1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of version 2 of the GNU General Public 7 * License as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 */ 14 #include <linux/kernel.h> 15 #include <linux/types.h> 16 #include <linux/slab.h> 17 #include <linux/bpf.h> 18 #include <linux/bpf_verifier.h> 19 #include <linux/filter.h> 20 #include <net/netlink.h> 21 #include <linux/file.h> 22 #include <linux/vmalloc.h> 23 #include <linux/stringify.h> 24 #include <linux/bsearch.h> 25 #include <linux/sort.h> 26 #include <linux/perf_event.h> 27 28 #include "disasm.h" 29 30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 31 #define BPF_PROG_TYPE(_id, _name) \ 32 [_id] = & _name ## _verifier_ops, 33 #define BPF_MAP_TYPE(_id, _ops) 34 #include <linux/bpf_types.h> 35 #undef BPF_PROG_TYPE 36 #undef BPF_MAP_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all pathes through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns ether pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 }; 175 176 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 177 #define BPF_COMPLEXITY_LIMIT_STACK 1024 178 179 #define BPF_MAP_PTR_UNPRIV 1UL 180 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 181 POISON_POINTER_DELTA)) 182 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 183 184 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 185 { 186 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 187 } 188 189 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 190 { 191 return aux->map_state & BPF_MAP_PTR_UNPRIV; 192 } 193 194 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 195 const struct bpf_map *map, bool unpriv) 196 { 197 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 198 unpriv |= bpf_map_ptr_unpriv(aux); 199 aux->map_state = (unsigned long)map | 200 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 201 } 202 203 struct bpf_call_arg_meta { 204 struct bpf_map *map_ptr; 205 bool raw_mode; 206 bool pkt_access; 207 int regno; 208 int access_size; 209 s64 msize_smax_value; 210 u64 msize_umax_value; 211 int ptr_id; 212 }; 213 214 static DEFINE_MUTEX(bpf_verifier_lock); 215 216 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 217 va_list args) 218 { 219 unsigned int n; 220 221 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 222 223 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 224 "verifier log line truncated - local buffer too short\n"); 225 226 n = min(log->len_total - log->len_used - 1, n); 227 log->kbuf[n] = '\0'; 228 229 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 230 log->len_used += n; 231 else 232 log->ubuf = NULL; 233 } 234 235 /* log_level controls verbosity level of eBPF verifier. 236 * bpf_verifier_log_write() is used to dump the verification trace to the log, 237 * so the user can figure out what's wrong with the program 238 */ 239 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 240 const char *fmt, ...) 241 { 242 va_list args; 243 244 if (!bpf_verifier_log_needed(&env->log)) 245 return; 246 247 va_start(args, fmt); 248 bpf_verifier_vlog(&env->log, fmt, args); 249 va_end(args); 250 } 251 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 252 253 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 254 { 255 struct bpf_verifier_env *env = private_data; 256 va_list args; 257 258 if (!bpf_verifier_log_needed(&env->log)) 259 return; 260 261 va_start(args, fmt); 262 bpf_verifier_vlog(&env->log, fmt, args); 263 va_end(args); 264 } 265 266 static bool type_is_pkt_pointer(enum bpf_reg_type type) 267 { 268 return type == PTR_TO_PACKET || 269 type == PTR_TO_PACKET_META; 270 } 271 272 static bool reg_type_may_be_null(enum bpf_reg_type type) 273 { 274 return type == PTR_TO_MAP_VALUE_OR_NULL || 275 type == PTR_TO_SOCKET_OR_NULL; 276 } 277 278 static bool type_is_refcounted(enum bpf_reg_type type) 279 { 280 return type == PTR_TO_SOCKET; 281 } 282 283 static bool type_is_refcounted_or_null(enum bpf_reg_type type) 284 { 285 return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL; 286 } 287 288 static bool reg_is_refcounted(const struct bpf_reg_state *reg) 289 { 290 return type_is_refcounted(reg->type); 291 } 292 293 static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg) 294 { 295 return type_is_refcounted_or_null(reg->type); 296 } 297 298 static bool arg_type_is_refcounted(enum bpf_arg_type type) 299 { 300 return type == ARG_PTR_TO_SOCKET; 301 } 302 303 /* Determine whether the function releases some resources allocated by another 304 * function call. The first reference type argument will be assumed to be 305 * released by release_reference(). 306 */ 307 static bool is_release_function(enum bpf_func_id func_id) 308 { 309 return func_id == BPF_FUNC_sk_release; 310 } 311 312 /* string representation of 'enum bpf_reg_type' */ 313 static const char * const reg_type_str[] = { 314 [NOT_INIT] = "?", 315 [SCALAR_VALUE] = "inv", 316 [PTR_TO_CTX] = "ctx", 317 [CONST_PTR_TO_MAP] = "map_ptr", 318 [PTR_TO_MAP_VALUE] = "map_value", 319 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 320 [PTR_TO_STACK] = "fp", 321 [PTR_TO_PACKET] = "pkt", 322 [PTR_TO_PACKET_META] = "pkt_meta", 323 [PTR_TO_PACKET_END] = "pkt_end", 324 [PTR_TO_FLOW_KEYS] = "flow_keys", 325 [PTR_TO_SOCKET] = "sock", 326 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 327 }; 328 329 static char slot_type_char[] = { 330 [STACK_INVALID] = '?', 331 [STACK_SPILL] = 'r', 332 [STACK_MISC] = 'm', 333 [STACK_ZERO] = '0', 334 }; 335 336 static void print_liveness(struct bpf_verifier_env *env, 337 enum bpf_reg_liveness live) 338 { 339 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN)) 340 verbose(env, "_"); 341 if (live & REG_LIVE_READ) 342 verbose(env, "r"); 343 if (live & REG_LIVE_WRITTEN) 344 verbose(env, "w"); 345 } 346 347 static struct bpf_func_state *func(struct bpf_verifier_env *env, 348 const struct bpf_reg_state *reg) 349 { 350 struct bpf_verifier_state *cur = env->cur_state; 351 352 return cur->frame[reg->frameno]; 353 } 354 355 static void print_verifier_state(struct bpf_verifier_env *env, 356 const struct bpf_func_state *state) 357 { 358 const struct bpf_reg_state *reg; 359 enum bpf_reg_type t; 360 int i; 361 362 if (state->frameno) 363 verbose(env, " frame%d:", state->frameno); 364 for (i = 0; i < MAX_BPF_REG; i++) { 365 reg = &state->regs[i]; 366 t = reg->type; 367 if (t == NOT_INIT) 368 continue; 369 verbose(env, " R%d", i); 370 print_liveness(env, reg->live); 371 verbose(env, "=%s", reg_type_str[t]); 372 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 373 tnum_is_const(reg->var_off)) { 374 /* reg->off should be 0 for SCALAR_VALUE */ 375 verbose(env, "%lld", reg->var_off.value + reg->off); 376 if (t == PTR_TO_STACK) 377 verbose(env, ",call_%d", func(env, reg)->callsite); 378 } else { 379 verbose(env, "(id=%d", reg->id); 380 if (t != SCALAR_VALUE) 381 verbose(env, ",off=%d", reg->off); 382 if (type_is_pkt_pointer(t)) 383 verbose(env, ",r=%d", reg->range); 384 else if (t == CONST_PTR_TO_MAP || 385 t == PTR_TO_MAP_VALUE || 386 t == PTR_TO_MAP_VALUE_OR_NULL) 387 verbose(env, ",ks=%d,vs=%d", 388 reg->map_ptr->key_size, 389 reg->map_ptr->value_size); 390 if (tnum_is_const(reg->var_off)) { 391 /* Typically an immediate SCALAR_VALUE, but 392 * could be a pointer whose offset is too big 393 * for reg->off 394 */ 395 verbose(env, ",imm=%llx", reg->var_off.value); 396 } else { 397 if (reg->smin_value != reg->umin_value && 398 reg->smin_value != S64_MIN) 399 verbose(env, ",smin_value=%lld", 400 (long long)reg->smin_value); 401 if (reg->smax_value != reg->umax_value && 402 reg->smax_value != S64_MAX) 403 verbose(env, ",smax_value=%lld", 404 (long long)reg->smax_value); 405 if (reg->umin_value != 0) 406 verbose(env, ",umin_value=%llu", 407 (unsigned long long)reg->umin_value); 408 if (reg->umax_value != U64_MAX) 409 verbose(env, ",umax_value=%llu", 410 (unsigned long long)reg->umax_value); 411 if (!tnum_is_unknown(reg->var_off)) { 412 char tn_buf[48]; 413 414 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 415 verbose(env, ",var_off=%s", tn_buf); 416 } 417 } 418 verbose(env, ")"); 419 } 420 } 421 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 422 char types_buf[BPF_REG_SIZE + 1]; 423 bool valid = false; 424 int j; 425 426 for (j = 0; j < BPF_REG_SIZE; j++) { 427 if (state->stack[i].slot_type[j] != STACK_INVALID) 428 valid = true; 429 types_buf[j] = slot_type_char[ 430 state->stack[i].slot_type[j]]; 431 } 432 types_buf[BPF_REG_SIZE] = 0; 433 if (!valid) 434 continue; 435 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 436 print_liveness(env, state->stack[i].spilled_ptr.live); 437 if (state->stack[i].slot_type[0] == STACK_SPILL) 438 verbose(env, "=%s", 439 reg_type_str[state->stack[i].spilled_ptr.type]); 440 else 441 verbose(env, "=%s", types_buf); 442 } 443 if (state->acquired_refs && state->refs[0].id) { 444 verbose(env, " refs=%d", state->refs[0].id); 445 for (i = 1; i < state->acquired_refs; i++) 446 if (state->refs[i].id) 447 verbose(env, ",%d", state->refs[i].id); 448 } 449 verbose(env, "\n"); 450 } 451 452 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 453 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 454 const struct bpf_func_state *src) \ 455 { \ 456 if (!src->FIELD) \ 457 return 0; \ 458 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 459 /* internal bug, make state invalid to reject the program */ \ 460 memset(dst, 0, sizeof(*dst)); \ 461 return -EFAULT; \ 462 } \ 463 memcpy(dst->FIELD, src->FIELD, \ 464 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 465 return 0; \ 466 } 467 /* copy_reference_state() */ 468 COPY_STATE_FN(reference, acquired_refs, refs, 1) 469 /* copy_stack_state() */ 470 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 471 #undef COPY_STATE_FN 472 473 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 474 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 475 bool copy_old) \ 476 { \ 477 u32 old_size = state->COUNT; \ 478 struct bpf_##NAME##_state *new_##FIELD; \ 479 int slot = size / SIZE; \ 480 \ 481 if (size <= old_size || !size) { \ 482 if (copy_old) \ 483 return 0; \ 484 state->COUNT = slot * SIZE; \ 485 if (!size && old_size) { \ 486 kfree(state->FIELD); \ 487 state->FIELD = NULL; \ 488 } \ 489 return 0; \ 490 } \ 491 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 492 GFP_KERNEL); \ 493 if (!new_##FIELD) \ 494 return -ENOMEM; \ 495 if (copy_old) { \ 496 if (state->FIELD) \ 497 memcpy(new_##FIELD, state->FIELD, \ 498 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 499 memset(new_##FIELD + old_size / SIZE, 0, \ 500 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 501 } \ 502 state->COUNT = slot * SIZE; \ 503 kfree(state->FIELD); \ 504 state->FIELD = new_##FIELD; \ 505 return 0; \ 506 } 507 /* realloc_reference_state() */ 508 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 509 /* realloc_stack_state() */ 510 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 511 #undef REALLOC_STATE_FN 512 513 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 514 * make it consume minimal amount of memory. check_stack_write() access from 515 * the program calls into realloc_func_state() to grow the stack size. 516 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 517 * which realloc_stack_state() copies over. It points to previous 518 * bpf_verifier_state which is never reallocated. 519 */ 520 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 521 int refs_size, bool copy_old) 522 { 523 int err = realloc_reference_state(state, refs_size, copy_old); 524 if (err) 525 return err; 526 return realloc_stack_state(state, stack_size, copy_old); 527 } 528 529 /* Acquire a pointer id from the env and update the state->refs to include 530 * this new pointer reference. 531 * On success, returns a valid pointer id to associate with the register 532 * On failure, returns a negative errno. 533 */ 534 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 535 { 536 struct bpf_func_state *state = cur_func(env); 537 int new_ofs = state->acquired_refs; 538 int id, err; 539 540 err = realloc_reference_state(state, state->acquired_refs + 1, true); 541 if (err) 542 return err; 543 id = ++env->id_gen; 544 state->refs[new_ofs].id = id; 545 state->refs[new_ofs].insn_idx = insn_idx; 546 547 return id; 548 } 549 550 /* release function corresponding to acquire_reference_state(). Idempotent. */ 551 static int __release_reference_state(struct bpf_func_state *state, int ptr_id) 552 { 553 int i, last_idx; 554 555 if (!ptr_id) 556 return -EFAULT; 557 558 last_idx = state->acquired_refs - 1; 559 for (i = 0; i < state->acquired_refs; i++) { 560 if (state->refs[i].id == ptr_id) { 561 if (last_idx && i != last_idx) 562 memcpy(&state->refs[i], &state->refs[last_idx], 563 sizeof(*state->refs)); 564 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 565 state->acquired_refs--; 566 return 0; 567 } 568 } 569 return -EFAULT; 570 } 571 572 /* variation on the above for cases where we expect that there must be an 573 * outstanding reference for the specified ptr_id. 574 */ 575 static int release_reference_state(struct bpf_verifier_env *env, int ptr_id) 576 { 577 struct bpf_func_state *state = cur_func(env); 578 int err; 579 580 err = __release_reference_state(state, ptr_id); 581 if (WARN_ON_ONCE(err != 0)) 582 verbose(env, "verifier internal error: can't release reference\n"); 583 return err; 584 } 585 586 static int transfer_reference_state(struct bpf_func_state *dst, 587 struct bpf_func_state *src) 588 { 589 int err = realloc_reference_state(dst, src->acquired_refs, false); 590 if (err) 591 return err; 592 err = copy_reference_state(dst, src); 593 if (err) 594 return err; 595 return 0; 596 } 597 598 static void free_func_state(struct bpf_func_state *state) 599 { 600 if (!state) 601 return; 602 kfree(state->refs); 603 kfree(state->stack); 604 kfree(state); 605 } 606 607 static void free_verifier_state(struct bpf_verifier_state *state, 608 bool free_self) 609 { 610 int i; 611 612 for (i = 0; i <= state->curframe; i++) { 613 free_func_state(state->frame[i]); 614 state->frame[i] = NULL; 615 } 616 if (free_self) 617 kfree(state); 618 } 619 620 /* copy verifier state from src to dst growing dst stack space 621 * when necessary to accommodate larger src stack 622 */ 623 static int copy_func_state(struct bpf_func_state *dst, 624 const struct bpf_func_state *src) 625 { 626 int err; 627 628 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 629 false); 630 if (err) 631 return err; 632 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 633 err = copy_reference_state(dst, src); 634 if (err) 635 return err; 636 return copy_stack_state(dst, src); 637 } 638 639 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 640 const struct bpf_verifier_state *src) 641 { 642 struct bpf_func_state *dst; 643 int i, err; 644 645 /* if dst has more stack frames then src frame, free them */ 646 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 647 free_func_state(dst_state->frame[i]); 648 dst_state->frame[i] = NULL; 649 } 650 dst_state->curframe = src->curframe; 651 for (i = 0; i <= src->curframe; i++) { 652 dst = dst_state->frame[i]; 653 if (!dst) { 654 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 655 if (!dst) 656 return -ENOMEM; 657 dst_state->frame[i] = dst; 658 } 659 err = copy_func_state(dst, src->frame[i]); 660 if (err) 661 return err; 662 } 663 return 0; 664 } 665 666 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 667 int *insn_idx) 668 { 669 struct bpf_verifier_state *cur = env->cur_state; 670 struct bpf_verifier_stack_elem *elem, *head = env->head; 671 int err; 672 673 if (env->head == NULL) 674 return -ENOENT; 675 676 if (cur) { 677 err = copy_verifier_state(cur, &head->st); 678 if (err) 679 return err; 680 } 681 if (insn_idx) 682 *insn_idx = head->insn_idx; 683 if (prev_insn_idx) 684 *prev_insn_idx = head->prev_insn_idx; 685 elem = head->next; 686 free_verifier_state(&head->st, false); 687 kfree(head); 688 env->head = elem; 689 env->stack_size--; 690 return 0; 691 } 692 693 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 694 int insn_idx, int prev_insn_idx) 695 { 696 struct bpf_verifier_state *cur = env->cur_state; 697 struct bpf_verifier_stack_elem *elem; 698 int err; 699 700 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 701 if (!elem) 702 goto err; 703 704 elem->insn_idx = insn_idx; 705 elem->prev_insn_idx = prev_insn_idx; 706 elem->next = env->head; 707 env->head = elem; 708 env->stack_size++; 709 err = copy_verifier_state(&elem->st, cur); 710 if (err) 711 goto err; 712 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 713 verbose(env, "BPF program is too complex\n"); 714 goto err; 715 } 716 return &elem->st; 717 err: 718 free_verifier_state(env->cur_state, true); 719 env->cur_state = NULL; 720 /* pop all elements and return */ 721 while (!pop_stack(env, NULL, NULL)); 722 return NULL; 723 } 724 725 #define CALLER_SAVED_REGS 6 726 static const int caller_saved[CALLER_SAVED_REGS] = { 727 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 728 }; 729 730 static void __mark_reg_not_init(struct bpf_reg_state *reg); 731 732 /* Mark the unknown part of a register (variable offset or scalar value) as 733 * known to have the value @imm. 734 */ 735 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 736 { 737 /* Clear id, off, and union(map_ptr, range) */ 738 memset(((u8 *)reg) + sizeof(reg->type), 0, 739 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 740 reg->var_off = tnum_const(imm); 741 reg->smin_value = (s64)imm; 742 reg->smax_value = (s64)imm; 743 reg->umin_value = imm; 744 reg->umax_value = imm; 745 } 746 747 /* Mark the 'variable offset' part of a register as zero. This should be 748 * used only on registers holding a pointer type. 749 */ 750 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 751 { 752 __mark_reg_known(reg, 0); 753 } 754 755 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 756 { 757 __mark_reg_known(reg, 0); 758 reg->type = SCALAR_VALUE; 759 } 760 761 static void mark_reg_known_zero(struct bpf_verifier_env *env, 762 struct bpf_reg_state *regs, u32 regno) 763 { 764 if (WARN_ON(regno >= MAX_BPF_REG)) { 765 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 766 /* Something bad happened, let's kill all regs */ 767 for (regno = 0; regno < MAX_BPF_REG; regno++) 768 __mark_reg_not_init(regs + regno); 769 return; 770 } 771 __mark_reg_known_zero(regs + regno); 772 } 773 774 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 775 { 776 return type_is_pkt_pointer(reg->type); 777 } 778 779 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 780 { 781 return reg_is_pkt_pointer(reg) || 782 reg->type == PTR_TO_PACKET_END; 783 } 784 785 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 786 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 787 enum bpf_reg_type which) 788 { 789 /* The register can already have a range from prior markings. 790 * This is fine as long as it hasn't been advanced from its 791 * origin. 792 */ 793 return reg->type == which && 794 reg->id == 0 && 795 reg->off == 0 && 796 tnum_equals_const(reg->var_off, 0); 797 } 798 799 /* Attempts to improve min/max values based on var_off information */ 800 static void __update_reg_bounds(struct bpf_reg_state *reg) 801 { 802 /* min signed is max(sign bit) | min(other bits) */ 803 reg->smin_value = max_t(s64, reg->smin_value, 804 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 805 /* max signed is min(sign bit) | max(other bits) */ 806 reg->smax_value = min_t(s64, reg->smax_value, 807 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 808 reg->umin_value = max(reg->umin_value, reg->var_off.value); 809 reg->umax_value = min(reg->umax_value, 810 reg->var_off.value | reg->var_off.mask); 811 } 812 813 /* Uses signed min/max values to inform unsigned, and vice-versa */ 814 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 815 { 816 /* Learn sign from signed bounds. 817 * If we cannot cross the sign boundary, then signed and unsigned bounds 818 * are the same, so combine. This works even in the negative case, e.g. 819 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 820 */ 821 if (reg->smin_value >= 0 || reg->smax_value < 0) { 822 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 823 reg->umin_value); 824 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 825 reg->umax_value); 826 return; 827 } 828 /* Learn sign from unsigned bounds. Signed bounds cross the sign 829 * boundary, so we must be careful. 830 */ 831 if ((s64)reg->umax_value >= 0) { 832 /* Positive. We can't learn anything from the smin, but smax 833 * is positive, hence safe. 834 */ 835 reg->smin_value = reg->umin_value; 836 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 837 reg->umax_value); 838 } else if ((s64)reg->umin_value < 0) { 839 /* Negative. We can't learn anything from the smax, but smin 840 * is negative, hence safe. 841 */ 842 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 843 reg->umin_value); 844 reg->smax_value = reg->umax_value; 845 } 846 } 847 848 /* Attempts to improve var_off based on unsigned min/max information */ 849 static void __reg_bound_offset(struct bpf_reg_state *reg) 850 { 851 reg->var_off = tnum_intersect(reg->var_off, 852 tnum_range(reg->umin_value, 853 reg->umax_value)); 854 } 855 856 /* Reset the min/max bounds of a register */ 857 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 858 { 859 reg->smin_value = S64_MIN; 860 reg->smax_value = S64_MAX; 861 reg->umin_value = 0; 862 reg->umax_value = U64_MAX; 863 } 864 865 /* Mark a register as having a completely unknown (scalar) value. */ 866 static void __mark_reg_unknown(struct bpf_reg_state *reg) 867 { 868 /* 869 * Clear type, id, off, and union(map_ptr, range) and 870 * padding between 'type' and union 871 */ 872 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 873 reg->type = SCALAR_VALUE; 874 reg->var_off = tnum_unknown; 875 reg->frameno = 0; 876 __mark_reg_unbounded(reg); 877 } 878 879 static void mark_reg_unknown(struct bpf_verifier_env *env, 880 struct bpf_reg_state *regs, u32 regno) 881 { 882 if (WARN_ON(regno >= MAX_BPF_REG)) { 883 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 884 /* Something bad happened, let's kill all regs except FP */ 885 for (regno = 0; regno < BPF_REG_FP; regno++) 886 __mark_reg_not_init(regs + regno); 887 return; 888 } 889 __mark_reg_unknown(regs + regno); 890 } 891 892 static void __mark_reg_not_init(struct bpf_reg_state *reg) 893 { 894 __mark_reg_unknown(reg); 895 reg->type = NOT_INIT; 896 } 897 898 static void mark_reg_not_init(struct bpf_verifier_env *env, 899 struct bpf_reg_state *regs, u32 regno) 900 { 901 if (WARN_ON(regno >= MAX_BPF_REG)) { 902 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 903 /* Something bad happened, let's kill all regs except FP */ 904 for (regno = 0; regno < BPF_REG_FP; regno++) 905 __mark_reg_not_init(regs + regno); 906 return; 907 } 908 __mark_reg_not_init(regs + regno); 909 } 910 911 static void init_reg_state(struct bpf_verifier_env *env, 912 struct bpf_func_state *state) 913 { 914 struct bpf_reg_state *regs = state->regs; 915 int i; 916 917 for (i = 0; i < MAX_BPF_REG; i++) { 918 mark_reg_not_init(env, regs, i); 919 regs[i].live = REG_LIVE_NONE; 920 regs[i].parent = NULL; 921 } 922 923 /* frame pointer */ 924 regs[BPF_REG_FP].type = PTR_TO_STACK; 925 mark_reg_known_zero(env, regs, BPF_REG_FP); 926 regs[BPF_REG_FP].frameno = state->frameno; 927 928 /* 1st arg to a function */ 929 regs[BPF_REG_1].type = PTR_TO_CTX; 930 mark_reg_known_zero(env, regs, BPF_REG_1); 931 } 932 933 #define BPF_MAIN_FUNC (-1) 934 static void init_func_state(struct bpf_verifier_env *env, 935 struct bpf_func_state *state, 936 int callsite, int frameno, int subprogno) 937 { 938 state->callsite = callsite; 939 state->frameno = frameno; 940 state->subprogno = subprogno; 941 init_reg_state(env, state); 942 } 943 944 enum reg_arg_type { 945 SRC_OP, /* register is used as source operand */ 946 DST_OP, /* register is used as destination operand */ 947 DST_OP_NO_MARK /* same as above, check only, don't mark */ 948 }; 949 950 static int cmp_subprogs(const void *a, const void *b) 951 { 952 return ((struct bpf_subprog_info *)a)->start - 953 ((struct bpf_subprog_info *)b)->start; 954 } 955 956 static int find_subprog(struct bpf_verifier_env *env, int off) 957 { 958 struct bpf_subprog_info *p; 959 960 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 961 sizeof(env->subprog_info[0]), cmp_subprogs); 962 if (!p) 963 return -ENOENT; 964 return p - env->subprog_info; 965 966 } 967 968 static int add_subprog(struct bpf_verifier_env *env, int off) 969 { 970 int insn_cnt = env->prog->len; 971 int ret; 972 973 if (off >= insn_cnt || off < 0) { 974 verbose(env, "call to invalid destination\n"); 975 return -EINVAL; 976 } 977 ret = find_subprog(env, off); 978 if (ret >= 0) 979 return 0; 980 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 981 verbose(env, "too many subprograms\n"); 982 return -E2BIG; 983 } 984 env->subprog_info[env->subprog_cnt++].start = off; 985 sort(env->subprog_info, env->subprog_cnt, 986 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 987 return 0; 988 } 989 990 static int check_subprogs(struct bpf_verifier_env *env) 991 { 992 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 993 struct bpf_subprog_info *subprog = env->subprog_info; 994 struct bpf_insn *insn = env->prog->insnsi; 995 int insn_cnt = env->prog->len; 996 997 /* Add entry function. */ 998 ret = add_subprog(env, 0); 999 if (ret < 0) 1000 return ret; 1001 1002 /* determine subprog starts. The end is one before the next starts */ 1003 for (i = 0; i < insn_cnt; i++) { 1004 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1005 continue; 1006 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1007 continue; 1008 if (!env->allow_ptr_leaks) { 1009 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1010 return -EPERM; 1011 } 1012 ret = add_subprog(env, i + insn[i].imm + 1); 1013 if (ret < 0) 1014 return ret; 1015 } 1016 1017 /* Add a fake 'exit' subprog which could simplify subprog iteration 1018 * logic. 