1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/filter.h> 19 #include <net/netlink.h> 20 #include <linux/file.h> 21 #include <linux/vmalloc.h> 22 #include <linux/stringify.h> 23 #include <linux/bsearch.h> 24 #include <linux/sort.h> 25 #include <linux/perf_event.h> 26 27 #include "disasm.h" 28 29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 30 #define BPF_PROG_TYPE(_id, _name) \ 31 [_id] = & _name ## _verifier_ops, 32 #define BPF_MAP_TYPE(_id, _ops) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 }; 37 38 /* bpf_check() is a static code analyzer that walks eBPF program 39 * instruction by instruction and updates register/stack state. 40 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 41 * 42 * The first pass is depth-first-search to check that the program is a DAG. 43 * It rejects the following programs: 44 * - larger than BPF_MAXINSNS insns 45 * - if loop is present (detected via back-edge) 46 * - unreachable insns exist (shouldn't be a forest. program = one function) 47 * - out of bounds or malformed jumps 48 * The second pass is all possible path descent from the 1st insn. 49 * Since it's analyzing all pathes through the program, the length of the 50 * analysis is limited to 64k insn, which may be hit even if total number of 51 * insn is less then 4K, but there are too many branches that change stack/regs. 52 * Number of 'branches to be analyzed' is limited to 1k 53 * 54 * On entry to each instruction, each register has a type, and the instruction 55 * changes the types of the registers depending on instruction semantics. 56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 57 * copied to R1. 58 * 59 * All registers are 64-bit. 60 * R0 - return register 61 * R1-R5 argument passing registers 62 * R6-R9 callee saved registers 63 * R10 - frame pointer read-only 64 * 65 * At the start of BPF program the register R1 contains a pointer to bpf_context 66 * and has type PTR_TO_CTX. 67 * 68 * Verifier tracks arithmetic operations on pointers in case: 69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 71 * 1st insn copies R10 (which has FRAME_PTR) type into R1 72 * and 2nd arithmetic instruction is pattern matched to recognize 73 * that it wants to construct a pointer to some element within stack. 74 * So after 2nd insn, the register R1 has type PTR_TO_STACK 75 * (and -20 constant is saved for further stack bounds checking). 76 * Meaning that this reg is a pointer to stack plus known immediate constant. 77 * 78 * Most of the time the registers have SCALAR_VALUE type, which 79 * means the register has some value, but it's not a valid pointer. 80 * (like pointer plus pointer becomes SCALAR_VALUE type) 81 * 82 * When verifier sees load or store instructions the type of base register 83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer 84 * types recognized by check_mem_access() function. 85 * 86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 87 * and the range of [ptr, ptr + map's value_size) is accessible. 88 * 89 * registers used to pass values to function calls are checked against 90 * function argument constraints. 91 * 92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 93 * It means that the register type passed to this function must be 94 * PTR_TO_STACK and it will be used inside the function as 95 * 'pointer to map element key' 96 * 97 * For example the argument constraints for bpf_map_lookup_elem(): 98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 99 * .arg1_type = ARG_CONST_MAP_PTR, 100 * .arg2_type = ARG_PTR_TO_MAP_KEY, 101 * 102 * ret_type says that this function returns 'pointer to map elem value or null' 103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 104 * 2nd argument should be a pointer to stack, which will be used inside 105 * the helper function as a pointer to map element key. 106 * 107 * On the kernel side the helper function looks like: 108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 109 * { 110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 111 * void *key = (void *) (unsigned long) r2; 112 * void *value; 113 * 114 * here kernel can access 'key' and 'map' pointers safely, knowing that 115 * [key, key + map->key_size) bytes are valid and were initialized on 116 * the stack of eBPF program. 117 * } 118 * 119 * Corresponding eBPF program may look like: 120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 124 * here verifier looks at prototype of map_lookup_elem() and sees: 125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 127 * 128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 130 * and were initialized prior to this call. 131 * If it's ok, then verifier allows this BPF_CALL insn and looks at 132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 134 * returns ether pointer to map value or NULL. 135 * 136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 137 * insn, the register holding that pointer in the true branch changes state to 138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 139 * branch. See check_cond_jmp_op(). 140 * 141 * After the call R0 is set to return type of the function and registers R1-R5 142 * are set to NOT_INIT to indicate that they are no longer readable. 143 */ 144 145 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 146 struct bpf_verifier_stack_elem { 147 /* verifer state is 'st' 148 * before processing instruction 'insn_idx' 149 * and after processing instruction 'prev_insn_idx' 150 */ 151 struct bpf_verifier_state st; 152 int insn_idx; 153 int prev_insn_idx; 154 struct bpf_verifier_stack_elem *next; 155 }; 156 157 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 158 #define BPF_COMPLEXITY_LIMIT_STACK 1024 159 160 #define BPF_MAP_PTR_UNPRIV 1UL 161 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 162 POISON_POINTER_DELTA)) 163 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 164 165 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 166 { 167 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 168 } 169 170 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 171 { 172 return aux->map_state & BPF_MAP_PTR_UNPRIV; 173 } 174 175 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 176 const struct bpf_map *map, bool unpriv) 177 { 178 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 179 unpriv |= bpf_map_ptr_unpriv(aux); 180 aux->map_state = (unsigned long)map | 181 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 182 } 183 184 struct bpf_call_arg_meta { 185 struct bpf_map *map_ptr; 186 bool raw_mode; 187 bool pkt_access; 188 int regno; 189 int access_size; 190 s64 msize_smax_value; 191 u64 msize_umax_value; 192 }; 193 194 static DEFINE_MUTEX(bpf_verifier_lock); 195 196 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 197 va_list args) 198 { 199 unsigned int n; 200 201 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 202 203 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 204 "verifier log line truncated - local buffer too short\n"); 205 206 n = min(log->len_total - log->len_used - 1, n); 207 log->kbuf[n] = '\0'; 208 209 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 210 log->len_used += n; 211 else 212 log->ubuf = NULL; 213 } 214 215 /* log_level controls verbosity level of eBPF verifier. 216 * bpf_verifier_log_write() is used to dump the verification trace to the log, 217 * so the user can figure out what's wrong with the program 218 */ 219 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 220 const char *fmt, ...) 221 { 222 va_list args; 223 224 if (!bpf_verifier_log_needed(&env->log)) 225 return; 226 227 va_start(args, fmt); 228 bpf_verifier_vlog(&env->log, fmt, args); 229 va_end(args); 230 } 231 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 232 233 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 234 { 235 struct bpf_verifier_env *env = private_data; 236 va_list args; 237 238 if (!bpf_verifier_log_needed(&env->log)) 239 return; 240 241 va_start(args, fmt); 242 bpf_verifier_vlog(&env->log, fmt, args); 243 va_end(args); 244 } 245 246 static bool type_is_pkt_pointer(enum bpf_reg_type type) 247 { 248 return type == PTR_TO_PACKET || 249 type == PTR_TO_PACKET_META; 250 } 251 252 /* string representation of 'enum bpf_reg_type' */ 253 static const char * const reg_type_str[] = { 254 [NOT_INIT] = "?", 255 [SCALAR_VALUE] = "inv", 256 [PTR_TO_CTX] = "ctx", 257 [CONST_PTR_TO_MAP] = "map_ptr", 258 [PTR_TO_MAP_VALUE] = "map_value", 259 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 260 [PTR_TO_STACK] = "fp", 261 [PTR_TO_PACKET] = "pkt", 262 [PTR_TO_PACKET_META] = "pkt_meta", 263 [PTR_TO_PACKET_END] = "pkt_end", 264 }; 265 266 static void print_liveness(struct bpf_verifier_env *env, 267 enum bpf_reg_liveness live) 268 { 269 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN)) 270 verbose(env, "_"); 271 if (live & REG_LIVE_READ) 272 verbose(env, "r"); 273 if (live & REG_LIVE_WRITTEN) 274 verbose(env, "w"); 275 } 276 277 static struct bpf_func_state *func(struct bpf_verifier_env *env, 278 const struct bpf_reg_state *reg) 279 { 280 struct bpf_verifier_state *cur = env->cur_state; 281 282 return cur->frame[reg->frameno]; 283 } 284 285 static void print_verifier_state(struct bpf_verifier_env *env, 286 const struct bpf_func_state *state) 287 { 288 const struct bpf_reg_state *reg; 289 enum bpf_reg_type t; 290 int i; 291 292 if (state->frameno) 293 verbose(env, " frame%d:", state->frameno); 294 for (i = 0; i < MAX_BPF_REG; i++) { 295 reg = &state->regs[i]; 296 t = reg->type; 297 if (t == NOT_INIT) 298 continue; 299 verbose(env, " R%d", i); 300 print_liveness(env, reg->live); 301 verbose(env, "=%s", reg_type_str[t]); 302 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 303 tnum_is_const(reg->var_off)) { 304 /* reg->off should be 0 for SCALAR_VALUE */ 305 verbose(env, "%lld", reg->var_off.value + reg->off); 306 if (t == PTR_TO_STACK) 307 verbose(env, ",call_%d", func(env, reg)->callsite); 308 } else { 309 verbose(env, "(id=%d", reg->id); 310 if (t != SCALAR_VALUE) 311 verbose(env, ",off=%d", reg->off); 312 if (type_is_pkt_pointer(t)) 313 verbose(env, ",r=%d", reg->range); 314 else if (t == CONST_PTR_TO_MAP || 315 t == PTR_TO_MAP_VALUE || 316 t == PTR_TO_MAP_VALUE_OR_NULL) 317 verbose(env, ",ks=%d,vs=%d", 318 reg->map_ptr->key_size, 319 reg->map_ptr->value_size); 320 if (tnum_is_const(reg->var_off)) { 321 /* Typically an immediate SCALAR_VALUE, but 322 * could be a pointer whose offset is too big 323 * for reg->off 324 */ 325 verbose(env, ",imm=%llx", reg->var_off.value); 326 } else { 327 if (reg->smin_value != reg->umin_value && 328 reg->smin_value != S64_MIN) 329 verbose(env, ",smin_value=%lld", 330 (long long)reg->smin_value); 331 if (reg->smax_value != reg->umax_value && 332 reg->smax_value != S64_MAX) 333 verbose(env, ",smax_value=%lld", 334 (long long)reg->smax_value); 335 if (reg->umin_value != 0) 336 verbose(env, ",umin_value=%llu", 337 (unsigned long long)reg->umin_value); 338 if (reg->umax_value != U64_MAX) 339 verbose(env, ",umax_value=%llu", 340 (unsigned long long)reg->umax_value); 341 if (!tnum_is_unknown(reg->var_off)) { 342 char tn_buf[48]; 343 344 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 345 verbose(env, ",var_off=%s", tn_buf); 346 } 347 } 348 verbose(env, ")"); 349 } 350 } 351 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 352 if (state->stack[i].slot_type[0] == STACK_SPILL) { 353 verbose(env, " fp%d", 354 (-i - 1) * BPF_REG_SIZE); 355 print_liveness(env, state->stack[i].spilled_ptr.live); 356 verbose(env, "=%s", 357 reg_type_str[state->stack[i].spilled_ptr.type]); 358 } 359 if (state->stack[i].slot_type[0] == STACK_ZERO) 360 verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE); 361 } 362 verbose(env, "\n"); 363 } 364 365 static int copy_stack_state(struct bpf_func_state *dst, 366 const struct bpf_func_state *src) 367 { 368 if (!src->stack) 369 return 0; 370 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) { 371 /* internal bug, make state invalid to reject the program */ 372 memset(dst, 0, sizeof(*dst)); 373 return -EFAULT; 374 } 375 memcpy(dst->stack, src->stack, 376 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE)); 377 return 0; 378 } 379 380 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 381 * make it consume minimal amount of memory. check_stack_write() access from 382 * the program calls into realloc_func_state() to grow the stack size. 383 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 384 * which this function copies over. It points to previous bpf_verifier_state 385 * which is never reallocated 386 */ 387 static int realloc_func_state(struct bpf_func_state *state, int size, 388 bool copy_old) 389 { 390 u32 old_size = state->allocated_stack; 391 struct bpf_stack_state *new_stack; 392 int slot = size / BPF_REG_SIZE; 393 394 if (size <= old_size || !size) { 395 if (copy_old) 396 return 0; 397 state->allocated_stack = slot * BPF_REG_SIZE; 398 if (!size && old_size) { 399 kfree(state->stack); 400 state->stack = NULL; 401 } 402 return 0; 403 } 404 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state), 405 GFP_KERNEL); 406 if (!new_stack) 407 return -ENOMEM; 408 if (copy_old) { 409 if (state->stack) 410 memcpy(new_stack, state->stack, 411 sizeof(*new_stack) * (old_size / BPF_REG_SIZE)); 412 memset(new_stack + old_size / BPF_REG_SIZE, 0, 413 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE); 414 } 415 state->allocated_stack = slot * BPF_REG_SIZE; 416 kfree(state->stack); 417 state->stack = new_stack; 418 return 0; 419 } 420 421 static void free_func_state(struct bpf_func_state *state) 422 { 423 if (!state) 424 return; 425 kfree(state->stack); 426 kfree(state); 427 } 428 429 static void free_verifier_state(struct bpf_verifier_state *state, 430 bool free_self) 431 { 432 int i; 433 434 for (i = 0; i <= state->curframe; i++) { 435 free_func_state(state->frame[i]); 436 state->frame[i] = NULL; 437 } 438 if (free_self) 439 kfree(state); 440 } 441 442 /* copy verifier state from src to dst growing dst stack space 443 * when necessary to accommodate larger src stack 444 */ 445 static int copy_func_state(struct bpf_func_state *dst, 446 const struct bpf_func_state *src) 447 { 448 int err; 449 450 err = realloc_func_state(dst, src->allocated_stack, false); 451 if (err) 452 return err; 453 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack)); 454 return copy_stack_state(dst, src); 455 } 456 457 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 458 const struct bpf_verifier_state *src) 459 { 460 struct bpf_func_state *dst; 461 int i, err; 462 463 /* if dst has more stack frames then src frame, free them */ 464 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 465 free_func_state(dst_state->frame[i]); 466 dst_state->frame[i] = NULL; 467 } 468 dst_state->curframe = src->curframe; 469 dst_state->parent = src->parent; 470 for (i = 0; i <= src->curframe; i++) { 471 dst = dst_state->frame[i]; 472 if (!dst) { 473 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 474 if (!dst) 475 return -ENOMEM; 476 dst_state->frame[i] = dst; 477 } 478 err = copy_func_state(dst, src->frame[i]); 479 if (err) 480 return err; 481 } 482 return 0; 483 } 484 485 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 486 int *insn_idx) 487 { 488 struct bpf_verifier_state *cur = env->cur_state; 489 struct bpf_verifier_stack_elem *elem, *head = env->head; 490 int err; 491 492 if (env->head == NULL) 493 return -ENOENT; 494 495 if (cur) { 496 err = copy_verifier_state(cur, &head->st); 497 if (err) 498 return err; 499 } 500 if (insn_idx) 501 *insn_idx = head->insn_idx; 502 if (prev_insn_idx) 503 *prev_insn_idx = head->prev_insn_idx; 504 elem = head->next; 505 free_verifier_state(&head->st, false); 506 kfree(head); 507 env->head = elem; 508 env->stack_size--; 509 return 0; 510 } 511 512 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 513 int insn_idx, int prev_insn_idx) 514 { 515 struct bpf_verifier_state *cur = env->cur_state; 516 struct bpf_verifier_stack_elem *elem; 517 int err; 518 519 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 520 if (!elem) 521 goto err; 522 523 elem->insn_idx = insn_idx; 524 elem->prev_insn_idx = prev_insn_idx; 525 elem->next = env->head; 526 env->head = elem; 527 env->stack_size++; 528 err = copy_verifier_state(&elem->st, cur); 529 if (err) 530 goto err; 531 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 532 verbose(env, "BPF program is too complex\n"); 533 goto err; 534 } 535 return &elem->st; 536 err: 537 free_verifier_state(env->cur_state, true); 538 env->cur_state = NULL; 539 /* pop all elements and return */ 540 while (!pop_stack(env, NULL, NULL)); 541 return NULL; 542 } 543 544 #define CALLER_SAVED_REGS 6 545 static const int caller_saved[CALLER_SAVED_REGS] = { 546 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 547 }; 548 549 static void __mark_reg_not_init(struct bpf_reg_state *reg); 550 551 /* Mark the unknown part of a register (variable offset or scalar value) as 552 * known to have the value @imm. 553 */ 554 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 555 { 556 reg->id = 0; 557 reg->var_off = tnum_const(imm); 558 reg->smin_value = (s64)imm; 559 reg->smax_value = (s64)imm; 560 reg->umin_value = imm; 561 reg->umax_value = imm; 562 } 563 564 /* Mark the 'variable offset' part of a register as zero. This should be 565 * used only on registers holding a pointer type. 566 */ 567 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 568 { 569 __mark_reg_known(reg, 0); 570 } 571 572 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 573 { 574 __mark_reg_known(reg, 0); 575 reg->off = 0; 576 reg->type = SCALAR_VALUE; 577 } 578 579 static void mark_reg_known_zero(struct bpf_verifier_env *env, 580 struct bpf_reg_state *regs, u32 regno) 581 { 582 if (WARN_ON(regno >= MAX_BPF_REG)) { 583 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 584 /* Something bad happened, let's kill all regs */ 585 for (regno = 0; regno < MAX_BPF_REG; regno++) 586 __mark_reg_not_init(regs + regno); 587 return; 588 } 589 __mark_reg_known_zero(regs + regno); 590 } 591 592 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 593 { 594 return type_is_pkt_pointer(reg->type); 595 } 596 597 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 598 { 599 return reg_is_pkt_pointer(reg) || 600 reg->type == PTR_TO_PACKET_END; 601 } 602 603 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 604 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 605 enum bpf_reg_type which) 606 { 607 /* The register can already have a range from prior markings. 608 * This is fine as long as it hasn't been advanced from its 609 * origin. 610 */ 611 return reg->type == which && 612 reg->id == 0 && 613 reg->off == 0 && 614 tnum_equals_const(reg->var_off, 0); 615 } 616 617 /* Attempts to improve min/max values based on var_off information */ 618 static void __update_reg_bounds(struct bpf_reg_state *reg) 619 { 620 /* min signed is max(sign bit) | min(other bits) */ 621 reg->smin_value = max_t(s64, reg->smin_value, 622 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 623 /* max signed is min(sign bit) | max(other bits) */ 624 reg->smax_value = min_t(s64, reg->smax_value, 625 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 626 reg->umin_value = max(reg->umin_value, reg->var_off.value); 627 reg->umax_value = min(reg->umax_value, 628 reg->var_off.value | reg->var_off.mask); 629 } 630 631 /* Uses signed min/max values to inform unsigned, and vice-versa */ 632 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 633 { 634 /* Learn sign from signed bounds. 635 * If we cannot cross the sign boundary, then signed and unsigned bounds 636 * are the same, so combine. This works even in the negative case, e.g. 637 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 638 */ 639 if (reg->smin_value >= 0 || reg->smax_value < 0) { 640 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 641 reg->umin_value); 642 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 643 reg->umax_value); 644 return; 645 } 646 /* Learn sign from unsigned bounds. Signed bounds cross the sign 647 * boundary, so we must be careful. 648 */ 649 if ((s64)reg->umax_value >= 0) { 650 /* Positive. We can't learn anything from the smin, but smax 651 * is positive, hence safe. 652 */ 653 reg->smin_value = reg->umin_value; 654 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 655 reg->umax_value); 656 } else if ((s64)reg->umin_value < 0) { 657 /* Negative. We can't learn anything from the smax, but smin 658 * is negative, hence safe. 659 */ 660 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 661 reg->umin_value); 662 reg->smax_value = reg->umax_value; 663 } 664 } 665 666 /* Attempts to improve var_off based on unsigned min/max information */ 667 static void __reg_bound_offset(struct bpf_reg_state *reg) 668 { 669 reg->var_off = tnum_intersect(reg->var_off, 670 tnum_range(reg->umin_value, 671 reg->umax_value)); 672 } 673 674 /* Reset the min/max bounds of a register */ 675 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 676 { 677 reg->smin_value = S64_MIN; 678 reg->smax_value = S64_MAX; 679 reg->umin_value = 0; 680 reg->umax_value = U64_MAX; 681 } 682 683 /* Mark a register as having a completely unknown (scalar) value. */ 684 static void __mark_reg_unknown(struct bpf_reg_state *reg) 685 { 686 reg->type = SCALAR_VALUE; 687 reg->id = 0; 688 reg->off = 0; 689 reg->var_off = tnum_unknown; 690 reg->frameno = 0; 691 __mark_reg_unbounded(reg); 692 } 693 694 static void mark_reg_unknown(struct bpf_verifier_env *env, 695 struct bpf_reg_state *regs, u32 regno) 696 { 697 if (WARN_ON(regno >= MAX_BPF_REG)) { 698 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 699 /* Something bad happened, let's kill all regs except FP */ 700 for (regno = 0; regno < BPF_REG_FP; regno++) 701 __mark_reg_not_init(regs + regno); 702 return; 703 } 704 __mark_reg_unknown(regs + regno); 705 } 706 707 static void __mark_reg_not_init(struct bpf_reg_state *reg) 708 { 709 __mark_reg_unknown(reg); 710 reg->type = NOT_INIT; 711 } 712 713 static void mark_reg_not_init(struct bpf_verifier_env *env, 714 struct bpf_reg_state *regs, u32 regno) 715 { 716 if (WARN_ON(regno >= MAX_BPF_REG)) { 717 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 718 /* Something bad happened, let's kill all regs except FP */ 719 for (regno = 0; regno < BPF_REG_FP; regno++) 720 __mark_reg_not_init(regs + regno); 721 return; 722 } 723 __mark_reg_not_init(regs + regno); 724 } 725 726 static void init_reg_state(struct bpf_verifier_env *env, 727 struct bpf_func_state *state) 728 { 729 struct bpf_reg_state *regs = state->regs; 730 int i; 731 732 for (i = 0; i < MAX_BPF_REG; i++) { 733 mark_reg_not_init(env, regs, i); 734 regs[i].live = REG_LIVE_NONE; 735 } 736 737 /* frame pointer */ 738 regs[BPF_REG_FP].type = PTR_TO_STACK; 739 mark_reg_known_zero(env, regs, BPF_REG_FP); 740 regs[BPF_REG_FP].frameno = state->frameno; 741 742 /* 1st arg to a function */ 743 regs[BPF_REG_1].type = PTR_TO_CTX; 744 mark_reg_known_zero(env, regs, BPF_REG_1); 745 } 746 747 #define BPF_MAIN_FUNC (-1) 748 static void init_func_state(struct bpf_verifier_env *env, 749 struct bpf_func_state *state, 750 int callsite, int frameno, int subprogno) 751 { 752 state->callsite = callsite; 753 state->frameno = frameno; 754 state->subprogno = subprogno; 755 init_reg_state(env, state); 756 } 757 758 enum reg_arg_type { 759 SRC_OP, /* register is used as source operand */ 760 DST_OP, /* register is used as destination operand */ 761 DST_OP_NO_MARK /* same as above, check only, don't mark */ 762 }; 763 764 static int cmp_subprogs(const void *a, const void *b) 765 { 766 return ((struct bpf_subprog_info *)a)->start - 767 ((struct bpf_subprog_info *)b)->start; 768 } 769 770 static int find_subprog(struct bpf_verifier_env *env, int off) 771 { 772 struct bpf_subprog_info *p; 773 774 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 775 sizeof(env->subprog_info[0]), cmp_subprogs); 776 if (!p) 777 return -ENOENT; 778 return p - env->subprog_info; 779 780 } 781 782 static int add_subprog(struct bpf_verifier_env *env, int off) 783 { 784 int insn_cnt = env->prog->len; 785 int ret; 786 787 if (off >= insn_cnt || off < 0) { 788 verbose(env, "call to invalid destination\n"); 789 return -EINVAL; 790 } 791 ret = find_subprog(env, off); 792 if (ret >= 0) 793 return 0; 794 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 795 verbose(env, "too many subprograms\n"); 796 return -E2BIG; 797 } 798 env->subprog_info[env->subprog_cnt++].start = off; 799 sort(env->subprog_info, env->subprog_cnt, 800 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 801 return 0; 802 } 803 804 static int check_subprogs(struct bpf_verifier_env *env) 805 { 806 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 807 struct bpf_subprog_info *subprog = env->subprog_info; 808 struct bpf_insn *insn = env->prog->insnsi; 809 int insn_cnt = env->prog->len; 810 811 /* Add entry function. */ 812 ret = add_subprog(env, 0); 813 if (ret < 0) 814 return ret; 815 816 /* determine subprog starts. The end is one before the next starts */ 817 for (i = 0; i < insn_cnt; i++) { 818 if (insn[i].code != (BPF_JMP | BPF_CALL)) 819 continue; 820 if (insn[i].src_reg != BPF_PSEUDO_CALL) 821 continue; 822 if (!env->allow_ptr_leaks) { 823 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 824 return -EPERM; 825 } 826 if (bpf_prog_is_dev_bound(env->prog->aux)) { 827 verbose(env, "function calls in offloaded programs are not supported yet\n"); 828 return -EINVAL; 829 } 830 ret = add_subprog(env, i + insn[i].imm + 1); 831 if (ret < 0) 832 return ret; 833 } 834 835 /* Add a fake 'exit' subprog which could simplify subprog iteration 836 * logic. 