame_reg(&env->bt, fr, i); 17981 first = false; 17982 } 17983 17984 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 17985 if (!is_spilled_reg(&state->stack[i])) 17986 continue; 17987 state_reg = &state->stack[i].spilled_ptr; 17988 if (state_reg->type != SCALAR_VALUE || 17989 !state_reg->precise || 17990 !(state_reg->live & REG_LIVE_READ)) 17991 continue; 17992 if (env->log.level & BPF_LOG_LEVEL2) { 17993 if (first) 17994 verbose(env, "frame %d: propagating fp%d", 17995 fr, (-i - 1) * BPF_REG_SIZE); 17996 else 17997 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 17998 } 17999 bt_set_frame_slot(&env->bt, fr, i); 18000 first = false; 18001 } 18002 if (!first) 18003 verbose(env, "\n"); 18004 } 18005 18006 err = mark_chain_precision_batch(env); 18007 if (err < 0) 18008 return err; 18009 18010 return 0; 18011 } 18012 18013 static bool states_maybe_looping(struct bpf_verifier_state *old, 18014 struct bpf_verifier_state *cur) 18015 { 18016 struct bpf_func_state *fold, *fcur; 18017 int i, fr = cur->curframe; 18018 18019 if (old->curframe != fr) 18020 return false; 18021 18022 fold = old->frame[fr]; 18023 fcur = cur->frame[fr]; 18024 for (i = 0; i < MAX_BPF_REG; i++) 18025 if (memcmp(&fold->regs[i], &fcur->regs[i], 18026 offsetof(struct bpf_reg_state, parent))) 18027 return false; 18028 return true; 18029 } 18030 18031 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 18032 { 18033 return env->insn_aux_data[insn_idx].is_iter_next; 18034 } 18035 18036 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 18037 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 18038 * states to match, which otherwise would look like an infinite loop. So while 18039 * iter_next() calls are taken care of, we still need to be careful and 18040 * prevent erroneous and too eager declaration of "ininite loop", when 18041 * iterators are involved. 18042 * 18043 * Here's a situation in pseudo-BPF assembly form: 18044 * 18045 * 0: again: ; set up iter_next() call args 18046 * 1: r1 = &it ; <CHECKPOINT HERE> 18047 * 2: call bpf_iter_num_next ; this is iter_next() call 18048 * 3: if r0 == 0 goto done 18049 * 4: ... something useful here ... 18050 * 5: goto again ; another iteration 18051 * 6: done: 18052 * 7: r1 = &it 18053 * 8: call bpf_iter_num_destroy ; clean up iter state 18054 * 9: exit 18055 * 18056 * This is a typical loop. Let's assume that we have a prune point at 1:, 18057 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 18058 * again`, assuming other heuristics don't get in a way). 18059 * 18060 * When we first time come to 1:, let's say we have some state X. We proceed 18061 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 18062 * Now we come back to validate that forked ACTIVE state. We proceed through 18063 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 18064 * are converging. But the problem is that we don't know that yet, as this 18065 * convergence has to happen at iter_next() call site only. So if nothing is 18066 * done, at 1: verifier will use bounded loop logic and declare infinite 18067 * looping (and would be *technically* correct, if not for iterator's 18068 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 18069 * don't want that. So what we do in process_iter_next_call() when we go on 18070 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 18071 * a different iteration. So when we suspect an infinite loop, we additionally 18072 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 18073 * pretend we are not looping and wait for next iter_next() call. 18074 * 18075 * This only applies to ACTIVE state. In DRAINED state we don't expect to 18076 * loop, because that would actually mean infinite loop, as DRAINED state is 18077 * "sticky", and so we'll keep returning into the same instruction with the 18078 * same state (at least in one of possible code paths). 18079 * 18080 * This approach allows to keep infinite loop heuristic even in the face of 18081 * active iterator. E.g., C snippet below is and will be detected as 18082 * inifintely looping: 18083 * 18084 * struct bpf_iter_num it; 18085 * int *p, x; 18086 * 18087 * bpf_iter_num_new(&it, 0, 10); 18088 * while ((p = bpf_iter_num_next(&t))) { 18089 * x = p; 18090 * while (x--) {} // <<-- infinite loop here 18091 * } 18092 * 18093 */ 18094 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 18095 { 18096 struct bpf_reg_state *slot, *cur_slot; 18097 struct bpf_func_state *state; 18098 int i, fr; 18099 18100 for (fr = old->curframe; fr >= 0; fr--) { 18101 state = old->frame[fr]; 18102 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 18103 if (state->stack[i].slot_type[0] != STACK_ITER) 18104 continue; 18105 18106 slot = &state->stack[i].spilled_ptr; 18107 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 18108 continue; 18109 18110 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 18111 if (cur_slot->iter.depth != slot->iter.depth) 18112 return true; 18113 } 18114 } 18115 return false; 18116 } 18117 18118 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 18119 { 18120 struct bpf_verifier_state_list *new_sl; 18121 struct bpf_verifier_state_list *sl, **pprev; 18122 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 18123 int i, j, n, err, states_cnt = 0; 18124 bool force_new_state, add_new_state, force_exact; 18125 18126 force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) || 18127 /* Avoid accumulating infinitely long jmp history */ 18128 cur->insn_hist_end - cur->insn_hist_start > 40; 18129 18130 /* bpf progs typically have pruning point every 4 instructions 18131 * http://vger.kernel.org/bpfconf2019.html#session-1 18132 * Do not add new state for future pruning if the verifier hasn't seen 18133 * at least 2 jumps and at least 8 instructions. 18134 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 18135 * In tests that amounts to up to 50% reduction into total verifier 18136 * memory consumption and 20% verifier time speedup. 18137 */ 18138 add_new_state = force_new_state; 18139 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 18140 env->insn_processed - env->prev_insn_processed >= 8) 18141 add_new_state = true; 18142 18143 pprev = explored_state(env, insn_idx); 18144 sl = *pprev; 18145 18146 clean_live_states(env, insn_idx, cur); 18147 18148 while (sl) { 18149 states_cnt++; 18150 if (sl->state.insn_idx != insn_idx) 18151 goto next; 18152 18153 if (sl->state.branches) { 18154 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 18155 18156 if (frame->in_async_callback_fn && 18157 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 18158 /* Different async_entry_cnt means that the verifier is 18159 * processing another entry into async callback. 18160 * Seeing the same state is not an indication of infinite 18161 * loop or infinite recursion. 18162 * But finding the same state doesn't mean that it's safe 18163 * to stop processing the current state. The previous state 18164 * hasn't yet reached bpf_exit, since state.branches > 0. 18165 * Checking in_async_callback_fn alone is not enough either. 18166 * Since the verifier still needs to catch infinite loops 18167 * inside async callbacks. 18168 */ 18169 goto skip_inf_loop_check; 18170 } 18171 /* BPF open-coded iterators loop detection is special. 18172 * states_maybe_looping() logic is too simplistic in detecting 18173 * states that *might* be equivalent, because it doesn't know 18174 * about ID remapping, so don't even perform it. 18175 * See process_iter_next_call() and iter_active_depths_differ() 18176 * for overview of the logic. When current and one of parent 18177 * states are detected as equivalent, it's a good thing: we prove 18178 * convergence and can stop simulating further iterations. 18179 * It's safe to assume that iterator loop will finish, taking into 18180 * account iter_next() contract of eventually returning 18181 * sticky NULL result. 18182 * 18183 * Note, that states have to be compared exactly in this case because 18184 * read and precision marks might not be finalized inside the loop. 18185 * E.g. as in the program below: 18186 * 18187 * 1. r7 = -16 18188 * 2. r6 = bpf_get_prandom_u32() 18189 * 3. while (bpf_iter_num_next(&fp[-8])) { 18190 * 4. if (r6 != 42) { 18191 * 5. r7 = -32 18192 * 6. r6 = bpf_get_prandom_u32() 18193 * 7. continue 18194 * 8. } 18195 * 9. r0 = r10 18196 * 10. r0 += r7 18197 * 11. r8 = *(u64 *)(r0 + 0) 18198 * 12. r6 = bpf_get_prandom_u32() 18199 * 13. } 18200 * 18201 * Here verifier would first visit path 1-3, create a checkpoint at 3 18202 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 18203 * not have read or precision mark for r7 yet, thus inexact states 18204 * comparison would discard current state with r7=-32 18205 * => unsafe memory access at 11 would not be caught. 18206 */ 18207 if (is_iter_next_insn(env, insn_idx)) { 18208 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 18209 struct bpf_func_state *cur_frame; 18210 struct bpf_reg_state *iter_state, *iter_reg; 18211 int spi; 18212 18213 cur_frame = cur->frame[cur->curframe]; 18214 /* btf_check_iter_kfuncs() enforces that 18215 * iter state pointer is always the first arg 18216 */ 18217 iter_reg = &cur_frame->regs[BPF_REG_1]; 18218 /* current state is valid due to states_equal(), 18219 * so we can assume valid iter and reg state, 18220 * no need for extra (re-)validations 18221 */ 18222 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 18223 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 18224 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 18225 update_loop_entry(cur, &sl->state); 18226 goto hit; 18227 } 18228 } 18229 goto skip_inf_loop_check; 18230 } 18231 if (is_may_goto_insn_at(env, insn_idx)) { 18232 if (sl->state.may_goto_depth != cur->may_goto_depth && 18233 states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 18234 update_loop_entry(cur, &sl->state); 18235 goto hit; 18236 } 18237 } 18238 if (calls_callback(env, insn_idx)) { 18239 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) 18240 goto hit; 18241 goto skip_inf_loop_check; 18242 } 18243 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 18244 if (states_maybe_looping(&sl->state, cur) && 18245 states_equal(env, &sl->state, cur, EXACT) && 18246 !iter_active_depths_differ(&sl->state, cur) && 18247 sl->state.may_goto_depth == cur->may_goto_depth && 18248 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 18249 verbose_linfo(env, insn_idx, "; "); 18250 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 18251 verbose(env, "cur state:"); 18252 print_verifier_state(env, cur->frame[cur->curframe], true); 18253 verbose(env, "old state:"); 18254 print_verifier_state(env, sl->state.frame[cur->curframe], true); 18255 return -EINVAL; 18256 } 18257 /* if the verifier is processing a loop, avoid adding new state 18258 * too often, since different loop iterations have distinct 18259 * states and may not help future pruning. 18260 * This threshold shouldn't be too low to make sure that 18261 * a loop with large bound will be rejected quickly. 18262 * The most abusive loop will be: 18263 * r1 += 1 18264 * if r1 < 1000000 goto pc-2 18265 * 1M insn_procssed limit / 100 == 10k peak states. 18266 * This threshold shouldn't be too high either, since states 18267 * at the end of the loop are likely to be useful in pruning. 18268 */ 18269 skip_inf_loop_check: 18270 if (!force_new_state && 18271 env->jmps_processed - env->prev_jmps_processed < 20 && 18272 env->insn_processed - env->prev_insn_processed < 100) 18273 add_new_state = false; 18274 goto miss; 18275 } 18276 /* If sl->state is a part of a loop and this loop's entry is a part of 18277 * current verification path then states have to be compared exactly. 18278 * 'force_exact' is needed to catch the following case: 18279 * 18280 * initial Here state 'succ' was processed first, 18281 * | it was eventually tracked to produce a 18282 * V state identical to 'hdr'. 18283 * .---------> hdr All branches from 'succ' had been explored 18284 * | | and thus 'succ' has its .branches == 0. 18285 * | V 18286 * | .------... Suppose states 'cur' and 'succ' correspond 18287 * | | | to the same instruction + callsites. 18288 * | V V In such case it is necessary to check 18289 * | ... ... if 'succ' and 'cur' are states_equal(). 18290 * | | | If 'succ' and 'cur' are a part of the 18291 * | V V same loop exact flag has to be set. 18292 * | succ <- cur To check if that is the case, verify 18293 * | | if loop entry of 'succ' is in current 18294 * | V DFS path. 18295 * | ... 18296 * | | 18297 * '----' 18298 * 18299 * Additional details are in the comment before get_loop_entry(). 18300 */ 18301 loop_entry = get_loop_entry(&sl->state); 18302 force_exact = loop_entry && loop_entry->branches > 0; 18303 if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) { 18304 if (force_exact) 18305 update_loop_entry(cur, loop_entry); 18306 hit: 18307 sl->hit_cnt++; 18308 /* reached equivalent register/stack state, 18309 * prune the search. 18310 * Registers read by the continuation are read by us. 18311 * If we have any write marks in env->cur_state, they 18312 * will prevent corresponding reads in the continuation 18313 * from reaching our parent (an explored_state). Our 18314 * own state will get the read marks recorded, but 18315 * they'll be immediately forgotten as we're pruning 18316 * this state and will pop a new one. 18317 */ 18318 err = propagate_liveness(env, &sl->state, cur); 18319 18320 /* if previous state reached the exit with precision and 18321 * current state is equivalent to it (except precision marks) 18322 * the precision needs to be propagated back in 18323 * the current state. 18324 */ 18325 if (is_jmp_point(env, env->insn_idx)) 18326 err = err ? : push_insn_history(env, cur, 0, 0); 18327 err = err ? : propagate_precision(env, &sl->state); 18328 if (err) 18329 return err; 18330 return 1; 18331 } 18332 miss: 18333 /* when new state is not going to be added do not increase miss count. 18334 * Otherwise several loop iterations will remove the state 18335 * recorded earlier. The goal of these heuristics is to have 18336 * states from some iterations of the loop (some in the beginning 18337 * and some at the end) to help pruning. 18338 */ 18339 if (add_new_state) 18340 sl->miss_cnt++; 18341 /* heuristic to determine whether this state is beneficial 18342 * to keep checking from state equivalence point of view. 18343 * Higher numbers increase max_states_per_insn and verification time, 18344 * but do not meaningfully decrease insn_processed. 18345 * 'n' controls how many times state could miss before eviction. 18346 * Use bigger 'n' for checkpoints because evicting checkpoint states 18347 * too early would hinder iterator convergence. 18348 */ 18349 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 18350 if (sl->miss_cnt > sl->hit_cnt * n + n) { 18351 /* the state is unlikely to be useful. Remove it to 18352 * speed up verification 18353 */ 18354 *pprev = sl->next; 18355 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 18356 !sl->state.used_as_loop_entry) { 18357 u32 br = sl->state.branches; 18358 18359 WARN_ONCE(br, 18360 "BUG live_done but branches_to_explore %d\n", 18361 br); 18362 free_verifier_state(&sl->state, false); 18363 kfree(sl); 18364 env->peak_states--; 18365 } else { 18366 /* cannot free this state, since parentage chain may 18367 * walk it later. Add it for free_list instead to 18368 * be freed at the end of verification 18369 */ 18370 sl->next = env->free_list; 18371 env->free_list = sl; 18372 } 18373 sl = *pprev; 18374 continue; 18375 } 18376 next: 18377 pprev = &sl->next; 18378 sl = *pprev; 18379 } 18380 18381 if (env->max_states_per_insn < states_cnt) 18382 env->max_states_per_insn = states_cnt; 18383 18384 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 18385 return 0; 18386 18387 if (!add_new_state) 18388 return 0; 18389 18390 /* There were no equivalent states, remember the current one. 18391 * Technically the current state is not proven to be safe yet, 18392 * but it will either reach outer most bpf_exit (which means it's safe) 18393 * or it will be rejected. When there are no loops the verifier won't be 18394 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 18395 * again on the way to bpf_exit. 18396 * When looping the sl->state.branches will be > 0 and this state 18397 * will not be considered for equivalence until branches == 0. 18398 */ 18399 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 18400 if (!new_sl) 18401 return -ENOMEM; 18402 env->total_states++; 18403 env->peak_states++; 18404 env->prev_jmps_processed = env->jmps_processed; 18405 env->prev_insn_processed = env->insn_processed; 18406 18407 /* forget precise markings we inherited, see __mark_chain_precision */ 18408 if (env->bpf_capable) 18409 mark_all_scalars_imprecise(env, cur); 18410 18411 /* add new state to the head of linked list */ 18412 new = &new_sl->state; 18413 err = copy_verifier_state(new, cur); 18414 if (err) { 18415 free_verifier_state(new, false); 18416 kfree(new_sl); 18417 return err; 18418 } 18419 new->insn_idx = insn_idx; 18420 WARN_ONCE(new->branches != 1, 18421 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 18422 18423 cur->parent = new; 18424 cur->first_insn_idx = insn_idx; 18425 cur->insn_hist_start = cur->insn_hist_end; 18426 cur->dfs_depth = new->dfs_depth + 1; 18427 new_sl->next = *explored_state(env, insn_idx); 18428 *explored_state(env, insn_idx) = new_sl; 18429 /* connect new state to parentage chain. Current frame needs all 18430 * registers connected. Only r6 - r9 of the callers are alive (pushed 18431 * to the stack implicitly by JITs) so in callers' frames connect just 18432 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 18433 * the state of the call instruction (with WRITTEN set), and r0 comes 18434 * from callee with its full parentage chain, anyway. 18435 */ 18436 /* clear write marks in current state: the writes we did are not writes 18437 * our child did, so they don't screen off its reads from us. 18438 * (There are no read marks in current state, because reads always mark 18439 * their parent and current state never has children yet. Only 18440 * explored_states can get read marks.) 18441 */ 18442 for (j = 0; j <= cur->curframe; j++) { 18443 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 18444 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 18445 for (i = 0; i < BPF_REG_FP; i++) 18446 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 18447 } 18448 18449 /* all stack frames are accessible from callee, clear them all */ 18450 for (j = 0; j <= cur->curframe; j++) { 18451 struct bpf_func_state *frame = cur->frame[j]; 18452 struct bpf_func_state *newframe = new->frame[j]; 18453 18454 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 18455 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 18456 frame->stack[i].spilled_ptr.parent = 18457 &newframe->stack[i].spilled_ptr; 18458 } 18459 } 18460 return 0; 18461 } 18462 18463 /* Return true if it's OK to have the same insn return a different type. */ 18464 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 18465 { 18466 switch (base_type(type)) { 18467 case PTR_TO_CTX: 18468 case PTR_TO_SOCKET: 18469 case PTR_TO_SOCK_COMMON: 18470 case PTR_TO_TCP_SOCK: 18471 case PTR_TO_XDP_SOCK: 18472 case PTR_TO_BTF_ID: 18473 case PTR_TO_ARENA: 18474 return false; 18475 default: 18476 return true; 18477 } 18478 } 18479 18480 /* If an instruction was previously used with particular pointer types, then we 18481 * need to be careful to avoid cases such as the below, where it may be ok 18482 * for one branch accessing the pointer, but not ok for the other branch: 18483 * 18484 * R1 = sock_ptr 18485 * goto X; 18486 * ... 18487 * R1 = some_other_valid_ptr; 18488 * goto X; 18489 * ... 