'subprog_cnt' should not be increased. 1019 */ 1020 subprog[env->subprog_cnt].start = insn_cnt; 1021 1022 if (env->log.level > 1) 1023 for (i = 0; i < env->subprog_cnt; i++) 1024 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1025 1026 /* now check that all jumps are within the same subprog */ 1027 subprog_start = subprog[cur_subprog].start; 1028 subprog_end = subprog[cur_subprog + 1].start; 1029 for (i = 0; i < insn_cnt; i++) { 1030 u8 code = insn[i].code; 1031 1032 if (BPF_CLASS(code) != BPF_JMP) 1033 goto next; 1034 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1035 goto next; 1036 off = i + insn[i].off + 1; 1037 if (off < subprog_start || off >= subprog_end) { 1038 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1039 return -EINVAL; 1040 } 1041 next: 1042 if (i == subprog_end - 1) { 1043 /* to avoid fall-through from one subprog into another 1044 * the last insn of the subprog should be either exit 1045 * or unconditional jump back 1046 */ 1047 if (code != (BPF_JMP | BPF_EXIT) && 1048 code != (BPF_JMP | BPF_JA)) { 1049 verbose(env, "last insn is not an exit or jmp\n"); 1050 return -EINVAL; 1051 } 1052 subprog_start = subprog_end; 1053 cur_subprog++; 1054 if (cur_subprog < env->subprog_cnt) 1055 subprog_end = subprog[cur_subprog + 1].start; 1056 } 1057 } 1058 return 0; 1059 } 1060 1061 /* Parentage chain of this register (or stack slot) should take care of all 1062 * issues like callee-saved registers, stack slot allocation time, etc. 1063 */ 1064 static int mark_reg_read(struct bpf_verifier_env *env, 1065 const struct bpf_reg_state *state, 1066 struct bpf_reg_state *parent) 1067 { 1068 bool writes = parent == state->parent; /* Observe write marks */ 1069 1070 while (parent) { 1071 /* if read wasn't screened by an earlier write ... */ 1072 if (writes && state->live & REG_LIVE_WRITTEN) 1073 break; 1074 /* ... then we depend on parent's value */ 1075 parent->live |= REG_LIVE_READ; 1076 state = parent; 1077 parent = state->parent; 1078 writes = true; 1079 } 1080 return 0; 1081 } 1082 1083 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1084 enum reg_arg_type t) 1085 { 1086 struct bpf_verifier_state *vstate = env->cur_state; 1087 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1088 struct bpf_reg_state *regs = state->regs; 1089 1090 if (regno >= MAX_BPF_REG) { 1091 verbose(env, "R%d is invalid\n", regno); 1092 return -EINVAL; 1093 } 1094 1095 if (t == SRC_OP) { 1096 /* check whether register used as source operand can be read */ 1097 if (regs[regno].type == NOT_INIT) { 1098 verbose(env, "R%d !read_ok\n", regno); 1099 return -EACCES; 1100 } 1101 /* We don't need to worry about FP liveness because it's read-only */ 1102 if (regno != BPF_REG_FP) 1103 return mark_reg_read(env, ®s[regno], 1104 regs[regno].parent); 1105 } else { 1106 /* check whether register used as dest operand can be written to */ 1107 if (regno == BPF_REG_FP) { 1108 verbose(env, "frame pointer is read only\n"); 1109 return -EACCES; 1110 } 1111 regs[regno].live |= REG_LIVE_WRITTEN; 1112 if (t == DST_OP) 1113 mark_reg_unknown(env, regs, regno); 1114 } 1115 return 0; 1116 } 1117 1118 static bool is_spillable_regtype(enum bpf_reg_type type) 1119 { 1120 switch (type) { 1121 case PTR_TO_MAP_VALUE: 1122 case PTR_TO_MAP_VALUE_OR_NULL: 1123 case PTR_TO_STACK: 1124 case PTR_TO_CTX: 1125 case PTR_TO_PACKET: 1126 case PTR_TO_PACKET_META: 1127 case PTR_TO_PACKET_END: 1128 case PTR_TO_FLOW_KEYS: 1129 case CONST_PTR_TO_MAP: 1130 case PTR_TO_SOCKET: 1131 case PTR_TO_SOCKET_OR_NULL: 1132 return true; 1133 default: 1134 return false; 1135 } 1136 } 1137 1138 /* Does this register contain a constant zero? */ 1139 static bool register_is_null(struct bpf_reg_state *reg) 1140 { 1141 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1142 } 1143 1144 /* check_stack_read/write functions track spill/fill of registers, 1145 * stack boundary and alignment are checked in check_mem_access() 1146 */ 1147 static int check_stack_write(struct bpf_verifier_env *env, 1148 struct bpf_func_state *state, /* func where register points to */ 1149 int off, int size, int value_regno, int insn_idx) 1150 { 1151 struct bpf_func_state *cur; /* state of the current function */ 1152 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1153 enum bpf_reg_type type; 1154 1155 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1156 state->acquired_refs, true); 1157 if (err) 1158 return err; 1159 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1160 * so it's aligned access and [off, off + size) are within stack limits 1161 */ 1162 if (!env->allow_ptr_leaks && 1163 state->stack[spi].slot_type[0] == STACK_SPILL && 1164 size != BPF_REG_SIZE) { 1165 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1166 return -EACCES; 1167 } 1168 1169 cur = env->cur_state->frame[env->cur_state->curframe]; 1170 if (value_regno >= 0 && 1171 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1172 1173 /* register containing pointer is being spilled into stack */ 1174 if (size != BPF_REG_SIZE) { 1175 verbose(env, "invalid size of register spill\n"); 1176 return -EACCES; 1177 } 1178 1179 if (state != cur && type == PTR_TO_STACK) { 1180 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1181 return -EINVAL; 1182 } 1183 1184 /* save register state */ 1185 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1186 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1187 1188 for (i = 0; i < BPF_REG_SIZE; i++) { 1189 if (state->stack[spi].slot_type[i] == STACK_MISC && 1190 !env->allow_ptr_leaks) { 1191 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1192 int soff = (-spi - 1) * BPF_REG_SIZE; 1193 1194 /* detected reuse of integer stack slot with a pointer 1195 * which means either llvm is reusing stack slot or 1196 * an attacker is trying to exploit CVE-2018-3639 1197 * (speculative store bypass) 1198 * Have to sanitize that slot with preemptive 1199 * store of zero. 1200 */ 1201 if (*poff && *poff != soff) { 1202 /* disallow programs where single insn stores 1203 * into two different stack slots, since verifier 1204 * cannot sanitize them 1205 */ 1206 verbose(env, 1207 "insn %d cannot access two stack slots fp%d and fp%d", 1208 insn_idx, *poff, soff); 1209 return -EINVAL; 1210 } 1211 *poff = soff; 1212 } 1213 state->stack[spi].slot_type[i] = STACK_SPILL; 1214 } 1215 } else { 1216 u8 type = STACK_MISC; 1217 1218 /* regular write of data into stack destroys any spilled ptr */ 1219 state->stack[spi].spilled_ptr.type = NOT_INIT; 1220 1221 /* only mark the slot as written if all 8 bytes were written 1222 * otherwise read propagation may incorrectly stop too soon 1223 * when stack slots are partially written. 1224 * This heuristic means that read propagation will be 1225 * conservative, since it will add reg_live_read marks 1226 * to stack slots all the way to first state when programs 1227 * writes+reads less than 8 bytes 1228 */ 1229 if (size == BPF_REG_SIZE) 1230 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1231 1232 /* when we zero initialize stack slots mark them as such */ 1233 if (value_regno >= 0 && 1234 register_is_null(&cur->regs[value_regno])) 1235 type = STACK_ZERO; 1236 1237 for (i = 0; i < size; i++) 1238 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1239 type; 1240 } 1241 return 0; 1242 } 1243 1244 static int check_stack_read(struct bpf_verifier_env *env, 1245 struct bpf_func_state *reg_state /* func where register points to */, 1246 int off, int size, int value_regno) 1247 { 1248 struct bpf_verifier_state *vstate = env->cur_state; 1249 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1250 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1251 u8 *stype; 1252 1253 if (reg_state->allocated_stack <= slot) { 1254 verbose(env, "invalid read from stack off %d+0 size %d\n", 1255 off, size); 1256 return -EACCES; 1257 } 1258 stype = reg_state->stack[spi].slot_type; 1259 1260 if (stype[0] == STACK_SPILL) { 1261 if (size != BPF_REG_SIZE) { 1262 verbose(env, "invalid size of register spill\n"); 1263 return -EACCES; 1264 } 1265 for (i = 1; i < BPF_REG_SIZE; i++) { 1266 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1267 verbose(env, "corrupted spill memory\n"); 1268 return -EACCES; 1269 } 1270 } 1271 1272 if (value_regno >= 0) { 1273 /* restore register state from stack */ 1274 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1275 /* mark reg as written since spilled pointer state likely 1276 * has its liveness marks cleared by is_state_visited() 1277 * which resets stack/reg liveness for state transitions 1278 */ 1279 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1280 } 1281 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1282 reg_state->stack[spi].spilled_ptr.parent); 1283 return 0; 1284 } else { 1285 int zeros = 0; 1286 1287 for (i = 0; i < size; i++) { 1288 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1289 continue; 1290 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1291 zeros++; 1292 continue; 1293 } 1294 verbose(env, "invalid read from stack off %d+%d size %d\n", 1295 off, i, size); 1296 return -EACCES; 1297 } 1298 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1299 reg_state->stack[spi].spilled_ptr.parent); 1300 if (value_regno >= 0) { 1301 if (zeros == size) { 1302 /* any size read into register is zero extended, 1303 * so the whole register == const_zero 1304 */ 1305 __mark_reg_const_zero(&state->regs[value_regno]); 1306 } else { 1307 /* have read misc data from the stack */ 1308 mark_reg_unknown(env, state->regs, value_regno); 1309 } 1310 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1311 } 1312 return 0; 1313 } 1314 } 1315 1316 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1317 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1318 int size, bool zero_size_allowed) 1319 { 1320 struct bpf_reg_state *regs = cur_regs(env); 1321 struct bpf_map *map = regs[regno].map_ptr; 1322 1323 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1324 off + size > map->value_size) { 1325 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1326 map->value_size, off, size); 1327 return -EACCES; 1328 } 1329 return 0; 1330 } 1331 1332 /* check read/write into a map element with possible variable offset */ 1333 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1334 int off, int size, bool zero_size_allowed) 1335 { 1336 struct bpf_verifier_state *vstate = env->cur_state; 1337 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1338 struct bpf_reg_state *reg = &state->regs[regno]; 1339 int err; 1340 1341 /* We may have adjusted the register to this map value, so we 1342 * need to try adding each of min_value and max_value to off 1343 * to make sure our theoretical access will be safe. 1344 */ 1345 if (env->log.level) 1346 print_verifier_state(env, state); 1347 /* The minimum value is only important with signed 1348 * comparisons where we can't assume the floor of a 1349 * value is 0. If we are using signed variables for our 1350 * index'es we need to make sure that whatever we use 1351 * will have a set floor within our range. 1352 */ 1353 if (reg->smin_value < 0) { 1354 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1355 regno); 1356 return -EACCES; 1357 } 1358 err = __check_map_access(env, regno, reg->smin_value + off, size, 1359 zero_size_allowed); 1360 if (err) { 1361 verbose(env, "R%d min value is outside of the array range\n", 1362 regno); 1363 return err; 1364 } 1365 1366 /* If we haven't set a max value then we need to bail since we can't be 1367 * sure we won't do bad things. 1368 * If reg->umax_value + off could overflow, treat that as unbounded too. 1369 */ 1370 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1371 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1372 regno); 1373 return -EACCES; 1374 } 1375 err = __check_map_access(env, regno, reg->umax_value + off, size, 1376 zero_size_allowed); 1377 if (err) 1378 verbose(env, "R%d max value is outside of the array range\n", 1379 regno); 1380 return err; 1381 } 1382 1383 #define MAX_PACKET_OFF 0xffff 1384 1385 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1386 const struct bpf_call_arg_meta *meta, 1387 enum bpf_access_type t) 1388 { 1389 switch (env->prog->type) { 1390 /* Program types only with direct read access go here! */ 1391 case BPF_PROG_TYPE_LWT_IN: 1392 case BPF_PROG_TYPE_LWT_OUT: 1393 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1394 case BPF_PROG_TYPE_SK_REUSEPORT: 1395 case BPF_PROG_TYPE_FLOW_DISSECTOR: 1396 case BPF_PROG_TYPE_CGROUP_SKB: 1397 if (t == BPF_WRITE) 1398 return false; 1399 /* fallthrough */ 1400 1401 /* Program types with direct read + write access go here! */ 1402 case BPF_PROG_TYPE_SCHED_CLS: 1403 case BPF_PROG_TYPE_SCHED_ACT: 1404 case BPF_PROG_TYPE_XDP: 1405 case BPF_PROG_TYPE_LWT_XMIT: 1406 case BPF_PROG_TYPE_SK_SKB: 1407 case BPF_PROG_TYPE_SK_MSG: 1408 if (meta) 1409 return meta->pkt_access; 1410 1411 env->seen_direct_write = true; 1412 return true; 1413 default: 1414 return false; 1415 } 1416 } 1417 1418 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1419 int off, int size, bool zero_size_allowed) 1420 { 1421 struct bpf_reg_state *regs = cur_regs(env); 1422 struct bpf_reg_state *reg = ®s[regno]; 1423 1424 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1425 (u64)off + size > reg->range) { 1426 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1427 off, size, regno, reg->id, reg->off, reg->range); 1428 return -EACCES; 1429 } 1430 return 0; 1431 } 1432 1433 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1434 int size, bool zero_size_allowed) 1435 { 1436 struct bpf_reg_state *regs = cur_regs(env); 1437 struct bpf_reg_state *reg = ®s[regno]; 1438 int err; 1439 1440 /* We may have added a variable offset to the packet pointer; but any 1441 * reg->range we have comes after that. We are only checking the fixed 1442 * offset. 1443 */ 1444 1445 /* We don't allow negative numbers, because we aren't tracking enough 1446 * detail to prove they're safe. 1447 */ 1448 if (reg->smin_value < 0) { 1449 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1450 regno); 1451 return -EACCES; 1452 } 1453 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1454 if (err) { 1455 verbose(env, "R%d offset is outside of the packet\n", regno); 1456 return err; 1457 } 1458 1459 /* __check_packet_access has made sure "off + size - 1" is within u16. 1460 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 1461 * otherwise find_good_pkt_pointers would have refused to set range info 1462 * that __check_packet_access would have rejected this pkt access. 1463 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 1464 */ 1465 env->prog->aux->max_pkt_offset = 1466 max_t(u32, env->prog->aux->max_pkt_offset, 1467 off + reg->umax_value + size - 1); 1468 1469 return err; 1470 } 1471 1472 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1473 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1474 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1475 { 1476 struct bpf_insn_access_aux info = { 1477 .reg_type = *reg_type, 1478 }; 1479 1480 if (env->ops->is_valid_access && 1481 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1482 /* A non zero info.ctx_field_size indicates that this field is a 1483 * candidate for later verifier transformation to load the whole 1484 * field and then apply a mask when accessed with a narrower 1485 * access than actual ctx access size. A zero info.ctx_field_size 1486 * will only allow for whole field access and rejects any other 1487 * type of narrower access. 1488 */ 1489 *reg_type = info.reg_type; 1490 1491 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1492 /* remember the offset of last byte accessed in ctx */ 1493 if (env->prog->aux->max_ctx_offset < off + size) 1494 env->prog->aux->max_ctx_offset = off + size; 1495 return 0; 1496 } 1497 1498 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1499 return -EACCES; 1500 } 1501 1502 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 1503 int size) 1504 { 1505 if (size < 0 || off < 0 || 1506 (u64)off + size > sizeof(struct bpf_flow_keys)) { 1507 verbose(env, "invalid access to flow keys off=%d size=%d\n", 1508 off, size); 1509 return -EACCES; 1510 } 1511 return 0; 1512 } 1513 1514 static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off, 1515 int size, enum bpf_access_type t) 1516 { 1517 struct bpf_reg_state *regs = cur_regs(env); 1518 struct bpf_reg_state *reg = ®s[regno]; 1519 struct bpf_insn_access_aux info; 1520 1521 if (reg->smin_value < 0) { 1522 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1523 regno); 1524 return -EACCES; 1525 } 1526 1527 if (!bpf_sock_is_valid_access(off, size, t, &info)) { 1528 verbose(env, "invalid bpf_sock access off=%d size=%d\n", 1529 off, size); 1530 return -EACCES; 1531 } 1532 1533 return 0; 1534 } 1535 1536 static bool __is_pointer_value(bool allow_ptr_leaks, 1537 const struct bpf_reg_state *reg) 1538 { 1539 if (allow_ptr_leaks) 1540 return false; 1541 1542 return reg->type != SCALAR_VALUE; 1543 } 1544 1545 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 1546 { 1547 return cur_regs(env) + regno; 1548 } 1549 1550 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1551 { 1552 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 1553 } 1554 1555 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1556 { 1557 const struct bpf_reg_state *reg = reg_state(env, regno); 1558 1559 return reg->type == PTR_TO_CTX || 1560 reg->type == PTR_TO_SOCKET; 1561 } 1562 1563 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1564 { 1565 const struct bpf_reg_state *reg = reg_state(env, regno); 1566 1567 return type_is_pkt_pointer(reg->type); 1568 } 1569 1570 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 1571 { 1572 const struct bpf_reg_state *reg = reg_state(env, regno); 1573 1574 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 1575 return reg->type == PTR_TO_FLOW_KEYS; 1576 } 1577 1578 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1579 const struct bpf_reg_state *reg, 1580 int off, int size, bool strict) 1581 { 1582 struct tnum reg_off; 1583 int ip_align; 1584 1585 /* Byte size accesses are always allowed. */ 1586 if (!strict || size == 1) 1587 return 0; 1588 1589 /* For platforms that do not have a Kconfig enabling 1590 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1591 * NET_IP_ALIGN is universally set to '2'. And on platforms 1592 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1593 * to this code only in strict mode where we want to emulate 1594 * the NET_IP_ALIGN==2 checking. Therefore use an 1595 * unconditional IP align value of '2'. 1596 */ 1597 ip_align = 2; 1598 1599 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1600 if (!tnum_is_aligned(reg_off, size)) { 1601 char tn_buf[48]; 1602 1603 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1604 verbose(env, 1605 "misaligned packet access off %d+%s+%d+%d size %d\n", 1606 ip_align, tn_buf, reg->off, off, size); 1607 return -EACCES; 1608 } 1609 1610 return 0; 1611 } 1612 1613 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1614 const struct bpf_reg_state *reg, 1615 const char *pointer_desc, 1616 int off, int size, bool strict) 1617 { 1618 struct tnum reg_off; 1619 1620 /* Byte size accesses are always allowed. */ 1621 if (!strict || size == 1) 1622 return 0; 1623 1624 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1625 if (!tnum_is_aligned(reg_off, size)) { 1626 char tn_buf[48]; 1627 1628 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1629 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1630 pointer_desc, tn_buf, reg->off, off, size); 1631 return -EACCES; 1632 } 1633 1634 return 0; 1635 } 1636 1637 static int check_ptr_alignment(struct bpf_verifier_env *env, 1638 const struct bpf_reg_state *reg, int off, 1639 int size, bool strict_alignment_once) 1640 { 1641 bool strict = env->strict_alignment || strict_alignment_once; 1642 const char *pointer_desc = ""; 1643 1644 switch (reg->type) { 1645 case PTR_TO_PACKET: 1646 case PTR_TO_PACKET_META: 1647 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1648 * right in front, treat it the very same way. 1649 */ 1650 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1651 case PTR_TO_FLOW_KEYS: 1652 pointer_desc = "flow keys "; 1653 break; 1654 case PTR_TO_MAP_VALUE: 1655 pointer_desc = "value "; 1656 break; 1657 case PTR_TO_CTX: 1658 pointer_desc = "context "; 1659 break; 1660 case PTR_TO_STACK: 1661 pointer_desc = "stack "; 1662 /* The stack spill tracking logic in check_stack_write() 1663 * and check_stack_read() relies on stack accesses being 1664 * aligned. 1665 */ 1666 strict = true; 1667 break; 1668 case PTR_TO_SOCKET: 1669 pointer_desc = "sock "; 1670 break; 1671 default: 1672 break; 1673 } 1674 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1675 strict); 1676 } 1677 1678 static int update_stack_depth(struct bpf_verifier_env *env, 1679 const struct bpf_func_state *func, 1680 int off) 1681 { 1682 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1683 1684 if (stack >= -off) 1685 return 0; 1686 1687 /* update known max for given subprogram */ 1688 env->subprog_info[func->subprogno].stack_depth = -off; 1689 return 0; 1690 } 1691 1692 /* starting from main bpf function walk all instructions of the function 1693 * and recursively walk all callees that given function can call. 1694 * Ignore jump and exit insns. 