1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 23 #include "disasm.h" 24 25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 26 #define BPF_PROG_TYPE(_id, _name) \ 27 [_id] = & _name ## _verifier_ops, 28 #define BPF_MAP_TYPE(_id, _ops) 29 #include <linux/bpf_types.h> 30 #undef BPF_PROG_TYPE 31 #undef BPF_MAP_TYPE 32 }; 33 34 /* bpf_check() is a static code analyzer that walks eBPF program 35 * instruction by instruction and updates register/stack state. 36 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 37 * 38 * The first pass is depth-first-search to check that the program is a DAG. 39 * It rejects the following programs: 40 * - larger than BPF_MAXINSNS insns 41 * - if loop is present (detected via back-edge) 42 * - unreachable insns exist (shouldn't be a forest. program = one function) 43 * - out of bounds or malformed jumps 44 * The second pass is all possible path descent from the 1st insn. 45 * Since it's analyzing all pathes through the program, the length of the 46 * analysis is limited to 64k insn, which may be hit even if total number of 47 * insn is less then 4K, but there are too many branches that change stack/regs. 48 * Number of 'branches to be analyzed' is limited to 1k 49 * 50 * On entry to each instruction, each register has a type, and the instruction 51 * changes the types of the registers depending on instruction semantics. 52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 53 * copied to R1. 54 * 55 * All registers are 64-bit. 56 * R0 - return register 57 * R1-R5 argument passing registers 58 * R6-R9 callee saved registers 59 * R10 - frame pointer read-only 60 * 61 * At the start of BPF program the register R1 contains a pointer to bpf_context 62 * and has type PTR_TO_CTX. 63 * 64 * Verifier tracks arithmetic operations on pointers in case: 65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 67 * 1st insn copies R10 (which has FRAME_PTR) type into R1 68 * and 2nd arithmetic instruction is pattern matched to recognize 69 * that it wants to construct a pointer to some element within stack. 70 * So after 2nd insn, the register R1 has type PTR_TO_STACK 71 * (and -20 constant is saved for further stack bounds checking). 72 * Meaning that this reg is a pointer to stack plus known immediate constant. 73 * 74 * Most of the time the registers have SCALAR_VALUE type, which 75 * means the register has some value, but it's not a valid pointer. 76 * (like pointer plus pointer becomes SCALAR_VALUE type) 77 * 78 * When verifier sees load or store instructions the type of base register 79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 80 * four pointer types recognized by check_mem_access() function. 81 * 82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 83 * and the range of [ptr, ptr + map's value_size) is accessible. 84 * 85 * registers used to pass values to function calls are checked against 86 * function argument constraints. 87 * 88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 89 * It means that the register type passed to this function must be 90 * PTR_TO_STACK and it will be used inside the function as 91 * 'pointer to map element key' 92 * 93 * For example the argument constraints for bpf_map_lookup_elem(): 94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 95 * .arg1_type = ARG_CONST_MAP_PTR, 96 * .arg2_type = ARG_PTR_TO_MAP_KEY, 97 * 98 * ret_type says that this function returns 'pointer to map elem value or null' 99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 100 * 2nd argument should be a pointer to stack, which will be used inside 101 * the helper function as a pointer to map element key. 102 * 103 * On the kernel side the helper function looks like: 104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 105 * { 106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 107 * void *key = (void *) (unsigned long) r2; 108 * void *value; 109 * 110 * here kernel can access 'key' and 'map' pointers safely, knowing that 111 * [key, key + map->key_size) bytes are valid and were initialized on 112 * the stack of eBPF program. 113 * } 114 * 115 * Corresponding eBPF program may look like: 116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 120 * here verifier looks at prototype of map_lookup_elem() and sees: 121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 123 * 124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 126 * and were initialized prior to this call. 127 * If it's ok, then verifier allows this BPF_CALL insn and looks at 128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 130 * returns ether pointer to map value or NULL. 131 * 132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 133 * insn, the register holding that pointer in the true branch changes state to 134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 135 * branch. See check_cond_jmp_op(). 136 * 137 * After the call R0 is set to return type of the function and registers R1-R5 138 * are set to NOT_INIT to indicate that they are no longer readable. 139 * 140 * The following reference types represent a potential reference to a kernel 141 * resource which, after first being allocated, must be checked and freed by 142 * the BPF program: 143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 144 * 145 * When the verifier sees a helper call return a reference type, it allocates a 146 * pointer id for the reference and stores it in the current function state. 147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 149 * passes through a NULL-check conditional. For the branch wherein the state is 150 * changed to CONST_IMM, the verifier releases the reference. 151 * 152 * For each helper function that allocates a reference, such as 153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 154 * bpf_sk_release(). When a reference type passes into the release function, 155 * the verifier also releases the reference. If any unchecked or unreleased 156 * reference remains at the end of the program, the verifier rejects it. 157 */ 158 159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 160 struct bpf_verifier_stack_elem { 161 /* verifer state is 'st' 162 * before processing instruction 'insn_idx' 163 * and after processing instruction 'prev_insn_idx' 164 */ 165 struct bpf_verifier_state st; 166 int insn_idx; 167 int prev_insn_idx; 168 struct bpf_verifier_stack_elem *next; 169 }; 170 171 #define BPF_COMPLEXITY_LIMIT_STACK 1024 172 #define BPF_COMPLEXITY_LIMIT_STATES 64 173 174 #define BPF_MAP_PTR_UNPRIV 1UL 175 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 176 POISON_POINTER_DELTA)) 177 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 178 179 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 180 { 181 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 182 } 183 184 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 185 { 186 return aux->map_state & BPF_MAP_PTR_UNPRIV; 187 } 188 189 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 190 const struct bpf_map *map, bool unpriv) 191 { 192 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 193 unpriv |= bpf_map_ptr_unpriv(aux); 194 aux->map_state = (unsigned long)map | 195 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 196 } 197 198 struct bpf_call_arg_meta { 199 struct bpf_map *map_ptr; 200 bool raw_mode; 201 bool pkt_access; 202 int regno; 203 int access_size; 204 s64 msize_smax_value; 205 u64 msize_umax_value; 206 int ref_obj_id; 207 int func_id; 208 }; 209 210 static DEFINE_MUTEX(bpf_verifier_lock); 211 212 static const struct bpf_line_info * 213 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 214 { 215 const struct bpf_line_info *linfo; 216 const struct bpf_prog *prog; 217 u32 i, nr_linfo; 218 219 prog = env->prog; 220 nr_linfo = prog->aux->nr_linfo; 221 222 if (!nr_linfo || insn_off >= prog->len) 223 return NULL; 224 225 linfo = prog->aux->linfo; 226 for (i = 1; i < nr_linfo; i++) 227 if (insn_off < linfo[i].insn_off) 228 break; 229 230 return &linfo[i - 1]; 231 } 232 233 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 234 va_list args) 235 { 236 unsigned int n; 237 238 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 239 240 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 241 "verifier log line truncated - local buffer too short\n"); 242 243 n = min(log->len_total - log->len_used - 1, n); 244 log->kbuf[n] = '\0'; 245 246 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 247 log->len_used += n; 248 else 249 log->ubuf = NULL; 250 } 251 252 /* log_level controls verbosity level of eBPF verifier. 253 * bpf_verifier_log_write() is used to dump the verification trace to the log, 254 * so the user can figure out what's wrong with the program 255 */ 256 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 257 const char *fmt, ...) 258 { 259 va_list args; 260 261 if (!bpf_verifier_log_needed(&env->log)) 262 return; 263 264 va_start(args, fmt); 265 bpf_verifier_vlog(&env->log, fmt, args); 266 va_end(args); 267 } 268 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 269 270 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 271 { 272 struct bpf_verifier_env *env = private_data; 273 va_list args; 274 275 if (!bpf_verifier_log_needed(&env->log)) 276 return; 277 278 va_start(args, fmt); 279 bpf_verifier_vlog(&env->log, fmt, args); 280 va_end(args); 281 } 282 283 static const char *ltrim(const char *s) 284 { 285 while (isspace(*s)) 286 s++; 287 288 return s; 289 } 290 291 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 292 u32 insn_off, 293 const char *prefix_fmt, ...) 294 { 295 const struct bpf_line_info *linfo; 296 297 if (!bpf_verifier_log_needed(&env->log)) 298 return; 299 300 linfo = find_linfo(env, insn_off); 301 if (!linfo || linfo == env->prev_linfo) 302 return; 303 304 if (prefix_fmt) { 305 va_list args; 306 307 va_start(args, prefix_fmt); 308 bpf_verifier_vlog(&env->log, prefix_fmt, args); 309 va_end(args); 310 } 311 312 verbose(env, "%s\n", 313 ltrim(btf_name_by_offset(env->prog->aux->btf, 314 linfo->line_off))); 315 316 env->prev_linfo = linfo; 317 } 318 319 static bool type_is_pkt_pointer(enum bpf_reg_type type) 320 { 321 return type == PTR_TO_PACKET || 322 type == PTR_TO_PACKET_META; 323 } 324 325 static bool type_is_sk_pointer(enum bpf_reg_type type) 326 { 327 return type == PTR_TO_SOCKET || 328 type == PTR_TO_SOCK_COMMON || 329 type == PTR_TO_TCP_SOCK; 330 } 331 332 static bool reg_type_may_be_null(enum bpf_reg_type type) 333 { 334 return type == PTR_TO_MAP_VALUE_OR_NULL || 335 type == PTR_TO_SOCKET_OR_NULL || 336 type == PTR_TO_SOCK_COMMON_OR_NULL || 337 type == PTR_TO_TCP_SOCK_OR_NULL; 338 } 339 340 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 341 { 342 return reg->type == PTR_TO_MAP_VALUE && 343 map_value_has_spin_lock(reg->map_ptr); 344 } 345 346 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 347 { 348 return type == PTR_TO_SOCKET || 349 type == PTR_TO_SOCKET_OR_NULL || 350 type == PTR_TO_TCP_SOCK || 351 type == PTR_TO_TCP_SOCK_OR_NULL; 352 } 353 354 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 355 { 356 return type == ARG_PTR_TO_SOCK_COMMON; 357 } 358 359 /* Determine whether the function releases some resources allocated by another 360 * function call. The first reference type argument will be assumed to be 361 * released by release_reference(). 362 */ 363 static bool is_release_function(enum bpf_func_id func_id) 364 { 365 return func_id == BPF_FUNC_sk_release; 366 } 367 368 static bool is_acquire_function(enum bpf_func_id func_id) 369 { 370 return func_id == BPF_FUNC_sk_lookup_tcp || 371 func_id == BPF_FUNC_sk_lookup_udp || 372 func_id == BPF_FUNC_skc_lookup_tcp; 373 } 374 375 static bool is_ptr_cast_function(enum bpf_func_id func_id) 376 { 377 return func_id == BPF_FUNC_tcp_sock || 378 func_id == BPF_FUNC_sk_fullsock; 379 } 380 381 /* string representation of 'enum bpf_reg_type' */ 382 static const char * const reg_type_str[] = { 383 [NOT_INIT] = "?", 384 [SCALAR_VALUE] = "inv", 385 [PTR_TO_CTX] = "ctx", 386 [CONST_PTR_TO_MAP] = "map_ptr", 387 [PTR_TO_MAP_VALUE] = "map_value", 388 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 389 [PTR_TO_STACK] = "fp", 390 [PTR_TO_PACKET] = "pkt", 391 [PTR_TO_PACKET_META] = "pkt_meta", 392 [PTR_TO_PACKET_END] = "pkt_end", 393 [PTR_TO_FLOW_KEYS] = "flow_keys", 394 [PTR_TO_SOCKET] = "sock", 395 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 396 [PTR_TO_SOCK_COMMON] = "sock_common", 397 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 398 [PTR_TO_TCP_SOCK] = "tcp_sock", 399 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 400 [PTR_TO_TP_BUFFER] = "tp_buffer", 401 }; 402 403 static char slot_type_char[] = { 404 [STACK_INVALID] = '?', 405 [STACK_SPILL] = 'r', 406 [STACK_MISC] = 'm', 407 [STACK_ZERO] = '0', 408 }; 409 410 static void print_liveness(struct bpf_verifier_env *env, 411 enum bpf_reg_liveness live) 412 { 413 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 414 verbose(env, "_"); 415 if (live & REG_LIVE_READ) 416 verbose(env, "r"); 417 if (live & REG_LIVE_WRITTEN) 418 verbose(env, "w"); 419 if (live & REG_LIVE_DONE) 420 verbose(env, "D"); 421 } 422 423 static struct bpf_func_state *func(struct bpf_verifier_env *env, 424 const struct bpf_reg_state *reg) 425 { 426 struct bpf_verifier_state *cur = env->cur_state; 427 428 return cur->frame[reg->frameno]; 429 } 430 431 static void print_verifier_state(struct bpf_verifier_env *env, 432 const struct bpf_func_state *state) 433 { 434 const struct bpf_reg_state *reg; 435 enum bpf_reg_type t; 436 int i; 437 438 if (state->frameno) 439 verbose(env, " frame%d:", state->frameno); 440 for (i = 0; i < MAX_BPF_REG; i++) { 441 reg = &state->regs[i]; 442 t = reg->type; 443 if (t == NOT_INIT) 444 continue; 445 verbose(env, " R%d", i); 446 print_liveness(env, reg->live); 447 verbose(env, "=%s", reg_type_str[t]); 448 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 449 tnum_is_const(reg->var_off)) { 450 /* reg->off should be 0 for SCALAR_VALUE */ 451 verbose(env, "%lld", reg->var_off.value + reg->off); 452 if (t == PTR_TO_STACK) 453 verbose(env, ",call_%d", func(env, reg)->callsite); 454 } else { 455 verbose(env, "(id=%d", reg->id); 456 if (reg_type_may_be_refcounted_or_null(t)) 457 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 458 if (t != SCALAR_VALUE) 459 verbose(env, ",off=%d", reg->off); 460 if (type_is_pkt_pointer(t)) 461 verbose(env, ",r=%d", reg->range); 462 else if (t == CONST_PTR_TO_MAP || 463 t == PTR_TO_MAP_VALUE || 464 t == PTR_TO_MAP_VALUE_OR_NULL) 465 verbose(env, ",ks=%d,vs=%d", 466 reg->map_ptr->key_size, 467 reg->map_ptr->value_size); 468 if (tnum_is_const(reg->var_off)) { 469 /* Typically an immediate SCALAR_VALUE, but 470 * could be a pointer whose offset is too big 471 * for reg->off 472 */ 473 verbose(env, ",imm=%llx", reg->var_off.value); 474 } else { 475 if (reg->smin_value != reg->umin_value && 476 reg->smin_value != S64_MIN) 477 verbose(env, ",smin_value=%lld", 478 (long long)reg->smin_value); 479 if (reg->smax_value != reg->umax_value && 480 reg->smax_value != S64_MAX) 481 verbose(env, ",smax_value=%lld", 482 (long long)reg->smax_value); 483 if (reg->umin_value != 0) 484 verbose(env, ",umin_value=%llu", 485 (unsigned long long)reg->umin_value); 486 if (reg->umax_value != U64_MAX) 487 verbose(env, ",umax_value=%llu", 488 (unsigned long long)reg->umax_value); 489 if (!tnum_is_unknown(reg->var_off)) { 490 char tn_buf[48]; 491 492 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 493 verbose(env, ",var_off=%s", tn_buf); 494 } 495 } 496 verbose(env, ")"); 497 } 498 } 499 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 500 char types_buf[BPF_REG_SIZE + 1]; 501 bool valid = false; 502 int j; 503 504 for (j = 0; j < BPF_REG_SIZE; j++) { 505 if (state->stack[i].slot_type[j] != STACK_INVALID) 506 valid = true; 507 types_buf[j] = slot_type_char[ 508 state->stack[i].slot_type[j]]; 509 } 510 types_buf[BPF_REG_SIZE] = 0; 511 if (!valid) 512 continue; 513 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 514 print_liveness(env, state->stack[i].spilled_ptr.live); 515 if (state->stack[i].slot_type[0] == STACK_SPILL) 516 verbose(env, "=%s", 517 reg_type_str[state->stack[i].spilled_ptr.type]); 518 else 519 verbose(env, "=%s", types_buf); 520 } 521 if (state->acquired_refs && state->refs[0].id) { 522 verbose(env, " refs=%d", state->refs[0].id); 523 for (i = 1; i < state->acquired_refs; i++) 524 if (state->refs[i].id) 525 verbose(env, ",%d", state->refs[i].id); 526 } 527 verbose(env, "\n"); 528 } 529 530 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 531 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 532 const struct bpf_func_state *src) \ 533 { \ 534 if (!src->FIELD) \ 535 return 0; \ 536 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 537 /* internal bug, make state invalid to reject the program */ \ 538 memset(dst, 0, sizeof(*dst)); \ 539 return -EFAULT; \ 540 } \ 541 memcpy(dst->FIELD, src->FIELD, \ 542 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 543 return 0; \ 544 } 545 /* copy_reference_state() */ 546 COPY_STATE_FN(reference, acquired_refs, refs, 1) 547 /* copy_stack_state() */ 548 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 549 #undef COPY_STATE_FN 550 551 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 552 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 553 bool copy_old) \ 554 { \ 555 u32 old_size = state->COUNT; \ 556 struct bpf_##NAME##_state *new_##FIELD; \ 557 int slot = size / SIZE; \ 558 \ 559 if (size <= old_size || !size) { \ 560 if (copy_old) \ 561 return 0; \ 562 state->COUNT = slot * SIZE; \ 563 if (!size && old_size) { \ 564 kfree(state->FIELD); \ 565 state->FIELD = NULL; \ 566 } \ 567 return 0; \ 568 } \ 569 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 570 GFP_KERNEL); \ 571 if (!new_##FIELD) \ 572 return -ENOMEM; \ 573 if (copy_old) { \ 574 if (state->FIELD) \ 575 memcpy(new_##FIELD, state->FIELD, \ 576 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 577 memset(new_##FIELD + old_size / SIZE, 0, \ 578 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 579 } \ 580 state->COUNT = slot * SIZE; \ 581 kfree(state->FIELD); \ 582 state->FIELD = new_##FIELD; \ 583 return 0; \ 584 } 585 /* realloc_reference_state() */ 586 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 587 /* realloc_stack_state() */ 588 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 589 #undef REALLOC_STATE_FN 590 591 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 592 * make it consume minimal amount of memory. check_stack_write() access from 593 * the program calls into realloc_func_state() to grow the stack size. 594 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 595 * which realloc_stack_state() copies over. It points to previous 596 * bpf_verifier_state which is never reallocated. 597 */ 598 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 599 int refs_size, bool copy_old) 600 { 601 int err = realloc_reference_state(state, refs_size, copy_old); 602 if (err) 603 return err; 604 return realloc_stack_state(state, stack_size, copy_old); 605 } 606 607 /* Acquire a pointer id from the env and update the state->refs to include 608 * this new pointer reference. 609 * On success, returns a valid pointer id to associate with the register 610 * On failure, returns a negative errno. 611 */ 612 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 613 { 614 struct bpf_func_state *state = cur_func(env); 615 int new_ofs = state->acquired_refs; 616 int id, err; 617 618 err = realloc_reference_state(state, state->acquired_refs + 1, true); 619 if (err) 620 return err; 621 id = ++env->id_gen; 622 state->refs[new_ofs].id = id; 623 state->refs[new_ofs].insn_idx = insn_idx; 624 625 return id; 626 } 627 628 /* release function corresponding to acquire_reference_state(). Idempotent. */ 629 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 630 { 631 int i, last_idx; 632 633 last_idx = state->acquired_refs - 1; 634 for (i = 0; i < state->acquired_refs; i++) { 635 if (state->refs[i].id == ptr_id) { 636 if (last_idx && i != last_idx) 637 memcpy(&state->refs[i], &state->refs[last_idx], 638 sizeof(*state->refs)); 639 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 640 state->acquired_refs--; 641 return 0; 642 } 643 } 644 return -EINVAL; 645 } 646 647 static int transfer_reference_state(struct bpf_func_state *dst, 648 struct bpf_func_state *src) 649 { 650 int err = realloc_reference_state(dst, src->acquired_refs, false); 651 if (err) 652 return err; 653 err = copy_reference_state(dst, src); 654 if (err) 655 return err; 656 return 0; 657 } 658 659 static void free_func_state(struct bpf_func_state *state) 660 { 661 if (!state) 662 return; 663 kfree(state->refs); 664 kfree(state->stack); 665 kfree(state); 666 } 667 668 static void free_verifier_state(struct bpf_verifier_state *state, 669 bool free_self) 670 { 671 int i; 672 673 for (i = 0; i <= state->curframe; i++) { 674 free_func_state(state->frame[i]); 675 state->frame[i] = NULL; 676 } 677 if (free_self) 678 kfree(state); 679 } 680 681 /* copy verifier state from src to dst growing dst stack space 682 * when necessary to accommodate larger src stack 683 */ 684 static int copy_func_state(struct bpf_func_state *dst, 685 const struct bpf_func_state *src) 686 { 687 int err; 688 689 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 690 false); 691 if (err) 692 return err; 693 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 694 err = copy_reference_state(dst, src); 695 if (err) 696 return err; 697 return copy_stack_state(dst, src); 698 } 699 700 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 701 const struct bpf_verifier_state *src) 702 { 703 struct bpf_func_state *dst; 704 int i, err; 705 706 /* if dst has more stack frames then src frame, free them */ 707 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 708 free_func_state(dst_state->frame[i]); 709 dst_state->frame[i] = NULL; 710 } 711 dst_state->speculative = src->speculative; 712 dst_state->curframe = src->curframe; 713 dst_state->active_spin_lock = src->active_spin_lock; 714 for (i = 0; i <= src->curframe; i++) { 715 dst = dst_state->frame[i]; 716 if (!dst) { 717 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 718 if (!dst) 719 return -ENOMEM; 720 dst_state->frame[i] = dst; 721 } 722 err = copy_func_state(dst, src->frame[i]); 723 if (err) 724 return err; 725 } 726 return 0; 727 } 728 729 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 730 int *insn_idx) 731 { 732 struct bpf_verifier_state *cur = env->cur_state; 733 struct bpf_verifier_stack_elem *elem, *head = env->head; 734 int err; 735 736 if (env->head == NULL) 737 return -ENOENT; 738 739 if (cur) { 740 err = copy_verifier_state(cur, &head->st); 741 if (err) 742 return err; 743 } 744 if (insn_idx) 745 *insn_idx = head->insn_idx; 746 if (prev_insn_idx) 747 *prev_insn_idx = head->prev_insn_idx; 748 elem = head->next; 749 free_verifier_state(&head->st, false); 750 kfree(head); 751 env->head = elem; 752 env->stack_size--; 753 return 0; 754 } 755 756 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 757 int insn_idx, int prev_insn_idx, 758 bool speculative) 759 { 760 struct bpf_verifier_state *cur = env->cur_state; 761 struct bpf_verifier_stack_elem *elem; 762 int err; 763 764 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 765 if (!elem) 766 goto err; 767 768 elem->insn_idx = insn_idx; 769 elem->prev_insn_idx = prev_insn_idx; 770 elem->next = env->head; 771 env->head = elem; 772 env->stack_size++; 773 err = copy_verifier_state(&elem->st, cur); 774 if (err) 775 goto err; 776 elem->st.speculative |= speculative; 777 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 778 verbose(env, "BPF program is too complex\n"); 779 goto err; 780 } 781 return &elem->st; 782 err: 783 free_verifier_state(env->cur_state, true); 784 env->cur_state = NULL; 785 /* pop all elements and return */ 786 while (!pop_stack(env, NULL, NULL)); 787 return NULL; 788 } 789 790 #define CALLER_SAVED_REGS 6 791 static const int caller_saved[CALLER_SAVED_REGS] = { 792 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 793 }; 794 795 static void __mark_reg_not_init(struct bpf_reg_state *reg); 796 797 /* Mark the unknown part of a register (variable offset or scalar value) as 798 * known to have the value @imm. 799 */ 800 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 801 { 802 /* Clear id, off, and union(map_ptr, range) */ 803 memset(((u8 *)reg) + sizeof(reg->type), 0, 804 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 805 reg->var_off = tnum_const(imm); 806 reg->smin_value = (s64)imm; 807 reg->smax_value = (s64)imm; 808 reg->umin_value = imm; 809 reg->umax_value = imm; 810 } 811 812 /* Mark the 'variable offset' part of a register as zero. This should be 813 * used only on registers holding a pointer type. 814 */ 815 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 816 { 817 __mark_reg_known(reg, 0); 818 } 819 820 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 821 { 822 __mark_reg_known(reg, 0); 823 reg->type = SCALAR_VALUE; 824 } 825 826 static void mark_reg_known_zero(struct bpf_verifier_env *env, 827 struct bpf_reg_state *regs, u32 regno) 828 { 829 if (WARN_ON(regno >= MAX_BPF_REG)) { 830 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 831 /* Something bad happened, let's kill all regs */ 832 for (regno = 0; regno < MAX_BPF_REG; regno++) 833 __mark_reg_not_init(regs + regno); 834 return; 835 } 836 __mark_reg_known_zero(regs + regno); 837 } 838 839 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 840 { 841 return type_is_pkt_pointer(reg->type); 842 } 843 844 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 845 { 846 return reg_is_pkt_pointer(reg) || 847 reg->type == PTR_TO_PACKET_END; 848 } 849 850 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 851 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 852 enum bpf_reg_type which) 853 { 854 /* The register can already have a range from prior markings. 855 * This is fine as long as it hasn't been advanced from its 856 * origin. 857 */ 858 return reg->type == which && 859 reg->id == 0 && 860 reg->off == 0 && 861 tnum_equals_const(reg->var_off, 0); 862 } 863 864 /* Attempts to improve min/max values based on var_off information */ 865 static void __update_reg_bounds(struct bpf_reg_state *reg) 866 { 867 /* min signed is max(sign bit) | min(other bits) */ 868 reg->smin_value = max_t(s64, reg->smin_value, 869 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 870 /* max signed is min(sign bit) | max(other bits) */ 871 reg->smax_value = min_t(s64, reg->smax_value, 872 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 873 reg->umin_value = max(reg->umin_value, reg->var_off.value); 874 reg->umax_value = min(reg->umax_value, 875 reg->var_off.value | reg->var_off.mask); 876 } 877 878 /* Uses signed min/max values to inform unsigned, and vice-versa */ 879 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 880 { 881 /* Learn sign from signed bounds. 882 * If we cannot cross the sign boundary, then signed and unsigned bounds 883 * are the same, so combine. This works even in the negative case, e.g. 884 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 885 */ 886 if (reg->smin_value >= 0 || reg->smax_value < 0) { 887 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 888 reg->umin_value); 889 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 890 reg->umax_value); 891 return; 892 } 893 /* Learn sign from unsigned bounds. Signed bounds cross the sign 894 * boundary, so we must be careful. 895 */ 896 if ((s64)reg->umax_value >= 0) { 897 /* Positive. We can't learn anything from the smin, but smax 898 * is positive, hence safe. 899 */ 900 reg->smin_value = reg->umin_value; 901 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 902 reg->umax_value); 903 } else if ((s64)reg->umin_value < 0) { 904 /* Negative. We can't learn anything from the smax, but smin 905 * is negative, hence safe. 906 */ 907 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 908 reg->umin_value); 909 reg->smax_value = reg->umax_value; 910 } 911 } 912 913 /* Attempts to improve var_off based on unsigned min/max information */ 914 static void __reg_bound_offset(struct bpf_reg_state *reg) 915 { 916 reg->var_off = tnum_intersect(reg->var_off, 917 tnum_range(reg->umin_value, 918 reg->umax_value)); 919 } 920 921 /* Reset the min/max bounds of a register */ 922 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 923 { 924 reg->smin_value = S64_MIN; 925 reg->smax_value = S64_MAX; 926 reg->umin_value = 0; 927 reg->umax_value = U64_MAX; 928 } 929 930 /* Mark a register as having a completely unknown (scalar) value. */ 931 static void __mark_reg_unknown(struct bpf_reg_state *reg) 932 { 933 /* 934 * Clear type, id, off, and union(map_ptr, range) and 935 * padding between 'type' and union 936 */ 937 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 938 reg->type = SCALAR_VALUE; 939 reg->var_off = tnum_unknown; 940 reg->frameno = 0; 941 __mark_reg_unbounded(reg); 942 } 943 944 static void mark_reg_unknown(struct bpf_verifier_env *env, 945 struct bpf_reg_state *regs, u32 regno) 946 { 947 if (WARN_ON(regno >= MAX_BPF_REG)) { 948 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 949 /* Something bad happened, let's kill all regs except FP */ 950 for (regno = 0; regno < BPF_REG_FP; regno++) 951 __mark_reg_not_init(regs + regno); 952 return; 953 } 954 __mark_reg_unknown(regs + regno); 955 } 956 957 static void __mark_reg_not_init(struct bpf_reg_state *reg) 958 { 959 __mark_reg_unknown(reg); 960 reg->type = NOT_INIT; 961 } 962 963 static void mark_reg_not_init(struct bpf_verifier_env *env, 964 struct bpf_reg_state *regs, u32 regno) 965 { 966 if (WARN_ON(regno >= MAX_BPF_REG)) { 967 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 968 /* Something bad happened, let's kill all regs except FP */ 969 for (regno = 0; regno < BPF_REG_FP; regno++) 970 __mark_reg_not_init(regs + regno); 971 return; 972 } 973 __mark_reg_not_init(regs + regno); 974 } 975 976 static void init_reg_state(struct bpf_verifier_env *env, 977 struct bpf_func_state *state) 978 { 979 struct bpf_reg_state *regs = state->regs; 980 int i; 981 982 for (i = 0; i < MAX_BPF_REG; i++) { 983 mark_reg_not_init(env, regs, i); 984 regs[i].live = REG_LIVE_NONE; 985 regs[i].parent = NULL; 986 } 987 988 /* frame pointer */ 989 regs[BPF_REG_FP].type = PTR_TO_STACK; 990 mark_reg_known_zero(env, regs, BPF_REG_FP); 991 regs[BPF_REG_FP].frameno = state->frameno; 992 993 /* 1st arg to a function */ 994 regs[BPF_REG_1].type = PTR_TO_CTX; 995 mark_reg_known_zero(env, regs, BPF_REG_1); 996 } 997 998 #define BPF_MAIN_FUNC (-1) 999 static void init_func_state(struct bpf_verifier_env *env, 1000 struct bpf_func_state *state, 1001 int callsite, int frameno, int subprogno) 1002 { 1003 state->callsite = callsite; 1004 state->frameno = frameno; 1005 state->subprogno = subprogno; 1006 init_reg_state(env, state); 1007 } 1008 1009 enum reg_arg_type { 1010 SRC_OP, /* register is used as source operand */ 1011 DST_OP, /* register is used as destination operand */ 1012 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1013 }; 1014 1015 static int cmp_subprogs(const void *a, const void *b) 1016 { 1017 return ((struct bpf_subprog_info *)a)->start - 1018 ((struct bpf_subprog_info *)b)->start; 1019 } 1020 1021 static int find_subprog(struct bpf_verifier_env *env, int off) 1022 { 1023 struct bpf_subprog_info *p; 1024 1025 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1026 sizeof(env->subprog_info[0]), cmp_subprogs); 1027 if (!p) 1028 return -ENOENT; 1029 return p - env->subprog_info; 1030 1031 } 1032 1033 static int add_subprog(struct bpf_verifier_env *env, int off) 1034 { 1035 int insn_cnt = env->prog->len; 1036 int ret; 1037 1038 if (off >= insn_cnt || off < 0) { 1039 verbose(env, "call to invalid destination\n"); 1040 return -EINVAL; 1041 } 1042 ret = find_subprog(env, off); 1043 if (ret >= 0) 1044 return 0; 1045 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1046 verbose(env, "too many subprograms\n"); 1047 return -E2BIG; 1048 } 1049 env->subprog_info[env->subprog_cnt++].start = off; 1050 sort(env->subprog_info, env->subprog_cnt, 1051 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1052 return 0; 1053 } 1054 1055 static int check_subprogs(struct bpf_verifier_env *env) 1056 { 1057 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1058 struct bpf_subprog_info *subprog = env->subprog_info; 1059 struct bpf_insn *insn = env->prog->insnsi; 1060 int insn_cnt = env->prog->len; 1061 1062 /* Add entry function. */ 1063 ret = add_subprog(env, 0); 1064 if (ret < 0) 1065 return ret; 1066 1067 /* determine subprog starts. The end is one before the next starts */ 1068 for (i = 0; i < insn_cnt; i++) { 1069 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1070 continue; 1071 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1072 continue; 1073 if (!env->allow_ptr_leaks) { 1074 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1075 return -EPERM; 1076 } 1077 ret = add_subprog(env, i + insn[i].imm + 1); 1078 if (ret < 0) 1079 return ret; 1080 } 1081 1082 /* Add a fake 'exit' subprog which could simplify subprog iteration 1083 * logic. 