18490 * R2 = *(u32 *)(R1 + 0); 18491 */ 18492 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 18493 { 18494 return src != prev && (!reg_type_mismatch_ok(src) || 18495 !reg_type_mismatch_ok(prev)); 18496 } 18497 18498 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 18499 bool allow_trust_mismatch) 18500 { 18501 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 18502 18503 if (*prev_type == NOT_INIT) { 18504 /* Saw a valid insn 18505 * dst_reg = *(u32 *)(src_reg + off) 18506 * save type to validate intersecting paths 18507 */ 18508 *prev_type = type; 18509 } else if (reg_type_mismatch(type, *prev_type)) { 18510 /* Abuser program is trying to use the same insn 18511 * dst_reg = *(u32*) (src_reg + off) 18512 * with different pointer types: 18513 * src_reg == ctx in one branch and 18514 * src_reg == stack|map in some other branch. 18515 * Reject it. 18516 */ 18517 if (allow_trust_mismatch && 18518 base_type(type) == PTR_TO_BTF_ID && 18519 base_type(*prev_type) == PTR_TO_BTF_ID) { 18520 /* 18521 * Have to support a use case when one path through 18522 * the program yields TRUSTED pointer while another 18523 * is UNTRUSTED. Fallback to UNTRUSTED to generate 18524 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 18525 */ 18526 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 18527 } else { 18528 verbose(env, "same insn cannot be used with different pointers\n"); 18529 return -EINVAL; 18530 } 18531 } 18532 18533 return 0; 18534 } 18535 18536 static int do_check(struct bpf_verifier_env *env) 18537 { 18538 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 18539 struct bpf_verifier_state *state = env->cur_state; 18540 struct bpf_insn *insns = env->prog->insnsi; 18541 struct bpf_reg_state *regs; 18542 int insn_cnt = env->prog->len; 18543 bool do_print_state = false; 18544 int prev_insn_idx = -1; 18545 18546 for (;;) { 18547 bool exception_exit = false; 18548 struct bpf_insn *insn; 18549 u8 class; 18550 int err; 18551 18552 /* reset current history entry on each new instruction */ 18553 env->cur_hist_ent = NULL; 18554 18555 env->prev_insn_idx = prev_insn_idx; 18556 if (env->insn_idx >= insn_cnt) { 18557 verbose(env, "invalid insn idx %d insn_cnt %d\n", 18558 env->insn_idx, insn_cnt); 18559 return -EFAULT; 18560 } 18561 18562 insn = &insns[env->insn_idx]; 18563 class = BPF_CLASS(insn->code); 18564 18565 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 18566 verbose(env, 18567 "BPF program is too large. Processed %d insn\n", 18568 env->insn_processed); 18569 return -E2BIG; 18570 } 18571 18572 state->last_insn_idx = env->prev_insn_idx; 18573 18574 if (is_prune_point(env, env->insn_idx)) { 18575 err = is_state_visited(env, env->insn_idx); 18576 if (err < 0) 18577 return err; 18578 if (err == 1) { 18579 /* found equivalent state, can prune the search */ 18580 if (env->log.level & BPF_LOG_LEVEL) { 18581 if (do_print_state) 18582 verbose(env, "\nfrom %d to %d%s: safe\n", 18583 env->prev_insn_idx, env->insn_idx, 18584 env->cur_state->speculative ? 18585 " (speculative execution)" : ""); 18586 else 18587 verbose(env, "%d: safe\n", env->insn_idx); 18588 } 18589 goto process_bpf_exit; 18590 } 18591 } 18592 18593 if (is_jmp_point(env, env->insn_idx)) { 18594 err = push_insn_history(env, state, 0, 0); 18595 if (err) 18596 return err; 18597 } 18598 18599 if (signal_pending(current)) 18600 return -EAGAIN; 18601 18602 if (need_resched()) 18603 cond_resched(); 18604 18605 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 18606 verbose(env, "\nfrom %d to %d%s:", 18607 env->prev_insn_idx, env->insn_idx, 18608 env->cur_state->speculative ? 18609 " (speculative execution)" : ""); 18610 print_verifier_state(env, state->frame[state->curframe], true); 18611 do_print_state = false; 18612 } 18613 18614 if (env->log.level & BPF_LOG_LEVEL) { 18615 const struct bpf_insn_cbs cbs = { 18616 .cb_call = disasm_kfunc_name, 18617 .cb_print = verbose, 18618 .private_data = env, 18619 }; 18620 18621 if (verifier_state_scratched(env)) 18622 print_insn_state(env, state->frame[state->curframe]); 18623 18624 verbose_linfo(env, env->insn_idx, "; "); 18625 env->prev_log_pos = env->log.end_pos; 18626 verbose(env, "%d: ", env->insn_idx); 18627 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 18628 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 18629 env->prev_log_pos = env->log.end_pos; 18630 } 18631 18632 if (bpf_prog_is_offloaded(env->prog->aux)) { 18633 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 18634 env->prev_insn_idx); 18635 if (err) 18636 return err; 18637 } 18638 18639 regs = cur_regs(env); 18640 sanitize_mark_insn_seen(env); 18641 prev_insn_idx = env->insn_idx; 18642 18643 if (class == BPF_ALU || class == BPF_ALU64) { 18644 err = check_alu_op(env, insn); 18645 if (err) 18646 return err; 18647 18648 } else if (class == BPF_LDX) { 18649 enum bpf_reg_type src_reg_type; 18650 18651 /* check for reserved fields is already done */ 18652 18653 /* check src operand */ 18654 err = check_reg_arg(env, insn->src_reg, SRC_OP); 18655 if (err) 18656 return err; 18657 18658 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 18659 if (err) 18660 return err; 18661 18662 src_reg_type = regs[insn->src_reg].type; 18663 18664 /* check that memory (src_reg + off) is readable, 18665 * the state of dst_reg will be updated by this func 18666 */ 18667 err = check_mem_access(env, env->insn_idx, insn->src_reg, 18668 insn->off, BPF_SIZE(insn->code), 18669 BPF_READ, insn->dst_reg, false, 18670 BPF_MODE(insn->code) == BPF_MEMSX); 18671 err = err ?: save_aux_ptr_type(env, src_reg_type, true); 18672 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], "ldx"); 18673 if (err) 18674 return err; 18675 } else if (class == BPF_STX) { 18676 enum bpf_reg_type dst_reg_type; 18677 18678 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 18679 err = check_atomic(env, env->insn_idx, insn); 18680 if (err) 18681 return err; 18682 env->insn_idx++; 18683 continue; 18684 } 18685 18686 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 18687 verbose(env, "BPF_STX uses reserved fields\n"); 18688 return -EINVAL; 18689 } 18690 18691 /* check src1 operand */ 18692 err = check_reg_arg(env, insn->src_reg, SRC_OP); 18693 if (err) 18694 return err; 18695 /* check src2 operand */ 18696 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 18697 if (err) 18698 return err; 18699 18700 dst_reg_type = regs[insn->dst_reg].type; 18701 18702 /* check that memory (dst_reg + off) is writeable */ 18703 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 18704 insn->off, BPF_SIZE(insn->code), 18705 BPF_WRITE, insn->src_reg, false, false); 18706 if (err) 18707 return err; 18708 18709 err = save_aux_ptr_type(env, dst_reg_type, false); 18710 if (err) 18711 return err; 18712 } else if (class == BPF_ST) { 18713 enum bpf_reg_type dst_reg_type; 18714 18715 if (BPF_MODE(insn->code) != BPF_MEM || 18716 insn->src_reg != BPF_REG_0) { 18717 verbose(env, "BPF_ST uses reserved fields\n"); 18718 return -EINVAL; 18719 } 18720 /* check src operand */ 18721 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 18722 if (err) 18723 return err; 18724 18725 dst_reg_type = regs[insn->dst_reg].type; 18726 18727 /* check that memory (dst_reg + off) is writeable */ 18728 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 18729 insn->off, BPF_SIZE(insn->code), 18730 BPF_WRITE, -1, false, false); 18731 if (err) 18732 return err; 18733 18734 err = save_aux_ptr_type(env, dst_reg_type, false); 18735 if (err) 18736 return err; 18737 } else if (class == BPF_JMP || class == BPF_JMP32) { 18738 u8 opcode = BPF_OP(insn->code); 18739 18740 env->jmps_processed++; 18741 if (opcode == BPF_CALL) { 18742 if (BPF_SRC(insn->code) != BPF_K || 18743 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 18744 && insn->off != 0) || 18745 (insn->src_reg != BPF_REG_0 && 18746 insn->src_reg != BPF_PSEUDO_CALL && 18747 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 18748 insn->dst_reg != BPF_REG_0 || 18749 class == BPF_JMP32) { 18750 verbose(env, "BPF_CALL uses reserved fields\n"); 18751 return -EINVAL; 18752 } 18753 18754 if (cur_func(env)->active_locks) { 18755 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 18756 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 18757 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 18758 verbose(env, "function calls are not allowed while holding a lock\n"); 18759 return -EINVAL; 18760 } 18761 } 18762 if (insn->src_reg == BPF_PSEUDO_CALL) { 18763 err = check_func_call(env, insn, &env->insn_idx); 18764 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 18765 err = check_kfunc_call(env, insn, &env->insn_idx); 18766 if (!err && is_bpf_throw_kfunc(insn)) { 18767 exception_exit = true; 18768 goto process_bpf_exit_full; 18769 } 18770 } else { 18771 err = check_helper_call(env, insn, &env->insn_idx); 18772 } 18773 if (err) 18774 return err; 18775 18776 mark_reg_scratched(env, BPF_REG_0); 18777 } else if (opcode == BPF_JA) { 18778 if (BPF_SRC(insn->code) != BPF_K || 18779 insn->src_reg != BPF_REG_0 || 18780 insn->dst_reg != BPF_REG_0 || 18781 (class == BPF_JMP && insn->imm != 0) || 18782 (class == BPF_JMP32 && insn->off != 0)) { 18783 verbose(env, "BPF_JA uses reserved fields\n"); 18784 return -EINVAL; 18785 } 18786 18787 if (class == BPF_JMP) 18788 env->insn_idx += insn->off + 1; 18789 else 18790 env->insn_idx += insn->imm + 1; 18791 continue; 18792 18793 } else if (opcode == BPF_EXIT) { 18794 if (BPF_SRC(insn->code) != BPF_K || 18795 insn->imm != 0 || 18796 insn->src_reg != BPF_REG_0 || 18797 insn->dst_reg != BPF_REG_0 || 18798 class == BPF_JMP32) { 18799 verbose(env, "BPF_EXIT uses reserved fields\n"); 18800 return -EINVAL; 18801 } 18802 process_bpf_exit_full: 18803 /* We must do check_reference_leak here before 18804 * prepare_func_exit to handle the case when 18805 * state->curframe > 0, it may be a callback 18806 * function, for which reference_state must 18807 * match caller reference state when it exits. 18808 */ 18809 err = check_resource_leak(env, exception_exit, !env->cur_state->curframe, 18810 "BPF_EXIT instruction"); 18811 if (err) 18812 return err; 18813 18814 /* The side effect of the prepare_func_exit 18815 * which is being skipped is that it frees 18816 * bpf_func_state. Typically, process_bpf_exit 18817 * will only be hit with outermost exit. 18818 * copy_verifier_state in pop_stack will handle 18819 * freeing of any extra bpf_func_state left over 18820 * from not processing all nested function 18821 * exits. We also skip return code checks as 18822 * they are not needed for exceptional exits. 18823 */ 18824 if (exception_exit) 18825 goto process_bpf_exit; 18826 18827 if (state->curframe) { 18828 /* exit from nested function */ 18829 err = prepare_func_exit(env, &env->insn_idx); 18830 if (err) 18831 return err; 18832 do_print_state = true; 18833 continue; 18834 } 18835 18836 err = check_return_code(env, BPF_REG_0, "R0"); 18837 if (err) 18838 return err; 18839 process_bpf_exit: 18840 mark_verifier_state_scratched(env); 18841 update_branch_counts(env, env->cur_state); 18842 err = pop_stack(env, &prev_insn_idx, 18843 &env->insn_idx, pop_log); 18844 if (err < 0) { 18845 if (err != -ENOENT) 18846 return err; 18847 break; 18848 } else { 18849 do_print_state = true; 18850 continue; 18851 } 18852 } else { 18853 err = check_cond_jmp_op(env, insn, &env->insn_idx); 18854 if (err) 18855 return err; 18856 } 18857 } else if (class == BPF_LD) { 18858 u8 mode = BPF_MODE(insn->code); 18859 18860 if (mode == BPF_ABS || mode == BPF_IND) { 18861 err = check_ld_abs(env, insn); 18862 if (err) 18863 return err; 18864 18865 } else if (mode == BPF_IMM) { 18866 err = check_ld_imm(env, insn); 18867 if (err) 18868 return err; 18869 18870 env->insn_idx++; 18871 sanitize_mark_insn_seen(env); 18872 } else { 18873 verbose(env, "invalid BPF_LD mode\n"); 18874 return -EINVAL; 18875 } 18876 } else { 18877 verbose(env, "unknown insn class %d\n", class); 18878 return -EINVAL; 18879 } 18880 18881 env->insn_idx++; 18882 } 18883 18884 return 0; 18885 } 18886 18887 static int find_btf_percpu_datasec(struct btf *btf) 18888 { 18889 const struct btf_type *t; 18890 const char *tname; 18891 int i, n; 18892 18893 /* 18894 * Both vmlinux and module each have their own ".data..percpu" 18895 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 18896 * types to look at only module's own BTF types. 18897 */ 18898 n = btf_nr_types(btf); 18899 if (btf_is_module(btf)) 18900 i = btf_nr_types(btf_vmlinux); 18901 else 18902 i = 1; 18903 18904 for(; i < n; i++) { 18905 t = btf_type_by_id(btf, i); 18906 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 18907 continue; 18908 18909 tname = btf_name_by_offset(btf, t->name_off); 18910 if (!strcmp(tname, ".data..percpu")) 18911 return i; 18912 } 18913 18914 return -ENOENT; 18915 } 18916 18917 /* replace pseudo btf_id with kernel symbol address */ 18918 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 18919 struct bpf_insn *insn, 18920 struct bpf_insn_aux_data *aux) 18921 { 18922 const struct btf_var_secinfo *vsi; 18923 const struct btf_type *datasec; 18924 struct btf_mod_pair *btf_mod; 18925 const struct btf_type *t; 18926 const char *sym_name; 18927 bool percpu = false; 18928 u32 type, id = insn->imm; 18929 struct btf *btf; 18930 s32 datasec_id; 18931 u64 addr; 18932 int i, btf_fd, err; 18933 18934 btf_fd = insn[1].imm; 18935 if (btf_fd) { 18936 btf = btf_get_by_fd(btf_fd); 18937 if (IS_ERR(btf)) { 18938 verbose(env, "invalid module BTF object FD specified.\n"); 18939 return -EINVAL; 18940 } 18941 } else { 18942 if (!btf_vmlinux) { 18943 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 18944 return -EINVAL; 18945 } 18946 btf = btf_vmlinux; 18947 btf_get(btf); 18948 } 18949 18950 t = btf_type_by_id(btf, id); 18951 if (!t) { 18952 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 18953 err = -ENOENT; 18954 goto err_put; 18955 } 18956 18957 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 18958 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 18959 err = -EINVAL; 18960 goto err_put; 18961 } 18962 18963 sym_name = btf_name_by_offset(btf, t->name_off); 18964 addr = kallsyms_lookup_name(sym_name); 18965 if (!addr) { 18966 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 18967 sym_name); 18968 err = -ENOENT; 18969 goto err_put; 18970 } 18971 insn[0].imm = (u32)addr; 18972 insn[1].imm = addr >> 32; 18973 18974 if (btf_type_is_func(t)) { 18975 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 18976 aux->btf_var.mem_size = 0; 18977 goto check_btf; 18978 } 18979 18980 datasec_id = find_btf_percpu_datasec(btf); 18981 if (datasec_id > 0) { 18982 datasec = btf_type_by_id(btf, datasec_id); 18983 for_each_vsi(i, datasec, vsi) { 18984 if (vsi->type == id) { 18985 percpu = true; 18986 break; 18987 } 18988 } 18989 } 18990 18991 type = t->type; 18992 t = btf_type_skip_modifiers(btf, type, NULL); 18993 if (percpu) { 18994 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 18995 aux->btf_var.btf = btf; 18996 aux->btf_var.btf_id = type; 18997 } else if (!btf_type_is_struct(t)) { 18998 const struct btf_type *ret; 18999 const char *tname; 19000 u32 tsize; 19001 19002 /* resolve the type size of ksym. */ 19003 ret = btf_resolve_size(btf, t, &tsize); 19004 if (IS_ERR(ret)) { 19005 tname = btf_name_by_offset(btf, t->name_off); 19006 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 19007 tname, PTR_ERR(ret)); 19008 err = -EINVAL; 19009 goto err_put; 19010 } 19011 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 19012 aux->btf_var.mem_size = tsize; 19013 } else { 19014 aux->btf_var.reg_type = PTR_TO_BTF_ID; 19015 aux->btf_var.btf = btf; 19016 aux->btf_var.btf_id = type; 19017 } 19018 check_btf: 19019 /* check whether we recorded this BTF (and maybe module) already */ 19020 for (i = 0; i < env->used_btf_cnt; i++) { 19021 if (env->used_btfs[i].btf == btf) { 19022 btf_put(btf); 19023 return 0; 19024 } 19025 } 19026 19027 if (env->used_btf_cnt >= MAX_USED_BTFS) { 19028 err = -E2BIG; 19029 goto err_put; 19030 } 19031 19032 btf_mod = &env->used_btfs[env->used_btf_cnt]; 19033 btf_mod->btf = btf; 19034 btf_mod->module = NULL; 19035 19036 /* if we reference variables from kernel module, bump its refcount */ 19037 if (btf_is_module(btf)) { 19038 btf_mod->module = btf_try_get_module(btf); 19039 if (!btf_mod->module) { 19040 err = -ENXIO; 19041 goto err_put; 19042 } 19043 } 19044 19045 env->used_btf_cnt++; 19046 19047 return 0; 19048 err_put: 19049 btf_put(btf); 19050 return err; 19051 } 19052 19053 static bool is_tracing_prog_type(enum bpf_prog_type type) 19054 { 19055 switch (type) { 19056 case BPF_PROG_TYPE_KPROBE: 19057 case BPF_PROG_TYPE_TRACEPOINT: 19058 case BPF_PROG_TYPE_PERF_EVENT: 19059 case BPF_PROG_TYPE_RAW_TRACEPOINT: 19060 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 19061 return true; 19062 default: 19063 return false; 19064 } 19065 } 19066 19067 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 19068 struct bpf_map *map, 19069 struct bpf_prog *prog) 19070 19071 { 19072 enum bpf_prog_type prog_type = resolve_prog_type(prog); 19073 19074 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 19075 btf_record_has_field(map->record, BPF_RB_ROOT)) { 19076 if (is_tracing_prog_type(prog_type)) { 19077 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 19078 return -EINVAL; 19079 } 19080 } 19081 19082 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 19083 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 19084 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 19085 return -EINVAL; 19086 } 19087 19088 if (is_tracing_prog_type(prog_type)) { 19089 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 19090 return -EINVAL; 19091 } 19092 } 19093 19094 if (btf_record_has_field(map->record, BPF_TIMER)) { 19095 if (is_tracing_prog_type(prog_type)) { 19096 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 19097 return -EINVAL; 19098 } 19099 } 19100 19101 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) { 19102 if (is_tracing_prog_type(prog_type)) { 19103 verbose(env, "tracing progs cannot use bpf_wq yet\n"); 19104 return -EINVAL; 19105 } 19106 } 19107 19108 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 19109 !bpf_offload_prog_map_match(prog, map)) { 19110 verbose(env, "offload device mismatch between prog and map\n"); 19111 return -EINVAL; 19112 } 19113 19114 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 19115 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 19116 return -EINVAL; 19117 } 19118 19119 if (prog->sleepable) 19120 switch (map->map_type) { 19121 case BPF_MAP_TYPE_HASH: 19122 case BPF_MAP_TYPE_LRU_HASH: 19123 case BPF_MAP_TYPE_ARRAY: 19124 case BPF_MAP_TYPE_PERCPU_HASH: 19125 case BPF_MAP_TYPE_PERCPU_ARRAY: 19126 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 19127 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 19128 case BPF_MAP_TYPE_HASH_OF_MAPS: 19129 case BPF_MAP_TYPE_RINGBUF: 19130 case BPF_MAP_TYPE_USER_RINGBUF: 19131 case BPF_MAP_TYPE_INODE_STORAGE: 19132 case BPF_MAP_TYPE_SK_STORAGE: 19133 case BPF_MAP_TYPE_TASK_STORAGE: 19134 case BPF_MAP_TYPE_CGRP_STORAGE: 19135 case BPF_MAP_TYPE_QUEUE: 19136 case BPF_MAP_TYPE_STACK: 19137 case BPF_MAP_TYPE_ARENA: 19138 break; 19139 default: 19140 verbose(env, 19141 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 19142 return -EINVAL; 19143 } 19144 19145 return 0; 19146 } 19147 19148 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 19149 { 19150 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 19151 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 19152 } 19153 19154 /* Add map behind fd to used maps list, if it's not already there, and return 19155 * its index. Also set *reused to true if this map was already in the list of 19156 * used maps. 19157 * Returns <0 on error, or >= 0 index, on success. 