1695 * Since recursion is prevented by check_cfg() this algorithm 1696 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1697 */ 1698 static int check_max_stack_depth(struct bpf_verifier_env *env) 1699 { 1700 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1701 struct bpf_subprog_info *subprog = env->subprog_info; 1702 struct bpf_insn *insn = env->prog->insnsi; 1703 int ret_insn[MAX_CALL_FRAMES]; 1704 int ret_prog[MAX_CALL_FRAMES]; 1705 1706 process_func: 1707 /* round up to 32-bytes, since this is granularity 1708 * of interpreter stack size 1709 */ 1710 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1711 if (depth > MAX_BPF_STACK) { 1712 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1713 frame + 1, depth); 1714 return -EACCES; 1715 } 1716 continue_func: 1717 subprog_end = subprog[idx + 1].start; 1718 for (; i < subprog_end; i++) { 1719 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1720 continue; 1721 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1722 continue; 1723 /* remember insn and function to return to */ 1724 ret_insn[frame] = i + 1; 1725 ret_prog[frame] = idx; 1726 1727 /* find the callee */ 1728 i = i + insn[i].imm + 1; 1729 idx = find_subprog(env, i); 1730 if (idx < 0) { 1731 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1732 i); 1733 return -EFAULT; 1734 } 1735 frame++; 1736 if (frame >= MAX_CALL_FRAMES) { 1737 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1738 return -EFAULT; 1739 } 1740 goto process_func; 1741 } 1742 /* end of for() loop means the last insn of the 'subprog' 1743 * was reached. Doesn't matter whether it was JA or EXIT 1744 */ 1745 if (frame == 0) 1746 return 0; 1747 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1748 frame--; 1749 i = ret_insn[frame]; 1750 idx = ret_prog[frame]; 1751 goto continue_func; 1752 } 1753 1754 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1755 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1756 const struct bpf_insn *insn, int idx) 1757 { 1758 int start = idx + insn->imm + 1, subprog; 1759 1760 subprog = find_subprog(env, start); 1761 if (subprog < 0) { 1762 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1763 start); 1764 return -EFAULT; 1765 } 1766 return env->subprog_info[subprog].stack_depth; 1767 } 1768 #endif 1769 1770 static int check_ctx_reg(struct bpf_verifier_env *env, 1771 const struct bpf_reg_state *reg, int regno) 1772 { 1773 /* Access to ctx or passing it to a helper is only allowed in 1774 * its original, unmodified form. 1775 */ 1776 1777 if (reg->off) { 1778 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1779 regno, reg->off); 1780 return -EACCES; 1781 } 1782 1783 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1784 char tn_buf[48]; 1785 1786 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1787 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1788 return -EACCES; 1789 } 1790 1791 return 0; 1792 } 1793 1794 /* truncate register to smaller size (in bytes) 1795 * must be called with size < BPF_REG_SIZE 1796 */ 1797 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1798 { 1799 u64 mask; 1800 1801 /* clear high bits in bit representation */ 1802 reg->var_off = tnum_cast(reg->var_off, size); 1803 1804 /* fix arithmetic bounds */ 1805 mask = ((u64)1 << (size * 8)) - 1; 1806 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1807 reg->umin_value &= mask; 1808 reg->umax_value &= mask; 1809 } else { 1810 reg->umin_value = 0; 1811 reg->umax_value = mask; 1812 } 1813 reg->smin_value = reg->umin_value; 1814 reg->smax_value = reg->umax_value; 1815 } 1816 1817 /* check whether memory at (regno + off) is accessible for t = (read | write) 1818 * if t==write, value_regno is a register which value is stored into memory 1819 * if t==read, value_regno is a register which will receive the value from memory 1820 * if t==write && value_regno==-1, some unknown value is stored into memory 1821 * if t==read && value_regno==-1, don't care what we read from memory 1822 */ 1823 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1824 int off, int bpf_size, enum bpf_access_type t, 1825 int value_regno, bool strict_alignment_once) 1826 { 1827 struct bpf_reg_state *regs = cur_regs(env); 1828 struct bpf_reg_state *reg = regs + regno; 1829 struct bpf_func_state *state; 1830 int size, err = 0; 1831 1832 size = bpf_size_to_bytes(bpf_size); 1833 if (size < 0) 1834 return size; 1835 1836 /* alignment checks will add in reg->off themselves */ 1837 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 1838 if (err) 1839 return err; 1840 1841 /* for access checks, reg->off is just part of off */ 1842 off += reg->off; 1843 1844 if (reg->type == PTR_TO_MAP_VALUE) { 1845 if (t == BPF_WRITE && value_regno >= 0 && 1846 is_pointer_value(env, value_regno)) { 1847 verbose(env, "R%d leaks addr into map\n", value_regno); 1848 return -EACCES; 1849 } 1850 1851 err = check_map_access(env, regno, off, size, false); 1852 if (!err && t == BPF_READ && value_regno >= 0) 1853 mark_reg_unknown(env, regs, value_regno); 1854 1855 } else if (reg->type == PTR_TO_CTX) { 1856 enum bpf_reg_type reg_type = SCALAR_VALUE; 1857 1858 if (t == BPF_WRITE && value_regno >= 0 && 1859 is_pointer_value(env, value_regno)) { 1860 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1861 return -EACCES; 1862 } 1863 1864 err = check_ctx_reg(env, reg, regno); 1865 if (err < 0) 1866 return err; 1867 1868 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1869 if (!err && t == BPF_READ && value_regno >= 0) { 1870 /* ctx access returns either a scalar, or a 1871 * PTR_TO_PACKET[_META,_END]. In the latter 1872 * case, we know the offset is zero. 1873 */ 1874 if (reg_type == SCALAR_VALUE) 1875 mark_reg_unknown(env, regs, value_regno); 1876 else 1877 mark_reg_known_zero(env, regs, 1878 value_regno); 1879 regs[value_regno].type = reg_type; 1880 } 1881 1882 } else if (reg->type == PTR_TO_STACK) { 1883 /* stack accesses must be at a fixed offset, so that we can 1884 * determine what type of data were returned. 1885 * See check_stack_read(). 1886 */ 1887 if (!tnum_is_const(reg->var_off)) { 1888 char tn_buf[48]; 1889 1890 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1891 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1892 tn_buf, off, size); 1893 return -EACCES; 1894 } 1895 off += reg->var_off.value; 1896 if (off >= 0 || off < -MAX_BPF_STACK) { 1897 verbose(env, "invalid stack off=%d size=%d\n", off, 1898 size); 1899 return -EACCES; 1900 } 1901 1902 state = func(env, reg); 1903 err = update_stack_depth(env, state, off); 1904 if (err) 1905 return err; 1906 1907 if (t == BPF_WRITE) 1908 err = check_stack_write(env, state, off, size, 1909 value_regno, insn_idx); 1910 else 1911 err = check_stack_read(env, state, off, size, 1912 value_regno); 1913 } else if (reg_is_pkt_pointer(reg)) { 1914 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1915 verbose(env, "cannot write into packet\n"); 1916 return -EACCES; 1917 } 1918 if (t == BPF_WRITE && value_regno >= 0 && 1919 is_pointer_value(env, value_regno)) { 1920 verbose(env, "R%d leaks addr into packet\n", 1921 value_regno); 1922 return -EACCES; 1923 } 1924 err = check_packet_access(env, regno, off, size, false); 1925 if (!err && t == BPF_READ && value_regno >= 0) 1926 mark_reg_unknown(env, regs, value_regno); 1927 } else if (reg->type == PTR_TO_FLOW_KEYS) { 1928 if (t == BPF_WRITE && value_regno >= 0 && 1929 is_pointer_value(env, value_regno)) { 1930 verbose(env, "R%d leaks addr into flow keys\n", 1931 value_regno); 1932 return -EACCES; 1933 } 1934 1935 err = check_flow_keys_access(env, off, size); 1936 if (!err && t == BPF_READ && value_regno >= 0) 1937 mark_reg_unknown(env, regs, value_regno); 1938 } else if (reg->type == PTR_TO_SOCKET) { 1939 if (t == BPF_WRITE) { 1940 verbose(env, "cannot write into socket\n"); 1941 return -EACCES; 1942 } 1943 err = check_sock_access(env, regno, off, size, t); 1944 if (!err && value_regno >= 0) 1945 mark_reg_unknown(env, regs, value_regno); 1946 } else { 1947 verbose(env, "R%d invalid mem access '%s'\n", regno, 1948 reg_type_str[reg->type]); 1949 return -EACCES; 1950 } 1951 1952 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1953 regs[value_regno].type == SCALAR_VALUE) { 1954 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1955 coerce_reg_to_size(®s[value_regno], size); 1956 } 1957 return err; 1958 } 1959 1960 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1961 { 1962 int err; 1963 1964 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1965 insn->imm != 0) { 1966 verbose(env, "BPF_XADD uses reserved fields\n"); 1967 return -EINVAL; 1968 } 1969 1970 /* check src1 operand */ 1971 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1972 if (err) 1973 return err; 1974 1975 /* check src2 operand */ 1976 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1977 if (err) 1978 return err; 1979 1980 if (is_pointer_value(env, insn->src_reg)) { 1981 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1982 return -EACCES; 1983 } 1984 1985 if (is_ctx_reg(env, insn->dst_reg) || 1986 is_pkt_reg(env, insn->dst_reg) || 1987 is_flow_key_reg(env, insn->dst_reg)) { 1988 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 1989 insn->dst_reg, 1990 reg_type_str[reg_state(env, insn->dst_reg)->type]); 1991 return -EACCES; 1992 } 1993 1994 /* check whether atomic_add can read the memory */ 1995 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1996 BPF_SIZE(insn->code), BPF_READ, -1, true); 1997 if (err) 1998 return err; 1999 2000 /* check whether atomic_add can write into the same memory */ 2001 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2002 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 2003 } 2004 2005 /* when register 'regno' is passed into function that will read 'access_size' 2006 * bytes from that pointer, make sure that it's within stack boundary 2007 * and all elements of stack are initialized. 2008 * Unlike most pointer bounds-checking functions, this one doesn't take an 2009 * 'off' argument, so it has to add in reg->off itself. 2010 */ 2011 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2012 int access_size, bool zero_size_allowed, 2013 struct bpf_call_arg_meta *meta) 2014 { 2015 struct bpf_reg_state *reg = reg_state(env, regno); 2016 struct bpf_func_state *state = func(env, reg); 2017 int off, i, slot, spi; 2018 2019 if (reg->type != PTR_TO_STACK) { 2020 /* Allow zero-byte read from NULL, regardless of pointer type */ 2021 if (zero_size_allowed && access_size == 0 && 2022 register_is_null(reg)) 2023 return 0; 2024 2025 verbose(env, "R%d type=%s expected=%s\n", regno, 2026 reg_type_str[reg->type], 2027 reg_type_str[PTR_TO_STACK]); 2028 return -EACCES; 2029 } 2030 2031 /* Only allow fixed-offset stack reads */ 2032 if (!tnum_is_const(reg->var_off)) { 2033 char tn_buf[48]; 2034 2035 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2036 verbose(env, "invalid variable stack read R%d var_off=%s\n", 2037 regno, tn_buf); 2038 return -EACCES; 2039 } 2040 off = reg->off + reg->var_off.value; 2041 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2042 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2043 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2044 regno, off, access_size); 2045 return -EACCES; 2046 } 2047 2048 if (meta && meta->raw_mode) { 2049 meta->access_size = access_size; 2050 meta->regno = regno; 2051 return 0; 2052 } 2053 2054 for (i = 0; i < access_size; i++) { 2055 u8 *stype; 2056 2057 slot = -(off + i) - 1; 2058 spi = slot / BPF_REG_SIZE; 2059 if (state->allocated_stack <= slot) 2060 goto err; 2061 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2062 if (*stype == STACK_MISC) 2063 goto mark; 2064 if (*stype == STACK_ZERO) { 2065 /* helper can write anything into the stack */ 2066 *stype = STACK_MISC; 2067 goto mark; 2068 } 2069 err: 2070 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 2071 off, i, access_size); 2072 return -EACCES; 2073 mark: 2074 /* reading any byte out of 8-byte 'spill_slot' will cause 2075 * the whole slot to be marked as 'read' 2076 */ 2077 mark_reg_read(env, &state->stack[spi].spilled_ptr, 2078 state->stack[spi].spilled_ptr.parent); 2079 } 2080 return update_stack_depth(env, state, off); 2081 } 2082 2083 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 2084 int access_size, bool zero_size_allowed, 2085 struct bpf_call_arg_meta *meta) 2086 { 2087 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2088 2089 switch (reg->type) { 2090 case PTR_TO_PACKET: 2091 case PTR_TO_PACKET_META: 2092 return check_packet_access(env, regno, reg->off, access_size, 2093 zero_size_allowed); 2094 case PTR_TO_MAP_VALUE: 2095 return check_map_access(env, regno, reg->off, access_size, 2096 zero_size_allowed); 2097 default: /* scalar_value|ptr_to_stack or invalid ptr */ 2098 return check_stack_boundary(env, regno, access_size, 2099 zero_size_allowed, meta); 2100 } 2101 } 2102 2103 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 2104 { 2105 return type == ARG_PTR_TO_MEM || 2106 type == ARG_PTR_TO_MEM_OR_NULL || 2107 type == ARG_PTR_TO_UNINIT_MEM; 2108 } 2109 2110 static bool arg_type_is_mem_size(enum bpf_arg_type type) 2111 { 2112 return type == ARG_CONST_SIZE || 2113 type == ARG_CONST_SIZE_OR_ZERO; 2114 } 2115 2116 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 2117 enum bpf_arg_type arg_type, 2118 struct bpf_call_arg_meta *meta) 2119 { 2120 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2121 enum bpf_reg_type expected_type, type = reg->type; 2122 int err = 0; 2123 2124 if (arg_type == ARG_DONTCARE) 2125 return 0; 2126 2127 err = check_reg_arg(env, regno, SRC_OP); 2128 if (err) 2129 return err; 2130 2131 if (arg_type == ARG_ANYTHING) { 2132 if (is_pointer_value(env, regno)) { 2133 verbose(env, "R%d leaks addr into helper function\n", 2134 regno); 2135 return -EACCES; 2136 } 2137 return 0; 2138 } 2139 2140 if (type_is_pkt_pointer(type) && 2141 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 2142 verbose(env, "helper access to the packet is not allowed\n"); 2143 return -EACCES; 2144 } 2145 2146 if (arg_type == ARG_PTR_TO_MAP_KEY || 2147 arg_type == ARG_PTR_TO_MAP_VALUE || 2148 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2149 expected_type = PTR_TO_STACK; 2150 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 2151 type != expected_type) 2152 goto err_type; 2153 } else if (arg_type == ARG_CONST_SIZE || 2154 arg_type == ARG_CONST_SIZE_OR_ZERO) { 2155 expected_type = SCALAR_VALUE; 2156 if (type != expected_type) 2157 goto err_type; 2158 } else if (arg_type == ARG_CONST_MAP_PTR) { 2159 expected_type = CONST_PTR_TO_MAP; 2160 if (type != expected_type) 2161 goto err_type; 2162 } else if (arg_type == ARG_PTR_TO_CTX) { 2163 expected_type = PTR_TO_CTX; 2164 if (type != expected_type) 2165 goto err_type; 2166 err = check_ctx_reg(env, reg, regno); 2167 if (err < 0) 2168 return err; 2169 } else if (arg_type == ARG_PTR_TO_SOCKET) { 2170 expected_type = PTR_TO_SOCKET; 2171 if (type != expected_type) 2172 goto err_type; 2173 if (meta->ptr_id || !reg->id) { 2174 verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n", 2175 meta->ptr_id, reg->id); 2176 return -EFAULT; 2177 } 2178 meta->ptr_id = reg->id; 2179 } else if (arg_type_is_mem_ptr(arg_type)) { 2180 expected_type = PTR_TO_STACK; 2181 /* One exception here. In case function allows for NULL to be 2182 * passed in as argument, it's a SCALAR_VALUE type. Final test 2183 * happens during stack boundary checking. 2184 */ 2185 if (register_is_null(reg) && 2186 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2187 /* final test in check_stack_boundary() */; 2188 else if (!type_is_pkt_pointer(type) && 2189 type != PTR_TO_MAP_VALUE && 2190 type != expected_type) 2191 goto err_type; 2192 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2193 } else { 2194 verbose(env, "unsupported arg_type %d\n", arg_type); 2195 return -EFAULT; 2196 } 2197 2198 if (arg_type == ARG_CONST_MAP_PTR) { 2199 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2200 meta->map_ptr = reg->map_ptr; 2201 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2202 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2203 * check that [key, key + map->key_size) are within 2204 * stack limits and initialized 2205 */ 2206 if (!meta->map_ptr) { 2207 /* in function declaration map_ptr must come before 2208 * map_key, so that it's verified and known before 2209 * we have to check map_key here. Otherwise it means 2210 * that kernel subsystem misconfigured verifier 2211 */ 2212 verbose(env, "invalid map_ptr to access map->key\n"); 2213 return -EACCES; 2214 } 2215 err = check_helper_mem_access(env, regno, 2216 meta->map_ptr->key_size, false, 2217 NULL); 2218 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 2219 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2220 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2221 * check [value, value + map->value_size) validity 2222 */ 2223 if (!meta->map_ptr) { 2224 /* kernel subsystem misconfigured verifier */ 2225 verbose(env, "invalid map_ptr to access map->value\n"); 2226 return -EACCES; 2227 } 2228 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 2229 err = check_helper_mem_access(env, regno, 2230 meta->map_ptr->value_size, false, 2231 meta); 2232 } else if (arg_type_is_mem_size(arg_type)) { 2233 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2234 2235 /* remember the mem_size which may be used later 2236 * to refine return values. 2237 */ 2238 meta->msize_smax_value = reg->smax_value; 2239 meta->msize_umax_value = reg->umax_value; 2240 2241 /* The register is SCALAR_VALUE; the access check 2242 * happens using its boundaries. 2243 */ 2244 if (!tnum_is_const(reg->var_off)) 2245 /* For unprivileged variable accesses, disable raw 2246 * mode so that the program is required to 2247 * initialize all the memory that the helper could 2248 * just partially fill up. 2249 */ 2250 meta = NULL; 2251 2252 if (reg->smin_value < 0) { 2253 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2254 regno); 2255 return -EACCES; 2256 } 2257 2258 if (reg->umin_value == 0) { 2259 err = check_helper_mem_access(env, regno - 1, 0, 2260 zero_size_allowed, 2261 meta); 2262 if (err) 2263 return err; 2264 } 2265 2266 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2267 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2268 regno); 2269 return -EACCES; 2270 } 2271 err = check_helper_mem_access(env, regno - 1, 2272 reg->umax_value, 2273 zero_size_allowed, meta); 2274 } 2275 2276 return err; 2277 err_type: 2278 verbose(env, "R%d type=%s expected=%s\n", regno, 2279 reg_type_str[type], reg_type_str[expected_type]); 2280 return -EACCES; 2281 } 2282 2283 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2284 struct bpf_map *map, int func_id) 2285 { 2286 if (!map) 2287 return 0; 2288 2289 /* We need a two way check, first is from map perspective ... */ 2290 switch (map->map_type) { 2291 case BPF_MAP_TYPE_PROG_ARRAY: 2292 if (func_id != BPF_FUNC_tail_call) 2293 goto error; 2294 break; 2295 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2296 if (func_id != BPF_FUNC_perf_event_read && 2297 func_id != BPF_FUNC_perf_event_output && 2298 func_id != BPF_FUNC_perf_event_read_value) 2299 goto error; 2300 break; 2301 case BPF_MAP_TYPE_STACK_TRACE: 2302 if (func_id != BPF_FUNC_get_stackid) 2303 goto error; 2304 break; 2305 case BPF_MAP_TYPE_CGROUP_ARRAY: 2306 if (func_id != BPF_FUNC_skb_under_cgroup && 2307 func_id != BPF_FUNC_current_task_under_cgroup) 2308 goto error; 2309 break; 2310 case BPF_MAP_TYPE_CGROUP_STORAGE: 2311 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 2312 if (func_id != BPF_FUNC_get_local_storage) 2313 goto error; 2314 break; 2315 /* devmap returns a pointer to a live net_device ifindex that we cannot 2316 * allow to be modified from bpf side. So do not allow lookup elements 2317 * for now. 2318 */ 2319 case BPF_MAP_TYPE_DEVMAP: 2320 if (func_id != BPF_FUNC_redirect_map) 2321 goto error; 2322 break; 2323 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2324 * appear. 2325 */ 2326 case BPF_MAP_TYPE_CPUMAP: 2327 case BPF_MAP_TYPE_XSKMAP: 2328 if (func_id != BPF_FUNC_redirect_map) 2329 goto error; 2330 break; 2331 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2332 case BPF_MAP_TYPE_HASH_OF_MAPS: 2333 if (func_id != BPF_FUNC_map_lookup_elem) 2334 goto error; 2335 break; 2336 case BPF_MAP_TYPE_SOCKMAP: 2337 if (func_id != BPF_FUNC_sk_redirect_map && 2338 func_id != BPF_FUNC_sock_map_update && 2339 func_id != BPF_FUNC_map_delete_elem && 2340 func_id != BPF_FUNC_msg_redirect_map) 2341 goto error; 2342 break; 2343 case BPF_MAP_TYPE_SOCKHASH: 2344 if (func_id != BPF_FUNC_sk_redirect_hash && 2345 func_id != BPF_FUNC_sock_hash_update && 2346 func_id != BPF_FUNC_map_delete_elem && 2347 func_id != BPF_FUNC_msg_redirect_hash) 2348 goto error; 2349 break; 2350 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2351 if (func_id != BPF_FUNC_sk_select_reuseport) 2352 goto error; 2353 break; 2354 case BPF_MAP_TYPE_QUEUE: 2355 case BPF_MAP_TYPE_STACK: 2356 if (func_id != BPF_FUNC_map_peek_elem && 2357 func_id != BPF_FUNC_map_pop_elem && 2358 func_id != BPF_FUNC_map_push_elem) 2359 goto error; 2360 break; 2361 default: 2362 break; 2363 } 2364 2365 /* ... and second from the function itself. */ 2366 switch (func_id) { 2367 case BPF_FUNC_tail_call: 2368 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2369 goto error; 2370 if (env->subprog_cnt > 1) { 2371 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2372 return -EINVAL; 2373 } 2374 break; 2375 case BPF_FUNC_perf_event_read: 2376 case BPF_FUNC_perf_event_output: 2377 case BPF_FUNC_perf_event_read_value: 2378 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2379 goto error; 2380 break; 2381 case BPF_FUNC_get_stackid: 2382 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2383 goto error; 2384 break; 2385 case BPF_FUNC_current_task_under_cgroup: 2386 case BPF_FUNC_skb_under_cgroup: 2387 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2388 goto error; 2389 break; 2390 case BPF_FUNC_redirect_map: 2391 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2392 map->map_type != BPF_MAP_TYPE_CPUMAP && 2393 map->map_type != BPF_MAP_TYPE_XSKMAP) 2394 goto error; 2395 break; 2396 case BPF_FUNC_sk_redirect_map: 2397 case BPF_FUNC_msg_redirect_map: 2398 case BPF_FUNC_sock_map_update: 2399 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2400 goto error; 2401 break; 2402 case BPF_FUNC_sk_redirect_hash: 2403 case BPF_FUNC_msg_redirect_hash: 2404 case BPF_FUNC_sock_hash_update: 2405 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2406 goto error; 2407 break; 2408 case BPF_FUNC_get_local_storage: 2409 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 2410 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 2411 goto error; 2412 break; 2413 case BPF_FUNC_sk_select_reuseport: 2414 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2415 goto error; 2416 break; 2417 case BPF_FUNC_map_peek_elem: 2418 case BPF_FUNC_map_pop_elem: 2419 case BPF_FUNC_map_push_elem: 2420 if (map->map_type != BPF_MAP_TYPE_QUEUE && 2421 map->map_type != BPF_MAP_TYPE_STACK) 2422 goto error; 2423 break; 2424 default: 2425 break; 2426 } 2427 2428 return 0; 2429 error: 2430 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2431 map->map_type, func_id_name(func_id), func_id); 2432 return -EINVAL; 2433 } 2434 2435 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2436 { 2437 int count = 0; 2438 2439 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2440 count++; 2441 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2442 count++; 2443 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2444 count++; 2445 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2446 count++; 2447 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2448 count++; 2449 2450 /* We only support one arg being in raw mode at the moment, 2451 * which is sufficient for the helper functions we have 2452 * right now. 2453 */ 2454 return count <= 1; 2455 } 2456 2457 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2458 enum bpf_arg_type arg_next) 2459 { 2460 return (arg_type_is_mem_ptr(arg_curr) && 2461 !arg_type_is_mem_size(arg_next)) || 2462 (!arg_type_is_mem_ptr(arg_curr) && 2463 arg_type_is_mem_size(arg_next)); 2464 } 2465 2466 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2467 { 2468 /* bpf_xxx(..., buf, len) call will access 'len' 2469 * bytes from memory 'buf'. Both arg types need 2470 * to be paired, so make sure there's no buggy 2471 * helper function specification. 2472 */ 2473 if (arg_type_is_mem_size(fn->arg1_type) || 2474 arg_type_is_mem_ptr(fn->arg5_type) || 2475 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2476 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2477 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2478 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2479 return false; 2480 2481 return true; 2482 } 2483 2484 static bool check_refcount_ok(const struct bpf_func_proto *fn) 2485 { 2486 int count = 0; 2487 2488 if (arg_type_is_refcounted(fn->arg1_type)) 2489 count++; 2490 if (arg_type_is_refcounted(fn->arg2_type)) 2491 count++; 2492 if (arg_type_is_refcounted(fn->arg3_type)) 2493 count++; 2494 if (arg_type_is_refcounted(fn->arg4_type)) 2495 count++; 2496 if (arg_type_is_refcounted(fn->arg5_type)) 2497 count++; 2498 2499 /* We only support one arg being unreferenced at the moment, 2500 * which is sufficient for the helper functions we have right now. 2501 */ 2502 return count <= 1; 2503 } 2504 2505 static int check_func_proto(const struct bpf_func_proto *fn) 2506 { 2507 return check_raw_mode_ok(fn) && 2508 check_arg_pair_ok(fn) && 2509 check_refcount_ok(fn) ? 0 : -EINVAL; 2510 } 2511 2512 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2513 * are now invalid, so turn them into unknown SCALAR_VALUE. 2514 */ 2515 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2516 struct bpf_func_state *state) 2517 { 2518 struct bpf_reg_state *regs = state->regs, *reg; 2519 int i; 2520 2521 for (i = 0; i < MAX_BPF_REG; i++) 2522 if (reg_is_pkt_pointer_any(®s[i])) 2523 mark_reg_unknown(env, regs, i); 2524 2525 bpf_for_each_spilled_reg(i, state, reg) { 2526 if (!reg) 2527 continue; 2528 if (reg_is_pkt_pointer_any(reg)) 2529 __mark_reg_unknown(reg); 2530 } 2531 } 2532 2533 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2534 { 2535 struct bpf_verifier_state *vstate = env->cur_state; 2536 int i; 2537 2538 for (i = 0; i <= vstate->curframe; i++) 2539 __clear_all_pkt_pointers(env, vstate->frame[i]); 2540 } 2541 2542 static void release_reg_references(struct bpf_verifier_env *env, 2543 struct bpf_func_state *state, int id) 2544 { 2545 struct bpf_reg_state *regs = state->regs, *reg; 2546 int i; 2547 2548 for (i = 0; i < MAX_BPF_REG; i++) 2549 if (regs[i].id == id) 2550 mark_reg_unknown(env, regs, i); 2551 2552 bpf_for_each_spilled_reg(i, state, reg) { 2553 if (!reg) 2554 continue; 2555 if (reg_is_refcounted(reg) && reg->id == id) 2556 __mark_reg_unknown(reg); 2557 } 2558 } 2559 2560 /* The pointer with the specified id has released its reference to kernel 2561 * resources. Identify all copies of the same pointer and clear the reference. 