xref: /linux/kernel/bpf/verifier.c (revision 77380998d91dee8aafdbe42634776ba1ef692f1e)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of version 2 of the GNU General Public
7  * License as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  * General Public License for more details.
13  */
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/slab.h>
17 #include <linux/bpf.h>
18 #include <linux/bpf_verifier.h>
19 #include <linux/filter.h>
20 #include <net/netlink.h>
21 #include <linux/file.h>
22 #include <linux/vmalloc.h>
23 #include <linux/stringify.h>
24 #include <linux/bsearch.h>
25 #include <linux/sort.h>
26 #include <linux/perf_event.h>
27 
28 #include "disasm.h"
29 
30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31 #define BPF_PROG_TYPE(_id, _name) \
32 	[_id] = & _name ## _verifier_ops,
33 #define BPF_MAP_TYPE(_id, _ops)
34 #include <linux/bpf_types.h>
35 #undef BPF_PROG_TYPE
36 #undef BPF_MAP_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 };
175 
176 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
177 #define BPF_COMPLEXITY_LIMIT_STACK	1024
178 
179 #define BPF_MAP_PTR_UNPRIV	1UL
180 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
181 					  POISON_POINTER_DELTA))
182 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
183 
184 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
185 {
186 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
187 }
188 
189 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
190 {
191 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
192 }
193 
194 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
195 			      const struct bpf_map *map, bool unpriv)
196 {
197 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
198 	unpriv |= bpf_map_ptr_unpriv(aux);
199 	aux->map_state = (unsigned long)map |
200 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
201 }
202 
203 struct bpf_call_arg_meta {
204 	struct bpf_map *map_ptr;
205 	bool raw_mode;
206 	bool pkt_access;
207 	int regno;
208 	int access_size;
209 	s64 msize_smax_value;
210 	u64 msize_umax_value;
211 	int ptr_id;
212 };
213 
214 static DEFINE_MUTEX(bpf_verifier_lock);
215 
216 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
217 		       va_list args)
218 {
219 	unsigned int n;
220 
221 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
222 
223 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
224 		  "verifier log line truncated - local buffer too short\n");
225 
226 	n = min(log->len_total - log->len_used - 1, n);
227 	log->kbuf[n] = '\0';
228 
229 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
230 		log->len_used += n;
231 	else
232 		log->ubuf = NULL;
233 }
234 
235 /* log_level controls verbosity level of eBPF verifier.
236  * bpf_verifier_log_write() is used to dump the verification trace to the log,
237  * so the user can figure out what's wrong with the program
238  */
239 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
240 					   const char *fmt, ...)
241 {
242 	va_list args;
243 
244 	if (!bpf_verifier_log_needed(&env->log))
245 		return;
246 
247 	va_start(args, fmt);
248 	bpf_verifier_vlog(&env->log, fmt, args);
249 	va_end(args);
250 }
251 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
252 
253 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
254 {
255 	struct bpf_verifier_env *env = private_data;
256 	va_list args;
257 
258 	if (!bpf_verifier_log_needed(&env->log))
259 		return;
260 
261 	va_start(args, fmt);
262 	bpf_verifier_vlog(&env->log, fmt, args);
263 	va_end(args);
264 }
265 
266 static bool type_is_pkt_pointer(enum bpf_reg_type type)
267 {
268 	return type == PTR_TO_PACKET ||
269 	       type == PTR_TO_PACKET_META;
270 }
271 
272 static bool reg_type_may_be_null(enum bpf_reg_type type)
273 {
274 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
275 	       type == PTR_TO_SOCKET_OR_NULL;
276 }
277 
278 static bool type_is_refcounted(enum bpf_reg_type type)
279 {
280 	return type == PTR_TO_SOCKET;
281 }
282 
283 static bool type_is_refcounted_or_null(enum bpf_reg_type type)
284 {
285 	return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL;
286 }
287 
288 static bool reg_is_refcounted(const struct bpf_reg_state *reg)
289 {
290 	return type_is_refcounted(reg->type);
291 }
292 
293 static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg)
294 {
295 	return type_is_refcounted_or_null(reg->type);
296 }
297 
298 static bool arg_type_is_refcounted(enum bpf_arg_type type)
299 {
300 	return type == ARG_PTR_TO_SOCKET;
301 }
302 
303 /* Determine whether the function releases some resources allocated by another
304  * function call. The first reference type argument will be assumed to be
305  * released by release_reference().
306  */
307 static bool is_release_function(enum bpf_func_id func_id)
308 {
309 	return func_id == BPF_FUNC_sk_release;
310 }
311 
312 /* string representation of 'enum bpf_reg_type' */
313 static const char * const reg_type_str[] = {
314 	[NOT_INIT]		= "?",
315 	[SCALAR_VALUE]		= "inv",
316 	[PTR_TO_CTX]		= "ctx",
317 	[CONST_PTR_TO_MAP]	= "map_ptr",
318 	[PTR_TO_MAP_VALUE]	= "map_value",
319 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
320 	[PTR_TO_STACK]		= "fp",
321 	[PTR_TO_PACKET]		= "pkt",
322 	[PTR_TO_PACKET_META]	= "pkt_meta",
323 	[PTR_TO_PACKET_END]	= "pkt_end",
324 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
325 	[PTR_TO_SOCKET]		= "sock",
326 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
327 };
328 
329 static char slot_type_char[] = {
330 	[STACK_INVALID]	= '?',
331 	[STACK_SPILL]	= 'r',
332 	[STACK_MISC]	= 'm',
333 	[STACK_ZERO]	= '0',
334 };
335 
336 static void print_liveness(struct bpf_verifier_env *env,
337 			   enum bpf_reg_liveness live)
338 {
339 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
340 	    verbose(env, "_");
341 	if (live & REG_LIVE_READ)
342 		verbose(env, "r");
343 	if (live & REG_LIVE_WRITTEN)
344 		verbose(env, "w");
345 }
346 
347 static struct bpf_func_state *func(struct bpf_verifier_env *env,
348 				   const struct bpf_reg_state *reg)
349 {
350 	struct bpf_verifier_state *cur = env->cur_state;
351 
352 	return cur->frame[reg->frameno];
353 }
354 
355 static void print_verifier_state(struct bpf_verifier_env *env,
356 				 const struct bpf_func_state *state)
357 {
358 	const struct bpf_reg_state *reg;
359 	enum bpf_reg_type t;
360 	int i;
361 
362 	if (state->frameno)
363 		verbose(env, " frame%d:", state->frameno);
364 	for (i = 0; i < MAX_BPF_REG; i++) {
365 		reg = &state->regs[i];
366 		t = reg->type;
367 		if (t == NOT_INIT)
368 			continue;
369 		verbose(env, " R%d", i);
370 		print_liveness(env, reg->live);
371 		verbose(env, "=%s", reg_type_str[t]);
372 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
373 		    tnum_is_const(reg->var_off)) {
374 			/* reg->off should be 0 for SCALAR_VALUE */
375 			verbose(env, "%lld", reg->var_off.value + reg->off);
376 			if (t == PTR_TO_STACK)
377 				verbose(env, ",call_%d", func(env, reg)->callsite);
378 		} else {
379 			verbose(env, "(id=%d", reg->id);
380 			if (t != SCALAR_VALUE)
381 				verbose(env, ",off=%d", reg->off);
382 			if (type_is_pkt_pointer(t))
383 				verbose(env, ",r=%d", reg->range);
384 			else if (t == CONST_PTR_TO_MAP ||
385 				 t == PTR_TO_MAP_VALUE ||
386 				 t == PTR_TO_MAP_VALUE_OR_NULL)
387 				verbose(env, ",ks=%d,vs=%d",
388 					reg->map_ptr->key_size,
389 					reg->map_ptr->value_size);
390 			if (tnum_is_const(reg->var_off)) {
391 				/* Typically an immediate SCALAR_VALUE, but
392 				 * could be a pointer whose offset is too big
393 				 * for reg->off
394 				 */
395 				verbose(env, ",imm=%llx", reg->var_off.value);
396 			} else {
397 				if (reg->smin_value != reg->umin_value &&
398 				    reg->smin_value != S64_MIN)
399 					verbose(env, ",smin_value=%lld",
400 						(long long)reg->smin_value);
401 				if (reg->smax_value != reg->umax_value &&
402 				    reg->smax_value != S64_MAX)
403 					verbose(env, ",smax_value=%lld",
404 						(long long)reg->smax_value);
405 				if (reg->umin_value != 0)
406 					verbose(env, ",umin_value=%llu",
407 						(unsigned long long)reg->umin_value);
408 				if (reg->umax_value != U64_MAX)
409 					verbose(env, ",umax_value=%llu",
410 						(unsigned long long)reg->umax_value);
411 				if (!tnum_is_unknown(reg->var_off)) {
412 					char tn_buf[48];
413 
414 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
415 					verbose(env, ",var_off=%s", tn_buf);
416 				}
417 			}
418 			verbose(env, ")");
419 		}
420 	}
421 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
422 		char types_buf[BPF_REG_SIZE + 1];
423 		bool valid = false;
424 		int j;
425 
426 		for (j = 0; j < BPF_REG_SIZE; j++) {
427 			if (state->stack[i].slot_type[j] != STACK_INVALID)
428 				valid = true;
429 			types_buf[j] = slot_type_char[
430 					state->stack[i].slot_type[j]];
431 		}
432 		types_buf[BPF_REG_SIZE] = 0;
433 		if (!valid)
434 			continue;
435 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
436 		print_liveness(env, state->stack[i].spilled_ptr.live);
437 		if (state->stack[i].slot_type[0] == STACK_SPILL)
438 			verbose(env, "=%s",
439 				reg_type_str[state->stack[i].spilled_ptr.type]);
440 		else
441 			verbose(env, "=%s", types_buf);
442 	}
443 	if (state->acquired_refs && state->refs[0].id) {
444 		verbose(env, " refs=%d", state->refs[0].id);
445 		for (i = 1; i < state->acquired_refs; i++)
446 			if (state->refs[i].id)
447 				verbose(env, ",%d", state->refs[i].id);
448 	}
449 	verbose(env, "\n");
450 }
451 
452 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
453 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
454 			       const struct bpf_func_state *src)	\
455 {									\
456 	if (!src->FIELD)						\
457 		return 0;						\
458 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
459 		/* internal bug, make state invalid to reject the program */ \
460 		memset(dst, 0, sizeof(*dst));				\
461 		return -EFAULT;						\
462 	}								\
463 	memcpy(dst->FIELD, src->FIELD,					\
464 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
465 	return 0;							\
466 }
467 /* copy_reference_state() */
468 COPY_STATE_FN(reference, acquired_refs, refs, 1)
469 /* copy_stack_state() */
470 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
471 #undef COPY_STATE_FN
472 
473 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
474 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
475 				  bool copy_old)			\
476 {									\
477 	u32 old_size = state->COUNT;					\
478 	struct bpf_##NAME##_state *new_##FIELD;				\
479 	int slot = size / SIZE;						\
480 									\
481 	if (size <= old_size || !size) {				\
482 		if (copy_old)						\
483 			return 0;					\
484 		state->COUNT = slot * SIZE;				\
485 		if (!size && old_size) {				\
486 			kfree(state->FIELD);				\
487 			state->FIELD = NULL;				\
488 		}							\
489 		return 0;						\
490 	}								\
491 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
492 				    GFP_KERNEL);			\
493 	if (!new_##FIELD)						\
494 		return -ENOMEM;						\
495 	if (copy_old) {							\
496 		if (state->FIELD)					\
497 			memcpy(new_##FIELD, state->FIELD,		\
498 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
499 		memset(new_##FIELD + old_size / SIZE, 0,		\
500 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
501 	}								\
502 	state->COUNT = slot * SIZE;					\
503 	kfree(state->FIELD);						\
504 	state->FIELD = new_##FIELD;					\
505 	return 0;							\
506 }
507 /* realloc_reference_state() */
508 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
509 /* realloc_stack_state() */
510 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
511 #undef REALLOC_STATE_FN
512 
513 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
514  * make it consume minimal amount of memory. check_stack_write() access from
515  * the program calls into realloc_func_state() to grow the stack size.
516  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
517  * which realloc_stack_state() copies over. It points to previous
518  * bpf_verifier_state which is never reallocated.
519  */
520 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
521 			      int refs_size, bool copy_old)
522 {
523 	int err = realloc_reference_state(state, refs_size, copy_old);
524 	if (err)
525 		return err;
526 	return realloc_stack_state(state, stack_size, copy_old);
527 }
528 
529 /* Acquire a pointer id from the env and update the state->refs to include
530  * this new pointer reference.
531  * On success, returns a valid pointer id to associate with the register
532  * On failure, returns a negative errno.
533  */
534 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
535 {
536 	struct bpf_func_state *state = cur_func(env);
537 	int new_ofs = state->acquired_refs;
538 	int id, err;
539 
540 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
541 	if (err)
542 		return err;
543 	id = ++env->id_gen;
544 	state->refs[new_ofs].id = id;
545 	state->refs[new_ofs].insn_idx = insn_idx;
546 
547 	return id;
548 }
549 
550 /* release function corresponding to acquire_reference_state(). Idempotent. */
551 static int __release_reference_state(struct bpf_func_state *state, int ptr_id)
552 {
553 	int i, last_idx;
554 
555 	if (!ptr_id)
556 		return -EFAULT;
557 
558 	last_idx = state->acquired_refs - 1;
559 	for (i = 0; i < state->acquired_refs; i++) {
560 		if (state->refs[i].id == ptr_id) {
561 			if (last_idx && i != last_idx)
562 				memcpy(&state->refs[i], &state->refs[last_idx],
563 				       sizeof(*state->refs));
564 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
565 			state->acquired_refs--;
566 			return 0;
567 		}
568 	}
569 	return -EFAULT;
570 }
571 
572 /* variation on the above for cases where we expect that there must be an
573  * outstanding reference for the specified ptr_id.
574  */
575 static int release_reference_state(struct bpf_verifier_env *env, int ptr_id)
576 {
577 	struct bpf_func_state *state = cur_func(env);
578 	int err;
579 
580 	err = __release_reference_state(state, ptr_id);
581 	if (WARN_ON_ONCE(err != 0))
582 		verbose(env, "verifier internal error: can't release reference\n");
583 	return err;
584 }
585 
586 static int transfer_reference_state(struct bpf_func_state *dst,
587 				    struct bpf_func_state *src)
588 {
589 	int err = realloc_reference_state(dst, src->acquired_refs, false);
590 	if (err)
591 		return err;
592 	err = copy_reference_state(dst, src);
593 	if (err)
594 		return err;
595 	return 0;
596 }
597 
598 static void free_func_state(struct bpf_func_state *state)
599 {
600 	if (!state)
601 		return;
602 	kfree(state->refs);
603 	kfree(state->stack);
604 	kfree(state);
605 }
606 
607 static void free_verifier_state(struct bpf_verifier_state *state,
608 				bool free_self)
609 {
610 	int i;
611 
612 	for (i = 0; i <= state->curframe; i++) {
613 		free_func_state(state->frame[i]);
614 		state->frame[i] = NULL;
615 	}
616 	if (free_self)
617 		kfree(state);
618 }
619 
620 /* copy verifier state from src to dst growing dst stack space
621  * when necessary to accommodate larger src stack
622  */
623 static int copy_func_state(struct bpf_func_state *dst,
624 			   const struct bpf_func_state *src)
625 {
626 	int err;
627 
628 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
629 				 false);
630 	if (err)
631 		return err;
632 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
633 	err = copy_reference_state(dst, src);
634 	if (err)
635 		return err;
636 	return copy_stack_state(dst, src);
637 }
638 
639 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
640 			       const struct bpf_verifier_state *src)
641 {
642 	struct bpf_func_state *dst;
643 	int i, err;
644 
645 	/* if dst has more stack frames then src frame, free them */
646 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
647 		free_func_state(dst_state->frame[i]);
648 		dst_state->frame[i] = NULL;
649 	}
650 	dst_state->curframe = src->curframe;
651 	for (i = 0; i <= src->curframe; i++) {
652 		dst = dst_state->frame[i];
653 		if (!dst) {
654 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
655 			if (!dst)
656 				return -ENOMEM;
657 			dst_state->frame[i] = dst;
658 		}
659 		err = copy_func_state(dst, src->frame[i]);
660 		if (err)
661 			return err;
662 	}
663 	return 0;
664 }
665 
666 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
667 		     int *insn_idx)
668 {
669 	struct bpf_verifier_state *cur = env->cur_state;
670 	struct bpf_verifier_stack_elem *elem, *head = env->head;
671 	int err;
672 
673 	if (env->head == NULL)
674 		return -ENOENT;
675 
676 	if (cur) {
677 		err = copy_verifier_state(cur, &head->st);
678 		if (err)
679 			return err;
680 	}
681 	if (insn_idx)
682 		*insn_idx = head->insn_idx;
683 	if (prev_insn_idx)
684 		*prev_insn_idx = head->prev_insn_idx;
685 	elem = head->next;
686 	free_verifier_state(&head->st, false);
687 	kfree(head);
688 	env->head = elem;
689 	env->stack_size--;
690 	return 0;
691 }
692 
693 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
694 					     int insn_idx, int prev_insn_idx)
695 {
696 	struct bpf_verifier_state *cur = env->cur_state;
697 	struct bpf_verifier_stack_elem *elem;
698 	int err;
699 
700 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
701 	if (!elem)
702 		goto err;
703 
704 	elem->insn_idx = insn_idx;
705 	elem->prev_insn_idx = prev_insn_idx;
706 	elem->next = env->head;
707 	env->head = elem;
708 	env->stack_size++;
709 	err = copy_verifier_state(&elem->st, cur);
710 	if (err)
711 		goto err;
712 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
713 		verbose(env, "BPF program is too complex\n");
714 		goto err;
715 	}
716 	return &elem->st;
717 err:
718 	free_verifier_state(env->cur_state, true);
719 	env->cur_state = NULL;
720 	/* pop all elements and return */
721 	while (!pop_stack(env, NULL, NULL));
722 	return NULL;
723 }
724 
725 #define CALLER_SAVED_REGS 6
726 static const int caller_saved[CALLER_SAVED_REGS] = {
727 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
728 };
729 
730 static void __mark_reg_not_init(struct bpf_reg_state *reg);
731 
732 /* Mark the unknown part of a register (variable offset or scalar value) as
733  * known to have the value @imm.
734  */
735 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
736 {
737 	/* Clear id, off, and union(map_ptr, range) */
738 	memset(((u8 *)reg) + sizeof(reg->type), 0,
739 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
740 	reg->var_off = tnum_const(imm);
741 	reg->smin_value = (s64)imm;
742 	reg->smax_value = (s64)imm;
743 	reg->umin_value = imm;
744 	reg->umax_value = imm;
745 }
746 
747 /* Mark the 'variable offset' part of a register as zero.  This should be
748  * used only on registers holding a pointer type.
749  */
750 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
751 {
752 	__mark_reg_known(reg, 0);
753 }
754 
755 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
756 {
757 	__mark_reg_known(reg, 0);
758 	reg->type = SCALAR_VALUE;
759 }
760 
761 static void mark_reg_known_zero(struct bpf_verifier_env *env,
762 				struct bpf_reg_state *regs, u32 regno)
763 {
764 	if (WARN_ON(regno >= MAX_BPF_REG)) {
765 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
766 		/* Something bad happened, let's kill all regs */
767 		for (regno = 0; regno < MAX_BPF_REG; regno++)
768 			__mark_reg_not_init(regs + regno);
769 		return;
770 	}
771 	__mark_reg_known_zero(regs + regno);
772 }
773 
774 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
775 {
776 	return type_is_pkt_pointer(reg->type);
777 }
778 
779 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
780 {
781 	return reg_is_pkt_pointer(reg) ||
782 	       reg->type == PTR_TO_PACKET_END;
783 }
784 
785 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
786 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
787 				    enum bpf_reg_type which)
788 {
789 	/* The register can already have a range from prior markings.
790 	 * This is fine as long as it hasn't been advanced from its
791 	 * origin.
792 	 */
793 	return reg->type == which &&
794 	       reg->id == 0 &&
795 	       reg->off == 0 &&
796 	       tnum_equals_const(reg->var_off, 0);
797 }
798 
799 /* Attempts to improve min/max values based on var_off information */
800 static void __update_reg_bounds(struct bpf_reg_state *reg)
801 {
802 	/* min signed is max(sign bit) | min(other bits) */
803 	reg->smin_value = max_t(s64, reg->smin_value,
804 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
805 	/* max signed is min(sign bit) | max(other bits) */
806 	reg->smax_value = min_t(s64, reg->smax_value,
807 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
808 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
809 	reg->umax_value = min(reg->umax_value,
810 			      reg->var_off.value | reg->var_off.mask);
811 }
812 
813 /* Uses signed min/max values to inform unsigned, and vice-versa */
814 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
815 {
816 	/* Learn sign from signed bounds.
817 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
818 	 * are the same, so combine.  This works even in the negative case, e.g.
819 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
820 	 */
821 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
822 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
823 							  reg->umin_value);
824 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
825 							  reg->umax_value);
826 		return;
827 	}
828 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
829 	 * boundary, so we must be careful.
830 	 */
831 	if ((s64)reg->umax_value >= 0) {
832 		/* Positive.  We can't learn anything from the smin, but smax
833 		 * is positive, hence safe.
834 		 */
835 		reg->smin_value = reg->umin_value;
836 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
837 							  reg->umax_value);
838 	} else if ((s64)reg->umin_value < 0) {
839 		/* Negative.  We can't learn anything from the smax, but smin
840 		 * is negative, hence safe.
841 		 */
842 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
843 							  reg->umin_value);
844 		reg->smax_value = reg->umax_value;
845 	}
846 }
847 
848 /* Attempts to improve var_off based on unsigned min/max information */
849 static void __reg_bound_offset(struct bpf_reg_state *reg)
850 {
851 	reg->var_off = tnum_intersect(reg->var_off,
852 				      tnum_range(reg->umin_value,
853 						 reg->umax_value));
854 }
855 
856 /* Reset the min/max bounds of a register */
857 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
858 {
859 	reg->smin_value = S64_MIN;
860 	reg->smax_value = S64_MAX;
861 	reg->umin_value = 0;
862 	reg->umax_value = U64_MAX;
863 }
864 
865 /* Mark a register as having a completely unknown (scalar) value. */
866 static void __mark_reg_unknown(struct bpf_reg_state *reg)
867 {
868 	/*
869 	 * Clear type, id, off, and union(map_ptr, range) and
870 	 * padding between 'type' and union
871 	 */
872 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
873 	reg->type = SCALAR_VALUE;
874 	reg->var_off = tnum_unknown;
875 	reg->frameno = 0;
876 	__mark_reg_unbounded(reg);
877 }
878 
879 static void mark_reg_unknown(struct bpf_verifier_env *env,
880 			     struct bpf_reg_state *regs, u32 regno)
881 {
882 	if (WARN_ON(regno >= MAX_BPF_REG)) {
883 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
884 		/* Something bad happened, let's kill all regs except FP */
885 		for (regno = 0; regno < BPF_REG_FP; regno++)
886 			__mark_reg_not_init(regs + regno);
887 		return;
888 	}
889 	__mark_reg_unknown(regs + regno);
890 }
891 
892 static void __mark_reg_not_init(struct bpf_reg_state *reg)
893 {
894 	__mark_reg_unknown(reg);
895 	reg->type = NOT_INIT;
896 }
897 
898 static void mark_reg_not_init(struct bpf_verifier_env *env,
899 			      struct bpf_reg_state *regs, u32 regno)
900 {
901 	if (WARN_ON(regno >= MAX_BPF_REG)) {
902 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
903 		/* Something bad happened, let's kill all regs except FP */
904 		for (regno = 0; regno < BPF_REG_FP; regno++)
905 			__mark_reg_not_init(regs + regno);
906 		return;
907 	}
908 	__mark_reg_not_init(regs + regno);
909 }
910 
911 static void init_reg_state(struct bpf_verifier_env *env,
912 			   struct bpf_func_state *state)
913 {
914 	struct bpf_reg_state *regs = state->regs;
915 	int i;
916 
917 	for (i = 0; i < MAX_BPF_REG; i++) {
918 		mark_reg_not_init(env, regs, i);
919 		regs[i].live = REG_LIVE_NONE;
920 		regs[i].parent = NULL;
921 	}
922 
923 	/* frame pointer */
924 	regs[BPF_REG_FP].type = PTR_TO_STACK;
925 	mark_reg_known_zero(env, regs, BPF_REG_FP);
926 	regs[BPF_REG_FP].frameno = state->frameno;
927 
928 	/* 1st arg to a function */
929 	regs[BPF_REG_1].type = PTR_TO_CTX;
930 	mark_reg_known_zero(env, regs, BPF_REG_1);
931 }
932 
933 #define BPF_MAIN_FUNC (-1)
934 static void init_func_state(struct bpf_verifier_env *env,
935 			    struct bpf_func_state *state,
936 			    int callsite, int frameno, int subprogno)
937 {
938 	state->callsite = callsite;
939 	state->frameno = frameno;
940 	state->subprogno = subprogno;
941 	init_reg_state(env, state);
942 }
943 
944 enum reg_arg_type {
945 	SRC_OP,		/* register is used as source operand */
946 	DST_OP,		/* register is used as destination operand */
947 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
948 };
949 
950 static int cmp_subprogs(const void *a, const void *b)
951 {
952 	return ((struct bpf_subprog_info *)a)->start -
953 	       ((struct bpf_subprog_info *)b)->start;
954 }
955 
956 static int find_subprog(struct bpf_verifier_env *env, int off)
957 {
958 	struct bpf_subprog_info *p;
959 
960 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
961 		    sizeof(env->subprog_info[0]), cmp_subprogs);
962 	if (!p)
963 		return -ENOENT;
964 	return p - env->subprog_info;
965 
966 }
967 
968 static int add_subprog(struct bpf_verifier_env *env, int off)
969 {
970 	int insn_cnt = env->prog->len;
971 	int ret;
972 
973 	if (off >= insn_cnt || off < 0) {
974 		verbose(env, "call to invalid destination\n");
975 		return -EINVAL;
976 	}
977 	ret = find_subprog(env, off);
978 	if (ret >= 0)
979 		return 0;
980 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
981 		verbose(env, "too many subprograms\n");
982 		return -E2BIG;
983 	}
984 	env->subprog_info[env->subprog_cnt++].start = off;
985 	sort(env->subprog_info, env->subprog_cnt,
986 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
987 	return 0;
988 }
989 
990 static int check_subprogs(struct bpf_verifier_env *env)
991 {
992 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
993 	struct bpf_subprog_info *subprog = env->subprog_info;
994 	struct bpf_insn *insn = env->prog->insnsi;
995 	int insn_cnt = env->prog->len;
996 
997 	/* Add entry function. */
998 	ret = add_subprog(env, 0);
999 	if (ret < 0)
1000 		return ret;
1001 
1002 	/* determine subprog starts. The end is one before the next starts */
1003 	for (i = 0; i < insn_cnt; i++) {
1004 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1005 			continue;
1006 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1007 			continue;
1008 		if (!env->allow_ptr_leaks) {
1009 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1010 			return -EPERM;
1011 		}
1012 		ret = add_subprog(env, i + insn[i].imm + 1);
1013 		if (ret < 0)
1014 			return ret;
1015 	}
1016 
1017 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1018 	 * logic. 'subprog_cnt' should not be increased.