'subprog_cnt' should not be increased. 1084 */ 1085 subprog[env->subprog_cnt].start = insn_cnt; 1086 1087 if (env->log.level & BPF_LOG_LEVEL2) 1088 for (i = 0; i < env->subprog_cnt; i++) 1089 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1090 1091 /* now check that all jumps are within the same subprog */ 1092 subprog_start = subprog[cur_subprog].start; 1093 subprog_end = subprog[cur_subprog + 1].start; 1094 for (i = 0; i < insn_cnt; i++) { 1095 u8 code = insn[i].code; 1096 1097 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1098 goto next; 1099 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1100 goto next; 1101 off = i + insn[i].off + 1; 1102 if (off < subprog_start || off >= subprog_end) { 1103 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1104 return -EINVAL; 1105 } 1106 next: 1107 if (i == subprog_end - 1) { 1108 /* to avoid fall-through from one subprog into another 1109 * the last insn of the subprog should be either exit 1110 * or unconditional jump back 1111 */ 1112 if (code != (BPF_JMP | BPF_EXIT) && 1113 code != (BPF_JMP | BPF_JA)) { 1114 verbose(env, "last insn is not an exit or jmp\n"); 1115 return -EINVAL; 1116 } 1117 subprog_start = subprog_end; 1118 cur_subprog++; 1119 if (cur_subprog < env->subprog_cnt) 1120 subprog_end = subprog[cur_subprog + 1].start; 1121 } 1122 } 1123 return 0; 1124 } 1125 1126 /* Parentage chain of this register (or stack slot) should take care of all 1127 * issues like callee-saved registers, stack slot allocation time, etc. 1128 */ 1129 static int mark_reg_read(struct bpf_verifier_env *env, 1130 const struct bpf_reg_state *state, 1131 struct bpf_reg_state *parent) 1132 { 1133 bool writes = parent == state->parent; /* Observe write marks */ 1134 int cnt = 0; 1135 1136 while (parent) { 1137 /* if read wasn't screened by an earlier write ... */ 1138 if (writes && state->live & REG_LIVE_WRITTEN) 1139 break; 1140 if (parent->live & REG_LIVE_DONE) { 1141 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1142 reg_type_str[parent->type], 1143 parent->var_off.value, parent->off); 1144 return -EFAULT; 1145 } 1146 if (parent->live & REG_LIVE_READ) 1147 /* The parentage chain never changes and 1148 * this parent was already marked as LIVE_READ. 1149 * There is no need to keep walking the chain again and 1150 * keep re-marking all parents as LIVE_READ. 1151 * This case happens when the same register is read 1152 * multiple times without writes into it in-between. 1153 */ 1154 break; 1155 /* ... then we depend on parent's value */ 1156 parent->live |= REG_LIVE_READ; 1157 state = parent; 1158 parent = state->parent; 1159 writes = true; 1160 cnt++; 1161 } 1162 1163 if (env->longest_mark_read_walk < cnt) 1164 env->longest_mark_read_walk = cnt; 1165 return 0; 1166 } 1167 1168 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1169 enum reg_arg_type t) 1170 { 1171 struct bpf_verifier_state *vstate = env->cur_state; 1172 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1173 struct bpf_reg_state *reg, *regs = state->regs; 1174 1175 if (regno >= MAX_BPF_REG) { 1176 verbose(env, "R%d is invalid\n", regno); 1177 return -EINVAL; 1178 } 1179 1180 reg = ®s[regno]; 1181 if (t == SRC_OP) { 1182 /* check whether register used as source operand can be read */ 1183 if (reg->type == NOT_INIT) { 1184 verbose(env, "R%d !read_ok\n", regno); 1185 return -EACCES; 1186 } 1187 /* We don't need to worry about FP liveness because it's read-only */ 1188 if (regno == BPF_REG_FP) 1189 return 0; 1190 1191 return mark_reg_read(env, reg, reg->parent); 1192 } else { 1193 /* check whether register used as dest operand can be written to */ 1194 if (regno == BPF_REG_FP) { 1195 verbose(env, "frame pointer is read only\n"); 1196 return -EACCES; 1197 } 1198 reg->live |= REG_LIVE_WRITTEN; 1199 if (t == DST_OP) 1200 mark_reg_unknown(env, regs, regno); 1201 } 1202 return 0; 1203 } 1204 1205 static bool is_spillable_regtype(enum bpf_reg_type type) 1206 { 1207 switch (type) { 1208 case PTR_TO_MAP_VALUE: 1209 case PTR_TO_MAP_VALUE_OR_NULL: 1210 case PTR_TO_STACK: 1211 case PTR_TO_CTX: 1212 case PTR_TO_PACKET: 1213 case PTR_TO_PACKET_META: 1214 case PTR_TO_PACKET_END: 1215 case PTR_TO_FLOW_KEYS: 1216 case CONST_PTR_TO_MAP: 1217 case PTR_TO_SOCKET: 1218 case PTR_TO_SOCKET_OR_NULL: 1219 case PTR_TO_SOCK_COMMON: 1220 case PTR_TO_SOCK_COMMON_OR_NULL: 1221 case PTR_TO_TCP_SOCK: 1222 case PTR_TO_TCP_SOCK_OR_NULL: 1223 return true; 1224 default: 1225 return false; 1226 } 1227 } 1228 1229 /* Does this register contain a constant zero? */ 1230 static bool register_is_null(struct bpf_reg_state *reg) 1231 { 1232 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1233 } 1234 1235 /* check_stack_read/write functions track spill/fill of registers, 1236 * stack boundary and alignment are checked in check_mem_access() 1237 */ 1238 static int check_stack_write(struct bpf_verifier_env *env, 1239 struct bpf_func_state *state, /* func where register points to */ 1240 int off, int size, int value_regno, int insn_idx) 1241 { 1242 struct bpf_func_state *cur; /* state of the current function */ 1243 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1244 enum bpf_reg_type type; 1245 1246 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1247 state->acquired_refs, true); 1248 if (err) 1249 return err; 1250 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1251 * so it's aligned access and [off, off + size) are within stack limits 1252 */ 1253 if (!env->allow_ptr_leaks && 1254 state->stack[spi].slot_type[0] == STACK_SPILL && 1255 size != BPF_REG_SIZE) { 1256 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1257 return -EACCES; 1258 } 1259 1260 cur = env->cur_state->frame[env->cur_state->curframe]; 1261 if (value_regno >= 0 && 1262 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1263 1264 /* register containing pointer is being spilled into stack */ 1265 if (size != BPF_REG_SIZE) { 1266 verbose(env, "invalid size of register spill\n"); 1267 return -EACCES; 1268 } 1269 1270 if (state != cur && type == PTR_TO_STACK) { 1271 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1272 return -EINVAL; 1273 } 1274 1275 /* save register state */ 1276 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1277 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1278 1279 for (i = 0; i < BPF_REG_SIZE; i++) { 1280 if (state->stack[spi].slot_type[i] == STACK_MISC && 1281 !env->allow_ptr_leaks) { 1282 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1283 int soff = (-spi - 1) * BPF_REG_SIZE; 1284 1285 /* detected reuse of integer stack slot with a pointer 1286 * which means either llvm is reusing stack slot or 1287 * an attacker is trying to exploit CVE-2018-3639 1288 * (speculative store bypass) 1289 * Have to sanitize that slot with preemptive 1290 * store of zero. 1291 */ 1292 if (*poff && *poff != soff) { 1293 /* disallow programs where single insn stores 1294 * into two different stack slots, since verifier 1295 * cannot sanitize them 1296 */ 1297 verbose(env, 1298 "insn %d cannot access two stack slots fp%d and fp%d", 1299 insn_idx, *poff, soff); 1300 return -EINVAL; 1301 } 1302 *poff = soff; 1303 } 1304 state->stack[spi].slot_type[i] = STACK_SPILL; 1305 } 1306 } else { 1307 u8 type = STACK_MISC; 1308 1309 /* regular write of data into stack destroys any spilled ptr */ 1310 state->stack[spi].spilled_ptr.type = NOT_INIT; 1311 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 1312 if (state->stack[spi].slot_type[0] == STACK_SPILL) 1313 for (i = 0; i < BPF_REG_SIZE; i++) 1314 state->stack[spi].slot_type[i] = STACK_MISC; 1315 1316 /* only mark the slot as written if all 8 bytes were written 1317 * otherwise read propagation may incorrectly stop too soon 1318 * when stack slots are partially written. 1319 * This heuristic means that read propagation will be 1320 * conservative, since it will add reg_live_read marks 1321 * to stack slots all the way to first state when programs 1322 * writes+reads less than 8 bytes 1323 */ 1324 if (size == BPF_REG_SIZE) 1325 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1326 1327 /* when we zero initialize stack slots mark them as such */ 1328 if (value_regno >= 0 && 1329 register_is_null(&cur->regs[value_regno])) 1330 type = STACK_ZERO; 1331 1332 /* Mark slots affected by this stack write. */ 1333 for (i = 0; i < size; i++) 1334 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1335 type; 1336 } 1337 return 0; 1338 } 1339 1340 static int check_stack_read(struct bpf_verifier_env *env, 1341 struct bpf_func_state *reg_state /* func where register points to */, 1342 int off, int size, int value_regno) 1343 { 1344 struct bpf_verifier_state *vstate = env->cur_state; 1345 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1346 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1347 u8 *stype; 1348 1349 if (reg_state->allocated_stack <= slot) { 1350 verbose(env, "invalid read from stack off %d+0 size %d\n", 1351 off, size); 1352 return -EACCES; 1353 } 1354 stype = reg_state->stack[spi].slot_type; 1355 1356 if (stype[0] == STACK_SPILL) { 1357 if (size != BPF_REG_SIZE) { 1358 verbose(env, "invalid size of register spill\n"); 1359 return -EACCES; 1360 } 1361 for (i = 1; i < BPF_REG_SIZE; i++) { 1362 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1363 verbose(env, "corrupted spill memory\n"); 1364 return -EACCES; 1365 } 1366 } 1367 1368 if (value_regno >= 0) { 1369 /* restore register state from stack */ 1370 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1371 /* mark reg as written since spilled pointer state likely 1372 * has its liveness marks cleared by is_state_visited() 1373 * which resets stack/reg liveness for state transitions 1374 */ 1375 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1376 } 1377 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1378 reg_state->stack[spi].spilled_ptr.parent); 1379 return 0; 1380 } else { 1381 int zeros = 0; 1382 1383 for (i = 0; i < size; i++) { 1384 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1385 continue; 1386 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1387 zeros++; 1388 continue; 1389 } 1390 verbose(env, "invalid read from stack off %d+%d size %d\n", 1391 off, i, size); 1392 return -EACCES; 1393 } 1394 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1395 reg_state->stack[spi].spilled_ptr.parent); 1396 if (value_regno >= 0) { 1397 if (zeros == size) { 1398 /* any size read into register is zero extended, 1399 * so the whole register == const_zero 1400 */ 1401 __mark_reg_const_zero(&state->regs[value_regno]); 1402 } else { 1403 /* have read misc data from the stack */ 1404 mark_reg_unknown(env, state->regs, value_regno); 1405 } 1406 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1407 } 1408 return 0; 1409 } 1410 } 1411 1412 static int check_stack_access(struct bpf_verifier_env *env, 1413 const struct bpf_reg_state *reg, 1414 int off, int size) 1415 { 1416 /* Stack accesses must be at a fixed offset, so that we 1417 * can determine what type of data were returned. See 1418 * check_stack_read(). 1419 */ 1420 if (!tnum_is_const(reg->var_off)) { 1421 char tn_buf[48]; 1422 1423 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1424 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 1425 tn_buf, off, size); 1426 return -EACCES; 1427 } 1428 1429 if (off >= 0 || off < -MAX_BPF_STACK) { 1430 verbose(env, "invalid stack off=%d size=%d\n", off, size); 1431 return -EACCES; 1432 } 1433 1434 return 0; 1435 } 1436 1437 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 1438 int off, int size, enum bpf_access_type type) 1439 { 1440 struct bpf_reg_state *regs = cur_regs(env); 1441 struct bpf_map *map = regs[regno].map_ptr; 1442 u32 cap = bpf_map_flags_to_cap(map); 1443 1444 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 1445 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 1446 map->value_size, off, size); 1447 return -EACCES; 1448 } 1449 1450 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 1451 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 1452 map->value_size, off, size); 1453 return -EACCES; 1454 } 1455 1456 return 0; 1457 } 1458 1459 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1460 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1461 int size, bool zero_size_allowed) 1462 { 1463 struct bpf_reg_state *regs = cur_regs(env); 1464 struct bpf_map *map = regs[regno].map_ptr; 1465 1466 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1467 off + size > map->value_size) { 1468 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1469 map->value_size, off, size); 1470 return -EACCES; 1471 } 1472 return 0; 1473 } 1474 1475 /* check read/write into a map element with possible variable offset */ 1476 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1477 int off, int size, bool zero_size_allowed) 1478 { 1479 struct bpf_verifier_state *vstate = env->cur_state; 1480 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1481 struct bpf_reg_state *reg = &state->regs[regno]; 1482 int err; 1483 1484 /* We may have adjusted the register to this map value, so we 1485 * need to try adding each of min_value and max_value to off 1486 * to make sure our theoretical access will be safe. 1487 */ 1488 if (env->log.level & BPF_LOG_LEVEL) 1489 print_verifier_state(env, state); 1490 1491 /* The minimum value is only important with signed 1492 * comparisons where we can't assume the floor of a 1493 * value is 0. If we are using signed variables for our 1494 * index'es we need to make sure that whatever we use 1495 * will have a set floor within our range. 1496 */ 1497 if (reg->smin_value < 0 && 1498 (reg->smin_value == S64_MIN || 1499 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 1500 reg->smin_value + off < 0)) { 1501 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1502 regno); 1503 return -EACCES; 1504 } 1505 err = __check_map_access(env, regno, reg->smin_value + off, size, 1506 zero_size_allowed); 1507 if (err) { 1508 verbose(env, "R%d min value is outside of the array range\n", 1509 regno); 1510 return err; 1511 } 1512 1513 /* If we haven't set a max value then we need to bail since we can't be 1514 * sure we won't do bad things. 1515 * If reg->umax_value + off could overflow, treat that as unbounded too. 1516 */ 1517 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1518 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1519 regno); 1520 return -EACCES; 1521 } 1522 err = __check_map_access(env, regno, reg->umax_value + off, size, 1523 zero_size_allowed); 1524 if (err) 1525 verbose(env, "R%d max value is outside of the array range\n", 1526 regno); 1527 1528 if (map_value_has_spin_lock(reg->map_ptr)) { 1529 u32 lock = reg->map_ptr->spin_lock_off; 1530 1531 /* if any part of struct bpf_spin_lock can be touched by 1532 * load/store reject this program. 1533 * To check that [x1, x2) overlaps with [y1, y2) 1534 * it is sufficient to check x1 < y2 && y1 < x2. 1535 */ 1536 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 1537 lock < reg->umax_value + off + size) { 1538 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 1539 return -EACCES; 1540 } 1541 } 1542 return err; 1543 } 1544 1545 #define MAX_PACKET_OFF 0xffff 1546 1547 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1548 const struct bpf_call_arg_meta *meta, 1549 enum bpf_access_type t) 1550 { 1551 switch (env->prog->type) { 1552 /* Program types only with direct read access go here! */ 1553 case BPF_PROG_TYPE_LWT_IN: 1554 case BPF_PROG_TYPE_LWT_OUT: 1555 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1556 case BPF_PROG_TYPE_SK_REUSEPORT: 1557 case BPF_PROG_TYPE_FLOW_DISSECTOR: 1558 case BPF_PROG_TYPE_CGROUP_SKB: 1559 if (t == BPF_WRITE) 1560 return false; 1561 /* fallthrough */ 1562 1563 /* Program types with direct read + write access go here! */ 1564 case BPF_PROG_TYPE_SCHED_CLS: 1565 case BPF_PROG_TYPE_SCHED_ACT: 1566 case BPF_PROG_TYPE_XDP: 1567 case BPF_PROG_TYPE_LWT_XMIT: 1568 case BPF_PROG_TYPE_SK_SKB: 1569 case BPF_PROG_TYPE_SK_MSG: 1570 if (meta) 1571 return meta->pkt_access; 1572 1573 env->seen_direct_write = true; 1574 return true; 1575 default: 1576 return false; 1577 } 1578 } 1579 1580 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1581 int off, int size, bool zero_size_allowed) 1582 { 1583 struct bpf_reg_state *regs = cur_regs(env); 1584 struct bpf_reg_state *reg = ®s[regno]; 1585 1586 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1587 (u64)off + size > reg->range) { 1588 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1589 off, size, regno, reg->id, reg->off, reg->range); 1590 return -EACCES; 1591 } 1592 return 0; 1593 } 1594 1595 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1596 int size, bool zero_size_allowed) 1597 { 1598 struct bpf_reg_state *regs = cur_regs(env); 1599 struct bpf_reg_state *reg = ®s[regno]; 1600 int err; 1601 1602 /* We may have added a variable offset to the packet pointer; but any 1603 * reg->range we have comes after that. We are only checking the fixed 1604 * offset. 1605 */ 1606 1607 /* We don't allow negative numbers, because we aren't tracking enough 1608 * detail to prove they're safe. 1609 */ 1610 if (reg->smin_value < 0) { 1611 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1612 regno); 1613 return -EACCES; 1614 } 1615 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1616 if (err) { 1617 verbose(env, "R%d offset is outside of the packet\n", regno); 1618 return err; 1619 } 1620 1621 /* __check_packet_access has made sure "off + size - 1" is within u16. 1622 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 1623 * otherwise find_good_pkt_pointers would have refused to set range info 1624 * that __check_packet_access would have rejected this pkt access. 1625 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 1626 */ 1627 env->prog->aux->max_pkt_offset = 1628 max_t(u32, env->prog->aux->max_pkt_offset, 1629 off + reg->umax_value + size - 1); 1630 1631 return err; 1632 } 1633 1634 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1635 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1636 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1637 { 1638 struct bpf_insn_access_aux info = { 1639 .reg_type = *reg_type, 1640 }; 1641 1642 if (env->ops->is_valid_access && 1643 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1644 /* A non zero info.ctx_field_size indicates that this field is a 1645 * candidate for later verifier transformation to load the whole 1646 * field and then apply a mask when accessed with a narrower 1647 * access than actual ctx access size. A zero info.ctx_field_size 1648 * will only allow for whole field access and rejects any other 1649 * type of narrower access. 1650 */ 1651 *reg_type = info.reg_type; 1652 1653 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1654 /* remember the offset of last byte accessed in ctx */ 1655 if (env->prog->aux->max_ctx_offset < off + size) 1656 env->prog->aux->max_ctx_offset = off + size; 1657 return 0; 1658 } 1659 1660 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1661 return -EACCES; 1662 } 1663 1664 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 1665 int size) 1666 { 1667 if (size < 0 || off < 0 || 1668 (u64)off + size > sizeof(struct bpf_flow_keys)) { 1669 verbose(env, "invalid access to flow keys off=%d size=%d\n", 1670 off, size); 1671 return -EACCES; 1672 } 1673 return 0; 1674 } 1675 1676 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 1677 u32 regno, int off, int size, 1678 enum bpf_access_type t) 1679 { 1680 struct bpf_reg_state *regs = cur_regs(env); 1681 struct bpf_reg_state *reg = ®s[regno]; 1682 struct bpf_insn_access_aux info = {}; 1683 bool valid; 1684 1685 if (reg->smin_value < 0) { 1686 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1687 regno); 1688 return -EACCES; 1689 } 1690 1691 switch (reg->type) { 1692 case PTR_TO_SOCK_COMMON: 1693 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 1694 break; 1695 case PTR_TO_SOCKET: 1696 valid = bpf_sock_is_valid_access(off, size, t, &info); 1697 break; 1698 case PTR_TO_TCP_SOCK: 1699 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 1700 break; 1701 default: 1702 valid = false; 1703 } 1704 1705 1706 if (valid) { 1707 env->insn_aux_data[insn_idx].ctx_field_size = 1708 info.ctx_field_size; 1709 return 0; 1710 } 1711 1712 verbose(env, "R%d invalid %s access off=%d size=%d\n", 1713 regno, reg_type_str[reg->type], off, size); 1714 1715 return -EACCES; 1716 } 1717 1718 static bool __is_pointer_value(bool allow_ptr_leaks, 1719 const struct bpf_reg_state *reg) 1720 { 1721 if (allow_ptr_leaks) 1722 return false; 1723 1724 return reg->type != SCALAR_VALUE; 1725 } 1726 1727 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 1728 { 1729 return cur_regs(env) + regno; 1730 } 1731 1732 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1733 { 1734 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 1735 } 1736 1737 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1738 { 1739 const struct bpf_reg_state *reg = reg_state(env, regno); 1740 1741 return reg->type == PTR_TO_CTX; 1742 } 1743 1744 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 1745 { 1746 const struct bpf_reg_state *reg = reg_state(env, regno); 1747 1748 return type_is_sk_pointer(reg->type); 1749 } 1750 1751 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1752 { 1753 const struct bpf_reg_state *reg = reg_state(env, regno); 1754 1755 return type_is_pkt_pointer(reg->type); 1756 } 1757 1758 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 1759 { 1760 const struct bpf_reg_state *reg = reg_state(env, regno); 1761 1762 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 1763 return reg->type == PTR_TO_FLOW_KEYS; 1764 } 1765 1766 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1767 const struct bpf_reg_state *reg, 1768 int off, int size, bool strict) 1769 { 1770 struct tnum reg_off; 1771 int ip_align; 1772 1773 /* Byte size accesses are always allowed. */ 1774 if (!strict || size == 1) 1775 return 0; 1776 1777 /* For platforms that do not have a Kconfig enabling 1778 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1779 * NET_IP_ALIGN is universally set to '2'. And on platforms 1780 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1781 * to this code only in strict mode where we want to emulate 1782 * the NET_IP_ALIGN==2 checking. Therefore use an 1783 * unconditional IP align value of '2'. 1784 */ 1785 ip_align = 2; 1786 1787 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1788 if (!tnum_is_aligned(reg_off, size)) { 1789 char tn_buf[48]; 1790 1791 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1792 verbose(env, 1793 "misaligned packet access off %d+%s+%d+%d size %d\n", 1794 ip_align, tn_buf, reg->off, off, size); 1795 return -EACCES; 1796 } 1797 1798 return 0; 1799 } 1800 1801 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1802 const struct bpf_reg_state *reg, 1803 const char *pointer_desc, 1804 int off, int size, bool strict) 1805 { 1806 struct tnum reg_off; 1807 1808 /* Byte size accesses are always allowed. */ 1809 if (!strict || size == 1) 1810 return 0; 1811 1812 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1813 if (!tnum_is_aligned(reg_off, size)) { 1814 char tn_buf[48]; 1815 1816 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1817 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1818 pointer_desc, tn_buf, reg->off, off, size); 1819 return -EACCES; 1820 } 1821 1822 return 0; 1823 } 1824 1825 static int check_ptr_alignment(struct bpf_verifier_env *env, 1826 const struct bpf_reg_state *reg, int off, 1827 int size, bool strict_alignment_once) 1828 { 1829 bool strict = env->strict_alignment || strict_alignment_once; 1830 const char *pointer_desc = ""; 1831 1832 switch (reg->type) { 1833 case PTR_TO_PACKET: 1834 case PTR_TO_PACKET_META: 1835 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1836 * right in front, treat it the very same way. 1837 */ 1838 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1839 case PTR_TO_FLOW_KEYS: 1840 pointer_desc = "flow keys "; 1841 break; 1842 case PTR_TO_MAP_VALUE: 1843 pointer_desc = "value "; 1844 break; 1845 case PTR_TO_CTX: 1846 pointer_desc = "context "; 1847 break; 1848 case PTR_TO_STACK: 1849 pointer_desc = "stack "; 1850 /* The stack spill tracking logic in check_stack_write() 1851 * and check_stack_read() relies on stack accesses being 1852 * aligned. 1853 */ 1854 strict = true; 1855 break; 1856 case PTR_TO_SOCKET: 1857 pointer_desc = "sock "; 1858 break; 1859 case PTR_TO_SOCK_COMMON: 1860 pointer_desc = "sock_common "; 1861 break; 1862 case PTR_TO_TCP_SOCK: 1863 pointer_desc = "tcp_sock "; 1864 break; 1865 default: 1866 break; 1867 } 1868 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1869 strict); 1870 } 1871 1872 static int update_stack_depth(struct bpf_verifier_env *env, 1873 const struct bpf_func_state *func, 1874 int off) 1875 { 1876 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1877 1878 if (stack >= -off) 1879 return 0; 1880 1881 /* update known max for given subprogram */ 1882 env->subprog_info[func->subprogno].stack_depth = -off; 1883 return 0; 1884 } 1885 1886 /* starting from main bpf function walk all instructions of the function 1887 * and recursively walk all callees that given function can call. 1888 * Ignore jump and exit insns. 1889 * Since recursion is prevented by check_cfg() this algorithm 1890 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1891 */ 1892 static int check_max_stack_depth(struct bpf_verifier_env *env) 1893 { 1894 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1895 struct bpf_subprog_info *subprog = env->subprog_info; 1896 struct bpf_insn *insn = env->prog->insnsi; 1897 int ret_insn[MAX_CALL_FRAMES]; 1898 int ret_prog[MAX_CALL_FRAMES]; 1899 1900 process_func: 1901 /* round up to 32-bytes, since this is granularity 1902 * of interpreter stack size 1903 */ 1904 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1905 if (depth > MAX_BPF_STACK) { 1906 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1907 frame + 1, depth); 1908 return -EACCES; 1909 } 1910 continue_func: 1911 subprog_end = subprog[idx + 1].start; 1912 for (; i < subprog_end; i++) { 1913 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1914 continue; 1915 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1916 continue; 1917 /* remember insn and function to return to */ 1918 ret_insn[frame] = i + 1; 1919 ret_prog[frame] = idx; 1920 1921 /* find the callee */ 1922 i = i + insn[i].imm + 1; 1923 idx = find_subprog(env, i); 1924 if (idx < 0) { 1925 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1926 i); 1927 return -EFAULT; 1928 } 1929 frame++; 1930 if (frame >= MAX_CALL_FRAMES) { 1931 verbose(env, "the call stack of %d frames is too deep !\n", 1932 frame); 1933 return -E2BIG; 1934 } 1935 goto process_func; 1936 } 1937 /* end of for() loop means the last insn of the 'subprog' 1938 * was reached. Doesn't matter whether it was JA or EXIT 1939 */ 1940 if (frame == 0) 1941 return 0; 1942 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1943 frame--; 1944 i = ret_insn[frame]; 1945 idx = ret_prog[frame]; 1946 goto continue_func; 1947 } 1948 1949 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1950 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1951 const struct bpf_insn *insn, int idx) 1952 { 1953 int start = idx + insn->imm + 1, subprog; 1954 1955 subprog = find_subprog(env, start); 1956 if (subprog < 0) { 1957 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1958 start); 1959 return -EFAULT; 1960 } 1961 return env->subprog_info[subprog].stack_depth; 1962 } 1963 #endif 1964 1965 static int check_ctx_reg(struct bpf_verifier_env *env, 1966 const struct bpf_reg_state *reg, int regno) 1967 { 1968 /* Access to ctx or passing it to a helper is only allowed in 1969 * its original, unmodified form. 1970 */ 1971 1972 if (reg->off) { 1973 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1974 regno, reg->off); 1975 return -EACCES; 1976 } 1977 1978 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1979 char tn_buf[48]; 1980 1981 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1982 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1983 return -EACCES; 1984 } 1985 1986 return 0; 1987 } 1988 1989 static int check_tp_buffer_access(struct bpf_verifier_env *env, 1990 const struct bpf_reg_state *reg, 1991 int regno, int off, int size) 1992 { 1993 if (off < 0) { 1994 verbose(env, 1995 "R%d invalid tracepoint buffer access: off=%d, size=%d", 1996 regno, off, size); 1997 return -EACCES; 1998 } 1999 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2000 char tn_buf[48]; 2001 2002 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2003 verbose(env, 2004 "R%d invalid variable buffer offset: off=%d, var_off=%s", 2005 regno, off, tn_buf); 2006 return -EACCES; 2007 } 2008 if (off + size > env->prog->aux->max_tp_access) 2009 env->prog->aux->max_tp_access = off + size; 2010 2011 return 0; 2012 } 2013 2014 2015 /* truncate register to smaller size (in bytes) 2016 * must be called with size < BPF_REG_SIZE 2017 */ 2018 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 2019 { 2020 u64 mask; 2021 2022 /* clear high bits in bit representation */ 2023 reg->var_off = tnum_cast(reg->var_off, size); 2024 2025 /* fix arithmetic bounds */ 2026 mask = ((u64)1 << (size * 8)) - 1; 2027 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 2028 reg->umin_value &= mask; 2029 reg->umax_value &= mask; 2030 } else { 2031 reg->umin_value = 0; 2032 reg->umax_value = mask; 2033 } 2034 reg->smin_value = reg->umin_value; 2035 reg->smax_value = reg->umax_value; 2036 } 2037 2038 /* check whether memory at (regno + off) is accessible for t = (read | write) 2039 * if t==write, value_regno is a register which value is stored into memory 2040 * if t==read, value_regno is a register which will receive the value from memory 2041 * if t==write && value_regno==-1, some unknown value is stored into memory 2042 * if t==read && value_regno==-1, don't care what we read from memory 2043 */ 2044 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 2045 int off, int bpf_size, enum bpf_access_type t, 2046 int value_regno, bool strict_alignment_once) 2047 { 2048 struct bpf_reg_state *regs = cur_regs(env); 2049 struct bpf_reg_state *reg = regs + regno; 2050 struct bpf_func_state *state; 2051 int size, err = 0; 2052 2053 size = bpf_size_to_bytes(bpf_size); 2054 if (size < 0) 2055 return size; 2056 2057 /* alignment checks will add in reg->off themselves */ 2058 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 2059 if (err) 2060 return err; 2061 2062 /* for access checks, reg->off is just part of off */ 2063 off += reg->off; 2064 2065 if (reg->type == PTR_TO_MAP_VALUE) { 2066 if (t == BPF_WRITE && value_regno >= 0 && 2067 is_pointer_value(env, value_regno)) { 2068 verbose(env, "R%d leaks addr into map\n", value_regno); 2069 return -EACCES; 2070 } 2071 err = check_map_access_type(env, regno, off, size, t); 2072 if (err) 2073 return err; 2074 err = check_map_access(env, regno, off, size, false); 2075 if (!err && t == BPF_READ && value_regno >= 0) 2076 mark_reg_unknown(env, regs, value_regno); 2077 2078 } else if (reg->type == PTR_TO_CTX) { 2079 enum bpf_reg_type reg_type = SCALAR_VALUE; 2080 2081 if (t == BPF_WRITE && value_regno >= 0 && 2082 is_pointer_value(env, value_regno)) { 2083 verbose(env, "R%d leaks addr into ctx\n", value_regno); 2084 return -EACCES; 2085 } 2086 2087 err = check_ctx_reg(env, reg, regno); 2088 if (err < 0) 2089 return err; 2090 2091 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 2092 if (!err && t == BPF_READ && value_regno >= 0) { 2093 /* ctx access returns either a scalar, or a 2094 * PTR_TO_PACKET[_META,_END]. In the latter 2095 * case, we know the offset is zero. 2096 */ 2097 