'subprog_cnt' should not be increased. 837 */ 838 subprog[env->subprog_cnt].start = insn_cnt; 839 840 if (env->log.level > 1) 841 for (i = 0; i < env->subprog_cnt; i++) 842 verbose(env, "func#%d @%d\n", i, subprog[i].start); 843 844 /* now check that all jumps are within the same subprog */ 845 subprog_start = subprog[cur_subprog].start; 846 subprog_end = subprog[cur_subprog + 1].start; 847 for (i = 0; i < insn_cnt; i++) { 848 u8 code = insn[i].code; 849 850 if (BPF_CLASS(code) != BPF_JMP) 851 goto next; 852 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 853 goto next; 854 off = i + insn[i].off + 1; 855 if (off < subprog_start || off >= subprog_end) { 856 verbose(env, "jump out of range from insn %d to %d\n", i, off); 857 return -EINVAL; 858 } 859 next: 860 if (i == subprog_end - 1) { 861 /* to avoid fall-through from one subprog into another 862 * the last insn of the subprog should be either exit 863 * or unconditional jump back 864 */ 865 if (code != (BPF_JMP | BPF_EXIT) && 866 code != (BPF_JMP | BPF_JA)) { 867 verbose(env, "last insn is not an exit or jmp\n"); 868 return -EINVAL; 869 } 870 subprog_start = subprog_end; 871 cur_subprog++; 872 if (cur_subprog < env->subprog_cnt) 873 subprog_end = subprog[cur_subprog + 1].start; 874 } 875 } 876 return 0; 877 } 878 879 static 880 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env, 881 const struct bpf_verifier_state *state, 882 struct bpf_verifier_state *parent, 883 u32 regno) 884 { 885 struct bpf_verifier_state *tmp = NULL; 886 887 /* 'parent' could be a state of caller and 888 * 'state' could be a state of callee. In such case 889 * parent->curframe < state->curframe 890 * and it's ok for r1 - r5 registers 891 * 892 * 'parent' could be a callee's state after it bpf_exit-ed. 893 * In such case parent->curframe > state->curframe 894 * and it's ok for r0 only 895 */ 896 if (parent->curframe == state->curframe || 897 (parent->curframe < state->curframe && 898 regno >= BPF_REG_1 && regno <= BPF_REG_5) || 899 (parent->curframe > state->curframe && 900 regno == BPF_REG_0)) 901 return parent; 902 903 if (parent->curframe > state->curframe && 904 regno >= BPF_REG_6) { 905 /* for callee saved regs we have to skip the whole chain 906 * of states that belong to callee and mark as LIVE_READ 907 * the registers before the call 908 */ 909 tmp = parent; 910 while (tmp && tmp->curframe != state->curframe) { 911 tmp = tmp->parent; 912 } 913 if (!tmp) 914 goto bug; 915 parent = tmp; 916 } else { 917 goto bug; 918 } 919 return parent; 920 bug: 921 verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp); 922 verbose(env, "regno %d parent frame %d current frame %d\n", 923 regno, parent->curframe, state->curframe); 924 return NULL; 925 } 926 927 static int mark_reg_read(struct bpf_verifier_env *env, 928 const struct bpf_verifier_state *state, 929 struct bpf_verifier_state *parent, 930 u32 regno) 931 { 932 bool writes = parent == state->parent; /* Observe write marks */ 933 934 if (regno == BPF_REG_FP) 935 /* We don't need to worry about FP liveness because it's read-only */ 936 return 0; 937 938 while (parent) { 939 /* if read wasn't screened by an earlier write ... */ 940 if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN) 941 break; 942 parent = skip_callee(env, state, parent, regno); 943 if (!parent) 944 return -EFAULT; 945 /* ... then we depend on parent's value */ 946 parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ; 947 state = parent; 948 parent = state->parent; 949 writes = true; 950 } 951 return 0; 952 } 953 954 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 955 enum reg_arg_type t) 956 { 957 struct bpf_verifier_state *vstate = env->cur_state; 958 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 959 struct bpf_reg_state *regs = state->regs; 960 961 if (regno >= MAX_BPF_REG) { 962 verbose(env, "R%d is invalid\n", regno); 963 return -EINVAL; 964 } 965 966 if (t == SRC_OP) { 967 /* check whether register used as source operand can be read */ 968 if (regs[regno].type == NOT_INIT) { 969 verbose(env, "R%d !read_ok\n", regno); 970 return -EACCES; 971 } 972 return mark_reg_read(env, vstate, vstate->parent, regno); 973 } else { 974 /* check whether register used as dest operand can be written to */ 975 if (regno == BPF_REG_FP) { 976 verbose(env, "frame pointer is read only\n"); 977 return -EACCES; 978 } 979 regs[regno].live |= REG_LIVE_WRITTEN; 980 if (t == DST_OP) 981 mark_reg_unknown(env, regs, regno); 982 } 983 return 0; 984 } 985 986 static bool is_spillable_regtype(enum bpf_reg_type type) 987 { 988 switch (type) { 989 case PTR_TO_MAP_VALUE: 990 case PTR_TO_MAP_VALUE_OR_NULL: 991 case PTR_TO_STACK: 992 case PTR_TO_CTX: 993 case PTR_TO_PACKET: 994 case PTR_TO_PACKET_META: 995 case PTR_TO_PACKET_END: 996 case CONST_PTR_TO_MAP: 997 return true; 998 default: 999 return false; 1000 } 1001 } 1002 1003 /* Does this register contain a constant zero? */ 1004 static bool register_is_null(struct bpf_reg_state *reg) 1005 { 1006 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1007 } 1008 1009 /* check_stack_read/write functions track spill/fill of registers, 1010 * stack boundary and alignment are checked in check_mem_access() 1011 */ 1012 static int check_stack_write(struct bpf_verifier_env *env, 1013 struct bpf_func_state *state, /* func where register points to */ 1014 int off, int size, int value_regno, int insn_idx) 1015 { 1016 struct bpf_func_state *cur; /* state of the current function */ 1017 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1018 enum bpf_reg_type type; 1019 1020 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1021 true); 1022 if (err) 1023 return err; 1024 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1025 * so it's aligned access and [off, off + size) are within stack limits 1026 */ 1027 if (!env->allow_ptr_leaks && 1028 state->stack[spi].slot_type[0] == STACK_SPILL && 1029 size != BPF_REG_SIZE) { 1030 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1031 return -EACCES; 1032 } 1033 1034 cur = env->cur_state->frame[env->cur_state->curframe]; 1035 if (value_regno >= 0 && 1036 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1037 1038 /* register containing pointer is being spilled into stack */ 1039 if (size != BPF_REG_SIZE) { 1040 verbose(env, "invalid size of register spill\n"); 1041 return -EACCES; 1042 } 1043 1044 if (state != cur && type == PTR_TO_STACK) { 1045 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1046 return -EINVAL; 1047 } 1048 1049 /* save register state */ 1050 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1051 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1052 1053 for (i = 0; i < BPF_REG_SIZE; i++) { 1054 if (state->stack[spi].slot_type[i] == STACK_MISC && 1055 !env->allow_ptr_leaks) { 1056 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1057 int soff = (-spi - 1) * BPF_REG_SIZE; 1058 1059 /* detected reuse of integer stack slot with a pointer 1060 * which means either llvm is reusing stack slot or 1061 * an attacker is trying to exploit CVE-2018-3639 1062 * (speculative store bypass) 1063 * Have to sanitize that slot with preemptive 1064 * store of zero. 1065 */ 1066 if (*poff && *poff != soff) { 1067 /* disallow programs where single insn stores 1068 * into two different stack slots, since verifier 1069 * cannot sanitize them 1070 */ 1071 verbose(env, 1072 "insn %d cannot access two stack slots fp%d and fp%d", 1073 insn_idx, *poff, soff); 1074 return -EINVAL; 1075 } 1076 *poff = soff; 1077 } 1078 state->stack[spi].slot_type[i] = STACK_SPILL; 1079 } 1080 } else { 1081 u8 type = STACK_MISC; 1082 1083 /* regular write of data into stack */ 1084 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {}; 1085 1086 /* only mark the slot as written if all 8 bytes were written 1087 * otherwise read propagation may incorrectly stop too soon 1088 * when stack slots are partially written. 1089 * This heuristic means that read propagation will be 1090 * conservative, since it will add reg_live_read marks 1091 * to stack slots all the way to first state when programs 1092 * writes+reads less than 8 bytes 1093 */ 1094 if (size == BPF_REG_SIZE) 1095 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1096 1097 /* when we zero initialize stack slots mark them as such */ 1098 if (value_regno >= 0 && 1099 register_is_null(&cur->regs[value_regno])) 1100 type = STACK_ZERO; 1101 1102 for (i = 0; i < size; i++) 1103 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1104 type; 1105 } 1106 return 0; 1107 } 1108 1109 /* registers of every function are unique and mark_reg_read() propagates 1110 * the liveness in the following cases: 1111 * - from callee into caller for R1 - R5 that were used as arguments 1112 * - from caller into callee for R0 that used as result of the call 1113 * - from caller to the same caller skipping states of the callee for R6 - R9, 1114 * since R6 - R9 are callee saved by implicit function prologue and 1115 * caller's R6 != callee's R6, so when we propagate liveness up to 1116 * parent states we need to skip callee states for R6 - R9. 1117 * 1118 * stack slot marking is different, since stacks of caller and callee are 1119 * accessible in both (since caller can pass a pointer to caller's stack to 1120 * callee which can pass it to another function), hence mark_stack_slot_read() 1121 * has to propagate the stack liveness to all parent states at given frame number. 1122 * Consider code: 1123 * f1() { 1124 * ptr = fp - 8; 1125 * *ptr = ctx; 1126 * call f2 { 1127 * .. = *ptr; 1128 * } 1129 * .. = *ptr; 1130 * } 1131 * First *ptr is reading from f1's stack and mark_stack_slot_read() has 1132 * to mark liveness at the f1's frame and not f2's frame. 1133 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has 1134 * to propagate liveness to f2 states at f1's frame level and further into 1135 * f1 states at f1's frame level until write into that stack slot 1136 */ 1137 static void mark_stack_slot_read(struct bpf_verifier_env *env, 1138 const struct bpf_verifier_state *state, 1139 struct bpf_verifier_state *parent, 1140 int slot, int frameno) 1141 { 1142 bool writes = parent == state->parent; /* Observe write marks */ 1143 1144 while (parent) { 1145 if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE) 1146 /* since LIVE_WRITTEN mark is only done for full 8-byte 1147 * write the read marks are conservative and parent 1148 * state may not even have the stack allocated. In such case 1149 * end the propagation, since the loop reached beginning 1150 * of the function 1151 */ 1152 break; 1153 /* if read wasn't screened by an earlier write ... */ 1154 if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN) 1155 break; 1156 /* ... then we depend on parent's value */ 1157 parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ; 1158 state = parent; 1159 parent = state->parent; 1160 writes = true; 1161 } 1162 } 1163 1164 static int check_stack_read(struct bpf_verifier_env *env, 1165 struct bpf_func_state *reg_state /* func where register points to */, 1166 int off, int size, int value_regno) 1167 { 1168 struct bpf_verifier_state *vstate = env->cur_state; 1169 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1170 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1171 u8 *stype; 1172 1173 if (reg_state->allocated_stack <= slot) { 1174 verbose(env, "invalid read from stack off %d+0 size %d\n", 1175 off, size); 1176 return -EACCES; 1177 } 1178 stype = reg_state->stack[spi].slot_type; 1179 1180 if (stype[0] == STACK_SPILL) { 1181 if (size != BPF_REG_SIZE) { 1182 verbose(env, "invalid size of register spill\n"); 1183 return -EACCES; 1184 } 1185 for (i = 1; i < BPF_REG_SIZE; i++) { 1186 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1187 verbose(env, "corrupted spill memory\n"); 1188 return -EACCES; 1189 } 1190 } 1191 1192 if (value_regno >= 0) { 1193 /* restore register state from stack */ 1194 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1195 /* mark reg as written since spilled pointer state likely 1196 * has its liveness marks cleared by is_state_visited() 1197 * which resets stack/reg liveness for state transitions 1198 */ 1199 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1200 } 1201 mark_stack_slot_read(env, vstate, vstate->parent, spi, 1202 reg_state->frameno); 1203 return 0; 1204 } else { 1205 int zeros = 0; 1206 1207 for (i = 0; i < size; i++) { 1208 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1209 continue; 1210 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1211 zeros++; 1212 continue; 1213 } 1214 verbose(env, "invalid read from stack off %d+%d size %d\n", 1215 off, i, size); 1216 return -EACCES; 1217 } 1218 mark_stack_slot_read(env, vstate, vstate->parent, spi, 1219 reg_state->frameno); 1220 if (value_regno >= 0) { 1221 if (zeros == size) { 1222 /* any size read into register is zero extended, 1223 * so the whole register == const_zero 1224 */ 1225 __mark_reg_const_zero(&state->regs[value_regno]); 1226 } else { 1227 /* have read misc data from the stack */ 1228 mark_reg_unknown(env, state->regs, value_regno); 1229 } 1230 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1231 } 1232 return 0; 1233 } 1234 } 1235 1236 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1237 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1238 int size, bool zero_size_allowed) 1239 { 1240 struct bpf_reg_state *regs = cur_regs(env); 1241 struct bpf_map *map = regs[regno].map_ptr; 1242 1243 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1244 off + size > map->value_size) { 1245 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1246 map->value_size, off, size); 1247 return -EACCES; 1248 } 1249 return 0; 1250 } 1251 1252 /* check read/write into a map element with possible variable offset */ 1253 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1254 int off, int size, bool zero_size_allowed) 1255 { 1256 struct bpf_verifier_state *vstate = env->cur_state; 1257 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1258 struct bpf_reg_state *reg = &state->regs[regno]; 1259 int err; 1260 1261 /* We may have adjusted the register to this map value, so we 1262 * need to try adding each of min_value and max_value to off 1263 * to make sure our theoretical access will be safe. 1264 */ 1265 if (env->log.level) 1266 print_verifier_state(env, state); 1267 /* The minimum value is only important with signed 1268 * comparisons where we can't assume the floor of a 1269 * value is 0. If we are using signed variables for our 1270 * index'es we need to make sure that whatever we use 1271 * will have a set floor within our range. 1272 */ 1273 if (reg->smin_value < 0) { 1274 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1275 regno); 1276 return -EACCES; 1277 } 1278 err = __check_map_access(env, regno, reg->smin_value + off, size, 1279 zero_size_allowed); 1280 if (err) { 1281 verbose(env, "R%d min value is outside of the array range\n", 1282 regno); 1283 return err; 1284 } 1285 1286 /* If we haven't set a max value then we need to bail since we can't be 1287 * sure we won't do bad things. 1288 * If reg->umax_value + off could overflow, treat that as unbounded too. 1289 */ 1290 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1291 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1292 regno); 1293 return -EACCES; 1294 } 1295 err = __check_map_access(env, regno, reg->umax_value + off, size, 1296 zero_size_allowed); 1297 if (err) 1298 verbose(env, "R%d max value is outside of the array range\n", 1299 regno); 1300 return err; 1301 } 1302 1303 #define MAX_PACKET_OFF 0xffff 1304 1305 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1306 const struct bpf_call_arg_meta *meta, 1307 enum bpf_access_type t) 1308 { 1309 switch (env->prog->type) { 1310 case BPF_PROG_TYPE_LWT_IN: 1311 case BPF_PROG_TYPE_LWT_OUT: 1312 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1313 /* dst_input() and dst_output() can't write for now */ 1314 if (t == BPF_WRITE) 1315 return false; 1316 /* fallthrough */ 1317 case BPF_PROG_TYPE_SCHED_CLS: 1318 case BPF_PROG_TYPE_SCHED_ACT: 1319 case BPF_PROG_TYPE_XDP: 1320 case BPF_PROG_TYPE_LWT_XMIT: 1321 case BPF_PROG_TYPE_SK_SKB: 1322 case BPF_PROG_TYPE_SK_MSG: 1323 if (meta) 1324 return meta->pkt_access; 1325 1326 env->seen_direct_write = true; 1327 return true; 1328 default: 1329 return false; 1330 } 1331 } 1332 1333 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1334 int off, int size, bool zero_size_allowed) 1335 { 1336 struct bpf_reg_state *regs = cur_regs(env); 1337 struct bpf_reg_state *reg = ®s[regno]; 1338 1339 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1340 (u64)off + size > reg->range) { 1341 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1342 off, size, regno, reg->id, reg->off, reg->range); 1343 return -EACCES; 1344 } 1345 return 0; 1346 } 1347 1348 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1349 int size, bool zero_size_allowed) 1350 { 1351 struct bpf_reg_state *regs = cur_regs(env); 1352 struct bpf_reg_state *reg = ®s[regno]; 1353 int err; 1354 1355 /* We may have added a variable offset to the packet pointer; but any 1356 * reg->range we have comes after that. We are only checking the fixed 1357 * offset. 1358 */ 1359 1360 /* We don't allow negative numbers, because we aren't tracking enough 1361 * detail to prove they're safe. 1362 */ 1363 if (reg->smin_value < 0) { 1364 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1365 regno); 1366 return -EACCES; 1367 } 1368 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1369 if (err) { 1370 verbose(env, "R%d offset is outside of the packet\n", regno); 1371 return err; 1372 } 1373 return err; 1374 } 1375 1376 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1377 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1378 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1379 { 1380 struct bpf_insn_access_aux info = { 1381 .reg_type = *reg_type, 1382 }; 1383 1384 if (env->ops->is_valid_access && 1385 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1386 /* A non zero info.ctx_field_size indicates that this field is a 1387 * candidate for later verifier transformation to load the whole 1388 * field and then apply a mask when accessed with a narrower 1389 * access than actual ctx access size. A zero info.ctx_field_size 1390 * will only allow for whole field access and rejects any other 1391 * type of narrower access. 1392 */ 1393 *reg_type = info.reg_type; 1394 1395 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1396 /* remember the offset of last byte accessed in ctx */ 1397 if (env->prog->aux->max_ctx_offset < off + size) 1398 env->prog->aux->max_ctx_offset = off + size; 1399 return 0; 1400 } 1401 1402 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1403 return -EACCES; 1404 } 1405 1406 static bool __is_pointer_value(bool allow_ptr_leaks, 1407 const struct bpf_reg_state *reg) 1408 { 1409 if (allow_ptr_leaks) 1410 return false; 1411 1412 return reg->type != SCALAR_VALUE; 1413 } 1414 1415 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1416 { 1417 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno); 1418 } 1419 1420 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1421 { 1422 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1423 1424 return reg->type == PTR_TO_CTX; 1425 } 1426 1427 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1428 { 1429 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1430 1431 return type_is_pkt_pointer(reg->type); 1432 } 1433 1434 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1435 const struct bpf_reg_state *reg, 1436 int off, int size, bool strict) 1437 { 1438 struct tnum reg_off; 1439 int ip_align; 1440 1441 /* Byte size accesses are always allowed. */ 1442 if (!strict || size == 1) 1443 return 0; 1444 1445 /* For platforms that do not have a Kconfig enabling 1446 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1447 * NET_IP_ALIGN is universally set to '2'. And on platforms 1448 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1449 * to this code only in strict mode where we want to emulate 1450 * the NET_IP_ALIGN==2 checking. Therefore use an 1451 * unconditional IP align value of '2'. 1452 */ 1453 ip_align = 2; 1454 1455 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1456 if (!tnum_is_aligned(reg_off, size)) { 1457 char tn_buf[48]; 1458 1459 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1460 verbose(env, 1461 "misaligned packet access off %d+%s+%d+%d size %d\n", 1462 ip_align, tn_buf, reg->off, off, size); 1463 return -EACCES; 1464 } 1465 1466 return 0; 1467 } 1468 1469 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1470 const struct bpf_reg_state *reg, 1471 const char *pointer_desc, 1472 int off, int size, bool strict) 1473 { 1474 struct tnum reg_off; 1475 1476 /* Byte size accesses are always allowed. */ 1477 if (!strict || size == 1) 1478 return 0; 1479 1480 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1481 if (!tnum_is_aligned(reg_off, size)) { 1482 char tn_buf[48]; 1483 1484 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1485 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1486 pointer_desc, tn_buf, reg->off, off, size); 1487 return -EACCES; 1488 } 1489 1490 return 0; 1491 } 1492 1493 static int check_ptr_alignment(struct bpf_verifier_env *env, 1494 const struct bpf_reg_state *reg, int off, 1495 int size, bool strict_alignment_once) 1496 { 1497 bool strict = env->strict_alignment || strict_alignment_once; 1498 const char *pointer_desc = ""; 1499 1500 switch (reg->type) { 1501 case PTR_TO_PACKET: 1502 case PTR_TO_PACKET_META: 1503 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1504 * right in front, treat it the very same way. 1505 */ 1506 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1507 case PTR_TO_MAP_VALUE: 1508 pointer_desc = "value "; 1509 break; 1510 case PTR_TO_CTX: 1511 pointer_desc = "context "; 1512 break; 1513 case PTR_TO_STACK: 1514 pointer_desc = "stack "; 1515 /* The stack spill tracking logic in check_stack_write() 1516 * and check_stack_read() relies on stack accesses being 1517 * aligned. 