2562 */ 2563 static int release_reference(struct bpf_verifier_env *env, 2564 struct bpf_call_arg_meta *meta) 2565 { 2566 struct bpf_verifier_state *vstate = env->cur_state; 2567 int i; 2568 2569 for (i = 0; i <= vstate->curframe; i++) 2570 release_reg_references(env, vstate->frame[i], meta->ptr_id); 2571 2572 return release_reference_state(env, meta->ptr_id); 2573 } 2574 2575 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2576 int *insn_idx) 2577 { 2578 struct bpf_verifier_state *state = env->cur_state; 2579 struct bpf_func_state *caller, *callee; 2580 int i, err, subprog, target_insn; 2581 2582 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2583 verbose(env, "the call stack of %d frames is too deep\n", 2584 state->curframe + 2); 2585 return -E2BIG; 2586 } 2587 2588 target_insn = *insn_idx + insn->imm; 2589 subprog = find_subprog(env, target_insn + 1); 2590 if (subprog < 0) { 2591 verbose(env, "verifier bug. No program starts at insn %d\n", 2592 target_insn + 1); 2593 return -EFAULT; 2594 } 2595 2596 caller = state->frame[state->curframe]; 2597 if (state->frame[state->curframe + 1]) { 2598 verbose(env, "verifier bug. Frame %d already allocated\n", 2599 state->curframe + 1); 2600 return -EFAULT; 2601 } 2602 2603 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2604 if (!callee) 2605 return -ENOMEM; 2606 state->frame[state->curframe + 1] = callee; 2607 2608 /* callee cannot access r0, r6 - r9 for reading and has to write 2609 * into its own stack before reading from it. 2610 * callee can read/write into caller's stack 2611 */ 2612 init_func_state(env, callee, 2613 /* remember the callsite, it will be used by bpf_exit */ 2614 *insn_idx /* callsite */, 2615 state->curframe + 1 /* frameno within this callchain */, 2616 subprog /* subprog number within this prog */); 2617 2618 /* Transfer references to the callee */ 2619 err = transfer_reference_state(callee, caller); 2620 if (err) 2621 return err; 2622 2623 /* copy r1 - r5 args that callee can access. The copy includes parent 2624 * pointers, which connects us up to the liveness chain 2625 */ 2626 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2627 callee->regs[i] = caller->regs[i]; 2628 2629 /* after the call registers r0 - r5 were scratched */ 2630 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2631 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2632 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2633 } 2634 2635 /* only increment it after check_reg_arg() finished */ 2636 state->curframe++; 2637 2638 /* and go analyze first insn of the callee */ 2639 *insn_idx = target_insn; 2640 2641 if (env->log.level) { 2642 verbose(env, "caller:\n"); 2643 print_verifier_state(env, caller); 2644 verbose(env, "callee:\n"); 2645 print_verifier_state(env, callee); 2646 } 2647 return 0; 2648 } 2649 2650 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2651 { 2652 struct bpf_verifier_state *state = env->cur_state; 2653 struct bpf_func_state *caller, *callee; 2654 struct bpf_reg_state *r0; 2655 int err; 2656 2657 callee = state->frame[state->curframe]; 2658 r0 = &callee->regs[BPF_REG_0]; 2659 if (r0->type == PTR_TO_STACK) { 2660 /* technically it's ok to return caller's stack pointer 2661 * (or caller's caller's pointer) back to the caller, 2662 * since these pointers are valid. Only current stack 2663 * pointer will be invalid as soon as function exits, 2664 * but let's be conservative 2665 */ 2666 verbose(env, "cannot return stack pointer to the caller\n"); 2667 return -EINVAL; 2668 } 2669 2670 state->curframe--; 2671 caller = state->frame[state->curframe]; 2672 /* return to the caller whatever r0 had in the callee */ 2673 caller->regs[BPF_REG_0] = *r0; 2674 2675 /* Transfer references to the caller */ 2676 err = transfer_reference_state(caller, callee); 2677 if (err) 2678 return err; 2679 2680 *insn_idx = callee->callsite + 1; 2681 if (env->log.level) { 2682 verbose(env, "returning from callee:\n"); 2683 print_verifier_state(env, callee); 2684 verbose(env, "to caller at %d:\n", *insn_idx); 2685 print_verifier_state(env, caller); 2686 } 2687 /* clear everything in the callee */ 2688 free_func_state(callee); 2689 state->frame[state->curframe + 1] = NULL; 2690 return 0; 2691 } 2692 2693 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 2694 int func_id, 2695 struct bpf_call_arg_meta *meta) 2696 { 2697 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 2698 2699 if (ret_type != RET_INTEGER || 2700 (func_id != BPF_FUNC_get_stack && 2701 func_id != BPF_FUNC_probe_read_str)) 2702 return; 2703 2704 ret_reg->smax_value = meta->msize_smax_value; 2705 ret_reg->umax_value = meta->msize_umax_value; 2706 __reg_deduce_bounds(ret_reg); 2707 __reg_bound_offset(ret_reg); 2708 } 2709 2710 static int 2711 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 2712 int func_id, int insn_idx) 2713 { 2714 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 2715 2716 if (func_id != BPF_FUNC_tail_call && 2717 func_id != BPF_FUNC_map_lookup_elem && 2718 func_id != BPF_FUNC_map_update_elem && 2719 func_id != BPF_FUNC_map_delete_elem && 2720 func_id != BPF_FUNC_map_push_elem && 2721 func_id != BPF_FUNC_map_pop_elem && 2722 func_id != BPF_FUNC_map_peek_elem) 2723 return 0; 2724 2725 if (meta->map_ptr == NULL) { 2726 verbose(env, "kernel subsystem misconfigured verifier\n"); 2727 return -EINVAL; 2728 } 2729 2730 if (!BPF_MAP_PTR(aux->map_state)) 2731 bpf_map_ptr_store(aux, meta->map_ptr, 2732 meta->map_ptr->unpriv_array); 2733 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 2734 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 2735 meta->map_ptr->unpriv_array); 2736 return 0; 2737 } 2738 2739 static int check_reference_leak(struct bpf_verifier_env *env) 2740 { 2741 struct bpf_func_state *state = cur_func(env); 2742 int i; 2743 2744 for (i = 0; i < state->acquired_refs; i++) { 2745 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 2746 state->refs[i].id, state->refs[i].insn_idx); 2747 } 2748 return state->acquired_refs ? -EINVAL : 0; 2749 } 2750 2751 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2752 { 2753 const struct bpf_func_proto *fn = NULL; 2754 struct bpf_reg_state *regs; 2755 struct bpf_call_arg_meta meta; 2756 bool changes_data; 2757 int i, err; 2758 2759 /* find function prototype */ 2760 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2761 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2762 func_id); 2763 return -EINVAL; 2764 } 2765 2766 if (env->ops->get_func_proto) 2767 fn = env->ops->get_func_proto(func_id, env->prog); 2768 if (!fn) { 2769 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2770 func_id); 2771 return -EINVAL; 2772 } 2773 2774 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2775 if (!env->prog->gpl_compatible && fn->gpl_only) { 2776 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 2777 return -EINVAL; 2778 } 2779 2780 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2781 changes_data = bpf_helper_changes_pkt_data(fn->func); 2782 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2783 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2784 func_id_name(func_id), func_id); 2785 return -EINVAL; 2786 } 2787 2788 memset(&meta, 0, sizeof(meta)); 2789 meta.pkt_access = fn->pkt_access; 2790 2791 err = check_func_proto(fn); 2792 if (err) { 2793 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2794 func_id_name(func_id), func_id); 2795 return err; 2796 } 2797 2798 /* check args */ 2799 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2800 if (err) 2801 return err; 2802 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2803 if (err) 2804 return err; 2805 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2806 if (err) 2807 return err; 2808 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2809 if (err) 2810 return err; 2811 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2812 if (err) 2813 return err; 2814 2815 err = record_func_map(env, &meta, func_id, insn_idx); 2816 if (err) 2817 return err; 2818 2819 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2820 * is inferred from register state. 2821 */ 2822 for (i = 0; i < meta.access_size; i++) { 2823 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 2824 BPF_WRITE, -1, false); 2825 if (err) 2826 return err; 2827 } 2828 2829 if (func_id == BPF_FUNC_tail_call) { 2830 err = check_reference_leak(env); 2831 if (err) { 2832 verbose(env, "tail_call would lead to reference leak\n"); 2833 return err; 2834 } 2835 } else if (is_release_function(func_id)) { 2836 err = release_reference(env, &meta); 2837 if (err) 2838 return err; 2839 } 2840 2841 regs = cur_regs(env); 2842 2843 /* check that flags argument in get_local_storage(map, flags) is 0, 2844 * this is required because get_local_storage() can't return an error. 2845 */ 2846 if (func_id == BPF_FUNC_get_local_storage && 2847 !register_is_null(®s[BPF_REG_2])) { 2848 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 2849 return -EINVAL; 2850 } 2851 2852 /* reset caller saved regs */ 2853 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2854 mark_reg_not_init(env, regs, caller_saved[i]); 2855 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2856 } 2857 2858 /* update return register (already marked as written above) */ 2859 if (fn->ret_type == RET_INTEGER) { 2860 /* sets type to SCALAR_VALUE */ 2861 mark_reg_unknown(env, regs, BPF_REG_0); 2862 } else if (fn->ret_type == RET_VOID) { 2863 regs[BPF_REG_0].type = NOT_INIT; 2864 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 2865 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2866 /* There is no offset yet applied, variable or fixed */ 2867 mark_reg_known_zero(env, regs, BPF_REG_0); 2868 /* remember map_ptr, so that check_map_access() 2869 * can check 'value_size' boundary of memory access 2870 * to map element returned from bpf_map_lookup_elem() 2871 */ 2872 if (meta.map_ptr == NULL) { 2873 verbose(env, 2874 "kernel subsystem misconfigured verifier\n"); 2875 return -EINVAL; 2876 } 2877 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2878 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2879 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 2880 } else { 2881 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2882 regs[BPF_REG_0].id = ++env->id_gen; 2883 } 2884 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 2885 int id = acquire_reference_state(env, insn_idx); 2886 if (id < 0) 2887 return id; 2888 mark_reg_known_zero(env, regs, BPF_REG_0); 2889 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 2890 regs[BPF_REG_0].id = id; 2891 } else { 2892 verbose(env, "unknown return type %d of func %s#%d\n", 2893 fn->ret_type, func_id_name(func_id), func_id); 2894 return -EINVAL; 2895 } 2896 2897 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 2898 2899 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2900 if (err) 2901 return err; 2902 2903 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 2904 const char *err_str; 2905 2906 #ifdef CONFIG_PERF_EVENTS 2907 err = get_callchain_buffers(sysctl_perf_event_max_stack); 2908 err_str = "cannot get callchain buffer for func %s#%d\n"; 2909 #else 2910 err = -ENOTSUPP; 2911 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 2912 #endif 2913 if (err) { 2914 verbose(env, err_str, func_id_name(func_id), func_id); 2915 return err; 2916 } 2917 2918 env->prog->has_callchain_buf = true; 2919 } 2920 2921 if (changes_data) 2922 clear_all_pkt_pointers(env); 2923 return 0; 2924 } 2925 2926 static bool signed_add_overflows(s64 a, s64 b) 2927 { 2928 /* Do the add in u64, where overflow is well-defined */ 2929 s64 res = (s64)((u64)a + (u64)b); 2930 2931 if (b < 0) 2932 return res > a; 2933 return res < a; 2934 } 2935 2936 static bool signed_sub_overflows(s64 a, s64 b) 2937 { 2938 /* Do the sub in u64, where overflow is well-defined */ 2939 s64 res = (s64)((u64)a - (u64)b); 2940 2941 if (b < 0) 2942 return res < a; 2943 return res > a; 2944 } 2945 2946 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 2947 const struct bpf_reg_state *reg, 2948 enum bpf_reg_type type) 2949 { 2950 bool known = tnum_is_const(reg->var_off); 2951 s64 val = reg->var_off.value; 2952 s64 smin = reg->smin_value; 2953 2954 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 2955 verbose(env, "math between %s pointer and %lld is not allowed\n", 2956 reg_type_str[type], val); 2957 return false; 2958 } 2959 2960 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 2961 verbose(env, "%s pointer offset %d is not allowed\n", 2962 reg_type_str[type], reg->off); 2963 return false; 2964 } 2965 2966 if (smin == S64_MIN) { 2967 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 2968 reg_type_str[type]); 2969 return false; 2970 } 2971 2972 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 2973 verbose(env, "value %lld makes %s pointer be out of bounds\n", 2974 smin, reg_type_str[type]); 2975 return false; 2976 } 2977 2978 return true; 2979 } 2980 2981 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 2982 * Caller should also handle BPF_MOV case separately. 2983 * If we return -EACCES, caller may want to try again treating pointer as a 2984 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 2985 */ 2986 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 2987 struct bpf_insn *insn, 2988 const struct bpf_reg_state *ptr_reg, 2989 const struct bpf_reg_state *off_reg) 2990 { 2991 struct bpf_verifier_state *vstate = env->cur_state; 2992 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2993 struct bpf_reg_state *regs = state->regs, *dst_reg; 2994 bool known = tnum_is_const(off_reg->var_off); 2995 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 2996 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 2997 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 2998 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 2999 u8 opcode = BPF_OP(insn->code); 3000 u32 dst = insn->dst_reg; 3001 3002 dst_reg = ®s[dst]; 3003 3004 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 3005 smin_val > smax_val || umin_val > umax_val) { 3006 /* Taint dst register if offset had invalid bounds derived from 3007 * e.g. dead branches. 3008 */ 3009 __mark_reg_unknown(dst_reg); 3010 return 0; 3011 } 3012 3013 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3014 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 3015 verbose(env, 3016 "R%d 32-bit pointer arithmetic prohibited\n", 3017 dst); 3018 return -EACCES; 3019 } 3020 3021 switch (ptr_reg->type) { 3022 case PTR_TO_MAP_VALUE_OR_NULL: 3023 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 3024 dst, reg_type_str[ptr_reg->type]); 3025 return -EACCES; 3026 case CONST_PTR_TO_MAP: 3027 case PTR_TO_PACKET_END: 3028 case PTR_TO_SOCKET: 3029 case PTR_TO_SOCKET_OR_NULL: 3030 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 3031 dst, reg_type_str[ptr_reg->type]); 3032 return -EACCES; 3033 default: 3034 break; 3035 } 3036 3037 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 3038 * The id may be overwritten later if we create a new variable offset. 3039 */ 3040 dst_reg->type = ptr_reg->type; 3041 dst_reg->id = ptr_reg->id; 3042 3043 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 3044 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 3045 return -EINVAL; 3046 3047 switch (opcode) { 3048 case BPF_ADD: 3049 /* We can take a fixed offset as long as it doesn't overflow 3050 * the s32 'off' field 3051 */ 3052 if (known && (ptr_reg->off + smin_val == 3053 (s64)(s32)(ptr_reg->off + smin_val))) { 3054 /* pointer += K. Accumulate it into fixed offset */ 3055 dst_reg->smin_value = smin_ptr; 3056 dst_reg->smax_value = smax_ptr; 3057 dst_reg->umin_value = umin_ptr; 3058 dst_reg->umax_value = umax_ptr; 3059 dst_reg->var_off = ptr_reg->var_off; 3060 dst_reg->off = ptr_reg->off + smin_val; 3061 dst_reg->raw = ptr_reg->raw; 3062 break; 3063 } 3064 /* A new variable offset is created. Note that off_reg->off 3065 * == 0, since it's a scalar. 3066 * dst_reg gets the pointer type and since some positive 3067 * integer value was added to the pointer, give it a new 'id' 3068 * if it's a PTR_TO_PACKET. 3069 * this creates a new 'base' pointer, off_reg (variable) gets 3070 * added into the variable offset, and we copy the fixed offset 3071 * from ptr_reg. 3072 */ 3073 if (signed_add_overflows(smin_ptr, smin_val) || 3074 signed_add_overflows(smax_ptr, smax_val)) { 3075 dst_reg->smin_value = S64_MIN; 3076 dst_reg->smax_value = S64_MAX; 3077 } else { 3078 dst_reg->smin_value = smin_ptr + smin_val; 3079 dst_reg->smax_value = smax_ptr + smax_val; 3080 } 3081 if (umin_ptr + umin_val < umin_ptr || 3082 umax_ptr + umax_val < umax_ptr) { 3083 dst_reg->umin_value = 0; 3084 dst_reg->umax_value = U64_MAX; 3085 } else { 3086 dst_reg->umin_value = umin_ptr + umin_val; 3087 dst_reg->umax_value = umax_ptr + umax_val; 3088 } 3089 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 3090 dst_reg->off = ptr_reg->off; 3091 dst_reg->raw = ptr_reg->raw; 3092 if (reg_is_pkt_pointer(ptr_reg)) { 3093 dst_reg->id = ++env->id_gen; 3094 /* something was added to pkt_ptr, set range to zero */ 3095 dst_reg->raw = 0; 3096 } 3097 break; 3098 case BPF_SUB: 3099 if (dst_reg == off_reg) { 3100 /* scalar -= pointer. Creates an unknown scalar */ 3101 verbose(env, "R%d tried to subtract pointer from scalar\n", 3102 dst); 3103 return -EACCES; 3104 } 3105 /* We don't allow subtraction from FP, because (according to 3106 * test_verifier.c test "invalid fp arithmetic", JITs might not 3107 * be able to deal with it. 3108 */ 3109 if (ptr_reg->type == PTR_TO_STACK) { 3110 verbose(env, "R%d subtraction from stack pointer prohibited\n", 3111 dst); 3112 return -EACCES; 3113 } 3114 if (known && (ptr_reg->off - smin_val == 3115 (s64)(s32)(ptr_reg->off - smin_val))) { 3116 /* pointer -= K. Subtract it from fixed offset */ 3117 dst_reg->smin_value = smin_ptr; 3118 dst_reg->smax_value = smax_ptr; 3119 dst_reg->umin_value = umin_ptr; 3120 dst_reg->umax_value = umax_ptr; 3121 dst_reg->var_off = ptr_reg->var_off; 3122 dst_reg->id = ptr_reg->id; 3123 dst_reg->off = ptr_reg->off - smin_val; 3124 dst_reg->raw = ptr_reg->raw; 3125 break; 3126 } 3127 /* A new variable offset is created. If the subtrahend is known 3128 * nonnegative, then any reg->range we had before is still good. 3129 */ 3130 if (signed_sub_overflows(smin_ptr, smax_val) || 3131 signed_sub_overflows(smax_ptr, smin_val)) { 3132 /* Overflow possible, we know nothing */ 3133 dst_reg->smin_value = S64_MIN; 3134 dst_reg->smax_value = S64_MAX; 3135 } else { 3136 dst_reg->smin_value = smin_ptr - smax_val; 3137 dst_reg->smax_value = smax_ptr - smin_val; 3138 } 3139 if (umin_ptr < umax_val) { 3140 /* Overflow possible, we know nothing */ 3141 dst_reg->umin_value = 0; 3142 dst_reg->umax_value = U64_MAX; 3143 } else { 3144 /* Cannot overflow (as long as bounds are consistent) */ 3145 dst_reg->umin_value = umin_ptr - umax_val; 3146 dst_reg->umax_value = umax_ptr - umin_val; 3147 } 3148 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 3149 dst_reg->off = ptr_reg->off; 3150 dst_reg->raw = ptr_reg->raw; 3151 if (reg_is_pkt_pointer(ptr_reg)) { 3152 dst_reg->id = ++env->id_gen; 3153 /* something was added to pkt_ptr, set range to zero */ 3154 if (smin_val < 0) 3155 dst_reg->raw = 0; 3156 } 3157 break; 3158 case BPF_AND: 3159 case BPF_OR: 3160 case BPF_XOR: 3161 /* bitwise ops on pointers are troublesome, prohibit. */ 3162 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 3163 dst, bpf_alu_string[opcode >> 4]); 3164 return -EACCES; 3165 default: 3166 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 3167 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 3168 dst, bpf_alu_string[opcode >> 4]); 3169 return -EACCES; 3170 } 3171 3172 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 3173 return -EINVAL; 3174 3175 __update_reg_bounds(dst_reg); 3176 __reg_deduce_bounds(dst_reg); 3177 __reg_bound_offset(dst_reg); 3178 return 0; 3179 } 3180 3181 /* WARNING: This function does calculations on 64-bit values, but the actual 3182 * execution may occur on 32-bit values. Therefore, things like bitshifts 3183 * need extra checks in the 32-bit case. 3184 */ 3185 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 3186 struct bpf_insn *insn, 3187 struct bpf_reg_state *dst_reg, 3188 struct bpf_reg_state src_reg) 3189 { 3190 struct bpf_reg_state *regs = cur_regs(env); 3191 u8 opcode = BPF_OP(insn->code); 3192 bool src_known, dst_known; 3193 s64 smin_val, smax_val; 3194 u64 umin_val, umax_val; 3195 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 3196 3197 if (insn_bitness == 32) { 3198 /* Relevant for 32-bit RSH: Information can propagate towards 3199 * LSB, so it isn't sufficient to only truncate the output to 3200 * 32 bits. 3201 */ 3202 coerce_reg_to_size(dst_reg, 4); 3203 coerce_reg_to_size(&src_reg, 4); 3204 } 3205 3206 smin_val = src_reg.smin_value; 3207 smax_val = src_reg.smax_value; 3208 umin_val = src_reg.umin_value; 3209 umax_val = src_reg.umax_value; 3210 src_known = tnum_is_const(src_reg.var_off); 3211 dst_known = tnum_is_const(dst_reg->var_off); 3212 3213 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 3214 smin_val > smax_val || umin_val > umax_val) { 3215 /* Taint dst register if offset had invalid bounds derived from 3216 * e.g. dead branches. 3217 */ 3218 __mark_reg_unknown(dst_reg); 3219 return 0; 3220 } 3221 3222 if (!src_known && 3223 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 3224 __mark_reg_unknown(dst_reg); 3225 return 0; 3226 } 3227 3228 switch (opcode) { 3229 case BPF_ADD: 3230 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 3231 signed_add_overflows(dst_reg->smax_value, smax_val)) { 3232 dst_reg->smin_value = S64_MIN; 3233 dst_reg->smax_value = S64_MAX; 3234 } else { 3235 dst_reg->smin_value += smin_val; 3236 dst_reg->smax_value += smax_val; 3237 } 3238 if (dst_reg->umin_value + umin_val < umin_val || 3239 dst_reg->umax_value + umax_val < umax_val) { 3240 dst_reg->umin_value = 0; 3241 dst_reg->umax_value = U64_MAX; 3242 } else { 3243 dst_reg->umin_value += umin_val; 3244 dst_reg->umax_value += umax_val; 3245 } 3246 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 3247 break; 3248 case BPF_SUB: 3249 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 3250 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 3251 /* Overflow possible, we know nothing */ 3252 dst_reg->smin_value = S64_MIN; 3253 dst_reg->smax_value = S64_MAX; 3254 } else { 3255 dst_reg->smin_value -= smax_val; 3256 dst_reg->smax_value -= smin_val; 3257 } 3258 if (dst_reg->umin_value < umax_val) { 3259 /* Overflow possible, we know nothing */ 3260 dst_reg->umin_value = 0; 3261 dst_reg->umax_value = U64_MAX; 3262 } else { 3263 /* Cannot overflow (as long as bounds are consistent) */ 3264 dst_reg->umin_value -= umax_val; 3265 dst_reg->umax_value -= umin_val; 3266 } 3267 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 3268 break; 3269 case BPF_MUL: 3270 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 3271 if (smin_val < 0 || dst_reg->smin_value < 0) { 3272 /* Ain't nobody got time to multiply that sign */ 3273 __mark_reg_unbounded(dst_reg); 3274 __update_reg_bounds(dst_reg); 3275 break; 3276 } 3277 /* Both values are positive, so we can work with unsigned and 3278 * copy the result to signed (unless it exceeds S64_MAX). 3279 */ 3280 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 3281 /* Potential overflow, we know nothing */ 3282 __mark_reg_unbounded(dst_reg); 3283 /* (except what we can learn from the var_off) */ 3284 __update_reg_bounds(dst_reg); 3285 break; 3286 } 3287 dst_reg->umin_value *= umin_val; 3288 dst_reg->umax_value *= umax_val; 3289 if (dst_reg->umax_value > S64_MAX) { 3290 /* Overflow possible, we know nothing */ 3291 dst_reg->smin_value = S64_MIN; 3292 dst_reg->smax_value = S64_MAX; 3293 } else { 3294 dst_reg->smin_value = dst_reg->umin_value; 3295 dst_reg->smax_value = dst_reg->umax_value; 3296 } 3297 break; 3298 case BPF_AND: 3299 if (src_known && dst_known) { 3300 __mark_reg_known(dst_reg, dst_reg->var_off.value & 3301 src_reg.var_off.value); 3302 break; 3303 } 3304 /* We get our minimum from the var_off, since that's inherently 3305 * bitwise. Our maximum is the minimum of the operands' maxima. 