1019 	 */
1020 	subprog[env->subprog_cnt].start = insn_cnt;
1021 
1022 	if (env->log.level > 1)
1023 		for (i = 0; i < env->subprog_cnt; i++)
1024 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1025 
1026 	/* now check that all jumps are within the same subprog */
1027 	subprog_start = subprog[cur_subprog].start;
1028 	subprog_end = subprog[cur_subprog + 1].start;
1029 	for (i = 0; i < insn_cnt; i++) {
1030 		u8 code = insn[i].code;
1031 
1032 		if (BPF_CLASS(code) != BPF_JMP)
1033 			goto next;
1034 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1035 			goto next;
1036 		off = i + insn[i].off + 1;
1037 		if (off < subprog_start || off >= subprog_end) {
1038 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1039 			return -EINVAL;
1040 		}
1041 next:
1042 		if (i == subprog_end - 1) {
1043 			/* to avoid fall-through from one subprog into another
1044 			 * the last insn of the subprog should be either exit
1045 			 * or unconditional jump back
1046 			 */
1047 			if (code != (BPF_JMP | BPF_EXIT) &&
1048 			    code != (BPF_JMP | BPF_JA)) {
1049 				verbose(env, "last insn is not an exit or jmp\n");
1050 				return -EINVAL;
1051 			}
1052 			subprog_start = subprog_end;
1053 			cur_subprog++;
1054 			if (cur_subprog < env->subprog_cnt)
1055 				subprog_end = subprog[cur_subprog + 1].start;
1056 		}
1057 	}
1058 	return 0;
1059 }
1060 
1061 /* Parentage chain of this register (or stack slot) should take care of all
1062  * issues like callee-saved registers, stack slot allocation time, etc.
1063  */
1064 static int mark_reg_read(struct bpf_verifier_env *env,
1065 			 const struct bpf_reg_state *state,
1066 			 struct bpf_reg_state *parent)
1067 {
1068 	bool writes = parent == state->parent; /* Observe write marks */
1069 
1070 	while (parent) {
1071 		/* if read wasn't screened by an earlier write ... */
1072 		if (writes && state->live & REG_LIVE_WRITTEN)
1073 			break;
1074 		/* ... then we depend on parent's value */
1075 		parent->live |= REG_LIVE_READ;
1076 		state = parent;
1077 		parent = state->parent;
1078 		writes = true;
1079 	}
1080 	return 0;
1081 }
1082 
1083 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1084 			 enum reg_arg_type t)
1085 {
1086 	struct bpf_verifier_state *vstate = env->cur_state;
1087 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1088 	struct bpf_reg_state *regs = state->regs;
1089 
1090 	if (regno >= MAX_BPF_REG) {
1091 		verbose(env, "R%d is invalid\n", regno);
1092 		return -EINVAL;
1093 	}
1094 
1095 	if (t == SRC_OP) {
1096 		/* check whether register used as source operand can be read */
1097 		if (regs[regno].type == NOT_INIT) {
1098 			verbose(env, "R%d !read_ok\n", regno);
1099 			return -EACCES;
1100 		}
1101 		/* We don't need to worry about FP liveness because it's read-only */
1102 		if (regno != BPF_REG_FP)
1103 			return mark_reg_read(env, &regs[regno],
1104 					     regs[regno].parent);
1105 	} else {
1106 		/* check whether register used as dest operand can be written to */
1107 		if (regno == BPF_REG_FP) {
1108 			verbose(env, "frame pointer is read only\n");
1109 			return -EACCES;
1110 		}
1111 		regs[regno].live |= REG_LIVE_WRITTEN;
1112 		if (t == DST_OP)
1113 			mark_reg_unknown(env, regs, regno);
1114 	}
1115 	return 0;
1116 }
1117 
1118 static bool is_spillable_regtype(enum bpf_reg_type type)
1119 {
1120 	switch (type) {
1121 	case PTR_TO_MAP_VALUE:
1122 	case PTR_TO_MAP_VALUE_OR_NULL:
1123 	case PTR_TO_STACK:
1124 	case PTR_TO_CTX:
1125 	case PTR_TO_PACKET:
1126 	case PTR_TO_PACKET_META:
1127 	case PTR_TO_PACKET_END:
1128 	case PTR_TO_FLOW_KEYS:
1129 	case CONST_PTR_TO_MAP:
1130 	case PTR_TO_SOCKET:
1131 	case PTR_TO_SOCKET_OR_NULL:
1132 		return true;
1133 	default:
1134 		return false;
1135 	}
1136 }
1137 
1138 /* Does this register contain a constant zero? */
1139 static bool register_is_null(struct bpf_reg_state *reg)
1140 {
1141 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1142 }
1143 
1144 /* check_stack_read/write functions track spill/fill of registers,
1145  * stack boundary and alignment are checked in check_mem_access()
1146  */
1147 static int check_stack_write(struct bpf_verifier_env *env,
1148 			     struct bpf_func_state *state, /* func where register points to */
1149 			     int off, int size, int value_regno, int insn_idx)
1150 {
1151 	struct bpf_func_state *cur; /* state of the current function */
1152 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1153 	enum bpf_reg_type type;
1154 
1155 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1156 				 state->acquired_refs, true);
1157 	if (err)
1158 		return err;
1159 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1160 	 * so it's aligned access and [off, off + size) are within stack limits
1161 	 */
1162 	if (!env->allow_ptr_leaks &&
1163 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1164 	    size != BPF_REG_SIZE) {
1165 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1166 		return -EACCES;
1167 	}
1168 
1169 	cur = env->cur_state->frame[env->cur_state->curframe];
1170 	if (value_regno >= 0 &&
1171 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1172 
1173 		/* register containing pointer is being spilled into stack */
1174 		if (size != BPF_REG_SIZE) {
1175 			verbose(env, "invalid size of register spill\n");
1176 			return -EACCES;
1177 		}
1178 
1179 		if (state != cur && type == PTR_TO_STACK) {
1180 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1181 			return -EINVAL;
1182 		}
1183 
1184 		/* save register state */
1185 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1186 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1187 
1188 		for (i = 0; i < BPF_REG_SIZE; i++) {
1189 			if (state->stack[spi].slot_type[i] == STACK_MISC &&
1190 			    !env->allow_ptr_leaks) {
1191 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1192 				int soff = (-spi - 1) * BPF_REG_SIZE;
1193 
1194 				/* detected reuse of integer stack slot with a pointer
1195 				 * which means either llvm is reusing stack slot or
1196 				 * an attacker is trying to exploit CVE-2018-3639
1197 				 * (speculative store bypass)
1198 				 * Have to sanitize that slot with preemptive
1199 				 * store of zero.
1200 				 */
1201 				if (*poff && *poff != soff) {
1202 					/* disallow programs where single insn stores
1203 					 * into two different stack slots, since verifier
1204 					 * cannot sanitize them
1205 					 */
1206 					verbose(env,
1207 						"insn %d cannot access two stack slots fp%d and fp%d",
1208 						insn_idx, *poff, soff);
1209 					return -EINVAL;
1210 				}
1211 				*poff = soff;
1212 			}
1213 			state->stack[spi].slot_type[i] = STACK_SPILL;
1214 		}
1215 	} else {
1216 		u8 type = STACK_MISC;
1217 
1218 		/* regular write of data into stack destroys any spilled ptr */
1219 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1220 
1221 		/* only mark the slot as written if all 8 bytes were written
1222 		 * otherwise read propagation may incorrectly stop too soon
1223 		 * when stack slots are partially written.
1224 		 * This heuristic means that read propagation will be
1225 		 * conservative, since it will add reg_live_read marks
1226 		 * to stack slots all the way to first state when programs
1227 		 * writes+reads less than 8 bytes
1228 		 */
1229 		if (size == BPF_REG_SIZE)
1230 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1231 
1232 		/* when we zero initialize stack slots mark them as such */
1233 		if (value_regno >= 0 &&
1234 		    register_is_null(&cur->regs[value_regno]))
1235 			type = STACK_ZERO;
1236 
1237 		for (i = 0; i < size; i++)
1238 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1239 				type;
1240 	}
1241 	return 0;
1242 }
1243 
1244 static int check_stack_read(struct bpf_verifier_env *env,
1245 			    struct bpf_func_state *reg_state /* func where register points to */,
1246 			    int off, int size, int value_regno)
1247 {
1248 	struct bpf_verifier_state *vstate = env->cur_state;
1249 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1250 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1251 	u8 *stype;
1252 
1253 	if (reg_state->allocated_stack <= slot) {
1254 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1255 			off, size);
1256 		return -EACCES;
1257 	}
1258 	stype = reg_state->stack[spi].slot_type;
1259 
1260 	if (stype[0] == STACK_SPILL) {
1261 		if (size != BPF_REG_SIZE) {
1262 			verbose(env, "invalid size of register spill\n");
1263 			return -EACCES;
1264 		}
1265 		for (i = 1; i < BPF_REG_SIZE; i++) {
1266 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1267 				verbose(env, "corrupted spill memory\n");
1268 				return -EACCES;
1269 			}
1270 		}
1271 
1272 		if (value_regno >= 0) {
1273 			/* restore register state from stack */
1274 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1275 			/* mark reg as written since spilled pointer state likely
1276 			 * has its liveness marks cleared by is_state_visited()
1277 			 * which resets stack/reg liveness for state transitions
1278 			 */
1279 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1280 		}
1281 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1282 			      reg_state->stack[spi].spilled_ptr.parent);
1283 		return 0;
1284 	} else {
1285 		int zeros = 0;
1286 
1287 		for (i = 0; i < size; i++) {
1288 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1289 				continue;
1290 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1291 				zeros++;
1292 				continue;
1293 			}
1294 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1295 				off, i, size);
1296 			return -EACCES;
1297 		}
1298 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1299 			      reg_state->stack[spi].spilled_ptr.parent);
1300 		if (value_regno >= 0) {
1301 			if (zeros == size) {
1302 				/* any size read into register is zero extended,
1303 				 * so the whole register == const_zero
1304 				 */
1305 				__mark_reg_const_zero(&state->regs[value_regno]);
1306 			} else {
1307 				/* have read misc data from the stack */
1308 				mark_reg_unknown(env, state->regs, value_regno);
1309 			}
1310 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1311 		}
1312 		return 0;
1313 	}
1314 }
1315 
1316 /* check read/write into map element returned by bpf_map_lookup_elem() */
1317 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1318 			      int size, bool zero_size_allowed)
1319 {
1320 	struct bpf_reg_state *regs = cur_regs(env);
1321 	struct bpf_map *map = regs[regno].map_ptr;
1322 
1323 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1324 	    off + size > map->value_size) {
1325 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1326 			map->value_size, off, size);
1327 		return -EACCES;
1328 	}
1329 	return 0;
1330 }
1331 
1332 /* check read/write into a map element with possible variable offset */
1333 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1334 			    int off, int size, bool zero_size_allowed)
1335 {
1336 	struct bpf_verifier_state *vstate = env->cur_state;
1337 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1338 	struct bpf_reg_state *reg = &state->regs[regno];
1339 	int err;
1340 
1341 	/* We may have adjusted the register to this map value, so we
1342 	 * need to try adding each of min_value and max_value to off
1343 	 * to make sure our theoretical access will be safe.
1344 	 */
1345 	if (env->log.level)
1346 		print_verifier_state(env, state);
1347 	/* The minimum value is only important with signed
1348 	 * comparisons where we can't assume the floor of a
1349 	 * value is 0.  If we are using signed variables for our
1350 	 * index'es we need to make sure that whatever we use
1351 	 * will have a set floor within our range.
1352 	 */
1353 	if (reg->smin_value < 0) {
1354 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1355 			regno);
1356 		return -EACCES;
1357 	}
1358 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1359 				 zero_size_allowed);
1360 	if (err) {
1361 		verbose(env, "R%d min value is outside of the array range\n",
1362 			regno);
1363 		return err;
1364 	}
1365 
1366 	/* If we haven't set a max value then we need to bail since we can't be
1367 	 * sure we won't do bad things.
1368 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1369 	 */
1370 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1371 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1372 			regno);
1373 		return -EACCES;
1374 	}
1375 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1376 				 zero_size_allowed);
1377 	if (err)
1378 		verbose(env, "R%d max value is outside of the array range\n",
1379 			regno);
1380 	return err;
1381 }
1382 
1383 #define MAX_PACKET_OFF 0xffff
1384 
1385 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1386 				       const struct bpf_call_arg_meta *meta,
1387 				       enum bpf_access_type t)
1388 {
1389 	switch (env->prog->type) {
1390 	/* Program types only with direct read access go here! */
1391 	case BPF_PROG_TYPE_LWT_IN:
1392 	case BPF_PROG_TYPE_LWT_OUT:
1393 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1394 	case BPF_PROG_TYPE_SK_REUSEPORT:
1395 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
1396 	case BPF_PROG_TYPE_CGROUP_SKB:
1397 		if (t == BPF_WRITE)
1398 			return false;
1399 		/* fallthrough */
1400 
1401 	/* Program types with direct read + write access go here! */
1402 	case BPF_PROG_TYPE_SCHED_CLS:
1403 	case BPF_PROG_TYPE_SCHED_ACT:
1404 	case BPF_PROG_TYPE_XDP:
1405 	case BPF_PROG_TYPE_LWT_XMIT:
1406 	case BPF_PROG_TYPE_SK_SKB:
1407 	case BPF_PROG_TYPE_SK_MSG:
1408 		if (meta)
1409 			return meta->pkt_access;
1410 
1411 		env->seen_direct_write = true;
1412 		return true;
1413 	default:
1414 		return false;
1415 	}
1416 }
1417 
1418 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1419 				 int off, int size, bool zero_size_allowed)
1420 {
1421 	struct bpf_reg_state *regs = cur_regs(env);
1422 	struct bpf_reg_state *reg = &regs[regno];
1423 
1424 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1425 	    (u64)off + size > reg->range) {
1426 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1427 			off, size, regno, reg->id, reg->off, reg->range);
1428 		return -EACCES;
1429 	}
1430 	return 0;
1431 }
1432 
1433 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1434 			       int size, bool zero_size_allowed)
1435 {
1436 	struct bpf_reg_state *regs = cur_regs(env);
1437 	struct bpf_reg_state *reg = &regs[regno];
1438 	int err;
1439 
1440 	/* We may have added a variable offset to the packet pointer; but any
1441 	 * reg->range we have comes after that.  We are only checking the fixed
1442 	 * offset.
1443 	 */
1444 
1445 	/* We don't allow negative numbers, because we aren't tracking enough
1446 	 * detail to prove they're safe.
1447 	 */
1448 	if (reg->smin_value < 0) {
1449 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1450 			regno);
1451 		return -EACCES;
1452 	}
1453 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1454 	if (err) {
1455 		verbose(env, "R%d offset is outside of the packet\n", regno);
1456 		return err;
1457 	}
1458 
1459 	/* __check_packet_access has made sure "off + size - 1" is within u16.
1460 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1461 	 * otherwise find_good_pkt_pointers would have refused to set range info
1462 	 * that __check_packet_access would have rejected this pkt access.
1463 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1464 	 */
1465 	env->prog->aux->max_pkt_offset =
1466 		max_t(u32, env->prog->aux->max_pkt_offset,
1467 		      off + reg->umax_value + size - 1);
1468 
1469 	return err;
1470 }
1471 
1472 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1473 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1474 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1475 {
1476 	struct bpf_insn_access_aux info = {
1477 		.reg_type = *reg_type,
1478 	};
1479 
1480 	if (env->ops->is_valid_access &&
1481 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1482 		/* A non zero info.ctx_field_size indicates that this field is a
1483 		 * candidate for later verifier transformation to load the whole
1484 		 * field and then apply a mask when accessed with a narrower
1485 		 * access than actual ctx access size. A zero info.ctx_field_size
1486 		 * will only allow for whole field access and rejects any other
1487 		 * type of narrower access.
1488 		 */
1489 		*reg_type = info.reg_type;
1490 
1491 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1492 		/* remember the offset of last byte accessed in ctx */
1493 		if (env->prog->aux->max_ctx_offset < off + size)
1494 			env->prog->aux->max_ctx_offset = off + size;
1495 		return 0;
1496 	}
1497 
1498 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1499 	return -EACCES;
1500 }
1501 
1502 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1503 				  int size)
1504 {
1505 	if (size < 0 || off < 0 ||
1506 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
1507 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
1508 			off, size);
1509 		return -EACCES;
1510 	}
1511 	return 0;
1512 }
1513 
1514 static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off,
1515 			     int size, enum bpf_access_type t)
1516 {
1517 	struct bpf_reg_state *regs = cur_regs(env);
1518 	struct bpf_reg_state *reg = &regs[regno];
1519 	struct bpf_insn_access_aux info;
1520 
1521 	if (reg->smin_value < 0) {
1522 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1523 			regno);
1524 		return -EACCES;
1525 	}
1526 
1527 	if (!bpf_sock_is_valid_access(off, size, t, &info)) {
1528 		verbose(env, "invalid bpf_sock access off=%d size=%d\n",
1529 			off, size);
1530 		return -EACCES;
1531 	}
1532 
1533 	return 0;
1534 }
1535 
1536 static bool __is_pointer_value(bool allow_ptr_leaks,
1537 			       const struct bpf_reg_state *reg)
1538 {
1539 	if (allow_ptr_leaks)
1540 		return false;
1541 
1542 	return reg->type != SCALAR_VALUE;
1543 }
1544 
1545 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1546 {
1547 	return cur_regs(env) + regno;
1548 }
1549 
1550 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1551 {
1552 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1553 }
1554 
1555 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1556 {
1557 	const struct bpf_reg_state *reg = reg_state(env, regno);
1558 
1559 	return reg->type == PTR_TO_CTX ||
1560 	       reg->type == PTR_TO_SOCKET;
1561 }
1562 
1563 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1564 {
1565 	const struct bpf_reg_state *reg = reg_state(env, regno);
1566 
1567 	return type_is_pkt_pointer(reg->type);
1568 }
1569 
1570 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1571 {
1572 	const struct bpf_reg_state *reg = reg_state(env, regno);
1573 
1574 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1575 	return reg->type == PTR_TO_FLOW_KEYS;
1576 }
1577 
1578 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1579 				   const struct bpf_reg_state *reg,
1580 				   int off, int size, bool strict)
1581 {
1582 	struct tnum reg_off;
1583 	int ip_align;
1584 
1585 	/* Byte size accesses are always allowed. */
1586 	if (!strict || size == 1)
1587 		return 0;
1588 
1589 	/* For platforms that do not have a Kconfig enabling
1590 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1591 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1592 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1593 	 * to this code only in strict mode where we want to emulate
1594 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1595 	 * unconditional IP align value of '2'.
1596 	 */
1597 	ip_align = 2;
1598 
1599 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1600 	if (!tnum_is_aligned(reg_off, size)) {
1601 		char tn_buf[48];
1602 
1603 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1604 		verbose(env,
1605 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1606 			ip_align, tn_buf, reg->off, off, size);
1607 		return -EACCES;
1608 	}
1609 
1610 	return 0;
1611 }
1612 
1613 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1614 				       const struct bpf_reg_state *reg,
1615 				       const char *pointer_desc,
1616 				       int off, int size, bool strict)
1617 {
1618 	struct tnum reg_off;
1619 
1620 	/* Byte size accesses are always allowed. */
1621 	if (!strict || size == 1)
1622 		return 0;
1623 
1624 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1625 	if (!tnum_is_aligned(reg_off, size)) {
1626 		char tn_buf[48];
1627 
1628 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1629 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1630 			pointer_desc, tn_buf, reg->off, off, size);
1631 		return -EACCES;
1632 	}
1633 
1634 	return 0;
1635 }
1636 
1637 static int check_ptr_alignment(struct bpf_verifier_env *env,
1638 			       const struct bpf_reg_state *reg, int off,
1639 			       int size, bool strict_alignment_once)
1640 {
1641 	bool strict = env->strict_alignment || strict_alignment_once;
1642 	const char *pointer_desc = "";
1643 
1644 	switch (reg->type) {
1645 	case PTR_TO_PACKET:
1646 	case PTR_TO_PACKET_META:
1647 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1648 		 * right in front, treat it the very same way.
1649 		 */
1650 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1651 	case PTR_TO_FLOW_KEYS:
1652 		pointer_desc = "flow keys ";
1653 		break;
1654 	case PTR_TO_MAP_VALUE:
1655 		pointer_desc = "value ";
1656 		break;
1657 	case PTR_TO_CTX:
1658 		pointer_desc = "context ";
1659 		break;
1660 	case PTR_TO_STACK:
1661 		pointer_desc = "stack ";
1662 		/* The stack spill tracking logic in check_stack_write()
1663 		 * and check_stack_read() relies on stack accesses being
1664 		 * aligned.
1665 		 */
1666 		strict = true;
1667 		break;
1668 	case PTR_TO_SOCKET:
1669 		pointer_desc = "sock ";
1670 		break;
1671 	default:
1672 		break;
1673 	}
1674 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1675 					   strict);
1676 }
1677 
1678 static int update_stack_depth(struct bpf_verifier_env *env,
1679 			      const struct bpf_func_state *func,
1680 			      int off)
1681 {
1682 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1683 
1684 	if (stack >= -off)
1685 		return 0;
1686 
1687 	/* update known max for given subprogram */
1688 	env->subprog_info[func->subprogno].stack_depth = -off;
1689 	return 0;
1690 }
1691 
1692 /* starting from main bpf function walk all instructions of the function
1693  * and recursively walk all callees that given function can call.
1694  * Ignore jump and exit insns.
1695  * Since recursion is prevented by check_cfg() this algorithm
1696  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1697  */
1698 static int check_max_stack_depth(struct bpf_verifier_env *env)
1699 {
1700 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1701 	struct bpf_subprog_info *subprog = env->subprog_info;
1702 	struct bpf_insn *insn = env->prog->insnsi;
1703 	int ret_insn[MAX_CALL_FRAMES];
1704 	int ret_prog[MAX_CALL_FRAMES];
1705 
1706 process_func:
1707 	/* round up to 32-bytes, since this is granularity
1708 	 * of interpreter stack size
1709 	 */
1710 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1711 	if (depth > MAX_BPF_STACK) {
1712 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1713 			frame + 1, depth);
1714 		return -EACCES;
1715 	}
1716 continue_func:
1717 	subprog_end = subprog[idx + 1].start;
1718 	for (; i < subprog_end; i++) {
1719 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1720 			continue;
1721 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1722 			continue;
1723 		/* remember insn and function to return to */
1724 		ret_insn[frame] = i + 1;
1725 		ret_prog[frame] = idx;
1726 
1727 		/* find the callee */
1728 		i = i + insn[i].imm + 1;
1729 		idx = find_subprog(env, i);
1730 		if (idx < 0) {
1731 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1732 				  i);
1733 			return -EFAULT;
1734 		}
1735 		frame++;
1736 		if (frame >= MAX_CALL_FRAMES) {
1737 			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1738 			return -EFAULT;
1739 		}
1740 		goto process_func;
1741 	}
1742 	/* end of for() loop means the last insn of the 'subprog'
1743 	 * was reached. Doesn't matter whether it was JA or EXIT
1744 	 */
1745 	if (frame == 0)
1746 		return 0;
1747 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1748 	frame--;
1749 	i = ret_insn[frame];
1750 	idx = ret_prog[frame];
1751 	goto continue_func;
1752 }
1753 
1754 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1755 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1756 				  const struct bpf_insn *insn, int idx)
1757 {
1758 	int start = idx + insn->imm + 1, subprog;
1759 
1760 	subprog = find_subprog(env, start);
1761 	if (subprog < 0) {
1762 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1763 			  start);
1764 		return -EFAULT;
1765 	}
1766 	return env->subprog_info[subprog].stack_depth;
1767 }
1768 #endif
1769 
1770 static int check_ctx_reg(struct bpf_verifier_env *env,
1771 			 const struct bpf_reg_state *reg, int regno)
1772 {
1773 	/* Access to ctx or passing it to a helper is only allowed in
1774 	 * its original, unmodified form.
