xref: /linux/kernel/bpf/verifier.c (revision 788f63c4dc1780c84deb5fe820f6446c28364a0d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <net/xdp.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
39 #undef BPF_PROG_TYPE
40 #undef BPF_MAP_TYPE
41 #undef BPF_LINK_TYPE
42 };
43 
44 /* bpf_check() is a static code analyzer that walks eBPF program
45  * instruction by instruction and updates register/stack state.
46  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
47  *
48  * The first pass is depth-first-search to check that the program is a DAG.
49  * It rejects the following programs:
50  * - larger than BPF_MAXINSNS insns
51  * - if loop is present (detected via back-edge)
52  * - unreachable insns exist (shouldn't be a forest. program = one function)
53  * - out of bounds or malformed jumps
54  * The second pass is all possible path descent from the 1st insn.
55  * Since it's analyzing all paths through the program, the length of the
56  * analysis is limited to 64k insn, which may be hit even if total number of
57  * insn is less then 4K, but there are too many branches that change stack/regs.
58  * Number of 'branches to be analyzed' is limited to 1k
59  *
60  * On entry to each instruction, each register has a type, and the instruction
61  * changes the types of the registers depending on instruction semantics.
62  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63  * copied to R1.
64  *
65  * All registers are 64-bit.
66  * R0 - return register
67  * R1-R5 argument passing registers
68  * R6-R9 callee saved registers
69  * R10 - frame pointer read-only
70  *
71  * At the start of BPF program the register R1 contains a pointer to bpf_context
72  * and has type PTR_TO_CTX.
73  *
74  * Verifier tracks arithmetic operations on pointers in case:
75  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77  * 1st insn copies R10 (which has FRAME_PTR) type into R1
78  * and 2nd arithmetic instruction is pattern matched to recognize
79  * that it wants to construct a pointer to some element within stack.
80  * So after 2nd insn, the register R1 has type PTR_TO_STACK
81  * (and -20 constant is saved for further stack bounds checking).
82  * Meaning that this reg is a pointer to stack plus known immediate constant.
83  *
84  * Most of the time the registers have SCALAR_VALUE type, which
85  * means the register has some value, but it's not a valid pointer.
86  * (like pointer plus pointer becomes SCALAR_VALUE type)
87  *
88  * When verifier sees load or store instructions the type of base register
89  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90  * four pointer types recognized by check_mem_access() function.
91  *
92  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93  * and the range of [ptr, ptr + map's value_size) is accessible.
94  *
95  * registers used to pass values to function calls are checked against
96  * function argument constraints.
97  *
98  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99  * It means that the register type passed to this function must be
100  * PTR_TO_STACK and it will be used inside the function as
101  * 'pointer to map element key'
102  *
103  * For example the argument constraints for bpf_map_lookup_elem():
104  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105  *   .arg1_type = ARG_CONST_MAP_PTR,
106  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
107  *
108  * ret_type says that this function returns 'pointer to map elem value or null'
109  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110  * 2nd argument should be a pointer to stack, which will be used inside
111  * the helper function as a pointer to map element key.
112  *
113  * On the kernel side the helper function looks like:
114  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
115  * {
116  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117  *    void *key = (void *) (unsigned long) r2;
118  *    void *value;
119  *
120  *    here kernel can access 'key' and 'map' pointers safely, knowing that
121  *    [key, key + map->key_size) bytes are valid and were initialized on
122  *    the stack of eBPF program.
123  * }
124  *
125  * Corresponding eBPF program may look like:
126  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
127  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
129  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130  * here verifier looks at prototype of map_lookup_elem() and sees:
131  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
133  *
134  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136  * and were initialized prior to this call.
137  * If it's ok, then verifier allows this BPF_CALL insn and looks at
138  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140  * returns either pointer to map value or NULL.
141  *
142  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143  * insn, the register holding that pointer in the true branch changes state to
144  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145  * branch. See check_cond_jmp_op().
146  *
147  * After the call R0 is set to return type of the function and registers R1-R5
148  * are set to NOT_INIT to indicate that they are no longer readable.
149  *
150  * The following reference types represent a potential reference to a kernel
151  * resource which, after first being allocated, must be checked and freed by
152  * the BPF program:
153  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
154  *
155  * When the verifier sees a helper call return a reference type, it allocates a
156  * pointer id for the reference and stores it in the current function state.
157  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159  * passes through a NULL-check conditional. For the branch wherein the state is
160  * changed to CONST_IMM, the verifier releases the reference.
161  *
162  * For each helper function that allocates a reference, such as
163  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164  * bpf_sk_release(). When a reference type passes into the release function,
165  * the verifier also releases the reference. If any unchecked or unreleased
166  * reference remains at the end of the program, the verifier rejects it.
167  */
168 
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171 	/* verifer state is 'st'
172 	 * before processing instruction 'insn_idx'
173 	 * and after processing instruction 'prev_insn_idx'
174 	 */
175 	struct bpf_verifier_state st;
176 	int insn_idx;
177 	int prev_insn_idx;
178 	struct bpf_verifier_stack_elem *next;
179 	/* length of verifier log at the time this state was pushed on stack */
180 	u32 log_pos;
181 };
182 
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
184 #define BPF_COMPLEXITY_LIMIT_STATES	64
185 
186 #define BPF_MAP_KEY_POISON	(1ULL << 63)
187 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
188 
189 #define BPF_MAP_PTR_UNPRIV	1UL
190 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
191 					  POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
193 
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199 			      struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201 			     u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
203 
204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
205 {
206 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
207 }
208 
209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
210 {
211 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
212 }
213 
214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 			      const struct bpf_map *map, bool unpriv)
216 {
217 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 	unpriv |= bpf_map_ptr_unpriv(aux);
219 	aux->map_ptr_state = (unsigned long)map |
220 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
221 }
222 
223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & BPF_MAP_KEY_POISON;
226 }
227 
228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
229 {
230 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
231 }
232 
233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
234 {
235 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
236 }
237 
238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
239 {
240 	bool poisoned = bpf_map_key_poisoned(aux);
241 
242 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
244 }
245 
246 static bool bpf_helper_call(const struct bpf_insn *insn)
247 {
248 	return insn->code == (BPF_JMP | BPF_CALL) &&
249 	       insn->src_reg == 0;
250 }
251 
252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
253 {
254 	return insn->code == (BPF_JMP | BPF_CALL) &&
255 	       insn->src_reg == BPF_PSEUDO_CALL;
256 }
257 
258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
259 {
260 	return insn->code == (BPF_JMP | BPF_CALL) &&
261 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
262 }
263 
264 struct bpf_call_arg_meta {
265 	struct bpf_map *map_ptr;
266 	bool raw_mode;
267 	bool pkt_access;
268 	u8 release_regno;
269 	int regno;
270 	int access_size;
271 	int mem_size;
272 	u64 msize_max_value;
273 	int ref_obj_id;
274 	int dynptr_id;
275 	int map_uid;
276 	int func_id;
277 	struct btf *btf;
278 	u32 btf_id;
279 	struct btf *ret_btf;
280 	u32 ret_btf_id;
281 	u32 subprogno;
282 	struct btf_field *kptr_field;
283 };
284 
285 struct bpf_kfunc_call_arg_meta {
286 	/* In parameters */
287 	struct btf *btf;
288 	u32 func_id;
289 	u32 kfunc_flags;
290 	const struct btf_type *func_proto;
291 	const char *func_name;
292 	/* Out parameters */
293 	u32 ref_obj_id;
294 	u8 release_regno;
295 	bool r0_rdonly;
296 	u32 ret_btf_id;
297 	u64 r0_size;
298 	u32 subprogno;
299 	struct {
300 		u64 value;
301 		bool found;
302 	} arg_constant;
303 
304 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305 	 * generally to pass info about user-defined local kptr types to later
306 	 * verification logic
307 	 *   bpf_obj_drop/bpf_percpu_obj_drop
308 	 *     Record the local kptr type to be drop'd
309 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310 	 *     Record the local kptr type to be refcount_incr'd and use
311 	 *     arg_owning_ref to determine whether refcount_acquire should be
312 	 *     fallible
313 	 */
314 	struct btf *arg_btf;
315 	u32 arg_btf_id;
316 	bool arg_owning_ref;
317 
318 	struct {
319 		struct btf_field *field;
320 	} arg_list_head;
321 	struct {
322 		struct btf_field *field;
323 	} arg_rbtree_root;
324 	struct {
325 		enum bpf_dynptr_type type;
326 		u32 id;
327 		u32 ref_obj_id;
328 	} initialized_dynptr;
329 	struct {
330 		u8 spi;
331 		u8 frameno;
332 	} iter;
333 	u64 mem_size;
334 };
335 
336 struct btf *btf_vmlinux;
337 
338 static DEFINE_MUTEX(bpf_verifier_lock);
339 
340 static const struct bpf_line_info *
341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
342 {
343 	const struct bpf_line_info *linfo;
344 	const struct bpf_prog *prog;
345 	u32 i, nr_linfo;
346 
347 	prog = env->prog;
348 	nr_linfo = prog->aux->nr_linfo;
349 
350 	if (!nr_linfo || insn_off >= prog->len)
351 		return NULL;
352 
353 	linfo = prog->aux->linfo;
354 	for (i = 1; i < nr_linfo; i++)
355 		if (insn_off < linfo[i].insn_off)
356 			break;
357 
358 	return &linfo[i - 1];
359 }
360 
361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
362 {
363 	struct bpf_verifier_env *env = private_data;
364 	va_list args;
365 
366 	if (!bpf_verifier_log_needed(&env->log))
367 		return;
368 
369 	va_start(args, fmt);
370 	bpf_verifier_vlog(&env->log, fmt, args);
371 	va_end(args);
372 }
373 
374 static const char *ltrim(const char *s)
375 {
376 	while (isspace(*s))
377 		s++;
378 
379 	return s;
380 }
381 
382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 					 u32 insn_off,
384 					 const char *prefix_fmt, ...)
385 {
386 	const struct bpf_line_info *linfo;
387 
388 	if (!bpf_verifier_log_needed(&env->log))
389 		return;
390 
391 	linfo = find_linfo(env, insn_off);
392 	if (!linfo || linfo == env->prev_linfo)
393 		return;
394 
395 	if (prefix_fmt) {
396 		va_list args;
397 
398 		va_start(args, prefix_fmt);
399 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 		va_end(args);
401 	}
402 
403 	verbose(env, "%s\n",
404 		ltrim(btf_name_by_offset(env->prog->aux->btf,
405 					 linfo->line_off)));
406 
407 	env->prev_linfo = linfo;
408 }
409 
410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 				   struct bpf_reg_state *reg,
412 				   struct tnum *range, const char *ctx,
413 				   const char *reg_name)
414 {
415 	char tn_buf[48];
416 
417 	verbose(env, "At %s the register %s ", ctx, reg_name);
418 	if (!tnum_is_unknown(reg->var_off)) {
419 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 		verbose(env, "has value %s", tn_buf);
421 	} else {
422 		verbose(env, "has unknown scalar value");
423 	}
424 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 	verbose(env, " should have been in %s\n", tn_buf);
426 }
427 
428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 	type = base_type(type);
431 	return type == PTR_TO_PACKET ||
432 	       type == PTR_TO_PACKET_META;
433 }
434 
435 static bool type_is_sk_pointer(enum bpf_reg_type type)
436 {
437 	return type == PTR_TO_SOCKET ||
438 		type == PTR_TO_SOCK_COMMON ||
439 		type == PTR_TO_TCP_SOCK ||
440 		type == PTR_TO_XDP_SOCK;
441 }
442 
443 static bool type_may_be_null(u32 type)
444 {
445 	return type & PTR_MAYBE_NULL;
446 }
447 
448 static bool reg_not_null(const struct bpf_reg_state *reg)
449 {
450 	enum bpf_reg_type type;
451 
452 	type = reg->type;
453 	if (type_may_be_null(type))
454 		return false;
455 
456 	type = base_type(type);
457 	return type == PTR_TO_SOCKET ||
458 		type == PTR_TO_TCP_SOCK ||
459 		type == PTR_TO_MAP_VALUE ||
460 		type == PTR_TO_MAP_KEY ||
461 		type == PTR_TO_SOCK_COMMON ||
462 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
463 		type == PTR_TO_MEM;
464 }
465 
466 static bool type_is_ptr_alloc_obj(u32 type)
467 {
468 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
469 }
470 
471 static bool type_is_non_owning_ref(u32 type)
472 {
473 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
474 }
475 
476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
477 {
478 	struct btf_record *rec = NULL;
479 	struct btf_struct_meta *meta;
480 
481 	if (reg->type == PTR_TO_MAP_VALUE) {
482 		rec = reg->map_ptr->record;
483 	} else if (type_is_ptr_alloc_obj(reg->type)) {
484 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
485 		if (meta)
486 			rec = meta->record;
487 	}
488 	return rec;
489 }
490 
491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
492 {
493 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
494 
495 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
496 }
497 
498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
499 {
500 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
501 }
502 
503 static bool type_is_rdonly_mem(u32 type)
504 {
505 	return type & MEM_RDONLY;
506 }
507 
508 static bool is_acquire_function(enum bpf_func_id func_id,
509 				const struct bpf_map *map)
510 {
511 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
512 
513 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 	    func_id == BPF_FUNC_sk_lookup_udp ||
515 	    func_id == BPF_FUNC_skc_lookup_tcp ||
516 	    func_id == BPF_FUNC_ringbuf_reserve ||
517 	    func_id == BPF_FUNC_kptr_xchg)
518 		return true;
519 
520 	if (func_id == BPF_FUNC_map_lookup_elem &&
521 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 	     map_type == BPF_MAP_TYPE_SOCKHASH))
523 		return true;
524 
525 	return false;
526 }
527 
528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
529 {
530 	return func_id == BPF_FUNC_tcp_sock ||
531 		func_id == BPF_FUNC_sk_fullsock ||
532 		func_id == BPF_FUNC_skc_to_tcp_sock ||
533 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 		func_id == BPF_FUNC_skc_to_udp6_sock ||
535 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
536 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539 
540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
541 {
542 	return func_id == BPF_FUNC_dynptr_data;
543 }
544 
545 static bool is_callback_calling_kfunc(u32 btf_id);
546 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
547 
548 static bool is_callback_calling_function(enum bpf_func_id func_id)
549 {
550 	return func_id == BPF_FUNC_for_each_map_elem ||
551 	       func_id == BPF_FUNC_timer_set_callback ||
552 	       func_id == BPF_FUNC_find_vma ||
553 	       func_id == BPF_FUNC_loop ||
554 	       func_id == BPF_FUNC_user_ringbuf_drain;
555 }
556 
557 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
558 {
559 	return func_id == BPF_FUNC_timer_set_callback;
560 }
561 
562 static bool is_storage_get_function(enum bpf_func_id func_id)
563 {
564 	return func_id == BPF_FUNC_sk_storage_get ||
565 	       func_id == BPF_FUNC_inode_storage_get ||
566 	       func_id == BPF_FUNC_task_storage_get ||
567 	       func_id == BPF_FUNC_cgrp_storage_get;
568 }
569 
570 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
571 					const struct bpf_map *map)
572 {
573 	int ref_obj_uses = 0;
574 
575 	if (is_ptr_cast_function(func_id))
576 		ref_obj_uses++;
577 	if (is_acquire_function(func_id, map))
578 		ref_obj_uses++;
579 	if (is_dynptr_ref_function(func_id))
580 		ref_obj_uses++;
581 
582 	return ref_obj_uses > 1;
583 }
584 
585 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
586 {
587 	return BPF_CLASS(insn->code) == BPF_STX &&
588 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
589 	       insn->imm == BPF_CMPXCHG;
590 }
591 
592 /* string representation of 'enum bpf_reg_type'
593  *
594  * Note that reg_type_str() can not appear more than once in a single verbose()
595  * statement.
596  */
597 static const char *reg_type_str(struct bpf_verifier_env *env,
598 				enum bpf_reg_type type)
599 {
600 	char postfix[16] = {0}, prefix[64] = {0};
601 	static const char * const str[] = {
602 		[NOT_INIT]		= "?",
603 		[SCALAR_VALUE]		= "scalar",
604 		[PTR_TO_CTX]		= "ctx",
605 		[CONST_PTR_TO_MAP]	= "map_ptr",
606 		[PTR_TO_MAP_VALUE]	= "map_value",
607 		[PTR_TO_STACK]		= "fp",
608 		[PTR_TO_PACKET]		= "pkt",
609 		[PTR_TO_PACKET_META]	= "pkt_meta",
610 		[PTR_TO_PACKET_END]	= "pkt_end",
611 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
612 		[PTR_TO_SOCKET]		= "sock",
613 		[PTR_TO_SOCK_COMMON]	= "sock_common",
614 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
615 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
616 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
617 		[PTR_TO_BTF_ID]		= "ptr_",
618 		[PTR_TO_MEM]		= "mem",
619 		[PTR_TO_BUF]		= "buf",
620 		[PTR_TO_FUNC]		= "func",
621 		[PTR_TO_MAP_KEY]	= "map_key",
622 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
623 	};
624 
625 	if (type & PTR_MAYBE_NULL) {
626 		if (base_type(type) == PTR_TO_BTF_ID)
627 			strncpy(postfix, "or_null_", 16);
628 		else
629 			strncpy(postfix, "_or_null", 16);
630 	}
631 
632 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
633 		 type & MEM_RDONLY ? "rdonly_" : "",
634 		 type & MEM_RINGBUF ? "ringbuf_" : "",
635 		 type & MEM_USER ? "user_" : "",
636 		 type & MEM_PERCPU ? "percpu_" : "",
637 		 type & MEM_RCU ? "rcu_" : "",
638 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
639 		 type & PTR_TRUSTED ? "trusted_" : ""
640 	);
641 
642 	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
643 		 prefix, str[base_type(type)], postfix);
644 	return env->tmp_str_buf;
645 }
646 
647 static char slot_type_char[] = {
648 	[STACK_INVALID]	= '?',
649 	[STACK_SPILL]	= 'r',
650 	[STACK_MISC]	= 'm',
651 	[STACK_ZERO]	= '0',
652 	[STACK_DYNPTR]	= 'd',
653 	[STACK_ITER]	= 'i',
654 };
655 
656 static void print_liveness(struct bpf_verifier_env *env,
657 			   enum bpf_reg_liveness live)
658 {
659 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
660 	    verbose(env, "_");
661 	if (live & REG_LIVE_READ)
662 		verbose(env, "r");
663 	if (live & REG_LIVE_WRITTEN)
664 		verbose(env, "w");
665 	if (live & REG_LIVE_DONE)
666 		verbose(env, "D");
667 }
668 
669 static int __get_spi(s32 off)
670 {
671 	return (-off - 1) / BPF_REG_SIZE;
672 }
673 
674 static struct bpf_func_state *func(struct bpf_verifier_env *env,
675 				   const struct bpf_reg_state *reg)
676 {
677 	struct bpf_verifier_state *cur = env->cur_state;
678 
679 	return cur->frame[reg->frameno];
680 }
681 
682 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
683 {
684        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
685 
686        /* We need to check that slots between [spi - nr_slots + 1, spi] are
687 	* within [0, allocated_stack).
688 	*
689 	* Please note that the spi grows downwards. For example, a dynptr
690 	* takes the size of two stack slots; the first slot will be at
691 	* spi and the second slot will be at spi - 1.
692 	*/
693        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
694 }
695 
696 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
697 			          const char *obj_kind, int nr_slots)
698 {
699 	int off, spi;
700 
701 	if (!tnum_is_const(reg->var_off)) {
702 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
703 		return -EINVAL;
704 	}
705 
706 	off = reg->off + reg->var_off.value;
707 	if (off % BPF_REG_SIZE) {
708 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
709 		return -EINVAL;
710 	}
711 
712 	spi = __get_spi(off);
713 	if (spi + 1 < nr_slots) {
714 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
715 		return -EINVAL;
716 	}
717 
718 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
719 		return -ERANGE;
720 	return spi;
721 }
722 
723 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
724 {
725 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
726 }
727 
728 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
729 {
730 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
731 }
732 
733 static const char *btf_type_name(const struct btf *btf, u32 id)
734 {
735 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
736 }
737 
738 static const char *dynptr_type_str(enum bpf_dynptr_type type)
739 {
740 	switch (type) {
741 	case BPF_DYNPTR_TYPE_LOCAL:
742 		return "local";
743 	case BPF_DYNPTR_TYPE_RINGBUF:
744 		return "ringbuf";
745 	case BPF_DYNPTR_TYPE_SKB:
746 		return "skb";
747 	case BPF_DYNPTR_TYPE_XDP:
748 		return "xdp";
749 	case BPF_DYNPTR_TYPE_INVALID:
750 		return "<invalid>";
751 	default:
752 		WARN_ONCE(1, "unknown dynptr type %d\n", type);
753 		return "<unknown>";
754 	}
755 }
756 
757 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
758 {
759 	if (!btf || btf_id == 0)
760 		return "<invalid>";
761 
762 	/* we already validated that type is valid and has conforming name */
763 	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
764 }
765 
766 static const char *iter_state_str(enum bpf_iter_state state)
767 {
768 	switch (state) {
769 	case BPF_ITER_STATE_ACTIVE:
770 		return "active";
771 	case BPF_ITER_STATE_DRAINED:
772 		return "drained";
773 	case BPF_ITER_STATE_INVALID:
774 		return "<invalid>";
775 	default:
776 		WARN_ONCE(1, "unknown iter state %d\n", state);
777 		return "<unknown>";
778 	}
779 }
780 
781 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
782 {
783 	env->scratched_regs |= 1U << regno;
784 }
785 
786 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
787 {
788 	env->scratched_stack_slots |= 1ULL << spi;
789 }
790 
791 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
792 {
793 	return (env->scratched_regs >> regno) & 1;
794 }
795 
796 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
797 {
798 	return (env->scratched_stack_slots >> regno) & 1;
799 }
800 
801 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
802 {
803 	return env->scratched_regs || env->scratched_stack_slots;
804 }
805 
806 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
807 {
808 	env->scratched_regs = 0U;
809 	env->scratched_stack_slots = 0ULL;
810 }
811 
812 /* Used for printing the entire verifier state. */
813 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
814 {
815 	env->scratched_regs = ~0U;
816 	env->scratched_stack_slots = ~0ULL;
817 }
818 
819 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
820 {
821 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
822 	case DYNPTR_TYPE_LOCAL:
823 		return BPF_DYNPTR_TYPE_LOCAL;
824 	case DYNPTR_TYPE_RINGBUF:
825 		return BPF_DYNPTR_TYPE_RINGBUF;
826 	case DYNPTR_TYPE_SKB:
827 		return BPF_DYNPTR_TYPE_SKB;
828 	case DYNPTR_TYPE_XDP:
829 		return BPF_DYNPTR_TYPE_XDP;
830 	default:
831 		return BPF_DYNPTR_TYPE_INVALID;
832 	}
833 }
834 
835 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
836 {
837 	switch (type) {
838 	case BPF_DYNPTR_TYPE_LOCAL:
839 		return DYNPTR_TYPE_LOCAL;
840 	case BPF_DYNPTR_TYPE_RINGBUF:
841 		return DYNPTR_TYPE_RINGBUF;
842 	case BPF_DYNPTR_TYPE_SKB:
843 		return DYNPTR_TYPE_SKB;
844 	case BPF_DYNPTR_TYPE_XDP:
845 		return DYNPTR_TYPE_XDP;
846 	default:
847 		return 0;
848 	}
849 }
850 
851 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
852 {
853 	return type == BPF_DYNPTR_TYPE_RINGBUF;
854 }
855 
856 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
857 			      enum bpf_dynptr_type type,
858 			      bool first_slot, int dynptr_id);
859 
860 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
861 				struct bpf_reg_state *reg);
862 
863 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
864 				   struct bpf_reg_state *sreg1,
865 				   struct bpf_reg_state *sreg2,
866 				   enum bpf_dynptr_type type)
867 {
868 	int id = ++env->id_gen;
869 
870 	__mark_dynptr_reg(sreg1, type, true, id);
871 	__mark_dynptr_reg(sreg2, type, false, id);
872 }
873 
874 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
875 			       struct bpf_reg_state *reg,
876 			       enum bpf_dynptr_type type)
877 {
878 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
879 }
880 
881 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
882 				        struct bpf_func_state *state, int spi);
883 
884 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
885 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
886 {
887 	struct bpf_func_state *state = func(env, reg);
888 	enum bpf_dynptr_type type;
889 	int spi, i, err;
890 
891 	spi = dynptr_get_spi(env, reg);
892 	if (spi < 0)
893 		return spi;
894 
895 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
896 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
897 	 * to ensure that for the following example:
898 	 *	[d1][d1][d2][d2]
899 	 * spi    3   2   1   0
900 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
901 	 * case they do belong to same dynptr, second call won't see slot_type
902 	 * as STACK_DYNPTR and will simply skip destruction.
903 	 */
904 	err = destroy_if_dynptr_stack_slot(env, state, spi);
905 	if (err)
906 		return err;
907 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
908 	if (err)
909 		return err;
910 
911 	for (i = 0; i < BPF_REG_SIZE; i++) {
912 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
913 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
914 	}
915 
916 	type = arg_to_dynptr_type(arg_type);
917 	if (type == BPF_DYNPTR_TYPE_INVALID)
918 		return -EINVAL;
919 
920 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
921 			       &state->stack[spi - 1].spilled_ptr, type);
922 
923 	if (dynptr_type_refcounted(type)) {
924 		/* The id is used to track proper releasing */
925 		int id;
926 
927 		if (clone_ref_obj_id)
928 			id = clone_ref_obj_id;
929 		else
930 			id = acquire_reference_state(env, insn_idx);
931 
932 		if (id < 0)
933 			return id;
934 
935 		state->stack[spi].spilled_ptr.ref_obj_id = id;
936 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
937 	}
938 
939 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
940 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
941 
942 	return 0;
943 }
944 
945 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
946 {
947 	int i;
948 
949 	for (i = 0; i < BPF_REG_SIZE; i++) {
950 		state->stack[spi].slot_type[i] = STACK_INVALID;
951 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
952 	}
953 
954 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
955 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
956 
957 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
958 	 *
959 	 * While we don't allow reading STACK_INVALID, it is still possible to
960 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
961 	 * helpers or insns can do partial read of that part without failing,
962 	 * but check_stack_range_initialized, check_stack_read_var_off, and
963 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
964 	 * the slot conservatively. Hence we need to prevent those liveness
965 	 * marking walks.
966 	 *
967 	 * This was not a problem before because STACK_INVALID is only set by
968 	 * default (where the default reg state has its reg->parent as NULL), or
969 	 * in clean_live_states after REG_LIVE_DONE (at which point
970 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
971 	 * verifier state exploration (like we did above). Hence, for our case
972 	 * parentage chain will still be live (i.e. reg->parent may be
973 	 * non-NULL), while earlier reg->parent was NULL, so we need
974 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
975 	 * done later on reads or by mark_dynptr_read as well to unnecessary
976 	 * mark registers in verifier state.
977 	 */
978 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
979 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
980 }
981 
982 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
983 {
984 	struct bpf_func_state *state = func(env, reg);
985 	int spi, ref_obj_id, i;
986 
987 	spi = dynptr_get_spi(env, reg);
988 	if (spi < 0)
989 		return spi;
990 
991 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
992 		invalidate_dynptr(env, state, spi);
993 		return 0;
994 	}
995 
996 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
997 
998 	/* If the dynptr has a ref_obj_id, then we need to invalidate
999 	 * two things:
1000 	 *
1001 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
1002 	 * 2) Any slices derived from this dynptr.
1003 	 */
1004 
1005 	/* Invalidate any slices associated with this dynptr */
1006 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
1007 
1008 	/* Invalidate any dynptr clones */
1009 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1010 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1011 			continue;
1012 
1013 		/* it should always be the case that if the ref obj id
1014 		 * matches then the stack slot also belongs to a
1015 		 * dynptr
1016 		 */
1017 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1018 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1019 			return -EFAULT;
1020 		}
1021 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
1022 			invalidate_dynptr(env, state, i);
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1029 			       struct bpf_reg_state *reg);
1030 
1031 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1032 {
1033 	if (!env->allow_ptr_leaks)
1034 		__mark_reg_not_init(env, reg);
1035 	else
1036 		__mark_reg_unknown(env, reg);
1037 }
1038 
1039 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1040 				        struct bpf_func_state *state, int spi)
1041 {
1042 	struct bpf_func_state *fstate;
1043 	struct bpf_reg_state *dreg;
1044 	int i, dynptr_id;
1045 
1046 	/* We always ensure that STACK_DYNPTR is never set partially,
1047 	 * hence just checking for slot_type[0] is enough. This is
1048 	 * different for STACK_SPILL, where it may be only set for
1049 	 * 1 byte, so code has to use is_spilled_reg.
1050 	 */
1051 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1052 		return 0;
1053 
1054 	/* Reposition spi to first slot */
1055 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1056 		spi = spi + 1;
1057 
1058 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1059 		verbose(env, "cannot overwrite referenced dynptr\n");
1060 		return -EINVAL;
1061 	}
1062 
1063 	mark_stack_slot_scratched(env, spi);
1064 	mark_stack_slot_scratched(env, spi - 1);
1065 
1066 	/* Writing partially to one dynptr stack slot destroys both. */
1067 	for (i = 0; i < BPF_REG_SIZE; i++) {
1068 		state->stack[spi].slot_type[i] = STACK_INVALID;
1069 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1070 	}
1071 
1072 	dynptr_id = state->stack[spi].spilled_ptr.id;
1073 	/* Invalidate any slices associated with this dynptr */
1074 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1075 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1076 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1077 			continue;
1078 		if (dreg->dynptr_id == dynptr_id)
1079 			mark_reg_invalid(env, dreg);
1080 	}));
1081 
1082 	/* Do not release reference state, we are destroying dynptr on stack,
1083 	 * not using some helper to release it. Just reset register.
1084 	 */
1085 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1086 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1087 
1088 	/* Same reason as unmark_stack_slots_dynptr above */
1089 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1090 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1091 
1092 	return 0;
1093 }
1094 
1095 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1096 {
1097 	int spi;
1098 
1099 	if (reg->type == CONST_PTR_TO_DYNPTR)
1100 		return false;
1101 
1102 	spi = dynptr_get_spi(env, reg);
1103 
1104 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1105 	 * error because this just means the stack state hasn't been updated yet.
1106 	 * We will do check_mem_access to check and update stack bounds later.
1107 	 */
1108 	if (spi < 0 && spi != -ERANGE)
1109 		return false;
1110 
1111 	/* We don't need to check if the stack slots are marked by previous
1112 	 * dynptr initializations because we allow overwriting existing unreferenced
1113 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1114 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1115 	 * touching are completely destructed before we reinitialize them for a new
1116 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1117 	 * instead of delaying it until the end where the user will get "Unreleased
1118 	 * reference" error.
1119 	 */
1120 	return true;
1121 }
1122 
1123 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1124 {
1125 	struct bpf_func_state *state = func(env, reg);
1126 	int i, spi;
1127 
1128 	/* This already represents first slot of initialized bpf_dynptr.
1129 	 *
1130 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1131 	 * check_func_arg_reg_off's logic, so we don't need to check its
1132 	 * offset and alignment.
1133 	 */
1134 	if (reg->type == CONST_PTR_TO_DYNPTR)
1135 		return true;
1136 
1137 	spi = dynptr_get_spi(env, reg);
1138 	if (spi < 0)
1139 		return false;
1140 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1141 		return false;
1142 
1143 	for (i = 0; i < BPF_REG_SIZE; i++) {
1144 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1145 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1146 			return false;
1147 	}
1148 
1149 	return true;
1150 }
1151 
1152 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1153 				    enum bpf_arg_type arg_type)
1154 {
1155 	struct bpf_func_state *state = func(env, reg);
1156 	enum bpf_dynptr_type dynptr_type;
1157 	int spi;
1158 
1159 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1160 	if (arg_type == ARG_PTR_TO_DYNPTR)
1161 		return true;
1162 
1163 	dynptr_type = arg_to_dynptr_type(arg_type);
1164 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1165 		return reg->dynptr.type == dynptr_type;
1166 	} else {
1167 		spi = dynptr_get_spi(env, reg);
1168 		if (spi < 0)
1169 			return false;
1170 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1171 	}
1172 }
1173 
1174 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1175 
1176 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1177 				 struct bpf_reg_state *reg, int insn_idx,
1178 				 struct btf *btf, u32 btf_id, int nr_slots)
1179 {
1180 	struct bpf_func_state *state = func(env, reg);
1181 	int spi, i, j, id;
1182 
1183 	spi = iter_get_spi(env, reg, nr_slots);
1184 	if (spi < 0)
1185 		return spi;
1186 
1187 	id = acquire_reference_state(env, insn_idx);
1188 	if (id < 0)
1189 		return id;
1190 
1191 	for (i = 0; i < nr_slots; i++) {
1192 		struct bpf_stack_state *slot = &state->stack[spi - i];
1193 		struct bpf_reg_state *st = &slot->spilled_ptr;
1194 
1195 		__mark_reg_known_zero(st);
1196 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1197 		st->live |= REG_LIVE_WRITTEN;
1198 		st->ref_obj_id = i == 0 ? id : 0;
1199 		st->iter.btf = btf;
1200 		st->iter.btf_id = btf_id;
1201 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1202 		st->iter.depth = 0;
1203 
1204 		for (j = 0; j < BPF_REG_SIZE; j++)
1205 			slot->slot_type[j] = STACK_ITER;
1206 
1207 		mark_stack_slot_scratched(env, spi - i);
1208 	}
1209 
1210 	return 0;
1211 }
1212 
1213 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1214 				   struct bpf_reg_state *reg, int nr_slots)
1215 {
1216 	struct bpf_func_state *state = func(env, reg);
1217 	int spi, i, j;
1218 
1219 	spi = iter_get_spi(env, reg, nr_slots);
1220 	if (spi < 0)
1221 		return spi;
1222 
1223 	for (i = 0; i < nr_slots; i++) {
1224 		struct bpf_stack_state *slot = &state->stack[spi - i];
1225 		struct bpf_reg_state *st = &slot->spilled_ptr;
1226 
1227 		if (i == 0)
1228 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1229 
1230 		__mark_reg_not_init(env, st);
1231 
1232 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1233 		st->live |= REG_LIVE_WRITTEN;
1234 
1235 		for (j = 0; j < BPF_REG_SIZE; j++)
1236 			slot->slot_type[j] = STACK_INVALID;
1237 
1238 		mark_stack_slot_scratched(env, spi - i);
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1245 				     struct bpf_reg_state *reg, int nr_slots)
1246 {
1247 	struct bpf_func_state *state = func(env, reg);
1248 	int spi, i, j;
1249 
1250 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1251 	 * will do check_mem_access to check and update stack bounds later, so
1252 	 * return true for that case.
1253 	 */
1254 	spi = iter_get_spi(env, reg, nr_slots);
1255 	if (spi == -ERANGE)
1256 		return true;
1257 	if (spi < 0)
1258 		return false;
1259 
1260 	for (i = 0; i < nr_slots; i++) {
1261 		struct bpf_stack_state *slot = &state->stack[spi - i];
1262 
1263 		for (j = 0; j < BPF_REG_SIZE; j++)
1264 			if (slot->slot_type[j] == STACK_ITER)
1265 				return false;
1266 	}
1267 
1268 	return true;
1269 }
1270 
1271 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1272 				   struct btf *btf, u32 btf_id, int nr_slots)
1273 {
1274 	struct bpf_func_state *state = func(env, reg);
1275 	int spi, i, j;
1276 
1277 	spi = iter_get_spi(env, reg, nr_slots);
1278 	if (spi < 0)
1279 		return false;
1280 
1281 	for (i = 0; i < nr_slots; i++) {
1282 		struct bpf_stack_state *slot = &state->stack[spi - i];
1283 		struct bpf_reg_state *st = &slot->spilled_ptr;
1284 
1285 		/* only main (first) slot has ref_obj_id set */
1286 		if (i == 0 && !st->ref_obj_id)
1287 			return false;
1288 		if (i != 0 && st->ref_obj_id)
1289 			return false;
1290 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1291 			return false;
1292 
1293 		for (j = 0; j < BPF_REG_SIZE; j++)
1294 			if (slot->slot_type[j] != STACK_ITER)
1295 				return false;
1296 	}
1297 
1298 	return true;
1299 }
1300 
1301 /* Check if given stack slot is "special":
1302  *   - spilled register state (STACK_SPILL);
1303  *   - dynptr state (STACK_DYNPTR);
1304  *   - iter state (STACK_ITER).
1305  */
1306 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1307 {
1308 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1309 
1310 	switch (type) {
1311 	case STACK_SPILL:
1312 	case STACK_DYNPTR:
1313 	case STACK_ITER:
1314 		return true;
1315 	case STACK_INVALID:
1316 	case STACK_MISC:
1317 	case STACK_ZERO:
1318 		return false;
1319 	default:
1320 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1321 		return true;
1322 	}
1323 }
1324 
1325 /* The reg state of a pointer or a bounded scalar was saved when
1326  * it was spilled to the stack.
1327  */
1328 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1329 {
1330 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1331 }
1332 
1333 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1334 {
1335 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1336 	       stack->spilled_ptr.type == SCALAR_VALUE;
1337 }
1338 
1339 static void scrub_spilled_slot(u8 *stype)
1340 {
1341 	if (*stype != STACK_INVALID)
1342 		*stype = STACK_MISC;
1343 }
1344 
1345 static void print_verifier_state(struct bpf_verifier_env *env,
1346 				 const struct bpf_func_state *state,
1347 				 bool print_all)
1348 {
1349 	const struct bpf_reg_state *reg;
1350 	enum bpf_reg_type t;
1351 	int i;
1352 
1353 	if (state->frameno)
1354 		verbose(env, " frame%d:", state->frameno);
1355 	for (i = 0; i < MAX_BPF_REG; i++) {
1356 		reg = &state->regs[i];
1357 		t = reg->type;
1358 		if (t == NOT_INIT)
1359 			continue;
1360 		if (!print_all && !reg_scratched(env, i))
1361 			continue;
1362 		verbose(env, " R%d", i);
1363 		print_liveness(env, reg->live);
1364 		verbose(env, "=");
1365 		if (t == SCALAR_VALUE && reg->precise)
1366 			verbose(env, "P");
1367 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1368 		    tnum_is_const(reg->var_off)) {
1369 			/* reg->off should be 0 for SCALAR_VALUE */
1370 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1371 			verbose(env, "%lld", reg->var_off.value + reg->off);
1372 		} else {
1373 			const char *sep = "";
1374 
1375 			verbose(env, "%s", reg_type_str(env, t));
1376 			if (base_type(t) == PTR_TO_BTF_ID)
1377 				verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1378 			verbose(env, "(");
1379 /*
1380  * _a stands for append, was shortened to avoid multiline statements below.
1381  * This macro is used to output a comma separated list of attributes.
1382  */
1383 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1384 
1385 			if (reg->id)
1386 				verbose_a("id=%d", reg->id);
1387 			if (reg->ref_obj_id)
1388 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1389 			if (type_is_non_owning_ref(reg->type))
1390 				verbose_a("%s", "non_own_ref");
1391 			if (t != SCALAR_VALUE)
1392 				verbose_a("off=%d", reg->off);
1393 			if (type_is_pkt_pointer(t))
1394 				verbose_a("r=%d", reg->range);
1395 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1396 				 base_type(t) == PTR_TO_MAP_KEY ||
1397 				 base_type(t) == PTR_TO_MAP_VALUE)
1398 				verbose_a("ks=%d,vs=%d",
1399 					  reg->map_ptr->key_size,
1400 					  reg->map_ptr->value_size);
1401 			if (tnum_is_const(reg->var_off)) {
1402 				/* Typically an immediate SCALAR_VALUE, but
1403 				 * could be a pointer whose offset is too big
1404 				 * for reg->off
1405 				 */
1406 				verbose_a("imm=%llx", reg->var_off.value);
1407 			} else {
1408 				if (reg->smin_value != reg->umin_value &&
1409 				    reg->smin_value != S64_MIN)
1410 					verbose_a("smin=%lld", (long long)reg->smin_value);
1411 				if (reg->smax_value != reg->umax_value &&
1412 				    reg->smax_value != S64_MAX)
1413 					verbose_a("smax=%lld", (long long)reg->smax_value);
1414 				if (reg->umin_value != 0)
1415 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1416 				if (reg->umax_value != U64_MAX)
1417 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1418 				if (!tnum_is_unknown(reg->var_off)) {
1419 					char tn_buf[48];
1420 
1421 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1422 					verbose_a("var_off=%s", tn_buf);
1423 				}
1424 				if (reg->s32_min_value != reg->smin_value &&
1425 				    reg->s32_min_value != S32_MIN)
1426 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1427 				if (reg->s32_max_value != reg->smax_value &&
1428 				    reg->s32_max_value != S32_MAX)
1429 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1430 				if (reg->u32_min_value != reg->umin_value &&
1431 				    reg->u32_min_value != U32_MIN)
1432 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1433 				if (reg->u32_max_value != reg->umax_value &&
1434 				    reg->u32_max_value != U32_MAX)
1435 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1436 			}
1437 #undef verbose_a
1438 
1439 			verbose(env, ")");
1440 		}
1441 	}
1442 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1443 		char types_buf[BPF_REG_SIZE + 1];
1444 		bool valid = false;
1445 		int j;
1446 
1447 		for (j = 0; j < BPF_REG_SIZE; j++) {
1448 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1449 				valid = true;
1450 			types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1451 		}
1452 		types_buf[BPF_REG_SIZE] = 0;
1453 		if (!valid)
1454 			continue;
1455 		if (!print_all && !stack_slot_scratched(env, i))
1456 			continue;
1457 		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1458 		case STACK_SPILL:
1459 			reg = &state->stack[i].spilled_ptr;
1460 			t = reg->type;
1461 
1462 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1463 			print_liveness(env, reg->live);
1464 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1465 			if (t == SCALAR_VALUE && reg->precise)
1466 				verbose(env, "P");
1467 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1468 				verbose(env, "%lld", reg->var_off.value + reg->off);
1469 			break;
1470 		case STACK_DYNPTR:
1471 			i += BPF_DYNPTR_NR_SLOTS - 1;
1472 			reg = &state->stack[i].spilled_ptr;
1473 
1474 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1475 			print_liveness(env, reg->live);
1476 			verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1477 			if (reg->ref_obj_id)
1478 				verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1479 			break;
1480 		case STACK_ITER:
1481 			/* only main slot has ref_obj_id set; skip others */
1482 			reg = &state->stack[i].spilled_ptr;
1483 			if (!reg->ref_obj_id)
1484 				continue;
1485 
1486 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1487 			print_liveness(env, reg->live);
1488 			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1489 				iter_type_str(reg->iter.btf, reg->iter.btf_id),
1490 				reg->ref_obj_id, iter_state_str(reg->iter.state),
1491 				reg->iter.depth);
1492 			break;
1493 		case STACK_MISC:
1494 		case STACK_ZERO:
1495 		default:
1496 			reg = &state->stack[i].spilled_ptr;
1497 
1498 			for (j = 0; j < BPF_REG_SIZE; j++)
1499 				types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1500 			types_buf[BPF_REG_SIZE] = 0;
1501 
1502 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1503 			print_liveness(env, reg->live);
1504 			verbose(env, "=%s", types_buf);
1505 			break;
1506 		}
1507 	}
1508 	if (state->acquired_refs && state->refs[0].id) {
1509 		verbose(env, " refs=%d", state->refs[0].id);
1510 		for (i = 1; i < state->acquired_refs; i++)
1511 			if (state->refs[i].id)
1512 				verbose(env, ",%d", state->refs[i].id);
1513 	}
1514 	if (state->in_callback_fn)
1515 		verbose(env, " cb");
1516 	if (state->in_async_callback_fn)
1517 		verbose(env, " async_cb");
1518 	verbose(env, "\n");
1519 	mark_verifier_state_clean(env);
1520 }
1521 
1522 static inline u32 vlog_alignment(u32 pos)
1523 {
1524 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1525 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1526 }
1527 
1528 static void print_insn_state(struct bpf_verifier_env *env,
1529 			     const struct bpf_func_state *state)
1530 {
1531 	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1532 		/* remove new line character */
1533 		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1534 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1535 	} else {
1536 		verbose(env, "%d:", env->insn_idx);
1537 	}
1538 	print_verifier_state(env, state, false);
1539 }
1540 
1541 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1542  * small to hold src. This is different from krealloc since we don't want to preserve
1543  * the contents of dst.
1544  *
1545  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1546  * not be allocated.
1547  */
1548 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1549 {
1550 	size_t alloc_bytes;
1551 	void *orig = dst;
1552 	size_t bytes;
1553 
1554 	if (ZERO_OR_NULL_PTR(src))
1555 		goto out;
1556 
1557 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1558 		return NULL;
1559 
1560 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1561 	dst = krealloc(orig, alloc_bytes, flags);
1562 	if (!dst) {
1563 		kfree(orig);
1564 		return NULL;
1565 	}
1566 
1567 	memcpy(dst, src, bytes);
1568 out:
1569 	return dst ? dst : ZERO_SIZE_PTR;
1570 }
1571 
1572 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1573  * small to hold new_n items. new items are zeroed out if the array grows.
1574  *
1575  * Contrary to krealloc_array, does not free arr if new_n is zero.
1576  */
1577 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1578 {
1579 	size_t alloc_size;
1580 	void *new_arr;
1581 
1582 	if (!new_n || old_n == new_n)
1583 		goto out;
1584 
1585 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1586 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1587 	if (!new_arr) {
1588 		kfree(arr);
1589 		return NULL;
1590 	}
1591 	arr = new_arr;
1592 
1593 	if (new_n > old_n)
1594 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1595 
1596 out:
1597 	return arr ? arr : ZERO_SIZE_PTR;
1598 }
1599 
1600 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1601 {
1602 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1603 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1604 	if (!dst->refs)
1605 		return -ENOMEM;
1606 
1607 	dst->acquired_refs = src->acquired_refs;
1608 	return 0;
1609 }
1610 
1611 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1612 {
1613 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1614 
1615 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1616 				GFP_KERNEL);
1617 	if (!dst->stack)
1618 		return -ENOMEM;
1619 
1620 	dst->allocated_stack = src->allocated_stack;
1621 	return 0;
1622 }
1623 
1624 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1625 {
1626 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1627 				    sizeof(struct bpf_reference_state));
1628 	if (!state->refs)
1629 		return -ENOMEM;
1630 
1631 	state->acquired_refs = n;
1632 	return 0;
1633 }
1634 
1635 static int grow_stack_state(struct bpf_func_state *state, int size)
1636 {
1637 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1638 
1639 	if (old_n >= n)
1640 		return 0;
1641 
1642 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1643 	if (!state->stack)
1644 		return -ENOMEM;
1645 
1646 	state->allocated_stack = size;
1647 	return 0;
1648 }
1649 
1650 /* Acquire a pointer id from the env and update the state->refs to include
1651  * this new pointer reference.
1652  * On success, returns a valid pointer id to associate with the register
1653  * On failure, returns a negative errno.
1654  */
1655 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1656 {
1657 	struct bpf_func_state *state = cur_func(env);
1658 	int new_ofs = state->acquired_refs;
1659 	int id, err;
1660 
1661 	err = resize_reference_state(state, state->acquired_refs + 1);
1662 	if (err)
1663 		return err;
1664 	id = ++env->id_gen;
1665 	state->refs[new_ofs].id = id;
1666 	state->refs[new_ofs].insn_idx = insn_idx;
1667 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1668 
1669 	return id;
1670 }
1671 
1672 /* release function corresponding to acquire_reference_state(). Idempotent. */
1673 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1674 {
1675 	int i, last_idx;
1676 
1677 	last_idx = state->acquired_refs - 1;
1678 	for (i = 0; i < state->acquired_refs; i++) {
1679 		if (state->refs[i].id == ptr_id) {
1680 			/* Cannot release caller references in callbacks */
1681 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1682 				return -EINVAL;
1683 			if (last_idx && i != last_idx)
1684 				memcpy(&state->refs[i], &state->refs[last_idx],
1685 				       sizeof(*state->refs));
1686 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1687 			state->acquired_refs--;
1688 			return 0;
1689 		}
1690 	}
1691 	return -EINVAL;
1692 }
1693 
1694 static void free_func_state(struct bpf_func_state *state)
1695 {
1696 	if (!state)
1697 		return;
1698 	kfree(state->refs);
1699 	kfree(state->stack);
1700 	kfree(state);
1701 }
1702 
1703 static void clear_jmp_history(struct bpf_verifier_state *state)
1704 {
1705 	kfree(state->jmp_history);
1706 	state->jmp_history = NULL;
1707 	state->jmp_history_cnt = 0;
1708 }
1709 
1710 static void free_verifier_state(struct bpf_verifier_state *state,
1711 				bool free_self)
1712 {
1713 	int i;
1714 
1715 	for (i = 0; i <= state->curframe; i++) {
1716 		free_func_state(state->frame[i]);
1717 		state->frame[i] = NULL;
1718 	}
1719 	clear_jmp_history(state);
1720 	if (free_self)
1721 		kfree(state);
1722 }
1723 
1724 /* copy verifier state from src to dst growing dst stack space
1725  * when necessary to accommodate larger src stack
1726  */
1727 static int copy_func_state(struct bpf_func_state *dst,
1728 			   const struct bpf_func_state *src)
1729 {
1730 	int err;
1731 
1732 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1733 	err = copy_reference_state(dst, src);
1734 	if (err)
1735 		return err;
1736 	return copy_stack_state(dst, src);
1737 }
1738 
1739 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1740 			       const struct bpf_verifier_state *src)
1741 {
1742 	struct bpf_func_state *dst;
1743 	int i, err;
1744 
1745 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1746 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1747 					    GFP_USER);
1748 	if (!dst_state->jmp_history)
1749 		return -ENOMEM;
1750 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1751 
1752 	/* if dst has more stack frames then src frame, free them, this is also
1753 	 * necessary in case of exceptional exits using bpf_throw.
1754 	 */
1755 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1756 		free_func_state(dst_state->frame[i]);
1757 		dst_state->frame[i] = NULL;
1758 	}
1759 	dst_state->speculative = src->speculative;
1760 	dst_state->active_rcu_lock = src->active_rcu_lock;
1761 	dst_state->curframe = src->curframe;
1762 	dst_state->active_lock.ptr = src->active_lock.ptr;
1763 	dst_state->active_lock.id = src->active_lock.id;
1764 	dst_state->branches = src->branches;
1765 	dst_state->parent = src->parent;
1766 	dst_state->first_insn_idx = src->first_insn_idx;
1767 	dst_state->last_insn_idx = src->last_insn_idx;
1768 	for (i = 0; i <= src->curframe; i++) {
1769 		dst = dst_state->frame[i];
1770 		if (!dst) {
1771 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1772 			if (!dst)
1773 				return -ENOMEM;
1774 			dst_state->frame[i] = dst;
1775 		}
1776 		err = copy_func_state(dst, src->frame[i]);
1777 		if (err)
1778 			return err;
1779 	}
1780 	return 0;
1781 }
1782 
1783 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1784 {
1785 	while (st) {
1786 		u32 br = --st->branches;
1787 
1788 		/* WARN_ON(br > 1) technically makes sense here,
1789 		 * but see comment in push_stack(), hence:
1790 		 */
1791 		WARN_ONCE((int)br < 0,
1792 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1793 			  br);
1794 		if (br)
1795 			break;
1796 		st = st->parent;
1797 	}
1798 }
1799 
1800 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1801 		     int *insn_idx, bool pop_log)
1802 {
1803 	struct bpf_verifier_state *cur = env->cur_state;
1804 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1805 	int err;
1806 
1807 	if (env->head == NULL)
1808 		return -ENOENT;
1809 
1810 	if (cur) {
1811 		err = copy_verifier_state(cur, &head->st);
1812 		if (err)
1813 			return err;
1814 	}
1815 	if (pop_log)
1816 		bpf_vlog_reset(&env->log, head->log_pos);
1817 	if (insn_idx)
1818 		*insn_idx = head->insn_idx;
1819 	if (prev_insn_idx)
1820 		*prev_insn_idx = head->prev_insn_idx;
1821 	elem = head->next;
1822 	free_verifier_state(&head->st, false);
1823 	kfree(head);
1824 	env->head = elem;
1825 	env->stack_size--;
1826 	return 0;
1827 }
1828 
1829 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1830 					     int insn_idx, int prev_insn_idx,
1831 					     bool speculative)
1832 {
1833 	struct bpf_verifier_state *cur = env->cur_state;
1834 	struct bpf_verifier_stack_elem *elem;
1835 	int err;
1836 
1837 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1838 	if (!elem)
1839 		goto err;
1840 
1841 	elem->insn_idx = insn_idx;
1842 	elem->prev_insn_idx = prev_insn_idx;
1843 	elem->next = env->head;
1844 	elem->log_pos = env->log.end_pos;
1845 	env->head = elem;
1846 	env->stack_size++;
1847 	err = copy_verifier_state(&elem->st, cur);
1848 	if (err)
1849 		goto err;
1850 	elem->st.speculative |= speculative;
1851 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1852 		verbose(env, "The sequence of %d jumps is too complex.\n",
1853 			env->stack_size);
1854 		goto err;
1855 	}
1856 	if (elem->st.parent) {
1857 		++elem->st.parent->branches;
1858 		/* WARN_ON(branches > 2) technically makes sense here,
1859 		 * but
1860 		 * 1. speculative states will bump 'branches' for non-branch
1861 		 * instructions
1862 		 * 2. is_state_visited() heuristics may decide not to create
1863 		 * a new state for a sequence of branches and all such current
1864 		 * and cloned states will be pointing to a single parent state
1865 		 * which might have large 'branches' count.
1866 		 */
1867 	}
1868 	return &elem->st;
1869 err:
1870 	free_verifier_state(env->cur_state, true);
1871 	env->cur_state = NULL;
1872 	/* pop all elements and return */
1873 	while (!pop_stack(env, NULL, NULL, false));
1874 	return NULL;
1875 }
1876 
1877 #define CALLER_SAVED_REGS 6
1878 static const int caller_saved[CALLER_SAVED_REGS] = {
1879 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1880 };
1881 
1882 /* This helper doesn't clear reg->id */
1883 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1884 {
1885 	reg->var_off = tnum_const(imm);
1886 	reg->smin_value = (s64)imm;
1887 	reg->smax_value = (s64)imm;
1888 	reg->umin_value = imm;
1889 	reg->umax_value = imm;
1890 
1891 	reg->s32_min_value = (s32)imm;
1892 	reg->s32_max_value = (s32)imm;
1893 	reg->u32_min_value = (u32)imm;
1894 	reg->u32_max_value = (u32)imm;
1895 }
1896 
1897 /* Mark the unknown part of a register (variable offset or scalar value) as
1898  * known to have the value @imm.
1899  */
1900 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1901 {
1902 	/* Clear off and union(map_ptr, range) */
1903 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1904 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1905 	reg->id = 0;
1906 	reg->ref_obj_id = 0;
1907 	___mark_reg_known(reg, imm);
1908 }
1909 
1910 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1911 {
1912 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1913 	reg->s32_min_value = (s32)imm;
1914 	reg->s32_max_value = (s32)imm;
1915 	reg->u32_min_value = (u32)imm;
1916 	reg->u32_max_value = (u32)imm;
1917 }
1918 
1919 /* Mark the 'variable offset' part of a register as zero.  This should be
1920  * used only on registers holding a pointer type.
1921  */
1922 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1923 {
1924 	__mark_reg_known(reg, 0);
1925 }
1926 
1927 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1928 {
1929 	__mark_reg_known(reg, 0);
1930 	reg->type = SCALAR_VALUE;
1931 }
1932 
1933 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1934 				struct bpf_reg_state *regs, u32 regno)
1935 {
1936 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1937 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1938 		/* Something bad happened, let's kill all regs */
1939 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1940 			__mark_reg_not_init(env, regs + regno);
1941 		return;
1942 	}
1943 	__mark_reg_known_zero(regs + regno);
1944 }
1945 
1946 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1947 			      bool first_slot, int dynptr_id)
1948 {
1949 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1950 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1951 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1952 	 */
1953 	__mark_reg_known_zero(reg);
1954 	reg->type = CONST_PTR_TO_DYNPTR;
1955 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1956 	reg->id = dynptr_id;
1957 	reg->dynptr.type = type;
1958 	reg->dynptr.first_slot = first_slot;
1959 }
1960 
1961 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1962 {
1963 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1964 		const struct bpf_map *map = reg->map_ptr;
1965 
1966 		if (map->inner_map_meta) {
1967 			reg->type = CONST_PTR_TO_MAP;
1968 			reg->map_ptr = map->inner_map_meta;
1969 			/* transfer reg's id which is unique for every map_lookup_elem
1970 			 * as UID of the inner map.
1971 			 */
1972 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1973 				reg->map_uid = reg->id;
1974 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1975 			reg->type = PTR_TO_XDP_SOCK;
1976 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1977 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1978 			reg->type = PTR_TO_SOCKET;
1979 		} else {
1980 			reg->type = PTR_TO_MAP_VALUE;
1981 		}
1982 		return;
1983 	}
1984 
1985 	reg->type &= ~PTR_MAYBE_NULL;
1986 }
1987 
1988 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1989 				struct btf_field_graph_root *ds_head)
1990 {
1991 	__mark_reg_known_zero(&regs[regno]);
1992 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1993 	regs[regno].btf = ds_head->btf;
1994 	regs[regno].btf_id = ds_head->value_btf_id;
1995 	regs[regno].off = ds_head->node_offset;
1996 }
1997 
1998 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1999 {
2000 	return type_is_pkt_pointer(reg->type);
2001 }
2002 
2003 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2004 {
2005 	return reg_is_pkt_pointer(reg) ||
2006 	       reg->type == PTR_TO_PACKET_END;
2007 }
2008 
2009 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2010 {
2011 	return base_type(reg->type) == PTR_TO_MEM &&
2012 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2013 }
2014 
2015 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2016 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2017 				    enum bpf_reg_type which)
2018 {
2019 	/* The register can already have a range from prior markings.
2020 	 * This is fine as long as it hasn't been advanced from its
2021 	 * origin.
2022 	 */
2023 	return reg->type == which &&
2024 	       reg->id == 0 &&
2025 	       reg->off == 0 &&
2026 	       tnum_equals_const(reg->var_off, 0);
2027 }
2028 
2029 /* Reset the min/max bounds of a register */
2030 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2031 {
2032 	reg->smin_value = S64_MIN;
2033 	reg->smax_value = S64_MAX;
2034 	reg->umin_value = 0;
2035 	reg->umax_value = U64_MAX;
2036 
2037 	reg->s32_min_value = S32_MIN;
2038 	reg->s32_max_value = S32_MAX;
2039 	reg->u32_min_value = 0;
2040 	reg->u32_max_value = U32_MAX;
2041 }
2042 
2043 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2044 {
2045 	reg->smin_value = S64_MIN;
2046 	reg->smax_value = S64_MAX;
2047 	reg->umin_value = 0;
2048 	reg->umax_value = U64_MAX;
2049 }
2050 
2051 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2052 {
2053 	reg->s32_min_value = S32_MIN;
2054 	reg->s32_max_value = S32_MAX;
2055 	reg->u32_min_value = 0;
2056 	reg->u32_max_value = U32_MAX;
2057 }
2058 
2059 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2060 {
2061 	struct tnum var32_off = tnum_subreg(reg->var_off);
2062 
2063 	/* min signed is max(sign bit) | min(other bits) */
2064 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2065 			var32_off.value | (var32_off.mask & S32_MIN));
2066 	/* max signed is min(sign bit) | max(other bits) */
2067 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2068 			var32_off.value | (var32_off.mask & S32_MAX));
2069 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2070 	reg->u32_max_value = min(reg->u32_max_value,
2071 				 (u32)(var32_off.value | var32_off.mask));
2072 }
2073 
2074 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2075 {
2076 	/* min signed is max(sign bit) | min(other bits) */
2077 	reg->smin_value = max_t(s64, reg->smin_value,
2078 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2079 	/* max signed is min(sign bit) | max(other bits) */
2080 	reg->smax_value = min_t(s64, reg->smax_value,
2081 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2082 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2083 	reg->umax_value = min(reg->umax_value,
2084 			      reg->var_off.value | reg->var_off.mask);
2085 }
2086 
2087 static void __update_reg_bounds(struct bpf_reg_state *reg)
2088 {
2089 	__update_reg32_bounds(reg);
2090 	__update_reg64_bounds(reg);
2091 }
2092 
2093 /* Uses signed min/max values to inform unsigned, and vice-versa */
2094 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2095 {
2096 	/* Learn sign from signed bounds.
2097 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2098 	 * are the same, so combine.  This works even in the negative case, e.g.
2099 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2100 	 */
2101 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2102 		reg->s32_min_value = reg->u32_min_value =
2103 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2104 		reg->s32_max_value = reg->u32_max_value =
2105 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2106 		return;
2107 	}
2108 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2109 	 * boundary, so we must be careful.
2110 	 */
2111 	if ((s32)reg->u32_max_value >= 0) {
2112 		/* Positive.  We can't learn anything from the smin, but smax
2113 		 * is positive, hence safe.
2114 		 */
2115 		reg->s32_min_value = reg->u32_min_value;
2116 		reg->s32_max_value = reg->u32_max_value =
2117 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2118 	} else if ((s32)reg->u32_min_value < 0) {
2119 		/* Negative.  We can't learn anything from the smax, but smin
2120 		 * is negative, hence safe.
2121 		 */
2122 		reg->s32_min_value = reg->u32_min_value =
2123 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2124 		reg->s32_max_value = reg->u32_max_value;
2125 	}
2126 }
2127 
2128 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2129 {
2130 	/* Learn sign from signed bounds.
2131 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2132 	 * are the same, so combine.  This works even in the negative case, e.g.
2133 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2134 	 */
2135 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
2136 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2137 							  reg->umin_value);
2138 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2139 							  reg->umax_value);
2140 		return;
2141 	}
2142 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2143 	 * boundary, so we must be careful.
2144 	 */
2145 	if ((s64)reg->umax_value >= 0) {
2146 		/* Positive.  We can't learn anything from the smin, but smax
2147 		 * is positive, hence safe.
2148 		 */
2149 		reg->smin_value = reg->umin_value;
2150 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2151 							  reg->umax_value);
2152 	} else if ((s64)reg->umin_value < 0) {
2153 		/* Negative.  We can't learn anything from the smax, but smin
2154 		 * is negative, hence safe.
2155 		 */
2156 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2157 							  reg->umin_value);
2158 		reg->smax_value = reg->umax_value;
2159 	}
2160 }
2161 
2162 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2163 {
2164 	__reg32_deduce_bounds(reg);
2165 	__reg64_deduce_bounds(reg);
2166 }
2167 
2168 /* Attempts to improve var_off based on unsigned min/max information */
2169 static void __reg_bound_offset(struct bpf_reg_state *reg)
2170 {
2171 	struct tnum var64_off = tnum_intersect(reg->var_off,
2172 					       tnum_range(reg->umin_value,
2173 							  reg->umax_value));
2174 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2175 					       tnum_range(reg->u32_min_value,
2176 							  reg->u32_max_value));
2177 
2178 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2179 }
2180 
2181 static void reg_bounds_sync(struct bpf_reg_state *reg)
2182 {
2183 	/* We might have learned new bounds from the var_off. */
2184 	__update_reg_bounds(reg);
2185 	/* We might have learned something about the sign bit. */
2186 	__reg_deduce_bounds(reg);
2187 	/* We might have learned some bits from the bounds. */
2188 	__reg_bound_offset(reg);
2189 	/* Intersecting with the old var_off might have improved our bounds
2190 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2191 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2192 	 */
2193 	__update_reg_bounds(reg);
2194 }
2195 
2196 static bool __reg32_bound_s64(s32 a)
2197 {
2198 	return a >= 0 && a <= S32_MAX;
2199 }
2200 
2201 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2202 {
2203 	reg->umin_value = reg->u32_min_value;
2204 	reg->umax_value = reg->u32_max_value;
2205 
2206 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2207 	 * be positive otherwise set to worse case bounds and refine later
2208 	 * from tnum.
2209 	 */
2210 	if (__reg32_bound_s64(reg->s32_min_value) &&
2211 	    __reg32_bound_s64(reg->s32_max_value)) {
2212 		reg->smin_value = reg->s32_min_value;
2213 		reg->smax_value = reg->s32_max_value;
2214 	} else {
2215 		reg->smin_value = 0;
2216 		reg->smax_value = U32_MAX;
2217 	}
2218 }
2219 
2220 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2221 {
2222 	/* special case when 64-bit register has upper 32-bit register
2223 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
2224 	 * allowing us to use 32-bit bounds directly,
2225 	 */
2226 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2227 		__reg_assign_32_into_64(reg);
2228 	} else {
2229 		/* Otherwise the best we can do is push lower 32bit known and
2230 		 * unknown bits into register (var_off set from jmp logic)
2231 		 * then learn as much as possible from the 64-bit tnum
2232 		 * known and unknown bits. The previous smin/smax bounds are
2233 		 * invalid here because of jmp32 compare so mark them unknown
2234 		 * so they do not impact tnum bounds calculation.
2235 		 */
2236 		__mark_reg64_unbounded(reg);
2237 	}
2238 	reg_bounds_sync(reg);
2239 }
2240 
2241 static bool __reg64_bound_s32(s64 a)
2242 {
2243 	return a >= S32_MIN && a <= S32_MAX;
2244 }
2245 
2246 static bool __reg64_bound_u32(u64 a)
2247 {
2248 	return a >= U32_MIN && a <= U32_MAX;
2249 }
2250 
2251 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2252 {
2253 	__mark_reg32_unbounded(reg);
2254 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2255 		reg->s32_min_value = (s32)reg->smin_value;
2256 		reg->s32_max_value = (s32)reg->smax_value;
2257 	}
2258 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2259 		reg->u32_min_value = (u32)reg->umin_value;
2260 		reg->u32_max_value = (u32)reg->umax_value;
2261 	}
2262 	reg_bounds_sync(reg);
2263 }
2264 
2265 /* Mark a register as having a completely unknown (scalar) value. */
2266 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2267 			       struct bpf_reg_state *reg)
2268 {
2269 	/*
2270 	 * Clear type, off, and union(map_ptr, range) and
2271 	 * padding between 'type' and union
2272 	 */
2273 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2274 	reg->type = SCALAR_VALUE;
2275 	reg->id = 0;
2276 	reg->ref_obj_id = 0;
2277 	reg->var_off = tnum_unknown;
2278 	reg->frameno = 0;
2279 	reg->precise = !env->bpf_capable;
2280 	__mark_reg_unbounded(reg);
2281 }
2282 
2283 static void mark_reg_unknown(struct bpf_verifier_env *env,
2284 			     struct bpf_reg_state *regs, u32 regno)
2285 {
2286 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2287 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2288 		/* Something bad happened, let's kill all regs except FP */
2289 		for (regno = 0; regno < BPF_REG_FP; regno++)
2290 			__mark_reg_not_init(env, regs + regno);
2291 		return;
2292 	}
2293 	__mark_reg_unknown(env, regs + regno);
2294 }
2295 
2296 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2297 				struct bpf_reg_state *reg)
2298 {
2299 	__mark_reg_unknown(env, reg);
2300 	reg->type = NOT_INIT;
2301 }
2302 
2303 static void mark_reg_not_init(struct bpf_verifier_env *env,
2304 			      struct bpf_reg_state *regs, u32 regno)
2305 {
2306 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2307 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2308 		/* Something bad happened, let's kill all regs except FP */
2309 		for (regno = 0; regno < BPF_REG_FP; regno++)
2310 			__mark_reg_not_init(env, regs + regno);
2311 		return;
2312 	}
2313 	__mark_reg_not_init(env, regs + regno);
2314 }
2315 
2316 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2317 			    struct bpf_reg_state *regs, u32 regno,
2318 			    enum bpf_reg_type reg_type,
2319 			    struct btf *btf, u32 btf_id,
2320 			    enum bpf_type_flag flag)
2321 {
2322 	if (reg_type == SCALAR_VALUE) {
2323 		mark_reg_unknown(env, regs, regno);
2324 		return;
2325 	}
2326 	mark_reg_known_zero(env, regs, regno);
2327 	regs[regno].type = PTR_TO_BTF_ID | flag;
2328 	regs[regno].btf = btf;
2329 	regs[regno].btf_id = btf_id;
2330 }
2331 
2332 #define DEF_NOT_SUBREG	(0)
2333 static void init_reg_state(struct bpf_verifier_env *env,
2334 			   struct bpf_func_state *state)
2335 {
2336 	struct bpf_reg_state *regs = state->regs;
2337 	int i;
2338 
2339 	for (i = 0; i < MAX_BPF_REG; i++) {
2340 		mark_reg_not_init(env, regs, i);
2341 		regs[i].live = REG_LIVE_NONE;
2342 		regs[i].parent = NULL;
2343 		regs[i].subreg_def = DEF_NOT_SUBREG;
2344 	}
2345 
2346 	/* frame pointer */
2347 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2348 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2349 	regs[BPF_REG_FP].frameno = state->frameno;
2350 }
2351 
2352 #define BPF_MAIN_FUNC (-1)
2353 static void init_func_state(struct bpf_verifier_env *env,
2354 			    struct bpf_func_state *state,
2355 			    int callsite, int frameno, int subprogno)
2356 {
2357 	state->callsite = callsite;
2358 	state->frameno = frameno;
2359 	state->subprogno = subprogno;
2360 	state->callback_ret_range = tnum_range(0, 0);
2361 	init_reg_state(env, state);
2362 	mark_verifier_state_scratched(env);
2363 }
2364 
2365 /* Similar to push_stack(), but for async callbacks */
2366 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2367 						int insn_idx, int prev_insn_idx,
2368 						int subprog)
2369 {
2370 	struct bpf_verifier_stack_elem *elem;
2371 	struct bpf_func_state *frame;
2372 
2373 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2374 	if (!elem)
2375 		goto err;
2376 
2377 	elem->insn_idx = insn_idx;
2378 	elem->prev_insn_idx = prev_insn_idx;
2379 	elem->next = env->head;
2380 	elem->log_pos = env->log.end_pos;
2381 	env->head = elem;
2382 	env->stack_size++;
2383 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2384 		verbose(env,
2385 			"The sequence of %d jumps is too complex for async cb.\n",
2386 			env->stack_size);
2387 		goto err;
2388 	}
2389 	/* Unlike push_stack() do not copy_verifier_state().
2390 	 * The caller state doesn't matter.
2391 	 * This is async callback. It starts in a fresh stack.
2392 	 * Initialize it similar to do_check_common().
2393 	 */
2394 	elem->st.branches = 1;
2395 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2396 	if (!frame)
2397 		goto err;
2398 	init_func_state(env, frame,
2399 			BPF_MAIN_FUNC /* callsite */,
2400 			0 /* frameno within this callchain */,
2401 			subprog /* subprog number within this prog */);
2402 	elem->st.frame[0] = frame;
2403 	return &elem->st;
2404 err:
2405 	free_verifier_state(env->cur_state, true);
2406 	env->cur_state = NULL;
2407 	/* pop all elements and return */
2408 	while (!pop_stack(env, NULL, NULL, false));
2409 	return NULL;
2410 }
2411 
2412 
2413 enum reg_arg_type {
2414 	SRC_OP,		/* register is used as source operand */
2415 	DST_OP,		/* register is used as destination operand */
2416 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2417 };
2418 
2419 static int cmp_subprogs(const void *a, const void *b)
2420 {
2421 	return ((struct bpf_subprog_info *)a)->start -
2422 	       ((struct bpf_subprog_info *)b)->start;
2423 }
2424 
2425 static int find_subprog(struct bpf_verifier_env *env, int off)
2426 {
2427 	struct bpf_subprog_info *p;
2428 
2429 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2430 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2431 	if (!p)
2432 		return -ENOENT;
2433 	return p - env->subprog_info;
2434 
2435 }
2436 
2437 static int add_subprog(struct bpf_verifier_env *env, int off)
2438 {
2439 	int insn_cnt = env->prog->len;
2440 	int ret;
2441 
2442 	if (off >= insn_cnt || off < 0) {
2443 		verbose(env, "call to invalid destination\n");
2444 		return -EINVAL;
2445 	}
2446 	ret = find_subprog(env, off);
2447 	if (ret >= 0)
2448 		return ret;
2449 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2450 		verbose(env, "too many subprograms\n");
2451 		return -E2BIG;
2452 	}
2453 	/* determine subprog starts. The end is one before the next starts */
2454 	env->subprog_info[env->subprog_cnt++].start = off;
2455 	sort(env->subprog_info, env->subprog_cnt,
2456 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2457 	return env->subprog_cnt - 1;
2458 }
2459 
2460 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2461 {
2462 	struct bpf_prog_aux *aux = env->prog->aux;
2463 	struct btf *btf = aux->btf;
2464 	const struct btf_type *t;
2465 	u32 main_btf_id, id;
2466 	const char *name;
2467 	int ret, i;
2468 
2469 	/* Non-zero func_info_cnt implies valid btf */
2470 	if (!aux->func_info_cnt)
2471 		return 0;
2472 	main_btf_id = aux->func_info[0].type_id;
2473 
2474 	t = btf_type_by_id(btf, main_btf_id);
2475 	if (!t) {
2476 		verbose(env, "invalid btf id for main subprog in func_info\n");
2477 		return -EINVAL;
2478 	}
2479 
2480 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2481 	if (IS_ERR(name)) {
2482 		ret = PTR_ERR(name);
2483 		/* If there is no tag present, there is no exception callback */
2484 		if (ret == -ENOENT)
2485 			ret = 0;
2486 		else if (ret == -EEXIST)
2487 			verbose(env, "multiple exception callback tags for main subprog\n");
2488 		return ret;
2489 	}
2490 
2491 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2492 	if (ret < 0) {
2493 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2494 		return ret;
2495 	}
2496 	id = ret;
2497 	t = btf_type_by_id(btf, id);
2498 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2499 		verbose(env, "exception callback '%s' must have global linkage\n", name);
2500 		return -EINVAL;
2501 	}
2502 	ret = 0;
2503 	for (i = 0; i < aux->func_info_cnt; i++) {
2504 		if (aux->func_info[i].type_id != id)
2505 			continue;
2506 		ret = aux->func_info[i].insn_off;
2507 		/* Further func_info and subprog checks will also happen
2508 		 * later, so assume this is the right insn_off for now.
2509 		 */
2510 		if (!ret) {
2511 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2512 			ret = -EINVAL;
2513 		}
2514 	}
2515 	if (!ret) {
2516 		verbose(env, "exception callback type id not found in func_info\n");
2517 		ret = -EINVAL;
2518 	}
2519 	return ret;
2520 }
2521 
2522 #define MAX_KFUNC_DESCS 256
2523 #define MAX_KFUNC_BTFS	256
2524 
2525 struct bpf_kfunc_desc {
2526 	struct btf_func_model func_model;
2527 	u32 func_id;
2528 	s32 imm;
2529 	u16 offset;
2530 	unsigned long addr;
2531 };
2532 
2533 struct bpf_kfunc_btf {
2534 	struct btf *btf;
2535 	struct module *module;
2536 	u16 offset;
2537 };
2538 
2539 struct bpf_kfunc_desc_tab {
2540 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2541 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2542 	 * available, therefore at the end of verification do_misc_fixups()
2543 	 * sorts this by imm and offset.
2544 	 */
2545 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2546 	u32 nr_descs;
2547 };
2548 
2549 struct bpf_kfunc_btf_tab {
2550 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2551 	u32 nr_descs;
2552 };
2553 
2554 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2555 {
2556 	const struct bpf_kfunc_desc *d0 = a;
2557 	const struct bpf_kfunc_desc *d1 = b;
2558 
2559 	/* func_id is not greater than BTF_MAX_TYPE */
2560 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2561 }
2562 
2563 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2564 {
2565 	const struct bpf_kfunc_btf *d0 = a;
2566 	const struct bpf_kfunc_btf *d1 = b;
2567 
2568 	return d0->offset - d1->offset;
2569 }
2570 
2571 static const struct bpf_kfunc_desc *
2572 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2573 {
2574 	struct bpf_kfunc_desc desc = {
2575 		.func_id = func_id,
2576 		.offset = offset,
2577 	};
2578 	struct bpf_kfunc_desc_tab *tab;
2579 
2580 	tab = prog->aux->kfunc_tab;
2581 	return bsearch(&desc, tab->descs, tab->nr_descs,
2582 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2583 }
2584 
2585 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2586 		       u16 btf_fd_idx, u8 **func_addr)
2587 {
2588 	const struct bpf_kfunc_desc *desc;
2589 
2590 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2591 	if (!desc)
2592 		return -EFAULT;
2593 
2594 	*func_addr = (u8 *)desc->addr;
2595 	return 0;
2596 }
2597 
2598 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2599 					 s16 offset)
2600 {
2601 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2602 	struct bpf_kfunc_btf_tab *tab;
2603 	struct bpf_kfunc_btf *b;
2604 	struct module *mod;
2605 	struct btf *btf;
2606 	int btf_fd;
2607 
2608 	tab = env->prog->aux->kfunc_btf_tab;
2609 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2610 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2611 	if (!b) {
2612 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2613 			verbose(env, "too many different module BTFs\n");
2614 			return ERR_PTR(-E2BIG);
2615 		}
2616 
2617 		if (bpfptr_is_null(env->fd_array)) {
2618 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2619 			return ERR_PTR(-EPROTO);
2620 		}
2621 
2622 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2623 					    offset * sizeof(btf_fd),
2624 					    sizeof(btf_fd)))
2625 			return ERR_PTR(-EFAULT);
2626 
2627 		btf = btf_get_by_fd(btf_fd);
2628 		if (IS_ERR(btf)) {
2629 			verbose(env, "invalid module BTF fd specified\n");
2630 			return btf;
2631 		}
2632 
2633 		if (!btf_is_module(btf)) {
2634 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2635 			btf_put(btf);
2636 			return ERR_PTR(-EINVAL);
2637 		}
2638 
2639 		mod = btf_try_get_module(btf);
2640 		if (!mod) {
2641 			btf_put(btf);
2642 			return ERR_PTR(-ENXIO);
2643 		}
2644 
2645 		b = &tab->descs[tab->nr_descs++];
2646 		b->btf = btf;
2647 		b->module = mod;
2648 		b->offset = offset;
2649 
2650 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2651 		     kfunc_btf_cmp_by_off, NULL);
2652 	}
2653 	return b->btf;
2654 }
2655 
2656 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2657 {
2658 	if (!tab)
2659 		return;
2660 
2661 	while (tab->nr_descs--) {
2662 		module_put(tab->descs[tab->nr_descs].module);
2663 		btf_put(tab->descs[tab->nr_descs].btf);
2664 	}
2665 	kfree(tab);
2666 }
2667 
2668 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2669 {
2670 	if (offset) {
2671 		if (offset < 0) {
2672 			/* In the future, this can be allowed to increase limit
2673 			 * of fd index into fd_array, interpreted as u16.
2674 			 */
2675 			verbose(env, "negative offset disallowed for kernel module function call\n");
2676 			return ERR_PTR(-EINVAL);
2677 		}
2678 
2679 		return __find_kfunc_desc_btf(env, offset);
2680 	}
2681 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2682 }
2683 
2684 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2685 {
2686 	const struct btf_type *func, *func_proto;
2687 	struct bpf_kfunc_btf_tab *btf_tab;
2688 	struct bpf_kfunc_desc_tab *tab;
2689 	struct bpf_prog_aux *prog_aux;
2690 	struct bpf_kfunc_desc *desc;
2691 	const char *func_name;
2692 	struct btf *desc_btf;
2693 	unsigned long call_imm;
2694 	unsigned long addr;
2695 	int err;
2696 
2697 	prog_aux = env->prog->aux;
2698 	tab = prog_aux->kfunc_tab;
2699 	btf_tab = prog_aux->kfunc_btf_tab;
2700 	if (!tab) {
2701 		if (!btf_vmlinux) {
2702 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2703 			return -ENOTSUPP;
2704 		}
2705 
2706 		if (!env->prog->jit_requested) {
2707 			verbose(env, "JIT is required for calling kernel function\n");
2708 			return -ENOTSUPP;
2709 		}
2710 
2711 		if (!bpf_jit_supports_kfunc_call()) {
2712 			verbose(env, "JIT does not support calling kernel function\n");
2713 			return -ENOTSUPP;
2714 		}
2715 
2716 		if (!env->prog->gpl_compatible) {
2717 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2718 			return -EINVAL;
2719 		}
2720 
2721 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2722 		if (!tab)
2723 			return -ENOMEM;
2724 		prog_aux->kfunc_tab = tab;
2725 	}
2726 
2727 	/* func_id == 0 is always invalid, but instead of returning an error, be
2728 	 * conservative and wait until the code elimination pass before returning
2729 	 * error, so that invalid calls that get pruned out can be in BPF programs
2730 	 * loaded from userspace.  It is also required that offset be untouched
2731 	 * for such calls.