3306 */ 3307 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 3308 dst_reg->umin_value = dst_reg->var_off.value; 3309 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 3310 if (dst_reg->smin_value < 0 || smin_val < 0) { 3311 /* Lose signed bounds when ANDing negative numbers, 3312 * ain't nobody got time for that. 3313 */ 3314 dst_reg->smin_value = S64_MIN; 3315 dst_reg->smax_value = S64_MAX; 3316 } else { 3317 /* ANDing two positives gives a positive, so safe to 3318 * cast result into s64. 3319 */ 3320 dst_reg->smin_value = dst_reg->umin_value; 3321 dst_reg->smax_value = dst_reg->umax_value; 3322 } 3323 /* We may learn something more from the var_off */ 3324 __update_reg_bounds(dst_reg); 3325 break; 3326 case BPF_OR: 3327 if (src_known && dst_known) { 3328 __mark_reg_known(dst_reg, dst_reg->var_off.value | 3329 src_reg.var_off.value); 3330 break; 3331 } 3332 /* We get our maximum from the var_off, and our minimum is the 3333 * maximum of the operands' minima 3334 */ 3335 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 3336 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 3337 dst_reg->umax_value = dst_reg->var_off.value | 3338 dst_reg->var_off.mask; 3339 if (dst_reg->smin_value < 0 || smin_val < 0) { 3340 /* Lose signed bounds when ORing negative numbers, 3341 * ain't nobody got time for that. 3342 */ 3343 dst_reg->smin_value = S64_MIN; 3344 dst_reg->smax_value = S64_MAX; 3345 } else { 3346 /* ORing two positives gives a positive, so safe to 3347 * cast result into s64. 3348 */ 3349 dst_reg->smin_value = dst_reg->umin_value; 3350 dst_reg->smax_value = dst_reg->umax_value; 3351 } 3352 /* We may learn something more from the var_off */ 3353 __update_reg_bounds(dst_reg); 3354 break; 3355 case BPF_LSH: 3356 if (umax_val >= insn_bitness) { 3357 /* Shifts greater than 31 or 63 are undefined. 3358 * This includes shifts by a negative number. 3359 */ 3360 mark_reg_unknown(env, regs, insn->dst_reg); 3361 break; 3362 } 3363 /* We lose all sign bit information (except what we can pick 3364 * up from var_off) 3365 */ 3366 dst_reg->smin_value = S64_MIN; 3367 dst_reg->smax_value = S64_MAX; 3368 /* If we might shift our top bit out, then we know nothing */ 3369 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 3370 dst_reg->umin_value = 0; 3371 dst_reg->umax_value = U64_MAX; 3372 } else { 3373 dst_reg->umin_value <<= umin_val; 3374 dst_reg->umax_value <<= umax_val; 3375 } 3376 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 3377 /* We may learn something more from the var_off */ 3378 __update_reg_bounds(dst_reg); 3379 break; 3380 case BPF_RSH: 3381 if (umax_val >= insn_bitness) { 3382 /* Shifts greater than 31 or 63 are undefined. 3383 * This includes shifts by a negative number. 3384 */ 3385 mark_reg_unknown(env, regs, insn->dst_reg); 3386 break; 3387 } 3388 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 3389 * be negative, then either: 3390 * 1) src_reg might be zero, so the sign bit of the result is 3391 * unknown, so we lose our signed bounds 3392 * 2) it's known negative, thus the unsigned bounds capture the 3393 * signed bounds 3394 * 3) the signed bounds cross zero, so they tell us nothing 3395 * about the result 3396 * If the value in dst_reg is known nonnegative, then again the 3397 * unsigned bounts capture the signed bounds. 3398 * Thus, in all cases it suffices to blow away our signed bounds 3399 * and rely on inferring new ones from the unsigned bounds and 3400 * var_off of the result. 3401 */ 3402 dst_reg->smin_value = S64_MIN; 3403 dst_reg->smax_value = S64_MAX; 3404 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 3405 dst_reg->umin_value >>= umax_val; 3406 dst_reg->umax_value >>= umin_val; 3407 /* We may learn something more from the var_off */ 3408 __update_reg_bounds(dst_reg); 3409 break; 3410 case BPF_ARSH: 3411 if (umax_val >= insn_bitness) { 3412 /* Shifts greater than 31 or 63 are undefined. 3413 * This includes shifts by a negative number. 3414 */ 3415 mark_reg_unknown(env, regs, insn->dst_reg); 3416 break; 3417 } 3418 3419 /* Upon reaching here, src_known is true and 3420 * umax_val is equal to umin_val. 3421 */ 3422 dst_reg->smin_value >>= umin_val; 3423 dst_reg->smax_value >>= umin_val; 3424 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 3425 3426 /* blow away the dst_reg umin_value/umax_value and rely on 3427 * dst_reg var_off to refine the result. 3428 */ 3429 dst_reg->umin_value = 0; 3430 dst_reg->umax_value = U64_MAX; 3431 __update_reg_bounds(dst_reg); 3432 break; 3433 default: 3434 mark_reg_unknown(env, regs, insn->dst_reg); 3435 break; 3436 } 3437 3438 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3439 /* 32-bit ALU ops are (32,32)->32 */ 3440 coerce_reg_to_size(dst_reg, 4); 3441 } 3442 3443 __reg_deduce_bounds(dst_reg); 3444 __reg_bound_offset(dst_reg); 3445 return 0; 3446 } 3447 3448 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3449 * and var_off. 3450 */ 3451 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3452 struct bpf_insn *insn) 3453 { 3454 struct bpf_verifier_state *vstate = env->cur_state; 3455 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3456 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3457 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3458 u8 opcode = BPF_OP(insn->code); 3459 3460 dst_reg = ®s[insn->dst_reg]; 3461 src_reg = NULL; 3462 if (dst_reg->type != SCALAR_VALUE) 3463 ptr_reg = dst_reg; 3464 if (BPF_SRC(insn->code) == BPF_X) { 3465 src_reg = ®s[insn->src_reg]; 3466 if (src_reg->type != SCALAR_VALUE) { 3467 if (dst_reg->type != SCALAR_VALUE) { 3468 /* Combining two pointers by any ALU op yields 3469 * an arbitrary scalar. Disallow all math except 3470 * pointer subtraction 3471 */ 3472 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 3473 mark_reg_unknown(env, regs, insn->dst_reg); 3474 return 0; 3475 } 3476 verbose(env, "R%d pointer %s pointer prohibited\n", 3477 insn->dst_reg, 3478 bpf_alu_string[opcode >> 4]); 3479 return -EACCES; 3480 } else { 3481 /* scalar += pointer 3482 * This is legal, but we have to reverse our 3483 * src/dest handling in computing the range 3484 */ 3485 return adjust_ptr_min_max_vals(env, insn, 3486 src_reg, dst_reg); 3487 } 3488 } else if (ptr_reg) { 3489 /* pointer += scalar */ 3490 return adjust_ptr_min_max_vals(env, insn, 3491 dst_reg, src_reg); 3492 } 3493 } else { 3494 /* Pretend the src is a reg with a known value, since we only 3495 * need to be able to read from this state. 3496 */ 3497 off_reg.type = SCALAR_VALUE; 3498 __mark_reg_known(&off_reg, insn->imm); 3499 src_reg = &off_reg; 3500 if (ptr_reg) /* pointer += K */ 3501 return adjust_ptr_min_max_vals(env, insn, 3502 ptr_reg, src_reg); 3503 } 3504 3505 /* Got here implies adding two SCALAR_VALUEs */ 3506 if (WARN_ON_ONCE(ptr_reg)) { 3507 print_verifier_state(env, state); 3508 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3509 return -EINVAL; 3510 } 3511 if (WARN_ON(!src_reg)) { 3512 print_verifier_state(env, state); 3513 verbose(env, "verifier internal error: no src_reg\n"); 3514 return -EINVAL; 3515 } 3516 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3517 } 3518 3519 /* check validity of 32-bit and 64-bit arithmetic operations */ 3520 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3521 { 3522 struct bpf_reg_state *regs = cur_regs(env); 3523 u8 opcode = BPF_OP(insn->code); 3524 int err; 3525 3526 if (opcode == BPF_END || opcode == BPF_NEG) { 3527 if (opcode == BPF_NEG) { 3528 if (BPF_SRC(insn->code) != 0 || 3529 insn->src_reg != BPF_REG_0 || 3530 insn->off != 0 || insn->imm != 0) { 3531 verbose(env, "BPF_NEG uses reserved fields\n"); 3532 return -EINVAL; 3533 } 3534 } else { 3535 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3536 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3537 BPF_CLASS(insn->code) == BPF_ALU64) { 3538 verbose(env, "BPF_END uses reserved fields\n"); 3539 return -EINVAL; 3540 } 3541 } 3542 3543 /* check src operand */ 3544 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3545 if (err) 3546 return err; 3547 3548 if (is_pointer_value(env, insn->dst_reg)) { 3549 verbose(env, "R%d pointer arithmetic prohibited\n", 3550 insn->dst_reg); 3551 return -EACCES; 3552 } 3553 3554 /* check dest operand */ 3555 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3556 if (err) 3557 return err; 3558 3559 } else if (opcode == BPF_MOV) { 3560 3561 if (BPF_SRC(insn->code) == BPF_X) { 3562 if (insn->imm != 0 || insn->off != 0) { 3563 verbose(env, "BPF_MOV uses reserved fields\n"); 3564 return -EINVAL; 3565 } 3566 3567 /* check src operand */ 3568 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3569 if (err) 3570 return err; 3571 } else { 3572 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3573 verbose(env, "BPF_MOV uses reserved fields\n"); 3574 return -EINVAL; 3575 } 3576 } 3577 3578 /* check dest operand, mark as required later */ 3579 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3580 if (err) 3581 return err; 3582 3583 if (BPF_SRC(insn->code) == BPF_X) { 3584 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3585 /* case: R1 = R2 3586 * copy register state to dest reg 3587 */ 3588 regs[insn->dst_reg] = regs[insn->src_reg]; 3589 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 3590 } else { 3591 /* R1 = (u32) R2 */ 3592 if (is_pointer_value(env, insn->src_reg)) { 3593 verbose(env, 3594 "R%d partial copy of pointer\n", 3595 insn->src_reg); 3596 return -EACCES; 3597 } 3598 mark_reg_unknown(env, regs, insn->dst_reg); 3599 coerce_reg_to_size(®s[insn->dst_reg], 4); 3600 } 3601 } else { 3602 /* case: R = imm 3603 * remember the value we stored into this reg 3604 */ 3605 /* clear any state __mark_reg_known doesn't set */ 3606 mark_reg_unknown(env, regs, insn->dst_reg); 3607 regs[insn->dst_reg].type = SCALAR_VALUE; 3608 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3609 __mark_reg_known(regs + insn->dst_reg, 3610 insn->imm); 3611 } else { 3612 __mark_reg_known(regs + insn->dst_reg, 3613 (u32)insn->imm); 3614 } 3615 } 3616 3617 } else if (opcode > BPF_END) { 3618 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3619 return -EINVAL; 3620 3621 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3622 3623 if (BPF_SRC(insn->code) == BPF_X) { 3624 if (insn->imm != 0 || insn->off != 0) { 3625 verbose(env, "BPF_ALU uses reserved fields\n"); 3626 return -EINVAL; 3627 } 3628 /* check src1 operand */ 3629 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3630 if (err) 3631 return err; 3632 } else { 3633 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3634 verbose(env, "BPF_ALU uses reserved fields\n"); 3635 return -EINVAL; 3636 } 3637 } 3638 3639 /* check src2 operand */ 3640 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3641 if (err) 3642 return err; 3643 3644 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3645 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3646 verbose(env, "div by zero\n"); 3647 return -EINVAL; 3648 } 3649 3650 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) { 3651 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n"); 3652 return -EINVAL; 3653 } 3654 3655 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3656 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3657 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3658 3659 if (insn->imm < 0 || insn->imm >= size) { 3660 verbose(env, "invalid shift %d\n", insn->imm); 3661 return -EINVAL; 3662 } 3663 } 3664 3665 /* check dest operand */ 3666 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3667 if (err) 3668 return err; 3669 3670 return adjust_reg_min_max_vals(env, insn); 3671 } 3672 3673 return 0; 3674 } 3675 3676 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3677 struct bpf_reg_state *dst_reg, 3678 enum bpf_reg_type type, 3679 bool range_right_open) 3680 { 3681 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3682 struct bpf_reg_state *regs = state->regs, *reg; 3683 u16 new_range; 3684 int i, j; 3685 3686 if (dst_reg->off < 0 || 3687 (dst_reg->off == 0 && range_right_open)) 3688 /* This doesn't give us any range */ 3689 return; 3690 3691 if (dst_reg->umax_value > MAX_PACKET_OFF || 3692 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3693 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3694 * than pkt_end, but that's because it's also less than pkt. 3695 */ 3696 return; 3697 3698 new_range = dst_reg->off; 3699 if (range_right_open) 3700 new_range--; 3701 3702 /* Examples for register markings: 3703 * 3704 * pkt_data in dst register: 3705 * 3706 * r2 = r3; 3707 * r2 += 8; 3708 * if (r2 > pkt_end) goto <handle exception> 3709 * <access okay> 3710 * 3711 * r2 = r3; 3712 * r2 += 8; 3713 * if (r2 < pkt_end) goto <access okay> 3714 * <handle exception> 3715 * 3716 * Where: 3717 * r2 == dst_reg, pkt_end == src_reg 3718 * r2=pkt(id=n,off=8,r=0) 3719 * r3=pkt(id=n,off=0,r=0) 3720 * 3721 * pkt_data in src register: 3722 * 3723 * r2 = r3; 3724 * r2 += 8; 3725 * if (pkt_end >= r2) goto <access okay> 3726 * <handle exception> 3727 * 3728 * r2 = r3; 3729 * r2 += 8; 3730 * if (pkt_end <= r2) goto <handle exception> 3731 * <access okay> 3732 * 3733 * Where: 3734 * pkt_end == dst_reg, r2 == src_reg 3735 * r2=pkt(id=n,off=8,r=0) 3736 * r3=pkt(id=n,off=0,r=0) 3737 * 3738 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 3739 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 3740 * and [r3, r3 + 8-1) respectively is safe to access depending on 3741 * the check. 3742 */ 3743 3744 /* If our ids match, then we must have the same max_value. And we 3745 * don't care about the other reg's fixed offset, since if it's too big 3746 * the range won't allow anything. 3747 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 3748 */ 3749 for (i = 0; i < MAX_BPF_REG; i++) 3750 if (regs[i].type == type && regs[i].id == dst_reg->id) 3751 /* keep the maximum range already checked */ 3752 regs[i].range = max(regs[i].range, new_range); 3753 3754 for (j = 0; j <= vstate->curframe; j++) { 3755 state = vstate->frame[j]; 3756 bpf_for_each_spilled_reg(i, state, reg) { 3757 if (!reg) 3758 continue; 3759 if (reg->type == type && reg->id == dst_reg->id) 3760 reg->range = max(reg->range, new_range); 3761 } 3762 } 3763 } 3764 3765 /* Adjusts the register min/max values in the case that the dst_reg is the 3766 * variable register that we are working on, and src_reg is a constant or we're 3767 * simply doing a BPF_K check. 3768 * In JEQ/JNE cases we also adjust the var_off values. 3769 */ 3770 static void reg_set_min_max(struct bpf_reg_state *true_reg, 3771 struct bpf_reg_state *false_reg, u64 val, 3772 u8 opcode) 3773 { 3774 /* If the dst_reg is a pointer, we can't learn anything about its 3775 * variable offset from the compare (unless src_reg were a pointer into 3776 * the same object, but we don't bother with that. 3777 * Since false_reg and true_reg have the same type by construction, we 3778 * only need to check one of them for pointerness. 3779 */ 3780 if (__is_pointer_value(false, false_reg)) 3781 return; 3782 3783 switch (opcode) { 3784 case BPF_JEQ: 3785 /* If this is false then we know nothing Jon Snow, but if it is 3786 * true then we know for sure. 3787 */ 3788 __mark_reg_known(true_reg, val); 3789 break; 3790 case BPF_JNE: 3791 /* If this is true we know nothing Jon Snow, but if it is false 3792 * we know the value for sure; 3793 */ 3794 __mark_reg_known(false_reg, val); 3795 break; 3796 case BPF_JGT: 3797 false_reg->umax_value = min(false_reg->umax_value, val); 3798 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3799 break; 3800 case BPF_JSGT: 3801 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3802 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3803 break; 3804 case BPF_JLT: 3805 false_reg->umin_value = max(false_reg->umin_value, val); 3806 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3807 break; 3808 case BPF_JSLT: 3809 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3810 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3811 break; 3812 case BPF_JGE: 3813 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3814 true_reg->umin_value = max(true_reg->umin_value, val); 3815 break; 3816 case BPF_JSGE: 3817 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3818 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3819 break; 3820 case BPF_JLE: 3821 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3822 true_reg->umax_value = min(true_reg->umax_value, val); 3823 break; 3824 case BPF_JSLE: 3825 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3826 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3827 break; 3828 default: 3829 break; 3830 } 3831 3832 __reg_deduce_bounds(false_reg); 3833 __reg_deduce_bounds(true_reg); 3834 /* We might have learned some bits from the bounds. */ 3835 __reg_bound_offset(false_reg); 3836 __reg_bound_offset(true_reg); 3837 /* Intersecting with the old var_off might have improved our bounds 3838 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3839 * then new var_off is (0; 0x7f...fc) which improves our umax. 3840 */ 3841 __update_reg_bounds(false_reg); 3842 __update_reg_bounds(true_reg); 3843 } 3844 3845 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 3846 * the variable reg. 3847 */ 3848 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 3849 struct bpf_reg_state *false_reg, u64 val, 3850 u8 opcode) 3851 { 3852 if (__is_pointer_value(false, false_reg)) 3853 return; 3854 3855 switch (opcode) { 3856 case BPF_JEQ: 3857 /* If this is false then we know nothing Jon Snow, but if it is 3858 * true then we know for sure. 3859 */ 3860 __mark_reg_known(true_reg, val); 3861 break; 3862 case BPF_JNE: 3863 /* If this is true we know nothing Jon Snow, but if it is false 3864 * we know the value for sure; 3865 */ 3866 __mark_reg_known(false_reg, val); 3867 break; 3868 case BPF_JGT: 3869 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3870 false_reg->umin_value = max(false_reg->umin_value, val); 3871 break; 3872 case BPF_JSGT: 3873 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3874 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3875 break; 3876 case BPF_JLT: 3877 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3878 false_reg->umax_value = min(false_reg->umax_value, val); 3879 break; 3880 case BPF_JSLT: 3881 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3882 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3883 break; 3884 case BPF_JGE: 3885 true_reg->umax_value = min(true_reg->umax_value, val); 3886 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3887 break; 3888 case BPF_JSGE: 3889 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3890 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3891 break; 3892 case BPF_JLE: 3893 true_reg->umin_value = max(true_reg->umin_value, val); 3894 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3895 break; 3896 case BPF_JSLE: 3897 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3898 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3899 break; 3900 default: 3901 break; 3902 } 3903 3904 __reg_deduce_bounds(false_reg); 3905 __reg_deduce_bounds(true_reg); 3906 /* We might have learned some bits from the bounds. */ 3907 __reg_bound_offset(false_reg); 3908 __reg_bound_offset(true_reg); 3909 /* Intersecting with the old var_off might have improved our bounds 3910 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3911 * then new var_off is (0; 0x7f...fc) which improves our umax. 3912 */ 3913 __update_reg_bounds(false_reg); 3914 __update_reg_bounds(true_reg); 3915 } 3916 3917 /* Regs are known to be equal, so intersect their min/max/var_off */ 3918 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 3919 struct bpf_reg_state *dst_reg) 3920 { 3921 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 3922 dst_reg->umin_value); 3923 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 3924 dst_reg->umax_value); 3925 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 3926 dst_reg->smin_value); 3927 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 3928 dst_reg->smax_value); 3929 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 3930 dst_reg->var_off); 3931 /* We might have learned new bounds from the var_off. */ 3932 __update_reg_bounds(src_reg); 3933 __update_reg_bounds(dst_reg); 3934 /* We might have learned something about the sign bit. */ 3935 __reg_deduce_bounds(src_reg); 3936 __reg_deduce_bounds(dst_reg); 3937 /* We might have learned some bits from the bounds. */ 3938 __reg_bound_offset(src_reg); 3939 __reg_bound_offset(dst_reg); 3940 /* Intersecting with the old var_off might have improved our bounds 3941 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3942 * then new var_off is (0; 0x7f...fc) which improves our umax. 3943 */ 3944 __update_reg_bounds(src_reg); 3945 __update_reg_bounds(dst_reg); 3946 } 3947 3948 static void reg_combine_min_max(struct bpf_reg_state *true_src, 3949 struct bpf_reg_state *true_dst, 3950 struct bpf_reg_state *false_src, 3951 struct bpf_reg_state *false_dst, 3952 u8 opcode) 3953 { 3954 switch (opcode) { 3955 case BPF_JEQ: 3956 __reg_combine_min_max(true_src, true_dst); 3957 break; 3958 case BPF_JNE: 3959 __reg_combine_min_max(false_src, false_dst); 3960 break; 3961 } 3962 } 3963 3964 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 3965 struct bpf_reg_state *reg, u32 id, 3966 bool is_null) 3967 { 3968 if (reg_type_may_be_null(reg->type) && reg->id == id) { 3969 /* Old offset (both fixed and variable parts) should 3970 * have been known-zero, because we don't allow pointer 3971 * arithmetic on pointers that might be NULL. 3972 */ 3973 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 3974 !tnum_equals_const(reg->var_off, 0) || 3975 reg->off)) { 3976 __mark_reg_known_zero(reg); 3977 reg->off = 0; 3978 } 3979 if (is_null) { 3980 reg->type = SCALAR_VALUE; 3981 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 3982 if (reg->map_ptr->inner_map_meta) { 3983 reg->type = CONST_PTR_TO_MAP; 3984 reg->map_ptr = reg->map_ptr->inner_map_meta; 3985 } else { 3986 reg->type = PTR_TO_MAP_VALUE; 3987 } 3988 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 3989 reg->type = PTR_TO_SOCKET; 3990 } 3991 if (is_null || !reg_is_refcounted(reg)) { 3992 /* We don't need id from this point onwards anymore, 3993 * thus we should better reset it, so that state 3994 * pruning has chances to take effect. 3995 */ 3996 reg->id = 0; 3997 } 3998 } 3999 } 4000 4001 /* The logic is similar to find_good_pkt_pointers(), both could eventually 4002 * be folded together at some point. 