if (reg_type == SCALAR_VALUE) { 2098 mark_reg_unknown(env, regs, value_regno); 2099 } else { 2100 mark_reg_known_zero(env, regs, 2101 value_regno); 2102 if (reg_type_may_be_null(reg_type)) 2103 regs[value_regno].id = ++env->id_gen; 2104 } 2105 regs[value_regno].type = reg_type; 2106 } 2107 2108 } else if (reg->type == PTR_TO_STACK) { 2109 off += reg->var_off.value; 2110 err = check_stack_access(env, reg, off, size); 2111 if (err) 2112 return err; 2113 2114 state = func(env, reg); 2115 err = update_stack_depth(env, state, off); 2116 if (err) 2117 return err; 2118 2119 if (t == BPF_WRITE) 2120 err = check_stack_write(env, state, off, size, 2121 value_regno, insn_idx); 2122 else 2123 err = check_stack_read(env, state, off, size, 2124 value_regno); 2125 } else if (reg_is_pkt_pointer(reg)) { 2126 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 2127 verbose(env, "cannot write into packet\n"); 2128 return -EACCES; 2129 } 2130 if (t == BPF_WRITE && value_regno >= 0 && 2131 is_pointer_value(env, value_regno)) { 2132 verbose(env, "R%d leaks addr into packet\n", 2133 value_regno); 2134 return -EACCES; 2135 } 2136 err = check_packet_access(env, regno, off, size, false); 2137 if (!err && t == BPF_READ && value_regno >= 0) 2138 mark_reg_unknown(env, regs, value_regno); 2139 } else if (reg->type == PTR_TO_FLOW_KEYS) { 2140 if (t == BPF_WRITE && value_regno >= 0 && 2141 is_pointer_value(env, value_regno)) { 2142 verbose(env, "R%d leaks addr into flow keys\n", 2143 value_regno); 2144 return -EACCES; 2145 } 2146 2147 err = check_flow_keys_access(env, off, size); 2148 if (!err && t == BPF_READ && value_regno >= 0) 2149 mark_reg_unknown(env, regs, value_regno); 2150 } else if (type_is_sk_pointer(reg->type)) { 2151 if (t == BPF_WRITE) { 2152 verbose(env, "R%d cannot write into %s\n", 2153 regno, reg_type_str[reg->type]); 2154 return -EACCES; 2155 } 2156 err = check_sock_access(env, insn_idx, regno, off, size, t); 2157 if (!err && value_regno >= 0) 2158 mark_reg_unknown(env, regs, value_regno); 2159 } else if (reg->type == PTR_TO_TP_BUFFER) { 2160 err = check_tp_buffer_access(env, reg, regno, off, size); 2161 if (!err && t == BPF_READ && value_regno >= 0) 2162 mark_reg_unknown(env, regs, value_regno); 2163 } else { 2164 verbose(env, "R%d invalid mem access '%s'\n", regno, 2165 reg_type_str[reg->type]); 2166 return -EACCES; 2167 } 2168 2169 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 2170 regs[value_regno].type == SCALAR_VALUE) { 2171 /* b/h/w load zero-extends, mark upper bits as known 0 */ 2172 coerce_reg_to_size(®s[value_regno], size); 2173 } 2174 return err; 2175 } 2176 2177 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 2178 { 2179 int err; 2180 2181 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 2182 insn->imm != 0) { 2183 verbose(env, "BPF_XADD uses reserved fields\n"); 2184 return -EINVAL; 2185 } 2186 2187 /* check src1 operand */ 2188 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2189 if (err) 2190 return err; 2191 2192 /* check src2 operand */ 2193 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2194 if (err) 2195 return err; 2196 2197 if (is_pointer_value(env, insn->src_reg)) { 2198 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 2199 return -EACCES; 2200 } 2201 2202 if (is_ctx_reg(env, insn->dst_reg) || 2203 is_pkt_reg(env, insn->dst_reg) || 2204 is_flow_key_reg(env, insn->dst_reg) || 2205 is_sk_reg(env, insn->dst_reg)) { 2206 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 2207 insn->dst_reg, 2208 reg_type_str[reg_state(env, insn->dst_reg)->type]); 2209 return -EACCES; 2210 } 2211 2212 /* check whether atomic_add can read the memory */ 2213 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2214 BPF_SIZE(insn->code), BPF_READ, -1, true); 2215 if (err) 2216 return err; 2217 2218 /* check whether atomic_add can write into the same memory */ 2219 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2220 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 2221 } 2222 2223 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 2224 int off, int access_size, 2225 bool zero_size_allowed) 2226 { 2227 struct bpf_reg_state *reg = reg_state(env, regno); 2228 2229 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2230 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2231 if (tnum_is_const(reg->var_off)) { 2232 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2233 regno, off, access_size); 2234 } else { 2235 char tn_buf[48]; 2236 2237 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2238 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 2239 regno, tn_buf, access_size); 2240 } 2241 return -EACCES; 2242 } 2243 return 0; 2244 } 2245 2246 /* when register 'regno' is passed into function that will read 'access_size' 2247 * bytes from that pointer, make sure that it's within stack boundary 2248 * and all elements of stack are initialized. 2249 * Unlike most pointer bounds-checking functions, this one doesn't take an 2250 * 'off' argument, so it has to add in reg->off itself. 2251 */ 2252 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2253 int access_size, bool zero_size_allowed, 2254 struct bpf_call_arg_meta *meta) 2255 { 2256 struct bpf_reg_state *reg = reg_state(env, regno); 2257 struct bpf_func_state *state = func(env, reg); 2258 int err, min_off, max_off, i, slot, spi; 2259 2260 if (reg->type != PTR_TO_STACK) { 2261 /* Allow zero-byte read from NULL, regardless of pointer type */ 2262 if (zero_size_allowed && access_size == 0 && 2263 register_is_null(reg)) 2264 return 0; 2265 2266 verbose(env, "R%d type=%s expected=%s\n", regno, 2267 reg_type_str[reg->type], 2268 reg_type_str[PTR_TO_STACK]); 2269 return -EACCES; 2270 } 2271 2272 if (tnum_is_const(reg->var_off)) { 2273 min_off = max_off = reg->var_off.value + reg->off; 2274 err = __check_stack_boundary(env, regno, min_off, access_size, 2275 zero_size_allowed); 2276 if (err) 2277 return err; 2278 } else { 2279 /* Variable offset is prohibited for unprivileged mode for 2280 * simplicity since it requires corresponding support in 2281 * Spectre masking for stack ALU. 2282 * See also retrieve_ptr_limit(). 2283 */ 2284 if (!env->allow_ptr_leaks) { 2285 char tn_buf[48]; 2286 2287 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2288 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 2289 regno, tn_buf); 2290 return -EACCES; 2291 } 2292 /* Only initialized buffer on stack is allowed to be accessed 2293 * with variable offset. With uninitialized buffer it's hard to 2294 * guarantee that whole memory is marked as initialized on 2295 * helper return since specific bounds are unknown what may 2296 * cause uninitialized stack leaking. 2297 */ 2298 if (meta && meta->raw_mode) 2299 meta = NULL; 2300 2301 if (reg->smax_value >= BPF_MAX_VAR_OFF || 2302 reg->smax_value <= -BPF_MAX_VAR_OFF) { 2303 verbose(env, "R%d unbounded indirect variable offset stack access\n", 2304 regno); 2305 return -EACCES; 2306 } 2307 min_off = reg->smin_value + reg->off; 2308 max_off = reg->smax_value + reg->off; 2309 err = __check_stack_boundary(env, regno, min_off, access_size, 2310 zero_size_allowed); 2311 if (err) { 2312 verbose(env, "R%d min value is outside of stack bound\n", 2313 regno); 2314 return err; 2315 } 2316 err = __check_stack_boundary(env, regno, max_off, access_size, 2317 zero_size_allowed); 2318 if (err) { 2319 verbose(env, "R%d max value is outside of stack bound\n", 2320 regno); 2321 return err; 2322 } 2323 } 2324 2325 if (meta && meta->raw_mode) { 2326 meta->access_size = access_size; 2327 meta->regno = regno; 2328 return 0; 2329 } 2330 2331 for (i = min_off; i < max_off + access_size; i++) { 2332 u8 *stype; 2333 2334 slot = -i - 1; 2335 spi = slot / BPF_REG_SIZE; 2336 if (state->allocated_stack <= slot) 2337 goto err; 2338 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2339 if (*stype == STACK_MISC) 2340 goto mark; 2341 if (*stype == STACK_ZERO) { 2342 /* helper can write anything into the stack */ 2343 *stype = STACK_MISC; 2344 goto mark; 2345 } 2346 err: 2347 if (tnum_is_const(reg->var_off)) { 2348 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 2349 min_off, i - min_off, access_size); 2350 } else { 2351 char tn_buf[48]; 2352 2353 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2354 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 2355 tn_buf, i - min_off, access_size); 2356 } 2357 return -EACCES; 2358 mark: 2359 /* reading any byte out of 8-byte 'spill_slot' will cause 2360 * the whole slot to be marked as 'read' 2361 */ 2362 mark_reg_read(env, &state->stack[spi].spilled_ptr, 2363 state->stack[spi].spilled_ptr.parent); 2364 } 2365 return update_stack_depth(env, state, min_off); 2366 } 2367 2368 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 2369 int access_size, bool zero_size_allowed, 2370 struct bpf_call_arg_meta *meta) 2371 { 2372 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2373 2374 switch (reg->type) { 2375 case PTR_TO_PACKET: 2376 case PTR_TO_PACKET_META: 2377 return check_packet_access(env, regno, reg->off, access_size, 2378 zero_size_allowed); 2379 case PTR_TO_MAP_VALUE: 2380 if (check_map_access_type(env, regno, reg->off, access_size, 2381 meta && meta->raw_mode ? BPF_WRITE : 2382 BPF_READ)) 2383 return -EACCES; 2384 return check_map_access(env, regno, reg->off, access_size, 2385 zero_size_allowed); 2386 default: /* scalar_value|ptr_to_stack or invalid ptr */ 2387 return check_stack_boundary(env, regno, access_size, 2388 zero_size_allowed, meta); 2389 } 2390 } 2391 2392 /* Implementation details: 2393 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 2394 * Two bpf_map_lookups (even with the same key) will have different reg->id. 2395 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 2396 * value_or_null->value transition, since the verifier only cares about 2397 * the range of access to valid map value pointer and doesn't care about actual 2398 * address of the map element. 2399 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 2400 * reg->id > 0 after value_or_null->value transition. By doing so 2401 * two bpf_map_lookups will be considered two different pointers that 2402 * point to different bpf_spin_locks. 2403 * The verifier allows taking only one bpf_spin_lock at a time to avoid 2404 * dead-locks. 2405 * Since only one bpf_spin_lock is allowed the checks are simpler than 2406 * reg_is_refcounted() logic. The verifier needs to remember only 2407 * one spin_lock instead of array of acquired_refs. 2408 * cur_state->active_spin_lock remembers which map value element got locked 2409 * and clears it after bpf_spin_unlock. 2410 */ 2411 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 2412 bool is_lock) 2413 { 2414 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2415 struct bpf_verifier_state *cur = env->cur_state; 2416 bool is_const = tnum_is_const(reg->var_off); 2417 struct bpf_map *map = reg->map_ptr; 2418 u64 val = reg->var_off.value; 2419 2420 if (reg->type != PTR_TO_MAP_VALUE) { 2421 verbose(env, "R%d is not a pointer to map_value\n", regno); 2422 return -EINVAL; 2423 } 2424 if (!is_const) { 2425 verbose(env, 2426 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 2427 regno); 2428 return -EINVAL; 2429 } 2430 if (!map->btf) { 2431 verbose(env, 2432 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 2433 map->name); 2434 return -EINVAL; 2435 } 2436 if (!map_value_has_spin_lock(map)) { 2437 if (map->spin_lock_off == -E2BIG) 2438 verbose(env, 2439 "map '%s' has more than one 'struct bpf_spin_lock'\n", 2440 map->name); 2441 else if (map->spin_lock_off == -ENOENT) 2442 verbose(env, 2443 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 2444 map->name); 2445 else 2446 verbose(env, 2447 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 2448 map->name); 2449 return -EINVAL; 2450 } 2451 if (map->spin_lock_off != val + reg->off) { 2452 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 2453 val + reg->off); 2454 return -EINVAL; 2455 } 2456 if (is_lock) { 2457 if (cur->active_spin_lock) { 2458 verbose(env, 2459 "Locking two bpf_spin_locks are not allowed\n"); 2460 return -EINVAL; 2461 } 2462 cur->active_spin_lock = reg->id; 2463 } else { 2464 if (!cur->active_spin_lock) { 2465 verbose(env, "bpf_spin_unlock without taking a lock\n"); 2466 return -EINVAL; 2467 } 2468 if (cur->active_spin_lock != reg->id) { 2469 verbose(env, "bpf_spin_unlock of different lock\n"); 2470 return -EINVAL; 2471 } 2472 cur->active_spin_lock = 0; 2473 } 2474 return 0; 2475 } 2476 2477 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 2478 { 2479 return type == ARG_PTR_TO_MEM || 2480 type == ARG_PTR_TO_MEM_OR_NULL || 2481 type == ARG_PTR_TO_UNINIT_MEM; 2482 } 2483 2484 static bool arg_type_is_mem_size(enum bpf_arg_type type) 2485 { 2486 return type == ARG_CONST_SIZE || 2487 type == ARG_CONST_SIZE_OR_ZERO; 2488 } 2489 2490 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 2491 { 2492 return type == ARG_PTR_TO_INT || 2493 type == ARG_PTR_TO_LONG; 2494 } 2495 2496 static int int_ptr_type_to_size(enum bpf_arg_type type) 2497 { 2498 if (type == ARG_PTR_TO_INT) 2499 return sizeof(u32); 2500 else if (type == ARG_PTR_TO_LONG) 2501 return sizeof(u64); 2502 2503 return -EINVAL; 2504 } 2505 2506 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 2507 enum bpf_arg_type arg_type, 2508 struct bpf_call_arg_meta *meta) 2509 { 2510 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2511 enum bpf_reg_type expected_type, type = reg->type; 2512 int err = 0; 2513 2514 if (arg_type == ARG_DONTCARE) 2515 return 0; 2516 2517 err = check_reg_arg(env, regno, SRC_OP); 2518 if (err) 2519 return err; 2520 2521 if (arg_type == ARG_ANYTHING) { 2522 if (is_pointer_value(env, regno)) { 2523 verbose(env, "R%d leaks addr into helper function\n", 2524 regno); 2525 return -EACCES; 2526 } 2527 return 0; 2528 } 2529 2530 if (type_is_pkt_pointer(type) && 2531 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 2532 verbose(env, "helper access to the packet is not allowed\n"); 2533 return -EACCES; 2534 } 2535 2536 if (arg_type == ARG_PTR_TO_MAP_KEY || 2537 arg_type == ARG_PTR_TO_MAP_VALUE || 2538 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 2539 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 2540 expected_type = PTR_TO_STACK; 2541 if (register_is_null(reg) && 2542 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 2543 /* final test in check_stack_boundary() */; 2544 else if (!type_is_pkt_pointer(type) && 2545 type != PTR_TO_MAP_VALUE && 2546 type != expected_type) 2547 goto err_type; 2548 } else if (arg_type == ARG_CONST_SIZE || 2549 arg_type == ARG_CONST_SIZE_OR_ZERO) { 2550 expected_type = SCALAR_VALUE; 2551 if (type != expected_type) 2552 goto err_type; 2553 } else if (arg_type == ARG_CONST_MAP_PTR) { 2554 expected_type = CONST_PTR_TO_MAP; 2555 if (type != expected_type) 2556 goto err_type; 2557 } else if (arg_type == ARG_PTR_TO_CTX) { 2558 expected_type = PTR_TO_CTX; 2559 if (type != expected_type) 2560 goto err_type; 2561 err = check_ctx_reg(env, reg, regno); 2562 if (err < 0) 2563 return err; 2564 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 2565 expected_type = PTR_TO_SOCK_COMMON; 2566 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 2567 if (!type_is_sk_pointer(type)) 2568 goto err_type; 2569 if (reg->ref_obj_id) { 2570 if (meta->ref_obj_id) { 2571 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 2572 regno, reg->ref_obj_id, 2573 meta->ref_obj_id); 2574 return -EFAULT; 2575 } 2576 meta->ref_obj_id = reg->ref_obj_id; 2577 } 2578 } else if (arg_type == ARG_PTR_TO_SOCKET) { 2579 expected_type = PTR_TO_SOCKET; 2580 if (type != expected_type) 2581 goto err_type; 2582 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 2583 if (meta->func_id == BPF_FUNC_spin_lock) { 2584 if (process_spin_lock(env, regno, true)) 2585 return -EACCES; 2586 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 2587 if (process_spin_lock(env, regno, false)) 2588 return -EACCES; 2589 } else { 2590 verbose(env, "verifier internal error\n"); 2591 return -EFAULT; 2592 } 2593 } else if (arg_type_is_mem_ptr(arg_type)) { 2594 expected_type = PTR_TO_STACK; 2595 /* One exception here. In case function allows for NULL to be 2596 * passed in as argument, it's a SCALAR_VALUE type. Final test 2597 * happens during stack boundary checking. 2598 */ 2599 if (register_is_null(reg) && 2600 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2601 /* final test in check_stack_boundary() */; 2602 else if (!type_is_pkt_pointer(type) && 2603 type != PTR_TO_MAP_VALUE && 2604 type != expected_type) 2605 goto err_type; 2606 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2607 } else if (arg_type_is_int_ptr(arg_type)) { 2608 expected_type = PTR_TO_STACK; 2609 if (!type_is_pkt_pointer(type) && 2610 type != PTR_TO_MAP_VALUE && 2611 type != expected_type) 2612 goto err_type; 2613 } else { 2614 verbose(env, "unsupported arg_type %d\n", arg_type); 2615 return -EFAULT; 2616 } 2617 2618 if (arg_type == ARG_CONST_MAP_PTR) { 2619 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2620 meta->map_ptr = reg->map_ptr; 2621 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2622 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2623 * check that [key, key + map->key_size) are within 2624 * stack limits and initialized 2625 */ 2626 if (!meta->map_ptr) { 2627 /* in function declaration map_ptr must come before 2628 * map_key, so that it's verified and known before 2629 * we have to check map_key here. Otherwise it means 2630 * that kernel subsystem misconfigured verifier 2631 */ 2632 verbose(env, "invalid map_ptr to access map->key\n"); 2633 return -EACCES; 2634 } 2635 err = check_helper_mem_access(env, regno, 2636 meta->map_ptr->key_size, false, 2637 NULL); 2638 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 2639 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 2640 !register_is_null(reg)) || 2641 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2642 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2643 * check [value, value + map->value_size) validity 2644 */ 2645 if (!meta->map_ptr) { 2646 /* kernel subsystem misconfigured verifier */ 2647 verbose(env, "invalid map_ptr to access map->value\n"); 2648 return -EACCES; 2649 } 2650 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 2651 err = check_helper_mem_access(env, regno, 2652 meta->map_ptr->value_size, false, 2653 meta); 2654 } else if (arg_type_is_mem_size(arg_type)) { 2655 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2656 2657 /* remember the mem_size which may be used later 2658 * to refine return values. 2659 */ 2660 meta->msize_smax_value = reg->smax_value; 2661 meta->msize_umax_value = reg->umax_value; 2662 2663 /* The register is SCALAR_VALUE; the access check 2664 * happens using its boundaries. 2665 */ 2666 if (!tnum_is_const(reg->var_off)) 2667 /* For unprivileged variable accesses, disable raw 2668 * mode so that the program is required to 2669 * initialize all the memory that the helper could 2670 * just partially fill up. 2671 */ 2672 meta = NULL; 2673 2674 if (reg->smin_value < 0) { 2675 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2676 regno); 2677 return -EACCES; 2678 } 2679 2680 if (reg->umin_value == 0) { 2681 err = check_helper_mem_access(env, regno - 1, 0, 2682 zero_size_allowed, 2683 meta); 2684 if (err) 2685 return err; 2686 } 2687 2688 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2689 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2690 regno); 2691 return -EACCES; 2692 } 2693 err = check_helper_mem_access(env, regno - 1, 2694 reg->umax_value, 2695 zero_size_allowed, meta); 2696 } else if (arg_type_is_int_ptr(arg_type)) { 2697 int size = int_ptr_type_to_size(arg_type); 2698 2699 err = check_helper_mem_access(env, regno, size, false, meta); 2700 if (err) 2701 return err; 2702 err = check_ptr_alignment(env, reg, 0, size, true); 2703 } 2704 2705 return err; 2706 err_type: 2707 verbose(env, "R%d type=%s expected=%s\n", regno, 2708 reg_type_str[type], reg_type_str[expected_type]); 2709 return -EACCES; 2710 } 2711 2712 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2713 struct bpf_map *map, int func_id) 2714 { 2715 if (!map) 2716 return 0; 2717 2718 /* We need a two way check, first is from map perspective ... */ 2719 switch (map->map_type) { 2720 case BPF_MAP_TYPE_PROG_ARRAY: 2721 if (func_id != BPF_FUNC_tail_call) 2722 goto error; 2723 break; 2724 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2725 if (func_id != BPF_FUNC_perf_event_read && 2726 func_id != BPF_FUNC_perf_event_output && 2727 func_id != BPF_FUNC_perf_event_read_value) 2728 goto error; 2729 break; 2730 case BPF_MAP_TYPE_STACK_TRACE: 2731 if (func_id != BPF_FUNC_get_stackid) 2732 goto error; 2733 break; 2734 case BPF_MAP_TYPE_CGROUP_ARRAY: 2735 if (func_id != BPF_FUNC_skb_under_cgroup && 2736 func_id != BPF_FUNC_current_task_under_cgroup) 2737 goto error; 2738 break; 2739 case BPF_MAP_TYPE_CGROUP_STORAGE: 2740 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 2741 if (func_id != BPF_FUNC_get_local_storage) 2742 goto error; 2743 break; 2744 /* devmap returns a pointer to a live net_device ifindex that we cannot 2745 * allow to be modified from bpf side. So do not allow lookup elements 2746 * for now. 2747 */ 2748 case BPF_MAP_TYPE_DEVMAP: 2749 if (func_id != BPF_FUNC_redirect_map) 2750 goto error; 2751 break; 2752 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2753 * appear. 2754 */ 2755 case BPF_MAP_TYPE_CPUMAP: 2756 case BPF_MAP_TYPE_XSKMAP: 2757 if (func_id != BPF_FUNC_redirect_map) 2758 goto error; 2759 break; 2760 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2761 case BPF_MAP_TYPE_HASH_OF_MAPS: 2762 if (func_id != BPF_FUNC_map_lookup_elem) 2763 goto error; 2764 break; 2765 case BPF_MAP_TYPE_SOCKMAP: 2766 if (func_id != BPF_FUNC_sk_redirect_map && 2767 func_id != BPF_FUNC_sock_map_update && 2768 func_id != BPF_FUNC_map_delete_elem && 2769 func_id != BPF_FUNC_msg_redirect_map) 2770 goto error; 2771 break; 2772 case BPF_MAP_TYPE_SOCKHASH: 2773 if (func_id != BPF_FUNC_sk_redirect_hash && 2774 func_id != BPF_FUNC_sock_hash_update && 2775 func_id != BPF_FUNC_map_delete_elem && 2776 func_id != BPF_FUNC_msg_redirect_hash) 2777 goto error; 2778 break; 2779 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2780 if (func_id != BPF_FUNC_sk_select_reuseport) 2781 goto error; 2782 break; 2783 case BPF_MAP_TYPE_QUEUE: 2784 case BPF_MAP_TYPE_STACK: 2785 if (func_id != BPF_FUNC_map_peek_elem && 2786 func_id != BPF_FUNC_map_pop_elem && 2787 func_id != BPF_FUNC_map_push_elem) 2788 goto error; 2789 break; 2790 case BPF_MAP_TYPE_SK_STORAGE: 2791 if (func_id != BPF_FUNC_sk_storage_get && 2792 func_id != BPF_FUNC_sk_storage_delete) 2793 goto error; 2794 break; 2795 default: 2796 break; 2797 } 2798 2799 /* ... and second from the function itself. */ 2800 switch (func_id) { 2801 case BPF_FUNC_tail_call: 2802 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2803 goto error; 2804 if (env->subprog_cnt > 1) { 2805 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2806 return -EINVAL; 2807 } 2808 break; 2809 case BPF_FUNC_perf_event_read: 2810 case BPF_FUNC_perf_event_output: 2811 case BPF_FUNC_perf_event_read_value: 2812 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2813 goto error; 2814 break; 2815 case BPF_FUNC_get_stackid: 2816 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2817 goto error; 2818 break; 2819 case BPF_FUNC_current_task_under_cgroup: 2820 case BPF_FUNC_skb_under_cgroup: 2821 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2822 goto error; 2823 break; 2824 case BPF_FUNC_redirect_map: 2825 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2826 map->map_type != BPF_MAP_TYPE_CPUMAP && 2827 map->map_type != BPF_MAP_TYPE_XSKMAP) 2828 goto error; 2829 break; 2830 case BPF_FUNC_sk_redirect_map: 2831 case BPF_FUNC_msg_redirect_map: 2832 case BPF_FUNC_sock_map_update: 2833 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2834 goto error; 2835 break; 2836 case BPF_FUNC_sk_redirect_hash: 2837 case BPF_FUNC_msg_redirect_hash: 2838 case BPF_FUNC_sock_hash_update: 2839 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2840 goto error; 2841 break; 2842 case BPF_FUNC_get_local_storage: 2843 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 2844 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 2845 goto error; 2846 break; 2847 case BPF_FUNC_sk_select_reuseport: 2848 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2849 goto error; 2850 break; 2851 case BPF_FUNC_map_peek_elem: 2852 case BPF_FUNC_map_pop_elem: 2853 case BPF_FUNC_map_push_elem: 2854 if (map->map_type != BPF_MAP_TYPE_QUEUE && 2855 map->map_type != BPF_MAP_TYPE_STACK) 2856 goto error; 2857 break; 2858 case BPF_FUNC_sk_storage_get: 2859 case BPF_FUNC_sk_storage_delete: 2860 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 2861 goto error; 2862 break; 2863 default: 2864 break; 2865 } 2866 2867 return 0; 2868 error: 2869 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2870 map->map_type, func_id_name(func_id), func_id); 2871 return -EINVAL; 2872 } 2873 2874 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2875 { 2876 int count = 0; 2877 2878 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2879 count++; 2880 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2881 count++; 2882 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2883 count++; 2884 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2885 count++; 2886 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2887 count++; 2888 2889 /* We only support one arg being in raw mode at the moment, 2890 * which is sufficient for the helper functions we have 2891 * right now. 2892 */ 2893 return count <= 1; 2894 } 2895 2896 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2897 enum bpf_arg_type arg_next) 2898 { 2899 return (arg_type_is_mem_ptr(arg_curr) && 2900 !arg_type_is_mem_size(arg_next)) || 2901 (!arg_type_is_mem_ptr(arg_curr) && 2902 arg_type_is_mem_size(arg_next)); 2903 } 2904 2905 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2906 { 2907 /* bpf_xxx(..., buf, len) call will access 'len' 2908 * bytes from memory 'buf'. Both arg types need 2909 * to be paired, so make sure there's no buggy 2910 * helper function specification. 2911 */ 2912 if (arg_type_is_mem_size(fn->arg1_type) || 2913 arg_type_is_mem_ptr(fn->arg5_type) || 2914 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2915 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2916 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2917 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2918 return false; 2919 2920 return true; 2921 } 2922 2923 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 2924 { 2925 int count = 0; 2926 2927 if (arg_type_may_be_refcounted(fn->arg1_type)) 2928 count++; 2929 if (arg_type_may_be_refcounted(fn->arg2_type)) 2930 count++; 2931 if (arg_type_may_be_refcounted(fn->arg3_type)) 2932 count++; 2933 if (arg_type_may_be_refcounted(fn->arg4_type)) 2934 count++; 2935 if (arg_type_may_be_refcounted(fn->arg5_type)) 2936 count++; 2937 2938 /* A reference acquiring function cannot acquire 2939 * another refcounted ptr. 2940 */ 2941 if (is_acquire_function(func_id) && count) 2942 return false; 2943 2944 /* We only support one arg being unreferenced at the moment, 2945 * which is sufficient for the helper functions we have right now. 2946 */ 2947 return count <= 1; 2948 } 2949 2950 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 2951 { 2952 return check_raw_mode_ok(fn) && 2953 check_arg_pair_ok(fn) && 2954 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 2955 } 2956 2957 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2958 * are now invalid, so turn them into unknown SCALAR_VALUE. 2959 */ 2960 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2961 struct bpf_func_state *state) 2962 { 2963 struct bpf_reg_state *regs = state->regs, *reg; 2964 int i; 2965 2966 for (i = 0; i < MAX_BPF_REG; i++) 2967 if (reg_is_pkt_pointer_any(®s[i])) 2968 mark_reg_unknown(env, regs, i); 2969 2970 bpf_for_each_spilled_reg(i, state, reg) { 2971 if (!reg) 2972 continue; 2973 if (reg_is_pkt_pointer_any(reg)) 2974 __mark_reg_unknown(reg); 2975 } 2976 } 2977 2978 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2979 { 2980 struct bpf_verifier_state *vstate = env->cur_state; 2981 int i; 2982 2983 for (i = 0; i <= vstate->curframe; i++) 2984 __clear_all_pkt_pointers(env, vstate->frame[i]); 2985 } 2986 2987 static void release_reg_references(struct bpf_verifier_env *env, 2988 struct bpf_func_state *state, 2989 int ref_obj_id) 2990 { 2991 struct bpf_reg_state *regs = state->regs, *reg; 2992 int i; 2993 2994 for (i = 0; i < MAX_BPF_REG; i++) 2995 if (regs[i].ref_obj_id == ref_obj_id) 2996 mark_reg_unknown(env, regs, i); 2997 2998 bpf_for_each_spilled_reg(i, state, reg) { 2999 if (!reg) 3000 continue; 3001 if (reg->ref_obj_id == ref_obj_id) 3002 __mark_reg_unknown(reg); 3003 } 3004 } 3005 3006 /* The pointer with the specified id has released its reference to kernel 3007 * resources. Identify all copies of the same pointer and clear the reference. 