19158 */ 19159 static int add_used_map_from_fd(struct bpf_verifier_env *env, int fd, bool *reused) 19160 { 19161 CLASS(fd, f)(fd); 19162 struct bpf_map *map; 19163 int i; 19164 19165 map = __bpf_map_get(f); 19166 if (IS_ERR(map)) { 19167 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 19168 return PTR_ERR(map); 19169 } 19170 19171 /* check whether we recorded this map already */ 19172 for (i = 0; i < env->used_map_cnt; i++) { 19173 if (env->used_maps[i] == map) { 19174 *reused = true; 19175 return i; 19176 } 19177 } 19178 19179 if (env->used_map_cnt >= MAX_USED_MAPS) { 19180 verbose(env, "The total number of maps per program has reached the limit of %u\n", 19181 MAX_USED_MAPS); 19182 return -E2BIG; 19183 } 19184 19185 if (env->prog->sleepable) 19186 atomic64_inc(&map->sleepable_refcnt); 19187 19188 /* hold the map. If the program is rejected by verifier, 19189 * the map will be released by release_maps() or it 19190 * will be used by the valid program until it's unloaded 19191 * and all maps are released in bpf_free_used_maps() 19192 */ 19193 bpf_map_inc(map); 19194 19195 *reused = false; 19196 env->used_maps[env->used_map_cnt++] = map; 19197 19198 return env->used_map_cnt - 1; 19199 } 19200 19201 /* find and rewrite pseudo imm in ld_imm64 instructions: 19202 * 19203 * 1. if it accesses map FD, replace it with actual map pointer. 19204 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 19205 * 19206 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 19207 */ 19208 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 19209 { 19210 struct bpf_insn *insn = env->prog->insnsi; 19211 int insn_cnt = env->prog->len; 19212 int i, err; 19213 19214 err = bpf_prog_calc_tag(env->prog); 19215 if (err) 19216 return err; 19217 19218 for (i = 0; i < insn_cnt; i++, insn++) { 19219 if (BPF_CLASS(insn->code) == BPF_LDX && 19220 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 19221 insn->imm != 0)) { 19222 verbose(env, "BPF_LDX uses reserved fields\n"); 19223 return -EINVAL; 19224 } 19225 19226 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 19227 struct bpf_insn_aux_data *aux; 19228 struct bpf_map *map; 19229 int map_idx; 19230 u64 addr; 19231 u32 fd; 19232 bool reused; 19233 19234 if (i == insn_cnt - 1 || insn[1].code != 0 || 19235 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 19236 insn[1].off != 0) { 19237 verbose(env, "invalid bpf_ld_imm64 insn\n"); 19238 return -EINVAL; 19239 } 19240 19241 if (insn[0].src_reg == 0) 19242 /* valid generic load 64-bit imm */ 19243 goto next_insn; 19244 19245 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 19246 aux = &env->insn_aux_data[i]; 19247 err = check_pseudo_btf_id(env, insn, aux); 19248 if (err) 19249 return err; 19250 goto next_insn; 19251 } 19252 19253 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 19254 aux = &env->insn_aux_data[i]; 19255 aux->ptr_type = PTR_TO_FUNC; 19256 goto next_insn; 19257 } 19258 19259 /* In final convert_pseudo_ld_imm64() step, this is 19260 * converted into regular 64-bit imm load insn. 19261 */ 19262 switch (insn[0].src_reg) { 19263 case BPF_PSEUDO_MAP_VALUE: 19264 case BPF_PSEUDO_MAP_IDX_VALUE: 19265 break; 19266 case BPF_PSEUDO_MAP_FD: 19267 case BPF_PSEUDO_MAP_IDX: 19268 if (insn[1].imm == 0) 19269 break; 19270 fallthrough; 19271 default: 19272 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 19273 return -EINVAL; 19274 } 19275 19276 switch (insn[0].src_reg) { 19277 case BPF_PSEUDO_MAP_IDX_VALUE: 19278 case BPF_PSEUDO_MAP_IDX: 19279 if (bpfptr_is_null(env->fd_array)) { 19280 verbose(env, "fd_idx without fd_array is invalid\n"); 19281 return -EPROTO; 19282 } 19283 if (copy_from_bpfptr_offset(&fd, env->fd_array, 19284 insn[0].imm * sizeof(fd), 19285 sizeof(fd))) 19286 return -EFAULT; 19287 break; 19288 default: 19289 fd = insn[0].imm; 19290 break; 19291 } 19292 19293 map_idx = add_used_map_from_fd(env, fd, &reused); 19294 if (map_idx < 0) 19295 return map_idx; 19296 map = env->used_maps[map_idx]; 19297 19298 aux = &env->insn_aux_data[i]; 19299 aux->map_index = map_idx; 19300 19301 err = check_map_prog_compatibility(env, map, env->prog); 19302 if (err) 19303 return err; 19304 19305 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 19306 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 19307 addr = (unsigned long)map; 19308 } else { 19309 u32 off = insn[1].imm; 19310 19311 if (off >= BPF_MAX_VAR_OFF) { 19312 verbose(env, "direct value offset of %u is not allowed\n", off); 19313 return -EINVAL; 19314 } 19315 19316 if (!map->ops->map_direct_value_addr) { 19317 verbose(env, "no direct value access support for this map type\n"); 19318 return -EINVAL; 19319 } 19320 19321 err = map->ops->map_direct_value_addr(map, &addr, off); 19322 if (err) { 19323 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 19324 map->value_size, off); 19325 return err; 19326 } 19327 19328 aux->map_off = off; 19329 addr += off; 19330 } 19331 19332 insn[0].imm = (u32)addr; 19333 insn[1].imm = addr >> 32; 19334 19335 /* proceed with extra checks only if its newly added used map */ 19336 if (reused) 19337 goto next_insn; 19338 19339 if (bpf_map_is_cgroup_storage(map) && 19340 bpf_cgroup_storage_assign(env->prog->aux, map)) { 19341 verbose(env, "only one cgroup storage of each type is allowed\n"); 19342 return -EBUSY; 19343 } 19344 if (map->map_type == BPF_MAP_TYPE_ARENA) { 19345 if (env->prog->aux->arena) { 19346 verbose(env, "Only one arena per program\n"); 19347 return -EBUSY; 19348 } 19349 if (!env->allow_ptr_leaks || !env->bpf_capable) { 19350 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); 19351 return -EPERM; 19352 } 19353 if (!env->prog->jit_requested) { 19354 verbose(env, "JIT is required to use arena\n"); 19355 return -EOPNOTSUPP; 19356 } 19357 if (!bpf_jit_supports_arena()) { 19358 verbose(env, "JIT doesn't support arena\n"); 19359 return -EOPNOTSUPP; 19360 } 19361 env->prog->aux->arena = (void *)map; 19362 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { 19363 verbose(env, "arena's user address must be set via map_extra or mmap()\n"); 19364 return -EINVAL; 19365 } 19366 } 19367 19368 next_insn: 19369 insn++; 19370 i++; 19371 continue; 19372 } 19373 19374 /* Basic sanity check before we invest more work here. */ 19375 if (!bpf_opcode_in_insntable(insn->code)) { 19376 verbose(env, "unknown opcode %02x\n", insn->code); 19377 return -EINVAL; 19378 } 19379 } 19380 19381 /* now all pseudo BPF_LD_IMM64 instructions load valid 19382 * 'struct bpf_map *' into a register instead of user map_fd. 19383 * These pointers will be used later by verifier to validate map access. 19384 */ 19385 return 0; 19386 } 19387 19388 /* drop refcnt of maps used by the rejected program */ 19389 static void release_maps(struct bpf_verifier_env *env) 19390 { 19391 __bpf_free_used_maps(env->prog->aux, env->used_maps, 19392 env->used_map_cnt); 19393 } 19394 19395 /* drop refcnt of maps used by the rejected program */ 19396 static void release_btfs(struct bpf_verifier_env *env) 19397 { 19398 __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt); 19399 } 19400 19401 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 19402 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 19403 { 19404 struct bpf_insn *insn = env->prog->insnsi; 19405 int insn_cnt = env->prog->len; 19406 int i; 19407 19408 for (i = 0; i < insn_cnt; i++, insn++) { 19409 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 19410 continue; 19411 if (insn->src_reg == BPF_PSEUDO_FUNC) 19412 continue; 19413 insn->src_reg = 0; 19414 } 19415 } 19416 19417 /* single env->prog->insni[off] instruction was replaced with the range 19418 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 19419 * [0, off) and [off, end) to new locations, so the patched range stays zero 19420 */ 19421 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 19422 struct bpf_insn_aux_data *new_data, 19423 struct bpf_prog *new_prog, u32 off, u32 cnt) 19424 { 19425 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 19426 struct bpf_insn *insn = new_prog->insnsi; 19427 u32 old_seen = old_data[off].seen; 19428 u32 prog_len; 19429 int i; 19430 19431 /* aux info at OFF always needs adjustment, no matter fast path 19432 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 19433 * original insn at old prog. 19434 */ 19435 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 19436 19437 if (cnt == 1) 19438 return; 19439 prog_len = new_prog->len; 19440 19441 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 19442 memcpy(new_data + off + cnt - 1, old_data + off, 19443 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 19444 for (i = off; i < off + cnt - 1; i++) { 19445 /* Expand insni[off]'s seen count to the patched range. */ 19446 new_data[i].seen = old_seen; 19447 new_data[i].zext_dst = insn_has_def32(env, insn + i); 19448 } 19449 env->insn_aux_data = new_data; 19450 vfree(old_data); 19451 } 19452 19453 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 19454 { 19455 int i; 19456 19457 if (len == 1) 19458 return; 19459 /* NOTE: fake 'exit' subprog should be updated as well. */ 19460 for (i = 0; i <= env->subprog_cnt; i++) { 19461 if (env->subprog_info[i].start <= off) 19462 continue; 19463 env->subprog_info[i].start += len - 1; 19464 } 19465 } 19466 19467 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 19468 { 19469 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 19470 int i, sz = prog->aux->size_poke_tab; 19471 struct bpf_jit_poke_descriptor *desc; 19472 19473 for (i = 0; i < sz; i++) { 19474 desc = &tab[i]; 19475 if (desc->insn_idx <= off) 19476 continue; 19477 desc->insn_idx += len - 1; 19478 } 19479 } 19480 19481 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 19482 const struct bpf_insn *patch, u32 len) 19483 { 19484 struct bpf_prog *new_prog; 19485 struct bpf_insn_aux_data *new_data = NULL; 19486 19487 if (len > 1) { 19488 new_data = vzalloc(array_size(env->prog->len + len - 1, 19489 sizeof(struct bpf_insn_aux_data))); 19490 if (!new_data) 19491 return NULL; 19492 } 19493 19494 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 19495 if (IS_ERR(new_prog)) { 19496 if (PTR_ERR(new_prog) == -ERANGE) 19497 verbose(env, 19498 "insn %d cannot be patched due to 16-bit range\n", 19499 env->insn_aux_data[off].orig_idx); 19500 vfree(new_data); 19501 return NULL; 19502 } 19503 adjust_insn_aux_data(env, new_data, new_prog, off, len); 19504 adjust_subprog_starts(env, off, len); 19505 adjust_poke_descs(new_prog, off, len); 19506 return new_prog; 19507 } 19508 19509 /* 19510 * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the 19511 * jump offset by 'delta'. 19512 */ 19513 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta) 19514 { 19515 struct bpf_insn *insn = prog->insnsi; 19516 u32 insn_cnt = prog->len, i; 19517 s32 imm; 19518 s16 off; 19519 19520 for (i = 0; i < insn_cnt; i++, insn++) { 19521 u8 code = insn->code; 19522 19523 if (tgt_idx <= i && i < tgt_idx + delta) 19524 continue; 19525 19526 if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || 19527 BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT) 19528 continue; 19529 19530 if (insn->code == (BPF_JMP32 | BPF_JA)) { 19531 if (i + 1 + insn->imm != tgt_idx) 19532 continue; 19533 if (check_add_overflow(insn->imm, delta, &imm)) 19534 return -ERANGE; 19535 insn->imm = imm; 19536 } else { 19537 if (i + 1 + insn->off != tgt_idx) 19538 continue; 19539 if (check_add_overflow(insn->off, delta, &off)) 19540 return -ERANGE; 19541 insn->off = off; 19542 } 19543 } 19544 return 0; 19545 } 19546 19547 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 19548 u32 off, u32 cnt) 19549 { 19550 int i, j; 19551 19552 /* find first prog starting at or after off (first to remove) */ 19553 for (i = 0; i < env->subprog_cnt; i++) 19554 if (env->subprog_info[i].start >= off) 19555 break; 19556 /* find first prog starting at or after off + cnt (first to stay) */ 19557 for (j = i; j < env->subprog_cnt; j++) 19558 if (env->subprog_info[j].start >= off + cnt) 19559 break; 19560 /* if j doesn't start exactly at off + cnt, we are just removing 19561 * the front of previous prog 19562 */ 19563 if (env->subprog_info[j].start != off + cnt) 19564 j--; 19565 19566 if (j > i) { 19567 struct bpf_prog_aux *aux = env->prog->aux; 19568 int move; 19569 19570 /* move fake 'exit' subprog as well */ 19571 move = env->subprog_cnt + 1 - j; 19572 19573 memmove(env->subprog_info + i, 19574 env->subprog_info + j, 19575 sizeof(*env->subprog_info) * move); 19576 env->subprog_cnt -= j - i; 19577 19578 /* remove func_info */ 19579 if (aux->func_info) { 19580 move = aux->func_info_cnt - j; 19581 19582 memmove(aux->func_info + i, 19583 aux->func_info + j, 19584 sizeof(*aux->func_info) * move); 19585 aux->func_info_cnt -= j - i; 19586 /* func_info->insn_off is set after all code rewrites, 19587 * in adjust_btf_func() - no need to adjust 19588 */ 19589 } 19590 } else { 19591 /* convert i from "first prog to remove" to "first to adjust" */ 19592 if (env->subprog_info[i].start == off) 19593 i++; 19594 } 19595 19596 /* update fake 'exit' subprog as well */ 19597 for (; i <= env->subprog_cnt; i++) 19598 env->subprog_info[i].start -= cnt; 19599 19600 return 0; 19601 } 19602 19603 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 19604 u32 cnt) 19605 { 19606 struct bpf_prog *prog = env->prog; 19607 u32 i, l_off, l_cnt, nr_linfo; 19608 struct bpf_line_info *linfo; 19609 19610 nr_linfo = prog->aux->nr_linfo; 19611 if (!nr_linfo) 19612 return 0; 19613 19614 linfo = prog->aux->linfo; 19615 19616 /* find first line info to remove, count lines to be removed */ 19617 for (i = 0; i < nr_linfo; i++) 19618 if (linfo[i].insn_off >= off) 19619 break; 19620 19621 l_off = i; 19622 l_cnt = 0; 19623 for (; i < nr_linfo; i++) 19624 if (linfo[i].insn_off < off + cnt) 19625 l_cnt++; 19626 else 19627 break; 19628 19629 /* First live insn doesn't match first live linfo, it needs to "inherit" 19630 * last removed linfo. prog is already modified, so prog->len == off 19631 * means no live instructions after (tail of the program was removed). 19632 */ 19633 if (prog->len != off && l_cnt && 19634 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 19635 l_cnt--; 19636 linfo[--i].insn_off = off + cnt; 19637 } 19638 19639 /* remove the line info which refer to the removed instructions */ 19640 if (l_cnt) { 19641 memmove(linfo + l_off, linfo + i, 19642 sizeof(*linfo) * (nr_linfo - i)); 19643 19644 prog->aux->nr_linfo -= l_cnt; 19645 nr_linfo = prog->aux->nr_linfo; 19646 } 19647 19648 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 19649 for (i = l_off; i < nr_linfo; i++) 19650 linfo[i].insn_off -= cnt; 19651 19652 /* fix up all subprogs (incl. 'exit') which start >= off */ 19653 for (i = 0; i <= env->subprog_cnt; i++) 19654 if (env->subprog_info[i].linfo_idx > l_off) { 19655 /* program may have started in the removed region but 19656 * may not be fully removed 19657 */ 19658 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 19659 env->subprog_info[i].linfo_idx -= l_cnt; 19660 else 19661 env->subprog_info[i].linfo_idx = l_off; 19662 } 19663 19664 return 0; 19665 } 19666 19667 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 19668 { 19669 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 19670 unsigned int orig_prog_len = env->prog->len; 19671 int err; 19672 19673 if (bpf_prog_is_offloaded(env->prog->aux)) 19674 bpf_prog_offload_remove_insns(env, off, cnt); 19675 19676 err = bpf_remove_insns(env->prog, off, cnt); 19677 if (err) 19678 return err; 19679 19680 err = adjust_subprog_starts_after_remove(env, off, cnt); 19681 if (err) 19682 return err; 19683 19684 err = bpf_adj_linfo_after_remove(env, off, cnt); 19685 if (err) 19686 return err; 19687 19688 memmove(aux_data + off, aux_data + off + cnt, 19689 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 19690 19691 return 0; 19692 } 19693 19694 /* The verifier does more data flow analysis than llvm and will not 19695 * explore branches that are dead at run time. Malicious programs can 19696 * have dead code too. Therefore replace all dead at-run-time code 19697 * with 'ja -1'. 19698 * 19699 * Just nops are not optimal, e.g. if they would sit at the end of the 19700 * program and through another bug we would manage to jump there, then 19701 * we'd execute beyond program memory otherwise. Returning exception 19702 * code also wouldn't work since we can have subprogs where the dead 19703 * code could be located. 19704 */ 19705 static void sanitize_dead_code(struct bpf_verifier_env *env) 19706 { 19707 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 19708 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 19709 struct bpf_insn *insn = env->prog->insnsi; 19710 const int insn_cnt = env->prog->len; 19711 int i; 19712 19713 for (i = 0; i < insn_cnt; i++) { 19714 if (aux_data[i].seen) 19715 continue; 19716 memcpy(insn + i, &trap, sizeof(trap)); 19717 aux_data[i].zext_dst = false; 19718 } 19719 } 19720 19721 static bool insn_is_cond_jump(u8 code) 19722 { 19723 u8 op; 19724 19725 op = BPF_OP(code); 19726 if (BPF_CLASS(code) == BPF_JMP32) 19727 return op != BPF_JA; 19728 19729 if (BPF_CLASS(code) != BPF_JMP) 19730 return false; 19731 19732 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 19733 } 19734 19735 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 19736 { 19737 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 19738 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 19739 struct bpf_insn *insn = env->prog->insnsi; 19740 const int insn_cnt = env->prog->len; 19741 int i; 19742 19743 for (i = 0; i < insn_cnt; i++, insn++) { 19744 if (!insn_is_cond_jump(insn->code)) 19745 continue; 19746 19747 if (!aux_data[i + 1].seen) 19748 ja.off = insn->off; 19749 else if (!aux_data[i + 1 + insn->off].seen) 19750 ja.off = 0; 19751 else 19752 continue; 19753 19754 if (bpf_prog_is_offloaded(env->prog->aux)) 19755 bpf_prog_offload_replace_insn(env, i, &ja); 19756 19757 memcpy(insn, &ja, sizeof(ja)); 19758 } 19759 } 19760 19761 static int opt_remove_dead_code(struct bpf_verifier_env *env) 19762 { 19763 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 19764 int insn_cnt = env->prog->len; 19765 int i, err; 19766 19767 for (i = 0; i < insn_cnt; i++) { 19768 int j; 19769 19770 j = 0; 19771 while (i + j < insn_cnt && !aux_data[i + j].seen) 19772 j++; 19773 if (!j) 19774 continue; 19775 19776 err = verifier_remove_insns(env, i, j); 19777 if (err) 19778 return err; 19779 insn_cnt = env->prog->len; 19780 } 19781 19782 return 0; 19783 } 19784 19785 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 19786 19787 static int opt_remove_nops(struct bpf_verifier_env *env) 19788 { 19789 const struct bpf_insn ja = NOP; 19790 struct bpf_insn *insn = env->prog->insnsi; 19791 int insn_cnt = env->prog->len; 19792 int i, err; 19793 19794 for (i = 0; i < insn_cnt; i++) { 19795 if (memcmp(&insn[i], &ja, sizeof(ja))) 19796 continue; 19797 19798 err = verifier_remove_insns(env, i, 1); 19799 if (err) 19800 return err; 19801 insn_cnt--; 19802 i--; 19803 } 19804 19805 return 0; 19806 } 19807 19808 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 19809 const union bpf_attr *attr) 19810 { 19811 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 19812 struct bpf_insn_aux_data *aux = env->insn_aux_data; 19813 int i, patch_len, delta = 0, len = env->prog->len; 19814 struct bpf_insn *insns = env->prog->insnsi; 19815 struct bpf_prog *new_prog; 19816 bool rnd_hi32; 19817 19818 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 19819 zext_patch[1] = BPF_ZEXT_REG(0); 19820 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 19821 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 19822 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 19823 for (i = 0; i < len; i++) { 19824 int adj_idx = i + delta; 19825 struct bpf_insn insn; 19826 int load_reg; 19827 19828 insn = insns[adj_idx]; 19829 load_reg = insn_def_regno(&insn); 19830 if (!aux[adj_idx].zext_dst) { 19831 u8 code, class; 19832 u32 imm_rnd; 19833 19834 if (!rnd_hi32) 19835 continue; 19836 19837 code = insn.code; 19838 class = BPF_CLASS(code); 19839 if (load_reg == -1) 19840 continue; 19841 19842 /* NOTE: arg "reg" (the fourth one) is only used for 19843 * BPF_STX + SRC_OP, so it is safe to pass NULL 19844 * here. 19845 */ 19846 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 19847 if (class == BPF_LD && 19848 BPF_MODE(code) == BPF_IMM) 19849 i++; 19850 continue; 19851 } 19852 19853 /* ctx load could be transformed into wider load. */ 19854 if (class == BPF_LDX && 19855 aux[adj_idx].ptr_type == PTR_TO_CTX) 19856 continue; 19857 19858 imm_rnd = get_random_u32(); 19859 rnd_hi32_patch[0] = insn; 19860 rnd_hi32_patch[1].imm = imm_rnd; 19861 rnd_hi32_patch[3].dst_reg = load_reg; 19862 patch = rnd_hi32_patch; 19863 patch_len = 4; 19864 goto apply_patch_buffer; 19865 } 19866 19867 /* Add in an zero-extend instruction if a) the JIT has requested 19868 * it or b) it's a CMPXCHG. 