4003 */ 4004 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 4005 bool is_null) 4006 { 4007 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4008 struct bpf_reg_state *reg, *regs = state->regs; 4009 u32 id = regs[regno].id; 4010 int i, j; 4011 4012 if (reg_is_refcounted_or_null(®s[regno]) && is_null) 4013 __release_reference_state(state, id); 4014 4015 for (i = 0; i < MAX_BPF_REG; i++) 4016 mark_ptr_or_null_reg(state, ®s[i], id, is_null); 4017 4018 for (j = 0; j <= vstate->curframe; j++) { 4019 state = vstate->frame[j]; 4020 bpf_for_each_spilled_reg(i, state, reg) { 4021 if (!reg) 4022 continue; 4023 mark_ptr_or_null_reg(state, reg, id, is_null); 4024 } 4025 } 4026 } 4027 4028 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 4029 struct bpf_reg_state *dst_reg, 4030 struct bpf_reg_state *src_reg, 4031 struct bpf_verifier_state *this_branch, 4032 struct bpf_verifier_state *other_branch) 4033 { 4034 if (BPF_SRC(insn->code) != BPF_X) 4035 return false; 4036 4037 switch (BPF_OP(insn->code)) { 4038 case BPF_JGT: 4039 if ((dst_reg->type == PTR_TO_PACKET && 4040 src_reg->type == PTR_TO_PACKET_END) || 4041 (dst_reg->type == PTR_TO_PACKET_META && 4042 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4043 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 4044 find_good_pkt_pointers(this_branch, dst_reg, 4045 dst_reg->type, false); 4046 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4047 src_reg->type == PTR_TO_PACKET) || 4048 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4049 src_reg->type == PTR_TO_PACKET_META)) { 4050 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 4051 find_good_pkt_pointers(other_branch, src_reg, 4052 src_reg->type, true); 4053 } else { 4054 return false; 4055 } 4056 break; 4057 case BPF_JLT: 4058 if ((dst_reg->type == PTR_TO_PACKET && 4059 src_reg->type == PTR_TO_PACKET_END) || 4060 (dst_reg->type == PTR_TO_PACKET_META && 4061 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4062 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 4063 find_good_pkt_pointers(other_branch, dst_reg, 4064 dst_reg->type, true); 4065 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4066 src_reg->type == PTR_TO_PACKET) || 4067 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4068 src_reg->type == PTR_TO_PACKET_META)) { 4069 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 4070 find_good_pkt_pointers(this_branch, src_reg, 4071 src_reg->type, false); 4072 } else { 4073 return false; 4074 } 4075 break; 4076 case BPF_JGE: 4077 if ((dst_reg->type == PTR_TO_PACKET && 4078 src_reg->type == PTR_TO_PACKET_END) || 4079 (dst_reg->type == PTR_TO_PACKET_META && 4080 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4081 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 4082 find_good_pkt_pointers(this_branch, dst_reg, 4083 dst_reg->type, true); 4084 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4085 src_reg->type == PTR_TO_PACKET) || 4086 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4087 src_reg->type == PTR_TO_PACKET_META)) { 4088 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 4089 find_good_pkt_pointers(other_branch, src_reg, 4090 src_reg->type, false); 4091 } else { 4092 return false; 4093 } 4094 break; 4095 case BPF_JLE: 4096 if ((dst_reg->type == PTR_TO_PACKET && 4097 src_reg->type == PTR_TO_PACKET_END) || 4098 (dst_reg->type == PTR_TO_PACKET_META && 4099 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4100 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 4101 find_good_pkt_pointers(other_branch, dst_reg, 4102 dst_reg->type, false); 4103 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4104 src_reg->type == PTR_TO_PACKET) || 4105 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4106 src_reg->type == PTR_TO_PACKET_META)) { 4107 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 4108 find_good_pkt_pointers(this_branch, src_reg, 4109 src_reg->type, true); 4110 } else { 4111 return false; 4112 } 4113 break; 4114 default: 4115 return false; 4116 } 4117 4118 return true; 4119 } 4120 4121 static int check_cond_jmp_op(struct bpf_verifier_env *env, 4122 struct bpf_insn *insn, int *insn_idx) 4123 { 4124 struct bpf_verifier_state *this_branch = env->cur_state; 4125 struct bpf_verifier_state *other_branch; 4126 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 4127 struct bpf_reg_state *dst_reg, *other_branch_regs; 4128 u8 opcode = BPF_OP(insn->code); 4129 int err; 4130 4131 if (opcode > BPF_JSLE) { 4132 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 4133 return -EINVAL; 4134 } 4135 4136 if (BPF_SRC(insn->code) == BPF_X) { 4137 if (insn->imm != 0) { 4138 verbose(env, "BPF_JMP uses reserved fields\n"); 4139 return -EINVAL; 4140 } 4141 4142 /* check src1 operand */ 4143 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4144 if (err) 4145 return err; 4146 4147 if (is_pointer_value(env, insn->src_reg)) { 4148 verbose(env, "R%d pointer comparison prohibited\n", 4149 insn->src_reg); 4150 return -EACCES; 4151 } 4152 } else { 4153 if (insn->src_reg != BPF_REG_0) { 4154 verbose(env, "BPF_JMP uses reserved fields\n"); 4155 return -EINVAL; 4156 } 4157 } 4158 4159 /* check src2 operand */ 4160 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4161 if (err) 4162 return err; 4163 4164 dst_reg = ®s[insn->dst_reg]; 4165 4166 /* detect if R == 0 where R was initialized to zero earlier */ 4167 if (BPF_SRC(insn->code) == BPF_K && 4168 (opcode == BPF_JEQ || opcode == BPF_JNE) && 4169 dst_reg->type == SCALAR_VALUE && 4170 tnum_is_const(dst_reg->var_off)) { 4171 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) || 4172 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) { 4173 /* if (imm == imm) goto pc+off; 4174 * only follow the goto, ignore fall-through 4175 */ 4176 *insn_idx += insn->off; 4177 return 0; 4178 } else { 4179 /* if (imm != imm) goto pc+off; 4180 * only follow fall-through branch, since 4181 * that's where the program will go 4182 */ 4183 return 0; 4184 } 4185 } 4186 4187 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 4188 if (!other_branch) 4189 return -EFAULT; 4190 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 4191 4192 /* detect if we are comparing against a constant value so we can adjust 4193 * our min/max values for our dst register. 4194 * this is only legit if both are scalars (or pointers to the same 4195 * object, I suppose, but we don't support that right now), because 4196 * otherwise the different base pointers mean the offsets aren't 4197 * comparable. 4198 */ 4199 if (BPF_SRC(insn->code) == BPF_X) { 4200 if (dst_reg->type == SCALAR_VALUE && 4201 regs[insn->src_reg].type == SCALAR_VALUE) { 4202 if (tnum_is_const(regs[insn->src_reg].var_off)) 4203 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4204 dst_reg, regs[insn->src_reg].var_off.value, 4205 opcode); 4206 else if (tnum_is_const(dst_reg->var_off)) 4207 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 4208 ®s[insn->src_reg], 4209 dst_reg->var_off.value, opcode); 4210 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 4211 /* Comparing for equality, we can combine knowledge */ 4212 reg_combine_min_max(&other_branch_regs[insn->src_reg], 4213 &other_branch_regs[insn->dst_reg], 4214 ®s[insn->src_reg], 4215 ®s[insn->dst_reg], opcode); 4216 } 4217 } else if (dst_reg->type == SCALAR_VALUE) { 4218 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4219 dst_reg, insn->imm, opcode); 4220 } 4221 4222 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 4223 if (BPF_SRC(insn->code) == BPF_K && 4224 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 4225 reg_type_may_be_null(dst_reg->type)) { 4226 /* Mark all identical registers in each branch as either 4227 * safe or unknown depending R == 0 or R != 0 conditional. 4228 */ 4229 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 4230 opcode == BPF_JNE); 4231 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 4232 opcode == BPF_JEQ); 4233 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 4234 this_branch, other_branch) && 4235 is_pointer_value(env, insn->dst_reg)) { 4236 verbose(env, "R%d pointer comparison prohibited\n", 4237 insn->dst_reg); 4238 return -EACCES; 4239 } 4240 if (env->log.level) 4241 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 4242 return 0; 4243 } 4244 4245 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 4246 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 4247 { 4248 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 4249 4250 return (struct bpf_map *) (unsigned long) imm64; 4251 } 4252 4253 /* verify BPF_LD_IMM64 instruction */ 4254 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 4255 { 4256 struct bpf_reg_state *regs = cur_regs(env); 4257 int err; 4258 4259 if (BPF_SIZE(insn->code) != BPF_DW) { 4260 verbose(env, "invalid BPF_LD_IMM insn\n"); 4261 return -EINVAL; 4262 } 4263 if (insn->off != 0) { 4264 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 4265 return -EINVAL; 4266 } 4267 4268 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4269 if (err) 4270 return err; 4271 4272 if (insn->src_reg == 0) { 4273 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 4274 4275 regs[insn->dst_reg].type = SCALAR_VALUE; 4276 __mark_reg_known(®s[insn->dst_reg], imm); 4277 return 0; 4278 } 4279 4280 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 4281 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 4282 4283 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 4284 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 4285 return 0; 4286 } 4287 4288 static bool may_access_skb(enum bpf_prog_type type) 4289 { 4290 switch (type) { 4291 case BPF_PROG_TYPE_SOCKET_FILTER: 4292 case BPF_PROG_TYPE_SCHED_CLS: 4293 case BPF_PROG_TYPE_SCHED_ACT: 4294 return true; 4295 default: 4296 return false; 4297 } 4298 } 4299 4300 /* verify safety of LD_ABS|LD_IND instructions: 4301 * - they can only appear in the programs where ctx == skb 4302 * - since they are wrappers of function calls, they scratch R1-R5 registers, 4303 * preserve R6-R9, and store return value into R0 4304 * 4305 * Implicit input: 4306 * ctx == skb == R6 == CTX 4307 * 4308 * Explicit input: 4309 * SRC == any register 4310 * IMM == 32-bit immediate 4311 * 4312 * Output: 4313 * R0 - 8/16/32-bit skb data converted to cpu endianness 4314 */ 4315 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 4316 { 4317 struct bpf_reg_state *regs = cur_regs(env); 4318 u8 mode = BPF_MODE(insn->code); 4319 int i, err; 4320 4321 if (!may_access_skb(env->prog->type)) { 4322 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 4323 return -EINVAL; 4324 } 4325 4326 if (!env->ops->gen_ld_abs) { 4327 verbose(env, "bpf verifier is misconfigured\n"); 4328 return -EINVAL; 4329 } 4330 4331 if (env->subprog_cnt > 1) { 4332 /* when program has LD_ABS insn JITs and interpreter assume 4333 * that r1 == ctx == skb which is not the case for callees 4334 * that can have arbitrary arguments. It's problematic 4335 * for main prog as well since JITs would need to analyze 4336 * all functions in order to make proper register save/restore 4337 * decisions in the main prog. Hence disallow LD_ABS with calls 4338 */ 4339 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 4340 return -EINVAL; 4341 } 4342 4343 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 4344 BPF_SIZE(insn->code) == BPF_DW || 4345 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 4346 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 4347 return -EINVAL; 4348 } 4349 4350 /* check whether implicit source operand (register R6) is readable */ 4351 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 4352 if (err) 4353 return err; 4354 4355 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 4356 * gen_ld_abs() may terminate the program at runtime, leading to 4357 * reference leak. 4358 */ 4359 err = check_reference_leak(env); 4360 if (err) { 4361 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 4362 return err; 4363 } 4364 4365 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 4366 verbose(env, 4367 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 4368 return -EINVAL; 4369 } 4370 4371 if (mode == BPF_IND) { 4372 /* check explicit source operand */ 4373 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4374 if (err) 4375 return err; 4376 } 4377 4378 /* reset caller saved regs to unreadable */ 4379 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4380 mark_reg_not_init(env, regs, caller_saved[i]); 4381 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4382 } 4383 4384 /* mark destination R0 register as readable, since it contains 4385 * the value fetched from the packet. 4386 * Already marked as written above. 4387 */ 4388 mark_reg_unknown(env, regs, BPF_REG_0); 4389 return 0; 4390 } 4391 4392 static int check_return_code(struct bpf_verifier_env *env) 4393 { 4394 struct bpf_reg_state *reg; 4395 struct tnum range = tnum_range(0, 1); 4396 4397 switch (env->prog->type) { 4398 case BPF_PROG_TYPE_CGROUP_SKB: 4399 case BPF_PROG_TYPE_CGROUP_SOCK: 4400 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 4401 case BPF_PROG_TYPE_SOCK_OPS: 4402 case BPF_PROG_TYPE_CGROUP_DEVICE: 4403 break; 4404 default: 4405 return 0; 4406 } 4407 4408 reg = cur_regs(env) + BPF_REG_0; 4409 if (reg->type != SCALAR_VALUE) { 4410 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 4411 reg_type_str[reg->type]); 4412 return -EINVAL; 4413 } 4414 4415 if (!tnum_in(range, reg->var_off)) { 4416 verbose(env, "At program exit the register R0 "); 4417 if (!tnum_is_unknown(reg->var_off)) { 4418 char tn_buf[48]; 4419 4420 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4421 verbose(env, "has value %s", tn_buf); 4422 } else { 4423 verbose(env, "has unknown scalar value"); 4424 } 4425 verbose(env, " should have been 0 or 1\n"); 4426 return -EINVAL; 4427 } 4428 return 0; 4429 } 4430 4431 /* non-recursive DFS pseudo code 4432 * 1 procedure DFS-iterative(G,v): 4433 * 2 label v as discovered 4434 * 3 let S be a stack 4435 * 4 S.push(v) 4436 * 5 while S is not empty 4437 * 6 t <- S.pop() 4438 * 7 if t is what we're looking for: 4439 * 8 return t 4440 * 9 for all edges e in G.adjacentEdges(t) do 4441 * 10 if edge e is already labelled 4442 * 11 continue with the next edge 4443 * 12 w <- G.adjacentVertex(t,e) 4444 * 13 if vertex w is not discovered and not explored 4445 * 14 label e as tree-edge 4446 * 15 label w as discovered 4447 * 16 S.push(w) 4448 * 17 continue at 5 4449 * 18 else if vertex w is discovered 4450 * 19 label e as back-edge 4451 * 20 else 4452 * 21 // vertex w is explored 4453 * 22 label e as forward- or cross-edge 4454 * 23 label t as explored 4455 * 24 S.pop() 4456 * 4457 * convention: 4458 * 0x10 - discovered 4459 * 0x11 - discovered and fall-through edge labelled 4460 * 0x12 - discovered and fall-through and branch edges labelled 4461 * 0x20 - explored 4462 */ 4463 4464 enum { 4465 DISCOVERED = 0x10, 4466 EXPLORED = 0x20, 4467 FALLTHROUGH = 1, 4468 BRANCH = 2, 4469 }; 4470 4471 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 4472 4473 static int *insn_stack; /* stack of insns to process */ 4474 static int cur_stack; /* current stack index */ 4475 static int *insn_state; 4476 4477 /* t, w, e - match pseudo-code above: 4478 * t - index of current instruction 4479 * w - next instruction 4480 * e - edge 4481 */ 4482 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 4483 { 4484 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 4485 return 0; 4486 4487 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 4488 return 0; 4489 4490 if (w < 0 || w >= env->prog->len) { 4491 verbose(env, "jump out of range from insn %d to %d\n", t, w); 4492 return -EINVAL; 4493 } 4494 4495 if (e == BRANCH) 4496 /* mark branch target for state pruning */ 4497 env->explored_states[w] = STATE_LIST_MARK; 4498 4499 if (insn_state[w] == 0) { 4500 /* tree-edge */ 4501 insn_state[t] = DISCOVERED | e; 4502 insn_state[w] = DISCOVERED; 4503 if (cur_stack >= env->prog->len) 4504 return -E2BIG; 4505 insn_stack[cur_stack++] = w; 4506 return 1; 4507 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 4508 verbose(env, "back-edge from insn %d to %d\n", t, w); 4509 return -EINVAL; 4510 } else if (insn_state[w] == EXPLORED) { 4511 /* forward- or cross-edge */ 4512 insn_state[t] = DISCOVERED | e; 4513 } else { 4514 verbose(env, "insn state internal bug\n"); 4515 return -EFAULT; 4516 } 4517 return 0; 4518 } 4519 4520 /* non-recursive depth-first-search to detect loops in BPF program 4521 * loop == back-edge in directed graph 4522 */ 4523 static int check_cfg(struct bpf_verifier_env *env) 4524 { 4525 struct bpf_insn *insns = env->prog->insnsi; 4526 int insn_cnt = env->prog->len; 4527 int ret = 0; 4528 int i, t; 4529 4530 ret = check_subprogs(env); 4531 if (ret < 0) 4532 return ret; 4533 4534 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4535 if (!insn_state) 4536 return -ENOMEM; 4537 4538 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4539 if (!insn_stack) { 4540 kfree(insn_state); 4541 return -ENOMEM; 4542 } 4543 4544 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 4545 insn_stack[0] = 0; /* 0 is the first instruction */ 4546 cur_stack = 1; 4547 4548 peek_stack: 4549 if (cur_stack == 0) 4550 goto check_state; 4551 t = insn_stack[cur_stack - 1]; 4552 4553 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 4554 u8 opcode = BPF_OP(insns[t].code); 4555 4556 if (opcode == BPF_EXIT) { 4557 goto mark_explored; 4558 } else if (opcode == BPF_CALL) { 4559 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4560 if (ret == 1) 4561 goto peek_stack; 4562 else if (ret < 0) 4563 goto err_free; 4564 if (t + 1 < insn_cnt) 4565 env->explored_states[t + 1] = STATE_LIST_MARK; 4566 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 4567 env->explored_states[t] = STATE_LIST_MARK; 4568 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 4569 if (ret == 1) 4570 goto peek_stack; 4571 else if (ret < 0) 4572 goto err_free; 4573 } 4574 } else if (opcode == BPF_JA) { 4575 if (BPF_SRC(insns[t].code) != BPF_K) { 4576 ret = -EINVAL; 4577 goto err_free; 4578 } 4579 /* unconditional jump with single edge */ 4580 ret = push_insn(t, t + insns[t].off + 1, 4581 FALLTHROUGH, env); 4582 if (ret == 1) 4583 goto peek_stack; 4584 else if (ret < 0) 4585 goto err_free; 4586 /* tell verifier to check for equivalent states 4587 * after every call and jump 4588 */ 4589 if (t + 1 < insn_cnt) 4590 env->explored_states[t + 1] = STATE_LIST_MARK; 4591 } else { 4592 /* conditional jump with two edges */ 4593 env->explored_states[t] = STATE_LIST_MARK; 4594 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4595 if (ret == 1) 4596 goto peek_stack; 4597 else if (ret < 0) 4598 goto err_free; 4599 4600 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 4601 if (ret == 1) 4602 goto peek_stack; 4603 else if (ret < 0) 4604 goto err_free; 4605 } 4606 } else { 4607 /* all other non-branch instructions with single 4608 * fall-through edge 4609 */ 4610 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4611 if (ret == 1) 4612 goto peek_stack; 4613 else if (ret < 0) 4614 goto err_free; 4615 } 4616 4617 mark_explored: 4618 insn_state[t] = EXPLORED; 4619 if (cur_stack-- <= 0) { 4620 verbose(env, "pop stack internal bug\n"); 4621 ret = -EFAULT; 4622 goto err_free; 4623 } 4624 goto peek_stack; 4625 4626 check_state: 4627 for (i = 0; i < insn_cnt; i++) { 4628 if (insn_state[i] != EXPLORED) { 4629 verbose(env, "unreachable insn %d\n", i); 4630 ret = -EINVAL; 4631 goto err_free; 4632 } 4633 } 4634 ret = 0; /* cfg looks good */ 4635 4636 err_free: 4637 kfree(insn_state); 4638 kfree(insn_stack); 4639 return ret; 4640 } 4641 4642 /* check %cur's range satisfies %old's */ 4643 static bool range_within(struct bpf_reg_state *old, 4644 struct bpf_reg_state *cur) 4645 { 4646 return old->umin_value <= cur->umin_value && 4647 old->umax_value >= cur->umax_value && 4648 old->smin_value <= cur->smin_value && 4649 old->smax_value >= cur->smax_value; 4650 } 4651 4652 /* Maximum number of register states that can exist at once */ 4653 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 4654 struct idpair { 4655 u32 old; 4656 u32 cur; 4657 }; 4658 4659 /* If in the old state two registers had the same id, then they need to have 4660 * the same id in the new state as well. But that id could be different from 4661 * the old state, so we need to track the mapping from old to new ids. 4662 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 4663 * regs with old id 5 must also have new id 9 for the new state to be safe. But 4664 * regs with a different old id could still have new id 9, we don't care about 4665 * that. 4666 * So we look through our idmap to see if this old id has been seen before. If 4667 * so, we require the new id to match; otherwise, we add the id pair to the map. 4668 */ 4669 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 4670 { 4671 unsigned int i; 4672 4673 for (i = 0; i < ID_MAP_SIZE; i++) { 4674 if (!idmap[i].old) { 4675 /* Reached an empty slot; haven't seen this id before */ 4676 idmap[i].old = old_id; 4677 idmap[i].cur = cur_id; 4678 return true; 4679 } 4680 if (idmap[i].old == old_id) 4681 return idmap[i].cur == cur_id; 4682 } 4683 /* We ran out of idmap slots, which should be impossible */ 4684 WARN_ON_ONCE(1); 4685 return false; 4686 } 4687 4688 /* Returns true if (rold safe implies rcur safe) */ 4689 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 4690 struct idpair *idmap) 4691 { 4692 bool equal; 4693 4694 if (!(rold->live & REG_LIVE_READ)) 4695 /* explored state didn't use this */ 4696 return true; 4697 4698 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 4699 4700 if (rold->type == PTR_TO_STACK) 4701 /* two stack pointers are equal only if they're pointing to 4702 * the same stack frame, since fp-8 in foo != fp-8 in bar 4703 */ 4704 return equal && rold->frameno == rcur->frameno; 4705 4706 if (equal) 4707 return true; 4708 4709 if (rold->type == NOT_INIT) 4710 /* explored state can't have used this */ 4711 return true; 4712 if (rcur->type == NOT_INIT) 4713 return false; 4714 switch (rold->type) { 4715 case SCALAR_VALUE: 4716 if (rcur->type == SCALAR_VALUE) { 4717 /* new val must satisfy old val knowledge */ 4718 return range_within(rold, rcur) && 4719 tnum_in(rold->var_off, rcur->var_off); 4720 } else { 4721 /* We're trying to use a pointer in place of a scalar. 4722 * Even if the scalar was unbounded, this could lead to 4723 * pointer leaks because scalars are allowed to leak 4724 * while pointers are not. We could make this safe in 4725 * special cases if root is calling us, but it's 4726 * probably not worth the hassle. 4727 */ 4728 return false; 4729 } 4730 case PTR_TO_MAP_VALUE: 4731 /* If the new min/max/var_off satisfy the old ones and 4732 * everything else matches, we are OK. 4733 * We don't care about the 'id' value, because nothing 4734 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 4735 */ 4736 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 4737 range_within(rold, rcur) && 4738 tnum_in(rold->var_off, rcur->var_off); 4739 case PTR_TO_MAP_VALUE_OR_NULL: 4740 /* a PTR_TO_MAP_VALUE could be safe to use as a 4741 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 4742 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 4743 * checked, doing so could have affected others with the same 4744 * id, and we can't check for that because we lost the id when 4745 * we converted to a PTR_TO_MAP_VALUE. 4746 */ 4747 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 4748 return false; 4749 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 4750 return false; 4751 /* Check our ids match any regs they're supposed to */ 4752 return check_ids(rold->id, rcur->id, idmap); 4753 case PTR_TO_PACKET_META: 4754 case PTR_TO_PACKET: 4755 if (rcur->type != rold->type) 4756 return false; 4757 /* We must have at least as much range as the old ptr 4758 * did, so that any accesses which were safe before are 4759 * still safe. This is true even if old range < old off, 4760 * since someone could have accessed through (ptr - k), or 4761 * even done ptr -= k in a register, to get a safe access. 4762 */ 4763 if (rold->range > rcur->range) 4764 return false; 4765 /* If the offsets don't match, we can't trust our alignment; 4766 * nor can we be sure that we won't fall out of range. 4767 */ 4768 if (rold->off != rcur->off) 4769 return false; 4770 /* id relations must be preserved */ 4771 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 4772 return false; 4773 /* new val must satisfy old val knowledge */ 4774 return range_within(rold, rcur) && 4775 tnum_in(rold->var_off, rcur->var_off); 4776 case PTR_TO_CTX: 4777 case CONST_PTR_TO_MAP: 4778 case PTR_TO_PACKET_END: 4779 case PTR_TO_FLOW_KEYS: 4780 case PTR_TO_SOCKET: 4781 case PTR_TO_SOCKET_OR_NULL: 4782 /* Only valid matches are exact, which memcmp() above 4783 * would have accepted 4784 */ 4785 default: 4786 /* Don't know what's going on, just say it's not safe */ 4787 return false; 4788 } 4789 4790 /* Shouldn't get here; if we do, say it's not safe */ 4791 WARN_ON_ONCE(1); 4792 return false; 4793 } 4794 4795 static bool stacksafe(struct bpf_func_state *old, 4796 struct bpf_func_state *cur, 4797 struct idpair *idmap) 4798 { 4799 int i, spi; 4800 4801 /* if explored stack has more populated slots than current stack 4802 * such stacks are not equivalent 4803 */ 4804 if (old->allocated_stack > cur->allocated_stack) 4805 return false; 4806 4807 /* walk slots of the explored stack and ignore any additional 4808 * slots in the current stack, since explored(safe) state 4809 * didn't use them 4810 */ 4811 for (i = 0; i < old->allocated_stack; i++) { 4812 spi = i / BPF_REG_SIZE; 4813 4814 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) 4815 /* explored state didn't use this */ 4816 continue; 4817 4818 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 4819 continue; 4820 /* if old state was safe with misc data in the stack 4821 * it will be safe with zero-initialized stack. 4822 * The opposite is not true 4823 */ 4824 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 4825 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 4826 continue; 4827 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 4828 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 4829 /* Ex: old explored (safe) state has STACK_SPILL in 4830 * this stack slot, but current has has STACK_MISC -> 4831 * this verifier states are not equivalent, 4832 * return false to continue verification of this path 4833 */ 4834 return false; 4835 if (i % BPF_REG_SIZE) 4836 continue; 4837 if (old->stack[spi].slot_type[0] != STACK_SPILL) 4838 continue; 4839 if (!regsafe(&old->stack[spi].spilled_ptr, 4840 &cur->stack[spi].spilled_ptr, 4841 idmap)) 4842 /* when explored and current stack slot are both storing 4843 * spilled registers, check that stored pointers types 4844 * are the same as well. 4845 * Ex: explored safe path could have stored 4846 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 4847 * but current path has stored: 4848 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 4849 * such verifier states are not equivalent. 