1775 	 */
1776 
1777 	if (reg->off) {
1778 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1779 			regno, reg->off);
1780 		return -EACCES;
1781 	}
1782 
1783 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1784 		char tn_buf[48];
1785 
1786 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1787 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1788 		return -EACCES;
1789 	}
1790 
1791 	return 0;
1792 }
1793 
1794 /* truncate register to smaller size (in bytes)
1795  * must be called with size < BPF_REG_SIZE
1796  */
1797 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1798 {
1799 	u64 mask;
1800 
1801 	/* clear high bits in bit representation */
1802 	reg->var_off = tnum_cast(reg->var_off, size);
1803 
1804 	/* fix arithmetic bounds */
1805 	mask = ((u64)1 << (size * 8)) - 1;
1806 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1807 		reg->umin_value &= mask;
1808 		reg->umax_value &= mask;
1809 	} else {
1810 		reg->umin_value = 0;
1811 		reg->umax_value = mask;
1812 	}
1813 	reg->smin_value = reg->umin_value;
1814 	reg->smax_value = reg->umax_value;
1815 }
1816 
1817 /* check whether memory at (regno + off) is accessible for t = (read | write)
1818  * if t==write, value_regno is a register which value is stored into memory
1819  * if t==read, value_regno is a register which will receive the value from memory
1820  * if t==write && value_regno==-1, some unknown value is stored into memory
1821  * if t==read && value_regno==-1, don't care what we read from memory
1822  */
1823 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1824 			    int off, int bpf_size, enum bpf_access_type t,
1825 			    int value_regno, bool strict_alignment_once)
1826 {
1827 	struct bpf_reg_state *regs = cur_regs(env);
1828 	struct bpf_reg_state *reg = regs + regno;
1829 	struct bpf_func_state *state;
1830 	int size, err = 0;
1831 
1832 	size = bpf_size_to_bytes(bpf_size);
1833 	if (size < 0)
1834 		return size;
1835 
1836 	/* alignment checks will add in reg->off themselves */
1837 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1838 	if (err)
1839 		return err;
1840 
1841 	/* for access checks, reg->off is just part of off */
1842 	off += reg->off;
1843 
1844 	if (reg->type == PTR_TO_MAP_VALUE) {
1845 		if (t == BPF_WRITE && value_regno >= 0 &&
1846 		    is_pointer_value(env, value_regno)) {
1847 			verbose(env, "R%d leaks addr into map\n", value_regno);
1848 			return -EACCES;
1849 		}
1850 
1851 		err = check_map_access(env, regno, off, size, false);
1852 		if (!err && t == BPF_READ && value_regno >= 0)
1853 			mark_reg_unknown(env, regs, value_regno);
1854 
1855 	} else if (reg->type == PTR_TO_CTX) {
1856 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1857 
1858 		if (t == BPF_WRITE && value_regno >= 0 &&
1859 		    is_pointer_value(env, value_regno)) {
1860 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1861 			return -EACCES;
1862 		}
1863 
1864 		err = check_ctx_reg(env, reg, regno);
1865 		if (err < 0)
1866 			return err;
1867 
1868 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1869 		if (!err && t == BPF_READ && value_regno >= 0) {
1870 			/* ctx access returns either a scalar, or a
1871 			 * PTR_TO_PACKET[_META,_END]. In the latter
1872 			 * case, we know the offset is zero.
1873 			 */
1874 			if (reg_type == SCALAR_VALUE)
1875 				mark_reg_unknown(env, regs, value_regno);
1876 			else
1877 				mark_reg_known_zero(env, regs,
1878 						    value_regno);
1879 			regs[value_regno].type = reg_type;
1880 		}
1881 
1882 	} else if (reg->type == PTR_TO_STACK) {
1883 		/* stack accesses must be at a fixed offset, so that we can
1884 		 * determine what type of data were returned.
1885 		 * See check_stack_read().
1886 		 */
1887 		if (!tnum_is_const(reg->var_off)) {
1888 			char tn_buf[48];
1889 
1890 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1891 			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1892 				tn_buf, off, size);
1893 			return -EACCES;
1894 		}
1895 		off += reg->var_off.value;
1896 		if (off >= 0 || off < -MAX_BPF_STACK) {
1897 			verbose(env, "invalid stack off=%d size=%d\n", off,
1898 				size);
1899 			return -EACCES;
1900 		}
1901 
1902 		state = func(env, reg);
1903 		err = update_stack_depth(env, state, off);
1904 		if (err)
1905 			return err;
1906 
1907 		if (t == BPF_WRITE)
1908 			err = check_stack_write(env, state, off, size,
1909 						value_regno, insn_idx);
1910 		else
1911 			err = check_stack_read(env, state, off, size,
1912 					       value_regno);
1913 	} else if (reg_is_pkt_pointer(reg)) {
1914 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1915 			verbose(env, "cannot write into packet\n");
1916 			return -EACCES;
1917 		}
1918 		if (t == BPF_WRITE && value_regno >= 0 &&
1919 		    is_pointer_value(env, value_regno)) {
1920 			verbose(env, "R%d leaks addr into packet\n",
1921 				value_regno);
1922 			return -EACCES;
1923 		}
1924 		err = check_packet_access(env, regno, off, size, false);
1925 		if (!err && t == BPF_READ && value_regno >= 0)
1926 			mark_reg_unknown(env, regs, value_regno);
1927 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
1928 		if (t == BPF_WRITE && value_regno >= 0 &&
1929 		    is_pointer_value(env, value_regno)) {
1930 			verbose(env, "R%d leaks addr into flow keys\n",
1931 				value_regno);
1932 			return -EACCES;
1933 		}
1934 
1935 		err = check_flow_keys_access(env, off, size);
1936 		if (!err && t == BPF_READ && value_regno >= 0)
1937 			mark_reg_unknown(env, regs, value_regno);
1938 	} else if (reg->type == PTR_TO_SOCKET) {
1939 		if (t == BPF_WRITE) {
1940 			verbose(env, "cannot write into socket\n");
1941 			return -EACCES;
1942 		}
1943 		err = check_sock_access(env, regno, off, size, t);
1944 		if (!err && value_regno >= 0)
1945 			mark_reg_unknown(env, regs, value_regno);
1946 	} else {
1947 		verbose(env, "R%d invalid mem access '%s'\n", regno,
1948 			reg_type_str[reg->type]);
1949 		return -EACCES;
1950 	}
1951 
1952 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1953 	    regs[value_regno].type == SCALAR_VALUE) {
1954 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1955 		coerce_reg_to_size(&regs[value_regno], size);
1956 	}
1957 	return err;
1958 }
1959 
1960 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1961 {
1962 	int err;
1963 
1964 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1965 	    insn->imm != 0) {
1966 		verbose(env, "BPF_XADD uses reserved fields\n");
1967 		return -EINVAL;
1968 	}
1969 
1970 	/* check src1 operand */
1971 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1972 	if (err)
1973 		return err;
1974 
1975 	/* check src2 operand */
1976 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1977 	if (err)
1978 		return err;
1979 
1980 	if (is_pointer_value(env, insn->src_reg)) {
1981 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1982 		return -EACCES;
1983 	}
1984 
1985 	if (is_ctx_reg(env, insn->dst_reg) ||
1986 	    is_pkt_reg(env, insn->dst_reg) ||
1987 	    is_flow_key_reg(env, insn->dst_reg)) {
1988 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1989 			insn->dst_reg,
1990 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
1991 		return -EACCES;
1992 	}
1993 
1994 	/* check whether atomic_add can read the memory */
1995 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1996 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1997 	if (err)
1998 		return err;
1999 
2000 	/* check whether atomic_add can write into the same memory */
2001 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2002 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2003 }
2004 
2005 /* when register 'regno' is passed into function that will read 'access_size'
2006  * bytes from that pointer, make sure that it's within stack boundary
2007  * and all elements of stack are initialized.
2008  * Unlike most pointer bounds-checking functions, this one doesn't take an
2009  * 'off' argument, so it has to add in reg->off itself.
2010  */
2011 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2012 				int access_size, bool zero_size_allowed,
2013 				struct bpf_call_arg_meta *meta)
2014 {
2015 	struct bpf_reg_state *reg = reg_state(env, regno);
2016 	struct bpf_func_state *state = func(env, reg);
2017 	int off, i, slot, spi;
2018 
2019 	if (reg->type != PTR_TO_STACK) {
2020 		/* Allow zero-byte read from NULL, regardless of pointer type */
2021 		if (zero_size_allowed && access_size == 0 &&
2022 		    register_is_null(reg))
2023 			return 0;
2024 
2025 		verbose(env, "R%d type=%s expected=%s\n", regno,
2026 			reg_type_str[reg->type],
2027 			reg_type_str[PTR_TO_STACK]);
2028 		return -EACCES;
2029 	}
2030 
2031 	/* Only allow fixed-offset stack reads */
2032 	if (!tnum_is_const(reg->var_off)) {
2033 		char tn_buf[48];
2034 
2035 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2036 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
2037 			regno, tn_buf);
2038 		return -EACCES;
2039 	}
2040 	off = reg->off + reg->var_off.value;
2041 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2042 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2043 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2044 			regno, off, access_size);
2045 		return -EACCES;
2046 	}
2047 
2048 	if (meta && meta->raw_mode) {
2049 		meta->access_size = access_size;
2050 		meta->regno = regno;
2051 		return 0;
2052 	}
2053 
2054 	for (i = 0; i < access_size; i++) {
2055 		u8 *stype;
2056 
2057 		slot = -(off + i) - 1;
2058 		spi = slot / BPF_REG_SIZE;
2059 		if (state->allocated_stack <= slot)
2060 			goto err;
2061 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2062 		if (*stype == STACK_MISC)
2063 			goto mark;
2064 		if (*stype == STACK_ZERO) {
2065 			/* helper can write anything into the stack */
2066 			*stype = STACK_MISC;
2067 			goto mark;
2068 		}
2069 err:
2070 		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2071 			off, i, access_size);
2072 		return -EACCES;
2073 mark:
2074 		/* reading any byte out of 8-byte 'spill_slot' will cause
2075 		 * the whole slot to be marked as 'read'
2076 		 */
2077 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
2078 			      state->stack[spi].spilled_ptr.parent);
2079 	}
2080 	return update_stack_depth(env, state, off);
2081 }
2082 
2083 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2084 				   int access_size, bool zero_size_allowed,
2085 				   struct bpf_call_arg_meta *meta)
2086 {
2087 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2088 
2089 	switch (reg->type) {
2090 	case PTR_TO_PACKET:
2091 	case PTR_TO_PACKET_META:
2092 		return check_packet_access(env, regno, reg->off, access_size,
2093 					   zero_size_allowed);
2094 	case PTR_TO_MAP_VALUE:
2095 		return check_map_access(env, regno, reg->off, access_size,
2096 					zero_size_allowed);
2097 	default: /* scalar_value|ptr_to_stack or invalid ptr */
2098 		return check_stack_boundary(env, regno, access_size,
2099 					    zero_size_allowed, meta);
2100 	}
2101 }
2102 
2103 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2104 {
2105 	return type == ARG_PTR_TO_MEM ||
2106 	       type == ARG_PTR_TO_MEM_OR_NULL ||
2107 	       type == ARG_PTR_TO_UNINIT_MEM;
2108 }
2109 
2110 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2111 {
2112 	return type == ARG_CONST_SIZE ||
2113 	       type == ARG_CONST_SIZE_OR_ZERO;
2114 }
2115 
2116 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2117 			  enum bpf_arg_type arg_type,
2118 			  struct bpf_call_arg_meta *meta)
2119 {
2120 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2121 	enum bpf_reg_type expected_type, type = reg->type;
2122 	int err = 0;
2123 
2124 	if (arg_type == ARG_DONTCARE)
2125 		return 0;
2126 
2127 	err = check_reg_arg(env, regno, SRC_OP);
2128 	if (err)
2129 		return err;
2130 
2131 	if (arg_type == ARG_ANYTHING) {
2132 		if (is_pointer_value(env, regno)) {
2133 			verbose(env, "R%d leaks addr into helper function\n",
2134 				regno);
2135 			return -EACCES;
2136 		}
2137 		return 0;
2138 	}
2139 
2140 	if (type_is_pkt_pointer(type) &&
2141 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2142 		verbose(env, "helper access to the packet is not allowed\n");
2143 		return -EACCES;
2144 	}
2145 
2146 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
2147 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
2148 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2149 		expected_type = PTR_TO_STACK;
2150 		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
2151 		    type != expected_type)
2152 			goto err_type;
2153 	} else if (arg_type == ARG_CONST_SIZE ||
2154 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
2155 		expected_type = SCALAR_VALUE;
2156 		if (type != expected_type)
2157 			goto err_type;
2158 	} else if (arg_type == ARG_CONST_MAP_PTR) {
2159 		expected_type = CONST_PTR_TO_MAP;
2160 		if (type != expected_type)
2161 			goto err_type;
2162 	} else if (arg_type == ARG_PTR_TO_CTX) {
2163 		expected_type = PTR_TO_CTX;
2164 		if (type != expected_type)
2165 			goto err_type;
2166 		err = check_ctx_reg(env, reg, regno);
2167 		if (err < 0)
2168 			return err;
2169 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
2170 		expected_type = PTR_TO_SOCKET;
2171 		if (type != expected_type)
2172 			goto err_type;
2173 		if (meta->ptr_id || !reg->id) {
2174 			verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n",
2175 				meta->ptr_id, reg->id);
2176 			return -EFAULT;
2177 		}
2178 		meta->ptr_id = reg->id;
2179 	} else if (arg_type_is_mem_ptr(arg_type)) {
2180 		expected_type = PTR_TO_STACK;
2181 		/* One exception here. In case function allows for NULL to be
2182 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
2183 		 * happens during stack boundary checking.
2184 		 */
2185 		if (register_is_null(reg) &&
2186 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
2187 			/* final test in check_stack_boundary() */;
2188 		else if (!type_is_pkt_pointer(type) &&
2189 			 type != PTR_TO_MAP_VALUE &&
2190 			 type != expected_type)
2191 			goto err_type;
2192 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2193 	} else {
2194 		verbose(env, "unsupported arg_type %d\n", arg_type);
2195 		return -EFAULT;
2196 	}
2197 
2198 	if (arg_type == ARG_CONST_MAP_PTR) {
2199 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2200 		meta->map_ptr = reg->map_ptr;
2201 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2202 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
2203 		 * check that [key, key + map->key_size) are within
2204 		 * stack limits and initialized
2205 		 */
2206 		if (!meta->map_ptr) {
2207 			/* in function declaration map_ptr must come before
2208 			 * map_key, so that it's verified and known before
2209 			 * we have to check map_key here. Otherwise it means
2210 			 * that kernel subsystem misconfigured verifier
2211 			 */
2212 			verbose(env, "invalid map_ptr to access map->key\n");
2213 			return -EACCES;
2214 		}
2215 		err = check_helper_mem_access(env, regno,
2216 					      meta->map_ptr->key_size, false,
2217 					      NULL);
2218 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2219 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2220 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
2221 		 * check [value, value + map->value_size) validity
2222 		 */
2223 		if (!meta->map_ptr) {
2224 			/* kernel subsystem misconfigured verifier */
2225 			verbose(env, "invalid map_ptr to access map->value\n");
2226 			return -EACCES;
2227 		}
2228 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2229 		err = check_helper_mem_access(env, regno,
2230 					      meta->map_ptr->value_size, false,
2231 					      meta);
2232 	} else if (arg_type_is_mem_size(arg_type)) {
2233 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2234 
2235 		/* remember the mem_size which may be used later
2236 		 * to refine return values.
2237 		 */
2238 		meta->msize_smax_value = reg->smax_value;
2239 		meta->msize_umax_value = reg->umax_value;
2240 
2241 		/* The register is SCALAR_VALUE; the access check
2242 		 * happens using its boundaries.
2243 		 */
2244 		if (!tnum_is_const(reg->var_off))
2245 			/* For unprivileged variable accesses, disable raw
2246 			 * mode so that the program is required to
2247 			 * initialize all the memory that the helper could
2248 			 * just partially fill up.
2249 			 */
2250 			meta = NULL;
2251 
2252 		if (reg->smin_value < 0) {
2253 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2254 				regno);
2255 			return -EACCES;
2256 		}
2257 
2258 		if (reg->umin_value == 0) {
2259 			err = check_helper_mem_access(env, regno - 1, 0,
2260 						      zero_size_allowed,
2261 						      meta);
2262 			if (err)
2263 				return err;
2264 		}
2265 
2266 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2267 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2268 				regno);
2269 			return -EACCES;
2270 		}
2271 		err = check_helper_mem_access(env, regno - 1,
2272 					      reg->umax_value,
2273 					      zero_size_allowed, meta);
2274 	}
2275 
2276 	return err;
2277 err_type:
2278 	verbose(env, "R%d type=%s expected=%s\n", regno,
2279 		reg_type_str[type], reg_type_str[expected_type]);
2280 	return -EACCES;
2281 }
2282 
2283 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2284 					struct bpf_map *map, int func_id)
2285 {
2286 	if (!map)
2287 		return 0;
2288 
2289 	/* We need a two way check, first is from map perspective ... */
2290 	switch (map->map_type) {
2291 	case BPF_MAP_TYPE_PROG_ARRAY:
2292 		if (func_id != BPF_FUNC_tail_call)
2293 			goto error;
2294 		break;
2295 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2296 		if (func_id != BPF_FUNC_perf_event_read &&
2297 		    func_id != BPF_FUNC_perf_event_output &&
2298 		    func_id != BPF_FUNC_perf_event_read_value)
2299 			goto error;
2300 		break;
2301 	case BPF_MAP_TYPE_STACK_TRACE:
2302 		if (func_id != BPF_FUNC_get_stackid)
2303 			goto error;
2304 		break;
2305 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2306 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2307 		    func_id != BPF_FUNC_current_task_under_cgroup)
2308 			goto error;
2309 		break;
2310 	case BPF_MAP_TYPE_CGROUP_STORAGE:
2311 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2312 		if (func_id != BPF_FUNC_get_local_storage)
2313 			goto error;
2314 		break;
2315 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2316 	 * allow to be modified from bpf side. So do not allow lookup elements
2317 	 * for now.
2318 	 */
2319 	case BPF_MAP_TYPE_DEVMAP:
2320 		if (func_id != BPF_FUNC_redirect_map)
2321 			goto error;
2322 		break;
2323 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2324 	 * appear.
2325 	 */
2326 	case BPF_MAP_TYPE_CPUMAP:
2327 	case BPF_MAP_TYPE_XSKMAP:
2328 		if (func_id != BPF_FUNC_redirect_map)
2329 			goto error;
2330 		break;
2331 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2332 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2333 		if (func_id != BPF_FUNC_map_lookup_elem)
2334 			goto error;
2335 		break;
2336 	case BPF_MAP_TYPE_SOCKMAP:
2337 		if (func_id != BPF_FUNC_sk_redirect_map &&
2338 		    func_id != BPF_FUNC_sock_map_update &&
2339 		    func_id != BPF_FUNC_map_delete_elem &&
2340 		    func_id != BPF_FUNC_msg_redirect_map)
2341 			goto error;
2342 		break;
2343 	case BPF_MAP_TYPE_SOCKHASH:
2344 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2345 		    func_id != BPF_FUNC_sock_hash_update &&
2346 		    func_id != BPF_FUNC_map_delete_elem &&
2347 		    func_id != BPF_FUNC_msg_redirect_hash)
2348 			goto error;
2349 		break;
2350 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2351 		if (func_id != BPF_FUNC_sk_select_reuseport)
2352 			goto error;
2353 		break;
2354 	case BPF_MAP_TYPE_QUEUE:
2355 	case BPF_MAP_TYPE_STACK:
2356 		if (func_id != BPF_FUNC_map_peek_elem &&
2357 		    func_id != BPF_FUNC_map_pop_elem &&
2358 		    func_id != BPF_FUNC_map_push_elem)
2359 			goto error;
2360 		break;
2361 	default:
2362 		break;
2363 	}
2364 
2365 	/* ... and second from the function itself. */
2366 	switch (func_id) {
2367 	case BPF_FUNC_tail_call:
2368 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2369 			goto error;
2370 		if (env->subprog_cnt > 1) {
2371 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2372 			return -EINVAL;
2373 		}
2374 		break;
2375 	case BPF_FUNC_perf_event_read:
2376 	case BPF_FUNC_perf_event_output:
2377 	case BPF_FUNC_perf_event_read_value:
2378 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2379 			goto error;
2380 		break;
2381 	case BPF_FUNC_get_stackid:
2382 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2383 			goto error;
2384 		break;
2385 	case BPF_FUNC_current_task_under_cgroup:
2386 	case BPF_FUNC_skb_under_cgroup:
2387 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2388 			goto error;
2389 		break;
2390 	case BPF_FUNC_redirect_map:
2391 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2392 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2393 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2394 			goto error;
2395 		break;
2396 	case BPF_FUNC_sk_redirect_map:
2397 	case BPF_FUNC_msg_redirect_map:
2398 	case BPF_FUNC_sock_map_update:
2399 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2400 			goto error;
2401 		break;
2402 	case BPF_FUNC_sk_redirect_hash:
2403 	case BPF_FUNC_msg_redirect_hash:
2404 	case BPF_FUNC_sock_hash_update:
2405 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2406 			goto error;
2407 		break;
2408 	case BPF_FUNC_get_local_storage:
2409 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2410 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2411 			goto error;
2412 		break;
2413 	case BPF_FUNC_sk_select_reuseport:
2414 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2415 			goto error;
2416 		break;
2417 	case BPF_FUNC_map_peek_elem:
2418 	case BPF_FUNC_map_pop_elem:
2419 	case BPF_FUNC_map_push_elem:
2420 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2421 		    map->map_type != BPF_MAP_TYPE_STACK)
2422 			goto error;
2423 		break;
2424 	default:
2425 		break;
2426 	}
2427 
2428 	return 0;
2429 error:
2430 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2431 		map->map_type, func_id_name(func_id), func_id);
2432 	return -EINVAL;
2433 }
2434 
2435 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2436 {
2437 	int count = 0;
2438 
2439 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2440 		count++;
2441 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2442 		count++;
2443 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2444 		count++;
2445 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2446 		count++;
2447 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2448 		count++;
2449 
2450 	/* We only support one arg being in raw mode at the moment,
2451 	 * which is sufficient for the helper functions we have
2452 	 * right now.
2453 	 */
2454 	return count <= 1;
2455 }
2456 
2457 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2458 				    enum bpf_arg_type arg_next)
2459 {
2460 	return (arg_type_is_mem_ptr(arg_curr) &&
2461 	        !arg_type_is_mem_size(arg_next)) ||
2462 	       (!arg_type_is_mem_ptr(arg_curr) &&
2463 		arg_type_is_mem_size(arg_next));
2464 }
2465 
2466 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2467 {
2468 	/* bpf_xxx(..., buf, len) call will access 'len'
2469 	 * bytes from memory 'buf'. Both arg types need
2470 	 * to be paired, so make sure there's no buggy
2471 	 * helper function specification.
2472 	 */
2473 	if (arg_type_is_mem_size(fn->arg1_type) ||
2474 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2475 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2476 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2477 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2478 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2479 		return false;
2480 
2481 	return true;
2482 }
2483 
2484 static bool check_refcount_ok(const struct bpf_func_proto *fn)
2485 {
2486 	int count = 0;
2487 
2488 	if (arg_type_is_refcounted(fn->arg1_type))
2489 		count++;
2490 	if (arg_type_is_refcounted(fn->arg2_type))
2491 		count++;
2492 	if (arg_type_is_refcounted(fn->arg3_type))
2493 		count++;
2494 	if (arg_type_is_refcounted(fn->arg4_type))
2495 		count++;
2496 	if (arg_type_is_refcounted(fn->arg5_type))
2497 		count++;
2498 
2499 	/* We only support one arg being unreferenced at the moment,
2500 	 * which is sufficient for the helper functions we have right now.
2501 	 */
2502 	return count <= 1;
2503 }
2504 
2505 static int check_func_proto(const struct bpf_func_proto *fn)
2506 {
2507 	return check_raw_mode_ok(fn) &&
2508 	       check_arg_pair_ok(fn) &&
2509 	       check_refcount_ok(fn) ? 0 : -EINVAL;
2510 }
2511 
2512 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2513  * are now invalid, so turn them into unknown SCALAR_VALUE.
2514  */
2515 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2516 				     struct bpf_func_state *state)
2517 {
2518 	struct bpf_reg_state *regs = state->regs, *reg;
2519 	int i;
2520 
2521 	for (i = 0; i < MAX_BPF_REG; i++)
2522 		if (reg_is_pkt_pointer_any(&regs[i]))
2523 			mark_reg_unknown(env, regs, i);
2524 
2525 	bpf_for_each_spilled_reg(i, state, reg) {
2526 		if (!reg)
2527 			continue;
2528 		if (reg_is_pkt_pointer_any(reg))
2529 			__mark_reg_unknown(reg);
2530 	}
2531 }
2532 
2533 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2534 {
2535 	struct bpf_verifier_state *vstate = env->cur_state;
2536 	int i;
2537 
2538 	for (i = 0; i <= vstate->curframe; i++)
2539 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2540 }
2541 
2542 static void release_reg_references(struct bpf_verifier_env *env,
2543 				   struct bpf_func_state *state, int id)
2544 {
2545 	struct bpf_reg_state *regs = state->regs, *reg;
2546 	int i;
2547 
2548 	for (i = 0; i < MAX_BPF_REG; i++)
2549 		if (regs[i].id == id)
2550 			mark_reg_unknown(env, regs, i);
2551 
2552 	bpf_for_each_spilled_reg(i, state, reg) {
2553 		if (!reg)
2554 			continue;
2555 		if (reg_is_refcounted(reg) && reg->id == id)
2556 			__mark_reg_unknown(reg);
2557 	}
2558 }
2559 
2560 /* The pointer with the specified id has released its reference to kernel
2561  * resources. Identify all copies of the same pointer and clear the reference.
2562  */
2563 static int release_reference(struct bpf_verifier_env *env,
2564 			     struct bpf_call_arg_meta *meta)
2565 {
2566 	struct bpf_verifier_state *vstate = env->cur_state;
2567 	int i;
2568 
2569 	for (i = 0; i <= vstate->curframe; i++)
2570 		release_reg_references(env, vstate->frame[i], meta->ptr_id);
2571 
2572 	return release_reference_state(env, meta->ptr_id);
2573 }
2574 
2575 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2576 			   int *insn_idx)
2577 {
2578 	struct bpf_verifier_state *state = env->cur_state;
2579 	struct bpf_func_state *caller, *callee;
2580 	int i, err, subprog, target_insn;
2581 
2582 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2583 		verbose(env, "the call stack of %d frames is too deep\n",
2584 			state->curframe + 2);
2585 		return -E2BIG;
2586 	}
2587 
2588 	target_insn = *insn_idx + insn->imm;
2589 	subprog = find_subprog(env, target_insn + 1);
2590 	if (subprog < 0) {
2591 		verbose(env, "verifier bug. No program starts at insn %d\n",
2592 			target_insn + 1);
2593 		return -EFAULT;
2594 	}
2595 
2596 	caller = state->frame[state->curframe];
2597 	if (state->frame[state->curframe + 1]) {
2598 		verbose(env, "verifier bug. Frame %d already allocated\n",
2599 			state->curframe + 1);
2600 		return -EFAULT;
2601 	}
2602 
2603 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2604 	if (!callee)
2605 		return -ENOMEM;
2606 	state->frame[state->curframe + 1] = callee;
2607 
2608 	/* callee cannot access r0, r6 - r9 for reading and has to write
2609 	 * into its own stack before reading from it.