1518 */ 1519 strict = true; 1520 break; 1521 default: 1522 break; 1523 } 1524 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1525 strict); 1526 } 1527 1528 static int update_stack_depth(struct bpf_verifier_env *env, 1529 const struct bpf_func_state *func, 1530 int off) 1531 { 1532 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1533 1534 if (stack >= -off) 1535 return 0; 1536 1537 /* update known max for given subprogram */ 1538 env->subprog_info[func->subprogno].stack_depth = -off; 1539 return 0; 1540 } 1541 1542 /* starting from main bpf function walk all instructions of the function 1543 * and recursively walk all callees that given function can call. 1544 * Ignore jump and exit insns. 1545 * Since recursion is prevented by check_cfg() this algorithm 1546 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1547 */ 1548 static int check_max_stack_depth(struct bpf_verifier_env *env) 1549 { 1550 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1551 struct bpf_subprog_info *subprog = env->subprog_info; 1552 struct bpf_insn *insn = env->prog->insnsi; 1553 int ret_insn[MAX_CALL_FRAMES]; 1554 int ret_prog[MAX_CALL_FRAMES]; 1555 1556 process_func: 1557 /* round up to 32-bytes, since this is granularity 1558 * of interpreter stack size 1559 */ 1560 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1561 if (depth > MAX_BPF_STACK) { 1562 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1563 frame + 1, depth); 1564 return -EACCES; 1565 } 1566 continue_func: 1567 subprog_end = subprog[idx + 1].start; 1568 for (; i < subprog_end; i++) { 1569 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1570 continue; 1571 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1572 continue; 1573 /* remember insn and function to return to */ 1574 ret_insn[frame] = i + 1; 1575 ret_prog[frame] = idx; 1576 1577 /* find the callee */ 1578 i = i + insn[i].imm + 1; 1579 idx = find_subprog(env, i); 1580 if (idx < 0) { 1581 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1582 i); 1583 return -EFAULT; 1584 } 1585 frame++; 1586 if (frame >= MAX_CALL_FRAMES) { 1587 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1588 return -EFAULT; 1589 } 1590 goto process_func; 1591 } 1592 /* end of for() loop means the last insn of the 'subprog' 1593 * was reached. Doesn't matter whether it was JA or EXIT 1594 */ 1595 if (frame == 0) 1596 return 0; 1597 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1598 frame--; 1599 i = ret_insn[frame]; 1600 idx = ret_prog[frame]; 1601 goto continue_func; 1602 } 1603 1604 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1605 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1606 const struct bpf_insn *insn, int idx) 1607 { 1608 int start = idx + insn->imm + 1, subprog; 1609 1610 subprog = find_subprog(env, start); 1611 if (subprog < 0) { 1612 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1613 start); 1614 return -EFAULT; 1615 } 1616 return env->subprog_info[subprog].stack_depth; 1617 } 1618 #endif 1619 1620 static int check_ctx_reg(struct bpf_verifier_env *env, 1621 const struct bpf_reg_state *reg, int regno) 1622 { 1623 /* Access to ctx or passing it to a helper is only allowed in 1624 * its original, unmodified form. 1625 */ 1626 1627 if (reg->off) { 1628 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1629 regno, reg->off); 1630 return -EACCES; 1631 } 1632 1633 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1634 char tn_buf[48]; 1635 1636 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1637 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1638 return -EACCES; 1639 } 1640 1641 return 0; 1642 } 1643 1644 /* truncate register to smaller size (in bytes) 1645 * must be called with size < BPF_REG_SIZE 1646 */ 1647 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1648 { 1649 u64 mask; 1650 1651 /* clear high bits in bit representation */ 1652 reg->var_off = tnum_cast(reg->var_off, size); 1653 1654 /* fix arithmetic bounds */ 1655 mask = ((u64)1 << (size * 8)) - 1; 1656 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1657 reg->umin_value &= mask; 1658 reg->umax_value &= mask; 1659 } else { 1660 reg->umin_value = 0; 1661 reg->umax_value = mask; 1662 } 1663 reg->smin_value = reg->umin_value; 1664 reg->smax_value = reg->umax_value; 1665 } 1666 1667 /* check whether memory at (regno + off) is accessible for t = (read | write) 1668 * if t==write, value_regno is a register which value is stored into memory 1669 * if t==read, value_regno is a register which will receive the value from memory 1670 * if t==write && value_regno==-1, some unknown value is stored into memory 1671 * if t==read && value_regno==-1, don't care what we read from memory 1672 */ 1673 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1674 int off, int bpf_size, enum bpf_access_type t, 1675 int value_regno, bool strict_alignment_once) 1676 { 1677 struct bpf_reg_state *regs = cur_regs(env); 1678 struct bpf_reg_state *reg = regs + regno; 1679 struct bpf_func_state *state; 1680 int size, err = 0; 1681 1682 size = bpf_size_to_bytes(bpf_size); 1683 if (size < 0) 1684 return size; 1685 1686 /* alignment checks will add in reg->off themselves */ 1687 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 1688 if (err) 1689 return err; 1690 1691 /* for access checks, reg->off is just part of off */ 1692 off += reg->off; 1693 1694 if (reg->type == PTR_TO_MAP_VALUE) { 1695 if (t == BPF_WRITE && value_regno >= 0 && 1696 is_pointer_value(env, value_regno)) { 1697 verbose(env, "R%d leaks addr into map\n", value_regno); 1698 return -EACCES; 1699 } 1700 1701 err = check_map_access(env, regno, off, size, false); 1702 if (!err && t == BPF_READ && value_regno >= 0) 1703 mark_reg_unknown(env, regs, value_regno); 1704 1705 } else if (reg->type == PTR_TO_CTX) { 1706 enum bpf_reg_type reg_type = SCALAR_VALUE; 1707 1708 if (t == BPF_WRITE && value_regno >= 0 && 1709 is_pointer_value(env, value_regno)) { 1710 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1711 return -EACCES; 1712 } 1713 1714 err = check_ctx_reg(env, reg, regno); 1715 if (err < 0) 1716 return err; 1717 1718 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1719 if (!err && t == BPF_READ && value_regno >= 0) { 1720 /* ctx access returns either a scalar, or a 1721 * PTR_TO_PACKET[_META,_END]. In the latter 1722 * case, we know the offset is zero. 1723 */ 1724 if (reg_type == SCALAR_VALUE) 1725 mark_reg_unknown(env, regs, value_regno); 1726 else 1727 mark_reg_known_zero(env, regs, 1728 value_regno); 1729 regs[value_regno].id = 0; 1730 regs[value_regno].off = 0; 1731 regs[value_regno].range = 0; 1732 regs[value_regno].type = reg_type; 1733 } 1734 1735 } else if (reg->type == PTR_TO_STACK) { 1736 /* stack accesses must be at a fixed offset, so that we can 1737 * determine what type of data were returned. 1738 * See check_stack_read(). 1739 */ 1740 if (!tnum_is_const(reg->var_off)) { 1741 char tn_buf[48]; 1742 1743 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1744 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1745 tn_buf, off, size); 1746 return -EACCES; 1747 } 1748 off += reg->var_off.value; 1749 if (off >= 0 || off < -MAX_BPF_STACK) { 1750 verbose(env, "invalid stack off=%d size=%d\n", off, 1751 size); 1752 return -EACCES; 1753 } 1754 1755 state = func(env, reg); 1756 err = update_stack_depth(env, state, off); 1757 if (err) 1758 return err; 1759 1760 if (t == BPF_WRITE) 1761 err = check_stack_write(env, state, off, size, 1762 value_regno, insn_idx); 1763 else 1764 err = check_stack_read(env, state, off, size, 1765 value_regno); 1766 } else if (reg_is_pkt_pointer(reg)) { 1767 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1768 verbose(env, "cannot write into packet\n"); 1769 return -EACCES; 1770 } 1771 if (t == BPF_WRITE && value_regno >= 0 && 1772 is_pointer_value(env, value_regno)) { 1773 verbose(env, "R%d leaks addr into packet\n", 1774 value_regno); 1775 return -EACCES; 1776 } 1777 err = check_packet_access(env, regno, off, size, false); 1778 if (!err && t == BPF_READ && value_regno >= 0) 1779 mark_reg_unknown(env, regs, value_regno); 1780 } else { 1781 verbose(env, "R%d invalid mem access '%s'\n", regno, 1782 reg_type_str[reg->type]); 1783 return -EACCES; 1784 } 1785 1786 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1787 regs[value_regno].type == SCALAR_VALUE) { 1788 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1789 coerce_reg_to_size(®s[value_regno], size); 1790 } 1791 return err; 1792 } 1793 1794 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1795 { 1796 int err; 1797 1798 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1799 insn->imm != 0) { 1800 verbose(env, "BPF_XADD uses reserved fields\n"); 1801 return -EINVAL; 1802 } 1803 1804 /* check src1 operand */ 1805 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1806 if (err) 1807 return err; 1808 1809 /* check src2 operand */ 1810 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1811 if (err) 1812 return err; 1813 1814 if (is_pointer_value(env, insn->src_reg)) { 1815 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1816 return -EACCES; 1817 } 1818 1819 if (is_ctx_reg(env, insn->dst_reg) || 1820 is_pkt_reg(env, insn->dst_reg)) { 1821 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 1822 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ? 1823 "context" : "packet"); 1824 return -EACCES; 1825 } 1826 1827 /* check whether atomic_add can read the memory */ 1828 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1829 BPF_SIZE(insn->code), BPF_READ, -1, true); 1830 if (err) 1831 return err; 1832 1833 /* check whether atomic_add can write into the same memory */ 1834 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1835 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 1836 } 1837 1838 /* when register 'regno' is passed into function that will read 'access_size' 1839 * bytes from that pointer, make sure that it's within stack boundary 1840 * and all elements of stack are initialized. 1841 * Unlike most pointer bounds-checking functions, this one doesn't take an 1842 * 'off' argument, so it has to add in reg->off itself. 1843 */ 1844 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1845 int access_size, bool zero_size_allowed, 1846 struct bpf_call_arg_meta *meta) 1847 { 1848 struct bpf_reg_state *reg = cur_regs(env) + regno; 1849 struct bpf_func_state *state = func(env, reg); 1850 int off, i, slot, spi; 1851 1852 if (reg->type != PTR_TO_STACK) { 1853 /* Allow zero-byte read from NULL, regardless of pointer type */ 1854 if (zero_size_allowed && access_size == 0 && 1855 register_is_null(reg)) 1856 return 0; 1857 1858 verbose(env, "R%d type=%s expected=%s\n", regno, 1859 reg_type_str[reg->type], 1860 reg_type_str[PTR_TO_STACK]); 1861 return -EACCES; 1862 } 1863 1864 /* Only allow fixed-offset stack reads */ 1865 if (!tnum_is_const(reg->var_off)) { 1866 char tn_buf[48]; 1867 1868 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1869 verbose(env, "invalid variable stack read R%d var_off=%s\n", 1870 regno, tn_buf); 1871 return -EACCES; 1872 } 1873 off = reg->off + reg->var_off.value; 1874 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1875 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 1876 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 1877 regno, off, access_size); 1878 return -EACCES; 1879 } 1880 1881 if (meta && meta->raw_mode) { 1882 meta->access_size = access_size; 1883 meta->regno = regno; 1884 return 0; 1885 } 1886 1887 for (i = 0; i < access_size; i++) { 1888 u8 *stype; 1889 1890 slot = -(off + i) - 1; 1891 spi = slot / BPF_REG_SIZE; 1892 if (state->allocated_stack <= slot) 1893 goto err; 1894 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 1895 if (*stype == STACK_MISC) 1896 goto mark; 1897 if (*stype == STACK_ZERO) { 1898 /* helper can write anything into the stack */ 1899 *stype = STACK_MISC; 1900 goto mark; 1901 } 1902 err: 1903 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 1904 off, i, access_size); 1905 return -EACCES; 1906 mark: 1907 /* reading any byte out of 8-byte 'spill_slot' will cause 1908 * the whole slot to be marked as 'read' 1909 */ 1910 mark_stack_slot_read(env, env->cur_state, env->cur_state->parent, 1911 spi, state->frameno); 1912 } 1913 return update_stack_depth(env, state, off); 1914 } 1915 1916 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1917 int access_size, bool zero_size_allowed, 1918 struct bpf_call_arg_meta *meta) 1919 { 1920 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1921 1922 switch (reg->type) { 1923 case PTR_TO_PACKET: 1924 case PTR_TO_PACKET_META: 1925 return check_packet_access(env, regno, reg->off, access_size, 1926 zero_size_allowed); 1927 case PTR_TO_MAP_VALUE: 1928 return check_map_access(env, regno, reg->off, access_size, 1929 zero_size_allowed); 1930 default: /* scalar_value|ptr_to_stack or invalid ptr */ 1931 return check_stack_boundary(env, regno, access_size, 1932 zero_size_allowed, meta); 1933 } 1934 } 1935 1936 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 1937 { 1938 return type == ARG_PTR_TO_MEM || 1939 type == ARG_PTR_TO_MEM_OR_NULL || 1940 type == ARG_PTR_TO_UNINIT_MEM; 1941 } 1942 1943 static bool arg_type_is_mem_size(enum bpf_arg_type type) 1944 { 1945 return type == ARG_CONST_SIZE || 1946 type == ARG_CONST_SIZE_OR_ZERO; 1947 } 1948 1949 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1950 enum bpf_arg_type arg_type, 1951 struct bpf_call_arg_meta *meta) 1952 { 1953 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1954 enum bpf_reg_type expected_type, type = reg->type; 1955 int err = 0; 1956 1957 if (arg_type == ARG_DONTCARE) 1958 return 0; 1959 1960 err = check_reg_arg(env, regno, SRC_OP); 1961 if (err) 1962 return err; 1963 1964 if (arg_type == ARG_ANYTHING) { 1965 if (is_pointer_value(env, regno)) { 1966 verbose(env, "R%d leaks addr into helper function\n", 1967 regno); 1968 return -EACCES; 1969 } 1970 return 0; 1971 } 1972 1973 if (type_is_pkt_pointer(type) && 1974 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 1975 verbose(env, "helper access to the packet is not allowed\n"); 1976 return -EACCES; 1977 } 1978 1979 if (arg_type == ARG_PTR_TO_MAP_KEY || 1980 arg_type == ARG_PTR_TO_MAP_VALUE) { 1981 expected_type = PTR_TO_STACK; 1982 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 1983 type != expected_type) 1984 goto err_type; 1985 } else if (arg_type == ARG_CONST_SIZE || 1986 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1987 expected_type = SCALAR_VALUE; 1988 if (type != expected_type) 1989 goto err_type; 1990 } else if (arg_type == ARG_CONST_MAP_PTR) { 1991 expected_type = CONST_PTR_TO_MAP; 1992 if (type != expected_type) 1993 goto err_type; 1994 } else if (arg_type == ARG_PTR_TO_CTX) { 1995 expected_type = PTR_TO_CTX; 1996 if (type != expected_type) 1997 goto err_type; 1998 err = check_ctx_reg(env, reg, regno); 1999 if (err < 0) 2000 return err; 2001 } else if (arg_type_is_mem_ptr(arg_type)) { 2002 expected_type = PTR_TO_STACK; 2003 /* One exception here. In case function allows for NULL to be 2004 * passed in as argument, it's a SCALAR_VALUE type. Final test 2005 * happens during stack boundary checking. 2006 */ 2007 if (register_is_null(reg) && 2008 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2009 /* final test in check_stack_boundary() */; 2010 else if (!type_is_pkt_pointer(type) && 2011 type != PTR_TO_MAP_VALUE && 2012 type != expected_type) 2013 goto err_type; 2014 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2015 } else { 2016 verbose(env, "unsupported arg_type %d\n", arg_type); 2017 return -EFAULT; 2018 } 2019 2020 if (arg_type == ARG_CONST_MAP_PTR) { 2021 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2022 meta->map_ptr = reg->map_ptr; 2023 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2024 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2025 * check that [key, key + map->key_size) are within 2026 * stack limits and initialized 2027 */ 2028 if (!meta->map_ptr) { 2029 /* in function declaration map_ptr must come before 2030 * map_key, so that it's verified and known before 2031 * we have to check map_key here. Otherwise it means 2032 * that kernel subsystem misconfigured verifier 2033 */ 2034 verbose(env, "invalid map_ptr to access map->key\n"); 2035 return -EACCES; 2036 } 2037 err = check_helper_mem_access(env, regno, 2038 meta->map_ptr->key_size, false, 2039 NULL); 2040 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 2041 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2042 * check [value, value + map->value_size) validity 2043 */ 2044 if (!meta->map_ptr) { 2045 /* kernel subsystem misconfigured verifier */ 2046 verbose(env, "invalid map_ptr to access map->value\n"); 2047 return -EACCES; 2048 } 2049 err = check_helper_mem_access(env, regno, 2050 meta->map_ptr->value_size, false, 2051 NULL); 2052 } else if (arg_type_is_mem_size(arg_type)) { 2053 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2054 2055 /* remember the mem_size which may be used later 2056 * to refine return values. 2057 */ 2058 meta->msize_smax_value = reg->smax_value; 2059 meta->msize_umax_value = reg->umax_value; 2060 2061 /* The register is SCALAR_VALUE; the access check 2062 * happens using its boundaries. 2063 */ 2064 if (!tnum_is_const(reg->var_off)) 2065 /* For unprivileged variable accesses, disable raw 2066 * mode so that the program is required to 2067 * initialize all the memory that the helper could 2068 * just partially fill up. 2069 */ 2070 meta = NULL; 2071 2072 if (reg->smin_value < 0) { 2073 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2074 regno); 2075 return -EACCES; 2076 } 2077 2078 if (reg->umin_value == 0) { 2079 err = check_helper_mem_access(env, regno - 1, 0, 2080 zero_size_allowed, 2081 meta); 2082 if (err) 2083 return err; 2084 } 2085 2086 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2087 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2088 regno); 2089 return -EACCES; 2090 } 2091 err = check_helper_mem_access(env, regno - 1, 2092 reg->umax_value, 2093 zero_size_allowed, meta); 2094 } 2095 2096 return err; 2097 err_type: 2098 verbose(env, "R%d type=%s expected=%s\n", regno, 2099 reg_type_str[type], reg_type_str[expected_type]); 2100 return -EACCES; 2101 } 2102 2103 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2104 struct bpf_map *map, int func_id) 2105 { 2106 if (!map) 2107 return 0; 2108 2109 /* We need a two way check, first is from map perspective ... */ 2110 switch (map->map_type) { 2111 case BPF_MAP_TYPE_PROG_ARRAY: 2112 if (func_id != BPF_FUNC_tail_call) 2113 goto error; 2114 break; 2115 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2116 if (func_id != BPF_FUNC_perf_event_read && 2117 func_id != BPF_FUNC_perf_event_output && 2118 func_id != BPF_FUNC_perf_event_read_value) 2119 goto error; 2120 break; 2121 case BPF_MAP_TYPE_STACK_TRACE: 2122 if (func_id != BPF_FUNC_get_stackid) 2123 goto error; 2124 break; 2125 case BPF_MAP_TYPE_CGROUP_ARRAY: 2126 if (func_id != BPF_FUNC_skb_under_cgroup && 2127 func_id != BPF_FUNC_current_task_under_cgroup) 2128 goto error; 2129 break; 2130 /* devmap returns a pointer to a live net_device ifindex that we cannot 2131 * allow to be modified from bpf side. So do not allow lookup elements 2132 * for now. 2133 */ 2134 case BPF_MAP_TYPE_DEVMAP: 2135 if (func_id != BPF_FUNC_redirect_map) 2136 goto error; 2137 break; 2138 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2139 * appear. 2140 */ 2141 case BPF_MAP_TYPE_CPUMAP: 2142 case BPF_MAP_TYPE_XSKMAP: 2143 if (func_id != BPF_FUNC_redirect_map) 2144 goto error; 2145 break; 2146 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2147 case BPF_MAP_TYPE_HASH_OF_MAPS: 2148 if (func_id != BPF_FUNC_map_lookup_elem) 2149 goto error; 2150 break; 2151 case BPF_MAP_TYPE_SOCKMAP: 2152 if (func_id != BPF_FUNC_sk_redirect_map && 2153 func_id != BPF_FUNC_sock_map_update && 2154 func_id != BPF_FUNC_map_delete_elem && 2155 func_id != BPF_FUNC_msg_redirect_map) 2156 goto error; 2157 break; 2158 case BPF_MAP_TYPE_SOCKHASH: 2159 if (func_id != BPF_FUNC_sk_redirect_hash && 2160 func_id != BPF_FUNC_sock_hash_update && 2161 func_id != BPF_FUNC_map_delete_elem && 2162 func_id != BPF_FUNC_msg_redirect_hash) 2163 goto error; 2164 break; 2165 default: 2166 break; 2167 } 2168 2169 /* ... and second from the function itself. */ 2170 switch (func_id) { 2171 case BPF_FUNC_tail_call: 2172 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2173 goto error; 2174 if (env->subprog_cnt > 1) { 2175 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2176 return -EINVAL; 2177 } 2178 break; 2179 case BPF_FUNC_perf_event_read: 2180 case BPF_FUNC_perf_event_output: 2181 case BPF_FUNC_perf_event_read_value: 2182 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2183 goto error; 2184 break; 2185 case BPF_FUNC_get_stackid: 2186 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2187 goto error; 2188 break; 2189 case BPF_FUNC_current_task_under_cgroup: 2190 case BPF_FUNC_skb_under_cgroup: 2191 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2192 goto error; 2193 break; 2194 case BPF_FUNC_redirect_map: 2195 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2196 map->map_type != BPF_MAP_TYPE_CPUMAP && 2197 map->map_type != BPF_MAP_TYPE_XSKMAP) 2198 goto error; 2199 break; 2200 case BPF_FUNC_sk_redirect_map: 2201 case BPF_FUNC_msg_redirect_map: 2202 case BPF_FUNC_sock_map_update: 2203 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2204 goto error; 2205 break; 2206 case BPF_FUNC_sk_redirect_hash: 2207 case BPF_FUNC_msg_redirect_hash: 2208 case BPF_FUNC_sock_hash_update: 2209 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2210 goto error; 2211 break; 2212 default: 2213 break; 2214 } 2215 2216 return 0; 2217 error: 2218 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2219 map->map_type, func_id_name(func_id), func_id); 2220 return -EINVAL; 2221 } 2222 2223 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2224 { 2225 int count = 0; 2226 2227 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2228 count++; 2229 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2230 count++; 2231 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2232 count++; 2233 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2234 count++; 2235 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2236 count++; 2237 2238 /* We only support one arg being in raw mode at the moment, 2239 * which is sufficient for the helper functions we have 2240 * right now. 2241 */ 2242 return count <= 1; 2243 } 2244 2245 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2246 enum bpf_arg_type arg_next) 2247 { 2248 return (arg_type_is_mem_ptr(arg_curr) && 2249 !arg_type_is_mem_size(arg_next)) || 2250 (!arg_type_is_mem_ptr(arg_curr) && 2251 arg_type_is_mem_size(arg_next)); 2252 } 2253 2254 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2255 { 2256 /* bpf_xxx(..., buf, len) call will access 'len' 2257 * bytes from memory 'buf'. Both arg types need 2258 * to be paired, so make sure there's no buggy 2259 * helper function specification. 