1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 #include <linux/trace_events.h> 32 #include <linux/kallsyms.h> 33 34 #include "disasm.h" 35 36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 38 [_id] = & _name ## _verifier_ops, 39 #define BPF_MAP_TYPE(_id, _ops) 40 #define BPF_LINK_TYPE(_id, _name) 41 #include <linux/bpf_types.h> 42 #undef BPF_PROG_TYPE 43 #undef BPF_MAP_TYPE 44 #undef BPF_LINK_TYPE 45 }; 46 47 enum bpf_features { 48 BPF_FEAT_RDONLY_CAST_TO_VOID = 0, 49 BPF_FEAT_STREAMS = 1, 50 __MAX_BPF_FEAT, 51 }; 52 53 struct bpf_mem_alloc bpf_global_percpu_ma; 54 static bool bpf_global_percpu_ma_set; 55 56 /* bpf_check() is a static code analyzer that walks eBPF program 57 * instruction by instruction and updates register/stack state. 58 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 59 * 60 * The first pass is depth-first-search to check that the program is a DAG. 61 * It rejects the following programs: 62 * - larger than BPF_MAXINSNS insns 63 * - if loop is present (detected via back-edge) 64 * - unreachable insns exist (shouldn't be a forest. program = one function) 65 * - out of bounds or malformed jumps 66 * The second pass is all possible path descent from the 1st insn. 67 * Since it's analyzing all paths through the program, the length of the 68 * analysis is limited to 64k insn, which may be hit even if total number of 69 * insn is less then 4K, but there are too many branches that change stack/regs. 70 * Number of 'branches to be analyzed' is limited to 1k 71 * 72 * On entry to each instruction, each register has a type, and the instruction 73 * changes the types of the registers depending on instruction semantics. 74 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 75 * copied to R1. 76 * 77 * All registers are 64-bit. 78 * R0 - return register 79 * R1-R5 argument passing registers 80 * R6-R9 callee saved registers 81 * R10 - frame pointer read-only 82 * 83 * At the start of BPF program the register R1 contains a pointer to bpf_context 84 * and has type PTR_TO_CTX. 85 * 86 * Verifier tracks arithmetic operations on pointers in case: 87 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 88 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 89 * 1st insn copies R10 (which has FRAME_PTR) type into R1 90 * and 2nd arithmetic instruction is pattern matched to recognize 91 * that it wants to construct a pointer to some element within stack. 92 * So after 2nd insn, the register R1 has type PTR_TO_STACK 93 * (and -20 constant is saved for further stack bounds checking). 94 * Meaning that this reg is a pointer to stack plus known immediate constant. 95 * 96 * Most of the time the registers have SCALAR_VALUE type, which 97 * means the register has some value, but it's not a valid pointer. 98 * (like pointer plus pointer becomes SCALAR_VALUE type) 99 * 100 * When verifier sees load or store instructions the type of base register 101 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 102 * four pointer types recognized by check_mem_access() function. 103 * 104 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 105 * and the range of [ptr, ptr + map's value_size) is accessible. 106 * 107 * registers used to pass values to function calls are checked against 108 * function argument constraints. 109 * 110 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 111 * It means that the register type passed to this function must be 112 * PTR_TO_STACK and it will be used inside the function as 113 * 'pointer to map element key' 114 * 115 * For example the argument constraints for bpf_map_lookup_elem(): 116 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 117 * .arg1_type = ARG_CONST_MAP_PTR, 118 * .arg2_type = ARG_PTR_TO_MAP_KEY, 119 * 120 * ret_type says that this function returns 'pointer to map elem value or null' 121 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 122 * 2nd argument should be a pointer to stack, which will be used inside 123 * the helper function as a pointer to map element key. 124 * 125 * On the kernel side the helper function looks like: 126 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 127 * { 128 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 129 * void *key = (void *) (unsigned long) r2; 130 * void *value; 131 * 132 * here kernel can access 'key' and 'map' pointers safely, knowing that 133 * [key, key + map->key_size) bytes are valid and were initialized on 134 * the stack of eBPF program. 135 * } 136 * 137 * Corresponding eBPF program may look like: 138 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 139 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 140 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 141 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 142 * here verifier looks at prototype of map_lookup_elem() and sees: 143 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 144 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 145 * 146 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 147 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 148 * and were initialized prior to this call. 149 * If it's ok, then verifier allows this BPF_CALL insn and looks at 150 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 151 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 152 * returns either pointer to map value or NULL. 153 * 154 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 155 * insn, the register holding that pointer in the true branch changes state to 156 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 157 * branch. See check_cond_jmp_op(). 158 * 159 * After the call R0 is set to return type of the function and registers R1-R5 160 * are set to NOT_INIT to indicate that they are no longer readable. 161 * 162 * The following reference types represent a potential reference to a kernel 163 * resource which, after first being allocated, must be checked and freed by 164 * the BPF program: 165 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 166 * 167 * When the verifier sees a helper call return a reference type, it allocates a 168 * pointer id for the reference and stores it in the current function state. 169 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 170 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 171 * passes through a NULL-check conditional. For the branch wherein the state is 172 * changed to CONST_IMM, the verifier releases the reference. 173 * 174 * For each helper function that allocates a reference, such as 175 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 176 * bpf_sk_release(). When a reference type passes into the release function, 177 * the verifier also releases the reference. If any unchecked or unreleased 178 * reference remains at the end of the program, the verifier rejects it. 179 */ 180 181 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 182 struct bpf_verifier_stack_elem { 183 /* verifier state is 'st' 184 * before processing instruction 'insn_idx' 185 * and after processing instruction 'prev_insn_idx' 186 */ 187 struct bpf_verifier_state st; 188 int insn_idx; 189 int prev_insn_idx; 190 struct bpf_verifier_stack_elem *next; 191 /* length of verifier log at the time this state was pushed on stack */ 192 u32 log_pos; 193 }; 194 195 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 196 #define BPF_COMPLEXITY_LIMIT_STATES 64 197 198 #define BPF_MAP_KEY_POISON (1ULL << 63) 199 #define BPF_MAP_KEY_SEEN (1ULL << 62) 200 201 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 202 203 #define BPF_PRIV_STACK_MIN_SIZE 64 204 205 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx); 206 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id); 207 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 208 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 209 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 210 static int ref_set_non_owning(struct bpf_verifier_env *env, 211 struct bpf_reg_state *reg); 212 static bool is_trusted_reg(const struct bpf_reg_state *reg); 213 214 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 215 { 216 return aux->map_ptr_state.poison; 217 } 218 219 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 220 { 221 return aux->map_ptr_state.unpriv; 222 } 223 224 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 225 struct bpf_map *map, 226 bool unpriv, bool poison) 227 { 228 unpriv |= bpf_map_ptr_unpriv(aux); 229 aux->map_ptr_state.unpriv = unpriv; 230 aux->map_ptr_state.poison = poison; 231 aux->map_ptr_state.map_ptr = map; 232 } 233 234 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 235 { 236 return aux->map_key_state & BPF_MAP_KEY_POISON; 237 } 238 239 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 240 { 241 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 242 } 243 244 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 245 { 246 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 247 } 248 249 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 250 { 251 bool poisoned = bpf_map_key_poisoned(aux); 252 253 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 254 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 255 } 256 257 static bool bpf_helper_call(const struct bpf_insn *insn) 258 { 259 return insn->code == (BPF_JMP | BPF_CALL) && 260 insn->src_reg == 0; 261 } 262 263 static bool bpf_pseudo_call(const struct bpf_insn *insn) 264 { 265 return insn->code == (BPF_JMP | BPF_CALL) && 266 insn->src_reg == BPF_PSEUDO_CALL; 267 } 268 269 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 270 { 271 return insn->code == (BPF_JMP | BPF_CALL) && 272 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 273 } 274 275 struct bpf_call_arg_meta { 276 struct bpf_map *map_ptr; 277 bool raw_mode; 278 bool pkt_access; 279 u8 release_regno; 280 int regno; 281 int access_size; 282 int mem_size; 283 u64 msize_max_value; 284 int ref_obj_id; 285 int dynptr_id; 286 int map_uid; 287 int func_id; 288 struct btf *btf; 289 u32 btf_id; 290 struct btf *ret_btf; 291 u32 ret_btf_id; 292 u32 subprogno; 293 struct btf_field *kptr_field; 294 s64 const_map_key; 295 }; 296 297 struct bpf_kfunc_call_arg_meta { 298 /* In parameters */ 299 struct btf *btf; 300 u32 func_id; 301 u32 kfunc_flags; 302 const struct btf_type *func_proto; 303 const char *func_name; 304 /* Out parameters */ 305 u32 ref_obj_id; 306 u8 release_regno; 307 bool r0_rdonly; 308 u32 ret_btf_id; 309 u64 r0_size; 310 u32 subprogno; 311 struct { 312 u64 value; 313 bool found; 314 } arg_constant; 315 316 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 317 * generally to pass info about user-defined local kptr types to later 318 * verification logic 319 * bpf_obj_drop/bpf_percpu_obj_drop 320 * Record the local kptr type to be drop'd 321 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 322 * Record the local kptr type to be refcount_incr'd and use 323 * arg_owning_ref to determine whether refcount_acquire should be 324 * fallible 325 */ 326 struct btf *arg_btf; 327 u32 arg_btf_id; 328 bool arg_owning_ref; 329 bool arg_prog; 330 331 struct { 332 struct btf_field *field; 333 } arg_list_head; 334 struct { 335 struct btf_field *field; 336 } arg_rbtree_root; 337 struct { 338 enum bpf_dynptr_type type; 339 u32 id; 340 u32 ref_obj_id; 341 } initialized_dynptr; 342 struct { 343 u8 spi; 344 u8 frameno; 345 } iter; 346 struct { 347 struct bpf_map *ptr; 348 int uid; 349 } map; 350 u64 mem_size; 351 }; 352 353 struct btf *btf_vmlinux; 354 355 static const char *btf_type_name(const struct btf *btf, u32 id) 356 { 357 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 358 } 359 360 static DEFINE_MUTEX(bpf_verifier_lock); 361 static DEFINE_MUTEX(bpf_percpu_ma_lock); 362 363 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 364 { 365 struct bpf_verifier_env *env = private_data; 366 va_list args; 367 368 if (!bpf_verifier_log_needed(&env->log)) 369 return; 370 371 va_start(args, fmt); 372 bpf_verifier_vlog(&env->log, fmt, args); 373 va_end(args); 374 } 375 376 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 377 struct bpf_reg_state *reg, 378 struct bpf_retval_range range, const char *ctx, 379 const char *reg_name) 380 { 381 bool unknown = true; 382 383 verbose(env, "%s the register %s has", ctx, reg_name); 384 if (reg->smin_value > S64_MIN) { 385 verbose(env, " smin=%lld", reg->smin_value); 386 unknown = false; 387 } 388 if (reg->smax_value < S64_MAX) { 389 verbose(env, " smax=%lld", reg->smax_value); 390 unknown = false; 391 } 392 if (unknown) 393 verbose(env, " unknown scalar value"); 394 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); 395 } 396 397 static bool reg_not_null(const struct bpf_reg_state *reg) 398 { 399 enum bpf_reg_type type; 400 401 type = reg->type; 402 if (type_may_be_null(type)) 403 return false; 404 405 type = base_type(type); 406 return type == PTR_TO_SOCKET || 407 type == PTR_TO_TCP_SOCK || 408 type == PTR_TO_MAP_VALUE || 409 type == PTR_TO_MAP_KEY || 410 type == PTR_TO_SOCK_COMMON || 411 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 412 (type == PTR_TO_MEM && !(reg->type & PTR_UNTRUSTED)) || 413 type == CONST_PTR_TO_MAP; 414 } 415 416 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 417 { 418 struct btf_record *rec = NULL; 419 struct btf_struct_meta *meta; 420 421 if (reg->type == PTR_TO_MAP_VALUE) { 422 rec = reg->map_ptr->record; 423 } else if (type_is_ptr_alloc_obj(reg->type)) { 424 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 425 if (meta) 426 rec = meta->record; 427 } 428 return rec; 429 } 430 431 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 432 { 433 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 434 435 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 436 } 437 438 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 439 { 440 struct bpf_func_info *info; 441 442 if (!env->prog->aux->func_info) 443 return ""; 444 445 info = &env->prog->aux->func_info[subprog]; 446 return btf_type_name(env->prog->aux->btf, info->type_id); 447 } 448 449 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) 450 { 451 struct bpf_subprog_info *info = subprog_info(env, subprog); 452 453 info->is_cb = true; 454 info->is_async_cb = true; 455 info->is_exception_cb = true; 456 } 457 458 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) 459 { 460 return subprog_info(env, subprog)->is_exception_cb; 461 } 462 463 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 464 { 465 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK); 466 } 467 468 static bool type_is_rdonly_mem(u32 type) 469 { 470 return type & MEM_RDONLY; 471 } 472 473 static bool is_acquire_function(enum bpf_func_id func_id, 474 const struct bpf_map *map) 475 { 476 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 477 478 if (func_id == BPF_FUNC_sk_lookup_tcp || 479 func_id == BPF_FUNC_sk_lookup_udp || 480 func_id == BPF_FUNC_skc_lookup_tcp || 481 func_id == BPF_FUNC_ringbuf_reserve || 482 func_id == BPF_FUNC_kptr_xchg) 483 return true; 484 485 if (func_id == BPF_FUNC_map_lookup_elem && 486 (map_type == BPF_MAP_TYPE_SOCKMAP || 487 map_type == BPF_MAP_TYPE_SOCKHASH)) 488 return true; 489 490 return false; 491 } 492 493 static bool is_ptr_cast_function(enum bpf_func_id func_id) 494 { 495 return func_id == BPF_FUNC_tcp_sock || 496 func_id == BPF_FUNC_sk_fullsock || 497 func_id == BPF_FUNC_skc_to_tcp_sock || 498 func_id == BPF_FUNC_skc_to_tcp6_sock || 499 func_id == BPF_FUNC_skc_to_udp6_sock || 500 func_id == BPF_FUNC_skc_to_mptcp_sock || 501 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 502 func_id == BPF_FUNC_skc_to_tcp_request_sock; 503 } 504 505 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 506 { 507 return func_id == BPF_FUNC_dynptr_data; 508 } 509 510 static bool is_sync_callback_calling_kfunc(u32 btf_id); 511 static bool is_async_callback_calling_kfunc(u32 btf_id); 512 static bool is_callback_calling_kfunc(u32 btf_id); 513 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 514 515 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id); 516 static bool is_task_work_add_kfunc(u32 func_id); 517 518 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 519 { 520 return func_id == BPF_FUNC_for_each_map_elem || 521 func_id == BPF_FUNC_find_vma || 522 func_id == BPF_FUNC_loop || 523 func_id == BPF_FUNC_user_ringbuf_drain; 524 } 525 526 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 527 { 528 return func_id == BPF_FUNC_timer_set_callback; 529 } 530 531 static bool is_callback_calling_function(enum bpf_func_id func_id) 532 { 533 return is_sync_callback_calling_function(func_id) || 534 is_async_callback_calling_function(func_id); 535 } 536 537 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 538 { 539 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 540 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 541 } 542 543 static bool is_async_callback_calling_insn(struct bpf_insn *insn) 544 { 545 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) || 546 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm)); 547 } 548 549 static bool is_async_cb_sleepable(struct bpf_verifier_env *env, struct bpf_insn *insn) 550 { 551 /* bpf_timer callbacks are never sleepable. */ 552 if (bpf_helper_call(insn) && insn->imm == BPF_FUNC_timer_set_callback) 553 return false; 554 555 /* bpf_wq and bpf_task_work callbacks are always sleepable. */ 556 if (bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 557 (is_bpf_wq_set_callback_impl_kfunc(insn->imm) || is_task_work_add_kfunc(insn->imm))) 558 return true; 559 560 verifier_bug(env, "unhandled async callback in is_async_cb_sleepable"); 561 return false; 562 } 563 564 static bool is_may_goto_insn(struct bpf_insn *insn) 565 { 566 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; 567 } 568 569 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) 570 { 571 return is_may_goto_insn(&env->prog->insnsi[insn_idx]); 572 } 573 574 static bool is_storage_get_function(enum bpf_func_id func_id) 575 { 576 return func_id == BPF_FUNC_sk_storage_get || 577 func_id == BPF_FUNC_inode_storage_get || 578 func_id == BPF_FUNC_task_storage_get || 579 func_id == BPF_FUNC_cgrp_storage_get; 580 } 581 582 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 583 const struct bpf_map *map) 584 { 585 int ref_obj_uses = 0; 586 587 if (is_ptr_cast_function(func_id)) 588 ref_obj_uses++; 589 if (is_acquire_function(func_id, map)) 590 ref_obj_uses++; 591 if (is_dynptr_ref_function(func_id)) 592 ref_obj_uses++; 593 594 return ref_obj_uses > 1; 595 } 596 597 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 598 { 599 return BPF_CLASS(insn->code) == BPF_STX && 600 BPF_MODE(insn->code) == BPF_ATOMIC && 601 insn->imm == BPF_CMPXCHG; 602 } 603 604 static bool is_atomic_load_insn(const struct bpf_insn *insn) 605 { 606 return BPF_CLASS(insn->code) == BPF_STX && 607 BPF_MODE(insn->code) == BPF_ATOMIC && 608 insn->imm == BPF_LOAD_ACQ; 609 } 610 611 static int __get_spi(s32 off) 612 { 613 return (-off - 1) / BPF_REG_SIZE; 614 } 615 616 static struct bpf_func_state *func(struct bpf_verifier_env *env, 617 const struct bpf_reg_state *reg) 618 { 619 struct bpf_verifier_state *cur = env->cur_state; 620 621 return cur->frame[reg->frameno]; 622 } 623 624 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 625 { 626 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 627 628 /* We need to check that slots between [spi - nr_slots + 1, spi] are 629 * within [0, allocated_stack). 630 * 631 * Please note that the spi grows downwards. For example, a dynptr 632 * takes the size of two stack slots; the first slot will be at 633 * spi and the second slot will be at spi - 1. 634 */ 635 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 636 } 637 638 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 639 const char *obj_kind, int nr_slots) 640 { 641 int off, spi; 642 643 if (!tnum_is_const(reg->var_off)) { 644 verbose(env, "%s has to be at a constant offset\n", obj_kind); 645 return -EINVAL; 646 } 647 648 off = reg->off + reg->var_off.value; 649 if (off % BPF_REG_SIZE) { 650 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 651 return -EINVAL; 652 } 653 654 spi = __get_spi(off); 655 if (spi + 1 < nr_slots) { 656 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 657 return -EINVAL; 658 } 659 660 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 661 return -ERANGE; 662 return spi; 663 } 664 665 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 666 { 667 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 668 } 669 670 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 671 { 672 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 673 } 674 675 static int irq_flag_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 676 { 677 return stack_slot_obj_get_spi(env, reg, "irq_flag", 1); 678 } 679 680 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 681 { 682 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 683 case DYNPTR_TYPE_LOCAL: 684 return BPF_DYNPTR_TYPE_LOCAL; 685 case DYNPTR_TYPE_RINGBUF: 686 return BPF_DYNPTR_TYPE_RINGBUF; 687 case DYNPTR_TYPE_SKB: 688 return BPF_DYNPTR_TYPE_SKB; 689 case DYNPTR_TYPE_XDP: 690 return BPF_DYNPTR_TYPE_XDP; 691 case DYNPTR_TYPE_SKB_META: 692 return BPF_DYNPTR_TYPE_SKB_META; 693 case DYNPTR_TYPE_FILE: 694 return BPF_DYNPTR_TYPE_FILE; 695 default: 696 return BPF_DYNPTR_TYPE_INVALID; 697 } 698 } 699 700 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 701 { 702 switch (type) { 703 case BPF_DYNPTR_TYPE_LOCAL: 704 return DYNPTR_TYPE_LOCAL; 705 case BPF_DYNPTR_TYPE_RINGBUF: 706 return DYNPTR_TYPE_RINGBUF; 707 case BPF_DYNPTR_TYPE_SKB: 708 return DYNPTR_TYPE_SKB; 709 case BPF_DYNPTR_TYPE_XDP: 710 return DYNPTR_TYPE_XDP; 711 case BPF_DYNPTR_TYPE_SKB_META: 712 return DYNPTR_TYPE_SKB_META; 713 case BPF_DYNPTR_TYPE_FILE: 714 return DYNPTR_TYPE_FILE; 715 default: 716 return 0; 717 } 718 } 719 720 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 721 { 722 return type == BPF_DYNPTR_TYPE_RINGBUF || type == BPF_DYNPTR_TYPE_FILE; 723 } 724 725 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 726 enum bpf_dynptr_type type, 727 bool first_slot, int dynptr_id); 728 729 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 730 struct bpf_reg_state *reg); 731 732 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 733 struct bpf_reg_state *sreg1, 734 struct bpf_reg_state *sreg2, 735 enum bpf_dynptr_type type) 736 { 737 int id = ++env->id_gen; 738 739 __mark_dynptr_reg(sreg1, type, true, id); 740 __mark_dynptr_reg(sreg2, type, false, id); 741 } 742 743 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 744 struct bpf_reg_state *reg, 745 enum bpf_dynptr_type type) 746 { 747 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 748 } 749 750 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 751 struct bpf_func_state *state, int spi); 752 753 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 754 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 755 { 756 struct bpf_func_state *state = func(env, reg); 757 enum bpf_dynptr_type type; 758 int spi, i, err; 759 760 spi = dynptr_get_spi(env, reg); 761 if (spi < 0) 762 return spi; 763 764 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 765 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 766 * to ensure that for the following example: 767 * [d1][d1][d2][d2] 768 * spi 3 2 1 0 769 * So marking spi = 2 should lead to destruction of both d1 and d2. In 770 * case they do belong to same dynptr, second call won't see slot_type 771 * as STACK_DYNPTR and will simply skip destruction. 772 */ 773 err = destroy_if_dynptr_stack_slot(env, state, spi); 774 if (err) 775 return err; 776 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 777 if (err) 778 return err; 779 780 for (i = 0; i < BPF_REG_SIZE; i++) { 781 state->stack[spi].slot_type[i] = STACK_DYNPTR; 782 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 783 } 784 785 type = arg_to_dynptr_type(arg_type); 786 if (type == BPF_DYNPTR_TYPE_INVALID) 787 return -EINVAL; 788 789 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 790 &state->stack[spi - 1].spilled_ptr, type); 791 792 if (dynptr_type_refcounted(type)) { 793 /* The id is used to track proper releasing */ 794 int id; 795 796 if (clone_ref_obj_id) 797 id = clone_ref_obj_id; 798 else 799 id = acquire_reference(env, insn_idx); 800 801 if (id < 0) 802 return id; 803 804 state->stack[spi].spilled_ptr.ref_obj_id = id; 805 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 806 } 807 808 bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi)); 809 810 return 0; 811 } 812 813 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 814 { 815 int i; 816 817 for (i = 0; i < BPF_REG_SIZE; i++) { 818 state->stack[spi].slot_type[i] = STACK_INVALID; 819 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 820 } 821 822 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 823 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 824 825 bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi)); 826 } 827 828 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 829 { 830 struct bpf_func_state *state = func(env, reg); 831 int spi, ref_obj_id, i; 832 833 /* 834 * This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 835 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 836 * is safe to do directly. 837 */ 838 if (reg->type == CONST_PTR_TO_DYNPTR) { 839 verifier_bug(env, "CONST_PTR_TO_DYNPTR cannot be released"); 840 return -EFAULT; 841 } 842 spi = dynptr_get_spi(env, reg); 843 if (spi < 0) 844 return spi; 845 846 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 847 invalidate_dynptr(env, state, spi); 848 return 0; 849 } 850 851 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 852 853 /* If the dynptr has a ref_obj_id, then we need to invalidate 854 * two things: 855 * 856 * 1) Any dynptrs with a matching ref_obj_id (clones) 857 * 2) Any slices derived from this dynptr. 858 */ 859 860 /* Invalidate any slices associated with this dynptr */ 861 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 862 863 /* Invalidate any dynptr clones */ 864 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 865 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 866 continue; 867 868 /* it should always be the case that if the ref obj id 869 * matches then the stack slot also belongs to a 870 * dynptr 871 */ 872 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 873 verifier_bug(env, "misconfigured ref_obj_id"); 874 return -EFAULT; 875 } 876 if (state->stack[i].spilled_ptr.dynptr.first_slot) 877 invalidate_dynptr(env, state, i); 878 } 879 880 return 0; 881 } 882 883 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 884 struct bpf_reg_state *reg); 885 886 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 887 { 888 if (!env->allow_ptr_leaks) 889 __mark_reg_not_init(env, reg); 890 else 891 __mark_reg_unknown(env, reg); 892 } 893 894 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 895 struct bpf_func_state *state, int spi) 896 { 897 struct bpf_func_state *fstate; 898 struct bpf_reg_state *dreg; 899 int i, dynptr_id; 900 901 /* We always ensure that STACK_DYNPTR is never set partially, 902 * hence just checking for slot_type[0] is enough. This is 903 * different for STACK_SPILL, where it may be only set for 904 * 1 byte, so code has to use is_spilled_reg. 905 */ 906 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 907 return 0; 908 909 /* Reposition spi to first slot */ 910 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 911 spi = spi + 1; 912 913 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 914 verbose(env, "cannot overwrite referenced dynptr\n"); 915 return -EINVAL; 916 } 917 918 mark_stack_slot_scratched(env, spi); 919 mark_stack_slot_scratched(env, spi - 1); 920 921 /* Writing partially to one dynptr stack slot destroys both. */ 922 for (i = 0; i < BPF_REG_SIZE; i++) { 923 state->stack[spi].slot_type[i] = STACK_INVALID; 924 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 925 } 926 927 dynptr_id = state->stack[spi].spilled_ptr.id; 928 /* Invalidate any slices associated with this dynptr */ 929 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 930 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 931 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 932 continue; 933 if (dreg->dynptr_id == dynptr_id) 934 mark_reg_invalid(env, dreg); 935 })); 936 937 /* Do not release reference state, we are destroying dynptr on stack, 938 * not using some helper to release it. Just reset register. 939 */ 940 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 941 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 942 943 bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi)); 944 945 return 0; 946 } 947 948 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 949 { 950 int spi; 951 952 if (reg->type == CONST_PTR_TO_DYNPTR) 953 return false; 954 955 spi = dynptr_get_spi(env, reg); 956 957 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 958 * error because this just means the stack state hasn't been updated yet. 959 * We will do check_mem_access to check and update stack bounds later. 960 */ 961 if (spi < 0 && spi != -ERANGE) 962 return false; 963 964 /* We don't need to check if the stack slots are marked by previous 965 * dynptr initializations because we allow overwriting existing unreferenced 966 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 967 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 968 * touching are completely destructed before we reinitialize them for a new 969 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 970 * instead of delaying it until the end where the user will get "Unreleased 971 * reference" error. 972 */ 973 return true; 974 } 975 976 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 977 { 978 struct bpf_func_state *state = func(env, reg); 979 int i, spi; 980 981 /* This already represents first slot of initialized bpf_dynptr. 982 * 983 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 984 * check_func_arg_reg_off's logic, so we don't need to check its 985 * offset and alignment. 