xref: /linux/kernel/bpf/verifier.c (revision 6e30437bd42c4d4e9cfc4c40efda00eb83a11cde)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 
24 /* bpf_check() is a static code analyzer that walks eBPF program
25  * instruction by instruction and updates register/stack state.
26  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27  *
28  * The first pass is depth-first-search to check that the program is a DAG.
29  * It rejects the following programs:
30  * - larger than BPF_MAXINSNS insns
31  * - if loop is present (detected via back-edge)
32  * - unreachable insns exist (shouldn't be a forest. program = one function)
33  * - out of bounds or malformed jumps
34  * The second pass is all possible path descent from the 1st insn.
35  * Since it's analyzing all pathes through the program, the length of the
36  * analysis is limited to 64k insn, which may be hit even if total number of
37  * insn is less then 4K, but there are too many branches that change stack/regs.
38  * Number of 'branches to be analyzed' is limited to 1k
39  *
40  * On entry to each instruction, each register has a type, and the instruction
41  * changes the types of the registers depending on instruction semantics.
42  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43  * copied to R1.
44  *
45  * All registers are 64-bit.
46  * R0 - return register
47  * R1-R5 argument passing registers
48  * R6-R9 callee saved registers
49  * R10 - frame pointer read-only
50  *
51  * At the start of BPF program the register R1 contains a pointer to bpf_context
52  * and has type PTR_TO_CTX.
53  *
54  * Verifier tracks arithmetic operations on pointers in case:
55  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57  * 1st insn copies R10 (which has FRAME_PTR) type into R1
58  * and 2nd arithmetic instruction is pattern matched to recognize
59  * that it wants to construct a pointer to some element within stack.
60  * So after 2nd insn, the register R1 has type PTR_TO_STACK
61  * (and -20 constant is saved for further stack bounds checking).
62  * Meaning that this reg is a pointer to stack plus known immediate constant.
63  *
64  * Most of the time the registers have UNKNOWN_VALUE type, which
65  * means the register has some value, but it's not a valid pointer.
66  * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67  *
68  * When verifier sees load or store instructions the type of base register
69  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70  * types recognized by check_mem_access() function.
71  *
72  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73  * and the range of [ptr, ptr + map's value_size) is accessible.
74  *
75  * registers used to pass values to function calls are checked against
76  * function argument constraints.
77  *
78  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79  * It means that the register type passed to this function must be
80  * PTR_TO_STACK and it will be used inside the function as
81  * 'pointer to map element key'
82  *
83  * For example the argument constraints for bpf_map_lookup_elem():
84  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85  *   .arg1_type = ARG_CONST_MAP_PTR,
86  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
87  *
88  * ret_type says that this function returns 'pointer to map elem value or null'
89  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90  * 2nd argument should be a pointer to stack, which will be used inside
91  * the helper function as a pointer to map element key.
92  *
93  * On the kernel side the helper function looks like:
94  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95  * {
96  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97  *    void *key = (void *) (unsigned long) r2;
98  *    void *value;
99  *
100  *    here kernel can access 'key' and 'map' pointers safely, knowing that
101  *    [key, key + map->key_size) bytes are valid and were initialized on
102  *    the stack of eBPF program.
103  * }
104  *
105  * Corresponding eBPF program may look like:
106  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
107  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
109  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110  * here verifier looks at prototype of map_lookup_elem() and sees:
111  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113  *
114  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116  * and were initialized prior to this call.
117  * If it's ok, then verifier allows this BPF_CALL insn and looks at
118  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120  * returns ether pointer to map value or NULL.
121  *
122  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123  * insn, the register holding that pointer in the true branch changes state to
124  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125  * branch. See check_cond_jmp_op().
126  *
127  * After the call R0 is set to return type of the function and registers R1-R5
128  * are set to NOT_INIT to indicate that they are no longer readable.
129  */
130 
131 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
132 struct bpf_verifier_stack_elem {
133 	/* verifer state is 'st'
134 	 * before processing instruction 'insn_idx'
135 	 * and after processing instruction 'prev_insn_idx'
136 	 */
137 	struct bpf_verifier_state st;
138 	int insn_idx;
139 	int prev_insn_idx;
140 	struct bpf_verifier_stack_elem *next;
141 };
142 
143 #define BPF_COMPLEXITY_LIMIT_INSNS	98304
144 #define BPF_COMPLEXITY_LIMIT_STACK	1024
145 
146 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147 
148 struct bpf_call_arg_meta {
149 	struct bpf_map *map_ptr;
150 	bool raw_mode;
151 	bool pkt_access;
152 	int regno;
153 	int access_size;
154 };
155 
156 /* verbose verifier prints what it's seeing
157  * bpf_check() is called under lock, so no race to access these global vars
158  */
159 static u32 log_level, log_size, log_len;
160 static char *log_buf;
161 
162 static DEFINE_MUTEX(bpf_verifier_lock);
163 
164 /* log_level controls verbosity level of eBPF verifier.
165  * verbose() is used to dump the verification trace to the log, so the user
166  * can figure out what's wrong with the program
167  */
168 static __printf(1, 2) void verbose(const char *fmt, ...)
169 {
170 	va_list args;
171 
172 	if (log_level == 0 || log_len >= log_size - 1)
173 		return;
174 
175 	va_start(args, fmt);
176 	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 	va_end(args);
178 }
179 
180 /* string representation of 'enum bpf_reg_type' */
181 static const char * const reg_type_str[] = {
182 	[NOT_INIT]		= "?",
183 	[UNKNOWN_VALUE]		= "inv",
184 	[PTR_TO_CTX]		= "ctx",
185 	[CONST_PTR_TO_MAP]	= "map_ptr",
186 	[PTR_TO_MAP_VALUE]	= "map_value",
187 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
188 	[PTR_TO_MAP_VALUE_ADJ]	= "map_value_adj",
189 	[FRAME_PTR]		= "fp",
190 	[PTR_TO_STACK]		= "fp",
191 	[CONST_IMM]		= "imm",
192 	[PTR_TO_PACKET]		= "pkt",
193 	[PTR_TO_PACKET_END]	= "pkt_end",
194 };
195 
196 #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
197 static const char * const func_id_str[] = {
198 	__BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
199 };
200 #undef __BPF_FUNC_STR_FN
201 
202 static const char *func_id_name(int id)
203 {
204 	BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
205 
206 	if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
207 		return func_id_str[id];
208 	else
209 		return "unknown";
210 }
211 
212 static void print_verifier_state(struct bpf_verifier_state *state)
213 {
214 	struct bpf_reg_state *reg;
215 	enum bpf_reg_type t;
216 	int i;
217 
218 	for (i = 0; i < MAX_BPF_REG; i++) {
219 		reg = &state->regs[i];
220 		t = reg->type;
221 		if (t == NOT_INIT)
222 			continue;
223 		verbose(" R%d=%s", i, reg_type_str[t]);
224 		if (t == CONST_IMM || t == PTR_TO_STACK)
225 			verbose("%lld", reg->imm);
226 		else if (t == PTR_TO_PACKET)
227 			verbose("(id=%d,off=%d,r=%d)",
228 				reg->id, reg->off, reg->range);
229 		else if (t == UNKNOWN_VALUE && reg->imm)
230 			verbose("%lld", reg->imm);
231 		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
232 			 t == PTR_TO_MAP_VALUE_OR_NULL ||
233 			 t == PTR_TO_MAP_VALUE_ADJ)
234 			verbose("(ks=%d,vs=%d,id=%u)",
235 				reg->map_ptr->key_size,
236 				reg->map_ptr->value_size,
237 				reg->id);
238 		if (reg->min_value != BPF_REGISTER_MIN_RANGE)
239 			verbose(",min_value=%lld",
240 				(long long)reg->min_value);
241 		if (reg->max_value != BPF_REGISTER_MAX_RANGE)
242 			verbose(",max_value=%llu",
243 				(unsigned long long)reg->max_value);
244 		if (reg->min_align)
245 			verbose(",min_align=%u", reg->min_align);
246 		if (reg->aux_off)
247 			verbose(",aux_off=%u", reg->aux_off);
248 		if (reg->aux_off_align)
249 			verbose(",aux_off_align=%u", reg->aux_off_align);
250 	}
251 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
252 		if (state->stack_slot_type[i] == STACK_SPILL)
253 			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
254 				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
255 	}
256 	verbose("\n");
257 }
258 
259 static const char *const bpf_class_string[] = {
260 	[BPF_LD]    = "ld",
261 	[BPF_LDX]   = "ldx",
262 	[BPF_ST]    = "st",
263 	[BPF_STX]   = "stx",
264 	[BPF_ALU]   = "alu",
265 	[BPF_JMP]   = "jmp",
266 	[BPF_RET]   = "BUG",
267 	[BPF_ALU64] = "alu64",
268 };
269 
270 static const char *const bpf_alu_string[16] = {
271 	[BPF_ADD >> 4]  = "+=",
272 	[BPF_SUB >> 4]  = "-=",
273 	[BPF_MUL >> 4]  = "*=",
274 	[BPF_DIV >> 4]  = "/=",
275 	[BPF_OR  >> 4]  = "|=",
276 	[BPF_AND >> 4]  = "&=",
277 	[BPF_LSH >> 4]  = "<<=",
278 	[BPF_RSH >> 4]  = ">>=",
279 	[BPF_NEG >> 4]  = "neg",
280 	[BPF_MOD >> 4]  = "%=",
281 	[BPF_XOR >> 4]  = "^=",
282 	[BPF_MOV >> 4]  = "=",
283 	[BPF_ARSH >> 4] = "s>>=",
284 	[BPF_END >> 4]  = "endian",
285 };
286 
287 static const char *const bpf_ldst_string[] = {
288 	[BPF_W >> 3]  = "u32",
289 	[BPF_H >> 3]  = "u16",
290 	[BPF_B >> 3]  = "u8",
291 	[BPF_DW >> 3] = "u64",
292 };
293 
294 static const char *const bpf_jmp_string[16] = {
295 	[BPF_JA >> 4]   = "jmp",
296 	[BPF_JEQ >> 4]  = "==",
297 	[BPF_JGT >> 4]  = ">",
298 	[BPF_JGE >> 4]  = ">=",
299 	[BPF_JSET >> 4] = "&",
300 	[BPF_JNE >> 4]  = "!=",
301 	[BPF_JSGT >> 4] = "s>",
302 	[BPF_JSGE >> 4] = "s>=",
303 	[BPF_CALL >> 4] = "call",
304 	[BPF_EXIT >> 4] = "exit",
305 };
306 
307 static void print_bpf_insn(const struct bpf_verifier_env *env,
308 			   const struct bpf_insn *insn)
309 {
310 	u8 class = BPF_CLASS(insn->code);
311 
312 	if (class == BPF_ALU || class == BPF_ALU64) {
313 		if (BPF_SRC(insn->code) == BPF_X)
314 			verbose("(%02x) %sr%d %s %sr%d\n",
315 				insn->code, class == BPF_ALU ? "(u32) " : "",
316 				insn->dst_reg,
317 				bpf_alu_string[BPF_OP(insn->code) >> 4],
318 				class == BPF_ALU ? "(u32) " : "",
319 				insn->src_reg);
320 		else
321 			verbose("(%02x) %sr%d %s %s%d\n",
322 				insn->code, class == BPF_ALU ? "(u32) " : "",
323 				insn->dst_reg,
324 				bpf_alu_string[BPF_OP(insn->code) >> 4],
325 				class == BPF_ALU ? "(u32) " : "",
326 				insn->imm);
327 	} else if (class == BPF_STX) {
328 		if (BPF_MODE(insn->code) == BPF_MEM)
329 			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
330 				insn->code,
331 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
332 				insn->dst_reg,
333 				insn->off, insn->src_reg);
334 		else if (BPF_MODE(insn->code) == BPF_XADD)
335 			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
336 				insn->code,
337 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
338 				insn->dst_reg, insn->off,
339 				insn->src_reg);
340 		else
341 			verbose("BUG_%02x\n", insn->code);
342 	} else if (class == BPF_ST) {
343 		if (BPF_MODE(insn->code) != BPF_MEM) {
344 			verbose("BUG_st_%02x\n", insn->code);
345 			return;
346 		}
347 		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
348 			insn->code,
349 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
350 			insn->dst_reg,
351 			insn->off, insn->imm);
352 	} else if (class == BPF_LDX) {
353 		if (BPF_MODE(insn->code) != BPF_MEM) {
354 			verbose("BUG_ldx_%02x\n", insn->code);
355 			return;
356 		}
357 		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
358 			insn->code, insn->dst_reg,
359 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
360 			insn->src_reg, insn->off);
361 	} else if (class == BPF_LD) {
362 		if (BPF_MODE(insn->code) == BPF_ABS) {
363 			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
364 				insn->code,
365 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
366 				insn->imm);
367 		} else if (BPF_MODE(insn->code) == BPF_IND) {
368 			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
369 				insn->code,
370 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
371 				insn->src_reg, insn->imm);
372 		} else if (BPF_MODE(insn->code) == BPF_IMM &&
373 			   BPF_SIZE(insn->code) == BPF_DW) {
374 			/* At this point, we already made sure that the second
375 			 * part of the ldimm64 insn is accessible.