19869 * 19870 * The latter is because: BPF_CMPXCHG always loads a value into 19871 * R0, therefore always zero-extends. However some archs' 19872 * equivalent instruction only does this load when the 19873 * comparison is successful. This detail of CMPXCHG is 19874 * orthogonal to the general zero-extension behaviour of the 19875 * CPU, so it's treated independently of bpf_jit_needs_zext. 19876 */ 19877 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 19878 continue; 19879 19880 /* Zero-extension is done by the caller. */ 19881 if (bpf_pseudo_kfunc_call(&insn)) 19882 continue; 19883 19884 if (WARN_ON(load_reg == -1)) { 19885 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 19886 return -EFAULT; 19887 } 19888 19889 zext_patch[0] = insn; 19890 zext_patch[1].dst_reg = load_reg; 19891 zext_patch[1].src_reg = load_reg; 19892 patch = zext_patch; 19893 patch_len = 2; 19894 apply_patch_buffer: 19895 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 19896 if (!new_prog) 19897 return -ENOMEM; 19898 env->prog = new_prog; 19899 insns = new_prog->insnsi; 19900 aux = env->insn_aux_data; 19901 delta += patch_len - 1; 19902 } 19903 19904 return 0; 19905 } 19906 19907 /* convert load instructions that access fields of a context type into a 19908 * sequence of instructions that access fields of the underlying structure: 19909 * struct __sk_buff -> struct sk_buff 19910 * struct bpf_sock_ops -> struct sock 19911 */ 19912 static int convert_ctx_accesses(struct bpf_verifier_env *env) 19913 { 19914 struct bpf_subprog_info *subprogs = env->subprog_info; 19915 const struct bpf_verifier_ops *ops = env->ops; 19916 int i, cnt, size, ctx_field_size, delta = 0, epilogue_cnt = 0; 19917 const int insn_cnt = env->prog->len; 19918 struct bpf_insn *epilogue_buf = env->epilogue_buf; 19919 struct bpf_insn *insn_buf = env->insn_buf; 19920 struct bpf_insn *insn; 19921 u32 target_size, size_default, off; 19922 struct bpf_prog *new_prog; 19923 enum bpf_access_type type; 19924 bool is_narrower_load; 19925 int epilogue_idx = 0; 19926 19927 if (ops->gen_epilogue) { 19928 epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog, 19929 -(subprogs[0].stack_depth + 8)); 19930 if (epilogue_cnt >= INSN_BUF_SIZE) { 19931 verbose(env, "bpf verifier is misconfigured\n"); 19932 return -EINVAL; 19933 } else if (epilogue_cnt) { 19934 /* Save the ARG_PTR_TO_CTX for the epilogue to use */ 19935 cnt = 0; 19936 subprogs[0].stack_depth += 8; 19937 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1, 19938 -subprogs[0].stack_depth); 19939 insn_buf[cnt++] = env->prog->insnsi[0]; 19940 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 19941 if (!new_prog) 19942 return -ENOMEM; 19943 env->prog = new_prog; 19944 delta += cnt - 1; 19945 } 19946 } 19947 19948 if (ops->gen_prologue || env->seen_direct_write) { 19949 if (!ops->gen_prologue) { 19950 verbose(env, "bpf verifier is misconfigured\n"); 19951 return -EINVAL; 19952 } 19953 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 19954 env->prog); 19955 if (cnt >= INSN_BUF_SIZE) { 19956 verbose(env, "bpf verifier is misconfigured\n"); 19957 return -EINVAL; 19958 } else if (cnt) { 19959 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 19960 if (!new_prog) 19961 return -ENOMEM; 19962 19963 env->prog = new_prog; 19964 delta += cnt - 1; 19965 } 19966 } 19967 19968 if (delta) 19969 WARN_ON(adjust_jmp_off(env->prog, 0, delta)); 19970 19971 if (bpf_prog_is_offloaded(env->prog->aux)) 19972 return 0; 19973 19974 insn = env->prog->insnsi + delta; 19975 19976 for (i = 0; i < insn_cnt; i++, insn++) { 19977 bpf_convert_ctx_access_t convert_ctx_access; 19978 u8 mode; 19979 19980 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 19981 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 19982 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 19983 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 19984 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 19985 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 19986 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 19987 type = BPF_READ; 19988 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 19989 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 19990 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 19991 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 19992 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 19993 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 19994 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 19995 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 19996 type = BPF_WRITE; 19997 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) || 19998 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) && 19999 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) { 20000 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code); 20001 env->prog->aux->num_exentries++; 20002 continue; 20003 } else if (insn->code == (BPF_JMP | BPF_EXIT) && 20004 epilogue_cnt && 20005 i + delta < subprogs[1].start) { 20006 /* Generate epilogue for the main prog */ 20007 if (epilogue_idx) { 20008 /* jump back to the earlier generated epilogue */ 20009 insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1); 20010 cnt = 1; 20011 } else { 20012 memcpy(insn_buf, epilogue_buf, 20013 epilogue_cnt * sizeof(*epilogue_buf)); 20014 cnt = epilogue_cnt; 20015 /* epilogue_idx cannot be 0. It must have at 20016 * least one ctx ptr saving insn before the 20017 * epilogue. 20018 */ 20019 epilogue_idx = i + delta; 20020 } 20021 goto patch_insn_buf; 20022 } else { 20023 continue; 20024 } 20025 20026 if (type == BPF_WRITE && 20027 env->insn_aux_data[i + delta].sanitize_stack_spill) { 20028 struct bpf_insn patch[] = { 20029 *insn, 20030 BPF_ST_NOSPEC(), 20031 }; 20032 20033 cnt = ARRAY_SIZE(patch); 20034 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 20035 if (!new_prog) 20036 return -ENOMEM; 20037 20038 delta += cnt - 1; 20039 env->prog = new_prog; 20040 insn = new_prog->insnsi + i + delta; 20041 continue; 20042 } 20043 20044 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 20045 case PTR_TO_CTX: 20046 if (!ops->convert_ctx_access) 20047 continue; 20048 convert_ctx_access = ops->convert_ctx_access; 20049 break; 20050 case PTR_TO_SOCKET: 20051 case PTR_TO_SOCK_COMMON: 20052 convert_ctx_access = bpf_sock_convert_ctx_access; 20053 break; 20054 case PTR_TO_TCP_SOCK: 20055 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 20056 break; 20057 case PTR_TO_XDP_SOCK: 20058 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 20059 break; 20060 case PTR_TO_BTF_ID: 20061 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 20062 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 20063 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 20064 * be said once it is marked PTR_UNTRUSTED, hence we must handle 20065 * any faults for loads into such types. BPF_WRITE is disallowed 20066 * for this case. 20067 */ 20068 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 20069 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: 20070 if (type == BPF_READ) { 20071 if (BPF_MODE(insn->code) == BPF_MEM) 20072 insn->code = BPF_LDX | BPF_PROBE_MEM | 20073 BPF_SIZE((insn)->code); 20074 else 20075 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 20076 BPF_SIZE((insn)->code); 20077 env->prog->aux->num_exentries++; 20078 } 20079 continue; 20080 case PTR_TO_ARENA: 20081 if (BPF_MODE(insn->code) == BPF_MEMSX) { 20082 verbose(env, "sign extending loads from arena are not supported yet\n"); 20083 return -EOPNOTSUPP; 20084 } 20085 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); 20086 env->prog->aux->num_exentries++; 20087 continue; 20088 default: 20089 continue; 20090 } 20091 20092 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 20093 size = BPF_LDST_BYTES(insn); 20094 mode = BPF_MODE(insn->code); 20095 20096 /* If the read access is a narrower load of the field, 20097 * convert to a 4/8-byte load, to minimum program type specific 20098 * convert_ctx_access changes. If conversion is successful, 20099 * we will apply proper mask to the result. 20100 */ 20101 is_narrower_load = size < ctx_field_size; 20102 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 20103 off = insn->off; 20104 if (is_narrower_load) { 20105 u8 size_code; 20106 20107 if (type == BPF_WRITE) { 20108 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 20109 return -EINVAL; 20110 } 20111 20112 size_code = BPF_H; 20113 if (ctx_field_size == 4) 20114 size_code = BPF_W; 20115 else if (ctx_field_size == 8) 20116 size_code = BPF_DW; 20117 20118 insn->off = off & ~(size_default - 1); 20119 insn->code = BPF_LDX | BPF_MEM | size_code; 20120 } 20121 20122 target_size = 0; 20123 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 20124 &target_size); 20125 if (cnt == 0 || cnt >= INSN_BUF_SIZE || 20126 (ctx_field_size && !target_size)) { 20127 verbose(env, "bpf verifier is misconfigured\n"); 20128 return -EINVAL; 20129 } 20130 20131 if (is_narrower_load && size < target_size) { 20132 u8 shift = bpf_ctx_narrow_access_offset( 20133 off, size, size_default) * 8; 20134 if (shift && cnt + 1 >= INSN_BUF_SIZE) { 20135 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 20136 return -EINVAL; 20137 } 20138 if (ctx_field_size <= 4) { 20139 if (shift) 20140 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 20141 insn->dst_reg, 20142 shift); 20143 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 20144 (1 << size * 8) - 1); 20145 } else { 20146 if (shift) 20147 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 20148 insn->dst_reg, 20149 shift); 20150 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 20151 (1ULL << size * 8) - 1); 20152 } 20153 } 20154 if (mode == BPF_MEMSX) 20155 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 20156 insn->dst_reg, insn->dst_reg, 20157 size * 8, 0); 20158 20159 patch_insn_buf: 20160 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20161 if (!new_prog) 20162 return -ENOMEM; 20163 20164 delta += cnt - 1; 20165 20166 /* keep walking new program and skip insns we just inserted */ 20167 env->prog = new_prog; 20168 insn = new_prog->insnsi + i + delta; 20169 } 20170 20171 return 0; 20172 } 20173 20174 static int jit_subprogs(struct bpf_verifier_env *env) 20175 { 20176 struct bpf_prog *prog = env->prog, **func, *tmp; 20177 int i, j, subprog_start, subprog_end = 0, len, subprog; 20178 struct bpf_map *map_ptr; 20179 struct bpf_insn *insn; 20180 void *old_bpf_func; 20181 int err, num_exentries; 20182 20183 if (env->subprog_cnt <= 1) 20184 return 0; 20185 20186 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 20187 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 20188 continue; 20189 20190 /* Upon error here we cannot fall back to interpreter but 20191 * need a hard reject of the program. Thus -EFAULT is 20192 * propagated in any case. 20193 */ 20194 subprog = find_subprog(env, i + insn->imm + 1); 20195 if (subprog < 0) { 20196 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 20197 i + insn->imm + 1); 20198 return -EFAULT; 20199 } 20200 /* temporarily remember subprog id inside insn instead of 20201 * aux_data, since next loop will split up all insns into funcs 20202 */ 20203 insn->off = subprog; 20204 /* remember original imm in case JIT fails and fallback 20205 * to interpreter will be needed 20206 */ 20207 env->insn_aux_data[i].call_imm = insn->imm; 20208 /* point imm to __bpf_call_base+1 from JITs point of view */ 20209 insn->imm = 1; 20210 if (bpf_pseudo_func(insn)) { 20211 #if defined(MODULES_VADDR) 20212 u64 addr = MODULES_VADDR; 20213 #else 20214 u64 addr = VMALLOC_START; 20215 #endif 20216 /* jit (e.g. x86_64) may emit fewer instructions 20217 * if it learns a u32 imm is the same as a u64 imm. 20218 * Set close enough to possible prog address. 20219 */ 20220 insn[0].imm = (u32)addr; 20221 insn[1].imm = addr >> 32; 20222 } 20223 } 20224 20225 err = bpf_prog_alloc_jited_linfo(prog); 20226 if (err) 20227 goto out_undo_insn; 20228 20229 err = -ENOMEM; 20230 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 20231 if (!func) 20232 goto out_undo_insn; 20233 20234 for (i = 0; i < env->subprog_cnt; i++) { 20235 subprog_start = subprog_end; 20236 subprog_end = env->subprog_info[i + 1].start; 20237 20238 len = subprog_end - subprog_start; 20239 /* bpf_prog_run() doesn't call subprogs directly, 20240 * hence main prog stats include the runtime of subprogs. 20241 * subprogs don't have IDs and not reachable via prog_get_next_id 20242 * func[i]->stats will never be accessed and stays NULL 20243 */ 20244 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 20245 if (!func[i]) 20246 goto out_free; 20247 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 20248 len * sizeof(struct bpf_insn)); 20249 func[i]->type = prog->type; 20250 func[i]->len = len; 20251 if (bpf_prog_calc_tag(func[i])) 20252 goto out_free; 20253 func[i]->is_func = 1; 20254 func[i]->sleepable = prog->sleepable; 20255 func[i]->aux->func_idx = i; 20256 /* Below members will be freed only at prog->aux */ 20257 func[i]->aux->btf = prog->aux->btf; 20258 func[i]->aux->func_info = prog->aux->func_info; 20259 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 20260 func[i]->aux->poke_tab = prog->aux->poke_tab; 20261 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 20262 20263 for (j = 0; j < prog->aux->size_poke_tab; j++) { 20264 struct bpf_jit_poke_descriptor *poke; 20265 20266 poke = &prog->aux->poke_tab[j]; 20267 if (poke->insn_idx < subprog_end && 20268 poke->insn_idx >= subprog_start) 20269 poke->aux = func[i]->aux; 20270 } 20271 20272 func[i]->aux->name[0] = 'F'; 20273 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 20274 if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) 20275 func[i]->aux->jits_use_priv_stack = true; 20276 20277 func[i]->jit_requested = 1; 20278 func[i]->blinding_requested = prog->blinding_requested; 20279 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 20280 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 20281 func[i]->aux->linfo = prog->aux->linfo; 20282 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 20283 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 20284 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 20285 func[i]->aux->arena = prog->aux->arena; 20286 num_exentries = 0; 20287 insn = func[i]->insnsi; 20288 for (j = 0; j < func[i]->len; j++, insn++) { 20289 if (BPF_CLASS(insn->code) == BPF_LDX && 20290 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 20291 BPF_MODE(insn->code) == BPF_PROBE_MEM32 || 20292 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 20293 num_exentries++; 20294 if ((BPF_CLASS(insn->code) == BPF_STX || 20295 BPF_CLASS(insn->code) == BPF_ST) && 20296 BPF_MODE(insn->code) == BPF_PROBE_MEM32) 20297 num_exentries++; 20298 if (BPF_CLASS(insn->code) == BPF_STX && 20299 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) 20300 num_exentries++; 20301 } 20302 func[i]->aux->num_exentries = num_exentries; 20303 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 20304 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 20305 if (!i) 20306 func[i]->aux->exception_boundary = env->seen_exception; 20307 func[i] = bpf_int_jit_compile(func[i]); 20308 if (!func[i]->jited) { 20309 err = -ENOTSUPP; 20310 goto out_free; 20311 } 20312 cond_resched(); 20313 } 20314 20315 /* at this point all bpf functions were successfully JITed 20316 * now populate all bpf_calls with correct addresses and 20317 * run last pass of JIT 20318 */ 20319 for (i = 0; i < env->subprog_cnt; i++) { 20320 insn = func[i]->insnsi; 20321 for (j = 0; j < func[i]->len; j++, insn++) { 20322 if (bpf_pseudo_func(insn)) { 20323 subprog = insn->off; 20324 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 20325 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 20326 continue; 20327 } 20328 if (!bpf_pseudo_call(insn)) 20329 continue; 20330 subprog = insn->off; 20331 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 20332 } 20333 20334 /* we use the aux data to keep a list of the start addresses 20335 * of the JITed images for each function in the program 20336 * 20337 * for some architectures, such as powerpc64, the imm field 20338 * might not be large enough to hold the offset of the start 20339 * address of the callee's JITed image from __bpf_call_base 20340 * 20341 * in such cases, we can lookup the start address of a callee 20342 * by using its subprog id, available from the off field of 20343 * the call instruction, as an index for this list 20344 */ 20345 func[i]->aux->func = func; 20346 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 20347 func[i]->aux->real_func_cnt = env->subprog_cnt; 20348 } 20349 for (i = 0; i < env->subprog_cnt; i++) { 20350 old_bpf_func = func[i]->bpf_func; 20351 tmp = bpf_int_jit_compile(func[i]); 20352 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 20353 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 20354 err = -ENOTSUPP; 20355 goto out_free; 20356 } 20357 cond_resched(); 20358 } 20359 20360 /* finally lock prog and jit images for all functions and 20361 * populate kallsysm. Begin at the first subprogram, since 20362 * bpf_prog_load will add the kallsyms for the main program. 20363 */ 20364 for (i = 1; i < env->subprog_cnt; i++) { 20365 err = bpf_prog_lock_ro(func[i]); 20366 if (err) 20367 goto out_free; 20368 } 20369 20370 for (i = 1; i < env->subprog_cnt; i++) 20371 bpf_prog_kallsyms_add(func[i]); 20372 20373 /* Last step: make now unused interpreter insns from main 20374 * prog consistent for later dump requests, so they can 20375 * later look the same as if they were interpreted only. 20376 */ 20377 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 20378 if (bpf_pseudo_func(insn)) { 20379 insn[0].imm = env->insn_aux_data[i].call_imm; 20380 insn[1].imm = insn->off; 20381 insn->off = 0; 20382 continue; 20383 } 20384 if (!bpf_pseudo_call(insn)) 20385 continue; 20386 insn->off = env->insn_aux_data[i].call_imm; 20387 subprog = find_subprog(env, i + insn->off + 1); 20388 insn->imm = subprog; 20389 } 20390 20391 prog->jited = 1; 20392 prog->bpf_func = func[0]->bpf_func; 20393 prog->jited_len = func[0]->jited_len; 20394 prog->aux->extable = func[0]->aux->extable; 20395 prog->aux->num_exentries = func[0]->aux->num_exentries; 20396 prog->aux->func = func; 20397 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 20398 prog->aux->real_func_cnt = env->subprog_cnt; 20399 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 20400 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 20401 bpf_prog_jit_attempt_done(prog); 20402 return 0; 20403 out_free: 20404 /* We failed JIT'ing, so at this point we need to unregister poke 20405 * descriptors from subprogs, so that kernel is not attempting to 20406 * patch it anymore as we're freeing the subprog JIT memory. 