2610 	 * callee can read/write into caller's stack
2611 	 */
2612 	init_func_state(env, callee,
2613 			/* remember the callsite, it will be used by bpf_exit */
2614 			*insn_idx /* callsite */,
2615 			state->curframe + 1 /* frameno within this callchain */,
2616 			subprog /* subprog number within this prog */);
2617 
2618 	/* Transfer references to the callee */
2619 	err = transfer_reference_state(callee, caller);
2620 	if (err)
2621 		return err;
2622 
2623 	/* copy r1 - r5 args that callee can access.  The copy includes parent
2624 	 * pointers, which connects us up to the liveness chain
2625 	 */
2626 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2627 		callee->regs[i] = caller->regs[i];
2628 
2629 	/* after the call registers r0 - r5 were scratched */
2630 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2631 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
2632 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2633 	}
2634 
2635 	/* only increment it after check_reg_arg() finished */
2636 	state->curframe++;
2637 
2638 	/* and go analyze first insn of the callee */
2639 	*insn_idx = target_insn;
2640 
2641 	if (env->log.level) {
2642 		verbose(env, "caller:\n");
2643 		print_verifier_state(env, caller);
2644 		verbose(env, "callee:\n");
2645 		print_verifier_state(env, callee);
2646 	}
2647 	return 0;
2648 }
2649 
2650 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2651 {
2652 	struct bpf_verifier_state *state = env->cur_state;
2653 	struct bpf_func_state *caller, *callee;
2654 	struct bpf_reg_state *r0;
2655 	int err;
2656 
2657 	callee = state->frame[state->curframe];
2658 	r0 = &callee->regs[BPF_REG_0];
2659 	if (r0->type == PTR_TO_STACK) {
2660 		/* technically it's ok to return caller's stack pointer
2661 		 * (or caller's caller's pointer) back to the caller,
2662 		 * since these pointers are valid. Only current stack
2663 		 * pointer will be invalid as soon as function exits,
2664 		 * but let's be conservative
2665 		 */
2666 		verbose(env, "cannot return stack pointer to the caller\n");
2667 		return -EINVAL;
2668 	}
2669 
2670 	state->curframe--;
2671 	caller = state->frame[state->curframe];
2672 	/* return to the caller whatever r0 had in the callee */
2673 	caller->regs[BPF_REG_0] = *r0;
2674 
2675 	/* Transfer references to the caller */
2676 	err = transfer_reference_state(caller, callee);
2677 	if (err)
2678 		return err;
2679 
2680 	*insn_idx = callee->callsite + 1;
2681 	if (env->log.level) {
2682 		verbose(env, "returning from callee:\n");
2683 		print_verifier_state(env, callee);
2684 		verbose(env, "to caller at %d:\n", *insn_idx);
2685 		print_verifier_state(env, caller);
2686 	}
2687 	/* clear everything in the callee */
2688 	free_func_state(callee);
2689 	state->frame[state->curframe + 1] = NULL;
2690 	return 0;
2691 }
2692 
2693 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2694 				   int func_id,
2695 				   struct bpf_call_arg_meta *meta)
2696 {
2697 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2698 
2699 	if (ret_type != RET_INTEGER ||
2700 	    (func_id != BPF_FUNC_get_stack &&
2701 	     func_id != BPF_FUNC_probe_read_str))
2702 		return;
2703 
2704 	ret_reg->smax_value = meta->msize_smax_value;
2705 	ret_reg->umax_value = meta->msize_umax_value;
2706 	__reg_deduce_bounds(ret_reg);
2707 	__reg_bound_offset(ret_reg);
2708 }
2709 
2710 static int
2711 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2712 		int func_id, int insn_idx)
2713 {
2714 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2715 
2716 	if (func_id != BPF_FUNC_tail_call &&
2717 	    func_id != BPF_FUNC_map_lookup_elem &&
2718 	    func_id != BPF_FUNC_map_update_elem &&
2719 	    func_id != BPF_FUNC_map_delete_elem &&
2720 	    func_id != BPF_FUNC_map_push_elem &&
2721 	    func_id != BPF_FUNC_map_pop_elem &&
2722 	    func_id != BPF_FUNC_map_peek_elem)
2723 		return 0;
2724 
2725 	if (meta->map_ptr == NULL) {
2726 		verbose(env, "kernel subsystem misconfigured verifier\n");
2727 		return -EINVAL;
2728 	}
2729 
2730 	if (!BPF_MAP_PTR(aux->map_state))
2731 		bpf_map_ptr_store(aux, meta->map_ptr,
2732 				  meta->map_ptr->unpriv_array);
2733 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2734 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2735 				  meta->map_ptr->unpriv_array);
2736 	return 0;
2737 }
2738 
2739 static int check_reference_leak(struct bpf_verifier_env *env)
2740 {
2741 	struct bpf_func_state *state = cur_func(env);
2742 	int i;
2743 
2744 	for (i = 0; i < state->acquired_refs; i++) {
2745 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
2746 			state->refs[i].id, state->refs[i].insn_idx);
2747 	}
2748 	return state->acquired_refs ? -EINVAL : 0;
2749 }
2750 
2751 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2752 {
2753 	const struct bpf_func_proto *fn = NULL;
2754 	struct bpf_reg_state *regs;
2755 	struct bpf_call_arg_meta meta;
2756 	bool changes_data;
2757 	int i, err;
2758 
2759 	/* find function prototype */
2760 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2761 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2762 			func_id);
2763 		return -EINVAL;
2764 	}
2765 
2766 	if (env->ops->get_func_proto)
2767 		fn = env->ops->get_func_proto(func_id, env->prog);
2768 	if (!fn) {
2769 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2770 			func_id);
2771 		return -EINVAL;
2772 	}
2773 
2774 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2775 	if (!env->prog->gpl_compatible && fn->gpl_only) {
2776 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
2777 		return -EINVAL;
2778 	}
2779 
2780 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2781 	changes_data = bpf_helper_changes_pkt_data(fn->func);
2782 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2783 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2784 			func_id_name(func_id), func_id);
2785 		return -EINVAL;
2786 	}
2787 
2788 	memset(&meta, 0, sizeof(meta));
2789 	meta.pkt_access = fn->pkt_access;
2790 
2791 	err = check_func_proto(fn);
2792 	if (err) {
2793 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2794 			func_id_name(func_id), func_id);
2795 		return err;
2796 	}
2797 
2798 	/* check args */
2799 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2800 	if (err)
2801 		return err;
2802 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2803 	if (err)
2804 		return err;
2805 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2806 	if (err)
2807 		return err;
2808 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2809 	if (err)
2810 		return err;
2811 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2812 	if (err)
2813 		return err;
2814 
2815 	err = record_func_map(env, &meta, func_id, insn_idx);
2816 	if (err)
2817 		return err;
2818 
2819 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
2820 	 * is inferred from register state.
2821 	 */
2822 	for (i = 0; i < meta.access_size; i++) {
2823 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2824 				       BPF_WRITE, -1, false);
2825 		if (err)
2826 			return err;
2827 	}
2828 
2829 	if (func_id == BPF_FUNC_tail_call) {
2830 		err = check_reference_leak(env);
2831 		if (err) {
2832 			verbose(env, "tail_call would lead to reference leak\n");
2833 			return err;
2834 		}
2835 	} else if (is_release_function(func_id)) {
2836 		err = release_reference(env, &meta);
2837 		if (err)
2838 			return err;
2839 	}
2840 
2841 	regs = cur_regs(env);
2842 
2843 	/* check that flags argument in get_local_storage(map, flags) is 0,
2844 	 * this is required because get_local_storage() can't return an error.
2845 	 */
2846 	if (func_id == BPF_FUNC_get_local_storage &&
2847 	    !register_is_null(&regs[BPF_REG_2])) {
2848 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
2849 		return -EINVAL;
2850 	}
2851 
2852 	/* reset caller saved regs */
2853 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2854 		mark_reg_not_init(env, regs, caller_saved[i]);
2855 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2856 	}
2857 
2858 	/* update return register (already marked as written above) */
2859 	if (fn->ret_type == RET_INTEGER) {
2860 		/* sets type to SCALAR_VALUE */
2861 		mark_reg_unknown(env, regs, BPF_REG_0);
2862 	} else if (fn->ret_type == RET_VOID) {
2863 		regs[BPF_REG_0].type = NOT_INIT;
2864 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
2865 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2866 		/* There is no offset yet applied, variable or fixed */
2867 		mark_reg_known_zero(env, regs, BPF_REG_0);
2868 		/* remember map_ptr, so that check_map_access()
2869 		 * can check 'value_size' boundary of memory access
2870 		 * to map element returned from bpf_map_lookup_elem()
2871 		 */
2872 		if (meta.map_ptr == NULL) {
2873 			verbose(env,
2874 				"kernel subsystem misconfigured verifier\n");
2875 			return -EINVAL;
2876 		}
2877 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2878 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2879 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
2880 		} else {
2881 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2882 			regs[BPF_REG_0].id = ++env->id_gen;
2883 		}
2884 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
2885 		int id = acquire_reference_state(env, insn_idx);
2886 		if (id < 0)
2887 			return id;
2888 		mark_reg_known_zero(env, regs, BPF_REG_0);
2889 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
2890 		regs[BPF_REG_0].id = id;
2891 	} else {
2892 		verbose(env, "unknown return type %d of func %s#%d\n",
2893 			fn->ret_type, func_id_name(func_id), func_id);
2894 		return -EINVAL;
2895 	}
2896 
2897 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2898 
2899 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2900 	if (err)
2901 		return err;
2902 
2903 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2904 		const char *err_str;
2905 
2906 #ifdef CONFIG_PERF_EVENTS
2907 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
2908 		err_str = "cannot get callchain buffer for func %s#%d\n";
2909 #else
2910 		err = -ENOTSUPP;
2911 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2912 #endif
2913 		if (err) {
2914 			verbose(env, err_str, func_id_name(func_id), func_id);
2915 			return err;
2916 		}
2917 
2918 		env->prog->has_callchain_buf = true;
2919 	}
2920 
2921 	if (changes_data)
2922 		clear_all_pkt_pointers(env);
2923 	return 0;
2924 }
2925 
2926 static bool signed_add_overflows(s64 a, s64 b)
2927 {
2928 	/* Do the add in u64, where overflow is well-defined */
2929 	s64 res = (s64)((u64)a + (u64)b);
2930 
2931 	if (b < 0)
2932 		return res > a;
2933 	return res < a;
2934 }
2935 
2936 static bool signed_sub_overflows(s64 a, s64 b)
2937 {
2938 	/* Do the sub in u64, where overflow is well-defined */
2939 	s64 res = (s64)((u64)a - (u64)b);
2940 
2941 	if (b < 0)
2942 		return res < a;
2943 	return res > a;
2944 }
2945 
2946 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2947 				  const struct bpf_reg_state *reg,
2948 				  enum bpf_reg_type type)
2949 {
2950 	bool known = tnum_is_const(reg->var_off);
2951 	s64 val = reg->var_off.value;
2952 	s64 smin = reg->smin_value;
2953 
2954 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2955 		verbose(env, "math between %s pointer and %lld is not allowed\n",
2956 			reg_type_str[type], val);
2957 		return false;
2958 	}
2959 
2960 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2961 		verbose(env, "%s pointer offset %d is not allowed\n",
2962 			reg_type_str[type], reg->off);
2963 		return false;
2964 	}
2965 
2966 	if (smin == S64_MIN) {
2967 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2968 			reg_type_str[type]);
2969 		return false;
2970 	}
2971 
2972 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2973 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
2974 			smin, reg_type_str[type]);
2975 		return false;
2976 	}
2977 
2978 	return true;
2979 }
2980 
2981 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2982  * Caller should also handle BPF_MOV case separately.
2983  * If we return -EACCES, caller may want to try again treating pointer as a
2984  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
2985  */
2986 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2987 				   struct bpf_insn *insn,
2988 				   const struct bpf_reg_state *ptr_reg,
2989 				   const struct bpf_reg_state *off_reg)
2990 {
2991 	struct bpf_verifier_state *vstate = env->cur_state;
2992 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2993 	struct bpf_reg_state *regs = state->regs, *dst_reg;
2994 	bool known = tnum_is_const(off_reg->var_off);
2995 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2996 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2997 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2998 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2999 	u8 opcode = BPF_OP(insn->code);
3000 	u32 dst = insn->dst_reg;
3001 
3002 	dst_reg = &regs[dst];
3003 
3004 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3005 	    smin_val > smax_val || umin_val > umax_val) {
3006 		/* Taint dst register if offset had invalid bounds derived from
3007 		 * e.g. dead branches.
3008 		 */
3009 		__mark_reg_unknown(dst_reg);
3010 		return 0;
3011 	}
3012 
3013 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3014 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
3015 		verbose(env,
3016 			"R%d 32-bit pointer arithmetic prohibited\n",
3017 			dst);
3018 		return -EACCES;
3019 	}
3020 
3021 	switch (ptr_reg->type) {
3022 	case PTR_TO_MAP_VALUE_OR_NULL:
3023 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3024 			dst, reg_type_str[ptr_reg->type]);
3025 		return -EACCES;
3026 	case CONST_PTR_TO_MAP:
3027 	case PTR_TO_PACKET_END:
3028 	case PTR_TO_SOCKET:
3029 	case PTR_TO_SOCKET_OR_NULL:
3030 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3031 			dst, reg_type_str[ptr_reg->type]);
3032 		return -EACCES;
3033 	default:
3034 		break;
3035 	}
3036 
3037 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3038 	 * The id may be overwritten later if we create a new variable offset.
3039 	 */
3040 	dst_reg->type = ptr_reg->type;
3041 	dst_reg->id = ptr_reg->id;
3042 
3043 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3044 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3045 		return -EINVAL;
3046 
3047 	switch (opcode) {
3048 	case BPF_ADD:
3049 		/* We can take a fixed offset as long as it doesn't overflow
3050 		 * the s32 'off' field
3051 		 */
3052 		if (known && (ptr_reg->off + smin_val ==
3053 			      (s64)(s32)(ptr_reg->off + smin_val))) {
3054 			/* pointer += K.  Accumulate it into fixed offset */
3055 			dst_reg->smin_value = smin_ptr;
3056 			dst_reg->smax_value = smax_ptr;
3057 			dst_reg->umin_value = umin_ptr;
3058 			dst_reg->umax_value = umax_ptr;
3059 			dst_reg->var_off = ptr_reg->var_off;
3060 			dst_reg->off = ptr_reg->off + smin_val;
3061 			dst_reg->raw = ptr_reg->raw;
3062 			break;
3063 		}
3064 		/* A new variable offset is created.  Note that off_reg->off
3065 		 * == 0, since it's a scalar.
3066 		 * dst_reg gets the pointer type and since some positive
3067 		 * integer value was added to the pointer, give it a new 'id'
3068 		 * if it's a PTR_TO_PACKET.
3069 		 * this creates a new 'base' pointer, off_reg (variable) gets
3070 		 * added into the variable offset, and we copy the fixed offset
3071 		 * from ptr_reg.
3072 		 */
3073 		if (signed_add_overflows(smin_ptr, smin_val) ||
3074 		    signed_add_overflows(smax_ptr, smax_val)) {
3075 			dst_reg->smin_value = S64_MIN;
3076 			dst_reg->smax_value = S64_MAX;
3077 		} else {
3078 			dst_reg->smin_value = smin_ptr + smin_val;
3079 			dst_reg->smax_value = smax_ptr + smax_val;
3080 		}
3081 		if (umin_ptr + umin_val < umin_ptr ||
3082 		    umax_ptr + umax_val < umax_ptr) {
3083 			dst_reg->umin_value = 0;
3084 			dst_reg->umax_value = U64_MAX;
3085 		} else {
3086 			dst_reg->umin_value = umin_ptr + umin_val;
3087 			dst_reg->umax_value = umax_ptr + umax_val;
3088 		}
3089 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3090 		dst_reg->off = ptr_reg->off;
3091 		dst_reg->raw = ptr_reg->raw;
3092 		if (reg_is_pkt_pointer(ptr_reg)) {
3093 			dst_reg->id = ++env->id_gen;
3094 			/* something was added to pkt_ptr, set range to zero */
3095 			dst_reg->raw = 0;
3096 		}
3097 		break;
3098 	case BPF_SUB:
3099 		if (dst_reg == off_reg) {
3100 			/* scalar -= pointer.  Creates an unknown scalar */
3101 			verbose(env, "R%d tried to subtract pointer from scalar\n",
3102 				dst);
3103 			return -EACCES;
3104 		}
3105 		/* We don't allow subtraction from FP, because (according to
3106 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
3107 		 * be able to deal with it.
3108 		 */
3109 		if (ptr_reg->type == PTR_TO_STACK) {
3110 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
3111 				dst);
3112 			return -EACCES;
3113 		}
3114 		if (known && (ptr_reg->off - smin_val ==
3115 			      (s64)(s32)(ptr_reg->off - smin_val))) {
3116 			/* pointer -= K.  Subtract it from fixed offset */
3117 			dst_reg->smin_value = smin_ptr;
3118 			dst_reg->smax_value = smax_ptr;
3119 			dst_reg->umin_value = umin_ptr;
3120 			dst_reg->umax_value = umax_ptr;
3121 			dst_reg->var_off = ptr_reg->var_off;
3122 			dst_reg->id = ptr_reg->id;
3123 			dst_reg->off = ptr_reg->off - smin_val;
3124 			dst_reg->raw = ptr_reg->raw;
3125 			break;
3126 		}
3127 		/* A new variable offset is created.  If the subtrahend is known
3128 		 * nonnegative, then any reg->range we had before is still good.
3129 		 */
3130 		if (signed_sub_overflows(smin_ptr, smax_val) ||
3131 		    signed_sub_overflows(smax_ptr, smin_val)) {
3132 			/* Overflow possible, we know nothing */
3133 			dst_reg->smin_value = S64_MIN;
3134 			dst_reg->smax_value = S64_MAX;
3135 		} else {
3136 			dst_reg->smin_value = smin_ptr - smax_val;
3137 			dst_reg->smax_value = smax_ptr - smin_val;
3138 		}
3139 		if (umin_ptr < umax_val) {
3140 			/* Overflow possible, we know nothing */
3141 			dst_reg->umin_value = 0;
3142 			dst_reg->umax_value = U64_MAX;
3143 		} else {
3144 			/* Cannot overflow (as long as bounds are consistent) */
3145 			dst_reg->umin_value = umin_ptr - umax_val;
3146 			dst_reg->umax_value = umax_ptr - umin_val;
3147 		}
3148 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3149 		dst_reg->off = ptr_reg->off;
3150 		dst_reg->raw = ptr_reg->raw;
3151 		if (reg_is_pkt_pointer(ptr_reg)) {
3152 			dst_reg->id = ++env->id_gen;
3153 			/* something was added to pkt_ptr, set range to zero */
3154 			if (smin_val < 0)
3155 				dst_reg->raw = 0;
3156 		}
3157 		break;
3158 	case BPF_AND:
3159 	case BPF_OR:
3160 	case BPF_XOR:
3161 		/* bitwise ops on pointers are troublesome, prohibit. */
3162 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3163 			dst, bpf_alu_string[opcode >> 4]);
3164 		return -EACCES;
3165 	default:
3166 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
3167 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3168 			dst, bpf_alu_string[opcode >> 4]);
3169 		return -EACCES;
3170 	}
3171 
3172 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3173 		return -EINVAL;
3174 
3175 	__update_reg_bounds(dst_reg);
3176 	__reg_deduce_bounds(dst_reg);
3177 	__reg_bound_offset(dst_reg);
3178 	return 0;
3179 }
3180 
3181 /* WARNING: This function does calculations on 64-bit values, but the actual
3182  * execution may occur on 32-bit values. Therefore, things like bitshifts
3183  * need extra checks in the 32-bit case.
3184  */
3185 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3186 				      struct bpf_insn *insn,
3187 				      struct bpf_reg_state *dst_reg,
3188 				      struct bpf_reg_state src_reg)
3189 {
3190 	struct bpf_reg_state *regs = cur_regs(env);
3191 	u8 opcode = BPF_OP(insn->code);
3192 	bool src_known, dst_known;
3193 	s64 smin_val, smax_val;
3194 	u64 umin_val, umax_val;
3195 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3196 
3197 	if (insn_bitness == 32) {
3198 		/* Relevant for 32-bit RSH: Information can propagate towards
3199 		 * LSB, so it isn't sufficient to only truncate the output to
3200 		 * 32 bits.
3201 		 */
3202 		coerce_reg_to_size(dst_reg, 4);
3203 		coerce_reg_to_size(&src_reg, 4);
3204 	}
3205 
3206 	smin_val = src_reg.smin_value;
3207 	smax_val = src_reg.smax_value;
3208 	umin_val = src_reg.umin_value;
3209 	umax_val = src_reg.umax_value;
3210 	src_known = tnum_is_const(src_reg.var_off);
3211 	dst_known = tnum_is_const(dst_reg->var_off);
3212 
3213 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3214 	    smin_val > smax_val || umin_val > umax_val) {
3215 		/* Taint dst register if offset had invalid bounds derived from
3216 		 * e.g. dead branches.
3217 		 */
3218 		__mark_reg_unknown(dst_reg);
3219 		return 0;
3220 	}
3221 
3222 	if (!src_known &&
3223 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3224 		__mark_reg_unknown(dst_reg);
3225 		return 0;
3226 	}
3227 
3228 	switch (opcode) {
3229 	case BPF_ADD:
3230 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3231 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
3232 			dst_reg->smin_value = S64_MIN;
3233 			dst_reg->smax_value = S64_MAX;
3234 		} else {
3235 			dst_reg->smin_value += smin_val;
3236 			dst_reg->smax_value += smax_val;
3237 		}
3238 		if (dst_reg->umin_value + umin_val < umin_val ||
3239 		    dst_reg->umax_value + umax_val < umax_val) {
3240 			dst_reg->umin_value = 0;
3241 			dst_reg->umax_value = U64_MAX;
3242 		} else {
3243 			dst_reg->umin_value += umin_val;
3244 			dst_reg->umax_value += umax_val;
3245 		}
3246 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3247 		break;
3248 	case BPF_SUB:
3249 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3250 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3251 			/* Overflow possible, we know nothing */
3252 			dst_reg->smin_value = S64_MIN;
3253 			dst_reg->smax_value = S64_MAX;
3254 		} else {
3255 			dst_reg->smin_value -= smax_val;
3256 			dst_reg->smax_value -= smin_val;
3257 		}
3258 		if (dst_reg->umin_value < umax_val) {
3259 			/* Overflow possible, we know nothing */
3260 			dst_reg->umin_value = 0;
3261 			dst_reg->umax_value = U64_MAX;
3262 		} else {
3263 			/* Cannot overflow (as long as bounds are consistent) */
3264 			dst_reg->umin_value -= umax_val;
3265 			dst_reg->umax_value -= umin_val;
3266 		}
3267 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3268 		break;
3269 	case BPF_MUL:
3270 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3271 		if (smin_val < 0 || dst_reg->smin_value < 0) {
3272 			/* Ain't nobody got time to multiply that sign */
3273 			__mark_reg_unbounded(dst_reg);
3274 			__update_reg_bounds(dst_reg);
3275 			break;
3276 		}
3277 		/* Both values are positive, so we can work with unsigned and
3278 		 * copy the result to signed (unless it exceeds S64_MAX).
3279 		 */
3280 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3281 			/* Potential overflow, we know nothing */
3282 			__mark_reg_unbounded(dst_reg);
3283 			/* (except what we can learn from the var_off) */
3284 			__update_reg_bounds(dst_reg);
3285 			break;
3286 		}
3287 		dst_reg->umin_value *= umin_val;
3288 		dst_reg->umax_value *= umax_val;
3289 		if (dst_reg->umax_value > S64_MAX) {
3290 			/* Overflow possible, we know nothing */
3291 			dst_reg->smin_value = S64_MIN;
3292 			dst_reg->smax_value = S64_MAX;
3293 		} else {
3294 			dst_reg->smin_value = dst_reg->umin_value;
3295 			dst_reg->smax_value = dst_reg->umax_value;
3296 		}
3297 		break;
3298 	case BPF_AND:
3299 		if (src_known && dst_known) {
3300 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
3301 						  src_reg.var_off.value);
3302 			break;
3303 		}
3304 		/* We get our minimum from the var_off, since that's inherently
3305 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
3306 		 */
3307 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3308 		dst_reg->umin_value = dst_reg->var_off.value;
3309 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3310 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3311 			/* Lose signed bounds when ANDing negative numbers,
3312 			 * ain't nobody got time for that.
3313 			 */
3314 			dst_reg->smin_value = S64_MIN;
3315 			dst_reg->smax_value = S64_MAX;
3316 		} else {
3317 			/* ANDing two positives gives a positive, so safe to
3318 			 * cast result into s64.
3319 			 */
3320 			dst_reg->smin_value = dst_reg->umin_value;
3321 			dst_reg->smax_value = dst_reg->umax_value;
3322 		}
3323 		/* We may learn something more from the var_off */
3324 		__update_reg_bounds(dst_reg);
3325 		break;
3326 	case BPF_OR:
3327 		if (src_known && dst_known) {
3328 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
3329 						  src_reg.var_off.value);
3330 			break;
3331 		}
3332 		/* We get our maximum from the var_off, and our minimum is the
3333 		 * maximum of the operands' minima
3334 		 */
3335 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
3336 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3337 		dst_reg->umax_value = dst_reg->var_off.value |
3338 				      dst_reg->var_off.mask;
3339 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3340 			/* Lose signed bounds when ORing negative numbers,
3341 			 * ain't nobody got time for that.