3008 */ 3009 static int release_reference(struct bpf_verifier_env *env, 3010 int ref_obj_id) 3011 { 3012 struct bpf_verifier_state *vstate = env->cur_state; 3013 int err; 3014 int i; 3015 3016 err = release_reference_state(cur_func(env), ref_obj_id); 3017 if (err) 3018 return err; 3019 3020 for (i = 0; i <= vstate->curframe; i++) 3021 release_reg_references(env, vstate->frame[i], ref_obj_id); 3022 3023 return 0; 3024 } 3025 3026 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 3027 int *insn_idx) 3028 { 3029 struct bpf_verifier_state *state = env->cur_state; 3030 struct bpf_func_state *caller, *callee; 3031 int i, err, subprog, target_insn; 3032 3033 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 3034 verbose(env, "the call stack of %d frames is too deep\n", 3035 state->curframe + 2); 3036 return -E2BIG; 3037 } 3038 3039 target_insn = *insn_idx + insn->imm; 3040 subprog = find_subprog(env, target_insn + 1); 3041 if (subprog < 0) { 3042 verbose(env, "verifier bug. No program starts at insn %d\n", 3043 target_insn + 1); 3044 return -EFAULT; 3045 } 3046 3047 caller = state->frame[state->curframe]; 3048 if (state->frame[state->curframe + 1]) { 3049 verbose(env, "verifier bug. Frame %d already allocated\n", 3050 state->curframe + 1); 3051 return -EFAULT; 3052 } 3053 3054 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 3055 if (!callee) 3056 return -ENOMEM; 3057 state->frame[state->curframe + 1] = callee; 3058 3059 /* callee cannot access r0, r6 - r9 for reading and has to write 3060 * into its own stack before reading from it. 3061 * callee can read/write into caller's stack 3062 */ 3063 init_func_state(env, callee, 3064 /* remember the callsite, it will be used by bpf_exit */ 3065 *insn_idx /* callsite */, 3066 state->curframe + 1 /* frameno within this callchain */, 3067 subprog /* subprog number within this prog */); 3068 3069 /* Transfer references to the callee */ 3070 err = transfer_reference_state(callee, caller); 3071 if (err) 3072 return err; 3073 3074 /* copy r1 - r5 args that callee can access. The copy includes parent 3075 * pointers, which connects us up to the liveness chain 3076 */ 3077 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3078 callee->regs[i] = caller->regs[i]; 3079 3080 /* after the call registers r0 - r5 were scratched */ 3081 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3082 mark_reg_not_init(env, caller->regs, caller_saved[i]); 3083 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3084 } 3085 3086 /* only increment it after check_reg_arg() finished */ 3087 state->curframe++; 3088 3089 /* and go analyze first insn of the callee */ 3090 *insn_idx = target_insn; 3091 3092 if (env->log.level & BPF_LOG_LEVEL) { 3093 verbose(env, "caller:\n"); 3094 print_verifier_state(env, caller); 3095 verbose(env, "callee:\n"); 3096 print_verifier_state(env, callee); 3097 } 3098 return 0; 3099 } 3100 3101 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 3102 { 3103 struct bpf_verifier_state *state = env->cur_state; 3104 struct bpf_func_state *caller, *callee; 3105 struct bpf_reg_state *r0; 3106 int err; 3107 3108 callee = state->frame[state->curframe]; 3109 r0 = &callee->regs[BPF_REG_0]; 3110 if (r0->type == PTR_TO_STACK) { 3111 /* technically it's ok to return caller's stack pointer 3112 * (or caller's caller's pointer) back to the caller, 3113 * since these pointers are valid. Only current stack 3114 * pointer will be invalid as soon as function exits, 3115 * but let's be conservative 3116 */ 3117 verbose(env, "cannot return stack pointer to the caller\n"); 3118 return -EINVAL; 3119 } 3120 3121 state->curframe--; 3122 caller = state->frame[state->curframe]; 3123 /* return to the caller whatever r0 had in the callee */ 3124 caller->regs[BPF_REG_0] = *r0; 3125 3126 /* Transfer references to the caller */ 3127 err = transfer_reference_state(caller, callee); 3128 if (err) 3129 return err; 3130 3131 *insn_idx = callee->callsite + 1; 3132 if (env->log.level & BPF_LOG_LEVEL) { 3133 verbose(env, "returning from callee:\n"); 3134 print_verifier_state(env, callee); 3135 verbose(env, "to caller at %d:\n", *insn_idx); 3136 print_verifier_state(env, caller); 3137 } 3138 /* clear everything in the callee */ 3139 free_func_state(callee); 3140 state->frame[state->curframe + 1] = NULL; 3141 return 0; 3142 } 3143 3144 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 3145 int func_id, 3146 struct bpf_call_arg_meta *meta) 3147 { 3148 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 3149 3150 if (ret_type != RET_INTEGER || 3151 (func_id != BPF_FUNC_get_stack && 3152 func_id != BPF_FUNC_probe_read_str)) 3153 return; 3154 3155 ret_reg->smax_value = meta->msize_smax_value; 3156 ret_reg->umax_value = meta->msize_umax_value; 3157 __reg_deduce_bounds(ret_reg); 3158 __reg_bound_offset(ret_reg); 3159 } 3160 3161 static int 3162 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 3163 int func_id, int insn_idx) 3164 { 3165 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 3166 struct bpf_map *map = meta->map_ptr; 3167 3168 if (func_id != BPF_FUNC_tail_call && 3169 func_id != BPF_FUNC_map_lookup_elem && 3170 func_id != BPF_FUNC_map_update_elem && 3171 func_id != BPF_FUNC_map_delete_elem && 3172 func_id != BPF_FUNC_map_push_elem && 3173 func_id != BPF_FUNC_map_pop_elem && 3174 func_id != BPF_FUNC_map_peek_elem) 3175 return 0; 3176 3177 if (map == NULL) { 3178 verbose(env, "kernel subsystem misconfigured verifier\n"); 3179 return -EINVAL; 3180 } 3181 3182 /* In case of read-only, some additional restrictions 3183 * need to be applied in order to prevent altering the 3184 * state of the map from program side. 3185 */ 3186 if ((map->map_flags & BPF_F_RDONLY_PROG) && 3187 (func_id == BPF_FUNC_map_delete_elem || 3188 func_id == BPF_FUNC_map_update_elem || 3189 func_id == BPF_FUNC_map_push_elem || 3190 func_id == BPF_FUNC_map_pop_elem)) { 3191 verbose(env, "write into map forbidden\n"); 3192 return -EACCES; 3193 } 3194 3195 if (!BPF_MAP_PTR(aux->map_state)) 3196 bpf_map_ptr_store(aux, meta->map_ptr, 3197 meta->map_ptr->unpriv_array); 3198 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 3199 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 3200 meta->map_ptr->unpriv_array); 3201 return 0; 3202 } 3203 3204 static int check_reference_leak(struct bpf_verifier_env *env) 3205 { 3206 struct bpf_func_state *state = cur_func(env); 3207 int i; 3208 3209 for (i = 0; i < state->acquired_refs; i++) { 3210 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 3211 state->refs[i].id, state->refs[i].insn_idx); 3212 } 3213 return state->acquired_refs ? -EINVAL : 0; 3214 } 3215 3216 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 3217 { 3218 const struct bpf_func_proto *fn = NULL; 3219 struct bpf_reg_state *regs; 3220 struct bpf_call_arg_meta meta; 3221 bool changes_data; 3222 int i, err; 3223 3224 /* find function prototype */ 3225 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 3226 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 3227 func_id); 3228 return -EINVAL; 3229 } 3230 3231 if (env->ops->get_func_proto) 3232 fn = env->ops->get_func_proto(func_id, env->prog); 3233 if (!fn) { 3234 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 3235 func_id); 3236 return -EINVAL; 3237 } 3238 3239 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 3240 if (!env->prog->gpl_compatible && fn->gpl_only) { 3241 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 3242 return -EINVAL; 3243 } 3244 3245 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 3246 changes_data = bpf_helper_changes_pkt_data(fn->func); 3247 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 3248 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 3249 func_id_name(func_id), func_id); 3250 return -EINVAL; 3251 } 3252 3253 memset(&meta, 0, sizeof(meta)); 3254 meta.pkt_access = fn->pkt_access; 3255 3256 err = check_func_proto(fn, func_id); 3257 if (err) { 3258 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 3259 func_id_name(func_id), func_id); 3260 return err; 3261 } 3262 3263 meta.func_id = func_id; 3264 /* check args */ 3265 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 3266 if (err) 3267 return err; 3268 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 3269 if (err) 3270 return err; 3271 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 3272 if (err) 3273 return err; 3274 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 3275 if (err) 3276 return err; 3277 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 3278 if (err) 3279 return err; 3280 3281 err = record_func_map(env, &meta, func_id, insn_idx); 3282 if (err) 3283 return err; 3284 3285 /* Mark slots with STACK_MISC in case of raw mode, stack offset 3286 * is inferred from register state. 3287 */ 3288 for (i = 0; i < meta.access_size; i++) { 3289 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 3290 BPF_WRITE, -1, false); 3291 if (err) 3292 return err; 3293 } 3294 3295 if (func_id == BPF_FUNC_tail_call) { 3296 err = check_reference_leak(env); 3297 if (err) { 3298 verbose(env, "tail_call would lead to reference leak\n"); 3299 return err; 3300 } 3301 } else if (is_release_function(func_id)) { 3302 err = release_reference(env, meta.ref_obj_id); 3303 if (err) { 3304 verbose(env, "func %s#%d reference has not been acquired before\n", 3305 func_id_name(func_id), func_id); 3306 return err; 3307 } 3308 } 3309 3310 regs = cur_regs(env); 3311 3312 /* check that flags argument in get_local_storage(map, flags) is 0, 3313 * this is required because get_local_storage() can't return an error. 3314 */ 3315 if (func_id == BPF_FUNC_get_local_storage && 3316 !register_is_null(®s[BPF_REG_2])) { 3317 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 3318 return -EINVAL; 3319 } 3320 3321 /* reset caller saved regs */ 3322 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3323 mark_reg_not_init(env, regs, caller_saved[i]); 3324 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3325 } 3326 3327 /* update return register (already marked as written above) */ 3328 if (fn->ret_type == RET_INTEGER) { 3329 /* sets type to SCALAR_VALUE */ 3330 mark_reg_unknown(env, regs, BPF_REG_0); 3331 } else if (fn->ret_type == RET_VOID) { 3332 regs[BPF_REG_0].type = NOT_INIT; 3333 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 3334 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 3335 /* There is no offset yet applied, variable or fixed */ 3336 mark_reg_known_zero(env, regs, BPF_REG_0); 3337 /* remember map_ptr, so that check_map_access() 3338 * can check 'value_size' boundary of memory access 3339 * to map element returned from bpf_map_lookup_elem() 3340 */ 3341 if (meta.map_ptr == NULL) { 3342 verbose(env, 3343 "kernel subsystem misconfigured verifier\n"); 3344 return -EINVAL; 3345 } 3346 regs[BPF_REG_0].map_ptr = meta.map_ptr; 3347 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 3348 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 3349 if (map_value_has_spin_lock(meta.map_ptr)) 3350 regs[BPF_REG_0].id = ++env->id_gen; 3351 } else { 3352 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 3353 regs[BPF_REG_0].id = ++env->id_gen; 3354 } 3355 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 3356 mark_reg_known_zero(env, regs, BPF_REG_0); 3357 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 3358 regs[BPF_REG_0].id = ++env->id_gen; 3359 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 3360 mark_reg_known_zero(env, regs, BPF_REG_0); 3361 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 3362 regs[BPF_REG_0].id = ++env->id_gen; 3363 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 3364 mark_reg_known_zero(env, regs, BPF_REG_0); 3365 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 3366 regs[BPF_REG_0].id = ++env->id_gen; 3367 } else { 3368 verbose(env, "unknown return type %d of func %s#%d\n", 3369 fn->ret_type, func_id_name(func_id), func_id); 3370 return -EINVAL; 3371 } 3372 3373 if (is_ptr_cast_function(func_id)) { 3374 /* For release_reference() */ 3375 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 3376 } else if (is_acquire_function(func_id)) { 3377 int id = acquire_reference_state(env, insn_idx); 3378 3379 if (id < 0) 3380 return id; 3381 /* For mark_ptr_or_null_reg() */ 3382 regs[BPF_REG_0].id = id; 3383 /* For release_reference() */ 3384 regs[BPF_REG_0].ref_obj_id = id; 3385 } 3386 3387 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 3388 3389 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 3390 if (err) 3391 return err; 3392 3393 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 3394 const char *err_str; 3395 3396 #ifdef CONFIG_PERF_EVENTS 3397 err = get_callchain_buffers(sysctl_perf_event_max_stack); 3398 err_str = "cannot get callchain buffer for func %s#%d\n"; 3399 #else 3400 err = -ENOTSUPP; 3401 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 3402 #endif 3403 if (err) { 3404 verbose(env, err_str, func_id_name(func_id), func_id); 3405 return err; 3406 } 3407 3408 env->prog->has_callchain_buf = true; 3409 } 3410 3411 if (changes_data) 3412 clear_all_pkt_pointers(env); 3413 return 0; 3414 } 3415 3416 static bool signed_add_overflows(s64 a, s64 b) 3417 { 3418 /* Do the add in u64, where overflow is well-defined */ 3419 s64 res = (s64)((u64)a + (u64)b); 3420 3421 if (b < 0) 3422 return res > a; 3423 return res < a; 3424 } 3425 3426 static bool signed_sub_overflows(s64 a, s64 b) 3427 { 3428 /* Do the sub in u64, where overflow is well-defined */ 3429 s64 res = (s64)((u64)a - (u64)b); 3430 3431 if (b < 0) 3432 return res < a; 3433 return res > a; 3434 } 3435 3436 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 3437 const struct bpf_reg_state *reg, 3438 enum bpf_reg_type type) 3439 { 3440 bool known = tnum_is_const(reg->var_off); 3441 s64 val = reg->var_off.value; 3442 s64 smin = reg->smin_value; 3443 3444 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 3445 verbose(env, "math between %s pointer and %lld is not allowed\n", 3446 reg_type_str[type], val); 3447 return false; 3448 } 3449 3450 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 3451 verbose(env, "%s pointer offset %d is not allowed\n", 3452 reg_type_str[type], reg->off); 3453 return false; 3454 } 3455 3456 if (smin == S64_MIN) { 3457 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 3458 reg_type_str[type]); 3459 return false; 3460 } 3461 3462 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 3463 verbose(env, "value %lld makes %s pointer be out of bounds\n", 3464 smin, reg_type_str[type]); 3465 return false; 3466 } 3467 3468 return true; 3469 } 3470 3471 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 3472 { 3473 return &env->insn_aux_data[env->insn_idx]; 3474 } 3475 3476 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 3477 u32 *ptr_limit, u8 opcode, bool off_is_neg) 3478 { 3479 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 3480 (opcode == BPF_SUB && !off_is_neg); 3481 u32 off; 3482 3483 switch (ptr_reg->type) { 3484 case PTR_TO_STACK: 3485 /* Indirect variable offset stack access is prohibited in 3486 * unprivileged mode so it's not handled here. 3487 */ 3488 off = ptr_reg->off + ptr_reg->var_off.value; 3489 if (mask_to_left) 3490 *ptr_limit = MAX_BPF_STACK + off; 3491 else 3492 *ptr_limit = -off; 3493 return 0; 3494 case PTR_TO_MAP_VALUE: 3495 if (mask_to_left) { 3496 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 3497 } else { 3498 off = ptr_reg->smin_value + ptr_reg->off; 3499 *ptr_limit = ptr_reg->map_ptr->value_size - off; 3500 } 3501 return 0; 3502 default: 3503 return -EINVAL; 3504 } 3505 } 3506 3507 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 3508 const struct bpf_insn *insn) 3509 { 3510 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 3511 } 3512 3513 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 3514 u32 alu_state, u32 alu_limit) 3515 { 3516 /* If we arrived here from different branches with different 3517 * state or limits to sanitize, then this won't work. 3518 */ 3519 if (aux->alu_state && 3520 (aux->alu_state != alu_state || 3521 aux->alu_limit != alu_limit)) 3522 return -EACCES; 3523 3524 /* Corresponding fixup done in fixup_bpf_calls(). */ 3525 aux->alu_state = alu_state; 3526 aux->alu_limit = alu_limit; 3527 return 0; 3528 } 3529 3530 static int sanitize_val_alu(struct bpf_verifier_env *env, 3531 struct bpf_insn *insn) 3532 { 3533 struct bpf_insn_aux_data *aux = cur_aux(env); 3534 3535 if (can_skip_alu_sanitation(env, insn)) 3536 return 0; 3537 3538 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 3539 } 3540 3541 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 3542 struct bpf_insn *insn, 3543 const struct bpf_reg_state *ptr_reg, 3544 struct bpf_reg_state *dst_reg, 3545 bool off_is_neg) 3546 { 3547 struct bpf_verifier_state *vstate = env->cur_state; 3548 struct bpf_insn_aux_data *aux = cur_aux(env); 3549 bool ptr_is_dst_reg = ptr_reg == dst_reg; 3550 u8 opcode = BPF_OP(insn->code); 3551 u32 alu_state, alu_limit; 3552 struct bpf_reg_state tmp; 3553 bool ret; 3554 3555 if (can_skip_alu_sanitation(env, insn)) 3556 return 0; 3557 3558 /* We already marked aux for masking from non-speculative 3559 * paths, thus we got here in the first place. We only care 3560 * to explore bad access from here. 3561 */ 3562 if (vstate->speculative) 3563 goto do_sim; 3564 3565 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 3566 alu_state |= ptr_is_dst_reg ? 3567 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 3568 3569 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 3570 return 0; 3571 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 3572 return -EACCES; 3573 do_sim: 3574 /* Simulate and find potential out-of-bounds access under 3575 * speculative execution from truncation as a result of 3576 * masking when off was not within expected range. If off 3577 * sits in dst, then we temporarily need to move ptr there 3578 * to simulate dst (== 0) +/-= ptr. Needed, for example, 3579 * for cases where we use K-based arithmetic in one direction 3580 * and truncated reg-based in the other in order to explore 3581 * bad access. 3582 */ 3583 if (!ptr_is_dst_reg) { 3584 tmp = *dst_reg; 3585 *dst_reg = *ptr_reg; 3586 } 3587 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 3588 if (!ptr_is_dst_reg && ret) 3589 *dst_reg = tmp; 3590 return !ret ? -EFAULT : 0; 3591 } 3592 3593 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 3594 * Caller should also handle BPF_MOV case separately. 3595 * If we return -EACCES, caller may want to try again treating pointer as a 3596 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 3597 */ 3598 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 3599 struct bpf_insn *insn, 3600 const struct bpf_reg_state *ptr_reg, 3601 const struct bpf_reg_state *off_reg) 3602 { 3603 struct bpf_verifier_state *vstate = env->cur_state; 3604 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3605 struct bpf_reg_state *regs = state->regs, *dst_reg; 3606 bool known = tnum_is_const(off_reg->var_off); 3607 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 3608 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 3609 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 3610 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 3611 u32 dst = insn->dst_reg, src = insn->src_reg; 3612 u8 opcode = BPF_OP(insn->code); 3613 int ret; 3614 3615 dst_reg = ®s[dst]; 3616 3617 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 3618 smin_val > smax_val || umin_val > umax_val) { 3619 /* Taint dst register if offset had invalid bounds derived from 3620 * e.g. dead branches. 3621 */ 3622 __mark_reg_unknown(dst_reg); 3623 return 0; 3624 } 3625 3626 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3627 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 3628 verbose(env, 3629 "R%d 32-bit pointer arithmetic prohibited\n", 3630 dst); 3631 return -EACCES; 3632 } 3633 3634 switch (ptr_reg->type) { 3635 case PTR_TO_MAP_VALUE_OR_NULL: 3636 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 3637 dst, reg_type_str[ptr_reg->type]); 3638 return -EACCES; 3639 case CONST_PTR_TO_MAP: 3640 case PTR_TO_PACKET_END: 3641 case PTR_TO_SOCKET: 3642 case PTR_TO_SOCKET_OR_NULL: 3643 case PTR_TO_SOCK_COMMON: 3644 case PTR_TO_SOCK_COMMON_OR_NULL: 3645 case PTR_TO_TCP_SOCK: 3646 case PTR_TO_TCP_SOCK_OR_NULL: 3647 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 3648 dst, reg_type_str[ptr_reg->type]); 3649 return -EACCES; 3650 case PTR_TO_MAP_VALUE: 3651 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 3652 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 3653 off_reg == dst_reg ? dst : src); 3654 return -EACCES; 3655 } 3656 /* fall-through */ 3657 default: 3658 break; 3659 } 3660 3661 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 3662 * The id may be overwritten later if we create a new variable offset. 3663 */ 3664 dst_reg->type = ptr_reg->type; 3665 dst_reg->id = ptr_reg->id; 3666 3667 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 3668 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 3669 return -EINVAL; 3670 3671 switch (opcode) { 3672 case BPF_ADD: 3673 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3674 if (ret < 0) { 3675 verbose(env, "R%d tried to add from different maps or paths\n", dst); 3676 return ret; 3677 } 3678 /* We can take a fixed offset as long as it doesn't overflow 3679 * the s32 'off' field 3680 */ 3681 if (known && (ptr_reg->off + smin_val == 3682 (s64)(s32)(ptr_reg->off + smin_val))) { 3683 /* pointer += K. Accumulate it into fixed offset */ 3684 dst_reg->smin_value = smin_ptr; 3685 dst_reg->smax_value = smax_ptr; 3686 dst_reg->umin_value = umin_ptr; 3687 dst_reg->umax_value = umax_ptr; 3688 dst_reg->var_off = ptr_reg->var_off; 3689 dst_reg->off = ptr_reg->off + smin_val; 3690 dst_reg->raw = ptr_reg->raw; 3691 break; 3692 } 3693 /* A new variable offset is created. Note that off_reg->off 3694 * == 0, since it's a scalar. 3695 * dst_reg gets the pointer type and since some positive 3696 * integer value was added to the pointer, give it a new 'id' 3697 * if it's a PTR_TO_PACKET. 3698 * this creates a new 'base' pointer, off_reg (variable) gets 3699 * added into the variable offset, and we copy the fixed offset 3700 * from ptr_reg. 3701 */ 3702 if (signed_add_overflows(smin_ptr, smin_val) || 3703 signed_add_overflows(smax_ptr, smax_val)) { 3704 dst_reg->smin_value = S64_MIN; 3705 dst_reg->smax_value = S64_MAX; 3706 } else { 3707 dst_reg->smin_value = smin_ptr + smin_val; 3708 dst_reg->smax_value = smax_ptr + smax_val; 3709 } 3710 if (umin_ptr + umin_val < umin_ptr || 3711 umax_ptr + umax_val < umax_ptr) { 3712 dst_reg->umin_value = 0; 3713 dst_reg->umax_value = U64_MAX; 3714 } else { 3715 dst_reg->umin_value = umin_ptr + umin_val; 3716 dst_reg->umax_value = umax_ptr + umax_val; 3717 } 3718 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 3719 dst_reg->off = ptr_reg->off; 3720 dst_reg->raw = ptr_reg->raw; 3721 if (reg_is_pkt_pointer(ptr_reg)) { 3722 dst_reg->id = ++env->id_gen; 3723 /* something was added to pkt_ptr, set range to zero */ 3724 dst_reg->raw = 0; 3725 } 3726 break; 3727 case BPF_SUB: 3728 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3729 if (ret < 0) { 3730 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 3731 return ret; 3732 } 3733 if (dst_reg == off_reg) { 3734 /* scalar -= pointer. Creates an unknown scalar */ 3735 verbose(env, "R%d tried to subtract pointer from scalar\n", 3736 dst); 3737 return -EACCES; 3738 } 3739 /* We don't allow subtraction from FP, because (according to 3740 * test_verifier.c test "invalid fp arithmetic", JITs might not 3741 * be able to deal with it. 3742 */ 3743 if (ptr_reg->type == PTR_TO_STACK) { 3744 verbose(env, "R%d subtraction from stack pointer prohibited\n", 3745 dst); 3746 return -EACCES; 3747 } 3748 if (known && (ptr_reg->off - smin_val == 3749 (s64)(s32)(ptr_reg->off - smin_val))) { 3750 /* pointer -= K. Subtract it from fixed offset */ 3751 dst_reg->smin_value = smin_ptr; 3752 dst_reg->smax_value = smax_ptr; 3753 dst_reg->umin_value = umin_ptr; 3754 dst_reg->umax_value = umax_ptr; 3755 dst_reg->var_off = ptr_reg->var_off; 3756 dst_reg->id = ptr_reg->id; 3757 dst_reg->off = ptr_reg->off - smin_val; 3758 dst_reg->raw = ptr_reg->raw; 3759 break; 3760 } 3761 /* A new variable offset is created. If the subtrahend is known 3762 * nonnegative, then any reg->range we had before is still good. 3763 */ 3764 if (signed_sub_overflows(smin_ptr, smax_val) || 3765 signed_sub_overflows(smax_ptr, smin_val)) { 3766 /* Overflow possible, we know nothing */ 3767 dst_reg->smin_value = S64_MIN; 3768 dst_reg->smax_value = S64_MAX; 3769 } else { 3770 dst_reg->smin_value = smin_ptr - smax_val; 3771 dst_reg->smax_value = smax_ptr - smin_val; 3772 } 3773 if (umin_ptr < umax_val) { 3774 /* Overflow possible, we know nothing */ 3775 dst_reg->umin_value = 0; 3776 dst_reg->umax_value = U64_MAX; 3777 } else { 3778 /* Cannot overflow (as long as bounds are consistent) */ 3779 dst_reg->umin_value = umin_ptr - umax_val; 3780 dst_reg->umax_value = umax_ptr - umin_val; 3781 } 3782 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 3783 dst_reg->off = ptr_reg->off; 3784 dst_reg->raw = ptr_reg->raw; 3785 if (reg_is_pkt_pointer(ptr_reg)) { 3786 dst_reg->id = ++env->id_gen; 3787 /* something was added to pkt_ptr, set range to zero */ 3788 if (smin_val < 0) 3789 dst_reg->raw = 0; 3790 } 3791 break; 3792 case BPF_AND: 3793 case BPF_OR: 3794 case BPF_XOR: 3795 /* bitwise ops on pointers are troublesome, prohibit. */ 3796 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 3797 dst, bpf_alu_string[opcode >> 4]); 3798 return -EACCES; 3799 default: 3800 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 3801 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 3802 dst, bpf_alu_string[opcode >> 4]); 3803 return -EACCES; 3804 } 3805 3806 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 3807 return -EINVAL; 3808 3809 __update_reg_bounds(dst_reg); 3810 __reg_deduce_bounds(dst_reg); 3811 __reg_bound_offset(dst_reg); 3812 3813 /* For unprivileged we require that resulting offset must be in bounds 3814 * in order to be able to sanitize access later on. 3815 */ 3816 if (!env->allow_ptr_leaks) { 3817 if (dst_reg->type == PTR_TO_MAP_VALUE && 3818 check_map_access(env, dst, dst_reg->off, 1, false)) { 3819 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 3820 "prohibited for !root\n", dst); 3821 return -EACCES; 3822 } else if (dst_reg->type == PTR_TO_STACK && 3823 check_stack_access(env, dst_reg, dst_reg->off + 3824 dst_reg->var_off.value, 1)) { 3825 verbose(env, "R%d stack pointer arithmetic goes out of range, " 3826 "prohibited for !root\n", dst); 3827 return -EACCES; 3828 } 3829 } 3830 3831 return 0; 3832 } 3833 3834 /* WARNING: This function does calculations on 64-bit values, but the actual 3835 * execution may occur on 32-bit values. Therefore, things like bitshifts 3836 * need extra checks in the 32-bit case. 3837 */ 3838 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 3839 struct bpf_insn *insn, 3840 struct bpf_reg_state *dst_reg, 3841 struct bpf_reg_state src_reg) 3842 { 3843 struct bpf_reg_state *regs = cur_regs(env); 3844 u8 opcode = BPF_OP(insn->code); 3845 bool src_known, dst_known; 3846 s64 smin_val, smax_val; 3847 u64 umin_val, umax_val; 3848 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 3849 u32 dst = insn->dst_reg; 3850 int ret; 3851 3852 if (insn_bitness == 32) { 3853 /* Relevant for 32-bit RSH: Information can propagate towards 3854 * LSB, so it isn't sufficient to only truncate the output to 3855 * 32 bits. 3856 */ 3857 coerce_reg_to_size(dst_reg, 4); 3858 coerce_reg_to_size(&src_reg, 4); 3859 } 3860 3861 smin_val = src_reg.smin_value; 3862 smax_val = src_reg.smax_value; 3863 umin_val = src_reg.umin_value; 3864 umax_val = src_reg.umax_value; 3865 src_known = tnum_is_const(src_reg.var_off); 3866 dst_known = tnum_is_const(dst_reg->var_off); 3867 3868 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 3869 smin_val > smax_val || umin_val > umax_val) { 3870 /* Taint dst register if offset had invalid bounds derived from 3871 * e.g. dead branches. 3872 */ 3873 __mark_reg_unknown(dst_reg); 3874 return 0; 3875 } 3876 3877 if (!src_known && 3878 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 3879 __mark_reg_unknown(dst_reg); 3880 return 0; 3881 } 3882 3883 switch (opcode) { 3884 case BPF_ADD: 3885 ret = sanitize_val_alu(env, insn); 3886 if (ret < 0) { 3887 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 3888 return ret; 3889 } 3890 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 3891 signed_add_overflows(dst_reg->smax_value, smax_val)) { 3892 dst_reg->smin_value = S64_MIN; 3893 dst_reg->smax_value = S64_MAX; 3894 } else { 3895 dst_reg->smin_value += smin_val; 3896 dst_reg->smax_value += smax_val; 3897 } 3898 if (dst_reg->umin_value + umin_val < umin_val || 3899 dst_reg->umax_value + umax_val < umax_val) { 3900 dst_reg->umin_value = 0; 3901 dst_reg->umax_value = U64_MAX; 3902 } else { 3903 dst_reg->umin_value += umin_val; 3904 dst_reg->umax_value += umax_val; 3905 } 3906 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 3907 break; 3908 case BPF_SUB: 3909 ret = sanitize_val_alu(env, insn); 3910 if (ret < 0) { 3911 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 3912 return ret; 3913 } 3914 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 3915 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 3916 /* Overflow possible, we know nothing */ 3917 dst_reg->smin_value = S64_MIN; 3918 dst_reg->smax_value = S64_MAX; 3919 } else { 3920 dst_reg->smin_value -= smax_val; 3921 dst_reg->smax_value -= smin_val; 3922 } 3923 if (dst_reg->umin_value < umax_val) { 3924 /* Overflow possible, we know nothing */ 3925 dst_reg->umin_value = 0; 3926 dst_reg->umax_value = U64_MAX; 3927 } else { 3928 /* Cannot overflow (as long as bounds are consistent) */ 3929 dst_reg->umin_value -= umax_val; 3930 dst_reg->umax_value -= umin_val; 3931 } 3932 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 3933 break; 3934 case BPF_MUL: 3935 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 3936 if (smin_val < 0 || dst_reg->smin_value < 0) { 3937 /* Ain't nobody got time to multiply that sign */ 3938 __mark_reg_unbounded(dst_reg); 3939 __update_reg_bounds(dst_reg); 3940 break; 3941 } 3942 /* Both values are positive, so we can work with unsigned and 3943 * copy the result to signed (unless it exceeds S64_MAX). 3944 */ 3945 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 3946 /* Potential overflow, we know nothing */ 3947 __mark_reg_unbounded(dst_reg); 3948 /* (except what we can learn from the var_off) */ 3949 __update_reg_bounds(dst_reg); 3950 break; 3951 } 3952 dst_reg->umin_value *= umin_val; 3953 dst_reg->umax_value *= umax_val; 3954 if (dst_reg->umax_value > S64_MAX) { 3955 /* Overflow possible, we know nothing */ 3956 dst_reg->smin_value = S64_MIN; 3957 dst_reg->smax_value = S64_MAX; 3958 } else { 3959 dst_reg->smin_value = dst_reg->umin_value; 3960 dst_reg->smax_value = dst_reg->umax_value; 3961 } 3962 break; 3963 case BPF_AND: 3964 if (src_known && dst_known) { 3965 __mark_reg_known(dst_reg, dst_reg->var_off.value & 3966 src_reg.var_off.value); 3967 break; 3968 } 3969 /* We get our minimum from the var_off, since that's inherently 3970 * bitwise. Our maximum is the minimum of the operands' maxima. 3971 */ 3972 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 3973 dst_reg->umin_value = dst_reg->var_off.value; 3974 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 3975 if (dst_reg->smin_value < 0 || smin_val < 0) { 3976 /* Lose signed bounds when ANDing negative numbers, 3977 * ain't nobody got time for that. 3978 */ 3979 dst_reg->smin_value = S64_MIN; 3980 dst_reg->smax_value = S64_MAX; 3981 } else { 3982 /* ANDing two positives gives a positive, so safe to 3983 * cast result into s64. 3984 */ 3985 dst_reg->smin_value = dst_reg->umin_value; 3986 dst_reg->smax_value = dst_reg->umax_value; 3987 } 3988 /* We may learn something more from the var_off */ 3989 __update_reg_bounds(dst_reg); 3990 break; 3991 case BPF_OR: 3992 if (src_known && dst_known) { 3993 __mark_reg_known(dst_reg, dst_reg->var_off.value | 3994 src_reg.var_off.value); 3995 break; 3996 } 3997 /* We get our maximum from the var_off, and our minimum is the 3998 * maximum of the operands' minima 3999 */ 4000 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 4001 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 4002 dst_reg->umax_value = dst_reg->var_off.value | 4003 dst_reg->var_off.mask; 4004 if (dst_reg->smin_value < 0 || smin_val < 0) { 4005 /* Lose signed bounds when ORing negative numbers, 4006 * ain't nobody got time for that. 4007 */ 4008 dst_reg->smin_value = S64_MIN; 4009 dst_reg->smax_value = S64_MAX; 4010 } else { 4011 /* ORing two positives gives a positive, so safe to 4012 * cast result into s64. 4013 */ 4014 dst_reg->smin_value = dst_reg->umin_value; 4015 dst_reg->smax_value = dst_reg->umax_value; 4016 } 4017 /* We may learn something more from the var_off */ 4018 __update_reg_bounds(dst_reg); 4019 break; 4020 case BPF_LSH: 4021 if (umax_val >= insn_bitness) { 4022 /* Shifts greater than 31 or 63 are undefined. 4023 * This includes shifts by a negative number. 4024 */ 4025 mark_reg_unknown(env, regs, insn->dst_reg); 4026 break; 4027 } 4028 /* We lose all sign bit information (except what we can pick 4029 * up from var_off) 4030 */ 4031 dst_reg->smin_value = S64_MIN; 4032 dst_reg->smax_value = S64_MAX; 4033 /* If we might shift our top bit out, then we know nothing */ 4034 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 4035 dst_reg->umin_value = 0; 4036 dst_reg->umax_value = U64_MAX; 4037 } else { 4038 dst_reg->umin_value <<= umin_val; 4039 dst_reg->umax_value <<= umax_val; 4040 } 4041 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 4042 /* We may learn something more from the var_off */ 4043 __update_reg_bounds(dst_reg); 4044 break; 4045 case BPF_RSH: 4046 if (umax_val >= insn_bitness) { 4047 /* Shifts greater than 31 or 63 are undefined. 4048 * This includes shifts by a negative number. 4049 */ 4050 mark_reg_unknown(env, regs, insn->dst_reg); 4051 break; 4052 } 4053 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 4054 * be negative, then either: 4055 * 1) src_reg might be zero, so the sign bit of the result is 4056 * unknown, so we lose our signed bounds 4057 * 2) it's known negative, thus the unsigned bounds capture the 4058 * signed bounds 4059 * 3) the signed bounds cross zero, so they tell us nothing 4060 * about the result 4061 * If the value in dst_reg is known nonnegative, then again the 4062 * unsigned bounts capture the signed bounds. 4063 * Thus, in all cases it suffices to blow away our signed bounds 4064 * and rely on inferring new ones from the unsigned bounds and 4065 * var_off of the result. 4066 */ 4067 dst_reg->smin_value = S64_MIN; 4068 dst_reg->smax_value = S64_MAX; 4069 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 4070 dst_reg->umin_value >>= umax_val; 4071 dst_reg->umax_value >>= umin_val; 4072 /* We may learn something more from the var_off */ 4073 __update_reg_bounds(dst_reg); 4074 break; 4075 case BPF_ARSH: 4076 if (umax_val >= insn_bitness) { 4077 /* Shifts greater than 31 or 63 are undefined. 4078 * This includes shifts by a negative number. 4079 */ 4080 mark_reg_unknown(env, regs, insn->dst_reg); 4081 break; 4082 } 4083 4084 /* Upon reaching here, src_known is true and 4085 * umax_val is equal to umin_val. 4086 */ 4087 dst_reg->smin_value >>= umin_val; 4088 dst_reg->smax_value >>= umin_val; 4089 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 4090 4091 /* blow away the dst_reg umin_value/umax_value and rely on 4092 * dst_reg var_off to refine the result. 