20407 */ 20408 for (i = 0; i < prog->aux->size_poke_tab; i++) { 20409 map_ptr = prog->aux->poke_tab[i].tail_call.map; 20410 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 20411 } 20412 /* At this point we're guaranteed that poke descriptors are not 20413 * live anymore. We can just unlink its descriptor table as it's 20414 * released with the main prog. 20415 */ 20416 for (i = 0; i < env->subprog_cnt; i++) { 20417 if (!func[i]) 20418 continue; 20419 func[i]->aux->poke_tab = NULL; 20420 bpf_jit_free(func[i]); 20421 } 20422 kfree(func); 20423 out_undo_insn: 20424 /* cleanup main prog to be interpreted */ 20425 prog->jit_requested = 0; 20426 prog->blinding_requested = 0; 20427 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 20428 if (!bpf_pseudo_call(insn)) 20429 continue; 20430 insn->off = 0; 20431 insn->imm = env->insn_aux_data[i].call_imm; 20432 } 20433 bpf_prog_jit_attempt_done(prog); 20434 return err; 20435 } 20436 20437 static int fixup_call_args(struct bpf_verifier_env *env) 20438 { 20439 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 20440 struct bpf_prog *prog = env->prog; 20441 struct bpf_insn *insn = prog->insnsi; 20442 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 20443 int i, depth; 20444 #endif 20445 int err = 0; 20446 20447 if (env->prog->jit_requested && 20448 !bpf_prog_is_offloaded(env->prog->aux)) { 20449 err = jit_subprogs(env); 20450 if (err == 0) 20451 return 0; 20452 if (err == -EFAULT) 20453 return err; 20454 } 20455 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 20456 if (has_kfunc_call) { 20457 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 20458 return -EINVAL; 20459 } 20460 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 20461 /* When JIT fails the progs with bpf2bpf calls and tail_calls 20462 * have to be rejected, since interpreter doesn't support them yet. 20463 */ 20464 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 20465 return -EINVAL; 20466 } 20467 for (i = 0; i < prog->len; i++, insn++) { 20468 if (bpf_pseudo_func(insn)) { 20469 /* When JIT fails the progs with callback calls 20470 * have to be rejected, since interpreter doesn't support them yet. 20471 */ 20472 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 20473 return -EINVAL; 20474 } 20475 20476 if (!bpf_pseudo_call(insn)) 20477 continue; 20478 depth = get_callee_stack_depth(env, insn, i); 20479 if (depth < 0) 20480 return depth; 20481 bpf_patch_call_args(insn, depth); 20482 } 20483 err = 0; 20484 #endif 20485 return err; 20486 } 20487 20488 /* replace a generic kfunc with a specialized version if necessary */ 20489 static void specialize_kfunc(struct bpf_verifier_env *env, 20490 u32 func_id, u16 offset, unsigned long *addr) 20491 { 20492 struct bpf_prog *prog = env->prog; 20493 bool seen_direct_write; 20494 void *xdp_kfunc; 20495 bool is_rdonly; 20496 20497 if (bpf_dev_bound_kfunc_id(func_id)) { 20498 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 20499 if (xdp_kfunc) { 20500 *addr = (unsigned long)xdp_kfunc; 20501 return; 20502 } 20503 /* fallback to default kfunc when not supported by netdev */ 20504 } 20505 20506 if (offset) 20507 return; 20508 20509 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 20510 seen_direct_write = env->seen_direct_write; 20511 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 20512 20513 if (is_rdonly) 20514 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 20515 20516 /* restore env->seen_direct_write to its original value, since 20517 * may_access_direct_pkt_data mutates it 20518 */ 20519 env->seen_direct_write = seen_direct_write; 20520 } 20521 } 20522 20523 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 20524 u16 struct_meta_reg, 20525 u16 node_offset_reg, 20526 struct bpf_insn *insn, 20527 struct bpf_insn *insn_buf, 20528 int *cnt) 20529 { 20530 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 20531 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 20532 20533 insn_buf[0] = addr[0]; 20534 insn_buf[1] = addr[1]; 20535 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 20536 insn_buf[3] = *insn; 20537 *cnt = 4; 20538 } 20539 20540 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 20541 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 20542 { 20543 const struct bpf_kfunc_desc *desc; 20544 20545 if (!insn->imm) { 20546 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 20547 return -EINVAL; 20548 } 20549 20550 *cnt = 0; 20551 20552 /* insn->imm has the btf func_id. Replace it with an offset relative to 20553 * __bpf_call_base, unless the JIT needs to call functions that are 20554 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 20555 */ 20556 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 20557 if (!desc) { 20558 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 20559 insn->imm); 20560 return -EFAULT; 20561 } 20562 20563 if (!bpf_jit_supports_far_kfunc_call()) 20564 insn->imm = BPF_CALL_IMM(desc->addr); 20565 if (insn->off) 20566 return 0; 20567 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 20568 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 20569 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 20570 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 20571 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 20572 20573 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 20574 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 20575 insn_idx); 20576 return -EFAULT; 20577 } 20578 20579 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 20580 insn_buf[1] = addr[0]; 20581 insn_buf[2] = addr[1]; 20582 insn_buf[3] = *insn; 20583 *cnt = 4; 20584 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 20585 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 20586 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 20587 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 20588 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 20589 20590 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 20591 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 20592 insn_idx); 20593 return -EFAULT; 20594 } 20595 20596 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 20597 !kptr_struct_meta) { 20598 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 20599 insn_idx); 20600 return -EFAULT; 20601 } 20602 20603 insn_buf[0] = addr[0]; 20604 insn_buf[1] = addr[1]; 20605 insn_buf[2] = *insn; 20606 *cnt = 3; 20607 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 20608 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 20609 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 20610 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 20611 int struct_meta_reg = BPF_REG_3; 20612 int node_offset_reg = BPF_REG_4; 20613 20614 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 20615 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 20616 struct_meta_reg = BPF_REG_4; 20617 node_offset_reg = BPF_REG_5; 20618 } 20619 20620 if (!kptr_struct_meta) { 20621 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 20622 insn_idx); 20623 return -EFAULT; 20624 } 20625 20626 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 20627 node_offset_reg, insn, insn_buf, cnt); 20628 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 20629 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 20630 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 20631 *cnt = 1; 20632 } else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) { 20633 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) }; 20634 20635 insn_buf[0] = ld_addrs[0]; 20636 insn_buf[1] = ld_addrs[1]; 20637 insn_buf[2] = *insn; 20638 *cnt = 3; 20639 } 20640 return 0; 20641 } 20642 20643 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 20644 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 20645 { 20646 struct bpf_subprog_info *info = env->subprog_info; 20647 int cnt = env->subprog_cnt; 20648 struct bpf_prog *prog; 20649 20650 /* We only reserve one slot for hidden subprogs in subprog_info. */ 20651 if (env->hidden_subprog_cnt) { 20652 verbose(env, "verifier internal error: only one hidden subprog supported\n"); 20653 return -EFAULT; 20654 } 20655 /* We're not patching any existing instruction, just appending the new 20656 * ones for the hidden subprog. Hence all of the adjustment operations 20657 * in bpf_patch_insn_data are no-ops. 20658 */ 20659 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 20660 if (!prog) 20661 return -ENOMEM; 20662 env->prog = prog; 20663 info[cnt + 1].start = info[cnt].start; 20664 info[cnt].start = prog->len - len + 1; 20665 env->subprog_cnt++; 20666 env->hidden_subprog_cnt++; 20667 return 0; 20668 } 20669 20670 /* Do various post-verification rewrites in a single program pass. 20671 * These rewrites simplify JIT and interpreter implementations. 20672 */ 20673 static int do_misc_fixups(struct bpf_verifier_env *env) 20674 { 20675 struct bpf_prog *prog = env->prog; 20676 enum bpf_attach_type eatype = prog->expected_attach_type; 20677 enum bpf_prog_type prog_type = resolve_prog_type(prog); 20678 struct bpf_insn *insn = prog->insnsi; 20679 const struct bpf_func_proto *fn; 20680 const int insn_cnt = prog->len; 20681 const struct bpf_map_ops *ops; 20682 struct bpf_insn_aux_data *aux; 20683 struct bpf_insn *insn_buf = env->insn_buf; 20684 struct bpf_prog *new_prog; 20685 struct bpf_map *map_ptr; 20686 int i, ret, cnt, delta = 0, cur_subprog = 0; 20687 struct bpf_subprog_info *subprogs = env->subprog_info; 20688 u16 stack_depth = subprogs[cur_subprog].stack_depth; 20689 u16 stack_depth_extra = 0; 20690 20691 if (env->seen_exception && !env->exception_callback_subprog) { 20692 struct bpf_insn patch[] = { 20693 env->prog->insnsi[insn_cnt - 1], 20694 BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), 20695 BPF_EXIT_INSN(), 20696 }; 20697 20698 ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch)); 20699 if (ret < 0) 20700 return ret; 20701 prog = env->prog; 20702 insn = prog->insnsi; 20703 20704 env->exception_callback_subprog = env->subprog_cnt - 1; 20705 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 20706 mark_subprog_exc_cb(env, env->exception_callback_subprog); 20707 } 20708 20709 for (i = 0; i < insn_cnt;) { 20710 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { 20711 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || 20712 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { 20713 /* convert to 32-bit mov that clears upper 32-bit */ 20714 insn->code = BPF_ALU | BPF_MOV | BPF_X; 20715 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */ 20716 insn->off = 0; 20717 insn->imm = 0; 20718 } /* cast from as(0) to as(1) should be handled by JIT */ 20719 goto next_insn; 20720 } 20721 20722 if (env->insn_aux_data[i + delta].needs_zext) 20723 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ 20724 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); 20725 20726 /* Make sdiv/smod divide-by-minus-one exceptions impossible. */ 20727 if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) || 20728 insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) || 20729 insn->code == (BPF_ALU | BPF_MOD | BPF_K) || 20730 insn->code == (BPF_ALU | BPF_DIV | BPF_K)) && 20731 insn->off == 1 && insn->imm == -1) { 20732 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 20733 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 20734 struct bpf_insn *patchlet; 20735 struct bpf_insn chk_and_sdiv[] = { 20736 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20737 BPF_NEG | BPF_K, insn->dst_reg, 20738 0, 0, 0), 20739 }; 20740 struct bpf_insn chk_and_smod[] = { 20741 BPF_MOV32_IMM(insn->dst_reg, 0), 20742 }; 20743 20744 patchlet = isdiv ? chk_and_sdiv : chk_and_smod; 20745 cnt = isdiv ? ARRAY_SIZE(chk_and_sdiv) : ARRAY_SIZE(chk_and_smod); 20746 20747 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 20748 if (!new_prog) 20749 return -ENOMEM; 20750 20751 delta += cnt - 1; 20752 env->prog = prog = new_prog; 20753 insn = new_prog->insnsi + i + delta; 20754 goto next_insn; 20755 } 20756 20757 /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */ 20758 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 20759 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 20760 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 20761 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 20762 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 20763 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 20764 bool is_sdiv = isdiv && insn->off == 1; 20765 bool is_smod = !isdiv && insn->off == 1; 20766 struct bpf_insn *patchlet; 20767 struct bpf_insn chk_and_div[] = { 20768 /* [R,W]x div 0 -> 0 */ 20769 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20770 BPF_JNE | BPF_K, insn->src_reg, 20771 0, 2, 0), 20772 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 20773 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20774 *insn, 20775 }; 20776 struct bpf_insn chk_and_mod[] = { 20777 /* [R,W]x mod 0 -> [R,W]x */ 20778 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20779 BPF_JEQ | BPF_K, insn->src_reg, 20780 0, 1 + (is64 ? 0 : 1), 0), 20781 *insn, 20782 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20783 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 20784 }; 20785 struct bpf_insn chk_and_sdiv[] = { 20786 /* [R,W]x sdiv 0 -> 0 20787 * LLONG_MIN sdiv -1 -> LLONG_MIN 20788 * INT_MIN sdiv -1 -> INT_MIN 20789 */ 20790 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), 20791 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20792 BPF_ADD | BPF_K, BPF_REG_AX, 20793 0, 0, 1), 20794 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20795 BPF_JGT | BPF_K, BPF_REG_AX, 20796 0, 4, 1), 20797 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20798 BPF_JEQ | BPF_K, BPF_REG_AX, 20799 0, 1, 0), 20800 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20801 BPF_MOV | BPF_K, insn->dst_reg, 20802 0, 0, 0), 20803 /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */ 20804 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20805 BPF_NEG | BPF_K, insn->dst_reg, 20806 0, 0, 0), 20807 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20808 *insn, 20809 }; 20810 struct bpf_insn chk_and_smod[] = { 20811 /* [R,W]x mod 0 -> [R,W]x */ 20812 /* [R,W]x mod -1 -> 0 */ 20813 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), 20814 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20815 BPF_ADD | BPF_K, BPF_REG_AX, 20816 0, 0, 1), 20817 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20818 BPF_JGT | BPF_K, BPF_REG_AX, 20819 0, 3, 1), 20820 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20821 BPF_JEQ | BPF_K, BPF_REG_AX, 20822 0, 3 + (is64 ? 0 : 1), 1), 20823 BPF_MOV32_IMM(insn->dst_reg, 0), 20824 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20825 *insn, 20826 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20827 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 20828 }; 20829 20830 if (is_sdiv) { 20831 patchlet = chk_and_sdiv; 20832 cnt = ARRAY_SIZE(chk_and_sdiv); 20833 } else if (is_smod) { 20834 patchlet = chk_and_smod; 20835 cnt = ARRAY_SIZE(chk_and_smod) - (is64 ? 2 : 0); 20836 } else { 20837 patchlet = isdiv ? chk_and_div : chk_and_mod; 20838 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 20839 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 20840 } 20841 20842 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 20843 if (!new_prog) 20844 return -ENOMEM; 20845 20846 delta += cnt - 1; 20847 env->prog = prog = new_prog; 20848 insn = new_prog->insnsi + i + delta; 20849 goto next_insn; 20850 } 20851 20852 /* Make it impossible to de-reference a userspace address */ 20853 if (BPF_CLASS(insn->code) == BPF_LDX && 20854 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 20855 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { 20856 struct bpf_insn *patch = &insn_buf[0]; 20857 u64 uaddress_limit = bpf_arch_uaddress_limit(); 20858 20859 if (!uaddress_limit) 20860 goto next_insn; 20861 20862 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 20863 if (insn->off) 20864 *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); 20865 *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); 20866 *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); 20867 *patch++ = *insn; 20868 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 20869 *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); 20870 20871 cnt = patch - insn_buf; 20872 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20873 if (!new_prog) 20874 return -ENOMEM; 20875 20876 delta += cnt - 1; 20877 env->prog = prog = new_prog; 20878 insn = new_prog->insnsi + i + delta; 20879 goto next_insn; 20880 } 20881 20882 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 20883 if (BPF_CLASS(insn->code) == BPF_LD && 20884 (BPF_MODE(insn->code) == BPF_ABS || 20885 BPF_MODE(insn->code) == BPF_IND)) { 20886 cnt = env->ops->gen_ld_abs(insn, insn_buf); 20887 if (cnt == 0 || cnt >= INSN_BUF_SIZE) { 20888 verbose(env, "bpf verifier is misconfigured\n"); 20889 return -EINVAL; 20890 } 20891 20892 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20893 if (!new_prog) 20894 return -ENOMEM; 20895 20896 delta += cnt - 1; 20897 env->prog = prog = new_prog; 20898 insn = new_prog->insnsi + i + delta; 20899 goto next_insn; 20900 } 20901 20902 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 20903 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 20904 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 20905 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 20906 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 20907 struct bpf_insn *patch = &insn_buf[0]; 20908 bool issrc, isneg, isimm; 20909 u32 off_reg; 20910 20911 aux = &env->insn_aux_data[i + delta]; 20912 if (!aux->alu_state || 20913 aux->alu_state == BPF_ALU_NON_POINTER) 20914 goto next_insn; 20915 20916 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 20917 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 20918 BPF_ALU_SANITIZE_SRC; 20919 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 20920 20921 off_reg = issrc ? insn->src_reg : insn->dst_reg; 20922 if (isimm) { 20923 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 20924 } else { 20925 if (isneg) 20926 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 20927 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 20928 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 20929 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 20930 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 20931 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 20932 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 20933 } 20934 if (!issrc) 20935 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 20936 insn->src_reg = BPF_REG_AX; 20937 if (isneg) 20938 insn->code = insn->code == code_add ? 20939 code_sub : code_add; 20940 *patch++ = *insn; 20941 if (issrc && isneg && !isimm) 20942 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 20943 cnt = patch - insn_buf; 20944 20945 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20946 if (!new_prog) 20947 return -ENOMEM; 20948 20949 delta += cnt - 1; 20950 env->prog = prog = new_prog; 20951 insn = new_prog->insnsi + i + delta; 20952 goto next_insn; 20953 } 20954 20955 if (is_may_goto_insn(insn)) { 20956 int stack_off = -stack_depth - 8; 20957 20958 stack_depth_extra = 8; 20959 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); 20960 if (insn->off >= 0) 20961 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); 20962 else 20963 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 20964 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 20965 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); 20966 cnt = 4; 20967 20968 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20969 if (!new_prog) 20970 return -ENOMEM; 20971 20972 delta += cnt - 1; 20973 env->prog = prog = new_prog; 20974 insn = new_prog->insnsi + i + delta; 20975 goto next_insn; 20976 } 20977 20978 if (insn->code != (BPF_JMP | BPF_CALL)) 20979 goto next_insn; 20980 if (insn->src_reg == BPF_PSEUDO_CALL) 20981 goto next_insn; 20982 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 20983 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 20984 if (ret) 20985 return ret; 20986 if (cnt == 0) 20987 goto next_insn; 20988 20989 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20990 if (!new_prog) 20991 return -ENOMEM; 20992 20993 delta += cnt - 1; 20994 env->prog = prog = new_prog; 20995 insn = new_prog->insnsi + i + delta; 20996 goto next_insn; 20997 } 20998 20999 /* Skip inlining the helper call if the JIT does it. */ 21000 if (bpf_jit_inlines_helper_call(insn->imm)) 21001 goto next_insn; 21002 21003 if (insn->imm == BPF_FUNC_get_route_realm) 21004 prog->dst_needed = 1; 21005 if (insn->imm == BPF_FUNC_get_prandom_u32) 21006 bpf_user_rnd_init_once(); 21007 if (insn->imm == BPF_FUNC_override_return) 21008 prog->kprobe_override = 1; 21009 if (insn->imm == BPF_FUNC_tail_call) { 21010 /* If we tail call into other programs, we 21011 * cannot make any assumptions since they can 21012 * be replaced dynamically during runtime in 21013 * the program array. 