986 */ 987 if (reg->type == CONST_PTR_TO_DYNPTR) 988 return true; 989 990 spi = dynptr_get_spi(env, reg); 991 if (spi < 0) 992 return false; 993 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 994 return false; 995 996 for (i = 0; i < BPF_REG_SIZE; i++) { 997 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 998 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 999 return false; 1000 } 1001 1002 return true; 1003 } 1004 1005 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1006 enum bpf_arg_type arg_type) 1007 { 1008 struct bpf_func_state *state = func(env, reg); 1009 enum bpf_dynptr_type dynptr_type; 1010 int spi; 1011 1012 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1013 if (arg_type == ARG_PTR_TO_DYNPTR) 1014 return true; 1015 1016 dynptr_type = arg_to_dynptr_type(arg_type); 1017 if (reg->type == CONST_PTR_TO_DYNPTR) { 1018 return reg->dynptr.type == dynptr_type; 1019 } else { 1020 spi = dynptr_get_spi(env, reg); 1021 if (spi < 0) 1022 return false; 1023 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1024 } 1025 } 1026 1027 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1028 1029 static bool in_rcu_cs(struct bpf_verifier_env *env); 1030 1031 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 1032 1033 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1034 struct bpf_kfunc_call_arg_meta *meta, 1035 struct bpf_reg_state *reg, int insn_idx, 1036 struct btf *btf, u32 btf_id, int nr_slots) 1037 { 1038 struct bpf_func_state *state = func(env, reg); 1039 int spi, i, j, id; 1040 1041 spi = iter_get_spi(env, reg, nr_slots); 1042 if (spi < 0) 1043 return spi; 1044 1045 id = acquire_reference(env, insn_idx); 1046 if (id < 0) 1047 return id; 1048 1049 for (i = 0; i < nr_slots; i++) { 1050 struct bpf_stack_state *slot = &state->stack[spi - i]; 1051 struct bpf_reg_state *st = &slot->spilled_ptr; 1052 1053 __mark_reg_known_zero(st); 1054 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1055 if (is_kfunc_rcu_protected(meta)) { 1056 if (in_rcu_cs(env)) 1057 st->type |= MEM_RCU; 1058 else 1059 st->type |= PTR_UNTRUSTED; 1060 } 1061 st->ref_obj_id = i == 0 ? id : 0; 1062 st->iter.btf = btf; 1063 st->iter.btf_id = btf_id; 1064 st->iter.state = BPF_ITER_STATE_ACTIVE; 1065 st->iter.depth = 0; 1066 1067 for (j = 0; j < BPF_REG_SIZE; j++) 1068 slot->slot_type[j] = STACK_ITER; 1069 1070 bpf_mark_stack_write(env, state->frameno, BIT(spi - i)); 1071 mark_stack_slot_scratched(env, spi - i); 1072 } 1073 1074 return 0; 1075 } 1076 1077 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1078 struct bpf_reg_state *reg, int nr_slots) 1079 { 1080 struct bpf_func_state *state = func(env, reg); 1081 int spi, i, j; 1082 1083 spi = iter_get_spi(env, reg, nr_slots); 1084 if (spi < 0) 1085 return spi; 1086 1087 for (i = 0; i < nr_slots; i++) { 1088 struct bpf_stack_state *slot = &state->stack[spi - i]; 1089 struct bpf_reg_state *st = &slot->spilled_ptr; 1090 1091 if (i == 0) 1092 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1093 1094 __mark_reg_not_init(env, st); 1095 1096 for (j = 0; j < BPF_REG_SIZE; j++) 1097 slot->slot_type[j] = STACK_INVALID; 1098 1099 bpf_mark_stack_write(env, state->frameno, BIT(spi - i)); 1100 mark_stack_slot_scratched(env, spi - i); 1101 } 1102 1103 return 0; 1104 } 1105 1106 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1107 struct bpf_reg_state *reg, int nr_slots) 1108 { 1109 struct bpf_func_state *state = func(env, reg); 1110 int spi, i, j; 1111 1112 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1113 * will do check_mem_access to check and update stack bounds later, so 1114 * return true for that case. 1115 */ 1116 spi = iter_get_spi(env, reg, nr_slots); 1117 if (spi == -ERANGE) 1118 return true; 1119 if (spi < 0) 1120 return false; 1121 1122 for (i = 0; i < nr_slots; i++) { 1123 struct bpf_stack_state *slot = &state->stack[spi - i]; 1124 1125 for (j = 0; j < BPF_REG_SIZE; j++) 1126 if (slot->slot_type[j] == STACK_ITER) 1127 return false; 1128 } 1129 1130 return true; 1131 } 1132 1133 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1134 struct btf *btf, u32 btf_id, int nr_slots) 1135 { 1136 struct bpf_func_state *state = func(env, reg); 1137 int spi, i, j; 1138 1139 spi = iter_get_spi(env, reg, nr_slots); 1140 if (spi < 0) 1141 return -EINVAL; 1142 1143 for (i = 0; i < nr_slots; i++) { 1144 struct bpf_stack_state *slot = &state->stack[spi - i]; 1145 struct bpf_reg_state *st = &slot->spilled_ptr; 1146 1147 if (st->type & PTR_UNTRUSTED) 1148 return -EPROTO; 1149 /* only main (first) slot has ref_obj_id set */ 1150 if (i == 0 && !st->ref_obj_id) 1151 return -EINVAL; 1152 if (i != 0 && st->ref_obj_id) 1153 return -EINVAL; 1154 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1155 return -EINVAL; 1156 1157 for (j = 0; j < BPF_REG_SIZE; j++) 1158 if (slot->slot_type[j] != STACK_ITER) 1159 return -EINVAL; 1160 } 1161 1162 return 0; 1163 } 1164 1165 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx); 1166 static int release_irq_state(struct bpf_verifier_state *state, int id); 1167 1168 static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env, 1169 struct bpf_kfunc_call_arg_meta *meta, 1170 struct bpf_reg_state *reg, int insn_idx, 1171 int kfunc_class) 1172 { 1173 struct bpf_func_state *state = func(env, reg); 1174 struct bpf_stack_state *slot; 1175 struct bpf_reg_state *st; 1176 int spi, i, id; 1177 1178 spi = irq_flag_get_spi(env, reg); 1179 if (spi < 0) 1180 return spi; 1181 1182 id = acquire_irq_state(env, insn_idx); 1183 if (id < 0) 1184 return id; 1185 1186 slot = &state->stack[spi]; 1187 st = &slot->spilled_ptr; 1188 1189 bpf_mark_stack_write(env, reg->frameno, BIT(spi)); 1190 __mark_reg_known_zero(st); 1191 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1192 st->ref_obj_id = id; 1193 st->irq.kfunc_class = kfunc_class; 1194 1195 for (i = 0; i < BPF_REG_SIZE; i++) 1196 slot->slot_type[i] = STACK_IRQ_FLAG; 1197 1198 mark_stack_slot_scratched(env, spi); 1199 return 0; 1200 } 1201 1202 static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1203 int kfunc_class) 1204 { 1205 struct bpf_func_state *state = func(env, reg); 1206 struct bpf_stack_state *slot; 1207 struct bpf_reg_state *st; 1208 int spi, i, err; 1209 1210 spi = irq_flag_get_spi(env, reg); 1211 if (spi < 0) 1212 return spi; 1213 1214 slot = &state->stack[spi]; 1215 st = &slot->spilled_ptr; 1216 1217 if (st->irq.kfunc_class != kfunc_class) { 1218 const char *flag_kfunc = st->irq.kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock"; 1219 const char *used_kfunc = kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock"; 1220 1221 verbose(env, "irq flag acquired by %s kfuncs cannot be restored with %s kfuncs\n", 1222 flag_kfunc, used_kfunc); 1223 return -EINVAL; 1224 } 1225 1226 err = release_irq_state(env->cur_state, st->ref_obj_id); 1227 WARN_ON_ONCE(err && err != -EACCES); 1228 if (err) { 1229 int insn_idx = 0; 1230 1231 for (int i = 0; i < env->cur_state->acquired_refs; i++) { 1232 if (env->cur_state->refs[i].id == env->cur_state->active_irq_id) { 1233 insn_idx = env->cur_state->refs[i].insn_idx; 1234 break; 1235 } 1236 } 1237 1238 verbose(env, "cannot restore irq state out of order, expected id=%d acquired at insn_idx=%d\n", 1239 env->cur_state->active_irq_id, insn_idx); 1240 return err; 1241 } 1242 1243 __mark_reg_not_init(env, st); 1244 1245 bpf_mark_stack_write(env, reg->frameno, BIT(spi)); 1246 1247 for (i = 0; i < BPF_REG_SIZE; i++) 1248 slot->slot_type[i] = STACK_INVALID; 1249 1250 mark_stack_slot_scratched(env, spi); 1251 return 0; 1252 } 1253 1254 static bool is_irq_flag_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1255 { 1256 struct bpf_func_state *state = func(env, reg); 1257 struct bpf_stack_state *slot; 1258 int spi, i; 1259 1260 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1261 * will do check_mem_access to check and update stack bounds later, so 1262 * return true for that case. 1263 */ 1264 spi = irq_flag_get_spi(env, reg); 1265 if (spi == -ERANGE) 1266 return true; 1267 if (spi < 0) 1268 return false; 1269 1270 slot = &state->stack[spi]; 1271 1272 for (i = 0; i < BPF_REG_SIZE; i++) 1273 if (slot->slot_type[i] == STACK_IRQ_FLAG) 1274 return false; 1275 return true; 1276 } 1277 1278 static int is_irq_flag_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1279 { 1280 struct bpf_func_state *state = func(env, reg); 1281 struct bpf_stack_state *slot; 1282 struct bpf_reg_state *st; 1283 int spi, i; 1284 1285 spi = irq_flag_get_spi(env, reg); 1286 if (spi < 0) 1287 return -EINVAL; 1288 1289 slot = &state->stack[spi]; 1290 st = &slot->spilled_ptr; 1291 1292 if (!st->ref_obj_id) 1293 return -EINVAL; 1294 1295 for (i = 0; i < BPF_REG_SIZE; i++) 1296 if (slot->slot_type[i] != STACK_IRQ_FLAG) 1297 return -EINVAL; 1298 return 0; 1299 } 1300 1301 /* Check if given stack slot is "special": 1302 * - spilled register state (STACK_SPILL); 1303 * - dynptr state (STACK_DYNPTR); 1304 * - iter state (STACK_ITER). 1305 * - irq flag state (STACK_IRQ_FLAG) 1306 */ 1307 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1308 { 1309 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1310 1311 switch (type) { 1312 case STACK_SPILL: 1313 case STACK_DYNPTR: 1314 case STACK_ITER: 1315 case STACK_IRQ_FLAG: 1316 return true; 1317 case STACK_INVALID: 1318 case STACK_MISC: 1319 case STACK_ZERO: 1320 return false; 1321 default: 1322 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1323 return true; 1324 } 1325 } 1326 1327 /* The reg state of a pointer or a bounded scalar was saved when 1328 * it was spilled to the stack. 1329 */ 1330 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1331 { 1332 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1333 } 1334 1335 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1336 { 1337 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1338 stack->spilled_ptr.type == SCALAR_VALUE; 1339 } 1340 1341 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) 1342 { 1343 return stack->slot_type[0] == STACK_SPILL && 1344 stack->spilled_ptr.type == SCALAR_VALUE; 1345 } 1346 1347 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which 1348 * case they are equivalent, or it's STACK_ZERO, in which case we preserve 1349 * more precise STACK_ZERO. 1350 * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged 1351 * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is 1352 * unnecessary as both are considered equivalent when loading data and pruning, 1353 * in case of unprivileged mode it will be incorrect to allow reads of invalid 1354 * slots. 1355 */ 1356 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) 1357 { 1358 if (*stype == STACK_ZERO) 1359 return; 1360 if (*stype == STACK_INVALID) 1361 return; 1362 *stype = STACK_MISC; 1363 } 1364 1365 static void scrub_spilled_slot(u8 *stype) 1366 { 1367 if (*stype != STACK_INVALID) 1368 *stype = STACK_MISC; 1369 } 1370 1371 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1372 * small to hold src. This is different from krealloc since we don't want to preserve 1373 * the contents of dst. 1374 * 1375 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1376 * not be allocated. 1377 */ 1378 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1379 { 1380 size_t alloc_bytes; 1381 void *orig = dst; 1382 size_t bytes; 1383 1384 if (ZERO_OR_NULL_PTR(src)) 1385 goto out; 1386 1387 if (unlikely(check_mul_overflow(n, size, &bytes))) 1388 return NULL; 1389 1390 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1391 dst = krealloc(orig, alloc_bytes, flags); 1392 if (!dst) { 1393 kfree(orig); 1394 return NULL; 1395 } 1396 1397 memcpy(dst, src, bytes); 1398 out: 1399 return dst ? dst : ZERO_SIZE_PTR; 1400 } 1401 1402 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1403 * small to hold new_n items. new items are zeroed out if the array grows. 1404 * 1405 * Contrary to krealloc_array, does not free arr if new_n is zero. 1406 */ 1407 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1408 { 1409 size_t alloc_size; 1410 void *new_arr; 1411 1412 if (!new_n || old_n == new_n) 1413 goto out; 1414 1415 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1416 new_arr = krealloc(arr, alloc_size, GFP_KERNEL_ACCOUNT); 1417 if (!new_arr) { 1418 kfree(arr); 1419 return NULL; 1420 } 1421 arr = new_arr; 1422 1423 if (new_n > old_n) 1424 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1425 1426 out: 1427 return arr ? arr : ZERO_SIZE_PTR; 1428 } 1429 1430 static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src) 1431 { 1432 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1433 sizeof(struct bpf_reference_state), GFP_KERNEL_ACCOUNT); 1434 if (!dst->refs) 1435 return -ENOMEM; 1436 1437 dst->acquired_refs = src->acquired_refs; 1438 dst->active_locks = src->active_locks; 1439 dst->active_preempt_locks = src->active_preempt_locks; 1440 dst->active_rcu_locks = src->active_rcu_locks; 1441 dst->active_irq_id = src->active_irq_id; 1442 dst->active_lock_id = src->active_lock_id; 1443 dst->active_lock_ptr = src->active_lock_ptr; 1444 return 0; 1445 } 1446 1447 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1448 { 1449 size_t n = src->allocated_stack / BPF_REG_SIZE; 1450 1451 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1452 GFP_KERNEL_ACCOUNT); 1453 if (!dst->stack) 1454 return -ENOMEM; 1455 1456 dst->allocated_stack = src->allocated_stack; 1457 return 0; 1458 } 1459 1460 static int resize_reference_state(struct bpf_verifier_state *state, size_t n) 1461 { 1462 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1463 sizeof(struct bpf_reference_state)); 1464 if (!state->refs) 1465 return -ENOMEM; 1466 1467 state->acquired_refs = n; 1468 return 0; 1469 } 1470 1471 /* Possibly update state->allocated_stack to be at least size bytes. Also 1472 * possibly update the function's high-water mark in its bpf_subprog_info. 1473 */ 1474 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1475 { 1476 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; 1477 1478 /* The stack size is always a multiple of BPF_REG_SIZE. */ 1479 size = round_up(size, BPF_REG_SIZE); 1480 n = size / BPF_REG_SIZE; 1481 1482 if (old_n >= n) 1483 return 0; 1484 1485 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1486 if (!state->stack) 1487 return -ENOMEM; 1488 1489 state->allocated_stack = size; 1490 1491 /* update known max for given subprogram */ 1492 if (env->subprog_info[state->subprogno].stack_depth < size) 1493 env->subprog_info[state->subprogno].stack_depth = size; 1494 1495 return 0; 1496 } 1497 1498 /* Acquire a pointer id from the env and update the state->refs to include 1499 * this new pointer reference. 1500 * On success, returns a valid pointer id to associate with the register 1501 * On failure, returns a negative errno. 1502 */ 1503 static struct bpf_reference_state *acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1504 { 1505 struct bpf_verifier_state *state = env->cur_state; 1506 int new_ofs = state->acquired_refs; 1507 int err; 1508 1509 err = resize_reference_state(state, state->acquired_refs + 1); 1510 if (err) 1511 return NULL; 1512 state->refs[new_ofs].insn_idx = insn_idx; 1513 1514 return &state->refs[new_ofs]; 1515 } 1516 1517 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx) 1518 { 1519 struct bpf_reference_state *s; 1520 1521 s = acquire_reference_state(env, insn_idx); 1522 if (!s) 1523 return -ENOMEM; 1524 s->type = REF_TYPE_PTR; 1525 s->id = ++env->id_gen; 1526 return s->id; 1527 } 1528 1529 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type, 1530 int id, void *ptr) 1531 { 1532 struct bpf_verifier_state *state = env->cur_state; 1533 struct bpf_reference_state *s; 1534 1535 s = acquire_reference_state(env, insn_idx); 1536 if (!s) 1537 return -ENOMEM; 1538 s->type = type; 1539 s->id = id; 1540 s->ptr = ptr; 1541 1542 state->active_locks++; 1543 state->active_lock_id = id; 1544 state->active_lock_ptr = ptr; 1545 return 0; 1546 } 1547 1548 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx) 1549 { 1550 struct bpf_verifier_state *state = env->cur_state; 1551 struct bpf_reference_state *s; 1552 1553 s = acquire_reference_state(env, insn_idx); 1554 if (!s) 1555 return -ENOMEM; 1556 s->type = REF_TYPE_IRQ; 1557 s->id = ++env->id_gen; 1558 1559 state->active_irq_id = s->id; 1560 return s->id; 1561 } 1562 1563 static void release_reference_state(struct bpf_verifier_state *state, int idx) 1564 { 1565 int last_idx; 1566 size_t rem; 1567 1568 /* IRQ state requires the relative ordering of elements remaining the 1569 * same, since it relies on the refs array to behave as a stack, so that 1570 * it can detect out-of-order IRQ restore. Hence use memmove to shift 1571 * the array instead of swapping the final element into the deleted idx. 1572 */ 1573 last_idx = state->acquired_refs - 1; 1574 rem = state->acquired_refs - idx - 1; 1575 if (last_idx && idx != last_idx) 1576 memmove(&state->refs[idx], &state->refs[idx + 1], sizeof(*state->refs) * rem); 1577 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1578 state->acquired_refs--; 1579 return; 1580 } 1581 1582 static bool find_reference_state(struct bpf_verifier_state *state, int ptr_id) 1583 { 1584 int i; 1585 1586 for (i = 0; i < state->acquired_refs; i++) 1587 if (state->refs[i].id == ptr_id) 1588 return true; 1589 1590 return false; 1591 } 1592 1593 static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr) 1594 { 1595 void *prev_ptr = NULL; 1596 u32 prev_id = 0; 1597 int i; 1598 1599 for (i = 0; i < state->acquired_refs; i++) { 1600 if (state->refs[i].type == type && state->refs[i].id == id && 1601 state->refs[i].ptr == ptr) { 1602 release_reference_state(state, i); 1603 state->active_locks--; 1604 /* Reassign active lock (id, ptr). */ 1605 state->active_lock_id = prev_id; 1606 state->active_lock_ptr = prev_ptr; 1607 return 0; 1608 } 1609 if (state->refs[i].type & REF_TYPE_LOCK_MASK) { 1610 prev_id = state->refs[i].id; 1611 prev_ptr = state->refs[i].ptr; 1612 } 1613 } 1614 return -EINVAL; 1615 } 1616 1617 static int release_irq_state(struct bpf_verifier_state *state, int id) 1618 { 1619 u32 prev_id = 0; 1620 int i; 1621 1622 if (id != state->active_irq_id) 1623 return -EACCES; 1624 1625 for (i = 0; i < state->acquired_refs; i++) { 1626 if (state->refs[i].type != REF_TYPE_IRQ) 1627 continue; 1628 if (state->refs[i].id == id) { 1629 release_reference_state(state, i); 1630 state->active_irq_id = prev_id; 1631 return 0; 1632 } else { 1633 prev_id = state->refs[i].id; 1634 } 1635 } 1636 return -EINVAL; 1637 } 1638 1639 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *state, enum ref_state_type type, 1640 int id, void *ptr) 1641 { 1642 int i; 1643 1644 for (i = 0; i < state->acquired_refs; i++) { 1645 struct bpf_reference_state *s = &state->refs[i]; 1646 1647 if (!(s->type & type)) 1648 continue; 1649 1650 if (s->id == id && s->ptr == ptr) 1651 return s; 1652 } 1653 return NULL; 1654 } 1655 1656 static void update_peak_states(struct bpf_verifier_env *env) 1657 { 1658 u32 cur_states; 1659 1660 cur_states = env->explored_states_size + env->free_list_size + env->num_backedges; 1661 env->peak_states = max(env->peak_states, cur_states); 1662 } 1663 1664 static void free_func_state(struct bpf_func_state *state) 1665 { 1666 if (!state) 1667 return; 1668 kfree(state->stack); 1669 kfree(state); 1670 } 1671 1672 static void clear_jmp_history(struct bpf_verifier_state *state) 1673 { 1674 kfree(state->jmp_history); 1675 state->jmp_history = NULL; 1676 state->jmp_history_cnt = 0; 1677 } 1678 1679 static void free_verifier_state(struct bpf_verifier_state *state, 1680 bool free_self) 1681 { 1682 int i; 1683 1684 for (i = 0; i <= state->curframe; i++) { 1685 free_func_state(state->frame[i]); 1686 state->frame[i] = NULL; 1687 } 1688 kfree(state->refs); 1689 clear_jmp_history(state); 1690 if (free_self) 1691 kfree(state); 1692 } 1693 1694 /* struct bpf_verifier_state->parent refers to states 1695 * that are in either of env->{expored_states,free_list}. 1696 * In both cases the state is contained in struct bpf_verifier_state_list. 1697 */ 1698 static struct bpf_verifier_state_list *state_parent_as_list(struct bpf_verifier_state *st) 1699 { 1700 if (st->parent) 1701 return container_of(st->parent, struct bpf_verifier_state_list, state); 1702 return NULL; 1703 } 1704 1705 static bool incomplete_read_marks(struct bpf_verifier_env *env, 1706 struct bpf_verifier_state *st); 1707 1708 /* A state can be freed if it is no longer referenced: 1709 * - is in the env->free_list; 1710 * - has no children states; 1711 */ 1712 static void maybe_free_verifier_state(struct bpf_verifier_env *env, 1713 struct bpf_verifier_state_list *sl) 1714 { 1715 if (!sl->in_free_list 1716 || sl->state.branches != 0 1717 || incomplete_read_marks(env, &sl->state)) 1718 return; 1719 list_del(&sl->node); 1720 free_verifier_state(&sl->state, false); 1721 kfree(sl); 1722 env->free_list_size--; 1723 } 1724 1725 /* copy verifier state from src to dst growing dst stack space 1726 * when necessary to accommodate larger src stack 1727 */ 1728 static int copy_func_state(struct bpf_func_state *dst, 1729 const struct bpf_func_state *src) 1730 { 1731 memcpy(dst, src, offsetof(struct bpf_func_state, stack)); 1732 return copy_stack_state(dst, src); 1733 } 1734 1735 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1736 const struct bpf_verifier_state *src) 1737 { 1738 struct bpf_func_state *dst; 1739 int i, err; 1740 1741 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1742 src->jmp_history_cnt, sizeof(*dst_state->jmp_history), 1743 GFP_KERNEL_ACCOUNT); 1744 if (!dst_state->jmp_history) 1745 return -ENOMEM; 1746 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1747 1748 /* if dst has more stack frames then src frame, free them, this is also 1749 * necessary in case of exceptional exits using bpf_throw. 1750 */ 1751 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1752 free_func_state(dst_state->frame[i]); 1753 dst_state->frame[i] = NULL; 1754 } 1755 err = copy_reference_state(dst_state, src); 1756 if (err) 1757 return err; 1758 dst_state->speculative = src->speculative; 1759 dst_state->in_sleepable = src->in_sleepable; 1760 dst_state->cleaned = src->cleaned; 1761 dst_state->curframe = src->curframe; 1762 dst_state->branches = src->branches; 1763 dst_state->parent = src->parent; 1764 dst_state->first_insn_idx = src->first_insn_idx; 1765 dst_state->last_insn_idx = src->last_insn_idx; 1766 dst_state->dfs_depth = src->dfs_depth; 1767 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1768 dst_state->may_goto_depth = src->may_goto_depth; 1769 dst_state->equal_state = src->equal_state; 1770 for (i = 0; i <= src->curframe; i++) { 1771 dst = dst_state->frame[i]; 1772 if (!dst) { 1773 dst = kzalloc(sizeof(*dst), GFP_KERNEL_ACCOUNT); 1774 if (!dst) 1775 return -ENOMEM; 1776 dst_state->frame[i] = dst; 1777 } 1778 err = copy_func_state(dst, src->frame[i]); 1779 if (err) 1780 return err; 1781 } 1782 return 0; 1783 } 1784 1785 static u32 state_htab_size(struct bpf_verifier_env *env) 1786 { 1787 return env->prog->len; 1788 } 1789 1790 static struct list_head *explored_state(struct bpf_verifier_env *env, int idx) 1791 { 1792 struct bpf_verifier_state *cur = env->cur_state; 1793 struct bpf_func_state *state = cur->frame[cur->curframe]; 1794 1795 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1796 } 1797 1798 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1799 { 1800 int fr; 1801 1802 if (a->curframe != b->curframe) 1803 return false; 1804 1805 for (fr = a->curframe; fr >= 0; fr--) 1806 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1807 return false; 1808 1809 return true; 1810 } 1811 1812 /* Return IP for a given frame in a call stack */ 1813 static u32 frame_insn_idx(struct bpf_verifier_state *st, u32 frame) 1814 { 1815 return frame == st->curframe 1816 ? st->insn_idx 1817 : st->frame[frame + 1]->callsite; 1818 } 1819 1820 /* For state @st look for a topmost frame with frame_insn_idx() in some SCC, 1821 * if such frame exists form a corresponding @callchain as an array of 1822 * call sites leading to this frame and SCC id. 1823 * E.g.: 1824 * 1825 * void foo() { A: loop {... SCC#1 ...}; } 1826 * void bar() { B: loop { C: foo(); ... SCC#2 ... } 1827 * D: loop { E: foo(); ... SCC#3 ... } } 1828 * void main() { F: bar(); } 1829 * 1830 * @callchain at (A) would be either (F,SCC#2) or (F,SCC#3) depending 1831 * on @st frame call sites being (F,C,A) or (F,E,A). 1832 */ 1833 static bool compute_scc_callchain(struct bpf_verifier_env *env, 1834 struct bpf_verifier_state *st, 1835 struct bpf_scc_callchain *callchain) 1836 { 1837 u32 i, scc, insn_idx; 1838 1839 memset(callchain, 0, sizeof(*callchain)); 1840 for (i = 0; i <= st->curframe; i++) { 1841 insn_idx = frame_insn_idx(st, i); 1842 scc = env->insn_aux_data[insn_idx].scc; 1843 if (scc) { 1844 callchain->scc = scc; 1845 break; 1846 } else if (i < st->curframe) { 1847 callchain->callsites[i] = insn_idx; 1848 } else { 1849 return false; 1850 } 1851 } 1852 return true; 1853 } 1854 1855 /* Check if bpf_scc_visit instance for @callchain exists. */ 1856 static struct bpf_scc_visit *scc_visit_lookup(struct bpf_verifier_env *env, 1857 struct bpf_scc_callchain *callchain) 1858 { 1859 struct bpf_scc_info *info = env->scc_info[callchain->scc]; 1860 struct bpf_scc_visit *visits = info->visits; 1861 u32 i; 1862 1863 if (!info) 1864 return NULL; 1865 for (i = 0; i < info->num_visits; i++) 1866 if (memcmp(callchain, &visits[i].callchain, sizeof(*callchain)) == 0) 1867 return &visits[i]; 1868 return NULL; 1869 } 1870 1871 /* Allocate a new bpf_scc_visit instance corresponding to @callchain. 1872 * Allocated instances are alive for a duration of the do_check_common() 1873 * call and are freed by free_states(). 1874 */ 1875 static struct bpf_scc_visit *scc_visit_alloc(struct bpf_verifier_env *env, 1876 struct bpf_scc_callchain *callchain) 1877 { 1878 struct bpf_scc_visit *visit; 1879 struct bpf_scc_info *info; 1880 u32 scc, num_visits; 1881 u64 new_sz; 1882 1883 scc = callchain->scc; 1884 info = env->scc_info[scc]; 1885 num_visits = info ? info->num_visits : 0; 1886 new_sz = sizeof(*info) + sizeof(struct bpf_scc_visit) * (num_visits + 1); 1887 info = kvrealloc(env->scc_info[scc], new_sz, GFP_KERNEL_ACCOUNT); 1888 if (!info) 1889 return NULL; 1890 env->scc_info[scc] = info; 1891 info->num_visits = num_visits + 1; 1892 visit = &info->visits[num_visits]; 1893 memset(visit, 0, sizeof(*visit)); 1894 memcpy(&visit->callchain, callchain, sizeof(*callchain)); 1895 return visit; 1896 } 1897 1898 /* Form a string '(callsite#1,callsite#2,...,scc)' in env->tmp_str_buf */ 1899 static char *format_callchain(struct bpf_verifier_env *env, struct bpf_scc_callchain *callchain) 1900 { 1901 char *buf = env->tmp_str_buf; 1902 int i, delta = 0; 1903 1904 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "("); 1905 for (i = 0; i < ARRAY_SIZE(callchain->callsites); i++) { 1906 if (!callchain->callsites[i]) 1907 break; 1908 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u,", 1909 callchain->callsites[i]); 1910 } 1911 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u)", callchain->scc); 1912 return env->tmp_str_buf; 1913 } 1914 1915 /* If callchain for @st exists (@st is in some SCC), ensure that 1916 * bpf_scc_visit instance for this callchain exists. 1917 * If instance does not exist or is empty, assign visit->entry_state to @st. 1918 */ 1919 static int maybe_enter_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1920 { 1921 struct bpf_scc_callchain *callchain = &env->callchain_buf; 1922 struct bpf_scc_visit *visit; 1923 1924 if (!compute_scc_callchain(env, st, callchain)) 1925 return 0; 1926 visit = scc_visit_lookup(env, callchain); 1927 visit = visit ?: scc_visit_alloc(env, callchain); 1928 if (!visit) 1929 return -ENOMEM; 1930 if (!visit->entry_state) { 1931 visit->entry_state = st; 1932 if (env->log.level & BPF_LOG_LEVEL2) 1933 verbose(env, "SCC enter %s\n", format_callchain(env, callchain)); 1934 } 1935 return 0; 1936 } 1937 1938 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit); 1939 1940 /* If callchain for @st exists (@st is in some SCC), make it empty: 1941 * - set visit->entry_state to NULL; 1942 * - flush accumulated backedges. 1943 */ 1944 static int maybe_exit_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1945 { 1946 struct bpf_scc_callchain *callchain = &env->callchain_buf; 1947 struct bpf_scc_visit *visit; 1948 1949 if (!compute_scc_callchain(env, st, callchain)) 1950 return 0; 1951 visit = scc_visit_lookup(env, callchain); 1952 if (!visit) { 1953 /* 1954 * If path traversal stops inside an SCC, corresponding bpf_scc_visit 1955 * must exist for non-speculative paths. For non-speculative paths 1956 * traversal stops when: 1957 * a. Verification error is found, maybe_exit_scc() is not called. 1958 * b. Top level BPF_EXIT is reached. Top level BPF_EXIT is not a member 1959 * of any SCC. 1960 * c. A checkpoint is reached and matched. Checkpoints are created by 1961 * is_state_visited(), which calls maybe_enter_scc(), which allocates 1962 * bpf_scc_visit instances for checkpoints within SCCs. 1963 * (c) is the only case that can reach this point. 1964 */ 1965 if (!st->speculative) { 1966 verifier_bug(env, "scc exit: no visit info for call chain %s", 1967 format_callchain(env, callchain)); 1968 return -EFAULT; 1969 } 1970 return 0; 1971 } 1972 if (visit->entry_state != st) 1973 return 0; 1974 if (env->log.level & BPF_LOG_LEVEL2) 1975 verbose(env, "SCC exit %s\n", format_callchain(env, callchain)); 1976 visit->entry_state = NULL; 1977 env->num_backedges -= visit->num_backedges; 1978 visit->num_backedges = 0; 1979 update_peak_states(env); 1980 return propagate_backedges(env, visit); 1981 } 1982 1983 /* Lookup an bpf_scc_visit instance corresponding to @st callchain 1984 * and add @backedge to visit->backedges. @st callchain must exist. 1985 */ 1986 static int add_scc_backedge(struct bpf_verifier_env *env, 1987 struct bpf_verifier_state *st, 1988 struct bpf_scc_backedge *backedge) 1989 { 1990 struct bpf_scc_callchain *callchain = &env->callchain_buf; 1991 struct bpf_scc_visit *visit; 1992 1993 if (!compute_scc_callchain(env, st, callchain)) { 1994 verifier_bug(env, "add backedge: no SCC in verification path, insn_idx %d", 1995 st->insn_idx); 1996 return -EFAULT; 1997 } 1998 visit = scc_visit_lookup(env, callchain); 1999 if (!visit) { 2000 verifier_bug(env, "add backedge: no visit info for call chain %s", 2001 format_callchain(env, callchain)); 2002 return -EFAULT; 2003 } 2004 if (env->log.level & BPF_LOG_LEVEL2) 2005 verbose(env, "SCC backedge %s\n", format_callchain(env, callchain)); 2006 backedge->next = visit->backedges; 2007 visit->backedges = backedge; 2008 visit->num_backedges++; 2009 env->num_backedges++; 2010 update_peak_states(env); 2011 return 0; 2012 } 2013 2014 /* bpf_reg_state->live marks for registers in a state @st are incomplete, 2015 * if state @st is in some SCC and not all execution paths starting at this 2016 * SCC are fully explored. 2017 */ 2018 static bool incomplete_read_marks(struct bpf_verifier_env *env, 2019 struct bpf_verifier_state *st) 2020 { 2021 struct bpf_scc_callchain *callchain = &env->callchain_buf; 2022 struct bpf_scc_visit *visit; 2023 2024 if (!compute_scc_callchain(env, st, callchain)) 2025 return false; 2026 visit = scc_visit_lookup(env, callchain); 2027 if (!visit) 2028 return false; 2029 return !!visit->backedges; 2030 } 2031 2032 static void free_backedges(struct bpf_scc_visit *visit) 2033 { 2034 struct bpf_scc_backedge *backedge, *next; 2035 2036 for (backedge = visit->backedges; backedge; backedge = next) { 2037 free_verifier_state(&backedge->state, false); 2038 next = backedge->next; 2039 kfree(backedge); 2040 } 2041 visit->backedges = NULL; 2042 } 2043 2044 static int update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 2045 { 2046 struct bpf_verifier_state_list *sl = NULL, *parent_sl; 2047 struct bpf_verifier_state *parent; 2048 int err; 2049 2050 while (st) { 2051 u32 br = --st->branches; 2052 2053 /* verifier_bug_if(br > 1, ...) technically makes sense here, 2054 * but see comment in push_stack(), hence: 2055 */ 2056 verifier_bug_if((int)br < 0, env, "%s:branches_to_explore=%d", __func__, br); 2057 if (br) 2058 break; 2059 err = maybe_exit_scc(env, st); 2060 if (err) 2061 return err; 2062 parent = st->parent; 2063 parent_sl = state_parent_as_list(st); 2064 if (sl) 2065 maybe_free_verifier_state(env, sl); 2066 st = parent; 2067 sl = parent_sl; 2068 } 2069 return 0; 2070 } 2071 2072 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 2073 int *insn_idx, bool pop_log) 2074 { 2075 struct bpf_verifier_state *cur = env->cur_state; 2076 struct bpf_verifier_stack_elem *elem, *head = env->head; 2077 int err; 2078 2079 if (env->head == NULL) 2080 return -ENOENT; 2081 2082 if (cur) { 2083 err = copy_verifier_state(cur, &head->st); 2084 if (err) 2085 return err; 2086 } 2087 if (pop_log) 2088 bpf_vlog_reset(&env->log, head->log_pos); 2089 if (insn_idx) 2090 *insn_idx = head->insn_idx; 2091 if (prev_insn_idx) 2092 *prev_insn_idx = head->prev_insn_idx; 2093 elem = head->next; 2094 free_verifier_state(&head->st, false); 2095 kfree(head); 2096 env->head = elem; 2097 env->stack_size--; 2098 return 0; 2099 } 2100 2101 static bool error_recoverable_with_nospec(int err) 2102 { 2103 /* Should only return true for non-fatal errors that are allowed to 2104 * occur during speculative verification. For these we can insert a 2105 * nospec and the program might still be accepted. Do not include 2106 * something like ENOMEM because it is likely to re-occur for the next 2107 * architectural path once it has been recovered-from in all speculative 2108 * paths. 