376 			 */
377 			u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
378 			bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
379 
380 			if (map_ptr && !env->allow_ptr_leaks)
381 				imm = 0;
382 
383 			verbose("(%02x) r%d = 0x%llx\n", insn->code,
384 				insn->dst_reg, (unsigned long long)imm);
385 		} else {
386 			verbose("BUG_ld_%02x\n", insn->code);
387 			return;
388 		}
389 	} else if (class == BPF_JMP) {
390 		u8 opcode = BPF_OP(insn->code);
391 
392 		if (opcode == BPF_CALL) {
393 			verbose("(%02x) call %s#%d\n", insn->code,
394 				func_id_name(insn->imm), insn->imm);
395 		} else if (insn->code == (BPF_JMP | BPF_JA)) {
396 			verbose("(%02x) goto pc%+d\n",
397 				insn->code, insn->off);
398 		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
399 			verbose("(%02x) exit\n", insn->code);
400 		} else if (BPF_SRC(insn->code) == BPF_X) {
401 			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
402 				insn->code, insn->dst_reg,
403 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
404 				insn->src_reg, insn->off);
405 		} else {
406 			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
407 				insn->code, insn->dst_reg,
408 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
409 				insn->imm, insn->off);
410 		}
411 	} else {
412 		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
413 	}
414 }
415 
416 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
417 {
418 	struct bpf_verifier_stack_elem *elem;
419 	int insn_idx;
420 
421 	if (env->head == NULL)
422 		return -1;
423 
424 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
425 	insn_idx = env->head->insn_idx;
426 	if (prev_insn_idx)
427 		*prev_insn_idx = env->head->prev_insn_idx;
428 	elem = env->head->next;
429 	kfree(env->head);
430 	env->head = elem;
431 	env->stack_size--;
432 	return insn_idx;
433 }
434 
435 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
436 					     int insn_idx, int prev_insn_idx)
437 {
438 	struct bpf_verifier_stack_elem *elem;
439 
440 	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
441 	if (!elem)
442 		goto err;
443 
444 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
445 	elem->insn_idx = insn_idx;
446 	elem->prev_insn_idx = prev_insn_idx;
447 	elem->next = env->head;
448 	env->head = elem;
449 	env->stack_size++;
450 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
451 		verbose("BPF program is too complex\n");
452 		goto err;
453 	}
454 	return &elem->st;
455 err:
456 	/* pop all elements and return */
457 	while (pop_stack(env, NULL) >= 0);
458 	return NULL;
459 }
460 
461 #define CALLER_SAVED_REGS 6
462 static const int caller_saved[CALLER_SAVED_REGS] = {
463 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
464 };
465 
466 static void init_reg_state(struct bpf_reg_state *regs)
467 {
468 	int i;
469 
470 	for (i = 0; i < MAX_BPF_REG; i++) {
471 		regs[i].type = NOT_INIT;
472 		regs[i].imm = 0;
473 		regs[i].min_value = BPF_REGISTER_MIN_RANGE;
474 		regs[i].max_value = BPF_REGISTER_MAX_RANGE;
475 		regs[i].min_align = 0;
476 		regs[i].aux_off = 0;
477 		regs[i].aux_off_align = 0;
478 	}
479 
480 	/* frame pointer */
481 	regs[BPF_REG_FP].type = FRAME_PTR;
482 
483 	/* 1st arg to a function */
484 	regs[BPF_REG_1].type = PTR_TO_CTX;
485 }
486 
487 static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
488 {
489 	regs[regno].type = UNKNOWN_VALUE;
490 	regs[regno].id = 0;
491 	regs[regno].imm = 0;
492 }
493 
494 static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
495 {
496 	BUG_ON(regno >= MAX_BPF_REG);
497 	__mark_reg_unknown_value(regs, regno);
498 }
499 
500 static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
501 {
502 	regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
503 	regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
504 	regs[regno].min_align = 0;
505 }
506 
507 static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
508 					     u32 regno)
509 {
510 	mark_reg_unknown_value(regs, regno);
511 	reset_reg_range_values(regs, regno);
512 }
513 
514 enum reg_arg_type {
515 	SRC_OP,		/* register is used as source operand */
516 	DST_OP,		/* register is used as destination operand */
517 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
518 };
519 
520 static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
521 			 enum reg_arg_type t)
522 {
523 	if (regno >= MAX_BPF_REG) {
524 		verbose("R%d is invalid\n", regno);
525 		return -EINVAL;
526 	}
527 
528 	if (t == SRC_OP) {
529 		/* check whether register used as source operand can be read */
530 		if (regs[regno].type == NOT_INIT) {
531 			verbose("R%d !read_ok\n", regno);
532 			return -EACCES;
533 		}
534 	} else {
535 		/* check whether register used as dest operand can be written to */
536 		if (regno == BPF_REG_FP) {
537 			verbose("frame pointer is read only\n");
538 			return -EACCES;
539 		}
540 		if (t == DST_OP)
541 			mark_reg_unknown_value(regs, regno);
542 	}
543 	return 0;
544 }
545 
546 static int bpf_size_to_bytes(int bpf_size)
547 {
548 	if (bpf_size == BPF_W)
549 		return 4;
550 	else if (bpf_size == BPF_H)
551 		return 2;
552 	else if (bpf_size == BPF_B)
553 		return 1;
554 	else if (bpf_size == BPF_DW)
555 		return 8;
556 	else
557 		return -EINVAL;
558 }
559 
560 static bool is_spillable_regtype(enum bpf_reg_type type)
561 {
562 	switch (type) {
563 	case PTR_TO_MAP_VALUE:
564 	case PTR_TO_MAP_VALUE_OR_NULL:
565 	case PTR_TO_MAP_VALUE_ADJ:
566 	case PTR_TO_STACK:
567 	case PTR_TO_CTX:
568 	case PTR_TO_PACKET:
569 	case PTR_TO_PACKET_END:
570 	case FRAME_PTR:
571 	case CONST_PTR_TO_MAP:
572 		return true;
573 	default:
574 		return false;
575 	}
576 }
577 
578 /* check_stack_read/write functions track spill/fill of registers,
579  * stack boundary and alignment are checked in check_mem_access()
580  */
581 static int check_stack_write(struct bpf_verifier_state *state, int off,
582 			     int size, int value_regno)
583 {
584 	int i;
585 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
586 	 * so it's aligned access and [off, off + size) are within stack limits
587 	 */
588 
589 	if (value_regno >= 0 &&
590 	    is_spillable_regtype(state->regs[value_regno].type)) {
591 
592 		/* register containing pointer is being spilled into stack */
593 		if (size != BPF_REG_SIZE) {
594 			verbose("invalid size of register spill\n");
595 			return -EACCES;
596 		}
597 
598 		/* save register state */
599 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
600 			state->regs[value_regno];
601 
602 		for (i = 0; i < BPF_REG_SIZE; i++)
603 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
604 	} else {
605 		/* regular write of data into stack */
606 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
607 			(struct bpf_reg_state) {};
608 
609 		for (i = 0; i < size; i++)
610 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
611 	}
612 	return 0;
613 }
614 
615 static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
616 			    int value_regno)
617 {
618 	u8 *slot_type;
619 	int i;
620 
621 	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
622 
623 	if (slot_type[0] == STACK_SPILL) {
624 		if (size != BPF_REG_SIZE) {
625 			verbose("invalid size of register spill\n");
626 			return -EACCES;
627 		}
628 		for (i = 1; i < BPF_REG_SIZE; i++) {
629 			if (slot_type[i] != STACK_SPILL) {
630 				verbose("corrupted spill memory\n");
631 				return -EACCES;
632 			}
633 		}
634 
635 		if (value_regno >= 0)
636 			/* restore register state from stack */
637 			state->regs[value_regno] =
638 				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
639 		return 0;
640 	} else {
641 		for (i = 0; i < size; i++) {
642 			if (slot_type[i] != STACK_MISC) {
643 				verbose("invalid read from stack off %d+%d size %d\n",
644 					off, i, size);
645 				return -EACCES;
646 			}
647 		}
648 		if (value_regno >= 0)
649 			/* have read misc data from the stack */
650 			mark_reg_unknown_value_and_range(state->regs,
651 							 value_regno);
652 		return 0;
653 	}
654 }
655 
656 /* check read/write into map element returned by bpf_map_lookup_elem() */
657 static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
658 			    int size)
659 {
660 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
661 
662 	if (off < 0 || size <= 0 || off + size > map->value_size) {
663 		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
664 			map->value_size, off, size);
665 		return -EACCES;
666 	}
667 	return 0;
668 }
669 
670 /* check read/write into an adjusted map element */
671 static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
672 				int off, int size)
673 {
674 	struct bpf_verifier_state *state = &env->cur_state;
675 	struct bpf_reg_state *reg = &state->regs[regno];
676 	int err;
677 
678 	/* We adjusted the register to this map value, so we
679 	 * need to change off and size to min_value and max_value
680 	 * respectively to make sure our theoretical access will be
681 	 * safe.
682 	 */
683 	if (log_level)
684 		print_verifier_state(state);
685 	env->varlen_map_value_access = true;
686 	/* The minimum value is only important with signed
687 	 * comparisons where we can't assume the floor of a
688 	 * value is 0.  If we are using signed variables for our
689 	 * index'es we need to make sure that whatever we use
690 	 * will have a set floor within our range.
691 	 */
692 	if (reg->min_value < 0) {
693 		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
694 			regno);
695 		return -EACCES;
696 	}
697 	err = check_map_access(env, regno, reg->min_value + off, size);
698 	if (err) {
699 		verbose("R%d min value is outside of the array range\n",
700 			regno);
701 		return err;
702 	}
703 
704 	/* If we haven't set a max value then we need to bail
705 	 * since we can't be sure we won't do bad things.
706 	 */
707 	if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
708 		verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
709 			regno);
710 		return -EACCES;
711 	}
712 	return check_map_access(env, regno, reg->max_value + off, size);
713 }
714 
715 #define MAX_PACKET_OFF 0xffff
716 
717 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
718 				       const struct bpf_call_arg_meta *meta,
719 				       enum bpf_access_type t)
720 {
721 	switch (env->prog->type) {
722 	case BPF_PROG_TYPE_LWT_IN:
723 	case BPF_PROG_TYPE_LWT_OUT:
724 		/* dst_input() and dst_output() can't write for now */
725 		if (t == BPF_WRITE)
726 			return false;
727 		/* fallthrough */
728 	case BPF_PROG_TYPE_SCHED_CLS:
729 	case BPF_PROG_TYPE_SCHED_ACT:
730 	case BPF_PROG_TYPE_XDP:
731 	case BPF_PROG_TYPE_LWT_XMIT:
732 		if (meta)
733 			return meta->pkt_access;
734 
735 		env->seen_direct_write = true;
736 		return true;
737 	default:
738 		return false;
739 	}
740 }
741 
742 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
743 			       int size)
744 {
745 	struct bpf_reg_state *regs = env->cur_state.regs;
746 	struct bpf_reg_state *reg = &regs[regno];
747 
748 	off += reg->off;
749 	if (off < 0 || size <= 0 || off + size > reg->range) {
750 		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
751 			off, size, regno, reg->id, reg->off, reg->range);
752 		return -EACCES;
753 	}
754 	return 0;
755 }
756 
757 /* check access to 'struct bpf_context' fields */
758 static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
759 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
760 {
761 	/* for analyzer ctx accesses are already validated and converted */
762 	if (env->analyzer_ops)
763 		return 0;
764 
765 	if (env->prog->aux->ops->is_valid_access &&
766 	    env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
767 		/* remember the offset of last byte accessed in ctx */
768 		if (env->prog->aux->max_ctx_offset < off + size)
769 			env->prog->aux->max_ctx_offset = off + size;
770 		return 0;
771 	}
772 
773 	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
774 	return -EACCES;
775 }
776 
777 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
778 {
779 	if (env->allow_ptr_leaks)
780 		return false;
781 
782 	switch (env->cur_state.regs[regno].type) {
783 	case UNKNOWN_VALUE:
784 	case CONST_IMM:
785 		return false;
786 	default:
787 		return true;
788 	}
789 }
790 
791 static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
792 				   int off, int size, bool strict)
793 {
794 	int ip_align;
795 	int reg_off;
796 
797 	/* Byte size accesses are always allowed. */
798 	if (!strict || size == 1)
799 		return 0;
800 
801 	reg_off = reg->off;
802 	if (reg->id) {
803 		if (reg->aux_off_align % size) {
804 			verbose("Packet access is only %u byte aligned, %d byte access not allowed\n",
805 				reg->aux_off_align, size);
806 			return -EACCES;
807 		}
808 		reg_off += reg->aux_off;
809 	}
810 
811 	/* For platforms that do not have a Kconfig enabling
812 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
813 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
814 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
815 	 * to this code only in strict mode where we want to emulate
816 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
817 	 * unconditional IP align value of '2'.
818 	 */
819 	ip_align = 2;
820 	if ((ip_align + reg_off + off) % size != 0) {
821 		verbose("misaligned packet access off %d+%d+%d size %d\n",
822 			ip_align, reg_off, off, size);
823 		return -EACCES;
824 	}
825 
826 	return 0;
827 }
828 
829 static int check_val_ptr_alignment(const struct bpf_reg_state *reg,
830 				   int size, bool strict)
831 {
832 	if (strict && size != 1) {
833 		verbose("Unknown alignment. Only byte-sized access allowed in value access.\n");
834 		return -EACCES;
835 	}
836 
837 	return 0;
838 }
839 
840 static int check_ptr_alignment(struct bpf_verifier_env *env,
841 			       const struct bpf_reg_state *reg,
842 			       int off, int size)
843 {
844 	bool strict = env->strict_alignment;
845 
846 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
847 		strict = true;
848 
849 	switch (reg->type) {
850 	case PTR_TO_PACKET:
851 		return check_pkt_ptr_alignment(reg, off, size, strict);
852 	case PTR_TO_MAP_VALUE_ADJ:
853 		return check_val_ptr_alignment(reg, size, strict);
854 	default:
855 		if (off % size != 0) {
856 			verbose("misaligned access off %d size %d\n",
857 				off, size);
858 			return -EACCES;
859 		}
860 
861 		return 0;
862 	}
863 }
864 
865 /* check whether memory at (regno + off) is accessible for t = (read | write)
866  * if t==write, value_regno is a register which value is stored into memory
867  * if t==read, value_regno is a register which will receive the value from memory
868  * if t==write && value_regno==-1, some unknown value is stored into memory
869  * if t==read && value_regno==-1, don't care what we read from memory
870  */
871 static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
872 			    int bpf_size, enum bpf_access_type t,
873 			    int value_regno)
874 {
875 	struct bpf_verifier_state *state = &env->cur_state;
876 	struct bpf_reg_state *reg = &state->regs[regno];
877 	int size, err = 0;
878 
879 	if (reg->type == PTR_TO_STACK)
880 		off += reg->imm;
881 
882 	size = bpf_size_to_bytes(bpf_size);
883 	if (size < 0)
884 		return size;
885 
886 	err = check_ptr_alignment(env, reg, off, size);
887 	if (err)
888 		return err;
889 
890 	if (reg->type == PTR_TO_MAP_VALUE ||
891 	    reg->type == PTR_TO_MAP_VALUE_ADJ) {
892 		if (t == BPF_WRITE && value_regno >= 0 &&
893 		    is_pointer_value(env, value_regno)) {
894 			verbose("R%d leaks addr into map\n", value_regno);
895 			return -EACCES;
896 		}
897 
898 		if (reg->type == PTR_TO_MAP_VALUE_ADJ)
899 			err = check_map_access_adj(env, regno, off, size);
900 		else
901 			err = check_map_access(env, regno, off, size);
902 		if (!err && t == BPF_READ && value_regno >= 0)
903 			mark_reg_unknown_value_and_range(state->regs,
904 							 value_regno);
905 
906 	} else if (reg->type == PTR_TO_CTX) {
907 		enum bpf_reg_type reg_type = UNKNOWN_VALUE;
908 
909 		if (t == BPF_WRITE && value_regno >= 0 &&
910 		    is_pointer_value(env, value_regno)) {
911 			verbose("R%d leaks addr into ctx\n", value_regno);
912 			return -EACCES;
913 		}
914 		err = check_ctx_access(env, off, size, t, &reg_type);
915 		if (!err && t == BPF_READ && value_regno >= 0) {
916 			mark_reg_unknown_value_and_range(state->regs,
917 							 value_regno);
918 			/* note that reg.[id|off|range] == 0 */
919 			state->regs[value_regno].type = reg_type;
920 			state->regs[value_regno].aux_off = 0;
921 			state->regs[value_regno].aux_off_align = 0;
922 		}
923 
924 	} else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
925 		if (off >= 0 || off < -MAX_BPF_STACK) {
926 			verbose("invalid stack off=%d size=%d\n", off, size);
927 			return -EACCES;
928 		}
929 		if (t == BPF_WRITE) {
930 			if (!env->allow_ptr_leaks &&
931 			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
932 			    size != BPF_REG_SIZE) {
933 				verbose("attempt to corrupt spilled pointer on stack\n");
934 				return -EACCES;
935 			}
936 			err = check_stack_write(state, off, size, value_regno);
937 		} else {
938 			err = check_stack_read(state, off, size, value_regno);
939 		}
940 	} else if (state->regs[regno].type == PTR_TO_PACKET) {
941 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
942 			verbose("cannot write into packet\n");
943 			return -EACCES;
944 		}
945 		if (t == BPF_WRITE && value_regno >= 0 &&
946 		    is_pointer_value(env, value_regno)) {
947 			verbose("R%d leaks addr into packet\n", value_regno);
948 			return -EACCES;
949 		}
950 		err = check_packet_access(env, regno, off, size);
951 		if (!err && t == BPF_READ && value_regno >= 0)
952 			mark_reg_unknown_value_and_range(state->regs,
953 							 value_regno);
954 	} else {
955 		verbose("R%d invalid mem access '%s'\n",
956 			regno, reg_type_str[reg->type]);
957 		return -EACCES;
958 	}
959 
960 	if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
961 	    state->regs[value_regno].type == UNKNOWN_VALUE) {
962 		/* 1 or 2 byte load zero-extends, determine the number of
963 		 * zero upper bits. Not doing it fo 4 byte load, since
964 		 * such values cannot be added to ptr_to_packet anyway.