21014 */ 21015 prog->cb_access = 1; 21016 if (!allow_tail_call_in_subprogs(env)) 21017 prog->aux->stack_depth = MAX_BPF_STACK; 21018 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 21019 21020 /* mark bpf_tail_call as different opcode to avoid 21021 * conditional branch in the interpreter for every normal 21022 * call and to prevent accidental JITing by JIT compiler 21023 * that doesn't support bpf_tail_call yet 21024 */ 21025 insn->imm = 0; 21026 insn->code = BPF_JMP | BPF_TAIL_CALL; 21027 21028 aux = &env->insn_aux_data[i + delta]; 21029 if (env->bpf_capable && !prog->blinding_requested && 21030 prog->jit_requested && 21031 !bpf_map_key_poisoned(aux) && 21032 !bpf_map_ptr_poisoned(aux) && 21033 !bpf_map_ptr_unpriv(aux)) { 21034 struct bpf_jit_poke_descriptor desc = { 21035 .reason = BPF_POKE_REASON_TAIL_CALL, 21036 .tail_call.map = aux->map_ptr_state.map_ptr, 21037 .tail_call.key = bpf_map_key_immediate(aux), 21038 .insn_idx = i + delta, 21039 }; 21040 21041 ret = bpf_jit_add_poke_descriptor(prog, &desc); 21042 if (ret < 0) { 21043 verbose(env, "adding tail call poke descriptor failed\n"); 21044 return ret; 21045 } 21046 21047 insn->imm = ret + 1; 21048 goto next_insn; 21049 } 21050 21051 if (!bpf_map_ptr_unpriv(aux)) 21052 goto next_insn; 21053 21054 /* instead of changing every JIT dealing with tail_call 21055 * emit two extra insns: 21056 * if (index >= max_entries) goto out; 21057 * index &= array->index_mask; 21058 * to avoid out-of-bounds cpu speculation 21059 */ 21060 if (bpf_map_ptr_poisoned(aux)) { 21061 verbose(env, "tail_call abusing map_ptr\n"); 21062 return -EINVAL; 21063 } 21064 21065 map_ptr = aux->map_ptr_state.map_ptr; 21066 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 21067 map_ptr->max_entries, 2); 21068 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 21069 container_of(map_ptr, 21070 struct bpf_array, 21071 map)->index_mask); 21072 insn_buf[2] = *insn; 21073 cnt = 3; 21074 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21075 if (!new_prog) 21076 return -ENOMEM; 21077 21078 delta += cnt - 1; 21079 env->prog = prog = new_prog; 21080 insn = new_prog->insnsi + i + delta; 21081 goto next_insn; 21082 } 21083 21084 if (insn->imm == BPF_FUNC_timer_set_callback) { 21085 /* The verifier will process callback_fn as many times as necessary 21086 * with different maps and the register states prepared by 21087 * set_timer_callback_state will be accurate. 21088 * 21089 * The following use case is valid: 21090 * map1 is shared by prog1, prog2, prog3. 21091 * prog1 calls bpf_timer_init for some map1 elements 21092 * prog2 calls bpf_timer_set_callback for some map1 elements. 21093 * Those that were not bpf_timer_init-ed will return -EINVAL. 21094 * prog3 calls bpf_timer_start for some map1 elements. 21095 * Those that were not both bpf_timer_init-ed and 21096 * bpf_timer_set_callback-ed will return -EINVAL. 21097 */ 21098 struct bpf_insn ld_addrs[2] = { 21099 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 21100 }; 21101 21102 insn_buf[0] = ld_addrs[0]; 21103 insn_buf[1] = ld_addrs[1]; 21104 insn_buf[2] = *insn; 21105 cnt = 3; 21106 21107 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21108 if (!new_prog) 21109 return -ENOMEM; 21110 21111 delta += cnt - 1; 21112 env->prog = prog = new_prog; 21113 insn = new_prog->insnsi + i + delta; 21114 goto patch_call_imm; 21115 } 21116 21117 if (is_storage_get_function(insn->imm)) { 21118 if (!in_sleepable(env) || 21119 env->insn_aux_data[i + delta].storage_get_func_atomic) 21120 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 21121 else 21122 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 21123 insn_buf[1] = *insn; 21124 cnt = 2; 21125 21126 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21127 if (!new_prog) 21128 return -ENOMEM; 21129 21130 delta += cnt - 1; 21131 env->prog = prog = new_prog; 21132 insn = new_prog->insnsi + i + delta; 21133 goto patch_call_imm; 21134 } 21135 21136 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 21137 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 21138 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 21139 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 21140 */ 21141 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 21142 insn_buf[1] = *insn; 21143 cnt = 2; 21144 21145 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21146 if (!new_prog) 21147 return -ENOMEM; 21148 21149 delta += cnt - 1; 21150 env->prog = prog = new_prog; 21151 insn = new_prog->insnsi + i + delta; 21152 goto patch_call_imm; 21153 } 21154 21155 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 21156 * and other inlining handlers are currently limited to 64 bit 21157 * only. 21158 */ 21159 if (prog->jit_requested && BITS_PER_LONG == 64 && 21160 (insn->imm == BPF_FUNC_map_lookup_elem || 21161 insn->imm == BPF_FUNC_map_update_elem || 21162 insn->imm == BPF_FUNC_map_delete_elem || 21163 insn->imm == BPF_FUNC_map_push_elem || 21164 insn->imm == BPF_FUNC_map_pop_elem || 21165 insn->imm == BPF_FUNC_map_peek_elem || 21166 insn->imm == BPF_FUNC_redirect_map || 21167 insn->imm == BPF_FUNC_for_each_map_elem || 21168 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 21169 aux = &env->insn_aux_data[i + delta]; 21170 if (bpf_map_ptr_poisoned(aux)) 21171 goto patch_call_imm; 21172 21173 map_ptr = aux->map_ptr_state.map_ptr; 21174 ops = map_ptr->ops; 21175 if (insn->imm == BPF_FUNC_map_lookup_elem && 21176 ops->map_gen_lookup) { 21177 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 21178 if (cnt == -EOPNOTSUPP) 21179 goto patch_map_ops_generic; 21180 if (cnt <= 0 || cnt >= INSN_BUF_SIZE) { 21181 verbose(env, "bpf verifier is misconfigured\n"); 21182 return -EINVAL; 21183 } 21184 21185 new_prog = bpf_patch_insn_data(env, i + delta, 21186 insn_buf, cnt); 21187 if (!new_prog) 21188 return -ENOMEM; 21189 21190 delta += cnt - 1; 21191 env->prog = prog = new_prog; 21192 insn = new_prog->insnsi + i + delta; 21193 goto next_insn; 21194 } 21195 21196 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 21197 (void *(*)(struct bpf_map *map, void *key))NULL)); 21198 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 21199 (long (*)(struct bpf_map *map, void *key))NULL)); 21200 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 21201 (long (*)(struct bpf_map *map, void *key, void *value, 21202 u64 flags))NULL)); 21203 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 21204 (long (*)(struct bpf_map *map, void *value, 21205 u64 flags))NULL)); 21206 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 21207 (long (*)(struct bpf_map *map, void *value))NULL)); 21208 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 21209 (long (*)(struct bpf_map *map, void *value))NULL)); 21210 BUILD_BUG_ON(!__same_type(ops->map_redirect, 21211 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 21212 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 21213 (long (*)(struct bpf_map *map, 21214 bpf_callback_t callback_fn, 21215 void *callback_ctx, 21216 u64 flags))NULL)); 21217 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 21218 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 21219 21220 patch_map_ops_generic: 21221 switch (insn->imm) { 21222 case BPF_FUNC_map_lookup_elem: 21223 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 21224 goto next_insn; 21225 case BPF_FUNC_map_update_elem: 21226 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 21227 goto next_insn; 21228 case BPF_FUNC_map_delete_elem: 21229 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 21230 goto next_insn; 21231 case BPF_FUNC_map_push_elem: 21232 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 21233 goto next_insn; 21234 case BPF_FUNC_map_pop_elem: 21235 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 21236 goto next_insn; 21237 case BPF_FUNC_map_peek_elem: 21238 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 21239 goto next_insn; 21240 case BPF_FUNC_redirect_map: 21241 insn->imm = BPF_CALL_IMM(ops->map_redirect); 21242 goto next_insn; 21243 case BPF_FUNC_for_each_map_elem: 21244 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 21245 goto next_insn; 21246 case BPF_FUNC_map_lookup_percpu_elem: 21247 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 21248 goto next_insn; 21249 } 21250 21251 goto patch_call_imm; 21252 } 21253 21254 /* Implement bpf_jiffies64 inline. */ 21255 if (prog->jit_requested && BITS_PER_LONG == 64 && 21256 insn->imm == BPF_FUNC_jiffies64) { 21257 struct bpf_insn ld_jiffies_addr[2] = { 21258 BPF_LD_IMM64(BPF_REG_0, 21259 (unsigned long)&jiffies), 21260 }; 21261 21262 insn_buf[0] = ld_jiffies_addr[0]; 21263 insn_buf[1] = ld_jiffies_addr[1]; 21264 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 21265 BPF_REG_0, 0); 21266 cnt = 3; 21267 21268 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 21269 cnt); 21270 if (!new_prog) 21271 return -ENOMEM; 21272 21273 delta += cnt - 1; 21274 env->prog = prog = new_prog; 21275 insn = new_prog->insnsi + i + delta; 21276 goto next_insn; 21277 } 21278 21279 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML) 21280 /* Implement bpf_get_smp_processor_id() inline. */ 21281 if (insn->imm == BPF_FUNC_get_smp_processor_id && 21282 verifier_inlines_helper_call(env, insn->imm)) { 21283 /* BPF_FUNC_get_smp_processor_id inlining is an 21284 * optimization, so if pcpu_hot.cpu_number is ever 21285 * changed in some incompatible and hard to support 21286 * way, it's fine to back out this inlining logic 21287 */ 21288 insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number); 21289 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 21290 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0); 21291 cnt = 3; 21292 21293 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21294 if (!new_prog) 21295 return -ENOMEM; 21296 21297 delta += cnt - 1; 21298 env->prog = prog = new_prog; 21299 insn = new_prog->insnsi + i + delta; 21300 goto next_insn; 21301 } 21302 #endif 21303 /* Implement bpf_get_func_arg inline. */ 21304 if (prog_type == BPF_PROG_TYPE_TRACING && 21305 insn->imm == BPF_FUNC_get_func_arg) { 21306 /* Load nr_args from ctx - 8 */ 21307 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 21308 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 21309 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 21310 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 21311 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 21312 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 21313 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 21314 insn_buf[7] = BPF_JMP_A(1); 21315 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 21316 cnt = 9; 21317 21318 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21319 if (!new_prog) 21320 return -ENOMEM; 21321 21322 delta += cnt - 1; 21323 env->prog = prog = new_prog; 21324 insn = new_prog->insnsi + i + delta; 21325 goto next_insn; 21326 } 21327 21328 /* Implement bpf_get_func_ret inline. */ 21329 if (prog_type == BPF_PROG_TYPE_TRACING && 21330 insn->imm == BPF_FUNC_get_func_ret) { 21331 if (eatype == BPF_TRACE_FEXIT || 21332 eatype == BPF_MODIFY_RETURN) { 21333 /* Load nr_args from ctx - 8 */ 21334 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 21335 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 21336 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 21337 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 21338 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 21339 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 21340 cnt = 6; 21341 } else { 21342 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 21343 cnt = 1; 21344 } 21345 21346 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21347 if (!new_prog) 21348 return -ENOMEM; 21349 21350 delta += cnt - 1; 21351 env->prog = prog = new_prog; 21352 insn = new_prog->insnsi + i + delta; 21353 goto next_insn; 21354 } 21355 21356 /* Implement get_func_arg_cnt inline. */ 21357 if (prog_type == BPF_PROG_TYPE_TRACING && 21358 insn->imm == BPF_FUNC_get_func_arg_cnt) { 21359 /* Load nr_args from ctx - 8 */ 21360 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 21361 21362 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 21363 if (!new_prog) 21364 return -ENOMEM; 21365 21366 env->prog = prog = new_prog; 21367 insn = new_prog->insnsi + i + delta; 21368 goto next_insn; 21369 } 21370 21371 /* Implement bpf_get_func_ip inline. */ 21372 if (prog_type == BPF_PROG_TYPE_TRACING && 21373 insn->imm == BPF_FUNC_get_func_ip) { 21374 /* Load IP address from ctx - 16 */ 21375 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 21376 21377 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 21378 if (!new_prog) 21379 return -ENOMEM; 21380 21381 env->prog = prog = new_prog; 21382 insn = new_prog->insnsi + i + delta; 21383 goto next_insn; 21384 } 21385 21386 /* Implement bpf_get_branch_snapshot inline. */ 21387 if (IS_ENABLED(CONFIG_PERF_EVENTS) && 21388 prog->jit_requested && BITS_PER_LONG == 64 && 21389 insn->imm == BPF_FUNC_get_branch_snapshot) { 21390 /* We are dealing with the following func protos: 21391 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags); 21392 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt); 21393 */ 21394 const u32 br_entry_size = sizeof(struct perf_branch_entry); 21395 21396 /* struct perf_branch_entry is part of UAPI and is 21397 * used as an array element, so extremely unlikely to 21398 * ever grow or shrink 21399 */ 21400 BUILD_BUG_ON(br_entry_size != 24); 21401 21402 /* if (unlikely(flags)) return -EINVAL */ 21403 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7); 21404 21405 /* Transform size (bytes) into number of entries (cnt = size / 24). 21406 * But to avoid expensive division instruction, we implement 21407 * divide-by-3 through multiplication, followed by further 21408 * division by 8 through 3-bit right shift. 21409 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr., 21410 * p. 227, chapter "Unsigned Division by 3" for details and proofs. 21411 * 21412 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab. 21413 */ 21414 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab); 21415 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0); 21416 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36); 21417 21418 /* call perf_snapshot_branch_stack implementation */ 21419 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack)); 21420 /* if (entry_cnt == 0) return -ENOENT */ 21421 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4); 21422 /* return entry_cnt * sizeof(struct perf_branch_entry) */ 21423 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size); 21424 insn_buf[7] = BPF_JMP_A(3); 21425 /* return -EINVAL; */ 21426 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 21427 insn_buf[9] = BPF_JMP_A(1); 21428 /* return -ENOENT; */ 21429 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT); 21430 cnt = 11; 21431 21432 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21433 if (!new_prog) 21434 return -ENOMEM; 21435 21436 delta += cnt - 1; 21437 env->prog = prog = new_prog; 21438 insn = new_prog->insnsi + i + delta; 21439 goto next_insn; 21440 } 21441 21442 /* Implement bpf_kptr_xchg inline */ 21443 if (prog->jit_requested && BITS_PER_LONG == 64 && 21444 insn->imm == BPF_FUNC_kptr_xchg && 21445 bpf_jit_supports_ptr_xchg()) { 21446 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); 21447 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); 21448 cnt = 2; 21449 21450 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21451 if (!new_prog) 21452 return -ENOMEM; 21453 21454 delta += cnt - 1; 21455 env->prog = prog = new_prog; 21456 insn = new_prog->insnsi + i + delta; 21457 goto next_insn; 21458 } 21459 patch_call_imm: 21460 fn = env->ops->get_func_proto(insn->imm, env->prog); 21461 /* all functions that have prototype and verifier allowed 21462 * programs to call them, must be real in-kernel functions 21463 */ 21464 if (!fn->func) { 21465 verbose(env, 21466 "kernel subsystem misconfigured func %s#%d\n", 21467 func_id_name(insn->imm), insn->imm); 21468 return -EFAULT; 21469 } 21470 insn->imm = fn->func - __bpf_call_base; 21471 next_insn: 21472 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 21473 subprogs[cur_subprog].stack_depth += stack_depth_extra; 21474 subprogs[cur_subprog].stack_extra = stack_depth_extra; 21475 cur_subprog++; 21476 stack_depth = subprogs[cur_subprog].stack_depth; 21477 stack_depth_extra = 0; 21478 } 21479 i++; 21480 insn++; 21481 } 21482 21483 env->prog->aux->stack_depth = subprogs[0].stack_depth; 21484 for (i = 0; i < env->subprog_cnt; i++) { 21485 int subprog_start = subprogs[i].start; 21486 int stack_slots = subprogs[i].stack_extra / 8; 21487 21488 if (!stack_slots) 21489 continue; 21490 if (stack_slots > 1) { 21491 verbose(env, "verifier bug: stack_slots supports may_goto only\n"); 21492 return -EFAULT; 21493 } 21494 21495 /* Add ST insn to subprog prologue to init extra stack */ 21496 insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, 21497 -subprogs[i].stack_depth, BPF_MAX_LOOPS); 21498 /* Copy first actual insn to preserve it */ 21499 insn_buf[1] = env->prog->insnsi[subprog_start]; 21500 21501 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2); 21502 if (!new_prog) 21503 return -ENOMEM; 21504 env->prog = prog = new_prog; 21505 /* 21506 * If may_goto is a first insn of a prog there could be a jmp 21507 * insn that points to it, hence adjust all such jmps to point 21508 * to insn after BPF_ST that inits may_goto count. 