2109 */ 2110 return err == -EPERM || err == -EACCES || err == -EINVAL; 2111 } 2112 2113 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 2114 int insn_idx, int prev_insn_idx, 2115 bool speculative) 2116 { 2117 struct bpf_verifier_state *cur = env->cur_state; 2118 struct bpf_verifier_stack_elem *elem; 2119 int err; 2120 2121 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT); 2122 if (!elem) 2123 return ERR_PTR(-ENOMEM); 2124 2125 elem->insn_idx = insn_idx; 2126 elem->prev_insn_idx = prev_insn_idx; 2127 elem->next = env->head; 2128 elem->log_pos = env->log.end_pos; 2129 env->head = elem; 2130 env->stack_size++; 2131 err = copy_verifier_state(&elem->st, cur); 2132 if (err) 2133 return ERR_PTR(-ENOMEM); 2134 elem->st.speculative |= speculative; 2135 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2136 verbose(env, "The sequence of %d jumps is too complex.\n", 2137 env->stack_size); 2138 return ERR_PTR(-E2BIG); 2139 } 2140 if (elem->st.parent) { 2141 ++elem->st.parent->branches; 2142 /* WARN_ON(branches > 2) technically makes sense here, 2143 * but 2144 * 1. speculative states will bump 'branches' for non-branch 2145 * instructions 2146 * 2. is_state_visited() heuristics may decide not to create 2147 * a new state for a sequence of branches and all such current 2148 * and cloned states will be pointing to a single parent state 2149 * which might have large 'branches' count. 2150 */ 2151 } 2152 return &elem->st; 2153 } 2154 2155 #define CALLER_SAVED_REGS 6 2156 static const int caller_saved[CALLER_SAVED_REGS] = { 2157 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 2158 }; 2159 2160 /* This helper doesn't clear reg->id */ 2161 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2162 { 2163 reg->var_off = tnum_const(imm); 2164 reg->smin_value = (s64)imm; 2165 reg->smax_value = (s64)imm; 2166 reg->umin_value = imm; 2167 reg->umax_value = imm; 2168 2169 reg->s32_min_value = (s32)imm; 2170 reg->s32_max_value = (s32)imm; 2171 reg->u32_min_value = (u32)imm; 2172 reg->u32_max_value = (u32)imm; 2173 } 2174 2175 /* Mark the unknown part of a register (variable offset or scalar value) as 2176 * known to have the value @imm. 2177 */ 2178 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2179 { 2180 /* Clear off and union(map_ptr, range) */ 2181 memset(((u8 *)reg) + sizeof(reg->type), 0, 2182 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 2183 reg->id = 0; 2184 reg->ref_obj_id = 0; 2185 ___mark_reg_known(reg, imm); 2186 } 2187 2188 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 2189 { 2190 reg->var_off = tnum_const_subreg(reg->var_off, imm); 2191 reg->s32_min_value = (s32)imm; 2192 reg->s32_max_value = (s32)imm; 2193 reg->u32_min_value = (u32)imm; 2194 reg->u32_max_value = (u32)imm; 2195 } 2196 2197 /* Mark the 'variable offset' part of a register as zero. This should be 2198 * used only on registers holding a pointer type. 2199 */ 2200 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 2201 { 2202 __mark_reg_known(reg, 0); 2203 } 2204 2205 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2206 { 2207 __mark_reg_known(reg, 0); 2208 reg->type = SCALAR_VALUE; 2209 /* all scalars are assumed imprecise initially (unless unprivileged, 2210 * in which case everything is forced to be precise) 2211 */ 2212 reg->precise = !env->bpf_capable; 2213 } 2214 2215 static void mark_reg_known_zero(struct bpf_verifier_env *env, 2216 struct bpf_reg_state *regs, u32 regno) 2217 { 2218 if (WARN_ON(regno >= MAX_BPF_REG)) { 2219 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 2220 /* Something bad happened, let's kill all regs */ 2221 for (regno = 0; regno < MAX_BPF_REG; regno++) 2222 __mark_reg_not_init(env, regs + regno); 2223 return; 2224 } 2225 __mark_reg_known_zero(regs + regno); 2226 } 2227 2228 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 2229 bool first_slot, int dynptr_id) 2230 { 2231 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 2232 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 2233 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 2234 */ 2235 __mark_reg_known_zero(reg); 2236 reg->type = CONST_PTR_TO_DYNPTR; 2237 /* Give each dynptr a unique id to uniquely associate slices to it. */ 2238 reg->id = dynptr_id; 2239 reg->dynptr.type = type; 2240 reg->dynptr.first_slot = first_slot; 2241 } 2242 2243 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 2244 { 2245 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 2246 const struct bpf_map *map = reg->map_ptr; 2247 2248 if (map->inner_map_meta) { 2249 reg->type = CONST_PTR_TO_MAP; 2250 reg->map_ptr = map->inner_map_meta; 2251 /* transfer reg's id which is unique for every map_lookup_elem 2252 * as UID of the inner map. 2253 */ 2254 if (btf_record_has_field(map->inner_map_meta->record, 2255 BPF_TIMER | BPF_WORKQUEUE | BPF_TASK_WORK)) { 2256 reg->map_uid = reg->id; 2257 } 2258 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 2259 reg->type = PTR_TO_XDP_SOCK; 2260 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 2261 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 2262 reg->type = PTR_TO_SOCKET; 2263 } else { 2264 reg->type = PTR_TO_MAP_VALUE; 2265 } 2266 return; 2267 } 2268 2269 reg->type &= ~PTR_MAYBE_NULL; 2270 } 2271 2272 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 2273 struct btf_field_graph_root *ds_head) 2274 { 2275 __mark_reg_known_zero(®s[regno]); 2276 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 2277 regs[regno].btf = ds_head->btf; 2278 regs[regno].btf_id = ds_head->value_btf_id; 2279 regs[regno].off = ds_head->node_offset; 2280 } 2281 2282 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 2283 { 2284 return type_is_pkt_pointer(reg->type); 2285 } 2286 2287 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2288 { 2289 return reg_is_pkt_pointer(reg) || 2290 reg->type == PTR_TO_PACKET_END; 2291 } 2292 2293 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2294 { 2295 return base_type(reg->type) == PTR_TO_MEM && 2296 (reg->type & 2297 (DYNPTR_TYPE_SKB | DYNPTR_TYPE_XDP | DYNPTR_TYPE_SKB_META)); 2298 } 2299 2300 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2301 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2302 enum bpf_reg_type which) 2303 { 2304 /* The register can already have a range from prior markings. 2305 * This is fine as long as it hasn't been advanced from its 2306 * origin. 2307 */ 2308 return reg->type == which && 2309 reg->id == 0 && 2310 reg->off == 0 && 2311 tnum_equals_const(reg->var_off, 0); 2312 } 2313 2314 /* Reset the min/max bounds of a register */ 2315 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2316 { 2317 reg->smin_value = S64_MIN; 2318 reg->smax_value = S64_MAX; 2319 reg->umin_value = 0; 2320 reg->umax_value = U64_MAX; 2321 2322 reg->s32_min_value = S32_MIN; 2323 reg->s32_max_value = S32_MAX; 2324 reg->u32_min_value = 0; 2325 reg->u32_max_value = U32_MAX; 2326 } 2327 2328 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2329 { 2330 reg->smin_value = S64_MIN; 2331 reg->smax_value = S64_MAX; 2332 reg->umin_value = 0; 2333 reg->umax_value = U64_MAX; 2334 } 2335 2336 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2337 { 2338 reg->s32_min_value = S32_MIN; 2339 reg->s32_max_value = S32_MAX; 2340 reg->u32_min_value = 0; 2341 reg->u32_max_value = U32_MAX; 2342 } 2343 2344 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2345 { 2346 struct tnum var32_off = tnum_subreg(reg->var_off); 2347 2348 /* min signed is max(sign bit) | min(other bits) */ 2349 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2350 var32_off.value | (var32_off.mask & S32_MIN)); 2351 /* max signed is min(sign bit) | max(other bits) */ 2352 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2353 var32_off.value | (var32_off.mask & S32_MAX)); 2354 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2355 reg->u32_max_value = min(reg->u32_max_value, 2356 (u32)(var32_off.value | var32_off.mask)); 2357 } 2358 2359 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2360 { 2361 /* min signed is max(sign bit) | min(other bits) */ 2362 reg->smin_value = max_t(s64, reg->smin_value, 2363 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2364 /* max signed is min(sign bit) | max(other bits) */ 2365 reg->smax_value = min_t(s64, reg->smax_value, 2366 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2367 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2368 reg->umax_value = min(reg->umax_value, 2369 reg->var_off.value | reg->var_off.mask); 2370 } 2371 2372 static void __update_reg_bounds(struct bpf_reg_state *reg) 2373 { 2374 __update_reg32_bounds(reg); 2375 __update_reg64_bounds(reg); 2376 } 2377 2378 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2379 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2380 { 2381 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 2382 * bits to improve our u32/s32 boundaries. 2383 * 2384 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 2385 * u64) is pretty trivial, it's obvious that in u32 we'll also have 2386 * [10, 20] range. But this property holds for any 64-bit range as 2387 * long as upper 32 bits in that entire range of values stay the same. 2388 * 2389 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 2390 * in decimal) has the same upper 32 bits throughout all the values in 2391 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 2392 * range. 2393 * 2394 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 2395 * following the rules outlined below about u64/s64 correspondence 2396 * (which equally applies to u32 vs s32 correspondence). In general it 2397 * depends on actual hexadecimal values of 32-bit range. They can form 2398 * only valid u32, or only valid s32 ranges in some cases. 2399 * 2400 * So we use all these insights to derive bounds for subregisters here. 2401 */ 2402 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 2403 /* u64 to u32 casting preserves validity of low 32 bits as 2404 * a range, if upper 32 bits are the same 2405 */ 2406 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 2407 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 2408 2409 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 2410 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2411 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2412 } 2413 } 2414 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 2415 /* low 32 bits should form a proper u32 range */ 2416 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 2417 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 2418 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 2419 } 2420 /* low 32 bits should form a proper s32 range */ 2421 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 2422 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2423 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2424 } 2425 } 2426 /* Special case where upper bits form a small sequence of two 2427 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 2428 * 0x00000000 is also valid), while lower bits form a proper s32 range 2429 * going from negative numbers to positive numbers. E.g., let's say we 2430 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 2431 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 2432 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 2433 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 2434 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 2435 * upper 32 bits. As a random example, s64 range 2436 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 2437 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 2438 */ 2439 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 2440 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 2441 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2442 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2443 } 2444 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 2445 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 2446 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2447 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2448 } 2449 /* if u32 range forms a valid s32 range (due to matching sign bit), 2450 * try to learn from that 2451 */ 2452 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 2453 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 2454 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 2455 } 2456 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2457 * are the same, so combine. This works even in the negative case, e.g. 2458 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2459 */ 2460 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2461 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 2462 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 2463 } 2464 } 2465 2466 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2467 { 2468 /* If u64 range forms a valid s64 range (due to matching sign bit), 2469 * try to learn from that. Let's do a bit of ASCII art to see when 2470 * this is happening. Let's take u64 range first: 2471 * 2472 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2473 * |-------------------------------|--------------------------------| 2474 * 2475 * Valid u64 range is formed when umin and umax are anywhere in the 2476 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 2477 * straightforward. Let's see how s64 range maps onto the same range 2478 * of values, annotated below the line for comparison: 2479 * 2480 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2481 * |-------------------------------|--------------------------------| 2482 * 0 S64_MAX S64_MIN -1 2483 * 2484 * So s64 values basically start in the middle and they are logically 2485 * contiguous to the right of it, wrapping around from -1 to 0, and 2486 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2487 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2488 * more visually as mapped to sign-agnostic range of hex values. 2489 * 2490 * u64 start u64 end 2491 * _______________________________________________________________ 2492 * / \ 2493 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2494 * |-------------------------------|--------------------------------| 2495 * 0 S64_MAX S64_MIN -1 2496 * / \ 2497 * >------------------------------ -------------------------------> 2498 * s64 continues... s64 end s64 start s64 "midpoint" 2499 * 2500 * What this means is that, in general, we can't always derive 2501 * something new about u64 from any random s64 range, and vice versa. 2502 * 2503 * But we can do that in two particular cases. One is when entire 2504 * u64/s64 range is *entirely* contained within left half of the above 2505 * diagram or when it is *entirely* contained in the right half. I.e.: 2506 * 2507 * |-------------------------------|--------------------------------| 2508 * ^ ^ ^ ^ 2509 * A B C D 2510 * 2511 * [A, B] and [C, D] are contained entirely in their respective halves 2512 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2513 * will be non-negative both as u64 and s64 (and in fact it will be 2514 * identical ranges no matter the signedness). [C, D] treated as s64 2515 * will be a range of negative values, while in u64 it will be 2516 * non-negative range of values larger than 0x8000000000000000. 2517 * 2518 * Now, any other range here can't be represented in both u64 and s64 2519 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2520 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2521 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2522 * for example. Similarly, valid s64 range [D, A] (going from negative 2523 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2524 * ranges as u64. Currently reg_state can't represent two segments per 2525 * numeric domain, so in such situations we can only derive maximal 2526 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2527 * 2528 * So we use these facts to derive umin/umax from smin/smax and vice 2529 * versa only if they stay within the same "half". This is equivalent 2530 * to checking sign bit: lower half will have sign bit as zero, upper 2531 * half have sign bit 1. Below in code we simplify this by just 2532 * casting umin/umax as smin/smax and checking if they form valid 2533 * range, and vice versa. Those are equivalent checks. 2534 */ 2535 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2536 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2537 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2538 } 2539 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2540 * are the same, so combine. This works even in the negative case, e.g. 2541 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2542 */ 2543 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2544 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2545 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2546 } else { 2547 /* If the s64 range crosses the sign boundary, then it's split 2548 * between the beginning and end of the U64 domain. In that 2549 * case, we can derive new bounds if the u64 range overlaps 2550 * with only one end of the s64 range. 2551 * 2552 * In the following example, the u64 range overlaps only with 2553 * positive portion of the s64 range. 2554 * 2555 * 0 U64_MAX 2556 * | [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx] | 2557 * |----------------------------|----------------------------| 2558 * |xxxxx s64 range xxxxxxxxx] [xxxxxxx| 2559 * 0 S64_MAX S64_MIN -1 2560 * 2561 * We can thus derive the following new s64 and u64 ranges. 2562 * 2563 * 0 U64_MAX 2564 * | [xxxxxx u64 range xxxxx] | 2565 * |----------------------------|----------------------------| 2566 * | [xxxxxx s64 range xxxxx] | 2567 * 0 S64_MAX S64_MIN -1 2568 * 2569 * If they overlap in two places, we can't derive anything 2570 * because reg_state can't represent two ranges per numeric 2571 * domain. 2572 * 2573 * 0 U64_MAX 2574 * | [xxxxxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxxxxx] | 2575 * |----------------------------|----------------------------| 2576 * |xxxxx s64 range xxxxxxxxx] [xxxxxxxxxx| 2577 * 0 S64_MAX S64_MIN -1 2578 * 2579 * The first condition below corresponds to the first diagram 2580 * above. 2581 */ 2582 if (reg->umax_value < (u64)reg->smin_value) { 2583 reg->smin_value = (s64)reg->umin_value; 2584 reg->umax_value = min_t(u64, reg->umax_value, reg->smax_value); 2585 } else if ((u64)reg->smax_value < reg->umin_value) { 2586 /* This second condition considers the case where the u64 range 2587 * overlaps with the negative portion of the s64 range: 2588 * 2589 * 0 U64_MAX 2590 * | [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx] | 2591 * |----------------------------|----------------------------| 2592 * |xxxxxxxxx] [xxxxxxxxxxxx s64 range | 2593 * 0 S64_MAX S64_MIN -1 2594 */ 2595 reg->smax_value = (s64)reg->umax_value; 2596 reg->umin_value = max_t(u64, reg->umin_value, reg->smin_value); 2597 } 2598 } 2599 } 2600 2601 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2602 { 2603 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2604 * values on both sides of 64-bit range in hope to have tighter range. 2605 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2606 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2607 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2608 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2609 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2610 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2611 * We just need to make sure that derived bounds we are intersecting 2612 * with are well-formed ranges in respective s64 or u64 domain, just 2613 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2614 */ 2615 __u64 new_umin, new_umax; 2616 __s64 new_smin, new_smax; 2617 2618 /* u32 -> u64 tightening, it's always well-formed */ 2619 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2620 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2621 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2622 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2623 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2624 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2625 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2626 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2627 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2628 2629 /* Here we would like to handle a special case after sign extending load, 2630 * when upper bits for a 64-bit range are all 1s or all 0s. 2631 * 2632 * Upper bits are all 1s when register is in a range: 2633 * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff] 2634 * Upper bits are all 0s when register is in a range: 2635 * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff] 2636 * Together this forms are continuous range: 2637 * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff] 2638 * 2639 * Now, suppose that register range is in fact tighter: 2640 * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R) 2641 * Also suppose that it's 32-bit range is positive, 2642 * meaning that lower 32-bits of the full 64-bit register 2643 * are in the range: 2644 * [0x0000_0000, 0x7fff_ffff] (W) 2645 * 2646 * If this happens, then any value in a range: 2647 * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff] 2648 * is smaller than a lowest bound of the range (R): 2649 * 0xffff_ffff_8000_0000 2650 * which means that upper bits of the full 64-bit register 2651 * can't be all 1s, when lower bits are in range (W). 2652 * 2653 * Note that: 2654 * - 0xffff_ffff_8000_0000 == (s64)S32_MIN 2655 * - 0x0000_0000_7fff_ffff == (s64)S32_MAX 2656 * These relations are used in the conditions below. 2657 */ 2658 if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) { 2659 reg->smin_value = reg->s32_min_value; 2660 reg->smax_value = reg->s32_max_value; 2661 reg->umin_value = reg->s32_min_value; 2662 reg->umax_value = reg->s32_max_value; 2663 reg->var_off = tnum_intersect(reg->var_off, 2664 tnum_range(reg->smin_value, reg->smax_value)); 2665 } 2666 } 2667 2668 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2669 { 2670 __reg32_deduce_bounds(reg); 2671 __reg64_deduce_bounds(reg); 2672 __reg_deduce_mixed_bounds(reg); 2673 } 2674 2675 /* Attempts to improve var_off based on unsigned min/max information */ 2676 static void __reg_bound_offset(struct bpf_reg_state *reg) 2677 { 2678 struct tnum var64_off = tnum_intersect(reg->var_off, 2679 tnum_range(reg->umin_value, 2680 reg->umax_value)); 2681 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2682 tnum_range(reg->u32_min_value, 2683 reg->u32_max_value)); 2684 2685 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2686 } 2687 2688 static void reg_bounds_sync(struct bpf_reg_state *reg) 2689 { 2690 /* We might have learned new bounds from the var_off. */ 2691 __update_reg_bounds(reg); 2692 /* We might have learned something about the sign bit. */ 2693 __reg_deduce_bounds(reg); 2694 __reg_deduce_bounds(reg); 2695 __reg_deduce_bounds(reg); 2696 /* We might have learned some bits from the bounds. */ 2697 __reg_bound_offset(reg); 2698 /* Intersecting with the old var_off might have improved our bounds 2699 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2700 * then new var_off is (0; 0x7f...fc) which improves our umax. 2701 */ 2702 __update_reg_bounds(reg); 2703 } 2704 2705 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2706 struct bpf_reg_state *reg, const char *ctx) 2707 { 2708 const char *msg; 2709 2710 if (reg->umin_value > reg->umax_value || 2711 reg->smin_value > reg->smax_value || 2712 reg->u32_min_value > reg->u32_max_value || 2713 reg->s32_min_value > reg->s32_max_value) { 2714 msg = "range bounds violation"; 2715 goto out; 2716 } 2717 2718 if (tnum_is_const(reg->var_off)) { 2719 u64 uval = reg->var_off.value; 2720 s64 sval = (s64)uval; 2721 2722 if (reg->umin_value != uval || reg->umax_value != uval || 2723 reg->smin_value != sval || reg->smax_value != sval) { 2724 msg = "const tnum out of sync with range bounds"; 2725 goto out; 2726 } 2727 } 2728 2729 if (tnum_subreg_is_const(reg->var_off)) { 2730 u32 uval32 = tnum_subreg(reg->var_off).value; 2731 s32 sval32 = (s32)uval32; 2732 2733 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2734 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2735 msg = "const subreg tnum out of sync with range bounds"; 2736 goto out; 2737 } 2738 } 2739 2740 return 0; 2741 out: 2742 verifier_bug(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2743 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)", 2744 ctx, msg, reg->umin_value, reg->umax_value, 2745 reg->smin_value, reg->smax_value, 2746 reg->u32_min_value, reg->u32_max_value, 2747 reg->s32_min_value, reg->s32_max_value, 2748 reg->var_off.value, reg->var_off.mask); 2749 if (env->test_reg_invariants) 2750 return -EFAULT; 2751 __mark_reg_unbounded(reg); 2752 return 0; 2753 } 2754 2755 static bool __reg32_bound_s64(s32 a) 2756 { 2757 return a >= 0 && a <= S32_MAX; 2758 } 2759 2760 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2761 { 2762 reg->umin_value = reg->u32_min_value; 2763 reg->umax_value = reg->u32_max_value; 2764 2765 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2766 * be positive otherwise set to worse case bounds and refine later 2767 * from tnum. 2768 */ 2769 if (__reg32_bound_s64(reg->s32_min_value) && 2770 __reg32_bound_s64(reg->s32_max_value)) { 2771 reg->smin_value = reg->s32_min_value; 2772 reg->smax_value = reg->s32_max_value; 2773 } else { 2774 reg->smin_value = 0; 2775 reg->smax_value = U32_MAX; 2776 } 2777 } 2778 2779 /* Mark a register as having a completely unknown (scalar) value. */ 2780 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) 2781 { 2782 /* 2783 * Clear type, off, and union(map_ptr, range) and 2784 * padding between 'type' and union 2785 */ 2786 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2787 reg->type = SCALAR_VALUE; 2788 reg->id = 0; 2789 reg->ref_obj_id = 0; 2790 reg->var_off = tnum_unknown; 2791 reg->frameno = 0; 2792 reg->precise = false; 2793 __mark_reg_unbounded(reg); 2794 } 2795 2796 /* Mark a register as having a completely unknown (scalar) value, 2797 * initialize .precise as true when not bpf capable. 2798 */ 2799 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2800 struct bpf_reg_state *reg) 2801 { 2802 __mark_reg_unknown_imprecise(reg); 2803 reg->precise = !env->bpf_capable; 2804 } 2805 2806 static void mark_reg_unknown(struct bpf_verifier_env *env, 2807 struct bpf_reg_state *regs, u32 regno) 2808 { 2809 if (WARN_ON(regno >= MAX_BPF_REG)) { 2810 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2811 /* Something bad happened, let's kill all regs except FP */ 2812 for (regno = 0; regno < BPF_REG_FP; regno++) 2813 __mark_reg_not_init(env, regs + regno); 2814 return; 2815 } 2816 __mark_reg_unknown(env, regs + regno); 2817 } 2818 2819 static int __mark_reg_s32_range(struct bpf_verifier_env *env, 2820 struct bpf_reg_state *regs, 2821 u32 regno, 2822 s32 s32_min, 2823 s32 s32_max) 2824 { 2825 struct bpf_reg_state *reg = regs + regno; 2826 2827 reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min); 2828 reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max); 2829 2830 reg->smin_value = max_t(s64, reg->smin_value, s32_min); 2831 reg->smax_value = min_t(s64, reg->smax_value, s32_max); 2832 2833 reg_bounds_sync(reg); 2834 2835 return reg_bounds_sanity_check(env, reg, "s32_range"); 2836 } 2837 2838 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2839 struct bpf_reg_state *reg) 2840 { 2841 __mark_reg_unknown(env, reg); 2842 reg->type = NOT_INIT; 2843 } 2844 2845 static void mark_reg_not_init(struct bpf_verifier_env *env, 2846 struct bpf_reg_state *regs, u32 regno) 2847 { 2848 if (WARN_ON(regno >= MAX_BPF_REG)) { 2849 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2850 /* Something bad happened, let's kill all regs except FP */ 2851 for (regno = 0; regno < BPF_REG_FP; regno++) 2852 __mark_reg_not_init(env, regs + regno); 2853 return; 2854 } 2855 __mark_reg_not_init(env, regs + regno); 2856 } 2857 2858 static int mark_btf_ld_reg(struct bpf_verifier_env *env, 2859 struct bpf_reg_state *regs, u32 regno, 2860 enum bpf_reg_type reg_type, 2861 struct btf *btf, u32 btf_id, 2862 enum bpf_type_flag flag) 2863 { 2864 switch (reg_type) { 2865 case SCALAR_VALUE: 2866 mark_reg_unknown(env, regs, regno); 2867 return 0; 2868 case PTR_TO_BTF_ID: 2869 mark_reg_known_zero(env, regs, regno); 2870 regs[regno].type = PTR_TO_BTF_ID | flag; 2871 regs[regno].btf = btf; 2872 regs[regno].btf_id = btf_id; 2873 if (type_may_be_null(flag)) 2874 regs[regno].id = ++env->id_gen; 2875 return 0; 2876 case PTR_TO_MEM: 2877 mark_reg_known_zero(env, regs, regno); 2878 regs[regno].type = PTR_TO_MEM | flag; 2879 regs[regno].mem_size = 0; 2880 return 0; 2881 default: 2882 verifier_bug(env, "unexpected reg_type %d in %s\n", reg_type, __func__); 2883 return -EFAULT; 2884 } 2885 } 2886 2887 #define DEF_NOT_SUBREG (0) 2888 static void init_reg_state(struct bpf_verifier_env *env, 2889 struct bpf_func_state *state) 2890 { 2891 struct bpf_reg_state *regs = state->regs; 2892 int i; 2893 2894 for (i = 0; i < MAX_BPF_REG; i++) { 2895 mark_reg_not_init(env, regs, i); 2896 regs[i].subreg_def = DEF_NOT_SUBREG; 2897 } 2898 2899 /* frame pointer */ 2900 regs[BPF_REG_FP].type = PTR_TO_STACK; 2901 mark_reg_known_zero(env, regs, BPF_REG_FP); 2902 regs[BPF_REG_FP].frameno = state->frameno; 2903 } 2904 2905 static struct bpf_retval_range retval_range(s32 minval, s32 maxval) 2906 { 2907 return (struct bpf_retval_range){ minval, maxval }; 2908 } 2909 2910 #define BPF_MAIN_FUNC (-1) 2911 static void init_func_state(struct bpf_verifier_env *env, 2912 struct bpf_func_state *state, 2913 int callsite, int frameno, int subprogno) 2914 { 2915 state->callsite = callsite; 2916 state->frameno = frameno; 2917 state->subprogno = subprogno; 2918 state->callback_ret_range = retval_range(0, 0); 2919 init_reg_state(env, state); 2920 mark_verifier_state_scratched(env); 2921 } 2922 2923 /* Similar to push_stack(), but for async callbacks */ 2924 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2925 int insn_idx, int prev_insn_idx, 2926 int subprog, bool is_sleepable) 2927 { 2928 struct bpf_verifier_stack_elem *elem; 2929 struct bpf_func_state *frame; 2930 2931 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT); 2932 if (!elem) 2933 return ERR_PTR(-ENOMEM); 2934 2935 elem->insn_idx = insn_idx; 2936 elem->prev_insn_idx = prev_insn_idx; 2937 elem->next = env->head; 2938 elem->log_pos = env->log.end_pos; 2939 env->head = elem; 2940 env->stack_size++; 2941 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2942 verbose(env, 2943 "The sequence of %d jumps is too complex for async cb.