965 		 */
966 		state->regs[value_regno].imm = 64 - size * 8;
967 	}
968 	return err;
969 }
970 
971 static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
972 {
973 	struct bpf_reg_state *regs = env->cur_state.regs;
974 	int err;
975 
976 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
977 	    insn->imm != 0) {
978 		verbose("BPF_XADD uses reserved fields\n");
979 		return -EINVAL;
980 	}
981 
982 	/* check src1 operand */
983 	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
984 	if (err)
985 		return err;
986 
987 	/* check src2 operand */
988 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
989 	if (err)
990 		return err;
991 
992 	/* check whether atomic_add can read the memory */
993 	err = check_mem_access(env, insn->dst_reg, insn->off,
994 			       BPF_SIZE(insn->code), BPF_READ, -1);
995 	if (err)
996 		return err;
997 
998 	/* check whether atomic_add can write into the same memory */
999 	return check_mem_access(env, insn->dst_reg, insn->off,
1000 				BPF_SIZE(insn->code), BPF_WRITE, -1);
1001 }
1002 
1003 /* when register 'regno' is passed into function that will read 'access_size'
1004  * bytes from that pointer, make sure that it's within stack boundary
1005  * and all elements of stack are initialized
1006  */
1007 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1008 				int access_size, bool zero_size_allowed,
1009 				struct bpf_call_arg_meta *meta)
1010 {
1011 	struct bpf_verifier_state *state = &env->cur_state;
1012 	struct bpf_reg_state *regs = state->regs;
1013 	int off, i;
1014 
1015 	if (regs[regno].type != PTR_TO_STACK) {
1016 		if (zero_size_allowed && access_size == 0 &&
1017 		    regs[regno].type == CONST_IMM &&
1018 		    regs[regno].imm  == 0)
1019 			return 0;
1020 
1021 		verbose("R%d type=%s expected=%s\n", regno,
1022 			reg_type_str[regs[regno].type],
1023 			reg_type_str[PTR_TO_STACK]);
1024 		return -EACCES;
1025 	}
1026 
1027 	off = regs[regno].imm;
1028 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1029 	    access_size <= 0) {
1030 		verbose("invalid stack type R%d off=%d access_size=%d\n",
1031 			regno, off, access_size);
1032 		return -EACCES;
1033 	}
1034 
1035 	if (meta && meta->raw_mode) {
1036 		meta->access_size = access_size;
1037 		meta->regno = regno;
1038 		return 0;
1039 	}
1040 
1041 	for (i = 0; i < access_size; i++) {
1042 		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1043 			verbose("invalid indirect read from stack off %d+%d size %d\n",
1044 				off, i, access_size);
1045 			return -EACCES;
1046 		}
1047 	}
1048 	return 0;
1049 }
1050 
1051 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1052 				   int access_size, bool zero_size_allowed,
1053 				   struct bpf_call_arg_meta *meta)
1054 {
1055 	struct bpf_reg_state *regs = env->cur_state.regs;
1056 
1057 	switch (regs[regno].type) {
1058 	case PTR_TO_PACKET:
1059 		return check_packet_access(env, regno, 0, access_size);
1060 	case PTR_TO_MAP_VALUE:
1061 		return check_map_access(env, regno, 0, access_size);
1062 	case PTR_TO_MAP_VALUE_ADJ:
1063 		return check_map_access_adj(env, regno, 0, access_size);
1064 	default: /* const_imm|ptr_to_stack or invalid ptr */
1065 		return check_stack_boundary(env, regno, access_size,
1066 					    zero_size_allowed, meta);
1067 	}
1068 }
1069 
1070 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1071 			  enum bpf_arg_type arg_type,
1072 			  struct bpf_call_arg_meta *meta)
1073 {
1074 	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1075 	enum bpf_reg_type expected_type, type = reg->type;
1076 	int err = 0;
1077 
1078 	if (arg_type == ARG_DONTCARE)
1079 		return 0;
1080 
1081 	if (type == NOT_INIT) {
1082 		verbose("R%d !read_ok\n", regno);
1083 		return -EACCES;
1084 	}
1085 
1086 	if (arg_type == ARG_ANYTHING) {
1087 		if (is_pointer_value(env, regno)) {
1088 			verbose("R%d leaks addr into helper function\n", regno);
1089 			return -EACCES;
1090 		}
1091 		return 0;
1092 	}
1093 
1094 	if (type == PTR_TO_PACKET &&
1095 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1096 		verbose("helper access to the packet is not allowed\n");
1097 		return -EACCES;
1098 	}
1099 
1100 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1101 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1102 		expected_type = PTR_TO_STACK;
1103 		if (type != PTR_TO_PACKET && type != expected_type)
1104 			goto err_type;
1105 	} else if (arg_type == ARG_CONST_SIZE ||
1106 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1107 		expected_type = CONST_IMM;
1108 		/* One exception. Allow UNKNOWN_VALUE registers when the
1109 		 * boundaries are known and don't cause unsafe memory accesses
1110 		 */
1111 		if (type != UNKNOWN_VALUE && type != expected_type)
1112 			goto err_type;
1113 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1114 		expected_type = CONST_PTR_TO_MAP;
1115 		if (type != expected_type)
1116 			goto err_type;
1117 	} else if (arg_type == ARG_PTR_TO_CTX) {
1118 		expected_type = PTR_TO_CTX;
1119 		if (type != expected_type)
1120 			goto err_type;
1121 	} else if (arg_type == ARG_PTR_TO_MEM ||
1122 		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1123 		expected_type = PTR_TO_STACK;
1124 		/* One exception here. In case function allows for NULL to be
1125 		 * passed in as argument, it's a CONST_IMM type. Final test
1126 		 * happens during stack boundary checking.
1127 		 */
1128 		if (type == CONST_IMM && reg->imm == 0)
1129 			/* final test in check_stack_boundary() */;
1130 		else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1131 			 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
1132 			goto err_type;
1133 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1134 	} else {
1135 		verbose("unsupported arg_type %d\n", arg_type);
1136 		return -EFAULT;
1137 	}
1138 
1139 	if (arg_type == ARG_CONST_MAP_PTR) {
1140 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1141 		meta->map_ptr = reg->map_ptr;
1142 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1143 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1144 		 * check that [key, key + map->key_size) are within
1145 		 * stack limits and initialized
1146 		 */
1147 		if (!meta->map_ptr) {
1148 			/* in function declaration map_ptr must come before
1149 			 * map_key, so that it's verified and known before
1150 			 * we have to check map_key here. Otherwise it means
1151 			 * that kernel subsystem misconfigured verifier
1152 			 */
1153 			verbose("invalid map_ptr to access map->key\n");
1154 			return -EACCES;
1155 		}
1156 		if (type == PTR_TO_PACKET)
1157 			err = check_packet_access(env, regno, 0,
1158 						  meta->map_ptr->key_size);
1159 		else
1160 			err = check_stack_boundary(env, regno,
1161 						   meta->map_ptr->key_size,
1162 						   false, NULL);
1163 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1164 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1165 		 * check [value, value + map->value_size) validity
1166 		 */
1167 		if (!meta->map_ptr) {
1168 			/* kernel subsystem misconfigured verifier */
1169 			verbose("invalid map_ptr to access map->value\n");
1170 			return -EACCES;
1171 		}
1172 		if (type == PTR_TO_PACKET)
1173 			err = check_packet_access(env, regno, 0,
1174 						  meta->map_ptr->value_size);
1175 		else
1176 			err = check_stack_boundary(env, regno,
1177 						   meta->map_ptr->value_size,
1178 						   false, NULL);
1179 	} else if (arg_type == ARG_CONST_SIZE ||
1180 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1181 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1182 
1183 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1184 		 * from stack pointer 'buf'. Check it
1185 		 * note: regno == len, regno - 1 == buf
1186 		 */
1187 		if (regno == 0) {
1188 			/* kernel subsystem misconfigured verifier */
1189 			verbose("ARG_CONST_SIZE cannot be first argument\n");
1190 			return -EACCES;
1191 		}
1192 
1193 		/* If the register is UNKNOWN_VALUE, the access check happens
1194 		 * using its boundaries. Otherwise, just use its imm
1195 		 */
1196 		if (type == UNKNOWN_VALUE) {
1197 			/* For unprivileged variable accesses, disable raw
1198 			 * mode so that the program is required to
1199 			 * initialize all the memory that the helper could
1200 			 * just partially fill up.
1201 			 */
1202 			meta = NULL;
1203 
1204 			if (reg->min_value < 0) {
1205 				verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1206 					regno);
1207 				return -EACCES;
1208 			}
1209 
1210 			if (reg->min_value == 0) {
1211 				err = check_helper_mem_access(env, regno - 1, 0,
1212 							      zero_size_allowed,
1213 							      meta);
1214 				if (err)
1215 					return err;
1216 			}
1217 
1218 			if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
1219 				verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1220 					regno);
1221 				return -EACCES;
1222 			}
1223 			err = check_helper_mem_access(env, regno - 1,
1224 						      reg->max_value,
1225 						      zero_size_allowed, meta);
1226 			if (err)
1227 				return err;
1228 		} else {
1229 			/* register is CONST_IMM */
1230 			err = check_helper_mem_access(env, regno - 1, reg->imm,
1231 						      zero_size_allowed, meta);
1232 		}
1233 	}
1234 
1235 	return err;
1236 err_type:
1237 	verbose("R%d type=%s expected=%s\n", regno,
1238 		reg_type_str[type], reg_type_str[expected_type]);
1239 	return -EACCES;
1240 }
1241 
1242 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1243 {
1244 	if (!map)
1245 		return 0;
1246 
1247 	/* We need a two way check, first is from map perspective ... */
1248 	switch (map->map_type) {
1249 	case BPF_MAP_TYPE_PROG_ARRAY:
1250 		if (func_id != BPF_FUNC_tail_call)
1251 			goto error;
1252 		break;
1253 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1254 		if (func_id != BPF_FUNC_perf_event_read &&
1255 		    func_id != BPF_FUNC_perf_event_output)
1256 			goto error;
1257 		break;
1258 	case BPF_MAP_TYPE_STACK_TRACE:
1259 		if (func_id != BPF_FUNC_get_stackid)
1260 			goto error;
1261 		break;
1262 	case BPF_MAP_TYPE_CGROUP_ARRAY:
1263 		if (func_id != BPF_FUNC_skb_under_cgroup &&
1264 		    func_id != BPF_FUNC_current_task_under_cgroup)
1265 			goto error;
1266 		break;
1267 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1268 	case BPF_MAP_TYPE_HASH_OF_MAPS:
1269 		if (func_id != BPF_FUNC_map_lookup_elem)
1270 			goto error;
1271 	default:
1272 		break;
1273 	}
1274 
1275 	/* ... and second from the function itself. */
1276 	switch (func_id) {
1277 	case BPF_FUNC_tail_call:
1278 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1279 			goto error;
1280 		break;
1281 	case BPF_FUNC_perf_event_read:
1282 	case BPF_FUNC_perf_event_output:
1283 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1284 			goto error;
1285 		break;
1286 	case BPF_FUNC_get_stackid:
1287 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1288 			goto error;
1289 		break;
1290 	case BPF_FUNC_current_task_under_cgroup:
1291 	case BPF_FUNC_skb_under_cgroup:
1292 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1293 			goto error;
1294 		break;
1295 	default:
1296 		break;
1297 	}
1298 
1299 	return 0;
1300 error:
1301 	verbose("cannot pass map_type %d into func %s#%d\n",
1302 		map->map_type, func_id_name(func_id), func_id);
1303 	return -EINVAL;
1304 }
1305 
1306 static int check_raw_mode(const struct bpf_func_proto *fn)
1307 {
1308 	int count = 0;
1309 
1310 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1311 		count++;
1312 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1313 		count++;
1314 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1315 		count++;
1316 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1317 		count++;
1318 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1319 		count++;
1320 
1321 	return count > 1 ? -EINVAL : 0;
1322 }
1323 
1324 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1325 {
1326 	struct bpf_verifier_state *state = &env->cur_state;
1327 	struct bpf_reg_state *regs = state->regs, *reg;
1328 	int i;
1329 
1330 	for (i = 0; i < MAX_BPF_REG; i++)
1331 		if (regs[i].type == PTR_TO_PACKET ||
1332 		    regs[i].type == PTR_TO_PACKET_END)
1333 			mark_reg_unknown_value(regs, i);
1334 
1335 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1336 		if (state->stack_slot_type[i] != STACK_SPILL)
1337 			continue;
1338 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1339 		if (reg->type != PTR_TO_PACKET &&
1340 		    reg->type != PTR_TO_PACKET_END)
1341 			continue;
1342 		reg->type = UNKNOWN_VALUE;
1343 		reg->imm = 0;
1344 	}
1345 }
1346 
1347 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1348 {
1349 	struct bpf_verifier_state *state = &env->cur_state;
1350 	const struct bpf_func_proto *fn = NULL;
1351 	struct bpf_reg_state *regs = state->regs;
1352 	struct bpf_reg_state *reg;
1353 	struct bpf_call_arg_meta meta;
1354 	bool changes_data;
1355 	int i, err;
1356 
1357 	/* find function prototype */
1358 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1359 		verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1360 		return -EINVAL;
1361 	}
1362 
1363 	if (env->prog->aux->ops->get_func_proto)
1364 		fn = env->prog->aux->ops->get_func_proto(func_id);
1365 
1366 	if (!fn) {
1367 		verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1368 		return -EINVAL;
1369 	}
1370 
1371 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1372 	if (!env->prog->gpl_compatible && fn->gpl_only) {
1373 		verbose("cannot call GPL only function from proprietary program\n");
1374 		return -EINVAL;
1375 	}
1376 
1377 	changes_data = bpf_helper_changes_pkt_data(fn->func);
1378 
1379 	memset(&meta, 0, sizeof(meta));
1380 	meta.pkt_access = fn->pkt_access;
1381 
1382 	/* We only support one arg being in raw mode at the moment, which
1383 	 * is sufficient for the helper functions we have right now.
1384 	 */
1385 	err = check_raw_mode(fn);
1386 	if (err) {
1387 		verbose("kernel subsystem misconfigured func %s#%d\n",
1388 			func_id_name(func_id), func_id);
1389 		return err;
1390 	}
1391 
1392 	/* check args */
1393 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1394 	if (err)
1395 		return err;
1396 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1397 	if (err)
1398 		return err;
1399 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1400 	if (err)
1401 		return err;
1402 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1403 	if (err)
1404 		return err;
1405 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1406 	if (err)
1407 		return err;
1408 
1409 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1410 	 * is inferred from register state.