2732 	 */
2733 	if (!func_id && !offset)
2734 		return 0;
2735 
2736 	if (!btf_tab && offset) {
2737 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2738 		if (!btf_tab)
2739 			return -ENOMEM;
2740 		prog_aux->kfunc_btf_tab = btf_tab;
2741 	}
2742 
2743 	desc_btf = find_kfunc_desc_btf(env, offset);
2744 	if (IS_ERR(desc_btf)) {
2745 		verbose(env, "failed to find BTF for kernel function\n");
2746 		return PTR_ERR(desc_btf);
2747 	}
2748 
2749 	if (find_kfunc_desc(env->prog, func_id, offset))
2750 		return 0;
2751 
2752 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2753 		verbose(env, "too many different kernel function calls\n");
2754 		return -E2BIG;
2755 	}
2756 
2757 	func = btf_type_by_id(desc_btf, func_id);
2758 	if (!func || !btf_type_is_func(func)) {
2759 		verbose(env, "kernel btf_id %u is not a function\n",
2760 			func_id);
2761 		return -EINVAL;
2762 	}
2763 	func_proto = btf_type_by_id(desc_btf, func->type);
2764 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2765 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2766 			func_id);
2767 		return -EINVAL;
2768 	}
2769 
2770 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2771 	addr = kallsyms_lookup_name(func_name);
2772 	if (!addr) {
2773 		verbose(env, "cannot find address for kernel function %s\n",
2774 			func_name);
2775 		return -EINVAL;
2776 	}
2777 	specialize_kfunc(env, func_id, offset, &addr);
2778 
2779 	if (bpf_jit_supports_far_kfunc_call()) {
2780 		call_imm = func_id;
2781 	} else {
2782 		call_imm = BPF_CALL_IMM(addr);
2783 		/* Check whether the relative offset overflows desc->imm */
2784 		if ((unsigned long)(s32)call_imm != call_imm) {
2785 			verbose(env, "address of kernel function %s is out of range\n",
2786 				func_name);
2787 			return -EINVAL;
2788 		}
2789 	}
2790 
2791 	if (bpf_dev_bound_kfunc_id(func_id)) {
2792 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2793 		if (err)
2794 			return err;
2795 	}
2796 
2797 	desc = &tab->descs[tab->nr_descs++];
2798 	desc->func_id = func_id;
2799 	desc->imm = call_imm;
2800 	desc->offset = offset;
2801 	desc->addr = addr;
2802 	err = btf_distill_func_proto(&env->log, desc_btf,
2803 				     func_proto, func_name,
2804 				     &desc->func_model);
2805 	if (!err)
2806 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2807 		     kfunc_desc_cmp_by_id_off, NULL);
2808 	return err;
2809 }
2810 
2811 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2812 {
2813 	const struct bpf_kfunc_desc *d0 = a;
2814 	const struct bpf_kfunc_desc *d1 = b;
2815 
2816 	if (d0->imm != d1->imm)
2817 		return d0->imm < d1->imm ? -1 : 1;
2818 	if (d0->offset != d1->offset)
2819 		return d0->offset < d1->offset ? -1 : 1;
2820 	return 0;
2821 }
2822 
2823 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2824 {
2825 	struct bpf_kfunc_desc_tab *tab;
2826 
2827 	tab = prog->aux->kfunc_tab;
2828 	if (!tab)
2829 		return;
2830 
2831 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2832 	     kfunc_desc_cmp_by_imm_off, NULL);
2833 }
2834 
2835 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2836 {
2837 	return !!prog->aux->kfunc_tab;
2838 }
2839 
2840 const struct btf_func_model *
2841 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2842 			 const struct bpf_insn *insn)
2843 {
2844 	const struct bpf_kfunc_desc desc = {
2845 		.imm = insn->imm,
2846 		.offset = insn->off,
2847 	};
2848 	const struct bpf_kfunc_desc *res;
2849 	struct bpf_kfunc_desc_tab *tab;
2850 
2851 	tab = prog->aux->kfunc_tab;
2852 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2853 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2854 
2855 	return res ? &res->func_model : NULL;
2856 }
2857 
2858 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2859 {
2860 	struct bpf_subprog_info *subprog = env->subprog_info;
2861 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
2862 	struct bpf_insn *insn = env->prog->insnsi;
2863 
2864 	/* Add entry function. */
2865 	ret = add_subprog(env, 0);
2866 	if (ret)
2867 		return ret;
2868 
2869 	for (i = 0; i < insn_cnt; i++, insn++) {
2870 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2871 		    !bpf_pseudo_kfunc_call(insn))
2872 			continue;
2873 
2874 		if (!env->bpf_capable) {
2875 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2876 			return -EPERM;
2877 		}
2878 
2879 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2880 			ret = add_subprog(env, i + insn->imm + 1);
2881 		else
2882 			ret = add_kfunc_call(env, insn->imm, insn->off);
2883 
2884 		if (ret < 0)
2885 			return ret;
2886 	}
2887 
2888 	ret = bpf_find_exception_callback_insn_off(env);
2889 	if (ret < 0)
2890 		return ret;
2891 	ex_cb_insn = ret;
2892 
2893 	/* If ex_cb_insn > 0, this means that the main program has a subprog
2894 	 * marked using BTF decl tag to serve as the exception callback.
2895 	 */
2896 	if (ex_cb_insn) {
2897 		ret = add_subprog(env, ex_cb_insn);
2898 		if (ret < 0)
2899 			return ret;
2900 		for (i = 1; i < env->subprog_cnt; i++) {
2901 			if (env->subprog_info[i].start != ex_cb_insn)
2902 				continue;
2903 			env->exception_callback_subprog = i;
2904 			break;
2905 		}
2906 	}
2907 
2908 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2909 	 * logic. 'subprog_cnt' should not be increased.
2910 	 */
2911 	subprog[env->subprog_cnt].start = insn_cnt;
2912 
2913 	if (env->log.level & BPF_LOG_LEVEL2)
2914 		for (i = 0; i < env->subprog_cnt; i++)
2915 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2916 
2917 	return 0;
2918 }
2919 
2920 static int check_subprogs(struct bpf_verifier_env *env)
2921 {
2922 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2923 	struct bpf_subprog_info *subprog = env->subprog_info;
2924 	struct bpf_insn *insn = env->prog->insnsi;
2925 	int insn_cnt = env->prog->len;
2926 
2927 	/* now check that all jumps are within the same subprog */
2928 	subprog_start = subprog[cur_subprog].start;
2929 	subprog_end = subprog[cur_subprog + 1].start;
2930 	for (i = 0; i < insn_cnt; i++) {
2931 		u8 code = insn[i].code;
2932 
2933 		if (code == (BPF_JMP | BPF_CALL) &&
2934 		    insn[i].src_reg == 0 &&
2935 		    insn[i].imm == BPF_FUNC_tail_call)
2936 			subprog[cur_subprog].has_tail_call = true;
2937 		if (BPF_CLASS(code) == BPF_LD &&
2938 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2939 			subprog[cur_subprog].has_ld_abs = true;
2940 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2941 			goto next;
2942 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2943 			goto next;
2944 		if (code == (BPF_JMP32 | BPF_JA))
2945 			off = i + insn[i].imm + 1;
2946 		else
2947 			off = i + insn[i].off + 1;
2948 		if (off < subprog_start || off >= subprog_end) {
2949 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2950 			return -EINVAL;
2951 		}
2952 next:
2953 		if (i == subprog_end - 1) {
2954 			/* to avoid fall-through from one subprog into another
2955 			 * the last insn of the subprog should be either exit
2956 			 * or unconditional jump back or bpf_throw call
2957 			 */
2958 			if (code != (BPF_JMP | BPF_EXIT) &&
2959 			    code != (BPF_JMP32 | BPF_JA) &&
2960 			    code != (BPF_JMP | BPF_JA)) {
2961 				verbose(env, "last insn is not an exit or jmp\n");
2962 				return -EINVAL;
2963 			}
2964 			subprog_start = subprog_end;
2965 			cur_subprog++;
2966 			if (cur_subprog < env->subprog_cnt)
2967 				subprog_end = subprog[cur_subprog + 1].start;
2968 		}
2969 	}
2970 	return 0;
2971 }
2972 
2973 /* Parentage chain of this register (or stack slot) should take care of all
2974  * issues like callee-saved registers, stack slot allocation time, etc.
2975  */
2976 static int mark_reg_read(struct bpf_verifier_env *env,
2977 			 const struct bpf_reg_state *state,
2978 			 struct bpf_reg_state *parent, u8 flag)
2979 {
2980 	bool writes = parent == state->parent; /* Observe write marks */
2981 	int cnt = 0;
2982 
2983 	while (parent) {
2984 		/* if read wasn't screened by an earlier write ... */
2985 		if (writes && state->live & REG_LIVE_WRITTEN)
2986 			break;
2987 		if (parent->live & REG_LIVE_DONE) {
2988 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2989 				reg_type_str(env, parent->type),
2990 				parent->var_off.value, parent->off);
2991 			return -EFAULT;
2992 		}
2993 		/* The first condition is more likely to be true than the
2994 		 * second, checked it first.
2995 		 */
2996 		if ((parent->live & REG_LIVE_READ) == flag ||
2997 		    parent->live & REG_LIVE_READ64)
2998 			/* The parentage chain never changes and
2999 			 * this parent was already marked as LIVE_READ.
3000 			 * There is no need to keep walking the chain again and
3001 			 * keep re-marking all parents as LIVE_READ.
3002 			 * This case happens when the same register is read
3003 			 * multiple times without writes into it in-between.
3004 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3005 			 * then no need to set the weak REG_LIVE_READ32.
3006 			 */
3007 			break;
3008 		/* ... then we depend on parent's value */
3009 		parent->live |= flag;
3010 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3011 		if (flag == REG_LIVE_READ64)
3012 			parent->live &= ~REG_LIVE_READ32;
3013 		state = parent;
3014 		parent = state->parent;
3015 		writes = true;
3016 		cnt++;
3017 	}
3018 
3019 	if (env->longest_mark_read_walk < cnt)
3020 		env->longest_mark_read_walk = cnt;
3021 	return 0;
3022 }
3023 
3024 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3025 {
3026 	struct bpf_func_state *state = func(env, reg);
3027 	int spi, ret;
3028 
3029 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3030 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3031 	 * check_kfunc_call.
3032 	 */
3033 	if (reg->type == CONST_PTR_TO_DYNPTR)
3034 		return 0;
3035 	spi = dynptr_get_spi(env, reg);
3036 	if (spi < 0)
3037 		return spi;
3038 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3039 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3040 	 * read.
3041 	 */
3042 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3043 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3044 	if (ret)
3045 		return ret;
3046 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3047 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3048 }
3049 
3050 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3051 			  int spi, int nr_slots)
3052 {
3053 	struct bpf_func_state *state = func(env, reg);
3054 	int err, i;
3055 
3056 	for (i = 0; i < nr_slots; i++) {
3057 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3058 
3059 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3060 		if (err)
3061 			return err;
3062 
3063 		mark_stack_slot_scratched(env, spi - i);
3064 	}
3065 
3066 	return 0;
3067 }
3068 
3069 /* This function is supposed to be used by the following 32-bit optimization
3070  * code only. It returns TRUE if the source or destination register operates
3071  * on 64-bit, otherwise return FALSE.
3072  */
3073 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3074 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3075 {
3076 	u8 code, class, op;
3077 
3078 	code = insn->code;
3079 	class = BPF_CLASS(code);
3080 	op = BPF_OP(code);
3081 	if (class == BPF_JMP) {
3082 		/* BPF_EXIT for "main" will reach here. Return TRUE
3083 		 * conservatively.
3084 		 */
3085 		if (op == BPF_EXIT)
3086 			return true;
3087 		if (op == BPF_CALL) {
3088 			/* BPF to BPF call will reach here because of marking
3089 			 * caller saved clobber with DST_OP_NO_MARK for which we
3090 			 * don't care the register def because they are anyway
3091 			 * marked as NOT_INIT already.
3092 			 */
3093 			if (insn->src_reg == BPF_PSEUDO_CALL)
3094 				return false;
3095 			/* Helper call will reach here because of arg type
3096 			 * check, conservatively return TRUE.
3097 			 */
3098 			if (t == SRC_OP)
3099 				return true;
3100 
3101 			return false;
3102 		}
3103 	}
3104 
3105 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3106 		return false;
3107 
3108 	if (class == BPF_ALU64 || class == BPF_JMP ||
3109 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3110 		return true;
3111 
3112 	if (class == BPF_ALU || class == BPF_JMP32)
3113 		return false;
3114 
3115 	if (class == BPF_LDX) {
3116 		if (t != SRC_OP)
3117 			return BPF_SIZE(code) == BPF_DW;
3118 		/* LDX source must be ptr. */
3119 		return true;
3120 	}
3121 
3122 	if (class == BPF_STX) {
3123 		/* BPF_STX (including atomic variants) has multiple source
3124 		 * operands, one of which is a ptr. Check whether the caller is
3125 		 * asking about it.
3126 		 */
3127 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3128 			return true;
3129 		return BPF_SIZE(code) == BPF_DW;
3130 	}
3131 
3132 	if (class == BPF_LD) {
3133 		u8 mode = BPF_MODE(code);
3134 
3135 		/* LD_IMM64 */
3136 		if (mode == BPF_IMM)
3137 			return true;
3138 
3139 		/* Both LD_IND and LD_ABS return 32-bit data. */
3140 		if (t != SRC_OP)
3141 			return  false;
3142 
3143 		/* Implicit ctx ptr. */
3144 		if (regno == BPF_REG_6)
3145 			return true;
3146 
3147 		/* Explicit source could be any width. */
3148 		return true;
3149 	}
3150 
3151 	if (class == BPF_ST)
3152 		/* The only source register for BPF_ST is a ptr. */
3153 		return true;
3154 
3155 	/* Conservatively return true at default. */
3156 	return true;
3157 }
3158 
3159 /* Return the regno defined by the insn, or -1. */
3160 static int insn_def_regno(const struct bpf_insn *insn)
3161 {
3162 	switch (BPF_CLASS(insn->code)) {
3163 	case BPF_JMP:
3164 	case BPF_JMP32:
3165 	case BPF_ST:
3166 		return -1;
3167 	case BPF_STX:
3168 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3169 		    (insn->imm & BPF_FETCH)) {
3170 			if (insn->imm == BPF_CMPXCHG)
3171 				return BPF_REG_0;
3172 			else
3173 				return insn->src_reg;
3174 		} else {
3175 			return -1;
3176 		}
3177 	default:
3178 		return insn->dst_reg;
3179 	}
3180 }
3181 
3182 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3183 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3184 {
3185 	int dst_reg = insn_def_regno(insn);
3186 
3187 	if (dst_reg == -1)
3188 		return false;
3189 
3190 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3191 }
3192 
3193 static void mark_insn_zext(struct bpf_verifier_env *env,
3194 			   struct bpf_reg_state *reg)
3195 {
3196 	s32 def_idx = reg->subreg_def;
3197 
3198 	if (def_idx == DEF_NOT_SUBREG)
3199 		return;
3200 
3201 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3202 	/* The dst will be zero extended, so won't be sub-register anymore. */
3203 	reg->subreg_def = DEF_NOT_SUBREG;
3204 }
3205 
3206 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3207 			 enum reg_arg_type t)
3208 {
3209 	struct bpf_verifier_state *vstate = env->cur_state;
3210 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3211 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3212 	struct bpf_reg_state *reg, *regs = state->regs;
3213 	bool rw64;
3214 
3215 	if (regno >= MAX_BPF_REG) {
3216 		verbose(env, "R%d is invalid\n", regno);
3217 		return -EINVAL;
3218 	}
3219 
3220 	mark_reg_scratched(env, regno);
3221 
3222 	reg = &regs[regno];
3223 	rw64 = is_reg64(env, insn, regno, reg, t);
3224 	if (t == SRC_OP) {
3225 		/* check whether register used as source operand can be read */
3226 		if (reg->type == NOT_INIT) {
3227 			verbose(env, "R%d !read_ok\n", regno);
3228 			return -EACCES;
3229 		}
3230 		/* We don't need to worry about FP liveness because it's read-only */
3231 		if (regno == BPF_REG_FP)
3232 			return 0;
3233 
3234 		if (rw64)
3235 			mark_insn_zext(env, reg);
3236 
3237 		return mark_reg_read(env, reg, reg->parent,
3238 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3239 	} else {
3240 		/* check whether register used as dest operand can be written to */
3241 		if (regno == BPF_REG_FP) {
3242 			verbose(env, "frame pointer is read only\n");
3243 			return -EACCES;
3244 		}
3245 		reg->live |= REG_LIVE_WRITTEN;
3246 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3247 		if (t == DST_OP)
3248 			mark_reg_unknown(env, regs, regno);
3249 	}
3250 	return 0;
3251 }
3252 
3253 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3254 {
3255 	env->insn_aux_data[idx].jmp_point = true;
3256 }
3257 
3258 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3259 {
3260 	return env->insn_aux_data[insn_idx].jmp_point;
3261 }
3262 
3263 /* for any branch, call, exit record the history of jmps in the given state */
3264 static int push_jmp_history(struct bpf_verifier_env *env,
3265 			    struct bpf_verifier_state *cur)
3266 {
3267 	u32 cnt = cur->jmp_history_cnt;
3268 	struct bpf_idx_pair *p;
3269 	size_t alloc_size;
3270 
3271 	if (!is_jmp_point(env, env->insn_idx))
3272 		return 0;
3273 
3274 	cnt++;
3275 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3276 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3277 	if (!p)
3278 		return -ENOMEM;
3279 	p[cnt - 1].idx = env->insn_idx;
3280 	p[cnt - 1].prev_idx = env->prev_insn_idx;
3281 	cur->jmp_history = p;
3282 	cur->jmp_history_cnt = cnt;
3283 	return 0;
3284 }
3285 
3286 /* Backtrack one insn at a time. If idx is not at the top of recorded
3287  * history then previous instruction came from straight line execution.
3288  */
3289 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3290 			     u32 *history)
3291 {
3292 	u32 cnt = *history;
3293 
3294 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3295 		i = st->jmp_history[cnt - 1].prev_idx;
3296 		(*history)--;
3297 	} else {
3298 		i--;
3299 	}
3300 	return i;
3301 }
3302 
3303 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3304 {
3305 	const struct btf_type *func;
3306 	struct btf *desc_btf;
3307 
3308 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3309 		return NULL;
3310 
3311 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3312 	if (IS_ERR(desc_btf))
3313 		return "<error>";
3314 
3315 	func = btf_type_by_id(desc_btf, insn->imm);
3316 	return btf_name_by_offset(desc_btf, func->name_off);
3317 }
3318 
3319 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3320 {
3321 	bt->frame = frame;
3322 }
3323 
3324 static inline void bt_reset(struct backtrack_state *bt)
3325 {
3326 	struct bpf_verifier_env *env = bt->env;
3327 
3328 	memset(bt, 0, sizeof(*bt));
3329 	bt->env = env;
3330 }
3331 
3332 static inline u32 bt_empty(struct backtrack_state *bt)
3333 {
3334 	u64 mask = 0;
3335 	int i;
3336 
3337 	for (i = 0; i <= bt->frame; i++)
3338 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3339 
3340 	return mask == 0;
3341 }
3342 
3343 static inline int bt_subprog_enter(struct backtrack_state *bt)
3344 {
3345 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3346 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3347 		WARN_ONCE(1, "verifier backtracking bug");
3348 		return -EFAULT;
3349 	}
3350 	bt->frame++;
3351 	return 0;
3352 }
3353 
3354 static inline int bt_subprog_exit(struct backtrack_state *bt)
3355 {
3356 	if (bt->frame == 0) {
3357 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3358 		WARN_ONCE(1, "verifier backtracking bug");
3359 		return -EFAULT;
3360 	}
3361 	bt->frame--;
3362 	return 0;
3363 }
3364 
3365 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3366 {
3367 	bt->reg_masks[frame] |= 1 << reg;
3368 }
3369 
3370 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3371 {
3372 	bt->reg_masks[frame] &= ~(1 << reg);
3373 }
3374 
3375 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3376 {
3377 	bt_set_frame_reg(bt, bt->frame, reg);
3378 }
3379 
3380 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3381 {
3382 	bt_clear_frame_reg(bt, bt->frame, reg);
3383 }
3384 
3385 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3386 {
3387 	bt->stack_masks[frame] |= 1ull << slot;
3388 }
3389 
3390 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3391 {
3392 	bt->stack_masks[frame] &= ~(1ull << slot);
3393 }
3394 
3395 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3396 {
3397 	bt_set_frame_slot(bt, bt->frame, slot);
3398 }
3399 
3400 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3401 {
3402 	bt_clear_frame_slot(bt, bt->frame, slot);
3403 }
3404 
3405 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3406 {
3407 	return bt->reg_masks[frame];
3408 }
3409 
3410 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3411 {
3412 	return bt->reg_masks[bt->frame];
3413 }
3414 
3415 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3416 {
3417 	return bt->stack_masks[frame];
3418 }
3419 
3420 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3421 {
3422 	return bt->stack_masks[bt->frame];
3423 }
3424 
3425 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3426 {
3427 	return bt->reg_masks[bt->frame] & (1 << reg);
3428 }
3429 
3430 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3431 {
3432 	return bt->stack_masks[bt->frame] & (1ull << slot);
3433 }
3434 
3435 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3436 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3437 {
3438 	DECLARE_BITMAP(mask, 64);
3439 	bool first = true;
3440 	int i, n;
3441 
3442 	buf[0] = '\0';
3443 
3444 	bitmap_from_u64(mask, reg_mask);
3445 	for_each_set_bit(i, mask, 32) {
3446 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3447 		first = false;
3448 		buf += n;
3449 		buf_sz -= n;
3450 		if (buf_sz < 0)
3451 			break;
3452 	}
3453 }
3454 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3455 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3456 {
3457 	DECLARE_BITMAP(mask, 64);
3458 	bool first = true;
3459 	int i, n;
3460 
3461 	buf[0] = '\0';
3462 
3463 	bitmap_from_u64(mask, stack_mask);
3464 	for_each_set_bit(i, mask, 64) {
3465 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3466 		first = false;
3467 		buf += n;
3468 		buf_sz -= n;
3469 		if (buf_sz < 0)
3470 			break;
3471 	}
3472 }
3473 
3474 /* For given verifier state backtrack_insn() is called from the last insn to
3475  * the first insn. Its purpose is to compute a bitmask of registers and
3476  * stack slots that needs precision in the parent verifier state.
3477  *
3478  * @idx is an index of the instruction we are currently processing;
3479  * @subseq_idx is an index of the subsequent instruction that:
3480  *   - *would be* executed next, if jump history is viewed in forward order;
3481  *   - *was* processed previously during backtracking.
3482  */
3483 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3484 			  struct backtrack_state *bt)
3485 {
3486 	const struct bpf_insn_cbs cbs = {
3487 		.cb_call	= disasm_kfunc_name,
3488 		.cb_print	= verbose,
3489 		.private_data	= env,
3490 	};
3491 	struct bpf_insn *insn = env->prog->insnsi + idx;
3492 	u8 class = BPF_CLASS(insn->code);
3493 	u8 opcode = BPF_OP(insn->code);
3494 	u8 mode = BPF_MODE(insn->code);
3495 	u32 dreg = insn->dst_reg;
3496 	u32 sreg = insn->src_reg;
3497 	u32 spi, i;
3498 
3499 	if (insn->code == 0)
3500 		return 0;
3501 	if (env->log.level & BPF_LOG_LEVEL2) {
3502 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3503 		verbose(env, "mark_precise: frame%d: regs=%s ",
3504 			bt->frame, env->tmp_str_buf);
3505 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3506 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3507 		verbose(env, "%d: ", idx);
3508 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3509 	}
3510 
3511 	if (class == BPF_ALU || class == BPF_ALU64) {
3512 		if (!bt_is_reg_set(bt, dreg))
3513 			return 0;
3514 		if (opcode == BPF_MOV) {
3515 			if (BPF_SRC(insn->code) == BPF_X) {
3516 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3517 				 * dreg needs precision after this insn
3518 				 * sreg needs precision before this insn
3519 				 */
3520 				bt_clear_reg(bt, dreg);
3521 				bt_set_reg(bt, sreg);
3522 			} else {
3523 				/* dreg = K
3524 				 * dreg needs precision after this insn.
3525 				 * Corresponding register is already marked
3526 				 * as precise=true in this verifier state.
3527 				 * No further markings in parent are necessary
3528 				 */
3529 				bt_clear_reg(bt, dreg);
3530 			}
3531 		} else {
3532 			if (BPF_SRC(insn->code) == BPF_X) {
3533 				/* dreg += sreg
3534 				 * both dreg and sreg need precision
3535 				 * before this insn
3536 				 */
3537 				bt_set_reg(bt, sreg);
3538 			} /* else dreg += K
3539 			   * dreg still needs precision before this insn
3540 			   */
3541 		}
3542 	} else if (class == BPF_LDX) {
3543 		if (!bt_is_reg_set(bt, dreg))
3544 			return 0;
3545 		bt_clear_reg(bt, dreg);
3546 
3547 		/* scalars can only be spilled into stack w/o losing precision.
3548 		 * Load from any other memory can be zero extended.
3549 		 * The desire to keep that precision is already indicated
3550 		 * by 'precise' mark in corresponding register of this state.
3551 		 * No further tracking necessary.
3552 		 */
3553 		if (insn->src_reg != BPF_REG_FP)
3554 			return 0;
3555 
3556 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3557 		 * that [fp - off] slot contains scalar that needs to be
3558 		 * tracked with precision
3559 		 */
3560 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3561 		if (spi >= 64) {
3562 			verbose(env, "BUG spi %d\n", spi);
3563 			WARN_ONCE(1, "verifier backtracking bug");
3564 			return -EFAULT;
3565 		}
3566 		bt_set_slot(bt, spi);
3567 	} else if (class == BPF_STX || class == BPF_ST) {
3568 		if (bt_is_reg_set(bt, dreg))
3569 			/* stx & st shouldn't be using _scalar_ dst_reg
3570 			 * to access memory. It means backtracking
3571 			 * encountered a case of pointer subtraction.
3572 			 */
3573 			return -ENOTSUPP;
3574 		/* scalars can only be spilled into stack */
3575 		if (insn->dst_reg != BPF_REG_FP)
3576 			return 0;
3577 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3578 		if (spi >= 64) {
3579 			verbose(env, "BUG spi %d\n", spi);
3580 			WARN_ONCE(1, "verifier backtracking bug");
3581 			return -EFAULT;
3582 		}
3583 		if (!bt_is_slot_set(bt, spi))
3584 			return 0;
3585 		bt_clear_slot(bt, spi);
3586 		if (class == BPF_STX)
3587 			bt_set_reg(bt, sreg);
3588 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3589 		if (bpf_pseudo_call(insn)) {
3590 			int subprog_insn_idx, subprog;
3591 
3592 			subprog_insn_idx = idx + insn->imm + 1;
3593 			subprog = find_subprog(env, subprog_insn_idx);
3594 			if (subprog < 0)
3595 				return -EFAULT;
3596 
3597 			if (subprog_is_global(env, subprog)) {
3598 				/* check that jump history doesn't have any
3599 				 * extra instructions from subprog; the next
3600 				 * instruction after call to global subprog
3601 				 * should be literally next instruction in
3602 				 * caller program
3603 				 */
3604 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3605 				/* r1-r5 are invalidated after subprog call,
3606 				 * so for global func call it shouldn't be set
3607 				 * anymore
3608 				 */
3609 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3610 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3611 					WARN_ONCE(1, "verifier backtracking bug");
3612 					return -EFAULT;
3613 				}
3614 				/* global subprog always sets R0 */
3615 				bt_clear_reg(bt, BPF_REG_0);
3616 				return 0;
3617 			} else {
3618 				/* static subprog call instruction, which
3619 				 * means that we are exiting current subprog,
3620 				 * so only r1-r5 could be still requested as
3621 				 * precise, r0 and r6-r10 or any stack slot in
3622 				 * the current frame should be zero by now
3623 				 */
3624 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3625 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3626 					WARN_ONCE(1, "verifier backtracking bug");
3627 					return -EFAULT;
3628 				}
3629 				/* we don't track register spills perfectly,
3630 				 * so fallback to force-precise instead of failing */
3631 				if (bt_stack_mask(bt) != 0)
3632 					return -ENOTSUPP;
3633 				/* propagate r1-r5 to the caller */
3634 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3635 					if (bt_is_reg_set(bt, i)) {
3636 						bt_clear_reg(bt, i);
3637 						bt_set_frame_reg(bt, bt->frame - 1, i);
3638 					}
3639 				}
3640 				if (bt_subprog_exit(bt))
3641 					return -EFAULT;
3642 				return 0;
3643 			}
3644 		} else if ((bpf_helper_call(insn) &&
3645 			    is_callback_calling_function(insn->imm) &&
3646 			    !is_async_callback_calling_function(insn->imm)) ||
3647 			   (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) {
3648 			/* callback-calling helper or kfunc call, which means
3649 			 * we are exiting from subprog, but unlike the subprog
3650 			 * call handling above, we shouldn't propagate
3651 			 * precision of r1-r5 (if any requested), as they are
3652 			 * not actually arguments passed directly to callback
3653 			 * subprogs
3654 			 */
3655 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3656 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3657 				WARN_ONCE(1, "verifier backtracking bug");
3658 				return -EFAULT;
3659 			}
3660 			if (bt_stack_mask(bt) != 0)
3661 				return -ENOTSUPP;
3662 			/* clear r1-r5 in callback subprog's mask */
3663 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3664 				bt_clear_reg(bt, i);
3665 			if (bt_subprog_exit(bt))
3666 				return -EFAULT;
3667 			return 0;
3668 		} else if (opcode == BPF_CALL) {
3669 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3670 			 * catch this error later. Make backtracking conservative
3671 			 * with ENOTSUPP.
3672 			 */
3673 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3674 				return -ENOTSUPP;
3675 			/* regular helper call sets R0 */
3676 			bt_clear_reg(bt, BPF_REG_0);
3677 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3678 				/* if backtracing was looking for registers R1-R5
3679 				 * they should have been found already.
3680 				 */
3681 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3682 				WARN_ONCE(1, "verifier backtracking bug");
3683 				return -EFAULT;
3684 			}
3685 		} else if (opcode == BPF_EXIT) {
3686 			bool r0_precise;
3687 
3688 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3689 				/* if backtracing was looking for registers R1-R5
3690 				 * they should have been found already.
3691 				 */
3692 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3693 				WARN_ONCE(1, "verifier backtracking bug");
3694 				return -EFAULT;
3695 			}
3696 
3697 			/* BPF_EXIT in subprog or callback always returns
3698 			 * right after the call instruction, so by checking
3699 			 * whether the instruction at subseq_idx-1 is subprog
3700 			 * call or not we can distinguish actual exit from
3701 			 * *subprog* from exit from *callback*. In the former
3702 			 * case, we need to propagate r0 precision, if
3703 			 * necessary. In the former we never do that.
3704 			 */
3705 			r0_precise = subseq_idx - 1 >= 0 &&
3706 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3707 				     bt_is_reg_set(bt, BPF_REG_0);
3708 
3709 			bt_clear_reg(bt, BPF_REG_0);
3710 			if (bt_subprog_enter(bt))
3711 				return -EFAULT;
3712 
3713 			if (r0_precise)
3714 				bt_set_reg(bt, BPF_REG_0);
3715 			/* r6-r9 and stack slots will stay set in caller frame
3716 			 * bitmasks until we return back from callee(s)
3717 			 */
3718 			return 0;
3719 		} else if (BPF_SRC(insn->code) == BPF_X) {
3720 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3721 				return 0;
3722 			/* dreg <cond> sreg
3723 			 * Both dreg and sreg need precision before
3724 			 * this insn. If only sreg was marked precise
3725 			 * before it would be equally necessary to
3726 			 * propagate it to dreg.
3727 			 */
3728 			bt_set_reg(bt, dreg);
3729 			bt_set_reg(bt, sreg);
3730 			 /* else dreg <cond> K
3731 			  * Only dreg still needs precision before
3732 			  * this insn, so for the K-based conditional
3733 			  * there is nothing new to be marked.
3734 			  */
3735 		}
3736 	} else if (class == BPF_LD) {
3737 		if (!bt_is_reg_set(bt, dreg))
3738 			return 0;
3739 		bt_clear_reg(bt, dreg);
3740 		/* It's ld_imm64 or ld_abs or ld_ind.
3741 		 * For ld_imm64 no further tracking of precision
3742 		 * into parent is necessary
3743 		 */
3744 		if (mode == BPF_IND || mode == BPF_ABS)
3745 			/* to be analyzed */
3746 			return -ENOTSUPP;
3747 	}
3748 	return 0;
3749 }
3750 
3751 /* the scalar precision tracking algorithm:
3752  * . at the start all registers have precise=false.
3753  * . scalar ranges are tracked as normal through alu and jmp insns.
3754  * . once precise value of the scalar register is used in:
3755  *   .  ptr + scalar alu
3756  *   . if (scalar cond K|scalar)
3757  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3758  *   backtrack through the verifier states and mark all registers and
3759  *   stack slots with spilled constants that these scalar regisers
3760  *   should be precise.
3761  * . during state pruning two registers (or spilled stack slots)
3762  *   are equivalent if both are not precise.
3763  *
3764  * Note the verifier cannot simply walk register parentage chain,
3765  * since many different registers and stack slots could have been
3766  * used to compute single precise scalar.
3767  *
3768  * The approach of starting with precise=true for all registers and then
3769  * backtrack to mark a register as not precise when the verifier detects
3770  * that program doesn't care about specific value (e.g., when helper
3771  * takes register as ARG_ANYTHING parameter) is not safe.
3772  *
3773  * It's ok to walk single parentage chain of the verifier states.
3774  * It's possible that this backtracking will go all the way till 1st insn.
3775  * All other branches will be explored for needing precision later.
3776  *
3777  * The backtracking needs to deal with cases like:
3778  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3779  * r9 -= r8
3780  * r5 = r9
3781  * if r5 > 0x79f goto pc+7
3782  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3783  * r5 += 1
3784  * ...
3785  * call bpf_perf_event_output#25
3786  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3787  *
3788  * and this case:
3789  * r6 = 1
3790  * call foo // uses callee's r6 inside to compute r0
3791  * r0 += r6
3792  * if r0 == 0 goto
3793  *
3794  * to track above reg_mask/stack_mask needs to be independent for each frame.
3795  *
3796  * Also if parent's curframe > frame where backtracking started,
3797  * the verifier need to mark registers in both frames, otherwise callees
3798  * may incorrectly prune callers. This is similar to
3799  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3800  *
3801  * For now backtracking falls back into conservative marking.
3802  */
3803 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3804 				     struct bpf_verifier_state *st)
3805 {
3806 	struct bpf_func_state *func;
3807 	struct bpf_reg_state *reg;
3808 	int i, j;
3809 
3810 	if (env->log.level & BPF_LOG_LEVEL2) {
3811 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3812 			st->curframe);
3813 	}
3814 
3815 	/* big hammer: mark all scalars precise in this path.
3816 	 * pop_stack may still get !precise scalars.
3817 	 * We also skip current state and go straight to first parent state,
3818 	 * because precision markings in current non-checkpointed state are
3819 	 * not needed. See why in the comment in __mark_chain_precision below.
3820 	 */
3821 	for (st = st->parent; st; st = st->parent) {
3822 		for (i = 0; i <= st->curframe; i++) {
3823 			func = st->frame[i];
3824 			for (j = 0; j < BPF_REG_FP; j++) {
3825 				reg = &func->regs[j];
3826 				if (reg->type != SCALAR_VALUE || reg->precise)
3827 					continue;
3828 				reg->precise = true;
3829 				if (env->log.level & BPF_LOG_LEVEL2) {
3830 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3831 						i, j);
3832 				}
3833 			}
3834 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3835 				if (!is_spilled_reg(&func->stack[j]))
3836 					continue;
3837 				reg = &func->stack[j].spilled_ptr;
3838 				if (reg->type != SCALAR_VALUE || reg->precise)
3839 					continue;
3840 				reg->precise = true;
3841 				if (env->log.level & BPF_LOG_LEVEL2) {
3842 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3843 						i, -(j + 1) * 8);
3844 				}
3845 			}
3846 		}
3847 	}
3848 }
3849 
3850 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3851 {
3852 	struct bpf_func_state *func;
3853 	struct bpf_reg_state *reg;
3854 	int i, j;
3855 
3856 	for (i = 0; i <= st->curframe; i++) {
3857 		func = st->frame[i];
3858 		for (j = 0; j < BPF_REG_FP; j++) {
3859 			reg = &func->regs[j];
3860 			if (reg->type != SCALAR_VALUE)
3861 				continue;
3862 			reg->precise = false;
3863 		}
3864 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3865 			if (!is_spilled_reg(&func->stack[j]))
3866 				continue;
3867 			reg = &func->stack[j].spilled_ptr;
3868 			if (reg->type != SCALAR_VALUE)
3869 				continue;
3870 			reg->precise = false;
3871 		}
3872 	}
3873 }
3874 
3875 static bool idset_contains(struct bpf_idset *s, u32 id)
3876 {
3877 	u32 i;
3878 
3879 	for (i = 0; i < s->count; ++i)
3880 		if (s->ids[i] == id)
3881 			return true;
3882 
3883 	return false;
3884 }
3885 
3886 static int idset_push(struct bpf_idset *s, u32 id)
3887 {
3888 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
3889 		return -EFAULT;
3890 	s->ids[s->count++] = id;
3891 	return 0;
3892 }
3893 
3894 static void idset_reset(struct bpf_idset *s)
3895 {
3896 	s->count = 0;
3897 }
3898 
3899 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
3900  * Mark all registers with these IDs as precise.
3901  */
3902 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3903 {
3904 	struct bpf_idset *precise_ids = &env->idset_scratch;
3905 	struct backtrack_state *bt = &env->bt;
3906 	struct bpf_func_state *func;
3907 	struct bpf_reg_state *reg;
3908 	DECLARE_BITMAP(mask, 64);
3909 	int i, fr;
3910 
3911 	idset_reset(precise_ids);
3912 
3913 	for (fr = bt->frame; fr >= 0; fr--) {
3914 		func = st->frame[fr];
3915 
3916 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
3917 		for_each_set_bit(i, mask, 32) {
3918 			reg = &func->regs[i];
3919 			if (!reg->id || reg->type != SCALAR_VALUE)
3920 				continue;
3921 			if (idset_push(precise_ids, reg->id))
3922 				return -EFAULT;
3923 		}
3924 
3925 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
3926 		for_each_set_bit(i, mask, 64) {
3927 			if (i >= func->allocated_stack / BPF_REG_SIZE)
3928 				break;
3929 			if (!is_spilled_scalar_reg(&func->stack[i]))
3930 				continue;
3931 			reg = &func->stack[i].spilled_ptr;
3932 			if (!reg->id)
3933 				continue;
3934 			if (idset_push(precise_ids, reg->id))
3935 				return -EFAULT;
3936 		}
3937 	}
3938 
3939 	for (fr = 0; fr <= st->curframe; ++fr) {
3940 		func = st->frame[fr];
3941 
3942 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
3943 			reg = &func->regs[i];
3944 			if (!reg->id)
3945 				continue;
3946 			if (!idset_contains(precise_ids, reg->id))
3947 				continue;
3948 			bt_set_frame_reg(bt, fr, i);
3949 		}
3950 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
3951 			if (!is_spilled_scalar_reg(&func->stack[i]))
3952 				continue;
3953 			reg = &func->stack[i].spilled_ptr;
3954 			if (!reg->id)
3955 				continue;
3956 			if (!idset_contains(precise_ids, reg->id))
3957 				continue;
3958 			bt_set_frame_slot(bt, fr, i);
3959 		}
3960 	}
3961 
3962 	return 0;
3963 }
3964 
3965 /*
3966  * __mark_chain_precision() backtracks BPF program instruction sequence and
3967  * chain of verifier states making sure that register *regno* (if regno >= 0)
3968  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3969  * SCALARS, as well as any other registers and slots that contribute to
3970  * a tracked state of given registers/stack slots, depending on specific BPF
3971  * assembly instructions (see backtrack_insns() for exact instruction handling
3972  * logic). This backtracking relies on recorded jmp_history and is able to
3973  * traverse entire chain of parent states. This process ends only when all the
3974  * necessary registers/slots and their transitive dependencies are marked as
3975  * precise.
3976  *
3977  * One important and subtle aspect is that precise marks *do not matter* in
3978  * the currently verified state (current state). It is important to understand
3979  * why this is the case.
3980  *
3981  * First, note that current state is the state that is not yet "checkpointed",
3982  * i.e., it is not yet put into env->explored_states, and it has no children
3983  * states as well. It's ephemeral, and can end up either a) being discarded if
3984  * compatible explored state is found at some point or BPF_EXIT instruction is
3985  * reached or b) checkpointed and put into env->explored_states, branching out
3986  * into one or more children states.
3987  *
3988  * In the former case, precise markings in current state are completely
3989  * ignored by state comparison code (see regsafe() for details). Only
3990  * checkpointed ("old") state precise markings are important, and if old
3991  * state's register/slot is precise, regsafe() assumes current state's
3992  * register/slot as precise and checks value ranges exactly and precisely. If
3993  * states turn out to be compatible, current state's necessary precise
3994  * markings and any required parent states' precise markings are enforced
3995  * after the fact with propagate_precision() logic, after the fact. But it's
3996  * important to realize that in this case, even after marking current state
3997  * registers/slots as precise, we immediately discard current state. So what
3998  * actually matters is any of the precise markings propagated into current
3999  * state's parent states, which are always checkpointed (due to b) case above).
4000  * As such, for scenario a) it doesn't matter if current state has precise
4001  * markings set or not.
4002  *
4003  * Now, for the scenario b), checkpointing and forking into child(ren)
4004  * state(s). Note that before current state gets to checkpointing step, any
4005  * processed instruction always assumes precise SCALAR register/slot
4006  * knowledge: if precise value or range is useful to prune jump branch, BPF
4007  * verifier takes this opportunity enthusiastically. Similarly, when
4008  * register's value is used to calculate offset or memory address, exact
4009  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4010  * what we mentioned above about state comparison ignoring precise markings
4011  * during state comparison, BPF verifier ignores and also assumes precise
4012  * markings *at will* during instruction verification process. But as verifier
4013  * assumes precision, it also propagates any precision dependencies across
4014  * parent states, which are not yet finalized, so can be further restricted
4015  * based on new knowledge gained from restrictions enforced by their children
4016  * states. This is so that once those parent states are finalized, i.e., when
4017  * they have no more active children state, state comparison logic in
4018  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4019  * required for correctness.
4020  *
4021  * To build a bit more intuition, note also that once a state is checkpointed,
4022  * the path we took to get to that state is not important. This is crucial
4023  * property for state pruning. When state is checkpointed and finalized at
4024  * some instruction index, it can be correctly and safely used to "short
4025  * circuit" any *compatible* state that reaches exactly the same instruction
4026  * index. I.e., if we jumped to that instruction from a completely different
4027  * code path than original finalized state was derived from, it doesn't
4028  * matter, current state can be discarded because from that instruction
4029  * forward having a compatible state will ensure we will safely reach the
4030  * exit. States describe preconditions for further exploration, but completely
4031  * forget the history of how we got here.
4032  *
4033  * This also means that even if we needed precise SCALAR range to get to
4034  * finalized state, but from that point forward *that same* SCALAR register is
4035  * never used in a precise context (i.e., it's precise value is not needed for
4036  * correctness), it's correct and safe to mark such register as "imprecise"
4037  * (i.e., precise marking set to false). This is what we rely on when we do
4038  * not set precise marking in current state. If no child state requires
4039  * precision for any given SCALAR register, it's safe to dictate that it can
4040  * be imprecise. If any child state does require this register to be precise,
4041  * we'll mark it precise later retroactively during precise markings
4042  * propagation from child state to parent states.
4043  *
4044  * Skipping precise marking setting in current state is a mild version of
4045  * relying on the above observation. But we can utilize this property even
4046  * more aggressively by proactively forgetting any precise marking in the
4047  * current state (which we inherited from the parent state), right before we
4048  * checkpoint it and branch off into new child state. This is done by
4049  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4050  * finalized states which help in short circuiting more future states.
4051  */
4052 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4053 {
4054 	struct backtrack_state *bt = &env->bt;
4055 	struct bpf_verifier_state *st = env->cur_state;
4056 	int first_idx = st->first_insn_idx;
4057 	int last_idx = env->insn_idx;
4058 	int subseq_idx = -1;
4059 	struct bpf_func_state *func;
4060 	struct bpf_reg_state *reg;
4061 	bool skip_first = true;
4062 	int i, fr, err;
4063 
4064 	if (!env->bpf_capable)
4065 		return 0;
4066 
4067 	/* set frame number from which we are starting to backtrack */
4068 	bt_init(bt, env->cur_state->curframe);
4069 
4070 	/* Do sanity checks against current state of register and/or stack
4071 	 * slot, but don't set precise flag in current state, as precision
4072 	 * tracking in the current state is unnecessary.
4073 	 */
4074 	func = st->frame[bt->frame];
4075 	if (regno >= 0) {
4076 		reg = &func->regs[regno];
4077 		if (reg->type != SCALAR_VALUE) {
4078 			WARN_ONCE(1, "backtracing misuse");
4079 			return -EFAULT;
4080 		}
4081 		bt_set_reg(bt, regno);
4082 	}
4083 
4084 	if (bt_empty(bt))
4085 		return 0;
4086 
4087 	for (;;) {
4088 		DECLARE_BITMAP(mask, 64);
4089 		u32 history = st->jmp_history_cnt;
4090 
4091 		if (env->log.level & BPF_LOG_LEVEL2) {
4092 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4093 				bt->frame, last_idx, first_idx, subseq_idx);
4094 		}
4095 
4096 		/* If some register with scalar ID is marked as precise,
4097 		 * make sure that all registers sharing this ID are also precise.
4098 		 * This is needed to estimate effect of find_equal_scalars().
4099 		 * Do this at the last instruction of each state,
4100 		 * bpf_reg_state::id fields are valid for these instructions.
4101 		 *
4102 		 * Allows to track precision in situation like below:
4103 		 *
4104 		 *     r2 = unknown value
4105 		 *     ...
4106 		 *   --- state #0 ---
4107 		 *     ...
4108 		 *     r1 = r2                 // r1 and r2 now share the same ID
4109 		 *     ...
4110 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4111 		 *     ...
4112 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4113 		 *     ...
4114 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4115 		 *     r3 = r10
4116 		 *     r3 += r1                // need to mark both r1 and r2
4117 		 */
4118 		if (mark_precise_scalar_ids(env, st))
4119 			return -EFAULT;
4120 
4121 		if (last_idx < 0) {
4122 			/* we are at the entry into subprog, which
4123 			 * is expected for global funcs, but only if
4124 			 * requested precise registers are R1-R5
4125 			 * (which are global func's input arguments)
4126 			 */
4127 			if (st->curframe == 0 &&
4128 			    st->frame[0]->subprogno > 0 &&
4129 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4130 			    bt_stack_mask(bt) == 0 &&
4131 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4132 				bitmap_from_u64(mask, bt_reg_mask(bt));
4133 				for_each_set_bit(i, mask, 32) {
4134 					reg = &st->frame[0]->regs[i];
4135 					if (reg->type != SCALAR_VALUE) {
4136 						bt_clear_reg(bt, i);
4137 						continue;
4138 					}
4139 					reg->precise = true;
4140 				}
4141 				return 0;
4142 			}
4143 
4144 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4145 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4146 			WARN_ONCE(1, "verifier backtracking bug");
4147 			return -EFAULT;
4148 		}
4149 
4150 		for (i = last_idx;;) {
4151 			if (skip_first) {
4152 				err = 0;
4153 				skip_first = false;
4154 			} else {
4155 				err = backtrack_insn(env, i, subseq_idx, bt);
4156 			}
4157 			if (err == -ENOTSUPP) {
4158 				mark_all_scalars_precise(env, env->cur_state);
4159 				bt_reset(bt);
4160 				return 0;
4161 			} else if (err) {
4162 				return err;
4163 			}
4164 			if (bt_empty(bt))
4165 				/* Found assignment(s) into tracked register in this state.
4166 				 * Since this state is already marked, just return.
4167 				 * Nothing to be tracked further in the parent state.
4168 				 */
4169 				return 0;
4170 			if (i == first_idx)
4171 				break;
4172 			subseq_idx = i;
4173 			i = get_prev_insn_idx(st, i, &history);
4174 			if (i >= env->prog->len) {
4175 				/* This can happen if backtracking reached insn 0
4176 				 * and there are still reg_mask or stack_mask
4177 				 * to backtrack.
4178 				 * It means the backtracking missed the spot where
4179 				 * particular register was initialized with a constant.
4180 				 */
4181 				verbose(env, "BUG backtracking idx %d\n", i);
4182 				WARN_ONCE(1, "verifier backtracking bug");
4183 				return -EFAULT;
4184 			}
4185 		}
4186 		st = st->parent;
4187 		if (!st)
4188 			break;
4189 
4190 		for (fr = bt->frame; fr >= 0; fr--) {
4191 			func = st->frame[fr];
4192 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4193 			for_each_set_bit(i, mask, 32) {
4194 				reg = &func->regs[i];
4195 				if (reg->type != SCALAR_VALUE) {
4196 					bt_clear_frame_reg(bt, fr, i);
4197 					continue;
4198 				}
4199 				if (reg->precise)
4200 					bt_clear_frame_reg(bt, fr, i);
4201 				else
4202 					reg->precise = true;
4203 			}
4204 
4205 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4206 			for_each_set_bit(i, mask, 64) {
4207 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4208 					/* the sequence of instructions:
4209 					 * 2: (bf) r3 = r10
4210 					 * 3: (7b) *(u64 *)(r3 -8) = r0
4211 					 * 4: (79) r4 = *(u64 *)(r10 -8)
4212 					 * doesn't contain jmps. It's backtracked
4213 					 * as a single block.
4214 					 * During backtracking insn 3 is not recognized as
4215 					 * stack access, so at the end of backtracking
4216 					 * stack slot fp-8 is still marked in stack_mask.
4217 					 * However the parent state may not have accessed
4218 					 * fp-8 and it's "unallocated" stack space.
4219 					 * In such case fallback to conservative.
4220 					 */
4221 					mark_all_scalars_precise(env, env->cur_state);
4222 					bt_reset(bt);
4223 					return 0;
4224 				}
4225 
4226 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4227 					bt_clear_frame_slot(bt, fr, i);
4228 					continue;
4229 				}
4230 				reg = &func->stack[i].spilled_ptr;
4231 				if (reg->precise)
4232 					bt_clear_frame_slot(bt, fr, i);
4233 				else
4234 					reg->precise = true;
4235 			}
4236 			if (env->log.level & BPF_LOG_LEVEL2) {
4237 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4238 					     bt_frame_reg_mask(bt, fr));
4239 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4240 					fr, env->tmp_str_buf);
4241 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4242 					       bt_frame_stack_mask(bt, fr));
4243 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4244 				print_verifier_state(env, func, true);
4245 			}
4246 		}
4247 
4248 		if (bt_empty(bt))
4249 			return 0;
4250 
4251 		subseq_idx = first_idx;
4252 		last_idx = st->last_insn_idx;
4253 		first_idx = st->first_insn_idx;
4254 	}
4255 
4256 	/* if we still have requested precise regs or slots, we missed
4257 	 * something (e.g., stack access through non-r10 register), so
4258 	 * fallback to marking all precise
4259 	 */
4260 	if (!bt_empty(bt)) {
4261 		mark_all_scalars_precise(env, env->cur_state);
4262 		bt_reset(bt);
4263 	}
4264 
4265 	return 0;
4266 }
4267 
4268 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4269 {
4270 	return __mark_chain_precision(env, regno);
4271 }
4272 
4273 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4274  * desired reg and stack masks across all relevant frames
4275  */
4276 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4277 {
4278 	return __mark_chain_precision(env, -1);
4279 }
4280 
4281 static bool is_spillable_regtype(enum bpf_reg_type type)
4282 {
4283 	switch (base_type(type)) {
4284 	case PTR_TO_MAP_VALUE:
4285 	case PTR_TO_STACK:
4286 	case PTR_TO_CTX:
4287 	case PTR_TO_PACKET:
4288 	case PTR_TO_PACKET_META:
4289 	case PTR_TO_PACKET_END:
4290 	case PTR_TO_FLOW_KEYS:
4291 	case CONST_PTR_TO_MAP:
4292 	case PTR_TO_SOCKET:
4293 	case PTR_TO_SOCK_COMMON:
4294 	case PTR_TO_TCP_SOCK:
4295 	case PTR_TO_XDP_SOCK:
4296 	case PTR_TO_BTF_ID:
4297 	case PTR_TO_BUF:
4298 	case PTR_TO_MEM:
4299 	case PTR_TO_FUNC:
4300 	case PTR_TO_MAP_KEY:
4301 		return true;
4302 	default:
4303 		return false;
4304 	}
4305 }
4306 
4307 /* Does this register contain a constant zero? */
4308 static bool register_is_null(struct bpf_reg_state *reg)
4309 {
4310 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4311 }
4312 
4313 static bool register_is_const(struct bpf_reg_state *reg)
4314 {
4315 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4316 }
4317 
4318 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4319 {
4320 	return tnum_is_unknown(reg->var_off) &&
4321 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4322 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4323 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4324 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4325 }
4326 
4327 static bool register_is_bounded(struct bpf_reg_state *reg)
4328 {
4329 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4330 }
4331 
4332 static bool __is_pointer_value(bool allow_ptr_leaks,
4333 			       const struct bpf_reg_state *reg)
4334 {
4335 	if (allow_ptr_leaks)
4336 		return false;
4337 
4338 	return reg->type != SCALAR_VALUE;
4339 }
4340 
4341 /* Copy src state preserving dst->parent and dst->live fields */
4342 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4343 {
4344 	struct bpf_reg_state *parent = dst->parent;
4345 	enum bpf_reg_liveness live = dst->live;
4346 
4347 	*dst = *src;
4348 	dst->parent = parent;
4349 	dst->live = live;
4350 }
4351 
4352 static void save_register_state(struct bpf_func_state *state,
4353 				int spi, struct bpf_reg_state *reg,
4354 				int size)
4355 {
4356 	int i;
4357 
4358 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4359 	if (size == BPF_REG_SIZE)
4360 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4361 
4362 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4363 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4364 
4365 	/* size < 8 bytes spill */
4366 	for (; i; i--)
4367 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4368 }
4369 
4370 static bool is_bpf_st_mem(struct bpf_insn *insn)
4371 {
4372 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4373 }
4374 
4375 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4376  * stack boundary and alignment are checked in check_mem_access()
4377  */
4378 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4379 				       /* stack frame we're writing to */
4380 				       struct bpf_func_state *state,
4381 				       int off, int size, int value_regno,
4382 				       int insn_idx)
4383 {
4384 	struct bpf_func_state *cur; /* state of the current function */
4385 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4386 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4387 	struct bpf_reg_state *reg = NULL;
4388 	u32 dst_reg = insn->dst_reg;
4389 
4390 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
4391 	if (err)
4392 		return err;
4393 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4394 	 * so it's aligned access and [off, off + size) are within stack limits
4395 	 */
4396 	if (!env->allow_ptr_leaks &&
4397 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
4398 	    size != BPF_REG_SIZE) {
4399 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4400 		return -EACCES;
4401 	}
4402 
4403 	cur = env->cur_state->frame[env->cur_state->curframe];
4404 	if (value_regno >= 0)
4405 		reg = &cur->regs[value_regno];
4406 	if (!env->bypass_spec_v4) {
4407 		bool sanitize = reg && is_spillable_regtype(reg->type);
4408 
4409 		for (i = 0; i < size; i++) {
4410 			u8 type = state->stack[spi].slot_type[i];
4411 
4412 			if (type != STACK_MISC && type != STACK_ZERO) {
4413 				sanitize = true;
4414 				break;
4415 			}
4416 		}
4417 
4418 		if (sanitize)
4419 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4420 	}
4421 
4422 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4423 	if (err)
4424 		return err;
4425 
4426 	mark_stack_slot_scratched(env, spi);
4427 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4428 	    !register_is_null(reg) && env->bpf_capable) {
4429 		if (dst_reg != BPF_REG_FP) {
4430 			/* The backtracking logic can only recognize explicit
4431 			 * stack slot address like [fp - 8]. Other spill of
4432 			 * scalar via different register has to be conservative.
4433 			 * Backtrack from here and mark all registers as precise
4434 			 * that contributed into 'reg' being a constant.
4435 			 */
4436 			err = mark_chain_precision(env, value_regno);
4437 			if (err)
4438 				return err;
4439 		}
4440 		save_register_state(state, spi, reg, size);
4441 		/* Break the relation on a narrowing spill. */
4442 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4443 			state->stack[spi].spilled_ptr.id = 0;
4444 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4445 		   insn->imm != 0 && env->bpf_capable) {
4446 		struct bpf_reg_state fake_reg = {};
4447 
4448 		__mark_reg_known(&fake_reg, (u32)insn->imm);
4449 		fake_reg.type = SCALAR_VALUE;
4450 		save_register_state(state, spi, &fake_reg, size);
4451 	} else if (reg && is_spillable_regtype(reg->type)) {
4452 		/* register containing pointer is being spilled into stack */
4453 		if (size != BPF_REG_SIZE) {
4454 			verbose_linfo(env, insn_idx, "; ");
4455 			verbose(env, "invalid size of register spill\n");
4456 			return -EACCES;
4457 		}
4458 		if (state != cur && reg->type == PTR_TO_STACK) {
4459 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4460 			return -EINVAL;
4461 		}
4462 		save_register_state(state, spi, reg, size);
4463 	} else {
4464 		u8 type = STACK_MISC;
4465 
4466 		/* regular write of data into stack destroys any spilled ptr */
4467 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4468 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4469 		if (is_stack_slot_special(&state->stack[spi]))
4470 			for (i = 0; i < BPF_REG_SIZE; i++)
4471 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4472 
4473 		/* only mark the slot as written if all 8 bytes were written
4474 		 * otherwise read propagation may incorrectly stop too soon
4475 		 * when stack slots are partially written.
4476 		 * This heuristic means that read propagation will be
4477 		 * conservative, since it will add reg_live_read marks
4478 		 * to stack slots all the way to first state when programs
4479 		 * writes+reads less than 8 bytes
4480 		 */
4481 		if (size == BPF_REG_SIZE)
4482 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4483 
4484 		/* when we zero initialize stack slots mark them as such */
4485 		if ((reg && register_is_null(reg)) ||
4486 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4487 			/* backtracking doesn't work for STACK_ZERO yet. */
4488 			err = mark_chain_precision(env, value_regno);
4489 			if (err)
4490 				return err;
4491 			type = STACK_ZERO;
4492 		}
4493 
4494 		/* Mark slots affected by this stack write. */
4495 		for (i = 0; i < size; i++)
4496 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4497 				type;
4498 	}
4499 	return 0;
4500 }
4501 
4502 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4503  * known to contain a variable offset.
4504  * This function checks whether the write is permitted and conservatively
4505  * tracks the effects of the write, considering that each stack slot in the
4506  * dynamic range is potentially written to.
4507  *
4508  * 'off' includes 'regno->off'.
4509  * 'value_regno' can be -1, meaning that an unknown value is being written to
4510  * the stack.
4511  *
4512  * Spilled pointers in range are not marked as written because we don't know
4513  * what's going to be actually written. This means that read propagation for
4514  * future reads cannot be terminated by this write.
4515  *
4516  * For privileged programs, uninitialized stack slots are considered
4517  * initialized by this write (even though we don't know exactly what offsets
4518  * are going to be written to). The idea is that we don't want the verifier to
4519  * reject future reads that access slots written to through variable offsets.
4520  */
4521 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4522 				     /* func where register points to */
4523 				     struct bpf_func_state *state,
4524 				     int ptr_regno, int off, int size,
4525 				     int value_regno, int insn_idx)
4526 {
4527 	struct bpf_func_state *cur; /* state of the current function */
4528 	int min_off, max_off;
4529 	int i, err;
4530 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4531 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4532 	bool writing_zero = false;
4533 	/* set if the fact that we're writing a zero is used to let any
4534 	 * stack slots remain STACK_ZERO
4535 	 */
4536 	bool zero_used = false;
4537 
4538 	cur = env->cur_state->frame[env->cur_state->curframe];
4539 	ptr_reg = &cur->regs[ptr_regno];
4540 	min_off = ptr_reg->smin_value + off;
4541 	max_off = ptr_reg->smax_value + off + size;
4542 	if (value_regno >= 0)
4543 		value_reg = &cur->regs[value_regno];
4544 	if ((value_reg && register_is_null(value_reg)) ||
4545 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4546 		writing_zero = true;
4547 
4548 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
4549 	if (err)
4550 		return err;
4551 
4552 	for (i = min_off; i < max_off; i++) {
4553 		int spi;
4554 
4555 		spi = __get_spi(i);
4556 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4557 		if (err)
4558 			return err;
4559 	}
4560 
4561 	/* Variable offset writes destroy any spilled pointers in range. */
4562 	for (i = min_off; i < max_off; i++) {
4563 		u8 new_type, *stype;
4564 		int slot, spi;
4565 
4566 		slot = -i - 1;
4567 		spi = slot / BPF_REG_SIZE;
4568 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4569 		mark_stack_slot_scratched(env, spi);
4570 
4571 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4572 			/* Reject the write if range we may write to has not
4573 			 * been initialized beforehand. If we didn't reject
4574 			 * here, the ptr status would be erased below (even
4575 			 * though not all slots are actually overwritten),
4576 			 * possibly opening the door to leaks.
4577 			 *
4578 			 * We do however catch STACK_INVALID case below, and
4579 			 * only allow reading possibly uninitialized memory
4580 			 * later for CAP_PERFMON, as the write may not happen to
4581 			 * that slot.
4582 			 */
4583 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4584 				insn_idx, i);
4585 			return -EINVAL;
4586 		}
4587 
4588 		/* Erase all spilled pointers. */
4589 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4590 
4591 		/* Update the slot type. */
4592 		new_type = STACK_MISC;
4593 		if (writing_zero && *stype == STACK_ZERO) {
4594 			new_type = STACK_ZERO;
4595 			zero_used = true;
4596 		}
4597 		/* If the slot is STACK_INVALID, we check whether it's OK to
4598 		 * pretend that it will be initialized by this write. The slot
4599 		 * might not actually be written to, and so if we mark it as
4600 		 * initialized future reads might leak uninitialized memory.
4601 		 * For privileged programs, we will accept such reads to slots
4602 		 * that may or may not be written because, if we're reject
4603 		 * them, the error would be too confusing.
4604 		 */
4605 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4606 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4607 					insn_idx, i);
4608 			return -EINVAL;
4609 		}
4610 		*stype = new_type;
4611 	}
4612 	if (zero_used) {
4613 		/* backtracking doesn't work for STACK_ZERO yet. */
4614 		err = mark_chain_precision(env, value_regno);
4615 		if (err)
4616 			return err;
4617 	}
4618 	return 0;
4619 }
4620 
4621 /* When register 'dst_regno' is assigned some values from stack[min_off,
4622  * max_off), we set the register's type according to the types of the
4623  * respective stack slots. If all the stack values are known to be zeros, then
4624  * so is the destination reg. Otherwise, the register is considered to be
4625  * SCALAR. This function does not deal with register filling; the caller must
4626  * ensure that all spilled registers in the stack range have been marked as
4627  * read.
4628  */
4629 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4630 				/* func where src register points to */
4631 				struct bpf_func_state *ptr_state,
4632 				int min_off, int max_off, int dst_regno)
4633 {
4634 	struct bpf_verifier_state *vstate = env->cur_state;
4635 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4636 	int i, slot, spi;
4637 	u8 *stype;
4638 	int zeros = 0;
4639 
4640 	for (i = min_off; i < max_off; i++) {
4641 		slot = -i - 1;
4642 		spi = slot / BPF_REG_SIZE;
4643 		mark_stack_slot_scratched(env, spi);
4644 		stype = ptr_state->stack[spi].slot_type;
4645 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4646 			break;
4647 		zeros++;
4648 	}
4649 	if (zeros == max_off - min_off) {
4650 		/* any access_size read into register is zero extended,
4651 		 * so the whole register == const_zero
4652 		 */
4653 		__mark_reg_const_zero(&state->regs[dst_regno]);
4654 		/* backtracking doesn't support STACK_ZERO yet,
4655 		 * so mark it precise here, so that later
4656 		 * backtracking can stop here.
4657 		 * Backtracking may not need this if this register
4658 		 * doesn't participate in pointer adjustment.
4659 		 * Forward propagation of precise flag is not
4660 		 * necessary either. This mark is only to stop
4661 		 * backtracking. Any register that contributed
4662 		 * to const 0 was marked precise before spill.
4663 		 */
4664 		state->regs[dst_regno].precise = true;
4665 	} else {
4666 		/* have read misc data from the stack */
4667 		mark_reg_unknown(env, state->regs, dst_regno);
4668 	}
4669 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4670 }
4671 
4672 /* Read the stack at 'off' and put the results into the register indicated by
4673  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4674  * spilled reg.
4675  *
4676  * 'dst_regno' can be -1, meaning that the read value is not going to a
4677  * register.
4678  *
4679  * The access is assumed to be within the current stack bounds.
4680  */
4681 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4682 				      /* func where src register points to */
4683 				      struct bpf_func_state *reg_state,
4684 				      int off, int size, int dst_regno)
4685 {
4686 	struct bpf_verifier_state *vstate = env->cur_state;
4687 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4688 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4689 	struct bpf_reg_state *reg;
4690 	u8 *stype, type;
4691 
4692 	stype = reg_state->stack[spi].slot_type;
4693 	reg = &reg_state->stack[spi].spilled_ptr;
4694 
4695 	mark_stack_slot_scratched(env, spi);
4696 
4697 	if (is_spilled_reg(&reg_state->stack[spi])) {
4698 		u8 spill_size = 1;
4699 
4700 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4701 			spill_size++;
4702 
4703 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4704 			if (reg->type != SCALAR_VALUE) {
4705 				verbose_linfo(env, env->insn_idx, "; ");
4706 				verbose(env, "invalid size of register fill\n");
4707 				return -EACCES;
4708 			}
4709 
4710 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4711 			if (dst_regno < 0)
4712 				return 0;
4713 
4714 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4715 				/* The earlier check_reg_arg() has decided the
4716 				 * subreg_def for this insn.  Save it first.
4717 				 */
4718 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4719 
4720 				copy_register_state(&state->regs[dst_regno], reg);
4721 				state->regs[dst_regno].subreg_def = subreg_def;
4722 			} else {
4723 				for (i = 0; i < size; i++) {
4724 					type = stype[(slot - i) % BPF_REG_SIZE];
4725 					if (type == STACK_SPILL)
4726 						continue;
4727 					if (type == STACK_MISC)
4728 						continue;
4729 					if (type == STACK_INVALID && env->allow_uninit_stack)
4730 						continue;
4731 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4732 						off, i, size);
4733 					return -EACCES;
4734 				}
4735 				mark_reg_unknown(env, state->regs, dst_regno);
4736 			}
4737 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4738 			return 0;
4739 		}
4740 
4741 		if (dst_regno >= 0) {
4742 			/* restore register state from stack */
4743 			copy_register_state(&state->regs[dst_regno], reg);
4744 			/* mark reg as written since spilled pointer state likely
4745 			 * has its liveness marks cleared by is_state_visited()
4746 			 * which resets stack/reg liveness for state transitions
4747 			 */
4748 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4749 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4750 			/* If dst_regno==-1, the caller is asking us whether
4751 			 * it is acceptable to use this value as a SCALAR_VALUE
4752 			 * (e.g. for XADD).
4753 			 * We must not allow unprivileged callers to do that
4754 			 * with spilled pointers.
4755 			 */
4756 			verbose(env, "leaking pointer from stack off %d\n",
4757 				off);
4758 			return -EACCES;
4759 		}
4760 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4761 	} else {
4762 		for (i = 0; i < size; i++) {
4763 			type = stype[(slot - i) % BPF_REG_SIZE];
4764 			if (type == STACK_MISC)
4765 				continue;
4766 			if (type == STACK_ZERO)
4767 				continue;
4768 			if (type == STACK_INVALID && env->allow_uninit_stack)
4769 				continue;
4770 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4771 				off, i, size);
4772 			return -EACCES;
4773 		}
4774 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4775 		if (dst_regno >= 0)
4776 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4777 	}
4778 	return 0;
4779 }
4780 
4781 enum bpf_access_src {
4782 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4783 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4784 };
4785 
4786 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4787 					 int regno, int off, int access_size,
4788 					 bool zero_size_allowed,
4789 					 enum bpf_access_src type,
4790 					 struct bpf_call_arg_meta *meta);
4791 
4792 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4793 {
4794 	return cur_regs(env) + regno;
4795 }
4796 
4797 /* Read the stack at 'ptr_regno + off' and put the result into the register
4798  * 'dst_regno'.
4799  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4800  * but not its variable offset.
4801  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4802  *
4803  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4804  * filling registers (i.e. reads of spilled register cannot be detected when
4805  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4806  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4807  * offset; for a fixed offset check_stack_read_fixed_off should be used
4808  * instead.
4809  */
4810 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4811 				    int ptr_regno, int off, int size, int dst_regno)
4812 {
4813 	/* The state of the source register. */
4814 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4815 	struct bpf_func_state *ptr_state = func(env, reg);
4816 	int err;
4817 	int min_off, max_off;
4818 
4819 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4820 	 */
4821 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4822 					    false, ACCESS_DIRECT, NULL);
4823 	if (err)
4824 		return err;
4825 
4826 	min_off = reg->smin_value + off;
4827 	max_off = reg->smax_value + off;
4828 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4829 	return 0;
4830 }
4831 
4832 /* check_stack_read dispatches to check_stack_read_fixed_off or
4833  * check_stack_read_var_off.
4834  *
4835  * The caller must ensure that the offset falls within the allocated stack
4836  * bounds.
4837  *
4838  * 'dst_regno' is a register which will receive the value from the stack. It
4839  * can be -1, meaning that the read value is not going to a register.
4840  */
4841 static int check_stack_read(struct bpf_verifier_env *env,
4842 			    int ptr_regno, int off, int size,
4843 			    int dst_regno)
4844 {
4845 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4846 	struct bpf_func_state *state = func(env, reg);
4847 	int err;
4848 	/* Some accesses are only permitted with a static offset. */
4849 	bool var_off = !tnum_is_const(reg->var_off);
4850 
4851 	/* The offset is required to be static when reads don't go to a
4852 	 * register, in order to not leak pointers (see
4853 	 * check_stack_read_fixed_off).
4854 	 */
4855 	if (dst_regno < 0 && var_off) {
4856 		char tn_buf[48];
4857 
4858 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4859 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
4860 			tn_buf, off, size);
4861 		return -EACCES;
4862 	}
4863 	/* Variable offset is prohibited for unprivileged mode for simplicity
4864 	 * since it requires corresponding support in Spectre masking for stack
4865 	 * ALU. See also retrieve_ptr_limit(). The check in
4866 	 * check_stack_access_for_ptr_arithmetic() called by
4867 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4868 	 * with variable offsets, therefore no check is required here. Further,
4869 	 * just checking it here would be insufficient as speculative stack
4870 	 * writes could still lead to unsafe speculative behaviour.
4871 	 */
4872 	if (!var_off) {
4873 		off += reg->var_off.value;
4874 		err = check_stack_read_fixed_off(env, state, off, size,
4875 						 dst_regno);
4876 	} else {
4877 		/* Variable offset stack reads need more conservative handling
4878 		 * than fixed offset ones. Note that dst_regno >= 0 on this
4879 		 * branch.
4880 		 */
4881 		err = check_stack_read_var_off(env, ptr_regno, off, size,
4882 					       dst_regno);
4883 	}
4884 	return err;
4885 }
4886 
4887 
4888 /* check_stack_write dispatches to check_stack_write_fixed_off or
4889  * check_stack_write_var_off.
4890  *
4891  * 'ptr_regno' is the register used as a pointer into the stack.
4892  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4893  * 'value_regno' is the register whose value we're writing to the stack. It can
4894  * be -1, meaning that we're not writing from a register.
4895  *
4896  * The caller must ensure that the offset falls within the maximum stack size.
4897  */
4898 static int check_stack_write(struct bpf_verifier_env *env,
4899 			     int ptr_regno, int off, int size,
4900 			     int value_regno, int insn_idx)
4901 {
4902 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4903 	struct bpf_func_state *state = func(env, reg);
4904 	int err;
4905 
4906 	if (tnum_is_const(reg->var_off)) {
4907 		off += reg->var_off.value;
4908 		err = check_stack_write_fixed_off(env, state, off, size,
4909 						  value_regno, insn_idx);
4910 	} else {
4911 		/* Variable offset stack reads need more conservative handling
4912 		 * than fixed offset ones.
4913 		 */
4914 		err = check_stack_write_var_off(env, state,
4915 						ptr_regno, off, size,
4916 						value_regno, insn_idx);
4917 	}
4918 	return err;
4919 }
4920 
4921 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4922 				 int off, int size, enum bpf_access_type type)
4923 {
4924 	struct bpf_reg_state *regs = cur_regs(env);
4925 	struct bpf_map *map = regs[regno].map_ptr;
4926 	u32 cap = bpf_map_flags_to_cap(map);
4927 
4928 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4929 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4930 			map->value_size, off, size);
4931 		return -EACCES;
4932 	}
4933 
4934 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
4935 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
4936 			map->value_size, off, size);
4937 		return -EACCES;
4938 	}
4939 
4940 	return 0;
4941 }
4942 
4943 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
4944 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
4945 			      int off, int size, u32 mem_size,
4946 			      bool zero_size_allowed)
4947 {
4948 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
4949 	struct bpf_reg_state *reg;
4950 
4951 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
4952 		return 0;
4953 
4954 	reg = &cur_regs(env)[regno];
4955 	switch (reg->type) {
4956 	case PTR_TO_MAP_KEY:
4957 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4958 			mem_size, off, size);
4959 		break;
4960 	case PTR_TO_MAP_VALUE:
4961 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
4962 			mem_size, off, size);
4963 		break;
4964 	case PTR_TO_PACKET:
4965 	case PTR_TO_PACKET_META:
4966 	case PTR_TO_PACKET_END:
4967 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4968 			off, size, regno, reg->id, off, mem_size);
4969 		break;
4970 	case PTR_TO_MEM:
4971 	default:
4972 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4973 			mem_size, off, size);
4974 	}
4975 
4976 	return -EACCES;
4977 }
4978 
4979 /* check read/write into a memory region with possible variable offset */
4980 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4981 				   int off, int size, u32 mem_size,
4982 				   bool zero_size_allowed)
4983 {
4984 	struct bpf_verifier_state *vstate = env->cur_state;
4985 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4986 	struct bpf_reg_state *reg = &state->regs[regno];
4987 	int err;
4988 
4989 	/* We may have adjusted the register pointing to memory region, so we
4990 	 * need to try adding each of min_value and max_value to off
4991 	 * to make sure our theoretical access will be safe.
4992 	 *
4993 	 * The minimum value is only important with signed
4994 	 * comparisons where we can't assume the floor of a
4995 	 * value is 0.  If we are using signed variables for our
4996 	 * index'es we need to make sure that whatever we use
4997 	 * will have a set floor within our range.
4998 	 */
4999 	if (reg->smin_value < 0 &&
5000 	    (reg->smin_value == S64_MIN ||
5001 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5002 	      reg->smin_value + off < 0)) {
5003 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5004 			regno);
5005 		return -EACCES;
5006 	}
5007 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5008 				 mem_size, zero_size_allowed);
5009 	if (err) {
5010 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5011 			regno);
5012 		return err;
5013 	}
5014 
5015 	/* If we haven't set a max value then we need to bail since we can't be
5016 	 * sure we won't do bad things.
5017 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5018 	 */
5019 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5020 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5021 			regno);
5022 		return -EACCES;
5023 	}
5024 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5025 				 mem_size, zero_size_allowed);
5026 	if (err) {
5027 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5028 			regno);
5029 		return err;
5030 	}
5031 
5032 	return 0;
5033 }
5034 
5035 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5036 			       const struct bpf_reg_state *reg, int regno,
5037 			       bool fixed_off_ok)
5038 {
5039 	/* Access to this pointer-typed register or passing it to a helper
5040 	 * is only allowed in its original, unmodified form.
5041 	 */
5042 
5043 	if (reg->off < 0) {
5044 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5045 			reg_type_str(env, reg->type), regno, reg->off);
5046 		return -EACCES;
5047 	}
5048 
5049 	if (!fixed_off_ok && reg->off) {
5050 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5051 			reg_type_str(env, reg->type), regno, reg->off);
5052 		return -EACCES;
5053 	}
5054 
5055 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5056 		char tn_buf[48];
5057 
5058 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5059 		verbose(env, "variable %s access var_off=%s disallowed\n",
5060 			reg_type_str(env, reg->type), tn_buf);
5061 		return -EACCES;
5062 	}
5063 
5064 	return 0;
5065 }
5066 
5067 int check_ptr_off_reg(struct bpf_verifier_env *env,
5068 		      const struct bpf_reg_state *reg, int regno)
5069 {
5070 	return __check_ptr_off_reg(env, reg, regno, false);
5071 }
5072 
5073 static int map_kptr_match_type(struct bpf_verifier_env *env,
5074 			       struct btf_field *kptr_field,
5075 			       struct bpf_reg_state *reg, u32 regno)
5076 {
5077 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5078 	int perm_flags;
5079 	const char *reg_name = "";
5080 
5081 	if (btf_is_kernel(reg->btf)) {
5082 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5083 
5084 		/* Only unreferenced case accepts untrusted pointers */
5085 		if (kptr_field->type == BPF_KPTR_UNREF)
5086 			perm_flags |= PTR_UNTRUSTED;
5087 	} else {
5088 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5089 		if (kptr_field->type == BPF_KPTR_PERCPU)
5090 			perm_flags |= MEM_PERCPU;
5091 	}
5092 
5093 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5094 		goto bad_type;
5095 
5096 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5097 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5098 
5099 	/* For ref_ptr case, release function check should ensure we get one
5100 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5101 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5102 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5103 	 * reg->off and reg->ref_obj_id are not needed here.
5104 	 */
5105 	if (__check_ptr_off_reg(env, reg, regno, true))
5106 		return -EACCES;
5107 
5108 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5109 	 * we also need to take into account the reg->off.
5110 	 *
5111 	 * We want to support cases like:
5112 	 *
5113 	 * struct foo {
5114 	 *         struct bar br;
5115 	 *         struct baz bz;
5116 	 * };
5117 	 *
5118 	 * struct foo *v;
5119 	 * v = func();	      // PTR_TO_BTF_ID
5120 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5121 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5122 	 *                    // first member type of struct after comparison fails
5123 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5124 	 *                    // to match type
5125 	 *
5126 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5127 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5128 	 * the struct to match type against first member of struct, i.e. reject
5129 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5130 	 * strict mode to true for type match.
5131 	 */
5132 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5133 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5134 				  kptr_field->type != BPF_KPTR_UNREF))
5135 		goto bad_type;
5136 	return 0;
5137 bad_type:
5138 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5139 		reg_type_str(env, reg->type), reg_name);
5140 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5141 	if (kptr_field->type == BPF_KPTR_UNREF)
5142 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5143 			targ_name);
5144 	else
5145 		verbose(env, "\n");
5146 	return -EINVAL;
5147 }
5148 
5149 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5150  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5151  */
5152 static bool in_rcu_cs(struct bpf_verifier_env *env)
5153 {
5154 	return env->cur_state->active_rcu_lock ||
5155 	       env->cur_state->active_lock.ptr ||
5156 	       !env->prog->aux->sleepable;
5157 }
5158 
5159 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5160 BTF_SET_START(rcu_protected_types)
5161 BTF_ID(struct, prog_test_ref_kfunc)
5162 BTF_ID(struct, cgroup)
5163 BTF_ID(struct, bpf_cpumask)
5164 BTF_ID(struct, task_struct)
5165 BTF_SET_END(rcu_protected_types)
5166 
5167 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5168 {
5169 	if (!btf_is_kernel(btf))
5170 		return false;
5171 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5172 }
5173 
5174 static bool rcu_safe_kptr(const struct btf_field *field)
5175 {
5176 	const struct btf_field_kptr *kptr = &field->kptr;
5177 
5178 	return field->type == BPF_KPTR_PERCPU ||
5179 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5180 }
5181 
5182 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5183 {
5184 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5185 		if (kptr_field->type != BPF_KPTR_PERCPU)
5186 			return PTR_MAYBE_NULL | MEM_RCU;
5187 		return PTR_MAYBE_NULL | MEM_RCU | MEM_PERCPU;
5188 	}
5189 	return PTR_MAYBE_NULL | PTR_UNTRUSTED;
5190 }
5191 
5192 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5193 				 int value_regno, int insn_idx,
5194 				 struct btf_field *kptr_field)
5195 {
5196 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5197 	int class = BPF_CLASS(insn->code);
5198 	struct bpf_reg_state *val_reg;
5199 
5200 	/* Things we already checked for in check_map_access and caller:
5201 	 *  - Reject cases where variable offset may touch kptr
5202 	 *  - size of access (must be BPF_DW)
5203 	 *  - tnum_is_const(reg->var_off)
5204 	 *  - kptr_field->offset == off + reg->var_off.value
5205 	 */
5206 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5207 	if (BPF_MODE(insn->code) != BPF_MEM) {
5208 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5209 		return -EACCES;
5210 	}
5211 
5212 	/* We only allow loading referenced kptr, since it will be marked as
5213 	 * untrusted, similar to unreferenced kptr.