\n", 2944 env->stack_size); 2945 return ERR_PTR(-E2BIG); 2946 } 2947 /* Unlike push_stack() do not copy_verifier_state(). 2948 * The caller state doesn't matter. 2949 * This is async callback. It starts in a fresh stack. 2950 * Initialize it similar to do_check_common(). 2951 */ 2952 elem->st.branches = 1; 2953 elem->st.in_sleepable = is_sleepable; 2954 frame = kzalloc(sizeof(*frame), GFP_KERNEL_ACCOUNT); 2955 if (!frame) 2956 return ERR_PTR(-ENOMEM); 2957 init_func_state(env, frame, 2958 BPF_MAIN_FUNC /* callsite */, 2959 0 /* frameno within this callchain */, 2960 subprog /* subprog number within this prog */); 2961 elem->st.frame[0] = frame; 2962 return &elem->st; 2963 } 2964 2965 2966 enum reg_arg_type { 2967 SRC_OP, /* register is used as source operand */ 2968 DST_OP, /* register is used as destination operand */ 2969 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2970 }; 2971 2972 static int cmp_subprogs(const void *a, const void *b) 2973 { 2974 return ((struct bpf_subprog_info *)a)->start - 2975 ((struct bpf_subprog_info *)b)->start; 2976 } 2977 2978 /* Find subprogram that contains instruction at 'off' */ 2979 struct bpf_subprog_info *bpf_find_containing_subprog(struct bpf_verifier_env *env, int off) 2980 { 2981 struct bpf_subprog_info *vals = env->subprog_info; 2982 int l, r, m; 2983 2984 if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0) 2985 return NULL; 2986 2987 l = 0; 2988 r = env->subprog_cnt - 1; 2989 while (l < r) { 2990 m = l + (r - l + 1) / 2; 2991 if (vals[m].start <= off) 2992 l = m; 2993 else 2994 r = m - 1; 2995 } 2996 return &vals[l]; 2997 } 2998 2999 /* Find subprogram that starts exactly at 'off' */ 3000 static int find_subprog(struct bpf_verifier_env *env, int off) 3001 { 3002 struct bpf_subprog_info *p; 3003 3004 p = bpf_find_containing_subprog(env, off); 3005 if (!p || p->start != off) 3006 return -ENOENT; 3007 return p - env->subprog_info; 3008 } 3009 3010 static int add_subprog(struct bpf_verifier_env *env, int off) 3011 { 3012 int insn_cnt = env->prog->len; 3013 int ret; 3014 3015 if (off >= insn_cnt || off < 0) { 3016 verbose(env, "call to invalid destination\n"); 3017 return -EINVAL; 3018 } 3019 ret = find_subprog(env, off); 3020 if (ret >= 0) 3021 return ret; 3022 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 3023 verbose(env, "too many subprograms\n"); 3024 return -E2BIG; 3025 } 3026 /* determine subprog starts. The end is one before the next starts */ 3027 env->subprog_info[env->subprog_cnt++].start = off; 3028 sort(env->subprog_info, env->subprog_cnt, 3029 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 3030 return env->subprog_cnt - 1; 3031 } 3032 3033 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 3034 { 3035 struct bpf_prog_aux *aux = env->prog->aux; 3036 struct btf *btf = aux->btf; 3037 const struct btf_type *t; 3038 u32 main_btf_id, id; 3039 const char *name; 3040 int ret, i; 3041 3042 /* Non-zero func_info_cnt implies valid btf */ 3043 if (!aux->func_info_cnt) 3044 return 0; 3045 main_btf_id = aux->func_info[0].type_id; 3046 3047 t = btf_type_by_id(btf, main_btf_id); 3048 if (!t) { 3049 verbose(env, "invalid btf id for main subprog in func_info\n"); 3050 return -EINVAL; 3051 } 3052 3053 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 3054 if (IS_ERR(name)) { 3055 ret = PTR_ERR(name); 3056 /* If there is no tag present, there is no exception callback */ 3057 if (ret == -ENOENT) 3058 ret = 0; 3059 else if (ret == -EEXIST) 3060 verbose(env, "multiple exception callback tags for main subprog\n"); 3061 return ret; 3062 } 3063 3064 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 3065 if (ret < 0) { 3066 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 3067 return ret; 3068 } 3069 id = ret; 3070 t = btf_type_by_id(btf, id); 3071 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 3072 verbose(env, "exception callback '%s' must have global linkage\n", name); 3073 return -EINVAL; 3074 } 3075 ret = 0; 3076 for (i = 0; i < aux->func_info_cnt; i++) { 3077 if (aux->func_info[i].type_id != id) 3078 continue; 3079 ret = aux->func_info[i].insn_off; 3080 /* Further func_info and subprog checks will also happen 3081 * later, so assume this is the right insn_off for now. 3082 */ 3083 if (!ret) { 3084 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 3085 ret = -EINVAL; 3086 } 3087 } 3088 if (!ret) { 3089 verbose(env, "exception callback type id not found in func_info\n"); 3090 ret = -EINVAL; 3091 } 3092 return ret; 3093 } 3094 3095 #define MAX_KFUNC_DESCS 256 3096 #define MAX_KFUNC_BTFS 256 3097 3098 struct bpf_kfunc_desc { 3099 struct btf_func_model func_model; 3100 u32 func_id; 3101 s32 imm; 3102 u16 offset; 3103 unsigned long addr; 3104 }; 3105 3106 struct bpf_kfunc_btf { 3107 struct btf *btf; 3108 struct module *module; 3109 u16 offset; 3110 }; 3111 3112 struct bpf_kfunc_desc_tab { 3113 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 3114 * verification. JITs do lookups by bpf_insn, where func_id may not be 3115 * available, therefore at the end of verification do_misc_fixups() 3116 * sorts this by imm and offset. 3117 */ 3118 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 3119 u32 nr_descs; 3120 }; 3121 3122 struct bpf_kfunc_btf_tab { 3123 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 3124 u32 nr_descs; 3125 }; 3126 3127 static int specialize_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_desc *desc, 3128 int insn_idx); 3129 3130 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 3131 { 3132 const struct bpf_kfunc_desc *d0 = a; 3133 const struct bpf_kfunc_desc *d1 = b; 3134 3135 /* func_id is not greater than BTF_MAX_TYPE */ 3136 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 3137 } 3138 3139 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 3140 { 3141 const struct bpf_kfunc_btf *d0 = a; 3142 const struct bpf_kfunc_btf *d1 = b; 3143 3144 return d0->offset - d1->offset; 3145 } 3146 3147 static struct bpf_kfunc_desc * 3148 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 3149 { 3150 struct bpf_kfunc_desc desc = { 3151 .func_id = func_id, 3152 .offset = offset, 3153 }; 3154 struct bpf_kfunc_desc_tab *tab; 3155 3156 tab = prog->aux->kfunc_tab; 3157 return bsearch(&desc, tab->descs, tab->nr_descs, 3158 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 3159 } 3160 3161 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 3162 u16 btf_fd_idx, u8 **func_addr) 3163 { 3164 const struct bpf_kfunc_desc *desc; 3165 3166 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 3167 if (!desc) 3168 return -EFAULT; 3169 3170 *func_addr = (u8 *)desc->addr; 3171 return 0; 3172 } 3173 3174 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 3175 s16 offset) 3176 { 3177 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 3178 struct bpf_kfunc_btf_tab *tab; 3179 struct bpf_kfunc_btf *b; 3180 struct module *mod; 3181 struct btf *btf; 3182 int btf_fd; 3183 3184 tab = env->prog->aux->kfunc_btf_tab; 3185 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 3186 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 3187 if (!b) { 3188 if (tab->nr_descs == MAX_KFUNC_BTFS) { 3189 verbose(env, "too many different module BTFs\n"); 3190 return ERR_PTR(-E2BIG); 3191 } 3192 3193 if (bpfptr_is_null(env->fd_array)) { 3194 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 3195 return ERR_PTR(-EPROTO); 3196 } 3197 3198 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 3199 offset * sizeof(btf_fd), 3200 sizeof(btf_fd))) 3201 return ERR_PTR(-EFAULT); 3202 3203 btf = btf_get_by_fd(btf_fd); 3204 if (IS_ERR(btf)) { 3205 verbose(env, "invalid module BTF fd specified\n"); 3206 return btf; 3207 } 3208 3209 if (!btf_is_module(btf)) { 3210 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 3211 btf_put(btf); 3212 return ERR_PTR(-EINVAL); 3213 } 3214 3215 mod = btf_try_get_module(btf); 3216 if (!mod) { 3217 btf_put(btf); 3218 return ERR_PTR(-ENXIO); 3219 } 3220 3221 b = &tab->descs[tab->nr_descs++]; 3222 b->btf = btf; 3223 b->module = mod; 3224 b->offset = offset; 3225 3226 /* sort() reorders entries by value, so b may no longer point 3227 * to the right entry after this 3228 */ 3229 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3230 kfunc_btf_cmp_by_off, NULL); 3231 } else { 3232 btf = b->btf; 3233 } 3234 3235 return btf; 3236 } 3237 3238 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 3239 { 3240 if (!tab) 3241 return; 3242 3243 while (tab->nr_descs--) { 3244 module_put(tab->descs[tab->nr_descs].module); 3245 btf_put(tab->descs[tab->nr_descs].btf); 3246 } 3247 kfree(tab); 3248 } 3249 3250 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 3251 { 3252 if (offset) { 3253 if (offset < 0) { 3254 /* In the future, this can be allowed to increase limit 3255 * of fd index into fd_array, interpreted as u16. 3256 */ 3257 verbose(env, "negative offset disallowed for kernel module function call\n"); 3258 return ERR_PTR(-EINVAL); 3259 } 3260 3261 return __find_kfunc_desc_btf(env, offset); 3262 } 3263 return btf_vmlinux ?: ERR_PTR(-ENOENT); 3264 } 3265 3266 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 3267 { 3268 const struct btf_type *func, *func_proto; 3269 struct bpf_kfunc_btf_tab *btf_tab; 3270 struct btf_func_model func_model; 3271 struct bpf_kfunc_desc_tab *tab; 3272 struct bpf_prog_aux *prog_aux; 3273 struct bpf_kfunc_desc *desc; 3274 const char *func_name; 3275 struct btf *desc_btf; 3276 unsigned long addr; 3277 int err; 3278 3279 prog_aux = env->prog->aux; 3280 tab = prog_aux->kfunc_tab; 3281 btf_tab = prog_aux->kfunc_btf_tab; 3282 if (!tab) { 3283 if (!btf_vmlinux) { 3284 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 3285 return -ENOTSUPP; 3286 } 3287 3288 if (!env->prog->jit_requested) { 3289 verbose(env, "JIT is required for calling kernel function\n"); 3290 return -ENOTSUPP; 3291 } 3292 3293 if (!bpf_jit_supports_kfunc_call()) { 3294 verbose(env, "JIT does not support calling kernel function\n"); 3295 return -ENOTSUPP; 3296 } 3297 3298 if (!env->prog->gpl_compatible) { 3299 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 3300 return -EINVAL; 3301 } 3302 3303 tab = kzalloc(sizeof(*tab), GFP_KERNEL_ACCOUNT); 3304 if (!tab) 3305 return -ENOMEM; 3306 prog_aux->kfunc_tab = tab; 3307 } 3308 3309 /* func_id == 0 is always invalid, but instead of returning an error, be 3310 * conservative and wait until the code elimination pass before returning 3311 * error, so that invalid calls that get pruned out can be in BPF programs 3312 * loaded from userspace. It is also required that offset be untouched 3313 * for such calls. 3314 */ 3315 if (!func_id && !offset) 3316 return 0; 3317 3318 if (!btf_tab && offset) { 3319 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL_ACCOUNT); 3320 if (!btf_tab) 3321 return -ENOMEM; 3322 prog_aux->kfunc_btf_tab = btf_tab; 3323 } 3324 3325 desc_btf = find_kfunc_desc_btf(env, offset); 3326 if (IS_ERR(desc_btf)) { 3327 verbose(env, "failed to find BTF for kernel function\n"); 3328 return PTR_ERR(desc_btf); 3329 } 3330 3331 if (find_kfunc_desc(env->prog, func_id, offset)) 3332 return 0; 3333 3334 if (tab->nr_descs == MAX_KFUNC_DESCS) { 3335 verbose(env, "too many different kernel function calls\n"); 3336 return -E2BIG; 3337 } 3338 3339 func = btf_type_by_id(desc_btf, func_id); 3340 if (!func || !btf_type_is_func(func)) { 3341 verbose(env, "kernel btf_id %u is not a function\n", 3342 func_id); 3343 return -EINVAL; 3344 } 3345 func_proto = btf_type_by_id(desc_btf, func->type); 3346 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 3347 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 3348 func_id); 3349 return -EINVAL; 3350 } 3351 3352 func_name = btf_name_by_offset(desc_btf, func->name_off); 3353 addr = kallsyms_lookup_name(func_name); 3354 if (!addr) { 3355 verbose(env, "cannot find address for kernel function %s\n", 3356 func_name); 3357 return -EINVAL; 3358 } 3359 3360 if (bpf_dev_bound_kfunc_id(func_id)) { 3361 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 3362 if (err) 3363 return err; 3364 } 3365 3366 err = btf_distill_func_proto(&env->log, desc_btf, 3367 func_proto, func_name, 3368 &func_model); 3369 if (err) 3370 return err; 3371 3372 desc = &tab->descs[tab->nr_descs++]; 3373 desc->func_id = func_id; 3374 desc->offset = offset; 3375 desc->addr = addr; 3376 desc->func_model = func_model; 3377 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3378 kfunc_desc_cmp_by_id_off, NULL); 3379 return 0; 3380 } 3381 3382 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 3383 { 3384 const struct bpf_kfunc_desc *d0 = a; 3385 const struct bpf_kfunc_desc *d1 = b; 3386 3387 if (d0->imm != d1->imm) 3388 return d0->imm < d1->imm ? -1 : 1; 3389 if (d0->offset != d1->offset) 3390 return d0->offset < d1->offset ? -1 : 1; 3391 return 0; 3392 } 3393 3394 static int set_kfunc_desc_imm(struct bpf_verifier_env *env, struct bpf_kfunc_desc *desc) 3395 { 3396 unsigned long call_imm; 3397 3398 if (bpf_jit_supports_far_kfunc_call()) { 3399 call_imm = desc->func_id; 3400 } else { 3401 call_imm = BPF_CALL_IMM(desc->addr); 3402 /* Check whether the relative offset overflows desc->imm */ 3403 if ((unsigned long)(s32)call_imm != call_imm) { 3404 verbose(env, "address of kernel func_id %u is out of range\n", 3405 desc->func_id); 3406 return -EINVAL; 3407 } 3408 } 3409 desc->imm = call_imm; 3410 return 0; 3411 } 3412 3413 static int sort_kfunc_descs_by_imm_off(struct bpf_verifier_env *env) 3414 { 3415 struct bpf_kfunc_desc_tab *tab; 3416 int i, err; 3417 3418 tab = env->prog->aux->kfunc_tab; 3419 if (!tab) 3420 return 0; 3421 3422 for (i = 0; i < tab->nr_descs; i++) { 3423 err = set_kfunc_desc_imm(env, &tab->descs[i]); 3424 if (err) 3425 return err; 3426 } 3427 3428 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3429 kfunc_desc_cmp_by_imm_off, NULL); 3430 return 0; 3431 } 3432 3433 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 3434 { 3435 return !!prog->aux->kfunc_tab; 3436 } 3437 3438 const struct btf_func_model * 3439 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 3440 const struct bpf_insn *insn) 3441 { 3442 const struct bpf_kfunc_desc desc = { 3443 .imm = insn->imm, 3444 .offset = insn->off, 3445 }; 3446 const struct bpf_kfunc_desc *res; 3447 struct bpf_kfunc_desc_tab *tab; 3448 3449 tab = prog->aux->kfunc_tab; 3450 res = bsearch(&desc, tab->descs, tab->nr_descs, 3451 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3452 3453 return res ? &res->func_model : NULL; 3454 } 3455 3456 static int add_kfunc_in_insns(struct bpf_verifier_env *env, 3457 struct bpf_insn *insn, int cnt) 3458 { 3459 int i, ret; 3460 3461 for (i = 0; i < cnt; i++, insn++) { 3462 if (bpf_pseudo_kfunc_call(insn)) { 3463 ret = add_kfunc_call(env, insn->imm, insn->off); 3464 if (ret < 0) 3465 return ret; 3466 } 3467 } 3468 return 0; 3469 } 3470 3471 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3472 { 3473 struct bpf_subprog_info *subprog = env->subprog_info; 3474 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 3475 struct bpf_insn *insn = env->prog->insnsi; 3476 3477 /* Add entry function. */ 3478 ret = add_subprog(env, 0); 3479 if (ret) 3480 return ret; 3481 3482 for (i = 0; i < insn_cnt; i++, insn++) { 3483 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3484 !bpf_pseudo_kfunc_call(insn)) 3485 continue; 3486 3487 if (!env->bpf_capable) { 3488 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3489 return -EPERM; 3490 } 3491 3492 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3493 ret = add_subprog(env, i + insn->imm + 1); 3494 else 3495 ret = add_kfunc_call(env, insn->imm, insn->off); 3496 3497 if (ret < 0) 3498 return ret; 3499 } 3500 3501 ret = bpf_find_exception_callback_insn_off(env); 3502 if (ret < 0) 3503 return ret; 3504 ex_cb_insn = ret; 3505 3506 /* If ex_cb_insn > 0, this means that the main program has a subprog 3507 * marked using BTF decl tag to serve as the exception callback. 3508 */ 3509 if (ex_cb_insn) { 3510 ret = add_subprog(env, ex_cb_insn); 3511 if (ret < 0) 3512 return ret; 3513 for (i = 1; i < env->subprog_cnt; i++) { 3514 if (env->subprog_info[i].start != ex_cb_insn) 3515 continue; 3516 env->exception_callback_subprog = i; 3517 mark_subprog_exc_cb(env, i); 3518 break; 3519 } 3520 } 3521 3522 /* Add a fake 'exit' subprog which could simplify subprog iteration 3523 * logic. 'subprog_cnt' should not be increased. 3524 */ 3525 subprog[env->subprog_cnt].start = insn_cnt; 3526 3527 if (env->log.level & BPF_LOG_LEVEL2) 3528 for (i = 0; i < env->subprog_cnt; i++) 3529 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3530 3531 return 0; 3532 } 3533 3534 static int check_subprogs(struct bpf_verifier_env *env) 3535 { 3536 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3537 struct bpf_subprog_info *subprog = env->subprog_info; 3538 struct bpf_insn *insn = env->prog->insnsi; 3539 int insn_cnt = env->prog->len; 3540 3541 /* now check that all jumps are within the same subprog */ 3542 subprog_start = subprog[cur_subprog].start; 3543 subprog_end = subprog[cur_subprog + 1].start; 3544 for (i = 0; i < insn_cnt; i++) { 3545 u8 code = insn[i].code; 3546 3547 if (code == (BPF_JMP | BPF_CALL) && 3548 insn[i].src_reg == 0 && 3549 insn[i].imm == BPF_FUNC_tail_call) { 3550 subprog[cur_subprog].has_tail_call = true; 3551 subprog[cur_subprog].tail_call_reachable = true; 3552 } 3553 if (BPF_CLASS(code) == BPF_LD && 3554 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3555 subprog[cur_subprog].has_ld_abs = true; 3556 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3557 goto next; 3558 if (BPF_OP(code) == BPF_CALL) 3559 goto next; 3560 if (BPF_OP(code) == BPF_EXIT) { 3561 subprog[cur_subprog].exit_idx = i; 3562 goto next; 3563 } 3564 off = i + bpf_jmp_offset(&insn[i]) + 1; 3565 if (off < subprog_start || off >= subprog_end) { 3566 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3567 return -EINVAL; 3568 } 3569 next: 3570 if (i == subprog_end - 1) { 3571 /* to avoid fall-through from one subprog into another 3572 * the last insn of the subprog should be either exit 3573 * or unconditional jump back or bpf_throw call 3574 */ 3575 if (code != (BPF_JMP | BPF_EXIT) && 3576 code != (BPF_JMP32 | BPF_JA) && 3577 code != (BPF_JMP | BPF_JA)) { 3578 verbose(env, "last insn is not an exit or jmp\n"); 3579 return -EINVAL; 3580 } 3581 subprog_start = subprog_end; 3582 cur_subprog++; 3583 if (cur_subprog < env->subprog_cnt) 3584 subprog_end = subprog[cur_subprog + 1].start; 3585 } 3586 } 3587 return 0; 3588 } 3589 3590 static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3591 int spi, int nr_slots) 3592 { 3593 int err, i; 3594 3595 for (i = 0; i < nr_slots; i++) { 3596 err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi - i)); 3597 if (err) 3598 return err; 3599 mark_stack_slot_scratched(env, spi - i); 3600 } 3601 return 0; 3602 } 3603 3604 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3605 { 3606 int spi; 3607 3608 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3609 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3610 * check_kfunc_call. 3611 */ 3612 if (reg->type == CONST_PTR_TO_DYNPTR) 3613 return 0; 3614 spi = dynptr_get_spi(env, reg); 3615 if (spi < 0) 3616 return spi; 3617 /* Caller ensures dynptr is valid and initialized, which means spi is in 3618 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3619 * read. 3620 */ 3621 return mark_stack_slot_obj_read(env, reg, spi, BPF_DYNPTR_NR_SLOTS); 3622 } 3623 3624 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3625 int spi, int nr_slots) 3626 { 3627 return mark_stack_slot_obj_read(env, reg, spi, nr_slots); 3628 } 3629 3630 static int mark_irq_flag_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3631 { 3632 int spi; 3633 3634 spi = irq_flag_get_spi(env, reg); 3635 if (spi < 0) 3636 return spi; 3637 return mark_stack_slot_obj_read(env, reg, spi, 1); 3638 } 3639 3640 /* This function is supposed to be used by the following 32-bit optimization 3641 * code only. It returns TRUE if the source or destination register operates 3642 * on 64-bit, otherwise return FALSE. 3643 */ 3644 static bool is_reg64(struct bpf_insn *insn, 3645 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3646 { 3647 u8 code, class, op; 3648 3649 code = insn->code; 3650 class = BPF_CLASS(code); 3651 op = BPF_OP(code); 3652 if (class == BPF_JMP) { 3653 /* BPF_EXIT for "main" will reach here. Return TRUE 3654 * conservatively. 3655 */ 3656 if (op == BPF_EXIT) 3657 return true; 3658 if (op == BPF_CALL) { 3659 /* BPF to BPF call will reach here because of marking 3660 * caller saved clobber with DST_OP_NO_MARK for which we 3661 * don't care the register def because they are anyway 3662 * marked as NOT_INIT already. 3663 */ 3664 if (insn->src_reg == BPF_PSEUDO_CALL) 3665 return false; 3666 /* Helper call will reach here because of arg type 3667 * check, conservatively return TRUE. 3668 */ 3669 if (t == SRC_OP) 3670 return true; 3671 3672 return false; 3673 } 3674 } 3675 3676 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3677 return false; 3678 3679 if (class == BPF_ALU64 || class == BPF_JMP || 3680 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3681 return true; 3682 3683 if (class == BPF_ALU || class == BPF_JMP32) 3684 return false; 3685 3686 if (class == BPF_LDX) { 3687 if (t != SRC_OP) 3688 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3689 /* LDX source must be ptr. */ 3690 return true; 3691 } 3692 3693 if (class == BPF_STX) { 3694 /* BPF_STX (including atomic variants) has one or more source 3695 * operands, one of which is a ptr. Check whether the caller is 3696 * asking about it. 3697 */ 3698 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3699 return true; 3700 return BPF_SIZE(code) == BPF_DW; 3701 } 3702 3703 if (class == BPF_LD) { 3704 u8 mode = BPF_MODE(code); 3705 3706 /* LD_IMM64 */ 3707 if (mode == BPF_IMM) 3708 return true; 3709 3710 /* Both LD_IND and LD_ABS return 32-bit data. */ 3711 if (t != SRC_OP) 3712 return false; 3713 3714 /* Implicit ctx ptr. */ 3715 if (regno == BPF_REG_6) 3716 return true; 3717 3718 /* Explicit source could be any width. */ 3719 return true; 3720 } 3721 3722 if (class == BPF_ST) 3723 /* The only source register for BPF_ST is a ptr. */ 3724 return true; 3725 3726 /* Conservatively return true at default. */ 3727 return true; 3728 } 3729 3730 /* Return the regno defined by the insn, or -1. */ 3731 static int insn_def_regno(const struct bpf_insn *insn) 3732 { 3733 switch (BPF_CLASS(insn->code)) { 3734 case BPF_JMP: 3735 case BPF_JMP32: 3736 case BPF_ST: 3737 return -1; 3738 case BPF_STX: 3739 if (BPF_MODE(insn->code) == BPF_ATOMIC || 3740 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) { 3741 if (insn->imm == BPF_CMPXCHG) 3742 return BPF_REG_0; 3743 else if (insn->imm == BPF_LOAD_ACQ) 3744 return insn->dst_reg; 3745 else if (insn->imm & BPF_FETCH) 3746 return insn->src_reg; 3747 } 3748 return -1; 3749 default: 3750 return insn->dst_reg; 3751 } 3752 } 3753 3754 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3755 static bool insn_has_def32(struct bpf_insn *insn) 3756 { 3757 int dst_reg = insn_def_regno(insn); 3758 3759 if (dst_reg == -1) 3760 return false; 3761 3762 return !is_reg64(insn, dst_reg, NULL, DST_OP); 3763 } 3764 3765 static void mark_insn_zext(struct bpf_verifier_env *env, 3766 struct bpf_reg_state *reg) 3767 { 3768 s32 def_idx = reg->subreg_def; 3769 3770 if (def_idx == DEF_NOT_SUBREG) 3771 return; 3772 3773 env->insn_aux_data[def_idx - 1].zext_dst = true; 3774 /* The dst will be zero extended, so won't be sub-register anymore. */ 3775 reg->subreg_def = DEF_NOT_SUBREG; 3776 } 3777 3778 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3779 enum reg_arg_type t) 3780 { 3781 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3782 struct bpf_reg_state *reg; 3783 bool rw64; 3784 3785 if (regno >= MAX_BPF_REG) { 3786 verbose(env, "R%d is invalid\n", regno); 3787 return -EINVAL; 3788 } 3789 3790 mark_reg_scratched(env, regno); 3791 3792 reg = ®s[regno]; 3793 rw64 = is_reg64(insn, regno, reg, t); 3794 if (t == SRC_OP) { 3795 /* check whether register used as source operand can be read */ 3796 if (reg->type == NOT_INIT) { 3797 verbose(env, "R%d !read_ok\n", regno); 3798 return -EACCES; 3799 } 3800 /* We don't need to worry about FP liveness because it's read-only */ 3801 if (regno == BPF_REG_FP) 3802 return 0; 3803 3804 if (rw64) 3805 mark_insn_zext(env, reg); 3806 3807 return 0; 3808 } else { 3809 /* check whether register used as dest operand can be written to */ 3810 if (regno == BPF_REG_FP) { 3811 verbose(env, "frame pointer is read only\n"); 3812 return -EACCES; 3813 } 3814 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3815 if (t == DST_OP) 3816 mark_reg_unknown(env, regs, regno); 3817 } 3818 return 0; 3819 } 3820 3821 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3822 enum reg_arg_type t) 3823 { 3824 struct bpf_verifier_state *vstate = env->cur_state; 3825 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3826 3827 return __check_reg_arg(env, state->regs, regno, t); 3828 } 3829 3830 static int insn_stack_access_flags(int frameno, int spi) 3831 { 3832 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; 3833 } 3834 3835 static int insn_stack_access_spi(int insn_flags) 3836 { 3837 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; 3838 } 3839 3840 static int insn_stack_access_frameno(int insn_flags) 3841 { 3842 return insn_flags & INSN_F_FRAMENO_MASK; 3843 } 3844 3845 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3846 { 3847 env->insn_aux_data[idx].jmp_point = true; 3848 } 3849 3850 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3851 { 3852 return env->insn_aux_data[insn_idx].jmp_point; 3853 } 3854 3855 #define LR_FRAMENO_BITS 3 3856 #define LR_SPI_BITS 6 3857 #define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1) 3858 #define LR_SIZE_BITS 4 3859 #define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1) 3860 #define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1) 3861 #define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1) 3862 #define LR_SPI_OFF LR_FRAMENO_BITS 3863 #define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS) 3864 #define LINKED_REGS_MAX 6 3865 3866 struct linked_reg { 3867 u8 frameno; 3868 union { 3869 u8 spi; 3870 u8 regno; 3871 }; 3872 bool is_reg; 3873 }; 3874 3875 struct linked_regs { 3876 int cnt; 3877 struct linked_reg entries[LINKED_REGS_MAX]; 3878 }; 3879 3880 static struct linked_reg *linked_regs_push(struct linked_regs *s) 3881 { 3882 if (s->cnt < LINKED_REGS_MAX) 3883 return &s->entries[s->cnt++]; 3884 3885 return NULL; 3886 } 3887 3888 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track 3889 * number of elements currently in stack. 3890 * Pack one history entry for linked registers as 10 bits in the following format: 3891 * - 3-bits frameno 3892 * - 6-bits spi_or_reg 3893 * - 1-bit is_reg 3894 */ 3895 static u64 linked_regs_pack(struct linked_regs *s) 3896 { 3897 u64 val = 0; 3898 int i; 3899 3900 for (i = 0; i < s->cnt; ++i) { 3901 struct linked_reg *e = &s->entries[i]; 3902 u64 tmp = 0; 3903 3904 tmp |= e->frameno; 3905 tmp |= e->spi << LR_SPI_OFF; 3906 tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF; 3907 3908 val <<= LR_ENTRY_BITS; 3909 val |= tmp; 3910 } 3911 val <<= LR_SIZE_BITS; 3912 val |= s->cnt; 3913 return val; 3914 } 3915 3916 static void linked_regs_unpack(u64 val, struct linked_regs *s) 3917 { 3918 int i; 3919 3920 s->cnt = val & LR_SIZE_MASK; 3921 val >>= LR_SIZE_BITS; 3922 3923 for (i = 0; i < s->cnt; ++i) { 3924 struct linked_reg *e = &s->entries[i]; 3925 3926 e->frameno = val & LR_FRAMENO_MASK; 3927 e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK; 3928 e->is_reg = (val >> LR_IS_REG_OFF) & 0x1; 3929 val >>= LR_ENTRY_BITS; 3930 } 3931 } 3932 3933 /* for any branch, call, exit record the history of jmps in the given state */ 3934 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, 3935 int insn_flags, u64 linked_regs) 3936 { 3937 u32 cnt = cur->jmp_history_cnt; 3938 struct bpf_jmp_history_entry *p; 3939 size_t alloc_size; 3940 3941 /* combine instruction flags if we already recorded this instruction */ 3942 if (env->cur_hist_ent) { 3943 /* atomic instructions push insn_flags twice, for READ and 3944 * WRITE sides, but they should agree on stack slot 3945 */ 3946 verifier_bug_if((env->cur_hist_ent->flags & insn_flags) && 3947 (env->cur_hist_ent->flags & insn_flags) != insn_flags, 3948 env, "insn history: insn_idx %d cur flags %x new flags %x", 3949 env->insn_idx, env->cur_hist_ent->flags, insn_flags); 3950 env->cur_hist_ent->flags |= insn_flags; 3951 verifier_bug_if(env->cur_hist_ent->linked_regs != 0, env, 3952 "insn history: insn_idx %d linked_regs: %#llx", 3953 env->insn_idx, env->cur_hist_ent->linked_regs); 3954 env->cur_hist_ent->linked_regs = linked_regs; 3955 return 0; 3956 } 3957 3958 cnt++; 3959 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3960 p = krealloc(cur->jmp_history, alloc_size, GFP_KERNEL_ACCOUNT); 3961 if (!p) 3962 return -ENOMEM; 3963 cur->jmp_history = p; 3964 3965 p = &cur->jmp_history[cnt - 1]; 3966 p->idx = env->insn_idx; 3967 p->prev_idx = env->prev_insn_idx; 3968 p->flags = insn_flags; 3969 p->linked_regs = linked_regs; 3970 cur->jmp_history_cnt = cnt; 3971 env->cur_hist_ent = p; 3972 3973 return 0; 3974 } 3975 3976 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st, 3977 u32 hist_end, int insn_idx) 3978 { 3979 if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx) 3980 return &st->jmp_history[hist_end - 1]; 3981 return NULL; 3982 } 3983 3984 /* Backtrack one insn at a time. If idx is not at the top of recorded 3985 * history then previous instruction came from straight line execution. 3986 * Return -ENOENT if we exhausted all instructions within given state. 3987 * 3988 * It's legal to have a bit of a looping with the same starting and ending 3989 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3990 * instruction index is the same as state's first_idx doesn't mean we are 3991 * done. If there is still some jump history left, we should keep going. We 3992 * need to take into account that we might have a jump history between given 3993 * state's parent and itself, due to checkpointing. In this case, we'll have 3994 * history entry recording a jump from last instruction of parent state and 3995 * first instruction of given state. 