4093 */ 4094 dst_reg->umin_value = 0; 4095 dst_reg->umax_value = U64_MAX; 4096 __update_reg_bounds(dst_reg); 4097 break; 4098 default: 4099 mark_reg_unknown(env, regs, insn->dst_reg); 4100 break; 4101 } 4102 4103 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4104 /* 32-bit ALU ops are (32,32)->32 */ 4105 coerce_reg_to_size(dst_reg, 4); 4106 } 4107 4108 __reg_deduce_bounds(dst_reg); 4109 __reg_bound_offset(dst_reg); 4110 return 0; 4111 } 4112 4113 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 4114 * and var_off. 4115 */ 4116 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 4117 struct bpf_insn *insn) 4118 { 4119 struct bpf_verifier_state *vstate = env->cur_state; 4120 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4121 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 4122 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 4123 u8 opcode = BPF_OP(insn->code); 4124 4125 dst_reg = ®s[insn->dst_reg]; 4126 src_reg = NULL; 4127 if (dst_reg->type != SCALAR_VALUE) 4128 ptr_reg = dst_reg; 4129 if (BPF_SRC(insn->code) == BPF_X) { 4130 src_reg = ®s[insn->src_reg]; 4131 if (src_reg->type != SCALAR_VALUE) { 4132 if (dst_reg->type != SCALAR_VALUE) { 4133 /* Combining two pointers by any ALU op yields 4134 * an arbitrary scalar. Disallow all math except 4135 * pointer subtraction 4136 */ 4137 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 4138 mark_reg_unknown(env, regs, insn->dst_reg); 4139 return 0; 4140 } 4141 verbose(env, "R%d pointer %s pointer prohibited\n", 4142 insn->dst_reg, 4143 bpf_alu_string[opcode >> 4]); 4144 return -EACCES; 4145 } else { 4146 /* scalar += pointer 4147 * This is legal, but we have to reverse our 4148 * src/dest handling in computing the range 4149 */ 4150 return adjust_ptr_min_max_vals(env, insn, 4151 src_reg, dst_reg); 4152 } 4153 } else if (ptr_reg) { 4154 /* pointer += scalar */ 4155 return adjust_ptr_min_max_vals(env, insn, 4156 dst_reg, src_reg); 4157 } 4158 } else { 4159 /* Pretend the src is a reg with a known value, since we only 4160 * need to be able to read from this state. 4161 */ 4162 off_reg.type = SCALAR_VALUE; 4163 __mark_reg_known(&off_reg, insn->imm); 4164 src_reg = &off_reg; 4165 if (ptr_reg) /* pointer += K */ 4166 return adjust_ptr_min_max_vals(env, insn, 4167 ptr_reg, src_reg); 4168 } 4169 4170 /* Got here implies adding two SCALAR_VALUEs */ 4171 if (WARN_ON_ONCE(ptr_reg)) { 4172 print_verifier_state(env, state); 4173 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 4174 return -EINVAL; 4175 } 4176 if (WARN_ON(!src_reg)) { 4177 print_verifier_state(env, state); 4178 verbose(env, "verifier internal error: no src_reg\n"); 4179 return -EINVAL; 4180 } 4181 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 4182 } 4183 4184 /* check validity of 32-bit and 64-bit arithmetic operations */ 4185 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 4186 { 4187 struct bpf_reg_state *regs = cur_regs(env); 4188 u8 opcode = BPF_OP(insn->code); 4189 int err; 4190 4191 if (opcode == BPF_END || opcode == BPF_NEG) { 4192 if (opcode == BPF_NEG) { 4193 if (BPF_SRC(insn->code) != 0 || 4194 insn->src_reg != BPF_REG_0 || 4195 insn->off != 0 || insn->imm != 0) { 4196 verbose(env, "BPF_NEG uses reserved fields\n"); 4197 return -EINVAL; 4198 } 4199 } else { 4200 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 4201 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 4202 BPF_CLASS(insn->code) == BPF_ALU64) { 4203 verbose(env, "BPF_END uses reserved fields\n"); 4204 return -EINVAL; 4205 } 4206 } 4207 4208 /* check src operand */ 4209 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4210 if (err) 4211 return err; 4212 4213 if (is_pointer_value(env, insn->dst_reg)) { 4214 verbose(env, "R%d pointer arithmetic prohibited\n", 4215 insn->dst_reg); 4216 return -EACCES; 4217 } 4218 4219 /* check dest operand */ 4220 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4221 if (err) 4222 return err; 4223 4224 } else if (opcode == BPF_MOV) { 4225 4226 if (BPF_SRC(insn->code) == BPF_X) { 4227 if (insn->imm != 0 || insn->off != 0) { 4228 verbose(env, "BPF_MOV uses reserved fields\n"); 4229 return -EINVAL; 4230 } 4231 4232 /* check src operand */ 4233 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4234 if (err) 4235 return err; 4236 } else { 4237 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4238 verbose(env, "BPF_MOV uses reserved fields\n"); 4239 return -EINVAL; 4240 } 4241 } 4242 4243 /* check dest operand, mark as required later */ 4244 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4245 if (err) 4246 return err; 4247 4248 if (BPF_SRC(insn->code) == BPF_X) { 4249 struct bpf_reg_state *src_reg = regs + insn->src_reg; 4250 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 4251 4252 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4253 /* case: R1 = R2 4254 * copy register state to dest reg 4255 */ 4256 *dst_reg = *src_reg; 4257 dst_reg->live |= REG_LIVE_WRITTEN; 4258 } else { 4259 /* R1 = (u32) R2 */ 4260 if (is_pointer_value(env, insn->src_reg)) { 4261 verbose(env, 4262 "R%d partial copy of pointer\n", 4263 insn->src_reg); 4264 return -EACCES; 4265 } else if (src_reg->type == SCALAR_VALUE) { 4266 *dst_reg = *src_reg; 4267 dst_reg->live |= REG_LIVE_WRITTEN; 4268 } else { 4269 mark_reg_unknown(env, regs, 4270 insn->dst_reg); 4271 } 4272 coerce_reg_to_size(dst_reg, 4); 4273 } 4274 } else { 4275 /* case: R = imm 4276 * remember the value we stored into this reg 4277 */ 4278 /* clear any state __mark_reg_known doesn't set */ 4279 mark_reg_unknown(env, regs, insn->dst_reg); 4280 regs[insn->dst_reg].type = SCALAR_VALUE; 4281 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4282 __mark_reg_known(regs + insn->dst_reg, 4283 insn->imm); 4284 } else { 4285 __mark_reg_known(regs + insn->dst_reg, 4286 (u32)insn->imm); 4287 } 4288 } 4289 4290 } else if (opcode > BPF_END) { 4291 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 4292 return -EINVAL; 4293 4294 } else { /* all other ALU ops: and, sub, xor, add, ... */ 4295 4296 if (BPF_SRC(insn->code) == BPF_X) { 4297 if (insn->imm != 0 || insn->off != 0) { 4298 verbose(env, "BPF_ALU uses reserved fields\n"); 4299 return -EINVAL; 4300 } 4301 /* check src1 operand */ 4302 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4303 if (err) 4304 return err; 4305 } else { 4306 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4307 verbose(env, "BPF_ALU uses reserved fields\n"); 4308 return -EINVAL; 4309 } 4310 } 4311 4312 /* check src2 operand */ 4313 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4314 if (err) 4315 return err; 4316 4317 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 4318 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 4319 verbose(env, "div by zero\n"); 4320 return -EINVAL; 4321 } 4322 4323 if ((opcode == BPF_LSH || opcode == BPF_RSH || 4324 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 4325 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 4326 4327 if (insn->imm < 0 || insn->imm >= size) { 4328 verbose(env, "invalid shift %d\n", insn->imm); 4329 return -EINVAL; 4330 } 4331 } 4332 4333 /* check dest operand */ 4334 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4335 if (err) 4336 return err; 4337 4338 return adjust_reg_min_max_vals(env, insn); 4339 } 4340 4341 return 0; 4342 } 4343 4344 static void __find_good_pkt_pointers(struct bpf_func_state *state, 4345 struct bpf_reg_state *dst_reg, 4346 enum bpf_reg_type type, u16 new_range) 4347 { 4348 struct bpf_reg_state *reg; 4349 int i; 4350 4351 for (i = 0; i < MAX_BPF_REG; i++) { 4352 reg = &state->regs[i]; 4353 if (reg->type == type && reg->id == dst_reg->id) 4354 /* keep the maximum range already checked */ 4355 reg->range = max(reg->range, new_range); 4356 } 4357 4358 bpf_for_each_spilled_reg(i, state, reg) { 4359 if (!reg) 4360 continue; 4361 if (reg->type == type && reg->id == dst_reg->id) 4362 reg->range = max(reg->range, new_range); 4363 } 4364 } 4365 4366 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 4367 struct bpf_reg_state *dst_reg, 4368 enum bpf_reg_type type, 4369 bool range_right_open) 4370 { 4371 u16 new_range; 4372 int i; 4373 4374 if (dst_reg->off < 0 || 4375 (dst_reg->off == 0 && range_right_open)) 4376 /* This doesn't give us any range */ 4377 return; 4378 4379 if (dst_reg->umax_value > MAX_PACKET_OFF || 4380 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 4381 /* Risk of overflow. For instance, ptr + (1<<63) may be less 4382 * than pkt_end, but that's because it's also less than pkt. 4383 */ 4384 return; 4385 4386 new_range = dst_reg->off; 4387 if (range_right_open) 4388 new_range--; 4389 4390 /* Examples for register markings: 4391 * 4392 * pkt_data in dst register: 4393 * 4394 * r2 = r3; 4395 * r2 += 8; 4396 * if (r2 > pkt_end) goto <handle exception> 4397 * <access okay> 4398 * 4399 * r2 = r3; 4400 * r2 += 8; 4401 * if (r2 < pkt_end) goto <access okay> 4402 * <handle exception> 4403 * 4404 * Where: 4405 * r2 == dst_reg, pkt_end == src_reg 4406 * r2=pkt(id=n,off=8,r=0) 4407 * r3=pkt(id=n,off=0,r=0) 4408 * 4409 * pkt_data in src register: 4410 * 4411 * r2 = r3; 4412 * r2 += 8; 4413 * if (pkt_end >= r2) goto <access okay> 4414 * <handle exception> 4415 * 4416 * r2 = r3; 4417 * r2 += 8; 4418 * if (pkt_end <= r2) goto <handle exception> 4419 * <access okay> 4420 * 4421 * Where: 4422 * pkt_end == dst_reg, r2 == src_reg 4423 * r2=pkt(id=n,off=8,r=0) 4424 * r3=pkt(id=n,off=0,r=0) 4425 * 4426 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 4427 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 4428 * and [r3, r3 + 8-1) respectively is safe to access depending on 4429 * the check. 4430 */ 4431 4432 /* If our ids match, then we must have the same max_value. And we 4433 * don't care about the other reg's fixed offset, since if it's too big 4434 * the range won't allow anything. 4435 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 4436 */ 4437 for (i = 0; i <= vstate->curframe; i++) 4438 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 4439 new_range); 4440 } 4441 4442 /* compute branch direction of the expression "if (reg opcode val) goto target;" 4443 * and return: 4444 * 1 - branch will be taken and "goto target" will be executed 4445 * 0 - branch will not be taken and fall-through to next insn 4446 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 4447 */ 4448 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 4449 bool is_jmp32) 4450 { 4451 struct bpf_reg_state reg_lo; 4452 s64 sval; 4453 4454 if (__is_pointer_value(false, reg)) 4455 return -1; 4456 4457 if (is_jmp32) { 4458 reg_lo = *reg; 4459 reg = ®_lo; 4460 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size 4461 * could truncate high bits and update umin/umax according to 4462 * information of low bits. 4463 */ 4464 coerce_reg_to_size(reg, 4); 4465 /* smin/smax need special handling. For example, after coerce, 4466 * if smin_value is 0x00000000ffffffffLL, the value is -1 when 4467 * used as operand to JMP32. It is a negative number from s32's 4468 * point of view, while it is a positive number when seen as 4469 * s64. The smin/smax are kept as s64, therefore, when used with 4470 * JMP32, they need to be transformed into s32, then sign 4471 * extended back to s64. 4472 * 4473 * Also, smin/smax were copied from umin/umax. If umin/umax has 4474 * different sign bit, then min/max relationship doesn't 4475 * maintain after casting into s32, for this case, set smin/smax 4476 * to safest range. 4477 */ 4478 if ((reg->umax_value ^ reg->umin_value) & 4479 (1ULL << 31)) { 4480 reg->smin_value = S32_MIN; 4481 reg->smax_value = S32_MAX; 4482 } 4483 reg->smin_value = (s64)(s32)reg->smin_value; 4484 reg->smax_value = (s64)(s32)reg->smax_value; 4485 4486 val = (u32)val; 4487 sval = (s64)(s32)val; 4488 } else { 4489 sval = (s64)val; 4490 } 4491 4492 switch (opcode) { 4493 case BPF_JEQ: 4494 if (tnum_is_const(reg->var_off)) 4495 return !!tnum_equals_const(reg->var_off, val); 4496 break; 4497 case BPF_JNE: 4498 if (tnum_is_const(reg->var_off)) 4499 return !tnum_equals_const(reg->var_off, val); 4500 break; 4501 case BPF_JSET: 4502 if ((~reg->var_off.mask & reg->var_off.value) & val) 4503 return 1; 4504 if (!((reg->var_off.mask | reg->var_off.value) & val)) 4505 return 0; 4506 break; 4507 case BPF_JGT: 4508 if (reg->umin_value > val) 4509 return 1; 4510 else if (reg->umax_value <= val) 4511 return 0; 4512 break; 4513 case BPF_JSGT: 4514 if (reg->smin_value > sval) 4515 return 1; 4516 else if (reg->smax_value < sval) 4517 return 0; 4518 break; 4519 case BPF_JLT: 4520 if (reg->umax_value < val) 4521 return 1; 4522 else if (reg->umin_value >= val) 4523 return 0; 4524 break; 4525 case BPF_JSLT: 4526 if (reg->smax_value < sval) 4527 return 1; 4528 else if (reg->smin_value >= sval) 4529 return 0; 4530 break; 4531 case BPF_JGE: 4532 if (reg->umin_value >= val) 4533 return 1; 4534 else if (reg->umax_value < val) 4535 return 0; 4536 break; 4537 case BPF_JSGE: 4538 if (reg->smin_value >= sval) 4539 return 1; 4540 else if (reg->smax_value < sval) 4541 return 0; 4542 break; 4543 case BPF_JLE: 4544 if (reg->umax_value <= val) 4545 return 1; 4546 else if (reg->umin_value > val) 4547 return 0; 4548 break; 4549 case BPF_JSLE: 4550 if (reg->smax_value <= sval) 4551 return 1; 4552 else if (reg->smin_value > sval) 4553 return 0; 4554 break; 4555 } 4556 4557 return -1; 4558 } 4559 4560 /* Generate min value of the high 32-bit from TNUM info. */ 4561 static u64 gen_hi_min(struct tnum var) 4562 { 4563 return var.value & ~0xffffffffULL; 4564 } 4565 4566 /* Generate max value of the high 32-bit from TNUM info. */ 4567 static u64 gen_hi_max(struct tnum var) 4568 { 4569 return (var.value | var.mask) & ~0xffffffffULL; 4570 } 4571 4572 /* Return true if VAL is compared with a s64 sign extended from s32, and they 4573 * are with the same signedness. 4574 */ 4575 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg) 4576 { 4577 return ((s32)sval >= 0 && 4578 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) || 4579 ((s32)sval < 0 && 4580 reg->smax_value <= 0 && reg->smin_value >= S32_MIN); 4581 } 4582 4583 /* Adjusts the register min/max values in the case that the dst_reg is the 4584 * variable register that we are working on, and src_reg is a constant or we're 4585 * simply doing a BPF_K check. 4586 * In JEQ/JNE cases we also adjust the var_off values. 4587 */ 4588 static void reg_set_min_max(struct bpf_reg_state *true_reg, 4589 struct bpf_reg_state *false_reg, u64 val, 4590 u8 opcode, bool is_jmp32) 4591 { 4592 s64 sval; 4593 4594 /* If the dst_reg is a pointer, we can't learn anything about its 4595 * variable offset from the compare (unless src_reg were a pointer into 4596 * the same object, but we don't bother with that. 4597 * Since false_reg and true_reg have the same type by construction, we 4598 * only need to check one of them for pointerness. 4599 */ 4600 if (__is_pointer_value(false, false_reg)) 4601 return; 4602 4603 val = is_jmp32 ? (u32)val : val; 4604 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 4605 4606 switch (opcode) { 4607 case BPF_JEQ: 4608 case BPF_JNE: 4609 { 4610 struct bpf_reg_state *reg = 4611 opcode == BPF_JEQ ? true_reg : false_reg; 4612 4613 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 4614 * if it is true we know the value for sure. Likewise for 4615 * BPF_JNE. 4616 */ 4617 if (is_jmp32) { 4618 u64 old_v = reg->var_off.value; 4619 u64 hi_mask = ~0xffffffffULL; 4620 4621 reg->var_off.value = (old_v & hi_mask) | val; 4622 reg->var_off.mask &= hi_mask; 4623 } else { 4624 __mark_reg_known(reg, val); 4625 } 4626 break; 4627 } 4628 case BPF_JSET: 4629 false_reg->var_off = tnum_and(false_reg->var_off, 4630 tnum_const(~val)); 4631 if (is_power_of_2(val)) 4632 true_reg->var_off = tnum_or(true_reg->var_off, 4633 tnum_const(val)); 4634 break; 4635 case BPF_JGE: 4636 case BPF_JGT: 4637 { 4638 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 4639 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 4640 4641 if (is_jmp32) { 4642 false_umax += gen_hi_max(false_reg->var_off); 4643 true_umin += gen_hi_min(true_reg->var_off); 4644 } 4645 false_reg->umax_value = min(false_reg->umax_value, false_umax); 4646 true_reg->umin_value = max(true_reg->umin_value, true_umin); 4647 break; 4648 } 4649 case BPF_JSGE: 4650 case BPF_JSGT: 4651 { 4652 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 4653 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 4654 4655 /* If the full s64 was not sign-extended from s32 then don't 4656 * deduct further info. 4657 */ 4658 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4659 break; 4660 false_reg->smax_value = min(false_reg->smax_value, false_smax); 4661 true_reg->smin_value = max(true_reg->smin_value, true_smin); 4662 break; 4663 } 4664 case BPF_JLE: 4665 case BPF_JLT: 4666 { 4667 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 4668 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 4669 4670 if (is_jmp32) { 4671 false_umin += gen_hi_min(false_reg->var_off); 4672 true_umax += gen_hi_max(true_reg->var_off); 4673 } 4674 false_reg->umin_value = max(false_reg->umin_value, false_umin); 4675 true_reg->umax_value = min(true_reg->umax_value, true_umax); 4676 break; 4677 } 4678 case BPF_JSLE: 4679 case BPF_JSLT: 4680 { 4681 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 4682 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 4683 4684 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4685 break; 4686 false_reg->smin_value = max(false_reg->smin_value, false_smin); 4687 true_reg->smax_value = min(true_reg->smax_value, true_smax); 4688 break; 4689 } 4690 default: 4691 break; 4692 } 4693 4694 __reg_deduce_bounds(false_reg); 4695 __reg_deduce_bounds(true_reg); 4696 /* We might have learned some bits from the bounds. */ 4697 __reg_bound_offset(false_reg); 4698 __reg_bound_offset(true_reg); 4699 /* Intersecting with the old var_off might have improved our bounds 4700 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4701 * then new var_off is (0; 0x7f...fc) which improves our umax. 4702 */ 4703 __update_reg_bounds(false_reg); 4704 __update_reg_bounds(true_reg); 4705 } 4706 4707 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 4708 * the variable reg. 4709 */ 4710 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 4711 struct bpf_reg_state *false_reg, u64 val, 4712 u8 opcode, bool is_jmp32) 4713 { 4714 s64 sval; 4715 4716 if (__is_pointer_value(false, false_reg)) 4717 return; 4718 4719 val = is_jmp32 ? (u32)val : val; 4720 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 4721 4722 switch (opcode) { 4723 case BPF_JEQ: 4724 case BPF_JNE: 4725 { 4726 struct bpf_reg_state *reg = 4727 opcode == BPF_JEQ ? true_reg : false_reg; 4728 4729 if (is_jmp32) { 4730 u64 old_v = reg->var_off.value; 4731 u64 hi_mask = ~0xffffffffULL; 4732 4733 reg->var_off.value = (old_v & hi_mask) | val; 4734 reg->var_off.mask &= hi_mask; 4735 } else { 4736 __mark_reg_known(reg, val); 4737 } 4738 break; 4739 } 4740 case BPF_JSET: 4741 false_reg->var_off = tnum_and(false_reg->var_off, 4742 tnum_const(~val)); 4743 if (is_power_of_2(val)) 4744 true_reg->var_off = tnum_or(true_reg->var_off, 4745 tnum_const(val)); 4746 break; 4747 case BPF_JGE: 4748 case BPF_JGT: 4749 { 4750 u64 false_umin = opcode == BPF_JGT ? val : val + 1; 4751 u64 true_umax = opcode == BPF_JGT ? val - 1 : val; 4752 4753 if (is_jmp32) { 4754 false_umin += gen_hi_min(false_reg->var_off); 4755 true_umax += gen_hi_max(true_reg->var_off); 4756 } 4757 false_reg->umin_value = max(false_reg->umin_value, false_umin); 4758 true_reg->umax_value = min(true_reg->umax_value, true_umax); 4759 break; 4760 } 4761 case BPF_JSGE: 4762 case BPF_JSGT: 4763 { 4764 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1; 4765 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval; 4766 4767 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4768 break; 4769 false_reg->smin_value = max(false_reg->smin_value, false_smin); 4770 true_reg->smax_value = min(true_reg->smax_value, true_smax); 4771 break; 4772 } 4773 case BPF_JLE: 4774 case BPF_JLT: 4775 { 4776 u64 false_umax = opcode == BPF_JLT ? val : val - 1; 4777 u64 true_umin = opcode == BPF_JLT ? val + 1 : val; 4778 4779 if (is_jmp32) { 4780 false_umax += gen_hi_max(false_reg->var_off); 4781 true_umin += gen_hi_min(true_reg->var_off); 4782 } 4783 false_reg->umax_value = min(false_reg->umax_value, false_umax); 4784 true_reg->umin_value = max(true_reg->umin_value, true_umin); 4785 break; 4786 } 4787 case BPF_JSLE: 4788 case BPF_JSLT: 4789 { 4790 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1; 4791 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval; 4792 4793 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4794 break; 4795 false_reg->smax_value = min(false_reg->smax_value, false_smax); 4796 true_reg->smin_value = max(true_reg->smin_value, true_smin); 4797 break; 4798 } 4799 default: 4800 break; 4801 } 4802 4803 __reg_deduce_bounds(false_reg); 4804 __reg_deduce_bounds(true_reg); 4805 /* We might have learned some bits from the bounds. */ 4806 __reg_bound_offset(false_reg); 4807 __reg_bound_offset(true_reg); 4808 /* Intersecting with the old var_off might have improved our bounds 4809 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4810 * then new var_off is (0; 0x7f...fc) which improves our umax. 4811 */ 4812 __update_reg_bounds(false_reg); 4813 __update_reg_bounds(true_reg); 4814 } 4815 4816 /* Regs are known to be equal, so intersect their min/max/var_off */ 4817 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 4818 struct bpf_reg_state *dst_reg) 4819 { 4820 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 4821 dst_reg->umin_value); 4822 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 4823 dst_reg->umax_value); 4824 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 4825 dst_reg->smin_value); 4826 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 4827 dst_reg->smax_value); 4828 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 4829 dst_reg->var_off); 4830 /* We might have learned new bounds from the var_off. */ 4831 __update_reg_bounds(src_reg); 4832 __update_reg_bounds(dst_reg); 4833 /* We might have learned something about the sign bit. */ 4834 __reg_deduce_bounds(src_reg); 4835 __reg_deduce_bounds(dst_reg); 4836 /* We might have learned some bits from the bounds. */ 4837 __reg_bound_offset(src_reg); 4838 __reg_bound_offset(dst_reg); 4839 /* Intersecting with the old var_off might have improved our bounds 4840 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4841 * then new var_off is (0; 0x7f...fc) which improves our umax. 4842 */ 4843 __update_reg_bounds(src_reg); 4844 __update_reg_bounds(dst_reg); 4845 } 4846 4847 static void reg_combine_min_max(struct bpf_reg_state *true_src, 4848 struct bpf_reg_state *true_dst, 4849 struct bpf_reg_state *false_src, 4850 struct bpf_reg_state *false_dst, 4851 u8 opcode) 4852 { 4853 switch (opcode) { 4854 case BPF_JEQ: 4855 __reg_combine_min_max(true_src, true_dst); 4856 break; 4857 case BPF_JNE: 4858 __reg_combine_min_max(false_src, false_dst); 4859 break; 4860 } 4861 } 4862 4863 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 4864 struct bpf_reg_state *reg, u32 id, 4865 bool is_null) 4866 { 4867 if (reg_type_may_be_null(reg->type) && reg->id == id) { 4868 /* Old offset (both fixed and variable parts) should 4869 * have been known-zero, because we don't allow pointer 4870 * arithmetic on pointers that might be NULL. 4871 */ 4872 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 4873 !tnum_equals_const(reg->var_off, 0) || 4874 reg->off)) { 4875 __mark_reg_known_zero(reg); 4876 reg->off = 0; 4877 } 4878 if (is_null) { 4879 reg->type = SCALAR_VALUE; 4880 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 4881 if (reg->map_ptr->inner_map_meta) { 4882 reg->type = CONST_PTR_TO_MAP; 4883 reg->map_ptr = reg->map_ptr->inner_map_meta; 4884 } else { 4885 reg->type = PTR_TO_MAP_VALUE; 4886 } 4887 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 4888 reg->type = PTR_TO_SOCKET; 4889 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 4890 reg->type = PTR_TO_SOCK_COMMON; 4891 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 4892 reg->type = PTR_TO_TCP_SOCK; 4893 } 4894 if (is_null) { 4895 /* We don't need id and ref_obj_id from this point 4896 * onwards anymore, thus we should better reset it, 4897 * so that state pruning has chances to take effect. 4898 */ 4899 reg->id = 0; 4900 reg->ref_obj_id = 0; 4901 } else if (!reg_may_point_to_spin_lock(reg)) { 4902 /* For not-NULL ptr, reg->ref_obj_id will be reset 4903 * in release_reg_references(). 4904 * 4905 * reg->id is still used by spin_lock ptr. Other 4906 * than spin_lock ptr type, reg->id can be reset. 4907 */ 4908 reg->id = 0; 4909 } 4910 } 4911 } 4912 4913 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 4914 bool is_null) 4915 { 4916 struct bpf_reg_state *reg; 4917 int i; 4918 4919 for (i = 0; i < MAX_BPF_REG; i++) 4920 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 4921 4922 bpf_for_each_spilled_reg(i, state, reg) { 4923 if (!reg) 4924 continue; 4925 mark_ptr_or_null_reg(state, reg, id, is_null); 4926 } 4927 } 4928 4929 /* The logic is similar to find_good_pkt_pointers(), both could eventually 4930 * be folded together at some point. 4931 */ 4932 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 4933 bool is_null) 4934 { 4935 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4936 struct bpf_reg_state *regs = state->regs; 4937 u32 ref_obj_id = regs[regno].ref_obj_id; 4938 u32 id = regs[regno].id; 4939 int i; 4940 4941 if (ref_obj_id && ref_obj_id == id && is_null) 4942 /* regs[regno] is in the " == NULL" branch. 4943 * No one could have freed the reference state before 4944 * doing the NULL check. 4945 */ 4946 WARN_ON_ONCE(release_reference_state(state, id)); 4947 4948 for (i = 0; i <= vstate->curframe; i++) 4949 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 4950 } 4951 4952 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 4953 struct bpf_reg_state *dst_reg, 4954 struct bpf_reg_state *src_reg, 4955 struct bpf_verifier_state *this_branch, 4956 struct bpf_verifier_state *other_branch) 4957 { 4958 if (BPF_SRC(insn->code) != BPF_X) 4959 return false; 4960 4961 /* Pointers are always 64-bit. */ 4962 if (BPF_CLASS(insn->code) == BPF_JMP32) 4963 return false; 4964 4965 switch (BPF_OP(insn->code)) { 4966 case BPF_JGT: 4967 if ((dst_reg->type == PTR_TO_PACKET && 4968 src_reg->type == PTR_TO_PACKET_END) || 4969 (dst_reg->type == PTR_TO_PACKET_META && 4970 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4971 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 4972 find_good_pkt_pointers(this_branch, dst_reg, 4973 dst_reg->type, false); 4974 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4975 src_reg->type == PTR_TO_PACKET) || 4976 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4977 src_reg->type == PTR_TO_PACKET_META)) { 4978 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 4979 find_good_pkt_pointers(other_branch, src_reg, 4980 src_reg->type, true); 4981 } else { 4982 return false; 4983 } 4984 break; 4985 case BPF_JLT: 4986 if ((dst_reg->type == PTR_TO_PACKET && 4987 src_reg->type == PTR_TO_PACKET_END) || 4988 (dst_reg->type == PTR_TO_PACKET_META && 4989 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4990 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 4991 find_good_pkt_pointers(other_branch, dst_reg, 4992 dst_reg->type, true); 4993 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4994 src_reg->type == PTR_TO_PACKET) || 4995 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4996 src_reg->type == PTR_TO_PACKET_META)) { 4997 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 4998 find_good_pkt_pointers(this_branch, src_reg, 4999 src_reg->type, false); 5000 } else { 5001 return false; 5002 } 5003 break; 5004 case BPF_JGE: 5005 if ((dst_reg->type == PTR_TO_PACKET && 5006 src_reg->type == PTR_TO_PACKET_END) || 5007 (dst_reg->type == PTR_TO_PACKET_META && 5008 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5009 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 5010 find_good_pkt_pointers(this_branch, dst_reg, 5011 dst_reg->type, true); 5012 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5013 src_reg->type == PTR_TO_PACKET) || 5014 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5015 src_reg->type == PTR_TO_PACKET_META)) { 5016 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 5017 find_good_pkt_pointers(other_branch, src_reg, 5018 src_reg->type, false); 5019 } else { 5020 return false; 5021 } 5022 break; 5023 case BPF_JLE: 5024 if ((dst_reg->type == PTR_TO_PACKET && 5025 src_reg->type == PTR_TO_PACKET_END) || 5026 (dst_reg->type == PTR_TO_PACKET_META && 5027 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5028 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 5029 find_good_pkt_pointers(other_branch, dst_reg, 5030 dst_reg->type, false); 5031 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5032 src_reg->type == PTR_TO_PACKET) || 5033 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5034 src_reg->type == PTR_TO_PACKET_META)) { 5035 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 5036 find_good_pkt_pointers(this_branch, src_reg, 5037 src_reg->type, true); 5038 } else { 5039 return false; 5040 } 5041 break; 5042 default: 5043 return false; 5044 } 5045 5046 return true; 5047 } 5048 5049 static int check_cond_jmp_op(struct bpf_verifier_env *env, 5050 struct bpf_insn *insn, int *insn_idx) 5051 { 5052 struct bpf_verifier_state *this_branch = env->cur_state; 5053 struct bpf_verifier_state *other_branch; 5054 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 5055 struct bpf_reg_state *dst_reg, *other_branch_regs; 5056 u8 opcode = BPF_OP(insn->code); 5057 bool is_jmp32; 5058 int err; 5059 5060 /* Only conditional jumps are expected to reach here. */ 5061 if (opcode == BPF_JA || opcode > BPF_JSLE) { 5062 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 5063 return -EINVAL; 5064 } 5065 5066 if (BPF_SRC(insn->code) == BPF_X) { 5067 if (insn->imm != 0) { 5068 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5069 return -EINVAL; 5070 } 5071 5072 /* check src1 operand */ 5073 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5074 if (err) 5075 return err; 5076 5077 if (is_pointer_value(env, insn->src_reg)) { 5078 verbose(env, "R%d pointer comparison prohibited\n", 5079 insn->src_reg); 5080 return -EACCES; 5081 } 5082 } else { 5083 if (insn->src_reg != BPF_REG_0) { 5084 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5085 return -EINVAL; 5086 } 5087 } 5088 5089 /* check src2 operand */ 5090 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5091 if (err) 5092 return err; 5093 5094 dst_reg = ®s[insn->dst_reg]; 5095 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 5096 5097 if (BPF_SRC(insn->code) == BPF_K) { 5098 int pred = is_branch_taken(dst_reg, insn->imm, opcode, 5099 is_jmp32); 5100 5101 if (pred == 1) { 5102 /* only follow the goto, ignore fall-through */ 5103 *insn_idx += insn->off; 5104 return 0; 5105 } else if (pred == 0) { 5106 /* only follow fall-through branch, since 5107 * that's where the program will go 5108 */ 5109 return 0; 5110 } 5111 } 5112 5113 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 5114 false); 5115 if (!other_branch) 5116 return -EFAULT; 5117 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 5118 5119 /* detect if we are comparing against a constant value so we can adjust 5120 * our min/max values for our dst register. 5121 * this is only legit if both are scalars (or pointers to the same 5122 * object, I suppose, but we don't support that right now), because 5123 * otherwise the different base pointers mean the offsets aren't 5124 * comparable. 5125 */ 5126 if (BPF_SRC(insn->code) == BPF_X) { 5127 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 5128 struct bpf_reg_state lo_reg0 = *dst_reg; 5129 struct bpf_reg_state lo_reg1 = *src_reg; 5130 struct bpf_reg_state *src_lo, *dst_lo; 5131 5132 dst_lo = &lo_reg0; 5133 src_lo = &lo_reg1; 5134 coerce_reg_to_size(dst_lo, 4); 5135 coerce_reg_to_size(src_lo, 4); 5136 5137 if (dst_reg->type == SCALAR_VALUE && 5138 src_reg->type == SCALAR_VALUE) { 5139 if (tnum_is_const(src_reg->var_off) || 5140 (is_jmp32 && tnum_is_const(src_lo->var_off))) 5141 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5142 dst_reg, 5143 is_jmp32 5144 ? src_lo->var_off.value 5145 : src_reg->var_off.value, 5146 opcode, is_jmp32); 5147 else if (tnum_is_const(dst_reg->var_off) || 5148 (is_jmp32 && tnum_is_const(dst_lo->var_off))) 5149 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 5150 src_reg, 5151 is_jmp32 5152 ? dst_lo->var_off.value 5153 : dst_reg->var_off.value, 5154 opcode, is_jmp32); 5155 else if (!is_jmp32 && 5156 (opcode == BPF_JEQ || opcode == BPF_JNE)) 5157 /* Comparing for equality, we can combine knowledge */ 5158 reg_combine_min_max(&other_branch_regs[insn->src_reg], 5159 &other_branch_regs[insn->dst_reg], 5160 src_reg, dst_reg, opcode); 5161 } 5162 } else if (dst_reg->type == SCALAR_VALUE) { 5163 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5164 dst_reg, insn->imm, opcode, is_jmp32); 5165 } 5166 5167 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 5168 * NOTE: these optimizations below are related with pointer comparison 5169 * which will never be JMP32. 