4850 * return false to continue verification of this path 4851 */ 4852 return false; 4853 } 4854 return true; 4855 } 4856 4857 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 4858 { 4859 if (old->acquired_refs != cur->acquired_refs) 4860 return false; 4861 return !memcmp(old->refs, cur->refs, 4862 sizeof(*old->refs) * old->acquired_refs); 4863 } 4864 4865 /* compare two verifier states 4866 * 4867 * all states stored in state_list are known to be valid, since 4868 * verifier reached 'bpf_exit' instruction through them 4869 * 4870 * this function is called when verifier exploring different branches of 4871 * execution popped from the state stack. If it sees an old state that has 4872 * more strict register state and more strict stack state then this execution 4873 * branch doesn't need to be explored further, since verifier already 4874 * concluded that more strict state leads to valid finish. 4875 * 4876 * Therefore two states are equivalent if register state is more conservative 4877 * and explored stack state is more conservative than the current one. 4878 * Example: 4879 * explored current 4880 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 4881 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 4882 * 4883 * In other words if current stack state (one being explored) has more 4884 * valid slots than old one that already passed validation, it means 4885 * the verifier can stop exploring and conclude that current state is valid too 4886 * 4887 * Similarly with registers. If explored state has register type as invalid 4888 * whereas register type in current state is meaningful, it means that 4889 * the current state will reach 'bpf_exit' instruction safely 4890 */ 4891 static bool func_states_equal(struct bpf_func_state *old, 4892 struct bpf_func_state *cur) 4893 { 4894 struct idpair *idmap; 4895 bool ret = false; 4896 int i; 4897 4898 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 4899 /* If we failed to allocate the idmap, just say it's not safe */ 4900 if (!idmap) 4901 return false; 4902 4903 for (i = 0; i < MAX_BPF_REG; i++) { 4904 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 4905 goto out_free; 4906 } 4907 4908 if (!stacksafe(old, cur, idmap)) 4909 goto out_free; 4910 4911 if (!refsafe(old, cur)) 4912 goto out_free; 4913 ret = true; 4914 out_free: 4915 kfree(idmap); 4916 return ret; 4917 } 4918 4919 static bool states_equal(struct bpf_verifier_env *env, 4920 struct bpf_verifier_state *old, 4921 struct bpf_verifier_state *cur) 4922 { 4923 int i; 4924 4925 if (old->curframe != cur->curframe) 4926 return false; 4927 4928 /* for states to be equal callsites have to be the same 4929 * and all frame states need to be equivalent 4930 */ 4931 for (i = 0; i <= old->curframe; i++) { 4932 if (old->frame[i]->callsite != cur->frame[i]->callsite) 4933 return false; 4934 if (!func_states_equal(old->frame[i], cur->frame[i])) 4935 return false; 4936 } 4937 return true; 4938 } 4939 4940 /* A write screens off any subsequent reads; but write marks come from the 4941 * straight-line code between a state and its parent. When we arrive at an 4942 * equivalent state (jump target or such) we didn't arrive by the straight-line 4943 * code, so read marks in the state must propagate to the parent regardless 4944 * of the state's write marks. That's what 'parent == state->parent' comparison 4945 * in mark_reg_read() is for. 4946 */ 4947 static int propagate_liveness(struct bpf_verifier_env *env, 4948 const struct bpf_verifier_state *vstate, 4949 struct bpf_verifier_state *vparent) 4950 { 4951 int i, frame, err = 0; 4952 struct bpf_func_state *state, *parent; 4953 4954 if (vparent->curframe != vstate->curframe) { 4955 WARN(1, "propagate_live: parent frame %d current frame %d\n", 4956 vparent->curframe, vstate->curframe); 4957 return -EFAULT; 4958 } 4959 /* Propagate read liveness of registers... */ 4960 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 4961 /* We don't need to worry about FP liveness because it's read-only */ 4962 for (i = 0; i < BPF_REG_FP; i++) { 4963 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 4964 continue; 4965 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 4966 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i], 4967 &vparent->frame[vstate->curframe]->regs[i]); 4968 if (err) 4969 return err; 4970 } 4971 } 4972 4973 /* ... and stack slots */ 4974 for (frame = 0; frame <= vstate->curframe; frame++) { 4975 state = vstate->frame[frame]; 4976 parent = vparent->frame[frame]; 4977 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 4978 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 4979 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 4980 continue; 4981 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 4982 mark_reg_read(env, &state->stack[i].spilled_ptr, 4983 &parent->stack[i].spilled_ptr); 4984 } 4985 } 4986 return err; 4987 } 4988 4989 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 4990 { 4991 struct bpf_verifier_state_list *new_sl; 4992 struct bpf_verifier_state_list *sl; 4993 struct bpf_verifier_state *cur = env->cur_state, *new; 4994 int i, j, err; 4995 4996 sl = env->explored_states[insn_idx]; 4997 if (!sl) 4998 /* this 'insn_idx' instruction wasn't marked, so we will not 4999 * be doing state search here 5000 */ 5001 return 0; 5002 5003 while (sl != STATE_LIST_MARK) { 5004 if (states_equal(env, &sl->state, cur)) { 5005 /* reached equivalent register/stack state, 5006 * prune the search. 5007 * Registers read by the continuation are read by us. 5008 * If we have any write marks in env->cur_state, they 5009 * will prevent corresponding reads in the continuation 5010 * from reaching our parent (an explored_state). Our 5011 * own state will get the read marks recorded, but 5012 * they'll be immediately forgotten as we're pruning 5013 * this state and will pop a new one. 5014 */ 5015 err = propagate_liveness(env, &sl->state, cur); 5016 if (err) 5017 return err; 5018 return 1; 5019 } 5020 sl = sl->next; 5021 } 5022 5023 /* there were no equivalent states, remember current one. 5024 * technically the current state is not proven to be safe yet, 5025 * but it will either reach outer most bpf_exit (which means it's safe) 5026 * or it will be rejected. Since there are no loops, we won't be 5027 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 5028 * again on the way to bpf_exit 5029 */ 5030 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 5031 if (!new_sl) 5032 return -ENOMEM; 5033 5034 /* add new state to the head of linked list */ 5035 new = &new_sl->state; 5036 err = copy_verifier_state(new, cur); 5037 if (err) { 5038 free_verifier_state(new, false); 5039 kfree(new_sl); 5040 return err; 5041 } 5042 new_sl->next = env->explored_states[insn_idx]; 5043 env->explored_states[insn_idx] = new_sl; 5044 /* connect new state to parentage chain */ 5045 for (i = 0; i < BPF_REG_FP; i++) 5046 cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i]; 5047 /* clear write marks in current state: the writes we did are not writes 5048 * our child did, so they don't screen off its reads from us. 5049 * (There are no read marks in current state, because reads always mark 5050 * their parent and current state never has children yet. Only 5051 * explored_states can get read marks.) 5052 */ 5053 for (i = 0; i < BPF_REG_FP; i++) 5054 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 5055 5056 /* all stack frames are accessible from callee, clear them all */ 5057 for (j = 0; j <= cur->curframe; j++) { 5058 struct bpf_func_state *frame = cur->frame[j]; 5059 struct bpf_func_state *newframe = new->frame[j]; 5060 5061 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 5062 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 5063 frame->stack[i].spilled_ptr.parent = 5064 &newframe->stack[i].spilled_ptr; 5065 } 5066 } 5067 return 0; 5068 } 5069 5070 /* Return true if it's OK to have the same insn return a different type. */ 5071 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 5072 { 5073 switch (type) { 5074 case PTR_TO_CTX: 5075 case PTR_TO_SOCKET: 5076 case PTR_TO_SOCKET_OR_NULL: 5077 return false; 5078 default: 5079 return true; 5080 } 5081 } 5082 5083 /* If an instruction was previously used with particular pointer types, then we 5084 * need to be careful to avoid cases such as the below, where it may be ok 5085 * for one branch accessing the pointer, but not ok for the other branch: 5086 * 5087 * R1 = sock_ptr 5088 * goto X; 5089 * ... 5090 * R1 = some_other_valid_ptr; 5091 * goto X; 5092 * ... 5093 * R2 = *(u32 *)(R1 + 0); 5094 */ 5095 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 5096 { 5097 return src != prev && (!reg_type_mismatch_ok(src) || 5098 !reg_type_mismatch_ok(prev)); 5099 } 5100 5101 static int do_check(struct bpf_verifier_env *env) 5102 { 5103 struct bpf_verifier_state *state; 5104 struct bpf_insn *insns = env->prog->insnsi; 5105 struct bpf_reg_state *regs; 5106 int insn_cnt = env->prog->len, i; 5107 int insn_idx, prev_insn_idx = 0; 5108 int insn_processed = 0; 5109 bool do_print_state = false; 5110 5111 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 5112 if (!state) 5113 return -ENOMEM; 5114 state->curframe = 0; 5115 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 5116 if (!state->frame[0]) { 5117 kfree(state); 5118 return -ENOMEM; 5119 } 5120 env->cur_state = state; 5121 init_func_state(env, state->frame[0], 5122 BPF_MAIN_FUNC /* callsite */, 5123 0 /* frameno */, 5124 0 /* subprogno, zero == main subprog */); 5125 insn_idx = 0; 5126 for (;;) { 5127 struct bpf_insn *insn; 5128 u8 class; 5129 int err; 5130 5131 if (insn_idx >= insn_cnt) { 5132 verbose(env, "invalid insn idx %d insn_cnt %d\n", 5133 insn_idx, insn_cnt); 5134 return -EFAULT; 5135 } 5136 5137 insn = &insns[insn_idx]; 5138 class = BPF_CLASS(insn->code); 5139 5140 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 5141 verbose(env, 5142 "BPF program is too large. Processed %d insn\n", 5143 insn_processed); 5144 return -E2BIG; 5145 } 5146 5147 err = is_state_visited(env, insn_idx); 5148 if (err < 0) 5149 return err; 5150 if (err == 1) { 5151 /* found equivalent state, can prune the search */ 5152 if (env->log.level) { 5153 if (do_print_state) 5154 verbose(env, "\nfrom %d to %d: safe\n", 5155 prev_insn_idx, insn_idx); 5156 else 5157 verbose(env, "%d: safe\n", insn_idx); 5158 } 5159 goto process_bpf_exit; 5160 } 5161 5162 if (need_resched()) 5163 cond_resched(); 5164 5165 if (env->log.level > 1 || (env->log.level && do_print_state)) { 5166 if (env->log.level > 1) 5167 verbose(env, "%d:", insn_idx); 5168 else 5169 verbose(env, "\nfrom %d to %d:", 5170 prev_insn_idx, insn_idx); 5171 print_verifier_state(env, state->frame[state->curframe]); 5172 do_print_state = false; 5173 } 5174 5175 if (env->log.level) { 5176 const struct bpf_insn_cbs cbs = { 5177 .cb_print = verbose, 5178 .private_data = env, 5179 }; 5180 5181 verbose(env, "%d: ", insn_idx); 5182 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 5183 } 5184 5185 if (bpf_prog_is_dev_bound(env->prog->aux)) { 5186 err = bpf_prog_offload_verify_insn(env, insn_idx, 5187 prev_insn_idx); 5188 if (err) 5189 return err; 5190 } 5191 5192 regs = cur_regs(env); 5193 env->insn_aux_data[insn_idx].seen = true; 5194 5195 if (class == BPF_ALU || class == BPF_ALU64) { 5196 err = check_alu_op(env, insn); 5197 if (err) 5198 return err; 5199 5200 } else if (class == BPF_LDX) { 5201 enum bpf_reg_type *prev_src_type, src_reg_type; 5202 5203 /* check for reserved fields is already done */ 5204 5205 /* check src operand */ 5206 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5207 if (err) 5208 return err; 5209 5210 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5211 if (err) 5212 return err; 5213 5214 src_reg_type = regs[insn->src_reg].type; 5215 5216 /* check that memory (src_reg + off) is readable, 5217 * the state of dst_reg will be updated by this func 5218 */ 5219 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 5220 BPF_SIZE(insn->code), BPF_READ, 5221 insn->dst_reg, false); 5222 if (err) 5223 return err; 5224 5225 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 5226 5227 if (*prev_src_type == NOT_INIT) { 5228 /* saw a valid insn 5229 * dst_reg = *(u32 *)(src_reg + off) 5230 * save type to validate intersecting paths 5231 */ 5232 *prev_src_type = src_reg_type; 5233 5234 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 5235 /* ABuser program is trying to use the same insn 5236 * dst_reg = *(u32*) (src_reg + off) 5237 * with different pointer types: 5238 * src_reg == ctx in one branch and 5239 * src_reg == stack|map in some other branch. 5240 * Reject it. 5241 */ 5242 verbose(env, "same insn cannot be used with different pointers\n"); 5243 return -EINVAL; 5244 } 5245 5246 } else if (class == BPF_STX) { 5247 enum bpf_reg_type *prev_dst_type, dst_reg_type; 5248 5249 if (BPF_MODE(insn->code) == BPF_XADD) { 5250 err = check_xadd(env, insn_idx, insn); 5251 if (err) 5252 return err; 5253 insn_idx++; 5254 continue; 5255 } 5256 5257 /* check src1 operand */ 5258 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5259 if (err) 5260 return err; 5261 /* check src2 operand */ 5262 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5263 if (err) 5264 return err; 5265 5266 dst_reg_type = regs[insn->dst_reg].type; 5267 5268 /* check that memory (dst_reg + off) is writeable */ 5269 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5270 BPF_SIZE(insn->code), BPF_WRITE, 5271 insn->src_reg, false); 5272 if (err) 5273 return err; 5274 5275 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 5276 5277 if (*prev_dst_type == NOT_INIT) { 5278 *prev_dst_type = dst_reg_type; 5279 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 5280 verbose(env, "same insn cannot be used with different pointers\n"); 5281 return -EINVAL; 5282 } 5283 5284 } else if (class == BPF_ST) { 5285 if (BPF_MODE(insn->code) != BPF_MEM || 5286 insn->src_reg != BPF_REG_0) { 5287 verbose(env, "BPF_ST uses reserved fields\n"); 5288 return -EINVAL; 5289 } 5290 /* check src operand */ 5291 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5292 if (err) 5293 return err; 5294 5295 if (is_ctx_reg(env, insn->dst_reg)) { 5296 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 5297 insn->dst_reg, 5298 reg_type_str[reg_state(env, insn->dst_reg)->type]); 5299 return -EACCES; 5300 } 5301 5302 /* check that memory (dst_reg + off) is writeable */ 5303 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5304 BPF_SIZE(insn->code), BPF_WRITE, 5305 -1, false); 5306 if (err) 5307 return err; 5308 5309 } else if (class == BPF_JMP) { 5310 u8 opcode = BPF_OP(insn->code); 5311 5312 if (opcode == BPF_CALL) { 5313 if (BPF_SRC(insn->code) != BPF_K || 5314 insn->off != 0 || 5315 (insn->src_reg != BPF_REG_0 && 5316 insn->src_reg != BPF_PSEUDO_CALL) || 5317 insn->dst_reg != BPF_REG_0) { 5318 verbose(env, "BPF_CALL uses reserved fields\n"); 5319 return -EINVAL; 5320 } 5321 5322 if (insn->src_reg == BPF_PSEUDO_CALL) 5323 err = check_func_call(env, insn, &insn_idx); 5324 else 5325 err = check_helper_call(env, insn->imm, insn_idx); 5326 if (err) 5327 return err; 5328 5329 } else if (opcode == BPF_JA) { 5330 if (BPF_SRC(insn->code) != BPF_K || 5331 insn->imm != 0 || 5332 insn->src_reg != BPF_REG_0 || 5333 insn->dst_reg != BPF_REG_0) { 5334 verbose(env, "BPF_JA uses reserved fields\n"); 5335 return -EINVAL; 5336 } 5337 5338 insn_idx += insn->off + 1; 5339 continue; 5340 5341 } else if (opcode == BPF_EXIT) { 5342 if (BPF_SRC(insn->code) != BPF_K || 5343 insn->imm != 0 || 5344 insn->src_reg != BPF_REG_0 || 5345 insn->dst_reg != BPF_REG_0) { 5346 verbose(env, "BPF_EXIT uses reserved fields\n"); 5347 return -EINVAL; 5348 } 5349 5350 if (state->curframe) { 5351 /* exit from nested function */ 5352 prev_insn_idx = insn_idx; 5353 err = prepare_func_exit(env, &insn_idx); 5354 if (err) 5355 return err; 5356 do_print_state = true; 5357 continue; 5358 } 5359 5360 err = check_reference_leak(env); 5361 if (err) 5362 return err; 5363 5364 /* eBPF calling convetion is such that R0 is used 5365 * to return the value from eBPF program. 5366 * Make sure that it's readable at this time 5367 * of bpf_exit, which means that program wrote 5368 * something into it earlier 5369 */ 5370 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 5371 if (err) 5372 return err; 5373 5374 if (is_pointer_value(env, BPF_REG_0)) { 5375 verbose(env, "R0 leaks addr as return value\n"); 5376 return -EACCES; 5377 } 5378 5379 err = check_return_code(env); 5380 if (err) 5381 return err; 5382 process_bpf_exit: 5383 err = pop_stack(env, &prev_insn_idx, &insn_idx); 5384 if (err < 0) { 5385 if (err != -ENOENT) 5386 return err; 5387 break; 5388 } else { 5389 do_print_state = true; 5390 continue; 5391 } 5392 } else { 5393 err = check_cond_jmp_op(env, insn, &insn_idx); 5394 if (err) 5395 return err; 5396 } 5397 } else if (class == BPF_LD) { 5398 u8 mode = BPF_MODE(insn->code); 5399 5400 if (mode == BPF_ABS || mode == BPF_IND) { 5401 err = check_ld_abs(env, insn); 5402 if (err) 5403 return err; 5404 5405 } else if (mode == BPF_IMM) { 5406 err = check_ld_imm(env, insn); 5407 if (err) 5408 return err; 5409 5410 insn_idx++; 5411 env->insn_aux_data[insn_idx].seen = true; 5412 } else { 5413 verbose(env, "invalid BPF_LD mode\n"); 5414 return -EINVAL; 5415 } 5416 } else { 5417 verbose(env, "unknown insn class %d\n", class); 5418 return -EINVAL; 5419 } 5420 5421 insn_idx++; 5422 } 5423 5424 verbose(env, "processed %d insns (limit %d), stack depth ", 5425 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 5426 for (i = 0; i < env->subprog_cnt; i++) { 5427 u32 depth = env->subprog_info[i].stack_depth; 5428 5429 verbose(env, "%d", depth); 5430 if (i + 1 < env->subprog_cnt) 5431 verbose(env, "+"); 5432 } 5433 verbose(env, "\n"); 5434 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 5435 return 0; 5436 } 5437 5438 static int check_map_prealloc(struct bpf_map *map) 5439 { 5440 return (map->map_type != BPF_MAP_TYPE_HASH && 5441 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 5442 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 5443 !(map->map_flags & BPF_F_NO_PREALLOC); 5444 } 5445 5446 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 5447 struct bpf_map *map, 5448 struct bpf_prog *prog) 5449 5450 { 5451 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 5452 * preallocated hash maps, since doing memory allocation 5453 * in overflow_handler can crash depending on where nmi got 5454 * triggered. 5455 */ 5456 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 5457 if (!check_map_prealloc(map)) { 5458 verbose(env, "perf_event programs can only use preallocated hash map\n"); 5459 return -EINVAL; 5460 } 5461 if (map->inner_map_meta && 5462 !check_map_prealloc(map->inner_map_meta)) { 5463 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 5464 return -EINVAL; 5465 } 5466 } 5467 5468 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 5469 !bpf_offload_prog_map_match(prog, map)) { 5470 verbose(env, "offload device mismatch between prog and map\n"); 5471 return -EINVAL; 5472 } 5473 5474 return 0; 5475 } 5476 5477 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 5478 { 5479 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 5480 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 5481 } 5482 5483 /* look for pseudo eBPF instructions that access map FDs and 5484 * replace them with actual map pointers 5485 */ 5486 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 5487 { 5488 struct bpf_insn *insn = env->prog->insnsi; 5489 int insn_cnt = env->prog->len; 5490 int i, j, err; 5491 5492 err = bpf_prog_calc_tag(env->prog); 5493 if (err) 5494 return err; 5495 5496 for (i = 0; i < insn_cnt; i++, insn++) { 5497 if (BPF_CLASS(insn->code) == BPF_LDX && 5498 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 5499 verbose(env, "BPF_LDX uses reserved fields\n"); 5500 return -EINVAL; 5501 } 5502 5503 if (BPF_CLASS(insn->code) == BPF_STX && 5504 ((BPF_MODE(insn->code) != BPF_MEM && 5505 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 5506 verbose(env, "BPF_STX uses reserved fields\n"); 5507 return -EINVAL; 5508 } 5509 5510 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 5511 struct bpf_map *map; 5512 struct fd f; 5513 5514 if (i == insn_cnt - 1 || insn[1].code != 0 || 5515 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 5516 insn[1].off != 0) { 5517 verbose(env, "invalid bpf_ld_imm64 insn\n"); 5518 return -EINVAL; 5519 } 5520 5521 if (insn->src_reg == 0) 5522 /* valid generic load 64-bit imm */ 5523 goto next_insn; 5524 5525 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 5526 verbose(env, 5527 "unrecognized bpf_ld_imm64 insn\n"); 5528 return -EINVAL; 5529 } 5530 5531 f = fdget(insn->imm); 5532 map = __bpf_map_get(f); 5533 if (IS_ERR(map)) { 5534 verbose(env, "fd %d is not pointing to valid bpf_map\n", 5535 insn->imm); 5536 return PTR_ERR(map); 5537 } 5538 5539 err = check_map_prog_compatibility(env, map, env->prog); 5540 if (err) { 5541 fdput(f); 5542 return err; 5543 } 5544 5545 /* store map pointer inside BPF_LD_IMM64 instruction */ 5546 insn[0].imm = (u32) (unsigned long) map; 5547 insn[1].imm = ((u64) (unsigned long) map) >> 32; 5548 5549 /* check whether we recorded this map already */ 5550 for (j = 0; j < env->used_map_cnt; j++) 5551 if (env->used_maps[j] == map) { 5552 fdput(f); 5553 goto next_insn; 5554 } 5555 5556 if (env->used_map_cnt >= MAX_USED_MAPS) { 5557 fdput(f); 5558 return -E2BIG; 5559 } 5560 5561 /* hold the map. If the program is rejected by verifier, 5562 * the map will be released by release_maps() or it 5563 * will be used by the valid program until it's unloaded 5564 * and all maps are released in free_used_maps() 5565 */ 5566 map = bpf_map_inc(map, false); 5567 if (IS_ERR(map)) { 5568 fdput(f); 5569 return PTR_ERR(map); 5570 } 5571 env->used_maps[env->used_map_cnt++] = map; 5572 5573 if (bpf_map_is_cgroup_storage(map) && 5574 bpf_cgroup_storage_assign(env->prog, map)) { 5575 verbose(env, "only one cgroup storage of each type is allowed\n"); 5576 fdput(f); 5577 return -EBUSY; 5578 } 5579 5580 fdput(f); 5581 next_insn: 5582 insn++; 5583 i++; 5584 continue; 5585 } 5586 5587 /* Basic sanity check before we invest more work here. */ 5588 if (!bpf_opcode_in_insntable(insn->code)) { 5589 verbose(env, "unknown opcode %02x\n", insn->code); 5590 return -EINVAL; 5591 } 5592 } 5593 5594 /* now all pseudo BPF_LD_IMM64 instructions load valid 5595 * 'struct bpf_map *' into a register instead of user map_fd. 5596 * These pointers will be used later by verifier to validate map access. 5597 */ 5598 return 0; 5599 } 5600 5601 /* drop refcnt of maps used by the rejected program */ 5602 static void release_maps(struct bpf_verifier_env *env) 5603 { 5604 enum bpf_cgroup_storage_type stype; 5605 int i; 5606 5607 for_each_cgroup_storage_type(stype) { 5608 if (!env->prog->aux->cgroup_storage[stype]) 5609 continue; 5610 bpf_cgroup_storage_release(env->prog, 5611 env->prog->aux->cgroup_storage[stype]); 5612 } 5613 5614 for (i = 0; i < env->used_map_cnt; i++) 5615 bpf_map_put(env->used_maps[i]); 5616 } 5617 5618 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 5619 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 5620 { 5621 struct bpf_insn *insn = env->prog->insnsi; 5622 int insn_cnt = env->prog->len; 5623 int i; 5624 5625 for (i = 0; i < insn_cnt; i++, insn++) 5626 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 5627 insn->src_reg = 0; 5628 } 5629 5630 /* single env->prog->insni[off] instruction was replaced with the range 5631 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 5632 * [0, off) and [off, end) to new locations, so the patched range stays zero 5633 */ 5634 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 5635 u32 off, u32 cnt) 5636 { 5637 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 5638 int i; 5639 5640 if (cnt == 1) 5641 return 0; 5642 new_data = vzalloc(array_size(prog_len, 5643 sizeof(struct bpf_insn_aux_data))); 5644 if (!new_data) 5645 return -ENOMEM; 5646 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 5647 memcpy(new_data + off + cnt - 1, old_data + off, 5648 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 5649 for (i = off; i < off + cnt - 1; i++) 5650 new_data[i].seen = true; 5651 env->insn_aux_data = new_data; 5652 vfree(old_data); 5653 return 0; 5654 } 5655 5656 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 5657 { 5658 int i; 5659 5660 if (len == 1) 5661 return; 5662 /* NOTE: fake 'exit' subprog should be updated as well. */ 5663 for (i = 0; i <= env->subprog_cnt; i++) { 5664 if (env->subprog_info[i].start < off) 5665 continue; 5666 env->subprog_info[i].start += len - 1; 5667 } 5668 } 5669 5670 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 5671 const struct bpf_insn *patch, u32 len) 5672 { 5673 struct bpf_prog *new_prog; 5674 5675 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 5676 if (!new_prog) 5677 return NULL; 5678 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 5679 return NULL; 5680 adjust_subprog_starts(env, off, len); 5681 return new_prog; 5682 } 5683 5684 /* The verifier does more data flow analysis than llvm and will not 5685 * explore branches that are dead at run time. Malicious programs can 5686 * have dead code too. Therefore replace all dead at-run-time code 5687 * with 'ja -1'. 