21509 * Adjustment will succeed because bpf_patch_insn_data() didn't fail. 21510 */ 21511 WARN_ON(adjust_jmp_off(env->prog, subprog_start, 1)); 21512 } 21513 21514 /* Since poke tab is now finalized, publish aux to tracker. */ 21515 for (i = 0; i < prog->aux->size_poke_tab; i++) { 21516 map_ptr = prog->aux->poke_tab[i].tail_call.map; 21517 if (!map_ptr->ops->map_poke_track || 21518 !map_ptr->ops->map_poke_untrack || 21519 !map_ptr->ops->map_poke_run) { 21520 verbose(env, "bpf verifier is misconfigured\n"); 21521 return -EINVAL; 21522 } 21523 21524 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 21525 if (ret < 0) { 21526 verbose(env, "tracking tail call prog failed\n"); 21527 return ret; 21528 } 21529 } 21530 21531 sort_kfunc_descs_by_imm_off(env->prog); 21532 21533 return 0; 21534 } 21535 21536 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 21537 int position, 21538 s32 stack_base, 21539 u32 callback_subprogno, 21540 u32 *total_cnt) 21541 { 21542 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 21543 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 21544 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 21545 int reg_loop_max = BPF_REG_6; 21546 int reg_loop_cnt = BPF_REG_7; 21547 int reg_loop_ctx = BPF_REG_8; 21548 21549 struct bpf_insn *insn_buf = env->insn_buf; 21550 struct bpf_prog *new_prog; 21551 u32 callback_start; 21552 u32 call_insn_offset; 21553 s32 callback_offset; 21554 u32 cnt = 0; 21555 21556 /* This represents an inlined version of bpf_iter.c:bpf_loop, 21557 * be careful to modify this code in sync. 21558 */ 21559 21560 /* Return error and jump to the end of the patch if 21561 * expected number of iterations is too big. 21562 */ 21563 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2); 21564 insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG); 21565 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16); 21566 /* spill R6, R7, R8 to use these as loop vars */ 21567 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset); 21568 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset); 21569 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset); 21570 /* initialize loop vars */ 21571 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1); 21572 insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0); 21573 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3); 21574 /* loop header, 21575 * if reg_loop_cnt >= reg_loop_max skip the loop body 21576 */ 21577 insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5); 21578 /* callback call, 21579 * correct callback offset would be set after patching 21580 */ 21581 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt); 21582 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx); 21583 insn_buf[cnt++] = BPF_CALL_REL(0); 21584 /* increment loop counter */ 21585 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1); 21586 /* jump to loop header if callback returned 0 */ 21587 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6); 21588 /* return value of bpf_loop, 21589 * set R0 to the number of iterations 21590 */ 21591 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt); 21592 /* restore original values of R6, R7, R8 */ 21593 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset); 21594 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset); 21595 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset); 21596 21597 *total_cnt = cnt; 21598 new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt); 21599 if (!new_prog) 21600 return new_prog; 21601 21602 /* callback start is known only after patching */ 21603 callback_start = env->subprog_info[callback_subprogno].start; 21604 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 21605 call_insn_offset = position + 12; 21606 callback_offset = callback_start - call_insn_offset - 1; 21607 new_prog->insnsi[call_insn_offset].imm = callback_offset; 21608 21609 return new_prog; 21610 } 21611 21612 static bool is_bpf_loop_call(struct bpf_insn *insn) 21613 { 21614 return insn->code == (BPF_JMP | BPF_CALL) && 21615 insn->src_reg == 0 && 21616 insn->imm == BPF_FUNC_loop; 21617 } 21618 21619 /* For all sub-programs in the program (including main) check 21620 * insn_aux_data to see if there are bpf_loop calls that require 21621 * inlining. If such calls are found the calls are replaced with a 21622 * sequence of instructions produced by `inline_bpf_loop` function and 21623 * subprog stack_depth is increased by the size of 3 registers. 21624 * This stack space is used to spill values of the R6, R7, R8. These 21625 * registers are used to store the loop bound, counter and context 21626 * variables. 21627 */ 21628 static int optimize_bpf_loop(struct bpf_verifier_env *env) 21629 { 21630 struct bpf_subprog_info *subprogs = env->subprog_info; 21631 int i, cur_subprog = 0, cnt, delta = 0; 21632 struct bpf_insn *insn = env->prog->insnsi; 21633 int insn_cnt = env->prog->len; 21634 u16 stack_depth = subprogs[cur_subprog].stack_depth; 21635 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 21636 u16 stack_depth_extra = 0; 21637 21638 for (i = 0; i < insn_cnt; i++, insn++) { 21639 struct bpf_loop_inline_state *inline_state = 21640 &env->insn_aux_data[i + delta].loop_inline_state; 21641 21642 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 21643 struct bpf_prog *new_prog; 21644 21645 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 21646 new_prog = inline_bpf_loop(env, 21647 i + delta, 21648 -(stack_depth + stack_depth_extra), 21649 inline_state->callback_subprogno, 21650 &cnt); 21651 if (!new_prog) 21652 return -ENOMEM; 21653 21654 delta += cnt - 1; 21655 env->prog = new_prog; 21656 insn = new_prog->insnsi + i + delta; 21657 } 21658 21659 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 21660 subprogs[cur_subprog].stack_depth += stack_depth_extra; 21661 cur_subprog++; 21662 stack_depth = subprogs[cur_subprog].stack_depth; 21663 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 21664 stack_depth_extra = 0; 21665 } 21666 } 21667 21668 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 21669 21670 return 0; 21671 } 21672 21673 /* Remove unnecessary spill/fill pairs, members of fastcall pattern, 21674 * adjust subprograms stack depth when possible. 21675 */ 21676 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env) 21677 { 21678 struct bpf_subprog_info *subprog = env->subprog_info; 21679 struct bpf_insn_aux_data *aux = env->insn_aux_data; 21680 struct bpf_insn *insn = env->prog->insnsi; 21681 int insn_cnt = env->prog->len; 21682 u32 spills_num; 21683 bool modified = false; 21684 int i, j; 21685 21686 for (i = 0; i < insn_cnt; i++, insn++) { 21687 if (aux[i].fastcall_spills_num > 0) { 21688 spills_num = aux[i].fastcall_spills_num; 21689 /* NOPs would be removed by opt_remove_nops() */ 21690 for (j = 1; j <= spills_num; ++j) { 21691 *(insn - j) = NOP; 21692 *(insn + j) = NOP; 21693 } 21694 modified = true; 21695 } 21696 if ((subprog + 1)->start == i + 1) { 21697 if (modified && !subprog->keep_fastcall_stack) 21698 subprog->stack_depth = -subprog->fastcall_stack_off; 21699 subprog++; 21700 modified = false; 21701 } 21702 } 21703 21704 return 0; 21705 } 21706 21707 static void free_states(struct bpf_verifier_env *env) 21708 { 21709 struct bpf_verifier_state_list *sl, *sln; 21710 int i; 21711 21712 sl = env->free_list; 21713 while (sl) { 21714 sln = sl->next; 21715 free_verifier_state(&sl->state, false); 21716 kfree(sl); 21717 sl = sln; 21718 } 21719 env->free_list = NULL; 21720 21721 if (!env->explored_states) 21722 return; 21723 21724 for (i = 0; i < state_htab_size(env); i++) { 21725 sl = env->explored_states[i]; 21726 21727 while (sl) { 21728 sln = sl->next; 21729 free_verifier_state(&sl->state, false); 21730 kfree(sl); 21731 sl = sln; 21732 } 21733 env->explored_states[i] = NULL; 21734 } 21735 } 21736 21737 static int do_check_common(struct bpf_verifier_env *env, int subprog) 21738 { 21739 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 21740 struct bpf_subprog_info *sub = subprog_info(env, subprog); 21741 struct bpf_verifier_state *state; 21742 struct bpf_reg_state *regs; 21743 int ret, i; 21744 21745 env->prev_linfo = NULL; 21746 env->pass_cnt++; 21747 21748 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 21749 if (!state) 21750 return -ENOMEM; 21751 state->curframe = 0; 21752 state->speculative = false; 21753 state->branches = 1; 21754 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 21755 if (!state->frame[0]) { 21756 kfree(state); 21757 return -ENOMEM; 21758 } 21759 env->cur_state = state; 21760 init_func_state(env, state->frame[0], 21761 BPF_MAIN_FUNC /* callsite */, 21762 0 /* frameno */, 21763 subprog); 21764 state->first_insn_idx = env->subprog_info[subprog].start; 21765 state->last_insn_idx = -1; 21766 21767 regs = state->frame[state->curframe]->regs; 21768 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 21769 const char *sub_name = subprog_name(env, subprog); 21770 struct bpf_subprog_arg_info *arg; 21771 struct bpf_reg_state *reg; 21772 21773 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); 21774 ret = btf_prepare_func_args(env, subprog); 21775 if (ret) 21776 goto out; 21777 21778 if (subprog_is_exc_cb(env, subprog)) { 21779 state->frame[0]->in_exception_callback_fn = true; 21780 /* We have already ensured that the callback returns an integer, just 21781 * like all global subprogs. We need to determine it only has a single 21782 * scalar argument. 21783 */ 21784 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { 21785 verbose(env, "exception cb only supports single integer argument\n"); 21786 ret = -EINVAL; 21787 goto out; 21788 } 21789 } 21790 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { 21791 arg = &sub->args[i - BPF_REG_1]; 21792 reg = ®s[i]; 21793 21794 if (arg->arg_type == ARG_PTR_TO_CTX) { 21795 reg->type = PTR_TO_CTX; 21796 mark_reg_known_zero(env, regs, i); 21797 } else if (arg->arg_type == ARG_ANYTHING) { 21798 reg->type = SCALAR_VALUE; 21799 mark_reg_unknown(env, regs, i); 21800 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 21801 /* assume unspecial LOCAL dynptr type */ 21802 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); 21803 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 21804 reg->type = PTR_TO_MEM; 21805 if (arg->arg_type & PTR_MAYBE_NULL) 21806 reg->type |= PTR_MAYBE_NULL; 21807 mark_reg_known_zero(env, regs, i); 21808 reg->mem_size = arg->mem_size; 21809 reg->id = ++env->id_gen; 21810 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 21811 reg->type = PTR_TO_BTF_ID; 21812 if (arg->arg_type & PTR_MAYBE_NULL) 21813 reg->type |= PTR_MAYBE_NULL; 21814 if (arg->arg_type & PTR_UNTRUSTED) 21815 reg->type |= PTR_UNTRUSTED; 21816 if (arg->arg_type & PTR_TRUSTED) 21817 reg->type |= PTR_TRUSTED; 21818 mark_reg_known_zero(env, regs, i); 21819 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ 21820 reg->btf_id = arg->btf_id; 21821 reg->id = ++env->id_gen; 21822 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 21823 /* caller can pass either PTR_TO_ARENA or SCALAR */ 21824 mark_reg_unknown(env, regs, i); 21825 } else { 21826 WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n", 21827 i - BPF_REG_1, arg->arg_type); 21828 ret = -EFAULT; 21829 goto out; 21830 } 21831 } 21832 } else { 21833 /* if main BPF program has associated BTF info, validate that 21834 * it's matching expected signature, and otherwise mark BTF 21835 * info for main program as unreliable 21836 */ 21837 if (env->prog->aux->func_info_aux) { 21838 ret = btf_prepare_func_args(env, 0); 21839 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) 21840 env->prog->aux->func_info_aux[0].unreliable = true; 21841 } 21842 21843 /* 1st arg to a function */ 21844 regs[BPF_REG_1].type = PTR_TO_CTX; 21845 mark_reg_known_zero(env, regs, BPF_REG_1); 21846 } 21847 21848 ret = do_check(env); 21849 out: 21850 /* check for NULL is necessary, since cur_state can be freed inside 21851 * do_check() under memory pressure. 21852 */ 21853 if (env->cur_state) { 21854 free_verifier_state(env->cur_state, true); 21855 env->cur_state = NULL; 21856 } 21857 while (!pop_stack(env, NULL, NULL, false)); 21858 if (!ret && pop_log) 21859 bpf_vlog_reset(&env->log, 0); 21860 free_states(env); 21861 return ret; 21862 } 21863 21864 /* Lazily verify all global functions based on their BTF, if they are called 21865 * from main BPF program or any of subprograms transitively. 21866 * BPF global subprogs called from dead code are not validated. 21867 * All callable global functions must pass verification. 21868 * Otherwise the whole program is rejected. 21869 * Consider: 21870 * int bar(int); 21871 * int foo(int f) 21872 * { 21873 * return bar(f); 21874 * } 21875 * int bar(int b) 21876 * { 21877 * ... 21878 * } 21879 * foo() will be verified first for R1=any_scalar_value. During verification it 21880 * will be assumed that bar() already verified successfully and call to bar() 21881 * from foo() will be checked for type match only. Later bar() will be verified 21882 * independently to check that it's safe for R1=any_scalar_value. 21883 */ 21884 static int do_check_subprogs(struct bpf_verifier_env *env) 21885 { 21886 struct bpf_prog_aux *aux = env->prog->aux; 21887 struct bpf_func_info_aux *sub_aux; 21888 int i, ret, new_cnt; 21889 21890 if (!aux->func_info) 21891 return 0; 21892 21893 /* exception callback is presumed to be always called */ 21894 if (env->exception_callback_subprog) 21895 subprog_aux(env, env->exception_callback_subprog)->called = true; 21896 21897 again: 21898 new_cnt = 0; 21899 for (i = 1; i < env->subprog_cnt; i++) { 21900 if (!subprog_is_global(env, i)) 21901 continue; 21902 21903 sub_aux = subprog_aux(env, i); 21904 if (!sub_aux->called || sub_aux->verified) 21905 continue; 21906 21907 env->insn_idx = env->subprog_info[i].start; 21908 WARN_ON_ONCE(env->insn_idx == 0); 21909 ret = do_check_common(env, i); 21910 if (ret) { 21911 return ret; 21912 } else if (env->log.level & BPF_LOG_LEVEL) { 21913 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 21914 i, subprog_name(env, i)); 21915 } 21916 21917 /* We verified new global subprog, it might have called some 21918 * more global subprogs that we haven't verified yet, so we 21919 * need to do another pass over subprogs to verify those. 21920 */ 21921 sub_aux->verified = true; 21922 new_cnt++; 21923 } 21924 21925 /* We can't loop forever as we verify at least one global subprog on 21926 * each pass. 21927 */ 21928 if (new_cnt) 21929 goto again; 21930 21931 return 0; 21932 } 21933 21934 static int do_check_main(struct bpf_verifier_env *env) 21935 { 21936 int ret; 21937 21938 env->insn_idx = 0; 21939 ret = do_check_common(env, 0); 21940 if (!ret) 21941 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 21942 return ret; 21943 } 21944 21945 21946 static void print_verification_stats(struct bpf_verifier_env *env) 21947 { 21948 int i; 21949 21950 if (env->log.level & BPF_LOG_STATS) { 21951 verbose(env, "verification time %lld usec\n", 21952 div_u64(env->verification_time, 1000)); 21953 verbose(env, "stack depth "); 21954 for (i = 0; i < env->subprog_cnt; i++) { 21955 u32 depth = env->subprog_info[i].stack_depth; 21956 21957 verbose(env, "%d", depth); 21958 if (i + 1 < env->subprog_cnt) 21959 verbose(env, "+"); 21960 } 21961 verbose(env, "\n"); 21962 } 21963 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 21964 "total_states %d peak_states %d mark_read %d\n", 21965 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 21966 env->max_states_per_insn, env->total_states, 21967 env->peak_states, env->longest_mark_read_walk); 21968 } 21969 21970 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 21971 { 21972 const struct btf_type *t, *func_proto; 21973 const struct bpf_struct_ops_desc *st_ops_desc; 21974 const struct bpf_struct_ops *st_ops; 21975 const struct btf_member *member; 21976 struct bpf_prog *prog = env->prog; 21977 u32 btf_id, member_idx; 21978 struct btf *btf; 21979 const char *mname; 21980 int err; 21981 21982 if (!prog->gpl_compatible) { 21983 verbose(env, "struct ops programs must have a GPL compatible license\n"); 21984 return -EINVAL; 21985 } 21986 21987 if (!prog->aux->attach_btf_id) 21988 return -ENOTSUPP; 21989 21990 btf = prog->aux->attach_btf; 21991 if (btf_is_module(btf)) { 21992 /* Make sure st_ops is valid through the lifetime of env */ 21993 env->attach_btf_mod = btf_try_get_module(btf); 21994 if (!env->attach_btf_mod) { 21995 verbose(env, "struct_ops module %s is not found\n", 21996 btf_get_name(btf)); 21997 return -ENOTSUPP; 21998 } 21999 } 22000 22001 btf_id = prog->aux->attach_btf_id; 22002 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 22003 if (!st_ops_desc) { 22004 verbose(env, "attach_btf_id %u is not a supported struct\n", 22005 btf_id); 22006 return -ENOTSUPP; 22007 } 22008 st_ops = st_ops_desc->st_ops; 22009 22010 t = st_ops_desc->type; 22011 member_idx = prog->expected_attach_type; 22012 if (member_idx >= btf_type_vlen(t)) { 22013 verbose(env, "attach to invalid member idx %u of struct %s\n", 22014 member_idx, st_ops->name); 22015 return -EINVAL; 22016 } 22017 22018 member = &btf_type_member(t)[member_idx]; 22019 mname = btf_name_by_offset(btf, member->name_off); 22020 func_proto = btf_type_resolve_func_ptr(btf, member->type, 22021 NULL); 22022 if (!func_proto) { 22023 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 22024 mname, member_idx, st_ops->name); 22025 return -EINVAL; 22026 } 22027 22028 err = bpf_struct_ops_supported(st_ops, __btf_member_bit_offset(t, member) / 8); 22029 if (err) { 22030 verbose(env, "attach to unsupported member %s of struct %s\n", 22031 mname, st_ops->name); 22032 return err; 22033 } 22034 22035 if (st_ops->check_member) { 22036 err = st_ops->check_member(t, member, prog); 22037 22038 if (err) { 22039 verbose(env, "attach to unsupported member %s of struct %s\n", 22040 mname, st_ops->name); 22041 return err; 22042 } 22043 } 22044 22045 if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) { 22046 verbose(env, "Private stack not supported by jit\n"); 22047 return -EACCES; 22048 } 22049 22050 /* btf_ctx_access() used this to provide argument type info */ 22051 prog->aux->ctx_arg_info = 22052 st_ops_desc->arg_info[member_idx].info; 22053 prog->aux->ctx_arg_info_size = 22054 st_ops_desc->arg_info[member_idx].cnt; 22055 22056 prog->aux->attach_func_proto = func_proto; 22057 prog->aux->attach_func_name = mname; 22058 env->ops = st_ops->verifier_ops; 22059 22060 return 0; 22061 } 22062 #define SECURITY_PREFIX "security_" 22063 22064 static int check_attach_modify_return(unsigned long addr, const char *func_name) 22065 { 22066 if (within_error_injection_list(addr) || 22067 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 22068 return 0; 22069 22070 return -EINVAL; 22071 } 22072 22073 /* list of non-sleepable functions that are otherwise on 22074 * ALLOW_ERROR_INJECTION list 22075 */ 22076 BTF_SET_START(btf_non_sleepable_error_inject) 22077 /* Three functions below can be called from sleepable and non-sleepable context. 22078 * Assume non-sleepable from bpf safety point of view. 22079 */ 22080 BTF_ID(func, __filemap_add_folio) 22081 #ifdef CONFIG_FAIL_PAGE_ALLOC 22082 BTF_ID(func, should_fail_alloc_page) 22083 #endif 22084 #ifdef CONFIG_FAILSLAB 22085 BTF_ID(func, should_failslab) 22086 #endif 22087 BTF_SET_END(btf_non_sleepable_error_inject) 22088 22089 static int check_non_sleepable_error_inject(u32 btf_id) 22090 { 22091 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 22092 } 22093 22094 int bpf_check_attach_target(struct bpf_verifier_log *log, 22095 const struct bpf_prog *prog, 22096 const struct bpf_prog *tgt_prog, 22097 u32 btf_id, 22098 struct bpf_attach_target_info *tgt_info) 22099 { 22100 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 22101 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; 22102 char trace_symbol[KSYM_SYMBOL_LEN]; 22103 const char prefix[] = "btf_trace_"; 22104 struct bpf_raw_event_map *btp; 22105 int ret = 0, subprog = -1, i; 22106 const struct btf_type *t; 22107 bool conservative = true; 22108 const char *tname, *fname; 22109 struct btf *btf; 22110 long addr = 0; 22111 struct module *mod = NULL; 22112 22113 if (!btf_id) { 22114 bpf_log(log, "Tracing programs must provide btf_id\n"); 22115 return -EINVAL; 22116 } 22117 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 22118 if (!btf) { 22119 bpf_log(log, 22120 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 22121 return -EINVAL; 22122 } 22123 t = btf_type_by_id(btf, btf_id); 22124 if (!t) { 22125 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 22126 return -EINVAL; 22127 } 22128 tname = btf_name_by_offset(btf, t->name_off); 22129 if (!tname) { 22130 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 22131 return -EINVAL; 22132 } 22133 if (tgt_prog) { 22134 struct bpf_prog_aux *aux = tgt_prog->aux; 22135 22136 if (bpf_prog_is_dev_bound(prog->aux) && 22137 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 22138 bpf_log(log, "Target program bound device mismatch"); 22139 return -EINVAL; 22140 } 22141 22142 for (i = 0; i < aux->func_info_cnt; i++) 22143 if (aux->func_info[i].type_id == btf_id) { 22144 subprog = i; 22145 break; 22146 } 22147 if (subprog == -1) { 22148 bpf_log(log, "Subprog %s doesn't exist\n", tname); 22149 return -EINVAL; 22150 } 22151 if (aux->func && aux->func[subprog]->aux->exception_cb) { 22152 bpf_log(log, 22153 "%s programs cannot attach to exception callback\n", 22154 prog_extension ? "Extension" : "FENTRY/FEXIT"); 22155 return -EINVAL; 22156 } 22157 conservative = aux->func_info_aux[subprog].unreliable; 22158 if (prog_extension) { 22159 if (conservative) { 22160 bpf_log(log, 22161 "Cannot replace static functions\n"); 22162 return -EINVAL; 22163 } 22164 if (!prog->jit_requested) { 22165 bpf_log(log, 22166 "Extension programs should be JITed\n"); 22167 return -EINVAL; 22168 } 22169 } 22170 if (!tgt_prog->jited) { 22171 bpf_log(log, "Can attach to only JITed progs\n"); 22172 return -EINVAL; 22173 } 22174 if (prog_tracing) { 22175 if (aux->attach_tracing_prog) { 22176 /* 22177 * Target program is an fentry/fexit which is already attached 22178 * to another tracing program. More levels of nesting 22179 * attachment are not allowed. 