5214 	 */
5215 	if (class != BPF_LDX &&
5216 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5217 		verbose(env, "store to referenced kptr disallowed\n");
5218 		return -EACCES;
5219 	}
5220 
5221 	if (class == BPF_LDX) {
5222 		val_reg = reg_state(env, value_regno);
5223 		/* We can simply mark the value_regno receiving the pointer
5224 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5225 		 */
5226 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5227 				kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5228 		/* For mark_ptr_or_null_reg */
5229 		val_reg->id = ++env->id_gen;
5230 	} else if (class == BPF_STX) {
5231 		val_reg = reg_state(env, value_regno);
5232 		if (!register_is_null(val_reg) &&
5233 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5234 			return -EACCES;
5235 	} else if (class == BPF_ST) {
5236 		if (insn->imm) {
5237 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5238 				kptr_field->offset);
5239 			return -EACCES;
5240 		}
5241 	} else {
5242 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5243 		return -EACCES;
5244 	}
5245 	return 0;
5246 }
5247 
5248 /* check read/write into a map element with possible variable offset */
5249 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5250 			    int off, int size, bool zero_size_allowed,
5251 			    enum bpf_access_src src)
5252 {
5253 	struct bpf_verifier_state *vstate = env->cur_state;
5254 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5255 	struct bpf_reg_state *reg = &state->regs[regno];
5256 	struct bpf_map *map = reg->map_ptr;
5257 	struct btf_record *rec;
5258 	int err, i;
5259 
5260 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5261 				      zero_size_allowed);
5262 	if (err)
5263 		return err;
5264 
5265 	if (IS_ERR_OR_NULL(map->record))
5266 		return 0;
5267 	rec = map->record;
5268 	for (i = 0; i < rec->cnt; i++) {
5269 		struct btf_field *field = &rec->fields[i];
5270 		u32 p = field->offset;
5271 
5272 		/* If any part of a field  can be touched by load/store, reject
5273 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5274 		 * it is sufficient to check x1 < y2 && y1 < x2.
5275 		 */
5276 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5277 		    p < reg->umax_value + off + size) {
5278 			switch (field->type) {
5279 			case BPF_KPTR_UNREF:
5280 			case BPF_KPTR_REF:
5281 			case BPF_KPTR_PERCPU:
5282 				if (src != ACCESS_DIRECT) {
5283 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5284 					return -EACCES;
5285 				}
5286 				if (!tnum_is_const(reg->var_off)) {
5287 					verbose(env, "kptr access cannot have variable offset\n");
5288 					return -EACCES;
5289 				}
5290 				if (p != off + reg->var_off.value) {
5291 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5292 						p, off + reg->var_off.value);
5293 					return -EACCES;
5294 				}
5295 				if (size != bpf_size_to_bytes(BPF_DW)) {
5296 					verbose(env, "kptr access size must be BPF_DW\n");
5297 					return -EACCES;
5298 				}
5299 				break;
5300 			default:
5301 				verbose(env, "%s cannot be accessed directly by load/store\n",
5302 					btf_field_type_name(field->type));
5303 				return -EACCES;
5304 			}
5305 		}
5306 	}
5307 	return 0;
5308 }
5309 
5310 #define MAX_PACKET_OFF 0xffff
5311 
5312 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5313 				       const struct bpf_call_arg_meta *meta,
5314 				       enum bpf_access_type t)
5315 {
5316 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5317 
5318 	switch (prog_type) {
5319 	/* Program types only with direct read access go here! */
5320 	case BPF_PROG_TYPE_LWT_IN:
5321 	case BPF_PROG_TYPE_LWT_OUT:
5322 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5323 	case BPF_PROG_TYPE_SK_REUSEPORT:
5324 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5325 	case BPF_PROG_TYPE_CGROUP_SKB:
5326 		if (t == BPF_WRITE)
5327 			return false;
5328 		fallthrough;
5329 
5330 	/* Program types with direct read + write access go here! */
5331 	case BPF_PROG_TYPE_SCHED_CLS:
5332 	case BPF_PROG_TYPE_SCHED_ACT:
5333 	case BPF_PROG_TYPE_XDP:
5334 	case BPF_PROG_TYPE_LWT_XMIT:
5335 	case BPF_PROG_TYPE_SK_SKB:
5336 	case BPF_PROG_TYPE_SK_MSG:
5337 		if (meta)
5338 			return meta->pkt_access;
5339 
5340 		env->seen_direct_write = true;
5341 		return true;
5342 
5343 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5344 		if (t == BPF_WRITE)
5345 			env->seen_direct_write = true;
5346 
5347 		return true;
5348 
5349 	default:
5350 		return false;
5351 	}
5352 }
5353 
5354 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5355 			       int size, bool zero_size_allowed)
5356 {
5357 	struct bpf_reg_state *regs = cur_regs(env);
5358 	struct bpf_reg_state *reg = &regs[regno];
5359 	int err;
5360 
5361 	/* We may have added a variable offset to the packet pointer; but any
5362 	 * reg->range we have comes after that.  We are only checking the fixed
5363 	 * offset.
5364 	 */
5365 
5366 	/* We don't allow negative numbers, because we aren't tracking enough
5367 	 * detail to prove they're safe.
5368 	 */
5369 	if (reg->smin_value < 0) {
5370 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5371 			regno);
5372 		return -EACCES;
5373 	}
5374 
5375 	err = reg->range < 0 ? -EINVAL :
5376 	      __check_mem_access(env, regno, off, size, reg->range,
5377 				 zero_size_allowed);
5378 	if (err) {
5379 		verbose(env, "R%d offset is outside of the packet\n", regno);
5380 		return err;
5381 	}
5382 
5383 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5384 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5385 	 * otherwise find_good_pkt_pointers would have refused to set range info
5386 	 * that __check_mem_access would have rejected this pkt access.
5387 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5388 	 */
5389 	env->prog->aux->max_pkt_offset =
5390 		max_t(u32, env->prog->aux->max_pkt_offset,
5391 		      off + reg->umax_value + size - 1);
5392 
5393 	return err;
5394 }
5395 
5396 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5397 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5398 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5399 			    struct btf **btf, u32 *btf_id)
5400 {
5401 	struct bpf_insn_access_aux info = {
5402 		.reg_type = *reg_type,
5403 		.log = &env->log,
5404 	};
5405 
5406 	if (env->ops->is_valid_access &&
5407 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5408 		/* A non zero info.ctx_field_size indicates that this field is a
5409 		 * candidate for later verifier transformation to load the whole
5410 		 * field and then apply a mask when accessed with a narrower
5411 		 * access than actual ctx access size. A zero info.ctx_field_size
5412 		 * will only allow for whole field access and rejects any other
5413 		 * type of narrower access.
5414 		 */
5415 		*reg_type = info.reg_type;
5416 
5417 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5418 			*btf = info.btf;
5419 			*btf_id = info.btf_id;
5420 		} else {
5421 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5422 		}
5423 		/* remember the offset of last byte accessed in ctx */
5424 		if (env->prog->aux->max_ctx_offset < off + size)
5425 			env->prog->aux->max_ctx_offset = off + size;
5426 		return 0;
5427 	}
5428 
5429 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5430 	return -EACCES;
5431 }
5432 
5433 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5434 				  int size)
5435 {
5436 	if (size < 0 || off < 0 ||
5437 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5438 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5439 			off, size);
5440 		return -EACCES;
5441 	}
5442 	return 0;
5443 }
5444 
5445 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5446 			     u32 regno, int off, int size,
5447 			     enum bpf_access_type t)
5448 {
5449 	struct bpf_reg_state *regs = cur_regs(env);
5450 	struct bpf_reg_state *reg = &regs[regno];
5451 	struct bpf_insn_access_aux info = {};
5452 	bool valid;
5453 
5454 	if (reg->smin_value < 0) {
5455 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5456 			regno);
5457 		return -EACCES;
5458 	}
5459 
5460 	switch (reg->type) {
5461 	case PTR_TO_SOCK_COMMON:
5462 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5463 		break;
5464 	case PTR_TO_SOCKET:
5465 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5466 		break;
5467 	case PTR_TO_TCP_SOCK:
5468 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5469 		break;
5470 	case PTR_TO_XDP_SOCK:
5471 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5472 		break;
5473 	default:
5474 		valid = false;
5475 	}
5476 
5477 
5478 	if (valid) {
5479 		env->insn_aux_data[insn_idx].ctx_field_size =
5480 			info.ctx_field_size;
5481 		return 0;
5482 	}
5483 
5484 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5485 		regno, reg_type_str(env, reg->type), off, size);
5486 
5487 	return -EACCES;
5488 }
5489 
5490 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5491 {
5492 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5493 }
5494 
5495 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5496 {
5497 	const struct bpf_reg_state *reg = reg_state(env, regno);
5498 
5499 	return reg->type == PTR_TO_CTX;
5500 }
5501 
5502 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5503 {
5504 	const struct bpf_reg_state *reg = reg_state(env, regno);
5505 
5506 	return type_is_sk_pointer(reg->type);
5507 }
5508 
5509 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5510 {
5511 	const struct bpf_reg_state *reg = reg_state(env, regno);
5512 
5513 	return type_is_pkt_pointer(reg->type);
5514 }
5515 
5516 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5517 {
5518 	const struct bpf_reg_state *reg = reg_state(env, regno);
5519 
5520 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5521 	return reg->type == PTR_TO_FLOW_KEYS;
5522 }
5523 
5524 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5525 #ifdef CONFIG_NET
5526 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5527 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5528 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5529 #endif
5530 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5531 };
5532 
5533 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5534 {
5535 	/* A referenced register is always trusted. */
5536 	if (reg->ref_obj_id)
5537 		return true;
5538 
5539 	/* Types listed in the reg2btf_ids are always trusted */
5540 	if (reg2btf_ids[base_type(reg->type)])
5541 		return true;
5542 
5543 	/* If a register is not referenced, it is trusted if it has the
5544 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5545 	 * other type modifiers may be safe, but we elect to take an opt-in
5546 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5547 	 * not.
5548 	 *
5549 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5550 	 * for whether a register is trusted.
5551 	 */
5552 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5553 	       !bpf_type_has_unsafe_modifiers(reg->type);
5554 }
5555 
5556 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5557 {
5558 	return reg->type & MEM_RCU;
5559 }
5560 
5561 static void clear_trusted_flags(enum bpf_type_flag *flag)
5562 {
5563 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5564 }
5565 
5566 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5567 				   const struct bpf_reg_state *reg,
5568 				   int off, int size, bool strict)
5569 {
5570 	struct tnum reg_off;
5571 	int ip_align;
5572 
5573 	/* Byte size accesses are always allowed. */
5574 	if (!strict || size == 1)
5575 		return 0;
5576 
5577 	/* For platforms that do not have a Kconfig enabling
5578 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5579 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5580 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5581 	 * to this code only in strict mode where we want to emulate
5582 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5583 	 * unconditional IP align value of '2'.
5584 	 */
5585 	ip_align = 2;
5586 
5587 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5588 	if (!tnum_is_aligned(reg_off, size)) {
5589 		char tn_buf[48];
5590 
5591 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5592 		verbose(env,
5593 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5594 			ip_align, tn_buf, reg->off, off, size);
5595 		return -EACCES;
5596 	}
5597 
5598 	return 0;
5599 }
5600 
5601 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5602 				       const struct bpf_reg_state *reg,
5603 				       const char *pointer_desc,
5604 				       int off, int size, bool strict)
5605 {
5606 	struct tnum reg_off;
5607 
5608 	/* Byte size accesses are always allowed. */
5609 	if (!strict || size == 1)
5610 		return 0;
5611 
5612 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5613 	if (!tnum_is_aligned(reg_off, size)) {
5614 		char tn_buf[48];
5615 
5616 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5617 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5618 			pointer_desc, tn_buf, reg->off, off, size);
5619 		return -EACCES;
5620 	}
5621 
5622 	return 0;
5623 }
5624 
5625 static int check_ptr_alignment(struct bpf_verifier_env *env,
5626 			       const struct bpf_reg_state *reg, int off,
5627 			       int size, bool strict_alignment_once)
5628 {
5629 	bool strict = env->strict_alignment || strict_alignment_once;
5630 	const char *pointer_desc = "";
5631 
5632 	switch (reg->type) {
5633 	case PTR_TO_PACKET:
5634 	case PTR_TO_PACKET_META:
5635 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5636 		 * right in front, treat it the very same way.
5637 		 */
5638 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5639 	case PTR_TO_FLOW_KEYS:
5640 		pointer_desc = "flow keys ";
5641 		break;
5642 	case PTR_TO_MAP_KEY:
5643 		pointer_desc = "key ";
5644 		break;
5645 	case PTR_TO_MAP_VALUE:
5646 		pointer_desc = "value ";
5647 		break;
5648 	case PTR_TO_CTX:
5649 		pointer_desc = "context ";
5650 		break;
5651 	case PTR_TO_STACK:
5652 		pointer_desc = "stack ";
5653 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5654 		 * and check_stack_read_fixed_off() relies on stack accesses being
5655 		 * aligned.
5656 		 */
5657 		strict = true;
5658 		break;
5659 	case PTR_TO_SOCKET:
5660 		pointer_desc = "sock ";
5661 		break;
5662 	case PTR_TO_SOCK_COMMON:
5663 		pointer_desc = "sock_common ";
5664 		break;
5665 	case PTR_TO_TCP_SOCK:
5666 		pointer_desc = "tcp_sock ";
5667 		break;
5668 	case PTR_TO_XDP_SOCK:
5669 		pointer_desc = "xdp_sock ";
5670 		break;
5671 	default:
5672 		break;
5673 	}
5674 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5675 					   strict);
5676 }
5677 
5678 static int update_stack_depth(struct bpf_verifier_env *env,
5679 			      const struct bpf_func_state *func,
5680 			      int off)
5681 {
5682 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
5683 
5684 	if (stack >= -off)
5685 		return 0;
5686 
5687 	/* update known max for given subprogram */
5688 	env->subprog_info[func->subprogno].stack_depth = -off;
5689 	return 0;
5690 }
5691 
5692 /* starting from main bpf function walk all instructions of the function
5693  * and recursively walk all callees that given function can call.
5694  * Ignore jump and exit insns.
5695  * Since recursion is prevented by check_cfg() this algorithm
5696  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5697  */
5698 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5699 {
5700 	struct bpf_subprog_info *subprog = env->subprog_info;
5701 	struct bpf_insn *insn = env->prog->insnsi;
5702 	int depth = 0, frame = 0, i, subprog_end;
5703 	bool tail_call_reachable = false;
5704 	int ret_insn[MAX_CALL_FRAMES];
5705 	int ret_prog[MAX_CALL_FRAMES];
5706 	int j;
5707 
5708 	i = subprog[idx].start;
5709 process_func:
5710 	/* protect against potential stack overflow that might happen when
5711 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5712 	 * depth for such case down to 256 so that the worst case scenario
5713 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5714 	 * 8k).
5715 	 *
5716 	 * To get the idea what might happen, see an example:
5717 	 * func1 -> sub rsp, 128
5718 	 *  subfunc1 -> sub rsp, 256
5719 	 *  tailcall1 -> add rsp, 256
5720 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5721 	 *   subfunc2 -> sub rsp, 64
5722 	 *   subfunc22 -> sub rsp, 128
5723 	 *   tailcall2 -> add rsp, 128
5724 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5725 	 *
5726 	 * tailcall will unwind the current stack frame but it will not get rid
5727 	 * of caller's stack as shown on the example above.
5728 	 */
5729 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5730 		verbose(env,
5731 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5732 			depth);
5733 		return -EACCES;
5734 	}
5735 	/* round up to 32-bytes, since this is granularity
5736 	 * of interpreter stack size
5737 	 */
5738 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5739 	if (depth > MAX_BPF_STACK) {
5740 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5741 			frame + 1, depth);
5742 		return -EACCES;
5743 	}
5744 continue_func:
5745 	subprog_end = subprog[idx + 1].start;
5746 	for (; i < subprog_end; i++) {
5747 		int next_insn, sidx;
5748 
5749 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
5750 			bool err = false;
5751 
5752 			if (!is_bpf_throw_kfunc(insn + i))
5753 				continue;
5754 			if (subprog[idx].is_cb)
5755 				err = true;
5756 			for (int c = 0; c < frame && !err; c++) {
5757 				if (subprog[ret_prog[c]].is_cb) {
5758 					err = true;
5759 					break;
5760 				}
5761 			}
5762 			if (!err)
5763 				continue;
5764 			verbose(env,
5765 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
5766 				i, idx);
5767 			return -EINVAL;
5768 		}
5769 
5770 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5771 			continue;
5772 		/* remember insn and function to return to */
5773 		ret_insn[frame] = i + 1;
5774 		ret_prog[frame] = idx;
5775 
5776 		/* find the callee */
5777 		next_insn = i + insn[i].imm + 1;
5778 		sidx = find_subprog(env, next_insn);
5779 		if (sidx < 0) {
5780 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5781 				  next_insn);
5782 			return -EFAULT;
5783 		}
5784 		if (subprog[sidx].is_async_cb) {
5785 			if (subprog[sidx].has_tail_call) {
5786 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5787 				return -EFAULT;
5788 			}
5789 			/* async callbacks don't increase bpf prog stack size unless called directly */
5790 			if (!bpf_pseudo_call(insn + i))
5791 				continue;
5792 			if (subprog[sidx].is_exception_cb) {
5793 				verbose(env, "insn %d cannot call exception cb directly\n", i);
5794 				return -EINVAL;
5795 			}
5796 		}
5797 		i = next_insn;
5798 		idx = sidx;
5799 
5800 		if (subprog[idx].has_tail_call)
5801 			tail_call_reachable = true;
5802 
5803 		frame++;
5804 		if (frame >= MAX_CALL_FRAMES) {
5805 			verbose(env, "the call stack of %d frames is too deep !\n",
5806 				frame);
5807 			return -E2BIG;
5808 		}
5809 		goto process_func;
5810 	}
5811 	/* if tail call got detected across bpf2bpf calls then mark each of the
5812 	 * currently present subprog frames as tail call reachable subprogs;
5813 	 * this info will be utilized by JIT so that we will be preserving the
5814 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5815 	 */
5816 	if (tail_call_reachable)
5817 		for (j = 0; j < frame; j++) {
5818 			if (subprog[ret_prog[j]].is_exception_cb) {
5819 				verbose(env, "cannot tail call within exception cb\n");
5820 				return -EINVAL;
5821 			}
5822 			subprog[ret_prog[j]].tail_call_reachable = true;
5823 		}
5824 	if (subprog[0].tail_call_reachable)
5825 		env->prog->aux->tail_call_reachable = true;
5826 
5827 	/* end of for() loop means the last insn of the 'subprog'
5828 	 * was reached. Doesn't matter whether it was JA or EXIT
5829 	 */
5830 	if (frame == 0)
5831 		return 0;
5832 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5833 	frame--;
5834 	i = ret_insn[frame];
5835 	idx = ret_prog[frame];
5836 	goto continue_func;
5837 }
5838 
5839 static int check_max_stack_depth(struct bpf_verifier_env *env)
5840 {
5841 	struct bpf_subprog_info *si = env->subprog_info;
5842 	int ret;
5843 
5844 	for (int i = 0; i < env->subprog_cnt; i++) {
5845 		if (!i || si[i].is_async_cb) {
5846 			ret = check_max_stack_depth_subprog(env, i);
5847 			if (ret < 0)
5848 				return ret;
5849 		}
5850 		continue;
5851 	}
5852 	return 0;
5853 }
5854 
5855 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5856 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5857 				  const struct bpf_insn *insn, int idx)
5858 {
5859 	int start = idx + insn->imm + 1, subprog;
5860 
5861 	subprog = find_subprog(env, start);
5862 	if (subprog < 0) {
5863 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5864 			  start);
5865 		return -EFAULT;
5866 	}
5867 	return env->subprog_info[subprog].stack_depth;
5868 }
5869 #endif
5870 
5871 static int __check_buffer_access(struct bpf_verifier_env *env,
5872 				 const char *buf_info,
5873 				 const struct bpf_reg_state *reg,
5874 				 int regno, int off, int size)
5875 {
5876 	if (off < 0) {
5877 		verbose(env,
5878 			"R%d invalid %s buffer access: off=%d, size=%d\n",
5879 			regno, buf_info, off, size);
5880 		return -EACCES;
5881 	}
5882 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5883 		char tn_buf[48];
5884 
5885 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5886 		verbose(env,
5887 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
5888 			regno, off, tn_buf);
5889 		return -EACCES;
5890 	}
5891 
5892 	return 0;
5893 }
5894 
5895 static int check_tp_buffer_access(struct bpf_verifier_env *env,
5896 				  const struct bpf_reg_state *reg,
5897 				  int regno, int off, int size)
5898 {
5899 	int err;
5900 
5901 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5902 	if (err)
5903 		return err;
5904 
5905 	if (off + size > env->prog->aux->max_tp_access)
5906 		env->prog->aux->max_tp_access = off + size;
5907 
5908 	return 0;
5909 }
5910 
5911 static int check_buffer_access(struct bpf_verifier_env *env,
5912 			       const struct bpf_reg_state *reg,
5913 			       int regno, int off, int size,
5914 			       bool zero_size_allowed,
5915 			       u32 *max_access)
5916 {
5917 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
5918 	int err;
5919 
5920 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
5921 	if (err)
5922 		return err;
5923 
5924 	if (off + size > *max_access)
5925 		*max_access = off + size;
5926 
5927 	return 0;
5928 }
5929 
5930 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
5931 static void zext_32_to_64(struct bpf_reg_state *reg)
5932 {
5933 	reg->var_off = tnum_subreg(reg->var_off);
5934 	__reg_assign_32_into_64(reg);
5935 }
5936 
5937 /* truncate register to smaller size (in bytes)
5938  * must be called with size < BPF_REG_SIZE
5939  */
5940 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
5941 {
5942 	u64 mask;
5943 
5944 	/* clear high bits in bit representation */
5945 	reg->var_off = tnum_cast(reg->var_off, size);
5946 
5947 	/* fix arithmetic bounds */
5948 	mask = ((u64)1 << (size * 8)) - 1;
5949 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
5950 		reg->umin_value &= mask;
5951 		reg->umax_value &= mask;
5952 	} else {
5953 		reg->umin_value = 0;
5954 		reg->umax_value = mask;
5955 	}
5956 	reg->smin_value = reg->umin_value;
5957 	reg->smax_value = reg->umax_value;
5958 
5959 	/* If size is smaller than 32bit register the 32bit register
5960 	 * values are also truncated so we push 64-bit bounds into
5961 	 * 32-bit bounds. Above were truncated < 32-bits already.
5962 	 */
5963 	if (size >= 4)
5964 		return;
5965 	__reg_combine_64_into_32(reg);
5966 }
5967 
5968 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
5969 {
5970 	if (size == 1) {
5971 		reg->smin_value = reg->s32_min_value = S8_MIN;
5972 		reg->smax_value = reg->s32_max_value = S8_MAX;
5973 	} else if (size == 2) {
5974 		reg->smin_value = reg->s32_min_value = S16_MIN;
5975 		reg->smax_value = reg->s32_max_value = S16_MAX;
5976 	} else {
5977 		/* size == 4 */
5978 		reg->smin_value = reg->s32_min_value = S32_MIN;
5979 		reg->smax_value = reg->s32_max_value = S32_MAX;
5980 	}
5981 	reg->umin_value = reg->u32_min_value = 0;
5982 	reg->umax_value = U64_MAX;
5983 	reg->u32_max_value = U32_MAX;
5984 	reg->var_off = tnum_unknown;
5985 }
5986 
5987 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
5988 {
5989 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
5990 	u64 top_smax_value, top_smin_value;
5991 	u64 num_bits = size * 8;
5992 
5993 	if (tnum_is_const(reg->var_off)) {
5994 		u64_cval = reg->var_off.value;
5995 		if (size == 1)
5996 			reg->var_off = tnum_const((s8)u64_cval);
5997 		else if (size == 2)
5998 			reg->var_off = tnum_const((s16)u64_cval);
5999 		else
6000 			/* size == 4 */
6001 			reg->var_off = tnum_const((s32)u64_cval);
6002 
6003 		u64_cval = reg->var_off.value;
6004 		reg->smax_value = reg->smin_value = u64_cval;
6005 		reg->umax_value = reg->umin_value = u64_cval;
6006 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6007 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6008 		return;
6009 	}
6010 
6011 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6012 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6013 
6014 	if (top_smax_value != top_smin_value)
6015 		goto out;
6016 
6017 	/* find the s64_min and s64_min after sign extension */
6018 	if (size == 1) {
6019 		init_s64_max = (s8)reg->smax_value;
6020 		init_s64_min = (s8)reg->smin_value;
6021 	} else if (size == 2) {
6022 		init_s64_max = (s16)reg->smax_value;
6023 		init_s64_min = (s16)reg->smin_value;
6024 	} else {
6025 		init_s64_max = (s32)reg->smax_value;
6026 		init_s64_min = (s32)reg->smin_value;
6027 	}
6028 
6029 	s64_max = max(init_s64_max, init_s64_min);
6030 	s64_min = min(init_s64_max, init_s64_min);
6031 
6032 	/* both of s64_max/s64_min positive or negative */
6033 	if ((s64_max >= 0) == (s64_min >= 0)) {
6034 		reg->smin_value = reg->s32_min_value = s64_min;
6035 		reg->smax_value = reg->s32_max_value = s64_max;
6036 		reg->umin_value = reg->u32_min_value = s64_min;
6037 		reg->umax_value = reg->u32_max_value = s64_max;
6038 		reg->var_off = tnum_range(s64_min, s64_max);
6039 		return;
6040 	}
6041 
6042 out:
6043 	set_sext64_default_val(reg, size);
6044 }
6045 
6046 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6047 {
6048 	if (size == 1) {
6049 		reg->s32_min_value = S8_MIN;
6050 		reg->s32_max_value = S8_MAX;
6051 	} else {
6052 		/* size == 2 */
6053 		reg->s32_min_value = S16_MIN;
6054 		reg->s32_max_value = S16_MAX;
6055 	}
6056 	reg->u32_min_value = 0;
6057 	reg->u32_max_value = U32_MAX;
6058 }
6059 
6060 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6061 {
6062 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6063 	u32 top_smax_value, top_smin_value;
6064 	u32 num_bits = size * 8;
6065 
6066 	if (tnum_is_const(reg->var_off)) {
6067 		u32_val = reg->var_off.value;
6068 		if (size == 1)
6069 			reg->var_off = tnum_const((s8)u32_val);
6070 		else
6071 			reg->var_off = tnum_const((s16)u32_val);
6072 
6073 		u32_val = reg->var_off.value;
6074 		reg->s32_min_value = reg->s32_max_value = u32_val;
6075 		reg->u32_min_value = reg->u32_max_value = u32_val;
6076 		return;
6077 	}
6078 
6079 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6080 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6081 
6082 	if (top_smax_value != top_smin_value)
6083 		goto out;
6084 
6085 	/* find the s32_min and s32_min after sign extension */
6086 	if (size == 1) {
6087 		init_s32_max = (s8)reg->s32_max_value;
6088 		init_s32_min = (s8)reg->s32_min_value;
6089 	} else {
6090 		/* size == 2 */
6091 		init_s32_max = (s16)reg->s32_max_value;
6092 		init_s32_min = (s16)reg->s32_min_value;
6093 	}
6094 	s32_max = max(init_s32_max, init_s32_min);
6095 	s32_min = min(init_s32_max, init_s32_min);
6096 
6097 	if ((s32_min >= 0) == (s32_max >= 0)) {
6098 		reg->s32_min_value = s32_min;
6099 		reg->s32_max_value = s32_max;
6100 		reg->u32_min_value = (u32)s32_min;
6101 		reg->u32_max_value = (u32)s32_max;
6102 		return;
6103 	}
6104 
6105 out:
6106 	set_sext32_default_val(reg, size);
6107 }
6108 
6109 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6110 {
6111 	/* A map is considered read-only if the following condition are true:
6112 	 *
6113 	 * 1) BPF program side cannot change any of the map content. The
6114 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6115 	 *    and was set at map creation time.
6116 	 * 2) The map value(s) have been initialized from user space by a
6117 	 *    loader and then "frozen", such that no new map update/delete
6118 	 *    operations from syscall side are possible for the rest of
6119 	 *    the map's lifetime from that point onwards.
6120 	 * 3) Any parallel/pending map update/delete operations from syscall
6121 	 *    side have been completed. Only after that point, it's safe to
6122 	 *    assume that map value(s) are immutable.
6123 	 */
6124 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6125 	       READ_ONCE(map->frozen) &&
6126 	       !bpf_map_write_active(map);
6127 }
6128 
6129 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6130 			       bool is_ldsx)
6131 {
6132 	void *ptr;
6133 	u64 addr;
6134 	int err;
6135 
6136 	err = map->ops->map_direct_value_addr(map, &addr, off);
6137 	if (err)
6138 		return err;
6139 	ptr = (void *)(long)addr + off;
6140 
6141 	switch (size) {
6142 	case sizeof(u8):
6143 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6144 		break;
6145 	case sizeof(u16):
6146 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6147 		break;
6148 	case sizeof(u32):
6149 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6150 		break;
6151 	case sizeof(u64):
6152 		*val = *(u64 *)ptr;
6153 		break;
6154 	default:
6155 		return -EINVAL;
6156 	}
6157 	return 0;
6158 }
6159 
6160 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6161 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6162 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6163 
6164 /*
6165  * Allow list few fields as RCU trusted or full trusted.
6166  * This logic doesn't allow mix tagging and will be removed once GCC supports
6167  * btf_type_tag.
6168  */
6169 
6170 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6171 BTF_TYPE_SAFE_RCU(struct task_struct) {
6172 	const cpumask_t *cpus_ptr;
6173 	struct css_set __rcu *cgroups;
6174 	struct task_struct __rcu *real_parent;
6175 	struct task_struct *group_leader;
6176 };
6177 
6178 BTF_TYPE_SAFE_RCU(struct cgroup) {
6179 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6180 	struct kernfs_node *kn;
6181 };
6182 
6183 BTF_TYPE_SAFE_RCU(struct css_set) {
6184 	struct cgroup *dfl_cgrp;
6185 };
6186 
6187 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6188 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6189 	struct file __rcu *exe_file;
6190 };
6191 
6192 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6193  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6194  */
6195 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6196 	struct sock *sk;
6197 };
6198 
6199 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6200 	struct sock *sk;
6201 };
6202 
6203 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6204 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6205 	struct seq_file *seq;
6206 };
6207 
6208 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6209 	struct bpf_iter_meta *meta;
6210 	struct task_struct *task;
6211 };
6212 
6213 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6214 	struct file *file;
6215 };
6216 
6217 BTF_TYPE_SAFE_TRUSTED(struct file) {
6218 	struct inode *f_inode;
6219 };
6220 
6221 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6222 	/* no negative dentry-s in places where bpf can see it */
6223 	struct inode *d_inode;
6224 };
6225 
6226 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6227 	struct sock *sk;
6228 };
6229 
6230 static bool type_is_rcu(struct bpf_verifier_env *env,
6231 			struct bpf_reg_state *reg,
6232 			const char *field_name, u32 btf_id)
6233 {
6234 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6235 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6236 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6237 
6238 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6239 }
6240 
6241 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6242 				struct bpf_reg_state *reg,
6243 				const char *field_name, u32 btf_id)
6244 {
6245 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6246 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6247 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6248 
6249 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6250 }
6251 
6252 static bool type_is_trusted(struct bpf_verifier_env *env,
6253 			    struct bpf_reg_state *reg,
6254 			    const char *field_name, u32 btf_id)
6255 {
6256 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6257 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6258 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6259 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6260 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6261 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6262 
6263 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6264 }
6265 
6266 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6267 				   struct bpf_reg_state *regs,
6268 				   int regno, int off, int size,
6269 				   enum bpf_access_type atype,
6270 				   int value_regno)
6271 {
6272 	struct bpf_reg_state *reg = regs + regno;
6273 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6274 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6275 	const char *field_name = NULL;
6276 	enum bpf_type_flag flag = 0;
6277 	u32 btf_id = 0;
6278 	int ret;
6279 
6280 	if (!env->allow_ptr_leaks) {
6281 		verbose(env,
6282 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6283 			tname);
6284 		return -EPERM;
6285 	}
6286 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6287 		verbose(env,
6288 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6289 			tname);
6290 		return -EINVAL;
6291 	}
6292 	if (off < 0) {
6293 		verbose(env,
6294 			"R%d is ptr_%s invalid negative access: off=%d\n",
6295 			regno, tname, off);
6296 		return -EACCES;
6297 	}
6298 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6299 		char tn_buf[48];
6300 
6301 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6302 		verbose(env,
6303 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6304 			regno, tname, off, tn_buf);
6305 		return -EACCES;
6306 	}
6307 
6308 	if (reg->type & MEM_USER) {
6309 		verbose(env,
6310 			"R%d is ptr_%s access user memory: off=%d\n",
6311 			regno, tname, off);
6312 		return -EACCES;
6313 	}
6314 
6315 	if (reg->type & MEM_PERCPU) {
6316 		verbose(env,
6317 			"R%d is ptr_%s access percpu memory: off=%d\n",
6318 			regno, tname, off);
6319 		return -EACCES;
6320 	}
6321 
6322 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6323 		if (!btf_is_kernel(reg->btf)) {
6324 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6325 			return -EFAULT;
6326 		}
6327 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6328 	} else {
6329 		/* Writes are permitted with default btf_struct_access for
6330 		 * program allocated objects (which always have ref_obj_id > 0),
6331 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6332 		 */
6333 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6334 			verbose(env, "only read is supported\n");
6335 			return -EACCES;
6336 		}
6337 
6338 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6339 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6340 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6341 			return -EFAULT;
6342 		}
6343 
6344 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6345 	}
6346 
6347 	if (ret < 0)
6348 		return ret;
6349 
6350 	if (ret != PTR_TO_BTF_ID) {
6351 		/* just mark; */
6352 
6353 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6354 		/* If this is an untrusted pointer, all pointers formed by walking it
6355 		 * also inherit the untrusted flag.
6356 		 */
6357 		flag = PTR_UNTRUSTED;
6358 
6359 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6360 		/* By default any pointer obtained from walking a trusted pointer is no
6361 		 * longer trusted, unless the field being accessed has explicitly been
6362 		 * marked as inheriting its parent's state of trust (either full or RCU).
6363 		 * For example:
6364 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6365 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6366 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6367 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6368 		 *
6369 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6370 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6371 		 */
6372 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6373 			flag |= PTR_TRUSTED;
6374 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6375 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6376 				/* ignore __rcu tag and mark it MEM_RCU */
6377 				flag |= MEM_RCU;
6378 			} else if (flag & MEM_RCU ||
6379 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6380 				/* __rcu tagged pointers can be NULL */
6381 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6382 
6383 				/* We always trust them */
6384 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6385 				    flag & PTR_UNTRUSTED)
6386 					flag &= ~PTR_UNTRUSTED;
6387 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6388 				/* keep as-is */
6389 			} else {
6390 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6391 				clear_trusted_flags(&flag);
6392 			}
6393 		} else {
6394 			/*
6395 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6396 			 * aggressively mark as untrusted otherwise such
6397 			 * pointers will be plain PTR_TO_BTF_ID without flags
6398 			 * and will be allowed to be passed into helpers for
6399 			 * compat reasons.
6400 			 */
6401 			flag = PTR_UNTRUSTED;
6402 		}
6403 	} else {
6404 		/* Old compat. Deprecated */
6405 		clear_trusted_flags(&flag);
6406 	}
6407 
6408 	if (atype == BPF_READ && value_regno >= 0)
6409 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6410 
6411 	return 0;
6412 }
6413 
6414 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6415 				   struct bpf_reg_state *regs,
6416 				   int regno, int off, int size,
6417 				   enum bpf_access_type atype,
6418 				   int value_regno)
6419 {
6420 	struct bpf_reg_state *reg = regs + regno;
6421 	struct bpf_map *map = reg->map_ptr;
6422 	struct bpf_reg_state map_reg;
6423 	enum bpf_type_flag flag = 0;
6424 	const struct btf_type *t;
6425 	const char *tname;
6426 	u32 btf_id;
6427 	int ret;
6428 
6429 	if (!btf_vmlinux) {
6430 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6431 		return -ENOTSUPP;
6432 	}
6433 
6434 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6435 		verbose(env, "map_ptr access not supported for map type %d\n",
6436 			map->map_type);
6437 		return -ENOTSUPP;
6438 	}
6439 
6440 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6441 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6442 
6443 	if (!env->allow_ptr_leaks) {
6444 		verbose(env,
6445 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6446 			tname);
6447 		return -EPERM;
6448 	}
6449 
6450 	if (off < 0) {
6451 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6452 			regno, tname, off);
6453 		return -EACCES;
6454 	}
6455 
6456 	if (atype != BPF_READ) {
6457 		verbose(env, "only read from %s is supported\n", tname);
6458 		return -EACCES;
6459 	}
6460 
6461 	/* Simulate access to a PTR_TO_BTF_ID */
6462 	memset(&map_reg, 0, sizeof(map_reg));
6463 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6464 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6465 	if (ret < 0)
6466 		return ret;
6467 
6468 	if (value_regno >= 0)
6469 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6470 
6471 	return 0;
6472 }
6473 
6474 /* Check that the stack access at the given offset is within bounds. The
6475  * maximum valid offset is -1.
6476  *
6477  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6478  * -state->allocated_stack for reads.
6479  */
6480 static int check_stack_slot_within_bounds(int off,
6481 					  struct bpf_func_state *state,
6482 					  enum bpf_access_type t)
6483 {
6484 	int min_valid_off;
6485 
6486 	if (t == BPF_WRITE)
6487 		min_valid_off = -MAX_BPF_STACK;
6488 	else
6489 		min_valid_off = -state->allocated_stack;
6490 
6491 	if (off < min_valid_off || off > -1)
6492 		return -EACCES;
6493 	return 0;
6494 }
6495 
6496 /* Check that the stack access at 'regno + off' falls within the maximum stack
6497  * bounds.
6498  *
6499  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6500  */
6501 static int check_stack_access_within_bounds(
6502 		struct bpf_verifier_env *env,
6503 		int regno, int off, int access_size,
6504 		enum bpf_access_src src, enum bpf_access_type type)
6505 {
6506 	struct bpf_reg_state *regs = cur_regs(env);
6507 	struct bpf_reg_state *reg = regs + regno;
6508 	struct bpf_func_state *state = func(env, reg);
6509 	int min_off, max_off;
6510 	int err;
6511 	char *err_extra;
6512 
6513 	if (src == ACCESS_HELPER)
6514 		/* We don't know if helpers are reading or writing (or both). */
6515 		err_extra = " indirect access to";
6516 	else if (type == BPF_READ)
6517 		err_extra = " read from";
6518 	else
6519 		err_extra = " write to";
6520 
6521 	if (tnum_is_const(reg->var_off)) {
6522 		min_off = reg->var_off.value + off;
6523 		if (access_size > 0)
6524 			max_off = min_off + access_size - 1;
6525 		else
6526 			max_off = min_off;
6527 	} else {
6528 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6529 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6530 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6531 				err_extra, regno);
6532 			return -EACCES;
6533 		}
6534 		min_off = reg->smin_value + off;
6535 		if (access_size > 0)
6536 			max_off = reg->smax_value + off + access_size - 1;
6537 		else
6538 			max_off = min_off;
6539 	}
6540 
6541 	err = check_stack_slot_within_bounds(min_off, state, type);
6542 	if (!err)
6543 		err = check_stack_slot_within_bounds(max_off, state, type);
6544 
6545 	if (err) {
6546 		if (tnum_is_const(reg->var_off)) {
6547 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6548 				err_extra, regno, off, access_size);
6549 		} else {
6550 			char tn_buf[48];
6551 
6552 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6553 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6554 				err_extra, regno, tn_buf, access_size);
6555 		}
6556 	}
6557 	return err;
6558 }
6559 
6560 /* check whether memory at (regno + off) is accessible for t = (read | write)
6561  * if t==write, value_regno is a register which value is stored into memory
6562  * if t==read, value_regno is a register which will receive the value from memory
6563  * if t==write && value_regno==-1, some unknown value is stored into memory
6564  * if t==read && value_regno==-1, don't care what we read from memory
6565  */
6566 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6567 			    int off, int bpf_size, enum bpf_access_type t,
6568 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6569 {
6570 	struct bpf_reg_state *regs = cur_regs(env);
6571 	struct bpf_reg_state *reg = regs + regno;
6572 	struct bpf_func_state *state;
6573 	int size, err = 0;
6574 
6575 	size = bpf_size_to_bytes(bpf_size);
6576 	if (size < 0)
6577 		return size;
6578 
6579 	/* alignment checks will add in reg->off themselves */
6580 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6581 	if (err)
6582 		return err;
6583 
6584 	/* for access checks, reg->off is just part of off */
6585 	off += reg->off;
6586 
6587 	if (reg->type == PTR_TO_MAP_KEY) {
6588 		if (t == BPF_WRITE) {
6589 			verbose(env, "write to change key R%d not allowed\n", regno);
6590 			return -EACCES;
6591 		}
6592 
6593 		err = check_mem_region_access(env, regno, off, size,
6594 					      reg->map_ptr->key_size, false);
6595 		if (err)
6596 			return err;
6597 		if (value_regno >= 0)
6598 			mark_reg_unknown(env, regs, value_regno);
6599 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6600 		struct btf_field *kptr_field = NULL;
6601 
6602 		if (t == BPF_WRITE && value_regno >= 0 &&
6603 		    is_pointer_value(env, value_regno)) {
6604 			verbose(env, "R%d leaks addr into map\n", value_regno);
6605 			return -EACCES;
6606 		}
6607 		err = check_map_access_type(env, regno, off, size, t);
6608 		if (err)
6609 			return err;
6610 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6611 		if (err)
6612 			return err;
6613 		if (tnum_is_const(reg->var_off))
6614 			kptr_field = btf_record_find(reg->map_ptr->record,
6615 						     off + reg->var_off.value, BPF_KPTR);
6616 		if (kptr_field) {
6617 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6618 		} else if (t == BPF_READ && value_regno >= 0) {
6619 			struct bpf_map *map = reg->map_ptr;
6620 
6621 			/* if map is read-only, track its contents as scalars */
6622 			if (tnum_is_const(reg->var_off) &&
6623 			    bpf_map_is_rdonly(map) &&
6624 			    map->ops->map_direct_value_addr) {
6625 				int map_off = off + reg->var_off.value;
6626 				u64 val = 0;
6627 
6628 				err = bpf_map_direct_read(map, map_off, size,
6629 							  &val, is_ldsx);
6630 				if (err)
6631 					return err;
6632 
6633 				regs[value_regno].type = SCALAR_VALUE;
6634 				__mark_reg_known(&regs[value_regno], val);
6635 			} else {
6636 				mark_reg_unknown(env, regs, value_regno);
6637 			}
6638 		}
6639 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6640 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6641 
6642 		if (type_may_be_null(reg->type)) {
6643 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6644 				reg_type_str(env, reg->type));
6645 			return -EACCES;
6646 		}
6647 
6648 		if (t == BPF_WRITE && rdonly_mem) {
6649 			verbose(env, "R%d cannot write into %s\n",
6650 				regno, reg_type_str(env, reg->type));
6651 			return -EACCES;
6652 		}
6653 
6654 		if (t == BPF_WRITE && value_regno >= 0 &&
6655 		    is_pointer_value(env, value_regno)) {
6656 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6657 			return -EACCES;
6658 		}
6659 
6660 		err = check_mem_region_access(env, regno, off, size,
6661 					      reg->mem_size, false);
6662 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6663 			mark_reg_unknown(env, regs, value_regno);
6664 	} else if (reg->type == PTR_TO_CTX) {
6665 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6666 		struct btf *btf = NULL;
6667 		u32 btf_id = 0;
6668 
6669 		if (t == BPF_WRITE && value_regno >= 0 &&
6670 		    is_pointer_value(env, value_regno)) {
6671 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6672 			return -EACCES;
6673 		}
6674 
6675 		err = check_ptr_off_reg(env, reg, regno);
6676 		if (err < 0)
6677 			return err;
6678 
6679 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6680 				       &btf_id);
6681 		if (err)
6682 			verbose_linfo(env, insn_idx, "; ");
6683 		if (!err && t == BPF_READ && value_regno >= 0) {
6684 			/* ctx access returns either a scalar, or a
6685 			 * PTR_TO_PACKET[_META,_END]. In the latter
6686 			 * case, we know the offset is zero.
6687 			 */
6688 			if (reg_type == SCALAR_VALUE) {
6689 				mark_reg_unknown(env, regs, value_regno);
6690 			} else {
6691 				mark_reg_known_zero(env, regs,
6692 						    value_regno);
6693 				if (type_may_be_null(reg_type))
6694 					regs[value_regno].id = ++env->id_gen;
6695 				/* A load of ctx field could have different
6696 				 * actual load size with the one encoded in the
6697 				 * insn. When the dst is PTR, it is for sure not
6698 				 * a sub-register.
6699 				 */
6700 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6701 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6702 					regs[value_regno].btf = btf;
6703 					regs[value_regno].btf_id = btf_id;
6704 				}
6705 			}
6706 			regs[value_regno].type = reg_type;
6707 		}
6708 
6709 	} else if (reg->type == PTR_TO_STACK) {
6710 		/* Basic bounds checks. */
6711 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6712 		if (err)
6713 			return err;
6714 
6715 		state = func(env, reg);
6716 		err = update_stack_depth(env, state, off);
6717 		if (err)
6718 			return err;
6719 
6720 		if (t == BPF_READ)
6721 			err = check_stack_read(env, regno, off, size,
6722 					       value_regno);
6723 		else
6724 			err = check_stack_write(env, regno, off, size,
6725 						value_regno, insn_idx);
6726 	} else if (reg_is_pkt_pointer(reg)) {
6727 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6728 			verbose(env, "cannot write into packet\n");
6729 			return -EACCES;
6730 		}
6731 		if (t == BPF_WRITE && value_regno >= 0 &&
6732 		    is_pointer_value(env, value_regno)) {
6733 			verbose(env, "R%d leaks addr into packet\n",
6734 				value_regno);
6735 			return -EACCES;
6736 		}
6737 		err = check_packet_access(env, regno, off, size, false);
6738 		if (!err && t == BPF_READ && value_regno >= 0)
6739 			mark_reg_unknown(env, regs, value_regno);
6740 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6741 		if (t == BPF_WRITE && value_regno >= 0 &&
6742 		    is_pointer_value(env, value_regno)) {
6743 			verbose(env, "R%d leaks addr into flow keys\n",
6744 				value_regno);
6745 			return -EACCES;
6746 		}
6747 
6748 		err = check_flow_keys_access(env, off, size);
6749 		if (!err && t == BPF_READ && value_regno >= 0)
6750 			mark_reg_unknown(env, regs, value_regno);
6751 	} else if (type_is_sk_pointer(reg->type)) {
6752 		if (t == BPF_WRITE) {
6753 			verbose(env, "R%d cannot write into %s\n",
6754 				regno, reg_type_str(env, reg->type));
6755 			return -EACCES;
6756 		}
6757 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6758 		if (!err && value_regno >= 0)
6759 			mark_reg_unknown(env, regs, value_regno);
6760 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6761 		err = check_tp_buffer_access(env, reg, regno, off, size);
6762 		if (!err && t == BPF_READ && value_regno >= 0)
6763 			mark_reg_unknown(env, regs, value_regno);
6764 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6765 		   !type_may_be_null(reg->type)) {
6766 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6767 					      value_regno);
6768 	} else if (reg->type == CONST_PTR_TO_MAP) {
6769 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6770 					      value_regno);
6771 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6772 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6773 		u32 *max_access;
6774 
6775 		if (rdonly_mem) {
6776 			if (t == BPF_WRITE) {
6777 				verbose(env, "R%d cannot write into %s\n",
6778 					regno, reg_type_str(env, reg->type));
6779 				return -EACCES;
6780 			}
6781 			max_access = &env->prog->aux->max_rdonly_access;
6782 		} else {
6783 			max_access = &env->prog->aux->max_rdwr_access;
6784 		}
6785 
6786 		err = check_buffer_access(env, reg, regno, off, size, false,
6787 					  max_access);
6788 
6789 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6790 			mark_reg_unknown(env, regs, value_regno);
6791 	} else {
6792 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6793 			reg_type_str(env, reg->type));
6794 		return -EACCES;
6795 	}
6796 
6797 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6798 	    regs[value_regno].type == SCALAR_VALUE) {
6799 		if (!is_ldsx)
6800 			/* b/h/w load zero-extends, mark upper bits as known 0 */
6801 			coerce_reg_to_size(&regs[value_regno], size);
6802 		else
6803 			coerce_reg_to_size_sx(&regs[value_regno], size);
6804 	}
6805 	return err;
6806 }
6807 
6808 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6809 {
6810 	int load_reg;
6811 	int err;
6812 
6813 	switch (insn->imm) {
6814 	case BPF_ADD:
6815 	case BPF_ADD | BPF_FETCH:
6816 	case BPF_AND:
6817 	case BPF_AND | BPF_FETCH:
6818 	case BPF_OR:
6819 	case BPF_OR | BPF_FETCH:
6820 	case BPF_XOR:
6821 	case BPF_XOR | BPF_FETCH:
6822 	case BPF_XCHG:
6823 	case BPF_CMPXCHG:
6824 		break;
6825 	default:
6826 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6827 		return -EINVAL;
6828 	}
6829 
6830 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6831 		verbose(env, "invalid atomic operand size\n");
6832 		return -EINVAL;
6833 	}
6834 
6835 	/* check src1 operand */
6836 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
6837 	if (err)
6838 		return err;
6839 
6840 	/* check src2 operand */
6841 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6842 	if (err)
6843 		return err;
6844 
6845 	if (insn->imm == BPF_CMPXCHG) {
6846 		/* Check comparison of R0 with memory location */
6847 		const u32 aux_reg = BPF_REG_0;
6848 
6849 		err = check_reg_arg(env, aux_reg, SRC_OP);
6850 		if (err)
6851 			return err;
6852 
6853 		if (is_pointer_value(env, aux_reg)) {
6854 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
6855 			return -EACCES;
6856 		}
6857 	}
6858 
6859 	if (is_pointer_value(env, insn->src_reg)) {
6860 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6861 		return -EACCES;
6862 	}
6863 
6864 	if (is_ctx_reg(env, insn->dst_reg) ||
6865 	    is_pkt_reg(env, insn->dst_reg) ||
6866 	    is_flow_key_reg(env, insn->dst_reg) ||
6867 	    is_sk_reg(env, insn->dst_reg)) {
6868 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6869 			insn->dst_reg,
6870 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6871 		return -EACCES;
6872 	}
6873 
6874 	if (insn->imm & BPF_FETCH) {
6875 		if (insn->imm == BPF_CMPXCHG)
6876 			load_reg = BPF_REG_0;
6877 		else
6878 			load_reg = insn->src_reg;
6879 
6880 		/* check and record load of old value */
6881 		err = check_reg_arg(env, load_reg, DST_OP);
6882 		if (err)
6883 			return err;
6884 	} else {
6885 		/* This instruction accesses a memory location but doesn't
6886 		 * actually load it into a register.
6887 		 */
6888 		load_reg = -1;
6889 	}
6890 
6891 	/* Check whether we can read the memory, with second call for fetch
6892 	 * case to simulate the register fill.
6893 	 */
6894 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6895 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
6896 	if (!err && load_reg >= 0)
6897 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6898 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
6899 				       true, false);
6900 	if (err)
6901 		return err;
6902 
6903 	/* Check whether we can write into the same memory. */
6904 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6905 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
6906 	if (err)
6907 		return err;
6908 
6909 	return 0;
6910 }
6911 
6912 /* When register 'regno' is used to read the stack (either directly or through
6913  * a helper function) make sure that it's within stack boundary and, depending
6914  * on the access type, that all elements of the stack are initialized.
6915  *
6916  * 'off' includes 'regno->off', but not its dynamic part (if any).
6917  *
6918  * All registers that have been spilled on the stack in the slots within the
6919  * read offsets are marked as read.
6920  */
6921 static int check_stack_range_initialized(
6922 		struct bpf_verifier_env *env, int regno, int off,
6923 		int access_size, bool zero_size_allowed,
6924 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
6925 {
6926 	struct bpf_reg_state *reg = reg_state(env, regno);
6927 	struct bpf_func_state *state = func(env, reg);
6928 	int err, min_off, max_off, i, j, slot, spi;
6929 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
6930 	enum bpf_access_type bounds_check_type;
6931 	/* Some accesses can write anything into the stack, others are
6932 	 * read-only.
6933 	 */
6934 	bool clobber = false;
6935 
6936 	if (access_size == 0 && !zero_size_allowed) {
6937 		verbose(env, "invalid zero-sized read\n");
6938 		return -EACCES;
6939 	}
6940 
6941 	if (type == ACCESS_HELPER) {
6942 		/* The bounds checks for writes are more permissive than for
6943 		 * reads. However, if raw_mode is not set, we'll do extra
6944 		 * checks below.
6945 		 */
6946 		bounds_check_type = BPF_WRITE;
6947 		clobber = true;
6948 	} else {
6949 		bounds_check_type = BPF_READ;
6950 	}
6951 	err = check_stack_access_within_bounds(env, regno, off, access_size,
6952 					       type, bounds_check_type);
6953 	if (err)
6954 		return err;
6955 
6956 
6957 	if (tnum_is_const(reg->var_off)) {
6958 		min_off = max_off = reg->var_off.value + off;
6959 	} else {
6960 		/* Variable offset is prohibited for unprivileged mode for
6961 		 * simplicity since it requires corresponding support in
6962 		 * Spectre masking for stack ALU.
6963 		 * See also retrieve_ptr_limit().
6964 		 */
6965 		if (!env->bypass_spec_v1) {
6966 			char tn_buf[48];
6967 
6968 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6969 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
6970 				regno, err_extra, tn_buf);
6971 			return -EACCES;
6972 		}
6973 		/* Only initialized buffer on stack is allowed to be accessed
6974 		 * with variable offset. With uninitialized buffer it's hard to
6975 		 * guarantee that whole memory is marked as initialized on
6976 		 * helper return since specific bounds are unknown what may
6977 		 * cause uninitialized stack leaking.
6978 		 */
6979 		if (meta && meta->raw_mode)
6980 			meta = NULL;
6981 
6982 		min_off = reg->smin_value + off;
6983 		max_off = reg->smax_value + off;
6984 	}
6985 
6986 	if (meta && meta->raw_mode) {
6987 		/* Ensure we won't be overwriting dynptrs when simulating byte
6988 		 * by byte access in check_helper_call using meta.access_size.
6989 		 * This would be a problem if we have a helper in the future
6990 		 * which takes:
6991 		 *
6992 		 *	helper(uninit_mem, len, dynptr)
6993 		 *
6994 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
6995 		 * may end up writing to dynptr itself when touching memory from
6996 		 * arg 1. This can be relaxed on a case by case basis for known
6997 		 * safe cases, but reject due to the possibilitiy of aliasing by
6998 		 * default.
6999 		 */
7000 		for (i = min_off; i < max_off + access_size; i++) {
7001 			int stack_off = -i - 1;
7002 
7003 			spi = __get_spi(i);
7004 			/* raw_mode may write past allocated_stack */
7005 			if (state->allocated_stack <= stack_off)
7006 				continue;
7007 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7008 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7009 				return -EACCES;
7010 			}
7011 		}
7012 		meta->access_size = access_size;
7013 		meta->regno = regno;
7014 		return 0;
7015 	}
7016 
7017 	for (i = min_off; i < max_off + access_size; i++) {
7018 		u8 *stype;
7019 
7020 		slot = -i - 1;
7021 		spi = slot / BPF_REG_SIZE;
7022 		if (state->allocated_stack <= slot)
7023 			goto err;
7024 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7025 		if (*stype == STACK_MISC)
7026 			goto mark;
7027 		if ((*stype == STACK_ZERO) ||
7028 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7029 			if (clobber) {
7030 				/* helper can write anything into the stack */
7031 				*stype = STACK_MISC;
7032 			}
7033 			goto mark;
7034 		}
7035 
7036 		if (is_spilled_reg(&state->stack[spi]) &&
7037 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7038 		     env->allow_ptr_leaks)) {
7039 			if (clobber) {
7040 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7041 				for (j = 0; j < BPF_REG_SIZE; j++)
7042 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7043 			}
7044 			goto mark;
7045 		}
7046 
7047 err:
7048 		if (tnum_is_const(reg->var_off)) {
7049 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7050 				err_extra, regno, min_off, i - min_off, access_size);
7051 		} else {
7052 			char tn_buf[48];
7053 
7054 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7055 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7056 				err_extra, regno, tn_buf, i - min_off, access_size);
7057 		}
7058 		return -EACCES;
7059 mark:
7060 		/* reading any byte out of 8-byte 'spill_slot' will cause
7061 		 * the whole slot to be marked as 'read'
7062 		 */
7063 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7064 			      state->stack[spi].spilled_ptr.parent,
7065 			      REG_LIVE_READ64);
7066 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7067 		 * be sure that whether stack slot is written to or not. Hence,
7068 		 * we must still conservatively propagate reads upwards even if
7069 		 * helper may write to the entire memory range.
7070 		 */
7071 	}
7072 	return update_stack_depth(env, state, min_off);
7073 }
7074 
7075 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7076 				   int access_size, bool zero_size_allowed,
7077 				   struct bpf_call_arg_meta *meta)
7078 {
7079 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7080 	u32 *max_access;
7081 
7082 	switch (base_type(reg->type)) {
7083 	case PTR_TO_PACKET:
7084 	case PTR_TO_PACKET_META:
7085 		return check_packet_access(env, regno, reg->off, access_size,
7086 					   zero_size_allowed);
7087 	case PTR_TO_MAP_KEY:
7088 		if (meta && meta->raw_mode) {
7089 			verbose(env, "R%d cannot write into %s\n", regno,
7090 				reg_type_str(env, reg->type));
7091 			return -EACCES;
7092 		}
7093 		return check_mem_region_access(env, regno, reg->off, access_size,
7094 					       reg->map_ptr->key_size, false);
7095 	case PTR_TO_MAP_VALUE:
7096 		if (check_map_access_type(env, regno, reg->off, access_size,
7097 					  meta && meta->raw_mode ? BPF_WRITE :
7098 					  BPF_READ))
7099 			return -EACCES;
7100 		return check_map_access(env, regno, reg->off, access_size,
7101 					zero_size_allowed, ACCESS_HELPER);
7102 	case PTR_TO_MEM:
7103 		if (type_is_rdonly_mem(reg->type)) {
7104 			if (meta && meta->raw_mode) {
7105 				verbose(env, "R%d cannot write into %s\n", regno,
7106 					reg_type_str(env, reg->type));
7107 				return -EACCES;
7108 			}
7109 		}
7110 		return check_mem_region_access(env, regno, reg->off,
7111 					       access_size, reg->mem_size,
7112 					       zero_size_allowed);
7113 	case PTR_TO_BUF:
7114 		if (type_is_rdonly_mem(reg->type)) {
7115 			if (meta && meta->raw_mode) {
7116 				verbose(env, "R%d cannot write into %s\n", regno,
7117 					reg_type_str(env, reg->type));
7118 				return -EACCES;
7119 			}
7120 
7121 			max_access = &env->prog->aux->max_rdonly_access;
7122 		} else {
7123 			max_access = &env->prog->aux->max_rdwr_access;
7124 		}
7125 		return check_buffer_access(env, reg, regno, reg->off,
7126 					   access_size, zero_size_allowed,
7127 					   max_access);
7128 	case PTR_TO_STACK:
7129 		return check_stack_range_initialized(
7130 				env,
7131 				regno, reg->off, access_size,
7132 				zero_size_allowed, ACCESS_HELPER, meta);
7133 	case PTR_TO_BTF_ID:
7134 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7135 					       access_size, BPF_READ, -1);
7136 	case PTR_TO_CTX:
7137 		/* in case the function doesn't know how to access the context,
7138 		 * (because we are in a program of type SYSCALL for example), we
7139 		 * can not statically check its size.
7140 		 * Dynamically check it now.
7141 		 */
7142 		if (!env->ops->convert_ctx_access) {
7143 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7144 			int offset = access_size - 1;
7145 
7146 			/* Allow zero-byte read from PTR_TO_CTX */
7147 			if (access_size == 0)
7148 				return zero_size_allowed ? 0 : -EACCES;
7149 
7150 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7151 						atype, -1, false, false);
7152 		}
7153 
7154 		fallthrough;
7155 	default: /* scalar_value or invalid ptr */
7156 		/* Allow zero-byte read from NULL, regardless of pointer type */
7157 		if (zero_size_allowed && access_size == 0 &&
7158 		    register_is_null(reg))
7159 			return 0;
7160 
7161 		verbose(env, "R%d type=%s ", regno,
7162 			reg_type_str(env, reg->type));
7163 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7164 		return -EACCES;
7165 	}
7166 }
7167 
7168 static int check_mem_size_reg(struct bpf_verifier_env *env,
7169 			      struct bpf_reg_state *reg, u32 regno,
7170 			      bool zero_size_allowed,
7171 			      struct bpf_call_arg_meta *meta)
7172 {
7173 	int err;
7174 
7175 	/* This is used to refine r0 return value bounds for helpers
7176 	 * that enforce this value as an upper bound on return values.
7177 	 * See do_refine_retval_range() for helpers that can refine
7178 	 * the return value. C type of helper is u32 so we pull register
7179 	 * bound from umax_value however, if negative verifier errors
7180 	 * out. Only upper bounds can be learned because retval is an
7181 	 * int type and negative retvals are allowed.
7182 	 */
7183 	meta->msize_max_value = reg->umax_value;
7184 
7185 	/* The register is SCALAR_VALUE; the access check
7186 	 * happens using its boundaries.
7187 	 */
7188 	if (!tnum_is_const(reg->var_off))
7189 		/* For unprivileged variable accesses, disable raw
7190 		 * mode so that the program is required to
7191 		 * initialize all the memory that the helper could
7192 		 * just partially fill up.
7193 		 */
7194 		meta = NULL;
7195 
7196 	if (reg->smin_value < 0) {
7197 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7198 			regno);
7199 		return -EACCES;
7200 	}
7201 
7202 	if (reg->umin_value == 0) {
7203 		err = check_helper_mem_access(env, regno - 1, 0,
7204 					      zero_size_allowed,
7205 					      meta);
7206 		if (err)
7207 			return err;
7208 	}
7209 
7210 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7211 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7212 			regno);
7213 		return -EACCES;
7214 	}
7215 	err = check_helper_mem_access(env, regno - 1,
7216 				      reg->umax_value,
7217 				      zero_size_allowed, meta);
7218 	if (!err)
7219 		err = mark_chain_precision(env, regno);
7220 	return err;
7221 }
7222 
7223 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7224 		   u32 regno, u32 mem_size)
7225 {
7226 	bool may_be_null = type_may_be_null(reg->type);
7227 	struct bpf_reg_state saved_reg;
7228 	struct bpf_call_arg_meta meta;
7229 	int err;
7230 
7231 	if (register_is_null(reg))
7232 		return 0;
7233 
7234 	memset(&meta, 0, sizeof(meta));
7235 	/* Assuming that the register contains a value check if the memory
7236 	 * access is safe. Temporarily save and restore the register's state as
7237 	 * the conversion shouldn't be visible to a caller.
7238 	 */
7239 	if (may_be_null) {
7240 		saved_reg = *reg;
7241 		mark_ptr_not_null_reg(reg);
7242 	}
7243 
7244 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7245 	/* Check access for BPF_WRITE */
7246 	meta.raw_mode = true;
7247 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7248 
7249 	if (may_be_null)
7250 		*reg = saved_reg;
7251 
7252 	return err;
7253 }
7254 
7255 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7256 				    u32 regno)
7257 {
7258 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7259 	bool may_be_null = type_may_be_null(mem_reg->type);
7260 	struct bpf_reg_state saved_reg;
7261 	struct bpf_call_arg_meta meta;
7262 	int err;
7263 
7264 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7265 
7266 	memset(&meta, 0, sizeof(meta));
7267 
7268 	if (may_be_null) {
7269 		saved_reg = *mem_reg;
7270 		mark_ptr_not_null_reg(mem_reg);
7271 	}
7272 
7273 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7274 	/* Check access for BPF_WRITE */
7275 	meta.raw_mode = true;
7276 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7277 
7278 	if (may_be_null)
7279 		*mem_reg = saved_reg;
7280 	return err;
7281 }
7282 
7283 /* Implementation details:
7284  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7285  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7286  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7287  * Two separate bpf_obj_new will also have different reg->id.
7288  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7289  * clears reg->id after value_or_null->value transition, since the verifier only
7290  * cares about the range of access to valid map value pointer and doesn't care
7291  * about actual address of the map element.
7292  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7293  * reg->id > 0 after value_or_null->value transition. By doing so
7294  * two bpf_map_lookups will be considered two different pointers that
7295  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7296  * returned from bpf_obj_new.
7297  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7298  * dead-locks.
7299  * Since only one bpf_spin_lock is allowed the checks are simpler than
7300  * reg_is_refcounted() logic. The verifier needs to remember only
7301  * one spin_lock instead of array of acquired_refs.
7302  * cur_state->active_lock remembers which map value element or allocated
7303  * object got locked and clears it after bpf_spin_unlock.
7304  */
7305 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7306 			     bool is_lock)
7307 {
7308 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7309 	struct bpf_verifier_state *cur = env->cur_state;
7310 	bool is_const = tnum_is_const(reg->var_off);
7311 	u64 val = reg->var_off.value;
7312 	struct bpf_map *map = NULL;
7313 	struct btf *btf = NULL;
7314 	struct btf_record *rec;
7315 
7316 	if (!is_const) {
7317 		verbose(env,
7318 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7319 			regno);
7320 		return -EINVAL;
7321 	}
7322 	if (reg->type == PTR_TO_MAP_VALUE) {
7323 		map = reg->map_ptr;
7324 		if (!map->btf) {
7325 			verbose(env,
7326 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7327 				map->name);
7328 			return -EINVAL;
7329 		}
7330 	} else {
7331 		btf = reg->btf;
7332 	}
7333 
7334 	rec = reg_btf_record(reg);
7335 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7336 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7337 			map ? map->name : "kptr");
7338 		return -EINVAL;
7339 	}
7340 	if (rec->spin_lock_off != val + reg->off) {
7341 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7342 			val + reg->off, rec->spin_lock_off);
7343 		return -EINVAL;
7344 	}
7345 	if (is_lock) {
7346 		if (cur->active_lock.ptr) {
7347 			verbose(env,
7348 				"Locking two bpf_spin_locks are not allowed\n");
7349 			return -EINVAL;
7350 		}
7351 		if (map)
7352 			cur->active_lock.ptr = map;
7353 		else
7354 			cur->active_lock.ptr = btf;
7355 		cur->active_lock.id = reg->id;
7356 	} else {
7357 		void *ptr;
7358 
7359 		if (map)
7360 			ptr = map;
7361 		else
7362 			ptr = btf;
7363 
7364 		if (!cur->active_lock.ptr) {
7365 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7366 			return -EINVAL;
7367 		}
7368 		if (cur->active_lock.ptr != ptr ||
7369 		    cur->active_lock.id != reg->id) {
7370 			verbose(env, "bpf_spin_unlock of different lock\n");
7371 			return -EINVAL;
7372 		}
7373 
7374 		invalidate_non_owning_refs(env);
7375 
7376 		cur->active_lock.ptr = NULL;
7377 		cur->active_lock.id = 0;
7378 	}
7379 	return 0;
7380 }
7381 
7382 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7383 			      struct bpf_call_arg_meta *meta)
7384 {
7385 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7386 	bool is_const = tnum_is_const(reg->var_off);
7387 	struct bpf_map *map = reg->map_ptr;
7388 	u64 val = reg->var_off.value;
7389 
7390 	if (!is_const) {
7391 		verbose(env,
7392 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7393 			regno);
7394 		return -EINVAL;
7395 	}
7396 	if (!map->btf) {
7397 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7398 			map->name);
7399 		return -EINVAL;
7400 	}
7401 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7402 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7403 		return -EINVAL;
7404 	}
7405 	if (map->record->timer_off != val + reg->off) {
7406 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7407 			val + reg->off, map->record->timer_off);
7408 		return -EINVAL;
7409 	}
7410 	if (meta->map_ptr) {
7411 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7412 		return -EFAULT;
7413 	}
7414 	meta->map_uid = reg->map_uid;
7415 	meta->map_ptr = map;
7416 	return 0;
7417 }
7418 
7419 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7420 			     struct bpf_call_arg_meta *meta)
7421 {
7422 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7423 	struct bpf_map *map_ptr = reg->map_ptr;
7424 	struct btf_field *kptr_field;
7425 	u32 kptr_off;
7426 
7427 	if (!tnum_is_const(reg->var_off)) {
7428 		verbose(env,
7429 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7430 			regno);
7431 		return -EINVAL;
7432 	}
7433 	if (!map_ptr->btf) {
7434 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7435 			map_ptr->name);
7436 		return -EINVAL;
7437 	}
7438 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7439 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7440 		return -EINVAL;
7441 	}
7442 
7443 	meta->map_ptr = map_ptr;
7444 	kptr_off = reg->off + reg->var_off.value;
7445 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7446 	if (!kptr_field) {
7447 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7448 		return -EACCES;
7449 	}
7450 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
7451 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7452 		return -EACCES;
7453 	}
7454 	meta->kptr_field = kptr_field;
7455 	return 0;
7456 }
7457 
7458 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7459  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7460  *
7461  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7462  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7463  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7464  *
7465  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7466  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7467  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7468  * mutate the view of the dynptr and also possibly destroy it. In the latter
7469  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7470  * memory that dynptr points to.
7471  *
7472  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7473  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7474  * readonly dynptr view yet, hence only the first case is tracked and checked.
7475  *
7476  * This is consistent with how C applies the const modifier to a struct object,
7477  * where the pointer itself inside bpf_dynptr becomes const but not what it
7478  * points to.
7479  *
7480  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7481  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7482  */
7483 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7484 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7485 {
7486 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7487 	int err;
7488 
7489 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7490 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7491 	 */
7492 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7493 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7494 		return -EFAULT;
7495 	}
7496 
7497 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7498 	 *		 constructing a mutable bpf_dynptr object.
7499 	 *
7500 	 *		 Currently, this is only possible with PTR_TO_STACK
7501 	 *		 pointing to a region of at least 16 bytes which doesn't
7502 	 *		 contain an existing bpf_dynptr.
7503 	 *
7504 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7505 	 *		 mutated or destroyed. However, the memory it points to
7506 	 *		 may be mutated.
7507 	 *
7508 	 *  None       - Points to a initialized dynptr that can be mutated and
7509 	 *		 destroyed, including mutation of the memory it points
7510 	 *		 to.
7511 	 */
7512 	if (arg_type & MEM_UNINIT) {
7513 		int i;
7514 
7515 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7516 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7517 			return -EINVAL;
7518 		}
7519 
7520 		/* we write BPF_DW bits (8 bytes) at a time */
7521 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7522 			err = check_mem_access(env, insn_idx, regno,
7523 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7524 			if (err)
7525 				return err;
7526 		}
7527 
7528 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7529 	} else /* MEM_RDONLY and None case from above */ {
7530 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7531 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7532 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7533 			return -EINVAL;
7534 		}
7535 
7536 		if (!is_dynptr_reg_valid_init(env, reg)) {
7537 			verbose(env,
7538 				"Expected an initialized dynptr as arg #%d\n",
7539 				regno);
7540 			return -EINVAL;
7541 		}
7542 
7543 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7544 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7545 			verbose(env,
7546 				"Expected a dynptr of type %s as arg #%d\n",
7547 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7548 			return -EINVAL;
7549 		}
7550 
7551 		err = mark_dynptr_read(env, reg);
7552 	}
7553 	return err;
7554 }
7555 
7556 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7557 {
7558 	struct bpf_func_state *state = func(env, reg);
7559 
7560 	return state->stack[spi].spilled_ptr.ref_obj_id;
7561 }
7562 
7563 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7564 {
7565 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7566 }
7567 
7568 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7569 {
7570 	return meta->kfunc_flags & KF_ITER_NEW;
7571 }
7572 
7573 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7574 {
7575 	return meta->kfunc_flags & KF_ITER_NEXT;
7576 }
7577 
7578 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7579 {
7580 	return meta->kfunc_flags & KF_ITER_DESTROY;
7581 }
7582 
7583 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7584 {
7585 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7586 	 * kfunc is iter state pointer
7587 	 */
7588 	return arg == 0 && is_iter_kfunc(meta);
7589 }
7590 
7591 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7592 			    struct bpf_kfunc_call_arg_meta *meta)
7593 {
7594 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7595 	const struct btf_type *t;
7596 	const struct btf_param *arg;
7597 	int spi, err, i, nr_slots;
7598 	u32 btf_id;
7599 
7600 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7601 	arg = &btf_params(meta->func_proto)[0];
7602 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7603 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7604 	nr_slots = t->size / BPF_REG_SIZE;
7605 
7606 	if (is_iter_new_kfunc(meta)) {
7607 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7608 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7609 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7610 				iter_type_str(meta->btf, btf_id), regno);
7611 			return -EINVAL;
7612 		}
7613 
7614 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7615 			err = check_mem_access(env, insn_idx, regno,
7616 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7617 			if (err)
7618 				return err;
7619 		}
7620 
7621 		err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7622 		if (err)
7623 			return err;
7624 	} else {
7625 		/* iter_next() or iter_destroy() expect initialized iter state*/
7626 		if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7627 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7628 				iter_type_str(meta->btf, btf_id), regno);
7629 			return -EINVAL;
7630 		}
7631 
7632 		spi = iter_get_spi(env, reg, nr_slots);
7633 		if (spi < 0)
7634 			return spi;
7635 
7636 		err = mark_iter_read(env, reg, spi, nr_slots);
7637 		if (err)
7638 			return err;
7639 
7640 		/* remember meta->iter info for process_iter_next_call() */
7641 		meta->iter.spi = spi;
7642 		meta->iter.frameno = reg->frameno;
7643 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7644 
7645 		if (is_iter_destroy_kfunc(meta)) {
7646 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7647 			if (err)
7648 				return err;
7649 		}
7650 	}
7651 
7652 	return 0;
7653 }
7654 
7655 /* process_iter_next_call() is called when verifier gets to iterator's next
7656  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7657  * to it as just "iter_next()" in comments below.
7658  *
7659  * BPF verifier relies on a crucial contract for any iter_next()
7660  * implementation: it should *eventually* return NULL, and once that happens
7661  * it should keep returning NULL. That is, once iterator exhausts elements to
7662  * iterate, it should never reset or spuriously return new elements.
7663  *
7664  * With the assumption of such contract, process_iter_next_call() simulates
7665  * a fork in the verifier state to validate loop logic correctness and safety
7666  * without having to simulate infinite amount of iterations.
7667  *
7668  * In current state, we first assume that iter_next() returned NULL and
7669  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7670  * conditions we should not form an infinite loop and should eventually reach
7671  * exit.
7672  *
7673  * Besides that, we also fork current state and enqueue it for later
7674  * verification. In a forked state we keep iterator state as ACTIVE
7675  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7676  * also bump iteration depth to prevent erroneous infinite loop detection
7677  * later on (see iter_active_depths_differ() comment for details). In this
7678  * state we assume that we'll eventually loop back to another iter_next()
7679  * calls (it could be in exactly same location or in some other instruction,
7680  * it doesn't matter, we don't make any unnecessary assumptions about this,
7681  * everything revolves around iterator state in a stack slot, not which
7682  * instruction is calling iter_next()). When that happens, we either will come
7683  * to iter_next() with equivalent state and can conclude that next iteration
7684  * will proceed in exactly the same way as we just verified, so it's safe to
7685  * assume that loop converges. If not, we'll go on another iteration
7686  * simulation with a different input state, until all possible starting states
7687  * are validated or we reach maximum number of instructions limit.
7688  *
7689  * This way, we will either exhaustively discover all possible input states
7690  * that iterator loop can start with and eventually will converge, or we'll
7691  * effectively regress into bounded loop simulation logic and either reach
7692  * maximum number of instructions if loop is not provably convergent, or there
7693  * is some statically known limit on number of iterations (e.g., if there is
7694  * an explicit `if n > 100 then break;` statement somewhere in the loop).
7695  *
7696  * One very subtle but very important aspect is that we *always* simulate NULL
7697  * condition first (as the current state) before we simulate non-NULL case.
7698  * This has to do with intricacies of scalar precision tracking. By simulating
7699  * "exit condition" of iter_next() returning NULL first, we make sure all the
7700  * relevant precision marks *that will be set **after** we exit iterator loop*
7701  * are propagated backwards to common parent state of NULL and non-NULL
7702  * branches. Thanks to that, state equivalence checks done later in forked
7703  * state, when reaching iter_next() for ACTIVE iterator, can assume that
7704  * precision marks are finalized and won't change. Because simulating another
7705  * ACTIVE iterator iteration won't change them (because given same input
7706  * states we'll end up with exactly same output states which we are currently
7707  * comparing; and verification after the loop already propagated back what
7708  * needs to be **additionally** tracked as precise). It's subtle, grok
7709  * precision tracking for more intuitive understanding.