2260 */ 2261 if (arg_type_is_mem_size(fn->arg1_type) || 2262 arg_type_is_mem_ptr(fn->arg5_type) || 2263 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2264 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2265 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2266 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2267 return false; 2268 2269 return true; 2270 } 2271 2272 static int check_func_proto(const struct bpf_func_proto *fn) 2273 { 2274 return check_raw_mode_ok(fn) && 2275 check_arg_pair_ok(fn) ? 0 : -EINVAL; 2276 } 2277 2278 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2279 * are now invalid, so turn them into unknown SCALAR_VALUE. 2280 */ 2281 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2282 struct bpf_func_state *state) 2283 { 2284 struct bpf_reg_state *regs = state->regs, *reg; 2285 int i; 2286 2287 for (i = 0; i < MAX_BPF_REG; i++) 2288 if (reg_is_pkt_pointer_any(®s[i])) 2289 mark_reg_unknown(env, regs, i); 2290 2291 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 2292 if (state->stack[i].slot_type[0] != STACK_SPILL) 2293 continue; 2294 reg = &state->stack[i].spilled_ptr; 2295 if (reg_is_pkt_pointer_any(reg)) 2296 __mark_reg_unknown(reg); 2297 } 2298 } 2299 2300 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2301 { 2302 struct bpf_verifier_state *vstate = env->cur_state; 2303 int i; 2304 2305 for (i = 0; i <= vstate->curframe; i++) 2306 __clear_all_pkt_pointers(env, vstate->frame[i]); 2307 } 2308 2309 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2310 int *insn_idx) 2311 { 2312 struct bpf_verifier_state *state = env->cur_state; 2313 struct bpf_func_state *caller, *callee; 2314 int i, subprog, target_insn; 2315 2316 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2317 verbose(env, "the call stack of %d frames is too deep\n", 2318 state->curframe + 2); 2319 return -E2BIG; 2320 } 2321 2322 target_insn = *insn_idx + insn->imm; 2323 subprog = find_subprog(env, target_insn + 1); 2324 if (subprog < 0) { 2325 verbose(env, "verifier bug. No program starts at insn %d\n", 2326 target_insn + 1); 2327 return -EFAULT; 2328 } 2329 2330 caller = state->frame[state->curframe]; 2331 if (state->frame[state->curframe + 1]) { 2332 verbose(env, "verifier bug. Frame %d already allocated\n", 2333 state->curframe + 1); 2334 return -EFAULT; 2335 } 2336 2337 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2338 if (!callee) 2339 return -ENOMEM; 2340 state->frame[state->curframe + 1] = callee; 2341 2342 /* callee cannot access r0, r6 - r9 for reading and has to write 2343 * into its own stack before reading from it. 2344 * callee can read/write into caller's stack 2345 */ 2346 init_func_state(env, callee, 2347 /* remember the callsite, it will be used by bpf_exit */ 2348 *insn_idx /* callsite */, 2349 state->curframe + 1 /* frameno within this callchain */, 2350 subprog /* subprog number within this prog */); 2351 2352 /* copy r1 - r5 args that callee can access */ 2353 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2354 callee->regs[i] = caller->regs[i]; 2355 2356 /* after the call regsiters r0 - r5 were scratched */ 2357 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2358 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2359 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2360 } 2361 2362 /* only increment it after check_reg_arg() finished */ 2363 state->curframe++; 2364 2365 /* and go analyze first insn of the callee */ 2366 *insn_idx = target_insn; 2367 2368 if (env->log.level) { 2369 verbose(env, "caller:\n"); 2370 print_verifier_state(env, caller); 2371 verbose(env, "callee:\n"); 2372 print_verifier_state(env, callee); 2373 } 2374 return 0; 2375 } 2376 2377 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2378 { 2379 struct bpf_verifier_state *state = env->cur_state; 2380 struct bpf_func_state *caller, *callee; 2381 struct bpf_reg_state *r0; 2382 2383 callee = state->frame[state->curframe]; 2384 r0 = &callee->regs[BPF_REG_0]; 2385 if (r0->type == PTR_TO_STACK) { 2386 /* technically it's ok to return caller's stack pointer 2387 * (or caller's caller's pointer) back to the caller, 2388 * since these pointers are valid. Only current stack 2389 * pointer will be invalid as soon as function exits, 2390 * but let's be conservative 2391 */ 2392 verbose(env, "cannot return stack pointer to the caller\n"); 2393 return -EINVAL; 2394 } 2395 2396 state->curframe--; 2397 caller = state->frame[state->curframe]; 2398 /* return to the caller whatever r0 had in the callee */ 2399 caller->regs[BPF_REG_0] = *r0; 2400 2401 *insn_idx = callee->callsite + 1; 2402 if (env->log.level) { 2403 verbose(env, "returning from callee:\n"); 2404 print_verifier_state(env, callee); 2405 verbose(env, "to caller at %d:\n", *insn_idx); 2406 print_verifier_state(env, caller); 2407 } 2408 /* clear everything in the callee */ 2409 free_func_state(callee); 2410 state->frame[state->curframe + 1] = NULL; 2411 return 0; 2412 } 2413 2414 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 2415 int func_id, 2416 struct bpf_call_arg_meta *meta) 2417 { 2418 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 2419 2420 if (ret_type != RET_INTEGER || 2421 (func_id != BPF_FUNC_get_stack && 2422 func_id != BPF_FUNC_probe_read_str)) 2423 return; 2424 2425 ret_reg->smax_value = meta->msize_smax_value; 2426 ret_reg->umax_value = meta->msize_umax_value; 2427 __reg_deduce_bounds(ret_reg); 2428 __reg_bound_offset(ret_reg); 2429 } 2430 2431 static int 2432 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 2433 int func_id, int insn_idx) 2434 { 2435 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 2436 2437 if (func_id != BPF_FUNC_tail_call && 2438 func_id != BPF_FUNC_map_lookup_elem && 2439 func_id != BPF_FUNC_map_update_elem && 2440 func_id != BPF_FUNC_map_delete_elem) 2441 return 0; 2442 2443 if (meta->map_ptr == NULL) { 2444 verbose(env, "kernel subsystem misconfigured verifier\n"); 2445 return -EINVAL; 2446 } 2447 2448 if (!BPF_MAP_PTR(aux->map_state)) 2449 bpf_map_ptr_store(aux, meta->map_ptr, 2450 meta->map_ptr->unpriv_array); 2451 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 2452 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 2453 meta->map_ptr->unpriv_array); 2454 return 0; 2455 } 2456 2457 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2458 { 2459 const struct bpf_func_proto *fn = NULL; 2460 struct bpf_reg_state *regs; 2461 struct bpf_call_arg_meta meta; 2462 bool changes_data; 2463 int i, err; 2464 2465 /* find function prototype */ 2466 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2467 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2468 func_id); 2469 return -EINVAL; 2470 } 2471 2472 if (env->ops->get_func_proto) 2473 fn = env->ops->get_func_proto(func_id, env->prog); 2474 if (!fn) { 2475 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2476 func_id); 2477 return -EINVAL; 2478 } 2479 2480 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2481 if (!env->prog->gpl_compatible && fn->gpl_only) { 2482 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 2483 return -EINVAL; 2484 } 2485 2486 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2487 changes_data = bpf_helper_changes_pkt_data(fn->func); 2488 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2489 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2490 func_id_name(func_id), func_id); 2491 return -EINVAL; 2492 } 2493 2494 memset(&meta, 0, sizeof(meta)); 2495 meta.pkt_access = fn->pkt_access; 2496 2497 err = check_func_proto(fn); 2498 if (err) { 2499 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2500 func_id_name(func_id), func_id); 2501 return err; 2502 } 2503 2504 /* check args */ 2505 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2506 if (err) 2507 return err; 2508 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2509 if (err) 2510 return err; 2511 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2512 if (err) 2513 return err; 2514 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2515 if (err) 2516 return err; 2517 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2518 if (err) 2519 return err; 2520 2521 err = record_func_map(env, &meta, func_id, insn_idx); 2522 if (err) 2523 return err; 2524 2525 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2526 * is inferred from register state. 2527 */ 2528 for (i = 0; i < meta.access_size; i++) { 2529 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 2530 BPF_WRITE, -1, false); 2531 if (err) 2532 return err; 2533 } 2534 2535 regs = cur_regs(env); 2536 /* reset caller saved regs */ 2537 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2538 mark_reg_not_init(env, regs, caller_saved[i]); 2539 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2540 } 2541 2542 /* update return register (already marked as written above) */ 2543 if (fn->ret_type == RET_INTEGER) { 2544 /* sets type to SCALAR_VALUE */ 2545 mark_reg_unknown(env, regs, BPF_REG_0); 2546 } else if (fn->ret_type == RET_VOID) { 2547 regs[BPF_REG_0].type = NOT_INIT; 2548 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { 2549 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2550 /* There is no offset yet applied, variable or fixed */ 2551 mark_reg_known_zero(env, regs, BPF_REG_0); 2552 regs[BPF_REG_0].off = 0; 2553 /* remember map_ptr, so that check_map_access() 2554 * can check 'value_size' boundary of memory access 2555 * to map element returned from bpf_map_lookup_elem() 2556 */ 2557 if (meta.map_ptr == NULL) { 2558 verbose(env, 2559 "kernel subsystem misconfigured verifier\n"); 2560 return -EINVAL; 2561 } 2562 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2563 regs[BPF_REG_0].id = ++env->id_gen; 2564 } else { 2565 verbose(env, "unknown return type %d of func %s#%d\n", 2566 fn->ret_type, func_id_name(func_id), func_id); 2567 return -EINVAL; 2568 } 2569 2570 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 2571 2572 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2573 if (err) 2574 return err; 2575 2576 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 2577 const char *err_str; 2578 2579 #ifdef CONFIG_PERF_EVENTS 2580 err = get_callchain_buffers(sysctl_perf_event_max_stack); 2581 err_str = "cannot get callchain buffer for func %s#%d\n"; 2582 #else 2583 err = -ENOTSUPP; 2584 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 2585 #endif 2586 if (err) { 2587 verbose(env, err_str, func_id_name(func_id), func_id); 2588 return err; 2589 } 2590 2591 env->prog->has_callchain_buf = true; 2592 } 2593 2594 if (changes_data) 2595 clear_all_pkt_pointers(env); 2596 return 0; 2597 } 2598 2599 static bool signed_add_overflows(s64 a, s64 b) 2600 { 2601 /* Do the add in u64, where overflow is well-defined */ 2602 s64 res = (s64)((u64)a + (u64)b); 2603 2604 if (b < 0) 2605 return res > a; 2606 return res < a; 2607 } 2608 2609 static bool signed_sub_overflows(s64 a, s64 b) 2610 { 2611 /* Do the sub in u64, where overflow is well-defined */ 2612 s64 res = (s64)((u64)a - (u64)b); 2613 2614 if (b < 0) 2615 return res < a; 2616 return res > a; 2617 } 2618 2619 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 2620 const struct bpf_reg_state *reg, 2621 enum bpf_reg_type type) 2622 { 2623 bool known = tnum_is_const(reg->var_off); 2624 s64 val = reg->var_off.value; 2625 s64 smin = reg->smin_value; 2626 2627 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 2628 verbose(env, "math between %s pointer and %lld is not allowed\n", 2629 reg_type_str[type], val); 2630 return false; 2631 } 2632 2633 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 2634 verbose(env, "%s pointer offset %d is not allowed\n", 2635 reg_type_str[type], reg->off); 2636 return false; 2637 } 2638 2639 if (smin == S64_MIN) { 2640 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 2641 reg_type_str[type]); 2642 return false; 2643 } 2644 2645 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 2646 verbose(env, "value %lld makes %s pointer be out of bounds\n", 2647 smin, reg_type_str[type]); 2648 return false; 2649 } 2650 2651 return true; 2652 } 2653 2654 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 2655 * Caller should also handle BPF_MOV case separately. 2656 * If we return -EACCES, caller may want to try again treating pointer as a 2657 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 2658 */ 2659 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 2660 struct bpf_insn *insn, 2661 const struct bpf_reg_state *ptr_reg, 2662 const struct bpf_reg_state *off_reg) 2663 { 2664 struct bpf_verifier_state *vstate = env->cur_state; 2665 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2666 struct bpf_reg_state *regs = state->regs, *dst_reg; 2667 bool known = tnum_is_const(off_reg->var_off); 2668 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 2669 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 2670 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 2671 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 2672 u8 opcode = BPF_OP(insn->code); 2673 u32 dst = insn->dst_reg; 2674 2675 dst_reg = ®s[dst]; 2676 2677 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 2678 smin_val > smax_val || umin_val > umax_val) { 2679 /* Taint dst register if offset had invalid bounds derived from 2680 * e.g. dead branches. 2681 */ 2682 __mark_reg_unknown(dst_reg); 2683 return 0; 2684 } 2685 2686 if (BPF_CLASS(insn->code) != BPF_ALU64) { 2687 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 2688 verbose(env, 2689 "R%d 32-bit pointer arithmetic prohibited\n", 2690 dst); 2691 return -EACCES; 2692 } 2693 2694 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2695 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", 2696 dst); 2697 return -EACCES; 2698 } 2699 if (ptr_reg->type == CONST_PTR_TO_MAP) { 2700 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", 2701 dst); 2702 return -EACCES; 2703 } 2704 if (ptr_reg->type == PTR_TO_PACKET_END) { 2705 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", 2706 dst); 2707 return -EACCES; 2708 } 2709 2710 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 2711 * The id may be overwritten later if we create a new variable offset. 2712 */ 2713 dst_reg->type = ptr_reg->type; 2714 dst_reg->id = ptr_reg->id; 2715 2716 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 2717 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 2718 return -EINVAL; 2719 2720 switch (opcode) { 2721 case BPF_ADD: 2722 /* We can take a fixed offset as long as it doesn't overflow 2723 * the s32 'off' field 2724 */ 2725 if (known && (ptr_reg->off + smin_val == 2726 (s64)(s32)(ptr_reg->off + smin_val))) { 2727 /* pointer += K. Accumulate it into fixed offset */ 2728 dst_reg->smin_value = smin_ptr; 2729 dst_reg->smax_value = smax_ptr; 2730 dst_reg->umin_value = umin_ptr; 2731 dst_reg->umax_value = umax_ptr; 2732 dst_reg->var_off = ptr_reg->var_off; 2733 dst_reg->off = ptr_reg->off + smin_val; 2734 dst_reg->range = ptr_reg->range; 2735 break; 2736 } 2737 /* A new variable offset is created. Note that off_reg->off 2738 * == 0, since it's a scalar. 2739 * dst_reg gets the pointer type and since some positive 2740 * integer value was added to the pointer, give it a new 'id' 2741 * if it's a PTR_TO_PACKET. 2742 * this creates a new 'base' pointer, off_reg (variable) gets 2743 * added into the variable offset, and we copy the fixed offset 2744 * from ptr_reg. 2745 */ 2746 if (signed_add_overflows(smin_ptr, smin_val) || 2747 signed_add_overflows(smax_ptr, smax_val)) { 2748 dst_reg->smin_value = S64_MIN; 2749 dst_reg->smax_value = S64_MAX; 2750 } else { 2751 dst_reg->smin_value = smin_ptr + smin_val; 2752 dst_reg->smax_value = smax_ptr + smax_val; 2753 } 2754 if (umin_ptr + umin_val < umin_ptr || 2755 umax_ptr + umax_val < umax_ptr) { 2756 dst_reg->umin_value = 0; 2757 dst_reg->umax_value = U64_MAX; 2758 } else { 2759 dst_reg->umin_value = umin_ptr + umin_val; 2760 dst_reg->umax_value = umax_ptr + umax_val; 2761 } 2762 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 2763 dst_reg->off = ptr_reg->off; 2764 if (reg_is_pkt_pointer(ptr_reg)) { 2765 dst_reg->id = ++env->id_gen; 2766 /* something was added to pkt_ptr, set range to zero */ 2767 dst_reg->range = 0; 2768 } 2769 break; 2770 case BPF_SUB: 2771 if (dst_reg == off_reg) { 2772 /* scalar -= pointer. Creates an unknown scalar */ 2773 verbose(env, "R%d tried to subtract pointer from scalar\n", 2774 dst); 2775 return -EACCES; 2776 } 2777 /* We don't allow subtraction from FP, because (according to 2778 * test_verifier.c test "invalid fp arithmetic", JITs might not 2779 * be able to deal with it. 2780 */ 2781 if (ptr_reg->type == PTR_TO_STACK) { 2782 verbose(env, "R%d subtraction from stack pointer prohibited\n", 2783 dst); 2784 return -EACCES; 2785 } 2786 if (known && (ptr_reg->off - smin_val == 2787 (s64)(s32)(ptr_reg->off - smin_val))) { 2788 /* pointer -= K. Subtract it from fixed offset */ 2789 dst_reg->smin_value = smin_ptr; 2790 dst_reg->smax_value = smax_ptr; 2791 dst_reg->umin_value = umin_ptr; 2792 dst_reg->umax_value = umax_ptr; 2793 dst_reg->var_off = ptr_reg->var_off; 2794 dst_reg->id = ptr_reg->id; 2795 dst_reg->off = ptr_reg->off - smin_val; 2796 dst_reg->range = ptr_reg->range; 2797 break; 2798 } 2799 /* A new variable offset is created. If the subtrahend is known 2800 * nonnegative, then any reg->range we had before is still good. 2801 */ 2802 if (signed_sub_overflows(smin_ptr, smax_val) || 2803 signed_sub_overflows(smax_ptr, smin_val)) { 2804 /* Overflow possible, we know nothing */ 2805 dst_reg->smin_value = S64_MIN; 2806 dst_reg->smax_value = S64_MAX; 2807 } else { 2808 dst_reg->smin_value = smin_ptr - smax_val; 2809 dst_reg->smax_value = smax_ptr - smin_val; 2810 } 2811 if (umin_ptr < umax_val) { 2812 /* Overflow possible, we know nothing */ 2813 dst_reg->umin_value = 0; 2814 dst_reg->umax_value = U64_MAX; 2815 } else { 2816 /* Cannot overflow (as long as bounds are consistent) */ 2817 dst_reg->umin_value = umin_ptr - umax_val; 2818 dst_reg->umax_value = umax_ptr - umin_val; 2819 } 2820 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 2821 dst_reg->off = ptr_reg->off; 2822 if (reg_is_pkt_pointer(ptr_reg)) { 2823 dst_reg->id = ++env->id_gen; 2824 /* something was added to pkt_ptr, set range to zero */ 2825 if (smin_val < 0) 2826 dst_reg->range = 0; 2827 } 2828 break; 2829 case BPF_AND: 2830 case BPF_OR: 2831 case BPF_XOR: 2832 /* bitwise ops on pointers are troublesome, prohibit. */ 2833 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 2834 dst, bpf_alu_string[opcode >> 4]); 2835 return -EACCES; 2836 default: 2837 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 2838 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 2839 dst, bpf_alu_string[opcode >> 4]); 2840 return -EACCES; 2841 } 2842 2843 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 2844 return -EINVAL; 2845 2846 __update_reg_bounds(dst_reg); 2847 __reg_deduce_bounds(dst_reg); 2848 __reg_bound_offset(dst_reg); 2849 return 0; 2850 } 2851 2852 /* WARNING: This function does calculations on 64-bit values, but the actual 2853 * execution may occur on 32-bit values. Therefore, things like bitshifts 2854 * need extra checks in the 32-bit case. 2855 */ 2856 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 2857 struct bpf_insn *insn, 2858 struct bpf_reg_state *dst_reg, 2859 struct bpf_reg_state src_reg) 2860 { 2861 struct bpf_reg_state *regs = cur_regs(env); 2862 u8 opcode = BPF_OP(insn->code); 2863 bool src_known, dst_known; 2864 s64 smin_val, smax_val; 2865 u64 umin_val, umax_val; 2866 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 2867 2868 smin_val = src_reg.smin_value; 2869 smax_val = src_reg.smax_value; 2870 umin_val = src_reg.umin_value; 2871 umax_val = src_reg.umax_value; 2872 src_known = tnum_is_const(src_reg.var_off); 2873 dst_known = tnum_is_const(dst_reg->var_off); 2874 2875 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 2876 smin_val > smax_val || umin_val > umax_val) { 2877 /* Taint dst register if offset had invalid bounds derived from 2878 * e.g. dead branches. 2879 */ 2880 __mark_reg_unknown(dst_reg); 2881 return 0; 2882 } 2883 2884 if (!src_known && 2885 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 2886 __mark_reg_unknown(dst_reg); 2887 return 0; 2888 } 2889 2890 switch (opcode) { 2891 case BPF_ADD: 2892 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 2893 signed_add_overflows(dst_reg->smax_value, smax_val)) { 2894 dst_reg->smin_value = S64_MIN; 2895 dst_reg->smax_value = S64_MAX; 2896 } else { 2897 dst_reg->smin_value += smin_val; 2898 dst_reg->smax_value += smax_val; 2899 } 2900 if (dst_reg->umin_value + umin_val < umin_val || 2901 dst_reg->umax_value + umax_val < umax_val) { 2902 dst_reg->umin_value = 0; 2903 dst_reg->umax_value = U64_MAX; 2904 } else { 2905 dst_reg->umin_value += umin_val; 2906 dst_reg->umax_value += umax_val; 2907 } 2908 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 2909 break; 2910 case BPF_SUB: 2911 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 2912 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 2913 /* Overflow possible, we know nothing */ 2914 dst_reg->smin_value = S64_MIN; 2915 dst_reg->smax_value = S64_MAX; 2916 } else { 2917 dst_reg->smin_value -= smax_val; 2918 dst_reg->smax_value -= smin_val; 2919 } 2920 if (dst_reg->umin_value < umax_val) { 2921 /* Overflow possible, we know nothing */ 2922 dst_reg->umin_value = 0; 2923 dst_reg->umax_value = U64_MAX; 2924 } else { 2925 /* Cannot overflow (as long as bounds are consistent) */ 2926 dst_reg->umin_value -= umax_val; 2927 dst_reg->umax_value -= umin_val; 2928 } 2929 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 2930 break; 2931 case BPF_MUL: 2932 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 2933 if (smin_val < 0 || dst_reg->smin_value < 0) { 2934 /* Ain't nobody got time to multiply that sign */ 2935 __mark_reg_unbounded(dst_reg); 2936 __update_reg_bounds(dst_reg); 2937 break; 2938 } 2939 /* Both values are positive, so we can work with unsigned and 2940 * copy the result to signed (unless it exceeds S64_MAX). 2941 */ 2942 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 2943 /* Potential overflow, we know nothing */ 2944 __mark_reg_unbounded(dst_reg); 2945 /* (except what we can learn from the var_off) */ 2946 __update_reg_bounds(dst_reg); 2947 break; 2948 } 2949 dst_reg->umin_value *= umin_val; 2950 dst_reg->umax_value *= umax_val; 2951 if (dst_reg->umax_value > S64_MAX) { 2952 /* Overflow possible, we know nothing */ 2953 dst_reg->smin_value = S64_MIN; 2954 dst_reg->smax_value = S64_MAX; 2955 } else { 2956 dst_reg->smin_value = dst_reg->umin_value; 2957 dst_reg->smax_value = dst_reg->umax_value; 2958 } 2959 break; 2960 case BPF_AND: 2961 if (src_known && dst_known) { 2962 __mark_reg_known(dst_reg, dst_reg->var_off.value & 2963 src_reg.var_off.value); 2964 break; 2965 } 2966 /* We get our minimum from the var_off, since that's inherently 2967 * bitwise. Our maximum is the minimum of the operands' maxima. 2968 */ 2969 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 2970 dst_reg->umin_value = dst_reg->var_off.value; 2971 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 2972 if (dst_reg->smin_value < 0 || smin_val < 0) { 2973 /* Lose signed bounds when ANDing negative numbers, 2974 * ain't nobody got time for that. 2975 */ 2976 dst_reg->smin_value = S64_MIN; 2977 dst_reg->smax_value = S64_MAX; 2978 } else { 2979 /* ANDing two positives gives a positive, so safe to 2980 * cast result into s64. 