1411 	 */
1412 	for (i = 0; i < meta.access_size; i++) {
1413 		err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1414 		if (err)
1415 			return err;
1416 	}
1417 
1418 	/* reset caller saved regs */
1419 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1420 		reg = regs + caller_saved[i];
1421 		reg->type = NOT_INIT;
1422 		reg->imm = 0;
1423 	}
1424 
1425 	/* update return register */
1426 	if (fn->ret_type == RET_INTEGER) {
1427 		regs[BPF_REG_0].type = UNKNOWN_VALUE;
1428 	} else if (fn->ret_type == RET_VOID) {
1429 		regs[BPF_REG_0].type = NOT_INIT;
1430 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1431 		struct bpf_insn_aux_data *insn_aux;
1432 
1433 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1434 		regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
1435 		/* remember map_ptr, so that check_map_access()
1436 		 * can check 'value_size' boundary of memory access
1437 		 * to map element returned from bpf_map_lookup_elem()
1438 		 */
1439 		if (meta.map_ptr == NULL) {
1440 			verbose("kernel subsystem misconfigured verifier\n");
1441 			return -EINVAL;
1442 		}
1443 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1444 		regs[BPF_REG_0].id = ++env->id_gen;
1445 		insn_aux = &env->insn_aux_data[insn_idx];
1446 		if (!insn_aux->map_ptr)
1447 			insn_aux->map_ptr = meta.map_ptr;
1448 		else if (insn_aux->map_ptr != meta.map_ptr)
1449 			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1450 	} else {
1451 		verbose("unknown return type %d of func %s#%d\n",
1452 			fn->ret_type, func_id_name(func_id), func_id);
1453 		return -EINVAL;
1454 	}
1455 
1456 	err = check_map_func_compatibility(meta.map_ptr, func_id);
1457 	if (err)
1458 		return err;
1459 
1460 	if (changes_data)
1461 		clear_all_pkt_pointers(env);
1462 	return 0;
1463 }
1464 
1465 static int check_packet_ptr_add(struct bpf_verifier_env *env,
1466 				struct bpf_insn *insn)
1467 {
1468 	struct bpf_reg_state *regs = env->cur_state.regs;
1469 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1470 	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1471 	struct bpf_reg_state tmp_reg;
1472 	s32 imm;
1473 
1474 	if (BPF_SRC(insn->code) == BPF_K) {
1475 		/* pkt_ptr += imm */
1476 		imm = insn->imm;
1477 
1478 add_imm:
1479 		if (imm < 0) {
1480 			verbose("addition of negative constant to packet pointer is not allowed\n");
1481 			return -EACCES;
1482 		}
1483 		if (imm >= MAX_PACKET_OFF ||
1484 		    imm + dst_reg->off >= MAX_PACKET_OFF) {
1485 			verbose("constant %d is too large to add to packet pointer\n",
1486 				imm);
1487 			return -EACCES;
1488 		}
1489 		/* a constant was added to pkt_ptr.
1490 		 * Remember it while keeping the same 'id'
1491 		 */
1492 		dst_reg->off += imm;
1493 	} else {
1494 		bool had_id;
1495 
1496 		if (src_reg->type == PTR_TO_PACKET) {
1497 			/* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1498 			tmp_reg = *dst_reg;  /* save r7 state */
1499 			*dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1500 			src_reg = &tmp_reg;  /* pretend it's src_reg state */
1501 			/* if the checks below reject it, the copy won't matter,
1502 			 * since we're rejecting the whole program. If all ok,
1503 			 * then imm22 state will be added to r7
1504 			 * and r7 will be pkt(id=0,off=22,r=62) while
1505 			 * r6 will stay as pkt(id=0,off=0,r=62)
1506 			 */
1507 		}
1508 
1509 		if (src_reg->type == CONST_IMM) {
1510 			/* pkt_ptr += reg where reg is known constant */
1511 			imm = src_reg->imm;
1512 			goto add_imm;
1513 		}
1514 		/* disallow pkt_ptr += reg
1515 		 * if reg is not uknown_value with guaranteed zero upper bits
1516 		 * otherwise pkt_ptr may overflow and addition will become
1517 		 * subtraction which is not allowed
1518 		 */
1519 		if (src_reg->type != UNKNOWN_VALUE) {
1520 			verbose("cannot add '%s' to ptr_to_packet\n",
1521 				reg_type_str[src_reg->type]);
1522 			return -EACCES;
1523 		}
1524 		if (src_reg->imm < 48) {
1525 			verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1526 				src_reg->imm);
1527 			return -EACCES;
1528 		}
1529 
1530 		had_id = (dst_reg->id != 0);
1531 
1532 		/* dst_reg stays as pkt_ptr type and since some positive
1533 		 * integer value was added to the pointer, increment its 'id'
1534 		 */
1535 		dst_reg->id = ++env->id_gen;
1536 
1537 		/* something was added to pkt_ptr, set range to zero */
1538 		dst_reg->aux_off += dst_reg->off;
1539 		dst_reg->off = 0;
1540 		dst_reg->range = 0;
1541 		if (had_id)
1542 			dst_reg->aux_off_align = min(dst_reg->aux_off_align,
1543 						     src_reg->min_align);
1544 		else
1545 			dst_reg->aux_off_align = src_reg->min_align;
1546 	}
1547 	return 0;
1548 }
1549 
1550 static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
1551 {
1552 	struct bpf_reg_state *regs = env->cur_state.regs;
1553 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1554 	u8 opcode = BPF_OP(insn->code);
1555 	s64 imm_log2;
1556 
1557 	/* for type == UNKNOWN_VALUE:
1558 	 * imm > 0 -> number of zero upper bits
1559 	 * imm == 0 -> don't track which is the same as all bits can be non-zero
1560 	 */
1561 
1562 	if (BPF_SRC(insn->code) == BPF_X) {
1563 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1564 
1565 		if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1566 		    dst_reg->imm && opcode == BPF_ADD) {
1567 			/* dreg += sreg
1568 			 * where both have zero upper bits. Adding them
1569 			 * can only result making one more bit non-zero
1570 			 * in the larger value.
1571 			 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1572 			 *     0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1573 			 */
1574 			dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1575 			dst_reg->imm--;
1576 			return 0;
1577 		}
1578 		if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1579 		    dst_reg->imm && opcode == BPF_ADD) {
1580 			/* dreg += sreg
1581 			 * where dreg has zero upper bits and sreg is const.
1582 			 * Adding them can only result making one more bit
1583 			 * non-zero in the larger value.
1584 			 */
1585 			imm_log2 = __ilog2_u64((long long)src_reg->imm);
1586 			dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1587 			dst_reg->imm--;
1588 			return 0;
1589 		}
1590 		/* all other cases non supported yet, just mark dst_reg */
1591 		dst_reg->imm = 0;
1592 		return 0;
1593 	}
1594 
1595 	/* sign extend 32-bit imm into 64-bit to make sure that
1596 	 * negative values occupy bit 63. Note ilog2() would have
1597 	 * been incorrect, since sizeof(insn->imm) == 4
1598 	 */
1599 	imm_log2 = __ilog2_u64((long long)insn->imm);
1600 
1601 	if (dst_reg->imm && opcode == BPF_LSH) {
1602 		/* reg <<= imm
1603 		 * if reg was a result of 2 byte load, then its imm == 48
1604 		 * which means that upper 48 bits are zero and shifting this reg
1605 		 * left by 4 would mean that upper 44 bits are still zero
1606 		 */
1607 		dst_reg->imm -= insn->imm;
1608 	} else if (dst_reg->imm && opcode == BPF_MUL) {
1609 		/* reg *= imm
1610 		 * if multiplying by 14 subtract 4
1611 		 * This is conservative calculation of upper zero bits.
1612 		 * It's not trying to special case insn->imm == 1 or 0 cases
1613 		 */
1614 		dst_reg->imm -= imm_log2 + 1;
1615 	} else if (opcode == BPF_AND) {
1616 		/* reg &= imm */
1617 		dst_reg->imm = 63 - imm_log2;
1618 	} else if (dst_reg->imm && opcode == BPF_ADD) {
1619 		/* reg += imm */
1620 		dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1621 		dst_reg->imm--;
1622 	} else if (opcode == BPF_RSH) {
1623 		/* reg >>= imm
1624 		 * which means that after right shift, upper bits will be zero
1625 		 * note that verifier already checked that
1626 		 * 0 <= imm < 64 for shift insn
1627 		 */
1628 		dst_reg->imm += insn->imm;
1629 		if (unlikely(dst_reg->imm > 64))
1630 			/* some dumb code did:
1631 			 * r2 = *(u32 *)mem;
1632 			 * r2 >>= 32;
1633 			 * and all bits are zero now */
1634 			dst_reg->imm = 64;
1635 	} else {
1636 		/* all other alu ops, means that we don't know what will
1637 		 * happen to the value, mark it with unknown number of zero bits
1638 		 */
1639 		dst_reg->imm = 0;
1640 	}
1641 
1642 	if (dst_reg->imm < 0) {
1643 		/* all 64 bits of the register can contain non-zero bits
1644 		 * and such value cannot be added to ptr_to_packet, since it
1645 		 * may overflow, mark it as unknown to avoid further eval
1646 		 */
1647 		dst_reg->imm = 0;
1648 	}
1649 	return 0;
1650 }
1651 
1652 static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1653 				struct bpf_insn *insn)
1654 {
1655 	struct bpf_reg_state *regs = env->cur_state.regs;
1656 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1657 	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1658 	u8 opcode = BPF_OP(insn->code);
1659 	u64 dst_imm = dst_reg->imm;
1660 
1661 	/* dst_reg->type == CONST_IMM here. Simulate execution of insns
1662 	 * containing ALU ops. Don't care about overflow or negative
1663 	 * values, just add/sub/... them; registers are in u64.
1664 	 */
1665 	if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
1666 		dst_imm += insn->imm;
1667 	} else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1668 		   src_reg->type == CONST_IMM) {
1669 		dst_imm += src_reg->imm;
1670 	} else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
1671 		dst_imm -= insn->imm;
1672 	} else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
1673 		   src_reg->type == CONST_IMM) {
1674 		dst_imm -= src_reg->imm;
1675 	} else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
1676 		dst_imm *= insn->imm;
1677 	} else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
1678 		   src_reg->type == CONST_IMM) {
1679 		dst_imm *= src_reg->imm;
1680 	} else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
1681 		dst_imm |= insn->imm;
1682 	} else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1683 		   src_reg->type == CONST_IMM) {
1684 		dst_imm |= src_reg->imm;
1685 	} else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
1686 		dst_imm &= insn->imm;
1687 	} else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
1688 		   src_reg->type == CONST_IMM) {
1689 		dst_imm &= src_reg->imm;
1690 	} else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
1691 		dst_imm >>= insn->imm;
1692 	} else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
1693 		   src_reg->type == CONST_IMM) {
1694 		dst_imm >>= src_reg->imm;
1695 	} else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
1696 		dst_imm <<= insn->imm;
1697 	} else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
1698 		   src_reg->type == CONST_IMM) {
1699 		dst_imm <<= src_reg->imm;
1700 	} else {
1701 		mark_reg_unknown_value(regs, insn->dst_reg);
1702 		goto out;
1703 	}
1704 
1705 	dst_reg->imm = dst_imm;
1706 out:
1707 	return 0;
1708 }
1709 
1710 static void check_reg_overflow(struct bpf_reg_state *reg)
1711 {
1712 	if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1713 		reg->max_value = BPF_REGISTER_MAX_RANGE;
1714 	if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1715 	    reg->min_value > BPF_REGISTER_MAX_RANGE)
1716 		reg->min_value = BPF_REGISTER_MIN_RANGE;
1717 }
1718 
1719 static u32 calc_align(u32 imm)
1720 {
1721 	if (!imm)
1722 		return 1U << 31;
1723 	return imm - ((imm - 1) & imm);
1724 }
1725 
1726 static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1727 				    struct bpf_insn *insn)
1728 {
1729 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1730 	s64 min_val = BPF_REGISTER_MIN_RANGE;
1731 	u64 max_val = BPF_REGISTER_MAX_RANGE;
1732 	u8 opcode = BPF_OP(insn->code);
1733 	u32 dst_align, src_align;
1734 
1735 	dst_reg = &regs[insn->dst_reg];
1736 	src_align = 0;
1737 	if (BPF_SRC(insn->code) == BPF_X) {
1738 		check_reg_overflow(&regs[insn->src_reg]);
1739 		min_val = regs[insn->src_reg].min_value;
1740 		max_val = regs[insn->src_reg].max_value;
1741 
1742 		/* If the source register is a random pointer then the
1743 		 * min_value/max_value values represent the range of the known
1744 		 * accesses into that value, not the actual min/max value of the
1745 		 * register itself.  In this case we have to reset the reg range
1746 		 * values so we know it is not safe to look at.
1747 		 */
1748 		if (regs[insn->src_reg].type != CONST_IMM &&
1749 		    regs[insn->src_reg].type != UNKNOWN_VALUE) {
1750 			min_val = BPF_REGISTER_MIN_RANGE;
1751 			max_val = BPF_REGISTER_MAX_RANGE;
1752 			src_align = 0;
1753 		} else {
1754 			src_align = regs[insn->src_reg].min_align;
1755 		}
1756 	} else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1757 		   (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1758 		min_val = max_val = insn->imm;
1759 		src_align = calc_align(insn->imm);
1760 	}
1761 
1762 	dst_align = dst_reg->min_align;
1763 
1764 	/* We don't know anything about what was done to this register, mark it
1765 	 * as unknown.
1766 	 */
1767 	if (min_val == BPF_REGISTER_MIN_RANGE &&
1768 	    max_val == BPF_REGISTER_MAX_RANGE) {
1769 		reset_reg_range_values(regs, insn->dst_reg);
1770 		return;
1771 	}
1772 
1773 	/* If one of our values was at the end of our ranges then we can't just
1774 	 * do our normal operations to the register, we need to set the values
1775 	 * to the min/max since they are undefined.
1776 	 */
1777 	if (min_val == BPF_REGISTER_MIN_RANGE)
1778 		dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1779 	if (max_val == BPF_REGISTER_MAX_RANGE)
1780 		dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1781 
1782 	switch (opcode) {
1783 	case BPF_ADD:
1784 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1785 			dst_reg->min_value += min_val;
1786 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1787 			dst_reg->max_value += max_val;
1788 		dst_reg->min_align = min(src_align, dst_align);
1789 		break;
1790 	case BPF_SUB:
1791 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1792 			dst_reg->min_value -= min_val;
1793 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1794 			dst_reg->max_value -= max_val;
1795 		dst_reg->min_align = min(src_align, dst_align);
1796 		break;
1797 	case BPF_MUL:
1798 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1799 			dst_reg->min_value *= min_val;
1800 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1801 			dst_reg->max_value *= max_val;
1802 		dst_reg->min_align = max(src_align, dst_align);
1803 		break;
1804 	case BPF_AND:
1805 		/* Disallow AND'ing of negative numbers, ain't nobody got time
1806 		 * for that.  Otherwise the minimum is 0 and the max is the max
1807 		 * value we could AND against.
1808 		 */
1809 		if (min_val < 0)
1810 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1811 		else
1812 			dst_reg->min_value = 0;
1813 		dst_reg->max_value = max_val;
1814 		dst_reg->min_align = max(src_align, dst_align);
1815 		break;
1816 	case BPF_LSH:
1817 		/* Gotta have special overflow logic here, if we're shifting
1818 		 * more than MAX_RANGE then just assume we have an invalid
1819 		 * range.
1820 		 */
1821 		if (min_val > ilog2(BPF_REGISTER_MAX_RANGE)) {
1822 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1823 			dst_reg->min_align = 1;
1824 		} else {
1825 			if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1826 				dst_reg->min_value <<= min_val;
1827 			if (!dst_reg->min_align)
1828 				dst_reg->min_align = 1;
1829 			dst_reg->min_align <<= min_val;
1830 		}
1831 		if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1832 			dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1833 		else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1834 			dst_reg->max_value <<= max_val;
1835 		break;
1836 	case BPF_RSH:
1837 		/* RSH by a negative number is undefined, and the BPF_RSH is an
1838 		 * unsigned shift, so make the appropriate casts.