3342 			 */
3343 			dst_reg->smin_value = S64_MIN;
3344 			dst_reg->smax_value = S64_MAX;
3345 		} else {
3346 			/* ORing two positives gives a positive, so safe to
3347 			 * cast result into s64.
3348 			 */
3349 			dst_reg->smin_value = dst_reg->umin_value;
3350 			dst_reg->smax_value = dst_reg->umax_value;
3351 		}
3352 		/* We may learn something more from the var_off */
3353 		__update_reg_bounds(dst_reg);
3354 		break;
3355 	case BPF_LSH:
3356 		if (umax_val >= insn_bitness) {
3357 			/* Shifts greater than 31 or 63 are undefined.
3358 			 * This includes shifts by a negative number.
3359 			 */
3360 			mark_reg_unknown(env, regs, insn->dst_reg);
3361 			break;
3362 		}
3363 		/* We lose all sign bit information (except what we can pick
3364 		 * up from var_off)
3365 		 */
3366 		dst_reg->smin_value = S64_MIN;
3367 		dst_reg->smax_value = S64_MAX;
3368 		/* If we might shift our top bit out, then we know nothing */
3369 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3370 			dst_reg->umin_value = 0;
3371 			dst_reg->umax_value = U64_MAX;
3372 		} else {
3373 			dst_reg->umin_value <<= umin_val;
3374 			dst_reg->umax_value <<= umax_val;
3375 		}
3376 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
3377 		/* We may learn something more from the var_off */
3378 		__update_reg_bounds(dst_reg);
3379 		break;
3380 	case BPF_RSH:
3381 		if (umax_val >= insn_bitness) {
3382 			/* Shifts greater than 31 or 63 are undefined.
3383 			 * This includes shifts by a negative number.
3384 			 */
3385 			mark_reg_unknown(env, regs, insn->dst_reg);
3386 			break;
3387 		}
3388 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
3389 		 * be negative, then either:
3390 		 * 1) src_reg might be zero, so the sign bit of the result is
3391 		 *    unknown, so we lose our signed bounds
3392 		 * 2) it's known negative, thus the unsigned bounds capture the
3393 		 *    signed bounds
3394 		 * 3) the signed bounds cross zero, so they tell us nothing
3395 		 *    about the result
3396 		 * If the value in dst_reg is known nonnegative, then again the
3397 		 * unsigned bounts capture the signed bounds.
3398 		 * Thus, in all cases it suffices to blow away our signed bounds
3399 		 * and rely on inferring new ones from the unsigned bounds and
3400 		 * var_off of the result.
3401 		 */
3402 		dst_reg->smin_value = S64_MIN;
3403 		dst_reg->smax_value = S64_MAX;
3404 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
3405 		dst_reg->umin_value >>= umax_val;
3406 		dst_reg->umax_value >>= umin_val;
3407 		/* We may learn something more from the var_off */
3408 		__update_reg_bounds(dst_reg);
3409 		break;
3410 	case BPF_ARSH:
3411 		if (umax_val >= insn_bitness) {
3412 			/* Shifts greater than 31 or 63 are undefined.
3413 			 * This includes shifts by a negative number.
3414 			 */
3415 			mark_reg_unknown(env, regs, insn->dst_reg);
3416 			break;
3417 		}
3418 
3419 		/* Upon reaching here, src_known is true and
3420 		 * umax_val is equal to umin_val.
3421 		 */
3422 		dst_reg->smin_value >>= umin_val;
3423 		dst_reg->smax_value >>= umin_val;
3424 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3425 
3426 		/* blow away the dst_reg umin_value/umax_value and rely on
3427 		 * dst_reg var_off to refine the result.
3428 		 */
3429 		dst_reg->umin_value = 0;
3430 		dst_reg->umax_value = U64_MAX;
3431 		__update_reg_bounds(dst_reg);
3432 		break;
3433 	default:
3434 		mark_reg_unknown(env, regs, insn->dst_reg);
3435 		break;
3436 	}
3437 
3438 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3439 		/* 32-bit ALU ops are (32,32)->32 */
3440 		coerce_reg_to_size(dst_reg, 4);
3441 	}
3442 
3443 	__reg_deduce_bounds(dst_reg);
3444 	__reg_bound_offset(dst_reg);
3445 	return 0;
3446 }
3447 
3448 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3449  * and var_off.
3450  */
3451 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3452 				   struct bpf_insn *insn)
3453 {
3454 	struct bpf_verifier_state *vstate = env->cur_state;
3455 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3456 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3457 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3458 	u8 opcode = BPF_OP(insn->code);
3459 
3460 	dst_reg = &regs[insn->dst_reg];
3461 	src_reg = NULL;
3462 	if (dst_reg->type != SCALAR_VALUE)
3463 		ptr_reg = dst_reg;
3464 	if (BPF_SRC(insn->code) == BPF_X) {
3465 		src_reg = &regs[insn->src_reg];
3466 		if (src_reg->type != SCALAR_VALUE) {
3467 			if (dst_reg->type != SCALAR_VALUE) {
3468 				/* Combining two pointers by any ALU op yields
3469 				 * an arbitrary scalar. Disallow all math except
3470 				 * pointer subtraction
3471 				 */
3472 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
3473 					mark_reg_unknown(env, regs, insn->dst_reg);
3474 					return 0;
3475 				}
3476 				verbose(env, "R%d pointer %s pointer prohibited\n",
3477 					insn->dst_reg,
3478 					bpf_alu_string[opcode >> 4]);
3479 				return -EACCES;
3480 			} else {
3481 				/* scalar += pointer
3482 				 * This is legal, but we have to reverse our
3483 				 * src/dest handling in computing the range
3484 				 */
3485 				return adjust_ptr_min_max_vals(env, insn,
3486 							       src_reg, dst_reg);
3487 			}
3488 		} else if (ptr_reg) {
3489 			/* pointer += scalar */
3490 			return adjust_ptr_min_max_vals(env, insn,
3491 						       dst_reg, src_reg);
3492 		}
3493 	} else {
3494 		/* Pretend the src is a reg with a known value, since we only
3495 		 * need to be able to read from this state.
3496 		 */
3497 		off_reg.type = SCALAR_VALUE;
3498 		__mark_reg_known(&off_reg, insn->imm);
3499 		src_reg = &off_reg;
3500 		if (ptr_reg) /* pointer += K */
3501 			return adjust_ptr_min_max_vals(env, insn,
3502 						       ptr_reg, src_reg);
3503 	}
3504 
3505 	/* Got here implies adding two SCALAR_VALUEs */
3506 	if (WARN_ON_ONCE(ptr_reg)) {
3507 		print_verifier_state(env, state);
3508 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3509 		return -EINVAL;
3510 	}
3511 	if (WARN_ON(!src_reg)) {
3512 		print_verifier_state(env, state);
3513 		verbose(env, "verifier internal error: no src_reg\n");
3514 		return -EINVAL;
3515 	}
3516 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3517 }
3518 
3519 /* check validity of 32-bit and 64-bit arithmetic operations */
3520 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3521 {
3522 	struct bpf_reg_state *regs = cur_regs(env);
3523 	u8 opcode = BPF_OP(insn->code);
3524 	int err;
3525 
3526 	if (opcode == BPF_END || opcode == BPF_NEG) {
3527 		if (opcode == BPF_NEG) {
3528 			if (BPF_SRC(insn->code) != 0 ||
3529 			    insn->src_reg != BPF_REG_0 ||
3530 			    insn->off != 0 || insn->imm != 0) {
3531 				verbose(env, "BPF_NEG uses reserved fields\n");
3532 				return -EINVAL;
3533 			}
3534 		} else {
3535 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3536 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3537 			    BPF_CLASS(insn->code) == BPF_ALU64) {
3538 				verbose(env, "BPF_END uses reserved fields\n");
3539 				return -EINVAL;
3540 			}
3541 		}
3542 
3543 		/* check src operand */
3544 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3545 		if (err)
3546 			return err;
3547 
3548 		if (is_pointer_value(env, insn->dst_reg)) {
3549 			verbose(env, "R%d pointer arithmetic prohibited\n",
3550 				insn->dst_reg);
3551 			return -EACCES;
3552 		}
3553 
3554 		/* check dest operand */
3555 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3556 		if (err)
3557 			return err;
3558 
3559 	} else if (opcode == BPF_MOV) {
3560 
3561 		if (BPF_SRC(insn->code) == BPF_X) {
3562 			if (insn->imm != 0 || insn->off != 0) {
3563 				verbose(env, "BPF_MOV uses reserved fields\n");
3564 				return -EINVAL;
3565 			}
3566 
3567 			/* check src operand */
3568 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3569 			if (err)
3570 				return err;
3571 		} else {
3572 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3573 				verbose(env, "BPF_MOV uses reserved fields\n");
3574 				return -EINVAL;
3575 			}
3576 		}
3577 
3578 		/* check dest operand, mark as required later */
3579 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3580 		if (err)
3581 			return err;
3582 
3583 		if (BPF_SRC(insn->code) == BPF_X) {
3584 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3585 				/* case: R1 = R2
3586 				 * copy register state to dest reg
3587 				 */
3588 				regs[insn->dst_reg] = regs[insn->src_reg];
3589 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3590 			} else {
3591 				/* R1 = (u32) R2 */
3592 				if (is_pointer_value(env, insn->src_reg)) {
3593 					verbose(env,
3594 						"R%d partial copy of pointer\n",
3595 						insn->src_reg);
3596 					return -EACCES;
3597 				}
3598 				mark_reg_unknown(env, regs, insn->dst_reg);
3599 				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3600 			}
3601 		} else {
3602 			/* case: R = imm
3603 			 * remember the value we stored into this reg
3604 			 */
3605 			/* clear any state __mark_reg_known doesn't set */
3606 			mark_reg_unknown(env, regs, insn->dst_reg);
3607 			regs[insn->dst_reg].type = SCALAR_VALUE;
3608 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3609 				__mark_reg_known(regs + insn->dst_reg,
3610 						 insn->imm);
3611 			} else {
3612 				__mark_reg_known(regs + insn->dst_reg,
3613 						 (u32)insn->imm);
3614 			}
3615 		}
3616 
3617 	} else if (opcode > BPF_END) {
3618 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3619 		return -EINVAL;
3620 
3621 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
3622 
3623 		if (BPF_SRC(insn->code) == BPF_X) {
3624 			if (insn->imm != 0 || insn->off != 0) {
3625 				verbose(env, "BPF_ALU uses reserved fields\n");
3626 				return -EINVAL;
3627 			}
3628 			/* check src1 operand */
3629 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3630 			if (err)
3631 				return err;
3632 		} else {
3633 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3634 				verbose(env, "BPF_ALU uses reserved fields\n");
3635 				return -EINVAL;
3636 			}
3637 		}
3638 
3639 		/* check src2 operand */
3640 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3641 		if (err)
3642 			return err;
3643 
3644 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3645 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3646 			verbose(env, "div by zero\n");
3647 			return -EINVAL;
3648 		}
3649 
3650 		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3651 			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3652 			return -EINVAL;
3653 		}
3654 
3655 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3656 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3657 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3658 
3659 			if (insn->imm < 0 || insn->imm >= size) {
3660 				verbose(env, "invalid shift %d\n", insn->imm);
3661 				return -EINVAL;
3662 			}
3663 		}
3664 
3665 		/* check dest operand */
3666 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3667 		if (err)
3668 			return err;
3669 
3670 		return adjust_reg_min_max_vals(env, insn);
3671 	}
3672 
3673 	return 0;
3674 }
3675 
3676 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3677 				   struct bpf_reg_state *dst_reg,
3678 				   enum bpf_reg_type type,
3679 				   bool range_right_open)
3680 {
3681 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3682 	struct bpf_reg_state *regs = state->regs, *reg;
3683 	u16 new_range;
3684 	int i, j;
3685 
3686 	if (dst_reg->off < 0 ||
3687 	    (dst_reg->off == 0 && range_right_open))
3688 		/* This doesn't give us any range */
3689 		return;
3690 
3691 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
3692 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3693 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
3694 		 * than pkt_end, but that's because it's also less than pkt.
3695 		 */
3696 		return;
3697 
3698 	new_range = dst_reg->off;
3699 	if (range_right_open)
3700 		new_range--;
3701 
3702 	/* Examples for register markings:
3703 	 *
3704 	 * pkt_data in dst register:
3705 	 *
3706 	 *   r2 = r3;
3707 	 *   r2 += 8;
3708 	 *   if (r2 > pkt_end) goto <handle exception>
3709 	 *   <access okay>
3710 	 *
3711 	 *   r2 = r3;
3712 	 *   r2 += 8;
3713 	 *   if (r2 < pkt_end) goto <access okay>
3714 	 *   <handle exception>
3715 	 *
3716 	 *   Where:
3717 	 *     r2 == dst_reg, pkt_end == src_reg
3718 	 *     r2=pkt(id=n,off=8,r=0)
3719 	 *     r3=pkt(id=n,off=0,r=0)
3720 	 *
3721 	 * pkt_data in src register:
3722 	 *
3723 	 *   r2 = r3;
3724 	 *   r2 += 8;
3725 	 *   if (pkt_end >= r2) goto <access okay>
3726 	 *   <handle exception>
3727 	 *
3728 	 *   r2 = r3;
3729 	 *   r2 += 8;
3730 	 *   if (pkt_end <= r2) goto <handle exception>
3731 	 *   <access okay>
3732 	 *
3733 	 *   Where:
3734 	 *     pkt_end == dst_reg, r2 == src_reg
3735 	 *     r2=pkt(id=n,off=8,r=0)
3736 	 *     r3=pkt(id=n,off=0,r=0)
3737 	 *
3738 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3739 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3740 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
3741 	 * the check.
3742 	 */
3743 
3744 	/* If our ids match, then we must have the same max_value.  And we
3745 	 * don't care about the other reg's fixed offset, since if it's too big
3746 	 * the range won't allow anything.
3747 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3748 	 */
3749 	for (i = 0; i < MAX_BPF_REG; i++)
3750 		if (regs[i].type == type && regs[i].id == dst_reg->id)
3751 			/* keep the maximum range already checked */
3752 			regs[i].range = max(regs[i].range, new_range);
3753 
3754 	for (j = 0; j <= vstate->curframe; j++) {
3755 		state = vstate->frame[j];
3756 		bpf_for_each_spilled_reg(i, state, reg) {
3757 			if (!reg)
3758 				continue;
3759 			if (reg->type == type && reg->id == dst_reg->id)
3760 				reg->range = max(reg->range, new_range);
3761 		}
3762 	}
3763 }
3764 
3765 /* Adjusts the register min/max values in the case that the dst_reg is the
3766  * variable register that we are working on, and src_reg is a constant or we're
3767  * simply doing a BPF_K check.
3768  * In JEQ/JNE cases we also adjust the var_off values.
3769  */
3770 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3771 			    struct bpf_reg_state *false_reg, u64 val,
3772 			    u8 opcode)
3773 {
3774 	/* If the dst_reg is a pointer, we can't learn anything about its
3775 	 * variable offset from the compare (unless src_reg were a pointer into
3776 	 * the same object, but we don't bother with that.
3777 	 * Since false_reg and true_reg have the same type by construction, we
3778 	 * only need to check one of them for pointerness.
3779 	 */
3780 	if (__is_pointer_value(false, false_reg))
3781 		return;
3782 
3783 	switch (opcode) {
3784 	case BPF_JEQ:
3785 		/* If this is false then we know nothing Jon Snow, but if it is
3786 		 * true then we know for sure.
3787 		 */
3788 		__mark_reg_known(true_reg, val);
3789 		break;
3790 	case BPF_JNE:
3791 		/* If this is true we know nothing Jon Snow, but if it is false
3792 		 * we know the value for sure;
3793 		 */
3794 		__mark_reg_known(false_reg, val);
3795 		break;
3796 	case BPF_JGT:
3797 		false_reg->umax_value = min(false_reg->umax_value, val);
3798 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3799 		break;
3800 	case BPF_JSGT:
3801 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3802 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3803 		break;
3804 	case BPF_JLT:
3805 		false_reg->umin_value = max(false_reg->umin_value, val);
3806 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3807 		break;
3808 	case BPF_JSLT:
3809 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3810 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3811 		break;
3812 	case BPF_JGE:
3813 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3814 		true_reg->umin_value = max(true_reg->umin_value, val);
3815 		break;
3816 	case BPF_JSGE:
3817 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3818 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3819 		break;
3820 	case BPF_JLE:
3821 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3822 		true_reg->umax_value = min(true_reg->umax_value, val);
3823 		break;
3824 	case BPF_JSLE:
3825 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3826 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3827 		break;
3828 	default:
3829 		break;
3830 	}
3831 
3832 	__reg_deduce_bounds(false_reg);
3833 	__reg_deduce_bounds(true_reg);
3834 	/* We might have learned some bits from the bounds. */
3835 	__reg_bound_offset(false_reg);
3836 	__reg_bound_offset(true_reg);
3837 	/* Intersecting with the old var_off might have improved our bounds
3838 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3839 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3840 	 */
3841 	__update_reg_bounds(false_reg);
3842 	__update_reg_bounds(true_reg);
3843 }
3844 
3845 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3846  * the variable reg.
3847  */
3848 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3849 				struct bpf_reg_state *false_reg, u64 val,
3850 				u8 opcode)
3851 {
3852 	if (__is_pointer_value(false, false_reg))
3853 		return;
3854 
3855 	switch (opcode) {
3856 	case BPF_JEQ:
3857 		/* If this is false then we know nothing Jon Snow, but if it is
3858 		 * true then we know for sure.
3859 		 */
3860 		__mark_reg_known(true_reg, val);
3861 		break;
3862 	case BPF_JNE:
3863 		/* If this is true we know nothing Jon Snow, but if it is false
3864 		 * we know the value for sure;
3865 		 */
3866 		__mark_reg_known(false_reg, val);
3867 		break;
3868 	case BPF_JGT:
3869 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3870 		false_reg->umin_value = max(false_reg->umin_value, val);
3871 		break;
3872 	case BPF_JSGT:
3873 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3874 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3875 		break;
3876 	case BPF_JLT:
3877 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3878 		false_reg->umax_value = min(false_reg->umax_value, val);
3879 		break;
3880 	case BPF_JSLT:
3881 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3882 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3883 		break;
3884 	case BPF_JGE:
3885 		true_reg->umax_value = min(true_reg->umax_value, val);
3886 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3887 		break;
3888 	case BPF_JSGE:
3889 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3890 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3891 		break;
3892 	case BPF_JLE:
3893 		true_reg->umin_value = max(true_reg->umin_value, val);
3894 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3895 		break;
3896 	case BPF_JSLE:
3897 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3898 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3899 		break;
3900 	default:
3901 		break;
3902 	}
3903 
3904 	__reg_deduce_bounds(false_reg);
3905 	__reg_deduce_bounds(true_reg);
3906 	/* We might have learned some bits from the bounds. */
3907 	__reg_bound_offset(false_reg);
3908 	__reg_bound_offset(true_reg);
3909 	/* Intersecting with the old var_off might have improved our bounds
3910 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3911 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3912 	 */
3913 	__update_reg_bounds(false_reg);
3914 	__update_reg_bounds(true_reg);
3915 }
3916 
3917 /* Regs are known to be equal, so intersect their min/max/var_off */
3918 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3919 				  struct bpf_reg_state *dst_reg)
3920 {
3921 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3922 							dst_reg->umin_value);
3923 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3924 							dst_reg->umax_value);
3925 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3926 							dst_reg->smin_value);
3927 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3928 							dst_reg->smax_value);
3929 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3930 							     dst_reg->var_off);
3931 	/* We might have learned new bounds from the var_off. */
3932 	__update_reg_bounds(src_reg);
3933 	__update_reg_bounds(dst_reg);
3934 	/* We might have learned something about the sign bit. */
3935 	__reg_deduce_bounds(src_reg);
3936 	__reg_deduce_bounds(dst_reg);
3937 	/* We might have learned some bits from the bounds. */
3938 	__reg_bound_offset(src_reg);
3939 	__reg_bound_offset(dst_reg);
3940 	/* Intersecting with the old var_off might have improved our bounds
3941 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3942 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3943 	 */
3944 	__update_reg_bounds(src_reg);
3945 	__update_reg_bounds(dst_reg);
3946 }
3947 
3948 static void reg_combine_min_max(struct bpf_reg_state *true_src,
3949 				struct bpf_reg_state *true_dst,
3950 				struct bpf_reg_state *false_src,
3951 				struct bpf_reg_state *false_dst,
3952 				u8 opcode)
3953 {
3954 	switch (opcode) {
3955 	case BPF_JEQ:
3956 		__reg_combine_min_max(true_src, true_dst);
3957 		break;
3958 	case BPF_JNE:
3959 		__reg_combine_min_max(false_src, false_dst);
3960 		break;
3961 	}
3962 }
3963 
3964 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
3965 				 struct bpf_reg_state *reg, u32 id,
3966 				 bool is_null)
3967 {
3968 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
3969 		/* Old offset (both fixed and variable parts) should
3970 		 * have been known-zero, because we don't allow pointer
3971 		 * arithmetic on pointers that might be NULL.
3972 		 */
3973 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3974 				 !tnum_equals_const(reg->var_off, 0) ||
3975 				 reg->off)) {
3976 			__mark_reg_known_zero(reg);
3977 			reg->off = 0;
3978 		}
3979 		if (is_null) {
3980 			reg->type = SCALAR_VALUE;
3981 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3982 			if (reg->map_ptr->inner_map_meta) {
3983 				reg->type = CONST_PTR_TO_MAP;
3984 				reg->map_ptr = reg->map_ptr->inner_map_meta;
3985 			} else {
3986 				reg->type = PTR_TO_MAP_VALUE;
3987 			}
3988 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
3989 			reg->type = PTR_TO_SOCKET;
3990 		}
3991 		if (is_null || !reg_is_refcounted(reg)) {
3992 			/* We don't need id from this point onwards anymore,
3993 			 * thus we should better reset it, so that state
3994 			 * pruning has chances to take effect.
3995 			 */
3996 			reg->id = 0;
3997 		}
3998 	}
3999 }
4000 
4001 /* The logic is similar to find_good_pkt_pointers(), both could eventually
4002  * be folded together at some point.
4003  */
4004 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4005 				  bool is_null)
4006 {
4007 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4008 	struct bpf_reg_state *reg, *regs = state->regs;
4009 	u32 id = regs[regno].id;
4010 	int i, j;
4011 
4012 	if (reg_is_refcounted_or_null(&regs[regno]) && is_null)
4013 		__release_reference_state(state, id);
4014 
4015 	for (i = 0; i < MAX_BPF_REG; i++)
4016 		mark_ptr_or_null_reg(state, &regs[i], id, is_null);
4017 
4018 	for (j = 0; j <= vstate->curframe; j++) {
4019 		state = vstate->frame[j];
4020 		bpf_for_each_spilled_reg(i, state, reg) {
4021 			if (!reg)
4022 				continue;
4023 			mark_ptr_or_null_reg(state, reg, id, is_null);
4024 		}
4025 	}
4026 }
4027 
4028 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4029 				   struct bpf_reg_state *dst_reg,
4030 				   struct bpf_reg_state *src_reg,
4031 				   struct bpf_verifier_state *this_branch,
4032 				   struct bpf_verifier_state *other_branch)
4033 {
4034 	if (BPF_SRC(insn->code) != BPF_X)
4035 		return false;
4036 
4037 	switch (BPF_OP(insn->code)) {
4038 	case BPF_JGT:
4039 		if ((dst_reg->type == PTR_TO_PACKET &&
4040 		     src_reg->type == PTR_TO_PACKET_END) ||
4041 		    (dst_reg->type == PTR_TO_PACKET_META &&
4042 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4043 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4044 			find_good_pkt_pointers(this_branch, dst_reg,
4045 					       dst_reg->type, false);
4046 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4047 			    src_reg->type == PTR_TO_PACKET) ||
4048 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4049 			    src_reg->type == PTR_TO_PACKET_META)) {
4050 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
4051 			find_good_pkt_pointers(other_branch, src_reg,
4052 					       src_reg->type, true);
4053 		} else {
4054 			return false;
4055 		}
4056 		break;
4057 	case BPF_JLT:
4058 		if ((dst_reg->type == PTR_TO_PACKET &&
4059 		     src_reg->type == PTR_TO_PACKET_END) ||
4060 		    (dst_reg->type == PTR_TO_PACKET_META &&
4061 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4062 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4063 			find_good_pkt_pointers(other_branch, dst_reg,
4064 					       dst_reg->type, true);
4065 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4066 			    src_reg->type == PTR_TO_PACKET) ||
4067 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4068 			    src_reg->type == PTR_TO_PACKET_META)) {
4069 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
4070 			find_good_pkt_pointers(this_branch, src_reg,
4071 					       src_reg->type, false);
4072 		} else {
4073 			return false;
4074 		}
4075 		break;
4076 	case BPF_JGE:
4077 		if ((dst_reg->type == PTR_TO_PACKET &&
4078 		     src_reg->type == PTR_TO_PACKET_END) ||
4079 		    (dst_reg->type == PTR_TO_PACKET_META &&
4080 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4081 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4082 			find_good_pkt_pointers(this_branch, dst_reg,
4083 					       dst_reg->type, true);
4084 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4085 			    src_reg->type == PTR_TO_PACKET) ||
4086 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4087 			    src_reg->type == PTR_TO_PACKET_META)) {
4088 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4089 			find_good_pkt_pointers(other_branch, src_reg,
4090 					       src_reg->type, false);
4091 		} else {
4092 			return false;
4093 		}
4094 		break;
4095 	case BPF_JLE:
4096 		if ((dst_reg->type == PTR_TO_PACKET &&
4097 		     src_reg->type == PTR_TO_PACKET_END) ||
4098 		    (dst_reg->type == PTR_TO_PACKET_META &&
4099 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4100 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4101 			find_good_pkt_pointers(other_branch, dst_reg,
4102 					       dst_reg->type, false);
4103 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4104 			    src_reg->type == PTR_TO_PACKET) ||
4105 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4106 			    src_reg->type == PTR_TO_PACKET_META)) {
4107 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4108 			find_good_pkt_pointers(this_branch, src_reg,
4109 					       src_reg->type, true);
4110 		} else {
4111 			return false;
4112 		}
4113 		break;
4114 	default:
4115 		return false;
4116 	}
4117 
4118 	return true;
4119 }
4120 
4121 static int check_cond_jmp_op(struct bpf_verifier_env *env,
4122 			     struct bpf_insn *insn, int *insn_idx)
4123 {
4124 	struct bpf_verifier_state *this_branch = env->cur_state;
4125 	struct bpf_verifier_state *other_branch;
4126 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4127 	struct bpf_reg_state *dst_reg, *other_branch_regs;
4128 	u8 opcode = BPF_OP(insn->code);
4129 	int err;
4130 
4131 	if (opcode > BPF_JSLE) {
4132 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
4133 		return -EINVAL;
4134 	}
4135 
4136 	if (BPF_SRC(insn->code) == BPF_X) {
4137 		if (insn->imm != 0) {
4138 			verbose(env, "BPF_JMP uses reserved fields\n");
4139 			return -EINVAL;
4140 		}
4141 
4142 		/* check src1 operand */
4143 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4144 		if (err)
4145 			return err;
4146 
4147 		if (is_pointer_value(env, insn->src_reg)) {
4148 			verbose(env, "R%d pointer comparison prohibited\n",
4149 				insn->src_reg);
4150 			return -EACCES;
4151 		}
4152 	} else {
4153 		if (insn->src_reg != BPF_REG_0) {
4154 			verbose(env, "BPF_JMP uses reserved fields\n");
4155 			return -EINVAL;
4156 		}
4157 	}
4158 
4159 	/* check src2 operand */
4160 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4161 	if (err)
4162 		return err;
4163 
4164 	dst_reg = &regs[insn->dst_reg];
4165 
4166 	/* detect if R == 0 where R was initialized to zero earlier */
4167 	if (BPF_SRC(insn->code) == BPF_K &&
4168 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
4169 	    dst_reg->type == SCALAR_VALUE &&
4170 	    tnum_is_const(dst_reg->var_off)) {
4171 		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
4172 		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
4173 			/* if (imm == imm) goto pc+off;
4174 			 * only follow the goto, ignore fall-through
4175 			 */
4176 			*insn_idx += insn->off;
4177 			return 0;
4178 		} else {
4179 			/* if (imm != imm) goto pc+off;
4180 			 * only follow fall-through branch, since
4181 			 * that's where the program will go
4182 			 */
4183 			return 0;
4184 		}
4185 	}
4186 
4187 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
4188 	if (!other_branch)
4189 		return -EFAULT;
4190 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
4191 
4192 	/* detect if we are comparing against a constant value so we can adjust
4193 	 * our min/max values for our dst register.