7710  */
7711 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7712 				  struct bpf_kfunc_call_arg_meta *meta)
7713 {
7714 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st;
7715 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7716 	struct bpf_reg_state *cur_iter, *queued_iter;
7717 	int iter_frameno = meta->iter.frameno;
7718 	int iter_spi = meta->iter.spi;
7719 
7720 	BTF_TYPE_EMIT(struct bpf_iter);
7721 
7722 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7723 
7724 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7725 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7726 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7727 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7728 		return -EFAULT;
7729 	}
7730 
7731 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7732 		/* branch out active iter state */
7733 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7734 		if (!queued_st)
7735 			return -ENOMEM;
7736 
7737 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7738 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7739 		queued_iter->iter.depth++;
7740 
7741 		queued_fr = queued_st->frame[queued_st->curframe];
7742 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7743 	}
7744 
7745 	/* switch to DRAINED state, but keep the depth unchanged */
7746 	/* mark current iter state as drained and assume returned NULL */
7747 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7748 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
7749 
7750 	return 0;
7751 }
7752 
7753 static bool arg_type_is_mem_size(enum bpf_arg_type type)
7754 {
7755 	return type == ARG_CONST_SIZE ||
7756 	       type == ARG_CONST_SIZE_OR_ZERO;
7757 }
7758 
7759 static bool arg_type_is_release(enum bpf_arg_type type)
7760 {
7761 	return type & OBJ_RELEASE;
7762 }
7763 
7764 static bool arg_type_is_dynptr(enum bpf_arg_type type)
7765 {
7766 	return base_type(type) == ARG_PTR_TO_DYNPTR;
7767 }
7768 
7769 static int int_ptr_type_to_size(enum bpf_arg_type type)
7770 {
7771 	if (type == ARG_PTR_TO_INT)
7772 		return sizeof(u32);
7773 	else if (type == ARG_PTR_TO_LONG)
7774 		return sizeof(u64);
7775 
7776 	return -EINVAL;
7777 }
7778 
7779 static int resolve_map_arg_type(struct bpf_verifier_env *env,
7780 				 const struct bpf_call_arg_meta *meta,
7781 				 enum bpf_arg_type *arg_type)
7782 {
7783 	if (!meta->map_ptr) {
7784 		/* kernel subsystem misconfigured verifier */
7785 		verbose(env, "invalid map_ptr to access map->type\n");
7786 		return -EACCES;
7787 	}
7788 
7789 	switch (meta->map_ptr->map_type) {
7790 	case BPF_MAP_TYPE_SOCKMAP:
7791 	case BPF_MAP_TYPE_SOCKHASH:
7792 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
7793 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
7794 		} else {
7795 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
7796 			return -EINVAL;
7797 		}
7798 		break;
7799 	case BPF_MAP_TYPE_BLOOM_FILTER:
7800 		if (meta->func_id == BPF_FUNC_map_peek_elem)
7801 			*arg_type = ARG_PTR_TO_MAP_VALUE;
7802 		break;
7803 	default:
7804 		break;
7805 	}
7806 	return 0;
7807 }
7808 
7809 struct bpf_reg_types {
7810 	const enum bpf_reg_type types[10];
7811 	u32 *btf_id;
7812 };
7813 
7814 static const struct bpf_reg_types sock_types = {
7815 	.types = {
7816 		PTR_TO_SOCK_COMMON,
7817 		PTR_TO_SOCKET,
7818 		PTR_TO_TCP_SOCK,
7819 		PTR_TO_XDP_SOCK,
7820 	},
7821 };
7822 
7823 #ifdef CONFIG_NET
7824 static const struct bpf_reg_types btf_id_sock_common_types = {
7825 	.types = {
7826 		PTR_TO_SOCK_COMMON,
7827 		PTR_TO_SOCKET,
7828 		PTR_TO_TCP_SOCK,
7829 		PTR_TO_XDP_SOCK,
7830 		PTR_TO_BTF_ID,
7831 		PTR_TO_BTF_ID | PTR_TRUSTED,
7832 	},
7833 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
7834 };
7835 #endif
7836 
7837 static const struct bpf_reg_types mem_types = {
7838 	.types = {
7839 		PTR_TO_STACK,
7840 		PTR_TO_PACKET,
7841 		PTR_TO_PACKET_META,
7842 		PTR_TO_MAP_KEY,
7843 		PTR_TO_MAP_VALUE,
7844 		PTR_TO_MEM,
7845 		PTR_TO_MEM | MEM_RINGBUF,
7846 		PTR_TO_BUF,
7847 		PTR_TO_BTF_ID | PTR_TRUSTED,
7848 	},
7849 };
7850 
7851 static const struct bpf_reg_types int_ptr_types = {
7852 	.types = {
7853 		PTR_TO_STACK,
7854 		PTR_TO_PACKET,
7855 		PTR_TO_PACKET_META,
7856 		PTR_TO_MAP_KEY,
7857 		PTR_TO_MAP_VALUE,
7858 	},
7859 };
7860 
7861 static const struct bpf_reg_types spin_lock_types = {
7862 	.types = {
7863 		PTR_TO_MAP_VALUE,
7864 		PTR_TO_BTF_ID | MEM_ALLOC,
7865 	}
7866 };
7867 
7868 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
7869 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
7870 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
7871 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
7872 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
7873 static const struct bpf_reg_types btf_ptr_types = {
7874 	.types = {
7875 		PTR_TO_BTF_ID,
7876 		PTR_TO_BTF_ID | PTR_TRUSTED,
7877 		PTR_TO_BTF_ID | MEM_RCU,
7878 	},
7879 };
7880 static const struct bpf_reg_types percpu_btf_ptr_types = {
7881 	.types = {
7882 		PTR_TO_BTF_ID | MEM_PERCPU,
7883 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
7884 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
7885 	}
7886 };
7887 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
7888 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
7889 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
7890 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
7891 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
7892 static const struct bpf_reg_types dynptr_types = {
7893 	.types = {
7894 		PTR_TO_STACK,
7895 		CONST_PTR_TO_DYNPTR,
7896 	}
7897 };
7898 
7899 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
7900 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
7901 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
7902 	[ARG_CONST_SIZE]		= &scalar_types,
7903 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
7904 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
7905 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
7906 	[ARG_PTR_TO_CTX]		= &context_types,
7907 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
7908 #ifdef CONFIG_NET
7909 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
7910 #endif
7911 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
7912 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
7913 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
7914 	[ARG_PTR_TO_MEM]		= &mem_types,
7915 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
7916 	[ARG_PTR_TO_INT]		= &int_ptr_types,
7917 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
7918 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
7919 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
7920 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
7921 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
7922 	[ARG_PTR_TO_TIMER]		= &timer_types,
7923 	[ARG_PTR_TO_KPTR]		= &kptr_types,
7924 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
7925 };
7926 
7927 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
7928 			  enum bpf_arg_type arg_type,
7929 			  const u32 *arg_btf_id,
7930 			  struct bpf_call_arg_meta *meta)
7931 {
7932 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7933 	enum bpf_reg_type expected, type = reg->type;
7934 	const struct bpf_reg_types *compatible;
7935 	int i, j;
7936 
7937 	compatible = compatible_reg_types[base_type(arg_type)];
7938 	if (!compatible) {
7939 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
7940 		return -EFAULT;
7941 	}
7942 
7943 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
7944 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
7945 	 *
7946 	 * Same for MAYBE_NULL:
7947 	 *
7948 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
7949 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
7950 	 *
7951 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
7952 	 *
7953 	 * Therefore we fold these flags depending on the arg_type before comparison.
7954 	 */
7955 	if (arg_type & MEM_RDONLY)
7956 		type &= ~MEM_RDONLY;
7957 	if (arg_type & PTR_MAYBE_NULL)
7958 		type &= ~PTR_MAYBE_NULL;
7959 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
7960 		type &= ~DYNPTR_TYPE_FLAG_MASK;
7961 
7962 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) {
7963 		type &= ~MEM_ALLOC;
7964 		type &= ~MEM_PERCPU;
7965 	}
7966 
7967 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
7968 		expected = compatible->types[i];
7969 		if (expected == NOT_INIT)
7970 			break;
7971 
7972 		if (type == expected)
7973 			goto found;
7974 	}
7975 
7976 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
7977 	for (j = 0; j + 1 < i; j++)
7978 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
7979 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
7980 	return -EACCES;
7981 
7982 found:
7983 	if (base_type(reg->type) != PTR_TO_BTF_ID)
7984 		return 0;
7985 
7986 	if (compatible == &mem_types) {
7987 		if (!(arg_type & MEM_RDONLY)) {
7988 			verbose(env,
7989 				"%s() may write into memory pointed by R%d type=%s\n",
7990 				func_id_name(meta->func_id),
7991 				regno, reg_type_str(env, reg->type));
7992 			return -EACCES;
7993 		}
7994 		return 0;
7995 	}
7996 
7997 	switch ((int)reg->type) {
7998 	case PTR_TO_BTF_ID:
7999 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8000 	case PTR_TO_BTF_ID | MEM_RCU:
8001 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8002 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8003 	{
8004 		/* For bpf_sk_release, it needs to match against first member
8005 		 * 'struct sock_common', hence make an exception for it. This
8006 		 * allows bpf_sk_release to work for multiple socket types.
8007 		 */
8008 		bool strict_type_match = arg_type_is_release(arg_type) &&
8009 					 meta->func_id != BPF_FUNC_sk_release;
8010 
8011 		if (type_may_be_null(reg->type) &&
8012 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8013 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8014 			return -EACCES;
8015 		}
8016 
8017 		if (!arg_btf_id) {
8018 			if (!compatible->btf_id) {
8019 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8020 				return -EFAULT;
8021 			}
8022 			arg_btf_id = compatible->btf_id;
8023 		}
8024 
8025 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8026 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8027 				return -EACCES;
8028 		} else {
8029 			if (arg_btf_id == BPF_PTR_POISON) {
8030 				verbose(env, "verifier internal error:");
8031 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8032 					regno);
8033 				return -EACCES;
8034 			}
8035 
8036 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8037 						  btf_vmlinux, *arg_btf_id,
8038 						  strict_type_match)) {
8039 				verbose(env, "R%d is of type %s but %s is expected\n",
8040 					regno, btf_type_name(reg->btf, reg->btf_id),
8041 					btf_type_name(btf_vmlinux, *arg_btf_id));
8042 				return -EACCES;
8043 			}
8044 		}
8045 		break;
8046 	}
8047 	case PTR_TO_BTF_ID | MEM_ALLOC:
8048 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8049 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8050 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8051 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8052 			return -EFAULT;
8053 		}
8054 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8055 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8056 				return -EACCES;
8057 		}
8058 		break;
8059 	case PTR_TO_BTF_ID | MEM_PERCPU:
8060 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8061 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8062 		/* Handled by helper specific checks */
8063 		break;
8064 	default:
8065 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8066 		return -EFAULT;
8067 	}
8068 	return 0;
8069 }
8070 
8071 static struct btf_field *
8072 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8073 {
8074 	struct btf_field *field;
8075 	struct btf_record *rec;
8076 
8077 	rec = reg_btf_record(reg);
8078 	if (!rec)
8079 		return NULL;
8080 
8081 	field = btf_record_find(rec, off, fields);
8082 	if (!field)
8083 		return NULL;
8084 
8085 	return field;
8086 }
8087 
8088 int check_func_arg_reg_off(struct bpf_verifier_env *env,
8089 			   const struct bpf_reg_state *reg, int regno,
8090 			   enum bpf_arg_type arg_type)
8091 {
8092 	u32 type = reg->type;
8093 
8094 	/* When referenced register is passed to release function, its fixed
8095 	 * offset must be 0.
8096 	 *
8097 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8098 	 * meta->release_regno.
8099 	 */
8100 	if (arg_type_is_release(arg_type)) {
8101 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8102 		 * may not directly point to the object being released, but to
8103 		 * dynptr pointing to such object, which might be at some offset
8104 		 * on the stack. In that case, we simply to fallback to the
8105 		 * default handling.
8106 		 */
8107 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8108 			return 0;
8109 
8110 		/* Doing check_ptr_off_reg check for the offset will catch this
8111 		 * because fixed_off_ok is false, but checking here allows us
8112 		 * to give the user a better error message.
8113 		 */
8114 		if (reg->off) {
8115 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8116 				regno);
8117 			return -EINVAL;
8118 		}
8119 		return __check_ptr_off_reg(env, reg, regno, false);
8120 	}
8121 
8122 	switch (type) {
8123 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8124 	case PTR_TO_STACK:
8125 	case PTR_TO_PACKET:
8126 	case PTR_TO_PACKET_META:
8127 	case PTR_TO_MAP_KEY:
8128 	case PTR_TO_MAP_VALUE:
8129 	case PTR_TO_MEM:
8130 	case PTR_TO_MEM | MEM_RDONLY:
8131 	case PTR_TO_MEM | MEM_RINGBUF:
8132 	case PTR_TO_BUF:
8133 	case PTR_TO_BUF | MEM_RDONLY:
8134 	case SCALAR_VALUE:
8135 		return 0;
8136 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8137 	 * fixed offset.
8138 	 */
8139 	case PTR_TO_BTF_ID:
8140 	case PTR_TO_BTF_ID | MEM_ALLOC:
8141 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8142 	case PTR_TO_BTF_ID | MEM_RCU:
8143 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8144 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8145 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8146 		 * its fixed offset must be 0. In the other cases, fixed offset
8147 		 * can be non-zero. This was already checked above. So pass
8148 		 * fixed_off_ok as true to allow fixed offset for all other
8149 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8150 		 * still need to do checks instead of returning.
8151 		 */
8152 		return __check_ptr_off_reg(env, reg, regno, true);
8153 	default:
8154 		return __check_ptr_off_reg(env, reg, regno, false);
8155 	}
8156 }
8157 
8158 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8159 						const struct bpf_func_proto *fn,
8160 						struct bpf_reg_state *regs)
8161 {
8162 	struct bpf_reg_state *state = NULL;
8163 	int i;
8164 
8165 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8166 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8167 			if (state) {
8168 				verbose(env, "verifier internal error: multiple dynptr args\n");
8169 				return NULL;
8170 			}
8171 			state = &regs[BPF_REG_1 + i];
8172 		}
8173 
8174 	if (!state)
8175 		verbose(env, "verifier internal error: no dynptr arg found\n");
8176 
8177 	return state;
8178 }
8179 
8180 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8181 {
8182 	struct bpf_func_state *state = func(env, reg);
8183 	int spi;
8184 
8185 	if (reg->type == CONST_PTR_TO_DYNPTR)
8186 		return reg->id;
8187 	spi = dynptr_get_spi(env, reg);
8188 	if (spi < 0)
8189 		return spi;
8190 	return state->stack[spi].spilled_ptr.id;
8191 }
8192 
8193 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8194 {
8195 	struct bpf_func_state *state = func(env, reg);
8196 	int spi;
8197 
8198 	if (reg->type == CONST_PTR_TO_DYNPTR)
8199 		return reg->ref_obj_id;
8200 	spi = dynptr_get_spi(env, reg);
8201 	if (spi < 0)
8202 		return spi;
8203 	return state->stack[spi].spilled_ptr.ref_obj_id;
8204 }
8205 
8206 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8207 					    struct bpf_reg_state *reg)
8208 {
8209 	struct bpf_func_state *state = func(env, reg);
8210 	int spi;
8211 
8212 	if (reg->type == CONST_PTR_TO_DYNPTR)
8213 		return reg->dynptr.type;
8214 
8215 	spi = __get_spi(reg->off);
8216 	if (spi < 0) {
8217 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8218 		return BPF_DYNPTR_TYPE_INVALID;
8219 	}
8220 
8221 	return state->stack[spi].spilled_ptr.dynptr.type;
8222 }
8223 
8224 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8225 			  struct bpf_call_arg_meta *meta,
8226 			  const struct bpf_func_proto *fn,
8227 			  int insn_idx)
8228 {
8229 	u32 regno = BPF_REG_1 + arg;
8230 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8231 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8232 	enum bpf_reg_type type = reg->type;
8233 	u32 *arg_btf_id = NULL;
8234 	int err = 0;
8235 
8236 	if (arg_type == ARG_DONTCARE)
8237 		return 0;
8238 
8239 	err = check_reg_arg(env, regno, SRC_OP);
8240 	if (err)
8241 		return err;
8242 
8243 	if (arg_type == ARG_ANYTHING) {
8244 		if (is_pointer_value(env, regno)) {
8245 			verbose(env, "R%d leaks addr into helper function\n",
8246 				regno);
8247 			return -EACCES;
8248 		}
8249 		return 0;
8250 	}
8251 
8252 	if (type_is_pkt_pointer(type) &&
8253 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8254 		verbose(env, "helper access to the packet is not allowed\n");
8255 		return -EACCES;
8256 	}
8257 
8258 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8259 		err = resolve_map_arg_type(env, meta, &arg_type);
8260 		if (err)
8261 			return err;
8262 	}
8263 
8264 	if (register_is_null(reg) && type_may_be_null(arg_type))
8265 		/* A NULL register has a SCALAR_VALUE type, so skip
8266 		 * type checking.
8267 		 */
8268 		goto skip_type_check;
8269 
8270 	/* arg_btf_id and arg_size are in a union. */
8271 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8272 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8273 		arg_btf_id = fn->arg_btf_id[arg];
8274 
8275 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8276 	if (err)
8277 		return err;
8278 
8279 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8280 	if (err)
8281 		return err;
8282 
8283 skip_type_check:
8284 	if (arg_type_is_release(arg_type)) {
8285 		if (arg_type_is_dynptr(arg_type)) {
8286 			struct bpf_func_state *state = func(env, reg);
8287 			int spi;
8288 
8289 			/* Only dynptr created on stack can be released, thus
8290 			 * the get_spi and stack state checks for spilled_ptr
8291 			 * should only be done before process_dynptr_func for
8292 			 * PTR_TO_STACK.
8293 			 */
8294 			if (reg->type == PTR_TO_STACK) {
8295 				spi = dynptr_get_spi(env, reg);
8296 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8297 					verbose(env, "arg %d is an unacquired reference\n", regno);
8298 					return -EINVAL;
8299 				}
8300 			} else {
8301 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8302 				return -EINVAL;
8303 			}
8304 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8305 			verbose(env, "R%d must be referenced when passed to release function\n",
8306 				regno);
8307 			return -EINVAL;
8308 		}
8309 		if (meta->release_regno) {
8310 			verbose(env, "verifier internal error: more than one release argument\n");
8311 			return -EFAULT;
8312 		}
8313 		meta->release_regno = regno;
8314 	}
8315 
8316 	if (reg->ref_obj_id) {
8317 		if (meta->ref_obj_id) {
8318 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8319 				regno, reg->ref_obj_id,
8320 				meta->ref_obj_id);
8321 			return -EFAULT;
8322 		}
8323 		meta->ref_obj_id = reg->ref_obj_id;
8324 	}
8325 
8326 	switch (base_type(arg_type)) {
8327 	case ARG_CONST_MAP_PTR:
8328 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8329 		if (meta->map_ptr) {
8330 			/* Use map_uid (which is unique id of inner map) to reject:
8331 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8332 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8333 			 * if (inner_map1 && inner_map2) {
8334 			 *     timer = bpf_map_lookup_elem(inner_map1);
8335 			 *     if (timer)
8336 			 *         // mismatch would have been allowed
8337 			 *         bpf_timer_init(timer, inner_map2);
8338 			 * }
8339 			 *
8340 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8341 			 */
8342 			if (meta->map_ptr != reg->map_ptr ||
8343 			    meta->map_uid != reg->map_uid) {
8344 				verbose(env,
8345 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8346 					meta->map_uid, reg->map_uid);
8347 				return -EINVAL;
8348 			}
8349 		}
8350 		meta->map_ptr = reg->map_ptr;
8351 		meta->map_uid = reg->map_uid;
8352 		break;
8353 	case ARG_PTR_TO_MAP_KEY:
8354 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8355 		 * check that [key, key + map->key_size) are within
8356 		 * stack limits and initialized
8357 		 */
8358 		if (!meta->map_ptr) {
8359 			/* in function declaration map_ptr must come before
8360 			 * map_key, so that it's verified and known before
8361 			 * we have to check map_key here. Otherwise it means
8362 			 * that kernel subsystem misconfigured verifier
8363 			 */
8364 			verbose(env, "invalid map_ptr to access map->key\n");
8365 			return -EACCES;
8366 		}
8367 		err = check_helper_mem_access(env, regno,
8368 					      meta->map_ptr->key_size, false,
8369 					      NULL);
8370 		break;
8371 	case ARG_PTR_TO_MAP_VALUE:
8372 		if (type_may_be_null(arg_type) && register_is_null(reg))
8373 			return 0;
8374 
8375 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8376 		 * check [value, value + map->value_size) validity
8377 		 */
8378 		if (!meta->map_ptr) {
8379 			/* kernel subsystem misconfigured verifier */
8380 			verbose(env, "invalid map_ptr to access map->value\n");
8381 			return -EACCES;
8382 		}
8383 		meta->raw_mode = arg_type & MEM_UNINIT;
8384 		err = check_helper_mem_access(env, regno,
8385 					      meta->map_ptr->value_size, false,
8386 					      meta);
8387 		break;
8388 	case ARG_PTR_TO_PERCPU_BTF_ID:
8389 		if (!reg->btf_id) {
8390 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8391 			return -EACCES;
8392 		}
8393 		meta->ret_btf = reg->btf;
8394 		meta->ret_btf_id = reg->btf_id;
8395 		break;
8396 	case ARG_PTR_TO_SPIN_LOCK:
8397 		if (in_rbtree_lock_required_cb(env)) {
8398 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8399 			return -EACCES;
8400 		}
8401 		if (meta->func_id == BPF_FUNC_spin_lock) {
8402 			err = process_spin_lock(env, regno, true);
8403 			if (err)
8404 				return err;
8405 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8406 			err = process_spin_lock(env, regno, false);
8407 			if (err)
8408 				return err;
8409 		} else {
8410 			verbose(env, "verifier internal error\n");
8411 			return -EFAULT;
8412 		}
8413 		break;
8414 	case ARG_PTR_TO_TIMER:
8415 		err = process_timer_func(env, regno, meta);
8416 		if (err)
8417 			return err;
8418 		break;
8419 	case ARG_PTR_TO_FUNC:
8420 		meta->subprogno = reg->subprogno;
8421 		break;
8422 	case ARG_PTR_TO_MEM:
8423 		/* The access to this pointer is only checked when we hit the
8424 		 * next is_mem_size argument below.
8425 		 */
8426 		meta->raw_mode = arg_type & MEM_UNINIT;
8427 		if (arg_type & MEM_FIXED_SIZE) {
8428 			err = check_helper_mem_access(env, regno,
8429 						      fn->arg_size[arg], false,
8430 						      meta);
8431 		}
8432 		break;
8433 	case ARG_CONST_SIZE:
8434 		err = check_mem_size_reg(env, reg, regno, false, meta);
8435 		break;
8436 	case ARG_CONST_SIZE_OR_ZERO:
8437 		err = check_mem_size_reg(env, reg, regno, true, meta);
8438 		break;
8439 	case ARG_PTR_TO_DYNPTR:
8440 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8441 		if (err)
8442 			return err;
8443 		break;
8444 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8445 		if (!tnum_is_const(reg->var_off)) {
8446 			verbose(env, "R%d is not a known constant'\n",
8447 				regno);
8448 			return -EACCES;
8449 		}
8450 		meta->mem_size = reg->var_off.value;
8451 		err = mark_chain_precision(env, regno);
8452 		if (err)
8453 			return err;
8454 		break;
8455 	case ARG_PTR_TO_INT:
8456 	case ARG_PTR_TO_LONG:
8457 	{
8458 		int size = int_ptr_type_to_size(arg_type);
8459 
8460 		err = check_helper_mem_access(env, regno, size, false, meta);
8461 		if (err)
8462 			return err;
8463 		err = check_ptr_alignment(env, reg, 0, size, true);
8464 		break;
8465 	}
8466 	case ARG_PTR_TO_CONST_STR:
8467 	{
8468 		struct bpf_map *map = reg->map_ptr;
8469 		int map_off;
8470 		u64 map_addr;
8471 		char *str_ptr;
8472 
8473 		if (!bpf_map_is_rdonly(map)) {
8474 			verbose(env, "R%d does not point to a readonly map'\n", regno);
8475 			return -EACCES;
8476 		}
8477 
8478 		if (!tnum_is_const(reg->var_off)) {
8479 			verbose(env, "R%d is not a constant address'\n", regno);
8480 			return -EACCES;
8481 		}
8482 
8483 		if (!map->ops->map_direct_value_addr) {
8484 			verbose(env, "no direct value access support for this map type\n");
8485 			return -EACCES;
8486 		}
8487 
8488 		err = check_map_access(env, regno, reg->off,
8489 				       map->value_size - reg->off, false,
8490 				       ACCESS_HELPER);
8491 		if (err)
8492 			return err;
8493 
8494 		map_off = reg->off + reg->var_off.value;
8495 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8496 		if (err) {
8497 			verbose(env, "direct value access on string failed\n");
8498 			return err;
8499 		}
8500 
8501 		str_ptr = (char *)(long)(map_addr);
8502 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8503 			verbose(env, "string is not zero-terminated\n");
8504 			return -EINVAL;
8505 		}
8506 		break;
8507 	}
8508 	case ARG_PTR_TO_KPTR:
8509 		err = process_kptr_func(env, regno, meta);
8510 		if (err)
8511 			return err;
8512 		break;
8513 	}
8514 
8515 	return err;
8516 }
8517 
8518 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8519 {
8520 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8521 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8522 
8523 	if (func_id != BPF_FUNC_map_update_elem)
8524 		return false;
8525 
8526 	/* It's not possible to get access to a locked struct sock in these
8527 	 * contexts, so updating is safe.
8528 	 */
8529 	switch (type) {
8530 	case BPF_PROG_TYPE_TRACING:
8531 		if (eatype == BPF_TRACE_ITER)
8532 			return true;
8533 		break;
8534 	case BPF_PROG_TYPE_SOCKET_FILTER:
8535 	case BPF_PROG_TYPE_SCHED_CLS:
8536 	case BPF_PROG_TYPE_SCHED_ACT:
8537 	case BPF_PROG_TYPE_XDP:
8538 	case BPF_PROG_TYPE_SK_REUSEPORT:
8539 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8540 	case BPF_PROG_TYPE_SK_LOOKUP:
8541 		return true;
8542 	default:
8543 		break;
8544 	}
8545 
8546 	verbose(env, "cannot update sockmap in this context\n");
8547 	return false;
8548 }
8549 
8550 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8551 {
8552 	return env->prog->jit_requested &&
8553 	       bpf_jit_supports_subprog_tailcalls();
8554 }
8555 
8556 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8557 					struct bpf_map *map, int func_id)
8558 {
8559 	if (!map)
8560 		return 0;
8561 
8562 	/* We need a two way check, first is from map perspective ... */
8563 	switch (map->map_type) {
8564 	case BPF_MAP_TYPE_PROG_ARRAY:
8565 		if (func_id != BPF_FUNC_tail_call)
8566 			goto error;
8567 		break;
8568 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8569 		if (func_id != BPF_FUNC_perf_event_read &&
8570 		    func_id != BPF_FUNC_perf_event_output &&
8571 		    func_id != BPF_FUNC_skb_output &&
8572 		    func_id != BPF_FUNC_perf_event_read_value &&
8573 		    func_id != BPF_FUNC_xdp_output)
8574 			goto error;
8575 		break;
8576 	case BPF_MAP_TYPE_RINGBUF:
8577 		if (func_id != BPF_FUNC_ringbuf_output &&
8578 		    func_id != BPF_FUNC_ringbuf_reserve &&
8579 		    func_id != BPF_FUNC_ringbuf_query &&
8580 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8581 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8582 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8583 			goto error;
8584 		break;
8585 	case BPF_MAP_TYPE_USER_RINGBUF:
8586 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8587 			goto error;
8588 		break;
8589 	case BPF_MAP_TYPE_STACK_TRACE:
8590 		if (func_id != BPF_FUNC_get_stackid)
8591 			goto error;
8592 		break;
8593 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8594 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8595 		    func_id != BPF_FUNC_current_task_under_cgroup)
8596 			goto error;
8597 		break;
8598 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8599 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8600 		if (func_id != BPF_FUNC_get_local_storage)
8601 			goto error;
8602 		break;
8603 	case BPF_MAP_TYPE_DEVMAP:
8604 	case BPF_MAP_TYPE_DEVMAP_HASH:
8605 		if (func_id != BPF_FUNC_redirect_map &&
8606 		    func_id != BPF_FUNC_map_lookup_elem)
8607 			goto error;
8608 		break;
8609 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8610 	 * appear.
8611 	 */
8612 	case BPF_MAP_TYPE_CPUMAP:
8613 		if (func_id != BPF_FUNC_redirect_map)
8614 			goto error;
8615 		break;
8616 	case BPF_MAP_TYPE_XSKMAP:
8617 		if (func_id != BPF_FUNC_redirect_map &&
8618 		    func_id != BPF_FUNC_map_lookup_elem)
8619 			goto error;
8620 		break;
8621 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8622 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8623 		if (func_id != BPF_FUNC_map_lookup_elem)
8624 			goto error;
8625 		break;
8626 	case BPF_MAP_TYPE_SOCKMAP:
8627 		if (func_id != BPF_FUNC_sk_redirect_map &&
8628 		    func_id != BPF_FUNC_sock_map_update &&
8629 		    func_id != BPF_FUNC_map_delete_elem &&
8630 		    func_id != BPF_FUNC_msg_redirect_map &&
8631 		    func_id != BPF_FUNC_sk_select_reuseport &&
8632 		    func_id != BPF_FUNC_map_lookup_elem &&
8633 		    !may_update_sockmap(env, func_id))
8634 			goto error;
8635 		break;
8636 	case BPF_MAP_TYPE_SOCKHASH:
8637 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8638 		    func_id != BPF_FUNC_sock_hash_update &&
8639 		    func_id != BPF_FUNC_map_delete_elem &&
8640 		    func_id != BPF_FUNC_msg_redirect_hash &&
8641 		    func_id != BPF_FUNC_sk_select_reuseport &&
8642 		    func_id != BPF_FUNC_map_lookup_elem &&
8643 		    !may_update_sockmap(env, func_id))
8644 			goto error;
8645 		break;
8646 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8647 		if (func_id != BPF_FUNC_sk_select_reuseport)
8648 			goto error;
8649 		break;
8650 	case BPF_MAP_TYPE_QUEUE:
8651 	case BPF_MAP_TYPE_STACK:
8652 		if (func_id != BPF_FUNC_map_peek_elem &&
8653 		    func_id != BPF_FUNC_map_pop_elem &&
8654 		    func_id != BPF_FUNC_map_push_elem)
8655 			goto error;
8656 		break;
8657 	case BPF_MAP_TYPE_SK_STORAGE:
8658 		if (func_id != BPF_FUNC_sk_storage_get &&
8659 		    func_id != BPF_FUNC_sk_storage_delete &&
8660 		    func_id != BPF_FUNC_kptr_xchg)
8661 			goto error;
8662 		break;
8663 	case BPF_MAP_TYPE_INODE_STORAGE:
8664 		if (func_id != BPF_FUNC_inode_storage_get &&
8665 		    func_id != BPF_FUNC_inode_storage_delete &&
8666 		    func_id != BPF_FUNC_kptr_xchg)
8667 			goto error;
8668 		break;
8669 	case BPF_MAP_TYPE_TASK_STORAGE:
8670 		if (func_id != BPF_FUNC_task_storage_get &&
8671 		    func_id != BPF_FUNC_task_storage_delete &&
8672 		    func_id != BPF_FUNC_kptr_xchg)
8673 			goto error;
8674 		break;
8675 	case BPF_MAP_TYPE_CGRP_STORAGE:
8676 		if (func_id != BPF_FUNC_cgrp_storage_get &&
8677 		    func_id != BPF_FUNC_cgrp_storage_delete &&
8678 		    func_id != BPF_FUNC_kptr_xchg)
8679 			goto error;
8680 		break;
8681 	case BPF_MAP_TYPE_BLOOM_FILTER:
8682 		if (func_id != BPF_FUNC_map_peek_elem &&
8683 		    func_id != BPF_FUNC_map_push_elem)
8684 			goto error;
8685 		break;
8686 	default:
8687 		break;
8688 	}
8689 
8690 	/* ... and second from the function itself. */
8691 	switch (func_id) {
8692 	case BPF_FUNC_tail_call:
8693 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8694 			goto error;
8695 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8696 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8697 			return -EINVAL;
8698 		}
8699 		break;
8700 	case BPF_FUNC_perf_event_read:
8701 	case BPF_FUNC_perf_event_output:
8702 	case BPF_FUNC_perf_event_read_value:
8703 	case BPF_FUNC_skb_output:
8704 	case BPF_FUNC_xdp_output:
8705 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8706 			goto error;
8707 		break;
8708 	case BPF_FUNC_ringbuf_output:
8709 	case BPF_FUNC_ringbuf_reserve:
8710 	case BPF_FUNC_ringbuf_query:
8711 	case BPF_FUNC_ringbuf_reserve_dynptr:
8712 	case BPF_FUNC_ringbuf_submit_dynptr:
8713 	case BPF_FUNC_ringbuf_discard_dynptr:
8714 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8715 			goto error;
8716 		break;
8717 	case BPF_FUNC_user_ringbuf_drain:
8718 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8719 			goto error;
8720 		break;
8721 	case BPF_FUNC_get_stackid:
8722 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8723 			goto error;
8724 		break;
8725 	case BPF_FUNC_current_task_under_cgroup:
8726 	case BPF_FUNC_skb_under_cgroup:
8727 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8728 			goto error;
8729 		break;
8730 	case BPF_FUNC_redirect_map:
8731 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8732 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8733 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
8734 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
8735 			goto error;
8736 		break;
8737 	case BPF_FUNC_sk_redirect_map:
8738 	case BPF_FUNC_msg_redirect_map:
8739 	case BPF_FUNC_sock_map_update:
8740 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8741 			goto error;
8742 		break;
8743 	case BPF_FUNC_sk_redirect_hash:
8744 	case BPF_FUNC_msg_redirect_hash:
8745 	case BPF_FUNC_sock_hash_update:
8746 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8747 			goto error;
8748 		break;
8749 	case BPF_FUNC_get_local_storage:
8750 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8751 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8752 			goto error;
8753 		break;
8754 	case BPF_FUNC_sk_select_reuseport:
8755 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8756 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8757 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
8758 			goto error;
8759 		break;
8760 	case BPF_FUNC_map_pop_elem:
8761 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8762 		    map->map_type != BPF_MAP_TYPE_STACK)
8763 			goto error;
8764 		break;
8765 	case BPF_FUNC_map_peek_elem:
8766 	case BPF_FUNC_map_push_elem:
8767 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8768 		    map->map_type != BPF_MAP_TYPE_STACK &&
8769 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8770 			goto error;
8771 		break;
8772 	case BPF_FUNC_map_lookup_percpu_elem:
8773 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8774 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8775 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
8776 			goto error;
8777 		break;
8778 	case BPF_FUNC_sk_storage_get:
8779 	case BPF_FUNC_sk_storage_delete:
8780 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
8781 			goto error;
8782 		break;
8783 	case BPF_FUNC_inode_storage_get:
8784 	case BPF_FUNC_inode_storage_delete:
8785 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
8786 			goto error;
8787 		break;
8788 	case BPF_FUNC_task_storage_get:
8789 	case BPF_FUNC_task_storage_delete:
8790 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
8791 			goto error;
8792 		break;
8793 	case BPF_FUNC_cgrp_storage_get:
8794 	case BPF_FUNC_cgrp_storage_delete:
8795 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
8796 			goto error;
8797 		break;
8798 	default:
8799 		break;
8800 	}
8801 
8802 	return 0;
8803 error:
8804 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
8805 		map->map_type, func_id_name(func_id), func_id);
8806 	return -EINVAL;
8807 }
8808 
8809 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
8810 {
8811 	int count = 0;
8812 
8813 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
8814 		count++;
8815 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
8816 		count++;
8817 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
8818 		count++;
8819 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
8820 		count++;
8821 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
8822 		count++;
8823 
8824 	/* We only support one arg being in raw mode at the moment,
8825 	 * which is sufficient for the helper functions we have
8826 	 * right now.
8827 	 */
8828 	return count <= 1;
8829 }
8830 
8831 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
8832 {
8833 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
8834 	bool has_size = fn->arg_size[arg] != 0;
8835 	bool is_next_size = false;
8836 
8837 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
8838 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
8839 
8840 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
8841 		return is_next_size;
8842 
8843 	return has_size == is_next_size || is_next_size == is_fixed;
8844 }
8845 
8846 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
8847 {
8848 	/* bpf_xxx(..., buf, len) call will access 'len'
8849 	 * bytes from memory 'buf'. Both arg types need
8850 	 * to be paired, so make sure there's no buggy
8851 	 * helper function specification.
8852 	 */
8853 	if (arg_type_is_mem_size(fn->arg1_type) ||
8854 	    check_args_pair_invalid(fn, 0) ||
8855 	    check_args_pair_invalid(fn, 1) ||
8856 	    check_args_pair_invalid(fn, 2) ||
8857 	    check_args_pair_invalid(fn, 3) ||
8858 	    check_args_pair_invalid(fn, 4))
8859 		return false;
8860 
8861 	return true;
8862 }
8863 
8864 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
8865 {
8866 	int i;
8867 
8868 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
8869 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
8870 			return !!fn->arg_btf_id[i];
8871 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
8872 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
8873 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
8874 		    /* arg_btf_id and arg_size are in a union. */
8875 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
8876 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
8877 			return false;
8878 	}
8879 
8880 	return true;
8881 }
8882 
8883 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
8884 {
8885 	return check_raw_mode_ok(fn) &&
8886 	       check_arg_pair_ok(fn) &&
8887 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
8888 }
8889 
8890 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
8891  * are now invalid, so turn them into unknown SCALAR_VALUE.
8892  *
8893  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
8894  * since these slices point to packet data.
8895  */
8896 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
8897 {
8898 	struct bpf_func_state *state;
8899 	struct bpf_reg_state *reg;
8900 
8901 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8902 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
8903 			mark_reg_invalid(env, reg);
8904 	}));
8905 }
8906 
8907 enum {
8908 	AT_PKT_END = -1,
8909 	BEYOND_PKT_END = -2,
8910 };
8911 
8912 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
8913 {
8914 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8915 	struct bpf_reg_state *reg = &state->regs[regn];
8916 
8917 	if (reg->type != PTR_TO_PACKET)
8918 		/* PTR_TO_PACKET_META is not supported yet */
8919 		return;
8920 
8921 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
8922 	 * How far beyond pkt_end it goes is unknown.
8923 	 * if (!range_open) it's the case of pkt >= pkt_end
8924 	 * if (range_open) it's the case of pkt > pkt_end
8925 	 * hence this pointer is at least 1 byte bigger than pkt_end
8926 	 */
8927 	if (range_open)
8928 		reg->range = BEYOND_PKT_END;
8929 	else
8930 		reg->range = AT_PKT_END;
8931 }
8932 
8933 /* The pointer with the specified id has released its reference to kernel
8934  * resources. Identify all copies of the same pointer and clear the reference.
8935  */
8936 static int release_reference(struct bpf_verifier_env *env,
8937 			     int ref_obj_id)
8938 {
8939 	struct bpf_func_state *state;
8940 	struct bpf_reg_state *reg;
8941 	int err;
8942 
8943 	err = release_reference_state(cur_func(env), ref_obj_id);
8944 	if (err)
8945 		return err;
8946 
8947 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8948 		if (reg->ref_obj_id == ref_obj_id)
8949 			mark_reg_invalid(env, reg);
8950 	}));
8951 
8952 	return 0;
8953 }
8954 
8955 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
8956 {
8957 	struct bpf_func_state *unused;
8958 	struct bpf_reg_state *reg;
8959 
8960 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
8961 		if (type_is_non_owning_ref(reg->type))
8962 			mark_reg_invalid(env, reg);
8963 	}));
8964 }
8965 
8966 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
8967 				    struct bpf_reg_state *regs)
8968 {
8969 	int i;
8970 
8971 	/* after the call registers r0 - r5 were scratched */
8972 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8973 		mark_reg_not_init(env, regs, caller_saved[i]);
8974 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8975 	}
8976 }
8977 
8978 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
8979 				   struct bpf_func_state *caller,
8980 				   struct bpf_func_state *callee,
8981 				   int insn_idx);
8982 
8983 static int set_callee_state(struct bpf_verifier_env *env,
8984 			    struct bpf_func_state *caller,
8985 			    struct bpf_func_state *callee, int insn_idx);
8986 
8987 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8988 			     int *insn_idx, int subprog,
8989 			     set_callee_state_fn set_callee_state_cb)
8990 {
8991 	struct bpf_verifier_state *state = env->cur_state;
8992 	struct bpf_func_state *caller, *callee;
8993 	int err;
8994 
8995 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
8996 		verbose(env, "the call stack of %d frames is too deep\n",
8997 			state->curframe + 2);
8998 		return -E2BIG;
8999 	}
9000 
9001 	caller = state->frame[state->curframe];
9002 	if (state->frame[state->curframe + 1]) {
9003 		verbose(env, "verifier bug. Frame %d already allocated\n",
9004 			state->curframe + 1);
9005 		return -EFAULT;
9006 	}
9007 
9008 	err = btf_check_subprog_call(env, subprog, caller->regs);
9009 	if (err == -EFAULT)
9010 		return err;
9011 	if (subprog_is_global(env, subprog)) {
9012 		if (err) {
9013 			verbose(env, "Caller passes invalid args into func#%d\n",
9014 				subprog);
9015 			return err;
9016 		} else {
9017 			if (env->log.level & BPF_LOG_LEVEL)
9018 				verbose(env,
9019 					"Func#%d is global and valid. Skipping.\n",
9020 					subprog);
9021 			clear_caller_saved_regs(env, caller->regs);
9022 
9023 			/* All global functions return a 64-bit SCALAR_VALUE */
9024 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
9025 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9026 
9027 			/* continue with next insn after call */
9028 			return 0;
9029 		}
9030 	}
9031 
9032 	/* set_callee_state is used for direct subprog calls, but we are
9033 	 * interested in validating only BPF helpers that can call subprogs as
9034 	 * callbacks
9035 	 */
9036 	if (set_callee_state_cb != set_callee_state) {
9037 		env->subprog_info[subprog].is_cb = true;
9038 		if (bpf_pseudo_kfunc_call(insn) &&
9039 		    !is_callback_calling_kfunc(insn->imm)) {
9040 			verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9041 				func_id_name(insn->imm), insn->imm);
9042 			return -EFAULT;
9043 		} else if (!bpf_pseudo_kfunc_call(insn) &&
9044 			   !is_callback_calling_function(insn->imm)) { /* helper */
9045 			verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9046 				func_id_name(insn->imm), insn->imm);
9047 			return -EFAULT;
9048 		}
9049 	}
9050 
9051 	if (insn->code == (BPF_JMP | BPF_CALL) &&
9052 	    insn->src_reg == 0 &&
9053 	    insn->imm == BPF_FUNC_timer_set_callback) {
9054 		struct bpf_verifier_state *async_cb;
9055 
9056 		/* there is no real recursion here. timer callbacks are async */
9057 		env->subprog_info[subprog].is_async_cb = true;
9058 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9059 					 *insn_idx, subprog);
9060 		if (!async_cb)
9061 			return -EFAULT;
9062 		callee = async_cb->frame[0];
9063 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9064 
9065 		/* Convert bpf_timer_set_callback() args into timer callback args */
9066 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
9067 		if (err)
9068 			return err;
9069 
9070 		clear_caller_saved_regs(env, caller->regs);
9071 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
9072 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9073 		/* continue with next insn after call */
9074 		return 0;
9075 	}
9076 
9077 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9078 	if (!callee)
9079 		return -ENOMEM;
9080 	state->frame[state->curframe + 1] = callee;
9081 
9082 	/* callee cannot access r0, r6 - r9 for reading and has to write
9083 	 * into its own stack before reading from it.
9084 	 * callee can read/write into caller's stack
9085 	 */
9086 	init_func_state(env, callee,
9087 			/* remember the callsite, it will be used by bpf_exit */
9088 			*insn_idx /* callsite */,
9089 			state->curframe + 1 /* frameno within this callchain */,
9090 			subprog /* subprog number within this prog */);
9091 
9092 	/* Transfer references to the callee */
9093 	err = copy_reference_state(callee, caller);
9094 	if (err)
9095 		goto err_out;
9096 
9097 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
9098 	if (err)
9099 		goto err_out;
9100 
9101 	clear_caller_saved_regs(env, caller->regs);
9102 
9103 	/* only increment it after check_reg_arg() finished */
9104 	state->curframe++;
9105 
9106 	/* and go analyze first insn of the callee */
9107 	*insn_idx = env->subprog_info[subprog].start - 1;
9108 
9109 	if (env->log.level & BPF_LOG_LEVEL) {
9110 		verbose(env, "caller:\n");
9111 		print_verifier_state(env, caller, true);
9112 		verbose(env, "callee:\n");
9113 		print_verifier_state(env, callee, true);
9114 	}
9115 	return 0;
9116 
9117 err_out:
9118 	free_func_state(callee);
9119 	state->frame[state->curframe + 1] = NULL;
9120 	return err;
9121 }
9122 
9123 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9124 				   struct bpf_func_state *caller,
9125 				   struct bpf_func_state *callee)
9126 {
9127 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9128 	 *      void *callback_ctx, u64 flags);
9129 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9130 	 *      void *callback_ctx);
9131 	 */
9132 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9133 
9134 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9135 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9136 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9137 
9138 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9139 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9140 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9141 
9142 	/* pointer to stack or null */
9143 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9144 
9145 	/* unused */
9146 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9147 	return 0;
9148 }
9149 
9150 static int set_callee_state(struct bpf_verifier_env *env,
9151 			    struct bpf_func_state *caller,
9152 			    struct bpf_func_state *callee, int insn_idx)
9153 {
9154 	int i;
9155 
9156 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9157 	 * pointers, which connects us up to the liveness chain
9158 	 */
9159 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9160 		callee->regs[i] = caller->regs[i];
9161 	return 0;
9162 }
9163 
9164 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9165 			   int *insn_idx)
9166 {
9167 	int subprog, target_insn;
9168 
9169 	target_insn = *insn_idx + insn->imm + 1;
9170 	subprog = find_subprog(env, target_insn);
9171 	if (subprog < 0) {
9172 		verbose(env, "verifier bug. No program starts at insn %d\n",
9173 			target_insn);
9174 		return -EFAULT;
9175 	}
9176 
9177 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
9178 }
9179 
9180 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9181 				       struct bpf_func_state *caller,
9182 				       struct bpf_func_state *callee,
9183 				       int insn_idx)
9184 {
9185 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9186 	struct bpf_map *map;
9187 	int err;
9188 
9189 	if (bpf_map_ptr_poisoned(insn_aux)) {
9190 		verbose(env, "tail_call abusing map_ptr\n");
9191 		return -EINVAL;
9192 	}
9193 
9194 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9195 	if (!map->ops->map_set_for_each_callback_args ||
9196 	    !map->ops->map_for_each_callback) {
9197 		verbose(env, "callback function not allowed for map\n");
9198 		return -ENOTSUPP;
9199 	}
9200 
9201 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9202 	if (err)
9203 		return err;
9204 
9205 	callee->in_callback_fn = true;
9206 	callee->callback_ret_range = tnum_range(0, 1);
9207 	return 0;
9208 }
9209 
9210 static int set_loop_callback_state(struct bpf_verifier_env *env,
9211 				   struct bpf_func_state *caller,
9212 				   struct bpf_func_state *callee,
9213 				   int insn_idx)
9214 {
9215 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9216 	 *	    u64 flags);
9217 	 * callback_fn(u32 index, void *callback_ctx);
9218 	 */
9219 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9220 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9221 
9222 	/* unused */
9223 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9224 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9225 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9226 
9227 	callee->in_callback_fn = true;
9228 	callee->callback_ret_range = tnum_range(0, 1);
9229 	return 0;
9230 }
9231 
9232 static int set_timer_callback_state(struct bpf_verifier_env *env,
9233 				    struct bpf_func_state *caller,
9234 				    struct bpf_func_state *callee,
9235 				    int insn_idx)
9236 {
9237 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9238 
9239 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9240 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9241 	 */
9242 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9243 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9244 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9245 
9246 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9247 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9248 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9249 
9250 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9251 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9252 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9253 
9254 	/* unused */
9255 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9256 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9257 	callee->in_async_callback_fn = true;
9258 	callee->callback_ret_range = tnum_range(0, 1);
9259 	return 0;
9260 }
9261 
9262 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9263 				       struct bpf_func_state *caller,
9264 				       struct bpf_func_state *callee,
9265 				       int insn_idx)
9266 {
9267 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9268 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9269 	 * (callback_fn)(struct task_struct *task,
9270 	 *               struct vm_area_struct *vma, void *callback_ctx);
9271 	 */
9272 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9273 
9274 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9275 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9276 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9277 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9278 
9279 	/* pointer to stack or null */
9280 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9281 
9282 	/* unused */
9283 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9284 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9285 	callee->in_callback_fn = true;
9286 	callee->callback_ret_range = tnum_range(0, 1);
9287 	return 0;
9288 }
9289 
9290 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9291 					   struct bpf_func_state *caller,
9292 					   struct bpf_func_state *callee,
9293 					   int insn_idx)
9294 {
9295 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9296 	 *			  callback_ctx, u64 flags);
9297 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9298 	 */
9299 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9300 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9301 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9302 
9303 	/* unused */
9304 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9305 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9306 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9307 
9308 	callee->in_callback_fn = true;
9309 	callee->callback_ret_range = tnum_range(0, 1);
9310 	return 0;
9311 }
9312 
9313 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9314 					 struct bpf_func_state *caller,
9315 					 struct bpf_func_state *callee,
9316 					 int insn_idx)
9317 {
9318 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9319 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9320 	 *
9321 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9322 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9323 	 * by this point, so look at 'root'
9324 	 */
9325 	struct btf_field *field;
9326 
9327 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9328 				      BPF_RB_ROOT);
9329 	if (!field || !field->graph_root.value_btf_id)
9330 		return -EFAULT;
9331 
9332 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9333 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9334 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9335 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9336 
9337 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9338 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9339 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9340 	callee->in_callback_fn = true;
9341 	callee->callback_ret_range = tnum_range(0, 1);
9342 	return 0;
9343 }
9344 
9345 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9346 
9347 /* Are we currently verifying the callback for a rbtree helper that must
9348  * be called with lock held? If so, no need to complain about unreleased
9349  * lock
9350  */
9351 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9352 {
9353 	struct bpf_verifier_state *state = env->cur_state;
9354 	struct bpf_insn *insn = env->prog->insnsi;
9355 	struct bpf_func_state *callee;
9356 	int kfunc_btf_id;
9357 
9358 	if (!state->curframe)
9359 		return false;
9360 
9361 	callee = state->frame[state->curframe];
9362 
9363 	if (!callee->in_callback_fn)
9364 		return false;
9365 
9366 	kfunc_btf_id = insn[callee->callsite].imm;
9367 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9368 }
9369 
9370 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9371 {
9372 	struct bpf_verifier_state *state = env->cur_state;
9373 	struct bpf_func_state *caller, *callee;
9374 	struct bpf_reg_state *r0;
9375 	int err;
9376 
9377 	callee = state->frame[state->curframe];
9378 	r0 = &callee->regs[BPF_REG_0];
9379 	if (r0->type == PTR_TO_STACK) {
9380 		/* technically it's ok to return caller's stack pointer
9381 		 * (or caller's caller's pointer) back to the caller,
9382 		 * since these pointers are valid. Only current stack
9383 		 * pointer will be invalid as soon as function exits,
9384 		 * but let's be conservative
9385 		 */
9386 		verbose(env, "cannot return stack pointer to the caller\n");
9387 		return -EINVAL;
9388 	}
9389 
9390 	caller = state->frame[state->curframe - 1];
9391 	if (callee->in_callback_fn) {
9392 		/* enforce R0 return value range [0, 1]. */
9393 		struct tnum range = callee->callback_ret_range;
9394 
9395 		if (r0->type != SCALAR_VALUE) {
9396 			verbose(env, "R0 not a scalar value\n");
9397 			return -EACCES;
9398 		}
9399 		if (!tnum_in(range, r0->var_off)) {
9400 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9401 			return -EINVAL;
9402 		}
9403 	} else {
9404 		/* return to the caller whatever r0 had in the callee */
9405 		caller->regs[BPF_REG_0] = *r0;
9406 	}
9407 
9408 	/* callback_fn frame should have released its own additions to parent's
9409 	 * reference state at this point, or check_reference_leak would
9410 	 * complain, hence it must be the same as the caller. There is no need
9411 	 * to copy it back.
9412 	 */
9413 	if (!callee->in_callback_fn) {
9414 		/* Transfer references to the caller */
9415 		err = copy_reference_state(caller, callee);
9416 		if (err)
9417 			return err;
9418 	}
9419 
9420 	*insn_idx = callee->callsite + 1;
9421 	if (env->log.level & BPF_LOG_LEVEL) {
9422 		verbose(env, "returning from callee:\n");
9423 		print_verifier_state(env, callee, true);
9424 		verbose(env, "to caller at %d:\n", *insn_idx);
9425 		print_verifier_state(env, caller, true);
9426 	}
9427 	/* clear everything in the callee. In case of exceptional exits using
9428 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
9429 	free_func_state(callee);
9430 	state->frame[state->curframe--] = NULL;
9431 	return 0;
9432 }
9433 
9434 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9435 				   int func_id,
9436 				   struct bpf_call_arg_meta *meta)
9437 {
9438 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9439 
9440 	if (ret_type != RET_INTEGER)
9441 		return;
9442 
9443 	switch (func_id) {
9444 	case BPF_FUNC_get_stack:
9445 	case BPF_FUNC_get_task_stack:
9446 	case BPF_FUNC_probe_read_str:
9447 	case BPF_FUNC_probe_read_kernel_str:
9448 	case BPF_FUNC_probe_read_user_str:
9449 		ret_reg->smax_value = meta->msize_max_value;
9450 		ret_reg->s32_max_value = meta->msize_max_value;
9451 		ret_reg->smin_value = -MAX_ERRNO;
9452 		ret_reg->s32_min_value = -MAX_ERRNO;
9453 		reg_bounds_sync(ret_reg);
9454 		break;
9455 	case BPF_FUNC_get_smp_processor_id:
9456 		ret_reg->umax_value = nr_cpu_ids - 1;
9457 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9458 		ret_reg->smax_value = nr_cpu_ids - 1;
9459 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9460 		ret_reg->umin_value = 0;
9461 		ret_reg->u32_min_value = 0;
9462 		ret_reg->smin_value = 0;
9463 		ret_reg->s32_min_value = 0;
9464 		reg_bounds_sync(ret_reg);
9465 		break;
9466 	}
9467 }
9468 
9469 static int
9470 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9471 		int func_id, int insn_idx)
9472 {
9473 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9474 	struct bpf_map *map = meta->map_ptr;
9475 
9476 	if (func_id != BPF_FUNC_tail_call &&
9477 	    func_id != BPF_FUNC_map_lookup_elem &&
9478 	    func_id != BPF_FUNC_map_update_elem &&
9479 	    func_id != BPF_FUNC_map_delete_elem &&
9480 	    func_id != BPF_FUNC_map_push_elem &&
9481 	    func_id != BPF_FUNC_map_pop_elem &&
9482 	    func_id != BPF_FUNC_map_peek_elem &&
9483 	    func_id != BPF_FUNC_for_each_map_elem &&
9484 	    func_id != BPF_FUNC_redirect_map &&
9485 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9486 		return 0;
9487 
9488 	if (map == NULL) {
9489 		verbose(env, "kernel subsystem misconfigured verifier\n");
9490 		return -EINVAL;
9491 	}
9492 
9493 	/* In case of read-only, some additional restrictions
9494 	 * need to be applied in order to prevent altering the
9495 	 * state of the map from program side.
9496 	 */
9497 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9498 	    (func_id == BPF_FUNC_map_delete_elem ||
9499 	     func_id == BPF_FUNC_map_update_elem ||
9500 	     func_id == BPF_FUNC_map_push_elem ||
9501 	     func_id == BPF_FUNC_map_pop_elem)) {
9502 		verbose(env, "write into map forbidden\n");
9503 		return -EACCES;
9504 	}
9505 
9506 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9507 		bpf_map_ptr_store(aux, meta->map_ptr,
9508 				  !meta->map_ptr->bypass_spec_v1);
9509 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9510 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9511 				  !meta->map_ptr->bypass_spec_v1);
9512 	return 0;
9513 }
9514 
9515 static int
9516 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9517 		int func_id, int insn_idx)
9518 {
9519 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9520 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9521 	struct bpf_map *map = meta->map_ptr;
9522 	u64 val, max;
9523 	int err;
9524 
9525 	if (func_id != BPF_FUNC_tail_call)
9526 		return 0;
9527 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9528 		verbose(env, "kernel subsystem misconfigured verifier\n");
9529 		return -EINVAL;
9530 	}
9531 
9532 	reg = &regs[BPF_REG_3];
9533 	val = reg->var_off.value;
9534 	max = map->max_entries;
9535 
9536 	if (!(register_is_const(reg) && val < max)) {
9537 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9538 		return 0;
9539 	}
9540 
9541 	err = mark_chain_precision(env, BPF_REG_3);
9542 	if (err)
9543 		return err;
9544 	if (bpf_map_key_unseen(aux))
9545 		bpf_map_key_store(aux, val);
9546 	else if (!bpf_map_key_poisoned(aux) &&
9547 		  bpf_map_key_immediate(aux) != val)
9548 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9549 	return 0;
9550 }
9551 
9552 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
9553 {
9554 	struct bpf_func_state *state = cur_func(env);
9555 	bool refs_lingering = false;
9556 	int i;
9557 
9558 	if (!exception_exit && state->frameno && !state->in_callback_fn)
9559 		return 0;
9560 
9561 	for (i = 0; i < state->acquired_refs; i++) {
9562 		if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9563 			continue;
9564 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9565 			state->refs[i].id, state->refs[i].insn_idx);
9566 		refs_lingering = true;
9567 	}
9568 	return refs_lingering ? -EINVAL : 0;
9569 }
9570 
9571 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9572 				   struct bpf_reg_state *regs)
9573 {
9574 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9575 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9576 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
9577 	struct bpf_bprintf_data data = {};
9578 	int err, fmt_map_off, num_args;
9579 	u64 fmt_addr;
9580 	char *fmt;
9581 
9582 	/* data must be an array of u64 */
9583 	if (data_len_reg->var_off.value % 8)
9584 		return -EINVAL;
9585 	num_args = data_len_reg->var_off.value / 8;
9586 
9587 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9588 	 * and map_direct_value_addr is set.
9589 	 */
9590 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9591 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9592 						  fmt_map_off);
9593 	if (err) {
9594 		verbose(env, "verifier bug\n");
9595 		return -EFAULT;
9596 	}
9597 	fmt = (char *)(long)fmt_addr + fmt_map_off;
9598 
9599 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9600 	 * can focus on validating the format specifiers.
9601 	 */
9602 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9603 	if (err < 0)
9604 		verbose(env, "Invalid format string\n");
9605 
9606 	return err;
9607 }
9608 
9609 static int check_get_func_ip(struct bpf_verifier_env *env)
9610 {
9611 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9612 	int func_id = BPF_FUNC_get_func_ip;
9613 
9614 	if (type == BPF_PROG_TYPE_TRACING) {
9615 		if (!bpf_prog_has_trampoline(env->prog)) {
9616 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9617 				func_id_name(func_id), func_id);
9618 			return -ENOTSUPP;
9619 		}
9620 		return 0;
9621 	} else if (type == BPF_PROG_TYPE_KPROBE) {
9622 		return 0;
9623 	}
9624 
9625 	verbose(env, "func %s#%d not supported for program type %d\n",
9626 		func_id_name(func_id), func_id, type);
9627 	return -ENOTSUPP;
9628 }
9629 
9630 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9631 {
9632 	return &env->insn_aux_data[env->insn_idx];
9633 }
9634 
9635 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9636 {
9637 	struct bpf_reg_state *regs = cur_regs(env);
9638 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
9639 	bool reg_is_null = register_is_null(reg);
9640 
9641 	if (reg_is_null)
9642 		mark_chain_precision(env, BPF_REG_4);
9643 
9644 	return reg_is_null;
9645 }
9646 
9647 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9648 {
9649 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9650 
9651 	if (!state->initialized) {
9652 		state->initialized = 1;
9653 		state->fit_for_inline = loop_flag_is_zero(env);
9654 		state->callback_subprogno = subprogno;
9655 		return;
9656 	}
9657 
9658 	if (!state->fit_for_inline)
9659 		return;
9660 
9661 	state->fit_for_inline = (loop_flag_is_zero(env) &&
9662 				 state->callback_subprogno == subprogno);
9663 }
9664 
9665 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9666 			     int *insn_idx_p)
9667 {
9668 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9669 	bool returns_cpu_specific_alloc_ptr = false;
9670 	const struct bpf_func_proto *fn = NULL;
9671 	enum bpf_return_type ret_type;
9672 	enum bpf_type_flag ret_flag;
9673 	struct bpf_reg_state *regs;
9674 	struct bpf_call_arg_meta meta;
9675 	int insn_idx = *insn_idx_p;
9676 	bool changes_data;
9677 	int i, err, func_id;
9678 
9679 	/* find function prototype */
9680 	func_id = insn->imm;
9681 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9682 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9683 			func_id);
9684 		return -EINVAL;
9685 	}
9686 
9687 	if (env->ops->get_func_proto)
9688 		fn = env->ops->get_func_proto(func_id, env->prog);
9689 	if (!fn) {
9690 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9691 			func_id);
9692 		return -EINVAL;
9693 	}
9694 
9695 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
9696 	if (!env->prog->gpl_compatible && fn->gpl_only) {
9697 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
9698 		return -EINVAL;
9699 	}
9700 
9701 	if (fn->allowed && !fn->allowed(env->prog)) {
9702 		verbose(env, "helper call is not allowed in probe\n");
9703 		return -EINVAL;
9704 	}
9705 
9706 	if (!env->prog->aux->sleepable && fn->might_sleep) {
9707 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
9708 		return -EINVAL;
9709 	}
9710 
9711 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
9712 	changes_data = bpf_helper_changes_pkt_data(fn->func);
9713 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
9714 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
9715 			func_id_name(func_id), func_id);
9716 		return -EINVAL;
9717 	}
9718 
9719 	memset(&meta, 0, sizeof(meta));
9720 	meta.pkt_access = fn->pkt_access;
9721 
9722 	err = check_func_proto(fn, func_id);
9723 	if (err) {
9724 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
9725 			func_id_name(func_id), func_id);
9726 		return err;
9727 	}
9728 
9729 	if (env->cur_state->active_rcu_lock) {
9730 		if (fn->might_sleep) {
9731 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
9732 				func_id_name(func_id), func_id);
9733 			return -EINVAL;
9734 		}
9735 
9736 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
9737 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
9738 	}
9739 
9740 	meta.func_id = func_id;
9741 	/* check args */
9742 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
9743 		err = check_func_arg(env, i, &meta, fn, insn_idx);
9744 		if (err)
9745 			return err;
9746 	}
9747 
9748 	err = record_func_map(env, &meta, func_id, insn_idx);
9749 	if (err)
9750 		return err;
9751 
9752 	err = record_func_key(env, &meta, func_id, insn_idx);
9753 	if (err)
9754 		return err;
9755 
9756 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
9757 	 * is inferred from register state.
9758 	 */
9759 	for (i = 0; i < meta.access_size; i++) {
9760 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
9761 				       BPF_WRITE, -1, false, false);
9762 		if (err)
9763 			return err;
9764 	}
9765 
9766 	regs = cur_regs(env);
9767 
9768 	if (meta.release_regno) {
9769 		err = -EINVAL;
9770 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
9771 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
9772 		 * is safe to do directly.
9773 		 */
9774 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
9775 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
9776 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
9777 				return -EFAULT;
9778 			}
9779 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
9780 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
9781 			u32 ref_obj_id = meta.ref_obj_id;
9782 			bool in_rcu = in_rcu_cs(env);
9783 			struct bpf_func_state *state;
9784 			struct bpf_reg_state *reg;
9785 
9786 			err = release_reference_state(cur_func(env), ref_obj_id);
9787 			if (!err) {
9788 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9789 					if (reg->ref_obj_id == ref_obj_id) {
9790 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
9791 							reg->ref_obj_id = 0;
9792 							reg->type &= ~MEM_ALLOC;
9793 							reg->type |= MEM_RCU;
9794 						} else {
9795 							mark_reg_invalid(env, reg);
9796 						}
9797 					}
9798 				}));
9799 			}
9800 		} else if (meta.ref_obj_id) {
9801 			err = release_reference(env, meta.ref_obj_id);
9802 		} else if (register_is_null(&regs[meta.release_regno])) {
9803 			/* meta.ref_obj_id can only be 0 if register that is meant to be
9804 			 * released is NULL, which must be > R0.
9805 			 */
9806 			err = 0;
9807 		}
9808 		if (err) {
9809 			verbose(env, "func %s#%d reference has not been acquired before\n",
9810 				func_id_name(func_id), func_id);
9811 			return err;
9812 		}
9813 	}
9814 
9815 	switch (func_id) {
9816 	case BPF_FUNC_tail_call:
9817 		err = check_reference_leak(env, false);
9818 		if (err) {
9819 			verbose(env, "tail_call would lead to reference leak\n");
9820 			return err;
9821 		}
9822 		break;
9823 	case BPF_FUNC_get_local_storage:
9824 		/* check that flags argument in get_local_storage(map, flags) is 0,
9825 		 * this is required because get_local_storage() can't return an error.
9826 		 */
9827 		if (!register_is_null(&regs[BPF_REG_2])) {
9828 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
9829 			return -EINVAL;
9830 		}
9831 		break;
9832 	case BPF_FUNC_for_each_map_elem:
9833 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9834 					set_map_elem_callback_state);
9835 		break;
9836 	case BPF_FUNC_timer_set_callback:
9837 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9838 					set_timer_callback_state);
9839 		break;
9840 	case BPF_FUNC_find_vma:
9841 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9842 					set_find_vma_callback_state);
9843 		break;
9844 	case BPF_FUNC_snprintf:
9845 		err = check_bpf_snprintf_call(env, regs);
9846 		break;
9847 	case BPF_FUNC_loop:
9848 		update_loop_inline_state(env, meta.subprogno);
9849 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9850 					set_loop_callback_state);
9851 		break;
9852 	case BPF_FUNC_dynptr_from_mem:
9853 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
9854 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
9855 				reg_type_str(env, regs[BPF_REG_1].type));
9856 			return -EACCES;
9857 		}
9858 		break;
9859 	case BPF_FUNC_set_retval:
9860 		if (prog_type == BPF_PROG_TYPE_LSM &&
9861 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
9862 			if (!env->prog->aux->attach_func_proto->type) {
9863 				/* Make sure programs that attach to void
9864 				 * hooks don't try to modify return value.
9865 				 */
9866 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
9867 				return -EINVAL;
9868 			}
9869 		}
9870 		break;
9871 	case BPF_FUNC_dynptr_data:
9872 	{
9873 		struct bpf_reg_state *reg;
9874 		int id, ref_obj_id;
9875 
9876 		reg = get_dynptr_arg_reg(env, fn, regs);
9877 		if (!reg)
9878 			return -EFAULT;
9879 
9880 
9881 		if (meta.dynptr_id) {
9882 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
9883 			return -EFAULT;
9884 		}
9885 		if (meta.ref_obj_id) {
9886 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
9887 			return -EFAULT;
9888 		}
9889 
9890 		id = dynptr_id(env, reg);
9891 		if (id < 0) {
9892 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
9893 			return id;
9894 		}
9895 
9896 		ref_obj_id = dynptr_ref_obj_id(env, reg);
9897 		if (ref_obj_id < 0) {
9898 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
9899 			return ref_obj_id;
9900 		}
9901 
9902 		meta.dynptr_id = id;
9903 		meta.ref_obj_id = ref_obj_id;
9904 
9905 		break;
9906 	}
9907 	case BPF_FUNC_dynptr_write:
9908 	{
9909 		enum bpf_dynptr_type dynptr_type;
9910 		struct bpf_reg_state *reg;
9911 
9912 		reg = get_dynptr_arg_reg(env, fn, regs);
9913 		if (!reg)
9914 			return -EFAULT;
9915 
9916 		dynptr_type = dynptr_get_type(env, reg);
9917 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
9918 			return -EFAULT;
9919 
9920 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
9921 			/* this will trigger clear_all_pkt_pointers(), which will
9922 			 * invalidate all dynptr slices associated with the skb
9923 			 */
9924 			changes_data = true;
9925 
9926 		break;
9927 	}
9928 	case BPF_FUNC_per_cpu_ptr:
9929 	case BPF_FUNC_this_cpu_ptr:
9930 	{
9931 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
9932 		const struct btf_type *type;
9933 
9934 		if (reg->type & MEM_RCU) {
9935 			type = btf_type_by_id(reg->btf, reg->btf_id);
9936 			if (!type || !btf_type_is_struct(type)) {
9937 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
9938 				return -EFAULT;
9939 			}
9940 			returns_cpu_specific_alloc_ptr = true;
9941 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
9942 		}
9943 		break;
9944 	}
9945 	case BPF_FUNC_user_ringbuf_drain:
9946 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9947 					set_user_ringbuf_callback_state);
9948 		break;
9949 	}
9950 
9951 	if (err)
9952 		return err;
9953 
9954 	/* reset caller saved regs */
9955 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9956 		mark_reg_not_init(env, regs, caller_saved[i]);
9957 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9958 	}
9959 
9960 	/* helper call returns 64-bit value. */
9961 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9962 
9963 	/* update return register (already marked as written above) */
9964 	ret_type = fn->ret_type;
9965 	ret_flag = type_flag(ret_type);
9966 
9967 	switch (base_type(ret_type)) {
9968 	case RET_INTEGER:
9969 		/* sets type to SCALAR_VALUE */
9970 		mark_reg_unknown(env, regs, BPF_REG_0);
9971 		break;
9972 	case RET_VOID:
9973 		regs[BPF_REG_0].type = NOT_INIT;
9974 		break;
9975 	case RET_PTR_TO_MAP_VALUE:
9976 		/* There is no offset yet applied, variable or fixed */
9977 		mark_reg_known_zero(env, regs, BPF_REG_0);
9978 		/* remember map_ptr, so that check_map_access()
9979 		 * can check 'value_size' boundary of memory access
9980 		 * to map element returned from bpf_map_lookup_elem()
9981 		 */
9982 		if (meta.map_ptr == NULL) {
9983 			verbose(env,
9984 				"kernel subsystem misconfigured verifier\n");
9985 			return -EINVAL;
9986 		}
9987 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
9988 		regs[BPF_REG_0].map_uid = meta.map_uid;
9989 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
9990 		if (!type_may_be_null(ret_type) &&
9991 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
9992 			regs[BPF_REG_0].id = ++env->id_gen;
9993 		}
9994 		break;
9995 	case RET_PTR_TO_SOCKET:
9996 		mark_reg_known_zero(env, regs, BPF_REG_0);
9997 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
9998 		break;
9999 	case RET_PTR_TO_SOCK_COMMON:
10000 		mark_reg_known_zero(env, regs, BPF_REG_0);
10001 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10002 		break;
10003 	case RET_PTR_TO_TCP_SOCK:
10004 		mark_reg_known_zero(env, regs, BPF_REG_0);
10005 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10006 		break;
10007 	case RET_PTR_TO_MEM:
10008 		mark_reg_known_zero(env, regs, BPF_REG_0);
10009 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10010 		regs[BPF_REG_0].mem_size = meta.mem_size;
10011 		break;
10012 	case RET_PTR_TO_MEM_OR_BTF_ID:
10013 	{
10014 		const struct btf_type *t;
10015 
10016 		mark_reg_known_zero(env, regs, BPF_REG_0);
10017 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10018 		if (!btf_type_is_struct(t)) {
10019 			u32 tsize;
10020 			const struct btf_type *ret;
10021 			const char *tname;
10022 
10023 			/* resolve the type size of ksym. */
10024 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10025 			if (IS_ERR(ret)) {
10026 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10027 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
10028 					tname, PTR_ERR(ret));
10029 				return -EINVAL;
10030 			}
10031 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10032 			regs[BPF_REG_0].mem_size = tsize;
10033 		} else {
10034 			if (returns_cpu_specific_alloc_ptr) {
10035 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
10036 			} else {
10037 				/* MEM_RDONLY may be carried from ret_flag, but it
10038 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10039 				 * it will confuse the check of PTR_TO_BTF_ID in
10040 				 * check_mem_access().
10041 				 */
10042 				ret_flag &= ~MEM_RDONLY;
10043 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10044 			}
10045 
10046 			regs[BPF_REG_0].btf = meta.ret_btf;
10047 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10048 		}
10049 		break;
10050 	}
10051 	case RET_PTR_TO_BTF_ID:
10052 	{
10053 		struct btf *ret_btf;
10054 		int ret_btf_id;
10055 
10056 		mark_reg_known_zero(env, regs, BPF_REG_0);
10057 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10058 		if (func_id == BPF_FUNC_kptr_xchg) {
10059 			ret_btf = meta.kptr_field->kptr.btf;
10060 			ret_btf_id = meta.kptr_field->kptr.btf_id;
10061 			if (!btf_is_kernel(ret_btf)) {
10062 				regs[BPF_REG_0].type |= MEM_ALLOC;
10063 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
10064 					regs[BPF_REG_0].type |= MEM_PERCPU;
10065 			}
10066 		} else {
10067 			if (fn->ret_btf_id == BPF_PTR_POISON) {
10068 				verbose(env, "verifier internal error:");
10069 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10070 					func_id_name(func_id));
10071 				return -EINVAL;
10072 			}
10073 			ret_btf = btf_vmlinux;
10074 			ret_btf_id = *fn->ret_btf_id;
10075 		}
10076 		if (ret_btf_id == 0) {
10077 			verbose(env, "invalid return type %u of func %s#%d\n",
10078 				base_type(ret_type), func_id_name(func_id),
10079 				func_id);
10080 			return -EINVAL;
10081 		}
10082 		regs[BPF_REG_0].btf = ret_btf;
10083 		regs[BPF_REG_0].btf_id = ret_btf_id;
10084 		break;
10085 	}
10086 	default:
10087 		verbose(env, "unknown return type %u of func %s#%d\n",
10088 			base_type(ret_type), func_id_name(func_id), func_id);
10089 		return -EINVAL;
10090 	}
10091 
10092 	if (type_may_be_null(regs[BPF_REG_0].type))
10093 		regs[BPF_REG_0].id = ++env->id_gen;
10094 
10095 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10096 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10097 			func_id_name(func_id), func_id);
10098 		return -EFAULT;
10099 	}
10100 
10101 	if (is_dynptr_ref_function(func_id))
10102 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10103 
10104 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10105 		/* For release_reference() */
10106 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10107 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
10108 		int id = acquire_reference_state(env, insn_idx);
10109 
10110 		if (id < 0)
10111 			return id;
10112 		/* For mark_ptr_or_null_reg() */
10113 		regs[BPF_REG_0].id = id;
10114 		/* For release_reference() */
10115 		regs[BPF_REG_0].ref_obj_id = id;
10116 	}
10117 
10118 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
10119 
10120 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10121 	if (err)
10122 		return err;
10123 
10124 	if ((func_id == BPF_FUNC_get_stack ||
10125 	     func_id == BPF_FUNC_get_task_stack) &&
10126 	    !env->prog->has_callchain_buf) {
10127 		const char *err_str;
10128 
10129 #ifdef CONFIG_PERF_EVENTS
10130 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
10131 		err_str = "cannot get callchain buffer for func %s#%d\n";
10132 #else
10133 		err = -ENOTSUPP;
10134 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10135 #endif
10136 		if (err) {
10137 			verbose(env, err_str, func_id_name(func_id), func_id);
10138 			return err;
10139 		}
10140 
10141 		env->prog->has_callchain_buf = true;
10142 	}
10143 
10144 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10145 		env->prog->call_get_stack = true;
10146 
10147 	if (func_id == BPF_FUNC_get_func_ip) {
10148 		if (check_get_func_ip(env))
10149 			return -ENOTSUPP;
10150 		env->prog->call_get_func_ip = true;
10151 	}
10152 
10153 	if (changes_data)
10154 		clear_all_pkt_pointers(env);
10155 	return 0;
10156 }
10157 
10158 /* mark_btf_func_reg_size() is used when the reg size is determined by
10159  * the BTF func_proto's return value size and argument.
10160  */
10161 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10162 				   size_t reg_size)
10163 {
10164 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10165 
10166 	if (regno == BPF_REG_0) {
10167 		/* Function return value */
10168 		reg->live |= REG_LIVE_WRITTEN;
10169 		reg->subreg_def = reg_size == sizeof(u64) ?
10170 			DEF_NOT_SUBREG : env->insn_idx + 1;
10171 	} else {
10172 		/* Function argument */
10173 		if (reg_size == sizeof(u64)) {
10174 			mark_insn_zext(env, reg);
10175 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10176 		} else {
10177 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10178 		}
10179 	}
10180 }
10181 
10182 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10183 {
10184 	return meta->kfunc_flags & KF_ACQUIRE;
10185 }
10186 
10187 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10188 {
10189 	return meta->kfunc_flags & KF_RELEASE;
10190 }
10191 
10192 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10193 {
10194 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10195 }
10196 
10197 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10198 {
10199 	return meta->kfunc_flags & KF_SLEEPABLE;
10200 }
10201 
10202 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10203 {
10204 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10205 }
10206 
10207 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10208 {
10209 	return meta->kfunc_flags & KF_RCU;
10210 }
10211 
10212 static bool __kfunc_param_match_suffix(const struct btf *btf,
10213 				       const struct btf_param *arg,
10214 				       const char *suffix)
10215 {
10216 	int suffix_len = strlen(suffix), len;
10217 	const char *param_name;
10218 
10219 	/* In the future, this can be ported to use BTF tagging */
10220 	param_name = btf_name_by_offset(btf, arg->name_off);
10221 	if (str_is_empty(param_name))
10222 		return false;
10223 	len = strlen(param_name);
10224 	if (len < suffix_len)
10225 		return false;
10226 	param_name += len - suffix_len;
10227 	return !strncmp(param_name, suffix, suffix_len);
10228 }
10229 
10230 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10231 				  const struct btf_param *arg,
10232 				  const struct bpf_reg_state *reg)
10233 {
10234 	const struct btf_type *t;
10235 
10236 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10237 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10238 		return false;
10239 
10240 	return __kfunc_param_match_suffix(btf, arg, "__sz");
10241 }
10242 
10243 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10244 					const struct btf_param *arg,
10245 					const struct bpf_reg_state *reg)
10246 {
10247 	const struct btf_type *t;
10248 
10249 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10250 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10251 		return false;
10252 
10253 	return __kfunc_param_match_suffix(btf, arg, "__szk");
10254 }
10255 
10256 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10257 {
10258 	return __kfunc_param_match_suffix(btf, arg, "__opt");
10259 }
10260 
10261 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10262 {
10263 	return __kfunc_param_match_suffix(btf, arg, "__k");
10264 }
10265 
10266 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10267 {
10268 	return __kfunc_param_match_suffix(btf, arg, "__ign");
10269 }
10270 
10271 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10272 {
10273 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
10274 }
10275 
10276 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10277 {
10278 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
10279 }
10280 
10281 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10282 {
10283 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10284 }
10285 
10286 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10287 					  const struct btf_param *arg,
10288 					  const char *name)
10289 {
10290 	int len, target_len = strlen(name);
10291 	const char *param_name;
10292 
10293 	param_name = btf_name_by_offset(btf, arg->name_off);
10294 	if (str_is_empty(param_name))
10295 		return false;
10296 	len = strlen(param_name);
10297 	if (len != target_len)
10298 		return false;
10299 	if (strcmp(param_name, name))
10300 		return false;
10301 
10302 	return true;
10303 }
10304 
10305 enum {
10306 	KF_ARG_DYNPTR_ID,
10307 	KF_ARG_LIST_HEAD_ID,
10308 	KF_ARG_LIST_NODE_ID,
10309 	KF_ARG_RB_ROOT_ID,
10310 	KF_ARG_RB_NODE_ID,
10311 };
10312 
10313 BTF_ID_LIST(kf_arg_btf_ids)
10314 BTF_ID(struct, bpf_dynptr_kern)
10315 BTF_ID(struct, bpf_list_head)
10316 BTF_ID(struct, bpf_list_node)
10317 BTF_ID(struct, bpf_rb_root)
10318 BTF_ID(struct, bpf_rb_node)
10319 
10320 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10321 				    const struct btf_param *arg, int type)
10322 {
10323 	const struct btf_type *t;
10324 	u32 res_id;
10325 
10326 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10327 	if (!t)
10328 		return false;
10329 	if (!btf_type_is_ptr(t))
10330 		return false;
10331 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10332 	if (!t)
10333 		return false;
10334 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10335 }
10336 
10337 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10338 {
10339 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10340 }
10341 
10342 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10343 {
10344 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10345 }
10346 
10347 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10348 {
10349 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10350 }
10351 
10352 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10353 {
10354 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10355 }
10356 
10357 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10358 {
10359 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10360 }
10361 
10362 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10363 				  const struct btf_param *arg)
10364 {
10365 	const struct btf_type *t;
10366 
10367 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10368 	if (!t)
10369 		return false;
10370 
10371 	return true;
10372 }
10373 
10374 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10375 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10376 					const struct btf *btf,
10377 					const struct btf_type *t, int rec)
10378 {
10379 	const struct btf_type *member_type;
10380 	const struct btf_member *member;
10381 	u32 i;
10382 
10383 	if (!btf_type_is_struct(t))
10384 		return false;
10385 
10386 	for_each_member(i, t, member) {
10387 		const struct btf_array *array;
10388 
10389 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10390 		if (btf_type_is_struct(member_type)) {
10391 			if (rec >= 3) {
10392 				verbose(env, "max struct nesting depth exceeded\n");
10393 				return false;
10394 			}
10395 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10396 				return false;
10397 			continue;
10398 		}
10399 		if (btf_type_is_array(member_type)) {
10400 			array = btf_array(member_type);
10401 			if (!array->nelems)
10402 				return false;
10403 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10404 			if (!btf_type_is_scalar(member_type))
10405 				return false;
10406 			continue;
10407 		}
10408 		if (!btf_type_is_scalar(member_type))
10409 			return false;
10410 	}
10411 	return true;
10412 }
10413 
10414 enum kfunc_ptr_arg_type {
10415 	KF_ARG_PTR_TO_CTX,
10416 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10417 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10418 	KF_ARG_PTR_TO_DYNPTR,
10419 	KF_ARG_PTR_TO_ITER,
10420 	KF_ARG_PTR_TO_LIST_HEAD,
10421 	KF_ARG_PTR_TO_LIST_NODE,
10422 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10423 	KF_ARG_PTR_TO_MEM,
10424 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10425 	KF_ARG_PTR_TO_CALLBACK,
10426 	KF_ARG_PTR_TO_RB_ROOT,
10427 	KF_ARG_PTR_TO_RB_NODE,
10428 };
10429 
10430 enum special_kfunc_type {
10431 	KF_bpf_obj_new_impl,
10432 	KF_bpf_obj_drop_impl,
10433 	KF_bpf_refcount_acquire_impl,
10434 	KF_bpf_list_push_front_impl,
10435 	KF_bpf_list_push_back_impl,
10436 	KF_bpf_list_pop_front,
10437 	KF_bpf_list_pop_back,
10438 	KF_bpf_cast_to_kern_ctx,
10439 	KF_bpf_rdonly_cast,
10440 	KF_bpf_rcu_read_lock,
10441 	KF_bpf_rcu_read_unlock,
10442 	KF_bpf_rbtree_remove,
10443 	KF_bpf_rbtree_add_impl,
10444 	KF_bpf_rbtree_first,
10445 	KF_bpf_dynptr_from_skb,
10446 	KF_bpf_dynptr_from_xdp,
10447 	KF_bpf_dynptr_slice,
10448 	KF_bpf_dynptr_slice_rdwr,
10449 	KF_bpf_dynptr_clone,
10450 	KF_bpf_percpu_obj_new_impl,
10451 	KF_bpf_percpu_obj_drop_impl,
10452 	KF_bpf_throw,
10453 };
10454 
10455 BTF_SET_START(special_kfunc_set)
10456 BTF_ID(func, bpf_obj_new_impl)
10457 BTF_ID(func, bpf_obj_drop_impl)
10458 BTF_ID(func, bpf_refcount_acquire_impl)
10459 BTF_ID(func, bpf_list_push_front_impl)
10460 BTF_ID(func, bpf_list_push_back_impl)
10461 BTF_ID(func, bpf_list_pop_front)
10462 BTF_ID(func, bpf_list_pop_back)
10463 BTF_ID(func, bpf_cast_to_kern_ctx)
10464 BTF_ID(func, bpf_rdonly_cast)
10465 BTF_ID(func, bpf_rbtree_remove)
10466 BTF_ID(func, bpf_rbtree_add_impl)
10467 BTF_ID(func, bpf_rbtree_first)
10468 BTF_ID(func, bpf_dynptr_from_skb)
10469 BTF_ID(func, bpf_dynptr_from_xdp)
10470 BTF_ID(func, bpf_dynptr_slice)
10471 BTF_ID(func, bpf_dynptr_slice_rdwr)
10472 BTF_ID(func, bpf_dynptr_clone)
10473 BTF_ID(func, bpf_percpu_obj_new_impl)
10474 BTF_ID(func, bpf_percpu_obj_drop_impl)
10475 BTF_ID(func, bpf_throw)
10476 BTF_SET_END(special_kfunc_set)
10477 
10478 BTF_ID_LIST(special_kfunc_list)
10479 BTF_ID(func, bpf_obj_new_impl)
10480 BTF_ID(func, bpf_obj_drop_impl)
10481 BTF_ID(func, bpf_refcount_acquire_impl)
10482 BTF_ID(func, bpf_list_push_front_impl)
10483 BTF_ID(func, bpf_list_push_back_impl)
10484 BTF_ID(func, bpf_list_pop_front)
10485 BTF_ID(func, bpf_list_pop_back)
10486 BTF_ID(func, bpf_cast_to_kern_ctx)
10487 BTF_ID(func, bpf_rdonly_cast)
10488 BTF_ID(func, bpf_rcu_read_lock)
10489 BTF_ID(func, bpf_rcu_read_unlock)
10490 BTF_ID(func, bpf_rbtree_remove)
10491 BTF_ID(func, bpf_rbtree_add_impl)
10492 BTF_ID(func, bpf_rbtree_first)
10493 BTF_ID(func, bpf_dynptr_from_skb)
10494 BTF_ID(func, bpf_dynptr_from_xdp)
10495 BTF_ID(func, bpf_dynptr_slice)
10496 BTF_ID(func, bpf_dynptr_slice_rdwr)
10497 BTF_ID(func, bpf_dynptr_clone)
10498 BTF_ID(func, bpf_percpu_obj_new_impl)
10499 BTF_ID(func, bpf_percpu_obj_drop_impl)
10500 BTF_ID(func, bpf_throw)
10501 
10502 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10503 {
10504 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10505 	    meta->arg_owning_ref) {
10506 		return false;
10507 	}
10508 
10509 	return meta->kfunc_flags & KF_RET_NULL;
10510 }
10511 
10512 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10513 {
10514 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10515 }
10516 
10517 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10518 {
10519 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10520 }
10521 
10522 static enum kfunc_ptr_arg_type
10523 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10524 		       struct bpf_kfunc_call_arg_meta *meta,
10525 		       const struct btf_type *t, const struct btf_type *ref_t,
10526 		       const char *ref_tname, const struct btf_param *args,
10527 		       int argno, int nargs)
10528 {
10529 	u32 regno = argno + 1;
10530 	struct bpf_reg_state *regs = cur_regs(env);
10531 	struct bpf_reg_state *reg = &regs[regno];
10532 	bool arg_mem_size = false;
10533 
10534 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10535 		return KF_ARG_PTR_TO_CTX;
10536 
10537 	/* In this function, we verify the kfunc's BTF as per the argument type,
10538 	 * leaving the rest of the verification with respect to the register
10539 	 * type to our caller. When a set of conditions hold in the BTF type of
10540 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10541 	 */
10542 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10543 		return KF_ARG_PTR_TO_CTX;
10544 
10545 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10546 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10547 
10548 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10549 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10550 
10551 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10552 		return KF_ARG_PTR_TO_DYNPTR;
10553 
10554 	if (is_kfunc_arg_iter(meta, argno))
10555 		return KF_ARG_PTR_TO_ITER;
10556 
10557 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10558 		return KF_ARG_PTR_TO_LIST_HEAD;
10559 
10560 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10561 		return KF_ARG_PTR_TO_LIST_NODE;
10562 
10563 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10564 		return KF_ARG_PTR_TO_RB_ROOT;
10565 
10566 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10567 		return KF_ARG_PTR_TO_RB_NODE;
10568 
10569 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10570 		if (!btf_type_is_struct(ref_t)) {
10571 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10572 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10573 			return -EINVAL;
10574 		}
10575 		return KF_ARG_PTR_TO_BTF_ID;
10576 	}
10577 
10578 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10579 		return KF_ARG_PTR_TO_CALLBACK;
10580 
10581 
10582 	if (argno + 1 < nargs &&
10583 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10584 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
10585 		arg_mem_size = true;
10586 
10587 	/* This is the catch all argument type of register types supported by
10588 	 * check_helper_mem_access. However, we only allow when argument type is
10589 	 * pointer to scalar, or struct composed (recursively) of scalars. When
10590 	 * arg_mem_size is true, the pointer can be void *.