1839 		 */
1840 		if (min_val < 0 || dst_reg->min_value < 0) {
1841 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1842 		} else {
1843 			dst_reg->min_value =
1844 				(u64)(dst_reg->min_value) >> min_val;
1845 		}
1846 		if (min_val < 0) {
1847 			dst_reg->min_align = 1;
1848 		} else {
1849 			dst_reg->min_align >>= (u64) min_val;
1850 			if (!dst_reg->min_align)
1851 				dst_reg->min_align = 1;
1852 		}
1853 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1854 			dst_reg->max_value >>= max_val;
1855 		break;
1856 	default:
1857 		reset_reg_range_values(regs, insn->dst_reg);
1858 		break;
1859 	}
1860 
1861 	check_reg_overflow(dst_reg);
1862 }
1863 
1864 /* check validity of 32-bit and 64-bit arithmetic operations */
1865 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
1866 {
1867 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1868 	u8 opcode = BPF_OP(insn->code);
1869 	int err;
1870 
1871 	if (opcode == BPF_END || opcode == BPF_NEG) {
1872 		if (opcode == BPF_NEG) {
1873 			if (BPF_SRC(insn->code) != 0 ||
1874 			    insn->src_reg != BPF_REG_0 ||
1875 			    insn->off != 0 || insn->imm != 0) {
1876 				verbose("BPF_NEG uses reserved fields\n");
1877 				return -EINVAL;
1878 			}
1879 		} else {
1880 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1881 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1882 				verbose("BPF_END uses reserved fields\n");
1883 				return -EINVAL;
1884 			}
1885 		}
1886 
1887 		/* check src operand */
1888 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1889 		if (err)
1890 			return err;
1891 
1892 		if (is_pointer_value(env, insn->dst_reg)) {
1893 			verbose("R%d pointer arithmetic prohibited\n",
1894 				insn->dst_reg);
1895 			return -EACCES;
1896 		}
1897 
1898 		/* check dest operand */
1899 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1900 		if (err)
1901 			return err;
1902 
1903 	} else if (opcode == BPF_MOV) {
1904 
1905 		if (BPF_SRC(insn->code) == BPF_X) {
1906 			if (insn->imm != 0 || insn->off != 0) {
1907 				verbose("BPF_MOV uses reserved fields\n");
1908 				return -EINVAL;
1909 			}
1910 
1911 			/* check src operand */
1912 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1913 			if (err)
1914 				return err;
1915 		} else {
1916 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1917 				verbose("BPF_MOV uses reserved fields\n");
1918 				return -EINVAL;
1919 			}
1920 		}
1921 
1922 		/* check dest operand */
1923 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1924 		if (err)
1925 			return err;
1926 
1927 		/* we are setting our register to something new, we need to
1928 		 * reset its range values.
1929 		 */
1930 		reset_reg_range_values(regs, insn->dst_reg);
1931 
1932 		if (BPF_SRC(insn->code) == BPF_X) {
1933 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
1934 				/* case: R1 = R2
1935 				 * copy register state to dest reg
1936 				 */
1937 				regs[insn->dst_reg] = regs[insn->src_reg];
1938 			} else {
1939 				if (is_pointer_value(env, insn->src_reg)) {
1940 					verbose("R%d partial copy of pointer\n",
1941 						insn->src_reg);
1942 					return -EACCES;
1943 				}
1944 				mark_reg_unknown_value(regs, insn->dst_reg);
1945 			}
1946 		} else {
1947 			/* case: R = imm
1948 			 * remember the value we stored into this reg
1949 			 */
1950 			regs[insn->dst_reg].type = CONST_IMM;
1951 			regs[insn->dst_reg].imm = insn->imm;
1952 			regs[insn->dst_reg].max_value = insn->imm;
1953 			regs[insn->dst_reg].min_value = insn->imm;
1954 			regs[insn->dst_reg].min_align = calc_align(insn->imm);
1955 		}
1956 
1957 	} else if (opcode > BPF_END) {
1958 		verbose("invalid BPF_ALU opcode %x\n", opcode);
1959 		return -EINVAL;
1960 
1961 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
1962 
1963 		if (BPF_SRC(insn->code) == BPF_X) {
1964 			if (insn->imm != 0 || insn->off != 0) {
1965 				verbose("BPF_ALU uses reserved fields\n");
1966 				return -EINVAL;
1967 			}
1968 			/* check src1 operand */
1969 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1970 			if (err)
1971 				return err;
1972 		} else {
1973 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1974 				verbose("BPF_ALU uses reserved fields\n");
1975 				return -EINVAL;
1976 			}
1977 		}
1978 
1979 		/* check src2 operand */
1980 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1981 		if (err)
1982 			return err;
1983 
1984 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1985 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1986 			verbose("div by zero\n");
1987 			return -EINVAL;
1988 		}
1989 
1990 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1991 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1992 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1993 
1994 			if (insn->imm < 0 || insn->imm >= size) {
1995 				verbose("invalid shift %d\n", insn->imm);
1996 				return -EINVAL;
1997 			}
1998 		}
1999 
2000 		/* check dest operand */
2001 		err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2002 		if (err)
2003 			return err;
2004 
2005 		dst_reg = &regs[insn->dst_reg];
2006 
2007 		/* first we want to adjust our ranges. */
2008 		adjust_reg_min_max_vals(env, insn);
2009 
2010 		/* pattern match 'bpf_add Rx, imm' instruction */
2011 		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
2012 		    dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
2013 			dst_reg->type = PTR_TO_STACK;
2014 			dst_reg->imm = insn->imm;
2015 			return 0;
2016 		} else if (opcode == BPF_ADD &&
2017 			   BPF_CLASS(insn->code) == BPF_ALU64 &&
2018 			   dst_reg->type == PTR_TO_STACK &&
2019 			   ((BPF_SRC(insn->code) == BPF_X &&
2020 			     regs[insn->src_reg].type == CONST_IMM) ||
2021 			    BPF_SRC(insn->code) == BPF_K)) {
2022 			if (BPF_SRC(insn->code) == BPF_X)
2023 				dst_reg->imm += regs[insn->src_reg].imm;
2024 			else
2025 				dst_reg->imm += insn->imm;
2026 			return 0;
2027 		} else if (opcode == BPF_ADD &&
2028 			   BPF_CLASS(insn->code) == BPF_ALU64 &&
2029 			   (dst_reg->type == PTR_TO_PACKET ||
2030 			    (BPF_SRC(insn->code) == BPF_X &&
2031 			     regs[insn->src_reg].type == PTR_TO_PACKET))) {
2032 			/* ptr_to_packet += K|X */
2033 			return check_packet_ptr_add(env, insn);
2034 		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
2035 			   dst_reg->type == UNKNOWN_VALUE &&
2036 			   env->allow_ptr_leaks) {
2037 			/* unknown += K|X */
2038 			return evaluate_reg_alu(env, insn);
2039 		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
2040 			   dst_reg->type == CONST_IMM &&
2041 			   env->allow_ptr_leaks) {
2042 			/* reg_imm += K|X */
2043 			return evaluate_reg_imm_alu(env, insn);
2044 		} else if (is_pointer_value(env, insn->dst_reg)) {
2045 			verbose("R%d pointer arithmetic prohibited\n",
2046 				insn->dst_reg);
2047 			return -EACCES;
2048 		} else if (BPF_SRC(insn->code) == BPF_X &&
2049 			   is_pointer_value(env, insn->src_reg)) {
2050 			verbose("R%d pointer arithmetic prohibited\n",
2051 				insn->src_reg);
2052 			return -EACCES;
2053 		}
2054 
2055 		/* If we did pointer math on a map value then just set it to our
2056 		 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
2057 		 * loads to this register appropriately, otherwise just mark the
2058 		 * register as unknown.
2059 		 */
2060 		if (env->allow_ptr_leaks &&
2061 		    BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD &&
2062 		    (dst_reg->type == PTR_TO_MAP_VALUE ||
2063 		     dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
2064 			dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
2065 		else
2066 			mark_reg_unknown_value(regs, insn->dst_reg);
2067 	}
2068 
2069 	return 0;
2070 }
2071 
2072 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2073 				   struct bpf_reg_state *dst_reg)
2074 {
2075 	struct bpf_reg_state *regs = state->regs, *reg;
2076 	int i;
2077 
2078 	/* LLVM can generate two kind of checks:
2079 	 *
2080 	 * Type 1:
2081 	 *
2082 	 *   r2 = r3;
2083 	 *   r2 += 8;
2084 	 *   if (r2 > pkt_end) goto <handle exception>
2085 	 *   <access okay>
2086 	 *
2087 	 *   Where:
2088 	 *     r2 == dst_reg, pkt_end == src_reg
2089 	 *     r2=pkt(id=n,off=8,r=0)
2090 	 *     r3=pkt(id=n,off=0,r=0)
2091 	 *
2092 	 * Type 2:
2093 	 *
2094 	 *   r2 = r3;
2095 	 *   r2 += 8;
2096 	 *   if (pkt_end >= r2) goto <access okay>
2097 	 *   <handle exception>
2098 	 *
2099 	 *   Where:
2100 	 *     pkt_end == dst_reg, r2 == src_reg
2101 	 *     r2=pkt(id=n,off=8,r=0)
2102 	 *     r3=pkt(id=n,off=0,r=0)
2103 	 *
2104 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2105 	 * so that range of bytes [r3, r3 + 8) is safe to access.
2106 	 */
2107 
2108 	for (i = 0; i < MAX_BPF_REG; i++)
2109 		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
2110 			/* keep the maximum range already checked */
2111 			regs[i].range = max(regs[i].range, dst_reg->off);
2112 
2113 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2114 		if (state->stack_slot_type[i] != STACK_SPILL)
2115 			continue;
2116 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
2117 		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
2118 			reg->range = max(reg->range, dst_reg->off);
2119 	}
2120 }
2121 
2122 /* Adjusts the register min/max values in the case that the dst_reg is the
2123  * variable register that we are working on, and src_reg is a constant or we're
2124  * simply doing a BPF_K check.
2125  */
2126 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2127 			    struct bpf_reg_state *false_reg, u64 val,
2128 			    u8 opcode)
2129 {
2130 	switch (opcode) {
2131 	case BPF_JEQ:
2132 		/* If this is false then we know nothing Jon Snow, but if it is
2133 		 * true then we know for sure.
2134 		 */
2135 		true_reg->max_value = true_reg->min_value = val;
2136 		break;
2137 	case BPF_JNE:
2138 		/* If this is true we know nothing Jon Snow, but if it is false
2139 		 * we know the value for sure;
2140 		 */
2141 		false_reg->max_value = false_reg->min_value = val;
2142 		break;
2143 	case BPF_JGT:
2144 		/* Unsigned comparison, the minimum value is 0. */
2145 		false_reg->min_value = 0;
2146 		/* fallthrough */
2147 	case BPF_JSGT:
2148 		/* If this is false then we know the maximum val is val,
2149 		 * otherwise we know the min val is val+1.
2150 		 */
2151 		false_reg->max_value = val;
2152 		true_reg->min_value = val + 1;
2153 		break;
2154 	case BPF_JGE:
2155 		/* Unsigned comparison, the minimum value is 0. */
2156 		false_reg->min_value = 0;
2157 		/* fallthrough */
2158 	case BPF_JSGE:
2159 		/* If this is false then we know the maximum value is val - 1,
2160 		 * otherwise we know the mimimum value is val.
2161 		 */
2162 		false_reg->max_value = val - 1;
2163 		true_reg->min_value = val;
2164 		break;
2165 	default:
2166 		break;
2167 	}
2168 
2169 	check_reg_overflow(false_reg);
2170 	check_reg_overflow(true_reg);
2171 }
2172 
2173 /* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2174  * is the variable reg.
2175  */
2176 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2177 				struct bpf_reg_state *false_reg, u64 val,
2178 				u8 opcode)
2179 {
2180 	switch (opcode) {
2181 	case BPF_JEQ:
2182 		/* If this is false then we know nothing Jon Snow, but if it is
2183 		 * true then we know for sure.
2184 		 */
2185 		true_reg->max_value = true_reg->min_value = val;
2186 		break;
2187 	case BPF_JNE:
2188 		/* If this is true we know nothing Jon Snow, but if it is false
2189 		 * we know the value for sure;
2190 		 */
2191 		false_reg->max_value = false_reg->min_value = val;
2192 		break;
2193 	case BPF_JGT:
2194 		/* Unsigned comparison, the minimum value is 0. */
2195 		true_reg->min_value = 0;
2196 		/* fallthrough */
2197 	case BPF_JSGT:
2198 		/*
2199 		 * If this is false, then the val is <= the register, if it is
2200 		 * true the register <= to the val.
2201 		 */
2202 		false_reg->min_value = val;
2203 		true_reg->max_value = val - 1;
2204 		break;
2205 	case BPF_JGE:
2206 		/* Unsigned comparison, the minimum value is 0. */
2207 		true_reg->min_value = 0;
2208 		/* fallthrough */
2209 	case BPF_JSGE:
2210 		/* If this is false then constant < register, if it is true then
2211 		 * the register < constant.
2212 		 */
2213 		false_reg->min_value = val + 1;
2214 		true_reg->max_value = val;
2215 		break;
2216 	default:
2217 		break;
2218 	}
2219 
2220 	check_reg_overflow(false_reg);
2221 	check_reg_overflow(true_reg);
2222 }
2223 
2224 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2225 			 enum bpf_reg_type type)
2226 {
2227 	struct bpf_reg_state *reg = &regs[regno];
2228 
2229 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2230 		if (type == UNKNOWN_VALUE) {
2231 			__mark_reg_unknown_value(regs, regno);
2232 		} else if (reg->map_ptr->inner_map_meta) {
2233 			reg->type = CONST_PTR_TO_MAP;
2234 			reg->map_ptr = reg->map_ptr->inner_map_meta;
2235 		} else {
2236 			reg->type = type;
2237 		}
2238 		/* We don't need id from this point onwards anymore, thus we
2239 		 * should better reset it, so that state pruning has chances
2240 		 * to take effect.
2241 		 */
2242 		reg->id = 0;
2243 	}
2244 }
2245 
2246 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2247  * be folded together at some point.
2248  */
2249 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2250 			  enum bpf_reg_type type)
2251 {
2252 	struct bpf_reg_state *regs = state->regs;
2253 	u32 id = regs[regno].id;
2254 	int i;
2255 
2256 	for (i = 0; i < MAX_BPF_REG; i++)
2257 		mark_map_reg(regs, i, id, type);
2258 
2259 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2260 		if (state->stack_slot_type[i] != STACK_SPILL)
2261 			continue;
2262 		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
2263 	}
2264 }
2265 
2266 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2267 			     struct bpf_insn *insn, int *insn_idx)
2268 {
2269 	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2270 	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2271 	u8 opcode = BPF_OP(insn->code);
2272 	int err;
2273 
2274 	if (opcode > BPF_EXIT) {
2275 		verbose("invalid BPF_JMP opcode %x\n", opcode);
2276 		return -EINVAL;
2277 	}
2278 
2279 	if (BPF_SRC(insn->code) == BPF_X) {
2280 		if (insn->imm != 0) {
2281 			verbose("BPF_JMP uses reserved fields\n");
2282 			return -EINVAL;
2283 		}
2284 
2285 		/* check src1 operand */
2286 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2287 		if (err)
2288 			return err;
2289 
2290 		if (is_pointer_value(env, insn->src_reg)) {
2291 			verbose("R%d pointer comparison prohibited\n",
2292 				insn->src_reg);
2293 			return -EACCES;
2294 		}
2295 	} else {
2296 		if (insn->src_reg != BPF_REG_0) {
2297 			verbose("BPF_JMP uses reserved fields\n");
2298 			return -EINVAL;
2299 		}
2300 	}
2301 
2302 	/* check src2 operand */
2303 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2304 	if (err)
2305 		return err;
2306 
2307 	dst_reg = &regs[insn->dst_reg];
2308 
2309 	/* detect if R == 0 where R was initialized to zero earlier */
2310 	if (BPF_SRC(insn->code) == BPF_K &&
2311 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2312 	    dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
2313 		if (opcode == BPF_JEQ) {
2314 			/* if (imm == imm) goto pc+off;
2315 			 * only follow the goto, ignore fall-through
2316 			 */
2317 			*insn_idx += insn->off;
2318 			return 0;
2319 		} else {
2320 			/* if (imm != imm) goto pc+off;
2321 			 * only follow fall-through branch, since
2322 			 * that's where the program will go
2323 			 */
2324 			return 0;
2325 		}
2326 	}
2327 
2328 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2329 	if (!other_branch)
2330 		return -EFAULT;
2331 
2332 	/* detect if we are comparing against a constant value so we can adjust
2333 	 * our min/max values for our dst register.