5170 */ 5171 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 5172 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 5173 reg_type_may_be_null(dst_reg->type)) { 5174 /* Mark all identical registers in each branch as either 5175 * safe or unknown depending R == 0 or R != 0 conditional. 5176 */ 5177 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 5178 opcode == BPF_JNE); 5179 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 5180 opcode == BPF_JEQ); 5181 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 5182 this_branch, other_branch) && 5183 is_pointer_value(env, insn->dst_reg)) { 5184 verbose(env, "R%d pointer comparison prohibited\n", 5185 insn->dst_reg); 5186 return -EACCES; 5187 } 5188 if (env->log.level & BPF_LOG_LEVEL) 5189 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 5190 return 0; 5191 } 5192 5193 /* verify BPF_LD_IMM64 instruction */ 5194 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 5195 { 5196 struct bpf_insn_aux_data *aux = cur_aux(env); 5197 struct bpf_reg_state *regs = cur_regs(env); 5198 struct bpf_map *map; 5199 int err; 5200 5201 if (BPF_SIZE(insn->code) != BPF_DW) { 5202 verbose(env, "invalid BPF_LD_IMM insn\n"); 5203 return -EINVAL; 5204 } 5205 if (insn->off != 0) { 5206 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 5207 return -EINVAL; 5208 } 5209 5210 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5211 if (err) 5212 return err; 5213 5214 if (insn->src_reg == 0) { 5215 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 5216 5217 regs[insn->dst_reg].type = SCALAR_VALUE; 5218 __mark_reg_known(®s[insn->dst_reg], imm); 5219 return 0; 5220 } 5221 5222 map = env->used_maps[aux->map_index]; 5223 mark_reg_known_zero(env, regs, insn->dst_reg); 5224 regs[insn->dst_reg].map_ptr = map; 5225 5226 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 5227 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 5228 regs[insn->dst_reg].off = aux->map_off; 5229 if (map_value_has_spin_lock(map)) 5230 regs[insn->dst_reg].id = ++env->id_gen; 5231 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 5232 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 5233 } else { 5234 verbose(env, "bpf verifier is misconfigured\n"); 5235 return -EINVAL; 5236 } 5237 5238 return 0; 5239 } 5240 5241 static bool may_access_skb(enum bpf_prog_type type) 5242 { 5243 switch (type) { 5244 case BPF_PROG_TYPE_SOCKET_FILTER: 5245 case BPF_PROG_TYPE_SCHED_CLS: 5246 case BPF_PROG_TYPE_SCHED_ACT: 5247 return true; 5248 default: 5249 return false; 5250 } 5251 } 5252 5253 /* verify safety of LD_ABS|LD_IND instructions: 5254 * - they can only appear in the programs where ctx == skb 5255 * - since they are wrappers of function calls, they scratch R1-R5 registers, 5256 * preserve R6-R9, and store return value into R0 5257 * 5258 * Implicit input: 5259 * ctx == skb == R6 == CTX 5260 * 5261 * Explicit input: 5262 * SRC == any register 5263 * IMM == 32-bit immediate 5264 * 5265 * Output: 5266 * R0 - 8/16/32-bit skb data converted to cpu endianness 5267 */ 5268 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 5269 { 5270 struct bpf_reg_state *regs = cur_regs(env); 5271 u8 mode = BPF_MODE(insn->code); 5272 int i, err; 5273 5274 if (!may_access_skb(env->prog->type)) { 5275 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 5276 return -EINVAL; 5277 } 5278 5279 if (!env->ops->gen_ld_abs) { 5280 verbose(env, "bpf verifier is misconfigured\n"); 5281 return -EINVAL; 5282 } 5283 5284 if (env->subprog_cnt > 1) { 5285 /* when program has LD_ABS insn JITs and interpreter assume 5286 * that r1 == ctx == skb which is not the case for callees 5287 * that can have arbitrary arguments. It's problematic 5288 * for main prog as well since JITs would need to analyze 5289 * all functions in order to make proper register save/restore 5290 * decisions in the main prog. Hence disallow LD_ABS with calls 5291 */ 5292 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 5293 return -EINVAL; 5294 } 5295 5296 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 5297 BPF_SIZE(insn->code) == BPF_DW || 5298 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 5299 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 5300 return -EINVAL; 5301 } 5302 5303 /* check whether implicit source operand (register R6) is readable */ 5304 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 5305 if (err) 5306 return err; 5307 5308 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 5309 * gen_ld_abs() may terminate the program at runtime, leading to 5310 * reference leak. 5311 */ 5312 err = check_reference_leak(env); 5313 if (err) { 5314 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 5315 return err; 5316 } 5317 5318 if (env->cur_state->active_spin_lock) { 5319 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 5320 return -EINVAL; 5321 } 5322 5323 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 5324 verbose(env, 5325 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 5326 return -EINVAL; 5327 } 5328 5329 if (mode == BPF_IND) { 5330 /* check explicit source operand */ 5331 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5332 if (err) 5333 return err; 5334 } 5335 5336 /* reset caller saved regs to unreadable */ 5337 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5338 mark_reg_not_init(env, regs, caller_saved[i]); 5339 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5340 } 5341 5342 /* mark destination R0 register as readable, since it contains 5343 * the value fetched from the packet. 5344 * Already marked as written above. 5345 */ 5346 mark_reg_unknown(env, regs, BPF_REG_0); 5347 return 0; 5348 } 5349 5350 static int check_return_code(struct bpf_verifier_env *env) 5351 { 5352 struct bpf_reg_state *reg; 5353 struct tnum range = tnum_range(0, 1); 5354 5355 switch (env->prog->type) { 5356 case BPF_PROG_TYPE_CGROUP_SKB: 5357 case BPF_PROG_TYPE_CGROUP_SOCK: 5358 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 5359 case BPF_PROG_TYPE_SOCK_OPS: 5360 case BPF_PROG_TYPE_CGROUP_DEVICE: 5361 case BPF_PROG_TYPE_CGROUP_SYSCTL: 5362 break; 5363 default: 5364 return 0; 5365 } 5366 5367 reg = cur_regs(env) + BPF_REG_0; 5368 if (reg->type != SCALAR_VALUE) { 5369 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 5370 reg_type_str[reg->type]); 5371 return -EINVAL; 5372 } 5373 5374 if (!tnum_in(range, reg->var_off)) { 5375 verbose(env, "At program exit the register R0 "); 5376 if (!tnum_is_unknown(reg->var_off)) { 5377 char tn_buf[48]; 5378 5379 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5380 verbose(env, "has value %s", tn_buf); 5381 } else { 5382 verbose(env, "has unknown scalar value"); 5383 } 5384 verbose(env, " should have been 0 or 1\n"); 5385 return -EINVAL; 5386 } 5387 return 0; 5388 } 5389 5390 /* non-recursive DFS pseudo code 5391 * 1 procedure DFS-iterative(G,v): 5392 * 2 label v as discovered 5393 * 3 let S be a stack 5394 * 4 S.push(v) 5395 * 5 while S is not empty 5396 * 6 t <- S.pop() 5397 * 7 if t is what we're looking for: 5398 * 8 return t 5399 * 9 for all edges e in G.adjacentEdges(t) do 5400 * 10 if edge e is already labelled 5401 * 11 continue with the next edge 5402 * 12 w <- G.adjacentVertex(t,e) 5403 * 13 if vertex w is not discovered and not explored 5404 * 14 label e as tree-edge 5405 * 15 label w as discovered 5406 * 16 S.push(w) 5407 * 17 continue at 5 5408 * 18 else if vertex w is discovered 5409 * 19 label e as back-edge 5410 * 20 else 5411 * 21 // vertex w is explored 5412 * 22 label e as forward- or cross-edge 5413 * 23 label t as explored 5414 * 24 S.pop() 5415 * 5416 * convention: 5417 * 0x10 - discovered 5418 * 0x11 - discovered and fall-through edge labelled 5419 * 0x12 - discovered and fall-through and branch edges labelled 5420 * 0x20 - explored 5421 */ 5422 5423 enum { 5424 DISCOVERED = 0x10, 5425 EXPLORED = 0x20, 5426 FALLTHROUGH = 1, 5427 BRANCH = 2, 5428 }; 5429 5430 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 5431 5432 /* t, w, e - match pseudo-code above: 5433 * t - index of current instruction 5434 * w - next instruction 5435 * e - edge 5436 */ 5437 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 5438 { 5439 int *insn_stack = env->cfg.insn_stack; 5440 int *insn_state = env->cfg.insn_state; 5441 5442 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 5443 return 0; 5444 5445 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 5446 return 0; 5447 5448 if (w < 0 || w >= env->prog->len) { 5449 verbose_linfo(env, t, "%d: ", t); 5450 verbose(env, "jump out of range from insn %d to %d\n", t, w); 5451 return -EINVAL; 5452 } 5453 5454 if (e == BRANCH) 5455 /* mark branch target for state pruning */ 5456 env->explored_states[w] = STATE_LIST_MARK; 5457 5458 if (insn_state[w] == 0) { 5459 /* tree-edge */ 5460 insn_state[t] = DISCOVERED | e; 5461 insn_state[w] = DISCOVERED; 5462 if (env->cfg.cur_stack >= env->prog->len) 5463 return -E2BIG; 5464 insn_stack[env->cfg.cur_stack++] = w; 5465 return 1; 5466 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 5467 verbose_linfo(env, t, "%d: ", t); 5468 verbose_linfo(env, w, "%d: ", w); 5469 verbose(env, "back-edge from insn %d to %d\n", t, w); 5470 return -EINVAL; 5471 } else if (insn_state[w] == EXPLORED) { 5472 /* forward- or cross-edge */ 5473 insn_state[t] = DISCOVERED | e; 5474 } else { 5475 verbose(env, "insn state internal bug\n"); 5476 return -EFAULT; 5477 } 5478 return 0; 5479 } 5480 5481 /* non-recursive depth-first-search to detect loops in BPF program 5482 * loop == back-edge in directed graph 5483 */ 5484 static int check_cfg(struct bpf_verifier_env *env) 5485 { 5486 struct bpf_insn *insns = env->prog->insnsi; 5487 int insn_cnt = env->prog->len; 5488 int *insn_stack, *insn_state; 5489 int ret = 0; 5490 int i, t; 5491 5492 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 5493 if (!insn_state) 5494 return -ENOMEM; 5495 5496 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 5497 if (!insn_stack) { 5498 kvfree(insn_state); 5499 return -ENOMEM; 5500 } 5501 5502 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 5503 insn_stack[0] = 0; /* 0 is the first instruction */ 5504 env->cfg.cur_stack = 1; 5505 5506 peek_stack: 5507 if (env->cfg.cur_stack == 0) 5508 goto check_state; 5509 t = insn_stack[env->cfg.cur_stack - 1]; 5510 5511 if (BPF_CLASS(insns[t].code) == BPF_JMP || 5512 BPF_CLASS(insns[t].code) == BPF_JMP32) { 5513 u8 opcode = BPF_OP(insns[t].code); 5514 5515 if (opcode == BPF_EXIT) { 5516 goto mark_explored; 5517 } else if (opcode == BPF_CALL) { 5518 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5519 if (ret == 1) 5520 goto peek_stack; 5521 else if (ret < 0) 5522 goto err_free; 5523 if (t + 1 < insn_cnt) 5524 env->explored_states[t + 1] = STATE_LIST_MARK; 5525 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 5526 env->explored_states[t] = STATE_LIST_MARK; 5527 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 5528 if (ret == 1) 5529 goto peek_stack; 5530 else if (ret < 0) 5531 goto err_free; 5532 } 5533 } else if (opcode == BPF_JA) { 5534 if (BPF_SRC(insns[t].code) != BPF_K) { 5535 ret = -EINVAL; 5536 goto err_free; 5537 } 5538 /* unconditional jump with single edge */ 5539 ret = push_insn(t, t + insns[t].off + 1, 5540 FALLTHROUGH, env); 5541 if (ret == 1) 5542 goto peek_stack; 5543 else if (ret < 0) 5544 goto err_free; 5545 /* tell verifier to check for equivalent states 5546 * after every call and jump 5547 */ 5548 if (t + 1 < insn_cnt) 5549 env->explored_states[t + 1] = STATE_LIST_MARK; 5550 } else { 5551 /* conditional jump with two edges */ 5552 env->explored_states[t] = STATE_LIST_MARK; 5553 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5554 if (ret == 1) 5555 goto peek_stack; 5556 else if (ret < 0) 5557 goto err_free; 5558 5559 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 5560 if (ret == 1) 5561 goto peek_stack; 5562 else if (ret < 0) 5563 goto err_free; 5564 } 5565 } else { 5566 /* all other non-branch instructions with single 5567 * fall-through edge 5568 */ 5569 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5570 if (ret == 1) 5571 goto peek_stack; 5572 else if (ret < 0) 5573 goto err_free; 5574 } 5575 5576 mark_explored: 5577 insn_state[t] = EXPLORED; 5578 if (env->cfg.cur_stack-- <= 0) { 5579 verbose(env, "pop stack internal bug\n"); 5580 ret = -EFAULT; 5581 goto err_free; 5582 } 5583 goto peek_stack; 5584 5585 check_state: 5586 for (i = 0; i < insn_cnt; i++) { 5587 if (insn_state[i] != EXPLORED) { 5588 verbose(env, "unreachable insn %d\n", i); 5589 ret = -EINVAL; 5590 goto err_free; 5591 } 5592 } 5593 ret = 0; /* cfg looks good */ 5594 5595 err_free: 5596 kvfree(insn_state); 5597 kvfree(insn_stack); 5598 env->cfg.insn_state = env->cfg.insn_stack = NULL; 5599 return ret; 5600 } 5601 5602 /* The minimum supported BTF func info size */ 5603 #define MIN_BPF_FUNCINFO_SIZE 8 5604 #define MAX_FUNCINFO_REC_SIZE 252 5605 5606 static int check_btf_func(struct bpf_verifier_env *env, 5607 const union bpf_attr *attr, 5608 union bpf_attr __user *uattr) 5609 { 5610 u32 i, nfuncs, urec_size, min_size; 5611 u32 krec_size = sizeof(struct bpf_func_info); 5612 struct bpf_func_info *krecord; 5613 const struct btf_type *type; 5614 struct bpf_prog *prog; 5615 const struct btf *btf; 5616 void __user *urecord; 5617 u32 prev_offset = 0; 5618 int ret = 0; 5619 5620 nfuncs = attr->func_info_cnt; 5621 if (!nfuncs) 5622 return 0; 5623 5624 if (nfuncs != env->subprog_cnt) { 5625 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 5626 return -EINVAL; 5627 } 5628 5629 urec_size = attr->func_info_rec_size; 5630 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 5631 urec_size > MAX_FUNCINFO_REC_SIZE || 5632 urec_size % sizeof(u32)) { 5633 verbose(env, "invalid func info rec size %u\n", urec_size); 5634 return -EINVAL; 5635 } 5636 5637 prog = env->prog; 5638 btf = prog->aux->btf; 5639 5640 urecord = u64_to_user_ptr(attr->func_info); 5641 min_size = min_t(u32, krec_size, urec_size); 5642 5643 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 5644 if (!krecord) 5645 return -ENOMEM; 5646 5647 for (i = 0; i < nfuncs; i++) { 5648 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 5649 if (ret) { 5650 if (ret == -E2BIG) { 5651 verbose(env, "nonzero tailing record in func info"); 5652 /* set the size kernel expects so loader can zero 5653 * out the rest of the record. 5654 */ 5655 if (put_user(min_size, &uattr->func_info_rec_size)) 5656 ret = -EFAULT; 5657 } 5658 goto err_free; 5659 } 5660 5661 if (copy_from_user(&krecord[i], urecord, min_size)) { 5662 ret = -EFAULT; 5663 goto err_free; 5664 } 5665 5666 /* check insn_off */ 5667 if (i == 0) { 5668 if (krecord[i].insn_off) { 5669 verbose(env, 5670 "nonzero insn_off %u for the first func info record", 5671 krecord[i].insn_off); 5672 ret = -EINVAL; 5673 goto err_free; 5674 } 5675 } else if (krecord[i].insn_off <= prev_offset) { 5676 verbose(env, 5677 "same or smaller insn offset (%u) than previous func info record (%u)", 5678 krecord[i].insn_off, prev_offset); 5679 ret = -EINVAL; 5680 goto err_free; 5681 } 5682 5683 if (env->subprog_info[i].start != krecord[i].insn_off) { 5684 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 5685 ret = -EINVAL; 5686 goto err_free; 5687 } 5688 5689 /* check type_id */ 5690 type = btf_type_by_id(btf, krecord[i].type_id); 5691 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 5692 verbose(env, "invalid type id %d in func info", 5693 krecord[i].type_id); 5694 ret = -EINVAL; 5695 goto err_free; 5696 } 5697 5698 prev_offset = krecord[i].insn_off; 5699 urecord += urec_size; 5700 } 5701 5702 prog->aux->func_info = krecord; 5703 prog->aux->func_info_cnt = nfuncs; 5704 return 0; 5705 5706 err_free: 5707 kvfree(krecord); 5708 return ret; 5709 } 5710 5711 static void adjust_btf_func(struct bpf_verifier_env *env) 5712 { 5713 int i; 5714 5715 if (!env->prog->aux->func_info) 5716 return; 5717 5718 for (i = 0; i < env->subprog_cnt; i++) 5719 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start; 5720 } 5721 5722 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 5723 sizeof(((struct bpf_line_info *)(0))->line_col)) 5724 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 5725 5726 static int check_btf_line(struct bpf_verifier_env *env, 5727 const union bpf_attr *attr, 5728 union bpf_attr __user *uattr) 5729 { 5730 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 5731 struct bpf_subprog_info *sub; 5732 struct bpf_line_info *linfo; 5733 struct bpf_prog *prog; 5734 const struct btf *btf; 5735 void __user *ulinfo; 5736 int err; 5737 5738 nr_linfo = attr->line_info_cnt; 5739 if (!nr_linfo) 5740 return 0; 5741 5742 rec_size = attr->line_info_rec_size; 5743 if (rec_size < MIN_BPF_LINEINFO_SIZE || 5744 rec_size > MAX_LINEINFO_REC_SIZE || 5745 rec_size & (sizeof(u32) - 1)) 5746 return -EINVAL; 5747 5748 /* Need to zero it in case the userspace may 5749 * pass in a smaller bpf_line_info object. 5750 */ 5751 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 5752 GFP_KERNEL | __GFP_NOWARN); 5753 if (!linfo) 5754 return -ENOMEM; 5755 5756 prog = env->prog; 5757 btf = prog->aux->btf; 5758 5759 s = 0; 5760 sub = env->subprog_info; 5761 ulinfo = u64_to_user_ptr(attr->line_info); 5762 expected_size = sizeof(struct bpf_line_info); 5763 ncopy = min_t(u32, expected_size, rec_size); 5764 for (i = 0; i < nr_linfo; i++) { 5765 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 5766 if (err) { 5767 if (err == -E2BIG) { 5768 verbose(env, "nonzero tailing record in line_info"); 5769 if (put_user(expected_size, 5770 &uattr->line_info_rec_size)) 5771 err = -EFAULT; 5772 } 5773 goto err_free; 5774 } 5775 5776 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 5777 err = -EFAULT; 5778 goto err_free; 5779 } 5780 5781 /* 5782 * Check insn_off to ensure 5783 * 1) strictly increasing AND 5784 * 2) bounded by prog->len 5785 * 5786 * The linfo[0].insn_off == 0 check logically falls into 5787 * the later "missing bpf_line_info for func..." case 5788 * because the first linfo[0].insn_off must be the 5789 * first sub also and the first sub must have 5790 * subprog_info[0].start == 0. 5791 */ 5792 if ((i && linfo[i].insn_off <= prev_offset) || 5793 linfo[i].insn_off >= prog->len) { 5794 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 5795 i, linfo[i].insn_off, prev_offset, 5796 prog->len); 5797 err = -EINVAL; 5798 goto err_free; 5799 } 5800 5801 if (!prog->insnsi[linfo[i].insn_off].code) { 5802 verbose(env, 5803 "Invalid insn code at line_info[%u].insn_off\n", 5804 i); 5805 err = -EINVAL; 5806 goto err_free; 5807 } 5808 5809 if (!btf_name_by_offset(btf, linfo[i].line_off) || 5810 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 5811 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 5812 err = -EINVAL; 5813 goto err_free; 5814 } 5815 5816 if (s != env->subprog_cnt) { 5817 if (linfo[i].insn_off == sub[s].start) { 5818 sub[s].linfo_idx = i; 5819 s++; 5820 } else if (sub[s].start < linfo[i].insn_off) { 5821 verbose(env, "missing bpf_line_info for func#%u\n", s); 5822 err = -EINVAL; 5823 goto err_free; 5824 } 5825 } 5826 5827 prev_offset = linfo[i].insn_off; 5828 ulinfo += rec_size; 5829 } 5830 5831 if (s != env->subprog_cnt) { 5832 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 5833 env->subprog_cnt - s, s); 5834 err = -EINVAL; 5835 goto err_free; 5836 } 5837 5838 prog->aux->linfo = linfo; 5839 prog->aux->nr_linfo = nr_linfo; 5840 5841 return 0; 5842 5843 err_free: 5844 kvfree(linfo); 5845 return err; 5846 } 5847 5848 static int check_btf_info(struct bpf_verifier_env *env, 5849 const union bpf_attr *attr, 5850 union bpf_attr __user *uattr) 5851 { 5852 struct btf *btf; 5853 int err; 5854 5855 if (!attr->func_info_cnt && !attr->line_info_cnt) 5856 return 0; 5857 5858 btf = btf_get_by_fd(attr->prog_btf_fd); 5859 if (IS_ERR(btf)) 5860 return PTR_ERR(btf); 5861 env->prog->aux->btf = btf; 5862 5863 err = check_btf_func(env, attr, uattr); 5864 if (err) 5865 return err; 5866 5867 err = check_btf_line(env, attr, uattr); 5868 if (err) 5869 return err; 5870 5871 return 0; 5872 } 5873 5874 /* check %cur's range satisfies %old's */ 5875 static bool range_within(struct bpf_reg_state *old, 5876 struct bpf_reg_state *cur) 5877 { 5878 return old->umin_value <= cur->umin_value && 5879 old->umax_value >= cur->umax_value && 5880 old->smin_value <= cur->smin_value && 5881 old->smax_value >= cur->smax_value; 5882 } 5883 5884 /* Maximum number of register states that can exist at once */ 5885 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 5886 struct idpair { 5887 u32 old; 5888 u32 cur; 5889 }; 5890 5891 /* If in the old state two registers had the same id, then they need to have 5892 * the same id in the new state as well. But that id could be different from 5893 * the old state, so we need to track the mapping from old to new ids. 5894 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 5895 * regs with old id 5 must also have new id 9 for the new state to be safe. But 5896 * regs with a different old id could still have new id 9, we don't care about 5897 * that. 5898 * So we look through our idmap to see if this old id has been seen before. If 5899 * so, we require the new id to match; otherwise, we add the id pair to the map. 5900 */ 5901 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 5902 { 5903 unsigned int i; 5904 5905 for (i = 0; i < ID_MAP_SIZE; i++) { 5906 if (!idmap[i].old) { 5907 /* Reached an empty slot; haven't seen this id before */ 5908 idmap[i].old = old_id; 5909 idmap[i].cur = cur_id; 5910 return true; 5911 } 5912 if (idmap[i].old == old_id) 5913 return idmap[i].cur == cur_id; 5914 } 5915 /* We ran out of idmap slots, which should be impossible */ 5916 WARN_ON_ONCE(1); 5917 return false; 5918 } 5919 5920 static void clean_func_state(struct bpf_verifier_env *env, 5921 struct bpf_func_state *st) 5922 { 5923 enum bpf_reg_liveness live; 5924 int i, j; 5925 5926 for (i = 0; i < BPF_REG_FP; i++) { 5927 live = st->regs[i].live; 5928 /* liveness must not touch this register anymore */ 5929 st->regs[i].live |= REG_LIVE_DONE; 5930 if (!(live & REG_LIVE_READ)) 5931 /* since the register is unused, clear its state 5932 * to make further comparison simpler 5933 */ 5934 __mark_reg_not_init(&st->regs[i]); 5935 } 5936 5937 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 5938 live = st->stack[i].spilled_ptr.live; 5939 /* liveness must not touch this stack slot anymore */ 5940 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 5941 if (!(live & REG_LIVE_READ)) { 5942 __mark_reg_not_init(&st->stack[i].spilled_ptr); 5943 for (j = 0; j < BPF_REG_SIZE; j++) 5944 st->stack[i].slot_type[j] = STACK_INVALID; 5945 } 5946 } 5947 } 5948 5949 static void clean_verifier_state(struct bpf_verifier_env *env, 5950 struct bpf_verifier_state *st) 5951 { 5952 int i; 5953 5954 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 5955 /* all regs in this state in all frames were already marked */ 5956 return; 5957 5958 for (i = 0; i <= st->curframe; i++) 5959 clean_func_state(env, st->frame[i]); 5960 } 5961 5962 /* the parentage chains form a tree. 5963 * the verifier states are added to state lists at given insn and 5964 * pushed into state stack for future exploration. 5965 * when the verifier reaches bpf_exit insn some of the verifer states 5966 * stored in the state lists have their final liveness state already, 5967 * but a lot of states will get revised from liveness point of view when 5968 * the verifier explores other branches. 5969 * Example: 5970 * 1: r0 = 1 5971 * 2: if r1 == 100 goto pc+1 5972 * 3: r0 = 2 5973 * 4: exit 5974 * when the verifier reaches exit insn the register r0 in the state list of 5975 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 5976 * of insn 2 and goes exploring further. At the insn 4 it will walk the 5977 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 5978 * 5979 * Since the verifier pushes the branch states as it sees them while exploring 5980 * the program the condition of walking the branch instruction for the second 5981 * time means that all states below this branch were already explored and 5982 * their final liveness markes are already propagated. 5983 * Hence when the verifier completes the search of state list in is_state_visited() 5984 * we can call this clean_live_states() function to mark all liveness states 5985 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 5986 * will not be used. 5987 * This function also clears the registers and stack for states that !READ 5988 * to simplify state merging. 5989 * 5990 * Important note here that walking the same branch instruction in the callee 5991 * doesn't meant that the states are DONE. The verifier has to compare 5992 * the callsites 5993 */ 5994 static void clean_live_states(struct bpf_verifier_env *env, int insn, 5995 struct bpf_verifier_state *cur) 5996 { 5997 struct bpf_verifier_state_list *sl; 5998 int i; 5999 6000 sl = env->explored_states[insn]; 6001 if (!sl) 6002 return; 6003 6004 while (sl != STATE_LIST_MARK) { 6005 if (sl->state.curframe != cur->curframe) 6006 goto next; 6007 for (i = 0; i <= cur->curframe; i++) 6008 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 6009 goto next; 6010 clean_verifier_state(env, &sl->state); 6011 next: 6012 sl = sl->next; 6013 } 6014 } 6015 6016 /* Returns true if (rold safe implies rcur safe) */ 6017 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 6018 struct idpair *idmap) 6019 { 6020 bool equal; 6021 6022 if (!(rold->live & REG_LIVE_READ)) 6023 /* explored state didn't use this */ 6024 return true; 6025 6026 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 6027 6028 if (rold->type == PTR_TO_STACK) 6029 /* two stack pointers are equal only if they're pointing to 6030 * the same stack frame, since fp-8 in foo != fp-8 in bar 6031 */ 6032 return equal && rold->frameno == rcur->frameno; 6033 6034 if (equal) 6035 return true; 6036 6037 if (rold->type == NOT_INIT) 6038 /* explored state can't have used this */ 6039 return true; 6040 if (rcur->type == NOT_INIT) 6041 return false; 6042 switch (rold->type) { 6043 case SCALAR_VALUE: 6044 if (rcur->type == SCALAR_VALUE) { 6045 /* new val must satisfy old val knowledge */ 6046 return range_within(rold, rcur) && 6047 tnum_in(rold->var_off, rcur->var_off); 6048 } else { 6049 /* We're trying to use a pointer in place of a scalar. 6050 * Even if the scalar was unbounded, this could lead to 6051 * pointer leaks because scalars are allowed to leak 6052 * while pointers are not. We could make this safe in 6053 * special cases if root is calling us, but it's 6054 * probably not worth the hassle. 6055 */ 6056 return false; 6057 } 6058 case PTR_TO_MAP_VALUE: 6059 /* If the new min/max/var_off satisfy the old ones and 6060 * everything else matches, we are OK. 6061 * 'id' is not compared, since it's only used for maps with 6062 * bpf_spin_lock inside map element and in such cases if 6063 * the rest of the prog is valid for one map element then 6064 * it's valid for all map elements regardless of the key 6065 * used in bpf_map_lookup() 6066 */ 6067 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 6068 range_within(rold, rcur) && 6069 tnum_in(rold->var_off, rcur->var_off); 6070 case PTR_TO_MAP_VALUE_OR_NULL: 6071 /* a PTR_TO_MAP_VALUE could be safe to use as a 6072 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 6073 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 6074 * checked, doing so could have affected others with the same 6075 * id, and we can't check for that because we lost the id when 6076 * we converted to a PTR_TO_MAP_VALUE. 6077 */ 6078 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 6079 return false; 6080 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 6081 return false; 6082 /* Check our ids match any regs they're supposed to */ 6083 return check_ids(rold->id, rcur->id, idmap); 6084 case PTR_TO_PACKET_META: 6085 case PTR_TO_PACKET: 6086 if (rcur->type != rold->type) 6087 return false; 6088 /* We must have at least as much range as the old ptr 6089 * did, so that any accesses which were safe before are 6090 * still safe. This is true even if old range < old off, 6091 * since someone could have accessed through (ptr - k), or 6092 * even done ptr -= k in a register, to get a safe access. 6093 */ 6094 if (rold->range > rcur->range) 6095 return false; 6096 /* If the offsets don't match, we can't trust our alignment; 6097 * nor can we be sure that we won't fall out of range. 6098 */ 6099 if (rold->off != rcur->off) 6100 return false; 6101 /* id relations must be preserved */ 6102 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 6103 return false; 6104 /* new val must satisfy old val knowledge */ 6105 return range_within(rold, rcur) && 6106 tnum_in(rold->var_off, rcur->var_off); 6107 case PTR_TO_CTX: 6108 case CONST_PTR_TO_MAP: 6109 case PTR_TO_PACKET_END: 6110 case PTR_TO_FLOW_KEYS: 6111 case PTR_TO_SOCKET: 6112 case PTR_TO_SOCKET_OR_NULL: 6113 case PTR_TO_SOCK_COMMON: 6114 case PTR_TO_SOCK_COMMON_OR_NULL: 6115 case PTR_TO_TCP_SOCK: 6116 case PTR_TO_TCP_SOCK_OR_NULL: 6117 /* Only valid matches are exact, which memcmp() above 6118 * would have accepted 6119 */ 6120 default: 6121 /* Don't know what's going on, just say it's not safe */ 6122 return false; 6123 } 6124 6125 /* Shouldn't get here; if we do, say it's not safe */ 6126 WARN_ON_ONCE(1); 6127 return false; 6128 } 6129 6130 static bool stacksafe(struct bpf_func_state *old, 6131 struct bpf_func_state *cur, 6132 struct idpair *idmap) 6133 { 6134 int i, spi; 6135 6136 /* walk slots of the explored stack and ignore any additional 6137 * slots in the current stack, since explored(safe) state 6138 * didn't use them 6139 */ 6140 for (i = 0; i < old->allocated_stack; i++) { 6141 spi = i / BPF_REG_SIZE; 6142 6143 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 6144 i += BPF_REG_SIZE - 1; 6145 /* explored state didn't use this */ 6146 continue; 6147 } 6148 6149 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 6150 continue; 6151 6152 /* explored stack has more populated slots than current stack 6153 * and these slots were used 6154 */ 6155 if (i >= cur->allocated_stack) 6156 return false; 6157 6158 /* if old state was safe with misc data in the stack 6159 * it will be safe with zero-initialized stack. 6160 * The opposite is not true 6161 */ 6162 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 6163 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 6164 continue; 6165 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 6166 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 6167 /* Ex: old explored (safe) state has STACK_SPILL in 6168 * this stack slot, but current has has STACK_MISC -> 6169 * this verifier states are not equivalent, 6170 * return false to continue verification of this path 6171 */ 6172 return false; 6173 if (i % BPF_REG_SIZE) 6174 continue; 6175 if (old->stack[spi].slot_type[0] != STACK_SPILL) 6176 continue; 6177 if (!regsafe(&old->stack[spi].spilled_ptr, 6178 &cur->stack[spi].spilled_ptr, 6179 idmap)) 6180 /* when explored and current stack slot are both storing 6181 * spilled registers, check that stored pointers types 6182 * are the same as well. 6183 * Ex: explored safe path could have stored 6184 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 6185 * but current path has stored: 6186 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 6187 * such verifier states are not equivalent. 