10591 	 */
10592 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10593 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10594 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10595 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10596 		return -EINVAL;
10597 	}
10598 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10599 }
10600 
10601 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10602 					struct bpf_reg_state *reg,
10603 					const struct btf_type *ref_t,
10604 					const char *ref_tname, u32 ref_id,
10605 					struct bpf_kfunc_call_arg_meta *meta,
10606 					int argno)
10607 {
10608 	const struct btf_type *reg_ref_t;
10609 	bool strict_type_match = false;
10610 	const struct btf *reg_btf;
10611 	const char *reg_ref_tname;
10612 	u32 reg_ref_id;
10613 
10614 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
10615 		reg_btf = reg->btf;
10616 		reg_ref_id = reg->btf_id;
10617 	} else {
10618 		reg_btf = btf_vmlinux;
10619 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10620 	}
10621 
10622 	/* Enforce strict type matching for calls to kfuncs that are acquiring
10623 	 * or releasing a reference, or are no-cast aliases. We do _not_
10624 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10625 	 * as we want to enable BPF programs to pass types that are bitwise
10626 	 * equivalent without forcing them to explicitly cast with something
10627 	 * like bpf_cast_to_kern_ctx().
10628 	 *
10629 	 * For example, say we had a type like the following:
10630 	 *
10631 	 * struct bpf_cpumask {
10632 	 *	cpumask_t cpumask;
10633 	 *	refcount_t usage;
10634 	 * };
10635 	 *
10636 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10637 	 * to a struct cpumask, so it would be safe to pass a struct
10638 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10639 	 *
10640 	 * The philosophy here is similar to how we allow scalars of different
10641 	 * types to be passed to kfuncs as long as the size is the same. The
10642 	 * only difference here is that we're simply allowing
10643 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10644 	 * resolve types.
10645 	 */
10646 	if (is_kfunc_acquire(meta) ||
10647 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
10648 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10649 		strict_type_match = true;
10650 
10651 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10652 
10653 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
10654 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10655 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10656 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10657 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10658 			btf_type_str(reg_ref_t), reg_ref_tname);
10659 		return -EINVAL;
10660 	}
10661 	return 0;
10662 }
10663 
10664 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10665 {
10666 	struct bpf_verifier_state *state = env->cur_state;
10667 	struct btf_record *rec = reg_btf_record(reg);
10668 
10669 	if (!state->active_lock.ptr) {
10670 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10671 		return -EFAULT;
10672 	}
10673 
10674 	if (type_flag(reg->type) & NON_OWN_REF) {
10675 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10676 		return -EFAULT;
10677 	}
10678 
10679 	reg->type |= NON_OWN_REF;
10680 	if (rec->refcount_off >= 0)
10681 		reg->type |= MEM_RCU;
10682 
10683 	return 0;
10684 }
10685 
10686 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10687 {
10688 	struct bpf_func_state *state, *unused;
10689 	struct bpf_reg_state *reg;
10690 	int i;
10691 
10692 	state = cur_func(env);
10693 
10694 	if (!ref_obj_id) {
10695 		verbose(env, "verifier internal error: ref_obj_id is zero for "
10696 			     "owning -> non-owning conversion\n");
10697 		return -EFAULT;
10698 	}
10699 
10700 	for (i = 0; i < state->acquired_refs; i++) {
10701 		if (state->refs[i].id != ref_obj_id)
10702 			continue;
10703 
10704 		/* Clear ref_obj_id here so release_reference doesn't clobber
10705 		 * the whole reg
10706 		 */
10707 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10708 			if (reg->ref_obj_id == ref_obj_id) {
10709 				reg->ref_obj_id = 0;
10710 				ref_set_non_owning(env, reg);
10711 			}
10712 		}));
10713 		return 0;
10714 	}
10715 
10716 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10717 	return -EFAULT;
10718 }
10719 
10720 /* Implementation details:
10721  *
10722  * Each register points to some region of memory, which we define as an
10723  * allocation. Each allocation may embed a bpf_spin_lock which protects any
10724  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10725  * allocation. The lock and the data it protects are colocated in the same
10726  * memory region.
10727  *
10728  * Hence, everytime a register holds a pointer value pointing to such
10729  * allocation, the verifier preserves a unique reg->id for it.
10730  *
10731  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10732  * bpf_spin_lock is called.
10733  *
10734  * To enable this, lock state in the verifier captures two values:
10735  *	active_lock.ptr = Register's type specific pointer
10736  *	active_lock.id  = A unique ID for each register pointer value
10737  *
10738  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
10739  * supported register types.
10740  *
10741  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
10742  * allocated objects is the reg->btf pointer.
10743  *
10744  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
10745  * can establish the provenance of the map value statically for each distinct
10746  * lookup into such maps. They always contain a single map value hence unique
10747  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
10748  *
10749  * So, in case of global variables, they use array maps with max_entries = 1,
10750  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
10751  * into the same map value as max_entries is 1, as described above).
10752  *
10753  * In case of inner map lookups, the inner map pointer has same map_ptr as the
10754  * outer map pointer (in verifier context), but each lookup into an inner map
10755  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
10756  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
10757  * will get different reg->id assigned to each lookup, hence different
10758  * active_lock.id.
10759  *
10760  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
10761  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
10762  * returned from bpf_obj_new. Each allocation receives a new reg->id.
10763  */
10764 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10765 {
10766 	void *ptr;
10767 	u32 id;
10768 
10769 	switch ((int)reg->type) {
10770 	case PTR_TO_MAP_VALUE:
10771 		ptr = reg->map_ptr;
10772 		break;
10773 	case PTR_TO_BTF_ID | MEM_ALLOC:
10774 		ptr = reg->btf;
10775 		break;
10776 	default:
10777 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
10778 		return -EFAULT;
10779 	}
10780 	id = reg->id;
10781 
10782 	if (!env->cur_state->active_lock.ptr)
10783 		return -EINVAL;
10784 	if (env->cur_state->active_lock.ptr != ptr ||
10785 	    env->cur_state->active_lock.id != id) {
10786 		verbose(env, "held lock and object are not in the same allocation\n");
10787 		return -EINVAL;
10788 	}
10789 	return 0;
10790 }
10791 
10792 static bool is_bpf_list_api_kfunc(u32 btf_id)
10793 {
10794 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10795 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
10796 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
10797 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
10798 }
10799 
10800 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
10801 {
10802 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
10803 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10804 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
10805 }
10806 
10807 static bool is_bpf_graph_api_kfunc(u32 btf_id)
10808 {
10809 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
10810 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
10811 }
10812 
10813 static bool is_callback_calling_kfunc(u32 btf_id)
10814 {
10815 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
10816 }
10817 
10818 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
10819 {
10820 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
10821 	       insn->imm == special_kfunc_list[KF_bpf_throw];
10822 }
10823 
10824 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
10825 {
10826 	return is_bpf_rbtree_api_kfunc(btf_id);
10827 }
10828 
10829 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
10830 					  enum btf_field_type head_field_type,
10831 					  u32 kfunc_btf_id)
10832 {
10833 	bool ret;
10834 
10835 	switch (head_field_type) {
10836 	case BPF_LIST_HEAD:
10837 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
10838 		break;
10839 	case BPF_RB_ROOT:
10840 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
10841 		break;
10842 	default:
10843 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
10844 			btf_field_type_name(head_field_type));
10845 		return false;
10846 	}
10847 
10848 	if (!ret)
10849 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
10850 			btf_field_type_name(head_field_type));
10851 	return ret;
10852 }
10853 
10854 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
10855 					  enum btf_field_type node_field_type,
10856 					  u32 kfunc_btf_id)
10857 {
10858 	bool ret;
10859 
10860 	switch (node_field_type) {
10861 	case BPF_LIST_NODE:
10862 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10863 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
10864 		break;
10865 	case BPF_RB_NODE:
10866 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10867 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
10868 		break;
10869 	default:
10870 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
10871 			btf_field_type_name(node_field_type));
10872 		return false;
10873 	}
10874 
10875 	if (!ret)
10876 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
10877 			btf_field_type_name(node_field_type));
10878 	return ret;
10879 }
10880 
10881 static int
10882 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
10883 				   struct bpf_reg_state *reg, u32 regno,
10884 				   struct bpf_kfunc_call_arg_meta *meta,
10885 				   enum btf_field_type head_field_type,
10886 				   struct btf_field **head_field)
10887 {
10888 	const char *head_type_name;
10889 	struct btf_field *field;
10890 	struct btf_record *rec;
10891 	u32 head_off;
10892 
10893 	if (meta->btf != btf_vmlinux) {
10894 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10895 		return -EFAULT;
10896 	}
10897 
10898 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
10899 		return -EFAULT;
10900 
10901 	head_type_name = btf_field_type_name(head_field_type);
10902 	if (!tnum_is_const(reg->var_off)) {
10903 		verbose(env,
10904 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10905 			regno, head_type_name);
10906 		return -EINVAL;
10907 	}
10908 
10909 	rec = reg_btf_record(reg);
10910 	head_off = reg->off + reg->var_off.value;
10911 	field = btf_record_find(rec, head_off, head_field_type);
10912 	if (!field) {
10913 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
10914 		return -EINVAL;
10915 	}
10916 
10917 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
10918 	if (check_reg_allocation_locked(env, reg)) {
10919 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
10920 			rec->spin_lock_off, head_type_name);
10921 		return -EINVAL;
10922 	}
10923 
10924 	if (*head_field) {
10925 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
10926 		return -EFAULT;
10927 	}
10928 	*head_field = field;
10929 	return 0;
10930 }
10931 
10932 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
10933 					   struct bpf_reg_state *reg, u32 regno,
10934 					   struct bpf_kfunc_call_arg_meta *meta)
10935 {
10936 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
10937 							  &meta->arg_list_head.field);
10938 }
10939 
10940 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
10941 					     struct bpf_reg_state *reg, u32 regno,
10942 					     struct bpf_kfunc_call_arg_meta *meta)
10943 {
10944 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
10945 							  &meta->arg_rbtree_root.field);
10946 }
10947 
10948 static int
10949 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
10950 				   struct bpf_reg_state *reg, u32 regno,
10951 				   struct bpf_kfunc_call_arg_meta *meta,
10952 				   enum btf_field_type head_field_type,
10953 				   enum btf_field_type node_field_type,
10954 				   struct btf_field **node_field)
10955 {
10956 	const char *node_type_name;
10957 	const struct btf_type *et, *t;
10958 	struct btf_field *field;
10959 	u32 node_off;
10960 
10961 	if (meta->btf != btf_vmlinux) {
10962 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10963 		return -EFAULT;
10964 	}
10965 
10966 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
10967 		return -EFAULT;
10968 
10969 	node_type_name = btf_field_type_name(node_field_type);
10970 	if (!tnum_is_const(reg->var_off)) {
10971 		verbose(env,
10972 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10973 			regno, node_type_name);
10974 		return -EINVAL;
10975 	}
10976 
10977 	node_off = reg->off + reg->var_off.value;
10978 	field = reg_find_field_offset(reg, node_off, node_field_type);
10979 	if (!field || field->offset != node_off) {
10980 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
10981 		return -EINVAL;
10982 	}
10983 
10984 	field = *node_field;
10985 
10986 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
10987 	t = btf_type_by_id(reg->btf, reg->btf_id);
10988 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
10989 				  field->graph_root.value_btf_id, true)) {
10990 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
10991 			"in struct %s, but arg is at offset=%d in struct %s\n",
10992 			btf_field_type_name(head_field_type),
10993 			btf_field_type_name(node_field_type),
10994 			field->graph_root.node_offset,
10995 			btf_name_by_offset(field->graph_root.btf, et->name_off),
10996 			node_off, btf_name_by_offset(reg->btf, t->name_off));
10997 		return -EINVAL;
10998 	}
10999 	meta->arg_btf = reg->btf;
11000 	meta->arg_btf_id = reg->btf_id;
11001 
11002 	if (node_off != field->graph_root.node_offset) {
11003 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11004 			node_off, btf_field_type_name(node_field_type),
11005 			field->graph_root.node_offset,
11006 			btf_name_by_offset(field->graph_root.btf, et->name_off));
11007 		return -EINVAL;
11008 	}
11009 
11010 	return 0;
11011 }
11012 
11013 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11014 					   struct bpf_reg_state *reg, u32 regno,
11015 					   struct bpf_kfunc_call_arg_meta *meta)
11016 {
11017 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11018 						  BPF_LIST_HEAD, BPF_LIST_NODE,
11019 						  &meta->arg_list_head.field);
11020 }
11021 
11022 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11023 					     struct bpf_reg_state *reg, u32 regno,
11024 					     struct bpf_kfunc_call_arg_meta *meta)
11025 {
11026 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11027 						  BPF_RB_ROOT, BPF_RB_NODE,
11028 						  &meta->arg_rbtree_root.field);
11029 }
11030 
11031 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11032 			    int insn_idx)
11033 {
11034 	const char *func_name = meta->func_name, *ref_tname;
11035 	const struct btf *btf = meta->btf;
11036 	const struct btf_param *args;
11037 	struct btf_record *rec;
11038 	u32 i, nargs;
11039 	int ret;
11040 
11041 	args = (const struct btf_param *)(meta->func_proto + 1);
11042 	nargs = btf_type_vlen(meta->func_proto);
11043 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11044 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11045 			MAX_BPF_FUNC_REG_ARGS);
11046 		return -EINVAL;
11047 	}
11048 
11049 	/* Check that BTF function arguments match actual types that the
11050 	 * verifier sees.
11051 	 */
11052 	for (i = 0; i < nargs; i++) {
11053 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11054 		const struct btf_type *t, *ref_t, *resolve_ret;
11055 		enum bpf_arg_type arg_type = ARG_DONTCARE;
11056 		u32 regno = i + 1, ref_id, type_size;
11057 		bool is_ret_buf_sz = false;
11058 		int kf_arg_type;
11059 
11060 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11061 
11062 		if (is_kfunc_arg_ignore(btf, &args[i]))
11063 			continue;
11064 
11065 		if (btf_type_is_scalar(t)) {
11066 			if (reg->type != SCALAR_VALUE) {
11067 				verbose(env, "R%d is not a scalar\n", regno);
11068 				return -EINVAL;
11069 			}
11070 
11071 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11072 				if (meta->arg_constant.found) {
11073 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11074 					return -EFAULT;
11075 				}
11076 				if (!tnum_is_const(reg->var_off)) {
11077 					verbose(env, "R%d must be a known constant\n", regno);
11078 					return -EINVAL;
11079 				}
11080 				ret = mark_chain_precision(env, regno);
11081 				if (ret < 0)
11082 					return ret;
11083 				meta->arg_constant.found = true;
11084 				meta->arg_constant.value = reg->var_off.value;
11085 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11086 				meta->r0_rdonly = true;
11087 				is_ret_buf_sz = true;
11088 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11089 				is_ret_buf_sz = true;
11090 			}
11091 
11092 			if (is_ret_buf_sz) {
11093 				if (meta->r0_size) {
11094 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11095 					return -EINVAL;
11096 				}
11097 
11098 				if (!tnum_is_const(reg->var_off)) {
11099 					verbose(env, "R%d is not a const\n", regno);
11100 					return -EINVAL;
11101 				}
11102 
11103 				meta->r0_size = reg->var_off.value;
11104 				ret = mark_chain_precision(env, regno);
11105 				if (ret)
11106 					return ret;
11107 			}
11108 			continue;
11109 		}
11110 
11111 		if (!btf_type_is_ptr(t)) {
11112 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11113 			return -EINVAL;
11114 		}
11115 
11116 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11117 		    (register_is_null(reg) || type_may_be_null(reg->type))) {
11118 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11119 			return -EACCES;
11120 		}
11121 
11122 		if (reg->ref_obj_id) {
11123 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
11124 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11125 					regno, reg->ref_obj_id,
11126 					meta->ref_obj_id);
11127 				return -EFAULT;
11128 			}
11129 			meta->ref_obj_id = reg->ref_obj_id;
11130 			if (is_kfunc_release(meta))
11131 				meta->release_regno = regno;
11132 		}
11133 
11134 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11135 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11136 
11137 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11138 		if (kf_arg_type < 0)
11139 			return kf_arg_type;
11140 
11141 		switch (kf_arg_type) {
11142 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11143 		case KF_ARG_PTR_TO_BTF_ID:
11144 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11145 				break;
11146 
11147 			if (!is_trusted_reg(reg)) {
11148 				if (!is_kfunc_rcu(meta)) {
11149 					verbose(env, "R%d must be referenced or trusted\n", regno);
11150 					return -EINVAL;
11151 				}
11152 				if (!is_rcu_reg(reg)) {
11153 					verbose(env, "R%d must be a rcu pointer\n", regno);
11154 					return -EINVAL;
11155 				}
11156 			}
11157 
11158 			fallthrough;
11159 		case KF_ARG_PTR_TO_CTX:
11160 			/* Trusted arguments have the same offset checks as release arguments */
11161 			arg_type |= OBJ_RELEASE;
11162 			break;
11163 		case KF_ARG_PTR_TO_DYNPTR:
11164 		case KF_ARG_PTR_TO_ITER:
11165 		case KF_ARG_PTR_TO_LIST_HEAD:
11166 		case KF_ARG_PTR_TO_LIST_NODE:
11167 		case KF_ARG_PTR_TO_RB_ROOT:
11168 		case KF_ARG_PTR_TO_RB_NODE:
11169 		case KF_ARG_PTR_TO_MEM:
11170 		case KF_ARG_PTR_TO_MEM_SIZE:
11171 		case KF_ARG_PTR_TO_CALLBACK:
11172 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11173 			/* Trusted by default */
11174 			break;
11175 		default:
11176 			WARN_ON_ONCE(1);
11177 			return -EFAULT;
11178 		}
11179 
11180 		if (is_kfunc_release(meta) && reg->ref_obj_id)
11181 			arg_type |= OBJ_RELEASE;
11182 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11183 		if (ret < 0)
11184 			return ret;
11185 
11186 		switch (kf_arg_type) {
11187 		case KF_ARG_PTR_TO_CTX:
11188 			if (reg->type != PTR_TO_CTX) {
11189 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11190 				return -EINVAL;
11191 			}
11192 
11193 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11194 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11195 				if (ret < 0)
11196 					return -EINVAL;
11197 				meta->ret_btf_id  = ret;
11198 			}
11199 			break;
11200 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11201 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
11202 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
11203 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
11204 					return -EINVAL;
11205 				}
11206 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
11207 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
11208 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
11209 					return -EINVAL;
11210 				}
11211 			} else {
11212 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11213 				return -EINVAL;
11214 			}
11215 			if (!reg->ref_obj_id) {
11216 				verbose(env, "allocated object must be referenced\n");
11217 				return -EINVAL;
11218 			}
11219 			if (meta->btf == btf_vmlinux) {
11220 				meta->arg_btf = reg->btf;
11221 				meta->arg_btf_id = reg->btf_id;
11222 			}
11223 			break;
11224 		case KF_ARG_PTR_TO_DYNPTR:
11225 		{
11226 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11227 			int clone_ref_obj_id = 0;
11228 
11229 			if (reg->type != PTR_TO_STACK &&
11230 			    reg->type != CONST_PTR_TO_DYNPTR) {
11231 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11232 				return -EINVAL;
11233 			}
11234 
11235 			if (reg->type == CONST_PTR_TO_DYNPTR)
11236 				dynptr_arg_type |= MEM_RDONLY;
11237 
11238 			if (is_kfunc_arg_uninit(btf, &args[i]))
11239 				dynptr_arg_type |= MEM_UNINIT;
11240 
11241 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11242 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11243 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11244 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11245 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11246 				   (dynptr_arg_type & MEM_UNINIT)) {
11247 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11248 
11249 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11250 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11251 					return -EFAULT;
11252 				}
11253 
11254 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11255 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11256 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11257 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11258 					return -EFAULT;
11259 				}
11260 			}
11261 
11262 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11263 			if (ret < 0)
11264 				return ret;
11265 
11266 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11267 				int id = dynptr_id(env, reg);
11268 
11269 				if (id < 0) {
11270 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11271 					return id;
11272 				}
11273 				meta->initialized_dynptr.id = id;
11274 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11275 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11276 			}
11277 
11278 			break;
11279 		}
11280 		case KF_ARG_PTR_TO_ITER:
11281 			ret = process_iter_arg(env, regno, insn_idx, meta);
11282 			if (ret < 0)
11283 				return ret;
11284 			break;
11285 		case KF_ARG_PTR_TO_LIST_HEAD:
11286 			if (reg->type != PTR_TO_MAP_VALUE &&
11287 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11288 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11289 				return -EINVAL;
11290 			}
11291 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11292 				verbose(env, "allocated object must be referenced\n");
11293 				return -EINVAL;
11294 			}
11295 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11296 			if (ret < 0)
11297 				return ret;
11298 			break;
11299 		case KF_ARG_PTR_TO_RB_ROOT:
11300 			if (reg->type != PTR_TO_MAP_VALUE &&
11301 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11302 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11303 				return -EINVAL;
11304 			}
11305 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11306 				verbose(env, "allocated object must be referenced\n");
11307 				return -EINVAL;
11308 			}
11309 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11310 			if (ret < 0)
11311 				return ret;
11312 			break;
11313 		case KF_ARG_PTR_TO_LIST_NODE:
11314 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11315 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11316 				return -EINVAL;
11317 			}
11318 			if (!reg->ref_obj_id) {
11319 				verbose(env, "allocated object must be referenced\n");
11320 				return -EINVAL;
11321 			}
11322 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11323 			if (ret < 0)
11324 				return ret;
11325 			break;
11326 		case KF_ARG_PTR_TO_RB_NODE:
11327 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11328 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11329 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11330 					return -EINVAL;
11331 				}
11332 				if (in_rbtree_lock_required_cb(env)) {
11333 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11334 					return -EINVAL;
11335 				}
11336 			} else {
11337 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11338 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11339 					return -EINVAL;
11340 				}
11341 				if (!reg->ref_obj_id) {
11342 					verbose(env, "allocated object must be referenced\n");
11343 					return -EINVAL;
11344 				}
11345 			}
11346 
11347 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11348 			if (ret < 0)
11349 				return ret;
11350 			break;
11351 		case KF_ARG_PTR_TO_BTF_ID:
11352 			/* Only base_type is checked, further checks are done here */
11353 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11354 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11355 			    !reg2btf_ids[base_type(reg->type)]) {
11356 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11357 				verbose(env, "expected %s or socket\n",
11358 					reg_type_str(env, base_type(reg->type) |
11359 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11360 				return -EINVAL;
11361 			}
11362 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11363 			if (ret < 0)
11364 				return ret;
11365 			break;
11366 		case KF_ARG_PTR_TO_MEM:
11367 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11368 			if (IS_ERR(resolve_ret)) {
11369 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11370 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11371 				return -EINVAL;
11372 			}
11373 			ret = check_mem_reg(env, reg, regno, type_size);
11374 			if (ret < 0)
11375 				return ret;
11376 			break;
11377 		case KF_ARG_PTR_TO_MEM_SIZE:
11378 		{
11379 			struct bpf_reg_state *buff_reg = &regs[regno];
11380 			const struct btf_param *buff_arg = &args[i];
11381 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11382 			const struct btf_param *size_arg = &args[i + 1];
11383 
11384 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11385 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11386 				if (ret < 0) {
11387 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11388 					return ret;
11389 				}
11390 			}
11391 
11392 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11393 				if (meta->arg_constant.found) {
11394 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11395 					return -EFAULT;
11396 				}
11397 				if (!tnum_is_const(size_reg->var_off)) {
11398 					verbose(env, "R%d must be a known constant\n", regno + 1);
11399 					return -EINVAL;
11400 				}
11401 				meta->arg_constant.found = true;
11402 				meta->arg_constant.value = size_reg->var_off.value;
11403 			}
11404 
11405 			/* Skip next '__sz' or '__szk' argument */
11406 			i++;
11407 			break;
11408 		}
11409 		case KF_ARG_PTR_TO_CALLBACK:
11410 			if (reg->type != PTR_TO_FUNC) {
11411 				verbose(env, "arg%d expected pointer to func\n", i);
11412 				return -EINVAL;
11413 			}
11414 			meta->subprogno = reg->subprogno;
11415 			break;
11416 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11417 			if (!type_is_ptr_alloc_obj(reg->type)) {
11418 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11419 				return -EINVAL;
11420 			}
11421 			if (!type_is_non_owning_ref(reg->type))
11422 				meta->arg_owning_ref = true;
11423 
11424 			rec = reg_btf_record(reg);
11425 			if (!rec) {
11426 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11427 				return -EFAULT;
11428 			}
11429 
11430 			if (rec->refcount_off < 0) {
11431 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11432 				return -EINVAL;
11433 			}
11434 
11435 			meta->arg_btf = reg->btf;
11436 			meta->arg_btf_id = reg->btf_id;
11437 			break;
11438 		}
11439 	}
11440 
11441 	if (is_kfunc_release(meta) && !meta->release_regno) {
11442 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11443 			func_name);
11444 		return -EINVAL;
11445 	}
11446 
11447 	return 0;
11448 }
11449 
11450 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11451 			    struct bpf_insn *insn,
11452 			    struct bpf_kfunc_call_arg_meta *meta,
11453 			    const char **kfunc_name)
11454 {
11455 	const struct btf_type *func, *func_proto;
11456 	u32 func_id, *kfunc_flags;
11457 	const char *func_name;
11458 	struct btf *desc_btf;
11459 
11460 	if (kfunc_name)
11461 		*kfunc_name = NULL;
11462 
11463 	if (!insn->imm)
11464 		return -EINVAL;
11465 
11466 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11467 	if (IS_ERR(desc_btf))
11468 		return PTR_ERR(desc_btf);
11469 
11470 	func_id = insn->imm;
11471 	func = btf_type_by_id(desc_btf, func_id);
11472 	func_name = btf_name_by_offset(desc_btf, func->name_off);
11473 	if (kfunc_name)
11474 		*kfunc_name = func_name;
11475 	func_proto = btf_type_by_id(desc_btf, func->type);
11476 
11477 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11478 	if (!kfunc_flags) {
11479 		return -EACCES;
11480 	}
11481 
11482 	memset(meta, 0, sizeof(*meta));
11483 	meta->btf = desc_btf;
11484 	meta->func_id = func_id;
11485 	meta->kfunc_flags = *kfunc_flags;
11486 	meta->func_proto = func_proto;
11487 	meta->func_name = func_name;
11488 
11489 	return 0;
11490 }
11491 
11492 static int check_return_code(struct bpf_verifier_env *env, int regno);
11493 
11494 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11495 			    int *insn_idx_p)
11496 {
11497 	const struct btf_type *t, *ptr_type;
11498 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
11499 	struct bpf_reg_state *regs = cur_regs(env);
11500 	const char *func_name, *ptr_type_name;
11501 	bool sleepable, rcu_lock, rcu_unlock;
11502 	struct bpf_kfunc_call_arg_meta meta;
11503 	struct bpf_insn_aux_data *insn_aux;
11504 	int err, insn_idx = *insn_idx_p;
11505 	const struct btf_param *args;
11506 	const struct btf_type *ret_t;
11507 	struct btf *desc_btf;
11508 
11509 	/* skip for now, but return error when we find this in fixup_kfunc_call */
11510 	if (!insn->imm)
11511 		return 0;
11512 
11513 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11514 	if (err == -EACCES && func_name)
11515 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
11516 	if (err)
11517 		return err;
11518 	desc_btf = meta.btf;
11519 	insn_aux = &env->insn_aux_data[insn_idx];
11520 
11521 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11522 
11523 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11524 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11525 		return -EACCES;
11526 	}
11527 
11528 	sleepable = is_kfunc_sleepable(&meta);
11529 	if (sleepable && !env->prog->aux->sleepable) {
11530 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11531 		return -EACCES;
11532 	}
11533 
11534 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11535 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11536 
11537 	if (env->cur_state->active_rcu_lock) {
11538 		struct bpf_func_state *state;
11539 		struct bpf_reg_state *reg;
11540 
11541 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11542 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11543 			return -EACCES;
11544 		}
11545 
11546 		if (rcu_lock) {
11547 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11548 			return -EINVAL;
11549 		} else if (rcu_unlock) {
11550 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11551 				if (reg->type & MEM_RCU) {
11552 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11553 					reg->type |= PTR_UNTRUSTED;
11554 				}
11555 			}));
11556 			env->cur_state->active_rcu_lock = false;
11557 		} else if (sleepable) {
11558 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11559 			return -EACCES;
11560 		}
11561 	} else if (rcu_lock) {
11562 		env->cur_state->active_rcu_lock = true;
11563 	} else if (rcu_unlock) {
11564 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11565 		return -EINVAL;
11566 	}
11567 
11568 	/* Check the arguments */
11569 	err = check_kfunc_args(env, &meta, insn_idx);
11570 	if (err < 0)
11571 		return err;
11572 	/* In case of release function, we get register number of refcounted
11573 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11574 	 */
11575 	if (meta.release_regno) {
11576 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11577 		if (err) {
11578 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11579 				func_name, meta.func_id);
11580 			return err;
11581 		}
11582 	}
11583 
11584 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11585 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11586 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11587 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11588 		insn_aux->insert_off = regs[BPF_REG_2].off;
11589 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11590 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11591 		if (err) {
11592 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11593 				func_name, meta.func_id);
11594 			return err;
11595 		}
11596 
11597 		err = release_reference(env, release_ref_obj_id);
11598 		if (err) {
11599 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11600 				func_name, meta.func_id);
11601 			return err;
11602 		}
11603 	}
11604 
11605 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11606 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
11607 					set_rbtree_add_callback_state);
11608 		if (err) {
11609 			verbose(env, "kfunc %s#%d failed callback verification\n",
11610 				func_name, meta.func_id);
11611 			return err;
11612 		}
11613 	}
11614 
11615 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
11616 		if (!bpf_jit_supports_exceptions()) {
11617 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
11618 				func_name, meta.func_id);
11619 			return -ENOTSUPP;
11620 		}
11621 		env->seen_exception = true;
11622 
11623 		/* In the case of the default callback, the cookie value passed
11624 		 * to bpf_throw becomes the return value of the program.
11625 		 */
11626 		if (!env->exception_callback_subprog) {
11627 			err = check_return_code(env, BPF_REG_1);
11628 			if (err < 0)
11629 				return err;
11630 		}
11631 	}
11632 
11633 	for (i = 0; i < CALLER_SAVED_REGS; i++)
11634 		mark_reg_not_init(env, regs, caller_saved[i]);
11635 
11636 	/* Check return type */
11637 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11638 
11639 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11640 		/* Only exception is bpf_obj_new_impl */
11641 		if (meta.btf != btf_vmlinux ||
11642 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11643 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
11644 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11645 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11646 			return -EINVAL;
11647 		}
11648 	}
11649 
11650 	if (btf_type_is_scalar(t)) {
11651 		mark_reg_unknown(env, regs, BPF_REG_0);
11652 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11653 	} else if (btf_type_is_ptr(t)) {
11654 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11655 
11656 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11657 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
11658 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
11659 				struct btf_struct_meta *struct_meta;
11660 				struct btf *ret_btf;
11661 				u32 ret_btf_id;
11662 
11663 				if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
11664 					return -ENOMEM;
11665 
11666 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && !bpf_global_percpu_ma_set)
11667 					return -ENOMEM;
11668 
11669 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11670 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11671 					return -EINVAL;
11672 				}
11673 
11674 				ret_btf = env->prog->aux->btf;
11675 				ret_btf_id = meta.arg_constant.value;
11676 
11677 				/* This may be NULL due to user not supplying a BTF */
11678 				if (!ret_btf) {
11679 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
11680 					return -EINVAL;
11681 				}
11682 
11683 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11684 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
11685 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
11686 					return -EINVAL;
11687 				}
11688 
11689 				struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
11690 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
11691 					if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
11692 						verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
11693 						return -EINVAL;
11694 					}
11695 
11696 					if (struct_meta) {
11697 						verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
11698 						return -EINVAL;
11699 					}
11700 				}
11701 
11702 				mark_reg_known_zero(env, regs, BPF_REG_0);
11703 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11704 				regs[BPF_REG_0].btf = ret_btf;
11705 				regs[BPF_REG_0].btf_id = ret_btf_id;
11706 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
11707 					regs[BPF_REG_0].type |= MEM_PERCPU;
11708 
11709 				insn_aux->obj_new_size = ret_t->size;
11710 				insn_aux->kptr_struct_meta = struct_meta;
11711 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11712 				mark_reg_known_zero(env, regs, BPF_REG_0);
11713 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11714 				regs[BPF_REG_0].btf = meta.arg_btf;
11715 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
11716 
11717 				insn_aux->kptr_struct_meta =
11718 					btf_find_struct_meta(meta.arg_btf,
11719 							     meta.arg_btf_id);
11720 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11721 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11722 				struct btf_field *field = meta.arg_list_head.field;
11723 
11724 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11725 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11726 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11727 				struct btf_field *field = meta.arg_rbtree_root.field;
11728 
11729 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11730 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11731 				mark_reg_known_zero(env, regs, BPF_REG_0);
11732 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11733 				regs[BPF_REG_0].btf = desc_btf;
11734 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11735 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11736 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11737 				if (!ret_t || !btf_type_is_struct(ret_t)) {
11738 					verbose(env,
11739 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11740 					return -EINVAL;
11741 				}
11742 
11743 				mark_reg_known_zero(env, regs, BPF_REG_0);
11744 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11745 				regs[BPF_REG_0].btf = desc_btf;
11746 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
11747 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11748 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11749 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11750 
11751 				mark_reg_known_zero(env, regs, BPF_REG_0);
11752 
11753 				if (!meta.arg_constant.found) {
11754 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11755 					return -EFAULT;
11756 				}
11757 
11758 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11759 
11760 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11761 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11762 
11763 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11764 					regs[BPF_REG_0].type |= MEM_RDONLY;
11765 				} else {
11766 					/* this will set env->seen_direct_write to true */
11767 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11768 						verbose(env, "the prog does not allow writes to packet data\n");
11769 						return -EINVAL;
11770 					}
11771 				}
11772 
11773 				if (!meta.initialized_dynptr.id) {
11774 					verbose(env, "verifier internal error: no dynptr id\n");
11775 					return -EFAULT;
11776 				}
11777 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11778 
11779 				/* we don't need to set BPF_REG_0's ref obj id
11780 				 * because packet slices are not refcounted (see
11781 				 * dynptr_type_refcounted)
11782 				 */
11783 			} else {
11784 				verbose(env, "kernel function %s unhandled dynamic return type\n",
11785 					meta.func_name);
11786 				return -EFAULT;
11787 			}
11788 		} else if (!__btf_type_is_struct(ptr_type)) {
11789 			if (!meta.r0_size) {
11790 				__u32 sz;
11791 
11792 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
11793 					meta.r0_size = sz;
11794 					meta.r0_rdonly = true;
11795 				}
11796 			}
11797 			if (!meta.r0_size) {
11798 				ptr_type_name = btf_name_by_offset(desc_btf,
11799 								   ptr_type->name_off);
11800 				verbose(env,
11801 					"kernel function %s returns pointer type %s %s is not supported\n",
11802 					func_name,
11803 					btf_type_str(ptr_type),
11804 					ptr_type_name);
11805 				return -EINVAL;
11806 			}
11807 
11808 			mark_reg_known_zero(env, regs, BPF_REG_0);
11809 			regs[BPF_REG_0].type = PTR_TO_MEM;
11810 			regs[BPF_REG_0].mem_size = meta.r0_size;
11811 
11812 			if (meta.r0_rdonly)
11813 				regs[BPF_REG_0].type |= MEM_RDONLY;
11814 
11815 			/* Ensures we don't access the memory after a release_reference() */
11816 			if (meta.ref_obj_id)
11817 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11818 		} else {
11819 			mark_reg_known_zero(env, regs, BPF_REG_0);
11820 			regs[BPF_REG_0].btf = desc_btf;
11821 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
11822 			regs[BPF_REG_0].btf_id = ptr_type_id;
11823 		}
11824 
11825 		if (is_kfunc_ret_null(&meta)) {
11826 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
11827 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
11828 			regs[BPF_REG_0].id = ++env->id_gen;
11829 		}
11830 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
11831 		if (is_kfunc_acquire(&meta)) {
11832 			int id = acquire_reference_state(env, insn_idx);
11833 
11834 			if (id < 0)
11835 				return id;
11836 			if (is_kfunc_ret_null(&meta))
11837 				regs[BPF_REG_0].id = id;
11838 			regs[BPF_REG_0].ref_obj_id = id;
11839 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11840 			ref_set_non_owning(env, &regs[BPF_REG_0]);
11841 		}
11842 
11843 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
11844 			regs[BPF_REG_0].id = ++env->id_gen;
11845 	} else if (btf_type_is_void(t)) {
11846 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11847 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
11848 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
11849 				insn_aux->kptr_struct_meta =
11850 					btf_find_struct_meta(meta.arg_btf,
11851 							     meta.arg_btf_id);
11852 			}
11853 		}
11854 	}
11855 
11856 	nargs = btf_type_vlen(meta.func_proto);
11857 	args = (const struct btf_param *)(meta.func_proto + 1);
11858 	for (i = 0; i < nargs; i++) {
11859 		u32 regno = i + 1;
11860 
11861 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
11862 		if (btf_type_is_ptr(t))
11863 			mark_btf_func_reg_size(env, regno, sizeof(void *));
11864 		else
11865 			/* scalar. ensured by btf_check_kfunc_arg_match() */
11866 			mark_btf_func_reg_size(env, regno, t->size);
11867 	}
11868 
11869 	if (is_iter_next_kfunc(&meta)) {
11870 		err = process_iter_next_call(env, insn_idx, &meta);
11871 		if (err)
11872 			return err;
11873 	}
11874 
11875 	return 0;
11876 }
11877 
11878 static bool signed_add_overflows(s64 a, s64 b)
11879 {
11880 	/* Do the add in u64, where overflow is well-defined */
11881 	s64 res = (s64)((u64)a + (u64)b);
11882 
11883 	if (b < 0)
11884 		return res > a;
11885 	return res < a;
11886 }
11887 
11888 static bool signed_add32_overflows(s32 a, s32 b)
11889 {
11890 	/* Do the add in u32, where overflow is well-defined */
11891 	s32 res = (s32)((u32)a + (u32)b);
11892 
11893 	if (b < 0)
11894 		return res > a;
11895 	return res < a;
11896 }
11897 
11898 static bool signed_sub_overflows(s64 a, s64 b)
11899 {
11900 	/* Do the sub in u64, where overflow is well-defined */
11901 	s64 res = (s64)((u64)a - (u64)b);
11902 
11903 	if (b < 0)
11904 		return res < a;
11905 	return res > a;
11906 }
11907 
11908 static bool signed_sub32_overflows(s32 a, s32 b)
11909 {
11910 	/* Do the sub in u32, where overflow is well-defined */
11911 	s32 res = (s32)((u32)a - (u32)b);
11912 
11913 	if (b < 0)
11914 		return res < a;
11915 	return res > a;
11916 }
11917 
11918 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
11919 				  const struct bpf_reg_state *reg,
11920 				  enum bpf_reg_type type)
11921 {
11922 	bool known = tnum_is_const(reg->var_off);
11923 	s64 val = reg->var_off.value;
11924 	s64 smin = reg->smin_value;
11925 
11926 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
11927 		verbose(env, "math between %s pointer and %lld is not allowed\n",
11928 			reg_type_str(env, type), val);
11929 		return false;
11930 	}
11931 
11932 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
11933 		verbose(env, "%s pointer offset %d is not allowed\n",
11934 			reg_type_str(env, type), reg->off);
11935 		return false;
11936 	}
11937 
11938 	if (smin == S64_MIN) {
11939 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
11940 			reg_type_str(env, type));
11941 		return false;
11942 	}
11943 
11944 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
11945 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
11946 			smin, reg_type_str(env, type));
11947 		return false;
11948 	}
11949 
11950 	return true;
11951 }
11952 
11953 enum {
11954 	REASON_BOUNDS	= -1,
11955 	REASON_TYPE	= -2,
11956 	REASON_PATHS	= -3,
11957 	REASON_LIMIT	= -4,
11958 	REASON_STACK	= -5,
11959 };
11960 
11961 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
11962 			      u32 *alu_limit, bool mask_to_left)
11963 {
11964 	u32 max = 0, ptr_limit = 0;
11965 
11966 	switch (ptr_reg->type) {
11967 	case PTR_TO_STACK:
11968 		/* Offset 0 is out-of-bounds, but acceptable start for the
11969 		 * left direction, see BPF_REG_FP. Also, unknown scalar
11970 		 * offset where we would need to deal with min/max bounds is
11971 		 * currently prohibited for unprivileged.
11972 		 */
11973 		max = MAX_BPF_STACK + mask_to_left;
11974 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
11975 		break;
11976 	case PTR_TO_MAP_VALUE:
11977 		max = ptr_reg->map_ptr->value_size;
11978 		ptr_limit = (mask_to_left ?
11979 			     ptr_reg->smin_value :
11980 			     ptr_reg->umax_value) + ptr_reg->off;
11981 		break;
11982 	default:
11983 		return REASON_TYPE;
11984 	}
11985 
11986 	if (ptr_limit >= max)
11987 		return REASON_LIMIT;
11988 	*alu_limit = ptr_limit;
11989 	return 0;
11990 }
11991 
11992 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
11993 				    const struct bpf_insn *insn)
11994 {
11995 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
11996 }
11997 
11998 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
11999 				       u32 alu_state, u32 alu_limit)
12000 {
12001 	/* If we arrived here from different branches with different
12002 	 * state or limits to sanitize, then this won't work.
12003 	 */
12004 	if (aux->alu_state &&
12005 	    (aux->alu_state != alu_state ||
12006 	     aux->alu_limit != alu_limit))
12007 		return REASON_PATHS;
12008 
12009 	/* Corresponding fixup done in do_misc_fixups(). */
12010 	aux->alu_state = alu_state;
12011 	aux->alu_limit = alu_limit;
12012 	return 0;
12013 }
12014 
12015 static int sanitize_val_alu(struct bpf_verifier_env *env,
12016 			    struct bpf_insn *insn)
12017 {
12018 	struct bpf_insn_aux_data *aux = cur_aux(env);
12019 
12020 	if (can_skip_alu_sanitation(env, insn))
12021 		return 0;
12022 
12023 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12024 }
12025 
12026 static bool sanitize_needed(u8 opcode)
12027 {
12028 	return opcode == BPF_ADD || opcode == BPF_SUB;
12029 }
12030 
12031 struct bpf_sanitize_info {
12032 	struct bpf_insn_aux_data aux;
12033 	bool mask_to_left;
12034 };
12035 
12036 static struct bpf_verifier_state *
12037 sanitize_speculative_path(struct bpf_verifier_env *env,
12038 			  const struct bpf_insn *insn,
12039 			  u32 next_idx, u32 curr_idx)
12040 {
12041 	struct bpf_verifier_state *branch;
12042 	struct bpf_reg_state *regs;
12043 
12044 	branch = push_stack(env, next_idx, curr_idx, true);
12045 	if (branch && insn) {
12046 		regs = branch->frame[branch->curframe]->regs;
12047 		if (BPF_SRC(insn->code) == BPF_K) {
12048 			mark_reg_unknown(env, regs, insn->dst_reg);
12049 		} else if (BPF_SRC(insn->code) == BPF_X) {
12050 			mark_reg_unknown(env, regs, insn->dst_reg);
12051 			mark_reg_unknown(env, regs, insn->src_reg);
12052 		}
12053 	}
12054 	return branch;
12055 }
12056 
12057 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12058 			    struct bpf_insn *insn,
12059 			    const struct bpf_reg_state *ptr_reg,
12060 			    const struct bpf_reg_state *off_reg,
12061 			    struct bpf_reg_state *dst_reg,
12062 			    struct bpf_sanitize_info *info,
12063 			    const bool commit_window)
12064 {
12065 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12066 	struct bpf_verifier_state *vstate = env->cur_state;
12067 	bool off_is_imm = tnum_is_const(off_reg->var_off);
12068 	bool off_is_neg = off_reg->smin_value < 0;
12069 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
12070 	u8 opcode = BPF_OP(insn->code);
12071 	u32 alu_state, alu_limit;
12072 	struct bpf_reg_state tmp;
12073 	bool ret;
12074 	int err;
12075 
12076 	if (can_skip_alu_sanitation(env, insn))
12077 		return 0;
12078 
12079 	/* We already marked aux for masking from non-speculative
12080 	 * paths, thus we got here in the first place. We only care
12081 	 * to explore bad access from here.
12082 	 */
12083 	if (vstate->speculative)
12084 		goto do_sim;
12085 
12086 	if (!commit_window) {
12087 		if (!tnum_is_const(off_reg->var_off) &&
12088 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12089 			return REASON_BOUNDS;
12090 
12091 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
12092 				     (opcode == BPF_SUB && !off_is_neg);
12093 	}
12094 
12095 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12096 	if (err < 0)
12097 		return err;
12098 
12099 	if (commit_window) {
12100 		/* In commit phase we narrow the masking window based on
12101 		 * the observed pointer move after the simulated operation.
12102 		 */
12103 		alu_state = info->aux.alu_state;
12104 		alu_limit = abs(info->aux.alu_limit - alu_limit);
12105 	} else {
12106 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12107 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12108 		alu_state |= ptr_is_dst_reg ?
12109 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12110 
12111 		/* Limit pruning on unknown scalars to enable deep search for
12112 		 * potential masking differences from other program paths.
12113 		 */
12114 		if (!off_is_imm)
12115 			env->explore_alu_limits = true;
12116 	}
12117 
12118 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12119 	if (err < 0)
12120 		return err;
12121 do_sim:
12122 	/* If we're in commit phase, we're done here given we already
12123 	 * pushed the truncated dst_reg into the speculative verification
12124 	 * stack.
12125 	 *
12126 	 * Also, when register is a known constant, we rewrite register-based
12127 	 * operation to immediate-based, and thus do not need masking (and as
12128 	 * a consequence, do not need to simulate the zero-truncation either).
12129 	 */
12130 	if (commit_window || off_is_imm)
12131 		return 0;
12132 
12133 	/* Simulate and find potential out-of-bounds access under
12134 	 * speculative execution from truncation as a result of
12135 	 * masking when off was not within expected range. If off
12136 	 * sits in dst, then we temporarily need to move ptr there
12137 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12138 	 * for cases where we use K-based arithmetic in one direction
12139 	 * and truncated reg-based in the other in order to explore
12140 	 * bad access.
12141 	 */
12142 	if (!ptr_is_dst_reg) {
12143 		tmp = *dst_reg;
12144 		copy_register_state(dst_reg, ptr_reg);
12145 	}
12146 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12147 					env->insn_idx);
12148 	if (!ptr_is_dst_reg && ret)
12149 		*dst_reg = tmp;
12150 	return !ret ? REASON_STACK : 0;
12151 }
12152 
12153 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12154 {
12155 	struct bpf_verifier_state *vstate = env->cur_state;
12156 
12157 	/* If we simulate paths under speculation, we don't update the
12158 	 * insn as 'seen' such that when we verify unreachable paths in
12159 	 * the non-speculative domain, sanitize_dead_code() can still
12160 	 * rewrite/sanitize them.
12161 	 */
12162 	if (!vstate->speculative)
12163 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12164 }
12165 
12166 static int sanitize_err(struct bpf_verifier_env *env,
12167 			const struct bpf_insn *insn, int reason,
12168 			const struct bpf_reg_state *off_reg,
12169 			const struct bpf_reg_state *dst_reg)
12170 {
12171 	static const char *err = "pointer arithmetic with it prohibited for !root";
12172 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12173 	u32 dst = insn->dst_reg, src = insn->src_reg;
12174 
12175 	switch (reason) {
12176 	case REASON_BOUNDS:
12177 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12178 			off_reg == dst_reg ? dst : src, err);
12179 		break;
12180 	case REASON_TYPE:
12181 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12182 			off_reg == dst_reg ? src : dst, err);
12183 		break;
12184 	case REASON_PATHS:
12185 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12186 			dst, op, err);
12187 		break;
12188 	case REASON_LIMIT:
12189 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12190 			dst, op, err);
12191 		break;
12192 	case REASON_STACK:
12193 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12194 			dst, err);
12195 		break;
12196 	default:
12197 		verbose(env, "verifier internal error: unknown reason (%d)\n",
12198 			reason);
12199 		break;
12200 	}
12201 
12202 	return -EACCES;
12203 }
12204 
12205 /* check that stack access falls within stack limits and that 'reg' doesn't
12206  * have a variable offset.
12207  *
12208  * Variable offset is prohibited for unprivileged mode for simplicity since it
12209  * requires corresponding support in Spectre masking for stack ALU.  See also
12210  * retrieve_ptr_limit().
12211  *
12212  *
12213  * 'off' includes 'reg->off'.
12214  */
12215 static int check_stack_access_for_ptr_arithmetic(
12216 				struct bpf_verifier_env *env,
12217 				int regno,
12218 				const struct bpf_reg_state *reg,
12219 				int off)
12220 {
12221 	if (!tnum_is_const(reg->var_off)) {
12222 		char tn_buf[48];
12223 
12224 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12225 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12226 			regno, tn_buf, off);
12227 		return -EACCES;
12228 	}
12229 
12230 	if (off >= 0 || off < -MAX_BPF_STACK) {
12231 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
12232 			"prohibited for !root; off=%d\n", regno, off);
12233 		return -EACCES;
12234 	}
12235 
12236 	return 0;
12237 }
12238 
12239 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12240 				 const struct bpf_insn *insn,
12241 				 const struct bpf_reg_state *dst_reg)
12242 {
12243 	u32 dst = insn->dst_reg;
12244 
12245 	/* For unprivileged we require that resulting offset must be in bounds
12246 	 * in order to be able to sanitize access later on.
12247 	 */
12248 	if (env->bypass_spec_v1)
12249 		return 0;
12250 
12251 	switch (dst_reg->type) {
12252 	case PTR_TO_STACK:
12253 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12254 					dst_reg->off + dst_reg->var_off.value))
12255 			return -EACCES;
12256 		break;
12257 	case PTR_TO_MAP_VALUE:
12258 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12259 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12260 				"prohibited for !root\n", dst);
12261 			return -EACCES;
12262 		}
12263 		break;
12264 	default:
12265 		break;
12266 	}
12267 
12268 	return 0;
12269 }
12270 
12271 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12272  * Caller should also handle BPF_MOV case separately.
12273  * If we return -EACCES, caller may want to try again treating pointer as a
12274  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12275  */
12276 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12277 				   struct bpf_insn *insn,
12278 				   const struct bpf_reg_state *ptr_reg,
12279 				   const struct bpf_reg_state *off_reg)
12280 {
12281 	struct bpf_verifier_state *vstate = env->cur_state;
12282 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12283 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12284 	bool known = tnum_is_const(off_reg->var_off);
12285 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12286 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12287 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12288 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12289 	struct bpf_sanitize_info info = {};
12290 	u8 opcode = BPF_OP(insn->code);
12291 	u32 dst = insn->dst_reg;
12292 	int ret;
12293 
12294 	dst_reg = &regs[dst];
12295 
12296 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12297 	    smin_val > smax_val || umin_val > umax_val) {
12298 		/* Taint dst register if offset had invalid bounds derived from
12299 		 * e.g. dead branches.
12300 		 */
12301 		__mark_reg_unknown(env, dst_reg);
12302 		return 0;
12303 	}
12304 
12305 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12306 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12307 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12308 			__mark_reg_unknown(env, dst_reg);
12309 			return 0;
12310 		}
12311 
12312 		verbose(env,
12313 			"R%d 32-bit pointer arithmetic prohibited\n",
12314 			dst);
12315 		return -EACCES;
12316 	}
12317 
12318 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12319 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12320 			dst, reg_type_str(env, ptr_reg->type));
12321 		return -EACCES;
12322 	}
12323 
12324 	switch (base_type(ptr_reg->type)) {
12325 	case CONST_PTR_TO_MAP:
12326 		/* smin_val represents the known value */
12327 		if (known && smin_val == 0 && opcode == BPF_ADD)
12328 			break;
12329 		fallthrough;
12330 	case PTR_TO_PACKET_END:
12331 	case PTR_TO_SOCKET:
12332 	case PTR_TO_SOCK_COMMON:
12333 	case PTR_TO_TCP_SOCK:
12334 	case PTR_TO_XDP_SOCK:
12335 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12336 			dst, reg_type_str(env, ptr_reg->type));
12337 		return -EACCES;
12338 	default:
12339 		break;
12340 	}
12341 
12342 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12343 	 * The id may be overwritten later if we create a new variable offset.
12344 	 */
12345 	dst_reg->type = ptr_reg->type;
12346 	dst_reg->id = ptr_reg->id;
12347 
12348 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12349 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12350 		return -EINVAL;
12351 
12352 	/* pointer types do not carry 32-bit bounds at the moment. */
12353 	__mark_reg32_unbounded(dst_reg);
12354 
12355 	if (sanitize_needed(opcode)) {
12356 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12357 				       &info, false);
12358 		if (ret < 0)
12359 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12360 	}
12361 
12362 	switch (opcode) {
12363 	case BPF_ADD:
12364 		/* We can take a fixed offset as long as it doesn't overflow
12365 		 * the s32 'off' field
12366 		 */
12367 		if (known && (ptr_reg->off + smin_val ==
12368 			      (s64)(s32)(ptr_reg->off + smin_val))) {
12369 			/* pointer += K.  Accumulate it into fixed offset */
12370 			dst_reg->smin_value = smin_ptr;
12371 			dst_reg->smax_value = smax_ptr;
12372 			dst_reg->umin_value = umin_ptr;
12373 			dst_reg->umax_value = umax_ptr;
12374 			dst_reg->var_off = ptr_reg->var_off;
12375 			dst_reg->off = ptr_reg->off + smin_val;
12376 			dst_reg->raw = ptr_reg->raw;
12377 			break;
12378 		}
12379 		/* A new variable offset is created.  Note that off_reg->off
12380 		 * == 0, since it's a scalar.
12381 		 * dst_reg gets the pointer type and since some positive
12382 		 * integer value was added to the pointer, give it a new 'id'
12383 		 * if it's a PTR_TO_PACKET.
12384 		 * this creates a new 'base' pointer, off_reg (variable) gets
12385 		 * added into the variable offset, and we copy the fixed offset
12386 		 * from ptr_reg.
12387 		 */
12388 		if (signed_add_overflows(smin_ptr, smin_val) ||
12389 		    signed_add_overflows(smax_ptr, smax_val)) {
12390 			dst_reg->smin_value = S64_MIN;
12391 			dst_reg->smax_value = S64_MAX;
12392 		} else {
12393 			dst_reg->smin_value = smin_ptr + smin_val;
12394 			dst_reg->smax_value = smax_ptr + smax_val;
12395 		}
12396 		if (umin_ptr + umin_val < umin_ptr ||
12397 		    umax_ptr + umax_val < umax_ptr) {
12398 			dst_reg->umin_value = 0;
12399 			dst_reg->umax_value = U64_MAX;
12400 		} else {
12401 			dst_reg->umin_value = umin_ptr + umin_val;
12402 			dst_reg->umax_value = umax_ptr + umax_val;
12403 		}
12404 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12405 		dst_reg->off = ptr_reg->off;
12406 		dst_reg->raw = ptr_reg->raw;
12407 		if (reg_is_pkt_pointer(ptr_reg)) {
12408 			dst_reg->id = ++env->id_gen;
12409 			/* something was added to pkt_ptr, set range to zero */
12410 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12411 		}
12412 		break;
12413 	case BPF_SUB:
12414 		if (dst_reg == off_reg) {
12415 			/* scalar -= pointer.  Creates an unknown scalar */
12416 			verbose(env, "R%d tried to subtract pointer from scalar\n",
12417 				dst);
12418 			return -EACCES;
12419 		}
12420 		/* We don't allow subtraction from FP, because (according to
12421 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
12422 		 * be able to deal with it.
12423 		 */
12424 		if (ptr_reg->type == PTR_TO_STACK) {
12425 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
12426 				dst);
12427 			return -EACCES;
12428 		}
12429 		if (known && (ptr_reg->off - smin_val ==
12430 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12431 			/* pointer -= K.  Subtract it from fixed offset */
12432 			dst_reg->smin_value = smin_ptr;
12433 			dst_reg->smax_value = smax_ptr;
12434 			dst_reg->umin_value = umin_ptr;
12435 			dst_reg->umax_value = umax_ptr;
12436 			dst_reg->var_off = ptr_reg->var_off;
12437 			dst_reg->id = ptr_reg->id;
12438 			dst_reg->off = ptr_reg->off - smin_val;
12439 			dst_reg->raw = ptr_reg->raw;
12440 			break;
12441 		}
12442 		/* A new variable offset is created.  If the subtrahend is known
12443 		 * nonnegative, then any reg->range we had before is still good.
12444 		 */
12445 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12446 		    signed_sub_overflows(smax_ptr, smin_val)) {
12447 			/* Overflow possible, we know nothing */
12448 			dst_reg->smin_value = S64_MIN;
12449 			dst_reg->smax_value = S64_MAX;
12450 		} else {
12451 			dst_reg->smin_value = smin_ptr - smax_val;
12452 			dst_reg->smax_value = smax_ptr - smin_val;
12453 		}
12454 		if (umin_ptr < umax_val) {
12455 			/* Overflow possible, we know nothing */
12456 			dst_reg->umin_value = 0;
12457 			dst_reg->umax_value = U64_MAX;
12458 		} else {
12459 			/* Cannot overflow (as long as bounds are consistent) */
12460 			dst_reg->umin_value = umin_ptr - umax_val;
12461 			dst_reg->umax_value = umax_ptr - umin_val;
12462 		}
12463 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12464 		dst_reg->off = ptr_reg->off;
12465 		dst_reg->raw = ptr_reg->raw;
12466 		if (reg_is_pkt_pointer(ptr_reg)) {
12467 			dst_reg->id = ++env->id_gen;
12468 			/* something was added to pkt_ptr, set range to zero */
12469 			if (smin_val < 0)
12470 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12471 		}
12472 		break;
12473 	case BPF_AND:
12474 	case BPF_OR:
12475 	case BPF_XOR:
12476 		/* bitwise ops on pointers are troublesome, prohibit. */
12477 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12478 			dst, bpf_alu_string[opcode >> 4]);
12479 		return -EACCES;
12480 	default:
12481 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
12482 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12483 			dst, bpf_alu_string[opcode >> 4]);
12484 		return -EACCES;
12485 	}
12486 
12487 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12488 		return -EINVAL;
12489 	reg_bounds_sync(dst_reg);
12490 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12491 		return -EACCES;
12492 	if (sanitize_needed(opcode)) {
12493 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12494 				       &info, true);
12495 		if (ret < 0)
12496 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12497 	}
12498 
12499 	return 0;
12500 }
12501 
12502 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12503 				 struct bpf_reg_state *src_reg)
12504 {
12505 	s32 smin_val = src_reg->s32_min_value;
12506 	s32 smax_val = src_reg->s32_max_value;
12507 	u32 umin_val = src_reg->u32_min_value;
12508 	u32 umax_val = src_reg->u32_max_value;
12509 
12510 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12511 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12512 		dst_reg->s32_min_value = S32_MIN;
12513 		dst_reg->s32_max_value = S32_MAX;
12514 	} else {
12515 		dst_reg->s32_min_value += smin_val;
12516 		dst_reg->s32_max_value += smax_val;
12517 	}
12518 	if (dst_reg->u32_min_value + umin_val < umin_val ||
12519 	    dst_reg->u32_max_value + umax_val < umax_val) {
12520 		dst_reg->u32_min_value = 0;
12521 		dst_reg->u32_max_value = U32_MAX;
12522 	} else {
12523 		dst_reg->u32_min_value += umin_val;
12524 		dst_reg->u32_max_value += umax_val;
12525 	}
12526 }
12527 
12528 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12529 			       struct bpf_reg_state *src_reg)
12530 {
12531 	s64 smin_val = src_reg->smin_value;
12532 	s64 smax_val = src_reg->smax_value;
12533 	u64 umin_val = src_reg->umin_value;
12534 	u64 umax_val = src_reg->umax_value;
12535 
12536 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12537 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
12538 		dst_reg->smin_value = S64_MIN;
12539 		dst_reg->smax_value = S64_MAX;
12540 	} else {
12541 		dst_reg->smin_value += smin_val;
12542 		dst_reg->smax_value += smax_val;
12543 	}
12544 	if (dst_reg->umin_value + umin_val < umin_val ||
12545 	    dst_reg->umax_value + umax_val < umax_val) {
12546 		dst_reg->umin_value = 0;
12547 		dst_reg->umax_value = U64_MAX;
12548 	} else {
12549 		dst_reg->umin_value += umin_val;
12550 		dst_reg->umax_value += umax_val;
12551 	}
12552 }
12553 
12554 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12555 				 struct bpf_reg_state *src_reg)
12556 {
12557 	s32 smin_val = src_reg->s32_min_value;
12558 	s32 smax_val = src_reg->s32_max_value;
12559 	u32 umin_val = src_reg->u32_min_value;
12560 	u32 umax_val = src_reg->u32_max_value;
12561 
12562 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12563 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12564 		/* Overflow possible, we know nothing */
12565 		dst_reg->s32_min_value = S32_MIN;
12566 		dst_reg->s32_max_value = S32_MAX;
12567 	} else {
12568 		dst_reg->s32_min_value -= smax_val;
12569 		dst_reg->s32_max_value -= smin_val;
12570 	}
12571 	if (dst_reg->u32_min_value < umax_val) {
12572 		/* Overflow possible, we know nothing */
12573 		dst_reg->u32_min_value = 0;
12574 		dst_reg->u32_max_value = U32_MAX;
12575 	} else {
12576 		/* Cannot overflow (as long as bounds are consistent) */
12577 		dst_reg->u32_min_value -= umax_val;
12578 		dst_reg->u32_max_value -= umin_val;
12579 	}
12580 }
12581 
12582 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12583 			       struct bpf_reg_state *src_reg)
12584 {
12585 	s64 smin_val = src_reg->smin_value;
12586 	s64 smax_val = src_reg->smax_value;
12587 	u64 umin_val = src_reg->umin_value;
12588 	u64 umax_val = src_reg->umax_value;
12589 
12590 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12591 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12592 		/* Overflow possible, we know nothing */
12593 		dst_reg->smin_value = S64_MIN;
12594 		dst_reg->smax_value = S64_MAX;
12595 	} else {
12596 		dst_reg->smin_value -= smax_val;
12597 		dst_reg->smax_value -= smin_val;
12598 	}
12599 	if (dst_reg->umin_value < umax_val) {
12600 		/* Overflow possible, we know nothing */
12601 		dst_reg->umin_value = 0;
12602 		dst_reg->umax_value = U64_MAX;
12603 	} else {
12604 		/* Cannot overflow (as long as bounds are consistent) */
12605 		dst_reg->umin_value -= umax_val;
12606 		dst_reg->umax_value -= umin_val;
12607 	}
12608 }
12609 
12610 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12611 				 struct bpf_reg_state *src_reg)
12612 {
12613 	s32 smin_val = src_reg->s32_min_value;
12614 	u32 umin_val = src_reg->u32_min_value;
12615 	u32 umax_val = src_reg->u32_max_value;
12616 
12617 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12618 		/* Ain't nobody got time to multiply that sign */
12619 		__mark_reg32_unbounded(dst_reg);
12620 		return;
12621 	}
12622 	/* Both values are positive, so we can work with unsigned and
12623 	 * copy the result to signed (unless it exceeds S32_MAX).
12624 	 */
12625 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12626 		/* Potential overflow, we know nothing */
12627 		__mark_reg32_unbounded(dst_reg);
12628 		return;
12629 	}
12630 	dst_reg->u32_min_value *= umin_val;
12631 	dst_reg->u32_max_value *= umax_val;
12632 	if (dst_reg->u32_max_value > S32_MAX) {
12633 		/* Overflow possible, we know nothing */
12634 		dst_reg->s32_min_value = S32_MIN;
12635 		dst_reg->s32_max_value = S32_MAX;
12636 	} else {
12637 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12638 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12639 	}
12640 }
12641 
12642 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12643 			       struct bpf_reg_state *src_reg)
12644 {
12645 	s64 smin_val = src_reg->smin_value;
12646 	u64 umin_val = src_reg->umin_value;
12647 	u64 umax_val = src_reg->umax_value;
12648 
12649 	if (smin_val < 0 || dst_reg->smin_value < 0) {
12650 		/* Ain't nobody got time to multiply that sign */
12651 		__mark_reg64_unbounded(dst_reg);
12652 		return;
12653 	}
12654 	/* Both values are positive, so we can work with unsigned and
12655 	 * copy the result to signed (unless it exceeds S64_MAX).
12656 	 */
12657 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12658 		/* Potential overflow, we know nothing */
12659 		__mark_reg64_unbounded(dst_reg);
12660 		return;
12661 	}
12662 	dst_reg->umin_value *= umin_val;
12663 	dst_reg->umax_value *= umax_val;
12664 	if (dst_reg->umax_value > S64_MAX) {
12665 		/* Overflow possible, we know nothing */
12666 		dst_reg->smin_value = S64_MIN;
12667 		dst_reg->smax_value = S64_MAX;
12668 	} else {
12669 		dst_reg->smin_value = dst_reg->umin_value;
12670 		dst_reg->smax_value = dst_reg->umax_value;
12671 	}
12672 }
12673 
12674 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12675 				 struct bpf_reg_state *src_reg)
12676 {
12677 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12678 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12679 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12680 	s32 smin_val = src_reg->s32_min_value;
12681 	u32 umax_val = src_reg->u32_max_value;
12682 
12683 	if (src_known && dst_known) {
12684 		__mark_reg32_known(dst_reg, var32_off.value);
12685 		return;
12686 	}
12687 
12688 	/* We get our minimum from the var_off, since that's inherently
12689 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12690 	 */
12691 	dst_reg->u32_min_value = var32_off.value;
12692 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12693 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12694 		/* Lose signed bounds when ANDing negative numbers,
12695 		 * ain't nobody got time for that.
12696 		 */
12697 		dst_reg->s32_min_value = S32_MIN;
12698 		dst_reg->s32_max_value = S32_MAX;
12699 	} else {
12700 		/* ANDing two positives gives a positive, so safe to
12701 		 * cast result into s64.
12702 		 */
12703 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12704 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12705 	}
12706 }
12707 
12708 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12709 			       struct bpf_reg_state *src_reg)
12710 {
12711 	bool src_known = tnum_is_const(src_reg->var_off);
12712 	bool dst_known = tnum_is_const(dst_reg->var_off);
12713 	s64 smin_val = src_reg->smin_value;
12714 	u64 umax_val = src_reg->umax_value;
12715 
12716 	if (src_known && dst_known) {
12717 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12718 		return;
12719 	}
12720 
12721 	/* We get our minimum from the var_off, since that's inherently
12722 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12723 	 */
12724 	dst_reg->umin_value = dst_reg->var_off.value;
12725 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12726 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12727 		/* Lose signed bounds when ANDing negative numbers,
12728 		 * ain't nobody got time for that.
12729 		 */
12730 		dst_reg->smin_value = S64_MIN;
12731 		dst_reg->smax_value = S64_MAX;
12732 	} else {
12733 		/* ANDing two positives gives a positive, so safe to
12734 		 * cast result into s64.
12735 		 */
12736 		dst_reg->smin_value = dst_reg->umin_value;
12737 		dst_reg->smax_value = dst_reg->umax_value;
12738 	}
12739 	/* We may learn something more from the var_off */
12740 	__update_reg_bounds(dst_reg);
12741 }
12742 
12743 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12744 				struct bpf_reg_state *src_reg)
12745 {
12746 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12747 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12748 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12749 	s32 smin_val = src_reg->s32_min_value;
12750 	u32 umin_val = src_reg->u32_min_value;
12751 
12752 	if (src_known && dst_known) {
12753 		__mark_reg32_known(dst_reg, var32_off.value);
12754 		return;
12755 	}
12756 
12757 	/* We get our maximum from the var_off, and our minimum is the
12758 	 * maximum of the operands' minima
12759 	 */
12760 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12761 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12762 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12763 		/* Lose signed bounds when ORing negative numbers,
12764 		 * ain't nobody got time for that.
12765 		 */
12766 		dst_reg->s32_min_value = S32_MIN;
12767 		dst_reg->s32_max_value = S32_MAX;
12768 	} else {
12769 		/* ORing two positives gives a positive, so safe to
12770 		 * cast result into s64.
12771 		 */
12772 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12773 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12774 	}
12775 }
12776 
12777 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
12778 			      struct bpf_reg_state *src_reg)
12779 {
12780 	bool src_known = tnum_is_const(src_reg->var_off);
12781 	bool dst_known = tnum_is_const(dst_reg->var_off);
12782 	s64 smin_val = src_reg->smin_value;
12783 	u64 umin_val = src_reg->umin_value;
12784 
12785 	if (src_known && dst_known) {
12786 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12787 		return;
12788 	}
12789 
12790 	/* We get our maximum from the var_off, and our minimum is the
12791 	 * maximum of the operands' minima
12792 	 */
12793 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
12794 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12795 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12796 		/* Lose signed bounds when ORing negative numbers,
12797 		 * ain't nobody got time for that.
12798 		 */
12799 		dst_reg->smin_value = S64_MIN;
12800 		dst_reg->smax_value = S64_MAX;
12801 	} else {
12802 		/* ORing two positives gives a positive, so safe to
12803 		 * cast result into s64.
12804 		 */
12805 		dst_reg->smin_value = dst_reg->umin_value;
12806 		dst_reg->smax_value = dst_reg->umax_value;
12807 	}
12808 	/* We may learn something more from the var_off */
12809 	__update_reg_bounds(dst_reg);
12810 }
12811 
12812 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
12813 				 struct bpf_reg_state *src_reg)
12814 {
12815 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12816 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12817 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12818 	s32 smin_val = src_reg->s32_min_value;
12819 
12820 	if (src_known && dst_known) {
12821 		__mark_reg32_known(dst_reg, var32_off.value);
12822 		return;
12823 	}
12824 
12825 	/* We get both minimum and maximum from the var32_off. */
12826 	dst_reg->u32_min_value = var32_off.value;
12827 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12828 
12829 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
12830 		/* XORing two positive sign numbers gives a positive,
12831 		 * so safe to cast u32 result into s32.
12832 		 */
12833 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12834 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12835 	} else {
12836 		dst_reg->s32_min_value = S32_MIN;
12837 		dst_reg->s32_max_value = S32_MAX;
12838 	}
12839 }
12840 
12841 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
12842 			       struct bpf_reg_state *src_reg)
12843 {
12844 	bool src_known = tnum_is_const(src_reg->var_off);
12845 	bool dst_known = tnum_is_const(dst_reg->var_off);
12846 	s64 smin_val = src_reg->smin_value;
12847 
12848 	if (src_known && dst_known) {
12849 		/* dst_reg->var_off.value has been updated earlier */
12850 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12851 		return;
12852 	}
12853 
12854 	/* We get both minimum and maximum from the var_off. */
12855 	dst_reg->umin_value = dst_reg->var_off.value;
12856 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12857 
12858 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
12859 		/* XORing two positive sign numbers gives a positive,
12860 		 * so safe to cast u64 result into s64.
12861 		 */
12862 		dst_reg->smin_value = dst_reg->umin_value;
12863 		dst_reg->smax_value = dst_reg->umax_value;
12864 	} else {
12865 		dst_reg->smin_value = S64_MIN;
12866 		dst_reg->smax_value = S64_MAX;
12867 	}
12868 
12869 	__update_reg_bounds(dst_reg);
12870 }
12871 
12872 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12873 				   u64 umin_val, u64 umax_val)
12874 {
12875 	/* We lose all sign bit information (except what we can pick
12876 	 * up from var_off)
12877 	 */
12878 	dst_reg->s32_min_value = S32_MIN;
12879 	dst_reg->s32_max_value = S32_MAX;
12880 	/* If we might shift our top bit out, then we know nothing */
12881 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
12882 		dst_reg->u32_min_value = 0;
12883 		dst_reg->u32_max_value = U32_MAX;
12884 	} else {
12885 		dst_reg->u32_min_value <<= umin_val;
12886 		dst_reg->u32_max_value <<= umax_val;
12887 	}
12888 }
12889 
12890 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12891 				 struct bpf_reg_state *src_reg)
12892 {
12893 	u32 umax_val = src_reg->u32_max_value;
12894 	u32 umin_val = src_reg->u32_min_value;
12895 	/* u32 alu operation will zext upper bits */
12896 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12897 
12898 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12899 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
12900 	/* Not required but being careful mark reg64 bounds as unknown so
12901 	 * that we are forced to pick them up from tnum and zext later and
12902 	 * if some path skips this step we are still safe.
12903 	 */
12904 	__mark_reg64_unbounded(dst_reg);
12905 	__update_reg32_bounds(dst_reg);
12906 }
12907 
12908 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
12909 				   u64 umin_val, u64 umax_val)
12910 {
12911 	/* Special case <<32 because it is a common compiler pattern to sign
12912 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
12913 	 * positive we know this shift will also be positive so we can track
12914 	 * bounds correctly. Otherwise we lose all sign bit information except
12915 	 * what we can pick up from var_off. Perhaps we can generalize this
12916 	 * later to shifts of any length.
12917 	 */
12918 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
12919 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
12920 	else
12921 		dst_reg->smax_value = S64_MAX;
12922 
12923 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
12924 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
12925 	else
12926 		dst_reg->smin_value = S64_MIN;
12927 
12928 	/* If we might shift our top bit out, then we know nothing */
12929 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
12930 		dst_reg->umin_value = 0;
12931 		dst_reg->umax_value = U64_MAX;
12932 	} else {
12933 		dst_reg->umin_value <<= umin_val;
12934 		dst_reg->umax_value <<= umax_val;
12935 	}
12936 }
12937 
12938 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
12939 			       struct bpf_reg_state *src_reg)
12940 {
12941 	u64 umax_val = src_reg->umax_value;
12942 	u64 umin_val = src_reg->umin_value;
12943 
12944 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
12945 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
12946 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12947 
12948 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
12949 	/* We may learn something more from the var_off */
12950 	__update_reg_bounds(dst_reg);
12951 }
12952 
12953 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
12954 				 struct bpf_reg_state *src_reg)
12955 {
12956 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12957 	u32 umax_val = src_reg->u32_max_value;
12958 	u32 umin_val = src_reg->u32_min_value;
12959 
12960 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12961 	 * be negative, then either:
12962 	 * 1) src_reg might be zero, so the sign bit of the result is
12963 	 *    unknown, so we lose our signed bounds
12964 	 * 2) it's known negative, thus the unsigned bounds capture the
12965 	 *    signed bounds
12966 	 * 3) the signed bounds cross zero, so they tell us nothing
12967 	 *    about the result
12968 	 * If the value in dst_reg is known nonnegative, then again the
12969 	 * unsigned bounds capture the signed bounds.
12970 	 * Thus, in all cases it suffices to blow away our signed bounds
12971 	 * and rely on inferring new ones from the unsigned bounds and
12972 	 * var_off of the result.