22180 */ 22181 bpf_log(log, "Cannot nest tracing program attach more than once\n"); 22182 return -EINVAL; 22183 } 22184 } else if (tgt_prog->type == prog->type) { 22185 /* 22186 * To avoid potential call chain cycles, prevent attaching of a 22187 * program extension to another extension. It's ok to attach 22188 * fentry/fexit to extension program. 22189 */ 22190 bpf_log(log, "Cannot recursively attach\n"); 22191 return -EINVAL; 22192 } 22193 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 22194 prog_extension && 22195 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 22196 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 22197 /* Program extensions can extend all program types 22198 * except fentry/fexit. The reason is the following. 22199 * The fentry/fexit programs are used for performance 22200 * analysis, stats and can be attached to any program 22201 * type. When extension program is replacing XDP function 22202 * it is necessary to allow performance analysis of all 22203 * functions. Both original XDP program and its program 22204 * extension. Hence attaching fentry/fexit to 22205 * BPF_PROG_TYPE_EXT is allowed. If extending of 22206 * fentry/fexit was allowed it would be possible to create 22207 * long call chain fentry->extension->fentry->extension 22208 * beyond reasonable stack size. Hence extending fentry 22209 * is not allowed. 22210 */ 22211 bpf_log(log, "Cannot extend fentry/fexit\n"); 22212 return -EINVAL; 22213 } 22214 } else { 22215 if (prog_extension) { 22216 bpf_log(log, "Cannot replace kernel functions\n"); 22217 return -EINVAL; 22218 } 22219 } 22220 22221 switch (prog->expected_attach_type) { 22222 case BPF_TRACE_RAW_TP: 22223 if (tgt_prog) { 22224 bpf_log(log, 22225 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 22226 return -EINVAL; 22227 } 22228 if (!btf_type_is_typedef(t)) { 22229 bpf_log(log, "attach_btf_id %u is not a typedef\n", 22230 btf_id); 22231 return -EINVAL; 22232 } 22233 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 22234 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 22235 btf_id, tname); 22236 return -EINVAL; 22237 } 22238 tname += sizeof(prefix) - 1; 22239 22240 /* The func_proto of "btf_trace_##tname" is generated from typedef without argument 22241 * names. Thus using bpf_raw_event_map to get argument names. 22242 */ 22243 btp = bpf_get_raw_tracepoint(tname); 22244 if (!btp) 22245 return -EINVAL; 22246 fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL, 22247 trace_symbol); 22248 bpf_put_raw_tracepoint(btp); 22249 22250 if (fname) 22251 ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC); 22252 22253 if (!fname || ret < 0) { 22254 bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n", 22255 prefix, tname); 22256 t = btf_type_by_id(btf, t->type); 22257 if (!btf_type_is_ptr(t)) 22258 /* should never happen in valid vmlinux build */ 22259 return -EINVAL; 22260 } else { 22261 t = btf_type_by_id(btf, ret); 22262 if (!btf_type_is_func(t)) 22263 /* should never happen in valid vmlinux build */ 22264 return -EINVAL; 22265 } 22266 22267 t = btf_type_by_id(btf, t->type); 22268 if (!btf_type_is_func_proto(t)) 22269 /* should never happen in valid vmlinux build */ 22270 return -EINVAL; 22271 22272 break; 22273 case BPF_TRACE_ITER: 22274 if (!btf_type_is_func(t)) { 22275 bpf_log(log, "attach_btf_id %u is not a function\n", 22276 btf_id); 22277 return -EINVAL; 22278 } 22279 t = btf_type_by_id(btf, t->type); 22280 if (!btf_type_is_func_proto(t)) 22281 return -EINVAL; 22282 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 22283 if (ret) 22284 return ret; 22285 break; 22286 default: 22287 if (!prog_extension) 22288 return -EINVAL; 22289 fallthrough; 22290 case BPF_MODIFY_RETURN: 22291 case BPF_LSM_MAC: 22292 case BPF_LSM_CGROUP: 22293 case BPF_TRACE_FENTRY: 22294 case BPF_TRACE_FEXIT: 22295 if (!btf_type_is_func(t)) { 22296 bpf_log(log, "attach_btf_id %u is not a function\n", 22297 btf_id); 22298 return -EINVAL; 22299 } 22300 if (prog_extension && 22301 btf_check_type_match(log, prog, btf, t)) 22302 return -EINVAL; 22303 t = btf_type_by_id(btf, t->type); 22304 if (!btf_type_is_func_proto(t)) 22305 return -EINVAL; 22306 22307 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 22308 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 22309 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 22310 return -EINVAL; 22311 22312 if (tgt_prog && conservative) 22313 t = NULL; 22314 22315 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 22316 if (ret < 0) 22317 return ret; 22318 22319 if (tgt_prog) { 22320 if (subprog == 0) 22321 addr = (long) tgt_prog->bpf_func; 22322 else 22323 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 22324 } else { 22325 if (btf_is_module(btf)) { 22326 mod = btf_try_get_module(btf); 22327 if (mod) 22328 addr = find_kallsyms_symbol_value(mod, tname); 22329 else 22330 addr = 0; 22331 } else { 22332 addr = kallsyms_lookup_name(tname); 22333 } 22334 if (!addr) { 22335 module_put(mod); 22336 bpf_log(log, 22337 "The address of function %s cannot be found\n", 22338 tname); 22339 return -ENOENT; 22340 } 22341 } 22342 22343 if (prog->sleepable) { 22344 ret = -EINVAL; 22345 switch (prog->type) { 22346 case BPF_PROG_TYPE_TRACING: 22347 22348 /* fentry/fexit/fmod_ret progs can be sleepable if they are 22349 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 22350 */ 22351 if (!check_non_sleepable_error_inject(btf_id) && 22352 within_error_injection_list(addr)) 22353 ret = 0; 22354 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 22355 * in the fmodret id set with the KF_SLEEPABLE flag. 22356 */ 22357 else { 22358 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 22359 prog); 22360 22361 if (flags && (*flags & KF_SLEEPABLE)) 22362 ret = 0; 22363 } 22364 break; 22365 case BPF_PROG_TYPE_LSM: 22366 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 22367 * Only some of them are sleepable. 22368 */ 22369 if (bpf_lsm_is_sleepable_hook(btf_id)) 22370 ret = 0; 22371 break; 22372 default: 22373 break; 22374 } 22375 if (ret) { 22376 module_put(mod); 22377 bpf_log(log, "%s is not sleepable\n", tname); 22378 return ret; 22379 } 22380 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 22381 if (tgt_prog) { 22382 module_put(mod); 22383 bpf_log(log, "can't modify return codes of BPF programs\n"); 22384 return -EINVAL; 22385 } 22386 ret = -EINVAL; 22387 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 22388 !check_attach_modify_return(addr, tname)) 22389 ret = 0; 22390 if (ret) { 22391 module_put(mod); 22392 bpf_log(log, "%s() is not modifiable\n", tname); 22393 return ret; 22394 } 22395 } 22396 22397 break; 22398 } 22399 tgt_info->tgt_addr = addr; 22400 tgt_info->tgt_name = tname; 22401 tgt_info->tgt_type = t; 22402 tgt_info->tgt_mod = mod; 22403 return 0; 22404 } 22405 22406 BTF_SET_START(btf_id_deny) 22407 BTF_ID_UNUSED 22408 #ifdef CONFIG_SMP 22409 BTF_ID(func, migrate_disable) 22410 BTF_ID(func, migrate_enable) 22411 #endif 22412 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 22413 BTF_ID(func, rcu_read_unlock_strict) 22414 #endif 22415 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 22416 BTF_ID(func, preempt_count_add) 22417 BTF_ID(func, preempt_count_sub) 22418 #endif 22419 #ifdef CONFIG_PREEMPT_RCU 22420 BTF_ID(func, __rcu_read_lock) 22421 BTF_ID(func, __rcu_read_unlock) 22422 #endif 22423 BTF_SET_END(btf_id_deny) 22424 22425 static bool can_be_sleepable(struct bpf_prog *prog) 22426 { 22427 if (prog->type == BPF_PROG_TYPE_TRACING) { 22428 switch (prog->expected_attach_type) { 22429 case BPF_TRACE_FENTRY: 22430 case BPF_TRACE_FEXIT: 22431 case BPF_MODIFY_RETURN: 22432 case BPF_TRACE_ITER: 22433 return true; 22434 default: 22435 return false; 22436 } 22437 } 22438 return prog->type == BPF_PROG_TYPE_LSM || 22439 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 22440 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 22441 } 22442 22443 static int check_attach_btf_id(struct bpf_verifier_env *env) 22444 { 22445 struct bpf_prog *prog = env->prog; 22446 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 22447 struct bpf_attach_target_info tgt_info = {}; 22448 u32 btf_id = prog->aux->attach_btf_id; 22449 struct bpf_trampoline *tr; 22450 int ret; 22451 u64 key; 22452 22453 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 22454 if (prog->sleepable) 22455 /* attach_btf_id checked to be zero already */ 22456 return 0; 22457 verbose(env, "Syscall programs can only be sleepable\n"); 22458 return -EINVAL; 22459 } 22460 22461 if (prog->sleepable && !can_be_sleepable(prog)) { 22462 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 22463 return -EINVAL; 22464 } 22465 22466 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 22467 return check_struct_ops_btf_id(env); 22468 22469 if (prog->type != BPF_PROG_TYPE_TRACING && 22470 prog->type != BPF_PROG_TYPE_LSM && 22471 prog->type != BPF_PROG_TYPE_EXT) 22472 return 0; 22473 22474 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 22475 if (ret) 22476 return ret; 22477 22478 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 22479 /* to make freplace equivalent to their targets, they need to 22480 * inherit env->ops and expected_attach_type for the rest of the 22481 * verification 22482 */ 22483 env->ops = bpf_verifier_ops[tgt_prog->type]; 22484 prog->expected_attach_type = tgt_prog->expected_attach_type; 22485 } 22486 22487 /* store info about the attachment target that will be used later */ 22488 prog->aux->attach_func_proto = tgt_info.tgt_type; 22489 prog->aux->attach_func_name = tgt_info.tgt_name; 22490 prog->aux->mod = tgt_info.tgt_mod; 22491 22492 if (tgt_prog) { 22493 prog->aux->saved_dst_prog_type = tgt_prog->type; 22494 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 22495 } 22496 22497 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 22498 prog->aux->attach_btf_trace = true; 22499 return 0; 22500 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 22501 if (!bpf_iter_prog_supported(prog)) 22502 return -EINVAL; 22503 return 0; 22504 } 22505 22506 if (prog->type == BPF_PROG_TYPE_LSM) { 22507 ret = bpf_lsm_verify_prog(&env->log, prog); 22508 if (ret < 0) 22509 return ret; 22510 } else if (prog->type == BPF_PROG_TYPE_TRACING && 22511 btf_id_set_contains(&btf_id_deny, btf_id)) { 22512 return -EINVAL; 22513 } 22514 22515 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 22516 tr = bpf_trampoline_get(key, &tgt_info); 22517 if (!tr) 22518 return -ENOMEM; 22519 22520 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 22521 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 22522 22523 prog->aux->dst_trampoline = tr; 22524 return 0; 22525 } 22526 22527 struct btf *bpf_get_btf_vmlinux(void) 22528 { 22529 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 22530 mutex_lock(&bpf_verifier_lock); 22531 if (!btf_vmlinux) 22532 btf_vmlinux = btf_parse_vmlinux(); 22533 mutex_unlock(&bpf_verifier_lock); 22534 } 22535 return btf_vmlinux; 22536 } 22537 22538 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 22539 { 22540 u64 start_time = ktime_get_ns(); 22541 struct bpf_verifier_env *env; 22542 int i, len, ret = -EINVAL, err; 22543 u32 log_true_size; 22544 bool is_priv; 22545 22546 /* no program is valid */ 22547 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 22548 return -EINVAL; 22549 22550 /* 'struct bpf_verifier_env' can be global, but since it's not small, 22551 * allocate/free it every time bpf_check() is called 22552 */ 22553 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 22554 if (!env) 22555 return -ENOMEM; 22556 22557 env->bt.env = env; 22558 22559 len = (*prog)->len; 22560 env->insn_aux_data = 22561 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 22562 ret = -ENOMEM; 22563 if (!env->insn_aux_data) 22564 goto err_free_env; 22565 for (i = 0; i < len; i++) 22566 env->insn_aux_data[i].orig_idx = i; 22567 env->prog = *prog; 22568 env->ops = bpf_verifier_ops[env->prog->type]; 22569 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 22570 22571 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); 22572 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); 22573 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); 22574 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); 22575 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); 22576 22577 bpf_get_btf_vmlinux(); 22578 22579 /* grab the mutex to protect few globals used by verifier */ 22580 if (!is_priv) 22581 mutex_lock(&bpf_verifier_lock); 22582 22583 /* user could have requested verbose verifier output 22584 * and supplied buffer to store the verification trace 22585 */ 22586 ret = bpf_vlog_init(&env->log, attr->log_level, 22587 (char __user *) (unsigned long) attr->log_buf, 22588 attr->log_size); 22589 if (ret) 22590 goto err_unlock; 22591 22592 mark_verifier_state_clean(env); 22593 22594 if (IS_ERR(btf_vmlinux)) { 22595 /* Either gcc or pahole or kernel are broken. */ 22596 verbose(env, "in-kernel BTF is malformed\n"); 22597 ret = PTR_ERR(btf_vmlinux); 22598 goto skip_full_check; 22599 } 22600 22601 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 22602 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 22603 env->strict_alignment = true; 22604 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 22605 env->strict_alignment = false; 22606 22607 if (is_priv) 22608 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 22609 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 22610 22611 env->explored_states = kvcalloc(state_htab_size(env), 22612 sizeof(struct bpf_verifier_state_list *), 22613 GFP_USER); 22614 ret = -ENOMEM; 22615 if (!env->explored_states) 22616 goto skip_full_check; 22617 22618 ret = check_btf_info_early(env, attr, uattr); 22619 if (ret < 0) 22620 goto skip_full_check; 22621 22622 ret = add_subprog_and_kfunc(env); 22623 if (ret < 0) 22624 goto skip_full_check; 22625 22626 ret = check_subprogs(env); 22627 if (ret < 0) 22628 goto skip_full_check; 22629 22630 ret = check_btf_info(env, attr, uattr); 22631 if (ret < 0) 22632 goto skip_full_check; 22633 22634 ret = check_attach_btf_id(env); 22635 if (ret) 22636 goto skip_full_check; 22637 22638 ret = resolve_pseudo_ldimm64(env); 22639 if (ret < 0) 22640 goto skip_full_check; 22641 22642 if (bpf_prog_is_offloaded(env->prog->aux)) { 22643 ret = bpf_prog_offload_verifier_prep(env->prog); 22644 if (ret) 22645 goto skip_full_check; 22646 } 22647 22648 ret = check_cfg(env); 22649 if (ret < 0) 22650 goto skip_full_check; 22651 22652 ret = mark_fastcall_patterns(env); 22653 if (ret < 0) 22654 goto skip_full_check; 22655 22656 ret = do_check_main(env); 22657 ret = ret ?: do_check_subprogs(env); 22658 22659 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 22660 ret = bpf_prog_offload_finalize(env); 22661 22662 skip_full_check: 22663 kvfree(env->explored_states); 22664 22665 /* might decrease stack depth, keep it before passes that 22666 * allocate additional slots. 22667 */ 22668 if (ret == 0) 22669 ret = remove_fastcall_spills_fills(env); 22670 22671 if (ret == 0) 22672 ret = check_max_stack_depth(env); 22673 22674 /* instruction rewrites happen after this point */ 22675 if (ret == 0) 22676 ret = optimize_bpf_loop(env); 22677 22678 if (is_priv) { 22679 if (ret == 0) 22680 opt_hard_wire_dead_code_branches(env); 22681 if (ret == 0) 22682 ret = opt_remove_dead_code(env); 22683 if (ret == 0) 22684 ret = opt_remove_nops(env); 22685 } else { 22686 if (ret == 0) 22687 sanitize_dead_code(env); 22688 } 22689 22690 if (ret == 0) 22691 /* program is valid, convert *(u32*)(ctx + off) accesses */ 22692 ret = convert_ctx_accesses(env); 22693 22694 if (ret == 0) 22695 ret = do_misc_fixups(env); 22696 22697 /* do 32-bit optimization after insn patching has done so those patched 22698 * insns could be handled correctly. 22699 */ 22700 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 22701 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 22702 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 22703 : false; 22704 } 22705 22706 if (ret == 0) 22707 ret = fixup_call_args(env); 22708 22709 env->verification_time = ktime_get_ns() - start_time; 22710 print_verification_stats(env); 22711 env->prog->aux->verified_insns = env->insn_processed; 22712 22713 /* preserve original error even if log finalization is successful */ 22714 err = bpf_vlog_finalize(&env->log, &log_true_size); 22715 if (err) 22716 ret = err; 22717 22718 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 22719 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 22720 &log_true_size, sizeof(log_true_size))) { 22721 ret = -EFAULT; 22722 goto err_release_maps; 22723 } 22724 22725 if (ret) 22726 goto err_release_maps; 22727 22728 if (env->used_map_cnt) { 22729 /* if program passed verifier, update used_maps in bpf_prog_info */ 22730 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 22731 sizeof(env->used_maps[0]), 22732 GFP_KERNEL); 22733 22734 if (!env->prog->aux->used_maps) { 22735 ret = -ENOMEM; 22736 goto err_release_maps; 22737 } 22738 22739 memcpy(env->prog->aux->used_maps, env->used_maps, 22740 sizeof(env->used_maps[0]) * env->used_map_cnt); 22741 env->prog->aux->used_map_cnt = env->used_map_cnt; 22742 } 22743 if (env->used_btf_cnt) { 22744 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 22745 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 22746 sizeof(env->used_btfs[0]), 22747 GFP_KERNEL); 22748 if (!env->prog->aux->used_btfs) { 22749 ret = -ENOMEM; 22750 goto err_release_maps; 22751 } 22752 22753 memcpy(env->prog->aux->used_btfs, env->used_btfs, 22754 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 22755 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 22756 } 22757 if (env->used_map_cnt || env->used_btf_cnt) { 22758 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 22759 * bpf_ld_imm64 instructions 22760 */ 22761 convert_pseudo_ld_imm64(env); 22762 } 22763 22764 adjust_btf_func(env); 22765 22766 err_release_maps: 22767 if (!env->prog->aux->used_maps) 22768 /* if we didn't copy map pointers into bpf_prog_info, release 22769 * them now. Otherwise free_used_maps() will release them. 22770 */ 22771 release_maps(env); 22772 if (!env->prog->aux->used_btfs) 22773 release_btfs(env); 22774 22775 /* extension progs temporarily inherit the attach_type of their targets 22776 for verification purposes, so set it back to zero before returning 22777 */ 22778 if (env->prog->type == BPF_PROG_TYPE_EXT) 22779 env->prog->expected_attach_type = 0; 22780 22781 *prog = env->prog; 22782 22783 module_put(env->attach_btf_mod); 22784 err_unlock: 22785 if (!is_priv) 22786 mutex_unlock(&bpf_verifier_lock); 22787 vfree(env->insn_aux_data); 22788 kvfree(env->insn_hist); 22789 err_free_env: 22790 kvfree(env); 22791 return ret; 22792 } 22793