4194 	 * this is only legit if both are scalars (or pointers to the same
4195 	 * object, I suppose, but we don't support that right now), because
4196 	 * otherwise the different base pointers mean the offsets aren't
4197 	 * comparable.
4198 	 */
4199 	if (BPF_SRC(insn->code) == BPF_X) {
4200 		if (dst_reg->type == SCALAR_VALUE &&
4201 		    regs[insn->src_reg].type == SCALAR_VALUE) {
4202 			if (tnum_is_const(regs[insn->src_reg].var_off))
4203 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
4204 						dst_reg, regs[insn->src_reg].var_off.value,
4205 						opcode);
4206 			else if (tnum_is_const(dst_reg->var_off))
4207 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
4208 						    &regs[insn->src_reg],
4209 						    dst_reg->var_off.value, opcode);
4210 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
4211 				/* Comparing for equality, we can combine knowledge */
4212 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
4213 						    &other_branch_regs[insn->dst_reg],
4214 						    &regs[insn->src_reg],
4215 						    &regs[insn->dst_reg], opcode);
4216 		}
4217 	} else if (dst_reg->type == SCALAR_VALUE) {
4218 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
4219 					dst_reg, insn->imm, opcode);
4220 	}
4221 
4222 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
4223 	if (BPF_SRC(insn->code) == BPF_K &&
4224 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
4225 	    reg_type_may_be_null(dst_reg->type)) {
4226 		/* Mark all identical registers in each branch as either
4227 		 * safe or unknown depending R == 0 or R != 0 conditional.
4228 		 */
4229 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
4230 				      opcode == BPF_JNE);
4231 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
4232 				      opcode == BPF_JEQ);
4233 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
4234 					   this_branch, other_branch) &&
4235 		   is_pointer_value(env, insn->dst_reg)) {
4236 		verbose(env, "R%d pointer comparison prohibited\n",
4237 			insn->dst_reg);
4238 		return -EACCES;
4239 	}
4240 	if (env->log.level)
4241 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
4242 	return 0;
4243 }
4244 
4245 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
4246 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4247 {
4248 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4249 
4250 	return (struct bpf_map *) (unsigned long) imm64;
4251 }
4252 
4253 /* verify BPF_LD_IMM64 instruction */
4254 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
4255 {
4256 	struct bpf_reg_state *regs = cur_regs(env);
4257 	int err;
4258 
4259 	if (BPF_SIZE(insn->code) != BPF_DW) {
4260 		verbose(env, "invalid BPF_LD_IMM insn\n");
4261 		return -EINVAL;
4262 	}
4263 	if (insn->off != 0) {
4264 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
4265 		return -EINVAL;
4266 	}
4267 
4268 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
4269 	if (err)
4270 		return err;
4271 
4272 	if (insn->src_reg == 0) {
4273 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
4274 
4275 		regs[insn->dst_reg].type = SCALAR_VALUE;
4276 		__mark_reg_known(&regs[insn->dst_reg], imm);
4277 		return 0;
4278 	}
4279 
4280 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
4281 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
4282 
4283 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
4284 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
4285 	return 0;
4286 }
4287 
4288 static bool may_access_skb(enum bpf_prog_type type)
4289 {
4290 	switch (type) {
4291 	case BPF_PROG_TYPE_SOCKET_FILTER:
4292 	case BPF_PROG_TYPE_SCHED_CLS:
4293 	case BPF_PROG_TYPE_SCHED_ACT:
4294 		return true;
4295 	default:
4296 		return false;
4297 	}
4298 }
4299 
4300 /* verify safety of LD_ABS|LD_IND instructions:
4301  * - they can only appear in the programs where ctx == skb
4302  * - since they are wrappers of function calls, they scratch R1-R5 registers,
4303  *   preserve R6-R9, and store return value into R0
4304  *
4305  * Implicit input:
4306  *   ctx == skb == R6 == CTX
4307  *
4308  * Explicit input:
4309  *   SRC == any register
4310  *   IMM == 32-bit immediate
4311  *
4312  * Output:
4313  *   R0 - 8/16/32-bit skb data converted to cpu endianness
4314  */
4315 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
4316 {
4317 	struct bpf_reg_state *regs = cur_regs(env);
4318 	u8 mode = BPF_MODE(insn->code);
4319 	int i, err;
4320 
4321 	if (!may_access_skb(env->prog->type)) {
4322 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
4323 		return -EINVAL;
4324 	}
4325 
4326 	if (!env->ops->gen_ld_abs) {
4327 		verbose(env, "bpf verifier is misconfigured\n");
4328 		return -EINVAL;
4329 	}
4330 
4331 	if (env->subprog_cnt > 1) {
4332 		/* when program has LD_ABS insn JITs and interpreter assume
4333 		 * that r1 == ctx == skb which is not the case for callees
4334 		 * that can have arbitrary arguments. It's problematic
4335 		 * for main prog as well since JITs would need to analyze
4336 		 * all functions in order to make proper register save/restore
4337 		 * decisions in the main prog. Hence disallow LD_ABS with calls
4338 		 */
4339 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
4340 		return -EINVAL;
4341 	}
4342 
4343 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
4344 	    BPF_SIZE(insn->code) == BPF_DW ||
4345 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
4346 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
4347 		return -EINVAL;
4348 	}
4349 
4350 	/* check whether implicit source operand (register R6) is readable */
4351 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
4352 	if (err)
4353 		return err;
4354 
4355 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
4356 	 * gen_ld_abs() may terminate the program at runtime, leading to
4357 	 * reference leak.
4358 	 */
4359 	err = check_reference_leak(env);
4360 	if (err) {
4361 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
4362 		return err;
4363 	}
4364 
4365 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
4366 		verbose(env,
4367 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
4368 		return -EINVAL;
4369 	}
4370 
4371 	if (mode == BPF_IND) {
4372 		/* check explicit source operand */
4373 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4374 		if (err)
4375 			return err;
4376 	}
4377 
4378 	/* reset caller saved regs to unreadable */
4379 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4380 		mark_reg_not_init(env, regs, caller_saved[i]);
4381 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4382 	}
4383 
4384 	/* mark destination R0 register as readable, since it contains
4385 	 * the value fetched from the packet.
4386 	 * Already marked as written above.
4387 	 */
4388 	mark_reg_unknown(env, regs, BPF_REG_0);
4389 	return 0;
4390 }
4391 
4392 static int check_return_code(struct bpf_verifier_env *env)
4393 {
4394 	struct bpf_reg_state *reg;
4395 	struct tnum range = tnum_range(0, 1);
4396 
4397 	switch (env->prog->type) {
4398 	case BPF_PROG_TYPE_CGROUP_SKB:
4399 	case BPF_PROG_TYPE_CGROUP_SOCK:
4400 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
4401 	case BPF_PROG_TYPE_SOCK_OPS:
4402 	case BPF_PROG_TYPE_CGROUP_DEVICE:
4403 		break;
4404 	default:
4405 		return 0;
4406 	}
4407 
4408 	reg = cur_regs(env) + BPF_REG_0;
4409 	if (reg->type != SCALAR_VALUE) {
4410 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
4411 			reg_type_str[reg->type]);
4412 		return -EINVAL;
4413 	}
4414 
4415 	if (!tnum_in(range, reg->var_off)) {
4416 		verbose(env, "At program exit the register R0 ");
4417 		if (!tnum_is_unknown(reg->var_off)) {
4418 			char tn_buf[48];
4419 
4420 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4421 			verbose(env, "has value %s", tn_buf);
4422 		} else {
4423 			verbose(env, "has unknown scalar value");
4424 		}
4425 		verbose(env, " should have been 0 or 1\n");
4426 		return -EINVAL;
4427 	}
4428 	return 0;
4429 }
4430 
4431 /* non-recursive DFS pseudo code
4432  * 1  procedure DFS-iterative(G,v):
4433  * 2      label v as discovered
4434  * 3      let S be a stack
4435  * 4      S.push(v)
4436  * 5      while S is not empty
4437  * 6            t <- S.pop()
4438  * 7            if t is what we're looking for:
4439  * 8                return t
4440  * 9            for all edges e in G.adjacentEdges(t) do
4441  * 10               if edge e is already labelled
4442  * 11                   continue with the next edge
4443  * 12               w <- G.adjacentVertex(t,e)
4444  * 13               if vertex w is not discovered and not explored
4445  * 14                   label e as tree-edge
4446  * 15                   label w as discovered
4447  * 16                   S.push(w)
4448  * 17                   continue at 5
4449  * 18               else if vertex w is discovered
4450  * 19                   label e as back-edge
4451  * 20               else
4452  * 21                   // vertex w is explored
4453  * 22                   label e as forward- or cross-edge
4454  * 23           label t as explored
4455  * 24           S.pop()
4456  *
4457  * convention:
4458  * 0x10 - discovered
4459  * 0x11 - discovered and fall-through edge labelled
4460  * 0x12 - discovered and fall-through and branch edges labelled
4461  * 0x20 - explored
4462  */
4463 
4464 enum {
4465 	DISCOVERED = 0x10,
4466 	EXPLORED = 0x20,
4467 	FALLTHROUGH = 1,
4468 	BRANCH = 2,
4469 };
4470 
4471 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4472 
4473 static int *insn_stack;	/* stack of insns to process */
4474 static int cur_stack;	/* current stack index */
4475 static int *insn_state;
4476 
4477 /* t, w, e - match pseudo-code above:
4478  * t - index of current instruction
4479  * w - next instruction
4480  * e - edge
4481  */
4482 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4483 {
4484 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4485 		return 0;
4486 
4487 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4488 		return 0;
4489 
4490 	if (w < 0 || w >= env->prog->len) {
4491 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
4492 		return -EINVAL;
4493 	}
4494 
4495 	if (e == BRANCH)
4496 		/* mark branch target for state pruning */
4497 		env->explored_states[w] = STATE_LIST_MARK;
4498 
4499 	if (insn_state[w] == 0) {
4500 		/* tree-edge */
4501 		insn_state[t] = DISCOVERED | e;
4502 		insn_state[w] = DISCOVERED;
4503 		if (cur_stack >= env->prog->len)
4504 			return -E2BIG;
4505 		insn_stack[cur_stack++] = w;
4506 		return 1;
4507 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4508 		verbose(env, "back-edge from insn %d to %d\n", t, w);
4509 		return -EINVAL;
4510 	} else if (insn_state[w] == EXPLORED) {
4511 		/* forward- or cross-edge */
4512 		insn_state[t] = DISCOVERED | e;
4513 	} else {
4514 		verbose(env, "insn state internal bug\n");
4515 		return -EFAULT;
4516 	}
4517 	return 0;
4518 }
4519 
4520 /* non-recursive depth-first-search to detect loops in BPF program
4521  * loop == back-edge in directed graph
4522  */
4523 static int check_cfg(struct bpf_verifier_env *env)
4524 {
4525 	struct bpf_insn *insns = env->prog->insnsi;
4526 	int insn_cnt = env->prog->len;
4527 	int ret = 0;
4528 	int i, t;
4529 
4530 	ret = check_subprogs(env);
4531 	if (ret < 0)
4532 		return ret;
4533 
4534 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4535 	if (!insn_state)
4536 		return -ENOMEM;
4537 
4538 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4539 	if (!insn_stack) {
4540 		kfree(insn_state);
4541 		return -ENOMEM;
4542 	}
4543 
4544 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4545 	insn_stack[0] = 0; /* 0 is the first instruction */
4546 	cur_stack = 1;
4547 
4548 peek_stack:
4549 	if (cur_stack == 0)
4550 		goto check_state;
4551 	t = insn_stack[cur_stack - 1];
4552 
4553 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4554 		u8 opcode = BPF_OP(insns[t].code);
4555 
4556 		if (opcode == BPF_EXIT) {
4557 			goto mark_explored;
4558 		} else if (opcode == BPF_CALL) {
4559 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4560 			if (ret == 1)
4561 				goto peek_stack;
4562 			else if (ret < 0)
4563 				goto err_free;
4564 			if (t + 1 < insn_cnt)
4565 				env->explored_states[t + 1] = STATE_LIST_MARK;
4566 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4567 				env->explored_states[t] = STATE_LIST_MARK;
4568 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4569 				if (ret == 1)
4570 					goto peek_stack;
4571 				else if (ret < 0)
4572 					goto err_free;
4573 			}
4574 		} else if (opcode == BPF_JA) {
4575 			if (BPF_SRC(insns[t].code) != BPF_K) {
4576 				ret = -EINVAL;
4577 				goto err_free;
4578 			}
4579 			/* unconditional jump with single edge */
4580 			ret = push_insn(t, t + insns[t].off + 1,
4581 					FALLTHROUGH, env);
4582 			if (ret == 1)
4583 				goto peek_stack;
4584 			else if (ret < 0)
4585 				goto err_free;
4586 			/* tell verifier to check for equivalent states
4587 			 * after every call and jump
4588 			 */
4589 			if (t + 1 < insn_cnt)
4590 				env->explored_states[t + 1] = STATE_LIST_MARK;
4591 		} else {
4592 			/* conditional jump with two edges */
4593 			env->explored_states[t] = STATE_LIST_MARK;
4594 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4595 			if (ret == 1)
4596 				goto peek_stack;
4597 			else if (ret < 0)
4598 				goto err_free;
4599 
4600 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4601 			if (ret == 1)
4602 				goto peek_stack;
4603 			else if (ret < 0)
4604 				goto err_free;
4605 		}
4606 	} else {
4607 		/* all other non-branch instructions with single
4608 		 * fall-through edge
4609 		 */
4610 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
4611 		if (ret == 1)
4612 			goto peek_stack;
4613 		else if (ret < 0)
4614 			goto err_free;
4615 	}
4616 
4617 mark_explored:
4618 	insn_state[t] = EXPLORED;
4619 	if (cur_stack-- <= 0) {
4620 		verbose(env, "pop stack internal bug\n");
4621 		ret = -EFAULT;
4622 		goto err_free;
4623 	}
4624 	goto peek_stack;
4625 
4626 check_state:
4627 	for (i = 0; i < insn_cnt; i++) {
4628 		if (insn_state[i] != EXPLORED) {
4629 			verbose(env, "unreachable insn %d\n", i);
4630 			ret = -EINVAL;
4631 			goto err_free;
4632 		}
4633 	}
4634 	ret = 0; /* cfg looks good */
4635 
4636 err_free:
4637 	kfree(insn_state);
4638 	kfree(insn_stack);
4639 	return ret;
4640 }
4641 
4642 /* check %cur's range satisfies %old's */
4643 static bool range_within(struct bpf_reg_state *old,
4644 			 struct bpf_reg_state *cur)
4645 {
4646 	return old->umin_value <= cur->umin_value &&
4647 	       old->umax_value >= cur->umax_value &&
4648 	       old->smin_value <= cur->smin_value &&
4649 	       old->smax_value >= cur->smax_value;
4650 }
4651 
4652 /* Maximum number of register states that can exist at once */
4653 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4654 struct idpair {
4655 	u32 old;
4656 	u32 cur;
4657 };
4658 
4659 /* If in the old state two registers had the same id, then they need to have
4660  * the same id in the new state as well.  But that id could be different from
4661  * the old state, so we need to track the mapping from old to new ids.
4662  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4663  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
4664  * regs with a different old id could still have new id 9, we don't care about
4665  * that.
4666  * So we look through our idmap to see if this old id has been seen before.  If
4667  * so, we require the new id to match; otherwise, we add the id pair to the map.
4668  */
4669 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
4670 {
4671 	unsigned int i;
4672 
4673 	for (i = 0; i < ID_MAP_SIZE; i++) {
4674 		if (!idmap[i].old) {
4675 			/* Reached an empty slot; haven't seen this id before */
4676 			idmap[i].old = old_id;
4677 			idmap[i].cur = cur_id;
4678 			return true;
4679 		}
4680 		if (idmap[i].old == old_id)
4681 			return idmap[i].cur == cur_id;
4682 	}
4683 	/* We ran out of idmap slots, which should be impossible */
4684 	WARN_ON_ONCE(1);
4685 	return false;
4686 }
4687 
4688 /* Returns true if (rold safe implies rcur safe) */
4689 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4690 		    struct idpair *idmap)
4691 {
4692 	bool equal;
4693 
4694 	if (!(rold->live & REG_LIVE_READ))
4695 		/* explored state didn't use this */
4696 		return true;
4697 
4698 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
4699 
4700 	if (rold->type == PTR_TO_STACK)
4701 		/* two stack pointers are equal only if they're pointing to
4702 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
4703 		 */
4704 		return equal && rold->frameno == rcur->frameno;
4705 
4706 	if (equal)
4707 		return true;
4708 
4709 	if (rold->type == NOT_INIT)
4710 		/* explored state can't have used this */
4711 		return true;
4712 	if (rcur->type == NOT_INIT)
4713 		return false;
4714 	switch (rold->type) {
4715 	case SCALAR_VALUE:
4716 		if (rcur->type == SCALAR_VALUE) {
4717 			/* new val must satisfy old val knowledge */
4718 			return range_within(rold, rcur) &&
4719 			       tnum_in(rold->var_off, rcur->var_off);
4720 		} else {
4721 			/* We're trying to use a pointer in place of a scalar.
4722 			 * Even if the scalar was unbounded, this could lead to
4723 			 * pointer leaks because scalars are allowed to leak
4724 			 * while pointers are not. We could make this safe in
4725 			 * special cases if root is calling us, but it's
4726 			 * probably not worth the hassle.
4727 			 */
4728 			return false;
4729 		}
4730 	case PTR_TO_MAP_VALUE:
4731 		/* If the new min/max/var_off satisfy the old ones and
4732 		 * everything else matches, we are OK.
4733 		 * We don't care about the 'id' value, because nothing
4734 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4735 		 */
4736 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4737 		       range_within(rold, rcur) &&
4738 		       tnum_in(rold->var_off, rcur->var_off);
4739 	case PTR_TO_MAP_VALUE_OR_NULL:
4740 		/* a PTR_TO_MAP_VALUE could be safe to use as a
4741 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4742 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4743 		 * checked, doing so could have affected others with the same
4744 		 * id, and we can't check for that because we lost the id when
4745 		 * we converted to a PTR_TO_MAP_VALUE.
4746 		 */
4747 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4748 			return false;
4749 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4750 			return false;
4751 		/* Check our ids match any regs they're supposed to */
4752 		return check_ids(rold->id, rcur->id, idmap);
4753 	case PTR_TO_PACKET_META:
4754 	case PTR_TO_PACKET:
4755 		if (rcur->type != rold->type)
4756 			return false;
4757 		/* We must have at least as much range as the old ptr
4758 		 * did, so that any accesses which were safe before are
4759 		 * still safe.  This is true even if old range < old off,
4760 		 * since someone could have accessed through (ptr - k), or
4761 		 * even done ptr -= k in a register, to get a safe access.
4762 		 */
4763 		if (rold->range > rcur->range)
4764 			return false;
4765 		/* If the offsets don't match, we can't trust our alignment;
4766 		 * nor can we be sure that we won't fall out of range.
4767 		 */
4768 		if (rold->off != rcur->off)
4769 			return false;
4770 		/* id relations must be preserved */
4771 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4772 			return false;
4773 		/* new val must satisfy old val knowledge */
4774 		return range_within(rold, rcur) &&
4775 		       tnum_in(rold->var_off, rcur->var_off);
4776 	case PTR_TO_CTX:
4777 	case CONST_PTR_TO_MAP:
4778 	case PTR_TO_PACKET_END:
4779 	case PTR_TO_FLOW_KEYS:
4780 	case PTR_TO_SOCKET:
4781 	case PTR_TO_SOCKET_OR_NULL:
4782 		/* Only valid matches are exact, which memcmp() above
4783 		 * would have accepted
4784 		 */
4785 	default:
4786 		/* Don't know what's going on, just say it's not safe */
4787 		return false;
4788 	}
4789 
4790 	/* Shouldn't get here; if we do, say it's not safe */
4791 	WARN_ON_ONCE(1);
4792 	return false;
4793 }
4794 
4795 static bool stacksafe(struct bpf_func_state *old,
4796 		      struct bpf_func_state *cur,
4797 		      struct idpair *idmap)
4798 {
4799 	int i, spi;
4800 
4801 	/* if explored stack has more populated slots than current stack
4802 	 * such stacks are not equivalent
4803 	 */
4804 	if (old->allocated_stack > cur->allocated_stack)
4805 		return false;
4806 
4807 	/* walk slots of the explored stack and ignore any additional
4808 	 * slots in the current stack, since explored(safe) state
4809 	 * didn't use them
4810 	 */
4811 	for (i = 0; i < old->allocated_stack; i++) {
4812 		spi = i / BPF_REG_SIZE;
4813 
4814 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4815 			/* explored state didn't use this */
4816 			continue;
4817 
4818 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4819 			continue;
4820 		/* if old state was safe with misc data in the stack
4821 		 * it will be safe with zero-initialized stack.
4822 		 * The opposite is not true
4823 		 */
4824 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4825 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4826 			continue;
4827 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4828 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4829 			/* Ex: old explored (safe) state has STACK_SPILL in
4830 			 * this stack slot, but current has has STACK_MISC ->
4831 			 * this verifier states are not equivalent,
4832 			 * return false to continue verification of this path
4833 			 */
4834 			return false;
4835 		if (i % BPF_REG_SIZE)
4836 			continue;
4837 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
4838 			continue;
4839 		if (!regsafe(&old->stack[spi].spilled_ptr,
4840 			     &cur->stack[spi].spilled_ptr,
4841 			     idmap))
4842 			/* when explored and current stack slot are both storing
4843 			 * spilled registers, check that stored pointers types
4844 			 * are the same as well.
4845 			 * Ex: explored safe path could have stored
4846 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4847 			 * but current path has stored:
4848 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4849 			 * such verifier states are not equivalent.
4850 			 * return false to continue verification of this path
4851 			 */
4852 			return false;
4853 	}
4854 	return true;
4855 }
4856 
4857 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
4858 {
4859 	if (old->acquired_refs != cur->acquired_refs)
4860 		return false;
4861 	return !memcmp(old->refs, cur->refs,
4862 		       sizeof(*old->refs) * old->acquired_refs);
4863 }
4864 
4865 /* compare two verifier states
4866  *
4867  * all states stored in state_list are known to be valid, since
4868  * verifier reached 'bpf_exit' instruction through them
4869  *
4870  * this function is called when verifier exploring different branches of
4871  * execution popped from the state stack. If it sees an old state that has
4872  * more strict register state and more strict stack state then this execution
4873  * branch doesn't need to be explored further, since verifier already
4874  * concluded that more strict state leads to valid finish.
4875  *
4876  * Therefore two states are equivalent if register state is more conservative
4877  * and explored stack state is more conservative than the current one.