12973 	 */
12974 	dst_reg->s32_min_value = S32_MIN;
12975 	dst_reg->s32_max_value = S32_MAX;
12976 
12977 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
12978 	dst_reg->u32_min_value >>= umax_val;
12979 	dst_reg->u32_max_value >>= umin_val;
12980 
12981 	__mark_reg64_unbounded(dst_reg);
12982 	__update_reg32_bounds(dst_reg);
12983 }
12984 
12985 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
12986 			       struct bpf_reg_state *src_reg)
12987 {
12988 	u64 umax_val = src_reg->umax_value;
12989 	u64 umin_val = src_reg->umin_value;
12990 
12991 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12992 	 * be negative, then either:
12993 	 * 1) src_reg might be zero, so the sign bit of the result is
12994 	 *    unknown, so we lose our signed bounds
12995 	 * 2) it's known negative, thus the unsigned bounds capture the
12996 	 *    signed bounds
12997 	 * 3) the signed bounds cross zero, so they tell us nothing
12998 	 *    about the result
12999 	 * If the value in dst_reg is known nonnegative, then again the
13000 	 * unsigned bounds capture the signed bounds.
13001 	 * Thus, in all cases it suffices to blow away our signed bounds
13002 	 * and rely on inferring new ones from the unsigned bounds and
13003 	 * var_off of the result.
13004 	 */
13005 	dst_reg->smin_value = S64_MIN;
13006 	dst_reg->smax_value = S64_MAX;
13007 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13008 	dst_reg->umin_value >>= umax_val;
13009 	dst_reg->umax_value >>= umin_val;
13010 
13011 	/* Its not easy to operate on alu32 bounds here because it depends
13012 	 * on bits being shifted in. Take easy way out and mark unbounded
13013 	 * so we can recalculate later from tnum.
13014 	 */
13015 	__mark_reg32_unbounded(dst_reg);
13016 	__update_reg_bounds(dst_reg);
13017 }
13018 
13019 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13020 				  struct bpf_reg_state *src_reg)
13021 {
13022 	u64 umin_val = src_reg->u32_min_value;
13023 
13024 	/* Upon reaching here, src_known is true and
13025 	 * umax_val is equal to umin_val.
13026 	 */
13027 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13028 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13029 
13030 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13031 
13032 	/* blow away the dst_reg umin_value/umax_value and rely on
13033 	 * dst_reg var_off to refine the result.
13034 	 */
13035 	dst_reg->u32_min_value = 0;
13036 	dst_reg->u32_max_value = U32_MAX;
13037 
13038 	__mark_reg64_unbounded(dst_reg);
13039 	__update_reg32_bounds(dst_reg);
13040 }
13041 
13042 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13043 				struct bpf_reg_state *src_reg)
13044 {
13045 	u64 umin_val = src_reg->umin_value;
13046 
13047 	/* Upon reaching here, src_known is true and umax_val is equal
13048 	 * to umin_val.
13049 	 */
13050 	dst_reg->smin_value >>= umin_val;
13051 	dst_reg->smax_value >>= umin_val;
13052 
13053 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13054 
13055 	/* blow away the dst_reg umin_value/umax_value and rely on
13056 	 * dst_reg var_off to refine the result.
13057 	 */
13058 	dst_reg->umin_value = 0;
13059 	dst_reg->umax_value = U64_MAX;
13060 
13061 	/* Its not easy to operate on alu32 bounds here because it depends
13062 	 * on bits being shifted in from upper 32-bits. Take easy way out
13063 	 * and mark unbounded so we can recalculate later from tnum.
13064 	 */
13065 	__mark_reg32_unbounded(dst_reg);
13066 	__update_reg_bounds(dst_reg);
13067 }
13068 
13069 /* WARNING: This function does calculations on 64-bit values, but the actual
13070  * execution may occur on 32-bit values. Therefore, things like bitshifts
13071  * need extra checks in the 32-bit case.
13072  */
13073 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13074 				      struct bpf_insn *insn,
13075 				      struct bpf_reg_state *dst_reg,
13076 				      struct bpf_reg_state src_reg)
13077 {
13078 	struct bpf_reg_state *regs = cur_regs(env);
13079 	u8 opcode = BPF_OP(insn->code);
13080 	bool src_known;
13081 	s64 smin_val, smax_val;
13082 	u64 umin_val, umax_val;
13083 	s32 s32_min_val, s32_max_val;
13084 	u32 u32_min_val, u32_max_val;
13085 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13086 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13087 	int ret;
13088 
13089 	smin_val = src_reg.smin_value;
13090 	smax_val = src_reg.smax_value;
13091 	umin_val = src_reg.umin_value;
13092 	umax_val = src_reg.umax_value;
13093 
13094 	s32_min_val = src_reg.s32_min_value;
13095 	s32_max_val = src_reg.s32_max_value;
13096 	u32_min_val = src_reg.u32_min_value;
13097 	u32_max_val = src_reg.u32_max_value;
13098 
13099 	if (alu32) {
13100 		src_known = tnum_subreg_is_const(src_reg.var_off);
13101 		if ((src_known &&
13102 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13103 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13104 			/* Taint dst register if offset had invalid bounds
13105 			 * derived from e.g. dead branches.
13106 			 */
13107 			__mark_reg_unknown(env, dst_reg);
13108 			return 0;
13109 		}
13110 	} else {
13111 		src_known = tnum_is_const(src_reg.var_off);
13112 		if ((src_known &&
13113 		     (smin_val != smax_val || umin_val != umax_val)) ||
13114 		    smin_val > smax_val || umin_val > umax_val) {
13115 			/* Taint dst register if offset had invalid bounds
13116 			 * derived from e.g. dead branches.
13117 			 */
13118 			__mark_reg_unknown(env, dst_reg);
13119 			return 0;
13120 		}
13121 	}
13122 
13123 	if (!src_known &&
13124 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13125 		__mark_reg_unknown(env, dst_reg);
13126 		return 0;
13127 	}
13128 
13129 	if (sanitize_needed(opcode)) {
13130 		ret = sanitize_val_alu(env, insn);
13131 		if (ret < 0)
13132 			return sanitize_err(env, insn, ret, NULL, NULL);
13133 	}
13134 
13135 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13136 	 * There are two classes of instructions: The first class we track both
13137 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
13138 	 * greatest amount of precision when alu operations are mixed with jmp32
13139 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13140 	 * and BPF_OR. This is possible because these ops have fairly easy to
13141 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13142 	 * See alu32 verifier tests for examples. The second class of
13143 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13144 	 * with regards to tracking sign/unsigned bounds because the bits may
13145 	 * cross subreg boundaries in the alu64 case. When this happens we mark
13146 	 * the reg unbounded in the subreg bound space and use the resulting
13147 	 * tnum to calculate an approximation of the sign/unsigned bounds.
13148 	 */
13149 	switch (opcode) {
13150 	case BPF_ADD:
13151 		scalar32_min_max_add(dst_reg, &src_reg);
13152 		scalar_min_max_add(dst_reg, &src_reg);
13153 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13154 		break;
13155 	case BPF_SUB:
13156 		scalar32_min_max_sub(dst_reg, &src_reg);
13157 		scalar_min_max_sub(dst_reg, &src_reg);
13158 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13159 		break;
13160 	case BPF_MUL:
13161 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13162 		scalar32_min_max_mul(dst_reg, &src_reg);
13163 		scalar_min_max_mul(dst_reg, &src_reg);
13164 		break;
13165 	case BPF_AND:
13166 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13167 		scalar32_min_max_and(dst_reg, &src_reg);
13168 		scalar_min_max_and(dst_reg, &src_reg);
13169 		break;
13170 	case BPF_OR:
13171 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13172 		scalar32_min_max_or(dst_reg, &src_reg);
13173 		scalar_min_max_or(dst_reg, &src_reg);
13174 		break;
13175 	case BPF_XOR:
13176 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13177 		scalar32_min_max_xor(dst_reg, &src_reg);
13178 		scalar_min_max_xor(dst_reg, &src_reg);
13179 		break;
13180 	case BPF_LSH:
13181 		if (umax_val >= insn_bitness) {
13182 			/* Shifts greater than 31 or 63 are undefined.
13183 			 * This includes shifts by a negative number.
13184 			 */
13185 			mark_reg_unknown(env, regs, insn->dst_reg);
13186 			break;
13187 		}
13188 		if (alu32)
13189 			scalar32_min_max_lsh(dst_reg, &src_reg);
13190 		else
13191 			scalar_min_max_lsh(dst_reg, &src_reg);
13192 		break;
13193 	case BPF_RSH:
13194 		if (umax_val >= insn_bitness) {
13195 			/* Shifts greater than 31 or 63 are undefined.
13196 			 * This includes shifts by a negative number.
13197 			 */
13198 			mark_reg_unknown(env, regs, insn->dst_reg);
13199 			break;
13200 		}
13201 		if (alu32)
13202 			scalar32_min_max_rsh(dst_reg, &src_reg);
13203 		else
13204 			scalar_min_max_rsh(dst_reg, &src_reg);
13205 		break;
13206 	case BPF_ARSH:
13207 		if (umax_val >= insn_bitness) {
13208 			/* Shifts greater than 31 or 63 are undefined.
13209 			 * This includes shifts by a negative number.
13210 			 */
13211 			mark_reg_unknown(env, regs, insn->dst_reg);
13212 			break;
13213 		}
13214 		if (alu32)
13215 			scalar32_min_max_arsh(dst_reg, &src_reg);
13216 		else
13217 			scalar_min_max_arsh(dst_reg, &src_reg);
13218 		break;
13219 	default:
13220 		mark_reg_unknown(env, regs, insn->dst_reg);
13221 		break;
13222 	}
13223 
13224 	/* ALU32 ops are zero extended into 64bit register */
13225 	if (alu32)
13226 		zext_32_to_64(dst_reg);
13227 	reg_bounds_sync(dst_reg);
13228 	return 0;
13229 }
13230 
13231 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13232  * and var_off.
13233  */
13234 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13235 				   struct bpf_insn *insn)
13236 {
13237 	struct bpf_verifier_state *vstate = env->cur_state;
13238 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13239 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13240 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13241 	u8 opcode = BPF_OP(insn->code);
13242 	int err;
13243 
13244 	dst_reg = &regs[insn->dst_reg];
13245 	src_reg = NULL;
13246 	if (dst_reg->type != SCALAR_VALUE)
13247 		ptr_reg = dst_reg;
13248 	else
13249 		/* Make sure ID is cleared otherwise dst_reg min/max could be
13250 		 * incorrectly propagated into other registers by find_equal_scalars()
13251 		 */
13252 		dst_reg->id = 0;
13253 	if (BPF_SRC(insn->code) == BPF_X) {
13254 		src_reg = &regs[insn->src_reg];
13255 		if (src_reg->type != SCALAR_VALUE) {
13256 			if (dst_reg->type != SCALAR_VALUE) {
13257 				/* Combining two pointers by any ALU op yields
13258 				 * an arbitrary scalar. Disallow all math except
13259 				 * pointer subtraction
13260 				 */
13261 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13262 					mark_reg_unknown(env, regs, insn->dst_reg);
13263 					return 0;
13264 				}
13265 				verbose(env, "R%d pointer %s pointer prohibited\n",
13266 					insn->dst_reg,
13267 					bpf_alu_string[opcode >> 4]);
13268 				return -EACCES;
13269 			} else {
13270 				/* scalar += pointer
13271 				 * This is legal, but we have to reverse our
13272 				 * src/dest handling in computing the range
13273 				 */
13274 				err = mark_chain_precision(env, insn->dst_reg);
13275 				if (err)
13276 					return err;
13277 				return adjust_ptr_min_max_vals(env, insn,
13278 							       src_reg, dst_reg);
13279 			}
13280 		} else if (ptr_reg) {
13281 			/* pointer += scalar */
13282 			err = mark_chain_precision(env, insn->src_reg);
13283 			if (err)
13284 				return err;
13285 			return adjust_ptr_min_max_vals(env, insn,
13286 						       dst_reg, src_reg);
13287 		} else if (dst_reg->precise) {
13288 			/* if dst_reg is precise, src_reg should be precise as well */
13289 			err = mark_chain_precision(env, insn->src_reg);
13290 			if (err)
13291 				return err;
13292 		}
13293 	} else {
13294 		/* Pretend the src is a reg with a known value, since we only
13295 		 * need to be able to read from this state.
13296 		 */
13297 		off_reg.type = SCALAR_VALUE;
13298 		__mark_reg_known(&off_reg, insn->imm);
13299 		src_reg = &off_reg;
13300 		if (ptr_reg) /* pointer += K */
13301 			return adjust_ptr_min_max_vals(env, insn,
13302 						       ptr_reg, src_reg);
13303 	}
13304 
13305 	/* Got here implies adding two SCALAR_VALUEs */
13306 	if (WARN_ON_ONCE(ptr_reg)) {
13307 		print_verifier_state(env, state, true);
13308 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13309 		return -EINVAL;
13310 	}
13311 	if (WARN_ON(!src_reg)) {
13312 		print_verifier_state(env, state, true);
13313 		verbose(env, "verifier internal error: no src_reg\n");
13314 		return -EINVAL;
13315 	}
13316 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13317 }
13318 
13319 /* check validity of 32-bit and 64-bit arithmetic operations */
13320 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13321 {
13322 	struct bpf_reg_state *regs = cur_regs(env);
13323 	u8 opcode = BPF_OP(insn->code);
13324 	int err;
13325 
13326 	if (opcode == BPF_END || opcode == BPF_NEG) {
13327 		if (opcode == BPF_NEG) {
13328 			if (BPF_SRC(insn->code) != BPF_K ||
13329 			    insn->src_reg != BPF_REG_0 ||
13330 			    insn->off != 0 || insn->imm != 0) {
13331 				verbose(env, "BPF_NEG uses reserved fields\n");
13332 				return -EINVAL;
13333 			}
13334 		} else {
13335 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13336 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13337 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13338 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13339 				verbose(env, "BPF_END uses reserved fields\n");
13340 				return -EINVAL;
13341 			}
13342 		}
13343 
13344 		/* check src operand */
13345 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13346 		if (err)
13347 			return err;
13348 
13349 		if (is_pointer_value(env, insn->dst_reg)) {
13350 			verbose(env, "R%d pointer arithmetic prohibited\n",
13351 				insn->dst_reg);
13352 			return -EACCES;
13353 		}
13354 
13355 		/* check dest operand */
13356 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
13357 		if (err)
13358 			return err;
13359 
13360 	} else if (opcode == BPF_MOV) {
13361 
13362 		if (BPF_SRC(insn->code) == BPF_X) {
13363 			if (insn->imm != 0) {
13364 				verbose(env, "BPF_MOV uses reserved fields\n");
13365 				return -EINVAL;
13366 			}
13367 
13368 			if (BPF_CLASS(insn->code) == BPF_ALU) {
13369 				if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13370 					verbose(env, "BPF_MOV uses reserved fields\n");
13371 					return -EINVAL;
13372 				}
13373 			} else {
13374 				if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13375 				    insn->off != 32) {
13376 					verbose(env, "BPF_MOV uses reserved fields\n");
13377 					return -EINVAL;
13378 				}
13379 			}
13380 
13381 			/* check src operand */
13382 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13383 			if (err)
13384 				return err;
13385 		} else {
13386 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13387 				verbose(env, "BPF_MOV uses reserved fields\n");
13388 				return -EINVAL;
13389 			}
13390 		}
13391 
13392 		/* check dest operand, mark as required later */
13393 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13394 		if (err)
13395 			return err;
13396 
13397 		if (BPF_SRC(insn->code) == BPF_X) {
13398 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
13399 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13400 			bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13401 				       !tnum_is_const(src_reg->var_off);
13402 
13403 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13404 				if (insn->off == 0) {
13405 					/* case: R1 = R2
13406 					 * copy register state to dest reg
13407 					 */
13408 					if (need_id)
13409 						/* Assign src and dst registers the same ID
13410 						 * that will be used by find_equal_scalars()
13411 						 * to propagate min/max range.
13412 						 */
13413 						src_reg->id = ++env->id_gen;
13414 					copy_register_state(dst_reg, src_reg);
13415 					dst_reg->live |= REG_LIVE_WRITTEN;
13416 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13417 				} else {
13418 					/* case: R1 = (s8, s16 s32)R2 */
13419 					if (is_pointer_value(env, insn->src_reg)) {
13420 						verbose(env,
13421 							"R%d sign-extension part of pointer\n",
13422 							insn->src_reg);
13423 						return -EACCES;
13424 					} else if (src_reg->type == SCALAR_VALUE) {
13425 						bool no_sext;
13426 
13427 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13428 						if (no_sext && need_id)
13429 							src_reg->id = ++env->id_gen;
13430 						copy_register_state(dst_reg, src_reg);
13431 						if (!no_sext)
13432 							dst_reg->id = 0;
13433 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13434 						dst_reg->live |= REG_LIVE_WRITTEN;
13435 						dst_reg->subreg_def = DEF_NOT_SUBREG;
13436 					} else {
13437 						mark_reg_unknown(env, regs, insn->dst_reg);
13438 					}
13439 				}
13440 			} else {
13441 				/* R1 = (u32) R2 */
13442 				if (is_pointer_value(env, insn->src_reg)) {
13443 					verbose(env,
13444 						"R%d partial copy of pointer\n",
13445 						insn->src_reg);
13446 					return -EACCES;
13447 				} else if (src_reg->type == SCALAR_VALUE) {
13448 					if (insn->off == 0) {
13449 						bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13450 
13451 						if (is_src_reg_u32 && need_id)
13452 							src_reg->id = ++env->id_gen;
13453 						copy_register_state(dst_reg, src_reg);
13454 						/* Make sure ID is cleared if src_reg is not in u32
13455 						 * range otherwise dst_reg min/max could be incorrectly
13456 						 * propagated into src_reg by find_equal_scalars()
13457 						 */
13458 						if (!is_src_reg_u32)
13459 							dst_reg->id = 0;
13460 						dst_reg->live |= REG_LIVE_WRITTEN;
13461 						dst_reg->subreg_def = env->insn_idx + 1;
13462 					} else {
13463 						/* case: W1 = (s8, s16)W2 */
13464 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13465 
13466 						if (no_sext && need_id)
13467 							src_reg->id = ++env->id_gen;
13468 						copy_register_state(dst_reg, src_reg);
13469 						if (!no_sext)
13470 							dst_reg->id = 0;
13471 						dst_reg->live |= REG_LIVE_WRITTEN;
13472 						dst_reg->subreg_def = env->insn_idx + 1;
13473 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13474 					}
13475 				} else {
13476 					mark_reg_unknown(env, regs,
13477 							 insn->dst_reg);
13478 				}
13479 				zext_32_to_64(dst_reg);
13480 				reg_bounds_sync(dst_reg);
13481 			}
13482 		} else {
13483 			/* case: R = imm
13484 			 * remember the value we stored into this reg
13485 			 */
13486 			/* clear any state __mark_reg_known doesn't set */
13487 			mark_reg_unknown(env, regs, insn->dst_reg);
13488 			regs[insn->dst_reg].type = SCALAR_VALUE;
13489 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13490 				__mark_reg_known(regs + insn->dst_reg,
13491 						 insn->imm);
13492 			} else {
13493 				__mark_reg_known(regs + insn->dst_reg,
13494 						 (u32)insn->imm);
13495 			}
13496 		}
13497 
13498 	} else if (opcode > BPF_END) {
13499 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13500 		return -EINVAL;
13501 
13502 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
13503 
13504 		if (BPF_SRC(insn->code) == BPF_X) {
13505 			if (insn->imm != 0 || insn->off > 1 ||
13506 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13507 				verbose(env, "BPF_ALU uses reserved fields\n");
13508 				return -EINVAL;
13509 			}
13510 			/* check src1 operand */
13511 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13512 			if (err)
13513 				return err;
13514 		} else {
13515 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13516 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13517 				verbose(env, "BPF_ALU uses reserved fields\n");
13518 				return -EINVAL;
13519 			}
13520 		}
13521 
13522 		/* check src2 operand */
13523 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13524 		if (err)
13525 			return err;
13526 
13527 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13528 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13529 			verbose(env, "div by zero\n");
13530 			return -EINVAL;
13531 		}
13532 
13533 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13534 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13535 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13536 
13537 			if (insn->imm < 0 || insn->imm >= size) {
13538 				verbose(env, "invalid shift %d\n", insn->imm);
13539 				return -EINVAL;
13540 			}
13541 		}
13542 
13543 		/* check dest operand */
13544 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13545 		if (err)
13546 			return err;
13547 
13548 		return adjust_reg_min_max_vals(env, insn);
13549 	}
13550 
13551 	return 0;
13552 }
13553 
13554 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13555 				   struct bpf_reg_state *dst_reg,
13556 				   enum bpf_reg_type type,
13557 				   bool range_right_open)
13558 {
13559 	struct bpf_func_state *state;
13560 	struct bpf_reg_state *reg;
13561 	int new_range;
13562 
13563 	if (dst_reg->off < 0 ||
13564 	    (dst_reg->off == 0 && range_right_open))
13565 		/* This doesn't give us any range */
13566 		return;
13567 
13568 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
13569 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13570 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
13571 		 * than pkt_end, but that's because it's also less than pkt.
13572 		 */
13573 		return;
13574 
13575 	new_range = dst_reg->off;
13576 	if (range_right_open)
13577 		new_range++;
13578 
13579 	/* Examples for register markings:
13580 	 *
13581 	 * pkt_data in dst register:
13582 	 *
13583 	 *   r2 = r3;
13584 	 *   r2 += 8;
13585 	 *   if (r2 > pkt_end) goto <handle exception>
13586 	 *   <access okay>
13587 	 *
13588 	 *   r2 = r3;
13589 	 *   r2 += 8;
13590 	 *   if (r2 < pkt_end) goto <access okay>
13591 	 *   <handle exception>
13592 	 *
13593 	 *   Where:
13594 	 *     r2 == dst_reg, pkt_end == src_reg
13595 	 *     r2=pkt(id=n,off=8,r=0)
13596 	 *     r3=pkt(id=n,off=0,r=0)
13597 	 *
13598 	 * pkt_data in src register:
13599 	 *
13600 	 *   r2 = r3;
13601 	 *   r2 += 8;
13602 	 *   if (pkt_end >= r2) goto <access okay>
13603 	 *   <handle exception>
13604 	 *
13605 	 *   r2 = r3;
13606 	 *   r2 += 8;
13607 	 *   if (pkt_end <= r2) goto <handle exception>
13608 	 *   <access okay>
13609 	 *
13610 	 *   Where:
13611 	 *     pkt_end == dst_reg, r2 == src_reg
13612 	 *     r2=pkt(id=n,off=8,r=0)
13613 	 *     r3=pkt(id=n,off=0,r=0)
13614 	 *
13615 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
13616 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13617 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
13618 	 * the check.
13619 	 */
13620 
13621 	/* If our ids match, then we must have the same max_value.  And we
13622 	 * don't care about the other reg's fixed offset, since if it's too big
13623 	 * the range won't allow anything.
13624 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13625 	 */
13626 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13627 		if (reg->type == type && reg->id == dst_reg->id)
13628 			/* keep the maximum range already checked */
13629 			reg->range = max(reg->range, new_range);
13630 	}));
13631 }
13632 
13633 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
13634 {
13635 	struct tnum subreg = tnum_subreg(reg->var_off);
13636 	s32 sval = (s32)val;
13637 
13638 	switch (opcode) {
13639 	case BPF_JEQ:
13640 		if (tnum_is_const(subreg))
13641 			return !!tnum_equals_const(subreg, val);
13642 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13643 			return 0;
13644 		break;
13645 	case BPF_JNE:
13646 		if (tnum_is_const(subreg))
13647 			return !tnum_equals_const(subreg, val);
13648 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13649 			return 1;
13650 		break;
13651 	case BPF_JSET:
13652 		if ((~subreg.mask & subreg.value) & val)
13653 			return 1;
13654 		if (!((subreg.mask | subreg.value) & val))
13655 			return 0;
13656 		break;
13657 	case BPF_JGT:
13658 		if (reg->u32_min_value > val)
13659 			return 1;
13660 		else if (reg->u32_max_value <= val)
13661 			return 0;
13662 		break;
13663 	case BPF_JSGT:
13664 		if (reg->s32_min_value > sval)
13665 			return 1;
13666 		else if (reg->s32_max_value <= sval)
13667 			return 0;
13668 		break;
13669 	case BPF_JLT:
13670 		if (reg->u32_max_value < val)
13671 			return 1;
13672 		else if (reg->u32_min_value >= val)
13673 			return 0;
13674 		break;
13675 	case BPF_JSLT:
13676 		if (reg->s32_max_value < sval)
13677 			return 1;
13678 		else if (reg->s32_min_value >= sval)
13679 			return 0;
13680 		break;
13681 	case BPF_JGE:
13682 		if (reg->u32_min_value >= val)
13683 			return 1;
13684 		else if (reg->u32_max_value < val)
13685 			return 0;
13686 		break;
13687 	case BPF_JSGE:
13688 		if (reg->s32_min_value >= sval)
13689 			return 1;
13690 		else if (reg->s32_max_value < sval)
13691 			return 0;
13692 		break;
13693 	case BPF_JLE:
13694 		if (reg->u32_max_value <= val)
13695 			return 1;
13696 		else if (reg->u32_min_value > val)
13697 			return 0;
13698 		break;
13699 	case BPF_JSLE:
13700 		if (reg->s32_max_value <= sval)
13701 			return 1;
13702 		else if (reg->s32_min_value > sval)
13703 			return 0;
13704 		break;
13705 	}
13706 
13707 	return -1;
13708 }
13709 
13710 
13711 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13712 {
13713 	s64 sval = (s64)val;
13714 
13715 	switch (opcode) {
13716 	case BPF_JEQ:
13717 		if (tnum_is_const(reg->var_off))
13718 			return !!tnum_equals_const(reg->var_off, val);
13719 		else if (val < reg->umin_value || val > reg->umax_value)
13720 			return 0;
13721 		break;
13722 	case BPF_JNE:
13723 		if (tnum_is_const(reg->var_off))
13724 			return !tnum_equals_const(reg->var_off, val);
13725 		else if (val < reg->umin_value || val > reg->umax_value)
13726 			return 1;
13727 		break;
13728 	case BPF_JSET:
13729 		if ((~reg->var_off.mask & reg->var_off.value) & val)
13730 			return 1;
13731 		if (!((reg->var_off.mask | reg->var_off.value) & val))
13732 			return 0;
13733 		break;
13734 	case BPF_JGT:
13735 		if (reg->umin_value > val)
13736 			return 1;
13737 		else if (reg->umax_value <= val)
13738 			return 0;
13739 		break;
13740 	case BPF_JSGT:
13741 		if (reg->smin_value > sval)
13742 			return 1;
13743 		else if (reg->smax_value <= sval)
13744 			return 0;
13745 		break;
13746 	case BPF_JLT:
13747 		if (reg->umax_value < val)
13748 			return 1;
13749 		else if (reg->umin_value >= val)
13750 			return 0;
13751 		break;
13752 	case BPF_JSLT:
13753 		if (reg->smax_value < sval)
13754 			return 1;
13755 		else if (reg->smin_value >= sval)
13756 			return 0;
13757 		break;
13758 	case BPF_JGE:
13759 		if (reg->umin_value >= val)
13760 			return 1;
13761 		else if (reg->umax_value < val)
13762 			return 0;
13763 		break;
13764 	case BPF_JSGE:
13765 		if (reg->smin_value >= sval)
13766 			return 1;
13767 		else if (reg->smax_value < sval)
13768 			return 0;
13769 		break;
13770 	case BPF_JLE:
13771 		if (reg->umax_value <= val)
13772 			return 1;
13773 		else if (reg->umin_value > val)
13774 			return 0;
13775 		break;
13776 	case BPF_JSLE:
13777 		if (reg->smax_value <= sval)
13778 			return 1;
13779 		else if (reg->smin_value > sval)
13780 			return 0;
13781 		break;
13782 	}
13783 
13784 	return -1;
13785 }
13786 
13787 /* compute branch direction of the expression "if (reg opcode val) goto target;"
13788  * and return:
13789  *  1 - branch will be taken and "goto target" will be executed
13790  *  0 - branch will not be taken and fall-through to next insn
13791  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
13792  *      range [0,10]
13793  */
13794 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
13795 			   bool is_jmp32)
13796 {
13797 	if (__is_pointer_value(false, reg)) {
13798 		if (!reg_not_null(reg))
13799 			return -1;
13800 
13801 		/* If pointer is valid tests against zero will fail so we can
13802 		 * use this to direct branch taken.
13803 		 */
13804 		if (val != 0)
13805 			return -1;
13806 
13807 		switch (opcode) {
13808 		case BPF_JEQ:
13809 			return 0;
13810 		case BPF_JNE:
13811 			return 1;
13812 		default:
13813 			return -1;
13814 		}
13815 	}
13816 
13817 	if (is_jmp32)
13818 		return is_branch32_taken(reg, val, opcode);
13819 	return is_branch64_taken(reg, val, opcode);
13820 }
13821 
13822 static int flip_opcode(u32 opcode)
13823 {
13824 	/* How can we transform "a <op> b" into "b <op> a"? */
13825 	static const u8 opcode_flip[16] = {
13826 		/* these stay the same */
13827 		[BPF_JEQ  >> 4] = BPF_JEQ,
13828 		[BPF_JNE  >> 4] = BPF_JNE,
13829 		[BPF_JSET >> 4] = BPF_JSET,
13830 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
13831 		[BPF_JGE  >> 4] = BPF_JLE,
13832 		[BPF_JGT  >> 4] = BPF_JLT,
13833 		[BPF_JLE  >> 4] = BPF_JGE,
13834 		[BPF_JLT  >> 4] = BPF_JGT,
13835 		[BPF_JSGE >> 4] = BPF_JSLE,
13836 		[BPF_JSGT >> 4] = BPF_JSLT,
13837 		[BPF_JSLE >> 4] = BPF_JSGE,
13838 		[BPF_JSLT >> 4] = BPF_JSGT
13839 	};
13840 	return opcode_flip[opcode >> 4];
13841 }
13842 
13843 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
13844 				   struct bpf_reg_state *src_reg,
13845 				   u8 opcode)
13846 {
13847 	struct bpf_reg_state *pkt;
13848 
13849 	if (src_reg->type == PTR_TO_PACKET_END) {
13850 		pkt = dst_reg;
13851 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
13852 		pkt = src_reg;
13853 		opcode = flip_opcode(opcode);
13854 	} else {
13855 		return -1;
13856 	}
13857 
13858 	if (pkt->range >= 0)
13859 		return -1;
13860 
13861 	switch (opcode) {
13862 	case BPF_JLE:
13863 		/* pkt <= pkt_end */
13864 		fallthrough;
13865 	case BPF_JGT:
13866 		/* pkt > pkt_end */
13867 		if (pkt->range == BEYOND_PKT_END)
13868 			/* pkt has at last one extra byte beyond pkt_end */
13869 			return opcode == BPF_JGT;
13870 		break;
13871 	case BPF_JLT:
13872 		/* pkt < pkt_end */
13873 		fallthrough;
13874 	case BPF_JGE:
13875 		/* pkt >= pkt_end */
13876 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
13877 			return opcode == BPF_JGE;
13878 		break;
13879 	}
13880 	return -1;
13881 }
13882 
13883 /* Adjusts the register min/max values in the case that the dst_reg is the
13884  * variable register that we are working on, and src_reg is a constant or we're
13885  * simply doing a BPF_K check.
13886  * In JEQ/JNE cases we also adjust the var_off values.
13887  */
13888 static void reg_set_min_max(struct bpf_reg_state *true_reg,
13889 			    struct bpf_reg_state *false_reg,
13890 			    u64 val, u32 val32,
13891 			    u8 opcode, bool is_jmp32)
13892 {
13893 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
13894 	struct tnum false_64off = false_reg->var_off;
13895 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
13896 	struct tnum true_64off = true_reg->var_off;
13897 	s64 sval = (s64)val;
13898 	s32 sval32 = (s32)val32;
13899 
13900 	/* If the dst_reg is a pointer, we can't learn anything about its
13901 	 * variable offset from the compare (unless src_reg were a pointer into
13902 	 * the same object, but we don't bother with that.
13903 	 * Since false_reg and true_reg have the same type by construction, we
13904 	 * only need to check one of them for pointerness.
13905 	 */
13906 	if (__is_pointer_value(false, false_reg))
13907 		return;
13908 
13909 	switch (opcode) {
13910 	/* JEQ/JNE comparison doesn't change the register equivalence.
13911 	 *
13912 	 * r1 = r2;
13913 	 * if (r1 == 42) goto label;
13914 	 * ...
13915 	 * label: // here both r1 and r2 are known to be 42.
13916 	 *
13917 	 * Hence when marking register as known preserve it's ID.
13918 	 */
13919 	case BPF_JEQ:
13920 		if (is_jmp32) {
13921 			__mark_reg32_known(true_reg, val32);
13922 			true_32off = tnum_subreg(true_reg->var_off);
13923 		} else {
13924 			___mark_reg_known(true_reg, val);
13925 			true_64off = true_reg->var_off;
13926 		}
13927 		break;
13928 	case BPF_JNE:
13929 		if (is_jmp32) {
13930 			__mark_reg32_known(false_reg, val32);
13931 			false_32off = tnum_subreg(false_reg->var_off);
13932 		} else {
13933 			___mark_reg_known(false_reg, val);
13934 			false_64off = false_reg->var_off;
13935 		}
13936 		break;
13937 	case BPF_JSET:
13938 		if (is_jmp32) {
13939 			false_32off = tnum_and(false_32off, tnum_const(~val32));
13940 			if (is_power_of_2(val32))
13941 				true_32off = tnum_or(true_32off,
13942 						     tnum_const(val32));
13943 		} else {
13944 			false_64off = tnum_and(false_64off, tnum_const(~val));
13945 			if (is_power_of_2(val))
13946 				true_64off = tnum_or(true_64off,
13947 						     tnum_const(val));
13948 		}
13949 		break;
13950 	case BPF_JGE:
13951 	case BPF_JGT:
13952 	{
13953 		if (is_jmp32) {
13954 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
13955 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
13956 
13957 			false_reg->u32_max_value = min(false_reg->u32_max_value,
13958 						       false_umax);
13959 			true_reg->u32_min_value = max(true_reg->u32_min_value,
13960 						      true_umin);
13961 		} else {
13962 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
13963 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
13964 
13965 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
13966 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
13967 		}
13968 		break;
13969 	}
13970 	case BPF_JSGE:
13971 	case BPF_JSGT:
13972 	{
13973 		if (is_jmp32) {
13974 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
13975 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
13976 
13977 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
13978 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
13979 		} else {
13980 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
13981 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
13982 
13983 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
13984 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
13985 		}
13986 		break;
13987 	}
13988 	case BPF_JLE:
13989 	case BPF_JLT:
13990 	{
13991 		if (is_jmp32) {
13992 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
13993 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
13994 
13995 			false_reg->u32_min_value = max(false_reg->u32_min_value,
13996 						       false_umin);
13997 			true_reg->u32_max_value = min(true_reg->u32_max_value,
13998 						      true_umax);
13999 		} else {
14000 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
14001 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
14002 
14003 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
14004 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
14005 		}
14006 		break;
14007 	}
14008 	case BPF_JSLE:
14009 	case BPF_JSLT:
14010 	{
14011 		if (is_jmp32) {
14012 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
14013 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
14014 
14015 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
14016 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
14017 		} else {
14018 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
14019 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
14020 
14021 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
14022 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
14023 		}
14024 		break;
14025 	}
14026 	default:
14027 		return;
14028 	}
14029 
14030 	if (is_jmp32) {
14031 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
14032 					     tnum_subreg(false_32off));
14033 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
14034 					    tnum_subreg(true_32off));
14035 		__reg_combine_32_into_64(false_reg);
14036 		__reg_combine_32_into_64(true_reg);
14037 	} else {
14038 		false_reg->var_off = false_64off;
14039 		true_reg->var_off = true_64off;
14040 		__reg_combine_64_into_32(false_reg);
14041 		__reg_combine_64_into_32(true_reg);
14042 	}
14043 }
14044 
14045 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
14046  * the variable reg.
14047  */
14048 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
14049 				struct bpf_reg_state *false_reg,
14050 				u64 val, u32 val32,
14051 				u8 opcode, bool is_jmp32)
14052 {
14053 	opcode = flip_opcode(opcode);
14054 	/* This uses zero as "not present in table"; luckily the zero opcode,
14055 	 * BPF_JA, can't get here.
14056 	 */
14057 	if (opcode)
14058 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
14059 }
14060 
14061 /* Regs are known to be equal, so intersect their min/max/var_off */
14062 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
14063 				  struct bpf_reg_state *dst_reg)
14064 {
14065 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
14066 							dst_reg->umin_value);
14067 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
14068 							dst_reg->umax_value);
14069 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
14070 							dst_reg->smin_value);
14071 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
14072 							dst_reg->smax_value);
14073 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
14074 							     dst_reg->var_off);
14075 	reg_bounds_sync(src_reg);
14076 	reg_bounds_sync(dst_reg);
14077 }
14078 
14079 static void reg_combine_min_max(struct bpf_reg_state *true_src,
14080 				struct bpf_reg_state *true_dst,
14081 				struct bpf_reg_state *false_src,
14082 				struct bpf_reg_state *false_dst,
14083 				u8 opcode)
14084 {
14085 	switch (opcode) {
14086 	case BPF_JEQ:
14087 		__reg_combine_min_max(true_src, true_dst);
14088 		break;
14089 	case BPF_JNE:
14090 		__reg_combine_min_max(false_src, false_dst);
14091 		break;
14092 	}
14093 }
14094 
14095 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14096 				 struct bpf_reg_state *reg, u32 id,
14097 				 bool is_null)
14098 {
14099 	if (type_may_be_null(reg->type) && reg->id == id &&
14100 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14101 		/* Old offset (both fixed and variable parts) should have been
14102 		 * known-zero, because we don't allow pointer arithmetic on
14103 		 * pointers that might be NULL. If we see this happening, don't
14104 		 * convert the register.
14105 		 *
14106 		 * But in some cases, some helpers that return local kptrs
14107 		 * advance offset for the returned pointer. In those cases, it
14108 		 * is fine to expect to see reg->off.
14109 		 */
14110 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14111 			return;
14112 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14113 		    WARN_ON_ONCE(reg->off))
14114 			return;
14115 
14116 		if (is_null) {
14117 			reg->type = SCALAR_VALUE;
14118 			/* We don't need id and ref_obj_id from this point
14119 			 * onwards anymore, thus we should better reset it,
14120 			 * so that state pruning has chances to take effect.
14121 			 */
14122 			reg->id = 0;
14123 			reg->ref_obj_id = 0;
14124 
14125 			return;
14126 		}
14127 
14128 		mark_ptr_not_null_reg(reg);
14129 
14130 		if (!reg_may_point_to_spin_lock(reg)) {
14131 			/* For not-NULL ptr, reg->ref_obj_id will be reset
14132 			 * in release_reference().
14133 			 *
14134 			 * reg->id is still used by spin_lock ptr. Other
14135 			 * than spin_lock ptr type, reg->id can be reset.
14136 			 */
14137 			reg->id = 0;
14138 		}
14139 	}
14140 }
14141 
14142 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14143  * be folded together at some point.
14144  */
14145 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14146 				  bool is_null)
14147 {
14148 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14149 	struct bpf_reg_state *regs = state->regs, *reg;
14150 	u32 ref_obj_id = regs[regno].ref_obj_id;
14151 	u32 id = regs[regno].id;
14152 
14153 	if (ref_obj_id && ref_obj_id == id && is_null)
14154 		/* regs[regno] is in the " == NULL" branch.
14155 		 * No one could have freed the reference state before
14156 		 * doing the NULL check.
14157 		 */
14158 		WARN_ON_ONCE(release_reference_state(state, id));
14159 
14160 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14161 		mark_ptr_or_null_reg(state, reg, id, is_null);
14162 	}));
14163 }
14164 
14165 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14166 				   struct bpf_reg_state *dst_reg,
14167 				   struct bpf_reg_state *src_reg,
14168 				   struct bpf_verifier_state *this_branch,
14169 				   struct bpf_verifier_state *other_branch)
14170 {
14171 	if (BPF_SRC(insn->code) != BPF_X)
14172 		return false;
14173 
14174 	/* Pointers are always 64-bit. */
14175 	if (BPF_CLASS(insn->code) == BPF_JMP32)
14176 		return false;
14177 
14178 	switch (BPF_OP(insn->code)) {
14179 	case BPF_JGT:
14180 		if ((dst_reg->type == PTR_TO_PACKET &&
14181 		     src_reg->type == PTR_TO_PACKET_END) ||
14182 		    (dst_reg->type == PTR_TO_PACKET_META &&
14183 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14184 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14185 			find_good_pkt_pointers(this_branch, dst_reg,
14186 					       dst_reg->type, false);
14187 			mark_pkt_end(other_branch, insn->dst_reg, true);
14188 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14189 			    src_reg->type == PTR_TO_PACKET) ||
14190 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14191 			    src_reg->type == PTR_TO_PACKET_META)) {
14192 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
14193 			find_good_pkt_pointers(other_branch, src_reg,
14194 					       src_reg->type, true);
14195 			mark_pkt_end(this_branch, insn->src_reg, false);
14196 		} else {
14197 			return false;
14198 		}
14199 		break;
14200 	case BPF_JLT:
14201 		if ((dst_reg->type == PTR_TO_PACKET &&
14202 		     src_reg->type == PTR_TO_PACKET_END) ||
14203 		    (dst_reg->type == PTR_TO_PACKET_META &&
14204 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14205 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14206 			find_good_pkt_pointers(other_branch, dst_reg,
14207 					       dst_reg->type, true);
14208 			mark_pkt_end(this_branch, insn->dst_reg, false);
14209 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14210 			    src_reg->type == PTR_TO_PACKET) ||
14211 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14212 			    src_reg->type == PTR_TO_PACKET_META)) {
14213 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
14214 			find_good_pkt_pointers(this_branch, src_reg,
14215 					       src_reg->type, false);
14216 			mark_pkt_end(other_branch, insn->src_reg, true);
14217 		} else {
14218 			return false;
14219 		}
14220 		break;
14221 	case BPF_JGE:
14222 		if ((dst_reg->type == PTR_TO_PACKET &&
14223 		     src_reg->type == PTR_TO_PACKET_END) ||
14224 		    (dst_reg->type == PTR_TO_PACKET_META &&
14225 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14226 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14227 			find_good_pkt_pointers(this_branch, dst_reg,
14228 					       dst_reg->type, true);
14229 			mark_pkt_end(other_branch, insn->dst_reg, false);
14230 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14231 			    src_reg->type == PTR_TO_PACKET) ||
14232 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14233 			    src_reg->type == PTR_TO_PACKET_META)) {
14234 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14235 			find_good_pkt_pointers(other_branch, src_reg,
14236 					       src_reg->type, false);
14237 			mark_pkt_end(this_branch, insn->src_reg, true);
14238 		} else {
14239 			return false;
14240 		}
14241 		break;
14242 	case BPF_JLE:
14243 		if ((dst_reg->type == PTR_TO_PACKET &&
14244 		     src_reg->type == PTR_TO_PACKET_END) ||
14245 		    (dst_reg->type == PTR_TO_PACKET_META &&
14246 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14247 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14248 			find_good_pkt_pointers(other_branch, dst_reg,
14249 					       dst_reg->type, false);
14250 			mark_pkt_end(this_branch, insn->dst_reg, true);
14251 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14252 			    src_reg->type == PTR_TO_PACKET) ||
14253 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14254 			    src_reg->type == PTR_TO_PACKET_META)) {
14255 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14256 			find_good_pkt_pointers(this_branch, src_reg,
14257 					       src_reg->type, true);
14258 			mark_pkt_end(other_branch, insn->src_reg, false);
14259 		} else {
14260 			return false;
14261 		}
14262 		break;
14263 	default:
14264 		return false;
14265 	}
14266 
14267 	return true;
14268 }
14269 
14270 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14271 			       struct bpf_reg_state *known_reg)
14272 {
14273 	struct bpf_func_state *state;
14274 	struct bpf_reg_state *reg;
14275 
14276 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14277 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14278 			copy_register_state(reg, known_reg);
14279 	}));
14280 }
14281 
14282 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14283 			     struct bpf_insn *insn, int *insn_idx)
14284 {
14285 	struct bpf_verifier_state *this_branch = env->cur_state;
14286 	struct bpf_verifier_state *other_branch;
14287 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14288 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14289 	struct bpf_reg_state *eq_branch_regs;
14290 	u8 opcode = BPF_OP(insn->code);
14291 	bool is_jmp32;
14292 	int pred = -1;
14293 	int err;
14294 
14295 	/* Only conditional jumps are expected to reach here. */
14296 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
14297 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14298 		return -EINVAL;
14299 	}
14300 
14301 	/* check src2 operand */
14302 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14303 	if (err)
14304 		return err;
14305 
14306 	dst_reg = &regs[insn->dst_reg];
14307 	if (BPF_SRC(insn->code) == BPF_X) {
14308 		if (insn->imm != 0) {
14309 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14310 			return -EINVAL;
14311 		}
14312 
14313 		/* check src1 operand */
14314 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14315 		if (err)
14316 			return err;
14317 
14318 		src_reg = &regs[insn->src_reg];
14319 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14320 		    is_pointer_value(env, insn->src_reg)) {
14321 			verbose(env, "R%d pointer comparison prohibited\n",
14322 				insn->src_reg);
14323 			return -EACCES;
14324 		}
14325 	} else {
14326 		if (insn->src_reg != BPF_REG_0) {
14327 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14328 			return -EINVAL;
14329 		}
14330 	}
14331 
14332 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14333 
14334 	if (BPF_SRC(insn->code) == BPF_K) {
14335 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14336 	} else if (src_reg->type == SCALAR_VALUE &&
14337 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14338 		pred = is_branch_taken(dst_reg,
14339 				       tnum_subreg(src_reg->var_off).value,
14340 				       opcode,
14341 				       is_jmp32);
14342 	} else if (src_reg->type == SCALAR_VALUE &&
14343 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14344 		pred = is_branch_taken(dst_reg,
14345 				       src_reg->var_off.value,
14346 				       opcode,
14347 				       is_jmp32);
14348 	} else if (dst_reg->type == SCALAR_VALUE &&
14349 		   is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14350 		pred = is_branch_taken(src_reg,
14351 				       tnum_subreg(dst_reg->var_off).value,
14352 				       flip_opcode(opcode),
14353 				       is_jmp32);
14354 	} else if (dst_reg->type == SCALAR_VALUE &&
14355 		   !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14356 		pred = is_branch_taken(src_reg,
14357 				       dst_reg->var_off.value,
14358 				       flip_opcode(opcode),
14359 				       is_jmp32);
14360 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
14361 		   reg_is_pkt_pointer_any(src_reg) &&
14362 		   !is_jmp32) {
14363 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14364 	}
14365 
14366 	if (pred >= 0) {
14367 		/* If we get here with a dst_reg pointer type it is because
14368 		 * above is_branch_taken() special cased the 0 comparison.
14369 		 */
14370 		if (!__is_pointer_value(false, dst_reg))
14371 			err = mark_chain_precision(env, insn->dst_reg);
14372 		if (BPF_SRC(insn->code) == BPF_X && !err &&
14373 		    !__is_pointer_value(false, src_reg))
14374 			err = mark_chain_precision(env, insn->src_reg);
14375 		if (err)
14376 			return err;
14377 	}
14378 
14379 	if (pred == 1) {
14380 		/* Only follow the goto, ignore fall-through. If needed, push
14381 		 * the fall-through branch for simulation under speculative
14382 		 * execution.
14383 		 */
14384 		if (!env->bypass_spec_v1 &&
14385 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
14386 					       *insn_idx))
14387 			return -EFAULT;
14388 		*insn_idx += insn->off;
14389 		return 0;
14390 	} else if (pred == 0) {
14391 		/* Only follow the fall-through branch, since that's where the
14392 		 * program will go. If needed, push the goto branch for
14393 		 * simulation under speculative execution.
14394 		 */
14395 		if (!env->bypass_spec_v1 &&
14396 		    !sanitize_speculative_path(env, insn,
14397 					       *insn_idx + insn->off + 1,
14398 					       *insn_idx))
14399 			return -EFAULT;
14400 		return 0;
14401 	}
14402 
14403 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14404 				  false);
14405 	if (!other_branch)
14406 		return -EFAULT;
14407 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14408 
14409 	/* detect if we are comparing against a constant value so we can adjust
14410 	 * our min/max values for our dst register.
14411 	 * this is only legit if both are scalars (or pointers to the same
14412 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14413 	 * because otherwise the different base pointers mean the offsets aren't
14414 	 * comparable.
14415 	 */
14416 	if (BPF_SRC(insn->code) == BPF_X) {
14417 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
14418 
14419 		if (dst_reg->type == SCALAR_VALUE &&
14420 		    src_reg->type == SCALAR_VALUE) {
14421 			if (tnum_is_const(src_reg->var_off) ||
14422 			    (is_jmp32 &&
14423 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
14424 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
14425 						dst_reg,
14426 						src_reg->var_off.value,
14427 						tnum_subreg(src_reg->var_off).value,
14428 						opcode, is_jmp32);
14429 			else if (tnum_is_const(dst_reg->var_off) ||
14430 				 (is_jmp32 &&
14431 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
14432 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14433 						    src_reg,
14434 						    dst_reg->var_off.value,
14435 						    tnum_subreg(dst_reg->var_off).value,
14436 						    opcode, is_jmp32);
14437 			else if (!is_jmp32 &&
14438 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
14439 				/* Comparing for equality, we can combine knowledge */
14440 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
14441 						    &other_branch_regs[insn->dst_reg],
14442 						    src_reg, dst_reg, opcode);
14443 			if (src_reg->id &&
14444 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14445 				find_equal_scalars(this_branch, src_reg);
14446 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14447 			}
14448 
14449 		}
14450 	} else if (dst_reg->type == SCALAR_VALUE) {
14451 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
14452 					dst_reg, insn->imm, (u32)insn->imm,
14453 					opcode, is_jmp32);
14454 	}
14455 
14456 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14457 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14458 		find_equal_scalars(this_branch, dst_reg);
14459 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14460 	}
14461 
14462 	/* if one pointer register is compared to another pointer
14463 	 * register check if PTR_MAYBE_NULL could be lifted.
14464 	 * E.g. register A - maybe null
14465 	 *      register B - not null
14466 	 * for JNE A, B, ... - A is not null in the false branch;
14467 	 * for JEQ A, B, ... - A is not null in the true branch.
14468 	 *
14469 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
14470 	 * not need to be null checked by the BPF program, i.e.,
14471 	 * could be null even without PTR_MAYBE_NULL marking, so
14472 	 * only propagate nullness when neither reg is that type.
14473 	 */
14474 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14475 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14476 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14477 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
14478 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14479 		eq_branch_regs = NULL;
14480 		switch (opcode) {
14481 		case BPF_JEQ:
14482 			eq_branch_regs = other_branch_regs;
14483 			break;
14484 		case BPF_JNE:
14485 			eq_branch_regs = regs;
14486 			break;
14487 		default:
14488 			/* do nothing */
14489 			break;
14490 		}
14491 		if (eq_branch_regs) {
14492 			if (type_may_be_null(src_reg->type))
14493 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14494 			else
14495 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14496 		}
14497 	}
14498 
14499 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14500 	 * NOTE: these optimizations below are related with pointer comparison
14501 	 *       which will never be JMP32.
14502 	 */
14503 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14504 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14505 	    type_may_be_null(dst_reg->type)) {
14506 		/* Mark all identical registers in each branch as either
14507 		 * safe or unknown depending R == 0 or R != 0 conditional.
14508 		 */
14509 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14510 				      opcode == BPF_JNE);
14511 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14512 				      opcode == BPF_JEQ);
14513 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14514 					   this_branch, other_branch) &&
14515 		   is_pointer_value(env, insn->dst_reg)) {
14516 		verbose(env, "R%d pointer comparison prohibited\n",
14517 			insn->dst_reg);
14518 		return -EACCES;
14519 	}
14520 	if (env->log.level & BPF_LOG_LEVEL)
14521 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
14522 	return 0;
14523 }
14524 
14525 /* verify BPF_LD_IMM64 instruction */
14526 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14527 {
14528 	struct bpf_insn_aux_data *aux = cur_aux(env);
14529 	struct bpf_reg_state *regs = cur_regs(env);
14530 	struct bpf_reg_state *dst_reg;
14531 	struct bpf_map *map;
14532 	int err;
14533 
14534 	if (BPF_SIZE(insn->code) != BPF_DW) {
14535 		verbose(env, "invalid BPF_LD_IMM insn\n");
14536 		return -EINVAL;
14537 	}
14538 	if (insn->off != 0) {
14539 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14540 		return -EINVAL;
14541 	}
14542 
14543 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
14544 	if (err)
14545 		return err;
14546 
14547 	dst_reg = &regs[insn->dst_reg];
14548 	if (insn->src_reg == 0) {
14549 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14550 
14551 		dst_reg->type = SCALAR_VALUE;
14552 		__mark_reg_known(&regs[insn->dst_reg], imm);
14553 		return 0;
14554 	}
14555 
14556 	/* All special src_reg cases are listed below. From this point onwards
14557 	 * we either succeed and assign a corresponding dst_reg->type after
14558 	 * zeroing the offset, or fail and reject the program.
14559 	 */
14560 	mark_reg_known_zero(env, regs, insn->dst_reg);
14561 
14562 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14563 		dst_reg->type = aux->btf_var.reg_type;
14564 		switch (base_type(dst_reg->type)) {
14565 		case PTR_TO_MEM:
14566 			dst_reg->mem_size = aux->btf_var.mem_size;
14567 			break;
14568 		case PTR_TO_BTF_ID:
14569 			dst_reg->btf = aux->btf_var.btf;
14570 			dst_reg->btf_id = aux->btf_var.btf_id;
14571 			break;
14572 		default:
14573 			verbose(env, "bpf verifier is misconfigured\n");
14574 			return -EFAULT;
14575 		}
14576 		return 0;
14577 	}
14578 
14579 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
14580 		struct bpf_prog_aux *aux = env->prog->aux;
14581 		u32 subprogno = find_subprog(env,
14582 					     env->insn_idx + insn->imm + 1);
14583 
14584 		if (!aux->func_info) {
14585 			verbose(env, "missing btf func_info\n");
14586 			return -EINVAL;
14587 		}
14588 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14589 			verbose(env, "callback function not static\n");
14590 			return -EINVAL;
14591 		}
14592 
14593 		dst_reg->type = PTR_TO_FUNC;
14594 		dst_reg->subprogno = subprogno;
14595 		return 0;
14596 	}
14597 
14598 	map = env->used_maps[aux->map_index];
14599 	dst_reg->map_ptr = map;
14600 
14601 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14602 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14603 		dst_reg->type = PTR_TO_MAP_VALUE;
14604 		dst_reg->off = aux->map_off;
14605 		WARN_ON_ONCE(map->max_entries != 1);
14606 		/* We want reg->id to be same (0) as map_value is not distinct */
14607 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14608 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14609 		dst_reg->type = CONST_PTR_TO_MAP;
14610 	} else {
14611 		verbose(env, "bpf verifier is misconfigured\n");
14612 		return -EINVAL;
14613 	}
14614 
14615 	return 0;
14616 }
14617 
14618 static bool may_access_skb(enum bpf_prog_type type)
14619 {
14620 	switch (type) {
14621 	case BPF_PROG_TYPE_SOCKET_FILTER:
14622 	case BPF_PROG_TYPE_SCHED_CLS:
14623 	case BPF_PROG_TYPE_SCHED_ACT:
14624 		return true;
14625 	default:
14626 		return false;
14627 	}
14628 }
14629 
14630 /* verify safety of LD_ABS|LD_IND instructions:
14631  * - they can only appear in the programs where ctx == skb
14632  * - since they are wrappers of function calls, they scratch R1-R5 registers,
14633  *   preserve R6-R9, and store return value into R0
14634  *
14635  * Implicit input:
14636  *   ctx == skb == R6 == CTX
14637  *
14638  * Explicit input:
14639  *   SRC == any register
14640  *   IMM == 32-bit immediate
14641  *
14642  * Output:
14643  *   R0 - 8/16/32-bit skb data converted to cpu endianness
14644  */
14645 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14646 {
14647 	struct bpf_reg_state *regs = cur_regs(env);
14648 	static const int ctx_reg = BPF_REG_6;
14649 	u8 mode = BPF_MODE(insn->code);
14650 	int i, err;
14651 
14652 	if (!may_access_skb(resolve_prog_type(env->prog))) {
14653 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14654 		return -EINVAL;
14655 	}
14656 
14657 	if (!env->ops->gen_ld_abs) {
14658 		verbose(env, "bpf verifier is misconfigured\n");
14659 		return -EINVAL;
14660 	}
14661 
14662 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14663 	    BPF_SIZE(insn->code) == BPF_DW ||
14664 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14665 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14666 		return -EINVAL;
14667 	}
14668 
14669 	/* check whether implicit source operand (register R6) is readable */
14670 	err = check_reg_arg(env, ctx_reg, SRC_OP);
14671 	if (err)
14672 		return err;
14673 
14674 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14675 	 * gen_ld_abs() may terminate the program at runtime, leading to
14676 	 * reference leak.
14677 	 */
14678 	err = check_reference_leak(env, false);
14679 	if (err) {
14680 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14681 		return err;
14682 	}
14683 
14684 	if (env->cur_state->active_lock.ptr) {
14685 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14686 		return -EINVAL;
14687 	}
14688 
14689 	if (env->cur_state->active_rcu_lock) {
14690 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14691 		return -EINVAL;
14692 	}
14693 
14694 	if (regs[ctx_reg].type != PTR_TO_CTX) {
14695 		verbose(env,
14696 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14697 		return -EINVAL;
14698 	}
14699 
14700 	if (mode == BPF_IND) {
14701 		/* check explicit source operand */
14702 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14703 		if (err)
14704 			return err;
14705 	}
14706 
14707 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
14708 	if (err < 0)
14709 		return err;
14710 
14711 	/* reset caller saved regs to unreadable */
14712 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
14713 		mark_reg_not_init(env, regs, caller_saved[i]);
14714 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14715 	}
14716 
14717 	/* mark destination R0 register as readable, since it contains
14718 	 * the value fetched from the packet.
14719 	 * Already marked as written above.
14720 	 */
14721 	mark_reg_unknown(env, regs, BPF_REG_0);
14722 	/* ld_abs load up to 32-bit skb data. */
14723 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14724 	return 0;
14725 }
14726 
14727 static int check_return_code(struct bpf_verifier_env *env, int regno)
14728 {
14729 	struct tnum enforce_attach_type_range = tnum_unknown;
14730 	const struct bpf_prog *prog = env->prog;
14731 	struct bpf_reg_state *reg;
14732 	struct tnum range = tnum_range(0, 1);
14733 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14734 	int err;
14735 	struct bpf_func_state *frame = env->cur_state->frame[0];
14736 	const bool is_subprog = frame->subprogno;
14737 
14738 	/* LSM and struct_ops func-ptr's return type could be "void" */
14739 	if (!is_subprog || frame->in_exception_callback_fn) {
14740 		switch (prog_type) {
14741 		case BPF_PROG_TYPE_LSM:
14742 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
14743 				/* See below, can be 0 or 0-1 depending on hook. */
14744 				break;
14745 			fallthrough;
14746 		case BPF_PROG_TYPE_STRUCT_OPS:
14747 			if (!prog->aux->attach_func_proto->type)
14748 				return 0;
14749 			break;
14750 		default:
14751 			break;
14752 		}
14753 	}
14754 
14755 	/* eBPF calling convention is such that R0 is used
14756 	 * to return the value from eBPF program.
14757 	 * Make sure that it's readable at this time
14758 	 * of bpf_exit, which means that program wrote
14759 	 * something into it earlier
14760 	 */
14761 	err = check_reg_arg(env, regno, SRC_OP);
14762 	if (err)
14763 		return err;
14764 
14765 	if (is_pointer_value(env, regno)) {
14766 		verbose(env, "R%d leaks addr as return value\n", regno);
14767 		return -EACCES;
14768 	}
14769 
14770 	reg = cur_regs(env) + regno;
14771 
14772 	if (frame->in_async_callback_fn) {
14773 		/* enforce return zero from async callbacks like timer */
14774 		if (reg->type != SCALAR_VALUE) {
14775 			verbose(env, "In async callback the register R%d is not a known value (%s)\n",
14776 				regno, reg_type_str(env, reg->type));
14777 			return -EINVAL;
14778 		}
14779 
14780 		if (!tnum_in(tnum_const(0), reg->var_off)) {
14781 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
14782 			return -EINVAL;
14783 		}
14784 		return 0;
14785 	}
14786 
14787 	if (is_subprog && !frame->in_exception_callback_fn) {
14788 		if (reg->type != SCALAR_VALUE) {
14789 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
14790 				regno, reg_type_str(env, reg->type));
14791 			return -EINVAL;
14792 		}
14793 		return 0;
14794 	}
14795 
14796 	switch (prog_type) {
14797 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
14798 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
14799 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
14800 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
14801 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
14802 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
14803 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
14804 			range = tnum_range(1, 1);
14805 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
14806 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
14807 			range = tnum_range(0, 3);
14808 		break;
14809 	case BPF_PROG_TYPE_CGROUP_SKB:
14810 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
14811 			range = tnum_range(0, 3);
14812 			enforce_attach_type_range = tnum_range(2, 3);
14813 		}
14814 		break;
14815 	case BPF_PROG_TYPE_CGROUP_SOCK:
14816 	case BPF_PROG_TYPE_SOCK_OPS:
14817 	case BPF_PROG_TYPE_CGROUP_DEVICE:
14818 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
14819 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
14820 		break;
14821 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
14822 		if (!env->prog->aux->attach_btf_id)
14823 			return 0;
14824 		range = tnum_const(0);
14825 		break;
14826 	case BPF_PROG_TYPE_TRACING:
14827 		switch (env->prog->expected_attach_type) {
14828 		case BPF_TRACE_FENTRY:
14829 		case BPF_TRACE_FEXIT:
14830 			range = tnum_const(0);
14831 			break;
14832 		case BPF_TRACE_RAW_TP:
14833 		case BPF_MODIFY_RETURN:
14834 			return 0;
14835 		case BPF_TRACE_ITER:
14836 			break;
14837 		default:
14838 			return -ENOTSUPP;
14839 		}
14840 		break;
14841 	case BPF_PROG_TYPE_SK_LOOKUP:
14842 		range = tnum_range(SK_DROP, SK_PASS);
14843 		break;
14844 
14845 	case BPF_PROG_TYPE_LSM:
14846 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
14847 			/* Regular BPF_PROG_TYPE_LSM programs can return
14848 			 * any value.
14849 			 */
14850 			return 0;
14851 		}
14852 		if (!env->prog->aux->attach_func_proto->type) {
14853 			/* Make sure programs that attach to void
14854 			 * hooks don't try to modify return value.
14855 			 */
14856 			range = tnum_range(1, 1);
14857 		}
14858 		break;
14859 
14860 	case BPF_PROG_TYPE_NETFILTER:
14861 		range = tnum_range(NF_DROP, NF_ACCEPT);
14862 		break;
14863 	case BPF_PROG_TYPE_EXT:
14864 		/* freplace program can return anything as its return value
14865 		 * depends on the to-be-replaced kernel func or bpf program.
14866 		 */
14867 	default:
14868 		return 0;
14869 	}
14870 
14871 	if (reg->type != SCALAR_VALUE) {
14872 		verbose(env, "At program exit the register R%d is not a known value (%s)\n",
14873 			regno, reg_type_str(env, reg->type));
14874 		return -EINVAL;
14875 	}
14876 
14877 	if (!tnum_in(range, reg->var_off)) {
14878 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
14879 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
14880 		    prog_type == BPF_PROG_TYPE_LSM &&
14881 		    !prog->aux->attach_func_proto->type)
14882 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
14883 		return -EINVAL;
14884 	}
14885 
14886 	if (!tnum_is_unknown(enforce_attach_type_range) &&
14887 	    tnum_in(enforce_attach_type_range, reg->var_off))
14888 		env->prog->enforce_expected_attach_type = 1;
14889 	return 0;
14890 }
14891 
14892 /* non-recursive DFS pseudo code
14893  * 1  procedure DFS-iterative(G,v):
14894  * 2      label v as discovered
14895  * 3      let S be a stack
14896  * 4      S.push(v)
14897  * 5      while S is not empty
14898  * 6            t <- S.peek()
14899  * 7            if t is what we're looking for:
14900  * 8                return t
14901  * 9            for all edges e in G.adjacentEdges(t) do
14902  * 10               if edge e is already labelled
14903  * 11                   continue with the next edge
14904  * 12               w <- G.adjacentVertex(t,e)
14905  * 13               if vertex w is not discovered and not explored
14906  * 14                   label e as tree-edge
14907  * 15                   label w as discovered
14908  * 16                   S.push(w)
14909  * 17                   continue at 5
14910  * 18               else if vertex w is discovered
14911  * 19                   label e as back-edge
14912  * 20               else
14913  * 21                   // vertex w is explored
14914  * 22                   label e as forward- or cross-edge
14915  * 23           label t as explored
14916  * 24           S.pop()
14917  *
14918  * convention:
14919  * 0x10 - discovered
14920  * 0x11 - discovered and fall-through edge labelled
14921  * 0x12 - discovered and fall-through and branch edges labelled
14922  * 0x20 - explored
14923  */
14924 
14925 enum {
14926 	DISCOVERED = 0x10,
14927 	EXPLORED = 0x20,
14928 	FALLTHROUGH = 1,
14929 	BRANCH = 2,
14930 };
14931 
14932 static u32 state_htab_size(struct bpf_verifier_env *env)
14933 {
14934 	return env->prog->len;
14935 }
14936 
14937 static struct bpf_verifier_state_list **explored_state(
14938 					struct bpf_verifier_env *env,
14939 					int idx)
14940 {
14941 	struct bpf_verifier_state *cur = env->cur_state;
14942 	struct bpf_func_state *state = cur->frame[cur->curframe];
14943 
14944 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
14945 }
14946 
14947 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
14948 {
14949 	env->insn_aux_data[idx].prune_point = true;
14950 }
14951 
14952 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
14953 {
14954 	return env->insn_aux_data[insn_idx].prune_point;
14955 }
14956 
14957 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
14958 {
14959 	env->insn_aux_data[idx].force_checkpoint = true;
14960 }
14961 
14962 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
14963 {
14964 	return env->insn_aux_data[insn_idx].force_checkpoint;
14965 }
14966 
14967 
14968 enum {
14969 	DONE_EXPLORING = 0,
14970 	KEEP_EXPLORING = 1,
14971 };
14972 
14973 /* t, w, e - match pseudo-code above:
14974  * t - index of current instruction
14975  * w - next instruction
14976  * e - edge
14977  */
14978 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
14979 		     bool loop_ok)
14980 {
14981 	int *insn_stack = env->cfg.insn_stack;
14982 	int *insn_state = env->cfg.insn_state;
14983 
14984 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
14985 		return DONE_EXPLORING;
14986 
14987 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
14988 		return DONE_EXPLORING;
14989 
14990 	if (w < 0 || w >= env->prog->len) {
14991 		verbose_linfo(env, t, "%d: ", t);
14992 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
14993 		return -EINVAL;
14994 	}
14995 
14996 	if (e == BRANCH) {
14997 		/* mark branch target for state pruning */
14998 		mark_prune_point(env, w);
14999 		mark_jmp_point(env, w);
15000 	}
15001 
15002 	if (insn_state[w] == 0) {
15003 		/* tree-edge */
15004 		insn_state[t] = DISCOVERED | e;
15005 		insn_state[w] = DISCOVERED;
15006 		if (env->cfg.cur_stack >= env->prog->len)
15007 			return -E2BIG;
15008 		insn_stack[env->cfg.cur_stack++] = w;
15009 		return KEEP_EXPLORING;
15010 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15011 		if (loop_ok && env->bpf_capable)
15012 			return DONE_EXPLORING;
15013 		verbose_linfo(env, t, "%d: ", t);
15014 		verbose_linfo(env, w, "%d: ", w);
15015 		verbose(env, "back-edge from insn %d to %d\n", t, w);
15016 		return -EINVAL;
15017 	} else if (insn_state[w] == EXPLORED) {
15018 		/* forward- or cross-edge */
15019 		insn_state[t] = DISCOVERED | e;
15020 	} else {
15021 		verbose(env, "insn state internal bug\n");
15022 		return -EFAULT;
15023 	}
15024 	return DONE_EXPLORING;
15025 }
15026 
15027 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15028 				struct bpf_verifier_env *env,
15029 				bool visit_callee)
15030 {
15031 	int ret;
15032 
15033 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
15034 	if (ret)
15035 		return ret;
15036 
15037 	mark_prune_point(env, t + 1);
15038 	/* when we exit from subprog, we need to record non-linear history */
15039 	mark_jmp_point(env, t + 1);
15040 
15041 	if (visit_callee) {
15042 		mark_prune_point(env, t);
15043 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
15044 				/* It's ok to allow recursion from CFG point of
15045 				 * view. __check_func_call() will do the actual
15046 				 * check.
15047 				 */
15048 				bpf_pseudo_func(insns + t));
15049 	}
15050 	return ret;
15051 }
15052 
15053 /* Visits the instruction at index t and returns one of the following:
15054  *  < 0 - an error occurred
15055  *  DONE_EXPLORING - the instruction was fully explored
15056  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
15057  */
15058 static int visit_insn(int t, struct bpf_verifier_env *env)
15059 {
15060 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15061 	int ret, off;
15062 
15063 	if (bpf_pseudo_func(insn))
15064 		return visit_func_call_insn(t, insns, env, true);
15065 
15066 	/* All non-branch instructions have a single fall-through edge. */
15067 	if (BPF_CLASS(insn->code) != BPF_JMP &&
15068 	    BPF_CLASS(insn->code) != BPF_JMP32)
15069 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
15070 
15071 	switch (BPF_OP(insn->code)) {
15072 	case BPF_EXIT:
15073 		return DONE_EXPLORING;
15074 
15075 	case BPF_CALL:
15076 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
15077 			/* Mark this call insn as a prune point to trigger
15078 			 * is_state_visited() check before call itself is
15079 			 * processed by __check_func_call(). Otherwise new
15080 			 * async state will be pushed for further exploration.
15081 			 */
15082 			mark_prune_point(env, t);
15083 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15084 			struct bpf_kfunc_call_arg_meta meta;
15085 
15086 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15087 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
15088 				mark_prune_point(env, t);
15089 				/* Checking and saving state checkpoints at iter_next() call
15090 				 * is crucial for fast convergence of open-coded iterator loop
15091 				 * logic, so we need to force it. If we don't do that,
15092 				 * is_state_visited() might skip saving a checkpoint, causing
15093 				 * unnecessarily long sequence of not checkpointed
15094 				 * instructions and jumps, leading to exhaustion of jump
15095 				 * history buffer, and potentially other undesired outcomes.
15096 				 * It is expected that with correct open-coded iterators
15097 				 * convergence will happen quickly, so we don't run a risk of
15098 				 * exhausting memory.
15099 				 */
15100 				mark_force_checkpoint(env, t);
15101 			}
15102 		}
15103 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15104 
15105 	case BPF_JA:
15106 		if (BPF_SRC(insn->code) != BPF_K)
15107 			return -EINVAL;
15108 
15109 		if (BPF_CLASS(insn->code) == BPF_JMP)
15110 			off = insn->off;
15111 		else
15112 			off = insn->imm;
15113 
15114 		/* unconditional jump with single edge */
15115 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env,
15116 				true);
15117 		if (ret)
15118 			return ret;
15119 
15120 		mark_prune_point(env, t + off + 1);
15121 		mark_jmp_point(env, t + off + 1);
15122 
15123 		return ret;
15124 
15125 	default:
15126 		/* conditional jump with two edges */
15127 		mark_prune_point(env, t);
15128 
15129 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
15130 		if (ret)
15131 			return ret;
15132 
15133 		return push_insn(t, t + insn->off + 1, BRANCH, env, true);
15134 	}
15135 }
15136 
15137 /* non-recursive depth-first-search to detect loops in BPF program
15138  * loop == back-edge in directed graph
15139  */
15140 static int check_cfg(struct bpf_verifier_env *env)
15141 {
15142 	int insn_cnt = env->prog->len;
15143 	int *insn_stack, *insn_state;
15144 	int ex_insn_beg, i, ret = 0;
15145 	bool ex_done = false;
15146 
15147 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15148 	if (!insn_state)
15149 		return -ENOMEM;
15150 
15151 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15152 	if (!insn_stack) {
15153 		kvfree(insn_state);
15154 		return -ENOMEM;
15155 	}
15156 
15157 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15158 	insn_stack[0] = 0; /* 0 is the first instruction */
15159 	env->cfg.cur_stack = 1;
15160 
15161 walk_cfg:
15162 	while (env->cfg.cur_stack > 0) {
15163 		int t = insn_stack[env->cfg.cur_stack - 1];
15164 
15165 		ret = visit_insn(t, env);
15166 		switch (ret) {
15167 		case DONE_EXPLORING:
15168 			insn_state[t] = EXPLORED;
15169 			env->cfg.cur_stack--;
15170 			break;
15171 		case KEEP_EXPLORING:
15172 			break;
15173 		default:
15174 			if (ret > 0) {
15175 				verbose(env, "visit_insn internal bug\n");
15176 				ret = -EFAULT;
15177 			}
15178 			goto err_free;
15179 		}
15180 	}
15181 
15182 	if (env->cfg.cur_stack < 0) {
15183 		verbose(env, "pop stack internal bug\n");
15184 		ret = -EFAULT;
15185 		goto err_free;
15186 	}
15187 
15188 	if (env->exception_callback_subprog && !ex_done) {
15189 		ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
15190 
15191 		insn_state[ex_insn_beg] = DISCOVERED;
15192 		insn_stack[0] = ex_insn_beg;
15193 		env->cfg.cur_stack = 1;
15194 		ex_done = true;
15195 		goto walk_cfg;
15196 	}
15197 
15198 	for (i = 0; i < insn_cnt; i++) {
15199 		if (insn_state[i] != EXPLORED) {
15200 			verbose(env, "unreachable insn %d\n", i);
15201 			ret = -EINVAL;
15202 			goto err_free;
15203 		}
15204 	}
15205 	ret = 0; /* cfg looks good */
15206 
15207 err_free:
15208 	kvfree(insn_state);
15209 	kvfree(insn_stack);
15210 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
15211 	return ret;
15212 }
15213 
15214 static int check_abnormal_return(struct bpf_verifier_env *env)
15215 {
15216 	int i;
15217 
15218 	for (i = 1; i < env->subprog_cnt; i++) {
15219 		if (env->subprog_info[i].has_ld_abs) {
15220 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15221 			return -EINVAL;
15222 		}
15223 		if (env->subprog_info[i].has_tail_call) {
15224 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15225 			return -EINVAL;
15226 		}
15227 	}
15228 	return 0;
15229 }
15230 
15231 /* The minimum supported BTF func info size */
15232 #define MIN_BPF_FUNCINFO_SIZE	8
15233 #define MAX_FUNCINFO_REC_SIZE	252
15234 
15235 static int check_btf_func_early(struct bpf_verifier_env *env,
15236 				const union bpf_attr *attr,
15237 				bpfptr_t uattr)
15238 {
15239 	u32 krec_size = sizeof(struct bpf_func_info);
15240 	const struct btf_type *type, *func_proto;
15241 	u32 i, nfuncs, urec_size, min_size;
15242 	struct bpf_func_info *krecord;
15243 	struct bpf_prog *prog;
15244 	const struct btf *btf;
15245 	u32 prev_offset = 0;
15246 	bpfptr_t urecord;
15247 	int ret = -ENOMEM;
15248 
15249 	nfuncs = attr->func_info_cnt;
15250 	if (!nfuncs) {
15251 		if (check_abnormal_return(env))
15252 			return -EINVAL;
15253 		return 0;
15254 	}
15255 
15256 	urec_size = attr->func_info_rec_size;
15257 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15258 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
15259 	    urec_size % sizeof(u32)) {
15260 		verbose(env, "invalid func info rec size %u\n", urec_size);
15261 		return -EINVAL;
15262 	}
15263 
15264 	prog = env->prog;
15265 	btf = prog->aux->btf;
15266 
15267 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15268 	min_size = min_t(u32, krec_size, urec_size);
15269 
15270 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15271 	if (!krecord)
15272 		return -ENOMEM;
15273 
15274 	for (i = 0; i < nfuncs; i++) {
15275 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15276 		if (ret) {
15277 			if (ret == -E2BIG) {
15278 				verbose(env, "nonzero tailing record in func info");
15279 				/* set the size kernel expects so loader can zero
15280 				 * out the rest of the record.
15281 				 */
15282 				if (copy_to_bpfptr_offset(uattr,
15283 							  offsetof(union bpf_attr, func_info_rec_size),
15284 							  &min_size, sizeof(min_size)))
15285 					ret = -EFAULT;
15286 			}
15287 			goto err_free;
15288 		}
15289 
15290 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15291 			ret = -EFAULT;
15292 			goto err_free;
15293 		}
15294 
15295 		/* check insn_off */
15296 		ret = -EINVAL;
15297 		if (i == 0) {
15298 			if (krecord[i].insn_off) {
15299 				verbose(env,
15300 					"nonzero insn_off %u for the first func info record",
15301 					krecord[i].insn_off);
15302 				goto err_free;
15303 			}
15304 		} else if (krecord[i].insn_off <= prev_offset) {
15305 			verbose(env,
15306 				"same or smaller insn offset (%u) than previous func info record (%u)",
15307 				krecord[i].insn_off, prev_offset);
15308 			goto err_free;
15309 		}
15310 
15311 		/* check type_id */
15312 		type = btf_type_by_id(btf, krecord[i].type_id);
15313 		if (!type || !btf_type_is_func(type)) {
15314 			verbose(env, "invalid type id %d in func info",
15315 				krecord[i].type_id);
15316 			goto err_free;
15317 		}
15318 
15319 		func_proto = btf_type_by_id(btf, type->type);
15320 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15321 			/* btf_func_check() already verified it during BTF load */
15322 			goto err_free;
15323 
15324 		prev_offset = krecord[i].insn_off;
15325 		bpfptr_add(&urecord, urec_size);
15326 	}
15327 
15328 	prog->aux->func_info = krecord;
15329 	prog->aux->func_info_cnt = nfuncs;
15330 	return 0;
15331 
15332 err_free:
15333 	kvfree(krecord);
15334 	return ret;
15335 }
15336 
15337 static int check_btf_func(struct bpf_verifier_env *env,
15338 			  const union bpf_attr *attr,
15339 			  bpfptr_t uattr)
15340 {
15341 	const struct btf_type *type, *func_proto, *ret_type;
15342 	u32 i, nfuncs, urec_size;
15343 	struct bpf_func_info *krecord;
15344 	struct bpf_func_info_aux *info_aux = NULL;
15345 	struct bpf_prog *prog;
15346 	const struct btf *btf;
15347 	bpfptr_t urecord;
15348 	bool scalar_return;
15349 	int ret = -ENOMEM;
15350 
15351 	nfuncs = attr->func_info_cnt;
15352 	if (!nfuncs) {
15353 		if (check_abnormal_return(env))
15354 			return -EINVAL;
15355 		return 0;
15356 	}
15357 	if (nfuncs != env->subprog_cnt) {
15358 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15359 		return -EINVAL;
15360 	}
15361 
15362 	urec_size = attr->func_info_rec_size;
15363 
15364 	prog = env->prog;
15365 	btf = prog->aux->btf;
15366 
15367 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15368 
15369 	krecord = prog->aux->func_info;
15370 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15371 	if (!info_aux)
15372 		return -ENOMEM;
15373 
15374 	for (i = 0; i < nfuncs; i++) {
15375 		/* check insn_off */
15376 		ret = -EINVAL;
15377 
15378 		if (env->subprog_info[i].start != krecord[i].insn_off) {
15379 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15380 			goto err_free;
15381 		}
15382 
15383 		/* Already checked type_id */
15384 		type = btf_type_by_id(btf, krecord[i].type_id);
15385 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15386 		/* Already checked func_proto */
15387 		func_proto = btf_type_by_id(btf, type->type);
15388 
15389 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15390 		scalar_return =
15391 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15392 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15393 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15394 			goto err_free;
15395 		}
15396 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15397 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15398 			goto err_free;
15399 		}
15400 
15401 		bpfptr_add(&urecord, urec_size);
15402 	}
15403 
15404 	prog->aux->func_info_aux = info_aux;
15405 	return 0;
15406 
15407 err_free:
15408 	kfree(info_aux);
15409 	return ret;
15410 }
15411 
15412 static void adjust_btf_func(struct bpf_verifier_env *env)
15413 {
15414 	struct bpf_prog_aux *aux = env->prog->aux;
15415 	int i;
15416 
15417 	if (!aux->func_info)
15418 		return;
15419 
15420 	/* func_info is not available for hidden subprogs */
15421 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
15422 		aux->func_info[i].insn_off = env->subprog_info[i].start;
15423 }
15424 
15425 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
15426 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
15427 
15428 static int check_btf_line(struct bpf_verifier_env *env,
15429 			  const union bpf_attr *attr,
15430 			  bpfptr_t uattr)
15431 {
15432 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15433 	struct bpf_subprog_info *sub;
15434 	struct bpf_line_info *linfo;
15435 	struct bpf_prog *prog;
15436 	const struct btf *btf;
15437 	bpfptr_t ulinfo;
15438 	int err;
15439 
15440 	nr_linfo = attr->line_info_cnt;
15441 	if (!nr_linfo)
15442 		return 0;
15443 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15444 		return -EINVAL;
15445 
15446 	rec_size = attr->line_info_rec_size;
15447 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15448 	    rec_size > MAX_LINEINFO_REC_SIZE ||
15449 	    rec_size & (sizeof(u32) - 1))
15450 		return -EINVAL;
15451 
15452 	/* Need to zero it in case the userspace may
15453 	 * pass in a smaller bpf_line_info object.