6188 * return false to continue verification of this path 6189 */ 6190 return false; 6191 } 6192 return true; 6193 } 6194 6195 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 6196 { 6197 if (old->acquired_refs != cur->acquired_refs) 6198 return false; 6199 return !memcmp(old->refs, cur->refs, 6200 sizeof(*old->refs) * old->acquired_refs); 6201 } 6202 6203 /* compare two verifier states 6204 * 6205 * all states stored in state_list are known to be valid, since 6206 * verifier reached 'bpf_exit' instruction through them 6207 * 6208 * this function is called when verifier exploring different branches of 6209 * execution popped from the state stack. If it sees an old state that has 6210 * more strict register state and more strict stack state then this execution 6211 * branch doesn't need to be explored further, since verifier already 6212 * concluded that more strict state leads to valid finish. 6213 * 6214 * Therefore two states are equivalent if register state is more conservative 6215 * and explored stack state is more conservative than the current one. 6216 * Example: 6217 * explored current 6218 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 6219 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 6220 * 6221 * In other words if current stack state (one being explored) has more 6222 * valid slots than old one that already passed validation, it means 6223 * the verifier can stop exploring and conclude that current state is valid too 6224 * 6225 * Similarly with registers. If explored state has register type as invalid 6226 * whereas register type in current state is meaningful, it means that 6227 * the current state will reach 'bpf_exit' instruction safely 6228 */ 6229 static bool func_states_equal(struct bpf_func_state *old, 6230 struct bpf_func_state *cur) 6231 { 6232 struct idpair *idmap; 6233 bool ret = false; 6234 int i; 6235 6236 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 6237 /* If we failed to allocate the idmap, just say it's not safe */ 6238 if (!idmap) 6239 return false; 6240 6241 for (i = 0; i < MAX_BPF_REG; i++) { 6242 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 6243 goto out_free; 6244 } 6245 6246 if (!stacksafe(old, cur, idmap)) 6247 goto out_free; 6248 6249 if (!refsafe(old, cur)) 6250 goto out_free; 6251 ret = true; 6252 out_free: 6253 kfree(idmap); 6254 return ret; 6255 } 6256 6257 static bool states_equal(struct bpf_verifier_env *env, 6258 struct bpf_verifier_state *old, 6259 struct bpf_verifier_state *cur) 6260 { 6261 int i; 6262 6263 if (old->curframe != cur->curframe) 6264 return false; 6265 6266 /* Verification state from speculative execution simulation 6267 * must never prune a non-speculative execution one. 6268 */ 6269 if (old->speculative && !cur->speculative) 6270 return false; 6271 6272 if (old->active_spin_lock != cur->active_spin_lock) 6273 return false; 6274 6275 /* for states to be equal callsites have to be the same 6276 * and all frame states need to be equivalent 6277 */ 6278 for (i = 0; i <= old->curframe; i++) { 6279 if (old->frame[i]->callsite != cur->frame[i]->callsite) 6280 return false; 6281 if (!func_states_equal(old->frame[i], cur->frame[i])) 6282 return false; 6283 } 6284 return true; 6285 } 6286 6287 static int propagate_liveness_reg(struct bpf_verifier_env *env, 6288 struct bpf_reg_state *reg, 6289 struct bpf_reg_state *parent_reg) 6290 { 6291 int err; 6292 6293 if (parent_reg->live & REG_LIVE_READ || !(reg->live & REG_LIVE_READ)) 6294 return 0; 6295 6296 err = mark_reg_read(env, reg, parent_reg); 6297 if (err) 6298 return err; 6299 6300 return 0; 6301 } 6302 6303 /* A write screens off any subsequent reads; but write marks come from the 6304 * straight-line code between a state and its parent. When we arrive at an 6305 * equivalent state (jump target or such) we didn't arrive by the straight-line 6306 * code, so read marks in the state must propagate to the parent regardless 6307 * of the state's write marks. That's what 'parent == state->parent' comparison 6308 * in mark_reg_read() is for. 6309 */ 6310 static int propagate_liveness(struct bpf_verifier_env *env, 6311 const struct bpf_verifier_state *vstate, 6312 struct bpf_verifier_state *vparent) 6313 { 6314 struct bpf_reg_state *state_reg, *parent_reg; 6315 struct bpf_func_state *state, *parent; 6316 int i, frame, err = 0; 6317 6318 if (vparent->curframe != vstate->curframe) { 6319 WARN(1, "propagate_live: parent frame %d current frame %d\n", 6320 vparent->curframe, vstate->curframe); 6321 return -EFAULT; 6322 } 6323 /* Propagate read liveness of registers... */ 6324 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 6325 for (frame = 0; frame <= vstate->curframe; frame++) { 6326 parent = vparent->frame[frame]; 6327 state = vstate->frame[frame]; 6328 parent_reg = parent->regs; 6329 state_reg = state->regs; 6330 /* We don't need to worry about FP liveness, it's read-only */ 6331 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 6332 err = propagate_liveness_reg(env, &state_reg[i], 6333 &parent_reg[i]); 6334 if (err) 6335 return err; 6336 } 6337 6338 /* Propagate stack slots. */ 6339 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 6340 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 6341 parent_reg = &parent->stack[i].spilled_ptr; 6342 state_reg = &state->stack[i].spilled_ptr; 6343 err = propagate_liveness_reg(env, state_reg, 6344 parent_reg); 6345 if (err) 6346 return err; 6347 } 6348 } 6349 return err; 6350 } 6351 6352 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 6353 { 6354 struct bpf_verifier_state_list *new_sl; 6355 struct bpf_verifier_state_list *sl, **pprev; 6356 struct bpf_verifier_state *cur = env->cur_state, *new; 6357 int i, j, err, states_cnt = 0; 6358 6359 pprev = &env->explored_states[insn_idx]; 6360 sl = *pprev; 6361 6362 if (!sl) 6363 /* this 'insn_idx' instruction wasn't marked, so we will not 6364 * be doing state search here 6365 */ 6366 return 0; 6367 6368 clean_live_states(env, insn_idx, cur); 6369 6370 while (sl != STATE_LIST_MARK) { 6371 if (states_equal(env, &sl->state, cur)) { 6372 sl->hit_cnt++; 6373 /* reached equivalent register/stack state, 6374 * prune the search. 6375 * Registers read by the continuation are read by us. 6376 * If we have any write marks in env->cur_state, they 6377 * will prevent corresponding reads in the continuation 6378 * from reaching our parent (an explored_state). Our 6379 * own state will get the read marks recorded, but 6380 * they'll be immediately forgotten as we're pruning 6381 * this state and will pop a new one. 6382 */ 6383 err = propagate_liveness(env, &sl->state, cur); 6384 if (err) 6385 return err; 6386 return 1; 6387 } 6388 states_cnt++; 6389 sl->miss_cnt++; 6390 /* heuristic to determine whether this state is beneficial 6391 * to keep checking from state equivalence point of view. 6392 * Higher numbers increase max_states_per_insn and verification time, 6393 * but do not meaningfully decrease insn_processed. 6394 */ 6395 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 6396 /* the state is unlikely to be useful. Remove it to 6397 * speed up verification 6398 */ 6399 *pprev = sl->next; 6400 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 6401 free_verifier_state(&sl->state, false); 6402 kfree(sl); 6403 env->peak_states--; 6404 } else { 6405 /* cannot free this state, since parentage chain may 6406 * walk it later. Add it for free_list instead to 6407 * be freed at the end of verification 6408 */ 6409 sl->next = env->free_list; 6410 env->free_list = sl; 6411 } 6412 sl = *pprev; 6413 continue; 6414 } 6415 pprev = &sl->next; 6416 sl = *pprev; 6417 } 6418 6419 if (env->max_states_per_insn < states_cnt) 6420 env->max_states_per_insn = states_cnt; 6421 6422 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 6423 return 0; 6424 6425 /* there were no equivalent states, remember current one. 6426 * technically the current state is not proven to be safe yet, 6427 * but it will either reach outer most bpf_exit (which means it's safe) 6428 * or it will be rejected. Since there are no loops, we won't be 6429 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 6430 * again on the way to bpf_exit 6431 */ 6432 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 6433 if (!new_sl) 6434 return -ENOMEM; 6435 env->total_states++; 6436 env->peak_states++; 6437 6438 /* add new state to the head of linked list */ 6439 new = &new_sl->state; 6440 err = copy_verifier_state(new, cur); 6441 if (err) { 6442 free_verifier_state(new, false); 6443 kfree(new_sl); 6444 return err; 6445 } 6446 new_sl->next = env->explored_states[insn_idx]; 6447 env->explored_states[insn_idx] = new_sl; 6448 /* connect new state to parentage chain. Current frame needs all 6449 * registers connected. Only r6 - r9 of the callers are alive (pushed 6450 * to the stack implicitly by JITs) so in callers' frames connect just 6451 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 6452 * the state of the call instruction (with WRITTEN set), and r0 comes 6453 * from callee with its full parentage chain, anyway. 6454 */ 6455 for (j = 0; j <= cur->curframe; j++) 6456 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 6457 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 6458 /* clear write marks in current state: the writes we did are not writes 6459 * our child did, so they don't screen off its reads from us. 6460 * (There are no read marks in current state, because reads always mark 6461 * their parent and current state never has children yet. Only 6462 * explored_states can get read marks.) 6463 */ 6464 for (i = 0; i < BPF_REG_FP; i++) 6465 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 6466 6467 /* all stack frames are accessible from callee, clear them all */ 6468 for (j = 0; j <= cur->curframe; j++) { 6469 struct bpf_func_state *frame = cur->frame[j]; 6470 struct bpf_func_state *newframe = new->frame[j]; 6471 6472 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 6473 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 6474 frame->stack[i].spilled_ptr.parent = 6475 &newframe->stack[i].spilled_ptr; 6476 } 6477 } 6478 return 0; 6479 } 6480 6481 /* Return true if it's OK to have the same insn return a different type. */ 6482 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 6483 { 6484 switch (type) { 6485 case PTR_TO_CTX: 6486 case PTR_TO_SOCKET: 6487 case PTR_TO_SOCKET_OR_NULL: 6488 case PTR_TO_SOCK_COMMON: 6489 case PTR_TO_SOCK_COMMON_OR_NULL: 6490 case PTR_TO_TCP_SOCK: 6491 case PTR_TO_TCP_SOCK_OR_NULL: 6492 return false; 6493 default: 6494 return true; 6495 } 6496 } 6497 6498 /* If an instruction was previously used with particular pointer types, then we 6499 * need to be careful to avoid cases such as the below, where it may be ok 6500 * for one branch accessing the pointer, but not ok for the other branch: 6501 * 6502 * R1 = sock_ptr 6503 * goto X; 6504 * ... 6505 * R1 = some_other_valid_ptr; 6506 * goto X; 6507 * ... 6508 * R2 = *(u32 *)(R1 + 0); 6509 */ 6510 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 6511 { 6512 return src != prev && (!reg_type_mismatch_ok(src) || 6513 !reg_type_mismatch_ok(prev)); 6514 } 6515 6516 static int do_check(struct bpf_verifier_env *env) 6517 { 6518 struct bpf_verifier_state *state; 6519 struct bpf_insn *insns = env->prog->insnsi; 6520 struct bpf_reg_state *regs; 6521 int insn_cnt = env->prog->len; 6522 bool do_print_state = false; 6523 6524 env->prev_linfo = NULL; 6525 6526 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 6527 if (!state) 6528 return -ENOMEM; 6529 state->curframe = 0; 6530 state->speculative = false; 6531 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 6532 if (!state->frame[0]) { 6533 kfree(state); 6534 return -ENOMEM; 6535 } 6536 env->cur_state = state; 6537 init_func_state(env, state->frame[0], 6538 BPF_MAIN_FUNC /* callsite */, 6539 0 /* frameno */, 6540 0 /* subprogno, zero == main subprog */); 6541 6542 for (;;) { 6543 struct bpf_insn *insn; 6544 u8 class; 6545 int err; 6546 6547 if (env->insn_idx >= insn_cnt) { 6548 verbose(env, "invalid insn idx %d insn_cnt %d\n", 6549 env->insn_idx, insn_cnt); 6550 return -EFAULT; 6551 } 6552 6553 insn = &insns[env->insn_idx]; 6554 class = BPF_CLASS(insn->code); 6555 6556 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 6557 verbose(env, 6558 "BPF program is too large. Processed %d insn\n", 6559 env->insn_processed); 6560 return -E2BIG; 6561 } 6562 6563 err = is_state_visited(env, env->insn_idx); 6564 if (err < 0) 6565 return err; 6566 if (err == 1) { 6567 /* found equivalent state, can prune the search */ 6568 if (env->log.level & BPF_LOG_LEVEL) { 6569 if (do_print_state) 6570 verbose(env, "\nfrom %d to %d%s: safe\n", 6571 env->prev_insn_idx, env->insn_idx, 6572 env->cur_state->speculative ? 6573 " (speculative execution)" : ""); 6574 else 6575 verbose(env, "%d: safe\n", env->insn_idx); 6576 } 6577 goto process_bpf_exit; 6578 } 6579 6580 if (signal_pending(current)) 6581 return -EAGAIN; 6582 6583 if (need_resched()) 6584 cond_resched(); 6585 6586 if (env->log.level & BPF_LOG_LEVEL2 || 6587 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 6588 if (env->log.level & BPF_LOG_LEVEL2) 6589 verbose(env, "%d:", env->insn_idx); 6590 else 6591 verbose(env, "\nfrom %d to %d%s:", 6592 env->prev_insn_idx, env->insn_idx, 6593 env->cur_state->speculative ? 6594 " (speculative execution)" : ""); 6595 print_verifier_state(env, state->frame[state->curframe]); 6596 do_print_state = false; 6597 } 6598 6599 if (env->log.level & BPF_LOG_LEVEL) { 6600 const struct bpf_insn_cbs cbs = { 6601 .cb_print = verbose, 6602 .private_data = env, 6603 }; 6604 6605 verbose_linfo(env, env->insn_idx, "; "); 6606 verbose(env, "%d: ", env->insn_idx); 6607 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 6608 } 6609 6610 if (bpf_prog_is_dev_bound(env->prog->aux)) { 6611 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 6612 env->prev_insn_idx); 6613 if (err) 6614 return err; 6615 } 6616 6617 regs = cur_regs(env); 6618 env->insn_aux_data[env->insn_idx].seen = true; 6619 6620 if (class == BPF_ALU || class == BPF_ALU64) { 6621 err = check_alu_op(env, insn); 6622 if (err) 6623 return err; 6624 6625 } else if (class == BPF_LDX) { 6626 enum bpf_reg_type *prev_src_type, src_reg_type; 6627 6628 /* check for reserved fields is already done */ 6629 6630 /* check src operand */ 6631 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6632 if (err) 6633 return err; 6634 6635 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6636 if (err) 6637 return err; 6638 6639 src_reg_type = regs[insn->src_reg].type; 6640 6641 /* check that memory (src_reg + off) is readable, 6642 * the state of dst_reg will be updated by this func 6643 */ 6644 err = check_mem_access(env, env->insn_idx, insn->src_reg, 6645 insn->off, BPF_SIZE(insn->code), 6646 BPF_READ, insn->dst_reg, false); 6647 if (err) 6648 return err; 6649 6650 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 6651 6652 if (*prev_src_type == NOT_INIT) { 6653 /* saw a valid insn 6654 * dst_reg = *(u32 *)(src_reg + off) 6655 * save type to validate intersecting paths 6656 */ 6657 *prev_src_type = src_reg_type; 6658 6659 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 6660 /* ABuser program is trying to use the same insn 6661 * dst_reg = *(u32*) (src_reg + off) 6662 * with different pointer types: 6663 * src_reg == ctx in one branch and 6664 * src_reg == stack|map in some other branch. 6665 * Reject it. 6666 */ 6667 verbose(env, "same insn cannot be used with different pointers\n"); 6668 return -EINVAL; 6669 } 6670 6671 } else if (class == BPF_STX) { 6672 enum bpf_reg_type *prev_dst_type, dst_reg_type; 6673 6674 if (BPF_MODE(insn->code) == BPF_XADD) { 6675 err = check_xadd(env, env->insn_idx, insn); 6676 if (err) 6677 return err; 6678 env->insn_idx++; 6679 continue; 6680 } 6681 6682 /* check src1 operand */ 6683 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6684 if (err) 6685 return err; 6686 /* check src2 operand */ 6687 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6688 if (err) 6689 return err; 6690 6691 dst_reg_type = regs[insn->dst_reg].type; 6692 6693 /* check that memory (dst_reg + off) is writeable */ 6694 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6695 insn->off, BPF_SIZE(insn->code), 6696 BPF_WRITE, insn->src_reg, false); 6697 if (err) 6698 return err; 6699 6700 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 6701 6702 if (*prev_dst_type == NOT_INIT) { 6703 *prev_dst_type = dst_reg_type; 6704 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 6705 verbose(env, "same insn cannot be used with different pointers\n"); 6706 return -EINVAL; 6707 } 6708 6709 } else if (class == BPF_ST) { 6710 if (BPF_MODE(insn->code) != BPF_MEM || 6711 insn->src_reg != BPF_REG_0) { 6712 verbose(env, "BPF_ST uses reserved fields\n"); 6713 return -EINVAL; 6714 } 6715 /* check src operand */ 6716 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6717 if (err) 6718 return err; 6719 6720 if (is_ctx_reg(env, insn->dst_reg)) { 6721 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 6722 insn->dst_reg, 6723 reg_type_str[reg_state(env, insn->dst_reg)->type]); 6724 return -EACCES; 6725 } 6726 6727 /* check that memory (dst_reg + off) is writeable */ 6728 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6729 insn->off, BPF_SIZE(insn->code), 6730 BPF_WRITE, -1, false); 6731 if (err) 6732 return err; 6733 6734 } else if (class == BPF_JMP || class == BPF_JMP32) { 6735 u8 opcode = BPF_OP(insn->code); 6736 6737 if (opcode == BPF_CALL) { 6738 if (BPF_SRC(insn->code) != BPF_K || 6739 insn->off != 0 || 6740 (insn->src_reg != BPF_REG_0 && 6741 insn->src_reg != BPF_PSEUDO_CALL) || 6742 insn->dst_reg != BPF_REG_0 || 6743 class == BPF_JMP32) { 6744 verbose(env, "BPF_CALL uses reserved fields\n"); 6745 return -EINVAL; 6746 } 6747 6748 if (env->cur_state->active_spin_lock && 6749 (insn->src_reg == BPF_PSEUDO_CALL || 6750 insn->imm != BPF_FUNC_spin_unlock)) { 6751 verbose(env, "function calls are not allowed while holding a lock\n"); 6752 return -EINVAL; 6753 } 6754 if (insn->src_reg == BPF_PSEUDO_CALL) 6755 err = check_func_call(env, insn, &env->insn_idx); 6756 else 6757 err = check_helper_call(env, insn->imm, env->insn_idx); 6758 if (err) 6759 return err; 6760 6761 } else if (opcode == BPF_JA) { 6762 if (BPF_SRC(insn->code) != BPF_K || 6763 insn->imm != 0 || 6764 insn->src_reg != BPF_REG_0 || 6765 insn->dst_reg != BPF_REG_0 || 6766 class == BPF_JMP32) { 6767 verbose(env, "BPF_JA uses reserved fields\n"); 6768 return -EINVAL; 6769 } 6770 6771 env->insn_idx += insn->off + 1; 6772 continue; 6773 6774 } else if (opcode == BPF_EXIT) { 6775 if (BPF_SRC(insn->code) != BPF_K || 6776 insn->imm != 0 || 6777 insn->src_reg != BPF_REG_0 || 6778 insn->dst_reg != BPF_REG_0 || 6779 class == BPF_JMP32) { 6780 verbose(env, "BPF_EXIT uses reserved fields\n"); 6781 return -EINVAL; 6782 } 6783 6784 if (env->cur_state->active_spin_lock) { 6785 verbose(env, "bpf_spin_unlock is missing\n"); 6786 return -EINVAL; 6787 } 6788 6789 if (state->curframe) { 6790 /* exit from nested function */ 6791 env->prev_insn_idx = env->insn_idx; 6792 err = prepare_func_exit(env, &env->insn_idx); 6793 if (err) 6794 return err; 6795 do_print_state = true; 6796 continue; 6797 } 6798 6799 err = check_reference_leak(env); 6800 if (err) 6801 return err; 6802 6803 /* eBPF calling convetion is such that R0 is used 6804 * to return the value from eBPF program. 6805 * Make sure that it's readable at this time 6806 * of bpf_exit, which means that program wrote 6807 * something into it earlier 6808 */ 6809 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 6810 if (err) 6811 return err; 6812 6813 if (is_pointer_value(env, BPF_REG_0)) { 6814 verbose(env, "R0 leaks addr as return value\n"); 6815 return -EACCES; 6816 } 6817 6818 err = check_return_code(env); 6819 if (err) 6820 return err; 6821 process_bpf_exit: 6822 err = pop_stack(env, &env->prev_insn_idx, 6823 &env->insn_idx); 6824 if (err < 0) { 6825 if (err != -ENOENT) 6826 return err; 6827 break; 6828 } else { 6829 do_print_state = true; 6830 continue; 6831 } 6832 } else { 6833 err = check_cond_jmp_op(env, insn, &env->insn_idx); 6834 if (err) 6835 return err; 6836 } 6837 } else if (class == BPF_LD) { 6838 u8 mode = BPF_MODE(insn->code); 6839 6840 if (mode == BPF_ABS || mode == BPF_IND) { 6841 err = check_ld_abs(env, insn); 6842 if (err) 6843 return err; 6844 6845 } else if (mode == BPF_IMM) { 6846 err = check_ld_imm(env, insn); 6847 if (err) 6848 return err; 6849 6850 env->insn_idx++; 6851 env->insn_aux_data[env->insn_idx].seen = true; 6852 } else { 6853 verbose(env, "invalid BPF_LD mode\n"); 6854 return -EINVAL; 6855 } 6856 } else { 6857 verbose(env, "unknown insn class %d\n", class); 6858 return -EINVAL; 6859 } 6860 6861 env->insn_idx++; 6862 } 6863 6864 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 6865 return 0; 6866 } 6867 6868 static int check_map_prealloc(struct bpf_map *map) 6869 { 6870 return (map->map_type != BPF_MAP_TYPE_HASH && 6871 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6872 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 6873 !(map->map_flags & BPF_F_NO_PREALLOC); 6874 } 6875 6876 static bool is_tracing_prog_type(enum bpf_prog_type type) 6877 { 6878 switch (type) { 6879 case BPF_PROG_TYPE_KPROBE: 6880 case BPF_PROG_TYPE_TRACEPOINT: 6881 case BPF_PROG_TYPE_PERF_EVENT: 6882 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6883 return true; 6884 default: 6885 return false; 6886 } 6887 } 6888 6889 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 6890 struct bpf_map *map, 6891 struct bpf_prog *prog) 6892 6893 { 6894 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 6895 * preallocated hash maps, since doing memory allocation 6896 * in overflow_handler can crash depending on where nmi got 6897 * triggered. 6898 */ 6899 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 6900 if (!check_map_prealloc(map)) { 6901 verbose(env, "perf_event programs can only use preallocated hash map\n"); 6902 return -EINVAL; 6903 } 6904 if (map->inner_map_meta && 6905 !check_map_prealloc(map->inner_map_meta)) { 6906 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 6907 return -EINVAL; 6908 } 6909 } 6910 6911 if ((is_tracing_prog_type(prog->type) || 6912 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 6913 map_value_has_spin_lock(map)) { 6914 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 6915 return -EINVAL; 6916 } 6917 6918 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 6919 !bpf_offload_prog_map_match(prog, map)) { 6920 verbose(env, "offload device mismatch between prog and map\n"); 6921 return -EINVAL; 6922 } 6923 6924 return 0; 6925 } 6926 6927 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 6928 { 6929 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 6930 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 6931 } 6932 6933 /* look for pseudo eBPF instructions that access map FDs and 6934 * replace them with actual map pointers 6935 */ 6936 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 6937 { 6938 struct bpf_insn *insn = env->prog->insnsi; 6939 int insn_cnt = env->prog->len; 6940 int i, j, err; 6941 6942 err = bpf_prog_calc_tag(env->prog); 6943 if (err) 6944 return err; 6945 6946 for (i = 0; i < insn_cnt; i++, insn++) { 6947 if (BPF_CLASS(insn->code) == BPF_LDX && 6948 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 6949 verbose(env, "BPF_LDX uses reserved fields\n"); 6950 return -EINVAL; 6951 } 6952 6953 if (BPF_CLASS(insn->code) == BPF_STX && 6954 ((BPF_MODE(insn->code) != BPF_MEM && 6955 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 6956 verbose(env, "BPF_STX uses reserved fields\n"); 6957 return -EINVAL; 6958 } 6959 6960 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 6961 struct bpf_insn_aux_data *aux; 6962 struct bpf_map *map; 6963 struct fd f; 6964 u64 addr; 6965 6966 if (i == insn_cnt - 1 || insn[1].code != 0 || 6967 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 6968 insn[1].off != 0) { 6969 verbose(env, "invalid bpf_ld_imm64 insn\n"); 6970 return -EINVAL; 6971 } 6972 6973 if (insn[0].src_reg == 0) 6974 /* valid generic load 64-bit imm */ 6975 goto next_insn; 6976 6977 /* In final convert_pseudo_ld_imm64() step, this is 6978 * converted into regular 64-bit imm load insn. 6979 */ 6980 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 6981 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 6982 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 6983 insn[1].imm != 0)) { 6984 verbose(env, 6985 "unrecognized bpf_ld_imm64 insn\n"); 6986 return -EINVAL; 6987 } 6988 6989 f = fdget(insn[0].imm); 6990 map = __bpf_map_get(f); 6991 if (IS_ERR(map)) { 6992 verbose(env, "fd %d is not pointing to valid bpf_map\n", 6993 insn[0].imm); 6994 return PTR_ERR(map); 6995 } 6996 6997 err = check_map_prog_compatibility(env, map, env->prog); 6998 if (err) { 6999 fdput(f); 7000 return err; 7001 } 7002 7003 aux = &env->insn_aux_data[i]; 7004 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 7005 addr = (unsigned long)map; 7006 } else { 7007 u32 off = insn[1].imm; 7008 7009 if (off >= BPF_MAX_VAR_OFF) { 7010 verbose(env, "direct value offset of %u is not allowed\n", off); 7011 fdput(f); 7012 return -EINVAL; 7013 } 7014 7015 if (!map->ops->map_direct_value_addr) { 7016 verbose(env, "no direct value access support for this map type\n"); 7017 fdput(f); 7018 return -EINVAL; 7019 } 7020 7021 err = map->ops->map_direct_value_addr(map, &addr, off); 7022 if (err) { 7023 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 7024 map->value_size, off); 7025 fdput(f); 7026 return err; 7027 } 7028 7029 aux->map_off = off; 7030 addr += off; 7031 } 7032 7033 insn[0].imm = (u32)addr; 7034 insn[1].imm = addr >> 32; 7035 7036 /* check whether we recorded this map already */ 7037 for (j = 0; j < env->used_map_cnt; j++) { 7038 if (env->used_maps[j] == map) { 7039 aux->map_index = j; 7040 fdput(f); 7041 goto next_insn; 7042 } 7043 } 7044 7045 if (env->used_map_cnt >= MAX_USED_MAPS) { 7046 fdput(f); 7047 return -E2BIG; 7048 } 7049 7050 /* hold the map. If the program is rejected by verifier, 7051 * the map will be released by release_maps() or it 7052 * will be used by the valid program until it's unloaded 7053 * and all maps are released in free_used_maps() 7054 */ 7055 map = bpf_map_inc(map, false); 7056 if (IS_ERR(map)) { 7057 fdput(f); 7058 return PTR_ERR(map); 7059 } 7060 7061 aux->map_index = env->used_map_cnt; 7062 env->used_maps[env->used_map_cnt++] = map; 7063 7064 if (bpf_map_is_cgroup_storage(map) && 7065 bpf_cgroup_storage_assign(env->prog, map)) { 7066 verbose(env, "only one cgroup storage of each type is allowed\n"); 7067 fdput(f); 7068 return -EBUSY; 7069 } 7070 7071 fdput(f); 7072 next_insn: 7073 insn++; 7074 i++; 7075 continue; 7076 } 7077 7078 /* Basic sanity check before we invest more work here. */ 7079 if (!bpf_opcode_in_insntable(insn->code)) { 7080 verbose(env, "unknown opcode %02x\n", insn->code); 7081 return -EINVAL; 7082 } 7083 } 7084 7085 /* now all pseudo BPF_LD_IMM64 instructions load valid 7086 * 'struct bpf_map *' into a register instead of user map_fd. 7087 * These pointers will be used later by verifier to validate map access. 7088 */ 7089 return 0; 7090 } 7091 7092 /* drop refcnt of maps used by the rejected program */ 7093 static void release_maps(struct bpf_verifier_env *env) 7094 { 7095 enum bpf_cgroup_storage_type stype; 7096 int i; 7097 7098 for_each_cgroup_storage_type(stype) { 7099 if (!env->prog->aux->cgroup_storage[stype]) 7100 continue; 7101 bpf_cgroup_storage_release(env->prog, 7102 env->prog->aux->cgroup_storage[stype]); 7103 } 7104 7105 for (i = 0; i < env->used_map_cnt; i++) 7106 bpf_map_put(env->used_maps[i]); 7107 } 7108 7109 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 7110 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 7111 { 7112 struct bpf_insn *insn = env->prog->insnsi; 7113 int insn_cnt = env->prog->len; 7114 int i; 7115 7116 for (i = 0; i < insn_cnt; i++, insn++) 7117 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 7118 insn->src_reg = 0; 7119 } 7120 7121 /* single env->prog->insni[off] instruction was replaced with the range 7122 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 7123 * [0, off) and [off, end) to new locations, so the patched range stays zero 7124 */ 7125 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 7126 u32 off, u32 cnt) 7127 { 7128 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 7129 int i; 7130 7131 if (cnt == 1) 7132 return 0; 7133 new_data = vzalloc(array_size(prog_len, 7134 sizeof(struct bpf_insn_aux_data))); 7135 if (!new_data) 7136 return -ENOMEM; 7137 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 7138 memcpy(new_data + off + cnt - 1, old_data + off, 7139 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 7140 for (i = off; i < off + cnt - 1; i++) 7141 new_data[i].seen = true; 7142 env->insn_aux_data = new_data; 7143 vfree(old_data); 7144 return 0; 7145 } 7146 7147 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 7148 { 7149 int i; 7150 7151 if (len == 1) 7152 return; 7153 /* NOTE: fake 'exit' subprog should be updated as well. */ 7154 for (i = 0; i <= env->subprog_cnt; i++) { 7155 if (env->subprog_info[i].start <= off) 7156 continue; 7157 env->subprog_info[i].start += len - 1; 7158 } 7159 } 7160 7161 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 7162 const struct bpf_insn *patch, u32 len) 7163 { 7164 struct bpf_prog *new_prog; 7165 7166 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 7167 if (IS_ERR(new_prog)) { 7168 if (PTR_ERR(new_prog) == -ERANGE) 7169 verbose(env, 7170 "insn %d cannot be patched due to 16-bit range\n", 7171 env->insn_aux_data[off].orig_idx); 7172 return NULL; 7173 } 7174 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 7175 return NULL; 7176 adjust_subprog_starts(env, off, len); 7177 return new_prog; 7178 } 7179 7180 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 7181 u32 off, u32 cnt) 7182 { 7183 int i, j; 7184 7185 /* find first prog starting at or after off (first to remove) */ 7186 for (i = 0; i < env->subprog_cnt; i++) 7187 if (env->subprog_info[i].start >= off) 7188 break; 7189 /* find first prog starting at or after off + cnt (first to stay) */ 7190 for (j = i; j < env->subprog_cnt; j++) 7191 if (env->subprog_info[j].start >= off + cnt) 7192 break; 7193 /* if j doesn't start exactly at off + cnt, we are just removing 7194 * the front of previous prog 7195 */ 7196 if (env->subprog_info[j].start != off + cnt) 7197 j--; 7198 7199 if (j > i) { 7200 struct bpf_prog_aux *aux = env->prog->aux; 7201 int move; 7202 7203 /* move fake 'exit' subprog as well */ 7204 move = env->subprog_cnt + 1 - j; 7205 7206 memmove(env->subprog_info + i, 7207 env->subprog_info + j, 7208 sizeof(*env->subprog_info) * move); 7209 env->subprog_cnt -= j - i; 7210 7211 /* remove func_info */ 7212 if (aux->func_info) { 7213 move = aux->func_info_cnt - j; 7214 7215 memmove(aux->func_info + i, 7216 aux->func_info + j, 7217 sizeof(*aux->func_info) * move); 7218 aux->func_info_cnt -= j - i; 7219 /* func_info->insn_off is set after all code rewrites, 7220 * in adjust_btf_func() - no need to adjust 7221 */ 7222 } 7223 } else { 7224 /* convert i from "first prog to remove" to "first to adjust" */ 7225 if (env->subprog_info[i].start == off) 7226 i++; 7227 } 7228 7229 /* update fake 'exit' subprog as well */ 7230 for (; i <= env->subprog_cnt; i++) 7231 env->subprog_info[i].start -= cnt; 7232 7233 return 0; 7234 } 7235 7236 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 7237 u32 cnt) 7238 { 7239 struct bpf_prog *prog = env->prog; 7240 u32 i, l_off, l_cnt, nr_linfo; 7241 struct bpf_line_info *linfo; 7242 7243 nr_linfo = prog->aux->nr_linfo; 7244 if (!nr_linfo) 7245 return 0; 7246 7247 linfo = prog->aux->linfo; 7248 7249 /* find first line info to remove, count lines to be removed */ 7250 for (i = 0; i < nr_linfo; i++) 7251 if (linfo[i].insn_off >= off) 7252 break; 7253 7254 l_off = i; 7255 l_cnt = 0; 7256 for (; i < nr_linfo; i++) 7257 if (linfo[i].insn_off < off + cnt) 7258 l_cnt++; 7259 else 7260 break; 7261 7262 /* First live insn doesn't match first live linfo, it needs to "inherit" 7263 * last removed linfo. prog is already modified, so prog->len == off 7264 * means no live instructions after (tail of the program was removed). 7265 */ 7266 if (prog->len != off && l_cnt && 7267 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 7268 l_cnt--; 7269 linfo[--i].insn_off = off + cnt; 7270 } 7271 7272 /* remove the line info which refer to the removed instructions */ 7273 if (l_cnt) { 7274 memmove(linfo + l_off, linfo + i, 7275 sizeof(*linfo) * (nr_linfo - i)); 7276 7277 prog->aux->nr_linfo -= l_cnt; 7278 nr_linfo = prog->aux->nr_linfo; 7279 } 7280 7281 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 7282 for (i = l_off; i < nr_linfo; i++) 7283 linfo[i].insn_off -= cnt; 7284 7285 /* fix up all subprogs (incl. 