4878  * Example:
4879  *       explored                   current
4880  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4881  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4882  *
4883  * In other words if current stack state (one being explored) has more
4884  * valid slots than old one that already passed validation, it means
4885  * the verifier can stop exploring and conclude that current state is valid too
4886  *
4887  * Similarly with registers. If explored state has register type as invalid
4888  * whereas register type in current state is meaningful, it means that
4889  * the current state will reach 'bpf_exit' instruction safely
4890  */
4891 static bool func_states_equal(struct bpf_func_state *old,
4892 			      struct bpf_func_state *cur)
4893 {
4894 	struct idpair *idmap;
4895 	bool ret = false;
4896 	int i;
4897 
4898 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4899 	/* If we failed to allocate the idmap, just say it's not safe */
4900 	if (!idmap)
4901 		return false;
4902 
4903 	for (i = 0; i < MAX_BPF_REG; i++) {
4904 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4905 			goto out_free;
4906 	}
4907 
4908 	if (!stacksafe(old, cur, idmap))
4909 		goto out_free;
4910 
4911 	if (!refsafe(old, cur))
4912 		goto out_free;
4913 	ret = true;
4914 out_free:
4915 	kfree(idmap);
4916 	return ret;
4917 }
4918 
4919 static bool states_equal(struct bpf_verifier_env *env,
4920 			 struct bpf_verifier_state *old,
4921 			 struct bpf_verifier_state *cur)
4922 {
4923 	int i;
4924 
4925 	if (old->curframe != cur->curframe)
4926 		return false;
4927 
4928 	/* for states to be equal callsites have to be the same
4929 	 * and all frame states need to be equivalent
4930 	 */
4931 	for (i = 0; i <= old->curframe; i++) {
4932 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
4933 			return false;
4934 		if (!func_states_equal(old->frame[i], cur->frame[i]))
4935 			return false;
4936 	}
4937 	return true;
4938 }
4939 
4940 /* A write screens off any subsequent reads; but write marks come from the
4941  * straight-line code between a state and its parent.  When we arrive at an
4942  * equivalent state (jump target or such) we didn't arrive by the straight-line
4943  * code, so read marks in the state must propagate to the parent regardless
4944  * of the state's write marks. That's what 'parent == state->parent' comparison
4945  * in mark_reg_read() is for.
4946  */
4947 static int propagate_liveness(struct bpf_verifier_env *env,
4948 			      const struct bpf_verifier_state *vstate,
4949 			      struct bpf_verifier_state *vparent)
4950 {
4951 	int i, frame, err = 0;
4952 	struct bpf_func_state *state, *parent;
4953 
4954 	if (vparent->curframe != vstate->curframe) {
4955 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
4956 		     vparent->curframe, vstate->curframe);
4957 		return -EFAULT;
4958 	}
4959 	/* Propagate read liveness of registers... */
4960 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4961 	/* We don't need to worry about FP liveness because it's read-only */
4962 	for (i = 0; i < BPF_REG_FP; i++) {
4963 		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4964 			continue;
4965 		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4966 			err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i],
4967 					    &vparent->frame[vstate->curframe]->regs[i]);
4968 			if (err)
4969 				return err;
4970 		}
4971 	}
4972 
4973 	/* ... and stack slots */
4974 	for (frame = 0; frame <= vstate->curframe; frame++) {
4975 		state = vstate->frame[frame];
4976 		parent = vparent->frame[frame];
4977 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4978 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
4979 			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4980 				continue;
4981 			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4982 				mark_reg_read(env, &state->stack[i].spilled_ptr,
4983 					      &parent->stack[i].spilled_ptr);
4984 		}
4985 	}
4986 	return err;
4987 }
4988 
4989 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4990 {
4991 	struct bpf_verifier_state_list *new_sl;
4992 	struct bpf_verifier_state_list *sl;
4993 	struct bpf_verifier_state *cur = env->cur_state, *new;
4994 	int i, j, err;
4995 
4996 	sl = env->explored_states[insn_idx];
4997 	if (!sl)
4998 		/* this 'insn_idx' instruction wasn't marked, so we will not
4999 		 * be doing state search here
5000 		 */
5001 		return 0;
5002 
5003 	while (sl != STATE_LIST_MARK) {
5004 		if (states_equal(env, &sl->state, cur)) {
5005 			/* reached equivalent register/stack state,
5006 			 * prune the search.
5007 			 * Registers read by the continuation are read by us.
5008 			 * If we have any write marks in env->cur_state, they
5009 			 * will prevent corresponding reads in the continuation
5010 			 * from reaching our parent (an explored_state).  Our
5011 			 * own state will get the read marks recorded, but
5012 			 * they'll be immediately forgotten as we're pruning
5013 			 * this state and will pop a new one.
5014 			 */
5015 			err = propagate_liveness(env, &sl->state, cur);
5016 			if (err)
5017 				return err;
5018 			return 1;
5019 		}
5020 		sl = sl->next;
5021 	}
5022 
5023 	/* there were no equivalent states, remember current one.
5024 	 * technically the current state is not proven to be safe yet,
5025 	 * but it will either reach outer most bpf_exit (which means it's safe)
5026 	 * or it will be rejected. Since there are no loops, we won't be
5027 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
5028 	 * again on the way to bpf_exit
5029 	 */
5030 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
5031 	if (!new_sl)
5032 		return -ENOMEM;
5033 
5034 	/* add new state to the head of linked list */
5035 	new = &new_sl->state;
5036 	err = copy_verifier_state(new, cur);
5037 	if (err) {
5038 		free_verifier_state(new, false);
5039 		kfree(new_sl);
5040 		return err;
5041 	}
5042 	new_sl->next = env->explored_states[insn_idx];
5043 	env->explored_states[insn_idx] = new_sl;
5044 	/* connect new state to parentage chain */
5045 	for (i = 0; i < BPF_REG_FP; i++)
5046 		cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i];
5047 	/* clear write marks in current state: the writes we did are not writes
5048 	 * our child did, so they don't screen off its reads from us.
5049 	 * (There are no read marks in current state, because reads always mark
5050 	 * their parent and current state never has children yet.  Only
5051 	 * explored_states can get read marks.)
5052 	 */
5053 	for (i = 0; i < BPF_REG_FP; i++)
5054 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
5055 
5056 	/* all stack frames are accessible from callee, clear them all */
5057 	for (j = 0; j <= cur->curframe; j++) {
5058 		struct bpf_func_state *frame = cur->frame[j];
5059 		struct bpf_func_state *newframe = new->frame[j];
5060 
5061 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
5062 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
5063 			frame->stack[i].spilled_ptr.parent =
5064 						&newframe->stack[i].spilled_ptr;
5065 		}
5066 	}
5067 	return 0;
5068 }
5069 
5070 /* Return true if it's OK to have the same insn return a different type. */
5071 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
5072 {
5073 	switch (type) {
5074 	case PTR_TO_CTX:
5075 	case PTR_TO_SOCKET:
5076 	case PTR_TO_SOCKET_OR_NULL:
5077 		return false;
5078 	default:
5079 		return true;
5080 	}
5081 }
5082 
5083 /* If an instruction was previously used with particular pointer types, then we
5084  * need to be careful to avoid cases such as the below, where it may be ok
5085  * for one branch accessing the pointer, but not ok for the other branch:
5086  *
5087  * R1 = sock_ptr
5088  * goto X;
5089  * ...
5090  * R1 = some_other_valid_ptr;
5091  * goto X;
5092  * ...
5093  * R2 = *(u32 *)(R1 + 0);
5094  */
5095 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
5096 {
5097 	return src != prev && (!reg_type_mismatch_ok(src) ||
5098 			       !reg_type_mismatch_ok(prev));
5099 }
5100 
5101 static int do_check(struct bpf_verifier_env *env)
5102 {
5103 	struct bpf_verifier_state *state;
5104 	struct bpf_insn *insns = env->prog->insnsi;
5105 	struct bpf_reg_state *regs;
5106 	int insn_cnt = env->prog->len, i;
5107 	int insn_idx, prev_insn_idx = 0;
5108 	int insn_processed = 0;
5109 	bool do_print_state = false;
5110 
5111 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
5112 	if (!state)
5113 		return -ENOMEM;
5114 	state->curframe = 0;
5115 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
5116 	if (!state->frame[0]) {
5117 		kfree(state);
5118 		return -ENOMEM;
5119 	}
5120 	env->cur_state = state;
5121 	init_func_state(env, state->frame[0],
5122 			BPF_MAIN_FUNC /* callsite */,
5123 			0 /* frameno */,
5124 			0 /* subprogno, zero == main subprog */);
5125 	insn_idx = 0;
5126 	for (;;) {
5127 		struct bpf_insn *insn;
5128 		u8 class;
5129 		int err;
5130 
5131 		if (insn_idx >= insn_cnt) {
5132 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
5133 				insn_idx, insn_cnt);
5134 			return -EFAULT;
5135 		}
5136 
5137 		insn = &insns[insn_idx];
5138 		class = BPF_CLASS(insn->code);
5139 
5140 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
5141 			verbose(env,
5142 				"BPF program is too large. Processed %d insn\n",
5143 				insn_processed);
5144 			return -E2BIG;
5145 		}
5146 
5147 		err = is_state_visited(env, insn_idx);
5148 		if (err < 0)
5149 			return err;
5150 		if (err == 1) {
5151 			/* found equivalent state, can prune the search */
5152 			if (env->log.level) {
5153 				if (do_print_state)
5154 					verbose(env, "\nfrom %d to %d: safe\n",
5155 						prev_insn_idx, insn_idx);
5156 				else
5157 					verbose(env, "%d: safe\n", insn_idx);
5158 			}
5159 			goto process_bpf_exit;
5160 		}
5161 
5162 		if (need_resched())
5163 			cond_resched();
5164 
5165 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
5166 			if (env->log.level > 1)
5167 				verbose(env, "%d:", insn_idx);
5168 			else
5169 				verbose(env, "\nfrom %d to %d:",
5170 					prev_insn_idx, insn_idx);
5171 			print_verifier_state(env, state->frame[state->curframe]);
5172 			do_print_state = false;
5173 		}
5174 
5175 		if (env->log.level) {
5176 			const struct bpf_insn_cbs cbs = {
5177 				.cb_print	= verbose,
5178 				.private_data	= env,
5179 			};
5180 
5181 			verbose(env, "%d: ", insn_idx);
5182 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
5183 		}
5184 
5185 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
5186 			err = bpf_prog_offload_verify_insn(env, insn_idx,
5187 							   prev_insn_idx);
5188 			if (err)
5189 				return err;
5190 		}
5191 
5192 		regs = cur_regs(env);
5193 		env->insn_aux_data[insn_idx].seen = true;
5194 
5195 		if (class == BPF_ALU || class == BPF_ALU64) {
5196 			err = check_alu_op(env, insn);
5197 			if (err)
5198 				return err;
5199 
5200 		} else if (class == BPF_LDX) {
5201 			enum bpf_reg_type *prev_src_type, src_reg_type;
5202 
5203 			/* check for reserved fields is already done */
5204 
5205 			/* check src operand */
5206 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5207 			if (err)
5208 				return err;
5209 
5210 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5211 			if (err)
5212 				return err;
5213 
5214 			src_reg_type = regs[insn->src_reg].type;
5215 
5216 			/* check that memory (src_reg + off) is readable,
5217 			 * the state of dst_reg will be updated by this func
5218 			 */
5219 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
5220 					       BPF_SIZE(insn->code), BPF_READ,
5221 					       insn->dst_reg, false);
5222 			if (err)
5223 				return err;
5224 
5225 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
5226 
5227 			if (*prev_src_type == NOT_INIT) {
5228 				/* saw a valid insn
5229 				 * dst_reg = *(u32 *)(src_reg + off)
5230 				 * save type to validate intersecting paths
5231 				 */
5232 				*prev_src_type = src_reg_type;
5233 
5234 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
5235 				/* ABuser program is trying to use the same insn
5236 				 * dst_reg = *(u32*) (src_reg + off)
5237 				 * with different pointer types:
5238 				 * src_reg == ctx in one branch and
5239 				 * src_reg == stack|map in some other branch.
5240 				 * Reject it.
5241 				 */
5242 				verbose(env, "same insn cannot be used with different pointers\n");
5243 				return -EINVAL;
5244 			}
5245 
5246 		} else if (class == BPF_STX) {
5247 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
5248 
5249 			if (BPF_MODE(insn->code) == BPF_XADD) {
5250 				err = check_xadd(env, insn_idx, insn);
5251 				if (err)
5252 					return err;
5253 				insn_idx++;
5254 				continue;
5255 			}
5256 
5257 			/* check src1 operand */
5258 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5259 			if (err)
5260 				return err;
5261 			/* check src2 operand */
5262 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5263 			if (err)
5264 				return err;
5265 
5266 			dst_reg_type = regs[insn->dst_reg].type;
5267 
5268 			/* check that memory (dst_reg + off) is writeable */
5269 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5270 					       BPF_SIZE(insn->code), BPF_WRITE,
5271 					       insn->src_reg, false);
5272 			if (err)
5273 				return err;
5274 
5275 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
5276 
5277 			if (*prev_dst_type == NOT_INIT) {
5278 				*prev_dst_type = dst_reg_type;
5279 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
5280 				verbose(env, "same insn cannot be used with different pointers\n");
5281 				return -EINVAL;
5282 			}
5283 
5284 		} else if (class == BPF_ST) {
5285 			if (BPF_MODE(insn->code) != BPF_MEM ||
5286 			    insn->src_reg != BPF_REG_0) {
5287 				verbose(env, "BPF_ST uses reserved fields\n");
5288 				return -EINVAL;
5289 			}
5290 			/* check src operand */
5291 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5292 			if (err)
5293 				return err;
5294 
5295 			if (is_ctx_reg(env, insn->dst_reg)) {
5296 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
5297 					insn->dst_reg,
5298 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
5299 				return -EACCES;
5300 			}
5301 
5302 			/* check that memory (dst_reg + off) is writeable */
5303 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5304 					       BPF_SIZE(insn->code), BPF_WRITE,
5305 					       -1, false);
5306 			if (err)
5307 				return err;
5308 
5309 		} else if (class == BPF_JMP) {
5310 			u8 opcode = BPF_OP(insn->code);
5311 
5312 			if (opcode == BPF_CALL) {
5313 				if (BPF_SRC(insn->code) != BPF_K ||
5314 				    insn->off != 0 ||
5315 				    (insn->src_reg != BPF_REG_0 &&
5316 				     insn->src_reg != BPF_PSEUDO_CALL) ||
5317 				    insn->dst_reg != BPF_REG_0) {
5318 					verbose(env, "BPF_CALL uses reserved fields\n");
5319 					return -EINVAL;
5320 				}
5321 
5322 				if (insn->src_reg == BPF_PSEUDO_CALL)
5323 					err = check_func_call(env, insn, &insn_idx);
5324 				else
5325 					err = check_helper_call(env, insn->imm, insn_idx);
5326 				if (err)
5327 					return err;
5328 
5329 			} else if (opcode == BPF_JA) {
5330 				if (BPF_SRC(insn->code) != BPF_K ||
5331 				    insn->imm != 0 ||
5332 				    insn->src_reg != BPF_REG_0 ||
5333 				    insn->dst_reg != BPF_REG_0) {
5334 					verbose(env, "BPF_JA uses reserved fields\n");
5335 					return -EINVAL;
5336 				}
5337 
5338 				insn_idx += insn->off + 1;
5339 				continue;
5340 
5341 			} else if (opcode == BPF_EXIT) {
5342 				if (BPF_SRC(insn->code) != BPF_K ||
5343 				    insn->imm != 0 ||
5344 				    insn->src_reg != BPF_REG_0 ||
5345 				    insn->dst_reg != BPF_REG_0) {
5346 					verbose(env, "BPF_EXIT uses reserved fields\n");
5347 					return -EINVAL;
5348 				}
5349 
5350 				if (state->curframe) {
5351 					/* exit from nested function */
5352 					prev_insn_idx = insn_idx;
5353 					err = prepare_func_exit(env, &insn_idx);
5354 					if (err)
5355 						return err;
5356 					do_print_state = true;
5357 					continue;
5358 				}
5359 
5360 				err = check_reference_leak(env);
5361 				if (err)
5362 					return err;
5363 
5364 				/* eBPF calling convetion is such that R0 is used
5365 				 * to return the value from eBPF program.
5366 				 * Make sure that it's readable at this time
5367 				 * of bpf_exit, which means that program wrote
5368 				 * something into it earlier
5369 				 */
5370 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
5371 				if (err)
5372 					return err;
5373 
5374 				if (is_pointer_value(env, BPF_REG_0)) {
5375 					verbose(env, "R0 leaks addr as return value\n");
5376 					return -EACCES;
5377 				}
5378 
5379 				err = check_return_code(env);
5380 				if (err)
5381 					return err;
5382 process_bpf_exit:
5383 				err = pop_stack(env, &prev_insn_idx, &insn_idx);
5384 				if (err < 0) {
5385 					if (err != -ENOENT)
5386 						return err;
5387 					break;
5388 				} else {
5389 					do_print_state = true;
5390 					continue;
5391 				}
5392 			} else {
5393 				err = check_cond_jmp_op(env, insn, &insn_idx);
5394 				if (err)
5395 					return err;
5396 			}
5397 		} else if (class == BPF_LD) {
5398 			u8 mode = BPF_MODE(insn->code);
5399 
5400 			if (mode == BPF_ABS || mode == BPF_IND) {
5401 				err = check_ld_abs(env, insn);
5402 				if (err)
5403 					return err;
5404 
5405 			} else if (mode == BPF_IMM) {
5406 				err = check_ld_imm(env, insn);
5407 				if (err)
5408 					return err;
5409 
5410 				insn_idx++;
5411 				env->insn_aux_data[insn_idx].seen = true;
5412 			} else {
5413 				verbose(env, "invalid BPF_LD mode\n");
5414 				return -EINVAL;
5415 			}
5416 		} else {
5417 			verbose(env, "unknown insn class %d\n", class);
5418 			return -EINVAL;
5419 		}
5420 
5421 		insn_idx++;
5422 	}
5423 
5424 	verbose(env, "processed %d insns (limit %d), stack depth ",
5425 		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
5426 	for (i = 0; i < env->subprog_cnt; i++) {
5427 		u32 depth = env->subprog_info[i].stack_depth;
5428 
5429 		verbose(env, "%d", depth);
5430 		if (i + 1 < env->subprog_cnt)
5431 			verbose(env, "+");
5432 	}
5433 	verbose(env, "\n");
5434 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
5435 	return 0;
5436 }
5437 
5438 static int check_map_prealloc(struct bpf_map *map)
5439 {
5440 	return (map->map_type != BPF_MAP_TYPE_HASH &&
5441 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
5442 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
5443 		!(map->map_flags & BPF_F_NO_PREALLOC);
5444 }
5445 
5446 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
5447 					struct bpf_map *map,
5448 					struct bpf_prog *prog)
5449 
5450 {
5451 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
5452 	 * preallocated hash maps, since doing memory allocation
5453 	 * in overflow_handler can crash depending on where nmi got
5454 	 * triggered.
5455 	 */
5456 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
5457 		if (!check_map_prealloc(map)) {
5458 			verbose(env, "perf_event programs can only use preallocated hash map\n");
5459 			return -EINVAL;
5460 		}
5461 		if (map->inner_map_meta &&
5462 		    !check_map_prealloc(map->inner_map_meta)) {
5463 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
5464 			return -EINVAL;
5465 		}
5466 	}
5467 
5468 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
5469 	    !bpf_offload_prog_map_match(prog, map)) {
5470 		verbose(env, "offload device mismatch between prog and map\n");
5471 		return -EINVAL;
5472 	}
5473 
5474 	return 0;
5475 }
5476 
5477 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
5478 {
5479 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
5480 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
5481 }
5482 
5483 /* look for pseudo eBPF instructions that access map FDs and
5484  * replace them with actual map pointers
5485  */
5486 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
5487 {
5488 	struct bpf_insn *insn = env->prog->insnsi;
5489 	int insn_cnt = env->prog->len;
5490 	int i, j, err;
5491 
5492 	err = bpf_prog_calc_tag(env->prog);
5493 	if (err)
5494 		return err;
5495 
5496 	for (i = 0; i < insn_cnt; i++, insn++) {
5497 		if (BPF_CLASS(insn->code) == BPF_LDX &&
5498 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
5499 			verbose(env, "BPF_LDX uses reserved fields\n");
5500 			return -EINVAL;
5501 		}
5502 
5503 		if (BPF_CLASS(insn->code) == BPF_STX &&
5504 		    ((BPF_MODE(insn->code) != BPF_MEM &&
5505 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
5506 			verbose(env, "BPF_STX uses reserved fields\n");
5507 			return -EINVAL;
5508 		}
5509 
5510 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5511 			struct bpf_map *map;
5512 			struct fd f;
5513 
5514 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
5515 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5516 			    insn[1].off != 0) {
5517 				verbose(env, "invalid bpf_ld_imm64 insn\n");
5518 				return -EINVAL;
5519 			}
5520 
5521 			if (insn->src_reg == 0)
5522 				/* valid generic load 64-bit imm */
5523 				goto next_insn;
5524 
5525 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5526 				verbose(env,
5527 					"unrecognized bpf_ld_imm64 insn\n");
5528 				return -EINVAL;
5529 			}
5530 
5531 			f = fdget(insn->imm);
5532 			map = __bpf_map_get(f);
5533 			if (IS_ERR(map)) {
5534 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
5535 					insn->imm);
5536 				return PTR_ERR(map);
5537 			}
5538 
5539 			err = check_map_prog_compatibility(env, map, env->prog);
5540 			if (err) {
5541 				fdput(f);
5542 				return err;
5543 			}
5544 
5545 			/* store map pointer inside BPF_LD_IMM64 instruction */
5546 			insn[0].imm = (u32) (unsigned long) map;
5547 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
5548 
5549 			/* check whether we recorded this map already */
5550 			for (j = 0; j < env->used_map_cnt; j++)
5551 				if (env->used_maps[j] == map) {
5552 					fdput(f);
5553 					goto next_insn;
5554 				}
5555 
5556 			if (env->used_map_cnt >= MAX_USED_MAPS) {
5557 				fdput(f);
5558 				return -E2BIG;
5559 			}
5560 
5561 			/* hold the map. If the program is rejected by verifier,
5562 			 * the map will be released by release_maps() or it
5563 			 * will be used by the valid program until it's unloaded
5564 			 * and all maps are released in free_used_maps()
5565 			 */
5566 			map = bpf_map_inc(map, false);
5567 			if (IS_ERR(map)) {
5568 				fdput(f);
5569 				return PTR_ERR(map);
5570 			}
5571 			env->used_maps[env->used_map_cnt++] = map;
5572 
5573 			if (bpf_map_is_cgroup_storage(map) &&
5574 			    bpf_cgroup_storage_assign(env->prog, map)) {
5575 				verbose(env, "only one cgroup storage of each type is allowed\n");
5576 				fdput(f);
5577 				return -EBUSY;
5578 			}
5579 
5580 			fdput(f);
5581 next_insn:
5582 			insn++;
5583 			i++;
5584 			continue;
5585 		}
5586 
5587 		/* Basic sanity check before we invest more work here. */
5588 		if (!bpf_opcode_in_insntable(insn->code)) {
5589 			verbose(env, "unknown opcode %02x\n", insn->code);
5590 			return -EINVAL;
5591 		}
5592 	}
5593 
5594 	/* now all pseudo BPF_LD_IMM64 instructions load valid
5595 	 * 'struct bpf_map *' into a register instead of user map_fd.
5596 	 * These pointers will be used later by verifier to validate map access.
5597 	 */
5598 	return 0;
5599 }
5600 
5601 /* drop refcnt of maps used by the rejected program */
5602 static void release_maps(struct bpf_verifier_env *env)
5603 {
5604 	enum bpf_cgroup_storage_type stype;
5605 	int i;
5606 
5607 	for_each_cgroup_storage_type(stype) {
5608 		if (!env->prog->aux->cgroup_storage[stype])
5609 			continue;
5610 		bpf_cgroup_storage_release(env->prog,
5611 			env->prog->aux->cgroup_storage[stype]);
5612 	}
5613 
5614 	for (i = 0; i < env->used_map_cnt; i++)
5615 		bpf_map_put(env->used_maps[i]);
5616 }
5617 
5618 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5619 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5620 {
5621 	struct bpf_insn *insn = env->prog->insnsi;
5622 	int insn_cnt = env->prog->len;
5623 	int i;
5624 
5625 	for (i = 0; i < insn_cnt; i++, insn++)
5626 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5627 			insn->src_reg = 0;
5628 }
5629 
5630 /* single env->prog->insni[off] instruction was replaced with the range
5631  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
5632  * [0, off) and [off, end) to new locations, so the patched range stays zero
5633  */
5634 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5635 				u32 off, u32 cnt)
5636 {
5637 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
5638 	int i;
5639 
5640 	if (cnt == 1)
5641 		return 0;
5642 	new_data = vzalloc(array_size(prog_len,
5643 				      sizeof(struct bpf_insn_aux_data)));
5644 	if (!new_data)
5645 		return -ENOMEM;
5646 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5647 	memcpy(new_data + off + cnt - 1, old_data + off,
5648 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
5649 	for (i = off; i < off + cnt - 1; i++)
5650 		new_data[i].seen = true;
5651 	env->insn_aux_data = new_data;
5652 	vfree(old_data);
5653 	return 0;
5654 }
5655 
5656 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5657 {
5658 	int i;
5659 
5660 	if (len == 1)
5661 		return;
5662 	/* NOTE: fake 'exit' subprog should be updated as well. */
5663 	for (i = 0; i <= env->subprog_cnt; i++) {
5664 		if (env->subprog_info[i].start < off)
5665 			continue;
5666 		env->subprog_info[i].start += len - 1;
5667 	}
5668 }
5669 
5670 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5671 					    const struct bpf_insn *patch, u32 len)
5672 {
5673 	struct bpf_prog *new_prog;
5674 
5675 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5676 	if (!new_prog)
5677 		return NULL;
5678 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
5679 		return NULL;
5680 	adjust_subprog_starts(env, off, len);
5681 	return new_prog;
5682 }
5683 
5684 /* The verifier does more data flow analysis than llvm and will not
5685  * explore branches that are dead at run time. Malicious programs can
5686  * have dead code too. Therefore replace all dead at-run-time code
5687  * with 'ja -1'.