3996 */ 3997 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3998 u32 *history) 3999 { 4000 u32 cnt = *history; 4001 4002 if (i == st->first_insn_idx) { 4003 if (cnt == 0) 4004 return -ENOENT; 4005 if (cnt == 1 && st->jmp_history[0].idx == i) 4006 return -ENOENT; 4007 } 4008 4009 if (cnt && st->jmp_history[cnt - 1].idx == i) { 4010 i = st->jmp_history[cnt - 1].prev_idx; 4011 (*history)--; 4012 } else { 4013 i--; 4014 } 4015 return i; 4016 } 4017 4018 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 4019 { 4020 const struct btf_type *func; 4021 struct btf *desc_btf; 4022 4023 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 4024 return NULL; 4025 4026 desc_btf = find_kfunc_desc_btf(data, insn->off); 4027 if (IS_ERR(desc_btf)) 4028 return "<error>"; 4029 4030 func = btf_type_by_id(desc_btf, insn->imm); 4031 return btf_name_by_offset(desc_btf, func->name_off); 4032 } 4033 4034 static void verbose_insn(struct bpf_verifier_env *env, struct bpf_insn *insn) 4035 { 4036 const struct bpf_insn_cbs cbs = { 4037 .cb_call = disasm_kfunc_name, 4038 .cb_print = verbose, 4039 .private_data = env, 4040 }; 4041 4042 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 4043 } 4044 4045 static inline void bt_init(struct backtrack_state *bt, u32 frame) 4046 { 4047 bt->frame = frame; 4048 } 4049 4050 static inline void bt_reset(struct backtrack_state *bt) 4051 { 4052 struct bpf_verifier_env *env = bt->env; 4053 4054 memset(bt, 0, sizeof(*bt)); 4055 bt->env = env; 4056 } 4057 4058 static inline u32 bt_empty(struct backtrack_state *bt) 4059 { 4060 u64 mask = 0; 4061 int i; 4062 4063 for (i = 0; i <= bt->frame; i++) 4064 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 4065 4066 return mask == 0; 4067 } 4068 4069 static inline int bt_subprog_enter(struct backtrack_state *bt) 4070 { 4071 if (bt->frame == MAX_CALL_FRAMES - 1) { 4072 verifier_bug(bt->env, "subprog enter from frame %d", bt->frame); 4073 return -EFAULT; 4074 } 4075 bt->frame++; 4076 return 0; 4077 } 4078 4079 static inline int bt_subprog_exit(struct backtrack_state *bt) 4080 { 4081 if (bt->frame == 0) { 4082 verifier_bug(bt->env, "subprog exit from frame 0"); 4083 return -EFAULT; 4084 } 4085 bt->frame--; 4086 return 0; 4087 } 4088 4089 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 4090 { 4091 bt->reg_masks[frame] |= 1 << reg; 4092 } 4093 4094 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 4095 { 4096 bt->reg_masks[frame] &= ~(1 << reg); 4097 } 4098 4099 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 4100 { 4101 bt_set_frame_reg(bt, bt->frame, reg); 4102 } 4103 4104 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 4105 { 4106 bt_clear_frame_reg(bt, bt->frame, reg); 4107 } 4108 4109 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 4110 { 4111 bt->stack_masks[frame] |= 1ull << slot; 4112 } 4113 4114 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 4115 { 4116 bt->stack_masks[frame] &= ~(1ull << slot); 4117 } 4118 4119 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 4120 { 4121 return bt->reg_masks[frame]; 4122 } 4123 4124 static inline u32 bt_reg_mask(struct backtrack_state *bt) 4125 { 4126 return bt->reg_masks[bt->frame]; 4127 } 4128 4129 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 4130 { 4131 return bt->stack_masks[frame]; 4132 } 4133 4134 static inline u64 bt_stack_mask(struct backtrack_state *bt) 4135 { 4136 return bt->stack_masks[bt->frame]; 4137 } 4138 4139 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 4140 { 4141 return bt->reg_masks[bt->frame] & (1 << reg); 4142 } 4143 4144 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg) 4145 { 4146 return bt->reg_masks[frame] & (1 << reg); 4147 } 4148 4149 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) 4150 { 4151 return bt->stack_masks[frame] & (1ull << slot); 4152 } 4153 4154 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 4155 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 4156 { 4157 DECLARE_BITMAP(mask, 64); 4158 bool first = true; 4159 int i, n; 4160 4161 buf[0] = '\0'; 4162 4163 bitmap_from_u64(mask, reg_mask); 4164 for_each_set_bit(i, mask, 32) { 4165 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 4166 first = false; 4167 buf += n; 4168 buf_sz -= n; 4169 if (buf_sz < 0) 4170 break; 4171 } 4172 } 4173 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 4174 void bpf_fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 4175 { 4176 DECLARE_BITMAP(mask, 64); 4177 bool first = true; 4178 int i, n; 4179 4180 buf[0] = '\0'; 4181 4182 bitmap_from_u64(mask, stack_mask); 4183 for_each_set_bit(i, mask, 64) { 4184 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 4185 first = false; 4186 buf += n; 4187 buf_sz -= n; 4188 if (buf_sz < 0) 4189 break; 4190 } 4191 } 4192 4193 /* If any register R in hist->linked_regs is marked as precise in bt, 4194 * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs. 4195 */ 4196 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist) 4197 { 4198 struct linked_regs linked_regs; 4199 bool some_precise = false; 4200 int i; 4201 4202 if (!hist || hist->linked_regs == 0) 4203 return; 4204 4205 linked_regs_unpack(hist->linked_regs, &linked_regs); 4206 for (i = 0; i < linked_regs.cnt; ++i) { 4207 struct linked_reg *e = &linked_regs.entries[i]; 4208 4209 if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) || 4210 (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) { 4211 some_precise = true; 4212 break; 4213 } 4214 } 4215 4216 if (!some_precise) 4217 return; 4218 4219 for (i = 0; i < linked_regs.cnt; ++i) { 4220 struct linked_reg *e = &linked_regs.entries[i]; 4221 4222 if (e->is_reg) 4223 bt_set_frame_reg(bt, e->frameno, e->regno); 4224 else 4225 bt_set_frame_slot(bt, e->frameno, e->spi); 4226 } 4227 } 4228 4229 /* For given verifier state backtrack_insn() is called from the last insn to 4230 * the first insn. Its purpose is to compute a bitmask of registers and 4231 * stack slots that needs precision in the parent verifier state. 4232 * 4233 * @idx is an index of the instruction we are currently processing; 4234 * @subseq_idx is an index of the subsequent instruction that: 4235 * - *would be* executed next, if jump history is viewed in forward order; 4236 * - *was* processed previously during backtracking. 4237 */ 4238 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 4239 struct bpf_jmp_history_entry *hist, struct backtrack_state *bt) 4240 { 4241 struct bpf_insn *insn = env->prog->insnsi + idx; 4242 u8 class = BPF_CLASS(insn->code); 4243 u8 opcode = BPF_OP(insn->code); 4244 u8 mode = BPF_MODE(insn->code); 4245 u32 dreg = insn->dst_reg; 4246 u32 sreg = insn->src_reg; 4247 u32 spi, i, fr; 4248 4249 if (insn->code == 0) 4250 return 0; 4251 if (env->log.level & BPF_LOG_LEVEL2) { 4252 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 4253 verbose(env, "mark_precise: frame%d: regs=%s ", 4254 bt->frame, env->tmp_str_buf); 4255 bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 4256 verbose(env, "stack=%s before ", env->tmp_str_buf); 4257 verbose(env, "%d: ", idx); 4258 verbose_insn(env, insn); 4259 } 4260 4261 /* If there is a history record that some registers gained range at this insn, 4262 * propagate precision marks to those registers, so that bt_is_reg_set() 4263 * accounts for these registers. 4264 */ 4265 bt_sync_linked_regs(bt, hist); 4266 4267 if (class == BPF_ALU || class == BPF_ALU64) { 4268 if (!bt_is_reg_set(bt, dreg)) 4269 return 0; 4270 if (opcode == BPF_END || opcode == BPF_NEG) { 4271 /* sreg is reserved and unused 4272 * dreg still need precision before this insn 4273 */ 4274 return 0; 4275 } else if (opcode == BPF_MOV) { 4276 if (BPF_SRC(insn->code) == BPF_X) { 4277 /* dreg = sreg or dreg = (s8, s16, s32)sreg 4278 * dreg needs precision after this insn 4279 * sreg needs precision before this insn 4280 */ 4281 bt_clear_reg(bt, dreg); 4282 if (sreg != BPF_REG_FP) 4283 bt_set_reg(bt, sreg); 4284 } else { 4285 /* dreg = K 4286 * dreg needs precision after this insn. 4287 * Corresponding register is already marked 4288 * as precise=true in this verifier state. 4289 * No further markings in parent are necessary 4290 */ 4291 bt_clear_reg(bt, dreg); 4292 } 4293 } else { 4294 if (BPF_SRC(insn->code) == BPF_X) { 4295 /* dreg += sreg 4296 * both dreg and sreg need precision 4297 * before this insn 4298 */ 4299 if (sreg != BPF_REG_FP) 4300 bt_set_reg(bt, sreg); 4301 } /* else dreg += K 4302 * dreg still needs precision before this insn 4303 */ 4304 } 4305 } else if (class == BPF_LDX || is_atomic_load_insn(insn)) { 4306 if (!bt_is_reg_set(bt, dreg)) 4307 return 0; 4308 bt_clear_reg(bt, dreg); 4309 4310 /* scalars can only be spilled into stack w/o losing precision. 4311 * Load from any other memory can be zero extended. 4312 * The desire to keep that precision is already indicated 4313 * by 'precise' mark in corresponding register of this state. 4314 * No further tracking necessary. 4315 */ 4316 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 4317 return 0; 4318 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 4319 * that [fp - off] slot contains scalar that needs to be 4320 * tracked with precision 4321 */ 4322 spi = insn_stack_access_spi(hist->flags); 4323 fr = insn_stack_access_frameno(hist->flags); 4324 bt_set_frame_slot(bt, fr, spi); 4325 } else if (class == BPF_STX || class == BPF_ST) { 4326 if (bt_is_reg_set(bt, dreg)) 4327 /* stx & st shouldn't be using _scalar_ dst_reg 4328 * to access memory. It means backtracking 4329 * encountered a case of pointer subtraction. 4330 */ 4331 return -ENOTSUPP; 4332 /* scalars can only be spilled into stack */ 4333 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 4334 return 0; 4335 spi = insn_stack_access_spi(hist->flags); 4336 fr = insn_stack_access_frameno(hist->flags); 4337 if (!bt_is_frame_slot_set(bt, fr, spi)) 4338 return 0; 4339 bt_clear_frame_slot(bt, fr, spi); 4340 if (class == BPF_STX) 4341 bt_set_reg(bt, sreg); 4342 } else if (class == BPF_JMP || class == BPF_JMP32) { 4343 if (bpf_pseudo_call(insn)) { 4344 int subprog_insn_idx, subprog; 4345 4346 subprog_insn_idx = idx + insn->imm + 1; 4347 subprog = find_subprog(env, subprog_insn_idx); 4348 if (subprog < 0) 4349 return -EFAULT; 4350 4351 if (subprog_is_global(env, subprog)) { 4352 /* check that jump history doesn't have any 4353 * extra instructions from subprog; the next 4354 * instruction after call to global subprog 4355 * should be literally next instruction in 4356 * caller program 4357 */ 4358 verifier_bug_if(idx + 1 != subseq_idx, env, 4359 "extra insn from subprog"); 4360 /* r1-r5 are invalidated after subprog call, 4361 * so for global func call it shouldn't be set 4362 * anymore 4363 */ 4364 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4365 verifier_bug(env, "global subprog unexpected regs %x", 4366 bt_reg_mask(bt)); 4367 return -EFAULT; 4368 } 4369 /* global subprog always sets R0 */ 4370 bt_clear_reg(bt, BPF_REG_0); 4371 return 0; 4372 } else { 4373 /* static subprog call instruction, which 4374 * means that we are exiting current subprog, 4375 * so only r1-r5 could be still requested as 4376 * precise, r0 and r6-r10 or any stack slot in 4377 * the current frame should be zero by now 4378 */ 4379 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4380 verifier_bug(env, "static subprog unexpected regs %x", 4381 bt_reg_mask(bt)); 4382 return -EFAULT; 4383 } 4384 /* we are now tracking register spills correctly, 4385 * so any instance of leftover slots is a bug 4386 */ 4387 if (bt_stack_mask(bt) != 0) { 4388 verifier_bug(env, 4389 "static subprog leftover stack slots %llx", 4390 bt_stack_mask(bt)); 4391 return -EFAULT; 4392 } 4393 /* propagate r1-r5 to the caller */ 4394 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 4395 if (bt_is_reg_set(bt, i)) { 4396 bt_clear_reg(bt, i); 4397 bt_set_frame_reg(bt, bt->frame - 1, i); 4398 } 4399 } 4400 if (bt_subprog_exit(bt)) 4401 return -EFAULT; 4402 return 0; 4403 } 4404 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 4405 /* exit from callback subprog to callback-calling helper or 4406 * kfunc call. Use idx/subseq_idx check to discern it from 4407 * straight line code backtracking. 4408 * Unlike the subprog call handling above, we shouldn't 4409 * propagate precision of r1-r5 (if any requested), as they are 4410 * not actually arguments passed directly to callback subprogs 4411 */ 4412 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4413 verifier_bug(env, "callback unexpected regs %x", 4414 bt_reg_mask(bt)); 4415 return -EFAULT; 4416 } 4417 if (bt_stack_mask(bt) != 0) { 4418 verifier_bug(env, "callback leftover stack slots %llx", 4419 bt_stack_mask(bt)); 4420 return -EFAULT; 4421 } 4422 /* clear r1-r5 in callback subprog's mask */ 4423 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4424 bt_clear_reg(bt, i); 4425 if (bt_subprog_exit(bt)) 4426 return -EFAULT; 4427 return 0; 4428 } else if (opcode == BPF_CALL) { 4429 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 4430 * catch this error later. Make backtracking conservative 4431 * with ENOTSUPP. 4432 */ 4433 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 4434 return -ENOTSUPP; 4435 /* regular helper call sets R0 */ 4436 bt_clear_reg(bt, BPF_REG_0); 4437 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4438 /* if backtracking was looking for registers R1-R5 4439 * they should have been found already. 4440 */ 4441 verifier_bug(env, "backtracking call unexpected regs %x", 4442 bt_reg_mask(bt)); 4443 return -EFAULT; 4444 } 4445 if (insn->src_reg == BPF_REG_0 && insn->imm == BPF_FUNC_tail_call 4446 && subseq_idx - idx != 1) { 4447 if (bt_subprog_enter(bt)) 4448 return -EFAULT; 4449 } 4450 } else if (opcode == BPF_EXIT) { 4451 bool r0_precise; 4452 4453 /* Backtracking to a nested function call, 'idx' is a part of 4454 * the inner frame 'subseq_idx' is a part of the outer frame. 4455 * In case of a regular function call, instructions giving 4456 * precision to registers R1-R5 should have been found already. 4457 * In case of a callback, it is ok to have R1-R5 marked for 4458 * backtracking, as these registers are set by the function 4459 * invoking callback. 4460 */ 4461 if (subseq_idx >= 0 && bpf_calls_callback(env, subseq_idx)) 4462 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4463 bt_clear_reg(bt, i); 4464 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4465 verifier_bug(env, "backtracking exit unexpected regs %x", 4466 bt_reg_mask(bt)); 4467 return -EFAULT; 4468 } 4469 4470 /* BPF_EXIT in subprog or callback always returns 4471 * right after the call instruction, so by checking 4472 * whether the instruction at subseq_idx-1 is subprog 4473 * call or not we can distinguish actual exit from 4474 * *subprog* from exit from *callback*. In the former 4475 * case, we need to propagate r0 precision, if 4476 * necessary. In the former we never do that. 4477 */ 4478 r0_precise = subseq_idx - 1 >= 0 && 4479 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 4480 bt_is_reg_set(bt, BPF_REG_0); 4481 4482 bt_clear_reg(bt, BPF_REG_0); 4483 if (bt_subprog_enter(bt)) 4484 return -EFAULT; 4485 4486 if (r0_precise) 4487 bt_set_reg(bt, BPF_REG_0); 4488 /* r6-r9 and stack slots will stay set in caller frame 4489 * bitmasks until we return back from callee(s) 4490 */ 4491 return 0; 4492 } else if (BPF_SRC(insn->code) == BPF_X) { 4493 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 4494 return 0; 4495 /* dreg <cond> sreg 4496 * Both dreg and sreg need precision before 4497 * this insn. If only sreg was marked precise 4498 * before it would be equally necessary to 4499 * propagate it to dreg. 4500 */ 4501 if (!hist || !(hist->flags & INSN_F_SRC_REG_STACK)) 4502 bt_set_reg(bt, sreg); 4503 if (!hist || !(hist->flags & INSN_F_DST_REG_STACK)) 4504 bt_set_reg(bt, dreg); 4505 } else if (BPF_SRC(insn->code) == BPF_K) { 4506 /* dreg <cond> K 4507 * Only dreg still needs precision before 4508 * this insn, so for the K-based conditional 4509 * there is nothing new to be marked. 4510 */ 4511 } 4512 } else if (class == BPF_LD) { 4513 if (!bt_is_reg_set(bt, dreg)) 4514 return 0; 4515 bt_clear_reg(bt, dreg); 4516 /* It's ld_imm64 or ld_abs or ld_ind. 4517 * For ld_imm64 no further tracking of precision 4518 * into parent is necessary 4519 */ 4520 if (mode == BPF_IND || mode == BPF_ABS) 4521 /* to be analyzed */ 4522 return -ENOTSUPP; 4523 } 4524 /* Propagate precision marks to linked registers, to account for 4525 * registers marked as precise in this function. 4526 */ 4527 bt_sync_linked_regs(bt, hist); 4528 return 0; 4529 } 4530 4531 /* the scalar precision tracking algorithm: 4532 * . at the start all registers have precise=false. 4533 * . scalar ranges are tracked as normal through alu and jmp insns. 4534 * . once precise value of the scalar register is used in: 4535 * . ptr + scalar alu 4536 * . if (scalar cond K|scalar) 4537 * . helper_call(.., scalar, ...) where ARG_CONST is expected 4538 * backtrack through the verifier states and mark all registers and 4539 * stack slots with spilled constants that these scalar registers 4540 * should be precise. 4541 * . during state pruning two registers (or spilled stack slots) 4542 * are equivalent if both are not precise. 4543 * 4544 * Note the verifier cannot simply walk register parentage chain, 4545 * since many different registers and stack slots could have been 4546 * used to compute single precise scalar. 4547 * 4548 * The approach of starting with precise=true for all registers and then 4549 * backtrack to mark a register as not precise when the verifier detects 4550 * that program doesn't care about specific value (e.g., when helper 4551 * takes register as ARG_ANYTHING parameter) is not safe. 4552 * 4553 * It's ok to walk single parentage chain of the verifier states. 4554 * It's possible that this backtracking will go all the way till 1st insn. 4555 * All other branches will be explored for needing precision later. 4556 * 4557 * The backtracking needs to deal with cases like: 4558 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 4559 * r9 -= r8 4560 * r5 = r9 4561 * if r5 > 0x79f goto pc+7 4562 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 4563 * r5 += 1 4564 * ... 4565 * call bpf_perf_event_output#25 4566 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 4567 * 4568 * and this case: 4569 * r6 = 1 4570 * call foo // uses callee's r6 inside to compute r0 4571 * r0 += r6 4572 * if r0 == 0 goto 4573 * 4574 * to track above reg_mask/stack_mask needs to be independent for each frame. 4575 * 4576 * Also if parent's curframe > frame where backtracking started, 4577 * the verifier need to mark registers in both frames, otherwise callees 4578 * may incorrectly prune callers. This is similar to 4579 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 4580 * 4581 * For now backtracking falls back into conservative marking. 4582 */ 4583 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 4584 struct bpf_verifier_state *st) 4585 { 4586 struct bpf_func_state *func; 4587 struct bpf_reg_state *reg; 4588 int i, j; 4589 4590 if (env->log.level & BPF_LOG_LEVEL2) { 4591 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 4592 st->curframe); 4593 } 4594 4595 /* big hammer: mark all scalars precise in this path. 4596 * pop_stack may still get !precise scalars. 4597 * We also skip current state and go straight to first parent state, 4598 * because precision markings in current non-checkpointed state are 4599 * not needed. See why in the comment in __mark_chain_precision below. 4600 */ 4601 for (st = st->parent; st; st = st->parent) { 4602 for (i = 0; i <= st->curframe; i++) { 4603 func = st->frame[i]; 4604 for (j = 0; j < BPF_REG_FP; j++) { 4605 reg = &func->regs[j]; 4606 if (reg->type != SCALAR_VALUE || reg->precise) 4607 continue; 4608 reg->precise = true; 4609 if (env->log.level & BPF_LOG_LEVEL2) { 4610 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 4611 i, j); 4612 } 4613 } 4614 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4615 if (!is_spilled_reg(&func->stack[j])) 4616 continue; 4617 reg = &func->stack[j].spilled_ptr; 4618 if (reg->type != SCALAR_VALUE || reg->precise) 4619 continue; 4620 reg->precise = true; 4621 if (env->log.level & BPF_LOG_LEVEL2) { 4622 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4623 i, -(j + 1) * 8); 4624 } 4625 } 4626 } 4627 } 4628 } 4629 4630 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4631 { 4632 struct bpf_func_state *func; 4633 struct bpf_reg_state *reg; 4634 int i, j; 4635 4636 for (i = 0; i <= st->curframe; i++) { 4637 func = st->frame[i]; 4638 for (j = 0; j < BPF_REG_FP; j++) { 4639 reg = &func->regs[j]; 4640 if (reg->type != SCALAR_VALUE) 4641 continue; 4642 reg->precise = false; 4643 } 4644 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4645 if (!is_spilled_reg(&func->stack[j])) 4646 continue; 4647 reg = &func->stack[j].spilled_ptr; 4648 if (reg->type != SCALAR_VALUE) 4649 continue; 4650 reg->precise = false; 4651 } 4652 } 4653 } 4654 4655 /* 4656 * __mark_chain_precision() backtracks BPF program instruction sequence and 4657 * chain of verifier states making sure that register *regno* (if regno >= 0) 4658 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4659 * SCALARS, as well as any other registers and slots that contribute to 4660 * a tracked state of given registers/stack slots, depending on specific BPF 4661 * assembly instructions (see backtrack_insns() for exact instruction handling 4662 * logic). This backtracking relies on recorded jmp_history and is able to 4663 * traverse entire chain of parent states. This process ends only when all the 4664 * necessary registers/slots and their transitive dependencies are marked as 4665 * precise. 4666 * 4667 * One important and subtle aspect is that precise marks *do not matter* in 4668 * the currently verified state (current state). It is important to understand 4669 * why this is the case. 4670 * 4671 * First, note that current state is the state that is not yet "checkpointed", 4672 * i.e., it is not yet put into env->explored_states, and it has no children 4673 * states as well. It's ephemeral, and can end up either a) being discarded if 4674 * compatible explored state is found at some point or BPF_EXIT instruction is 4675 * reached or b) checkpointed and put into env->explored_states, branching out 4676 * into one or more children states. 4677 * 4678 * In the former case, precise markings in current state are completely 4679 * ignored by state comparison code (see regsafe() for details). Only 4680 * checkpointed ("old") state precise markings are important, and if old 4681 * state's register/slot is precise, regsafe() assumes current state's 4682 * register/slot as precise and checks value ranges exactly and precisely. If 4683 * states turn out to be compatible, current state's necessary precise 4684 * markings and any required parent states' precise markings are enforced 4685 * after the fact with propagate_precision() logic, after the fact. But it's 4686 * important to realize that in this case, even after marking current state 4687 * registers/slots as precise, we immediately discard current state. So what 4688 * actually matters is any of the precise markings propagated into current 4689 * state's parent states, which are always checkpointed (due to b) case above). 4690 * As such, for scenario a) it doesn't matter if current state has precise 4691 * markings set or not. 4692 * 4693 * Now, for the scenario b), checkpointing and forking into child(ren) 4694 * state(s). Note that before current state gets to checkpointing step, any 4695 * processed instruction always assumes precise SCALAR register/slot 4696 * knowledge: if precise value or range is useful to prune jump branch, BPF 4697 * verifier takes this opportunity enthusiastically. Similarly, when 4698 * register's value is used to calculate offset or memory address, exact 4699 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4700 * what we mentioned above about state comparison ignoring precise markings 4701 * during state comparison, BPF verifier ignores and also assumes precise 4702 * markings *at will* during instruction verification process. But as verifier 4703 * assumes precision, it also propagates any precision dependencies across 4704 * parent states, which are not yet finalized, so can be further restricted 4705 * based on new knowledge gained from restrictions enforced by their children 4706 * states. This is so that once those parent states are finalized, i.e., when 4707 * they have no more active children state, state comparison logic in 4708 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4709 * required for correctness. 4710 * 4711 * To build a bit more intuition, note also that once a state is checkpointed, 4712 * the path we took to get to that state is not important. This is crucial 4713 * property for state pruning. When state is checkpointed and finalized at 4714 * some instruction index, it can be correctly and safely used to "short 4715 * circuit" any *compatible* state that reaches exactly the same instruction 4716 * index. I.e., if we jumped to that instruction from a completely different 4717 * code path than original finalized state was derived from, it doesn't 4718 * matter, current state can be discarded because from that instruction 4719 * forward having a compatible state will ensure we will safely reach the 4720 * exit. States describe preconditions for further exploration, but completely 4721 * forget the history of how we got here. 4722 * 4723 * This also means that even if we needed precise SCALAR range to get to 4724 * finalized state, but from that point forward *that same* SCALAR register is 4725 * never used in a precise context (i.e., it's precise value is not needed for 4726 * correctness), it's correct and safe to mark such register as "imprecise" 4727 * (i.e., precise marking set to false). This is what we rely on when we do 4728 * not set precise marking in current state. If no child state requires 4729 * precision for any given SCALAR register, it's safe to dictate that it can 4730 * be imprecise. If any child state does require this register to be precise, 4731 * we'll mark it precise later retroactively during precise markings 4732 * propagation from child state to parent states. 4733 * 4734 * Skipping precise marking setting in current state is a mild version of 4735 * relying on the above observation. But we can utilize this property even 4736 * more aggressively by proactively forgetting any precise marking in the 4737 * current state (which we inherited from the parent state), right before we 4738 * checkpoint it and branch off into new child state. This is done by 4739 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4740 * finalized states which help in short circuiting more future states. 4741 */ 4742 static int __mark_chain_precision(struct bpf_verifier_env *env, 4743 struct bpf_verifier_state *starting_state, 4744 int regno, 4745 bool *changed) 4746 { 4747 struct bpf_verifier_state *st = starting_state; 4748 struct backtrack_state *bt = &env->bt; 4749 int first_idx = st->first_insn_idx; 4750 int last_idx = starting_state->insn_idx; 4751 int subseq_idx = -1; 4752 struct bpf_func_state *func; 4753 bool tmp, skip_first = true; 4754 struct bpf_reg_state *reg; 4755 int i, fr, err; 4756 4757 if (!env->bpf_capable) 4758 return 0; 4759 4760 changed = changed ?: &tmp; 4761 /* set frame number from which we are starting to backtrack */ 4762 bt_init(bt, starting_state->curframe); 4763 4764 /* Do sanity checks against current state of register and/or stack 4765 * slot, but don't set precise flag in current state, as precision 4766 * tracking in the current state is unnecessary. 4767 */ 4768 func = st->frame[bt->frame]; 4769 if (regno >= 0) { 4770 reg = &func->regs[regno]; 4771 if (reg->type != SCALAR_VALUE) { 4772 verifier_bug(env, "backtracking misuse"); 4773 return -EFAULT; 4774 } 4775 bt_set_reg(bt, regno); 4776 } 4777 4778 if (bt_empty(bt)) 4779 return 0; 4780 4781 for (;;) { 4782 DECLARE_BITMAP(mask, 64); 4783 u32 history = st->jmp_history_cnt; 4784 struct bpf_jmp_history_entry *hist; 4785 4786 if (env->log.level & BPF_LOG_LEVEL2) { 4787 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4788 bt->frame, last_idx, first_idx, subseq_idx); 4789 } 4790 4791 if (last_idx < 0) { 4792 /* we are at the entry into subprog, which 4793 * is expected for global funcs, but only if 4794 * requested precise registers are R1-R5 4795 * (which are global func's input arguments) 4796 */ 4797 if (st->curframe == 0 && 4798 st->frame[0]->subprogno > 0 && 4799 st->frame[0]->callsite == BPF_MAIN_FUNC && 4800 bt_stack_mask(bt) == 0 && 4801 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4802 bitmap_from_u64(mask, bt_reg_mask(bt)); 4803 for_each_set_bit(i, mask, 32) { 4804 reg = &st->frame[0]->regs[i]; 4805 bt_clear_reg(bt, i); 4806 if (reg->type == SCALAR_VALUE) { 4807 reg->precise = true; 4808 *changed = true; 4809 } 4810 } 4811 return 0; 4812 } 4813 4814 verifier_bug(env, "backtracking func entry subprog %d reg_mask %x stack_mask %llx", 4815 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4816 return -EFAULT; 4817 } 4818 4819 for (i = last_idx;;) { 4820 if (skip_first) { 4821 err = 0; 4822 skip_first = false; 4823 } else { 4824 hist = get_jmp_hist_entry(st, history, i); 4825 err = backtrack_insn(env, i, subseq_idx, hist, bt); 4826 } 4827 if (err == -ENOTSUPP) { 4828 mark_all_scalars_precise(env, starting_state); 4829 bt_reset(bt); 4830 return 0; 4831 } else if (err) { 4832 return err; 4833 } 4834 if (bt_empty(bt)) 4835 /* Found assignment(s) into tracked register in this state. 4836 * Since this state is already marked, just return. 4837 * Nothing to be tracked further in the parent state. 4838 */ 4839 return 0; 4840 subseq_idx = i; 4841 i = get_prev_insn_idx(st, i, &history); 4842 if (i == -ENOENT) 4843 break; 4844 if (i >= env->prog->len) { 4845 /* This can happen if backtracking reached insn 0 4846 * and there are still reg_mask or stack_mask 4847 * to backtrack. 4848 * It means the backtracking missed the spot where 4849 * particular register was initialized with a constant. 