'exit') which start >= off */ 7286 for (i = 0; i <= env->subprog_cnt; i++) 7287 if (env->subprog_info[i].linfo_idx > l_off) { 7288 /* program may have started in the removed region but 7289 * may not be fully removed 7290 */ 7291 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 7292 env->subprog_info[i].linfo_idx -= l_cnt; 7293 else 7294 env->subprog_info[i].linfo_idx = l_off; 7295 } 7296 7297 return 0; 7298 } 7299 7300 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 7301 { 7302 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7303 unsigned int orig_prog_len = env->prog->len; 7304 int err; 7305 7306 if (bpf_prog_is_dev_bound(env->prog->aux)) 7307 bpf_prog_offload_remove_insns(env, off, cnt); 7308 7309 err = bpf_remove_insns(env->prog, off, cnt); 7310 if (err) 7311 return err; 7312 7313 err = adjust_subprog_starts_after_remove(env, off, cnt); 7314 if (err) 7315 return err; 7316 7317 err = bpf_adj_linfo_after_remove(env, off, cnt); 7318 if (err) 7319 return err; 7320 7321 memmove(aux_data + off, aux_data + off + cnt, 7322 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 7323 7324 return 0; 7325 } 7326 7327 /* The verifier does more data flow analysis than llvm and will not 7328 * explore branches that are dead at run time. Malicious programs can 7329 * have dead code too. Therefore replace all dead at-run-time code 7330 * with 'ja -1'. 7331 * 7332 * Just nops are not optimal, e.g. if they would sit at the end of the 7333 * program and through another bug we would manage to jump there, then 7334 * we'd execute beyond program memory otherwise. Returning exception 7335 * code also wouldn't work since we can have subprogs where the dead 7336 * code could be located. 7337 */ 7338 static void sanitize_dead_code(struct bpf_verifier_env *env) 7339 { 7340 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7341 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 7342 struct bpf_insn *insn = env->prog->insnsi; 7343 const int insn_cnt = env->prog->len; 7344 int i; 7345 7346 for (i = 0; i < insn_cnt; i++) { 7347 if (aux_data[i].seen) 7348 continue; 7349 memcpy(insn + i, &trap, sizeof(trap)); 7350 } 7351 } 7352 7353 static bool insn_is_cond_jump(u8 code) 7354 { 7355 u8 op; 7356 7357 if (BPF_CLASS(code) == BPF_JMP32) 7358 return true; 7359 7360 if (BPF_CLASS(code) != BPF_JMP) 7361 return false; 7362 7363 op = BPF_OP(code); 7364 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 7365 } 7366 7367 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 7368 { 7369 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7370 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 7371 struct bpf_insn *insn = env->prog->insnsi; 7372 const int insn_cnt = env->prog->len; 7373 int i; 7374 7375 for (i = 0; i < insn_cnt; i++, insn++) { 7376 if (!insn_is_cond_jump(insn->code)) 7377 continue; 7378 7379 if (!aux_data[i + 1].seen) 7380 ja.off = insn->off; 7381 else if (!aux_data[i + 1 + insn->off].seen) 7382 ja.off = 0; 7383 else 7384 continue; 7385 7386 if (bpf_prog_is_dev_bound(env->prog->aux)) 7387 bpf_prog_offload_replace_insn(env, i, &ja); 7388 7389 memcpy(insn, &ja, sizeof(ja)); 7390 } 7391 } 7392 7393 static int opt_remove_dead_code(struct bpf_verifier_env *env) 7394 { 7395 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7396 int insn_cnt = env->prog->len; 7397 int i, err; 7398 7399 for (i = 0; i < insn_cnt; i++) { 7400 int j; 7401 7402 j = 0; 7403 while (i + j < insn_cnt && !aux_data[i + j].seen) 7404 j++; 7405 if (!j) 7406 continue; 7407 7408 err = verifier_remove_insns(env, i, j); 7409 if (err) 7410 return err; 7411 insn_cnt = env->prog->len; 7412 } 7413 7414 return 0; 7415 } 7416 7417 static int opt_remove_nops(struct bpf_verifier_env *env) 7418 { 7419 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 7420 struct bpf_insn *insn = env->prog->insnsi; 7421 int insn_cnt = env->prog->len; 7422 int i, err; 7423 7424 for (i = 0; i < insn_cnt; i++) { 7425 if (memcmp(&insn[i], &ja, sizeof(ja))) 7426 continue; 7427 7428 err = verifier_remove_insns(env, i, 1); 7429 if (err) 7430 return err; 7431 insn_cnt--; 7432 i--; 7433 } 7434 7435 return 0; 7436 } 7437 7438 /* convert load instructions that access fields of a context type into a 7439 * sequence of instructions that access fields of the underlying structure: 7440 * struct __sk_buff -> struct sk_buff 7441 * struct bpf_sock_ops -> struct sock 7442 */ 7443 static int convert_ctx_accesses(struct bpf_verifier_env *env) 7444 { 7445 const struct bpf_verifier_ops *ops = env->ops; 7446 int i, cnt, size, ctx_field_size, delta = 0; 7447 const int insn_cnt = env->prog->len; 7448 struct bpf_insn insn_buf[16], *insn; 7449 u32 target_size, size_default, off; 7450 struct bpf_prog *new_prog; 7451 enum bpf_access_type type; 7452 bool is_narrower_load; 7453 7454 if (ops->gen_prologue || env->seen_direct_write) { 7455 if (!ops->gen_prologue) { 7456 verbose(env, "bpf verifier is misconfigured\n"); 7457 return -EINVAL; 7458 } 7459 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 7460 env->prog); 7461 if (cnt >= ARRAY_SIZE(insn_buf)) { 7462 verbose(env, "bpf verifier is misconfigured\n"); 7463 return -EINVAL; 7464 } else if (cnt) { 7465 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 7466 if (!new_prog) 7467 return -ENOMEM; 7468 7469 env->prog = new_prog; 7470 delta += cnt - 1; 7471 } 7472 } 7473 7474 if (bpf_prog_is_dev_bound(env->prog->aux)) 7475 return 0; 7476 7477 insn = env->prog->insnsi + delta; 7478 7479 for (i = 0; i < insn_cnt; i++, insn++) { 7480 bpf_convert_ctx_access_t convert_ctx_access; 7481 7482 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 7483 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 7484 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 7485 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 7486 type = BPF_READ; 7487 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 7488 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 7489 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 7490 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 7491 type = BPF_WRITE; 7492 else 7493 continue; 7494 7495 if (type == BPF_WRITE && 7496 env->insn_aux_data[i + delta].sanitize_stack_off) { 7497 struct bpf_insn patch[] = { 7498 /* Sanitize suspicious stack slot with zero. 7499 * There are no memory dependencies for this store, 7500 * since it's only using frame pointer and immediate 7501 * constant of zero 7502 */ 7503 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 7504 env->insn_aux_data[i + delta].sanitize_stack_off, 7505 0), 7506 /* the original STX instruction will immediately 7507 * overwrite the same stack slot with appropriate value 7508 */ 7509 *insn, 7510 }; 7511 7512 cnt = ARRAY_SIZE(patch); 7513 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 7514 if (!new_prog) 7515 return -ENOMEM; 7516 7517 delta += cnt - 1; 7518 env->prog = new_prog; 7519 insn = new_prog->insnsi + i + delta; 7520 continue; 7521 } 7522 7523 switch (env->insn_aux_data[i + delta].ptr_type) { 7524 case PTR_TO_CTX: 7525 if (!ops->convert_ctx_access) 7526 continue; 7527 convert_ctx_access = ops->convert_ctx_access; 7528 break; 7529 case PTR_TO_SOCKET: 7530 case PTR_TO_SOCK_COMMON: 7531 convert_ctx_access = bpf_sock_convert_ctx_access; 7532 break; 7533 case PTR_TO_TCP_SOCK: 7534 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 7535 break; 7536 default: 7537 continue; 7538 } 7539 7540 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 7541 size = BPF_LDST_BYTES(insn); 7542 7543 /* If the read access is a narrower load of the field, 7544 * convert to a 4/8-byte load, to minimum program type specific 7545 * convert_ctx_access changes. If conversion is successful, 7546 * we will apply proper mask to the result. 7547 */ 7548 is_narrower_load = size < ctx_field_size; 7549 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 7550 off = insn->off; 7551 if (is_narrower_load) { 7552 u8 size_code; 7553 7554 if (type == BPF_WRITE) { 7555 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 7556 return -EINVAL; 7557 } 7558 7559 size_code = BPF_H; 7560 if (ctx_field_size == 4) 7561 size_code = BPF_W; 7562 else if (ctx_field_size == 8) 7563 size_code = BPF_DW; 7564 7565 insn->off = off & ~(size_default - 1); 7566 insn->code = BPF_LDX | BPF_MEM | size_code; 7567 } 7568 7569 target_size = 0; 7570 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 7571 &target_size); 7572 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 7573 (ctx_field_size && !target_size)) { 7574 verbose(env, "bpf verifier is misconfigured\n"); 7575 return -EINVAL; 7576 } 7577 7578 if (is_narrower_load && size < target_size) { 7579 u8 shift = (off & (size_default - 1)) * 8; 7580 7581 if (ctx_field_size <= 4) { 7582 if (shift) 7583 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 7584 insn->dst_reg, 7585 shift); 7586 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 7587 (1 << size * 8) - 1); 7588 } else { 7589 if (shift) 7590 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 7591 insn->dst_reg, 7592 shift); 7593 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 7594 (1ULL << size * 8) - 1); 7595 } 7596 } 7597 7598 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7599 if (!new_prog) 7600 return -ENOMEM; 7601 7602 delta += cnt - 1; 7603 7604 /* keep walking new program and skip insns we just inserted */ 7605 env->prog = new_prog; 7606 insn = new_prog->insnsi + i + delta; 7607 } 7608 7609 return 0; 7610 } 7611 7612 static int jit_subprogs(struct bpf_verifier_env *env) 7613 { 7614 struct bpf_prog *prog = env->prog, **func, *tmp; 7615 int i, j, subprog_start, subprog_end = 0, len, subprog; 7616 struct bpf_insn *insn; 7617 void *old_bpf_func; 7618 int err; 7619 7620 if (env->subprog_cnt <= 1) 7621 return 0; 7622 7623 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7624 if (insn->code != (BPF_JMP | BPF_CALL) || 7625 insn->src_reg != BPF_PSEUDO_CALL) 7626 continue; 7627 /* Upon error here we cannot fall back to interpreter but 7628 * need a hard reject of the program. Thus -EFAULT is 7629 * propagated in any case. 7630 */ 7631 subprog = find_subprog(env, i + insn->imm + 1); 7632 if (subprog < 0) { 7633 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 7634 i + insn->imm + 1); 7635 return -EFAULT; 7636 } 7637 /* temporarily remember subprog id inside insn instead of 7638 * aux_data, since next loop will split up all insns into funcs 7639 */ 7640 insn->off = subprog; 7641 /* remember original imm in case JIT fails and fallback 7642 * to interpreter will be needed 7643 */ 7644 env->insn_aux_data[i].call_imm = insn->imm; 7645 /* point imm to __bpf_call_base+1 from JITs point of view */ 7646 insn->imm = 1; 7647 } 7648 7649 err = bpf_prog_alloc_jited_linfo(prog); 7650 if (err) 7651 goto out_undo_insn; 7652 7653 err = -ENOMEM; 7654 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 7655 if (!func) 7656 goto out_undo_insn; 7657 7658 for (i = 0; i < env->subprog_cnt; i++) { 7659 subprog_start = subprog_end; 7660 subprog_end = env->subprog_info[i + 1].start; 7661 7662 len = subprog_end - subprog_start; 7663 /* BPF_PROG_RUN doesn't call subprogs directly, 7664 * hence main prog stats include the runtime of subprogs. 7665 * subprogs don't have IDs and not reachable via prog_get_next_id 7666 * func[i]->aux->stats will never be accessed and stays NULL 7667 */ 7668 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 7669 if (!func[i]) 7670 goto out_free; 7671 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 7672 len * sizeof(struct bpf_insn)); 7673 func[i]->type = prog->type; 7674 func[i]->len = len; 7675 if (bpf_prog_calc_tag(func[i])) 7676 goto out_free; 7677 func[i]->is_func = 1; 7678 func[i]->aux->func_idx = i; 7679 /* the btf and func_info will be freed only at prog->aux */ 7680 func[i]->aux->btf = prog->aux->btf; 7681 func[i]->aux->func_info = prog->aux->func_info; 7682 7683 /* Use bpf_prog_F_tag to indicate functions in stack traces. 7684 * Long term would need debug info to populate names 7685 */ 7686 func[i]->aux->name[0] = 'F'; 7687 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 7688 func[i]->jit_requested = 1; 7689 func[i]->aux->linfo = prog->aux->linfo; 7690 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 7691 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 7692 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 7693 func[i] = bpf_int_jit_compile(func[i]); 7694 if (!func[i]->jited) { 7695 err = -ENOTSUPP; 7696 goto out_free; 7697 } 7698 cond_resched(); 7699 } 7700 /* at this point all bpf functions were successfully JITed 7701 * now populate all bpf_calls with correct addresses and 7702 * run last pass of JIT 7703 */ 7704 for (i = 0; i < env->subprog_cnt; i++) { 7705 insn = func[i]->insnsi; 7706 for (j = 0; j < func[i]->len; j++, insn++) { 7707 if (insn->code != (BPF_JMP | BPF_CALL) || 7708 insn->src_reg != BPF_PSEUDO_CALL) 7709 continue; 7710 subprog = insn->off; 7711 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 7712 __bpf_call_base; 7713 } 7714 7715 /* we use the aux data to keep a list of the start addresses 7716 * of the JITed images for each function in the program 7717 * 7718 * for some architectures, such as powerpc64, the imm field 7719 * might not be large enough to hold the offset of the start 7720 * address of the callee's JITed image from __bpf_call_base 7721 * 7722 * in such cases, we can lookup the start address of a callee 7723 * by using its subprog id, available from the off field of 7724 * the call instruction, as an index for this list 7725 */ 7726 func[i]->aux->func = func; 7727 func[i]->aux->func_cnt = env->subprog_cnt; 7728 } 7729 for (i = 0; i < env->subprog_cnt; i++) { 7730 old_bpf_func = func[i]->bpf_func; 7731 tmp = bpf_int_jit_compile(func[i]); 7732 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 7733 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 7734 err = -ENOTSUPP; 7735 goto out_free; 7736 } 7737 cond_resched(); 7738 } 7739 7740 /* finally lock prog and jit images for all functions and 7741 * populate kallsysm 7742 */ 7743 for (i = 0; i < env->subprog_cnt; i++) { 7744 bpf_prog_lock_ro(func[i]); 7745 bpf_prog_kallsyms_add(func[i]); 7746 } 7747 7748 /* Last step: make now unused interpreter insns from main 7749 * prog consistent for later dump requests, so they can 7750 * later look the same as if they were interpreted only. 7751 */ 7752 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7753 if (insn->code != (BPF_JMP | BPF_CALL) || 7754 insn->src_reg != BPF_PSEUDO_CALL) 7755 continue; 7756 insn->off = env->insn_aux_data[i].call_imm; 7757 subprog = find_subprog(env, i + insn->off + 1); 7758 insn->imm = subprog; 7759 } 7760 7761 prog->jited = 1; 7762 prog->bpf_func = func[0]->bpf_func; 7763 prog->aux->func = func; 7764 prog->aux->func_cnt = env->subprog_cnt; 7765 bpf_prog_free_unused_jited_linfo(prog); 7766 return 0; 7767 out_free: 7768 for (i = 0; i < env->subprog_cnt; i++) 7769 if (func[i]) 7770 bpf_jit_free(func[i]); 7771 kfree(func); 7772 out_undo_insn: 7773 /* cleanup main prog to be interpreted */ 7774 prog->jit_requested = 0; 7775 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7776 if (insn->code != (BPF_JMP | BPF_CALL) || 7777 insn->src_reg != BPF_PSEUDO_CALL) 7778 continue; 7779 insn->off = 0; 7780 insn->imm = env->insn_aux_data[i].call_imm; 7781 } 7782 bpf_prog_free_jited_linfo(prog); 7783 return err; 7784 } 7785 7786 static int fixup_call_args(struct bpf_verifier_env *env) 7787 { 7788 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 7789 struct bpf_prog *prog = env->prog; 7790 struct bpf_insn *insn = prog->insnsi; 7791 int i, depth; 7792 #endif 7793 int err = 0; 7794 7795 if (env->prog->jit_requested && 7796 !bpf_prog_is_dev_bound(env->prog->aux)) { 7797 err = jit_subprogs(env); 7798 if (err == 0) 7799 return 0; 7800 if (err == -EFAULT) 7801 return err; 7802 } 7803 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 7804 for (i = 0; i < prog->len; i++, insn++) { 7805 if (insn->code != (BPF_JMP | BPF_CALL) || 7806 insn->src_reg != BPF_PSEUDO_CALL) 7807 continue; 7808 depth = get_callee_stack_depth(env, insn, i); 7809 if (depth < 0) 7810 return depth; 7811 bpf_patch_call_args(insn, depth); 7812 } 7813 err = 0; 7814 #endif 7815 return err; 7816 } 7817 7818 /* fixup insn->imm field of bpf_call instructions 7819 * and inline eligible helpers as explicit sequence of BPF instructions 7820 * 7821 * this function is called after eBPF program passed verification 7822 */ 7823 static int fixup_bpf_calls(struct bpf_verifier_env *env) 7824 { 7825 struct bpf_prog *prog = env->prog; 7826 struct bpf_insn *insn = prog->insnsi; 7827 const struct bpf_func_proto *fn; 7828 const int insn_cnt = prog->len; 7829 const struct bpf_map_ops *ops; 7830 struct bpf_insn_aux_data *aux; 7831 struct bpf_insn insn_buf[16]; 7832 struct bpf_prog *new_prog; 7833 struct bpf_map *map_ptr; 7834 int i, cnt, delta = 0; 7835 7836 for (i = 0; i < insn_cnt; i++, insn++) { 7837 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 7838 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 7839 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 7840 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 7841 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 7842 struct bpf_insn mask_and_div[] = { 7843 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 7844 /* Rx div 0 -> 0 */ 7845 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 7846 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 7847 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 7848 *insn, 7849 }; 7850 struct bpf_insn mask_and_mod[] = { 7851 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 7852 /* Rx mod 0 -> Rx */ 7853 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 7854 *insn, 7855 }; 7856 struct bpf_insn *patchlet; 7857 7858 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 7859 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 7860 patchlet = mask_and_div + (is64 ? 1 : 0); 7861 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 7862 } else { 7863 patchlet = mask_and_mod + (is64 ? 1 : 0); 7864 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 7865 } 7866 7867 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 7868 if (!new_prog) 7869 return -ENOMEM; 7870 7871 delta += cnt - 1; 7872 env->prog = prog = new_prog; 7873 insn = new_prog->insnsi + i + delta; 7874 continue; 7875 } 7876 7877 if (BPF_CLASS(insn->code) == BPF_LD && 7878 (BPF_MODE(insn->code) == BPF_ABS || 7879 BPF_MODE(insn->code) == BPF_IND)) { 7880 cnt = env->ops->gen_ld_abs(insn, insn_buf); 7881 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 7882 verbose(env, "bpf verifier is misconfigured\n"); 7883 return -EINVAL; 7884 } 7885 7886 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7887 if (!new_prog) 7888 return -ENOMEM; 7889 7890 delta += cnt - 1; 7891 env->prog = prog = new_prog; 7892 insn = new_prog->insnsi + i + delta; 7893 continue; 7894 } 7895 7896 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 7897 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 7898 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 7899 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 7900 struct bpf_insn insn_buf[16]; 7901 struct bpf_insn *patch = &insn_buf[0]; 7902 bool issrc, isneg; 7903 u32 off_reg; 7904 7905 aux = &env->insn_aux_data[i + delta]; 7906 if (!aux->alu_state || 7907 aux->alu_state == BPF_ALU_NON_POINTER) 7908 continue; 7909 7910 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 7911 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 7912 BPF_ALU_SANITIZE_SRC; 7913 7914 off_reg = issrc ? insn->src_reg : insn->dst_reg; 7915 if (isneg) 7916 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 7917 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 7918 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 7919 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 7920 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 7921 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 7922 if (issrc) { 7923 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 7924 off_reg); 7925 insn->src_reg = BPF_REG_AX; 7926 } else { 7927 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 7928 BPF_REG_AX); 7929 } 7930 if (isneg) 7931 insn->code = insn->code == code_add ? 7932 code_sub : code_add; 7933 *patch++ = *insn; 7934 if (issrc && isneg) 7935 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 7936 cnt = patch - insn_buf; 7937 7938 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7939 if (!new_prog) 7940 return -ENOMEM; 7941 7942 delta += cnt - 1; 7943 env->prog = prog = new_prog; 7944 insn = new_prog->insnsi + i + delta; 7945 continue; 7946 } 7947 7948 if (insn->code != (BPF_JMP | BPF_CALL)) 7949 continue; 7950 if (insn->src_reg == BPF_PSEUDO_CALL) 7951 continue; 7952 7953 if (insn->imm == BPF_FUNC_get_route_realm) 7954 prog->dst_needed = 1; 7955 if (insn->imm == BPF_FUNC_get_prandom_u32) 7956 bpf_user_rnd_init_once(); 7957 if (insn->imm == BPF_FUNC_override_return) 7958 prog->kprobe_override = 1; 7959 if (insn->imm == BPF_FUNC_tail_call) { 7960 /* If we tail call into other programs, we 7961 * cannot make any assumptions since they can 7962 * be replaced dynamically during runtime in 7963 * the program array. 7964 */ 7965 prog->cb_access = 1; 7966 env->prog->aux->stack_depth = MAX_BPF_STACK; 7967 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 7968 7969 /* mark bpf_tail_call as different opcode to avoid 7970 * conditional branch in the interpeter for every normal 7971 * call and to prevent accidental JITing by JIT compiler 7972 * that doesn't support bpf_tail_call yet 7973 */ 7974 insn->imm = 0; 7975 insn->code = BPF_JMP | BPF_TAIL_CALL; 7976 7977 aux = &env->insn_aux_data[i + delta]; 7978 if (!bpf_map_ptr_unpriv(aux)) 7979 continue; 7980 7981 /* instead of changing every JIT dealing with tail_call 7982 * emit two extra insns: 7983 * if (index >= max_entries) goto out; 7984 * index &= array->index_mask; 7985 * to avoid out-of-bounds cpu speculation 7986 */ 7987 if (bpf_map_ptr_poisoned(aux)) { 7988 verbose(env, "tail_call abusing map_ptr\n"); 7989 return -EINVAL; 7990 } 7991 7992 map_ptr = BPF_MAP_PTR(aux->map_state); 7993 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 7994 map_ptr->max_entries, 2); 7995 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 7996 container_of(map_ptr, 7997 struct bpf_array, 7998 map)->index_mask); 7999 insn_buf[2] = *insn; 8000 cnt = 3; 8001 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8002 if (!new_prog) 8003 return -ENOMEM; 8004 8005 delta += cnt - 1; 8006 env->prog = prog = new_prog; 8007 insn = new_prog->insnsi + i + delta; 8008 continue; 8009 } 8010 8011 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 8012 * and other inlining handlers are currently limited to 64 bit 8013 * only. 8014 */ 8015 if (prog->jit_requested && BITS_PER_LONG == 64 && 8016 (insn->imm == BPF_FUNC_map_lookup_elem || 8017 insn->imm == BPF_FUNC_map_update_elem || 8018 insn->imm == BPF_FUNC_map_delete_elem || 8019 insn->imm == BPF_FUNC_map_push_elem || 8020 insn->imm == BPF_FUNC_map_pop_elem || 8021 insn->imm == BPF_FUNC_map_peek_elem)) { 8022 aux = &env->insn_aux_data[i + delta]; 8023 if (bpf_map_ptr_poisoned(aux)) 8024 goto patch_call_imm; 8025 8026 map_ptr = BPF_MAP_PTR(aux->map_state); 8027 ops = map_ptr->ops; 8028 if (insn->imm == BPF_FUNC_map_lookup_elem && 8029 ops->map_gen_lookup) { 8030 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 8031 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 8032 verbose(env, "bpf verifier is misconfigured\n"); 8033 return -EINVAL; 8034 } 8035 8036 new_prog = bpf_patch_insn_data(env, i + delta, 8037 insn_buf, cnt); 8038 if (!new_prog) 8039 return -ENOMEM; 8040 8041 delta += cnt - 1; 8042 env->prog = prog = new_prog; 8043 insn = new_prog->insnsi + i + delta; 8044 continue; 8045 } 8046 8047 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 8048 (void *(*)(struct bpf_map *map, void *key))NULL)); 8049 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 8050 (int (*)(struct bpf_map *map, void *key))NULL)); 8051 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 8052 (int (*)(struct bpf_map *map, void *key, void *value, 8053 u64 flags))NULL)); 8054 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 8055 (int (*)(struct bpf_map *map, void *value, 8056 u64 flags))NULL)); 8057 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 8058 (int (*)(struct bpf_map *map, void *value))NULL)); 8059 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 8060 (int (*)(struct bpf_map *map, void *value))NULL)); 8061 8062 switch (insn->imm) { 8063 case BPF_FUNC_map_lookup_elem: 8064 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 8065 __bpf_call_base; 8066 continue; 8067 case BPF_FUNC_map_update_elem: 8068 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 8069 __bpf_call_base; 8070 continue; 8071 case BPF_FUNC_map_delete_elem: 8072 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 8073 __bpf_call_base; 8074 continue; 8075 case BPF_FUNC_map_push_elem: 8076 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 8077 __bpf_call_base; 8078 continue; 8079 case BPF_FUNC_map_pop_elem: 8080 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 8081 __bpf_call_base; 8082 continue; 8083 case BPF_FUNC_map_peek_elem: 8084 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 8085 __bpf_call_base; 8086 continue; 8087 } 8088 8089 goto patch_call_imm; 8090 } 8091 8092 patch_call_imm: 8093 fn = env->ops->get_func_proto(insn->imm, env->prog); 8094 /* all functions that have prototype and verifier allowed 8095 * programs to call them, must be real in-kernel functions 8096 */ 8097 if (!fn->func) { 8098 verbose(env, 8099 "kernel subsystem misconfigured func %s#%d\n", 8100 func_id_name(insn->imm), insn->imm); 8101 return -EFAULT; 8102 } 8103 insn->imm = fn->func - __bpf_call_base; 8104 } 8105 8106 return 0; 8107 } 8108 8109 static void free_states(struct bpf_verifier_env *env) 8110 { 8111 struct bpf_verifier_state_list *sl, *sln; 8112 int i; 8113 8114 sl = env->free_list; 8115 while (sl) { 8116 sln = sl->next; 8117 free_verifier_state(&sl->state, false); 8118 kfree(sl); 8119 sl = sln; 8120 } 8121 8122 if (!env->explored_states) 8123 return; 8124 8125 for (i = 0; i < env->prog->len; i++) { 8126 sl = env->explored_states[i]; 8127 8128 if (sl) 8129 while (sl != STATE_LIST_MARK) { 8130 sln = sl->next; 8131 free_verifier_state(&sl->state, false); 8132 kfree(sl); 8133 sl = sln; 8134 } 8135 } 8136 8137 kvfree(env->explored_states); 8138 } 8139 8140 static void print_verification_stats(struct bpf_verifier_env *env) 8141 { 8142 int i; 8143 8144 if (env->log.level & BPF_LOG_STATS) { 8145 verbose(env, "verification time %lld usec\n", 8146 div_u64(env->verification_time, 1000)); 8147 verbose(env, "stack depth "); 8148 for (i = 0; i < env->subprog_cnt; i++) { 8149 u32 depth = env->subprog_info[i].stack_depth; 8150 8151 verbose(env, "%d", depth); 8152 if (i + 1 < env->subprog_cnt) 8153 verbose(env, "+"); 8154 } 8155 verbose(env, "\n"); 8156 } 8157 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 8158 "total_states %d peak_states %d mark_read %d\n", 8159 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 8160 env->max_states_per_insn, env->total_states, 8161 env->peak_states, env->longest_mark_read_walk); 8162 } 8163 8164 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 8165 union bpf_attr __user *uattr) 8166 { 8167 u64 start_time = ktime_get_ns(); 8168 struct bpf_verifier_env *env; 8169 struct bpf_verifier_log *log; 8170 int i, len, ret = -EINVAL; 8171 bool is_priv; 8172 8173 /* no program is valid */ 8174 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 8175 return -EINVAL; 8176 8177 /* 'struct bpf_verifier_env' can be global, but since it's not small, 8178 * allocate/free it every time bpf_check() is called 8179 */ 8180 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 8181 if (!env) 8182 return -ENOMEM; 8183 log = &env->log; 8184 8185 len = (*prog)->len; 8186 env->insn_aux_data = 8187 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 8188 ret = -ENOMEM; 8189 if (!env->insn_aux_data) 8190 goto err_free_env; 8191 for (i = 0; i < len; i++) 8192 env->insn_aux_data[i].orig_idx = i; 8193 env->prog = *prog; 8194 env->ops = bpf_verifier_ops[env->prog->type]; 8195 is_priv = capable(CAP_SYS_ADMIN); 8196 8197 /* grab the mutex to protect few globals used by verifier */ 8198 if (!is_priv) 8199 mutex_lock(&bpf_verifier_lock); 8200 8201 if (attr->log_level || attr->log_buf || attr->log_size) { 8202 /* user requested verbose verifier output 8203 * and supplied buffer to store the verification trace 8204 */ 8205 log->level = attr->log_level; 8206 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 8207 log->len_total = attr->log_size; 8208 8209 ret = -EINVAL; 8210 /* log attributes have to be sane */ 8211 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 8212 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 8213 goto err_unlock; 8214 } 8215 8216 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 8217 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 8218 env->strict_alignment = true; 8219 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 8220 env->strict_alignment = false; 8221 8222 env->allow_ptr_leaks = is_priv; 8223 8224 ret = replace_map_fd_with_map_ptr(env); 8225 if (ret < 0) 8226 goto skip_full_check; 8227 8228 if (bpf_prog_is_dev_bound(env->prog->aux)) { 8229 ret = bpf_prog_offload_verifier_prep(env->prog); 8230 if (ret) 8231 goto skip_full_check; 8232 } 8233 8234 env->explored_states = kvcalloc(env->prog->len, 8235 sizeof(struct bpf_verifier_state_list *), 8236 GFP_USER); 8237 ret = -ENOMEM; 8238 if (!env->explored_states) 8239 goto skip_full_check; 8240 8241 ret = check_subprogs(env); 8242 if (ret < 0) 8243 goto skip_full_check; 8244 8245 ret = check_btf_info(env, attr, uattr); 8246 if (ret < 0) 8247 goto skip_full_check; 8248 8249 ret = check_cfg(env); 8250 if (ret < 0) 8251 goto skip_full_check; 8252 8253 ret = do_check(env); 8254 if (env->cur_state) { 8255 free_verifier_state(env->cur_state, true); 8256 env->cur_state = NULL; 8257 } 8258 8259 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 8260 ret = bpf_prog_offload_finalize(env); 8261 8262 skip_full_check: 8263 while (!pop_stack(env, NULL, NULL)); 8264 free_states(env); 8265 8266 if (ret == 0) 8267 ret = check_max_stack_depth(env); 8268 8269 /* instruction rewrites happen after this point */ 8270 if (is_priv) { 8271 if (ret == 0) 8272 opt_hard_wire_dead_code_branches(env); 8273 if (ret == 0) 8274 ret = opt_remove_dead_code(env); 8275 if (ret == 0) 8276 ret = opt_remove_nops(env); 8277 } else { 8278 if (ret == 0) 8279 sanitize_dead_code(env); 8280 } 8281 8282 if (ret == 0) 8283 /* program is valid, convert *(u32*)(ctx + off) accesses */ 8284 ret = convert_ctx_accesses(env); 8285 8286 if (ret == 0) 8287 ret = fixup_bpf_calls(env); 8288 8289 if (ret == 0) 8290 ret = fixup_call_args(env); 8291 8292 env->verification_time = ktime_get_ns() - start_time; 8293 print_verification_stats(env); 8294 8295 if (log->level && bpf_verifier_log_full(log)) 8296 ret = -ENOSPC; 8297 if (log->level && !log->ubuf) { 8298 ret = -EFAULT; 8299 goto err_release_maps; 8300 } 8301 8302 if (ret == 0 && env->used_map_cnt) { 8303 /* if program passed verifier, update used_maps in bpf_prog_info */ 8304 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 8305 sizeof(env->used_maps[0]), 8306 GFP_KERNEL); 8307 8308 if (!env->prog->aux->used_maps) { 8309 ret = -ENOMEM; 8310 goto err_release_maps; 8311 } 8312 8313 memcpy(env->prog->aux->used_maps, env->used_maps, 8314 sizeof(env->used_maps[0]) * env->used_map_cnt); 8315 env->prog->aux->used_map_cnt = env->used_map_cnt; 8316 8317 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 8318 * bpf_ld_imm64 instructions 8319 */ 8320 convert_pseudo_ld_imm64(env); 8321 } 8322 8323 if (ret == 0) 8324 adjust_btf_func(env); 8325 8326 err_release_maps: 8327 if (!env->prog->aux->used_maps) 8328 /* if we didn't copy map pointers into bpf_prog_info, release 8329 * them now. Otherwise free_used_maps() will release them. 8330 */ 8331 release_maps(env); 8332 *prog = env->prog; 8333 err_unlock: 8334 if (!is_priv) 8335 mutex_unlock(&bpf_verifier_lock); 8336 vfree(env->insn_aux_data); 8337 err_free_env: 8338 kfree(env); 8339 return ret; 8340 } 8341