15454 	 */
15455 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15456 			 GFP_KERNEL | __GFP_NOWARN);
15457 	if (!linfo)
15458 		return -ENOMEM;
15459 
15460 	prog = env->prog;
15461 	btf = prog->aux->btf;
15462 
15463 	s = 0;
15464 	sub = env->subprog_info;
15465 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15466 	expected_size = sizeof(struct bpf_line_info);
15467 	ncopy = min_t(u32, expected_size, rec_size);
15468 	for (i = 0; i < nr_linfo; i++) {
15469 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15470 		if (err) {
15471 			if (err == -E2BIG) {
15472 				verbose(env, "nonzero tailing record in line_info");
15473 				if (copy_to_bpfptr_offset(uattr,
15474 							  offsetof(union bpf_attr, line_info_rec_size),
15475 							  &expected_size, sizeof(expected_size)))
15476 					err = -EFAULT;
15477 			}
15478 			goto err_free;
15479 		}
15480 
15481 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15482 			err = -EFAULT;
15483 			goto err_free;
15484 		}
15485 
15486 		/*
15487 		 * Check insn_off to ensure
15488 		 * 1) strictly increasing AND
15489 		 * 2) bounded by prog->len
15490 		 *
15491 		 * The linfo[0].insn_off == 0 check logically falls into
15492 		 * the later "missing bpf_line_info for func..." case
15493 		 * because the first linfo[0].insn_off must be the
15494 		 * first sub also and the first sub must have
15495 		 * subprog_info[0].start == 0.
15496 		 */
15497 		if ((i && linfo[i].insn_off <= prev_offset) ||
15498 		    linfo[i].insn_off >= prog->len) {
15499 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15500 				i, linfo[i].insn_off, prev_offset,
15501 				prog->len);
15502 			err = -EINVAL;
15503 			goto err_free;
15504 		}
15505 
15506 		if (!prog->insnsi[linfo[i].insn_off].code) {
15507 			verbose(env,
15508 				"Invalid insn code at line_info[%u].insn_off\n",
15509 				i);
15510 			err = -EINVAL;
15511 			goto err_free;
15512 		}
15513 
15514 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15515 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15516 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15517 			err = -EINVAL;
15518 			goto err_free;
15519 		}
15520 
15521 		if (s != env->subprog_cnt) {
15522 			if (linfo[i].insn_off == sub[s].start) {
15523 				sub[s].linfo_idx = i;
15524 				s++;
15525 			} else if (sub[s].start < linfo[i].insn_off) {
15526 				verbose(env, "missing bpf_line_info for func#%u\n", s);
15527 				err = -EINVAL;
15528 				goto err_free;
15529 			}
15530 		}
15531 
15532 		prev_offset = linfo[i].insn_off;
15533 		bpfptr_add(&ulinfo, rec_size);
15534 	}
15535 
15536 	if (s != env->subprog_cnt) {
15537 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15538 			env->subprog_cnt - s, s);
15539 		err = -EINVAL;
15540 		goto err_free;
15541 	}
15542 
15543 	prog->aux->linfo = linfo;
15544 	prog->aux->nr_linfo = nr_linfo;
15545 
15546 	return 0;
15547 
15548 err_free:
15549 	kvfree(linfo);
15550 	return err;
15551 }
15552 
15553 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
15554 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
15555 
15556 static int check_core_relo(struct bpf_verifier_env *env,
15557 			   const union bpf_attr *attr,
15558 			   bpfptr_t uattr)
15559 {
15560 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15561 	struct bpf_core_relo core_relo = {};
15562 	struct bpf_prog *prog = env->prog;
15563 	const struct btf *btf = prog->aux->btf;
15564 	struct bpf_core_ctx ctx = {
15565 		.log = &env->log,
15566 		.btf = btf,
15567 	};
15568 	bpfptr_t u_core_relo;
15569 	int err;
15570 
15571 	nr_core_relo = attr->core_relo_cnt;
15572 	if (!nr_core_relo)
15573 		return 0;
15574 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15575 		return -EINVAL;
15576 
15577 	rec_size = attr->core_relo_rec_size;
15578 	if (rec_size < MIN_CORE_RELO_SIZE ||
15579 	    rec_size > MAX_CORE_RELO_SIZE ||
15580 	    rec_size % sizeof(u32))
15581 		return -EINVAL;
15582 
15583 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15584 	expected_size = sizeof(struct bpf_core_relo);
15585 	ncopy = min_t(u32, expected_size, rec_size);
15586 
15587 	/* Unlike func_info and line_info, copy and apply each CO-RE
15588 	 * relocation record one at a time.
15589 	 */
15590 	for (i = 0; i < nr_core_relo; i++) {
15591 		/* future proofing when sizeof(bpf_core_relo) changes */
15592 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15593 		if (err) {
15594 			if (err == -E2BIG) {
15595 				verbose(env, "nonzero tailing record in core_relo");
15596 				if (copy_to_bpfptr_offset(uattr,
15597 							  offsetof(union bpf_attr, core_relo_rec_size),
15598 							  &expected_size, sizeof(expected_size)))
15599 					err = -EFAULT;
15600 			}
15601 			break;
15602 		}
15603 
15604 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15605 			err = -EFAULT;
15606 			break;
15607 		}
15608 
15609 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15610 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15611 				i, core_relo.insn_off, prog->len);
15612 			err = -EINVAL;
15613 			break;
15614 		}
15615 
15616 		err = bpf_core_apply(&ctx, &core_relo, i,
15617 				     &prog->insnsi[core_relo.insn_off / 8]);
15618 		if (err)
15619 			break;
15620 		bpfptr_add(&u_core_relo, rec_size);
15621 	}
15622 	return err;
15623 }
15624 
15625 static int check_btf_info_early(struct bpf_verifier_env *env,
15626 				const union bpf_attr *attr,
15627 				bpfptr_t uattr)
15628 {
15629 	struct btf *btf;
15630 	int err;
15631 
15632 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
15633 		if (check_abnormal_return(env))
15634 			return -EINVAL;
15635 		return 0;
15636 	}
15637 
15638 	btf = btf_get_by_fd(attr->prog_btf_fd);
15639 	if (IS_ERR(btf))
15640 		return PTR_ERR(btf);
15641 	if (btf_is_kernel(btf)) {
15642 		btf_put(btf);
15643 		return -EACCES;
15644 	}
15645 	env->prog->aux->btf = btf;
15646 
15647 	err = check_btf_func_early(env, attr, uattr);
15648 	if (err)
15649 		return err;
15650 	return 0;
15651 }
15652 
15653 static int check_btf_info(struct bpf_verifier_env *env,
15654 			  const union bpf_attr *attr,
15655 			  bpfptr_t uattr)
15656 {
15657 	int err;
15658 
15659 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
15660 		if (check_abnormal_return(env))
15661 			return -EINVAL;
15662 		return 0;
15663 	}
15664 
15665 	err = check_btf_func(env, attr, uattr);
15666 	if (err)
15667 		return err;
15668 
15669 	err = check_btf_line(env, attr, uattr);
15670 	if (err)
15671 		return err;
15672 
15673 	err = check_core_relo(env, attr, uattr);
15674 	if (err)
15675 		return err;
15676 
15677 	return 0;
15678 }
15679 
15680 /* check %cur's range satisfies %old's */
15681 static bool range_within(struct bpf_reg_state *old,
15682 			 struct bpf_reg_state *cur)
15683 {
15684 	return old->umin_value <= cur->umin_value &&
15685 	       old->umax_value >= cur->umax_value &&
15686 	       old->smin_value <= cur->smin_value &&
15687 	       old->smax_value >= cur->smax_value &&
15688 	       old->u32_min_value <= cur->u32_min_value &&
15689 	       old->u32_max_value >= cur->u32_max_value &&
15690 	       old->s32_min_value <= cur->s32_min_value &&
15691 	       old->s32_max_value >= cur->s32_max_value;
15692 }
15693 
15694 /* If in the old state two registers had the same id, then they need to have
15695  * the same id in the new state as well.  But that id could be different from
15696  * the old state, so we need to track the mapping from old to new ids.
15697  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15698  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
15699  * regs with a different old id could still have new id 9, we don't care about
15700  * that.
15701  * So we look through our idmap to see if this old id has been seen before.  If
15702  * so, we require the new id to match; otherwise, we add the id pair to the map.
15703  */
15704 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15705 {
15706 	struct bpf_id_pair *map = idmap->map;
15707 	unsigned int i;
15708 
15709 	/* either both IDs should be set or both should be zero */
15710 	if (!!old_id != !!cur_id)
15711 		return false;
15712 
15713 	if (old_id == 0) /* cur_id == 0 as well */
15714 		return true;
15715 
15716 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
15717 		if (!map[i].old) {
15718 			/* Reached an empty slot; haven't seen this id before */
15719 			map[i].old = old_id;
15720 			map[i].cur = cur_id;
15721 			return true;
15722 		}
15723 		if (map[i].old == old_id)
15724 			return map[i].cur == cur_id;
15725 		if (map[i].cur == cur_id)
15726 			return false;
15727 	}
15728 	/* We ran out of idmap slots, which should be impossible */
15729 	WARN_ON_ONCE(1);
15730 	return false;
15731 }
15732 
15733 /* Similar to check_ids(), but allocate a unique temporary ID
15734  * for 'old_id' or 'cur_id' of zero.
15735  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15736  */
15737 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15738 {
15739 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15740 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15741 
15742 	return check_ids(old_id, cur_id, idmap);
15743 }
15744 
15745 static void clean_func_state(struct bpf_verifier_env *env,
15746 			     struct bpf_func_state *st)
15747 {
15748 	enum bpf_reg_liveness live;
15749 	int i, j;
15750 
15751 	for (i = 0; i < BPF_REG_FP; i++) {
15752 		live = st->regs[i].live;
15753 		/* liveness must not touch this register anymore */
15754 		st->regs[i].live |= REG_LIVE_DONE;
15755 		if (!(live & REG_LIVE_READ))
15756 			/* since the register is unused, clear its state
15757 			 * to make further comparison simpler
15758 			 */
15759 			__mark_reg_not_init(env, &st->regs[i]);
15760 	}
15761 
15762 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15763 		live = st->stack[i].spilled_ptr.live;
15764 		/* liveness must not touch this stack slot anymore */
15765 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15766 		if (!(live & REG_LIVE_READ)) {
15767 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
15768 			for (j = 0; j < BPF_REG_SIZE; j++)
15769 				st->stack[i].slot_type[j] = STACK_INVALID;
15770 		}
15771 	}
15772 }
15773 
15774 static void clean_verifier_state(struct bpf_verifier_env *env,
15775 				 struct bpf_verifier_state *st)
15776 {
15777 	int i;
15778 
15779 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15780 		/* all regs in this state in all frames were already marked */
15781 		return;
15782 
15783 	for (i = 0; i <= st->curframe; i++)
15784 		clean_func_state(env, st->frame[i]);
15785 }
15786 
15787 /* the parentage chains form a tree.
15788  * the verifier states are added to state lists at given insn and
15789  * pushed into state stack for future exploration.
15790  * when the verifier reaches bpf_exit insn some of the verifer states
15791  * stored in the state lists have their final liveness state already,
15792  * but a lot of states will get revised from liveness point of view when
15793  * the verifier explores other branches.
15794  * Example:
15795  * 1: r0 = 1
15796  * 2: if r1 == 100 goto pc+1
15797  * 3: r0 = 2
15798  * 4: exit
15799  * when the verifier reaches exit insn the register r0 in the state list of
15800  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15801  * of insn 2 and goes exploring further. At the insn 4 it will walk the
15802  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15803  *
15804  * Since the verifier pushes the branch states as it sees them while exploring
15805  * the program the condition of walking the branch instruction for the second
15806  * time means that all states below this branch were already explored and
15807  * their final liveness marks are already propagated.
15808  * Hence when the verifier completes the search of state list in is_state_visited()
15809  * we can call this clean_live_states() function to mark all liveness states
15810  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
15811  * will not be used.
15812  * This function also clears the registers and stack for states that !READ
15813  * to simplify state merging.
15814  *
15815  * Important note here that walking the same branch instruction in the callee
15816  * doesn't meant that the states are DONE. The verifier has to compare
15817  * the callsites
15818  */
15819 static void clean_live_states(struct bpf_verifier_env *env, int insn,
15820 			      struct bpf_verifier_state *cur)
15821 {
15822 	struct bpf_verifier_state_list *sl;
15823 	int i;
15824 
15825 	sl = *explored_state(env, insn);
15826 	while (sl) {
15827 		if (sl->state.branches)
15828 			goto next;
15829 		if (sl->state.insn_idx != insn ||
15830 		    sl->state.curframe != cur->curframe)
15831 			goto next;
15832 		for (i = 0; i <= cur->curframe; i++)
15833 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
15834 				goto next;
15835 		clean_verifier_state(env, &sl->state);
15836 next:
15837 		sl = sl->next;
15838 	}
15839 }
15840 
15841 static bool regs_exact(const struct bpf_reg_state *rold,
15842 		       const struct bpf_reg_state *rcur,
15843 		       struct bpf_idmap *idmap)
15844 {
15845 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15846 	       check_ids(rold->id, rcur->id, idmap) &&
15847 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15848 }
15849 
15850 /* Returns true if (rold safe implies rcur safe) */
15851 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
15852 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap)
15853 {
15854 	if (!(rold->live & REG_LIVE_READ))
15855 		/* explored state didn't use this */
15856 		return true;
15857 	if (rold->type == NOT_INIT)
15858 		/* explored state can't have used this */
15859 		return true;
15860 	if (rcur->type == NOT_INIT)
15861 		return false;
15862 
15863 	/* Enforce that register types have to match exactly, including their
15864 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
15865 	 * rule.
15866 	 *
15867 	 * One can make a point that using a pointer register as unbounded
15868 	 * SCALAR would be technically acceptable, but this could lead to
15869 	 * pointer leaks because scalars are allowed to leak while pointers
15870 	 * are not. We could make this safe in special cases if root is
15871 	 * calling us, but it's probably not worth the hassle.
15872 	 *
15873 	 * Also, register types that are *not* MAYBE_NULL could technically be
15874 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
15875 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
15876 	 * to the same map).
15877 	 * However, if the old MAYBE_NULL register then got NULL checked,
15878 	 * doing so could have affected others with the same id, and we can't
15879 	 * check for that because we lost the id when we converted to
15880 	 * a non-MAYBE_NULL variant.
15881 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
15882 	 * non-MAYBE_NULL registers as well.
15883 	 */
15884 	if (rold->type != rcur->type)
15885 		return false;
15886 
15887 	switch (base_type(rold->type)) {
15888 	case SCALAR_VALUE:
15889 		if (env->explore_alu_limits) {
15890 			/* explore_alu_limits disables tnum_in() and range_within()
15891 			 * logic and requires everything to be strict
15892 			 */
15893 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15894 			       check_scalar_ids(rold->id, rcur->id, idmap);
15895 		}
15896 		if (!rold->precise)
15897 			return true;
15898 		/* Why check_ids() for scalar registers?
15899 		 *
15900 		 * Consider the following BPF code:
15901 		 *   1: r6 = ... unbound scalar, ID=a ...
15902 		 *   2: r7 = ... unbound scalar, ID=b ...
15903 		 *   3: if (r6 > r7) goto +1
15904 		 *   4: r6 = r7
15905 		 *   5: if (r6 > X) goto ...
15906 		 *   6: ... memory operation using r7 ...
15907 		 *
15908 		 * First verification path is [1-6]:
15909 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
15910 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
15911 		 *   r7 <= X, because r6 and r7 share same id.
15912 		 * Next verification path is [1-4, 6].
15913 		 *
15914 		 * Instruction (6) would be reached in two states:
15915 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
15916 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
15917 		 *
15918 		 * Use check_ids() to distinguish these states.
15919 		 * ---
15920 		 * Also verify that new value satisfies old value range knowledge.
15921 		 */
15922 		return range_within(rold, rcur) &&
15923 		       tnum_in(rold->var_off, rcur->var_off) &&
15924 		       check_scalar_ids(rold->id, rcur->id, idmap);
15925 	case PTR_TO_MAP_KEY:
15926 	case PTR_TO_MAP_VALUE:
15927 	case PTR_TO_MEM:
15928 	case PTR_TO_BUF:
15929 	case PTR_TO_TP_BUFFER:
15930 		/* If the new min/max/var_off satisfy the old ones and
15931 		 * everything else matches, we are OK.
15932 		 */
15933 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
15934 		       range_within(rold, rcur) &&
15935 		       tnum_in(rold->var_off, rcur->var_off) &&
15936 		       check_ids(rold->id, rcur->id, idmap) &&
15937 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15938 	case PTR_TO_PACKET_META:
15939 	case PTR_TO_PACKET:
15940 		/* We must have at least as much range as the old ptr
15941 		 * did, so that any accesses which were safe before are
15942 		 * still safe.  This is true even if old range < old off,
15943 		 * since someone could have accessed through (ptr - k), or
15944 		 * even done ptr -= k in a register, to get a safe access.
15945 		 */
15946 		if (rold->range > rcur->range)
15947 			return false;
15948 		/* If the offsets don't match, we can't trust our alignment;
15949 		 * nor can we be sure that we won't fall out of range.
15950 		 */
15951 		if (rold->off != rcur->off)
15952 			return false;
15953 		/* id relations must be preserved */
15954 		if (!check_ids(rold->id, rcur->id, idmap))
15955 			return false;
15956 		/* new val must satisfy old val knowledge */
15957 		return range_within(rold, rcur) &&
15958 		       tnum_in(rold->var_off, rcur->var_off);
15959 	case PTR_TO_STACK:
15960 		/* two stack pointers are equal only if they're pointing to
15961 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
15962 		 */
15963 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
15964 	default:
15965 		return regs_exact(rold, rcur, idmap);
15966 	}
15967 }
15968 
15969 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
15970 		      struct bpf_func_state *cur, struct bpf_idmap *idmap)
15971 {
15972 	int i, spi;
15973 
15974 	/* walk slots of the explored stack and ignore any additional
15975 	 * slots in the current stack, since explored(safe) state
15976 	 * didn't use them
15977 	 */
15978 	for (i = 0; i < old->allocated_stack; i++) {
15979 		struct bpf_reg_state *old_reg, *cur_reg;
15980 
15981 		spi = i / BPF_REG_SIZE;
15982 
15983 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
15984 			i += BPF_REG_SIZE - 1;
15985 			/* explored state didn't use this */
15986 			continue;
15987 		}
15988 
15989 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
15990 			continue;
15991 
15992 		if (env->allow_uninit_stack &&
15993 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
15994 			continue;
15995 
15996 		/* explored stack has more populated slots than current stack
15997 		 * and these slots were used
15998 		 */
15999 		if (i >= cur->allocated_stack)
16000 			return false;
16001 
16002 		/* if old state was safe with misc data in the stack
16003 		 * it will be safe with zero-initialized stack.
16004 		 * The opposite is not true
16005 		 */
16006 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16007 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16008 			continue;
16009 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16010 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16011 			/* Ex: old explored (safe) state has STACK_SPILL in
16012 			 * this stack slot, but current has STACK_MISC ->
16013 			 * this verifier states are not equivalent,
16014 			 * return false to continue verification of this path
16015 			 */
16016 			return false;
16017 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16018 			continue;
16019 		/* Both old and cur are having same slot_type */
16020 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16021 		case STACK_SPILL:
16022 			/* when explored and current stack slot are both storing
16023 			 * spilled registers, check that stored pointers types
16024 			 * are the same as well.
16025 			 * Ex: explored safe path could have stored
16026 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16027 			 * but current path has stored:
16028 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16029 			 * such verifier states are not equivalent.
16030 			 * return false to continue verification of this path
16031 			 */
16032 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
16033 				     &cur->stack[spi].spilled_ptr, idmap))
16034 				return false;
16035 			break;
16036 		case STACK_DYNPTR:
16037 			old_reg = &old->stack[spi].spilled_ptr;
16038 			cur_reg = &cur->stack[spi].spilled_ptr;
16039 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16040 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16041 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16042 				return false;
16043 			break;
16044 		case STACK_ITER:
16045 			old_reg = &old->stack[spi].spilled_ptr;
16046 			cur_reg = &cur->stack[spi].spilled_ptr;
16047 			/* iter.depth is not compared between states as it
16048 			 * doesn't matter for correctness and would otherwise
16049 			 * prevent convergence; we maintain it only to prevent
16050 			 * infinite loop check triggering, see
16051 			 * iter_active_depths_differ()
16052 			 */
16053 			if (old_reg->iter.btf != cur_reg->iter.btf ||
16054 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16055 			    old_reg->iter.state != cur_reg->iter.state ||
16056 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
16057 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16058 				return false;
16059 			break;
16060 		case STACK_MISC:
16061 		case STACK_ZERO:
16062 		case STACK_INVALID:
16063 			continue;
16064 		/* Ensure that new unhandled slot types return false by default */
16065 		default:
16066 			return false;
16067 		}
16068 	}
16069 	return true;
16070 }
16071 
16072 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16073 		    struct bpf_idmap *idmap)
16074 {
16075 	int i;
16076 
16077 	if (old->acquired_refs != cur->acquired_refs)
16078 		return false;
16079 
16080 	for (i = 0; i < old->acquired_refs; i++) {
16081 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16082 			return false;
16083 	}
16084 
16085 	return true;
16086 }
16087 
16088 /* compare two verifier states
16089  *
16090  * all states stored in state_list are known to be valid, since
16091  * verifier reached 'bpf_exit' instruction through them
16092  *
16093  * this function is called when verifier exploring different branches of
16094  * execution popped from the state stack. If it sees an old state that has
16095  * more strict register state and more strict stack state then this execution
16096  * branch doesn't need to be explored further, since verifier already
16097  * concluded that more strict state leads to valid finish.
16098  *
16099  * Therefore two states are equivalent if register state is more conservative
16100  * and explored stack state is more conservative than the current one.
16101  * Example:
16102  *       explored                   current
16103  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16104  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16105  *
16106  * In other words if current stack state (one being explored) has more
16107  * valid slots than old one that already passed validation, it means
16108  * the verifier can stop exploring and conclude that current state is valid too
16109  *
16110  * Similarly with registers. If explored state has register type as invalid
16111  * whereas register type in current state is meaningful, it means that
16112  * the current state will reach 'bpf_exit' instruction safely
16113  */
16114 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16115 			      struct bpf_func_state *cur)
16116 {
16117 	int i;
16118 
16119 	for (i = 0; i < MAX_BPF_REG; i++)
16120 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
16121 			     &env->idmap_scratch))
16122 			return false;
16123 
16124 	if (!stacksafe(env, old, cur, &env->idmap_scratch))
16125 		return false;
16126 
16127 	if (!refsafe(old, cur, &env->idmap_scratch))
16128 		return false;
16129 
16130 	return true;
16131 }
16132 
16133 static bool states_equal(struct bpf_verifier_env *env,
16134 			 struct bpf_verifier_state *old,
16135 			 struct bpf_verifier_state *cur)
16136 {
16137 	int i;
16138 
16139 	if (old->curframe != cur->curframe)
16140 		return false;
16141 
16142 	env->idmap_scratch.tmp_id_gen = env->id_gen;
16143 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16144 
16145 	/* Verification state from speculative execution simulation
16146 	 * must never prune a non-speculative execution one.
16147 	 */
16148 	if (old->speculative && !cur->speculative)
16149 		return false;
16150 
16151 	if (old->active_lock.ptr != cur->active_lock.ptr)
16152 		return false;
16153 
16154 	/* Old and cur active_lock's have to be either both present
16155 	 * or both absent.
16156 	 */
16157 	if (!!old->active_lock.id != !!cur->active_lock.id)
16158 		return false;
16159 
16160 	if (old->active_lock.id &&
16161 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16162 		return false;
16163 
16164 	if (old->active_rcu_lock != cur->active_rcu_lock)
16165 		return false;
16166 
16167 	/* for states to be equal callsites have to be the same
16168 	 * and all frame states need to be equivalent
16169 	 */
16170 	for (i = 0; i <= old->curframe; i++) {
16171 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
16172 			return false;
16173 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
16174 			return false;
16175 	}
16176 	return true;
16177 }
16178 
16179 /* Return 0 if no propagation happened. Return negative error code if error
16180  * happened. Otherwise, return the propagated bit.
16181  */
16182 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16183 				  struct bpf_reg_state *reg,
16184 				  struct bpf_reg_state *parent_reg)
16185 {
16186 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16187 	u8 flag = reg->live & REG_LIVE_READ;
16188 	int err;
16189 
16190 	/* When comes here, read flags of PARENT_REG or REG could be any of
16191 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16192 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16193 	 */
16194 	if (parent_flag == REG_LIVE_READ64 ||
16195 	    /* Or if there is no read flag from REG. */
16196 	    !flag ||
16197 	    /* Or if the read flag from REG is the same as PARENT_REG. */
16198 	    parent_flag == flag)
16199 		return 0;
16200 
16201 	err = mark_reg_read(env, reg, parent_reg, flag);
16202 	if (err)
16203 		return err;
16204 
16205 	return flag;
16206 }
16207 
16208 /* A write screens off any subsequent reads; but write marks come from the
16209  * straight-line code between a state and its parent.  When we arrive at an
16210  * equivalent state (jump target or such) we didn't arrive by the straight-line
16211  * code, so read marks in the state must propagate to the parent regardless
16212  * of the state's write marks. That's what 'parent == state->parent' comparison
16213  * in mark_reg_read() is for.
16214  */
16215 static int propagate_liveness(struct bpf_verifier_env *env,
16216 			      const struct bpf_verifier_state *vstate,
16217 			      struct bpf_verifier_state *vparent)
16218 {
16219 	struct bpf_reg_state *state_reg, *parent_reg;
16220 	struct bpf_func_state *state, *parent;
16221 	int i, frame, err = 0;
16222 
16223 	if (vparent->curframe != vstate->curframe) {
16224 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
16225 		     vparent->curframe, vstate->curframe);
16226 		return -EFAULT;
16227 	}
16228 	/* Propagate read liveness of registers... */
16229 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16230 	for (frame = 0; frame <= vstate->curframe; frame++) {
16231 		parent = vparent->frame[frame];
16232 		state = vstate->frame[frame];
16233 		parent_reg = parent->regs;
16234 		state_reg = state->regs;
16235 		/* We don't need to worry about FP liveness, it's read-only */
16236 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16237 			err = propagate_liveness_reg(env, &state_reg[i],
16238 						     &parent_reg[i]);
16239 			if (err < 0)
16240 				return err;
16241 			if (err == REG_LIVE_READ64)
16242 				mark_insn_zext(env, &parent_reg[i]);
16243 		}
16244 
16245 		/* Propagate stack slots. */
16246 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16247 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16248 			parent_reg = &parent->stack[i].spilled_ptr;
16249 			state_reg = &state->stack[i].spilled_ptr;
16250 			err = propagate_liveness_reg(env, state_reg,
16251 						     parent_reg);
16252 			if (err < 0)
16253 				return err;
16254 		}
16255 	}
16256 	return 0;
16257 }
16258 
16259 /* find precise scalars in the previous equivalent state and
16260  * propagate them into the current state
16261  */
16262 static int propagate_precision(struct bpf_verifier_env *env,
16263 			       const struct bpf_verifier_state *old)
16264 {
16265 	struct bpf_reg_state *state_reg;
16266 	struct bpf_func_state *state;
16267 	int i, err = 0, fr;
16268 	bool first;
16269 
16270 	for (fr = old->curframe; fr >= 0; fr--) {
16271 		state = old->frame[fr];
16272 		state_reg = state->regs;
16273 		first = true;
16274 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
16275 			if (state_reg->type != SCALAR_VALUE ||
16276 			    !state_reg->precise ||
16277 			    !(state_reg->live & REG_LIVE_READ))
16278 				continue;
16279 			if (env->log.level & BPF_LOG_LEVEL2) {
16280 				if (first)
16281 					verbose(env, "frame %d: propagating r%d", fr, i);
16282 				else
16283 					verbose(env, ",r%d", i);
16284 			}
16285 			bt_set_frame_reg(&env->bt, fr, i);
16286 			first = false;
16287 		}
16288 
16289 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16290 			if (!is_spilled_reg(&state->stack[i]))
16291 				continue;
16292 			state_reg = &state->stack[i].spilled_ptr;
16293 			if (state_reg->type != SCALAR_VALUE ||
16294 			    !state_reg->precise ||
16295 			    !(state_reg->live & REG_LIVE_READ))
16296 				continue;
16297 			if (env->log.level & BPF_LOG_LEVEL2) {
16298 				if (first)
16299 					verbose(env, "frame %d: propagating fp%d",
16300 						fr, (-i - 1) * BPF_REG_SIZE);
16301 				else
16302 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16303 			}
16304 			bt_set_frame_slot(&env->bt, fr, i);
16305 			first = false;
16306 		}
16307 		if (!first)
16308 			verbose(env, "\n");
16309 	}
16310 
16311 	err = mark_chain_precision_batch(env);
16312 	if (err < 0)
16313 		return err;
16314 
16315 	return 0;
16316 }
16317 
16318 static bool states_maybe_looping(struct bpf_verifier_state *old,
16319 				 struct bpf_verifier_state *cur)
16320 {
16321 	struct bpf_func_state *fold, *fcur;
16322 	int i, fr = cur->curframe;
16323 
16324 	if (old->curframe != fr)
16325 		return false;
16326 
16327 	fold = old->frame[fr];
16328 	fcur = cur->frame[fr];
16329 	for (i = 0; i < MAX_BPF_REG; i++)
16330 		if (memcmp(&fold->regs[i], &fcur->regs[i],
16331 			   offsetof(struct bpf_reg_state, parent)))
16332 			return false;
16333 	return true;
16334 }
16335 
16336 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16337 {
16338 	return env->insn_aux_data[insn_idx].is_iter_next;
16339 }
16340 
16341 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16342  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16343  * states to match, which otherwise would look like an infinite loop. So while
16344  * iter_next() calls are taken care of, we still need to be careful and
16345  * prevent erroneous and too eager declaration of "ininite loop", when
16346  * iterators are involved.
16347  *
16348  * Here's a situation in pseudo-BPF assembly form:
16349  *
16350  *   0: again:                          ; set up iter_next() call args
16351  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16352  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16353  *   3:   if r0 == 0 goto done
16354  *   4:   ... something useful here ...
16355  *   5:   goto again                    ; another iteration
16356  *   6: done:
16357  *   7:   r1 = &it
16358  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16359  *   9:   exit
16360  *
16361  * This is a typical loop. Let's assume that we have a prune point at 1:,
16362  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16363  * again`, assuming other heuristics don't get in a way).
16364  *
16365  * When we first time come to 1:, let's say we have some state X. We proceed
16366  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16367  * Now we come back to validate that forked ACTIVE state. We proceed through
16368  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16369  * are converging. But the problem is that we don't know that yet, as this
16370  * convergence has to happen at iter_next() call site only. So if nothing is
16371  * done, at 1: verifier will use bounded loop logic and declare infinite
16372  * looping (and would be *technically* correct, if not for iterator's
16373  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16374  * don't want that. So what we do in process_iter_next_call() when we go on
16375  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16376  * a different iteration. So when we suspect an infinite loop, we additionally
16377  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16378  * pretend we are not looping and wait for next iter_next() call.
16379  *
16380  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16381  * loop, because that would actually mean infinite loop, as DRAINED state is
16382  * "sticky", and so we'll keep returning into the same instruction with the
16383  * same state (at least in one of possible code paths).
16384  *
16385  * This approach allows to keep infinite loop heuristic even in the face of
16386  * active iterator. E.g., C snippet below is and will be detected as
16387  * inifintely looping:
16388  *
16389  *   struct bpf_iter_num it;
16390  *   int *p, x;
16391  *
16392  *   bpf_iter_num_new(&it, 0, 10);
16393  *   while ((p = bpf_iter_num_next(&t))) {
16394  *       x = p;
16395  *       while (x--) {} // <<-- infinite loop here
16396  *   }
16397  *
16398  */
16399 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16400 {
16401 	struct bpf_reg_state *slot, *cur_slot;
16402 	struct bpf_func_state *state;
16403 	int i, fr;
16404 
16405 	for (fr = old->curframe; fr >= 0; fr--) {
16406 		state = old->frame[fr];
16407 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16408 			if (state->stack[i].slot_type[0] != STACK_ITER)
16409 				continue;
16410 
16411 			slot = &state->stack[i].spilled_ptr;
16412 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16413 				continue;
16414 
16415 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16416 			if (cur_slot->iter.depth != slot->iter.depth)
16417 				return true;
16418 		}
16419 	}
16420 	return false;
16421 }
16422 
16423 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16424 {
16425 	struct bpf_verifier_state_list *new_sl;
16426 	struct bpf_verifier_state_list *sl, **pprev;
16427 	struct bpf_verifier_state *cur = env->cur_state, *new;
16428 	int i, j, err, states_cnt = 0;
16429 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16430 	bool add_new_state = force_new_state;
16431 
16432 	/* bpf progs typically have pruning point every 4 instructions
16433 	 * http://vger.kernel.org/bpfconf2019.html#session-1
16434 	 * Do not add new state for future pruning if the verifier hasn't seen
16435 	 * at least 2 jumps and at least 8 instructions.
16436 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16437 	 * In tests that amounts to up to 50% reduction into total verifier
16438 	 * memory consumption and 20% verifier time speedup.
16439 	 */
16440 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16441 	    env->insn_processed - env->prev_insn_processed >= 8)
16442 		add_new_state = true;
16443 
16444 	pprev = explored_state(env, insn_idx);
16445 	sl = *pprev;
16446 
16447 	clean_live_states(env, insn_idx, cur);
16448 
16449 	while (sl) {
16450 		states_cnt++;
16451 		if (sl->state.insn_idx != insn_idx)
16452 			goto next;
16453 
16454 		if (sl->state.branches) {
16455 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16456 
16457 			if (frame->in_async_callback_fn &&
16458 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16459 				/* Different async_entry_cnt means that the verifier is
16460 				 * processing another entry into async callback.
16461 				 * Seeing the same state is not an indication of infinite
16462 				 * loop or infinite recursion.
16463 				 * But finding the same state doesn't mean that it's safe
16464 				 * to stop processing the current state. The previous state
16465 				 * hasn't yet reached bpf_exit, since state.branches > 0.
16466 				 * Checking in_async_callback_fn alone is not enough either.
16467 				 * Since the verifier still needs to catch infinite loops
16468 				 * inside async callbacks.
16469 				 */
16470 				goto skip_inf_loop_check;
16471 			}
16472 			/* BPF open-coded iterators loop detection is special.
16473 			 * states_maybe_looping() logic is too simplistic in detecting
16474 			 * states that *might* be equivalent, because it doesn't know
16475 			 * about ID remapping, so don't even perform it.
16476 			 * See process_iter_next_call() and iter_active_depths_differ()
16477 			 * for overview of the logic. When current and one of parent
16478 			 * states are detected as equivalent, it's a good thing: we prove
16479 			 * convergence and can stop simulating further iterations.
16480 			 * It's safe to assume that iterator loop will finish, taking into
16481 			 * account iter_next() contract of eventually returning
16482 			 * sticky NULL result.
16483 			 */
16484 			if (is_iter_next_insn(env, insn_idx)) {
16485 				if (states_equal(env, &sl->state, cur)) {
16486 					struct bpf_func_state *cur_frame;
16487 					struct bpf_reg_state *iter_state, *iter_reg;
16488 					int spi;
16489 
16490 					cur_frame = cur->frame[cur->curframe];
16491 					/* btf_check_iter_kfuncs() enforces that
16492 					 * iter state pointer is always the first arg
16493 					 */
16494 					iter_reg = &cur_frame->regs[BPF_REG_1];
16495 					/* current state is valid due to states_equal(),
16496 					 * so we can assume valid iter and reg state,
16497 					 * no need for extra (re-)validations
16498 					 */
16499 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16500 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16501 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE)
16502 						goto hit;
16503 				}
16504 				goto skip_inf_loop_check;
16505 			}
16506 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
16507 			if (states_maybe_looping(&sl->state, cur) &&
16508 			    states_equal(env, &sl->state, cur) &&
16509 			    !iter_active_depths_differ(&sl->state, cur)) {
16510 				verbose_linfo(env, insn_idx, "; ");
16511 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16512 				return -EINVAL;
16513 			}
16514 			/* if the verifier is processing a loop, avoid adding new state
16515 			 * too often, since different loop iterations have distinct
16516 			 * states and may not help future pruning.
16517 			 * This threshold shouldn't be too low to make sure that
16518 			 * a loop with large bound will be rejected quickly.
16519 			 * The most abusive loop will be:
16520 			 * r1 += 1
16521 			 * if r1 < 1000000 goto pc-2
16522 			 * 1M insn_procssed limit / 100 == 10k peak states.
16523 			 * This threshold shouldn't be too high either, since states
16524 			 * at the end of the loop are likely to be useful in pruning.
16525 			 */
16526 skip_inf_loop_check:
16527 			if (!force_new_state &&
16528 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
16529 			    env->insn_processed - env->prev_insn_processed < 100)
16530 				add_new_state = false;
16531 			goto miss;
16532 		}
16533 		if (states_equal(env, &sl->state, cur)) {
16534 hit:
16535 			sl->hit_cnt++;
16536 			/* reached equivalent register/stack state,
16537 			 * prune the search.
16538 			 * Registers read by the continuation are read by us.
16539 			 * If we have any write marks in env->cur_state, they
16540 			 * will prevent corresponding reads in the continuation
16541 			 * from reaching our parent (an explored_state).  Our
16542 			 * own state will get the read marks recorded, but
16543 			 * they'll be immediately forgotten as we're pruning
16544 			 * this state and will pop a new one.
16545 			 */
16546 			err = propagate_liveness(env, &sl->state, cur);
16547 
16548 			/* if previous state reached the exit with precision and
16549 			 * current state is equivalent to it (except precsion marks)
16550 			 * the precision needs to be propagated back in
16551 			 * the current state.
16552 			 */
16553 			err = err ? : push_jmp_history(env, cur);
16554 			err = err ? : propagate_precision(env, &sl->state);
16555 			if (err)
16556 				return err;
16557 			return 1;
16558 		}
16559 miss:
16560 		/* when new state is not going to be added do not increase miss count.
16561 		 * Otherwise several loop iterations will remove the state
16562 		 * recorded earlier. The goal of these heuristics is to have
16563 		 * states from some iterations of the loop (some in the beginning
16564 		 * and some at the end) to help pruning.
16565 		 */
16566 		if (add_new_state)
16567 			sl->miss_cnt++;
16568 		/* heuristic to determine whether this state is beneficial
16569 		 * to keep checking from state equivalence point of view.
16570 		 * Higher numbers increase max_states_per_insn and verification time,
16571 		 * but do not meaningfully decrease insn_processed.
16572 		 */
16573 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
16574 			/* the state is unlikely to be useful. Remove it to
16575 			 * speed up verification
16576 			 */
16577 			*pprev = sl->next;
16578 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
16579 				u32 br = sl->state.branches;
16580 
16581 				WARN_ONCE(br,
16582 					  "BUG live_done but branches_to_explore %d\n",
16583 					  br);
16584 				free_verifier_state(&sl->state, false);
16585 				kfree(sl);
16586 				env->peak_states--;
16587 			} else {
16588 				/* cannot free this state, since parentage chain may
16589 				 * walk it later. Add it for free_list instead to
16590 				 * be freed at the end of verification
16591 				 */
16592 				sl->next = env->free_list;
16593 				env->free_list = sl;
16594 			}
16595 			sl = *pprev;
16596 			continue;
16597 		}
16598 next:
16599 		pprev = &sl->next;
16600 		sl = *pprev;
16601 	}
16602 
16603 	if (env->max_states_per_insn < states_cnt)
16604 		env->max_states_per_insn = states_cnt;
16605 
16606 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
16607 		return 0;
16608 
16609 	if (!add_new_state)
16610 		return 0;
16611 
16612 	/* There were no equivalent states, remember the current one.
16613 	 * Technically the current state is not proven to be safe yet,
16614 	 * but it will either reach outer most bpf_exit (which means it's safe)
16615 	 * or it will be rejected. When there are no loops the verifier won't be
16616 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
16617 	 * again on the way to bpf_exit.
16618 	 * When looping the sl->state.branches will be > 0 and this state
16619 	 * will not be considered for equivalence until branches == 0.
16620 	 */
16621 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
16622 	if (!new_sl)
16623 		return -ENOMEM;
16624 	env->total_states++;
16625 	env->peak_states++;
16626 	env->prev_jmps_processed = env->jmps_processed;
16627 	env->prev_insn_processed = env->insn_processed;
16628 
16629 	/* forget precise markings we inherited, see __mark_chain_precision */
16630 	if (env->bpf_capable)
16631 		mark_all_scalars_imprecise(env, cur);
16632 
16633 	/* add new state to the head of linked list */
16634 	new = &new_sl->state;
16635 	err = copy_verifier_state(new, cur);
16636 	if (err) {
16637 		free_verifier_state(new, false);
16638 		kfree(new_sl);
16639 		return err;
16640 	}
16641 	new->insn_idx = insn_idx;
16642 	WARN_ONCE(new->branches != 1,
16643 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
16644 
16645 	cur->parent = new;
16646 	cur->first_insn_idx = insn_idx;
16647 	clear_jmp_history(cur);
16648 	new_sl->next = *explored_state(env, insn_idx);
16649 	*explored_state(env, insn_idx) = new_sl;
16650 	/* connect new state to parentage chain. Current frame needs all
16651 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
16652 	 * to the stack implicitly by JITs) so in callers' frames connect just
16653 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16654 	 * the state of the call instruction (with WRITTEN set), and r0 comes
16655 	 * from callee with its full parentage chain, anyway.
16656 	 */
16657 	/* clear write marks in current state: the writes we did are not writes
16658 	 * our child did, so they don't screen off its reads from us.
16659 	 * (There are no read marks in current state, because reads always mark
16660 	 * their parent and current state never has children yet.  Only
16661 	 * explored_states can get read marks.)
16662 	 */
16663 	for (j = 0; j <= cur->curframe; j++) {
16664 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16665 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16666 		for (i = 0; i < BPF_REG_FP; i++)
16667 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16668 	}
16669 
16670 	/* all stack frames are accessible from callee, clear them all */
16671 	for (j = 0; j <= cur->curframe; j++) {
16672 		struct bpf_func_state *frame = cur->frame[j];
16673 		struct bpf_func_state *newframe = new->frame[j];
16674 
16675 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
16676 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
16677 			frame->stack[i].spilled_ptr.parent =
16678 						&newframe->stack[i].spilled_ptr;
16679 		}
16680 	}
16681 	return 0;
16682 }
16683 
16684 /* Return true if it's OK to have the same insn return a different type. */
16685 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
16686 {
16687 	switch (base_type(type)) {
16688 	case PTR_TO_CTX:
16689 	case PTR_TO_SOCKET:
16690 	case PTR_TO_SOCK_COMMON:
16691 	case PTR_TO_TCP_SOCK:
16692 	case PTR_TO_XDP_SOCK:
16693 	case PTR_TO_BTF_ID:
16694 		return false;
16695 	default:
16696 		return true;
16697 	}
16698 }
16699 
16700 /* If an instruction was previously used with particular pointer types, then we
16701  * need to be careful to avoid cases such as the below, where it may be ok
16702  * for one branch accessing the pointer, but not ok for the other branch:
16703  *
16704  * R1 = sock_ptr
16705  * goto X;
16706  * ...
16707  * R1 = some_other_valid_ptr;
16708  * goto X;
16709  * ...
16710  * R2 = *(u32 *)(R1 + 0);
16711  */
16712 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
16713 {
16714 	return src != prev && (!reg_type_mismatch_ok(src) ||
16715 			       !reg_type_mismatch_ok(prev));
16716 }
16717 
16718 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
16719 			     bool allow_trust_missmatch)
16720 {
16721 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
16722 
16723 	if (*prev_type == NOT_INIT) {
16724 		/* Saw a valid insn
16725 		 * dst_reg = *(u32 *)(src_reg + off)
16726 		 * save type to validate intersecting paths
16727 		 */
16728 		*prev_type = type;
16729 	} else if (reg_type_mismatch(type, *prev_type)) {
16730 		/* Abuser program is trying to use the same insn
16731 		 * dst_reg = *(u32*) (src_reg + off)
16732 		 * with different pointer types:
16733 		 * src_reg == ctx in one branch and
16734 		 * src_reg == stack|map in some other branch.
16735 		 * Reject it.
16736 		 */
16737 		if (allow_trust_missmatch &&
16738 		    base_type(type) == PTR_TO_BTF_ID &&
16739 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
16740 			/*
16741 			 * Have to support a use case when one path through
16742 			 * the program yields TRUSTED pointer while another
16743 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
16744 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
16745 			 */
16746 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
16747 		} else {
16748 			verbose(env, "same insn cannot be used with different pointers\n");
16749 			return -EINVAL;
16750 		}
16751 	}
16752 
16753 	return 0;
16754 }
16755 
16756 static int do_check(struct bpf_verifier_env *env)
16757 {
16758 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16759 	struct bpf_verifier_state *state = env->cur_state;
16760 	struct bpf_insn *insns = env->prog->insnsi;
16761 	struct bpf_reg_state *regs;
16762 	int insn_cnt = env->prog->len;
16763 	bool do_print_state = false;
16764 	int prev_insn_idx = -1;
16765 
16766 	for (;;) {
16767 		bool exception_exit = false;
16768 		struct bpf_insn *insn;
16769 		u8 class;
16770 		int err;
16771 
16772 		env->prev_insn_idx = prev_insn_idx;
16773 		if (env->insn_idx >= insn_cnt) {
16774 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
16775 				env->insn_idx, insn_cnt);
16776 			return -EFAULT;
16777 		}
16778 
16779 		insn = &insns[env->insn_idx];
16780 		class = BPF_CLASS(insn->code);
16781 
16782 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
16783 			verbose(env,
16784 				"BPF program is too large. Processed %d insn\n",
16785 				env->insn_processed);
16786 			return -E2BIG;
16787 		}
16788 
16789 		state->last_insn_idx = env->prev_insn_idx;
16790 
16791 		if (is_prune_point(env, env->insn_idx)) {
16792 			err = is_state_visited(env, env->insn_idx);
16793 			if (err < 0)
16794 				return err;
16795 			if (err == 1) {
16796 				/* found equivalent state, can prune the search */
16797 				if (env->log.level & BPF_LOG_LEVEL) {
16798 					if (do_print_state)
16799 						verbose(env, "\nfrom %d to %d%s: safe\n",
16800 							env->prev_insn_idx, env->insn_idx,
16801 							env->cur_state->speculative ?
16802 							" (speculative execution)" : "");
16803 					else
16804 						verbose(env, "%d: safe\n", env->insn_idx);
16805 				}
16806 				goto process_bpf_exit;
16807 			}
16808 		}
16809 
16810 		if (is_jmp_point(env, env->insn_idx)) {
16811 			err = push_jmp_history(env, state);
16812 			if (err)
16813 				return err;
16814 		}
16815 
16816 		if (signal_pending(current))
16817 			return -EAGAIN;
16818 
16819 		if (need_resched())
16820 			cond_resched();
16821 
16822 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
16823 			verbose(env, "\nfrom %d to %d%s:",
16824 				env->prev_insn_idx, env->insn_idx,
16825 				env->cur_state->speculative ?
16826 				" (speculative execution)" : "");
16827 			print_verifier_state(env, state->frame[state->curframe], true);
16828 			do_print_state = false;
16829 		}
16830 
16831 		if (env->log.level & BPF_LOG_LEVEL) {
16832 			const struct bpf_insn_cbs cbs = {
16833 				.cb_call	= disasm_kfunc_name,
16834 				.cb_print	= verbose,
16835 				.private_data	= env,
16836 			};
16837 
16838 			if (verifier_state_scratched(env))
16839 				print_insn_state(env, state->frame[state->curframe]);
16840 
16841 			verbose_linfo(env, env->insn_idx, "; ");
16842 			env->prev_log_pos = env->log.end_pos;
16843 			verbose(env, "%d: ", env->insn_idx);
16844 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
16845 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
16846 			env->prev_log_pos = env->log.end_pos;
16847 		}
16848 
16849 		if (bpf_prog_is_offloaded(env->prog->aux)) {
16850 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
16851 							   env->prev_insn_idx);
16852 			if (err)
16853 				return err;
16854 		}
16855 
16856 		regs = cur_regs(env);
16857 		sanitize_mark_insn_seen(env);
16858 		prev_insn_idx = env->insn_idx;
16859 
16860 		if (class == BPF_ALU || class == BPF_ALU64) {
16861 			err = check_alu_op(env, insn);
16862 			if (err)
16863 				return err;
16864 
16865 		} else if (class == BPF_LDX) {
16866 			enum bpf_reg_type src_reg_type;
16867 
16868 			/* check for reserved fields is already done */
16869 
16870 			/* check src operand */
16871 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
16872 			if (err)
16873 				return err;
16874 
16875 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
16876 			if (err)
16877 				return err;
16878 
16879 			src_reg_type = regs[insn->src_reg].type;
16880 
16881 			/* check that memory (src_reg + off) is readable,
16882 			 * the state of dst_reg will be updated by this func
16883 			 */
16884 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
16885 					       insn->off, BPF_SIZE(insn->code),
16886 					       BPF_READ, insn->dst_reg, false,
16887 					       BPF_MODE(insn->code) == BPF_MEMSX);
16888 			if (err)
16889 				return err;
16890 
16891 			err = save_aux_ptr_type(env, src_reg_type, true);
16892 			if (err)
16893 				return err;
16894 		} else if (class == BPF_STX) {
16895 			enum bpf_reg_type dst_reg_type;
16896 
16897 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
16898 				err = check_atomic(env, env->insn_idx, insn);
16899 				if (err)
16900 					return err;
16901 				env->insn_idx++;
16902 				continue;
16903 			}
16904 
16905 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
16906 				verbose(env, "BPF_STX uses reserved fields\n");
16907 				return -EINVAL;
16908 			}
16909 
16910 			/* check src1 operand */
16911 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
16912 			if (err)
16913 				return err;
16914 			/* check src2 operand */
16915 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16916 			if (err)
16917 				return err;
16918 
16919 			dst_reg_type = regs[insn->dst_reg].type;
16920 
16921 			/* check that memory (dst_reg + off) is writeable */
16922 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16923 					       insn->off, BPF_SIZE(insn->code),
16924 					       BPF_WRITE, insn->src_reg, false, false);
16925 			if (err)
16926 				return err;
16927 
16928 			err = save_aux_ptr_type(env, dst_reg_type, false);
16929 			if (err)
16930 				return err;
16931 		} else if (class == BPF_ST) {
16932 			enum bpf_reg_type dst_reg_type;
16933 
16934 			if (BPF_MODE(insn->code) != BPF_MEM ||
16935 			    insn->src_reg != BPF_REG_0) {
16936 				verbose(env, "BPF_ST uses reserved fields\n");
16937 				return -EINVAL;
16938 			}
16939 			/* check src operand */
16940 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16941 			if (err)
16942 				return err;
16943 
16944 			dst_reg_type = regs[insn->dst_reg].type;
16945 
16946 			/* check that memory (dst_reg + off) is writeable */
16947 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16948 					       insn->off, BPF_SIZE(insn->code),
16949 					       BPF_WRITE, -1, false, false);
16950 			if (err)
16951 				return err;
16952 
16953 			err = save_aux_ptr_type(env, dst_reg_type, false);
16954 			if (err)
16955 				return err;
16956 		} else if (class == BPF_JMP || class == BPF_JMP32) {
16957 			u8 opcode = BPF_OP(insn->code);
16958 
16959 			env->jmps_processed++;
16960 			if (opcode == BPF_CALL) {
16961 				if (BPF_SRC(insn->code) != BPF_K ||
16962 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
16963 				     && insn->off != 0) ||
16964 				    (insn->src_reg != BPF_REG_0 &&
16965 				     insn->src_reg != BPF_PSEUDO_CALL &&
16966 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
16967 				    insn->dst_reg != BPF_REG_0 ||
16968 				    class == BPF_JMP32) {
16969 					verbose(env, "BPF_CALL uses reserved fields\n");
16970 					return -EINVAL;
16971 				}
16972 
16973 				if (env->cur_state->active_lock.ptr) {
16974 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
16975 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
16976 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
16977 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
16978 						verbose(env, "function calls are not allowed while holding a lock\n");
16979 						return -EINVAL;
16980 					}
16981 				}
16982 				if (insn->src_reg == BPF_PSEUDO_CALL) {
16983 					err = check_func_call(env, insn, &env->insn_idx);
16984 				} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
16985 					err = check_kfunc_call(env, insn, &env->insn_idx);
16986 					if (!err && is_bpf_throw_kfunc(insn)) {
16987 						exception_exit = true;
16988 						goto process_bpf_exit_full;
16989 					}
16990 				} else {
16991 					err = check_helper_call(env, insn, &env->insn_idx);
16992 				}
16993 				if (err)
16994 					return err;
16995 
16996 				mark_reg_scratched(env, BPF_REG_0);
16997 			} else if (opcode == BPF_JA) {
16998 				if (BPF_SRC(insn->code) != BPF_K ||
16999 				    insn->src_reg != BPF_REG_0 ||
17000 				    insn->dst_reg != BPF_REG_0 ||
17001 				    (class == BPF_JMP && insn->imm != 0) ||
17002 				    (class == BPF_JMP32 && insn->off != 0)) {
17003 					verbose(env, "BPF_JA uses reserved fields\n");
17004 					return -EINVAL;
17005 				}
17006 
17007 				if (class == BPF_JMP)
17008 					env->insn_idx += insn->off + 1;
17009 				else
17010 					env->insn_idx += insn->imm + 1;
17011 				continue;
17012 
17013 			} else if (opcode == BPF_EXIT) {
17014 				if (BPF_SRC(insn->code) != BPF_K ||
17015 				    insn->imm != 0 ||
17016 				    insn->src_reg != BPF_REG_0 ||
17017 				    insn->dst_reg != BPF_REG_0 ||
17018 				    class == BPF_JMP32) {
17019 					verbose(env, "BPF_EXIT uses reserved fields\n");
17020 					return -EINVAL;
17021 				}
17022 process_bpf_exit_full:
17023 				if (env->cur_state->active_lock.ptr &&
17024 				    !in_rbtree_lock_required_cb(env)) {
17025 					verbose(env, "bpf_spin_unlock is missing\n");
17026 					return -EINVAL;
17027 				}
17028 
17029 				if (env->cur_state->active_rcu_lock &&
17030 				    !in_rbtree_lock_required_cb(env)) {
17031 					verbose(env, "bpf_rcu_read_unlock is missing\n");
17032 					return -EINVAL;
17033 				}
17034 
17035 				/* We must do check_reference_leak here before
17036 				 * prepare_func_exit to handle the case when
17037 				 * state->curframe > 0, it may be a callback
17038 				 * function, for which reference_state must
17039 				 * match caller reference state when it exits.
17040 				 */
17041 				err = check_reference_leak(env, exception_exit);
17042 				if (err)
17043 					return err;
17044 
17045 				/* The side effect of the prepare_func_exit
17046 				 * which is being skipped is that it frees
17047 				 * bpf_func_state. Typically, process_bpf_exit
17048 				 * will only be hit with outermost exit.
17049 				 * copy_verifier_state in pop_stack will handle
17050 				 * freeing of any extra bpf_func_state left over
17051 				 * from not processing all nested function
17052 				 * exits. We also skip return code checks as
17053 				 * they are not needed for exceptional exits.
17054 				 */
17055 				if (exception_exit)
17056 					goto process_bpf_exit;
17057 
17058 				if (state->curframe) {
17059 					/* exit from nested function */
17060 					err = prepare_func_exit(env, &env->insn_idx);
17061 					if (err)
17062 						return err;
17063 					do_print_state = true;
17064 					continue;
17065 				}
17066 
17067 				err = check_return_code(env, BPF_REG_0);
17068 				if (err)
17069 					return err;
17070 process_bpf_exit:
17071 				mark_verifier_state_scratched(env);
17072 				update_branch_counts(env, env->cur_state);
17073 				err = pop_stack(env, &prev_insn_idx,
17074 						&env->insn_idx, pop_log);
17075 				if (err < 0) {
17076 					if (err != -ENOENT)
17077 						return err;
17078 					break;
17079 				} else {
17080 					do_print_state = true;
17081 					continue;
17082 				}
17083 			} else {
17084 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
17085 				if (err)
17086 					return err;
17087 			}
17088 		} else if (class == BPF_LD) {
17089 			u8 mode = BPF_MODE(insn->code);
17090 
17091 			if (mode == BPF_ABS || mode == BPF_IND) {
17092 				err = check_ld_abs(env, insn);
17093 				if (err)
17094 					return err;
17095 
17096 			} else if (mode == BPF_IMM) {
17097 				err = check_ld_imm(env, insn);
17098 				if (err)
17099 					return err;
17100 
17101 				env->insn_idx++;
17102 				sanitize_mark_insn_seen(env);
17103 			} else {
17104 				verbose(env, "invalid BPF_LD mode\n");
17105 				return -EINVAL;
17106 			}
17107 		} else {
17108 			verbose(env, "unknown insn class %d\n", class);
17109 			return -EINVAL;
17110 		}
17111 
17112 		env->insn_idx++;
17113 	}
17114 
17115 	return 0;
17116 }
17117 
17118 static int find_btf_percpu_datasec(struct btf *btf)
17119 {
17120 	const struct btf_type *t;
17121 	const char *tname;
17122 	int i, n;
17123 
17124 	/*
17125 	 * Both vmlinux and module each have their own ".data..percpu"
17126 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17127 	 * types to look at only module's own BTF types.
17128 	 */
17129 	n = btf_nr_types(btf);
17130 	if (btf_is_module(btf))
17131 		i = btf_nr_types(btf_vmlinux);
17132 	else
17133 		i = 1;
17134 
17135 	for(; i < n; i++) {
17136 		t = btf_type_by_id(btf, i);
17137 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17138 			continue;
17139 
17140 		tname = btf_name_by_offset(btf, t->name_off);
17141 		if (!strcmp(tname, ".data..percpu"))
17142 			return i;
17143 	}
17144 
17145 	return -ENOENT;
17146 }
17147 
17148 /* replace pseudo btf_id with kernel symbol address */
17149 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17150 			       struct bpf_insn *insn,
17151 			       struct bpf_insn_aux_data *aux)
17152 {
17153 	const struct btf_var_secinfo *vsi;
17154 	const struct btf_type *datasec;
17155 	struct btf_mod_pair *btf_mod;
17156 	const struct btf_type *t;
17157 	const char *sym_name;
17158 	bool percpu = false;
17159 	u32 type, id = insn->imm;
17160 	struct btf *btf;
17161 	s32 datasec_id;
17162 	u64 addr;
17163 	int i, btf_fd, err;
17164 
17165 	btf_fd = insn[1].imm;
17166 	if (btf_fd) {
17167 		btf = btf_get_by_fd(btf_fd);
17168 		if (IS_ERR(btf)) {
17169 			verbose(env, "invalid module BTF object FD specified.\n");
17170 			return -EINVAL;
17171 		}
17172 	} else {
17173 		if (!btf_vmlinux) {
17174 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17175 			return -EINVAL;
17176 		}
17177 		btf = btf_vmlinux;
17178 		btf_get(btf);
17179 	}
17180 
17181 	t = btf_type_by_id(btf, id);
17182 	if (!t) {
17183 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
17184 		err = -ENOENT;
17185 		goto err_put;
17186 	}
17187 
17188 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
17189 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
17190 		err = -EINVAL;
17191 		goto err_put;
17192 	}
17193 
17194 	sym_name = btf_name_by_offset(btf, t->name_off);
17195 	addr = kallsyms_lookup_name(sym_name);
17196 	if (!addr) {
17197 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
17198 			sym_name);
17199 		err = -ENOENT;
17200 		goto err_put;
17201 	}
17202 	insn[0].imm = (u32)addr;
17203 	insn[1].imm = addr >> 32;
17204 
17205 	if (btf_type_is_func(t)) {
17206 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17207 		aux->btf_var.mem_size = 0;
17208 		goto check_btf;
17209 	}
17210 
17211 	datasec_id = find_btf_percpu_datasec(btf);
17212 	if (datasec_id > 0) {
17213 		datasec = btf_type_by_id(btf, datasec_id);
17214 		for_each_vsi(i, datasec, vsi) {
17215 			if (vsi->type == id) {
17216 				percpu = true;
17217 				break;
17218 			}
17219 		}
17220 	}
17221 
17222 	type = t->type;
17223 	t = btf_type_skip_modifiers(btf, type, NULL);
17224 	if (percpu) {
17225 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
17226 		aux->btf_var.btf = btf;
17227 		aux->btf_var.btf_id = type;
17228 	} else if (!btf_type_is_struct(t)) {
17229 		const struct btf_type *ret;
17230 		const char *tname;
17231 		u32 tsize;
17232 
17233 		/* resolve the type size of ksym. */
17234 		ret = btf_resolve_size(btf, t, &tsize);
17235 		if (IS_ERR(ret)) {
17236 			tname = btf_name_by_offset(btf, t->name_off);
17237 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
17238 				tname, PTR_ERR(ret));
17239 			err = -EINVAL;
17240 			goto err_put;
17241 		}
17242 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17243 		aux->btf_var.mem_size = tsize;
17244 	} else {
17245 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
17246 		aux->btf_var.btf = btf;
17247 		aux->btf_var.btf_id = type;
17248 	}
17249 check_btf:
17250 	/* check whether we recorded this BTF (and maybe module) already */
17251 	for (i = 0; i < env->used_btf_cnt; i++) {
17252 		if (env->used_btfs[i].btf == btf) {
17253 			btf_put(btf);
17254 			return 0;
17255 		}
17256 	}
17257 
17258 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
17259 		err = -E2BIG;
17260 		goto err_put;
17261 	}
17262 
17263 	btf_mod = &env->used_btfs[env->used_btf_cnt];
17264 	btf_mod->btf = btf;
17265 	btf_mod->module = NULL;
17266 
17267 	/* if we reference variables from kernel module, bump its refcount */
17268 	if (btf_is_module(btf)) {
17269 		btf_mod->module = btf_try_get_module(btf);
17270 		if (!btf_mod->module) {
17271 			err = -ENXIO;
17272 			goto err_put;
17273 		}
17274 	}
17275 
17276 	env->used_btf_cnt++;
17277 
17278 	return 0;
17279 err_put:
17280 	btf_put(btf);
17281 	return err;
17282 }
17283 
17284 static bool is_tracing_prog_type(enum bpf_prog_type type)
17285 {
17286 	switch (type) {
17287 	case BPF_PROG_TYPE_KPROBE:
17288 	case BPF_PROG_TYPE_TRACEPOINT:
17289 	case BPF_PROG_TYPE_PERF_EVENT:
17290 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
17291 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
17292 		return true;
17293 	default:
17294 		return false;
17295 	}
17296 }
17297 
17298 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
17299 					struct bpf_map *map,
17300 					struct bpf_prog *prog)
17301 
17302 {
17303 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
17304 
17305 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
17306 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
17307 		if (is_tracing_prog_type(prog_type)) {
17308 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17309 			return -EINVAL;
17310 		}
17311 	}
17312 
17313 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17314 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17315 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17316 			return -EINVAL;
17317 		}
17318 
17319 		if (is_tracing_prog_type(prog_type)) {
17320 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17321 			return -EINVAL;
17322 		}
17323 	}
17324 
17325 	if (btf_record_has_field(map->record, BPF_TIMER)) {
17326 		if (is_tracing_prog_type(prog_type)) {
17327 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
17328 			return -EINVAL;
17329 		}
17330 	}
17331 
17332 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17333 	    !bpf_offload_prog_map_match(prog, map)) {
17334 		verbose(env, "offload device mismatch between prog and map\n");
17335 		return -EINVAL;
17336 	}
17337 
17338 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17339 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17340 		return -EINVAL;
17341 	}
17342 
17343 	if (prog->aux->sleepable)
17344 		switch (map->map_type) {
17345 		case BPF_MAP_TYPE_HASH:
17346 		case BPF_MAP_TYPE_LRU_HASH:
17347 		case BPF_MAP_TYPE_ARRAY:
17348 		case BPF_MAP_TYPE_PERCPU_HASH:
17349 		case BPF_MAP_TYPE_PERCPU_ARRAY:
17350 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17351 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17352 		case BPF_MAP_TYPE_HASH_OF_MAPS:
17353 		case BPF_MAP_TYPE_RINGBUF:
17354 		case BPF_MAP_TYPE_USER_RINGBUF:
17355 		case BPF_MAP_TYPE_INODE_STORAGE:
17356 		case BPF_MAP_TYPE_SK_STORAGE:
17357 		case BPF_MAP_TYPE_TASK_STORAGE:
17358 		case BPF_MAP_TYPE_CGRP_STORAGE:
17359 			break;
17360 		default:
17361 			verbose(env,
17362 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17363 			return -EINVAL;
17364 		}
17365 
17366 	return 0;
17367 }
17368 
17369 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17370 {
17371 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17372 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17373 }
17374 
17375 /* find and rewrite pseudo imm in ld_imm64 instructions:
17376  *
17377  * 1. if it accesses map FD, replace it with actual map pointer.
17378  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17379  *
17380  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17381  */
17382 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17383 {
17384 	struct bpf_insn *insn = env->prog->insnsi;
17385 	int insn_cnt = env->prog->len;
17386 	int i, j, err;
17387 
17388 	err = bpf_prog_calc_tag(env->prog);
17389 	if (err)
17390 		return err;
17391 
17392 	for (i = 0; i < insn_cnt; i++, insn++) {
17393 		if (BPF_CLASS(insn->code) == BPF_LDX &&
17394 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17395 		    insn->imm != 0)) {
17396 			verbose(env, "BPF_LDX uses reserved fields\n");
17397 			return -EINVAL;
17398 		}
17399 
17400 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17401 			struct bpf_insn_aux_data *aux;
17402 			struct bpf_map *map;
17403 			struct fd f;
17404 			u64 addr;
17405 			u32 fd;
17406 
17407 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
17408 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17409 			    insn[1].off != 0) {
17410 				verbose(env, "invalid bpf_ld_imm64 insn\n");
17411 				return -EINVAL;
17412 			}
17413 
17414 			if (insn[0].src_reg == 0)
17415 				/* valid generic load 64-bit imm */
17416 				goto next_insn;
17417 
17418 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17419 				aux = &env->insn_aux_data[i];
17420 				err = check_pseudo_btf_id(env, insn, aux);
17421 				if (err)
17422 					return err;
17423 				goto next_insn;
17424 			}
17425 
17426 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17427 				aux = &env->insn_aux_data[i];
17428 				aux->ptr_type = PTR_TO_FUNC;
17429 				goto next_insn;
17430 			}
17431 
17432 			/* In final convert_pseudo_ld_imm64() step, this is
17433 			 * converted into regular 64-bit imm load insn.
17434 			 */
17435 			switch (insn[0].src_reg) {
17436 			case BPF_PSEUDO_MAP_VALUE:
17437 			case BPF_PSEUDO_MAP_IDX_VALUE:
17438 				break;
17439 			case BPF_PSEUDO_MAP_FD:
17440 			case BPF_PSEUDO_MAP_IDX:
17441 				if (insn[1].imm == 0)
17442 					break;
17443 				fallthrough;
17444 			default:
17445 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17446 				return -EINVAL;
17447 			}
17448 
17449 			switch (insn[0].src_reg) {
17450 			case BPF_PSEUDO_MAP_IDX_VALUE:
17451 			case BPF_PSEUDO_MAP_IDX:
17452 				if (bpfptr_is_null(env->fd_array)) {
17453 					verbose(env, "fd_idx without fd_array is invalid\n");
17454 					return -EPROTO;
17455 				}
17456 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
17457 							    insn[0].imm * sizeof(fd),
17458 							    sizeof(fd)))
17459 					return -EFAULT;
17460 				break;
17461 			default:
17462 				fd = insn[0].imm;
17463 				break;
17464 			}
17465 
17466 			f = fdget(fd);
17467 			map = __bpf_map_get(f);
17468 			if (IS_ERR(map)) {
17469 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
17470 					insn[0].imm);
17471 				return PTR_ERR(map);
17472 			}
17473 
17474 			err = check_map_prog_compatibility(env, map, env->prog);
17475 			if (err) {
17476 				fdput(f);
17477 				return err;
17478 			}
17479 
17480 			aux = &env->insn_aux_data[i];
17481 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17482 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17483 				addr = (unsigned long)map;
17484 			} else {
17485 				u32 off = insn[1].imm;
17486 
17487 				if (off >= BPF_MAX_VAR_OFF) {
17488 					verbose(env, "direct value offset of %u is not allowed\n", off);
17489 					fdput(f);
17490 					return -EINVAL;
17491 				}
17492 
17493 				if (!map->ops->map_direct_value_addr) {
17494 					verbose(env, "no direct value access support for this map type\n");
17495 					fdput(f);
17496 					return -EINVAL;
17497 				}
17498 
17499 				err = map->ops->map_direct_value_addr(map, &addr, off);
17500 				if (err) {
17501 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17502 						map->value_size, off);
17503 					fdput(f);
17504 					return err;
17505 				}
17506 
17507 				aux->map_off = off;
17508 				addr += off;
17509 			}
17510 
17511 			insn[0].imm = (u32)addr;
17512 			insn[1].imm = addr >> 32;
17513 
17514 			/* check whether we recorded this map already */
17515 			for (j = 0; j < env->used_map_cnt; j++) {
17516 				if (env->used_maps[j] == map) {
17517 					aux->map_index = j;
17518 					fdput(f);
17519 					goto next_insn;
17520 				}
17521 			}
17522 
17523 			if (env->used_map_cnt >= MAX_USED_MAPS) {
17524 				fdput(f);
17525 				return -E2BIG;
17526 			}
17527 
17528 			/* hold the map. If the program is rejected by verifier,
17529 			 * the map will be released by release_maps() or it
17530 			 * will be used by the valid program until it's unloaded
17531 			 * and all maps are released in free_used_maps()
17532 			 */
17533 			bpf_map_inc(map);
17534 
17535 			aux->map_index = env->used_map_cnt;
17536 			env->used_maps[env->used_map_cnt++] = map;
17537 
17538 			if (bpf_map_is_cgroup_storage(map) &&
17539 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
17540 				verbose(env, "only one cgroup storage of each type is allowed\n");
17541 				fdput(f);
17542 				return -EBUSY;
17543 			}
17544 
17545 			fdput(f);
17546 next_insn:
17547 			insn++;
17548 			i++;
17549 			continue;
17550 		}
17551 
17552 		/* Basic sanity check before we invest more work here. */
17553 		if (!bpf_opcode_in_insntable(insn->code)) {
17554 			verbose(env, "unknown opcode %02x\n", insn->code);
17555 			return -EINVAL;
17556 		}
17557 	}
17558 
17559 	/* now all pseudo BPF_LD_IMM64 instructions load valid
17560 	 * 'struct bpf_map *' into a register instead of user map_fd.
17561 	 * These pointers will be used later by verifier to validate map access.
17562 	 */
17563 	return 0;
17564 }
17565 
17566 /* drop refcnt of maps used by the rejected program */
17567 static void release_maps(struct bpf_verifier_env *env)
17568 {
17569 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
17570 			     env->used_map_cnt);
17571 }
17572 
17573 /* drop refcnt of maps used by the rejected program */
17574 static void release_btfs(struct bpf_verifier_env *env)
17575 {
17576 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
17577 			     env->used_btf_cnt);
17578 }
17579 
17580 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
17581 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
17582 {
17583 	struct bpf_insn *insn = env->prog->insnsi;
17584 	int insn_cnt = env->prog->len;
17585 	int i;
17586 
17587 	for (i = 0; i < insn_cnt; i++, insn++) {
17588 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17589 			continue;
17590 		if (insn->src_reg == BPF_PSEUDO_FUNC)
17591 			continue;
17592 		insn->src_reg = 0;
17593 	}
17594 }
17595 
17596 /* single env->prog->insni[off] instruction was replaced with the range
17597  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
17598  * [0, off) and [off, end) to new locations, so the patched range stays zero
17599  */
17600 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17601 				 struct bpf_insn_aux_data *new_data,
17602 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
17603 {
17604 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
17605 	struct bpf_insn *insn = new_prog->insnsi;
17606 	u32 old_seen = old_data[off].seen;
17607 	u32 prog_len;
17608 	int i;
17609 
17610 	/* aux info at OFF always needs adjustment, no matter fast path
17611 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17612 	 * original insn at old prog.
17613 	 */
17614 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17615 
17616 	if (cnt == 1)
17617 		return;
17618 	prog_len = new_prog->len;
17619 
17620 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17621 	memcpy(new_data + off + cnt - 1, old_data + off,
17622 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
17623 	for (i = off; i < off + cnt - 1; i++) {
17624 		/* Expand insni[off]'s seen count to the patched range. */
17625 		new_data[i].seen = old_seen;
17626 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
17627 	}
17628 	env->insn_aux_data = new_data;
17629 	vfree(old_data);
17630 }
17631 
17632 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17633 {
17634 	int i;
17635 
17636 	if (len == 1)
17637 		return;
17638 	/* NOTE: fake 'exit' subprog should be updated as well. */
17639 	for (i = 0; i <= env->subprog_cnt; i++) {
17640 		if (env->subprog_info[i].start <= off)
17641 			continue;
17642 		env->subprog_info[i].start += len - 1;
17643 	}
17644 }
17645 
17646 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
17647 {
17648 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17649 	int i, sz = prog->aux->size_poke_tab;
17650 	struct bpf_jit_poke_descriptor *desc;
17651 
17652 	for (i = 0; i < sz; i++) {
17653 		desc = &tab[i];
17654 		if (desc->insn_idx <= off)
17655 			continue;
17656 		desc->insn_idx += len - 1;
17657 	}
17658 }
17659 
17660 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17661 					    const struct bpf_insn *patch, u32 len)
17662 {
17663 	struct bpf_prog *new_prog;
17664 	struct bpf_insn_aux_data *new_data = NULL;
17665 
17666 	if (len > 1) {
17667 		new_data = vzalloc(array_size(env->prog->len + len - 1,
17668 					      sizeof(struct bpf_insn_aux_data)));
17669 		if (!new_data)
17670 			return NULL;
17671 	}
17672 
17673 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
17674 	if (IS_ERR(new_prog)) {
17675 		if (PTR_ERR(new_prog) == -ERANGE)
17676 			verbose(env,
17677 				"insn %d cannot be patched due to 16-bit range\n",
17678 				env->insn_aux_data[off].orig_idx);
17679 		vfree(new_data);
17680 		return NULL;
17681 	}
17682 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
17683 	adjust_subprog_starts(env, off, len);
17684 	adjust_poke_descs(new_prog, off, len);
17685 	return new_prog;
17686 }
17687 
17688 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
17689 					      u32 off, u32 cnt)
17690 {
17691 	int i, j;
17692 
17693 	/* find first prog starting at or after off (first to remove) */
17694 	for (i = 0; i < env->subprog_cnt; i++)
17695 		if (env->subprog_info[i].start >= off)
17696 			break;
17697 	/* find first prog starting at or after off + cnt (first to stay) */
17698 	for (j = i; j < env->subprog_cnt; j++)
17699 		if (env->subprog_info[j].start >= off + cnt)
17700 			break;
17701 	/* if j doesn't start exactly at off + cnt, we are just removing
17702 	 * the front of previous prog
17703 	 */
17704 	if (env->subprog_info[j].start != off + cnt)
17705 		j--;
17706 
17707 	if (j > i) {
17708 		struct bpf_prog_aux *aux = env->prog->aux;
17709 		int move;
17710 
17711 		/* move fake 'exit' subprog as well */
17712 		move = env->subprog_cnt + 1 - j;
17713 
17714 		memmove(env->subprog_info + i,
17715 			env->subprog_info + j,
17716 			sizeof(*env->subprog_info) * move);
17717 		env->subprog_cnt -= j - i;
17718 
17719 		/* remove func_info */
17720 		if (aux->func_info) {
17721 			move = aux->func_info_cnt - j;
17722 
17723 			memmove(aux->func_info + i,
17724 				aux->func_info + j,
17725 				sizeof(*aux->func_info) * move);
17726 			aux->func_info_cnt -= j - i;
17727 			/* func_info->insn_off is set after all code rewrites,
17728 			 * in adjust_btf_func() - no need to adjust
17729 			 */
17730 		}
17731 	} else {
17732 		/* convert i from "first prog to remove" to "first to adjust" */
17733 		if (env->subprog_info[i].start == off)
17734 			i++;
17735 	}
17736 
17737 	/* update fake 'exit' subprog as well */
17738 	for (; i <= env->subprog_cnt; i++)
17739 		env->subprog_info[i].start -= cnt;
17740 
17741 	return 0;
17742 }
17743 
17744 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
17745 				      u32 cnt)
17746 {
17747 	struct bpf_prog *prog = env->prog;
17748 	u32 i, l_off, l_cnt, nr_linfo;
17749 	struct bpf_line_info *linfo;
17750 
17751 	nr_linfo = prog->aux->nr_linfo;
17752 	if (!nr_linfo)
17753 		return 0;
17754 
17755 	linfo = prog->aux->linfo;
17756 
17757 	/* find first line info to remove, count lines to be removed */
17758 	for (i = 0; i < nr_linfo; i++)
17759 		if (linfo[i].insn_off >= off)
17760 			break;
17761 
17762 	l_off = i;
17763 	l_cnt = 0;
17764 	for (; i < nr_linfo; i++)
17765 		if (linfo[i].insn_off < off + cnt)
17766 			l_cnt++;
17767 		else
17768 			break;
17769 
17770 	/* First live insn doesn't match first live linfo, it needs to "inherit"
17771 	 * last removed linfo.  prog is already modified, so prog->len == off
17772 	 * means no live instructions after (tail of the program was removed).
17773 	 */
17774 	if (prog->len != off && l_cnt &&
17775 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
17776 		l_cnt--;
17777 		linfo[--i].insn_off = off + cnt;
17778 	}
17779 
17780 	/* remove the line info which refer to the removed instructions */
17781 	if (l_cnt) {
17782 		memmove(linfo + l_off, linfo + i,
17783 			sizeof(*linfo) * (nr_linfo - i));
17784 
17785 		prog->aux->nr_linfo -= l_cnt;
17786 		nr_linfo = prog->aux->nr_linfo;
17787 	}
17788 
17789 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
17790 	for (i = l_off; i < nr_linfo; i++)
17791 		linfo[i].insn_off -= cnt;
17792 
17793 	/* fix up all subprogs (incl. 'exit') which start >= off */
17794 	for (i = 0; i <= env->subprog_cnt; i++)
17795 		if (env->subprog_info[i].linfo_idx > l_off) {
17796 			/* program may have started in the removed region but
17797 			 * may not be fully removed
17798 			 */
17799 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
17800 				env->subprog_info[i].linfo_idx -= l_cnt;
17801 			else
17802 				env->subprog_info[i].linfo_idx = l_off;
17803 		}
17804 
17805 	return 0;
17806 }
17807 
17808 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
17809 {
17810 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17811 	unsigned int orig_prog_len = env->prog->len;
17812 	int err;
17813 
17814 	if (bpf_prog_is_offloaded(env->prog->aux))
17815 		bpf_prog_offload_remove_insns(env, off, cnt);
17816 
17817 	err = bpf_remove_insns(env->prog, off, cnt);
17818 	if (err)
17819 		return err;
17820 
17821 	err = adjust_subprog_starts_after_remove(env, off, cnt);
17822 	if (err)
17823 		return err;
17824 
17825 	err = bpf_adj_linfo_after_remove(env, off, cnt);
17826 	if (err)
17827 		return err;
17828 
17829 	memmove(aux_data + off,	aux_data + off + cnt,
17830 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
17831 
17832 	return 0;
17833 }
17834 
17835 /* The verifier does more data flow analysis than llvm and will not
17836  * explore branches that are dead at run time. Malicious programs can
17837  * have dead code too. Therefore replace all dead at-run-time code
17838  * with 'ja -1'.