4850 */ 4851 verifier_bug(env, "backtracking idx %d", i); 4852 return -EFAULT; 4853 } 4854 } 4855 st = st->parent; 4856 if (!st) 4857 break; 4858 4859 for (fr = bt->frame; fr >= 0; fr--) { 4860 func = st->frame[fr]; 4861 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4862 for_each_set_bit(i, mask, 32) { 4863 reg = &func->regs[i]; 4864 if (reg->type != SCALAR_VALUE) { 4865 bt_clear_frame_reg(bt, fr, i); 4866 continue; 4867 } 4868 if (reg->precise) { 4869 bt_clear_frame_reg(bt, fr, i); 4870 } else { 4871 reg->precise = true; 4872 *changed = true; 4873 } 4874 } 4875 4876 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4877 for_each_set_bit(i, mask, 64) { 4878 if (verifier_bug_if(i >= func->allocated_stack / BPF_REG_SIZE, 4879 env, "stack slot %d, total slots %d", 4880 i, func->allocated_stack / BPF_REG_SIZE)) 4881 return -EFAULT; 4882 4883 if (!is_spilled_scalar_reg(&func->stack[i])) { 4884 bt_clear_frame_slot(bt, fr, i); 4885 continue; 4886 } 4887 reg = &func->stack[i].spilled_ptr; 4888 if (reg->precise) { 4889 bt_clear_frame_slot(bt, fr, i); 4890 } else { 4891 reg->precise = true; 4892 *changed = true; 4893 } 4894 } 4895 if (env->log.level & BPF_LOG_LEVEL2) { 4896 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4897 bt_frame_reg_mask(bt, fr)); 4898 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4899 fr, env->tmp_str_buf); 4900 bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4901 bt_frame_stack_mask(bt, fr)); 4902 verbose(env, "stack=%s: ", env->tmp_str_buf); 4903 print_verifier_state(env, st, fr, true); 4904 } 4905 } 4906 4907 if (bt_empty(bt)) 4908 return 0; 4909 4910 subseq_idx = first_idx; 4911 last_idx = st->last_insn_idx; 4912 first_idx = st->first_insn_idx; 4913 } 4914 4915 /* if we still have requested precise regs or slots, we missed 4916 * something (e.g., stack access through non-r10 register), so 4917 * fallback to marking all precise 4918 */ 4919 if (!bt_empty(bt)) { 4920 mark_all_scalars_precise(env, starting_state); 4921 bt_reset(bt); 4922 } 4923 4924 return 0; 4925 } 4926 4927 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4928 { 4929 return __mark_chain_precision(env, env->cur_state, regno, NULL); 4930 } 4931 4932 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4933 * desired reg and stack masks across all relevant frames 4934 */ 4935 static int mark_chain_precision_batch(struct bpf_verifier_env *env, 4936 struct bpf_verifier_state *starting_state) 4937 { 4938 return __mark_chain_precision(env, starting_state, -1, NULL); 4939 } 4940 4941 static bool is_spillable_regtype(enum bpf_reg_type type) 4942 { 4943 switch (base_type(type)) { 4944 case PTR_TO_MAP_VALUE: 4945 case PTR_TO_STACK: 4946 case PTR_TO_CTX: 4947 case PTR_TO_PACKET: 4948 case PTR_TO_PACKET_META: 4949 case PTR_TO_PACKET_END: 4950 case PTR_TO_FLOW_KEYS: 4951 case CONST_PTR_TO_MAP: 4952 case PTR_TO_SOCKET: 4953 case PTR_TO_SOCK_COMMON: 4954 case PTR_TO_TCP_SOCK: 4955 case PTR_TO_XDP_SOCK: 4956 case PTR_TO_BTF_ID: 4957 case PTR_TO_BUF: 4958 case PTR_TO_MEM: 4959 case PTR_TO_FUNC: 4960 case PTR_TO_MAP_KEY: 4961 case PTR_TO_ARENA: 4962 return true; 4963 default: 4964 return false; 4965 } 4966 } 4967 4968 /* Does this register contain a constant zero? */ 4969 static bool register_is_null(struct bpf_reg_state *reg) 4970 { 4971 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4972 } 4973 4974 /* check if register is a constant scalar value */ 4975 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 4976 { 4977 return reg->type == SCALAR_VALUE && 4978 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 4979 } 4980 4981 /* assuming is_reg_const() is true, return constant value of a register */ 4982 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 4983 { 4984 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 4985 } 4986 4987 static bool __is_pointer_value(bool allow_ptr_leaks, 4988 const struct bpf_reg_state *reg) 4989 { 4990 if (allow_ptr_leaks) 4991 return false; 4992 4993 return reg->type != SCALAR_VALUE; 4994 } 4995 4996 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, 4997 struct bpf_reg_state *src_reg) 4998 { 4999 if (src_reg->type != SCALAR_VALUE) 5000 return; 5001 5002 if (src_reg->id & BPF_ADD_CONST) { 5003 /* 5004 * The verifier is processing rX = rY insn and 5005 * rY->id has special linked register already. 5006 * Cleared it, since multiple rX += const are not supported. 5007 */ 5008 src_reg->id = 0; 5009 src_reg->off = 0; 5010 } 5011 5012 if (!src_reg->id && !tnum_is_const(src_reg->var_off)) 5013 /* Ensure that src_reg has a valid ID that will be copied to 5014 * dst_reg and then will be used by sync_linked_regs() to 5015 * propagate min/max range. 5016 */ 5017 src_reg->id = ++env->id_gen; 5018 } 5019 5020 /* Copy src state preserving dst->parent and dst->live fields */ 5021 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 5022 { 5023 *dst = *src; 5024 } 5025 5026 static void save_register_state(struct bpf_verifier_env *env, 5027 struct bpf_func_state *state, 5028 int spi, struct bpf_reg_state *reg, 5029 int size) 5030 { 5031 int i; 5032 5033 copy_register_state(&state->stack[spi].spilled_ptr, reg); 5034 5035 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 5036 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 5037 5038 /* size < 8 bytes spill */ 5039 for (; i; i--) 5040 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); 5041 } 5042 5043 static bool is_bpf_st_mem(struct bpf_insn *insn) 5044 { 5045 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 5046 } 5047 5048 static int get_reg_width(struct bpf_reg_state *reg) 5049 { 5050 return fls64(reg->umax_value); 5051 } 5052 5053 /* See comment for mark_fastcall_pattern_for_call() */ 5054 static void check_fastcall_stack_contract(struct bpf_verifier_env *env, 5055 struct bpf_func_state *state, int insn_idx, int off) 5056 { 5057 struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno]; 5058 struct bpf_insn_aux_data *aux = env->insn_aux_data; 5059 int i; 5060 5061 if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern) 5062 return; 5063 /* access to the region [max_stack_depth .. fastcall_stack_off) 5064 * from something that is not a part of the fastcall pattern, 5065 * disable fastcall rewrites for current subprogram by setting 5066 * fastcall_stack_off to a value smaller than any possible offset. 5067 */ 5068 subprog->fastcall_stack_off = S16_MIN; 5069 /* reset fastcall aux flags within subprogram, 5070 * happens at most once per subprogram 5071 */ 5072 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 5073 aux[i].fastcall_spills_num = 0; 5074 aux[i].fastcall_pattern = 0; 5075 } 5076 } 5077 5078 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 5079 * stack boundary and alignment are checked in check_mem_access() 5080 */ 5081 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 5082 /* stack frame we're writing to */ 5083 struct bpf_func_state *state, 5084 int off, int size, int value_regno, 5085 int insn_idx) 5086 { 5087 struct bpf_func_state *cur; /* state of the current function */ 5088 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 5089 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5090 struct bpf_reg_state *reg = NULL; 5091 int insn_flags = insn_stack_access_flags(state->frameno, spi); 5092 5093 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 5094 * so it's aligned access and [off, off + size) are within stack limits 5095 */ 5096 if (!env->allow_ptr_leaks && 5097 is_spilled_reg(&state->stack[spi]) && 5098 !is_spilled_scalar_reg(&state->stack[spi]) && 5099 size != BPF_REG_SIZE) { 5100 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 5101 return -EACCES; 5102 } 5103 5104 cur = env->cur_state->frame[env->cur_state->curframe]; 5105 if (value_regno >= 0) 5106 reg = &cur->regs[value_regno]; 5107 if (!env->bypass_spec_v4) { 5108 bool sanitize = reg && is_spillable_regtype(reg->type); 5109 5110 for (i = 0; i < size; i++) { 5111 u8 type = state->stack[spi].slot_type[i]; 5112 5113 if (type != STACK_MISC && type != STACK_ZERO) { 5114 sanitize = true; 5115 break; 5116 } 5117 } 5118 5119 if (sanitize) 5120 env->insn_aux_data[insn_idx].nospec_result = true; 5121 } 5122 5123 err = destroy_if_dynptr_stack_slot(env, state, spi); 5124 if (err) 5125 return err; 5126 5127 if (!(off % BPF_REG_SIZE) && size == BPF_REG_SIZE) { 5128 /* only mark the slot as written if all 8 bytes were written 5129 * otherwise read propagation may incorrectly stop too soon 5130 * when stack slots are partially written. 5131 * This heuristic means that read propagation will be 5132 * conservative, since it will add reg_live_read marks 5133 * to stack slots all the way to first state when programs 5134 * writes+reads less than 8 bytes 5135 */ 5136 bpf_mark_stack_write(env, state->frameno, BIT(spi)); 5137 } 5138 5139 check_fastcall_stack_contract(env, state, insn_idx, off); 5140 mark_stack_slot_scratched(env, spi); 5141 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { 5142 bool reg_value_fits; 5143 5144 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; 5145 /* Make sure that reg had an ID to build a relation on spill. */ 5146 if (reg_value_fits) 5147 assign_scalar_id_before_mov(env, reg); 5148 save_register_state(env, state, spi, reg, size); 5149 /* Break the relation on a narrowing spill. */ 5150 if (!reg_value_fits) 5151 state->stack[spi].spilled_ptr.id = 0; 5152 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 5153 env->bpf_capable) { 5154 struct bpf_reg_state *tmp_reg = &env->fake_reg[0]; 5155 5156 memset(tmp_reg, 0, sizeof(*tmp_reg)); 5157 __mark_reg_known(tmp_reg, insn->imm); 5158 tmp_reg->type = SCALAR_VALUE; 5159 save_register_state(env, state, spi, tmp_reg, size); 5160 } else if (reg && is_spillable_regtype(reg->type)) { 5161 /* register containing pointer is being spilled into stack */ 5162 if (size != BPF_REG_SIZE) { 5163 verbose_linfo(env, insn_idx, "; "); 5164 verbose(env, "invalid size of register spill\n"); 5165 return -EACCES; 5166 } 5167 if (state != cur && reg->type == PTR_TO_STACK) { 5168 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 5169 return -EINVAL; 5170 } 5171 save_register_state(env, state, spi, reg, size); 5172 } else { 5173 u8 type = STACK_MISC; 5174 5175 /* regular write of data into stack destroys any spilled ptr */ 5176 state->stack[spi].spilled_ptr.type = NOT_INIT; 5177 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 5178 if (is_stack_slot_special(&state->stack[spi])) 5179 for (i = 0; i < BPF_REG_SIZE; i++) 5180 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 5181 5182 /* when we zero initialize stack slots mark them as such */ 5183 if ((reg && register_is_null(reg)) || 5184 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 5185 /* STACK_ZERO case happened because register spill 5186 * wasn't properly aligned at the stack slot boundary, 5187 * so it's not a register spill anymore; force 5188 * originating register to be precise to make 5189 * STACK_ZERO correct for subsequent states 5190 */ 5191 err = mark_chain_precision(env, value_regno); 5192 if (err) 5193 return err; 5194 type = STACK_ZERO; 5195 } 5196 5197 /* Mark slots affected by this stack write. */ 5198 for (i = 0; i < size; i++) 5199 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 5200 insn_flags = 0; /* not a register spill */ 5201 } 5202 5203 if (insn_flags) 5204 return push_jmp_history(env, env->cur_state, insn_flags, 0); 5205 return 0; 5206 } 5207 5208 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 5209 * known to contain a variable offset. 5210 * This function checks whether the write is permitted and conservatively 5211 * tracks the effects of the write, considering that each stack slot in the 5212 * dynamic range is potentially written to. 5213 * 5214 * 'off' includes 'regno->off'. 5215 * 'value_regno' can be -1, meaning that an unknown value is being written to 5216 * the stack. 5217 * 5218 * Spilled pointers in range are not marked as written because we don't know 5219 * what's going to be actually written. This means that read propagation for 5220 * future reads cannot be terminated by this write. 5221 * 5222 * For privileged programs, uninitialized stack slots are considered 5223 * initialized by this write (even though we don't know exactly what offsets 5224 * are going to be written to). The idea is that we don't want the verifier to 5225 * reject future reads that access slots written to through variable offsets. 5226 */ 5227 static int check_stack_write_var_off(struct bpf_verifier_env *env, 5228 /* func where register points to */ 5229 struct bpf_func_state *state, 5230 int ptr_regno, int off, int size, 5231 int value_regno, int insn_idx) 5232 { 5233 struct bpf_func_state *cur; /* state of the current function */ 5234 int min_off, max_off; 5235 int i, err; 5236 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 5237 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5238 bool writing_zero = false; 5239 /* set if the fact that we're writing a zero is used to let any 5240 * stack slots remain STACK_ZERO 5241 */ 5242 bool zero_used = false; 5243 5244 cur = env->cur_state->frame[env->cur_state->curframe]; 5245 ptr_reg = &cur->regs[ptr_regno]; 5246 min_off = ptr_reg->smin_value + off; 5247 max_off = ptr_reg->smax_value + off + size; 5248 if (value_regno >= 0) 5249 value_reg = &cur->regs[value_regno]; 5250 if ((value_reg && register_is_null(value_reg)) || 5251 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 5252 writing_zero = true; 5253 5254 for (i = min_off; i < max_off; i++) { 5255 int spi; 5256 5257 spi = __get_spi(i); 5258 err = destroy_if_dynptr_stack_slot(env, state, spi); 5259 if (err) 5260 return err; 5261 } 5262 5263 check_fastcall_stack_contract(env, state, insn_idx, min_off); 5264 /* Variable offset writes destroy any spilled pointers in range. */ 5265 for (i = min_off; i < max_off; i++) { 5266 u8 new_type, *stype; 5267 int slot, spi; 5268 5269 slot = -i - 1; 5270 spi = slot / BPF_REG_SIZE; 5271 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5272 mark_stack_slot_scratched(env, spi); 5273 5274 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 5275 /* Reject the write if range we may write to has not 5276 * been initialized beforehand. If we didn't reject 5277 * here, the ptr status would be erased below (even 5278 * though not all slots are actually overwritten), 5279 * possibly opening the door to leaks. 5280 * 5281 * We do however catch STACK_INVALID case below, and 5282 * only allow reading possibly uninitialized memory 5283 * later for CAP_PERFMON, as the write may not happen to 5284 * that slot. 5285 */ 5286 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 5287 insn_idx, i); 5288 return -EINVAL; 5289 } 5290 5291 /* If writing_zero and the spi slot contains a spill of value 0, 5292 * maintain the spill type. 5293 */ 5294 if (writing_zero && *stype == STACK_SPILL && 5295 is_spilled_scalar_reg(&state->stack[spi])) { 5296 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; 5297 5298 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { 5299 zero_used = true; 5300 continue; 5301 } 5302 } 5303 5304 /* Erase all other spilled pointers. */ 5305 state->stack[spi].spilled_ptr.type = NOT_INIT; 5306 5307 /* Update the slot type. */ 5308 new_type = STACK_MISC; 5309 if (writing_zero && *stype == STACK_ZERO) { 5310 new_type = STACK_ZERO; 5311 zero_used = true; 5312 } 5313 /* If the slot is STACK_INVALID, we check whether it's OK to 5314 * pretend that it will be initialized by this write. The slot 5315 * might not actually be written to, and so if we mark it as 5316 * initialized future reads might leak uninitialized memory. 5317 * For privileged programs, we will accept such reads to slots 5318 * that may or may not be written because, if we're reject 5319 * them, the error would be too confusing. 5320 */ 5321 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 5322 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 5323 insn_idx, i); 5324 return -EINVAL; 5325 } 5326 *stype = new_type; 5327 } 5328 if (zero_used) { 5329 /* backtracking doesn't work for STACK_ZERO yet. */ 5330 err = mark_chain_precision(env, value_regno); 5331 if (err) 5332 return err; 5333 } 5334 return 0; 5335 } 5336 5337 /* When register 'dst_regno' is assigned some values from stack[min_off, 5338 * max_off), we set the register's type according to the types of the 5339 * respective stack slots. If all the stack values are known to be zeros, then 5340 * so is the destination reg. Otherwise, the register is considered to be 5341 * SCALAR. This function does not deal with register filling; the caller must 5342 * ensure that all spilled registers in the stack range have been marked as 5343 * read. 5344 */ 5345 static void mark_reg_stack_read(struct bpf_verifier_env *env, 5346 /* func where src register points to */ 5347 struct bpf_func_state *ptr_state, 5348 int min_off, int max_off, int dst_regno) 5349 { 5350 struct bpf_verifier_state *vstate = env->cur_state; 5351 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5352 int i, slot, spi; 5353 u8 *stype; 5354 int zeros = 0; 5355 5356 for (i = min_off; i < max_off; i++) { 5357 slot = -i - 1; 5358 spi = slot / BPF_REG_SIZE; 5359 mark_stack_slot_scratched(env, spi); 5360 stype = ptr_state->stack[spi].slot_type; 5361 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 5362 break; 5363 zeros++; 5364 } 5365 if (zeros == max_off - min_off) { 5366 /* Any access_size read into register is zero extended, 5367 * so the whole register == const_zero. 5368 */ 5369 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5370 } else { 5371 /* have read misc data from the stack */ 5372 mark_reg_unknown(env, state->regs, dst_regno); 5373 } 5374 } 5375 5376 /* Read the stack at 'off' and put the results into the register indicated by 5377 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 5378 * spilled reg. 5379 * 5380 * 'dst_regno' can be -1, meaning that the read value is not going to a 5381 * register. 5382 * 5383 * The access is assumed to be within the current stack bounds. 5384 */ 5385 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 5386 /* func where src register points to */ 5387 struct bpf_func_state *reg_state, 5388 int off, int size, int dst_regno) 5389 { 5390 struct bpf_verifier_state *vstate = env->cur_state; 5391 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5392 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 5393 struct bpf_reg_state *reg; 5394 u8 *stype, type; 5395 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); 5396 int err; 5397 5398 stype = reg_state->stack[spi].slot_type; 5399 reg = ®_state->stack[spi].spilled_ptr; 5400 5401 mark_stack_slot_scratched(env, spi); 5402 check_fastcall_stack_contract(env, state, env->insn_idx, off); 5403 err = bpf_mark_stack_read(env, reg_state->frameno, env->insn_idx, BIT(spi)); 5404 if (err) 5405 return err; 5406 5407 if (is_spilled_reg(®_state->stack[spi])) { 5408 u8 spill_size = 1; 5409 5410 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 5411 spill_size++; 5412 5413 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 5414 if (reg->type != SCALAR_VALUE) { 5415 verbose_linfo(env, env->insn_idx, "; "); 5416 verbose(env, "invalid size of register fill\n"); 5417 return -EACCES; 5418 } 5419 5420 if (dst_regno < 0) 5421 return 0; 5422 5423 if (size <= spill_size && 5424 bpf_stack_narrow_access_ok(off, size, spill_size)) { 5425 /* The earlier check_reg_arg() has decided the 5426 * subreg_def for this insn. Save it first. 5427 */ 5428 s32 subreg_def = state->regs[dst_regno].subreg_def; 5429 5430 copy_register_state(&state->regs[dst_regno], reg); 5431 state->regs[dst_regno].subreg_def = subreg_def; 5432 5433 /* Break the relation on a narrowing fill. 5434 * coerce_reg_to_size will adjust the boundaries. 5435 */ 5436 if (get_reg_width(reg) > size * BITS_PER_BYTE) 5437 state->regs[dst_regno].id = 0; 5438 } else { 5439 int spill_cnt = 0, zero_cnt = 0; 5440 5441 for (i = 0; i < size; i++) { 5442 type = stype[(slot - i) % BPF_REG_SIZE]; 5443 if (type == STACK_SPILL) { 5444 spill_cnt++; 5445 continue; 5446 } 5447 if (type == STACK_MISC) 5448 continue; 5449 if (type == STACK_ZERO) { 5450 zero_cnt++; 5451 continue; 5452 } 5453 if (type == STACK_INVALID && env->allow_uninit_stack) 5454 continue; 5455 verbose(env, "invalid read from stack off %d+%d size %d\n", 5456 off, i, size); 5457 return -EACCES; 5458 } 5459 5460 if (spill_cnt == size && 5461 tnum_is_const(reg->var_off) && reg->var_off.value == 0) { 5462 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5463 /* this IS register fill, so keep insn_flags */ 5464 } else if (zero_cnt == size) { 5465 /* similarly to mark_reg_stack_read(), preserve zeroes */ 5466 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5467 insn_flags = 0; /* not restoring original register state */ 5468 } else { 5469 mark_reg_unknown(env, state->regs, dst_regno); 5470 insn_flags = 0; /* not restoring original register state */ 5471 } 5472 } 5473 } else if (dst_regno >= 0) { 5474 /* restore register state from stack */ 5475 copy_register_state(&state->regs[dst_regno], reg); 5476 /* mark reg as written since spilled pointer state likely 5477 * has its liveness marks cleared by is_state_visited() 5478 * which resets stack/reg liveness for state transitions 5479 */ 5480 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 5481 /* If dst_regno==-1, the caller is asking us whether 5482 * it is acceptable to use this value as a SCALAR_VALUE 5483 * (e.g. for XADD). 5484 * We must not allow unprivileged callers to do that 5485 * with spilled pointers. 5486 */ 5487 verbose(env, "leaking pointer from stack off %d\n", 5488 off); 5489 return -EACCES; 5490 } 5491 } else { 5492 for (i = 0; i < size; i++) { 5493 type = stype[(slot - i) % BPF_REG_SIZE]; 5494 if (type == STACK_MISC) 5495 continue; 5496 if (type == STACK_ZERO) 5497 continue; 5498 if (type == STACK_INVALID && env->allow_uninit_stack) 5499 continue; 5500 verbose(env, "invalid read from stack off %d+%d size %d\n", 5501 off, i, size); 5502 return -EACCES; 5503 } 5504 if (dst_regno >= 0) 5505 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 5506 insn_flags = 0; /* we are not restoring spilled register */ 5507 } 5508 if (insn_flags) 5509 return push_jmp_history(env, env->cur_state, insn_flags, 0); 5510 return 0; 5511 } 5512 5513 enum bpf_access_src { 5514 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 5515 ACCESS_HELPER = 2, /* the access is performed by a helper */ 5516 }; 5517 5518 static int check_stack_range_initialized(struct bpf_verifier_env *env, 5519 int regno, int off, int access_size, 5520 bool zero_size_allowed, 5521 enum bpf_access_type type, 5522 struct bpf_call_arg_meta *meta); 5523 5524 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 5525 { 5526 return cur_regs(env) + regno; 5527 } 5528 5529 /* Read the stack at 'ptr_regno + off' and put the result into the register 5530 * 'dst_regno'. 5531 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 5532 * but not its variable offset. 5533 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 5534 * 5535 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 5536 * filling registers (i.e. reads of spilled register cannot be detected when 5537 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 5538 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 5539 * offset; for a fixed offset check_stack_read_fixed_off should be used 5540 * instead. 5541 */ 5542 static int check_stack_read_var_off(struct bpf_verifier_env *env, 5543 int ptr_regno, int off, int size, int dst_regno) 5544 { 5545 /* The state of the source register. */ 5546 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5547 struct bpf_func_state *ptr_state = func(env, reg); 5548 int err; 5549 int min_off, max_off; 5550 5551 /* Note that we pass a NULL meta, so raw access will not be permitted. 5552 */ 5553 err = check_stack_range_initialized(env, ptr_regno, off, size, 5554 false, BPF_READ, NULL); 5555 if (err) 5556 return err; 5557 5558 min_off = reg->smin_value + off; 5559 max_off = reg->smax_value + off; 5560 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 5561 check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off); 5562 return 0; 5563 } 5564 5565 /* check_stack_read dispatches to check_stack_read_fixed_off or 5566 * check_stack_read_var_off. 5567 * 5568 * The caller must ensure that the offset falls within the allocated stack 5569 * bounds. 5570 * 5571 * 'dst_regno' is a register which will receive the value from the stack. It 5572 * can be -1, meaning that the read value is not going to a register. 5573 */ 5574 static int check_stack_read(struct bpf_verifier_env *env, 5575 int ptr_regno, int off, int size, 5576 int dst_regno) 5577 { 5578 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5579 struct bpf_func_state *state = func(env, reg); 5580 int err; 5581 /* Some accesses are only permitted with a static offset. */ 5582 bool var_off = !tnum_is_const(reg->var_off); 5583 5584 /* The offset is required to be static when reads don't go to a 5585 * register, in order to not leak pointers (see 5586 * check_stack_read_fixed_off). 5587 */ 5588 if (dst_regno < 0 && var_off) { 5589 char tn_buf[48]; 5590 5591 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5592 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5593 tn_buf, off, size); 5594 return -EACCES; 5595 } 5596 /* Variable offset is prohibited for unprivileged mode for simplicity 5597 * since it requires corresponding support in Spectre masking for stack 5598 * ALU. See also retrieve_ptr_limit(). The check in 5599 * check_stack_access_for_ptr_arithmetic() called by 5600 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5601 * with variable offsets, therefore no check is required here. Further, 5602 * just checking it here would be insufficient as speculative stack 5603 * writes could still lead to unsafe speculative behaviour. 5604 */ 5605 if (!var_off) { 5606 off += reg->var_off.value; 5607 err = check_stack_read_fixed_off(env, state, off, size, 5608 dst_regno); 5609 } else { 5610 /* Variable offset stack reads need more conservative handling 5611 * than fixed offset ones. Note that dst_regno >= 0 on this 5612 * branch. 5613 */ 5614 err = check_stack_read_var_off(env, ptr_regno, off, size, 5615 dst_regno); 5616 } 5617 return err; 5618 } 5619 5620 5621 /* check_stack_write dispatches to check_stack_write_fixed_off or 5622 * check_stack_write_var_off. 5623 * 5624 * 'ptr_regno' is the register used as a pointer into the stack. 5625 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5626 * 'value_regno' is the register whose value we're writing to the stack. It can 5627 * be -1, meaning that we're not writing from a register. 5628 * 5629 * The caller must ensure that the offset falls within the maximum stack size. 5630 */ 5631 static int check_stack_write(struct bpf_verifier_env *env, 5632 int ptr_regno, int off, int size, 5633 int value_regno, int insn_idx) 5634 { 5635 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5636 struct bpf_func_state *state = func(env, reg); 5637 int err; 5638 5639 if (tnum_is_const(reg->var_off)) { 5640 off += reg->var_off.value; 5641 err = check_stack_write_fixed_off(env, state, off, size, 5642 value_regno, insn_idx); 5643 } else { 5644 /* Variable offset stack reads need more conservative handling 5645 * than fixed offset ones. 5646 */ 5647 err = check_stack_write_var_off(env, state, 5648 ptr_regno, off, size, 5649 value_regno, insn_idx); 5650 } 5651 return err; 5652 } 5653 5654 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5655 int off, int size, enum bpf_access_type type) 5656 { 5657 struct bpf_reg_state *regs = cur_regs(env); 5658 struct bpf_map *map = regs[regno].map_ptr; 5659 u32 cap = bpf_map_flags_to_cap(map); 5660 5661 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5662 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5663 map->value_size, off, size); 5664 return -EACCES; 5665 } 5666 5667 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5668 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5669 map->value_size, off, size); 5670 return -EACCES; 5671 } 5672 5673 return 0; 5674 } 5675 5676 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5677 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5678 int off, int size, u32 mem_size, 5679 bool zero_size_allowed) 5680 { 5681 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5682 struct bpf_reg_state *reg; 5683 5684 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5685 return 0; 5686 5687 reg = &cur_regs(env)[regno]; 5688 switch (reg->type) { 5689 case PTR_TO_MAP_KEY: 5690 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5691 mem_size, off, size); 5692 break; 5693 case PTR_TO_MAP_VALUE: 5694 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5695 mem_size, off, size); 5696 break; 5697 case PTR_TO_PACKET: 5698 case PTR_TO_PACKET_META: 5699 case PTR_TO_PACKET_END: 5700 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5701 off, size, regno, reg->id, off, mem_size); 5702 break; 5703 case PTR_TO_MEM: 5704 default: 5705 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5706 mem_size, off, size); 5707 } 5708 5709 return -EACCES; 5710 } 5711 5712 /* check read/write into a memory region with possible variable offset */ 5713 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5714 int off, int size, u32 mem_size, 5715 bool zero_size_allowed) 5716 { 5717 struct bpf_verifier_state *vstate = env->cur_state; 5718 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5719 struct bpf_reg_state *reg = &state->regs[regno]; 5720 int err; 5721 5722 /* We may have adjusted the register pointing to memory region, so we 5723 * need to try adding each of min_value and max_value to off 5724 * to make sure our theoretical access will be safe. 5725 * 5726 * The minimum value is only important with signed 5727 * comparisons where we can't assume the floor of a 5728 * value is 0. If we are using signed variables for our 5729 * index'es we need to make sure that whatever we use 5730 * will have a set floor within our range. 5731 */ 5732 if (reg->smin_value < 0 && 5733 (reg->smin_value == S64_MIN || 5734 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5735 reg->smin_value + off < 0)) { 5736 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5737 regno); 5738 return -EACCES; 5739 } 5740 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5741 mem_size, zero_size_allowed); 5742 if (err) { 5743 verbose(env, "R%d min value is outside of the allowed memory range\n", 5744 regno); 5745 return err; 5746 } 5747 5748 /* If we haven't set a max value then we need to bail since we can't be 5749 * sure we won't do bad things. 