5688  *
5689  * Just nops are not optimal, e.g. if they would sit at the end of the
5690  * program and through another bug we would manage to jump there, then
5691  * we'd execute beyond program memory otherwise. Returning exception
5692  * code also wouldn't work since we can have subprogs where the dead
5693  * code could be located.
5694  */
5695 static void sanitize_dead_code(struct bpf_verifier_env *env)
5696 {
5697 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5698 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
5699 	struct bpf_insn *insn = env->prog->insnsi;
5700 	const int insn_cnt = env->prog->len;
5701 	int i;
5702 
5703 	for (i = 0; i < insn_cnt; i++) {
5704 		if (aux_data[i].seen)
5705 			continue;
5706 		memcpy(insn + i, &trap, sizeof(trap));
5707 	}
5708 }
5709 
5710 /* convert load instructions that access fields of a context type into a
5711  * sequence of instructions that access fields of the underlying structure:
5712  *     struct __sk_buff    -> struct sk_buff
5713  *     struct bpf_sock_ops -> struct sock
5714  */
5715 static int convert_ctx_accesses(struct bpf_verifier_env *env)
5716 {
5717 	const struct bpf_verifier_ops *ops = env->ops;
5718 	int i, cnt, size, ctx_field_size, delta = 0;
5719 	const int insn_cnt = env->prog->len;
5720 	struct bpf_insn insn_buf[16], *insn;
5721 	struct bpf_prog *new_prog;
5722 	enum bpf_access_type type;
5723 	bool is_narrower_load;
5724 	u32 target_size;
5725 
5726 	if (ops->gen_prologue || env->seen_direct_write) {
5727 		if (!ops->gen_prologue) {
5728 			verbose(env, "bpf verifier is misconfigured\n");
5729 			return -EINVAL;
5730 		}
5731 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5732 					env->prog);
5733 		if (cnt >= ARRAY_SIZE(insn_buf)) {
5734 			verbose(env, "bpf verifier is misconfigured\n");
5735 			return -EINVAL;
5736 		} else if (cnt) {
5737 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5738 			if (!new_prog)
5739 				return -ENOMEM;
5740 
5741 			env->prog = new_prog;
5742 			delta += cnt - 1;
5743 		}
5744 	}
5745 
5746 	if (bpf_prog_is_dev_bound(env->prog->aux))
5747 		return 0;
5748 
5749 	insn = env->prog->insnsi + delta;
5750 
5751 	for (i = 0; i < insn_cnt; i++, insn++) {
5752 		bpf_convert_ctx_access_t convert_ctx_access;
5753 
5754 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5755 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5756 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5757 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5758 			type = BPF_READ;
5759 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5760 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5761 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5762 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5763 			type = BPF_WRITE;
5764 		else
5765 			continue;
5766 
5767 		if (type == BPF_WRITE &&
5768 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
5769 			struct bpf_insn patch[] = {
5770 				/* Sanitize suspicious stack slot with zero.
5771 				 * There are no memory dependencies for this store,
5772 				 * since it's only using frame pointer and immediate
5773 				 * constant of zero
5774 				 */
5775 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
5776 					   env->insn_aux_data[i + delta].sanitize_stack_off,
5777 					   0),
5778 				/* the original STX instruction will immediately
5779 				 * overwrite the same stack slot with appropriate value
5780 				 */
5781 				*insn,
5782 			};
5783 
5784 			cnt = ARRAY_SIZE(patch);
5785 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
5786 			if (!new_prog)
5787 				return -ENOMEM;
5788 
5789 			delta    += cnt - 1;
5790 			env->prog = new_prog;
5791 			insn      = new_prog->insnsi + i + delta;
5792 			continue;
5793 		}
5794 
5795 		switch (env->insn_aux_data[i + delta].ptr_type) {
5796 		case PTR_TO_CTX:
5797 			if (!ops->convert_ctx_access)
5798 				continue;
5799 			convert_ctx_access = ops->convert_ctx_access;
5800 			break;
5801 		case PTR_TO_SOCKET:
5802 			convert_ctx_access = bpf_sock_convert_ctx_access;
5803 			break;
5804 		default:
5805 			continue;
5806 		}
5807 
5808 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5809 		size = BPF_LDST_BYTES(insn);
5810 
5811 		/* If the read access is a narrower load of the field,
5812 		 * convert to a 4/8-byte load, to minimum program type specific
5813 		 * convert_ctx_access changes. If conversion is successful,
5814 		 * we will apply proper mask to the result.
5815 		 */
5816 		is_narrower_load = size < ctx_field_size;
5817 		if (is_narrower_load) {
5818 			u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
5819 			u32 off = insn->off;
5820 			u8 size_code;
5821 
5822 			if (type == BPF_WRITE) {
5823 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5824 				return -EINVAL;
5825 			}
5826 
5827 			size_code = BPF_H;
5828 			if (ctx_field_size == 4)
5829 				size_code = BPF_W;
5830 			else if (ctx_field_size == 8)
5831 				size_code = BPF_DW;
5832 
5833 			insn->off = off & ~(size_default - 1);
5834 			insn->code = BPF_LDX | BPF_MEM | size_code;
5835 		}
5836 
5837 		target_size = 0;
5838 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
5839 					 &target_size);
5840 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5841 		    (ctx_field_size && !target_size)) {
5842 			verbose(env, "bpf verifier is misconfigured\n");
5843 			return -EINVAL;
5844 		}
5845 
5846 		if (is_narrower_load && size < target_size) {
5847 			if (ctx_field_size <= 4)
5848 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5849 								(1 << size * 8) - 1);
5850 			else
5851 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5852 								(1 << size * 8) - 1);
5853 		}
5854 
5855 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5856 		if (!new_prog)
5857 			return -ENOMEM;
5858 
5859 		delta += cnt - 1;
5860 
5861 		/* keep walking new program and skip insns we just inserted */
5862 		env->prog = new_prog;
5863 		insn      = new_prog->insnsi + i + delta;
5864 	}
5865 
5866 	return 0;
5867 }
5868 
5869 static int jit_subprogs(struct bpf_verifier_env *env)
5870 {
5871 	struct bpf_prog *prog = env->prog, **func, *tmp;
5872 	int i, j, subprog_start, subprog_end = 0, len, subprog;
5873 	struct bpf_insn *insn;
5874 	void *old_bpf_func;
5875 	int err = -ENOMEM;
5876 
5877 	if (env->subprog_cnt <= 1)
5878 		return 0;
5879 
5880 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5881 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5882 		    insn->src_reg != BPF_PSEUDO_CALL)
5883 			continue;
5884 		/* Upon error here we cannot fall back to interpreter but
5885 		 * need a hard reject of the program. Thus -EFAULT is
5886 		 * propagated in any case.
5887 		 */
5888 		subprog = find_subprog(env, i + insn->imm + 1);
5889 		if (subprog < 0) {
5890 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5891 				  i + insn->imm + 1);
5892 			return -EFAULT;
5893 		}
5894 		/* temporarily remember subprog id inside insn instead of
5895 		 * aux_data, since next loop will split up all insns into funcs
5896 		 */
5897 		insn->off = subprog;
5898 		/* remember original imm in case JIT fails and fallback
5899 		 * to interpreter will be needed
5900 		 */
5901 		env->insn_aux_data[i].call_imm = insn->imm;
5902 		/* point imm to __bpf_call_base+1 from JITs point of view */
5903 		insn->imm = 1;
5904 	}
5905 
5906 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
5907 	if (!func)
5908 		goto out_undo_insn;
5909 
5910 	for (i = 0; i < env->subprog_cnt; i++) {
5911 		subprog_start = subprog_end;
5912 		subprog_end = env->subprog_info[i + 1].start;
5913 
5914 		len = subprog_end - subprog_start;
5915 		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5916 		if (!func[i])
5917 			goto out_free;
5918 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5919 		       len * sizeof(struct bpf_insn));
5920 		func[i]->type = prog->type;
5921 		func[i]->len = len;
5922 		if (bpf_prog_calc_tag(func[i]))
5923 			goto out_free;
5924 		func[i]->is_func = 1;
5925 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
5926 		 * Long term would need debug info to populate names
5927 		 */
5928 		func[i]->aux->name[0] = 'F';
5929 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
5930 		func[i]->jit_requested = 1;
5931 		func[i] = bpf_int_jit_compile(func[i]);
5932 		if (!func[i]->jited) {
5933 			err = -ENOTSUPP;
5934 			goto out_free;
5935 		}
5936 		cond_resched();
5937 	}
5938 	/* at this point all bpf functions were successfully JITed
5939 	 * now populate all bpf_calls with correct addresses and
5940 	 * run last pass of JIT
5941 	 */
5942 	for (i = 0; i < env->subprog_cnt; i++) {
5943 		insn = func[i]->insnsi;
5944 		for (j = 0; j < func[i]->len; j++, insn++) {
5945 			if (insn->code != (BPF_JMP | BPF_CALL) ||
5946 			    insn->src_reg != BPF_PSEUDO_CALL)
5947 				continue;
5948 			subprog = insn->off;
5949 			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5950 				func[subprog]->bpf_func -
5951 				__bpf_call_base;
5952 		}
5953 
5954 		/* we use the aux data to keep a list of the start addresses
5955 		 * of the JITed images for each function in the program
5956 		 *
5957 		 * for some architectures, such as powerpc64, the imm field
5958 		 * might not be large enough to hold the offset of the start
5959 		 * address of the callee's JITed image from __bpf_call_base
5960 		 *
5961 		 * in such cases, we can lookup the start address of a callee
5962 		 * by using its subprog id, available from the off field of
5963 		 * the call instruction, as an index for this list
5964 		 */
5965 		func[i]->aux->func = func;
5966 		func[i]->aux->func_cnt = env->subprog_cnt;
5967 	}
5968 	for (i = 0; i < env->subprog_cnt; i++) {
5969 		old_bpf_func = func[i]->bpf_func;
5970 		tmp = bpf_int_jit_compile(func[i]);
5971 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5972 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5973 			err = -ENOTSUPP;
5974 			goto out_free;
5975 		}
5976 		cond_resched();
5977 	}
5978 
5979 	/* finally lock prog and jit images for all functions and
5980 	 * populate kallsysm
5981 	 */
5982 	for (i = 0; i < env->subprog_cnt; i++) {
5983 		bpf_prog_lock_ro(func[i]);
5984 		bpf_prog_kallsyms_add(func[i]);
5985 	}
5986 
5987 	/* Last step: make now unused interpreter insns from main
5988 	 * prog consistent for later dump requests, so they can
5989 	 * later look the same as if they were interpreted only.
5990 	 */
5991 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5992 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5993 		    insn->src_reg != BPF_PSEUDO_CALL)
5994 			continue;
5995 		insn->off = env->insn_aux_data[i].call_imm;
5996 		subprog = find_subprog(env, i + insn->off + 1);
5997 		insn->imm = subprog;
5998 	}
5999 
6000 	prog->jited = 1;
6001 	prog->bpf_func = func[0]->bpf_func;
6002 	prog->aux->func = func;
6003 	prog->aux->func_cnt = env->subprog_cnt;
6004 	return 0;
6005 out_free:
6006 	for (i = 0; i < env->subprog_cnt; i++)
6007 		if (func[i])
6008 			bpf_jit_free(func[i]);
6009 	kfree(func);
6010 out_undo_insn:
6011 	/* cleanup main prog to be interpreted */
6012 	prog->jit_requested = 0;
6013 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
6014 		if (insn->code != (BPF_JMP | BPF_CALL) ||
6015 		    insn->src_reg != BPF_PSEUDO_CALL)
6016 			continue;
6017 		insn->off = 0;
6018 		insn->imm = env->insn_aux_data[i].call_imm;
6019 	}
6020 	return err;
6021 }
6022 
6023 static int fixup_call_args(struct bpf_verifier_env *env)
6024 {
6025 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6026 	struct bpf_prog *prog = env->prog;
6027 	struct bpf_insn *insn = prog->insnsi;
6028 	int i, depth;
6029 #endif
6030 	int err = 0;
6031 
6032 	if (env->prog->jit_requested &&
6033 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
6034 		err = jit_subprogs(env);
6035 		if (err == 0)
6036 			return 0;
6037 		if (err == -EFAULT)
6038 			return err;
6039 	}
6040 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6041 	for (i = 0; i < prog->len; i++, insn++) {
6042 		if (insn->code != (BPF_JMP | BPF_CALL) ||
6043 		    insn->src_reg != BPF_PSEUDO_CALL)
6044 			continue;
6045 		depth = get_callee_stack_depth(env, insn, i);
6046 		if (depth < 0)
6047 			return depth;
6048 		bpf_patch_call_args(insn, depth);
6049 	}
6050 	err = 0;
6051 #endif
6052 	return err;
6053 }
6054 
6055 /* fixup insn->imm field of bpf_call instructions
6056  * and inline eligible helpers as explicit sequence of BPF instructions
6057  *
6058  * this function is called after eBPF program passed verification
6059  */
6060 static int fixup_bpf_calls(struct bpf_verifier_env *env)
6061 {
6062 	struct bpf_prog *prog = env->prog;
6063 	struct bpf_insn *insn = prog->insnsi;
6064 	const struct bpf_func_proto *fn;
6065 	const int insn_cnt = prog->len;
6066 	const struct bpf_map_ops *ops;
6067 	struct bpf_insn_aux_data *aux;
6068 	struct bpf_insn insn_buf[16];
6069 	struct bpf_prog *new_prog;
6070 	struct bpf_map *map_ptr;
6071 	int i, cnt, delta = 0;
6072 
6073 	for (i = 0; i < insn_cnt; i++, insn++) {
6074 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
6075 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6076 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
6077 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6078 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
6079 			struct bpf_insn mask_and_div[] = {
6080 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6081 				/* Rx div 0 -> 0 */
6082 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
6083 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
6084 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
6085 				*insn,
6086 			};
6087 			struct bpf_insn mask_and_mod[] = {
6088 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6089 				/* Rx mod 0 -> Rx */
6090 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
6091 				*insn,
6092 			};
6093 			struct bpf_insn *patchlet;
6094 
6095 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6096 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6097 				patchlet = mask_and_div + (is64 ? 1 : 0);
6098 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
6099 			} else {
6100 				patchlet = mask_and_mod + (is64 ? 1 : 0);
6101 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
6102 			}
6103 
6104 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
6105 			if (!new_prog)
6106 				return -ENOMEM;
6107 
6108 			delta    += cnt - 1;
6109 			env->prog = prog = new_prog;
6110 			insn      = new_prog->insnsi + i + delta;
6111 			continue;
6112 		}
6113 
6114 		if (BPF_CLASS(insn->code) == BPF_LD &&
6115 		    (BPF_MODE(insn->code) == BPF_ABS ||
6116 		     BPF_MODE(insn->code) == BPF_IND)) {
6117 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
6118 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6119 				verbose(env, "bpf verifier is misconfigured\n");
6120 				return -EINVAL;
6121 			}
6122 
6123 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6124 			if (!new_prog)
6125 				return -ENOMEM;
6126 
6127 			delta    += cnt - 1;
6128 			env->prog = prog = new_prog;
6129 			insn      = new_prog->insnsi + i + delta;
6130 			continue;
6131 		}
6132 
6133 		if (insn->code != (BPF_JMP | BPF_CALL))
6134 			continue;
6135 		if (insn->src_reg == BPF_PSEUDO_CALL)
6136 			continue;
6137 
6138 		if (insn->imm == BPF_FUNC_get_route_realm)
6139 			prog->dst_needed = 1;
6140 		if (insn->imm == BPF_FUNC_get_prandom_u32)
6141 			bpf_user_rnd_init_once();
6142 		if (insn->imm == BPF_FUNC_override_return)
6143 			prog->kprobe_override = 1;
6144 		if (insn->imm == BPF_FUNC_tail_call) {
6145 			/* If we tail call into other programs, we
6146 			 * cannot make any assumptions since they can
6147 			 * be replaced dynamically during runtime in
6148 			 * the program array.
6149 			 */
6150 			prog->cb_access = 1;
6151 			env->prog->aux->stack_depth = MAX_BPF_STACK;
6152 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
6153 
6154 			/* mark bpf_tail_call as different opcode to avoid
6155 			 * conditional branch in the interpeter for every normal
6156 			 * call and to prevent accidental JITing by JIT compiler
6157 			 * that doesn't support bpf_tail_call yet
6158 			 */
6159 			insn->imm = 0;
6160 			insn->code = BPF_JMP | BPF_TAIL_CALL;
6161 
6162 			aux = &env->insn_aux_data[i + delta];
6163 			if (!bpf_map_ptr_unpriv(aux))
6164 				continue;
6165 
6166 			/* instead of changing every JIT dealing with tail_call
6167 			 * emit two extra insns:
6168 			 * if (index >= max_entries) goto out;
6169 			 * index &= array->index_mask;
6170 			 * to avoid out-of-bounds cpu speculation
6171 			 */
6172 			if (bpf_map_ptr_poisoned(aux)) {
6173 				verbose(env, "tail_call abusing map_ptr\n");
6174 				return -EINVAL;
6175 			}
6176 
6177 			map_ptr = BPF_MAP_PTR(aux->map_state);
6178 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
6179 						  map_ptr->max_entries, 2);
6180 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
6181 						    container_of(map_ptr,
6182 								 struct bpf_array,
6183 								 map)->index_mask);
6184 			insn_buf[2] = *insn;
6185 			cnt = 3;
6186 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6187 			if (!new_prog)
6188 				return -ENOMEM;
6189 
6190 			delta    += cnt - 1;
6191 			env->prog = prog = new_prog;
6192 			insn      = new_prog->insnsi + i + delta;
6193 			continue;
6194 		}
6195 
6196 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
6197 		 * and other inlining handlers are currently limited to 64 bit
6198 		 * only.
6199 		 */
6200 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
6201 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
6202 		     insn->imm == BPF_FUNC_map_update_elem ||
6203 		     insn->imm == BPF_FUNC_map_delete_elem ||
6204 		     insn->imm == BPF_FUNC_map_push_elem   ||
6205 		     insn->imm == BPF_FUNC_map_pop_elem    ||
6206 		     insn->imm == BPF_FUNC_map_peek_elem)) {
6207 			aux = &env->insn_aux_data[i + delta];
6208 			if (bpf_map_ptr_poisoned(aux))
6209 				goto patch_call_imm;
6210 
6211 			map_ptr = BPF_MAP_PTR(aux->map_state);
6212 			ops = map_ptr->ops;
6213 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
6214 			    ops->map_gen_lookup) {
6215 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
6216 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6217 					verbose(env, "bpf verifier is misconfigured\n");
6218 					return -EINVAL;
6219 				}
6220 
6221 				new_prog = bpf_patch_insn_data(env, i + delta,
6222 							       insn_buf, cnt);
6223 				if (!new_prog)
6224 					return -ENOMEM;
6225 
6226 				delta    += cnt - 1;
6227 				env->prog = prog = new_prog;
6228 				insn      = new_prog->insnsi + i + delta;
6229 				continue;
6230 			}
6231 
6232 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
6233 				     (void *(*)(struct bpf_map *map, void *key))NULL));
6234 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
6235 				     (int (*)(struct bpf_map *map, void *key))NULL));
6236 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
6237 				     (int (*)(struct bpf_map *map, void *key, void *value,
6238 					      u64 flags))NULL));
6239 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
6240 				     (int (*)(struct bpf_map *map, void *value,
6241 					      u64 flags))NULL));
6242 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
6243 				     (int (*)(struct bpf_map *map, void *value))NULL));
6244 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
6245 				     (int (*)(struct bpf_map *map, void *value))NULL));
6246 
6247 			switch (insn->imm) {
6248 			case BPF_FUNC_map_lookup_elem:
6249 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
6250 					    __bpf_call_base;
6251 				continue;
6252 			case BPF_FUNC_map_update_elem:
6253 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
6254 					    __bpf_call_base;
6255 				continue;
6256 			case BPF_FUNC_map_delete_elem:
6257 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
6258 					    __bpf_call_base;
6259 				continue;
6260 			case BPF_FUNC_map_push_elem:
6261 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
6262 					    __bpf_call_base;
6263 				continue;
6264 			case BPF_FUNC_map_pop_elem:
6265 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
6266 					    __bpf_call_base;
6267 				continue;
6268 			case BPF_FUNC_map_peek_elem:
6269 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
6270 					    __bpf_call_base;
6271 				continue;
6272 			}
6273 
6274 			goto patch_call_imm;
6275 		}
6276 
6277 patch_call_imm:
6278 		fn = env->ops->get_func_proto(insn->imm, env->prog);
6279 		/* all functions that have prototype and verifier allowed
6280 		 * programs to call them, must be real in-kernel functions
6281 		 */
6282 		if (!fn->func) {
6283 			verbose(env,
6284 				"kernel subsystem misconfigured func %s#%d\n",
6285 				func_id_name(insn->imm), insn->imm);
6286 			return -EFAULT;
6287 		}
6288 		insn->imm = fn->func - __bpf_call_base;
6289 	}
6290 
6291 	return 0;
6292 }
6293 
6294 static void free_states(struct bpf_verifier_env *env)
6295 {
6296 	struct bpf_verifier_state_list *sl, *sln;
6297 	int i;
6298 
6299 	if (!env->explored_states)
6300 		return;
6301 
6302 	for (i = 0; i < env->prog->len; i++) {
6303 		sl = env->explored_states[i];
6304 
6305 		if (sl)
6306 			while (sl != STATE_LIST_MARK) {
6307 				sln = sl->next;
6308 				free_verifier_state(&sl->state, false);
6309 				kfree(sl);
6310 				sl = sln;
6311 			}
6312 	}
6313 
6314 	kfree(env->explored_states);
6315 }
6316 
6317 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
6318 {
6319 	struct bpf_verifier_env *env;
6320 	struct bpf_verifier_log *log;
6321 	int ret = -EINVAL;
6322 
6323 	/* no program is valid */
6324 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
6325 		return -EINVAL;
6326 
6327 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
6328 	 * allocate/free it every time bpf_check() is called
6329 	 */
6330 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
6331 	if (!env)
6332 		return -ENOMEM;
6333 	log = &env->log;
6334 
6335 	env->insn_aux_data =
6336 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data),
6337 				   (*prog)->len));
6338 	ret = -ENOMEM;
6339 	if (!env->insn_aux_data)
6340 		goto err_free_env;
6341 	env->prog = *prog;
6342 	env->ops = bpf_verifier_ops[env->prog->type];
6343 
6344 	/* grab the mutex to protect few globals used by verifier */
6345 	mutex_lock(&bpf_verifier_lock);
6346 
6347 	if (attr->log_level || attr->log_buf || attr->log_size) {
6348 		/* user requested verbose verifier output
6349 		 * and supplied buffer to store the verification trace
6350 		 */
6351 		log->level = attr->log_level;
6352 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
6353 		log->len_total = attr->log_size;
6354 
6355 		ret = -EINVAL;
6356 		/* log attributes have to be sane */
6357 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
6358 		    !log->level || !log->ubuf)
6359 			goto err_unlock;
6360 	}
6361 
6362 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
6363 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
6364 		env->strict_alignment = true;
6365 
6366 	ret = replace_map_fd_with_map_ptr(env);
6367 	if (ret < 0)
6368 		goto skip_full_check;
6369 
6370 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
6371 		ret = bpf_prog_offload_verifier_prep(env->prog);
6372 		if (ret)
6373 			goto skip_full_check;
6374 	}
6375 
6376 	env->explored_states = kcalloc(env->prog->len,
6377 				       sizeof(struct bpf_verifier_state_list *),
6378 				       GFP_USER);
6379 	ret = -ENOMEM;
6380 	if (!env->explored_states)
6381 		goto skip_full_check;
6382 
6383 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
6384 
6385 	ret = check_cfg(env);
6386 	if (ret < 0)
6387 		goto skip_full_check;
6388 
6389 	ret = do_check(env);
6390 	if (env->cur_state) {
6391 		free_verifier_state(env->cur_state, true);
6392 		env->cur_state = NULL;
6393 	}
6394 
6395 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
6396 		ret = bpf_prog_offload_finalize(env);
6397 
6398 skip_full_check:
6399 	while (!pop_stack(env, NULL, NULL));
6400 	free_states(env);
6401 
6402 	if (ret == 0)
6403 		sanitize_dead_code(env);
6404 
6405 	if (ret == 0)
6406 		ret = check_max_stack_depth(env);
6407 
6408 	if (ret == 0)
6409 		/* program is valid, convert *(u32*)(ctx + off) accesses */
6410 		ret = convert_ctx_accesses(env);
6411 
6412 	if (ret == 0)
6413 		ret = fixup_bpf_calls(env);
6414 
6415 	if (ret == 0)
6416 		ret = fixup_call_args(env);
6417 
6418 	if (log->level && bpf_verifier_log_full(log))
6419 		ret = -ENOSPC;
6420 	if (log->level && !log->ubuf) {
6421 		ret = -EFAULT;
6422 		goto err_release_maps;
6423 	}
6424 
6425 	if (ret == 0 && env->used_map_cnt) {
6426 		/* if program passed verifier, update used_maps in bpf_prog_info */
6427 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
6428 							  sizeof(env->used_maps[0]),
6429 							  GFP_KERNEL);
6430 
6431 		if (!env->prog->aux->used_maps) {
6432 			ret = -ENOMEM;
6433 			goto err_release_maps;
6434 		}
6435 
6436 		memcpy(env->prog->aux->used_maps, env->used_maps,
6437 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
6438 		env->prog->aux->used_map_cnt = env->used_map_cnt;
6439 
6440 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
6441 		 * bpf_ld_imm64 instructions
6442 		 */
6443 		convert_pseudo_ld_imm64(env);
6444 	}
6445 
6446 err_release_maps:
6447 	if (!env->prog->aux->used_maps)
6448 		/* if we didn't copy map pointers into bpf_prog_info, release
6449 		 * them now. Otherwise free_used_maps() will release them.
6450 		 */
6451 		release_maps(env);
6452 	*prog = env->prog;
6453 err_unlock:
6454 	mutex_unlock(&bpf_verifier_lock);
6455 	vfree(env->insn_aux_data);
6456 err_free_env:
6457 	kfree(env);
6458 	return ret;
6459 }
6460