2334 	 */
2335 	if (BPF_SRC(insn->code) == BPF_X) {
2336 		if (regs[insn->src_reg].type == CONST_IMM)
2337 			reg_set_min_max(&other_branch->regs[insn->dst_reg],
2338 					dst_reg, regs[insn->src_reg].imm,
2339 					opcode);
2340 		else if (dst_reg->type == CONST_IMM)
2341 			reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2342 					    &regs[insn->src_reg], dst_reg->imm,
2343 					    opcode);
2344 	} else {
2345 		reg_set_min_max(&other_branch->regs[insn->dst_reg],
2346 					dst_reg, insn->imm, opcode);
2347 	}
2348 
2349 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2350 	if (BPF_SRC(insn->code) == BPF_K &&
2351 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2352 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2353 		/* Mark all identical map registers in each branch as either
2354 		 * safe or unknown depending R == 0 or R != 0 conditional.
2355 		 */
2356 		mark_map_regs(this_branch, insn->dst_reg,
2357 			      opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2358 		mark_map_regs(other_branch, insn->dst_reg,
2359 			      opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
2360 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2361 		   dst_reg->type == PTR_TO_PACKET &&
2362 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2363 		find_good_pkt_pointers(this_branch, dst_reg);
2364 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2365 		   dst_reg->type == PTR_TO_PACKET_END &&
2366 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2367 		find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
2368 	} else if (is_pointer_value(env, insn->dst_reg)) {
2369 		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2370 		return -EACCES;
2371 	}
2372 	if (log_level)
2373 		print_verifier_state(this_branch);
2374 	return 0;
2375 }
2376 
2377 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2378 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2379 {
2380 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2381 
2382 	return (struct bpf_map *) (unsigned long) imm64;
2383 }
2384 
2385 /* verify BPF_LD_IMM64 instruction */
2386 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2387 {
2388 	struct bpf_reg_state *regs = env->cur_state.regs;
2389 	int err;
2390 
2391 	if (BPF_SIZE(insn->code) != BPF_DW) {
2392 		verbose("invalid BPF_LD_IMM insn\n");
2393 		return -EINVAL;
2394 	}
2395 	if (insn->off != 0) {
2396 		verbose("BPF_LD_IMM64 uses reserved fields\n");
2397 		return -EINVAL;
2398 	}
2399 
2400 	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2401 	if (err)
2402 		return err;
2403 
2404 	if (insn->src_reg == 0) {
2405 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2406 
2407 		regs[insn->dst_reg].type = CONST_IMM;
2408 		regs[insn->dst_reg].imm = imm;
2409 		return 0;
2410 	}
2411 
2412 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2413 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2414 
2415 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2416 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2417 	return 0;
2418 }
2419 
2420 static bool may_access_skb(enum bpf_prog_type type)
2421 {
2422 	switch (type) {
2423 	case BPF_PROG_TYPE_SOCKET_FILTER:
2424 	case BPF_PROG_TYPE_SCHED_CLS:
2425 	case BPF_PROG_TYPE_SCHED_ACT:
2426 		return true;
2427 	default:
2428 		return false;
2429 	}
2430 }
2431 
2432 /* verify safety of LD_ABS|LD_IND instructions:
2433  * - they can only appear in the programs where ctx == skb
2434  * - since they are wrappers of function calls, they scratch R1-R5 registers,
2435  *   preserve R6-R9, and store return value into R0
2436  *
2437  * Implicit input:
2438  *   ctx == skb == R6 == CTX
2439  *
2440  * Explicit input:
2441  *   SRC == any register
2442  *   IMM == 32-bit immediate
2443  *
2444  * Output:
2445  *   R0 - 8/16/32-bit skb data converted to cpu endianness
2446  */
2447 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2448 {
2449 	struct bpf_reg_state *regs = env->cur_state.regs;
2450 	u8 mode = BPF_MODE(insn->code);
2451 	struct bpf_reg_state *reg;
2452 	int i, err;
2453 
2454 	if (!may_access_skb(env->prog->type)) {
2455 		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2456 		return -EINVAL;
2457 	}
2458 
2459 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2460 	    BPF_SIZE(insn->code) == BPF_DW ||
2461 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2462 		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2463 		return -EINVAL;
2464 	}
2465 
2466 	/* check whether implicit source operand (register R6) is readable */
2467 	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2468 	if (err)
2469 		return err;
2470 
2471 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2472 		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2473 		return -EINVAL;
2474 	}
2475 
2476 	if (mode == BPF_IND) {
2477 		/* check explicit source operand */
2478 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2479 		if (err)
2480 			return err;
2481 	}
2482 
2483 	/* reset caller saved regs to unreadable */
2484 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2485 		reg = regs + caller_saved[i];
2486 		reg->type = NOT_INIT;
2487 		reg->imm = 0;
2488 	}
2489 
2490 	/* mark destination R0 register as readable, since it contains
2491 	 * the value fetched from the packet
2492 	 */
2493 	regs[BPF_REG_0].type = UNKNOWN_VALUE;
2494 	return 0;
2495 }
2496 
2497 /* non-recursive DFS pseudo code
2498  * 1  procedure DFS-iterative(G,v):
2499  * 2      label v as discovered
2500  * 3      let S be a stack
2501  * 4      S.push(v)
2502  * 5      while S is not empty
2503  * 6            t <- S.pop()
2504  * 7            if t is what we're looking for:
2505  * 8                return t
2506  * 9            for all edges e in G.adjacentEdges(t) do
2507  * 10               if edge e is already labelled
2508  * 11                   continue with the next edge
2509  * 12               w <- G.adjacentVertex(t,e)
2510  * 13               if vertex w is not discovered and not explored
2511  * 14                   label e as tree-edge
2512  * 15                   label w as discovered
2513  * 16                   S.push(w)
2514  * 17                   continue at 5
2515  * 18               else if vertex w is discovered
2516  * 19                   label e as back-edge
2517  * 20               else
2518  * 21                   // vertex w is explored
2519  * 22                   label e as forward- or cross-edge
2520  * 23           label t as explored
2521  * 24           S.pop()
2522  *
2523  * convention:
2524  * 0x10 - discovered
2525  * 0x11 - discovered and fall-through edge labelled
2526  * 0x12 - discovered and fall-through and branch edges labelled
2527  * 0x20 - explored
2528  */
2529 
2530 enum {
2531 	DISCOVERED = 0x10,
2532 	EXPLORED = 0x20,
2533 	FALLTHROUGH = 1,
2534 	BRANCH = 2,
2535 };
2536 
2537 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
2538 
2539 static int *insn_stack;	/* stack of insns to process */
2540 static int cur_stack;	/* current stack index */
2541 static int *insn_state;
2542 
2543 /* t, w, e - match pseudo-code above:
2544  * t - index of current instruction
2545  * w - next instruction
2546  * e - edge
2547  */
2548 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
2549 {
2550 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2551 		return 0;
2552 
2553 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2554 		return 0;
2555 
2556 	if (w < 0 || w >= env->prog->len) {
2557 		verbose("jump out of range from insn %d to %d\n", t, w);
2558 		return -EINVAL;
2559 	}
2560 
2561 	if (e == BRANCH)
2562 		/* mark branch target for state pruning */
2563 		env->explored_states[w] = STATE_LIST_MARK;
2564 
2565 	if (insn_state[w] == 0) {
2566 		/* tree-edge */
2567 		insn_state[t] = DISCOVERED | e;
2568 		insn_state[w] = DISCOVERED;
2569 		if (cur_stack >= env->prog->len)
2570 			return -E2BIG;
2571 		insn_stack[cur_stack++] = w;
2572 		return 1;
2573 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2574 		verbose("back-edge from insn %d to %d\n", t, w);
2575 		return -EINVAL;
2576 	} else if (insn_state[w] == EXPLORED) {
2577 		/* forward- or cross-edge */
2578 		insn_state[t] = DISCOVERED | e;
2579 	} else {
2580 		verbose("insn state internal bug\n");
2581 		return -EFAULT;
2582 	}
2583 	return 0;
2584 }
2585 
2586 /* non-recursive depth-first-search to detect loops in BPF program
2587  * loop == back-edge in directed graph
2588  */
2589 static int check_cfg(struct bpf_verifier_env *env)
2590 {
2591 	struct bpf_insn *insns = env->prog->insnsi;
2592 	int insn_cnt = env->prog->len;
2593 	int ret = 0;
2594 	int i, t;
2595 
2596 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2597 	if (!insn_state)
2598 		return -ENOMEM;
2599 
2600 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2601 	if (!insn_stack) {
2602 		kfree(insn_state);
2603 		return -ENOMEM;
2604 	}
2605 
2606 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2607 	insn_stack[0] = 0; /* 0 is the first instruction */
2608 	cur_stack = 1;
2609 
2610 peek_stack:
2611 	if (cur_stack == 0)
2612 		goto check_state;
2613 	t = insn_stack[cur_stack - 1];
2614 
2615 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2616 		u8 opcode = BPF_OP(insns[t].code);
2617 
2618 		if (opcode == BPF_EXIT) {
2619 			goto mark_explored;
2620 		} else if (opcode == BPF_CALL) {
2621 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
2622 			if (ret == 1)
2623 				goto peek_stack;
2624 			else if (ret < 0)
2625 				goto err_free;
2626 			if (t + 1 < insn_cnt)
2627 				env->explored_states[t + 1] = STATE_LIST_MARK;
2628 		} else if (opcode == BPF_JA) {
2629 			if (BPF_SRC(insns[t].code) != BPF_K) {
2630 				ret = -EINVAL;
2631 				goto err_free;
2632 			}
2633 			/* unconditional jump with single edge */
2634 			ret = push_insn(t, t + insns[t].off + 1,
2635 					FALLTHROUGH, env);
2636 			if (ret == 1)
2637 				goto peek_stack;
2638 			else if (ret < 0)
2639 				goto err_free;
2640 			/* tell verifier to check for equivalent states
2641 			 * after every call and jump
2642 			 */
2643 			if (t + 1 < insn_cnt)
2644 				env->explored_states[t + 1] = STATE_LIST_MARK;
2645 		} else {
2646 			/* conditional jump with two edges */
2647 			env->explored_states[t] = STATE_LIST_MARK;
2648 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
2649 			if (ret == 1)
2650 				goto peek_stack;
2651 			else if (ret < 0)
2652 				goto err_free;
2653 
2654 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2655 			if (ret == 1)
2656 				goto peek_stack;
2657 			else if (ret < 0)
2658 				goto err_free;
2659 		}
2660 	} else {
2661 		/* all other non-branch instructions with single
2662 		 * fall-through edge
2663 		 */
2664 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
2665 		if (ret == 1)
2666 			goto peek_stack;
2667 		else if (ret < 0)
2668 			goto err_free;
2669 	}
2670 
2671 mark_explored:
2672 	insn_state[t] = EXPLORED;
2673 	if (cur_stack-- <= 0) {
2674 		verbose("pop stack internal bug\n");
2675 		ret = -EFAULT;
2676 		goto err_free;
2677 	}
2678 	goto peek_stack;
2679 
2680 check_state:
2681 	for (i = 0; i < insn_cnt; i++) {
2682 		if (insn_state[i] != EXPLORED) {
2683 			verbose("unreachable insn %d\n", i);
2684 			ret = -EINVAL;
2685 			goto err_free;
2686 		}
2687 	}
2688 	ret = 0; /* cfg looks good */
2689 
2690 err_free:
2691 	kfree(insn_state);
2692 	kfree(insn_stack);
2693 	return ret;
2694 }
2695 
2696 /* the following conditions reduce the number of explored insns
2697  * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2698  */
2699 static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
2700 				   struct bpf_reg_state *cur)
2701 {
2702 	if (old->id != cur->id)
2703 		return false;
2704 
2705 	/* old ptr_to_packet is more conservative, since it allows smaller
2706 	 * range. Ex:
2707 	 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2708 	 * old(off=0,r=10) means that with range=10 the verifier proceeded
2709 	 * further and found no issues with the program. Now we're in the same
2710 	 * spot with cur(off=0,r=20), so we're safe too, since anything further
2711 	 * will only be looking at most 10 bytes after this pointer.
2712 	 */
2713 	if (old->off == cur->off && old->range < cur->range)
2714 		return true;
2715 
2716 	/* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2717 	 * since both cannot be used for packet access and safe(old)
2718 	 * pointer has smaller off that could be used for further
2719 	 * 'if (ptr > data_end)' check
2720 	 * Ex:
2721 	 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2722 	 * that we cannot access the packet.
2723 	 * The safe range is:
2724 	 * [ptr, ptr + range - off)
2725 	 * so whenever off >=range, it means no safe bytes from this pointer.
2726 	 * When comparing old->off <= cur->off, it means that older code
2727 	 * went with smaller offset and that offset was later
2728 	 * used to figure out the safe range after 'if (ptr > data_end)' check
2729 	 * Say, 'old' state was explored like:
2730 	 * ... R3(off=0, r=0)
2731 	 * R4 = R3 + 20
2732 	 * ... now R4(off=20,r=0)  <-- here
2733 	 * if (R4 > data_end)
2734 	 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2735 	 * ... the code further went all the way to bpf_exit.
2736 	 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2737 	 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2738 	 * goes further, such cur_R4 will give larger safe packet range after
2739 	 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2740 	 * so they will be good with r=30 and we can prune the search.
2741 	 */
2742 	if (old->off <= cur->off &&
2743 	    old->off >= old->range && cur->off >= cur->range)
2744 		return true;
2745 
2746 	return false;
2747 }
2748 
2749 /* compare two verifier states
2750  *
2751  * all states stored in state_list are known to be valid, since
2752  * verifier reached 'bpf_exit' instruction through them
2753  *
2754  * this function is called when verifier exploring different branches of
2755  * execution popped from the state stack. If it sees an old state that has
2756  * more strict register state and more strict stack state then this execution
2757  * branch doesn't need to be explored further, since verifier already
2758  * concluded that more strict state leads to valid finish.
2759  *
2760  * Therefore two states are equivalent if register state is more conservative
2761  * and explored stack state is more conservative than the current one.