5688 * 5689 * Just nops are not optimal, e.g. if they would sit at the end of the 5690 * program and through another bug we would manage to jump there, then 5691 * we'd execute beyond program memory otherwise. Returning exception 5692 * code also wouldn't work since we can have subprogs where the dead 5693 * code could be located. 5694 */ 5695 static void sanitize_dead_code(struct bpf_verifier_env *env) 5696 { 5697 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 5698 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 5699 struct bpf_insn *insn = env->prog->insnsi; 5700 const int insn_cnt = env->prog->len; 5701 int i; 5702 5703 for (i = 0; i < insn_cnt; i++) { 5704 if (aux_data[i].seen) 5705 continue; 5706 memcpy(insn + i, &trap, sizeof(trap)); 5707 } 5708 } 5709 5710 /* convert load instructions that access fields of a context type into a 5711 * sequence of instructions that access fields of the underlying structure: 5712 * struct __sk_buff -> struct sk_buff 5713 * struct bpf_sock_ops -> struct sock 5714 */ 5715 static int convert_ctx_accesses(struct bpf_verifier_env *env) 5716 { 5717 const struct bpf_verifier_ops *ops = env->ops; 5718 int i, cnt, size, ctx_field_size, delta = 0; 5719 const int insn_cnt = env->prog->len; 5720 struct bpf_insn insn_buf[16], *insn; 5721 struct bpf_prog *new_prog; 5722 enum bpf_access_type type; 5723 bool is_narrower_load; 5724 u32 target_size; 5725 5726 if (ops->gen_prologue || env->seen_direct_write) { 5727 if (!ops->gen_prologue) { 5728 verbose(env, "bpf verifier is misconfigured\n"); 5729 return -EINVAL; 5730 } 5731 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 5732 env->prog); 5733 if (cnt >= ARRAY_SIZE(insn_buf)) { 5734 verbose(env, "bpf verifier is misconfigured\n"); 5735 return -EINVAL; 5736 } else if (cnt) { 5737 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 5738 if (!new_prog) 5739 return -ENOMEM; 5740 5741 env->prog = new_prog; 5742 delta += cnt - 1; 5743 } 5744 } 5745 5746 if (bpf_prog_is_dev_bound(env->prog->aux)) 5747 return 0; 5748 5749 insn = env->prog->insnsi + delta; 5750 5751 for (i = 0; i < insn_cnt; i++, insn++) { 5752 bpf_convert_ctx_access_t convert_ctx_access; 5753 5754 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 5755 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 5756 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 5757 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 5758 type = BPF_READ; 5759 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 5760 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 5761 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 5762 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 5763 type = BPF_WRITE; 5764 else 5765 continue; 5766 5767 if (type == BPF_WRITE && 5768 env->insn_aux_data[i + delta].sanitize_stack_off) { 5769 struct bpf_insn patch[] = { 5770 /* Sanitize suspicious stack slot with zero. 5771 * There are no memory dependencies for this store, 5772 * since it's only using frame pointer and immediate 5773 * constant of zero 5774 */ 5775 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 5776 env->insn_aux_data[i + delta].sanitize_stack_off, 5777 0), 5778 /* the original STX instruction will immediately 5779 * overwrite the same stack slot with appropriate value 5780 */ 5781 *insn, 5782 }; 5783 5784 cnt = ARRAY_SIZE(patch); 5785 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 5786 if (!new_prog) 5787 return -ENOMEM; 5788 5789 delta += cnt - 1; 5790 env->prog = new_prog; 5791 insn = new_prog->insnsi + i + delta; 5792 continue; 5793 } 5794 5795 switch (env->insn_aux_data[i + delta].ptr_type) { 5796 case PTR_TO_CTX: 5797 if (!ops->convert_ctx_access) 5798 continue; 5799 convert_ctx_access = ops->convert_ctx_access; 5800 break; 5801 case PTR_TO_SOCKET: 5802 convert_ctx_access = bpf_sock_convert_ctx_access; 5803 break; 5804 default: 5805 continue; 5806 } 5807 5808 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 5809 size = BPF_LDST_BYTES(insn); 5810 5811 /* If the read access is a narrower load of the field, 5812 * convert to a 4/8-byte load, to minimum program type specific 5813 * convert_ctx_access changes. If conversion is successful, 5814 * we will apply proper mask to the result. 5815 */ 5816 is_narrower_load = size < ctx_field_size; 5817 if (is_narrower_load) { 5818 u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 5819 u32 off = insn->off; 5820 u8 size_code; 5821 5822 if (type == BPF_WRITE) { 5823 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 5824 return -EINVAL; 5825 } 5826 5827 size_code = BPF_H; 5828 if (ctx_field_size == 4) 5829 size_code = BPF_W; 5830 else if (ctx_field_size == 8) 5831 size_code = BPF_DW; 5832 5833 insn->off = off & ~(size_default - 1); 5834 insn->code = BPF_LDX | BPF_MEM | size_code; 5835 } 5836 5837 target_size = 0; 5838 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 5839 &target_size); 5840 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 5841 (ctx_field_size && !target_size)) { 5842 verbose(env, "bpf verifier is misconfigured\n"); 5843 return -EINVAL; 5844 } 5845 5846 if (is_narrower_load && size < target_size) { 5847 if (ctx_field_size <= 4) 5848 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 5849 (1 << size * 8) - 1); 5850 else 5851 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 5852 (1 << size * 8) - 1); 5853 } 5854 5855 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5856 if (!new_prog) 5857 return -ENOMEM; 5858 5859 delta += cnt - 1; 5860 5861 /* keep walking new program and skip insns we just inserted */ 5862 env->prog = new_prog; 5863 insn = new_prog->insnsi + i + delta; 5864 } 5865 5866 return 0; 5867 } 5868 5869 static int jit_subprogs(struct bpf_verifier_env *env) 5870 { 5871 struct bpf_prog *prog = env->prog, **func, *tmp; 5872 int i, j, subprog_start, subprog_end = 0, len, subprog; 5873 struct bpf_insn *insn; 5874 void *old_bpf_func; 5875 int err = -ENOMEM; 5876 5877 if (env->subprog_cnt <= 1) 5878 return 0; 5879 5880 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5881 if (insn->code != (BPF_JMP | BPF_CALL) || 5882 insn->src_reg != BPF_PSEUDO_CALL) 5883 continue; 5884 /* Upon error here we cannot fall back to interpreter but 5885 * need a hard reject of the program. Thus -EFAULT is 5886 * propagated in any case. 5887 */ 5888 subprog = find_subprog(env, i + insn->imm + 1); 5889 if (subprog < 0) { 5890 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5891 i + insn->imm + 1); 5892 return -EFAULT; 5893 } 5894 /* temporarily remember subprog id inside insn instead of 5895 * aux_data, since next loop will split up all insns into funcs 5896 */ 5897 insn->off = subprog; 5898 /* remember original imm in case JIT fails and fallback 5899 * to interpreter will be needed 5900 */ 5901 env->insn_aux_data[i].call_imm = insn->imm; 5902 /* point imm to __bpf_call_base+1 from JITs point of view */ 5903 insn->imm = 1; 5904 } 5905 5906 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 5907 if (!func) 5908 goto out_undo_insn; 5909 5910 for (i = 0; i < env->subprog_cnt; i++) { 5911 subprog_start = subprog_end; 5912 subprog_end = env->subprog_info[i + 1].start; 5913 5914 len = subprog_end - subprog_start; 5915 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 5916 if (!func[i]) 5917 goto out_free; 5918 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 5919 len * sizeof(struct bpf_insn)); 5920 func[i]->type = prog->type; 5921 func[i]->len = len; 5922 if (bpf_prog_calc_tag(func[i])) 5923 goto out_free; 5924 func[i]->is_func = 1; 5925 /* Use bpf_prog_F_tag to indicate functions in stack traces. 5926 * Long term would need debug info to populate names 5927 */ 5928 func[i]->aux->name[0] = 'F'; 5929 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 5930 func[i]->jit_requested = 1; 5931 func[i] = bpf_int_jit_compile(func[i]); 5932 if (!func[i]->jited) { 5933 err = -ENOTSUPP; 5934 goto out_free; 5935 } 5936 cond_resched(); 5937 } 5938 /* at this point all bpf functions were successfully JITed 5939 * now populate all bpf_calls with correct addresses and 5940 * run last pass of JIT 5941 */ 5942 for (i = 0; i < env->subprog_cnt; i++) { 5943 insn = func[i]->insnsi; 5944 for (j = 0; j < func[i]->len; j++, insn++) { 5945 if (insn->code != (BPF_JMP | BPF_CALL) || 5946 insn->src_reg != BPF_PSEUDO_CALL) 5947 continue; 5948 subprog = insn->off; 5949 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 5950 func[subprog]->bpf_func - 5951 __bpf_call_base; 5952 } 5953 5954 /* we use the aux data to keep a list of the start addresses 5955 * of the JITed images for each function in the program 5956 * 5957 * for some architectures, such as powerpc64, the imm field 5958 * might not be large enough to hold the offset of the start 5959 * address of the callee's JITed image from __bpf_call_base 5960 * 5961 * in such cases, we can lookup the start address of a callee 5962 * by using its subprog id, available from the off field of 5963 * the call instruction, as an index for this list 5964 */ 5965 func[i]->aux->func = func; 5966 func[i]->aux->func_cnt = env->subprog_cnt; 5967 } 5968 for (i = 0; i < env->subprog_cnt; i++) { 5969 old_bpf_func = func[i]->bpf_func; 5970 tmp = bpf_int_jit_compile(func[i]); 5971 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 5972 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 5973 err = -ENOTSUPP; 5974 goto out_free; 5975 } 5976 cond_resched(); 5977 } 5978 5979 /* finally lock prog and jit images for all functions and 5980 * populate kallsysm 5981 */ 5982 for (i = 0; i < env->subprog_cnt; i++) { 5983 bpf_prog_lock_ro(func[i]); 5984 bpf_prog_kallsyms_add(func[i]); 5985 } 5986 5987 /* Last step: make now unused interpreter insns from main 5988 * prog consistent for later dump requests, so they can 5989 * later look the same as if they were interpreted only. 5990 */ 5991 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5992 if (insn->code != (BPF_JMP | BPF_CALL) || 5993 insn->src_reg != BPF_PSEUDO_CALL) 5994 continue; 5995 insn->off = env->insn_aux_data[i].call_imm; 5996 subprog = find_subprog(env, i + insn->off + 1); 5997 insn->imm = subprog; 5998 } 5999 6000 prog->jited = 1; 6001 prog->bpf_func = func[0]->bpf_func; 6002 prog->aux->func = func; 6003 prog->aux->func_cnt = env->subprog_cnt; 6004 return 0; 6005 out_free: 6006 for (i = 0; i < env->subprog_cnt; i++) 6007 if (func[i]) 6008 bpf_jit_free(func[i]); 6009 kfree(func); 6010 out_undo_insn: 6011 /* cleanup main prog to be interpreted */ 6012 prog->jit_requested = 0; 6013 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 6014 if (insn->code != (BPF_JMP | BPF_CALL) || 6015 insn->src_reg != BPF_PSEUDO_CALL) 6016 continue; 6017 insn->off = 0; 6018 insn->imm = env->insn_aux_data[i].call_imm; 6019 } 6020 return err; 6021 } 6022 6023 static int fixup_call_args(struct bpf_verifier_env *env) 6024 { 6025 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6026 struct bpf_prog *prog = env->prog; 6027 struct bpf_insn *insn = prog->insnsi; 6028 int i, depth; 6029 #endif 6030 int err = 0; 6031 6032 if (env->prog->jit_requested && 6033 !bpf_prog_is_dev_bound(env->prog->aux)) { 6034 err = jit_subprogs(env); 6035 if (err == 0) 6036 return 0; 6037 if (err == -EFAULT) 6038 return err; 6039 } 6040 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6041 for (i = 0; i < prog->len; i++, insn++) { 6042 if (insn->code != (BPF_JMP | BPF_CALL) || 6043 insn->src_reg != BPF_PSEUDO_CALL) 6044 continue; 6045 depth = get_callee_stack_depth(env, insn, i); 6046 if (depth < 0) 6047 return depth; 6048 bpf_patch_call_args(insn, depth); 6049 } 6050 err = 0; 6051 #endif 6052 return err; 6053 } 6054 6055 /* fixup insn->imm field of bpf_call instructions 6056 * and inline eligible helpers as explicit sequence of BPF instructions 6057 * 6058 * this function is called after eBPF program passed verification 6059 */ 6060 static int fixup_bpf_calls(struct bpf_verifier_env *env) 6061 { 6062 struct bpf_prog *prog = env->prog; 6063 struct bpf_insn *insn = prog->insnsi; 6064 const struct bpf_func_proto *fn; 6065 const int insn_cnt = prog->len; 6066 const struct bpf_map_ops *ops; 6067 struct bpf_insn_aux_data *aux; 6068 struct bpf_insn insn_buf[16]; 6069 struct bpf_prog *new_prog; 6070 struct bpf_map *map_ptr; 6071 int i, cnt, delta = 0; 6072 6073 for (i = 0; i < insn_cnt; i++, insn++) { 6074 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 6075 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 6076 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 6077 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 6078 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 6079 struct bpf_insn mask_and_div[] = { 6080 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 6081 /* Rx div 0 -> 0 */ 6082 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 6083 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 6084 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 6085 *insn, 6086 }; 6087 struct bpf_insn mask_and_mod[] = { 6088 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 6089 /* Rx mod 0 -> Rx */ 6090 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 6091 *insn, 6092 }; 6093 struct bpf_insn *patchlet; 6094 6095 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 6096 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 6097 patchlet = mask_and_div + (is64 ? 1 : 0); 6098 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 6099 } else { 6100 patchlet = mask_and_mod + (is64 ? 1 : 0); 6101 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 6102 } 6103 6104 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 6105 if (!new_prog) 6106 return -ENOMEM; 6107 6108 delta += cnt - 1; 6109 env->prog = prog = new_prog; 6110 insn = new_prog->insnsi + i + delta; 6111 continue; 6112 } 6113 6114 if (BPF_CLASS(insn->code) == BPF_LD && 6115 (BPF_MODE(insn->code) == BPF_ABS || 6116 BPF_MODE(insn->code) == BPF_IND)) { 6117 cnt = env->ops->gen_ld_abs(insn, insn_buf); 6118 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 6119 verbose(env, "bpf verifier is misconfigured\n"); 6120 return -EINVAL; 6121 } 6122 6123 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6124 if (!new_prog) 6125 return -ENOMEM; 6126 6127 delta += cnt - 1; 6128 env->prog = prog = new_prog; 6129 insn = new_prog->insnsi + i + delta; 6130 continue; 6131 } 6132 6133 if (insn->code != (BPF_JMP | BPF_CALL)) 6134 continue; 6135 if (insn->src_reg == BPF_PSEUDO_CALL) 6136 continue; 6137 6138 if (insn->imm == BPF_FUNC_get_route_realm) 6139 prog->dst_needed = 1; 6140 if (insn->imm == BPF_FUNC_get_prandom_u32) 6141 bpf_user_rnd_init_once(); 6142 if (insn->imm == BPF_FUNC_override_return) 6143 prog->kprobe_override = 1; 6144 if (insn->imm == BPF_FUNC_tail_call) { 6145 /* If we tail call into other programs, we 6146 * cannot make any assumptions since they can 6147 * be replaced dynamically during runtime in 6148 * the program array. 6149 */ 6150 prog->cb_access = 1; 6151 env->prog->aux->stack_depth = MAX_BPF_STACK; 6152 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 6153 6154 /* mark bpf_tail_call as different opcode to avoid 6155 * conditional branch in the interpeter for every normal 6156 * call and to prevent accidental JITing by JIT compiler 6157 * that doesn't support bpf_tail_call yet 6158 */ 6159 insn->imm = 0; 6160 insn->code = BPF_JMP | BPF_TAIL_CALL; 6161 6162 aux = &env->insn_aux_data[i + delta]; 6163 if (!bpf_map_ptr_unpriv(aux)) 6164 continue; 6165 6166 /* instead of changing every JIT dealing with tail_call 6167 * emit two extra insns: 6168 * if (index >= max_entries) goto out; 6169 * index &= array->index_mask; 6170 * to avoid out-of-bounds cpu speculation 6171 */ 6172 if (bpf_map_ptr_poisoned(aux)) { 6173 verbose(env, "tail_call abusing map_ptr\n"); 6174 return -EINVAL; 6175 } 6176 6177 map_ptr = BPF_MAP_PTR(aux->map_state); 6178 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 6179 map_ptr->max_entries, 2); 6180 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 6181 container_of(map_ptr, 6182 struct bpf_array, 6183 map)->index_mask); 6184 insn_buf[2] = *insn; 6185 cnt = 3; 6186 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6187 if (!new_prog) 6188 return -ENOMEM; 6189 6190 delta += cnt - 1; 6191 env->prog = prog = new_prog; 6192 insn = new_prog->insnsi + i + delta; 6193 continue; 6194 } 6195 6196 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 6197 * and other inlining handlers are currently limited to 64 bit 6198 * only. 6199 */ 6200 if (prog->jit_requested && BITS_PER_LONG == 64 && 6201 (insn->imm == BPF_FUNC_map_lookup_elem || 6202 insn->imm == BPF_FUNC_map_update_elem || 6203 insn->imm == BPF_FUNC_map_delete_elem || 6204 insn->imm == BPF_FUNC_map_push_elem || 6205 insn->imm == BPF_FUNC_map_pop_elem || 6206 insn->imm == BPF_FUNC_map_peek_elem)) { 6207 aux = &env->insn_aux_data[i + delta]; 6208 if (bpf_map_ptr_poisoned(aux)) 6209 goto patch_call_imm; 6210 6211 map_ptr = BPF_MAP_PTR(aux->map_state); 6212 ops = map_ptr->ops; 6213 if (insn->imm == BPF_FUNC_map_lookup_elem && 6214 ops->map_gen_lookup) { 6215 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 6216 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 6217 verbose(env, "bpf verifier is misconfigured\n"); 6218 return -EINVAL; 6219 } 6220 6221 new_prog = bpf_patch_insn_data(env, i + delta, 6222 insn_buf, cnt); 6223 if (!new_prog) 6224 return -ENOMEM; 6225 6226 delta += cnt - 1; 6227 env->prog = prog = new_prog; 6228 insn = new_prog->insnsi + i + delta; 6229 continue; 6230 } 6231 6232 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 6233 (void *(*)(struct bpf_map *map, void *key))NULL)); 6234 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 6235 (int (*)(struct bpf_map *map, void *key))NULL)); 6236 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 6237 (int (*)(struct bpf_map *map, void *key, void *value, 6238 u64 flags))NULL)); 6239 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 6240 (int (*)(struct bpf_map *map, void *value, 6241 u64 flags))NULL)); 6242 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 6243 (int (*)(struct bpf_map *map, void *value))NULL)); 6244 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 6245 (int (*)(struct bpf_map *map, void *value))NULL)); 6246 6247 switch (insn->imm) { 6248 case BPF_FUNC_map_lookup_elem: 6249 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 6250 __bpf_call_base; 6251 continue; 6252 case BPF_FUNC_map_update_elem: 6253 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 6254 __bpf_call_base; 6255 continue; 6256 case BPF_FUNC_map_delete_elem: 6257 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 6258 __bpf_call_base; 6259 continue; 6260 case BPF_FUNC_map_push_elem: 6261 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 6262 __bpf_call_base; 6263 continue; 6264 case BPF_FUNC_map_pop_elem: 6265 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 6266 __bpf_call_base; 6267 continue; 6268 case BPF_FUNC_map_peek_elem: 6269 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 6270 __bpf_call_base; 6271 continue; 6272 } 6273 6274 goto patch_call_imm; 6275 } 6276 6277 patch_call_imm: 6278 fn = env->ops->get_func_proto(insn->imm, env->prog); 6279 /* all functions that have prototype and verifier allowed 6280 * programs to call them, must be real in-kernel functions 6281 */ 6282 if (!fn->func) { 6283 verbose(env, 6284 "kernel subsystem misconfigured func %s#%d\n", 6285 func_id_name(insn->imm), insn->imm); 6286 return -EFAULT; 6287 } 6288 insn->imm = fn->func - __bpf_call_base; 6289 } 6290 6291 return 0; 6292 } 6293 6294 static void free_states(struct bpf_verifier_env *env) 6295 { 6296 struct bpf_verifier_state_list *sl, *sln; 6297 int i; 6298 6299 if (!env->explored_states) 6300 return; 6301 6302 for (i = 0; i < env->prog->len; i++) { 6303 sl = env->explored_states[i]; 6304 6305 if (sl) 6306 while (sl != STATE_LIST_MARK) { 6307 sln = sl->next; 6308 free_verifier_state(&sl->state, false); 6309 kfree(sl); 6310 sl = sln; 6311 } 6312 } 6313 6314 kfree(env->explored_states); 6315 } 6316 6317 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 6318 { 6319 struct bpf_verifier_env *env; 6320 struct bpf_verifier_log *log; 6321 int ret = -EINVAL; 6322 6323 /* no program is valid */ 6324 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 6325 return -EINVAL; 6326 6327 /* 'struct bpf_verifier_env' can be global, but since it's not small, 6328 * allocate/free it every time bpf_check() is called 6329 */ 6330 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 6331 if (!env) 6332 return -ENOMEM; 6333 log = &env->log; 6334 6335 env->insn_aux_data = 6336 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), 6337 (*prog)->len)); 6338 ret = -ENOMEM; 6339 if (!env->insn_aux_data) 6340 goto err_free_env; 6341 env->prog = *prog; 6342 env->ops = bpf_verifier_ops[env->prog->type]; 6343 6344 /* grab the mutex to protect few globals used by verifier */ 6345 mutex_lock(&bpf_verifier_lock); 6346 6347 if (attr->log_level || attr->log_buf || attr->log_size) { 6348 /* user requested verbose verifier output 6349 * and supplied buffer to store the verification trace 6350 */ 6351 log->level = attr->log_level; 6352 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 6353 log->len_total = attr->log_size; 6354 6355 ret = -EINVAL; 6356 /* log attributes have to be sane */ 6357 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 6358 !log->level || !log->ubuf) 6359 goto err_unlock; 6360 } 6361 6362 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 6363 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 6364 env->strict_alignment = true; 6365 6366 ret = replace_map_fd_with_map_ptr(env); 6367 if (ret < 0) 6368 goto skip_full_check; 6369 6370 if (bpf_prog_is_dev_bound(env->prog->aux)) { 6371 ret = bpf_prog_offload_verifier_prep(env->prog); 6372 if (ret) 6373 goto skip_full_check; 6374 } 6375 6376 env->explored_states = kcalloc(env->prog->len, 6377 sizeof(struct bpf_verifier_state_list *), 6378 GFP_USER); 6379 ret = -ENOMEM; 6380 if (!env->explored_states) 6381 goto skip_full_check; 6382 6383 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 6384 6385 ret = check_cfg(env); 6386 if (ret < 0) 6387 goto skip_full_check; 6388 6389 ret = do_check(env); 6390 if (env->cur_state) { 6391 free_verifier_state(env->cur_state, true); 6392 env->cur_state = NULL; 6393 } 6394 6395 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 6396 ret = bpf_prog_offload_finalize(env); 6397 6398 skip_full_check: 6399 while (!pop_stack(env, NULL, NULL)); 6400 free_states(env); 6401 6402 if (ret == 0) 6403 sanitize_dead_code(env); 6404 6405 if (ret == 0) 6406 ret = check_max_stack_depth(env); 6407 6408 if (ret == 0) 6409 /* program is valid, convert *(u32*)(ctx + off) accesses */ 6410 ret = convert_ctx_accesses(env); 6411 6412 if (ret == 0) 6413 ret = fixup_bpf_calls(env); 6414 6415 if (ret == 0) 6416 ret = fixup_call_args(env); 6417 6418 if (log->level && bpf_verifier_log_full(log)) 6419 ret = -ENOSPC; 6420 if (log->level && !log->ubuf) { 6421 ret = -EFAULT; 6422 goto err_release_maps; 6423 } 6424 6425 if (ret == 0 && env->used_map_cnt) { 6426 /* if program passed verifier, update used_maps in bpf_prog_info */ 6427 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 6428 sizeof(env->used_maps[0]), 6429 GFP_KERNEL); 6430 6431 if (!env->prog->aux->used_maps) { 6432 ret = -ENOMEM; 6433 goto err_release_maps; 6434 } 6435 6436 memcpy(env->prog->aux->used_maps, env->used_maps, 6437 sizeof(env->used_maps[0]) * env->used_map_cnt); 6438 env->prog->aux->used_map_cnt = env->used_map_cnt; 6439 6440 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 6441 * bpf_ld_imm64 instructions 6442 */ 6443 convert_pseudo_ld_imm64(env); 6444 } 6445 6446 err_release_maps: 6447 if (!env->prog->aux->used_maps) 6448 /* if we didn't copy map pointers into bpf_prog_info, release 6449 * them now. Otherwise free_used_maps() will release them. 6450 */ 6451 release_maps(env); 6452 *prog = env->prog; 6453 err_unlock: 6454 mutex_unlock(&bpf_verifier_lock); 6455 vfree(env->insn_aux_data); 6456 err_free_env: 6457 kfree(env); 6458 return ret; 6459 } 6460