5750 * If reg->umax_value + off could overflow, treat that as unbounded too. 5751 */ 5752 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5753 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5754 regno); 5755 return -EACCES; 5756 } 5757 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5758 mem_size, zero_size_allowed); 5759 if (err) { 5760 verbose(env, "R%d max value is outside of the allowed memory range\n", 5761 regno); 5762 return err; 5763 } 5764 5765 return 0; 5766 } 5767 5768 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5769 const struct bpf_reg_state *reg, int regno, 5770 bool fixed_off_ok) 5771 { 5772 /* Access to this pointer-typed register or passing it to a helper 5773 * is only allowed in its original, unmodified form. 5774 */ 5775 5776 if (reg->off < 0) { 5777 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5778 reg_type_str(env, reg->type), regno, reg->off); 5779 return -EACCES; 5780 } 5781 5782 if (!fixed_off_ok && reg->off) { 5783 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5784 reg_type_str(env, reg->type), regno, reg->off); 5785 return -EACCES; 5786 } 5787 5788 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5789 char tn_buf[48]; 5790 5791 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5792 verbose(env, "variable %s access var_off=%s disallowed\n", 5793 reg_type_str(env, reg->type), tn_buf); 5794 return -EACCES; 5795 } 5796 5797 return 0; 5798 } 5799 5800 static int check_ptr_off_reg(struct bpf_verifier_env *env, 5801 const struct bpf_reg_state *reg, int regno) 5802 { 5803 return __check_ptr_off_reg(env, reg, regno, false); 5804 } 5805 5806 static int map_kptr_match_type(struct bpf_verifier_env *env, 5807 struct btf_field *kptr_field, 5808 struct bpf_reg_state *reg, u32 regno) 5809 { 5810 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5811 int perm_flags; 5812 const char *reg_name = ""; 5813 5814 if (btf_is_kernel(reg->btf)) { 5815 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5816 5817 /* Only unreferenced case accepts untrusted pointers */ 5818 if (kptr_field->type == BPF_KPTR_UNREF) 5819 perm_flags |= PTR_UNTRUSTED; 5820 } else { 5821 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5822 if (kptr_field->type == BPF_KPTR_PERCPU) 5823 perm_flags |= MEM_PERCPU; 5824 } 5825 5826 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5827 goto bad_type; 5828 5829 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5830 reg_name = btf_type_name(reg->btf, reg->btf_id); 5831 5832 /* For ref_ptr case, release function check should ensure we get one 5833 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5834 * normal store of unreferenced kptr, we must ensure var_off is zero. 5835 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5836 * reg->off and reg->ref_obj_id are not needed here. 5837 */ 5838 if (__check_ptr_off_reg(env, reg, regno, true)) 5839 return -EACCES; 5840 5841 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5842 * we also need to take into account the reg->off. 5843 * 5844 * We want to support cases like: 5845 * 5846 * struct foo { 5847 * struct bar br; 5848 * struct baz bz; 5849 * }; 5850 * 5851 * struct foo *v; 5852 * v = func(); // PTR_TO_BTF_ID 5853 * val->foo = v; // reg->off is zero, btf and btf_id match type 5854 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5855 * // first member type of struct after comparison fails 5856 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5857 * // to match type 5858 * 5859 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5860 * is zero. We must also ensure that btf_struct_ids_match does not walk 5861 * the struct to match type against first member of struct, i.e. reject 5862 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5863 * strict mode to true for type match. 5864 */ 5865 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5866 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5867 kptr_field->type != BPF_KPTR_UNREF)) 5868 goto bad_type; 5869 return 0; 5870 bad_type: 5871 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5872 reg_type_str(env, reg->type), reg_name); 5873 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5874 if (kptr_field->type == BPF_KPTR_UNREF) 5875 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5876 targ_name); 5877 else 5878 verbose(env, "\n"); 5879 return -EINVAL; 5880 } 5881 5882 static bool in_sleepable(struct bpf_verifier_env *env) 5883 { 5884 return env->cur_state->in_sleepable; 5885 } 5886 5887 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5888 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5889 */ 5890 static bool in_rcu_cs(struct bpf_verifier_env *env) 5891 { 5892 return env->cur_state->active_rcu_locks || 5893 env->cur_state->active_locks || 5894 !in_sleepable(env); 5895 } 5896 5897 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5898 BTF_SET_START(rcu_protected_types) 5899 #ifdef CONFIG_NET 5900 BTF_ID(struct, prog_test_ref_kfunc) 5901 #endif 5902 #ifdef CONFIG_CGROUPS 5903 BTF_ID(struct, cgroup) 5904 #endif 5905 #ifdef CONFIG_BPF_JIT 5906 BTF_ID(struct, bpf_cpumask) 5907 #endif 5908 BTF_ID(struct, task_struct) 5909 #ifdef CONFIG_CRYPTO 5910 BTF_ID(struct, bpf_crypto_ctx) 5911 #endif 5912 BTF_SET_END(rcu_protected_types) 5913 5914 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5915 { 5916 if (!btf_is_kernel(btf)) 5917 return true; 5918 return btf_id_set_contains(&rcu_protected_types, btf_id); 5919 } 5920 5921 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 5922 { 5923 struct btf_struct_meta *meta; 5924 5925 if (btf_is_kernel(kptr_field->kptr.btf)) 5926 return NULL; 5927 5928 meta = btf_find_struct_meta(kptr_field->kptr.btf, 5929 kptr_field->kptr.btf_id); 5930 5931 return meta ? meta->record : NULL; 5932 } 5933 5934 static bool rcu_safe_kptr(const struct btf_field *field) 5935 { 5936 const struct btf_field_kptr *kptr = &field->kptr; 5937 5938 return field->type == BPF_KPTR_PERCPU || 5939 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5940 } 5941 5942 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5943 { 5944 struct btf_record *rec; 5945 u32 ret; 5946 5947 ret = PTR_MAYBE_NULL; 5948 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5949 ret |= MEM_RCU; 5950 if (kptr_field->type == BPF_KPTR_PERCPU) 5951 ret |= MEM_PERCPU; 5952 else if (!btf_is_kernel(kptr_field->kptr.btf)) 5953 ret |= MEM_ALLOC; 5954 5955 rec = kptr_pointee_btf_record(kptr_field); 5956 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 5957 ret |= NON_OWN_REF; 5958 } else { 5959 ret |= PTR_UNTRUSTED; 5960 } 5961 5962 return ret; 5963 } 5964 5965 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno, 5966 struct btf_field *field) 5967 { 5968 struct bpf_reg_state *reg; 5969 const struct btf_type *t; 5970 5971 t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id); 5972 mark_reg_known_zero(env, cur_regs(env), regno); 5973 reg = reg_state(env, regno); 5974 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 5975 reg->mem_size = t->size; 5976 reg->id = ++env->id_gen; 5977 5978 return 0; 5979 } 5980 5981 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5982 int value_regno, int insn_idx, 5983 struct btf_field *kptr_field) 5984 { 5985 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5986 int class = BPF_CLASS(insn->code); 5987 struct bpf_reg_state *val_reg; 5988 int ret; 5989 5990 /* Things we already checked for in check_map_access and caller: 5991 * - Reject cases where variable offset may touch kptr 5992 * - size of access (must be BPF_DW) 5993 * - tnum_is_const(reg->var_off) 5994 * - kptr_field->offset == off + reg->var_off.value 5995 */ 5996 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5997 if (BPF_MODE(insn->code) != BPF_MEM) { 5998 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5999 return -EACCES; 6000 } 6001 6002 /* We only allow loading referenced kptr, since it will be marked as 6003 * untrusted, similar to unreferenced kptr. 6004 */ 6005 if (class != BPF_LDX && 6006 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 6007 verbose(env, "store to referenced kptr disallowed\n"); 6008 return -EACCES; 6009 } 6010 if (class != BPF_LDX && kptr_field->type == BPF_UPTR) { 6011 verbose(env, "store to uptr disallowed\n"); 6012 return -EACCES; 6013 } 6014 6015 if (class == BPF_LDX) { 6016 if (kptr_field->type == BPF_UPTR) 6017 return mark_uptr_ld_reg(env, value_regno, kptr_field); 6018 6019 /* We can simply mark the value_regno receiving the pointer 6020 * value from map as PTR_TO_BTF_ID, with the correct type. 6021 */ 6022 ret = mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, 6023 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 6024 btf_ld_kptr_type(env, kptr_field)); 6025 if (ret < 0) 6026 return ret; 6027 } else if (class == BPF_STX) { 6028 val_reg = reg_state(env, value_regno); 6029 if (!register_is_null(val_reg) && 6030 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 6031 return -EACCES; 6032 } else if (class == BPF_ST) { 6033 if (insn->imm) { 6034 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 6035 kptr_field->offset); 6036 return -EACCES; 6037 } 6038 } else { 6039 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 6040 return -EACCES; 6041 } 6042 return 0; 6043 } 6044 6045 /* 6046 * Return the size of the memory region accessible from a pointer to map value. 6047 * For INSN_ARRAY maps whole bpf_insn_array->ips array is accessible. 6048 */ 6049 static u32 map_mem_size(const struct bpf_map *map) 6050 { 6051 if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) 6052 return map->max_entries * sizeof(long); 6053 6054 return map->value_size; 6055 } 6056 6057 /* check read/write into a map element with possible variable offset */ 6058 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 6059 int off, int size, bool zero_size_allowed, 6060 enum bpf_access_src src) 6061 { 6062 struct bpf_verifier_state *vstate = env->cur_state; 6063 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6064 struct bpf_reg_state *reg = &state->regs[regno]; 6065 struct bpf_map *map = reg->map_ptr; 6066 u32 mem_size = map_mem_size(map); 6067 struct btf_record *rec; 6068 int err, i; 6069 6070 err = check_mem_region_access(env, regno, off, size, mem_size, zero_size_allowed); 6071 if (err) 6072 return err; 6073 6074 if (IS_ERR_OR_NULL(map->record)) 6075 return 0; 6076 rec = map->record; 6077 for (i = 0; i < rec->cnt; i++) { 6078 struct btf_field *field = &rec->fields[i]; 6079 u32 p = field->offset; 6080 6081 /* If any part of a field can be touched by load/store, reject 6082 * this program. To check that [x1, x2) overlaps with [y1, y2), 6083 * it is sufficient to check x1 < y2 && y1 < x2. 6084 */ 6085 if (reg->smin_value + off < p + field->size && 6086 p < reg->umax_value + off + size) { 6087 switch (field->type) { 6088 case BPF_KPTR_UNREF: 6089 case BPF_KPTR_REF: 6090 case BPF_KPTR_PERCPU: 6091 case BPF_UPTR: 6092 if (src != ACCESS_DIRECT) { 6093 verbose(env, "%s cannot be accessed indirectly by helper\n", 6094 btf_field_type_name(field->type)); 6095 return -EACCES; 6096 } 6097 if (!tnum_is_const(reg->var_off)) { 6098 verbose(env, "%s access cannot have variable offset\n", 6099 btf_field_type_name(field->type)); 6100 return -EACCES; 6101 } 6102 if (p != off + reg->var_off.value) { 6103 verbose(env, "%s access misaligned expected=%u off=%llu\n", 6104 btf_field_type_name(field->type), 6105 p, off + reg->var_off.value); 6106 return -EACCES; 6107 } 6108 if (size != bpf_size_to_bytes(BPF_DW)) { 6109 verbose(env, "%s access size must be BPF_DW\n", 6110 btf_field_type_name(field->type)); 6111 return -EACCES; 6112 } 6113 break; 6114 default: 6115 verbose(env, "%s cannot be accessed directly by load/store\n", 6116 btf_field_type_name(field->type)); 6117 return -EACCES; 6118 } 6119 } 6120 } 6121 return 0; 6122 } 6123 6124 #define MAX_PACKET_OFF 0xffff 6125 6126 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 6127 const struct bpf_call_arg_meta *meta, 6128 enum bpf_access_type t) 6129 { 6130 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 6131 6132 switch (prog_type) { 6133 /* Program types only with direct read access go here! */ 6134 case BPF_PROG_TYPE_LWT_IN: 6135 case BPF_PROG_TYPE_LWT_OUT: 6136 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 6137 case BPF_PROG_TYPE_SK_REUSEPORT: 6138 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6139 case BPF_PROG_TYPE_CGROUP_SKB: 6140 if (t == BPF_WRITE) 6141 return false; 6142 fallthrough; 6143 6144 /* Program types with direct read + write access go here! */ 6145 case BPF_PROG_TYPE_SCHED_CLS: 6146 case BPF_PROG_TYPE_SCHED_ACT: 6147 case BPF_PROG_TYPE_XDP: 6148 case BPF_PROG_TYPE_LWT_XMIT: 6149 case BPF_PROG_TYPE_SK_SKB: 6150 case BPF_PROG_TYPE_SK_MSG: 6151 if (meta) 6152 return meta->pkt_access; 6153 6154 env->seen_direct_write = true; 6155 return true; 6156 6157 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 6158 if (t == BPF_WRITE) 6159 env->seen_direct_write = true; 6160 6161 return true; 6162 6163 default: 6164 return false; 6165 } 6166 } 6167 6168 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 6169 int size, bool zero_size_allowed) 6170 { 6171 struct bpf_reg_state *regs = cur_regs(env); 6172 struct bpf_reg_state *reg = ®s[regno]; 6173 int err; 6174 6175 /* We may have added a variable offset to the packet pointer; but any 6176 * reg->range we have comes after that. We are only checking the fixed 6177 * offset. 6178 */ 6179 6180 /* We don't allow negative numbers, because we aren't tracking enough 6181 * detail to prove they're safe. 6182 */ 6183 if (reg->smin_value < 0) { 6184 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 6185 regno); 6186 return -EACCES; 6187 } 6188 6189 err = reg->range < 0 ? -EINVAL : 6190 __check_mem_access(env, regno, off, size, reg->range, 6191 zero_size_allowed); 6192 if (err) { 6193 verbose(env, "R%d offset is outside of the packet\n", regno); 6194 return err; 6195 } 6196 6197 /* __check_mem_access has made sure "off + size - 1" is within u16. 6198 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 6199 * otherwise find_good_pkt_pointers would have refused to set range info 6200 * that __check_mem_access would have rejected this pkt access. 6201 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 6202 */ 6203 env->prog->aux->max_pkt_offset = 6204 max_t(u32, env->prog->aux->max_pkt_offset, 6205 off + reg->umax_value + size - 1); 6206 6207 return err; 6208 } 6209 6210 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 6211 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 6212 enum bpf_access_type t, struct bpf_insn_access_aux *info) 6213 { 6214 if (env->ops->is_valid_access && 6215 env->ops->is_valid_access(off, size, t, env->prog, info)) { 6216 /* A non zero info.ctx_field_size indicates that this field is a 6217 * candidate for later verifier transformation to load the whole 6218 * field and then apply a mask when accessed with a narrower 6219 * access than actual ctx access size. A zero info.ctx_field_size 6220 * will only allow for whole field access and rejects any other 6221 * type of narrower access. 6222 */ 6223 if (base_type(info->reg_type) == PTR_TO_BTF_ID) { 6224 if (info->ref_obj_id && 6225 !find_reference_state(env->cur_state, info->ref_obj_id)) { 6226 verbose(env, "invalid bpf_context access off=%d. Reference may already be released\n", 6227 off); 6228 return -EACCES; 6229 } 6230 } else { 6231 env->insn_aux_data[insn_idx].ctx_field_size = info->ctx_field_size; 6232 } 6233 /* remember the offset of last byte accessed in ctx */ 6234 if (env->prog->aux->max_ctx_offset < off + size) 6235 env->prog->aux->max_ctx_offset = off + size; 6236 return 0; 6237 } 6238 6239 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 6240 return -EACCES; 6241 } 6242 6243 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 6244 int size) 6245 { 6246 if (size < 0 || off < 0 || 6247 (u64)off + size > sizeof(struct bpf_flow_keys)) { 6248 verbose(env, "invalid access to flow keys off=%d size=%d\n", 6249 off, size); 6250 return -EACCES; 6251 } 6252 return 0; 6253 } 6254 6255 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 6256 u32 regno, int off, int size, 6257 enum bpf_access_type t) 6258 { 6259 struct bpf_reg_state *regs = cur_regs(env); 6260 struct bpf_reg_state *reg = ®s[regno]; 6261 struct bpf_insn_access_aux info = {}; 6262 bool valid; 6263 6264 if (reg->smin_value < 0) { 6265 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 6266 regno); 6267 return -EACCES; 6268 } 6269 6270 switch (reg->type) { 6271 case PTR_TO_SOCK_COMMON: 6272 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 6273 break; 6274 case PTR_TO_SOCKET: 6275 valid = bpf_sock_is_valid_access(off, size, t, &info); 6276 break; 6277 case PTR_TO_TCP_SOCK: 6278 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 6279 break; 6280 case PTR_TO_XDP_SOCK: 6281 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 6282 break; 6283 default: 6284 valid = false; 6285 } 6286 6287 6288 if (valid) { 6289 env->insn_aux_data[insn_idx].ctx_field_size = 6290 info.ctx_field_size; 6291 return 0; 6292 } 6293 6294 verbose(env, "R%d invalid %s access off=%d size=%d\n", 6295 regno, reg_type_str(env, reg->type), off, size); 6296 6297 return -EACCES; 6298 } 6299 6300 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 6301 { 6302 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 6303 } 6304 6305 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 6306 { 6307 const struct bpf_reg_state *reg = reg_state(env, regno); 6308 6309 return reg->type == PTR_TO_CTX; 6310 } 6311 6312 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 6313 { 6314 const struct bpf_reg_state *reg = reg_state(env, regno); 6315 6316 return type_is_sk_pointer(reg->type); 6317 } 6318 6319 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 6320 { 6321 const struct bpf_reg_state *reg = reg_state(env, regno); 6322 6323 return type_is_pkt_pointer(reg->type); 6324 } 6325 6326 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 6327 { 6328 const struct bpf_reg_state *reg = reg_state(env, regno); 6329 6330 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 6331 return reg->type == PTR_TO_FLOW_KEYS; 6332 } 6333 6334 static bool is_arena_reg(struct bpf_verifier_env *env, int regno) 6335 { 6336 const struct bpf_reg_state *reg = reg_state(env, regno); 6337 6338 return reg->type == PTR_TO_ARENA; 6339 } 6340 6341 /* Return false if @regno contains a pointer whose type isn't supported for 6342 * atomic instruction @insn. 6343 */ 6344 static bool atomic_ptr_type_ok(struct bpf_verifier_env *env, int regno, 6345 struct bpf_insn *insn) 6346 { 6347 if (is_ctx_reg(env, regno)) 6348 return false; 6349 if (is_pkt_reg(env, regno)) 6350 return false; 6351 if (is_flow_key_reg(env, regno)) 6352 return false; 6353 if (is_sk_reg(env, regno)) 6354 return false; 6355 if (is_arena_reg(env, regno)) 6356 return bpf_jit_supports_insn(insn, true); 6357 6358 return true; 6359 } 6360 6361 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 6362 #ifdef CONFIG_NET 6363 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 6364 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 6365 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 6366 #endif 6367 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 6368 }; 6369 6370 static bool is_trusted_reg(const struct bpf_reg_state *reg) 6371 { 6372 /* A referenced register is always trusted. */ 6373 if (reg->ref_obj_id) 6374 return true; 6375 6376 /* Types listed in the reg2btf_ids are always trusted */ 6377 if (reg2btf_ids[base_type(reg->type)] && 6378 !bpf_type_has_unsafe_modifiers(reg->type)) 6379 return true; 6380 6381 /* If a register is not referenced, it is trusted if it has the 6382 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 6383 * other type modifiers may be safe, but we elect to take an opt-in 6384 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 6385 * not. 6386 * 6387 * Eventually, we should make PTR_TRUSTED the single source of truth 6388 * for whether a register is trusted. 6389 */ 6390 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 6391 !bpf_type_has_unsafe_modifiers(reg->type); 6392 } 6393 6394 static bool is_rcu_reg(const struct bpf_reg_state *reg) 6395 { 6396 return reg->type & MEM_RCU; 6397 } 6398 6399 static void clear_trusted_flags(enum bpf_type_flag *flag) 6400 { 6401 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 6402 } 6403 6404 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 6405 const struct bpf_reg_state *reg, 6406 int off, int size, bool strict) 6407 { 6408 struct tnum reg_off; 6409 int ip_align; 6410 6411 /* Byte size accesses are always allowed. */ 6412 if (!strict || size == 1) 6413 return 0; 6414 6415 /* For platforms that do not have a Kconfig enabling 6416 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 6417 * NET_IP_ALIGN is universally set to '2'. And on platforms 6418 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 6419 * to this code only in strict mode where we want to emulate 6420 * the NET_IP_ALIGN==2 checking. Therefore use an 6421 * unconditional IP align value of '2'. 6422 */ 6423 ip_align = 2; 6424 6425 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 6426 if (!tnum_is_aligned(reg_off, size)) { 6427 char tn_buf[48]; 6428 6429 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6430 verbose(env, 6431 "misaligned packet access off %d+%s+%d+%d size %d\n", 6432 ip_align, tn_buf, reg->off, off, size); 6433 return -EACCES; 6434 } 6435 6436 return 0; 6437 } 6438 6439 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 6440 const struct bpf_reg_state *reg, 6441 const char *pointer_desc, 6442 int off, int size, bool strict) 6443 { 6444 struct tnum reg_off; 6445 6446 /* Byte size accesses are always allowed. */ 6447 if (!strict || size == 1) 6448 return 0; 6449 6450 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 6451 if (!tnum_is_aligned(reg_off, size)) { 6452 char tn_buf[48]; 6453 6454 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6455 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 6456 pointer_desc, tn_buf, reg->off, off, size); 6457 return -EACCES; 6458 } 6459 6460 return 0; 6461 } 6462 6463 static int check_ptr_alignment(struct bpf_verifier_env *env, 6464 const struct bpf_reg_state *reg, int off, 6465 int size, bool strict_alignment_once) 6466 { 6467 bool strict = env->strict_alignment || strict_alignment_once; 6468 const char *pointer_desc = ""; 6469 6470 switch (reg->type) { 6471 case PTR_TO_PACKET: 6472 case PTR_TO_PACKET_META: 6473 /* Special case, because of NET_IP_ALIGN. Given metadata sits 6474 * right in front, treat it the very same way. 6475 */ 6476 return check_pkt_ptr_alignment(env, reg, off, size, strict); 6477 case PTR_TO_FLOW_KEYS: 6478 pointer_desc = "flow keys "; 6479 break; 6480 case PTR_TO_MAP_KEY: 6481 pointer_desc = "key "; 6482 break; 6483 case PTR_TO_MAP_VALUE: 6484 pointer_desc = "value "; 6485 if (reg->map_ptr->map_type == BPF_MAP_TYPE_INSN_ARRAY) 6486 strict = true; 6487 break; 6488 case PTR_TO_CTX: 6489 pointer_desc = "context "; 6490 break; 6491 case PTR_TO_STACK: 6492 pointer_desc = "stack "; 6493 /* The stack spill tracking logic in check_stack_write_fixed_off() 6494 * and check_stack_read_fixed_off() relies on stack accesses being 6495 * aligned. 6496 */ 6497 strict = true; 6498 break; 6499 case PTR_TO_SOCKET: 6500 pointer_desc = "sock "; 6501 break; 6502 case PTR_TO_SOCK_COMMON: 6503 pointer_desc = "sock_common "; 6504 break; 6505 case PTR_TO_TCP_SOCK: 6506 pointer_desc = "tcp_sock "; 6507 break; 6508 case PTR_TO_XDP_SOCK: 6509 pointer_desc = "xdp_sock "; 6510 break; 6511 case PTR_TO_ARENA: 6512 return 0; 6513 default: 6514 break; 6515 } 6516 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 6517 strict); 6518 } 6519 6520 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog) 6521 { 6522 if (!bpf_jit_supports_private_stack()) 6523 return NO_PRIV_STACK; 6524 6525 /* bpf_prog_check_recur() checks all prog types that use bpf trampoline 6526 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked 6527 * explicitly. 6528 */ 6529 switch (prog->type) { 6530 case BPF_PROG_TYPE_KPROBE: 6531 case BPF_PROG_TYPE_TRACEPOINT: 6532 case BPF_PROG_TYPE_PERF_EVENT: 6533 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6534 return PRIV_STACK_ADAPTIVE; 6535 case BPF_PROG_TYPE_TRACING: 6536 case BPF_PROG_TYPE_LSM: 6537 case BPF_PROG_TYPE_STRUCT_OPS: 6538 if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog)) 6539 return PRIV_STACK_ADAPTIVE; 6540 fallthrough; 6541 default: 6542 break; 6543 } 6544 6545 return NO_PRIV_STACK; 6546 } 6547 6548 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) 6549 { 6550 if (env->prog->jit_requested) 6551 return round_up(stack_depth, 16); 6552 6553 /* round up to 32-bytes, since this is granularity 6554 * of interpreter stack size 6555 */ 6556 return round_up(max_t(u32, stack_depth, 1), 32); 6557 } 6558 6559 /* starting from main bpf function walk all instructions of the function 6560 * and recursively walk all callees that given function can call. 6561 * Ignore jump and exit insns. 6562 * Since recursion is prevented by check_cfg() this algorithm 6563 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 6564 */ 6565 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx, 6566 bool priv_stack_supported) 6567 { 6568 struct bpf_subprog_info *subprog = env->subprog_info; 6569 struct bpf_insn *insn = env->prog->insnsi; 6570 int depth = 0, frame = 0, i, subprog_end, subprog_depth; 6571 bool tail_call_reachable = false; 6572 int ret_insn[MAX_CALL_FRAMES]; 6573 int ret_prog[MAX_CALL_FRAMES]; 6574 int j; 6575 6576 i = subprog[idx].start; 6577 if (!priv_stack_supported) 6578 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6579 process_func: 6580 /* protect against potential stack overflow that might happen when 6581 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 6582 * depth for such case down to 256 so that the worst case scenario 6583 * would result in 8k stack size (32 which is tailcall limit * 256 = 6584 * 8k). 6585 * 6586 * To get the idea what might happen, see an example: 6587 * func1 -> sub rsp, 128 6588 * subfunc1 -> sub rsp, 256 6589 * tailcall1 -> add rsp, 256 6590 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 6591 * subfunc2 -> sub rsp, 64 6592 * subfunc22 -> sub rsp, 128 6593 * tailcall2 -> add rsp, 128 6594 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 6595 * 6596 * tailcall will unwind the current stack frame but it will not get rid 6597 * of caller's stack as shown on the example above. 6598 */ 6599 if (idx && subprog[idx].has_tail_call && depth >= 256) { 6600 verbose(env, 6601 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 6602 depth); 6603 return -EACCES; 6604 } 6605 6606 subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth); 6607 if (priv_stack_supported) { 6608 /* Request private stack support only if the subprog stack 6609 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to 6610 * avoid jit penalty if the stack usage is small. 6611 */ 6612 if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN && 6613 subprog_depth >= BPF_PRIV_STACK_MIN_SIZE) 6614 subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE; 6615 } 6616 6617 if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6618 if (subprog_depth > MAX_BPF_STACK) { 6619 verbose(env, "stack size of subprog %d is %d. Too large\n", 6620 idx, subprog_depth); 6621 return -EACCES; 6622 } 6623 } else { 6624 depth += subprog_depth; 6625 if (depth > MAX_BPF_STACK) { 6626 verbose(env, "combined stack size of %d calls is %d. Too large\n", 6627 frame + 1, depth); 6628 return -EACCES; 6629 } 6630 } 6631 continue_func: 6632 subprog_end = subprog[idx + 1].start; 6633 for (; i < subprog_end; i++) { 6634 int next_insn, sidx; 6635 6636 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 6637 bool err = false; 6638 6639 if (!is_bpf_throw_kfunc(insn + i)) 6640 continue; 6641 if (subprog[idx].is_cb) 6642 err = true; 6643 for (int c = 0; c < frame && !err; c++) { 6644 if (subprog[ret_prog[c]].is_cb) { 6645 err = true; 6646 break; 6647 } 6648 } 6649 if (!err) 6650 continue; 6651 verbose(env, 6652 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 6653 i, idx); 6654 return -EINVAL; 6655 } 6656 6657 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 6658 continue; 6659 /* remember insn and function to return to */ 6660 ret_insn[frame] = i + 1; 6661 ret_prog[frame] = idx; 6662 6663 /* find the callee */ 6664 next_insn = i + insn[i].imm + 1; 6665 sidx = find_subprog(env, next_insn); 6666 if (verifier_bug_if(sidx < 0, env, "callee not found at insn %d", next_insn)) 6667 return -EFAULT; 6668 if (subprog[sidx].is_async_cb) { 6669 if (subprog[sidx].has_tail_call) { 6670 verifier_bug(env, "subprog has tail_call and async cb"); 6671 return -EFAULT; 6672 } 6673 /* async callbacks don't increase bpf prog stack size unless called directly */ 6674 if (!bpf_pseudo_call(insn + i)) 6675 continue; 6676 if (subprog[sidx].is_exception_cb) { 6677 verbose(env, "insn %d cannot call exception cb directly", i); 6678 return -EINVAL; 6679 } 6680 } 6681 i = next_insn; 6682 idx = sidx; 6683 if (!priv_stack_supported) 6684 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6685 6686 if (subprog[idx].has_tail_call) 6687 tail_call_reachable = true; 6688 6689 frame++; 6690 if (frame >= MAX_CALL_FRAMES) { 6691 verbose(env, "the call stack of %d frames is too deep !\n", 6692 frame); 6693 return -E2BIG; 6694 } 6695 goto process_func; 6696 } 6697 /* if tail call got detected across bpf2bpf calls then mark each of the 6698 * currently present subprog frames as tail call reachable subprogs; 6699 * this info will be utilized by JIT so that we will be preserving the 6700 * tail call counter throughout bpf2bpf calls combined with tailcalls 6701 */ 6702 if (tail_call_reachable) 6703 for (j = 0; j < frame; j++) { 6704 if (subprog[ret_prog[j]].is_exception_cb) { 6705 verbose(env, "cannot tail call within exception cb\n"); 6706 return -EINVAL; 6707 } 6708 subprog[ret_prog[j]].tail_call_reachable = true; 6709 } 6710 if (subprog[0].tail_call_reachable) 6711 env->prog->aux->tail_call_reachable = true; 6712 6713 /* end of for() loop means the last insn of the 'subprog' 6714 * was reached. Doesn't matter whether it was JA or EXIT 6715 */ 6716 if (frame == 0) 6717 return 0; 6718 if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE) 6719 depth -= round_up_stack_depth(env, subprog[idx].stack_depth); 6720 frame--; 6721 i = ret_insn[frame]; 6722 idx = ret_prog[frame]; 6723 goto continue_func; 6724 } 6725 6726 static int check_max_stack_depth(struct bpf_verifier_env *env) 6727 { 6728 enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN; 6729 struct bpf_subprog_info *si = env->subprog_info; 6730 bool priv_stack_supported; 6731 int ret; 6732 6733 for (int i = 0; i < env->subprog_cnt; i++) { 6734 if (si[i].has_tail_call) { 6735 priv_stack_mode = NO_PRIV_STACK; 6736 break; 6737 } 6738 } 6739 6740 if (priv_stack_mode == PRIV_STACK_UNKNOWN) 6741 priv_stack_mode = bpf_enable_priv_stack(env->prog); 6742 6743 /* All async_cb subprogs use normal kernel stack. If a particular 6744 * subprog appears in both main prog and async_cb subtree, that 6745 * subprog will use normal kernel stack to avoid potential nesting. 6746 * The reverse subprog traversal ensures when main prog subtree is 6747 * checked, the subprogs appearing in async_cb subtrees are already 6748 * marked as using normal kernel stack, so stack size checking can 6749 * be done properly. 