2762  * Example:
2763  *       explored                   current
2764  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2765  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2766  *
2767  * In other words if current stack state (one being explored) has more
2768  * valid slots than old one that already passed validation, it means
2769  * the verifier can stop exploring and conclude that current state is valid too
2770  *
2771  * Similarly with registers. If explored state has register type as invalid
2772  * whereas register type in current state is meaningful, it means that
2773  * the current state will reach 'bpf_exit' instruction safely
2774  */
2775 static bool states_equal(struct bpf_verifier_env *env,
2776 			 struct bpf_verifier_state *old,
2777 			 struct bpf_verifier_state *cur)
2778 {
2779 	bool varlen_map_access = env->varlen_map_value_access;
2780 	struct bpf_reg_state *rold, *rcur;
2781 	int i;
2782 
2783 	for (i = 0; i < MAX_BPF_REG; i++) {
2784 		rold = &old->regs[i];
2785 		rcur = &cur->regs[i];
2786 
2787 		if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2788 			continue;
2789 
2790 		/* If the ranges were not the same, but everything else was and
2791 		 * we didn't do a variable access into a map then we are a-ok.
2792 		 */
2793 		if (!varlen_map_access &&
2794 		    memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
2795 			continue;
2796 
2797 		/* If we didn't map access then again we don't care about the
2798 		 * mismatched range values and it's ok if our old type was
2799 		 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2800 		 */
2801 		if (rold->type == NOT_INIT ||
2802 		    (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2803 		     rcur->type != NOT_INIT))
2804 			continue;
2805 
2806 		/* Don't care about the reg->id in this case. */
2807 		if (rold->type == PTR_TO_MAP_VALUE_OR_NULL &&
2808 		    rcur->type == PTR_TO_MAP_VALUE_OR_NULL &&
2809 		    rold->map_ptr == rcur->map_ptr)
2810 			continue;
2811 
2812 		if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2813 		    compare_ptrs_to_packet(rold, rcur))
2814 			continue;
2815 
2816 		return false;
2817 	}
2818 
2819 	for (i = 0; i < MAX_BPF_STACK; i++) {
2820 		if (old->stack_slot_type[i] == STACK_INVALID)
2821 			continue;
2822 		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2823 			/* Ex: old explored (safe) state has STACK_SPILL in
2824 			 * this stack slot, but current has has STACK_MISC ->
2825 			 * this verifier states are not equivalent,
2826 			 * return false to continue verification of this path
2827 			 */
2828 			return false;
2829 		if (i % BPF_REG_SIZE)
2830 			continue;
2831 		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2832 			   &cur->spilled_regs[i / BPF_REG_SIZE],
2833 			   sizeof(old->spilled_regs[0])))
2834 			/* when explored and current stack slot types are
2835 			 * the same, check that stored pointers types
2836 			 * are the same as well.
2837 			 * Ex: explored safe path could have stored
2838 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
2839 			 * but current path has stored:
2840 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
2841 			 * such verifier states are not equivalent.
2842 			 * return false to continue verification of this path
2843 			 */
2844 			return false;
2845 		else
2846 			continue;
2847 	}
2848 	return true;
2849 }
2850 
2851 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
2852 {
2853 	struct bpf_verifier_state_list *new_sl;
2854 	struct bpf_verifier_state_list *sl;
2855 
2856 	sl = env->explored_states[insn_idx];
2857 	if (!sl)
2858 		/* this 'insn_idx' instruction wasn't marked, so we will not
2859 		 * be doing state search here
2860 		 */
2861 		return 0;
2862 
2863 	while (sl != STATE_LIST_MARK) {
2864 		if (states_equal(env, &sl->state, &env->cur_state))
2865 			/* reached equivalent register/stack state,
2866 			 * prune the search
2867 			 */
2868 			return 1;
2869 		sl = sl->next;
2870 	}
2871 
2872 	/* there were no equivalent states, remember current one.
2873 	 * technically the current state is not proven to be safe yet,
2874 	 * but it will either reach bpf_exit (which means it's safe) or
2875 	 * it will be rejected. Since there are no loops, we won't be
2876 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2877 	 */
2878 	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
2879 	if (!new_sl)
2880 		return -ENOMEM;
2881 
2882 	/* add new state to the head of linked list */
2883 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2884 	new_sl->next = env->explored_states[insn_idx];
2885 	env->explored_states[insn_idx] = new_sl;
2886 	return 0;
2887 }
2888 
2889 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2890 				  int insn_idx, int prev_insn_idx)
2891 {
2892 	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2893 		return 0;
2894 
2895 	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2896 }
2897 
2898 static int do_check(struct bpf_verifier_env *env)
2899 {
2900 	struct bpf_verifier_state *state = &env->cur_state;
2901 	struct bpf_insn *insns = env->prog->insnsi;
2902 	struct bpf_reg_state *regs = state->regs;
2903 	int insn_cnt = env->prog->len;
2904 	int insn_idx, prev_insn_idx = 0;
2905 	int insn_processed = 0;
2906 	bool do_print_state = false;
2907 
2908 	init_reg_state(regs);
2909 	insn_idx = 0;
2910 	env->varlen_map_value_access = false;
2911 	for (;;) {
2912 		struct bpf_insn *insn;
2913 		u8 class;
2914 		int err;
2915 
2916 		if (insn_idx >= insn_cnt) {
2917 			verbose("invalid insn idx %d insn_cnt %d\n",
2918 				insn_idx, insn_cnt);
2919 			return -EFAULT;
2920 		}
2921 
2922 		insn = &insns[insn_idx];
2923 		class = BPF_CLASS(insn->code);
2924 
2925 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
2926 			verbose("BPF program is too large. Processed %d insn\n",
2927 				insn_processed);
2928 			return -E2BIG;
2929 		}
2930 
2931 		err = is_state_visited(env, insn_idx);
2932 		if (err < 0)
2933 			return err;
2934 		if (err == 1) {
2935 			/* found equivalent state, can prune the search */
2936 			if (log_level) {
2937 				if (do_print_state)
2938 					verbose("\nfrom %d to %d: safe\n",
2939 						prev_insn_idx, insn_idx);
2940 				else
2941 					verbose("%d: safe\n", insn_idx);
2942 			}
2943 			goto process_bpf_exit;
2944 		}
2945 
2946 		if (need_resched())
2947 			cond_resched();
2948 
2949 		if (log_level > 1 || (log_level && do_print_state)) {
2950 			if (log_level > 1)
2951 				verbose("%d:", insn_idx);
2952 			else
2953 				verbose("\nfrom %d to %d:",
2954 					prev_insn_idx, insn_idx);
2955 			print_verifier_state(&env->cur_state);
2956 			do_print_state = false;
2957 		}
2958 
2959 		if (log_level) {
2960 			verbose("%d: ", insn_idx);
2961 			print_bpf_insn(env, insn);
2962 		}
2963 
2964 		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2965 		if (err)
2966 			return err;
2967 
2968 		if (class == BPF_ALU || class == BPF_ALU64) {
2969 			err = check_alu_op(env, insn);
2970 			if (err)
2971 				return err;
2972 
2973 		} else if (class == BPF_LDX) {
2974 			enum bpf_reg_type *prev_src_type, src_reg_type;
2975 
2976 			/* check for reserved fields is already done */
2977 
2978 			/* check src operand */
2979 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2980 			if (err)
2981 				return err;
2982 
2983 			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2984 			if (err)
2985 				return err;
2986 
2987 			src_reg_type = regs[insn->src_reg].type;
2988 
2989 			/* check that memory (src_reg + off) is readable,
2990 			 * the state of dst_reg will be updated by this func
2991 			 */
2992 			err = check_mem_access(env, insn->src_reg, insn->off,
2993 					       BPF_SIZE(insn->code), BPF_READ,
2994 					       insn->dst_reg);
2995 			if (err)
2996 				return err;
2997 
2998 			if (BPF_SIZE(insn->code) != BPF_W &&
2999 			    BPF_SIZE(insn->code) != BPF_DW) {
3000 				insn_idx++;
3001 				continue;
3002 			}
3003 
3004 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3005 
3006 			if (*prev_src_type == NOT_INIT) {
3007 				/* saw a valid insn
3008 				 * dst_reg = *(u32 *)(src_reg + off)
3009 				 * save type to validate intersecting paths
3010 				 */
3011 				*prev_src_type = src_reg_type;
3012 
3013 			} else if (src_reg_type != *prev_src_type &&
3014 				   (src_reg_type == PTR_TO_CTX ||
3015 				    *prev_src_type == PTR_TO_CTX)) {
3016 				/* ABuser program is trying to use the same insn
3017 				 * dst_reg = *(u32*) (src_reg + off)
3018 				 * with different pointer types:
3019 				 * src_reg == ctx in one branch and
3020 				 * src_reg == stack|map in some other branch.
3021 				 * Reject it.
3022 				 */
3023 				verbose("same insn cannot be used with different pointers\n");
3024 				return -EINVAL;
3025 			}
3026 
3027 		} else if (class == BPF_STX) {
3028 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3029 
3030 			if (BPF_MODE(insn->code) == BPF_XADD) {
3031 				err = check_xadd(env, insn);
3032 				if (err)
3033 					return err;
3034 				insn_idx++;
3035 				continue;
3036 			}
3037 
3038 			/* check src1 operand */
3039 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
3040 			if (err)
3041 				return err;
3042 			/* check src2 operand */
3043 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3044 			if (err)
3045 				return err;
3046 
3047 			dst_reg_type = regs[insn->dst_reg].type;
3048 
3049 			/* check that memory (dst_reg + off) is writeable */
3050 			err = check_mem_access(env, insn->dst_reg, insn->off,
3051 					       BPF_SIZE(insn->code), BPF_WRITE,
3052 					       insn->src_reg);
3053 			if (err)
3054 				return err;
3055 
3056 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3057 
3058 			if (*prev_dst_type == NOT_INIT) {
3059 				*prev_dst_type = dst_reg_type;
3060 			} else if (dst_reg_type != *prev_dst_type &&
3061 				   (dst_reg_type == PTR_TO_CTX ||
3062 				    *prev_dst_type == PTR_TO_CTX)) {
3063 				verbose("same insn cannot be used with different pointers\n");
3064 				return -EINVAL;
3065 			}
3066 
3067 		} else if (class == BPF_ST) {
3068 			if (BPF_MODE(insn->code) != BPF_MEM ||
3069 			    insn->src_reg != BPF_REG_0) {
3070 				verbose("BPF_ST uses reserved fields\n");
3071 				return -EINVAL;
3072 			}
3073 			/* check src operand */
3074 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3075 			if (err)
3076 				return err;
3077 
3078 			/* check that memory (dst_reg + off) is writeable */
3079 			err = check_mem_access(env, insn->dst_reg, insn->off,
3080 					       BPF_SIZE(insn->code), BPF_WRITE,
3081 					       -1);
3082 			if (err)
3083 				return err;
3084 
3085 		} else if (class == BPF_JMP) {
3086 			u8 opcode = BPF_OP(insn->code);
3087 
3088 			if (opcode == BPF_CALL) {
3089 				if (BPF_SRC(insn->code) != BPF_K ||
3090 				    insn->off != 0 ||
3091 				    insn->src_reg != BPF_REG_0 ||
3092 				    insn->dst_reg != BPF_REG_0) {
3093 					verbose("BPF_CALL uses reserved fields\n");
3094 					return -EINVAL;
3095 				}
3096 
3097 				err = check_call(env, insn->imm, insn_idx);
3098 				if (err)
3099 					return err;
3100 
3101 			} else if (opcode == BPF_JA) {
3102 				if (BPF_SRC(insn->code) != BPF_K ||
3103 				    insn->imm != 0 ||
3104 				    insn->src_reg != BPF_REG_0 ||
3105 				    insn->dst_reg != BPF_REG_0) {
3106 					verbose("BPF_JA uses reserved fields\n");
3107 					return -EINVAL;
3108 				}
3109 
3110 				insn_idx += insn->off + 1;
3111 				continue;
3112 
3113 			} else if (opcode == BPF_EXIT) {
3114 				if (BPF_SRC(insn->code) != BPF_K ||
3115 				    insn->imm != 0 ||
3116 				    insn->src_reg != BPF_REG_0 ||
3117 				    insn->dst_reg != BPF_REG_0) {
3118 					verbose("BPF_EXIT uses reserved fields\n");
3119 					return -EINVAL;
3120 				}
3121 
3122 				/* eBPF calling convetion is such that R0 is used
3123 				 * to return the value from eBPF program.
3124 				 * Make sure that it's readable at this time
3125 				 * of bpf_exit, which means that program wrote
3126 				 * something into it earlier
3127 				 */
3128 				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
3129 				if (err)
3130 					return err;
3131 
3132 				if (is_pointer_value(env, BPF_REG_0)) {
3133 					verbose("R0 leaks addr as return value\n");
3134 					return -EACCES;
3135 				}
3136 
3137 process_bpf_exit:
3138 				insn_idx = pop_stack(env, &prev_insn_idx);
3139 				if (insn_idx < 0) {
3140 					break;
3141 				} else {
3142 					do_print_state = true;
3143 					continue;
3144 				}
3145 			} else {
3146 				err = check_cond_jmp_op(env, insn, &insn_idx);
3147 				if (err)
3148 					return err;
3149 			}
3150 		} else if (class == BPF_LD) {
3151 			u8 mode = BPF_MODE(insn->code);
3152 
3153 			if (mode == BPF_ABS || mode == BPF_IND) {
3154 				err = check_ld_abs(env, insn);
3155 				if (err)
3156 					return err;
3157 
3158 			} else if (mode == BPF_IMM) {
3159 				err = check_ld_imm(env, insn);
3160 				if (err)
3161 					return err;
3162 
3163 				insn_idx++;
3164 			} else {
3165 				verbose("invalid BPF_LD mode\n");
3166 				return -EINVAL;
3167 			}
3168 			reset_reg_range_values(regs, insn->dst_reg);
3169 		} else {
3170 			verbose("unknown insn class %d\n", class);
3171 			return -EINVAL;
3172 		}
3173 
3174 		insn_idx++;
3175 	}
3176 
3177 	verbose("processed %d insns\n", insn_processed);
3178 	return 0;
3179 }
3180 
3181 static int check_map_prealloc(struct bpf_map *map)
3182 {
3183 	return (map->map_type != BPF_MAP_TYPE_HASH &&
3184 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3185 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3186 		!(map->map_flags & BPF_F_NO_PREALLOC);
3187 }
3188 
3189 static int check_map_prog_compatibility(struct bpf_map *map,
3190 					struct bpf_prog *prog)
3191 
3192 {
3193 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3194 	 * preallocated hash maps, since doing memory allocation
3195 	 * in overflow_handler can crash depending on where nmi got
3196 	 * triggered.