2981 */ 2982 dst_reg->smin_value = dst_reg->umin_value; 2983 dst_reg->smax_value = dst_reg->umax_value; 2984 } 2985 /* We may learn something more from the var_off */ 2986 __update_reg_bounds(dst_reg); 2987 break; 2988 case BPF_OR: 2989 if (src_known && dst_known) { 2990 __mark_reg_known(dst_reg, dst_reg->var_off.value | 2991 src_reg.var_off.value); 2992 break; 2993 } 2994 /* We get our maximum from the var_off, and our minimum is the 2995 * maximum of the operands' minima 2996 */ 2997 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 2998 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 2999 dst_reg->umax_value = dst_reg->var_off.value | 3000 dst_reg->var_off.mask; 3001 if (dst_reg->smin_value < 0 || smin_val < 0) { 3002 /* Lose signed bounds when ORing negative numbers, 3003 * ain't nobody got time for that. 3004 */ 3005 dst_reg->smin_value = S64_MIN; 3006 dst_reg->smax_value = S64_MAX; 3007 } else { 3008 /* ORing two positives gives a positive, so safe to 3009 * cast result into s64. 3010 */ 3011 dst_reg->smin_value = dst_reg->umin_value; 3012 dst_reg->smax_value = dst_reg->umax_value; 3013 } 3014 /* We may learn something more from the var_off */ 3015 __update_reg_bounds(dst_reg); 3016 break; 3017 case BPF_LSH: 3018 if (umax_val >= insn_bitness) { 3019 /* Shifts greater than 31 or 63 are undefined. 3020 * This includes shifts by a negative number. 3021 */ 3022 mark_reg_unknown(env, regs, insn->dst_reg); 3023 break; 3024 } 3025 /* We lose all sign bit information (except what we can pick 3026 * up from var_off) 3027 */ 3028 dst_reg->smin_value = S64_MIN; 3029 dst_reg->smax_value = S64_MAX; 3030 /* If we might shift our top bit out, then we know nothing */ 3031 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 3032 dst_reg->umin_value = 0; 3033 dst_reg->umax_value = U64_MAX; 3034 } else { 3035 dst_reg->umin_value <<= umin_val; 3036 dst_reg->umax_value <<= umax_val; 3037 } 3038 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 3039 /* We may learn something more from the var_off */ 3040 __update_reg_bounds(dst_reg); 3041 break; 3042 case BPF_RSH: 3043 if (umax_val >= insn_bitness) { 3044 /* Shifts greater than 31 or 63 are undefined. 3045 * This includes shifts by a negative number. 3046 */ 3047 mark_reg_unknown(env, regs, insn->dst_reg); 3048 break; 3049 } 3050 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 3051 * be negative, then either: 3052 * 1) src_reg might be zero, so the sign bit of the result is 3053 * unknown, so we lose our signed bounds 3054 * 2) it's known negative, thus the unsigned bounds capture the 3055 * signed bounds 3056 * 3) the signed bounds cross zero, so they tell us nothing 3057 * about the result 3058 * If the value in dst_reg is known nonnegative, then again the 3059 * unsigned bounts capture the signed bounds. 3060 * Thus, in all cases it suffices to blow away our signed bounds 3061 * and rely on inferring new ones from the unsigned bounds and 3062 * var_off of the result. 3063 */ 3064 dst_reg->smin_value = S64_MIN; 3065 dst_reg->smax_value = S64_MAX; 3066 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 3067 dst_reg->umin_value >>= umax_val; 3068 dst_reg->umax_value >>= umin_val; 3069 /* We may learn something more from the var_off */ 3070 __update_reg_bounds(dst_reg); 3071 break; 3072 case BPF_ARSH: 3073 if (umax_val >= insn_bitness) { 3074 /* Shifts greater than 31 or 63 are undefined. 3075 * This includes shifts by a negative number. 3076 */ 3077 mark_reg_unknown(env, regs, insn->dst_reg); 3078 break; 3079 } 3080 3081 /* Upon reaching here, src_known is true and 3082 * umax_val is equal to umin_val. 3083 */ 3084 dst_reg->smin_value >>= umin_val; 3085 dst_reg->smax_value >>= umin_val; 3086 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 3087 3088 /* blow away the dst_reg umin_value/umax_value and rely on 3089 * dst_reg var_off to refine the result. 3090 */ 3091 dst_reg->umin_value = 0; 3092 dst_reg->umax_value = U64_MAX; 3093 __update_reg_bounds(dst_reg); 3094 break; 3095 default: 3096 mark_reg_unknown(env, regs, insn->dst_reg); 3097 break; 3098 } 3099 3100 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3101 /* 32-bit ALU ops are (32,32)->32 */ 3102 coerce_reg_to_size(dst_reg, 4); 3103 coerce_reg_to_size(&src_reg, 4); 3104 } 3105 3106 __reg_deduce_bounds(dst_reg); 3107 __reg_bound_offset(dst_reg); 3108 return 0; 3109 } 3110 3111 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3112 * and var_off. 3113 */ 3114 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3115 struct bpf_insn *insn) 3116 { 3117 struct bpf_verifier_state *vstate = env->cur_state; 3118 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3119 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3120 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3121 u8 opcode = BPF_OP(insn->code); 3122 3123 dst_reg = ®s[insn->dst_reg]; 3124 src_reg = NULL; 3125 if (dst_reg->type != SCALAR_VALUE) 3126 ptr_reg = dst_reg; 3127 if (BPF_SRC(insn->code) == BPF_X) { 3128 src_reg = ®s[insn->src_reg]; 3129 if (src_reg->type != SCALAR_VALUE) { 3130 if (dst_reg->type != SCALAR_VALUE) { 3131 /* Combining two pointers by any ALU op yields 3132 * an arbitrary scalar. Disallow all math except 3133 * pointer subtraction 3134 */ 3135 if (opcode == BPF_SUB){ 3136 mark_reg_unknown(env, regs, insn->dst_reg); 3137 return 0; 3138 } 3139 verbose(env, "R%d pointer %s pointer prohibited\n", 3140 insn->dst_reg, 3141 bpf_alu_string[opcode >> 4]); 3142 return -EACCES; 3143 } else { 3144 /* scalar += pointer 3145 * This is legal, but we have to reverse our 3146 * src/dest handling in computing the range 3147 */ 3148 return adjust_ptr_min_max_vals(env, insn, 3149 src_reg, dst_reg); 3150 } 3151 } else if (ptr_reg) { 3152 /* pointer += scalar */ 3153 return adjust_ptr_min_max_vals(env, insn, 3154 dst_reg, src_reg); 3155 } 3156 } else { 3157 /* Pretend the src is a reg with a known value, since we only 3158 * need to be able to read from this state. 3159 */ 3160 off_reg.type = SCALAR_VALUE; 3161 __mark_reg_known(&off_reg, insn->imm); 3162 src_reg = &off_reg; 3163 if (ptr_reg) /* pointer += K */ 3164 return adjust_ptr_min_max_vals(env, insn, 3165 ptr_reg, src_reg); 3166 } 3167 3168 /* Got here implies adding two SCALAR_VALUEs */ 3169 if (WARN_ON_ONCE(ptr_reg)) { 3170 print_verifier_state(env, state); 3171 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3172 return -EINVAL; 3173 } 3174 if (WARN_ON(!src_reg)) { 3175 print_verifier_state(env, state); 3176 verbose(env, "verifier internal error: no src_reg\n"); 3177 return -EINVAL; 3178 } 3179 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3180 } 3181 3182 /* check validity of 32-bit and 64-bit arithmetic operations */ 3183 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3184 { 3185 struct bpf_reg_state *regs = cur_regs(env); 3186 u8 opcode = BPF_OP(insn->code); 3187 int err; 3188 3189 if (opcode == BPF_END || opcode == BPF_NEG) { 3190 if (opcode == BPF_NEG) { 3191 if (BPF_SRC(insn->code) != 0 || 3192 insn->src_reg != BPF_REG_0 || 3193 insn->off != 0 || insn->imm != 0) { 3194 verbose(env, "BPF_NEG uses reserved fields\n"); 3195 return -EINVAL; 3196 } 3197 } else { 3198 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3199 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3200 BPF_CLASS(insn->code) == BPF_ALU64) { 3201 verbose(env, "BPF_END uses reserved fields\n"); 3202 return -EINVAL; 3203 } 3204 } 3205 3206 /* check src operand */ 3207 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3208 if (err) 3209 return err; 3210 3211 if (is_pointer_value(env, insn->dst_reg)) { 3212 verbose(env, "R%d pointer arithmetic prohibited\n", 3213 insn->dst_reg); 3214 return -EACCES; 3215 } 3216 3217 /* check dest operand */ 3218 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3219 if (err) 3220 return err; 3221 3222 } else if (opcode == BPF_MOV) { 3223 3224 if (BPF_SRC(insn->code) == BPF_X) { 3225 if (insn->imm != 0 || insn->off != 0) { 3226 verbose(env, "BPF_MOV uses reserved fields\n"); 3227 return -EINVAL; 3228 } 3229 3230 /* check src operand */ 3231 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3232 if (err) 3233 return err; 3234 } else { 3235 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3236 verbose(env, "BPF_MOV uses reserved fields\n"); 3237 return -EINVAL; 3238 } 3239 } 3240 3241 /* check dest operand */ 3242 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3243 if (err) 3244 return err; 3245 3246 if (BPF_SRC(insn->code) == BPF_X) { 3247 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3248 /* case: R1 = R2 3249 * copy register state to dest reg 3250 */ 3251 regs[insn->dst_reg] = regs[insn->src_reg]; 3252 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 3253 } else { 3254 /* R1 = (u32) R2 */ 3255 if (is_pointer_value(env, insn->src_reg)) { 3256 verbose(env, 3257 "R%d partial copy of pointer\n", 3258 insn->src_reg); 3259 return -EACCES; 3260 } 3261 mark_reg_unknown(env, regs, insn->dst_reg); 3262 coerce_reg_to_size(®s[insn->dst_reg], 4); 3263 } 3264 } else { 3265 /* case: R = imm 3266 * remember the value we stored into this reg 3267 */ 3268 regs[insn->dst_reg].type = SCALAR_VALUE; 3269 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3270 __mark_reg_known(regs + insn->dst_reg, 3271 insn->imm); 3272 } else { 3273 __mark_reg_known(regs + insn->dst_reg, 3274 (u32)insn->imm); 3275 } 3276 } 3277 3278 } else if (opcode > BPF_END) { 3279 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3280 return -EINVAL; 3281 3282 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3283 3284 if (BPF_SRC(insn->code) == BPF_X) { 3285 if (insn->imm != 0 || insn->off != 0) { 3286 verbose(env, "BPF_ALU uses reserved fields\n"); 3287 return -EINVAL; 3288 } 3289 /* check src1 operand */ 3290 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3291 if (err) 3292 return err; 3293 } else { 3294 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3295 verbose(env, "BPF_ALU uses reserved fields\n"); 3296 return -EINVAL; 3297 } 3298 } 3299 3300 /* check src2 operand */ 3301 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3302 if (err) 3303 return err; 3304 3305 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3306 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3307 verbose(env, "div by zero\n"); 3308 return -EINVAL; 3309 } 3310 3311 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) { 3312 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n"); 3313 return -EINVAL; 3314 } 3315 3316 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3317 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3318 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3319 3320 if (insn->imm < 0 || insn->imm >= size) { 3321 verbose(env, "invalid shift %d\n", insn->imm); 3322 return -EINVAL; 3323 } 3324 } 3325 3326 /* check dest operand */ 3327 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3328 if (err) 3329 return err; 3330 3331 return adjust_reg_min_max_vals(env, insn); 3332 } 3333 3334 return 0; 3335 } 3336 3337 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3338 struct bpf_reg_state *dst_reg, 3339 enum bpf_reg_type type, 3340 bool range_right_open) 3341 { 3342 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3343 struct bpf_reg_state *regs = state->regs, *reg; 3344 u16 new_range; 3345 int i, j; 3346 3347 if (dst_reg->off < 0 || 3348 (dst_reg->off == 0 && range_right_open)) 3349 /* This doesn't give us any range */ 3350 return; 3351 3352 if (dst_reg->umax_value > MAX_PACKET_OFF || 3353 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3354 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3355 * than pkt_end, but that's because it's also less than pkt. 3356 */ 3357 return; 3358 3359 new_range = dst_reg->off; 3360 if (range_right_open) 3361 new_range--; 3362 3363 /* Examples for register markings: 3364 * 3365 * pkt_data in dst register: 3366 * 3367 * r2 = r3; 3368 * r2 += 8; 3369 * if (r2 > pkt_end) goto <handle exception> 3370 * <access okay> 3371 * 3372 * r2 = r3; 3373 * r2 += 8; 3374 * if (r2 < pkt_end) goto <access okay> 3375 * <handle exception> 3376 * 3377 * Where: 3378 * r2 == dst_reg, pkt_end == src_reg 3379 * r2=pkt(id=n,off=8,r=0) 3380 * r3=pkt(id=n,off=0,r=0) 3381 * 3382 * pkt_data in src register: 3383 * 3384 * r2 = r3; 3385 * r2 += 8; 3386 * if (pkt_end >= r2) goto <access okay> 3387 * <handle exception> 3388 * 3389 * r2 = r3; 3390 * r2 += 8; 3391 * if (pkt_end <= r2) goto <handle exception> 3392 * <access okay> 3393 * 3394 * Where: 3395 * pkt_end == dst_reg, r2 == src_reg 3396 * r2=pkt(id=n,off=8,r=0) 3397 * r3=pkt(id=n,off=0,r=0) 3398 * 3399 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 3400 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 3401 * and [r3, r3 + 8-1) respectively is safe to access depending on 3402 * the check. 3403 */ 3404 3405 /* If our ids match, then we must have the same max_value. And we 3406 * don't care about the other reg's fixed offset, since if it's too big 3407 * the range won't allow anything. 3408 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 3409 */ 3410 for (i = 0; i < MAX_BPF_REG; i++) 3411 if (regs[i].type == type && regs[i].id == dst_reg->id) 3412 /* keep the maximum range already checked */ 3413 regs[i].range = max(regs[i].range, new_range); 3414 3415 for (j = 0; j <= vstate->curframe; j++) { 3416 state = vstate->frame[j]; 3417 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3418 if (state->stack[i].slot_type[0] != STACK_SPILL) 3419 continue; 3420 reg = &state->stack[i].spilled_ptr; 3421 if (reg->type == type && reg->id == dst_reg->id) 3422 reg->range = max(reg->range, new_range); 3423 } 3424 } 3425 } 3426 3427 /* Adjusts the register min/max values in the case that the dst_reg is the 3428 * variable register that we are working on, and src_reg is a constant or we're 3429 * simply doing a BPF_K check. 3430 * In JEQ/JNE cases we also adjust the var_off values. 3431 */ 3432 static void reg_set_min_max(struct bpf_reg_state *true_reg, 3433 struct bpf_reg_state *false_reg, u64 val, 3434 u8 opcode) 3435 { 3436 /* If the dst_reg is a pointer, we can't learn anything about its 3437 * variable offset from the compare (unless src_reg were a pointer into 3438 * the same object, but we don't bother with that. 3439 * Since false_reg and true_reg have the same type by construction, we 3440 * only need to check one of them for pointerness. 3441 */ 3442 if (__is_pointer_value(false, false_reg)) 3443 return; 3444 3445 switch (opcode) { 3446 case BPF_JEQ: 3447 /* If this is false then we know nothing Jon Snow, but if it is 3448 * true then we know for sure. 3449 */ 3450 __mark_reg_known(true_reg, val); 3451 break; 3452 case BPF_JNE: 3453 /* If this is true we know nothing Jon Snow, but if it is false 3454 * we know the value for sure; 3455 */ 3456 __mark_reg_known(false_reg, val); 3457 break; 3458 case BPF_JGT: 3459 false_reg->umax_value = min(false_reg->umax_value, val); 3460 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3461 break; 3462 case BPF_JSGT: 3463 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3464 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3465 break; 3466 case BPF_JLT: 3467 false_reg->umin_value = max(false_reg->umin_value, val); 3468 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3469 break; 3470 case BPF_JSLT: 3471 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3472 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3473 break; 3474 case BPF_JGE: 3475 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3476 true_reg->umin_value = max(true_reg->umin_value, val); 3477 break; 3478 case BPF_JSGE: 3479 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3480 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3481 break; 3482 case BPF_JLE: 3483 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3484 true_reg->umax_value = min(true_reg->umax_value, val); 3485 break; 3486 case BPF_JSLE: 3487 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3488 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3489 break; 3490 default: 3491 break; 3492 } 3493 3494 __reg_deduce_bounds(false_reg); 3495 __reg_deduce_bounds(true_reg); 3496 /* We might have learned some bits from the bounds. */ 3497 __reg_bound_offset(false_reg); 3498 __reg_bound_offset(true_reg); 3499 /* Intersecting with the old var_off might have improved our bounds 3500 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3501 * then new var_off is (0; 0x7f...fc) which improves our umax. 3502 */ 3503 __update_reg_bounds(false_reg); 3504 __update_reg_bounds(true_reg); 3505 } 3506 3507 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 3508 * the variable reg. 3509 */ 3510 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 3511 struct bpf_reg_state *false_reg, u64 val, 3512 u8 opcode) 3513 { 3514 if (__is_pointer_value(false, false_reg)) 3515 return; 3516 3517 switch (opcode) { 3518 case BPF_JEQ: 3519 /* If this is false then we know nothing Jon Snow, but if it is 3520 * true then we know for sure. 3521 */ 3522 __mark_reg_known(true_reg, val); 3523 break; 3524 case BPF_JNE: 3525 /* If this is true we know nothing Jon Snow, but if it is false 3526 * we know the value for sure; 3527 */ 3528 __mark_reg_known(false_reg, val); 3529 break; 3530 case BPF_JGT: 3531 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3532 false_reg->umin_value = max(false_reg->umin_value, val); 3533 break; 3534 case BPF_JSGT: 3535 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3536 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3537 break; 3538 case BPF_JLT: 3539 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3540 false_reg->umax_value = min(false_reg->umax_value, val); 3541 break; 3542 case BPF_JSLT: 3543 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3544 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3545 break; 3546 case BPF_JGE: 3547 true_reg->umax_value = min(true_reg->umax_value, val); 3548 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3549 break; 3550 case BPF_JSGE: 3551 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3552 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3553 break; 3554 case BPF_JLE: 3555 true_reg->umin_value = max(true_reg->umin_value, val); 3556 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3557 break; 3558 case BPF_JSLE: 3559 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3560 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3561 break; 3562 default: 3563 break; 3564 } 3565 3566 __reg_deduce_bounds(false_reg); 3567 __reg_deduce_bounds(true_reg); 3568 /* We might have learned some bits from the bounds. */ 3569 __reg_bound_offset(false_reg); 3570 __reg_bound_offset(true_reg); 3571 /* Intersecting with the old var_off might have improved our bounds 3572 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3573 * then new var_off is (0; 0x7f...fc) which improves our umax. 3574 */ 3575 __update_reg_bounds(false_reg); 3576 __update_reg_bounds(true_reg); 3577 } 3578 3579 /* Regs are known to be equal, so intersect their min/max/var_off */ 3580 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 3581 struct bpf_reg_state *dst_reg) 3582 { 3583 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 3584 dst_reg->umin_value); 3585 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 3586 dst_reg->umax_value); 3587 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 3588 dst_reg->smin_value); 3589 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 3590 dst_reg->smax_value); 3591 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 3592 dst_reg->var_off); 3593 /* We might have learned new bounds from the var_off. */ 3594 __update_reg_bounds(src_reg); 3595 __update_reg_bounds(dst_reg); 3596 /* We might have learned something about the sign bit. */ 3597 __reg_deduce_bounds(src_reg); 3598 __reg_deduce_bounds(dst_reg); 3599 /* We might have learned some bits from the bounds. */ 3600 __reg_bound_offset(src_reg); 3601 __reg_bound_offset(dst_reg); 3602 /* Intersecting with the old var_off might have improved our bounds 3603 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3604 * then new var_off is (0; 0x7f...fc) which improves our umax. 3605 */ 3606 __update_reg_bounds(src_reg); 3607 __update_reg_bounds(dst_reg); 3608 } 3609 3610 static void reg_combine_min_max(struct bpf_reg_state *true_src, 3611 struct bpf_reg_state *true_dst, 3612 struct bpf_reg_state *false_src, 3613 struct bpf_reg_state *false_dst, 3614 u8 opcode) 3615 { 3616 switch (opcode) { 3617 case BPF_JEQ: 3618 __reg_combine_min_max(true_src, true_dst); 3619 break; 3620 case BPF_JNE: 3621 __reg_combine_min_max(false_src, false_dst); 3622 break; 3623 } 3624 } 3625 3626 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, 3627 bool is_null) 3628 { 3629 struct bpf_reg_state *reg = ®s[regno]; 3630 3631 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { 3632 /* Old offset (both fixed and variable parts) should 3633 * have been known-zero, because we don't allow pointer 3634 * arithmetic on pointers that might be NULL. 3635 */ 3636 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 3637 !tnum_equals_const(reg->var_off, 0) || 3638 reg->off)) { 3639 __mark_reg_known_zero(reg); 3640 reg->off = 0; 3641 } 3642 if (is_null) { 3643 reg->type = SCALAR_VALUE; 3644 } else if (reg->map_ptr->inner_map_meta) { 3645 reg->type = CONST_PTR_TO_MAP; 3646 reg->map_ptr = reg->map_ptr->inner_map_meta; 3647 } else { 3648 reg->type = PTR_TO_MAP_VALUE; 3649 } 3650 /* We don't need id from this point onwards anymore, thus we 3651 * should better reset it, so that state pruning has chances 3652 * to take effect. 3653 */ 3654 reg->id = 0; 3655 } 3656 } 3657 3658 /* The logic is similar to find_good_pkt_pointers(), both could eventually 3659 * be folded together at some point. 