17839  *
17840  * Just nops are not optimal, e.g. if they would sit at the end of the
17841  * program and through another bug we would manage to jump there, then
17842  * we'd execute beyond program memory otherwise. Returning exception
17843  * code also wouldn't work since we can have subprogs where the dead
17844  * code could be located.
17845  */
17846 static void sanitize_dead_code(struct bpf_verifier_env *env)
17847 {
17848 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17849 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
17850 	struct bpf_insn *insn = env->prog->insnsi;
17851 	const int insn_cnt = env->prog->len;
17852 	int i;
17853 
17854 	for (i = 0; i < insn_cnt; i++) {
17855 		if (aux_data[i].seen)
17856 			continue;
17857 		memcpy(insn + i, &trap, sizeof(trap));
17858 		aux_data[i].zext_dst = false;
17859 	}
17860 }
17861 
17862 static bool insn_is_cond_jump(u8 code)
17863 {
17864 	u8 op;
17865 
17866 	op = BPF_OP(code);
17867 	if (BPF_CLASS(code) == BPF_JMP32)
17868 		return op != BPF_JA;
17869 
17870 	if (BPF_CLASS(code) != BPF_JMP)
17871 		return false;
17872 
17873 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
17874 }
17875 
17876 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
17877 {
17878 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17879 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17880 	struct bpf_insn *insn = env->prog->insnsi;
17881 	const int insn_cnt = env->prog->len;
17882 	int i;
17883 
17884 	for (i = 0; i < insn_cnt; i++, insn++) {
17885 		if (!insn_is_cond_jump(insn->code))
17886 			continue;
17887 
17888 		if (!aux_data[i + 1].seen)
17889 			ja.off = insn->off;
17890 		else if (!aux_data[i + 1 + insn->off].seen)
17891 			ja.off = 0;
17892 		else
17893 			continue;
17894 
17895 		if (bpf_prog_is_offloaded(env->prog->aux))
17896 			bpf_prog_offload_replace_insn(env, i, &ja);
17897 
17898 		memcpy(insn, &ja, sizeof(ja));
17899 	}
17900 }
17901 
17902 static int opt_remove_dead_code(struct bpf_verifier_env *env)
17903 {
17904 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17905 	int insn_cnt = env->prog->len;
17906 	int i, err;
17907 
17908 	for (i = 0; i < insn_cnt; i++) {
17909 		int j;
17910 
17911 		j = 0;
17912 		while (i + j < insn_cnt && !aux_data[i + j].seen)
17913 			j++;
17914 		if (!j)
17915 			continue;
17916 
17917 		err = verifier_remove_insns(env, i, j);
17918 		if (err)
17919 			return err;
17920 		insn_cnt = env->prog->len;
17921 	}
17922 
17923 	return 0;
17924 }
17925 
17926 static int opt_remove_nops(struct bpf_verifier_env *env)
17927 {
17928 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17929 	struct bpf_insn *insn = env->prog->insnsi;
17930 	int insn_cnt = env->prog->len;
17931 	int i, err;
17932 
17933 	for (i = 0; i < insn_cnt; i++) {
17934 		if (memcmp(&insn[i], &ja, sizeof(ja)))
17935 			continue;
17936 
17937 		err = verifier_remove_insns(env, i, 1);
17938 		if (err)
17939 			return err;
17940 		insn_cnt--;
17941 		i--;
17942 	}
17943 
17944 	return 0;
17945 }
17946 
17947 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
17948 					 const union bpf_attr *attr)
17949 {
17950 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
17951 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
17952 	int i, patch_len, delta = 0, len = env->prog->len;
17953 	struct bpf_insn *insns = env->prog->insnsi;
17954 	struct bpf_prog *new_prog;
17955 	bool rnd_hi32;
17956 
17957 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
17958 	zext_patch[1] = BPF_ZEXT_REG(0);
17959 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
17960 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
17961 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
17962 	for (i = 0; i < len; i++) {
17963 		int adj_idx = i + delta;
17964 		struct bpf_insn insn;
17965 		int load_reg;
17966 
17967 		insn = insns[adj_idx];
17968 		load_reg = insn_def_regno(&insn);
17969 		if (!aux[adj_idx].zext_dst) {
17970 			u8 code, class;
17971 			u32 imm_rnd;
17972 
17973 			if (!rnd_hi32)
17974 				continue;
17975 
17976 			code = insn.code;
17977 			class = BPF_CLASS(code);
17978 			if (load_reg == -1)
17979 				continue;
17980 
17981 			/* NOTE: arg "reg" (the fourth one) is only used for
17982 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
17983 			 *       here.
17984 			 */
17985 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
17986 				if (class == BPF_LD &&
17987 				    BPF_MODE(code) == BPF_IMM)
17988 					i++;
17989 				continue;
17990 			}
17991 
17992 			/* ctx load could be transformed into wider load. */
17993 			if (class == BPF_LDX &&
17994 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
17995 				continue;
17996 
17997 			imm_rnd = get_random_u32();
17998 			rnd_hi32_patch[0] = insn;
17999 			rnd_hi32_patch[1].imm = imm_rnd;
18000 			rnd_hi32_patch[3].dst_reg = load_reg;
18001 			patch = rnd_hi32_patch;
18002 			patch_len = 4;
18003 			goto apply_patch_buffer;
18004 		}
18005 
18006 		/* Add in an zero-extend instruction if a) the JIT has requested
18007 		 * it or b) it's a CMPXCHG.
18008 		 *
18009 		 * The latter is because: BPF_CMPXCHG always loads a value into
18010 		 * R0, therefore always zero-extends. However some archs'
18011 		 * equivalent instruction only does this load when the
18012 		 * comparison is successful. This detail of CMPXCHG is
18013 		 * orthogonal to the general zero-extension behaviour of the
18014 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
18015 		 */
18016 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18017 			continue;
18018 
18019 		/* Zero-extension is done by the caller. */
18020 		if (bpf_pseudo_kfunc_call(&insn))
18021 			continue;
18022 
18023 		if (WARN_ON(load_reg == -1)) {
18024 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18025 			return -EFAULT;
18026 		}
18027 
18028 		zext_patch[0] = insn;
18029 		zext_patch[1].dst_reg = load_reg;
18030 		zext_patch[1].src_reg = load_reg;
18031 		patch = zext_patch;
18032 		patch_len = 2;
18033 apply_patch_buffer:
18034 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18035 		if (!new_prog)
18036 			return -ENOMEM;
18037 		env->prog = new_prog;
18038 		insns = new_prog->insnsi;
18039 		aux = env->insn_aux_data;
18040 		delta += patch_len - 1;
18041 	}
18042 
18043 	return 0;
18044 }
18045 
18046 /* convert load instructions that access fields of a context type into a
18047  * sequence of instructions that access fields of the underlying structure:
18048  *     struct __sk_buff    -> struct sk_buff
18049  *     struct bpf_sock_ops -> struct sock
18050  */
18051 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18052 {
18053 	const struct bpf_verifier_ops *ops = env->ops;
18054 	int i, cnt, size, ctx_field_size, delta = 0;
18055 	const int insn_cnt = env->prog->len;
18056 	struct bpf_insn insn_buf[16], *insn;
18057 	u32 target_size, size_default, off;
18058 	struct bpf_prog *new_prog;
18059 	enum bpf_access_type type;
18060 	bool is_narrower_load;
18061 
18062 	if (ops->gen_prologue || env->seen_direct_write) {
18063 		if (!ops->gen_prologue) {
18064 			verbose(env, "bpf verifier is misconfigured\n");
18065 			return -EINVAL;
18066 		}
18067 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18068 					env->prog);
18069 		if (cnt >= ARRAY_SIZE(insn_buf)) {
18070 			verbose(env, "bpf verifier is misconfigured\n");
18071 			return -EINVAL;
18072 		} else if (cnt) {
18073 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18074 			if (!new_prog)
18075 				return -ENOMEM;
18076 
18077 			env->prog = new_prog;
18078 			delta += cnt - 1;
18079 		}
18080 	}
18081 
18082 	if (bpf_prog_is_offloaded(env->prog->aux))
18083 		return 0;
18084 
18085 	insn = env->prog->insnsi + delta;
18086 
18087 	for (i = 0; i < insn_cnt; i++, insn++) {
18088 		bpf_convert_ctx_access_t convert_ctx_access;
18089 		u8 mode;
18090 
18091 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18092 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18093 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18094 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18095 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18096 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18097 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18098 			type = BPF_READ;
18099 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18100 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18101 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18102 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18103 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18104 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18105 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18106 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18107 			type = BPF_WRITE;
18108 		} else {
18109 			continue;
18110 		}
18111 
18112 		if (type == BPF_WRITE &&
18113 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
18114 			struct bpf_insn patch[] = {
18115 				*insn,
18116 				BPF_ST_NOSPEC(),
18117 			};
18118 
18119 			cnt = ARRAY_SIZE(patch);
18120 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18121 			if (!new_prog)
18122 				return -ENOMEM;
18123 
18124 			delta    += cnt - 1;
18125 			env->prog = new_prog;
18126 			insn      = new_prog->insnsi + i + delta;
18127 			continue;
18128 		}
18129 
18130 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18131 		case PTR_TO_CTX:
18132 			if (!ops->convert_ctx_access)
18133 				continue;
18134 			convert_ctx_access = ops->convert_ctx_access;
18135 			break;
18136 		case PTR_TO_SOCKET:
18137 		case PTR_TO_SOCK_COMMON:
18138 			convert_ctx_access = bpf_sock_convert_ctx_access;
18139 			break;
18140 		case PTR_TO_TCP_SOCK:
18141 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18142 			break;
18143 		case PTR_TO_XDP_SOCK:
18144 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18145 			break;
18146 		case PTR_TO_BTF_ID:
18147 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18148 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18149 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
18150 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
18151 		 * any faults for loads into such types. BPF_WRITE is disallowed
18152 		 * for this case.
18153 		 */
18154 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
18155 			if (type == BPF_READ) {
18156 				if (BPF_MODE(insn->code) == BPF_MEM)
18157 					insn->code = BPF_LDX | BPF_PROBE_MEM |
18158 						     BPF_SIZE((insn)->code);
18159 				else
18160 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
18161 						     BPF_SIZE((insn)->code);
18162 				env->prog->aux->num_exentries++;
18163 			}
18164 			continue;
18165 		default:
18166 			continue;
18167 		}
18168 
18169 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
18170 		size = BPF_LDST_BYTES(insn);
18171 		mode = BPF_MODE(insn->code);
18172 
18173 		/* If the read access is a narrower load of the field,
18174 		 * convert to a 4/8-byte load, to minimum program type specific
18175 		 * convert_ctx_access changes. If conversion is successful,
18176 		 * we will apply proper mask to the result.
18177 		 */
18178 		is_narrower_load = size < ctx_field_size;
18179 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
18180 		off = insn->off;
18181 		if (is_narrower_load) {
18182 			u8 size_code;
18183 
18184 			if (type == BPF_WRITE) {
18185 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
18186 				return -EINVAL;
18187 			}
18188 
18189 			size_code = BPF_H;
18190 			if (ctx_field_size == 4)
18191 				size_code = BPF_W;
18192 			else if (ctx_field_size == 8)
18193 				size_code = BPF_DW;
18194 
18195 			insn->off = off & ~(size_default - 1);
18196 			insn->code = BPF_LDX | BPF_MEM | size_code;
18197 		}
18198 
18199 		target_size = 0;
18200 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
18201 					 &target_size);
18202 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
18203 		    (ctx_field_size && !target_size)) {
18204 			verbose(env, "bpf verifier is misconfigured\n");
18205 			return -EINVAL;
18206 		}
18207 
18208 		if (is_narrower_load && size < target_size) {
18209 			u8 shift = bpf_ctx_narrow_access_offset(
18210 				off, size, size_default) * 8;
18211 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
18212 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
18213 				return -EINVAL;
18214 			}
18215 			if (ctx_field_size <= 4) {
18216 				if (shift)
18217 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
18218 									insn->dst_reg,
18219 									shift);
18220 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18221 								(1 << size * 8) - 1);
18222 			} else {
18223 				if (shift)
18224 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
18225 									insn->dst_reg,
18226 									shift);
18227 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18228 								(1ULL << size * 8) - 1);
18229 			}
18230 		}
18231 		if (mode == BPF_MEMSX)
18232 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
18233 						       insn->dst_reg, insn->dst_reg,
18234 						       size * 8, 0);
18235 
18236 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18237 		if (!new_prog)
18238 			return -ENOMEM;
18239 
18240 		delta += cnt - 1;
18241 
18242 		/* keep walking new program and skip insns we just inserted */
18243 		env->prog = new_prog;
18244 		insn      = new_prog->insnsi + i + delta;
18245 	}
18246 
18247 	return 0;
18248 }
18249 
18250 static int jit_subprogs(struct bpf_verifier_env *env)
18251 {
18252 	struct bpf_prog *prog = env->prog, **func, *tmp;
18253 	int i, j, subprog_start, subprog_end = 0, len, subprog;
18254 	struct bpf_map *map_ptr;
18255 	struct bpf_insn *insn;
18256 	void *old_bpf_func;
18257 	int err, num_exentries;
18258 
18259 	if (env->subprog_cnt <= 1)
18260 		return 0;
18261 
18262 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18263 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
18264 			continue;
18265 
18266 		/* Upon error here we cannot fall back to interpreter but
18267 		 * need a hard reject of the program. Thus -EFAULT is
18268 		 * propagated in any case.
18269 		 */
18270 		subprog = find_subprog(env, i + insn->imm + 1);
18271 		if (subprog < 0) {
18272 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
18273 				  i + insn->imm + 1);
18274 			return -EFAULT;
18275 		}
18276 		/* temporarily remember subprog id inside insn instead of
18277 		 * aux_data, since next loop will split up all insns into funcs
18278 		 */
18279 		insn->off = subprog;
18280 		/* remember original imm in case JIT fails and fallback
18281 		 * to interpreter will be needed
18282 		 */
18283 		env->insn_aux_data[i].call_imm = insn->imm;
18284 		/* point imm to __bpf_call_base+1 from JITs point of view */
18285 		insn->imm = 1;
18286 		if (bpf_pseudo_func(insn))
18287 			/* jit (e.g. x86_64) may emit fewer instructions
18288 			 * if it learns a u32 imm is the same as a u64 imm.
18289 			 * Force a non zero here.
18290 			 */
18291 			insn[1].imm = 1;
18292 	}
18293 
18294 	err = bpf_prog_alloc_jited_linfo(prog);
18295 	if (err)
18296 		goto out_undo_insn;
18297 
18298 	err = -ENOMEM;
18299 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
18300 	if (!func)
18301 		goto out_undo_insn;
18302 
18303 	for (i = 0; i < env->subprog_cnt; i++) {
18304 		subprog_start = subprog_end;
18305 		subprog_end = env->subprog_info[i + 1].start;
18306 
18307 		len = subprog_end - subprog_start;
18308 		/* bpf_prog_run() doesn't call subprogs directly,
18309 		 * hence main prog stats include the runtime of subprogs.
18310 		 * subprogs don't have IDs and not reachable via prog_get_next_id
18311 		 * func[i]->stats will never be accessed and stays NULL
18312 		 */
18313 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18314 		if (!func[i])
18315 			goto out_free;
18316 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18317 		       len * sizeof(struct bpf_insn));
18318 		func[i]->type = prog->type;
18319 		func[i]->len = len;
18320 		if (bpf_prog_calc_tag(func[i]))
18321 			goto out_free;
18322 		func[i]->is_func = 1;
18323 		func[i]->aux->func_idx = i;
18324 		/* Below members will be freed only at prog->aux */
18325 		func[i]->aux->btf = prog->aux->btf;
18326 		func[i]->aux->func_info = prog->aux->func_info;
18327 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18328 		func[i]->aux->poke_tab = prog->aux->poke_tab;
18329 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18330 
18331 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
18332 			struct bpf_jit_poke_descriptor *poke;
18333 
18334 			poke = &prog->aux->poke_tab[j];
18335 			if (poke->insn_idx < subprog_end &&
18336 			    poke->insn_idx >= subprog_start)
18337 				poke->aux = func[i]->aux;
18338 		}
18339 
18340 		func[i]->aux->name[0] = 'F';
18341 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18342 		func[i]->jit_requested = 1;
18343 		func[i]->blinding_requested = prog->blinding_requested;
18344 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18345 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18346 		func[i]->aux->linfo = prog->aux->linfo;
18347 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18348 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18349 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18350 		num_exentries = 0;
18351 		insn = func[i]->insnsi;
18352 		for (j = 0; j < func[i]->len; j++, insn++) {
18353 			if (BPF_CLASS(insn->code) == BPF_LDX &&
18354 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18355 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18356 				num_exentries++;
18357 		}
18358 		func[i]->aux->num_exentries = num_exentries;
18359 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18360 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
18361 		if (!i)
18362 			func[i]->aux->exception_boundary = env->seen_exception;
18363 		func[i] = bpf_int_jit_compile(func[i]);
18364 		if (!func[i]->jited) {
18365 			err = -ENOTSUPP;
18366 			goto out_free;
18367 		}
18368 		cond_resched();
18369 	}
18370 
18371 	/* at this point all bpf functions were successfully JITed
18372 	 * now populate all bpf_calls with correct addresses and
18373 	 * run last pass of JIT
18374 	 */
18375 	for (i = 0; i < env->subprog_cnt; i++) {
18376 		insn = func[i]->insnsi;
18377 		for (j = 0; j < func[i]->len; j++, insn++) {
18378 			if (bpf_pseudo_func(insn)) {
18379 				subprog = insn->off;
18380 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18381 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18382 				continue;
18383 			}
18384 			if (!bpf_pseudo_call(insn))
18385 				continue;
18386 			subprog = insn->off;
18387 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18388 		}
18389 
18390 		/* we use the aux data to keep a list of the start addresses
18391 		 * of the JITed images for each function in the program
18392 		 *
18393 		 * for some architectures, such as powerpc64, the imm field
18394 		 * might not be large enough to hold the offset of the start
18395 		 * address of the callee's JITed image from __bpf_call_base
18396 		 *
18397 		 * in such cases, we can lookup the start address of a callee
18398 		 * by using its subprog id, available from the off field of
18399 		 * the call instruction, as an index for this list
18400 		 */
18401 		func[i]->aux->func = func;
18402 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
18403 		func[i]->aux->real_func_cnt = env->subprog_cnt;
18404 	}
18405 	for (i = 0; i < env->subprog_cnt; i++) {
18406 		old_bpf_func = func[i]->bpf_func;
18407 		tmp = bpf_int_jit_compile(func[i]);
18408 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18409 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18410 			err = -ENOTSUPP;
18411 			goto out_free;
18412 		}
18413 		cond_resched();
18414 	}
18415 
18416 	/* finally lock prog and jit images for all functions and
18417 	 * populate kallsysm. Begin at the first subprogram, since
18418 	 * bpf_prog_load will add the kallsyms for the main program.
18419 	 */
18420 	for (i = 1; i < env->subprog_cnt; i++) {
18421 		bpf_prog_lock_ro(func[i]);
18422 		bpf_prog_kallsyms_add(func[i]);
18423 	}
18424 
18425 	/* Last step: make now unused interpreter insns from main
18426 	 * prog consistent for later dump requests, so they can
18427 	 * later look the same as if they were interpreted only.
18428 	 */
18429 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18430 		if (bpf_pseudo_func(insn)) {
18431 			insn[0].imm = env->insn_aux_data[i].call_imm;
18432 			insn[1].imm = insn->off;
18433 			insn->off = 0;
18434 			continue;
18435 		}
18436 		if (!bpf_pseudo_call(insn))
18437 			continue;
18438 		insn->off = env->insn_aux_data[i].call_imm;
18439 		subprog = find_subprog(env, i + insn->off + 1);
18440 		insn->imm = subprog;
18441 	}
18442 
18443 	prog->jited = 1;
18444 	prog->bpf_func = func[0]->bpf_func;
18445 	prog->jited_len = func[0]->jited_len;
18446 	prog->aux->extable = func[0]->aux->extable;
18447 	prog->aux->num_exentries = func[0]->aux->num_exentries;
18448 	prog->aux->func = func;
18449 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
18450 	prog->aux->real_func_cnt = env->subprog_cnt;
18451 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
18452 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
18453 	bpf_prog_jit_attempt_done(prog);
18454 	return 0;
18455 out_free:
18456 	/* We failed JIT'ing, so at this point we need to unregister poke
18457 	 * descriptors from subprogs, so that kernel is not attempting to
18458 	 * patch it anymore as we're freeing the subprog JIT memory.
18459 	 */
18460 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18461 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18462 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18463 	}
18464 	/* At this point we're guaranteed that poke descriptors are not
18465 	 * live anymore. We can just unlink its descriptor table as it's
18466 	 * released with the main prog.
18467 	 */
18468 	for (i = 0; i < env->subprog_cnt; i++) {
18469 		if (!func[i])
18470 			continue;
18471 		func[i]->aux->poke_tab = NULL;
18472 		bpf_jit_free(func[i]);
18473 	}
18474 	kfree(func);
18475 out_undo_insn:
18476 	/* cleanup main prog to be interpreted */
18477 	prog->jit_requested = 0;
18478 	prog->blinding_requested = 0;
18479 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18480 		if (!bpf_pseudo_call(insn))
18481 			continue;
18482 		insn->off = 0;
18483 		insn->imm = env->insn_aux_data[i].call_imm;
18484 	}
18485 	bpf_prog_jit_attempt_done(prog);
18486 	return err;
18487 }
18488 
18489 static int fixup_call_args(struct bpf_verifier_env *env)
18490 {
18491 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18492 	struct bpf_prog *prog = env->prog;
18493 	struct bpf_insn *insn = prog->insnsi;
18494 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18495 	int i, depth;
18496 #endif
18497 	int err = 0;
18498 
18499 	if (env->prog->jit_requested &&
18500 	    !bpf_prog_is_offloaded(env->prog->aux)) {
18501 		err = jit_subprogs(env);
18502 		if (err == 0)
18503 			return 0;
18504 		if (err == -EFAULT)
18505 			return err;
18506 	}
18507 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18508 	if (has_kfunc_call) {
18509 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18510 		return -EINVAL;
18511 	}
18512 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18513 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
18514 		 * have to be rejected, since interpreter doesn't support them yet.
18515 		 */
18516 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18517 		return -EINVAL;
18518 	}
18519 	for (i = 0; i < prog->len; i++, insn++) {
18520 		if (bpf_pseudo_func(insn)) {
18521 			/* When JIT fails the progs with callback calls
18522 			 * have to be rejected, since interpreter doesn't support them yet.
18523 			 */
18524 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
18525 			return -EINVAL;
18526 		}
18527 
18528 		if (!bpf_pseudo_call(insn))
18529 			continue;
18530 		depth = get_callee_stack_depth(env, insn, i);
18531 		if (depth < 0)
18532 			return depth;
18533 		bpf_patch_call_args(insn, depth);
18534 	}
18535 	err = 0;
18536 #endif
18537 	return err;
18538 }
18539 
18540 /* replace a generic kfunc with a specialized version if necessary */
18541 static void specialize_kfunc(struct bpf_verifier_env *env,
18542 			     u32 func_id, u16 offset, unsigned long *addr)
18543 {
18544 	struct bpf_prog *prog = env->prog;
18545 	bool seen_direct_write;
18546 	void *xdp_kfunc;
18547 	bool is_rdonly;
18548 
18549 	if (bpf_dev_bound_kfunc_id(func_id)) {
18550 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18551 		if (xdp_kfunc) {
18552 			*addr = (unsigned long)xdp_kfunc;
18553 			return;
18554 		}
18555 		/* fallback to default kfunc when not supported by netdev */
18556 	}
18557 
18558 	if (offset)
18559 		return;
18560 
18561 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18562 		seen_direct_write = env->seen_direct_write;
18563 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18564 
18565 		if (is_rdonly)
18566 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18567 
18568 		/* restore env->seen_direct_write to its original value, since
18569 		 * may_access_direct_pkt_data mutates it
18570 		 */
18571 		env->seen_direct_write = seen_direct_write;
18572 	}
18573 }
18574 
18575 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
18576 					    u16 struct_meta_reg,
18577 					    u16 node_offset_reg,
18578 					    struct bpf_insn *insn,
18579 					    struct bpf_insn *insn_buf,
18580 					    int *cnt)
18581 {
18582 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
18583 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
18584 
18585 	insn_buf[0] = addr[0];
18586 	insn_buf[1] = addr[1];
18587 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
18588 	insn_buf[3] = *insn;
18589 	*cnt = 4;
18590 }
18591 
18592 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
18593 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
18594 {
18595 	const struct bpf_kfunc_desc *desc;
18596 
18597 	if (!insn->imm) {
18598 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
18599 		return -EINVAL;
18600 	}
18601 
18602 	*cnt = 0;
18603 
18604 	/* insn->imm has the btf func_id. Replace it with an offset relative to
18605 	 * __bpf_call_base, unless the JIT needs to call functions that are
18606 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
18607 	 */
18608 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
18609 	if (!desc) {
18610 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18611 			insn->imm);
18612 		return -EFAULT;
18613 	}
18614 
18615 	if (!bpf_jit_supports_far_kfunc_call())
18616 		insn->imm = BPF_CALL_IMM(desc->addr);
18617 	if (insn->off)
18618 		return 0;
18619 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
18620 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
18621 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18622 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18623 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
18624 
18625 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
18626 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
18627 				insn_idx);
18628 			return -EFAULT;
18629 		}
18630 
18631 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18632 		insn_buf[1] = addr[0];
18633 		insn_buf[2] = addr[1];
18634 		insn_buf[3] = *insn;
18635 		*cnt = 4;
18636 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18637 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
18638 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
18639 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18640 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18641 
18642 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
18643 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
18644 				insn_idx);
18645 			return -EFAULT;
18646 		}
18647 
18648 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
18649 		    !kptr_struct_meta) {
18650 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18651 				insn_idx);
18652 			return -EFAULT;
18653 		}
18654 
18655 		insn_buf[0] = addr[0];
18656 		insn_buf[1] = addr[1];
18657 		insn_buf[2] = *insn;
18658 		*cnt = 3;
18659 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18660 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18661 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18662 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18663 		int struct_meta_reg = BPF_REG_3;
18664 		int node_offset_reg = BPF_REG_4;
18665 
18666 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18667 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18668 			struct_meta_reg = BPF_REG_4;
18669 			node_offset_reg = BPF_REG_5;
18670 		}
18671 
18672 		if (!kptr_struct_meta) {
18673 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18674 				insn_idx);
18675 			return -EFAULT;
18676 		}
18677 
18678 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
18679 						node_offset_reg, insn, insn_buf, cnt);
18680 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
18681 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
18682 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
18683 		*cnt = 1;
18684 	}
18685 	return 0;
18686 }
18687 
18688 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
18689 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
18690 {
18691 	struct bpf_subprog_info *info = env->subprog_info;
18692 	int cnt = env->subprog_cnt;
18693 	struct bpf_prog *prog;
18694 
18695 	/* We only reserve one slot for hidden subprogs in subprog_info. */
18696 	if (env->hidden_subprog_cnt) {
18697 		verbose(env, "verifier internal error: only one hidden subprog supported\n");
18698 		return -EFAULT;
18699 	}
18700 	/* We're not patching any existing instruction, just appending the new
18701 	 * ones for the hidden subprog. Hence all of the adjustment operations
18702 	 * in bpf_patch_insn_data are no-ops.
18703 	 */
18704 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
18705 	if (!prog)
18706 		return -ENOMEM;
18707 	env->prog = prog;
18708 	info[cnt + 1].start = info[cnt].start;
18709 	info[cnt].start = prog->len - len + 1;
18710 	env->subprog_cnt++;
18711 	env->hidden_subprog_cnt++;
18712 	return 0;
18713 }
18714 
18715 /* Do various post-verification rewrites in a single program pass.
18716  * These rewrites simplify JIT and interpreter implementations.
18717  */
18718 static int do_misc_fixups(struct bpf_verifier_env *env)
18719 {
18720 	struct bpf_prog *prog = env->prog;
18721 	enum bpf_attach_type eatype = prog->expected_attach_type;
18722 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
18723 	struct bpf_insn *insn = prog->insnsi;
18724 	const struct bpf_func_proto *fn;
18725 	const int insn_cnt = prog->len;
18726 	const struct bpf_map_ops *ops;
18727 	struct bpf_insn_aux_data *aux;
18728 	struct bpf_insn insn_buf[16];
18729 	struct bpf_prog *new_prog;
18730 	struct bpf_map *map_ptr;
18731 	int i, ret, cnt, delta = 0;
18732 
18733 	if (env->seen_exception && !env->exception_callback_subprog) {
18734 		struct bpf_insn patch[] = {
18735 			env->prog->insnsi[insn_cnt - 1],
18736 			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
18737 			BPF_EXIT_INSN(),
18738 		};
18739 
18740 		ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
18741 		if (ret < 0)
18742 			return ret;
18743 		prog = env->prog;
18744 		insn = prog->insnsi;
18745 
18746 		env->exception_callback_subprog = env->subprog_cnt - 1;
18747 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
18748 		env->subprog_info[env->exception_callback_subprog].is_cb = true;
18749 		env->subprog_info[env->exception_callback_subprog].is_async_cb = true;
18750 		env->subprog_info[env->exception_callback_subprog].is_exception_cb = true;
18751 	}
18752 
18753 	for (i = 0; i < insn_cnt; i++, insn++) {
18754 		/* Make divide-by-zero exceptions impossible. */
18755 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
18756 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
18757 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
18758 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
18759 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
18760 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
18761 			struct bpf_insn *patchlet;
18762 			struct bpf_insn chk_and_div[] = {
18763 				/* [R,W]x div 0 -> 0 */
18764 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18765 					     BPF_JNE | BPF_K, insn->src_reg,
18766 					     0, 2, 0),
18767 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
18768 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18769 				*insn,
18770 			};
18771 			struct bpf_insn chk_and_mod[] = {
18772 				/* [R,W]x mod 0 -> [R,W]x */
18773 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18774 					     BPF_JEQ | BPF_K, insn->src_reg,
18775 					     0, 1 + (is64 ? 0 : 1), 0),
18776 				*insn,
18777 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18778 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
18779 			};
18780 
18781 			patchlet = isdiv ? chk_and_div : chk_and_mod;
18782 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
18783 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
18784 
18785 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
18786 			if (!new_prog)
18787 				return -ENOMEM;
18788 
18789 			delta    += cnt - 1;
18790 			env->prog = prog = new_prog;
18791 			insn      = new_prog->insnsi + i + delta;
18792 			continue;
18793 		}
18794 
18795 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
18796 		if (BPF_CLASS(insn->code) == BPF_LD &&
18797 		    (BPF_MODE(insn->code) == BPF_ABS ||
18798 		     BPF_MODE(insn->code) == BPF_IND)) {
18799 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
18800 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18801 				verbose(env, "bpf verifier is misconfigured\n");
18802 				return -EINVAL;
18803 			}
18804 
18805 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18806 			if (!new_prog)
18807 				return -ENOMEM;
18808 
18809 			delta    += cnt - 1;
18810 			env->prog = prog = new_prog;
18811 			insn      = new_prog->insnsi + i + delta;
18812 			continue;
18813 		}
18814 
18815 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
18816 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
18817 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
18818 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
18819 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
18820 			struct bpf_insn *patch = &insn_buf[0];
18821 			bool issrc, isneg, isimm;
18822 			u32 off_reg;
18823 
18824 			aux = &env->insn_aux_data[i + delta];
18825 			if (!aux->alu_state ||
18826 			    aux->alu_state == BPF_ALU_NON_POINTER)
18827 				continue;
18828 
18829 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
18830 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
18831 				BPF_ALU_SANITIZE_SRC;
18832 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
18833 
18834 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
18835 			if (isimm) {
18836 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18837 			} else {
18838 				if (isneg)
18839 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18840 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18841 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
18842 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
18843 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
18844 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
18845 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
18846 			}
18847 			if (!issrc)
18848 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
18849 			insn->src_reg = BPF_REG_AX;
18850 			if (isneg)
18851 				insn->code = insn->code == code_add ?
18852 					     code_sub : code_add;
18853 			*patch++ = *insn;
18854 			if (issrc && isneg && !isimm)
18855 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18856 			cnt = patch - insn_buf;
18857 
18858 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18859 			if (!new_prog)
18860 				return -ENOMEM;
18861 
18862 			delta    += cnt - 1;
18863 			env->prog = prog = new_prog;
18864 			insn      = new_prog->insnsi + i + delta;
18865 			continue;
18866 		}
18867 
18868 		if (insn->code != (BPF_JMP | BPF_CALL))
18869 			continue;
18870 		if (insn->src_reg == BPF_PSEUDO_CALL)
18871 			continue;
18872 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18873 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
18874 			if (ret)
18875 				return ret;
18876 			if (cnt == 0)
18877 				continue;
18878 
18879 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18880 			if (!new_prog)
18881 				return -ENOMEM;
18882 
18883 			delta	 += cnt - 1;
18884 			env->prog = prog = new_prog;
18885 			insn	  = new_prog->insnsi + i + delta;
18886 			continue;
18887 		}
18888 
18889 		if (insn->imm == BPF_FUNC_get_route_realm)
18890 			prog->dst_needed = 1;
18891 		if (insn->imm == BPF_FUNC_get_prandom_u32)
18892 			bpf_user_rnd_init_once();
18893 		if (insn->imm == BPF_FUNC_override_return)
18894 			prog->kprobe_override = 1;
18895 		if (insn->imm == BPF_FUNC_tail_call) {
18896 			/* If we tail call into other programs, we
18897 			 * cannot make any assumptions since they can
18898 			 * be replaced dynamically during runtime in
18899 			 * the program array.
18900 			 */
18901 			prog->cb_access = 1;
18902 			if (!allow_tail_call_in_subprogs(env))
18903 				prog->aux->stack_depth = MAX_BPF_STACK;
18904 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
18905 
18906 			/* mark bpf_tail_call as different opcode to avoid
18907 			 * conditional branch in the interpreter for every normal
18908 			 * call and to prevent accidental JITing by JIT compiler
18909 			 * that doesn't support bpf_tail_call yet
18910 			 */
18911 			insn->imm = 0;
18912 			insn->code = BPF_JMP | BPF_TAIL_CALL;
18913 
18914 			aux = &env->insn_aux_data[i + delta];
18915 			if (env->bpf_capable && !prog->blinding_requested &&
18916 			    prog->jit_requested &&
18917 			    !bpf_map_key_poisoned(aux) &&
18918 			    !bpf_map_ptr_poisoned(aux) &&
18919 			    !bpf_map_ptr_unpriv(aux)) {
18920 				struct bpf_jit_poke_descriptor desc = {
18921 					.reason = BPF_POKE_REASON_TAIL_CALL,
18922 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
18923 					.tail_call.key = bpf_map_key_immediate(aux),
18924 					.insn_idx = i + delta,
18925 				};
18926 
18927 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
18928 				if (ret < 0) {
18929 					verbose(env, "adding tail call poke descriptor failed\n");
18930 					return ret;
18931 				}
18932 
18933 				insn->imm = ret + 1;
18934 				continue;
18935 			}
18936 
18937 			if (!bpf_map_ptr_unpriv(aux))
18938 				continue;
18939 
18940 			/* instead of changing every JIT dealing with tail_call
18941 			 * emit two extra insns:
18942 			 * if (index >= max_entries) goto out;
18943 			 * index &= array->index_mask;
18944 			 * to avoid out-of-bounds cpu speculation
18945 			 */
18946 			if (bpf_map_ptr_poisoned(aux)) {
18947 				verbose(env, "tail_call abusing map_ptr\n");
18948 				return -EINVAL;
18949 			}
18950 
18951 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18952 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
18953 						  map_ptr->max_entries, 2);
18954 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
18955 						    container_of(map_ptr,
18956 								 struct bpf_array,
18957 								 map)->index_mask);
18958 			insn_buf[2] = *insn;
18959 			cnt = 3;
18960 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18961 			if (!new_prog)
18962 				return -ENOMEM;
18963 
18964 			delta    += cnt - 1;
18965 			env->prog = prog = new_prog;
18966 			insn      = new_prog->insnsi + i + delta;
18967 			continue;
18968 		}
18969 
18970 		if (insn->imm == BPF_FUNC_timer_set_callback) {
18971 			/* The verifier will process callback_fn as many times as necessary
18972 			 * with different maps and the register states prepared by
18973 			 * set_timer_callback_state will be accurate.
18974 			 *
18975 			 * The following use case is valid:
18976 			 *   map1 is shared by prog1, prog2, prog3.
18977 			 *   prog1 calls bpf_timer_init for some map1 elements
18978 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
18979 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
18980 			 *   prog3 calls bpf_timer_start for some map1 elements.
18981 			 *     Those that were not both bpf_timer_init-ed and
18982 			 *     bpf_timer_set_callback-ed will return -EINVAL.
18983 			 */
18984 			struct bpf_insn ld_addrs[2] = {
18985 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
18986 			};
18987 
18988 			insn_buf[0] = ld_addrs[0];
18989 			insn_buf[1] = ld_addrs[1];
18990 			insn_buf[2] = *insn;
18991 			cnt = 3;
18992 
18993 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18994 			if (!new_prog)
18995 				return -ENOMEM;
18996 
18997 			delta    += cnt - 1;
18998 			env->prog = prog = new_prog;
18999 			insn      = new_prog->insnsi + i + delta;
19000 			goto patch_call_imm;
19001 		}
19002 
19003 		if (is_storage_get_function(insn->imm)) {
19004 			if (!env->prog->aux->sleepable ||
19005 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
19006 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19007 			else
19008 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19009 			insn_buf[1] = *insn;
19010 			cnt = 2;
19011 
19012 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19013 			if (!new_prog)
19014 				return -ENOMEM;
19015 
19016 			delta += cnt - 1;
19017 			env->prog = prog = new_prog;
19018 			insn = new_prog->insnsi + i + delta;
19019 			goto patch_call_imm;
19020 		}
19021 
19022 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
19023 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
19024 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
19025 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
19026 			 */
19027 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
19028 			insn_buf[1] = *insn;
19029 			cnt = 2;
19030 
19031 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19032 			if (!new_prog)
19033 				return -ENOMEM;
19034 
19035 			delta += cnt - 1;
19036 			env->prog = prog = new_prog;
19037 			insn = new_prog->insnsi + i + delta;
19038 			goto patch_call_imm;
19039 		}
19040 
19041 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19042 		 * and other inlining handlers are currently limited to 64 bit
19043 		 * only.
19044 		 */
19045 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19046 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
19047 		     insn->imm == BPF_FUNC_map_update_elem ||
19048 		     insn->imm == BPF_FUNC_map_delete_elem ||
19049 		     insn->imm == BPF_FUNC_map_push_elem   ||
19050 		     insn->imm == BPF_FUNC_map_pop_elem    ||
19051 		     insn->imm == BPF_FUNC_map_peek_elem   ||
19052 		     insn->imm == BPF_FUNC_redirect_map    ||
19053 		     insn->imm == BPF_FUNC_for_each_map_elem ||
19054 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19055 			aux = &env->insn_aux_data[i + delta];
19056 			if (bpf_map_ptr_poisoned(aux))
19057 				goto patch_call_imm;
19058 
19059 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19060 			ops = map_ptr->ops;
19061 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
19062 			    ops->map_gen_lookup) {
19063 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19064 				if (cnt == -EOPNOTSUPP)
19065 					goto patch_map_ops_generic;
19066 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19067 					verbose(env, "bpf verifier is misconfigured\n");
19068 					return -EINVAL;
19069 				}
19070 
19071 				new_prog = bpf_patch_insn_data(env, i + delta,
19072 							       insn_buf, cnt);
19073 				if (!new_prog)
19074 					return -ENOMEM;
19075 
19076 				delta    += cnt - 1;
19077 				env->prog = prog = new_prog;
19078 				insn      = new_prog->insnsi + i + delta;
19079 				continue;
19080 			}
19081 
19082 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19083 				     (void *(*)(struct bpf_map *map, void *key))NULL));
19084 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19085 				     (long (*)(struct bpf_map *map, void *key))NULL));
19086 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19087 				     (long (*)(struct bpf_map *map, void *key, void *value,
19088 					      u64 flags))NULL));
19089 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19090 				     (long (*)(struct bpf_map *map, void *value,
19091 					      u64 flags))NULL));
19092 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19093 				     (long (*)(struct bpf_map *map, void *value))NULL));
19094 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19095 				     (long (*)(struct bpf_map *map, void *value))NULL));
19096 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
19097 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19098 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
19099 				     (long (*)(struct bpf_map *map,
19100 					      bpf_callback_t callback_fn,
19101 					      void *callback_ctx,
19102 					      u64 flags))NULL));
19103 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
19104 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
19105 
19106 patch_map_ops_generic:
19107 			switch (insn->imm) {
19108 			case BPF_FUNC_map_lookup_elem:
19109 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
19110 				continue;
19111 			case BPF_FUNC_map_update_elem:
19112 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
19113 				continue;
19114 			case BPF_FUNC_map_delete_elem:
19115 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
19116 				continue;
19117 			case BPF_FUNC_map_push_elem:
19118 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
19119 				continue;
19120 			case BPF_FUNC_map_pop_elem:
19121 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
19122 				continue;
19123 			case BPF_FUNC_map_peek_elem:
19124 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
19125 				continue;
19126 			case BPF_FUNC_redirect_map:
19127 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
19128 				continue;
19129 			case BPF_FUNC_for_each_map_elem:
19130 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
19131 				continue;
19132 			case BPF_FUNC_map_lookup_percpu_elem:
19133 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
19134 				continue;
19135 			}
19136 
19137 			goto patch_call_imm;
19138 		}
19139 
19140 		/* Implement bpf_jiffies64 inline. */
19141 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19142 		    insn->imm == BPF_FUNC_jiffies64) {
19143 			struct bpf_insn ld_jiffies_addr[2] = {
19144 				BPF_LD_IMM64(BPF_REG_0,
19145 					     (unsigned long)&jiffies),
19146 			};
19147 
19148 			insn_buf[0] = ld_jiffies_addr[0];
19149 			insn_buf[1] = ld_jiffies_addr[1];
19150 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
19151 						  BPF_REG_0, 0);
19152 			cnt = 3;
19153 
19154 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
19155 						       cnt);
19156 			if (!new_prog)
19157 				return -ENOMEM;
19158 
19159 			delta    += cnt - 1;
19160 			env->prog = prog = new_prog;
19161 			insn      = new_prog->insnsi + i + delta;
19162 			continue;
19163 		}
19164 
19165 		/* Implement bpf_get_func_arg inline. */
19166 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19167 		    insn->imm == BPF_FUNC_get_func_arg) {
19168 			/* Load nr_args from ctx - 8 */
19169 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19170 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
19171 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
19172 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
19173 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
19174 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19175 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
19176 			insn_buf[7] = BPF_JMP_A(1);
19177 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
19178 			cnt = 9;
19179 
19180 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19181 			if (!new_prog)
19182 				return -ENOMEM;
19183 
19184 			delta    += cnt - 1;
19185 			env->prog = prog = new_prog;
19186 			insn      = new_prog->insnsi + i + delta;
19187 			continue;
19188 		}
19189 
19190 		/* Implement bpf_get_func_ret inline. */
19191 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19192 		    insn->imm == BPF_FUNC_get_func_ret) {
19193 			if (eatype == BPF_TRACE_FEXIT ||
19194 			    eatype == BPF_MODIFY_RETURN) {
19195 				/* Load nr_args from ctx - 8 */
19196 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19197 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
19198 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
19199 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19200 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
19201 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
19202 				cnt = 6;
19203 			} else {
19204 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
19205 				cnt = 1;
19206 			}
19207 
19208 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19209 			if (!new_prog)
19210 				return -ENOMEM;
19211 
19212 			delta    += cnt - 1;
19213 			env->prog = prog = new_prog;
19214 			insn      = new_prog->insnsi + i + delta;
19215 			continue;
19216 		}
19217 
19218 		/* Implement get_func_arg_cnt inline. */
19219 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19220 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
19221 			/* Load nr_args from ctx - 8 */
19222 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19223 
19224 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19225 			if (!new_prog)
19226 				return -ENOMEM;
19227 
19228 			env->prog = prog = new_prog;
19229 			insn      = new_prog->insnsi + i + delta;
19230 			continue;
19231 		}
19232 
19233 		/* Implement bpf_get_func_ip inline. */
19234 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19235 		    insn->imm == BPF_FUNC_get_func_ip) {
19236 			/* Load IP address from ctx - 16 */
19237 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
19238 
19239 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19240 			if (!new_prog)
19241 				return -ENOMEM;
19242 
19243 			env->prog = prog = new_prog;
19244 			insn      = new_prog->insnsi + i + delta;
19245 			continue;
19246 		}
19247 
19248 patch_call_imm:
19249 		fn = env->ops->get_func_proto(insn->imm, env->prog);
19250 		/* all functions that have prototype and verifier allowed
19251 		 * programs to call them, must be real in-kernel functions
19252 		 */
19253 		if (!fn->func) {
19254 			verbose(env,
19255 				"kernel subsystem misconfigured func %s#%d\n",
19256 				func_id_name(insn->imm), insn->imm);
19257 			return -EFAULT;
19258 		}
19259 		insn->imm = fn->func - __bpf_call_base;
19260 	}
19261 
19262 	/* Since poke tab is now finalized, publish aux to tracker. */
19263 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19264 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19265 		if (!map_ptr->ops->map_poke_track ||
19266 		    !map_ptr->ops->map_poke_untrack ||
19267 		    !map_ptr->ops->map_poke_run) {
19268 			verbose(env, "bpf verifier is misconfigured\n");
19269 			return -EINVAL;
19270 		}
19271 
19272 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
19273 		if (ret < 0) {
19274 			verbose(env, "tracking tail call prog failed\n");
19275 			return ret;
19276 		}
19277 	}
19278 
19279 	sort_kfunc_descs_by_imm_off(env->prog);
19280 
19281 	return 0;
19282 }
19283 
19284 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
19285 					int position,
19286 					s32 stack_base,
19287 					u32 callback_subprogno,
19288 					u32 *cnt)
19289 {
19290 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
19291 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
19292 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
19293 	int reg_loop_max = BPF_REG_6;
19294 	int reg_loop_cnt = BPF_REG_7;
19295 	int reg_loop_ctx = BPF_REG_8;
19296 
19297 	struct bpf_prog *new_prog;
19298 	u32 callback_start;
19299 	u32 call_insn_offset;
19300 	s32 callback_offset;
19301 
19302 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
19303 	 * be careful to modify this code in sync.
19304 	 */
19305 	struct bpf_insn insn_buf[] = {
19306 		/* Return error and jump to the end of the patch if
19307 		 * expected number of iterations is too big.
19308 		 */
19309 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
19310 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
19311 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
19312 		/* spill R6, R7, R8 to use these as loop vars */
19313 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
19314 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
19315 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
19316 		/* initialize loop vars */
19317 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
19318 		BPF_MOV32_IMM(reg_loop_cnt, 0),
19319 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
19320 		/* loop header,
19321 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
19322 		 */
19323 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
19324 		/* callback call,
19325 		 * correct callback offset would be set after patching
19326 		 */
19327 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
19328 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
19329 		BPF_CALL_REL(0),
19330 		/* increment loop counter */
19331 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
19332 		/* jump to loop header if callback returned 0 */
19333 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
19334 		/* return value of bpf_loop,
19335 		 * set R0 to the number of iterations
19336 		 */
19337 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
19338 		/* restore original values of R6, R7, R8 */
19339 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
19340 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
19341 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
19342 	};
19343 
19344 	*cnt = ARRAY_SIZE(insn_buf);
19345 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
19346 	if (!new_prog)
19347 		return new_prog;
19348 
19349 	/* callback start is known only after patching */
19350 	callback_start = env->subprog_info[callback_subprogno].start;
19351 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
19352 	call_insn_offset = position + 12;
19353 	callback_offset = callback_start - call_insn_offset - 1;
19354 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
19355 
19356 	return new_prog;
19357 }
19358 
19359 static bool is_bpf_loop_call(struct bpf_insn *insn)
19360 {
19361 	return insn->code == (BPF_JMP | BPF_CALL) &&
19362 		insn->src_reg == 0 &&
19363 		insn->imm == BPF_FUNC_loop;
19364 }
19365 
19366 /* For all sub-programs in the program (including main) check
19367  * insn_aux_data to see if there are bpf_loop calls that require
19368  * inlining. If such calls are found the calls are replaced with a
19369  * sequence of instructions produced by `inline_bpf_loop` function and
19370  * subprog stack_depth is increased by the size of 3 registers.
19371  * This stack space is used to spill values of the R6, R7, R8.  These
19372  * registers are used to store the loop bound, counter and context
19373  * variables.
19374  */
19375 static int optimize_bpf_loop(struct bpf_verifier_env *env)
19376 {
19377 	struct bpf_subprog_info *subprogs = env->subprog_info;
19378 	int i, cur_subprog = 0, cnt, delta = 0;
19379 	struct bpf_insn *insn = env->prog->insnsi;
19380 	int insn_cnt = env->prog->len;
19381 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
19382 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19383 	u16 stack_depth_extra = 0;
19384 
19385 	for (i = 0; i < insn_cnt; i++, insn++) {
19386 		struct bpf_loop_inline_state *inline_state =
19387 			&env->insn_aux_data[i + delta].loop_inline_state;
19388 
19389 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
19390 			struct bpf_prog *new_prog;
19391 
19392 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
19393 			new_prog = inline_bpf_loop(env,
19394 						   i + delta,
19395 						   -(stack_depth + stack_depth_extra),
19396 						   inline_state->callback_subprogno,
19397 						   &cnt);
19398 			if (!new_prog)
19399 				return -ENOMEM;
19400 
19401 			delta     += cnt - 1;
19402 			env->prog  = new_prog;
19403 			insn       = new_prog->insnsi + i + delta;
19404 		}
19405 
19406 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19407 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
19408 			cur_subprog++;
19409 			stack_depth = subprogs[cur_subprog].stack_depth;
19410 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19411 			stack_depth_extra = 0;
19412 		}
19413 	}
19414 
19415 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19416 
19417 	return 0;
19418 }
19419 
19420 static void free_states(struct bpf_verifier_env *env)
19421 {
19422 	struct bpf_verifier_state_list *sl, *sln;
19423 	int i;
19424 
19425 	sl = env->free_list;
19426 	while (sl) {
19427 		sln = sl->next;
19428 		free_verifier_state(&sl->state, false);
19429 		kfree(sl);
19430 		sl = sln;
19431 	}
19432 	env->free_list = NULL;
19433 
19434 	if (!env->explored_states)
19435 		return;
19436 
19437 	for (i = 0; i < state_htab_size(env); i++) {
19438 		sl = env->explored_states[i];
19439 
19440 		while (sl) {
19441 			sln = sl->next;
19442 			free_verifier_state(&sl->state, false);
19443 			kfree(sl);
19444 			sl = sln;
19445 		}
19446 		env->explored_states[i] = NULL;
19447 	}
19448 }
19449 
19450 static int do_check_common(struct bpf_verifier_env *env, int subprog, bool is_ex_cb)
19451 {
19452 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19453 	struct bpf_verifier_state *state;
19454 	struct bpf_reg_state *regs;
19455 	int ret, i;
19456 
19457 	env->prev_linfo = NULL;
19458 	env->pass_cnt++;
19459 
19460 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19461 	if (!state)
19462 		return -ENOMEM;
19463 	state->curframe = 0;
19464 	state->speculative = false;
19465 	state->branches = 1;
19466 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19467 	if (!state->frame[0]) {
19468 		kfree(state);
19469 		return -ENOMEM;
19470 	}
19471 	env->cur_state = state;
19472 	init_func_state(env, state->frame[0],
19473 			BPF_MAIN_FUNC /* callsite */,
19474 			0 /* frameno */,
19475 			subprog);
19476 	state->first_insn_idx = env->subprog_info[subprog].start;
19477 	state->last_insn_idx = -1;
19478 
19479 	regs = state->frame[state->curframe]->regs;
19480 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19481 		ret = btf_prepare_func_args(env, subprog, regs, is_ex_cb);
19482 		if (ret)
19483 			goto out;
19484 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19485 			if (regs[i].type == PTR_TO_CTX)
19486 				mark_reg_known_zero(env, regs, i);
19487 			else if (regs[i].type == SCALAR_VALUE)
19488 				mark_reg_unknown(env, regs, i);
19489 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
19490 				const u32 mem_size = regs[i].mem_size;
19491 
19492 				mark_reg_known_zero(env, regs, i);
19493 				regs[i].mem_size = mem_size;
19494 				regs[i].id = ++env->id_gen;
19495 			}
19496 		}
19497 		if (is_ex_cb) {
19498 			state->frame[0]->in_exception_callback_fn = true;
19499 			env->subprog_info[subprog].is_cb = true;
19500 			env->subprog_info[subprog].is_async_cb = true;
19501 			env->subprog_info[subprog].is_exception_cb = true;
19502 		}
19503 	} else {
19504 		/* 1st arg to a function */
19505 		regs[BPF_REG_1].type = PTR_TO_CTX;
19506 		mark_reg_known_zero(env, regs, BPF_REG_1);
19507 		ret = btf_check_subprog_arg_match(env, subprog, regs);
19508 		if (ret == -EFAULT)
19509 			/* unlikely verifier bug. abort.
19510 			 * ret == 0 and ret < 0 are sadly acceptable for
19511 			 * main() function due to backward compatibility.
19512 			 * Like socket filter program may be written as:
19513 			 * int bpf_prog(struct pt_regs *ctx)
19514 			 * and never dereference that ctx in the program.
19515 			 * 'struct pt_regs' is a type mismatch for socket
19516 			 * filter that should be using 'struct __sk_buff'.
19517 			 */
19518 			goto out;
19519 	}
19520 
19521 	ret = do_check(env);
19522 out:
19523 	/* check for NULL is necessary, since cur_state can be freed inside
19524 	 * do_check() under memory pressure.
19525 	 */
19526 	if (env->cur_state) {
19527 		free_verifier_state(env->cur_state, true);
19528 		env->cur_state = NULL;
19529 	}
19530 	while (!pop_stack(env, NULL, NULL, false));
19531 	if (!ret && pop_log)
19532 		bpf_vlog_reset(&env->log, 0);
19533 	free_states(env);
19534 	return ret;
19535 }
19536 
19537 /* Verify all global functions in a BPF program one by one based on their BTF.
19538  * All global functions must pass verification. Otherwise the whole program is rejected.
19539  * Consider:
19540  * int bar(int);
19541  * int foo(int f)
19542  * {
19543  *    return bar(f);
19544  * }
19545  * int bar(int b)
19546  * {
19547  *    ...
19548  * }
19549  * foo() will be verified first for R1=any_scalar_value. During verification it
19550  * will be assumed that bar() already verified successfully and call to bar()
19551  * from foo() will be checked for type match only. Later bar() will be verified
19552  * independently to check that it's safe for R1=any_scalar_value.
19553  */
19554 static int do_check_subprogs(struct bpf_verifier_env *env)
19555 {
19556 	struct bpf_prog_aux *aux = env->prog->aux;
19557 	int i, ret;
19558 
19559 	if (!aux->func_info)
19560 		return 0;
19561 
19562 	for (i = 1; i < env->subprog_cnt; i++) {
19563 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
19564 			continue;
19565 		env->insn_idx = env->subprog_info[i].start;
19566 		WARN_ON_ONCE(env->insn_idx == 0);
19567 		ret = do_check_common(env, i, env->exception_callback_subprog == i);
19568 		if (ret) {
19569 			return ret;
19570 		} else if (env->log.level & BPF_LOG_LEVEL) {
19571 			verbose(env,
19572 				"Func#%d is safe for any args that match its prototype\n",
19573 				i);
19574 		}
19575 	}
19576 	return 0;
19577 }
19578 
19579 static int do_check_main(struct bpf_verifier_env *env)
19580 {
19581 	int ret;
19582 
19583 	env->insn_idx = 0;
19584 	ret = do_check_common(env, 0, false);
19585 	if (!ret)
19586 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19587 	return ret;
19588 }
19589 
19590 
19591 static void print_verification_stats(struct bpf_verifier_env *env)
19592 {
19593 	int i;
19594 
19595 	if (env->log.level & BPF_LOG_STATS) {
19596 		verbose(env, "verification time %lld usec\n",
19597 			div_u64(env->verification_time, 1000));
19598 		verbose(env, "stack depth ");
19599 		for (i = 0; i < env->subprog_cnt; i++) {
19600 			u32 depth = env->subprog_info[i].stack_depth;
19601 
19602 			verbose(env, "%d", depth);
19603 			if (i + 1 < env->subprog_cnt)
19604 				verbose(env, "+");
19605 		}
19606 		verbose(env, "\n");
19607 	}
19608 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
19609 		"total_states %d peak_states %d mark_read %d\n",
19610 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
19611 		env->max_states_per_insn, env->total_states,
19612 		env->peak_states, env->longest_mark_read_walk);
19613 }
19614 
19615 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
19616 {
19617 	const struct btf_type *t, *func_proto;
19618 	const struct bpf_struct_ops *st_ops;
19619 	const struct btf_member *member;
19620 	struct bpf_prog *prog = env->prog;
19621 	u32 btf_id, member_idx;
19622 	const char *mname;
19623 
19624 	if (!prog->gpl_compatible) {
19625 		verbose(env, "struct ops programs must have a GPL compatible license\n");
19626 		return -EINVAL;
19627 	}
19628 
19629 	btf_id = prog->aux->attach_btf_id;
19630 	st_ops = bpf_struct_ops_find(btf_id);
19631 	if (!st_ops) {
19632 		verbose(env, "attach_btf_id %u is not a supported struct\n",
19633 			btf_id);
19634 		return -ENOTSUPP;
19635 	}
19636 
19637 	t = st_ops->type;
19638 	member_idx = prog->expected_attach_type;
19639 	if (member_idx >= btf_type_vlen(t)) {
19640 		verbose(env, "attach to invalid member idx %u of struct %s\n",
19641 			member_idx, st_ops->name);
19642 		return -EINVAL;
19643 	}
19644 
19645 	member = &btf_type_member(t)[member_idx];
19646 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
19647 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
19648 					       NULL);
19649 	if (!func_proto) {
19650 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
19651 			mname, member_idx, st_ops->name);
19652 		return -EINVAL;
19653 	}
19654 
19655 	if (st_ops->check_member) {
19656 		int err = st_ops->check_member(t, member, prog);
19657 
19658 		if (err) {
19659 			verbose(env, "attach to unsupported member %s of struct %s\n",
19660 				mname, st_ops->name);
19661 			return err;
19662 		}
19663 	}
19664 
19665 	prog->aux->attach_func_proto = func_proto;
19666 	prog->aux->attach_func_name = mname;
19667 	env->ops = st_ops->verifier_ops;
19668 
19669 	return 0;
19670 }
19671 #define SECURITY_PREFIX "security_"
19672 
19673 static int check_attach_modify_return(unsigned long addr, const char *func_name)
19674 {
19675 	if (within_error_injection_list(addr) ||
19676 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
19677 		return 0;
19678 
19679 	return -EINVAL;
19680 }
19681 
19682 /* list of non-sleepable functions that are otherwise on
19683  * ALLOW_ERROR_INJECTION list
19684  */
19685 BTF_SET_START(btf_non_sleepable_error_inject)
19686 /* Three functions below can be called from sleepable and non-sleepable context.
19687  * Assume non-sleepable from bpf safety point of view.
19688  */
19689 BTF_ID(func, __filemap_add_folio)
19690 BTF_ID(func, should_fail_alloc_page)
19691 BTF_ID(func, should_failslab)
19692 BTF_SET_END(btf_non_sleepable_error_inject)
19693 
19694 static int check_non_sleepable_error_inject(u32 btf_id)
19695 {
19696 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
19697 }
19698 
19699 int bpf_check_attach_target(struct bpf_verifier_log *log,
19700 			    const struct bpf_prog *prog,
19701 			    const struct bpf_prog *tgt_prog,
19702 			    u32 btf_id,
19703 			    struct bpf_attach_target_info *tgt_info)
19704 {
19705 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
19706 	const char prefix[] = "btf_trace_";
19707 	int ret = 0, subprog = -1, i;
19708 	const struct btf_type *t;
19709 	bool conservative = true;
19710 	const char *tname;
19711 	struct btf *btf;
19712 	long addr = 0;
19713 	struct module *mod = NULL;
19714 
19715 	if (!btf_id) {
19716 		bpf_log(log, "Tracing programs must provide btf_id\n");
19717 		return -EINVAL;
19718 	}
19719 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
19720 	if (!btf) {
19721 		bpf_log(log,
19722 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
19723 		return -EINVAL;
19724 	}
19725 	t = btf_type_by_id(btf, btf_id);
19726 	if (!t) {
19727 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
19728 		return -EINVAL;
19729 	}
19730 	tname = btf_name_by_offset(btf, t->name_off);
19731 	if (!tname) {
19732 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
19733 		return -EINVAL;
19734 	}
19735 	if (tgt_prog) {
19736 		struct bpf_prog_aux *aux = tgt_prog->aux;
19737 
19738 		if (bpf_prog_is_dev_bound(prog->aux) &&
19739 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
19740 			bpf_log(log, "Target program bound device mismatch");
19741 			return -EINVAL;
19742 		}
19743 
19744 		for (i = 0; i < aux->func_info_cnt; i++)
19745 			if (aux->func_info[i].type_id == btf_id) {
19746 				subprog = i;
19747 				break;
19748 			}
19749 		if (subprog == -1) {
19750 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
19751 			return -EINVAL;
19752 		}
19753 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
19754 			bpf_log(log,
19755 				"%s programs cannot attach to exception callback\n",
19756 				prog_extension ? "Extension" : "FENTRY/FEXIT");
19757 			return -EINVAL;
19758 		}
19759 		conservative = aux->func_info_aux[subprog].unreliable;
19760 		if (prog_extension) {
19761 			if (conservative) {
19762 				bpf_log(log,
19763 					"Cannot replace static functions\n");
19764 				return -EINVAL;
19765 			}
19766 			if (!prog->jit_requested) {
19767 				bpf_log(log,
19768 					"Extension programs should be JITed\n");
19769 				return -EINVAL;
19770 			}
19771 		}
19772 		if (!tgt_prog->jited) {
19773 			bpf_log(log, "Can attach to only JITed progs\n");
19774 			return -EINVAL;
19775 		}
19776 		if (tgt_prog->type == prog->type) {
19777 			/* Cannot fentry/fexit another fentry/fexit program.
19778 			 * Cannot attach program extension to another extension.
19779 			 * It's ok to attach fentry/fexit to extension program.
19780 			 */
19781 			bpf_log(log, "Cannot recursively attach\n");
19782 			return -EINVAL;
19783 		}
19784 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
19785 		    prog_extension &&
19786 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
19787 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
19788 			/* Program extensions can extend all program types
19789 			 * except fentry/fexit. The reason is the following.
19790 			 * The fentry/fexit programs are used for performance
19791 			 * analysis, stats and can be attached to any program
19792 			 * type except themselves. When extension program is
19793 			 * replacing XDP function it is necessary to allow
19794 			 * performance analysis of all functions. Both original
19795 			 * XDP program and its program extension. Hence
19796 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
19797 			 * allowed. If extending of fentry/fexit was allowed it
19798 			 * would be possible to create long call chain
19799 			 * fentry->extension->fentry->extension beyond
19800 			 * reasonable stack size. Hence extending fentry is not
19801 			 * allowed.
19802 			 */
19803 			bpf_log(log, "Cannot extend fentry/fexit\n");
19804 			return -EINVAL;
19805 		}
19806 	} else {
19807 		if (prog_extension) {
19808 			bpf_log(log, "Cannot replace kernel functions\n");
19809 			return -EINVAL;
19810 		}
19811 	}
19812 
19813 	switch (prog->expected_attach_type) {
19814 	case BPF_TRACE_RAW_TP:
19815 		if (tgt_prog) {
19816 			bpf_log(log,
19817 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
19818 			return -EINVAL;
19819 		}
19820 		if (!btf_type_is_typedef(t)) {
19821 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
19822 				btf_id);
19823 			return -EINVAL;
19824 		}
19825 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
19826 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
19827 				btf_id, tname);
19828 			return -EINVAL;
19829 		}
19830 		tname += sizeof(prefix) - 1;
19831 		t = btf_type_by_id(btf, t->type);
19832 		if (!btf_type_is_ptr(t))
19833 			/* should never happen in valid vmlinux build */
19834 			return -EINVAL;
19835 		t = btf_type_by_id(btf, t->type);
19836 		if (!btf_type_is_func_proto(t))
19837 			/* should never happen in valid vmlinux build */
19838 			return -EINVAL;
19839 
19840 		break;
19841 	case BPF_TRACE_ITER:
19842 		if (!btf_type_is_func(t)) {
19843 			bpf_log(log, "attach_btf_id %u is not a function\n",
19844 				btf_id);
19845 			return -EINVAL;
19846 		}
19847 		t = btf_type_by_id(btf, t->type);
19848 		if (!btf_type_is_func_proto(t))
19849 			return -EINVAL;
19850 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19851 		if (ret)
19852 			return ret;
19853 		break;
19854 	default:
19855 		if (!prog_extension)
19856 			return -EINVAL;
19857 		fallthrough;
19858 	case BPF_MODIFY_RETURN:
19859 	case BPF_LSM_MAC:
19860 	case BPF_LSM_CGROUP:
19861 	case BPF_TRACE_FENTRY:
19862 	case BPF_TRACE_FEXIT:
19863 		if (!btf_type_is_func(t)) {
19864 			bpf_log(log, "attach_btf_id %u is not a function\n",
19865 				btf_id);
19866 			return -EINVAL;
19867 		}
19868 		if (prog_extension &&
19869 		    btf_check_type_match(log, prog, btf, t))
19870 			return -EINVAL;
19871 		t = btf_type_by_id(btf, t->type);
19872 		if (!btf_type_is_func_proto(t))
19873 			return -EINVAL;
19874 
19875 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
19876 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
19877 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
19878 			return -EINVAL;
19879 
19880 		if (tgt_prog && conservative)
19881 			t = NULL;
19882 
19883 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19884 		if (ret < 0)
19885 			return ret;
19886 
19887 		if (tgt_prog) {
19888 			if (subprog == 0)
19889 				addr = (long) tgt_prog->bpf_func;
19890 			else
19891 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
19892 		} else {
19893 			if (btf_is_module(btf)) {
19894 				mod = btf_try_get_module(btf);
19895 				if (mod)
19896 					addr = find_kallsyms_symbol_value(mod, tname);
19897 				else
19898 					addr = 0;
19899 			} else {
19900 				addr = kallsyms_lookup_name(tname);
19901 			}
19902 			if (!addr) {
19903 				module_put(mod);
19904 				bpf_log(log,
19905 					"The address of function %s cannot be found\n",
19906 					tname);
19907 				return -ENOENT;
19908 			}
19909 		}
19910 
19911 		if (prog->aux->sleepable) {
19912 			ret = -EINVAL;
19913 			switch (prog->type) {
19914 			case BPF_PROG_TYPE_TRACING:
19915 
19916 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
19917 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
19918 				 */
19919 				if (!check_non_sleepable_error_inject(btf_id) &&
19920 				    within_error_injection_list(addr))
19921 					ret = 0;
19922 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
19923 				 * in the fmodret id set with the KF_SLEEPABLE flag.
19924 				 */
19925 				else {
19926 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
19927 										prog);
19928 
19929 					if (flags && (*flags & KF_SLEEPABLE))
19930 						ret = 0;
19931 				}
19932 				break;
19933 			case BPF_PROG_TYPE_LSM:
19934 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
19935 				 * Only some of them are sleepable.
19936 				 */
19937 				if (bpf_lsm_is_sleepable_hook(btf_id))
19938 					ret = 0;
19939 				break;
19940 			default:
19941 				break;
19942 			}
19943 			if (ret) {
19944 				module_put(mod);
19945 				bpf_log(log, "%s is not sleepable\n", tname);
19946 				return ret;
19947 			}
19948 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
19949 			if (tgt_prog) {
19950 				module_put(mod);
19951 				bpf_log(log, "can't modify return codes of BPF programs\n");
19952 				return -EINVAL;
19953 			}
19954 			ret = -EINVAL;
19955 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
19956 			    !check_attach_modify_return(addr, tname))
19957 				ret = 0;
19958 			if (ret) {
19959 				module_put(mod);
19960 				bpf_log(log, "%s() is not modifiable\n", tname);
19961 				return ret;
19962 			}
19963 		}
19964 
19965 		break;
19966 	}
19967 	tgt_info->tgt_addr = addr;
19968 	tgt_info->tgt_name = tname;
19969 	tgt_info->tgt_type = t;
19970 	tgt_info->tgt_mod = mod;
19971 	return 0;
19972 }
19973 
19974 BTF_SET_START(btf_id_deny)
19975 BTF_ID_UNUSED
19976 #ifdef CONFIG_SMP
19977 BTF_ID(func, migrate_disable)
19978 BTF_ID(func, migrate_enable)
19979 #endif
19980 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
19981 BTF_ID(func, rcu_read_unlock_strict)
19982 #endif
19983 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
19984 BTF_ID(func, preempt_count_add)
19985 BTF_ID(func, preempt_count_sub)
19986 #endif
19987 #ifdef CONFIG_PREEMPT_RCU
19988 BTF_ID(func, __rcu_read_lock)
19989 BTF_ID(func, __rcu_read_unlock)
19990 #endif
19991 BTF_SET_END(btf_id_deny)
19992 
19993 static bool can_be_sleepable(struct bpf_prog *prog)
19994 {
19995 	if (prog->type == BPF_PROG_TYPE_TRACING) {
19996 		switch (prog->expected_attach_type) {
19997 		case BPF_TRACE_FENTRY:
19998 		case BPF_TRACE_FEXIT:
19999 		case BPF_MODIFY_RETURN:
20000 		case BPF_TRACE_ITER:
20001 			return true;
20002 		default:
20003 			return false;
20004 		}
20005 	}
20006 	return prog->type == BPF_PROG_TYPE_LSM ||
20007 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
20008 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
20009 }
20010 
20011 static int check_attach_btf_id(struct bpf_verifier_env *env)
20012 {
20013 	struct bpf_prog *prog = env->prog;
20014 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
20015 	struct bpf_attach_target_info tgt_info = {};
20016 	u32 btf_id = prog->aux->attach_btf_id;
20017 	struct bpf_trampoline *tr;
20018 	int ret;
20019 	u64 key;
20020 
20021 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
20022 		if (prog->aux->sleepable)
20023 			/* attach_btf_id checked to be zero already */
20024 			return 0;
20025 		verbose(env, "Syscall programs can only be sleepable\n");
20026 		return -EINVAL;
20027 	}
20028 
20029 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
20030 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
20031 		return -EINVAL;
20032 	}
20033 
20034 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
20035 		return check_struct_ops_btf_id(env);
20036 
20037 	if (prog->type != BPF_PROG_TYPE_TRACING &&
20038 	    prog->type != BPF_PROG_TYPE_LSM &&
20039 	    prog->type != BPF_PROG_TYPE_EXT)
20040 		return 0;
20041 
20042 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
20043 	if (ret)
20044 		return ret;
20045 
20046 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
20047 		/* to make freplace equivalent to their targets, they need to
20048 		 * inherit env->ops and expected_attach_type for the rest of the
20049 		 * verification
20050 		 */
20051 		env->ops = bpf_verifier_ops[tgt_prog->type];
20052 		prog->expected_attach_type = tgt_prog->expected_attach_type;
20053 	}
20054 
20055 	/* store info about the attachment target that will be used later */
20056 	prog->aux->attach_func_proto = tgt_info.tgt_type;
20057 	prog->aux->attach_func_name = tgt_info.tgt_name;
20058 	prog->aux->mod = tgt_info.tgt_mod;
20059 
20060 	if (tgt_prog) {
20061 		prog->aux->saved_dst_prog_type = tgt_prog->type;
20062 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
20063 	}
20064 
20065 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
20066 		prog->aux->attach_btf_trace = true;
20067 		return 0;
20068 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
20069 		if (!bpf_iter_prog_supported(prog))
20070 			return -EINVAL;
20071 		return 0;
20072 	}
20073 
20074 	if (prog->type == BPF_PROG_TYPE_LSM) {
20075 		ret = bpf_lsm_verify_prog(&env->log, prog);
20076 		if (ret < 0)
20077 			return ret;
20078 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
20079 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
20080 		return -EINVAL;
20081 	}
20082 
20083 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
20084 	tr = bpf_trampoline_get(key, &tgt_info);
20085 	if (!tr)
20086 		return -ENOMEM;
20087 
20088 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
20089 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
20090 
20091 	prog->aux->dst_trampoline = tr;
20092 	return 0;
20093 }
20094 
20095 struct btf *bpf_get_btf_vmlinux(void)
20096 {
20097 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
20098 		mutex_lock(&bpf_verifier_lock);
20099 		if (!btf_vmlinux)
20100 			btf_vmlinux = btf_parse_vmlinux();
20101 		mutex_unlock(&bpf_verifier_lock);
20102 	}
20103 	return btf_vmlinux;
20104 }
20105 
20106 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
20107 {
20108 	u64 start_time = ktime_get_ns();
20109 	struct bpf_verifier_env *env;
20110 	int i, len, ret = -EINVAL, err;
20111 	u32 log_true_size;
20112 	bool is_priv;
20113 
20114 	/* no program is valid */
20115 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
20116 		return -EINVAL;
20117 
20118 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
20119 	 * allocate/free it every time bpf_check() is called
20120 	 */
20121 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
20122 	if (!env)
20123 		return -ENOMEM;
20124 
20125 	env->bt.env = env;
20126 
20127 	len = (*prog)->len;
20128 	env->insn_aux_data =
20129 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
20130 	ret = -ENOMEM;
20131 	if (!env->insn_aux_data)
20132 		goto err_free_env;
20133 	for (i = 0; i < len; i++)
20134 		env->insn_aux_data[i].orig_idx = i;
20135 	env->prog = *prog;
20136 	env->ops = bpf_verifier_ops[env->prog->type];
20137 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
20138 	is_priv = bpf_capable();
20139 
20140 	bpf_get_btf_vmlinux();
20141 
20142 	/* grab the mutex to protect few globals used by verifier */
20143 	if (!is_priv)
20144 		mutex_lock(&bpf_verifier_lock);
20145 
20146 	/* user could have requested verbose verifier output
20147 	 * and supplied buffer to store the verification trace
20148 	 */
20149 	ret = bpf_vlog_init(&env->log, attr->log_level,
20150 			    (char __user *) (unsigned long) attr->log_buf,
20151 			    attr->log_size);
20152 	if (ret)
20153 		goto err_unlock;
20154 
20155 	mark_verifier_state_clean(env);
20156 
20157 	if (IS_ERR(btf_vmlinux)) {
20158 		/* Either gcc or pahole or kernel are broken. */
20159 		verbose(env, "in-kernel BTF is malformed\n");
20160 		ret = PTR_ERR(btf_vmlinux);
20161 		goto skip_full_check;
20162 	}
20163 
20164 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
20165 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
20166 		env->strict_alignment = true;
20167 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
20168 		env->strict_alignment = false;
20169 
20170 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
20171 	env->allow_uninit_stack = bpf_allow_uninit_stack();
20172 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
20173 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
20174 	env->bpf_capable = bpf_capable();
20175 
20176 	if (is_priv)
20177 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
20178 
20179 	env->explored_states = kvcalloc(state_htab_size(env),
20180 				       sizeof(struct bpf_verifier_state_list *),
20181 				       GFP_USER);
20182 	ret = -ENOMEM;
20183 	if (!env->explored_states)
20184 		goto skip_full_check;
20185 
20186 	ret = check_btf_info_early(env, attr, uattr);
20187 	if (ret < 0)
20188 		goto skip_full_check;
20189 
20190 	ret = add_subprog_and_kfunc(env);
20191 	if (ret < 0)
20192 		goto skip_full_check;
20193 
20194 	ret = check_subprogs(env);
20195 	if (ret < 0)
20196 		goto skip_full_check;
20197 
20198 	ret = check_btf_info(env, attr, uattr);
20199 	if (ret < 0)
20200 		goto skip_full_check;
20201 
20202 	ret = check_attach_btf_id(env);
20203 	if (ret)
20204 		goto skip_full_check;
20205 
20206 	ret = resolve_pseudo_ldimm64(env);
20207 	if (ret < 0)
20208 		goto skip_full_check;
20209 
20210 	if (bpf_prog_is_offloaded(env->prog->aux)) {
20211 		ret = bpf_prog_offload_verifier_prep(env->prog);
20212 		if (ret)
20213 			goto skip_full_check;
20214 	}
20215 
20216 	ret = check_cfg(env);
20217 	if (ret < 0)
20218 		goto skip_full_check;
20219 
20220 	ret = do_check_subprogs(env);
20221 	ret = ret ?: do_check_main(env);
20222 
20223 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
20224 		ret = bpf_prog_offload_finalize(env);
20225 
20226 skip_full_check:
20227 	kvfree(env->explored_states);
20228 
20229 	if (ret == 0)
20230 		ret = check_max_stack_depth(env);
20231 
20232 	/* instruction rewrites happen after this point */
20233 	if (ret == 0)
20234 		ret = optimize_bpf_loop(env);
20235 
20236 	if (is_priv) {
20237 		if (ret == 0)
20238 			opt_hard_wire_dead_code_branches(env);
20239 		if (ret == 0)
20240 			ret = opt_remove_dead_code(env);
20241 		if (ret == 0)
20242 			ret = opt_remove_nops(env);
20243 	} else {
20244 		if (ret == 0)
20245 			sanitize_dead_code(env);
20246 	}
20247 
20248 	if (ret == 0)
20249 		/* program is valid, convert *(u32*)(ctx + off) accesses */
20250 		ret = convert_ctx_accesses(env);
20251 
20252 	if (ret == 0)
20253 		ret = do_misc_fixups(env);
20254 
20255 	/* do 32-bit optimization after insn patching has done so those patched
20256 	 * insns could be handled correctly.
20257 	 */
20258 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
20259 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
20260 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
20261 								     : false;
20262 	}
20263 
20264 	if (ret == 0)
20265 		ret = fixup_call_args(env);
20266 
20267 	env->verification_time = ktime_get_ns() - start_time;
20268 	print_verification_stats(env);
20269 	env->prog->aux->verified_insns = env->insn_processed;
20270 
20271 	/* preserve original error even if log finalization is successful */
20272 	err = bpf_vlog_finalize(&env->log, &log_true_size);
20273 	if (err)
20274 		ret = err;
20275 
20276 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
20277 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
20278 				  &log_true_size, sizeof(log_true_size))) {
20279 		ret = -EFAULT;
20280 		goto err_release_maps;
20281 	}
20282 
20283 	if (ret)
20284 		goto err_release_maps;
20285 
20286 	if (env->used_map_cnt) {
20287 		/* if program passed verifier, update used_maps in bpf_prog_info */
20288 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
20289 							  sizeof(env->used_maps[0]),
20290 							  GFP_KERNEL);
20291 
20292 		if (!env->prog->aux->used_maps) {
20293 			ret = -ENOMEM;
20294 			goto err_release_maps;
20295 		}
20296 
20297 		memcpy(env->prog->aux->used_maps, env->used_maps,
20298 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
20299 		env->prog->aux->used_map_cnt = env->used_map_cnt;
20300 	}
20301 	if (env->used_btf_cnt) {
20302 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
20303 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
20304 							  sizeof(env->used_btfs[0]),
20305 							  GFP_KERNEL);
20306 		if (!env->prog->aux->used_btfs) {
20307 			ret = -ENOMEM;
20308 			goto err_release_maps;
20309 		}
20310 
20311 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
20312 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
20313 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
20314 	}
20315 	if (env->used_map_cnt || env->used_btf_cnt) {
20316 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
20317 		 * bpf_ld_imm64 instructions
20318 		 */
20319 		convert_pseudo_ld_imm64(env);
20320 	}
20321 
20322 	adjust_btf_func(env);
20323 
20324 err_release_maps:
20325 	if (!env->prog->aux->used_maps)
20326 		/* if we didn't copy map pointers into bpf_prog_info, release
20327 		 * them now. Otherwise free_used_maps() will release them.
20328 		 */
20329 		release_maps(env);
20330 	if (!env->prog->aux->used_btfs)
20331 		release_btfs(env);
20332 
20333 	/* extension progs temporarily inherit the attach_type of their targets
20334 	   for verification purposes, so set it back to zero before returning
20335 	 */
20336 	if (env->prog->type == BPF_PROG_TYPE_EXT)
20337 		env->prog->expected_attach_type = 0;
20338 
20339 	*prog = env->prog;
20340 err_unlock:
20341 	if (!is_priv)
20342 		mutex_unlock(&bpf_verifier_lock);
20343 	vfree(env->insn_aux_data);
20344 err_free_env:
20345 	kfree(env);
20346 	return ret;
20347 }
20348