3197 	 */
3198 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3199 		if (!check_map_prealloc(map)) {
3200 			verbose("perf_event programs can only use preallocated hash map\n");
3201 			return -EINVAL;
3202 		}
3203 		if (map->inner_map_meta &&
3204 		    !check_map_prealloc(map->inner_map_meta)) {
3205 			verbose("perf_event programs can only use preallocated inner hash map\n");
3206 			return -EINVAL;
3207 		}
3208 	}
3209 	return 0;
3210 }
3211 
3212 /* look for pseudo eBPF instructions that access map FDs and
3213  * replace them with actual map pointers
3214  */
3215 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3216 {
3217 	struct bpf_insn *insn = env->prog->insnsi;
3218 	int insn_cnt = env->prog->len;
3219 	int i, j, err;
3220 
3221 	err = bpf_prog_calc_tag(env->prog);
3222 	if (err)
3223 		return err;
3224 
3225 	for (i = 0; i < insn_cnt; i++, insn++) {
3226 		if (BPF_CLASS(insn->code) == BPF_LDX &&
3227 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3228 			verbose("BPF_LDX uses reserved fields\n");
3229 			return -EINVAL;
3230 		}
3231 
3232 		if (BPF_CLASS(insn->code) == BPF_STX &&
3233 		    ((BPF_MODE(insn->code) != BPF_MEM &&
3234 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3235 			verbose("BPF_STX uses reserved fields\n");
3236 			return -EINVAL;
3237 		}
3238 
3239 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3240 			struct bpf_map *map;
3241 			struct fd f;
3242 
3243 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
3244 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3245 			    insn[1].off != 0) {
3246 				verbose("invalid bpf_ld_imm64 insn\n");
3247 				return -EINVAL;
3248 			}
3249 
3250 			if (insn->src_reg == 0)
3251 				/* valid generic load 64-bit imm */
3252 				goto next_insn;
3253 
3254 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3255 				verbose("unrecognized bpf_ld_imm64 insn\n");
3256 				return -EINVAL;
3257 			}
3258 
3259 			f = fdget(insn->imm);
3260 			map = __bpf_map_get(f);
3261 			if (IS_ERR(map)) {
3262 				verbose("fd %d is not pointing to valid bpf_map\n",
3263 					insn->imm);
3264 				return PTR_ERR(map);
3265 			}
3266 
3267 			err = check_map_prog_compatibility(map, env->prog);
3268 			if (err) {
3269 				fdput(f);
3270 				return err;
3271 			}
3272 
3273 			/* store map pointer inside BPF_LD_IMM64 instruction */
3274 			insn[0].imm = (u32) (unsigned long) map;
3275 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
3276 
3277 			/* check whether we recorded this map already */
3278 			for (j = 0; j < env->used_map_cnt; j++)
3279 				if (env->used_maps[j] == map) {
3280 					fdput(f);
3281 					goto next_insn;
3282 				}
3283 
3284 			if (env->used_map_cnt >= MAX_USED_MAPS) {
3285 				fdput(f);
3286 				return -E2BIG;
3287 			}
3288 
3289 			/* hold the map. If the program is rejected by verifier,
3290 			 * the map will be released by release_maps() or it
3291 			 * will be used by the valid program until it's unloaded
3292 			 * and all maps are released in free_bpf_prog_info()
3293 			 */
3294 			map = bpf_map_inc(map, false);
3295 			if (IS_ERR(map)) {
3296 				fdput(f);
3297 				return PTR_ERR(map);
3298 			}
3299 			env->used_maps[env->used_map_cnt++] = map;
3300 
3301 			fdput(f);
3302 next_insn:
3303 			insn++;
3304 			i++;
3305 		}
3306 	}
3307 
3308 	/* now all pseudo BPF_LD_IMM64 instructions load valid
3309 	 * 'struct bpf_map *' into a register instead of user map_fd.
3310 	 * These pointers will be used later by verifier to validate map access.
3311 	 */
3312 	return 0;
3313 }
3314 
3315 /* drop refcnt of maps used by the rejected program */
3316 static void release_maps(struct bpf_verifier_env *env)
3317 {
3318 	int i;
3319 
3320 	for (i = 0; i < env->used_map_cnt; i++)
3321 		bpf_map_put(env->used_maps[i]);
3322 }
3323 
3324 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3325 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3326 {
3327 	struct bpf_insn *insn = env->prog->insnsi;
3328 	int insn_cnt = env->prog->len;
3329 	int i;
3330 
3331 	for (i = 0; i < insn_cnt; i++, insn++)
3332 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3333 			insn->src_reg = 0;
3334 }
3335 
3336 /* single env->prog->insni[off] instruction was replaced with the range
3337  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
3338  * [0, off) and [off, end) to new locations, so the patched range stays zero
3339  */
3340 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3341 				u32 off, u32 cnt)
3342 {
3343 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3344 
3345 	if (cnt == 1)
3346 		return 0;
3347 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3348 	if (!new_data)
3349 		return -ENOMEM;
3350 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3351 	memcpy(new_data + off + cnt - 1, old_data + off,
3352 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3353 	env->insn_aux_data = new_data;
3354 	vfree(old_data);
3355 	return 0;
3356 }
3357 
3358 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3359 					    const struct bpf_insn *patch, u32 len)
3360 {
3361 	struct bpf_prog *new_prog;
3362 
3363 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
3364 	if (!new_prog)
3365 		return NULL;
3366 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
3367 		return NULL;
3368 	return new_prog;
3369 }
3370 
3371 /* convert load instructions that access fields of 'struct __sk_buff'
3372  * into sequence of instructions that access fields of 'struct sk_buff'
3373  */
3374 static int convert_ctx_accesses(struct bpf_verifier_env *env)
3375 {
3376 	const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3377 	const int insn_cnt = env->prog->len;
3378 	struct bpf_insn insn_buf[16], *insn;
3379 	struct bpf_prog *new_prog;
3380 	enum bpf_access_type type;
3381 	int i, cnt, delta = 0;
3382 
3383 	if (ops->gen_prologue) {
3384 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3385 					env->prog);
3386 		if (cnt >= ARRAY_SIZE(insn_buf)) {
3387 			verbose("bpf verifier is misconfigured\n");
3388 			return -EINVAL;
3389 		} else if (cnt) {
3390 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
3391 			if (!new_prog)
3392 				return -ENOMEM;
3393 
3394 			env->prog = new_prog;
3395 			delta += cnt - 1;
3396 		}
3397 	}
3398 
3399 	if (!ops->convert_ctx_access)
3400 		return 0;
3401 
3402 	insn = env->prog->insnsi + delta;
3403 
3404 	for (i = 0; i < insn_cnt; i++, insn++) {
3405 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
3406 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
3407 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
3408 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
3409 			type = BPF_READ;
3410 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
3411 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
3412 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
3413 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
3414 			type = BPF_WRITE;
3415 		else
3416 			continue;
3417 
3418 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
3419 			continue;
3420 
3421 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog);
3422 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3423 			verbose("bpf verifier is misconfigured\n");
3424 			return -EINVAL;
3425 		}
3426 
3427 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
3428 		if (!new_prog)
3429 			return -ENOMEM;
3430 
3431 		delta += cnt - 1;
3432 
3433 		/* keep walking new program and skip insns we just inserted */
3434 		env->prog = new_prog;
3435 		insn      = new_prog->insnsi + i + delta;
3436 	}
3437 
3438 	return 0;
3439 }
3440 
3441 /* fixup insn->imm field of bpf_call instructions
3442  * and inline eligible helpers as explicit sequence of BPF instructions
3443  *
3444  * this function is called after eBPF program passed verification
3445  */
3446 static int fixup_bpf_calls(struct bpf_verifier_env *env)
3447 {
3448 	struct bpf_prog *prog = env->prog;
3449 	struct bpf_insn *insn = prog->insnsi;
3450 	const struct bpf_func_proto *fn;
3451 	const int insn_cnt = prog->len;
3452 	struct bpf_insn insn_buf[16];
3453 	struct bpf_prog *new_prog;
3454 	struct bpf_map *map_ptr;
3455 	int i, cnt, delta = 0;
3456 
3457 	for (i = 0; i < insn_cnt; i++, insn++) {
3458 		if (insn->code != (BPF_JMP | BPF_CALL))
3459 			continue;
3460 
3461 		if (insn->imm == BPF_FUNC_get_route_realm)
3462 			prog->dst_needed = 1;
3463 		if (insn->imm == BPF_FUNC_get_prandom_u32)
3464 			bpf_user_rnd_init_once();
3465 		if (insn->imm == BPF_FUNC_tail_call) {
3466 			/* If we tail call into other programs, we
3467 			 * cannot make any assumptions since they can
3468 			 * be replaced dynamically during runtime in
3469 			 * the program array.
3470 			 */
3471 			prog->cb_access = 1;
3472 
3473 			/* mark bpf_tail_call as different opcode to avoid
3474 			 * conditional branch in the interpeter for every normal
3475 			 * call and to prevent accidental JITing by JIT compiler
3476 			 * that doesn't support bpf_tail_call yet
3477 			 */
3478 			insn->imm = 0;
3479 			insn->code |= BPF_X;
3480 			continue;
3481 		}
3482 
3483 		if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
3484 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
3485 			if (map_ptr == BPF_MAP_PTR_POISON ||
3486 			    !map_ptr->ops->map_gen_lookup)
3487 				goto patch_call_imm;
3488 
3489 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
3490 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3491 				verbose("bpf verifier is misconfigured\n");
3492 				return -EINVAL;
3493 			}
3494 
3495 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
3496 						       cnt);
3497 			if (!new_prog)
3498 				return -ENOMEM;
3499 
3500 			delta += cnt - 1;
3501 
3502 			/* keep walking new program and skip insns we just inserted */
3503 			env->prog = prog = new_prog;
3504 			insn      = new_prog->insnsi + i + delta;
3505 			continue;
3506 		}
3507 
3508 patch_call_imm:
3509 		fn = prog->aux->ops->get_func_proto(insn->imm);
3510 		/* all functions that have prototype and verifier allowed
3511 		 * programs to call them, must be real in-kernel functions
3512 		 */
3513 		if (!fn->func) {
3514 			verbose("kernel subsystem misconfigured func %s#%d\n",
3515 				func_id_name(insn->imm), insn->imm);
3516 			return -EFAULT;
3517 		}
3518 		insn->imm = fn->func - __bpf_call_base;
3519 	}
3520 
3521 	return 0;
3522 }
3523 
3524 static void free_states(struct bpf_verifier_env *env)
3525 {
3526 	struct bpf_verifier_state_list *sl, *sln;
3527 	int i;
3528 
3529 	if (!env->explored_states)
3530 		return;
3531 
3532 	for (i = 0; i < env->prog->len; i++) {
3533 		sl = env->explored_states[i];
3534 
3535 		if (sl)
3536 			while (sl != STATE_LIST_MARK) {
3537 				sln = sl->next;
3538 				kfree(sl);
3539 				sl = sln;
3540 			}
3541 	}
3542 
3543 	kfree(env->explored_states);
3544 }
3545 
3546 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
3547 {
3548 	char __user *log_ubuf = NULL;
3549 	struct bpf_verifier_env *env;
3550 	int ret = -EINVAL;
3551 
3552 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
3553 	 * allocate/free it every time bpf_check() is called
3554 	 */
3555 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3556 	if (!env)
3557 		return -ENOMEM;
3558 
3559 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3560 				     (*prog)->len);
3561 	ret = -ENOMEM;
3562 	if (!env->insn_aux_data)
3563 		goto err_free_env;
3564 	env->prog = *prog;
3565 
3566 	/* grab the mutex to protect few globals used by verifier */
3567 	mutex_lock(&bpf_verifier_lock);
3568 
3569 	if (attr->log_level || attr->log_buf || attr->log_size) {
3570 		/* user requested verbose verifier output
3571 		 * and supplied buffer to store the verification trace
3572 		 */
3573 		log_level = attr->log_level;
3574 		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3575 		log_size = attr->log_size;
3576 		log_len = 0;
3577 
3578 		ret = -EINVAL;
3579 		/* log_* values have to be sane */
3580 		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3581 		    log_level == 0 || log_ubuf == NULL)
3582 			goto err_unlock;
3583 
3584 		ret = -ENOMEM;
3585 		log_buf = vmalloc(log_size);
3586 		if (!log_buf)
3587 			goto err_unlock;
3588 	} else {
3589 		log_level = 0;
3590 	}
3591 	if (attr->prog_flags & BPF_F_STRICT_ALIGNMENT)
3592 		env->strict_alignment = true;
3593 	else
3594 		env->strict_alignment = false;
3595 
3596 	ret = replace_map_fd_with_map_ptr(env);
3597 	if (ret < 0)
3598 		goto skip_full_check;
3599 
3600 	env->explored_states = kcalloc(env->prog->len,
3601 				       sizeof(struct bpf_verifier_state_list *),
3602 				       GFP_USER);
3603 	ret = -ENOMEM;
3604 	if (!env->explored_states)
3605 		goto skip_full_check;
3606 
3607 	ret = check_cfg(env);
3608 	if (ret < 0)
3609 		goto skip_full_check;
3610 
3611 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3612 
3613 	ret = do_check(env);
3614 
3615 skip_full_check:
3616 	while (pop_stack(env, NULL) >= 0);
3617 	free_states(env);
3618 
3619 	if (ret == 0)
3620 		/* program is valid, convert *(u32*)(ctx + off) accesses */
3621 		ret = convert_ctx_accesses(env);
3622 
3623 	if (ret == 0)
3624 		ret = fixup_bpf_calls(env);
3625 
3626 	if (log_level && log_len >= log_size - 1) {
3627 		BUG_ON(log_len >= log_size);
3628 		/* verifier log exceeded user supplied buffer */
3629 		ret = -ENOSPC;
3630 		/* fall through to return what was recorded */
3631 	}
3632 
3633 	/* copy verifier log back to user space including trailing zero */
3634 	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3635 		ret = -EFAULT;
3636 		goto free_log_buf;
3637 	}
3638 
3639 	if (ret == 0 && env->used_map_cnt) {
3640 		/* if program passed verifier, update used_maps in bpf_prog_info */
3641 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3642 							  sizeof(env->used_maps[0]),
3643 							  GFP_KERNEL);
3644 
3645 		if (!env->prog->aux->used_maps) {
3646 			ret = -ENOMEM;
3647 			goto free_log_buf;
3648 		}
3649 
3650 		memcpy(env->prog->aux->used_maps, env->used_maps,
3651 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
3652 		env->prog->aux->used_map_cnt = env->used_map_cnt;
3653 
3654 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
3655 		 * bpf_ld_imm64 instructions
3656 		 */
3657 		convert_pseudo_ld_imm64(env);
3658 	}
3659 
3660 free_log_buf:
3661 	if (log_level)
3662 		vfree(log_buf);
3663 	if (!env->prog->aux->used_maps)
3664 		/* if we didn't copy map pointers into bpf_prog_info, release
3665 		 * them now. Otherwise free_bpf_prog_info() will release them.
3666 		 */
3667 		release_maps(env);
3668 	*prog = env->prog;
3669 err_unlock:
3670 	mutex_unlock(&bpf_verifier_lock);
3671 	vfree(env->insn_aux_data);
3672 err_free_env:
3673 	kfree(env);
3674 	return ret;
3675 }
3676 
3677 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3678 		 void *priv)
3679 {
3680 	struct bpf_verifier_env *env;
3681 	int ret;
3682 
3683 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3684 	if (!env)
3685 		return -ENOMEM;
3686 
3687 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3688 				     prog->len);
3689 	ret = -ENOMEM;
3690 	if (!env->insn_aux_data)
3691 		goto err_free_env;
3692 	env->prog = prog;
3693 	env->analyzer_ops = ops;
3694 	env->analyzer_priv = priv;
3695 
3696 	/* grab the mutex to protect few globals used by verifier */
3697 	mutex_lock(&bpf_verifier_lock);
3698 
3699 	log_level = 0;
3700 	env->strict_alignment = false;
3701 
3702 	env->explored_states = kcalloc(env->prog->len,
3703 				       sizeof(struct bpf_verifier_state_list *),
3704 				       GFP_KERNEL);
3705 	ret = -ENOMEM;
3706 	if (!env->explored_states)
3707 		goto skip_full_check;
3708 
3709 	ret = check_cfg(env);
3710 	if (ret < 0)
3711 		goto skip_full_check;
3712 
3713 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3714 
3715 	ret = do_check(env);
3716 
3717 skip_full_check:
3718 	while (pop_stack(env, NULL) >= 0);
3719 	free_states(env);
3720 
3721 	mutex_unlock(&bpf_verifier_lock);
3722 	vfree(env->insn_aux_data);
3723 err_free_env:
3724 	kfree(env);
3725 	return ret;
3726 }
3727 EXPORT_SYMBOL_GPL(bpf_analyzer);
3728