3660 */ 3661 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno, 3662 bool is_null) 3663 { 3664 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3665 struct bpf_reg_state *regs = state->regs; 3666 u32 id = regs[regno].id; 3667 int i, j; 3668 3669 for (i = 0; i < MAX_BPF_REG; i++) 3670 mark_map_reg(regs, i, id, is_null); 3671 3672 for (j = 0; j <= vstate->curframe; j++) { 3673 state = vstate->frame[j]; 3674 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3675 if (state->stack[i].slot_type[0] != STACK_SPILL) 3676 continue; 3677 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null); 3678 } 3679 } 3680 } 3681 3682 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 3683 struct bpf_reg_state *dst_reg, 3684 struct bpf_reg_state *src_reg, 3685 struct bpf_verifier_state *this_branch, 3686 struct bpf_verifier_state *other_branch) 3687 { 3688 if (BPF_SRC(insn->code) != BPF_X) 3689 return false; 3690 3691 switch (BPF_OP(insn->code)) { 3692 case BPF_JGT: 3693 if ((dst_reg->type == PTR_TO_PACKET && 3694 src_reg->type == PTR_TO_PACKET_END) || 3695 (dst_reg->type == PTR_TO_PACKET_META && 3696 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3697 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 3698 find_good_pkt_pointers(this_branch, dst_reg, 3699 dst_reg->type, false); 3700 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3701 src_reg->type == PTR_TO_PACKET) || 3702 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3703 src_reg->type == PTR_TO_PACKET_META)) { 3704 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 3705 find_good_pkt_pointers(other_branch, src_reg, 3706 src_reg->type, true); 3707 } else { 3708 return false; 3709 } 3710 break; 3711 case BPF_JLT: 3712 if ((dst_reg->type == PTR_TO_PACKET && 3713 src_reg->type == PTR_TO_PACKET_END) || 3714 (dst_reg->type == PTR_TO_PACKET_META && 3715 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3716 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 3717 find_good_pkt_pointers(other_branch, dst_reg, 3718 dst_reg->type, true); 3719 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3720 src_reg->type == PTR_TO_PACKET) || 3721 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3722 src_reg->type == PTR_TO_PACKET_META)) { 3723 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 3724 find_good_pkt_pointers(this_branch, src_reg, 3725 src_reg->type, false); 3726 } else { 3727 return false; 3728 } 3729 break; 3730 case BPF_JGE: 3731 if ((dst_reg->type == PTR_TO_PACKET && 3732 src_reg->type == PTR_TO_PACKET_END) || 3733 (dst_reg->type == PTR_TO_PACKET_META && 3734 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3735 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 3736 find_good_pkt_pointers(this_branch, dst_reg, 3737 dst_reg->type, true); 3738 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3739 src_reg->type == PTR_TO_PACKET) || 3740 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3741 src_reg->type == PTR_TO_PACKET_META)) { 3742 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 3743 find_good_pkt_pointers(other_branch, src_reg, 3744 src_reg->type, false); 3745 } else { 3746 return false; 3747 } 3748 break; 3749 case BPF_JLE: 3750 if ((dst_reg->type == PTR_TO_PACKET && 3751 src_reg->type == PTR_TO_PACKET_END) || 3752 (dst_reg->type == PTR_TO_PACKET_META && 3753 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3754 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 3755 find_good_pkt_pointers(other_branch, dst_reg, 3756 dst_reg->type, false); 3757 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3758 src_reg->type == PTR_TO_PACKET) || 3759 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3760 src_reg->type == PTR_TO_PACKET_META)) { 3761 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 3762 find_good_pkt_pointers(this_branch, src_reg, 3763 src_reg->type, true); 3764 } else { 3765 return false; 3766 } 3767 break; 3768 default: 3769 return false; 3770 } 3771 3772 return true; 3773 } 3774 3775 static int check_cond_jmp_op(struct bpf_verifier_env *env, 3776 struct bpf_insn *insn, int *insn_idx) 3777 { 3778 struct bpf_verifier_state *this_branch = env->cur_state; 3779 struct bpf_verifier_state *other_branch; 3780 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 3781 struct bpf_reg_state *dst_reg, *other_branch_regs; 3782 u8 opcode = BPF_OP(insn->code); 3783 int err; 3784 3785 if (opcode > BPF_JSLE) { 3786 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 3787 return -EINVAL; 3788 } 3789 3790 if (BPF_SRC(insn->code) == BPF_X) { 3791 if (insn->imm != 0) { 3792 verbose(env, "BPF_JMP uses reserved fields\n"); 3793 return -EINVAL; 3794 } 3795 3796 /* check src1 operand */ 3797 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3798 if (err) 3799 return err; 3800 3801 if (is_pointer_value(env, insn->src_reg)) { 3802 verbose(env, "R%d pointer comparison prohibited\n", 3803 insn->src_reg); 3804 return -EACCES; 3805 } 3806 } else { 3807 if (insn->src_reg != BPF_REG_0) { 3808 verbose(env, "BPF_JMP uses reserved fields\n"); 3809 return -EINVAL; 3810 } 3811 } 3812 3813 /* check src2 operand */ 3814 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3815 if (err) 3816 return err; 3817 3818 dst_reg = ®s[insn->dst_reg]; 3819 3820 /* detect if R == 0 where R was initialized to zero earlier */ 3821 if (BPF_SRC(insn->code) == BPF_K && 3822 (opcode == BPF_JEQ || opcode == BPF_JNE) && 3823 dst_reg->type == SCALAR_VALUE && 3824 tnum_is_const(dst_reg->var_off)) { 3825 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) || 3826 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) { 3827 /* if (imm == imm) goto pc+off; 3828 * only follow the goto, ignore fall-through 3829 */ 3830 *insn_idx += insn->off; 3831 return 0; 3832 } else { 3833 /* if (imm != imm) goto pc+off; 3834 * only follow fall-through branch, since 3835 * that's where the program will go 3836 */ 3837 return 0; 3838 } 3839 } 3840 3841 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 3842 if (!other_branch) 3843 return -EFAULT; 3844 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 3845 3846 /* detect if we are comparing against a constant value so we can adjust 3847 * our min/max values for our dst register. 3848 * this is only legit if both are scalars (or pointers to the same 3849 * object, I suppose, but we don't support that right now), because 3850 * otherwise the different base pointers mean the offsets aren't 3851 * comparable. 3852 */ 3853 if (BPF_SRC(insn->code) == BPF_X) { 3854 if (dst_reg->type == SCALAR_VALUE && 3855 regs[insn->src_reg].type == SCALAR_VALUE) { 3856 if (tnum_is_const(regs[insn->src_reg].var_off)) 3857 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3858 dst_reg, regs[insn->src_reg].var_off.value, 3859 opcode); 3860 else if (tnum_is_const(dst_reg->var_off)) 3861 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 3862 ®s[insn->src_reg], 3863 dst_reg->var_off.value, opcode); 3864 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 3865 /* Comparing for equality, we can combine knowledge */ 3866 reg_combine_min_max(&other_branch_regs[insn->src_reg], 3867 &other_branch_regs[insn->dst_reg], 3868 ®s[insn->src_reg], 3869 ®s[insn->dst_reg], opcode); 3870 } 3871 } else if (dst_reg->type == SCALAR_VALUE) { 3872 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3873 dst_reg, insn->imm, opcode); 3874 } 3875 3876 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 3877 if (BPF_SRC(insn->code) == BPF_K && 3878 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 3879 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 3880 /* Mark all identical map registers in each branch as either 3881 * safe or unknown depending R == 0 or R != 0 conditional. 3882 */ 3883 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 3884 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); 3885 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 3886 this_branch, other_branch) && 3887 is_pointer_value(env, insn->dst_reg)) { 3888 verbose(env, "R%d pointer comparison prohibited\n", 3889 insn->dst_reg); 3890 return -EACCES; 3891 } 3892 if (env->log.level) 3893 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 3894 return 0; 3895 } 3896 3897 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 3898 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 3899 { 3900 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 3901 3902 return (struct bpf_map *) (unsigned long) imm64; 3903 } 3904 3905 /* verify BPF_LD_IMM64 instruction */ 3906 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 3907 { 3908 struct bpf_reg_state *regs = cur_regs(env); 3909 int err; 3910 3911 if (BPF_SIZE(insn->code) != BPF_DW) { 3912 verbose(env, "invalid BPF_LD_IMM insn\n"); 3913 return -EINVAL; 3914 } 3915 if (insn->off != 0) { 3916 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 3917 return -EINVAL; 3918 } 3919 3920 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3921 if (err) 3922 return err; 3923 3924 if (insn->src_reg == 0) { 3925 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 3926 3927 regs[insn->dst_reg].type = SCALAR_VALUE; 3928 __mark_reg_known(®s[insn->dst_reg], imm); 3929 return 0; 3930 } 3931 3932 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 3933 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 3934 3935 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 3936 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 3937 return 0; 3938 } 3939 3940 static bool may_access_skb(enum bpf_prog_type type) 3941 { 3942 switch (type) { 3943 case BPF_PROG_TYPE_SOCKET_FILTER: 3944 case BPF_PROG_TYPE_SCHED_CLS: 3945 case BPF_PROG_TYPE_SCHED_ACT: 3946 return true; 3947 default: 3948 return false; 3949 } 3950 } 3951 3952 /* verify safety of LD_ABS|LD_IND instructions: 3953 * - they can only appear in the programs where ctx == skb 3954 * - since they are wrappers of function calls, they scratch R1-R5 registers, 3955 * preserve R6-R9, and store return value into R0 3956 * 3957 * Implicit input: 3958 * ctx == skb == R6 == CTX 3959 * 3960 * Explicit input: 3961 * SRC == any register 3962 * IMM == 32-bit immediate 3963 * 3964 * Output: 3965 * R0 - 8/16/32-bit skb data converted to cpu endianness 3966 */ 3967 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 3968 { 3969 struct bpf_reg_state *regs = cur_regs(env); 3970 u8 mode = BPF_MODE(insn->code); 3971 int i, err; 3972 3973 if (!may_access_skb(env->prog->type)) { 3974 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 3975 return -EINVAL; 3976 } 3977 3978 if (!env->ops->gen_ld_abs) { 3979 verbose(env, "bpf verifier is misconfigured\n"); 3980 return -EINVAL; 3981 } 3982 3983 if (env->subprog_cnt > 1) { 3984 /* when program has LD_ABS insn JITs and interpreter assume 3985 * that r1 == ctx == skb which is not the case for callees 3986 * that can have arbitrary arguments. It's problematic 3987 * for main prog as well since JITs would need to analyze 3988 * all functions in order to make proper register save/restore 3989 * decisions in the main prog. Hence disallow LD_ABS with calls 3990 */ 3991 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 3992 return -EINVAL; 3993 } 3994 3995 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 3996 BPF_SIZE(insn->code) == BPF_DW || 3997 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 3998 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 3999 return -EINVAL; 4000 } 4001 4002 /* check whether implicit source operand (register R6) is readable */ 4003 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 4004 if (err) 4005 return err; 4006 4007 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 4008 verbose(env, 4009 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 4010 return -EINVAL; 4011 } 4012 4013 if (mode == BPF_IND) { 4014 /* check explicit source operand */ 4015 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4016 if (err) 4017 return err; 4018 } 4019 4020 /* reset caller saved regs to unreadable */ 4021 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4022 mark_reg_not_init(env, regs, caller_saved[i]); 4023 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4024 } 4025 4026 /* mark destination R0 register as readable, since it contains 4027 * the value fetched from the packet. 4028 * Already marked as written above. 4029 */ 4030 mark_reg_unknown(env, regs, BPF_REG_0); 4031 return 0; 4032 } 4033 4034 static int check_return_code(struct bpf_verifier_env *env) 4035 { 4036 struct bpf_reg_state *reg; 4037 struct tnum range = tnum_range(0, 1); 4038 4039 switch (env->prog->type) { 4040 case BPF_PROG_TYPE_CGROUP_SKB: 4041 case BPF_PROG_TYPE_CGROUP_SOCK: 4042 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 4043 case BPF_PROG_TYPE_SOCK_OPS: 4044 case BPF_PROG_TYPE_CGROUP_DEVICE: 4045 break; 4046 default: 4047 return 0; 4048 } 4049 4050 reg = cur_regs(env) + BPF_REG_0; 4051 if (reg->type != SCALAR_VALUE) { 4052 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 4053 reg_type_str[reg->type]); 4054 return -EINVAL; 4055 } 4056 4057 if (!tnum_in(range, reg->var_off)) { 4058 verbose(env, "At program exit the register R0 "); 4059 if (!tnum_is_unknown(reg->var_off)) { 4060 char tn_buf[48]; 4061 4062 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4063 verbose(env, "has value %s", tn_buf); 4064 } else { 4065 verbose(env, "has unknown scalar value"); 4066 } 4067 verbose(env, " should have been 0 or 1\n"); 4068 return -EINVAL; 4069 } 4070 return 0; 4071 } 4072 4073 /* non-recursive DFS pseudo code 4074 * 1 procedure DFS-iterative(G,v): 4075 * 2 label v as discovered 4076 * 3 let S be a stack 4077 * 4 S.push(v) 4078 * 5 while S is not empty 4079 * 6 t <- S.pop() 4080 * 7 if t is what we're looking for: 4081 * 8 return t 4082 * 9 for all edges e in G.adjacentEdges(t) do 4083 * 10 if edge e is already labelled 4084 * 11 continue with the next edge 4085 * 12 w <- G.adjacentVertex(t,e) 4086 * 13 if vertex w is not discovered and not explored 4087 * 14 label e as tree-edge 4088 * 15 label w as discovered 4089 * 16 S.push(w) 4090 * 17 continue at 5 4091 * 18 else if vertex w is discovered 4092 * 19 label e as back-edge 4093 * 20 else 4094 * 21 // vertex w is explored 4095 * 22 label e as forward- or cross-edge 4096 * 23 label t as explored 4097 * 24 S.pop() 4098 * 4099 * convention: 4100 * 0x10 - discovered 4101 * 0x11 - discovered and fall-through edge labelled 4102 * 0x12 - discovered and fall-through and branch edges labelled 4103 * 0x20 - explored 4104 */ 4105 4106 enum { 4107 DISCOVERED = 0x10, 4108 EXPLORED = 0x20, 4109 FALLTHROUGH = 1, 4110 BRANCH = 2, 4111 }; 4112 4113 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 4114 4115 static int *insn_stack; /* stack of insns to process */ 4116 static int cur_stack; /* current stack index */ 4117 static int *insn_state; 4118 4119 /* t, w, e - match pseudo-code above: 4120 * t - index of current instruction 4121 * w - next instruction 4122 * e - edge 4123 */ 4124 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 4125 { 4126 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 4127 return 0; 4128 4129 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 4130 return 0; 4131 4132 if (w < 0 || w >= env->prog->len) { 4133 verbose(env, "jump out of range from insn %d to %d\n", t, w); 4134 return -EINVAL; 4135 } 4136 4137 if (e == BRANCH) 4138 /* mark branch target for state pruning */ 4139 env->explored_states[w] = STATE_LIST_MARK; 4140 4141 if (insn_state[w] == 0) { 4142 /* tree-edge */ 4143 insn_state[t] = DISCOVERED | e; 4144 insn_state[w] = DISCOVERED; 4145 if (cur_stack >= env->prog->len) 4146 return -E2BIG; 4147 insn_stack[cur_stack++] = w; 4148 return 1; 4149 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 4150 verbose(env, "back-edge from insn %d to %d\n", t, w); 4151 return -EINVAL; 4152 } else if (insn_state[w] == EXPLORED) { 4153 /* forward- or cross-edge */ 4154 insn_state[t] = DISCOVERED | e; 4155 } else { 4156 verbose(env, "insn state internal bug\n"); 4157 return -EFAULT; 4158 } 4159 return 0; 4160 } 4161 4162 /* non-recursive depth-first-search to detect loops in BPF program 4163 * loop == back-edge in directed graph 4164 */ 4165 static int check_cfg(struct bpf_verifier_env *env) 4166 { 4167 struct bpf_insn *insns = env->prog->insnsi; 4168 int insn_cnt = env->prog->len; 4169 int ret = 0; 4170 int i, t; 4171 4172 ret = check_subprogs(env); 4173 if (ret < 0) 4174 return ret; 4175 4176 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4177 if (!insn_state) 4178 return -ENOMEM; 4179 4180 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4181 if (!insn_stack) { 4182 kfree(insn_state); 4183 return -ENOMEM; 4184 } 4185 4186 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 4187 insn_stack[0] = 0; /* 0 is the first instruction */ 4188 cur_stack = 1; 4189 4190 peek_stack: 4191 if (cur_stack == 0) 4192 goto check_state; 4193 t = insn_stack[cur_stack - 1]; 4194 4195 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 4196 u8 opcode = BPF_OP(insns[t].code); 4197 4198 if (opcode == BPF_EXIT) { 4199 goto mark_explored; 4200 } else if (opcode == BPF_CALL) { 4201 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4202 if (ret == 1) 4203 goto peek_stack; 4204 else if (ret < 0) 4205 goto err_free; 4206 if (t + 1 < insn_cnt) 4207 env->explored_states[t + 1] = STATE_LIST_MARK; 4208 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 4209 env->explored_states[t] = STATE_LIST_MARK; 4210 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 4211 if (ret == 1) 4212 goto peek_stack; 4213 else if (ret < 0) 4214 goto err_free; 4215 } 4216 } else if (opcode == BPF_JA) { 4217 if (BPF_SRC(insns[t].code) != BPF_K) { 4218 ret = -EINVAL; 4219 goto err_free; 4220 } 4221 /* unconditional jump with single edge */ 4222 ret = push_insn(t, t + insns[t].off + 1, 4223 FALLTHROUGH, env); 4224 if (ret == 1) 4225 goto peek_stack; 4226 else if (ret < 0) 4227 goto err_free; 4228 /* tell verifier to check for equivalent states 4229 * after every call and jump 4230 */ 4231 if (t + 1 < insn_cnt) 4232 env->explored_states[t + 1] = STATE_LIST_MARK; 4233 } else { 4234 /* conditional jump with two edges */ 4235 env->explored_states[t] = STATE_LIST_MARK; 4236 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4237 if (ret == 1) 4238 goto peek_stack; 4239 else if (ret < 0) 4240 goto err_free; 4241 4242 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 4243 if (ret == 1) 4244 goto peek_stack; 4245 else if (ret < 0) 4246 goto err_free; 4247 } 4248 } else { 4249 /* all other non-branch instructions with single 4250 * fall-through edge 4251 */ 4252 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4253 if (ret == 1) 4254 goto peek_stack; 4255 else if (ret < 0) 4256 goto err_free; 4257 } 4258 4259 mark_explored: 4260 insn_state[t] = EXPLORED; 4261 if (cur_stack-- <= 0) { 4262 verbose(env, "pop stack internal bug\n"); 4263 ret = -EFAULT; 4264 goto err_free; 4265 } 4266 goto peek_stack; 4267 4268 check_state: 4269 for (i = 0; i < insn_cnt; i++) { 4270 if (insn_state[i] != EXPLORED) { 4271 verbose(env, "unreachable insn %d\n", i); 4272 ret = -EINVAL; 4273 goto err_free; 4274 } 4275 } 4276 ret = 0; /* cfg looks good */ 4277 4278 err_free: 4279 kfree(insn_state); 4280 kfree(insn_stack); 4281 return ret; 4282 } 4283 4284 /* check %cur's range satisfies %old's */ 4285 static bool range_within(struct bpf_reg_state *old, 4286 struct bpf_reg_state *cur) 4287 { 4288 return old->umin_value <= cur->umin_value && 4289 old->umax_value >= cur->umax_value && 4290 old->smin_value <= cur->smin_value && 4291 old->smax_value >= cur->smax_value; 4292 } 4293 4294 /* Maximum number of register states that can exist at once */ 4295 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 4296 struct idpair { 4297 u32 old; 4298 u32 cur; 4299 }; 4300 4301 /* If in the old state two registers had the same id, then they need to have 4302 * the same id in the new state as well. But that id could be different from 4303 * the old state, so we need to track the mapping from old to new ids. 4304 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 4305 * regs with old id 5 must also have new id 9 for the new state to be safe. But 4306 * regs with a different old id could still have new id 9, we don't care about 4307 * that. 4308 * So we look through our idmap to see if this old id has been seen before. If 4309 * so, we require the new id to match; otherwise, we add the id pair to the map. 4310 */ 4311 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 4312 { 4313 unsigned int i; 4314 4315 for (i = 0; i < ID_MAP_SIZE; i++) { 4316 if (!idmap[i].old) { 4317 /* Reached an empty slot; haven't seen this id before */ 4318 idmap[i].old = old_id; 4319 idmap[i].cur = cur_id; 4320 return true; 4321 } 4322 if (idmap[i].old == old_id) 4323 return idmap[i].cur == cur_id; 4324 } 4325 /* We ran out of idmap slots, which should be impossible */ 4326 WARN_ON_ONCE(1); 4327 return false; 4328 } 4329 4330 /* Returns true if (rold safe implies rcur safe) */ 4331 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 4332 struct idpair *idmap) 4333 { 4334 bool equal; 4335 4336 if (!(rold->live & REG_LIVE_READ)) 4337 /* explored state didn't use this */ 4338 return true; 4339 4340 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0; 4341 4342 if (rold->type == PTR_TO_STACK) 4343 /* two stack pointers are equal only if they're pointing to 4344 * the same stack frame, since fp-8 in foo != fp-8 in bar 4345 */ 4346 return equal && rold->frameno == rcur->frameno; 4347 4348 if (equal) 4349 return true; 4350 4351 if (rold->type == NOT_INIT) 4352 /* explored state can't have used this */ 4353 return true; 4354 if (rcur->type == NOT_INIT) 4355 return false; 4356 switch (rold->type) { 4357 case SCALAR_VALUE: 4358 if (rcur->type == SCALAR_VALUE) { 4359 /* new val must satisfy old val knowledge */ 4360 return range_within(rold, rcur) && 4361 tnum_in(rold->var_off, rcur->var_off); 4362 } else { 4363 /* We're trying to use a pointer in place of a scalar. 4364 * Even if the scalar was unbounded, this could lead to 4365 * pointer leaks because scalars are allowed to leak 4366 * while pointers are not. We could make this safe in 4367 * special cases if root is calling us, but it's 4368 * probably not worth the hassle. 4369 */ 4370 return false; 4371 } 4372 case PTR_TO_MAP_VALUE: 4373 /* If the new min/max/var_off satisfy the old ones and 4374 * everything else matches, we are OK. 4375 * We don't care about the 'id' value, because nothing 4376 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 4377 */ 4378 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 4379 range_within(rold, rcur) && 4380 tnum_in(rold->var_off, rcur->var_off); 4381 case PTR_TO_MAP_VALUE_OR_NULL: 4382 /* a PTR_TO_MAP_VALUE could be safe to use as a 4383 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 4384 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 4385 * checked, doing so could have affected others with the same 4386 * id, and we can't check for that because we lost the id when 4387 * we converted to a PTR_TO_MAP_VALUE. 4388 */ 4389 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 4390 return false; 4391 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 4392 return false; 4393 /* Check our ids match any regs they're supposed to */ 4394 return check_ids(rold->id, rcur->id, idmap); 4395 case PTR_TO_PACKET_META: 4396 case PTR_TO_PACKET: 4397 if (rcur->type != rold->type) 4398 return false; 4399 /* We must have at least as much range as the old ptr 4400 * did, so that any accesses which were safe before are 4401 * still safe. This is true even if old range < old off, 4402 * since someone could have accessed through (ptr - k), or 4403 * even done ptr -= k in a register, to get a safe access. 4404 */ 4405 if (rold->range > rcur->range) 4406 return false; 4407 /* If the offsets don't match, we can't trust our alignment; 4408 * nor can we be sure that we won't fall out of range. 4409 */ 4410 if (rold->off != rcur->off) 4411 return false; 4412 /* id relations must be preserved */ 4413 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 4414 return false; 4415 /* new val must satisfy old val knowledge */ 4416 return range_within(rold, rcur) && 4417 tnum_in(rold->var_off, rcur->var_off); 4418 case PTR_TO_CTX: 4419 case CONST_PTR_TO_MAP: 4420 case PTR_TO_PACKET_END: 4421 /* Only valid matches are exact, which memcmp() above 4422 * would have accepted 4423 */ 4424 default: 4425 /* Don't know what's going on, just say it's not safe */ 4426 return false; 4427 } 4428 4429 /* Shouldn't get here; if we do, say it's not safe */ 4430 WARN_ON_ONCE(1); 4431 return false; 4432 } 4433 4434 static bool stacksafe(struct bpf_func_state *old, 4435 struct bpf_func_state *cur, 4436 struct idpair *idmap) 4437 { 4438 int i, spi; 4439 4440 /* if explored stack has more populated slots than current stack 4441 * such stacks are not equivalent 4442 */ 4443 if (old->allocated_stack > cur->allocated_stack) 4444 return false; 4445 4446 /* walk slots of the explored stack and ignore any additional 4447 * slots in the current stack, since explored(safe) state 4448 * didn't use them 4449 */ 4450 for (i = 0; i < old->allocated_stack; i++) { 4451 spi = i / BPF_REG_SIZE; 4452 4453 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) 4454 /* explored state didn't use this */ 4455 continue; 4456 4457 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 4458 continue; 4459 /* if old state was safe with misc data in the stack 4460 * it will be safe with zero-initialized stack. 4461 * The opposite is not true 4462 */ 4463 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 4464 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 4465 continue; 4466 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 4467 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 4468 /* Ex: old explored (safe) state has STACK_SPILL in 4469 * this stack slot, but current has has STACK_MISC -> 4470 * this verifier states are not equivalent, 4471 * return false to continue verification of this path 4472 */ 4473 return false; 4474 if (i % BPF_REG_SIZE) 4475 continue; 4476 if (old->stack[spi].slot_type[0] != STACK_SPILL) 4477 continue; 4478 if (!regsafe(&old->stack[spi].spilled_ptr, 4479 &cur->stack[spi].spilled_ptr, 4480 idmap)) 4481 /* when explored and current stack slot are both storing 4482 * spilled registers, check that stored pointers types 4483 * are the same as well. 4484 * Ex: explored safe path could have stored 4485 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 4486 * but current path has stored: 4487 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 4488 * such verifier states are not equivalent. 4489 * return false to continue verification of this path 4490 */ 4491 return false; 4492 } 4493 return true; 4494 } 4495 4496 /* compare two verifier states 4497 * 4498 * all states stored in state_list are known to be valid, since 4499 * verifier reached 'bpf_exit' instruction through them 4500 * 4501 * this function is called when verifier exploring different branches of 4502 * execution popped from the state stack. If it sees an old state that has 4503 * more strict register state and more strict stack state then this execution 4504 * branch doesn't need to be explored further, since verifier already 4505 * concluded that more strict state leads to valid finish. 4506 * 4507 * Therefore two states are equivalent if register state is more conservative 4508 * and explored stack state is more conservative than the current one. 4509 * Example: 4510 * explored current 4511 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 4512 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 4513 * 4514 * In other words if current stack state (one being explored) has more 4515 * valid slots than old one that already passed validation, it means 4516 * the verifier can stop exploring and conclude that current state is valid too 4517 * 4518 * Similarly with registers. If explored state has register type as invalid 4519 * whereas register type in current state is meaningful, it means that 4520 * the current state will reach 'bpf_exit' instruction safely 4521 */ 4522 static bool func_states_equal(struct bpf_func_state *old, 4523 struct bpf_func_state *cur) 4524 { 4525 struct idpair *idmap; 4526 bool ret = false; 4527 int i; 4528 4529 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 4530 /* If we failed to allocate the idmap, just say it's not safe */ 4531 if (!idmap) 4532 return false; 4533 4534 for (i = 0; i < MAX_BPF_REG; i++) { 4535 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 4536 goto out_free; 4537 } 4538 4539 if (!stacksafe(old, cur, idmap)) 4540 goto out_free; 4541 ret = true; 4542 out_free: 4543 kfree(idmap); 4544 return ret; 4545 } 4546 4547 static bool states_equal(struct bpf_verifier_env *env, 4548 struct bpf_verifier_state *old, 4549 struct bpf_verifier_state *cur) 4550 { 4551 int i; 4552 4553 if (old->curframe != cur->curframe) 4554 return false; 4555 4556 /* for states to be equal callsites have to be the same 4557 * and all frame states need to be equivalent 4558 */ 4559 for (i = 0; i <= old->curframe; i++) { 4560 if (old->frame[i]->callsite != cur->frame[i]->callsite) 4561 return false; 4562 if (!func_states_equal(old->frame[i], cur->frame[i])) 4563 return false; 4564 } 4565 return true; 4566 } 4567 4568 /* A write screens off any subsequent reads; but write marks come from the 4569 * straight-line code between a state and its parent. When we arrive at an 4570 * equivalent state (jump target or such) we didn't arrive by the straight-line 4571 * code, so read marks in the state must propagate to the parent regardless 4572 * of the state's write marks. That's what 'parent == state->parent' comparison 4573 * in mark_reg_read() and mark_stack_slot_read() is for. 4574 */ 4575 static int propagate_liveness(struct bpf_verifier_env *env, 4576 const struct bpf_verifier_state *vstate, 4577 struct bpf_verifier_state *vparent) 4578 { 4579 int i, frame, err = 0; 4580 struct bpf_func_state *state, *parent; 4581 4582 if (vparent->curframe != vstate->curframe) { 4583 WARN(1, "propagate_live: parent frame %d current frame %d\n", 4584 vparent->curframe, vstate->curframe); 4585 return -EFAULT; 4586 } 4587 /* Propagate read liveness of registers... */ 4588 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 4589 /* We don't need to worry about FP liveness because it's read-only */ 4590 for (i = 0; i < BPF_REG_FP; i++) { 4591 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 4592 continue; 4593 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 4594 err = mark_reg_read(env, vstate, vparent, i); 4595 if (err) 4596 return err; 4597 } 4598 } 4599 4600 /* ... and stack slots */ 4601 for (frame = 0; frame <= vstate->curframe; frame++) { 4602 state = vstate->frame[frame]; 4603 parent = vparent->frame[frame]; 4604 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 4605 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 4606 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 4607 continue; 4608 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 4609 mark_stack_slot_read(env, vstate, vparent, i, frame); 4610 } 4611 } 4612 return err; 4613 } 4614 4615 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 4616 { 4617 struct bpf_verifier_state_list *new_sl; 4618 struct bpf_verifier_state_list *sl; 4619 struct bpf_verifier_state *cur = env->cur_state; 4620 int i, j, err; 4621 4622 sl = env->explored_states[insn_idx]; 4623 if (!sl) 4624 /* this 'insn_idx' instruction wasn't marked, so we will not 4625 * be doing state search here 4626 */ 4627 return 0; 4628 4629 while (sl != STATE_LIST_MARK) { 4630 if (states_equal(env, &sl->state, cur)) { 4631 /* reached equivalent register/stack state, 4632 * prune the search. 4633 * Registers read by the continuation are read by us. 4634 * If we have any write marks in env->cur_state, they 4635 * will prevent corresponding reads in the continuation 4636 * from reaching our parent (an explored_state). Our 4637 * own state will get the read marks recorded, but 4638 * they'll be immediately forgotten as we're pruning 4639 * this state and will pop a new one. 4640 */ 4641 err = propagate_liveness(env, &sl->state, cur); 4642 if (err) 4643 return err; 4644 return 1; 4645 } 4646 sl = sl->next; 4647 } 4648 4649 /* there were no equivalent states, remember current one. 4650 * technically the current state is not proven to be safe yet, 4651 * but it will either reach outer most bpf_exit (which means it's safe) 4652 * or it will be rejected. Since there are no loops, we won't be 4653 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 4654 * again on the way to bpf_exit 4655 */ 4656 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 4657 if (!new_sl) 4658 return -ENOMEM; 4659 4660 /* add new state to the head of linked list */ 4661 err = copy_verifier_state(&new_sl->state, cur); 4662 if (err) { 4663 free_verifier_state(&new_sl->state, false); 4664 kfree(new_sl); 4665 return err; 4666 } 4667 new_sl->next = env->explored_states[insn_idx]; 4668 env->explored_states[insn_idx] = new_sl; 4669 /* connect new state to parentage chain */ 4670 cur->parent = &new_sl->state; 4671 /* clear write marks in current state: the writes we did are not writes 4672 * our child did, so they don't screen off its reads from us. 4673 * (There are no read marks in current state, because reads always mark 4674 * their parent and current state never has children yet. Only 4675 * explored_states can get read marks.) 4676 */ 4677 for (i = 0; i < BPF_REG_FP; i++) 4678 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 4679 4680 /* all stack frames are accessible from callee, clear them all */ 4681 for (j = 0; j <= cur->curframe; j++) { 4682 struct bpf_func_state *frame = cur->frame[j]; 4683 4684 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) 4685 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 4686 } 4687 return 0; 4688 } 4689 4690 static int do_check(struct bpf_verifier_env *env) 4691 { 4692 struct bpf_verifier_state *state; 4693 struct bpf_insn *insns = env->prog->insnsi; 4694 struct bpf_reg_state *regs; 4695 int insn_cnt = env->prog->len, i; 4696 int insn_idx, prev_insn_idx = 0; 4697 int insn_processed = 0; 4698 bool do_print_state = false; 4699 4700 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 4701 if (!state) 4702 return -ENOMEM; 4703 state->curframe = 0; 4704 state->parent = NULL; 4705 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 4706 if (!state->frame[0]) { 4707 kfree(state); 4708 return -ENOMEM; 4709 } 4710 env->cur_state = state; 4711 init_func_state(env, state->frame[0], 4712 BPF_MAIN_FUNC /* callsite */, 4713 0 /* frameno */, 4714 0 /* subprogno, zero == main subprog */); 4715 insn_idx = 0; 4716 for (;;) { 4717 struct bpf_insn *insn; 4718 u8 class; 4719 int err; 4720 4721 if (insn_idx >= insn_cnt) { 4722 verbose(env, "invalid insn idx %d insn_cnt %d\n", 4723 insn_idx, insn_cnt); 4724 return -EFAULT; 4725 } 4726 4727 insn = &insns[insn_idx]; 4728 class = BPF_CLASS(insn->code); 4729 4730 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 4731 verbose(env, 4732 "BPF program is too large. Processed %d insn\n", 4733 insn_processed); 4734 return -E2BIG; 4735 } 4736 4737 err = is_state_visited(env, insn_idx); 4738 if (err < 0) 4739 return err; 4740 if (err == 1) { 4741 /* found equivalent state, can prune the search */ 4742 if (env->log.level) { 4743 if (do_print_state) 4744 verbose(env, "\nfrom %d to %d: safe\n", 4745 prev_insn_idx, insn_idx); 4746 else 4747 verbose(env, "%d: safe\n", insn_idx); 4748 } 4749 goto process_bpf_exit; 4750 } 4751 4752 if (need_resched()) 4753 cond_resched(); 4754 4755 if (env->log.level > 1 || (env->log.level && do_print_state)) { 4756 if (env->log.level > 1) 4757 verbose(env, "%d:", insn_idx); 4758 else 4759 verbose(env, "\nfrom %d to %d:", 4760 prev_insn_idx, insn_idx); 4761 print_verifier_state(env, state->frame[state->curframe]); 4762 do_print_state = false; 4763 } 4764 4765 if (env->log.level) { 4766 const struct bpf_insn_cbs cbs = { 4767 .cb_print = verbose, 4768 .private_data = env, 4769 }; 4770 4771 verbose(env, "%d: ", insn_idx); 4772 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 4773 } 4774 4775 if (bpf_prog_is_dev_bound(env->prog->aux)) { 4776 err = bpf_prog_offload_verify_insn(env, insn_idx, 4777 prev_insn_idx); 4778 if (err) 4779 return err; 4780 } 4781 4782 regs = cur_regs(env); 4783 env->insn_aux_data[insn_idx].seen = true; 4784 if (class == BPF_ALU || class == BPF_ALU64) { 4785 err = check_alu_op(env, insn); 4786 if (err) 4787 return err; 4788 4789 } else if (class == BPF_LDX) { 4790 enum bpf_reg_type *prev_src_type, src_reg_type; 4791 4792 /* check for reserved fields is already done */ 4793 4794 /* check src operand */ 4795 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4796 if (err) 4797 return err; 4798 4799 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4800 if (err) 4801 return err; 4802 4803 src_reg_type = regs[insn->src_reg].type; 4804 4805 /* check that memory (src_reg + off) is readable, 4806 * the state of dst_reg will be updated by this func 4807 */ 4808 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 4809 BPF_SIZE(insn->code), BPF_READ, 4810 insn->dst_reg, false); 4811 if (err) 4812 return err; 4813 4814 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 4815 4816 if (*prev_src_type == NOT_INIT) { 4817 /* saw a valid insn 4818 * dst_reg = *(u32 *)(src_reg + off) 4819 * save type to validate intersecting paths 4820 */ 4821 *prev_src_type = src_reg_type; 4822 4823 } else if (src_reg_type != *prev_src_type && 4824 (src_reg_type == PTR_TO_CTX || 4825 *prev_src_type == PTR_TO_CTX)) { 4826 /* ABuser program is trying to use the same insn 4827 * dst_reg = *(u32*) (src_reg + off) 4828 * with different pointer types: 4829 * src_reg == ctx in one branch and 4830 * src_reg == stack|map in some other branch. 4831 * Reject it. 4832 */ 4833 verbose(env, "same insn cannot be used with different pointers\n"); 4834 return -EINVAL; 4835 } 4836 4837 } else if (class == BPF_STX) { 4838 enum bpf_reg_type *prev_dst_type, dst_reg_type; 4839 4840 if (BPF_MODE(insn->code) == BPF_XADD) { 4841 err = check_xadd(env, insn_idx, insn); 4842 if (err) 4843 return err; 4844 insn_idx++; 4845 continue; 4846 } 4847 4848 /* check src1 operand */ 4849 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4850 if (err) 4851 return err; 4852 /* check src2 operand */ 4853 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4854 if (err) 4855 return err; 4856 4857 dst_reg_type = regs[insn->dst_reg].type; 4858 4859 /* check that memory (dst_reg + off) is writeable */ 4860 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4861 BPF_SIZE(insn->code), BPF_WRITE, 4862 insn->src_reg, false); 4863 if (err) 4864 return err; 4865 4866 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 4867 4868 if (*prev_dst_type == NOT_INIT) { 4869 *prev_dst_type = dst_reg_type; 4870 } else if (dst_reg_type != *prev_dst_type && 4871 (dst_reg_type == PTR_TO_CTX || 4872 *prev_dst_type == PTR_TO_CTX)) { 4873 verbose(env, "same insn cannot be used with different pointers\n"); 4874 return -EINVAL; 4875 } 4876 4877 } else if (class == BPF_ST) { 4878 if (BPF_MODE(insn->code) != BPF_MEM || 4879 insn->src_reg != BPF_REG_0) { 4880 verbose(env, "BPF_ST uses reserved fields\n"); 4881 return -EINVAL; 4882 } 4883 /* check src operand */ 4884 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4885 if (err) 4886 return err; 4887 4888 if (is_ctx_reg(env, insn->dst_reg)) { 4889 verbose(env, "BPF_ST stores into R%d context is not allowed\n", 4890 insn->dst_reg); 4891 return -EACCES; 4892 } 4893 4894 /* check that memory (dst_reg + off) is writeable */ 4895 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4896 BPF_SIZE(insn->code), BPF_WRITE, 4897 -1, false); 4898 if (err) 4899 return err; 4900 4901 } else if (class == BPF_JMP) { 4902 u8 opcode = BPF_OP(insn->code); 4903 4904 if (opcode == BPF_CALL) { 4905 if (BPF_SRC(insn->code) != BPF_K || 4906 insn->off != 0 || 4907 (insn->src_reg != BPF_REG_0 && 4908 insn->src_reg != BPF_PSEUDO_CALL) || 4909 insn->dst_reg != BPF_REG_0) { 4910 verbose(env, "BPF_CALL uses reserved fields\n"); 4911 return -EINVAL; 4912 } 4913 4914 if (insn->src_reg == BPF_PSEUDO_CALL) 4915 err = check_func_call(env, insn, &insn_idx); 4916 else 4917 err = check_helper_call(env, insn->imm, insn_idx); 4918 if (err) 4919 return err; 4920 4921 } else if (opcode == BPF_JA) { 4922 if (BPF_SRC(insn->code) != BPF_K || 4923 insn->imm != 0 || 4924 insn->src_reg != BPF_REG_0 || 4925 insn->dst_reg != BPF_REG_0) { 4926 verbose(env, "BPF_JA uses reserved fields\n"); 4927 return -EINVAL; 4928 } 4929 4930 insn_idx += insn->off + 1; 4931 continue; 4932 4933 } else if (opcode == BPF_EXIT) { 4934 if (BPF_SRC(insn->code) != BPF_K || 4935 insn->imm != 0 || 4936 insn->src_reg != BPF_REG_0 || 4937 insn->dst_reg != BPF_REG_0) { 4938 verbose(env, "BPF_EXIT uses reserved fields\n"); 4939 return -EINVAL; 4940 } 4941 4942 if (state->curframe) { 4943 /* exit from nested function */ 4944 prev_insn_idx = insn_idx; 4945 err = prepare_func_exit(env, &insn_idx); 4946 if (err) 4947 return err; 4948 do_print_state = true; 4949 continue; 4950 } 4951 4952 /* eBPF calling convetion is such that R0 is used 4953 * to return the value from eBPF program. 4954 * Make sure that it's readable at this time 4955 * of bpf_exit, which means that program wrote 4956 * something into it earlier 4957 */ 4958 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4959 if (err) 4960 return err; 4961 4962 if (is_pointer_value(env, BPF_REG_0)) { 4963 verbose(env, "R0 leaks addr as return value\n"); 4964 return -EACCES; 4965 } 4966 4967 err = check_return_code(env); 4968 if (err) 4969 return err; 4970 process_bpf_exit: 4971 err = pop_stack(env, &prev_insn_idx, &insn_idx); 4972 if (err < 0) { 4973 if (err != -ENOENT) 4974 return err; 4975 break; 4976 } else { 4977 do_print_state = true; 4978 continue; 4979 } 4980 } else { 4981 err = check_cond_jmp_op(env, insn, &insn_idx); 4982 if (err) 4983 return err; 4984 } 4985 } else if (class == BPF_LD) { 4986 u8 mode = BPF_MODE(insn->code); 4987 4988 if (mode == BPF_ABS || mode == BPF_IND) { 4989 err = check_ld_abs(env, insn); 4990 if (err) 4991 return err; 4992 4993 } else if (mode == BPF_IMM) { 4994 err = check_ld_imm(env, insn); 4995 if (err) 4996 return err; 4997 4998 insn_idx++; 4999 env->insn_aux_data[insn_idx].seen = true; 5000 } else { 5001 verbose(env, "invalid BPF_LD mode\n"); 5002 return -EINVAL; 5003 } 5004 } else { 5005 verbose(env, "unknown insn class %d\n", class); 5006 return -EINVAL; 5007 } 5008 5009 insn_idx++; 5010 } 5011 5012 verbose(env, "processed %d insns (limit %d), stack depth ", 5013 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 5014 for (i = 0; i < env->subprog_cnt; i++) { 5015 u32 depth = env->subprog_info[i].stack_depth; 5016 5017 verbose(env, "%d", depth); 5018 if (i + 1 < env->subprog_cnt) 5019 verbose(env, "+"); 5020 } 5021 verbose(env, "\n"); 5022 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 5023 return 0; 5024 } 5025 5026 static int check_map_prealloc(struct bpf_map *map) 5027 { 5028 return (map->map_type != BPF_MAP_TYPE_HASH && 5029 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 5030 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 5031 !(map->map_flags & BPF_F_NO_PREALLOC); 5032 } 5033 5034 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 5035 struct bpf_map *map, 5036 struct bpf_prog *prog) 5037 5038 { 5039 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 5040 * preallocated hash maps, since doing memory allocation 5041 * in overflow_handler can crash depending on where nmi got 5042 * triggered. 5043 */ 5044 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 5045 if (!check_map_prealloc(map)) { 5046 verbose(env, "perf_event programs can only use preallocated hash map\n"); 5047 return -EINVAL; 5048 } 5049 if (map->inner_map_meta && 5050 !check_map_prealloc(map->inner_map_meta)) { 5051 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 5052 return -EINVAL; 5053 } 5054 } 5055 5056 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 5057 !bpf_offload_dev_match(prog, map)) { 5058 verbose(env, "offload device mismatch between prog and map\n"); 5059 return -EINVAL; 5060 } 5061 5062 return 0; 5063 } 5064 5065 /* look for pseudo eBPF instructions that access map FDs and 5066 * replace them with actual map pointers 5067 */ 5068 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 5069 { 5070 struct bpf_insn *insn = env->prog->insnsi; 5071 int insn_cnt = env->prog->len; 5072 int i, j, err; 5073 5074 err = bpf_prog_calc_tag(env->prog); 5075 if (err) 5076 return err; 5077 5078 for (i = 0; i < insn_cnt; i++, insn++) { 5079 if (BPF_CLASS(insn->code) == BPF_LDX && 5080 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 5081 verbose(env, "BPF_LDX uses reserved fields\n"); 5082 return -EINVAL; 5083 } 5084 5085 if (BPF_CLASS(insn->code) == BPF_STX && 5086 ((BPF_MODE(insn->code) != BPF_MEM && 5087 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 5088 verbose(env, "BPF_STX uses reserved fields\n"); 5089 return -EINVAL; 5090 } 5091 5092 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 5093 struct bpf_map *map; 5094 struct fd f; 5095 5096 if (i == insn_cnt - 1 || insn[1].code != 0 || 5097 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 5098 insn[1].off != 0) { 5099 verbose(env, "invalid bpf_ld_imm64 insn\n"); 5100 return -EINVAL; 5101 } 5102 5103 if (insn->src_reg == 0) 5104 /* valid generic load 64-bit imm */ 5105 goto next_insn; 5106 5107 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 5108 verbose(env, 5109 "unrecognized bpf_ld_imm64 insn\n"); 5110 return -EINVAL; 5111 } 5112 5113 f = fdget(insn->imm); 5114 map = __bpf_map_get(f); 5115 if (IS_ERR(map)) { 5116 verbose(env, "fd %d is not pointing to valid bpf_map\n", 5117 insn->imm); 5118 return PTR_ERR(map); 5119 } 5120 5121 err = check_map_prog_compatibility(env, map, env->prog); 5122 if (err) { 5123 fdput(f); 5124 return err; 5125 } 5126 5127 /* store map pointer inside BPF_LD_IMM64 instruction */ 5128 insn[0].imm = (u32) (unsigned long) map; 5129 insn[1].imm = ((u64) (unsigned long) map) >> 32; 5130 5131 /* check whether we recorded this map already */ 5132 for (j = 0; j < env->used_map_cnt; j++) 5133 if (env->used_maps[j] == map) { 5134 fdput(f); 5135 goto next_insn; 5136 } 5137 5138 if (env->used_map_cnt >= MAX_USED_MAPS) { 5139 fdput(f); 5140 return -E2BIG; 5141 } 5142 5143 /* hold the map. If the program is rejected by verifier, 5144 * the map will be released by release_maps() or it 5145 * will be used by the valid program until it's unloaded 5146 * and all maps are released in free_used_maps() 5147 */ 5148 map = bpf_map_inc(map, false); 5149 if (IS_ERR(map)) { 5150 fdput(f); 5151 return PTR_ERR(map); 5152 } 5153 env->used_maps[env->used_map_cnt++] = map; 5154 5155 fdput(f); 5156 next_insn: 5157 insn++; 5158 i++; 5159 continue; 5160 } 5161 5162 /* Basic sanity check before we invest more work here. */ 5163 if (!bpf_opcode_in_insntable(insn->code)) { 5164 verbose(env, "unknown opcode %02x\n", insn->code); 5165 return -EINVAL; 5166 } 5167 } 5168 5169 /* now all pseudo BPF_LD_IMM64 instructions load valid 5170 * 'struct bpf_map *' into a register instead of user map_fd. 5171 * These pointers will be used later by verifier to validate map access. 5172 */ 5173 return 0; 5174 } 5175 5176 /* drop refcnt of maps used by the rejected program */ 5177 static void release_maps(struct bpf_verifier_env *env) 5178 { 5179 int i; 5180 5181 for (i = 0; i < env->used_map_cnt; i++) 5182 bpf_map_put(env->used_maps[i]); 5183 } 5184 5185 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 5186 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 5187 { 5188 struct bpf_insn *insn = env->prog->insnsi; 5189 int insn_cnt = env->prog->len; 5190 int i; 5191 5192 for (i = 0; i < insn_cnt; i++, insn++) 5193 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 5194 insn->src_reg = 0; 5195 } 5196 5197 /* single env->prog->insni[off] instruction was replaced with the range 5198 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 5199 * [0, off) and [off, end) to new locations, so the patched range stays zero 5200 */ 5201 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 5202 u32 off, u32 cnt) 5203 { 5204 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 5205 int i; 5206 5207 if (cnt == 1) 5208 return 0; 5209 new_data = vzalloc(array_size(prog_len, 5210 sizeof(struct bpf_insn_aux_data))); 5211 if (!new_data) 5212 return -ENOMEM; 5213 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 5214 memcpy(new_data + off + cnt - 1, old_data + off, 5215 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 5216 for (i = off; i < off + cnt - 1; i++) 5217 new_data[i].seen = true; 5218 env->insn_aux_data = new_data; 5219 vfree(old_data); 5220 return 0; 5221 } 5222 5223 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 5224 { 5225 int i; 5226 5227 if (len == 1) 5228 return; 5229 /* NOTE: fake 'exit' subprog should be updated as well. */ 5230 for (i = 0; i <= env->subprog_cnt; i++) { 5231 if (env->subprog_info[i].start < off) 5232 continue; 5233 env->subprog_info[i].start += len - 1; 5234 } 5235 } 5236 5237 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 5238 const struct bpf_insn *patch, u32 len) 5239 { 5240 struct bpf_prog *new_prog; 5241 5242 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 5243 if (!new_prog) 5244 return NULL; 5245 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 5246 return NULL; 5247 adjust_subprog_starts(env, off, len); 5248 return new_prog; 5249 } 5250 5251 /* The verifier does more data flow analysis than llvm and will not 5252 * explore branches that are dead at run time. Malicious programs can 5253 * have dead code too. Therefore replace all dead at-run-time code 5254 * with 'ja -1'. 5255 * 5256 * Just nops are not optimal, e.g. if they would sit at the end of the 5257 * program and through another bug we would manage to jump there, then 5258 * we'd execute beyond program memory otherwise. Returning exception 5259 * code also wouldn't work since we can have subprogs where the dead 5260 * code could be located. 5261 */ 5262 static void sanitize_dead_code(struct bpf_verifier_env *env) 5263 { 5264 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 5265 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 5266 struct bpf_insn *insn = env->prog->insnsi; 5267 const int insn_cnt = env->prog->len; 5268 int i; 5269 5270 for (i = 0; i < insn_cnt; i++) { 5271 if (aux_data[i].seen) 5272 continue; 5273 memcpy(insn + i, &trap, sizeof(trap)); 5274 } 5275 } 5276 5277 /* convert load instructions that access fields of 'struct __sk_buff' 5278 * into sequence of instructions that access fields of 'struct sk_buff' 5279 */ 5280 static int convert_ctx_accesses(struct bpf_verifier_env *env) 5281 { 5282 const struct bpf_verifier_ops *ops = env->ops; 5283 int i, cnt, size, ctx_field_size, delta = 0; 5284 const int insn_cnt = env->prog->len; 5285 struct bpf_insn insn_buf[16], *insn; 5286 struct bpf_prog *new_prog; 5287 enum bpf_access_type type; 5288 bool is_narrower_load; 5289 u32 target_size; 5290 5291 if (ops->gen_prologue) { 5292 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 5293 env->prog); 5294 if (cnt >= ARRAY_SIZE(insn_buf)) { 5295 verbose(env, "bpf verifier is misconfigured\n"); 5296 return -EINVAL; 5297 } else if (cnt) { 5298 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 5299 if (!new_prog) 5300 return -ENOMEM; 5301 5302 env->prog = new_prog; 5303 delta += cnt - 1; 5304 } 5305 } 5306 5307 if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux)) 5308 return 0; 5309 5310 insn = env->prog->insnsi + delta; 5311 5312 for (i = 0; i < insn_cnt; i++, insn++) { 5313 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 5314 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 5315 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 5316 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 5317 type = BPF_READ; 5318 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 5319 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 5320 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 5321 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 5322 type = BPF_WRITE; 5323 else 5324 continue; 5325 5326 if (type == BPF_WRITE && 5327 env->insn_aux_data[i + delta].sanitize_stack_off) { 5328 struct bpf_insn patch[] = { 5329 /* Sanitize suspicious stack slot with zero. 5330 * There are no memory dependencies for this store, 5331 * since it's only using frame pointer and immediate 5332 * constant of zero 5333 */ 5334 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 5335 env->insn_aux_data[i + delta].sanitize_stack_off, 5336 0), 5337 /* the original STX instruction will immediately 5338 * overwrite the same stack slot with appropriate value 5339 */ 5340 *insn, 5341 }; 5342 5343 cnt = ARRAY_SIZE(patch); 5344 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 5345 if (!new_prog) 5346 return -ENOMEM; 5347 5348 delta += cnt - 1; 5349 env->prog = new_prog; 5350 insn = new_prog->insnsi + i + delta; 5351 continue; 5352 } 5353 5354 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) 5355 continue; 5356 5357 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 5358 size = BPF_LDST_BYTES(insn); 5359 5360 /* If the read access is a narrower load of the field, 5361 * convert to a 4/8-byte load, to minimum program type specific 5362 * convert_ctx_access changes. If conversion is successful, 5363 * we will apply proper mask to the result. 5364 */ 5365 is_narrower_load = size < ctx_field_size; 5366 if (is_narrower_load) { 5367 u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 5368 u32 off = insn->off; 5369 u8 size_code; 5370 5371 if (type == BPF_WRITE) { 5372 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 5373 return -EINVAL; 5374 } 5375 5376 size_code = BPF_H; 5377 if (ctx_field_size == 4) 5378 size_code = BPF_W; 5379 else if (ctx_field_size == 8) 5380 size_code = BPF_DW; 5381 5382 insn->off = off & ~(size_default - 1); 5383 insn->code = BPF_LDX | BPF_MEM | size_code; 5384 } 5385 5386 target_size = 0; 5387 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 5388 &target_size); 5389 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 5390 (ctx_field_size && !target_size)) { 5391 verbose(env, "bpf verifier is misconfigured\n"); 5392 return -EINVAL; 5393 } 5394 5395 if (is_narrower_load && size < target_size) { 5396 if (ctx_field_size <= 4) 5397 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 5398 (1 << size * 8) - 1); 5399 else 5400 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 5401 (1 << size * 8) - 1); 5402 } 5403 5404 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5405 if (!new_prog) 5406 return -ENOMEM; 5407 5408 delta += cnt - 1; 5409 5410 /* keep walking new program and skip insns we just inserted */ 5411 env->prog = new_prog; 5412 insn = new_prog->insnsi + i + delta; 5413 } 5414 5415 return 0; 5416 } 5417 5418 static int jit_subprogs(struct bpf_verifier_env *env) 5419 { 5420 struct bpf_prog *prog = env->prog, **func, *tmp; 5421 int i, j, subprog_start, subprog_end = 0, len, subprog; 5422 struct bpf_insn *insn; 5423 void *old_bpf_func; 5424 int err = -ENOMEM; 5425 5426 if (env->subprog_cnt <= 1) 5427 return 0; 5428 5429 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5430 if (insn->code != (BPF_JMP | BPF_CALL) || 5431 insn->src_reg != BPF_PSEUDO_CALL) 5432 continue; 5433 subprog = find_subprog(env, i + insn->imm + 1); 5434 if (subprog < 0) { 5435 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5436 i + insn->imm + 1); 5437 return -EFAULT; 5438 } 5439 /* temporarily remember subprog id inside insn instead of 5440 * aux_data, since next loop will split up all insns into funcs 5441 */ 5442 insn->off = subprog; 5443 /* remember original imm in case JIT fails and fallback 5444 * to interpreter will be needed 5445 */ 5446 env->insn_aux_data[i].call_imm = insn->imm; 5447 /* point imm to __bpf_call_base+1 from JITs point of view */ 5448 insn->imm = 1; 5449 } 5450 5451 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 5452 if (!func) 5453 return -ENOMEM; 5454 5455 for (i = 0; i < env->subprog_cnt; i++) { 5456 subprog_start = subprog_end; 5457 subprog_end = env->subprog_info[i + 1].start; 5458 5459 len = subprog_end - subprog_start; 5460 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 5461 if (!func[i]) 5462 goto out_free; 5463 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 5464 len * sizeof(struct bpf_insn)); 5465 func[i]->type = prog->type; 5466 func[i]->len = len; 5467 if (bpf_prog_calc_tag(func[i])) 5468 goto out_free; 5469 func[i]->is_func = 1; 5470 /* Use bpf_prog_F_tag to indicate functions in stack traces. 5471 * Long term would need debug info to populate names 5472 */ 5473 func[i]->aux->name[0] = 'F'; 5474 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 5475 func[i]->jit_requested = 1; 5476 func[i] = bpf_int_jit_compile(func[i]); 5477 if (!func[i]->jited) { 5478 err = -ENOTSUPP; 5479 goto out_free; 5480 } 5481 cond_resched(); 5482 } 5483 /* at this point all bpf functions were successfully JITed 5484 * now populate all bpf_calls with correct addresses and 5485 * run last pass of JIT 5486 */ 5487 for (i = 0; i < env->subprog_cnt; i++) { 5488 insn = func[i]->insnsi; 5489 for (j = 0; j < func[i]->len; j++, insn++) { 5490 if (insn->code != (BPF_JMP | BPF_CALL) || 5491 insn->src_reg != BPF_PSEUDO_CALL) 5492 continue; 5493 subprog = insn->off; 5494 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 5495 func[subprog]->bpf_func - 5496 __bpf_call_base; 5497 } 5498 5499 /* we use the aux data to keep a list of the start addresses 5500 * of the JITed images for each function in the program 5501 * 5502 * for some architectures, such as powerpc64, the imm field 5503 * might not be large enough to hold the offset of the start 5504 * address of the callee's JITed image from __bpf_call_base 5505 * 5506 * in such cases, we can lookup the start address of a callee 5507 * by using its subprog id, available from the off field of 5508 * the call instruction, as an index for this list 5509 */ 5510 func[i]->aux->func = func; 5511 func[i]->aux->func_cnt = env->subprog_cnt; 5512 } 5513 for (i = 0; i < env->subprog_cnt; i++) { 5514 old_bpf_func = func[i]->bpf_func; 5515 tmp = bpf_int_jit_compile(func[i]); 5516 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 5517 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 5518 err = -EFAULT; 5519 goto out_free; 5520 } 5521 cond_resched(); 5522 } 5523 5524 /* finally lock prog and jit images for all functions and 5525 * populate kallsysm 5526 */ 5527 for (i = 0; i < env->subprog_cnt; i++) { 5528 bpf_prog_lock_ro(func[i]); 5529 bpf_prog_kallsyms_add(func[i]); 5530 } 5531 5532 /* Last step: make now unused interpreter insns from main 5533 * prog consistent for later dump requests, so they can 5534 * later look the same as if they were interpreted only. 5535 */ 5536 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5537 if (insn->code != (BPF_JMP | BPF_CALL) || 5538 insn->src_reg != BPF_PSEUDO_CALL) 5539 continue; 5540 insn->off = env->insn_aux_data[i].call_imm; 5541 subprog = find_subprog(env, i + insn->off + 1); 5542 insn->imm = subprog; 5543 } 5544 5545 prog->jited = 1; 5546 prog->bpf_func = func[0]->bpf_func; 5547 prog->aux->func = func; 5548 prog->aux->func_cnt = env->subprog_cnt; 5549 return 0; 5550 out_free: 5551 for (i = 0; i < env->subprog_cnt; i++) 5552 if (func[i]) 5553 bpf_jit_free(func[i]); 5554 kfree(func); 5555 /* cleanup main prog to be interpreted */ 5556 prog->jit_requested = 0; 5557 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5558 if (insn->code != (BPF_JMP | BPF_CALL) || 5559 insn->src_reg != BPF_PSEUDO_CALL) 5560 continue; 5561 insn->off = 0; 5562 insn->imm = env->insn_aux_data[i].call_imm; 5563 } 5564 return err; 5565 } 5566 5567 static int fixup_call_args(struct bpf_verifier_env *env) 5568 { 5569 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5570 struct bpf_prog *prog = env->prog; 5571 struct bpf_insn *insn = prog->insnsi; 5572 int i, depth; 5573 #endif 5574 int err; 5575 5576 err = 0; 5577 if (env->prog->jit_requested) { 5578 err = jit_subprogs(env); 5579 if (err == 0) 5580 return 0; 5581 } 5582 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5583 for (i = 0; i < prog->len; i++, insn++) { 5584 if (insn->code != (BPF_JMP | BPF_CALL) || 5585 insn->src_reg != BPF_PSEUDO_CALL) 5586 continue; 5587 depth = get_callee_stack_depth(env, insn, i); 5588 if (depth < 0) 5589 return depth; 5590 bpf_patch_call_args(insn, depth); 5591 } 5592 err = 0; 5593 #endif 5594 return err; 5595 } 5596 5597 /* fixup insn->imm field of bpf_call instructions 5598 * and inline eligible helpers as explicit sequence of BPF instructions 5599 * 5600 * this function is called after eBPF program passed verification 5601 */ 5602 static int fixup_bpf_calls(struct bpf_verifier_env *env) 5603 { 5604 struct bpf_prog *prog = env->prog; 5605 struct bpf_insn *insn = prog->insnsi; 5606 const struct bpf_func_proto *fn; 5607 const int insn_cnt = prog->len; 5608 const struct bpf_map_ops *ops; 5609 struct bpf_insn_aux_data *aux; 5610 struct bpf_insn insn_buf[16]; 5611 struct bpf_prog *new_prog; 5612 struct bpf_map *map_ptr; 5613 int i, cnt, delta = 0; 5614 5615 for (i = 0; i < insn_cnt; i++, insn++) { 5616 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 5617 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5618 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 5619 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5620 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 5621 struct bpf_insn mask_and_div[] = { 5622 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5623 /* Rx div 0 -> 0 */ 5624 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 5625 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 5626 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 5627 *insn, 5628 }; 5629 struct bpf_insn mask_and_mod[] = { 5630 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5631 /* Rx mod 0 -> Rx */ 5632 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 5633 *insn, 5634 }; 5635 struct bpf_insn *patchlet; 5636 5637 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5638 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5639 patchlet = mask_and_div + (is64 ? 1 : 0); 5640 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 5641 } else { 5642 patchlet = mask_and_mod + (is64 ? 1 : 0); 5643 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 5644 } 5645 5646 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 5647 if (!new_prog) 5648 return -ENOMEM; 5649 5650 delta += cnt - 1; 5651 env->prog = prog = new_prog; 5652 insn = new_prog->insnsi + i + delta; 5653 continue; 5654 } 5655 5656 if (BPF_CLASS(insn->code) == BPF_LD && 5657 (BPF_MODE(insn->code) == BPF_ABS || 5658 BPF_MODE(insn->code) == BPF_IND)) { 5659 cnt = env->ops->gen_ld_abs(insn, insn_buf); 5660 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 5661 verbose(env, "bpf verifier is misconfigured\n"); 5662 return -EINVAL; 5663 } 5664 5665 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5666 if (!new_prog) 5667 return -ENOMEM; 5668 5669 delta += cnt - 1; 5670 env->prog = prog = new_prog; 5671 insn = new_prog->insnsi + i + delta; 5672 continue; 5673 } 5674 5675 if (insn->code != (BPF_JMP | BPF_CALL)) 5676 continue; 5677 if (insn->src_reg == BPF_PSEUDO_CALL) 5678 continue; 5679 5680 if (insn->imm == BPF_FUNC_get_route_realm) 5681 prog->dst_needed = 1; 5682 if (insn->imm == BPF_FUNC_get_prandom_u32) 5683 bpf_user_rnd_init_once(); 5684 if (insn->imm == BPF_FUNC_override_return) 5685 prog->kprobe_override = 1; 5686 if (insn->imm == BPF_FUNC_tail_call) { 5687 /* If we tail call into other programs, we 5688 * cannot make any assumptions since they can 5689 * be replaced dynamically during runtime in 5690 * the program array. 5691 */ 5692 prog->cb_access = 1; 5693 env->prog->aux->stack_depth = MAX_BPF_STACK; 5694 5695 /* mark bpf_tail_call as different opcode to avoid 5696 * conditional branch in the interpeter for every normal 5697 * call and to prevent accidental JITing by JIT compiler 5698 * that doesn't support bpf_tail_call yet 5699 */ 5700 insn->imm = 0; 5701 insn->code = BPF_JMP | BPF_TAIL_CALL; 5702 5703 aux = &env->insn_aux_data[i + delta]; 5704 if (!bpf_map_ptr_unpriv(aux)) 5705 continue; 5706 5707 /* instead of changing every JIT dealing with tail_call 5708 * emit two extra insns: 5709 * if (index >= max_entries) goto out; 5710 * index &= array->index_mask; 5711 * to avoid out-of-bounds cpu speculation 5712 */ 5713 if (bpf_map_ptr_poisoned(aux)) { 5714 verbose(env, "tail_call abusing map_ptr\n"); 5715 return -EINVAL; 5716 } 5717 5718 map_ptr = BPF_MAP_PTR(aux->map_state); 5719 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 5720 map_ptr->max_entries, 2); 5721 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 5722 container_of(map_ptr, 5723 struct bpf_array, 5724 map)->index_mask); 5725 insn_buf[2] = *insn; 5726 cnt = 3; 5727 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5728 if (!new_prog) 5729 return -ENOMEM; 5730 5731 delta += cnt - 1; 5732 env->prog = prog = new_prog; 5733 insn = new_prog->insnsi + i + delta; 5734 continue; 5735 } 5736 5737 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 5738 * and other inlining handlers are currently limited to 64 bit 5739 * only. 5740 */ 5741 if (prog->jit_requested && BITS_PER_LONG == 64 && 5742 (insn->imm == BPF_FUNC_map_lookup_elem || 5743 insn->imm == BPF_FUNC_map_update_elem || 5744 insn->imm == BPF_FUNC_map_delete_elem)) { 5745 aux = &env->insn_aux_data[i + delta]; 5746 if (bpf_map_ptr_poisoned(aux)) 5747 goto patch_call_imm; 5748 5749 map_ptr = BPF_MAP_PTR(aux->map_state); 5750 ops = map_ptr->ops; 5751 if (insn->imm == BPF_FUNC_map_lookup_elem && 5752 ops->map_gen_lookup) { 5753 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 5754 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 5755 verbose(env, "bpf verifier is misconfigured\n"); 5756 return -EINVAL; 5757 } 5758 5759 new_prog = bpf_patch_insn_data(env, i + delta, 5760 insn_buf, cnt); 5761 if (!new_prog) 5762 return -ENOMEM; 5763 5764 delta += cnt - 1; 5765 env->prog = prog = new_prog; 5766 insn = new_prog->insnsi + i + delta; 5767 continue; 5768 } 5769 5770 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 5771 (void *(*)(struct bpf_map *map, void *key))NULL)); 5772 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 5773 (int (*)(struct bpf_map *map, void *key))NULL)); 5774 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 5775 (int (*)(struct bpf_map *map, void *key, void *value, 5776 u64 flags))NULL)); 5777 switch (insn->imm) { 5778 case BPF_FUNC_map_lookup_elem: 5779 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 5780 __bpf_call_base; 5781 continue; 5782 case BPF_FUNC_map_update_elem: 5783 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 5784 __bpf_call_base; 5785 continue; 5786 case BPF_FUNC_map_delete_elem: 5787 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 5788 __bpf_call_base; 5789 continue; 5790 } 5791 5792 goto patch_call_imm; 5793 } 5794 5795 if (insn->imm == BPF_FUNC_redirect_map) { 5796 /* Note, we cannot use prog directly as imm as subsequent 5797 * rewrites would still change the prog pointer. The only 5798 * stable address we can use is aux, which also works with 5799 * prog clones during blinding. 5800 */ 5801 u64 addr = (unsigned long)prog->aux; 5802 struct bpf_insn r4_ld[] = { 5803 BPF_LD_IMM64(BPF_REG_4, addr), 5804 *insn, 5805 }; 5806 cnt = ARRAY_SIZE(r4_ld); 5807 5808 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt); 5809 if (!new_prog) 5810 return -ENOMEM; 5811 5812 delta += cnt - 1; 5813 env->prog = prog = new_prog; 5814 insn = new_prog->insnsi + i + delta; 5815 } 5816 patch_call_imm: 5817 fn = env->ops->get_func_proto(insn->imm, env->prog); 5818 /* all functions that have prototype and verifier allowed 5819 * programs to call them, must be real in-kernel functions 5820 */ 5821 if (!fn->func) { 5822 verbose(env, 5823 "kernel subsystem misconfigured func %s#%d\n", 5824 func_id_name(insn->imm), insn->imm); 5825 return -EFAULT; 5826 } 5827 insn->imm = fn->func - __bpf_call_base; 5828 } 5829 5830 return 0; 5831 } 5832 5833 static void free_states(struct bpf_verifier_env *env) 5834 { 5835 struct bpf_verifier_state_list *sl, *sln; 5836 int i; 5837 5838 if (!env->explored_states) 5839 return; 5840 5841 for (i = 0; i < env->prog->len; i++) { 5842 sl = env->explored_states[i]; 5843 5844 if (sl) 5845 while (sl != STATE_LIST_MARK) { 5846 sln = sl->next; 5847 free_verifier_state(&sl->state, false); 5848 kfree(sl); 5849 sl = sln; 5850 } 5851 } 5852 5853 kfree(env->explored_states); 5854 } 5855 5856 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 5857 { 5858 struct bpf_verifier_env *env; 5859 struct bpf_verifier_log *log; 5860 int ret = -EINVAL; 5861 5862 /* no program is valid */ 5863 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 5864 return -EINVAL; 5865 5866 /* 'struct bpf_verifier_env' can be global, but since it's not small, 5867 * allocate/free it every time bpf_check() is called 5868 */ 5869 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 5870 if (!env) 5871 return -ENOMEM; 5872 log = &env->log; 5873 5874 env->insn_aux_data = 5875 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), 5876 (*prog)->len)); 5877 ret = -ENOMEM; 5878 if (!env->insn_aux_data) 5879 goto err_free_env; 5880 env->prog = *prog; 5881 env->ops = bpf_verifier_ops[env->prog->type]; 5882 5883 /* grab the mutex to protect few globals used by verifier */ 5884 mutex_lock(&bpf_verifier_lock); 5885 5886 if (attr->log_level || attr->log_buf || attr->log_size) { 5887 /* user requested verbose verifier output 5888 * and supplied buffer to store the verification trace 5889 */ 5890 log->level = attr->log_level; 5891 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 5892 log->len_total = attr->log_size; 5893 5894 ret = -EINVAL; 5895 /* log attributes have to be sane */ 5896 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 5897 !log->level || !log->ubuf) 5898 goto err_unlock; 5899 } 5900 5901 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 5902 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 5903 env->strict_alignment = true; 5904 5905 ret = replace_map_fd_with_map_ptr(env); 5906 if (ret < 0) 5907 goto skip_full_check; 5908 5909 if (bpf_prog_is_dev_bound(env->prog->aux)) { 5910 ret = bpf_prog_offload_verifier_prep(env); 5911 if (ret) 5912 goto skip_full_check; 5913 } 5914 5915 env->explored_states = kcalloc(env->prog->len, 5916 sizeof(struct bpf_verifier_state_list *), 5917 GFP_USER); 5918 ret = -ENOMEM; 5919 if (!env->explored_states) 5920 goto skip_full_check; 5921 5922 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 5923 5924 ret = check_cfg(env); 5925 if (ret < 0) 5926 goto skip_full_check; 5927 5928 ret = do_check(env); 5929 if (env->cur_state) { 5930 free_verifier_state(env->cur_state, true); 5931 env->cur_state = NULL; 5932 } 5933 5934 skip_full_check: 5935 while (!pop_stack(env, NULL, NULL)); 5936 free_states(env); 5937 5938 if (ret == 0) 5939 sanitize_dead_code(env); 5940 5941 if (ret == 0) 5942 ret = check_max_stack_depth(env); 5943 5944 if (ret == 0) 5945 /* program is valid, convert *(u32*)(ctx + off) accesses */ 5946 ret = convert_ctx_accesses(env); 5947 5948 if (ret == 0) 5949 ret = fixup_bpf_calls(env); 5950 5951 if (ret == 0) 5952 ret = fixup_call_args(env); 5953 5954 if (log->level && bpf_verifier_log_full(log)) 5955 ret = -ENOSPC; 5956 if (log->level && !log->ubuf) { 5957 ret = -EFAULT; 5958 goto err_release_maps; 5959 } 5960 5961 if (ret == 0 && env->used_map_cnt) { 5962 /* if program passed verifier, update used_maps in bpf_prog_info */ 5963 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 5964 sizeof(env->used_maps[0]), 5965 GFP_KERNEL); 5966 5967 if (!env->prog->aux->used_maps) { 5968 ret = -ENOMEM; 5969 goto err_release_maps; 5970 } 5971 5972 memcpy(env->prog->aux->used_maps, env->used_maps, 5973 sizeof(env->used_maps[0]) * env->used_map_cnt); 5974 env->prog->aux->used_map_cnt = env->used_map_cnt; 5975 5976 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 5977 * bpf_ld_imm64 instructions 5978 */ 5979 convert_pseudo_ld_imm64(env); 5980 } 5981 5982 err_release_maps: 5983 if (!env->prog->aux->used_maps) 5984 /* if we didn't copy map pointers into bpf_prog_info, release 5985 * them now. Otherwise free_used_maps() will release them. 5986 */ 5987 release_maps(env); 5988 *prog = env->prog; 5989 err_unlock: 5990 mutex_unlock(&bpf_verifier_lock); 5991 vfree(env->insn_aux_data); 5992 err_free_env: 5993 kfree(env); 5994 return ret; 5995 } 5996