6750 */ 6751 for (int i = env->subprog_cnt - 1; i >= 0; i--) { 6752 if (!i || si[i].is_async_cb) { 6753 priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE; 6754 ret = check_max_stack_depth_subprog(env, i, priv_stack_supported); 6755 if (ret < 0) 6756 return ret; 6757 } 6758 } 6759 6760 for (int i = 0; i < env->subprog_cnt; i++) { 6761 if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6762 env->prog->aux->jits_use_priv_stack = true; 6763 break; 6764 } 6765 } 6766 6767 return 0; 6768 } 6769 6770 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6771 static int get_callee_stack_depth(struct bpf_verifier_env *env, 6772 const struct bpf_insn *insn, int idx) 6773 { 6774 int start = idx + insn->imm + 1, subprog; 6775 6776 subprog = find_subprog(env, start); 6777 if (verifier_bug_if(subprog < 0, env, "get stack depth: no program at insn %d", start)) 6778 return -EFAULT; 6779 return env->subprog_info[subprog].stack_depth; 6780 } 6781 #endif 6782 6783 static int __check_buffer_access(struct bpf_verifier_env *env, 6784 const char *buf_info, 6785 const struct bpf_reg_state *reg, 6786 int regno, int off, int size) 6787 { 6788 if (off < 0) { 6789 verbose(env, 6790 "R%d invalid %s buffer access: off=%d, size=%d\n", 6791 regno, buf_info, off, size); 6792 return -EACCES; 6793 } 6794 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6795 char tn_buf[48]; 6796 6797 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6798 verbose(env, 6799 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6800 regno, off, tn_buf); 6801 return -EACCES; 6802 } 6803 6804 return 0; 6805 } 6806 6807 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6808 const struct bpf_reg_state *reg, 6809 int regno, int off, int size) 6810 { 6811 int err; 6812 6813 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6814 if (err) 6815 return err; 6816 6817 if (off + size > env->prog->aux->max_tp_access) 6818 env->prog->aux->max_tp_access = off + size; 6819 6820 return 0; 6821 } 6822 6823 static int check_buffer_access(struct bpf_verifier_env *env, 6824 const struct bpf_reg_state *reg, 6825 int regno, int off, int size, 6826 bool zero_size_allowed, 6827 u32 *max_access) 6828 { 6829 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6830 int err; 6831 6832 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6833 if (err) 6834 return err; 6835 6836 if (off + size > *max_access) 6837 *max_access = off + size; 6838 6839 return 0; 6840 } 6841 6842 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6843 static void zext_32_to_64(struct bpf_reg_state *reg) 6844 { 6845 reg->var_off = tnum_subreg(reg->var_off); 6846 __reg_assign_32_into_64(reg); 6847 } 6848 6849 /* truncate register to smaller size (in bytes) 6850 * must be called with size < BPF_REG_SIZE 6851 */ 6852 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6853 { 6854 u64 mask; 6855 6856 /* clear high bits in bit representation */ 6857 reg->var_off = tnum_cast(reg->var_off, size); 6858 6859 /* fix arithmetic bounds */ 6860 mask = ((u64)1 << (size * 8)) - 1; 6861 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6862 reg->umin_value &= mask; 6863 reg->umax_value &= mask; 6864 } else { 6865 reg->umin_value = 0; 6866 reg->umax_value = mask; 6867 } 6868 reg->smin_value = reg->umin_value; 6869 reg->smax_value = reg->umax_value; 6870 6871 /* If size is smaller than 32bit register the 32bit register 6872 * values are also truncated so we push 64-bit bounds into 6873 * 32-bit bounds. Above were truncated < 32-bits already. 6874 */ 6875 if (size < 4) 6876 __mark_reg32_unbounded(reg); 6877 6878 reg_bounds_sync(reg); 6879 } 6880 6881 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6882 { 6883 if (size == 1) { 6884 reg->smin_value = reg->s32_min_value = S8_MIN; 6885 reg->smax_value = reg->s32_max_value = S8_MAX; 6886 } else if (size == 2) { 6887 reg->smin_value = reg->s32_min_value = S16_MIN; 6888 reg->smax_value = reg->s32_max_value = S16_MAX; 6889 } else { 6890 /* size == 4 */ 6891 reg->smin_value = reg->s32_min_value = S32_MIN; 6892 reg->smax_value = reg->s32_max_value = S32_MAX; 6893 } 6894 reg->umin_value = reg->u32_min_value = 0; 6895 reg->umax_value = U64_MAX; 6896 reg->u32_max_value = U32_MAX; 6897 reg->var_off = tnum_unknown; 6898 } 6899 6900 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6901 { 6902 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6903 u64 top_smax_value, top_smin_value; 6904 u64 num_bits = size * 8; 6905 6906 if (tnum_is_const(reg->var_off)) { 6907 u64_cval = reg->var_off.value; 6908 if (size == 1) 6909 reg->var_off = tnum_const((s8)u64_cval); 6910 else if (size == 2) 6911 reg->var_off = tnum_const((s16)u64_cval); 6912 else 6913 /* size == 4 */ 6914 reg->var_off = tnum_const((s32)u64_cval); 6915 6916 u64_cval = reg->var_off.value; 6917 reg->smax_value = reg->smin_value = u64_cval; 6918 reg->umax_value = reg->umin_value = u64_cval; 6919 reg->s32_max_value = reg->s32_min_value = u64_cval; 6920 reg->u32_max_value = reg->u32_min_value = u64_cval; 6921 return; 6922 } 6923 6924 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6925 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6926 6927 if (top_smax_value != top_smin_value) 6928 goto out; 6929 6930 /* find the s64_min and s64_min after sign extension */ 6931 if (size == 1) { 6932 init_s64_max = (s8)reg->smax_value; 6933 init_s64_min = (s8)reg->smin_value; 6934 } else if (size == 2) { 6935 init_s64_max = (s16)reg->smax_value; 6936 init_s64_min = (s16)reg->smin_value; 6937 } else { 6938 init_s64_max = (s32)reg->smax_value; 6939 init_s64_min = (s32)reg->smin_value; 6940 } 6941 6942 s64_max = max(init_s64_max, init_s64_min); 6943 s64_min = min(init_s64_max, init_s64_min); 6944 6945 /* both of s64_max/s64_min positive or negative */ 6946 if ((s64_max >= 0) == (s64_min >= 0)) { 6947 reg->s32_min_value = reg->smin_value = s64_min; 6948 reg->s32_max_value = reg->smax_value = s64_max; 6949 reg->u32_min_value = reg->umin_value = s64_min; 6950 reg->u32_max_value = reg->umax_value = s64_max; 6951 reg->var_off = tnum_range(s64_min, s64_max); 6952 return; 6953 } 6954 6955 out: 6956 set_sext64_default_val(reg, size); 6957 } 6958 6959 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6960 { 6961 if (size == 1) { 6962 reg->s32_min_value = S8_MIN; 6963 reg->s32_max_value = S8_MAX; 6964 } else { 6965 /* size == 2 */ 6966 reg->s32_min_value = S16_MIN; 6967 reg->s32_max_value = S16_MAX; 6968 } 6969 reg->u32_min_value = 0; 6970 reg->u32_max_value = U32_MAX; 6971 reg->var_off = tnum_subreg(tnum_unknown); 6972 } 6973 6974 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6975 { 6976 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6977 u32 top_smax_value, top_smin_value; 6978 u32 num_bits = size * 8; 6979 6980 if (tnum_is_const(reg->var_off)) { 6981 u32_val = reg->var_off.value; 6982 if (size == 1) 6983 reg->var_off = tnum_const((s8)u32_val); 6984 else 6985 reg->var_off = tnum_const((s16)u32_val); 6986 6987 u32_val = reg->var_off.value; 6988 reg->s32_min_value = reg->s32_max_value = u32_val; 6989 reg->u32_min_value = reg->u32_max_value = u32_val; 6990 return; 6991 } 6992 6993 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6994 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6995 6996 if (top_smax_value != top_smin_value) 6997 goto out; 6998 6999 /* find the s32_min and s32_min after sign extension */ 7000 if (size == 1) { 7001 init_s32_max = (s8)reg->s32_max_value; 7002 init_s32_min = (s8)reg->s32_min_value; 7003 } else { 7004 /* size == 2 */ 7005 init_s32_max = (s16)reg->s32_max_value; 7006 init_s32_min = (s16)reg->s32_min_value; 7007 } 7008 s32_max = max(init_s32_max, init_s32_min); 7009 s32_min = min(init_s32_max, init_s32_min); 7010 7011 if ((s32_min >= 0) == (s32_max >= 0)) { 7012 reg->s32_min_value = s32_min; 7013 reg->s32_max_value = s32_max; 7014 reg->u32_min_value = (u32)s32_min; 7015 reg->u32_max_value = (u32)s32_max; 7016 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); 7017 return; 7018 } 7019 7020 out: 7021 set_sext32_default_val(reg, size); 7022 } 7023 7024 static bool bpf_map_is_rdonly(const struct bpf_map *map) 7025 { 7026 /* A map is considered read-only if the following condition are true: 7027 * 7028 * 1) BPF program side cannot change any of the map content. The 7029 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 7030 * and was set at map creation time. 7031 * 2) The map value(s) have been initialized from user space by a 7032 * loader and then "frozen", such that no new map update/delete 7033 * operations from syscall side are possible for the rest of 7034 * the map's lifetime from that point onwards. 7035 * 3) Any parallel/pending map update/delete operations from syscall 7036 * side have been completed. Only after that point, it's safe to 7037 * assume that map value(s) are immutable. 7038 */ 7039 return (map->map_flags & BPF_F_RDONLY_PROG) && 7040 READ_ONCE(map->frozen) && 7041 !bpf_map_write_active(map); 7042 } 7043 7044 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 7045 bool is_ldsx) 7046 { 7047 void *ptr; 7048 u64 addr; 7049 int err; 7050 7051 err = map->ops->map_direct_value_addr(map, &addr, off); 7052 if (err) 7053 return err; 7054 ptr = (void *)(long)addr + off; 7055 7056 switch (size) { 7057 case sizeof(u8): 7058 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 7059 break; 7060 case sizeof(u16): 7061 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 7062 break; 7063 case sizeof(u32): 7064 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 7065 break; 7066 case sizeof(u64): 7067 *val = *(u64 *)ptr; 7068 break; 7069 default: 7070 return -EINVAL; 7071 } 7072 return 0; 7073 } 7074 7075 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 7076 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 7077 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 7078 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) 7079 7080 /* 7081 * Allow list few fields as RCU trusted or full trusted. 7082 * This logic doesn't allow mix tagging and will be removed once GCC supports 7083 * btf_type_tag. 7084 */ 7085 7086 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 7087 BTF_TYPE_SAFE_RCU(struct task_struct) { 7088 const cpumask_t *cpus_ptr; 7089 struct css_set __rcu *cgroups; 7090 struct task_struct __rcu *real_parent; 7091 struct task_struct *group_leader; 7092 }; 7093 7094 BTF_TYPE_SAFE_RCU(struct cgroup) { 7095 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 7096 struct kernfs_node *kn; 7097 }; 7098 7099 BTF_TYPE_SAFE_RCU(struct css_set) { 7100 struct cgroup *dfl_cgrp; 7101 }; 7102 7103 BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state) { 7104 struct cgroup *cgroup; 7105 }; 7106 7107 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 7108 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 7109 struct file __rcu *exe_file; 7110 #ifdef CONFIG_MEMCG 7111 struct task_struct __rcu *owner; 7112 #endif 7113 }; 7114 7115 /* skb->sk, req->sk are not RCU protected, but we mark them as such 7116 * because bpf prog accessible sockets are SOCK_RCU_FREE. 7117 */ 7118 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 7119 struct sock *sk; 7120 }; 7121 7122 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 7123 struct sock *sk; 7124 }; 7125 7126 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 7127 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 7128 struct seq_file *seq; 7129 }; 7130 7131 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 7132 struct bpf_iter_meta *meta; 7133 struct task_struct *task; 7134 }; 7135 7136 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 7137 struct file *file; 7138 }; 7139 7140 BTF_TYPE_SAFE_TRUSTED(struct file) { 7141 struct inode *f_inode; 7142 }; 7143 7144 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry) { 7145 struct inode *d_inode; 7146 }; 7147 7148 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { 7149 struct sock *sk; 7150 }; 7151 7152 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct vm_area_struct) { 7153 struct mm_struct *vm_mm; 7154 struct file *vm_file; 7155 }; 7156 7157 static bool type_is_rcu(struct bpf_verifier_env *env, 7158 struct bpf_reg_state *reg, 7159 const char *field_name, u32 btf_id) 7160 { 7161 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 7162 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 7163 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 7164 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state)); 7165 7166 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 7167 } 7168 7169 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 7170 struct bpf_reg_state *reg, 7171 const char *field_name, u32 btf_id) 7172 { 7173 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 7174 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 7175 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 7176 7177 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 7178 } 7179 7180 static bool type_is_trusted(struct bpf_verifier_env *env, 7181 struct bpf_reg_state *reg, 7182 const char *field_name, u32 btf_id) 7183 { 7184 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 7185 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 7186 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 7187 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 7188 7189 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 7190 } 7191 7192 static bool type_is_trusted_or_null(struct bpf_verifier_env *env, 7193 struct bpf_reg_state *reg, 7194 const char *field_name, u32 btf_id) 7195 { 7196 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); 7197 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry)); 7198 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct vm_area_struct)); 7199 7200 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, 7201 "__safe_trusted_or_null"); 7202 } 7203 7204 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 7205 struct bpf_reg_state *regs, 7206 int regno, int off, int size, 7207 enum bpf_access_type atype, 7208 int value_regno) 7209 { 7210 struct bpf_reg_state *reg = regs + regno; 7211 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 7212 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 7213 const char *field_name = NULL; 7214 enum bpf_type_flag flag = 0; 7215 u32 btf_id = 0; 7216 int ret; 7217 7218 if (!env->allow_ptr_leaks) { 7219 verbose(env, 7220 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 7221 tname); 7222 return -EPERM; 7223 } 7224 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 7225 verbose(env, 7226 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 7227 tname); 7228 return -EINVAL; 7229 } 7230 if (off < 0) { 7231 verbose(env, 7232 "R%d is ptr_%s invalid negative access: off=%d\n", 7233 regno, tname, off); 7234 return -EACCES; 7235 } 7236 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 7237 char tn_buf[48]; 7238 7239 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7240 verbose(env, 7241 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 7242 regno, tname, off, tn_buf); 7243 return -EACCES; 7244 } 7245 7246 if (reg->type & MEM_USER) { 7247 verbose(env, 7248 "R%d is ptr_%s access user memory: off=%d\n", 7249 regno, tname, off); 7250 return -EACCES; 7251 } 7252 7253 if (reg->type & MEM_PERCPU) { 7254 verbose(env, 7255 "R%d is ptr_%s access percpu memory: off=%d\n", 7256 regno, tname, off); 7257 return -EACCES; 7258 } 7259 7260 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 7261 if (!btf_is_kernel(reg->btf)) { 7262 verifier_bug(env, "reg->btf must be kernel btf"); 7263 return -EFAULT; 7264 } 7265 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 7266 } else { 7267 /* Writes are permitted with default btf_struct_access for 7268 * program allocated objects (which always have ref_obj_id > 0), 7269 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 7270 */ 7271 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 7272 verbose(env, "only read is supported\n"); 7273 return -EACCES; 7274 } 7275 7276 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 7277 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 7278 verifier_bug(env, "ref_obj_id for allocated object must be non-zero"); 7279 return -EFAULT; 7280 } 7281 7282 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 7283 } 7284 7285 if (ret < 0) 7286 return ret; 7287 7288 if (ret != PTR_TO_BTF_ID) { 7289 /* just mark; */ 7290 7291 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 7292 /* If this is an untrusted pointer, all pointers formed by walking it 7293 * also inherit the untrusted flag. 7294 */ 7295 flag = PTR_UNTRUSTED; 7296 7297 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 7298 /* By default any pointer obtained from walking a trusted pointer is no 7299 * longer trusted, unless the field being accessed has explicitly been 7300 * marked as inheriting its parent's state of trust (either full or RCU). 7301 * For example: 7302 * 'cgroups' pointer is untrusted if task->cgroups dereference 7303 * happened in a sleepable program outside of bpf_rcu_read_lock() 7304 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 7305 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 7306 * 7307 * A regular RCU-protected pointer with __rcu tag can also be deemed 7308 * trusted if we are in an RCU CS. Such pointer can be NULL. 7309 */ 7310 if (type_is_trusted(env, reg, field_name, btf_id)) { 7311 flag |= PTR_TRUSTED; 7312 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { 7313 flag |= PTR_TRUSTED | PTR_MAYBE_NULL; 7314 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 7315 if (type_is_rcu(env, reg, field_name, btf_id)) { 7316 /* ignore __rcu tag and mark it MEM_RCU */ 7317 flag |= MEM_RCU; 7318 } else if (flag & MEM_RCU || 7319 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 7320 /* __rcu tagged pointers can be NULL */ 7321 flag |= MEM_RCU | PTR_MAYBE_NULL; 7322 7323 /* We always trust them */ 7324 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 7325 flag & PTR_UNTRUSTED) 7326 flag &= ~PTR_UNTRUSTED; 7327 } else if (flag & (MEM_PERCPU | MEM_USER)) { 7328 /* keep as-is */ 7329 } else { 7330 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 7331 clear_trusted_flags(&flag); 7332 } 7333 } else { 7334 /* 7335 * If not in RCU CS or MEM_RCU pointer can be NULL then 7336 * aggressively mark as untrusted otherwise such 7337 * pointers will be plain PTR_TO_BTF_ID without flags 7338 * and will be allowed to be passed into helpers for 7339 * compat reasons. 7340 */ 7341 flag = PTR_UNTRUSTED; 7342 } 7343 } else { 7344 /* Old compat. Deprecated */ 7345 clear_trusted_flags(&flag); 7346 } 7347 7348 if (atype == BPF_READ && value_regno >= 0) { 7349 ret = mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 7350 if (ret < 0) 7351 return ret; 7352 } 7353 7354 return 0; 7355 } 7356 7357 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 7358 struct bpf_reg_state *regs, 7359 int regno, int off, int size, 7360 enum bpf_access_type atype, 7361 int value_regno) 7362 { 7363 struct bpf_reg_state *reg = regs + regno; 7364 struct bpf_map *map = reg->map_ptr; 7365 struct bpf_reg_state map_reg; 7366 enum bpf_type_flag flag = 0; 7367 const struct btf_type *t; 7368 const char *tname; 7369 u32 btf_id; 7370 int ret; 7371 7372 if (!btf_vmlinux) { 7373 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 7374 return -ENOTSUPP; 7375 } 7376 7377 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 7378 verbose(env, "map_ptr access not supported for map type %d\n", 7379 map->map_type); 7380 return -ENOTSUPP; 7381 } 7382 7383 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 7384 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 7385 7386 if (!env->allow_ptr_leaks) { 7387 verbose(env, 7388 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 7389 tname); 7390 return -EPERM; 7391 } 7392 7393 if (off < 0) { 7394 verbose(env, "R%d is %s invalid negative access: off=%d\n", 7395 regno, tname, off); 7396 return -EACCES; 7397 } 7398 7399 if (atype != BPF_READ) { 7400 verbose(env, "only read from %s is supported\n", tname); 7401 return -EACCES; 7402 } 7403 7404 /* Simulate access to a PTR_TO_BTF_ID */ 7405 memset(&map_reg, 0, sizeof(map_reg)); 7406 ret = mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, 7407 btf_vmlinux, *map->ops->map_btf_id, 0); 7408 if (ret < 0) 7409 return ret; 7410 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 7411 if (ret < 0) 7412 return ret; 7413 7414 if (value_regno >= 0) { 7415 ret = mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 7416 if (ret < 0) 7417 return ret; 7418 } 7419 7420 return 0; 7421 } 7422 7423 /* Check that the stack access at the given offset is within bounds. The 7424 * maximum valid offset is -1. 7425 * 7426 * The minimum valid offset is -MAX_BPF_STACK for writes, and 7427 * -state->allocated_stack for reads. 7428 */ 7429 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 7430 s64 off, 7431 struct bpf_func_state *state, 7432 enum bpf_access_type t) 7433 { 7434 int min_valid_off; 7435 7436 if (t == BPF_WRITE || env->allow_uninit_stack) 7437 min_valid_off = -MAX_BPF_STACK; 7438 else 7439 min_valid_off = -state->allocated_stack; 7440 7441 if (off < min_valid_off || off > -1) 7442 return -EACCES; 7443 return 0; 7444 } 7445 7446 /* Check that the stack access at 'regno + off' falls within the maximum stack 7447 * bounds. 7448 * 7449 * 'off' includes `regno->offset`, but not its dynamic part (if any). 7450 */ 7451 static int check_stack_access_within_bounds( 7452 struct bpf_verifier_env *env, 7453 int regno, int off, int access_size, 7454 enum bpf_access_type type) 7455 { 7456 struct bpf_reg_state *regs = cur_regs(env); 7457 struct bpf_reg_state *reg = regs + regno; 7458 struct bpf_func_state *state = func(env, reg); 7459 s64 min_off, max_off; 7460 int err; 7461 char *err_extra; 7462 7463 if (type == BPF_READ) 7464 err_extra = " read from"; 7465 else 7466 err_extra = " write to"; 7467 7468 if (tnum_is_const(reg->var_off)) { 7469 min_off = (s64)reg->var_off.value + off; 7470 max_off = min_off + access_size; 7471 } else { 7472 if (reg->smax_value >= BPF_MAX_VAR_OFF || 7473 reg->smin_value <= -BPF_MAX_VAR_OFF) { 7474 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 7475 err_extra, regno); 7476 return -EACCES; 7477 } 7478 min_off = reg->smin_value + off; 7479 max_off = reg->smax_value + off + access_size; 7480 } 7481 7482 err = check_stack_slot_within_bounds(env, min_off, state, type); 7483 if (!err && max_off > 0) 7484 err = -EINVAL; /* out of stack access into non-negative offsets */ 7485 if (!err && access_size < 0) 7486 /* access_size should not be negative (or overflow an int); others checks 7487 * along the way should have prevented such an access. 7488 */ 7489 err = -EFAULT; /* invalid negative access size; integer overflow? */ 7490 7491 if (err) { 7492 if (tnum_is_const(reg->var_off)) { 7493 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 7494 err_extra, regno, off, access_size); 7495 } else { 7496 char tn_buf[48]; 7497 7498 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7499 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", 7500 err_extra, regno, tn_buf, off, access_size); 7501 } 7502 return err; 7503 } 7504 7505 /* Note that there is no stack access with offset zero, so the needed stack 7506 * size is -min_off, not -min_off+1. 7507 */ 7508 return grow_stack_state(env, state, -min_off /* size */); 7509 } 7510 7511 static bool get_func_retval_range(struct bpf_prog *prog, 7512 struct bpf_retval_range *range) 7513 { 7514 if (prog->type == BPF_PROG_TYPE_LSM && 7515 prog->expected_attach_type == BPF_LSM_MAC && 7516 !bpf_lsm_get_retval_range(prog, range)) { 7517 return true; 7518 } 7519 return false; 7520 } 7521 7522 /* check whether memory at (regno + off) is accessible for t = (read | write) 7523 * if t==write, value_regno is a register which value is stored into memory 7524 * if t==read, value_regno is a register which will receive the value from memory 7525 * if t==write && value_regno==-1, some unknown value is stored into memory 7526 * if t==read && value_regno==-1, don't care what we read from memory 7527 */ 7528 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 7529 int off, int bpf_size, enum bpf_access_type t, 7530 int value_regno, bool strict_alignment_once, bool is_ldsx) 7531 { 7532 struct bpf_reg_state *regs = cur_regs(env); 7533 struct bpf_reg_state *reg = regs + regno; 7534 int size, err = 0; 7535 7536 size = bpf_size_to_bytes(bpf_size); 7537 if (size < 0) 7538 return size; 7539 7540 /* alignment checks will add in reg->off themselves */ 7541 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 7542 if (err) 7543 return err; 7544 7545 /* for access checks, reg->off is just part of off */ 7546 off += reg->off; 7547 7548 if (reg->type == PTR_TO_MAP_KEY) { 7549 if (t == BPF_WRITE) { 7550 verbose(env, "write to change key R%d not allowed\n", regno); 7551 return -EACCES; 7552 } 7553 7554 err = check_mem_region_access(env, regno, off, size, 7555 reg->map_ptr->key_size, false); 7556 if (err) 7557 return err; 7558 if (value_regno >= 0) 7559 mark_reg_unknown(env, regs, value_regno); 7560 } else if (reg->type == PTR_TO_MAP_VALUE) { 7561 struct btf_field *kptr_field = NULL; 7562 7563 if (t == BPF_WRITE && value_regno >= 0 && 7564 is_pointer_value(env, value_regno)) { 7565 verbose(env, "R%d leaks addr into map\n", value_regno); 7566 return -EACCES; 7567 } 7568 err = check_map_access_type(env, regno, off, size, t); 7569 if (err) 7570 return err; 7571 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 7572 if (err) 7573 return err; 7574 if (tnum_is_const(reg->var_off)) 7575 kptr_field = btf_record_find(reg->map_ptr->record, 7576 off + reg->var_off.value, BPF_KPTR | BPF_UPTR); 7577 if (kptr_field) { 7578 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 7579 } else if (t == BPF_READ && value_regno >= 0) { 7580 struct bpf_map *map = reg->map_ptr; 7581 7582 /* 7583 * If map is read-only, track its contents as scalars, 7584 * unless it is an insn array (see the special case below) 7585 */ 7586 if (tnum_is_const(reg->var_off) && 7587 bpf_map_is_rdonly(map) && 7588 map->ops->map_direct_value_addr && 7589 map->map_type != BPF_MAP_TYPE_INSN_ARRAY) { 7590 int map_off = off + reg->var_off.value; 7591 u64 val = 0; 7592 7593 err = bpf_map_direct_read(map, map_off, size, 7594 &val, is_ldsx); 7595 if (err) 7596 return err; 7597 7598 regs[value_regno].type = SCALAR_VALUE; 7599 __mark_reg_known(®s[value_regno], val); 7600 } else if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) { 7601 if (bpf_size != BPF_DW) { 7602 verbose(env, "Invalid read of %d bytes from insn_array\n", 7603 size); 7604 return -EACCES; 7605 } 7606 copy_register_state(®s[value_regno], reg); 7607 regs[value_regno].type = PTR_TO_INSN; 7608 } else { 7609 mark_reg_unknown(env, regs, value_regno); 7610 } 7611 } 7612 } else if (base_type(reg->type) == PTR_TO_MEM) { 7613 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7614 bool rdonly_untrusted = rdonly_mem && (reg->type & PTR_UNTRUSTED); 7615 7616 if (type_may_be_null(reg->type)) { 7617 verbose(env, "R%d invalid mem access '%s'\n", regno, 7618 reg_type_str(env, reg->type)); 7619 return -EACCES; 7620 } 7621 7622 if (t == BPF_WRITE && rdonly_mem) { 7623 verbose(env, "R%d cannot write into %s\n", 7624 regno, reg_type_str(env, reg->type)); 7625 return -EACCES; 7626 } 7627 7628 if (t == BPF_WRITE && value_regno >= 0 && 7629 is_pointer_value(env, value_regno)) { 7630 verbose(env, "R%d leaks addr into mem\n", value_regno); 7631 return -EACCES; 7632 } 7633 7634 /* 7635 * Accesses to untrusted PTR_TO_MEM are done through probe 7636 * instructions, hence no need to check bounds in that case. 7637 */ 7638 if (!rdonly_untrusted) 7639 err = check_mem_region_access(env, regno, off, size, 7640 reg->mem_size, false); 7641 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 7642 mark_reg_unknown(env, regs, value_regno); 7643 } else if (reg->type == PTR_TO_CTX) { 7644 struct bpf_retval_range range; 7645 struct bpf_insn_access_aux info = { 7646 .reg_type = SCALAR_VALUE, 7647 .is_ldsx = is_ldsx, 7648 .log = &env->log, 7649 }; 7650 7651 if (t == BPF_WRITE && value_regno >= 0 && 7652 is_pointer_value(env, value_regno)) { 7653 verbose(env, "R%d leaks addr into ctx\n", value_regno); 7654 return -EACCES; 7655 } 7656 7657 err = check_ptr_off_reg(env, reg, regno); 7658 if (err < 0) 7659 return err; 7660 7661 err = check_ctx_access(env, insn_idx, off, size, t, &info); 7662 if (err) 7663 verbose_linfo(env, insn_idx, "; "); 7664 if (!err && t == BPF_READ && value_regno >= 0) { 7665 /* ctx access returns either a scalar, or a 7666 * PTR_TO_PACKET[_META,_END]. In the latter 7667 * case, we know the offset is zero. 7668 */ 7669 if (info.reg_type == SCALAR_VALUE) { 7670 if (info.is_retval && get_func_retval_range(env->prog, &range)) { 7671 err = __mark_reg_s32_range(env, regs, value_regno, 7672 range.minval, range.maxval); 7673 if (err) 7674 return err; 7675 } else { 7676 mark_reg_unknown(env, regs, value_regno); 7677 } 7678 } else { 7679 mark_reg_known_zero(env, regs, 7680 value_regno); 7681 if (type_may_be_null(info.reg_type)) 7682 regs[value_regno].id = ++env->id_gen; 7683 /* A load of ctx field could have different 7684 * actual load size with the one encoded in the 7685 * insn. When the dst is PTR, it is for sure not 7686 * a sub-register. 7687 */ 7688 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 7689 if (base_type(info.reg_type) == PTR_TO_BTF_ID) { 7690 regs[value_regno].btf = info.btf; 7691 regs[value_regno].btf_id = info.btf_id; 7692 regs[value_regno].ref_obj_id = info.ref_obj_id; 7693 } 7694 } 7695 regs[value_regno].type = info.reg_type; 7696 } 7697 7698 } else if (reg->type == PTR_TO_STACK) { 7699 /* Basic bounds checks. */ 7700 err = check_stack_access_within_bounds(env, regno, off, size, t); 7701 if (err) 7702 return err; 7703 7704 if (t == BPF_READ) 7705 err = check_stack_read(env, regno, off, size, 7706 value_regno); 7707 else 7708 err = check_stack_write(env, regno, off, size, 7709 value_regno, insn_idx); 7710 } else if (reg_is_pkt_pointer(reg)) { 7711 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 7712 verbose(env, "cannot write into packet\n"); 7713 return -EACCES; 7714 } 7715 if (t == BPF_WRITE && value_regno >= 0 && 7716 is_pointer_value(env, value_regno)) { 7717 verbose(env, "R%d leaks addr into packet\n", 7718 value_regno); 7719 return -EACCES; 7720 } 7721 err = check_packet_access(env, regno, off, size, false); 7722 if (!err && t == BPF_READ && value_regno >= 0) 7723 mark_reg_unknown(env, regs, value_regno); 7724 } else if (reg->type == PTR_TO_FLOW_KEYS) { 7725 if (t == BPF_WRITE && value_regno >= 0 && 7726 is_pointer_value(env, value_regno)) { 7727 verbose(env, "R%d leaks addr into flow keys\n", 7728 value_regno); 7729 return -EACCES; 7730 } 7731 7732 err = check_flow_keys_access(env, off, size); 7733 if (!err && t == BPF_READ && value_regno >= 0) 7734 mark_reg_unknown(env, regs, value_regno); 7735 } else if (type_is_sk_pointer(reg->type)) { 7736 if (t == BPF_WRITE) { 7737 verbose(env, "R%d cannot write into %s\n", 7738 regno, reg_type_str(env, reg->type)); 7739 return -EACCES; 7740 } 7741 err = check_sock_access(env, insn_idx, regno, off, size, t); 7742 if (!err && value_regno >= 0) 7743 mark_reg_unknown(env, regs, value_regno); 7744 } else if (reg->type == PTR_TO_TP_BUFFER) { 7745 err = check_tp_buffer_access(env, reg, regno, off, size); 7746 if (!err && t == BPF_READ && value_regno >= 0) 7747 mark_reg_unknown(env, regs, value_regno); 7748 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 7749 !type_may_be_null(reg->type)) { 7750 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 7751 value_regno); 7752 } else if (reg->type == CONST_PTR_TO_MAP) { 7753 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 7754 value_regno); 7755 } else if (base_type(reg->type) == PTR_TO_BUF) { 7756 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7757 u32 *max_access; 7758 7759 if (rdonly_mem) { 7760 if (t == BPF_WRITE) { 7761 verbose(env, "R%d cannot write into %s\n", 7762 regno, reg_type_str(env, reg->type)); 7763 return -EACCES; 7764 } 7765 max_access = &env->prog->aux->max_rdonly_access; 7766 } else { 7767 max_access = &env->prog->aux->max_rdwr_access; 7768 } 7769 7770 err = check_buffer_access(env, reg, regno, off, size, false, 7771 max_access); 7772 7773 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 7774 mark_reg_unknown(env, regs, value_regno); 7775 } else if (reg->type == PTR_TO_ARENA) { 7776 if (t == BPF_READ && value_regno >= 0) 7777 mark_reg_unknown(env, regs, value_regno); 7778 } else { 7779 verbose(env, "R%d invalid mem access '%s'\n", regno, 7780 reg_type_str(env, reg->type)); 7781 return -EACCES; 7782 } 7783 7784 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 7785 regs[value_regno].type == SCALAR_VALUE) { 7786 if (!is_ldsx) 7787 /* b/h/w load zero-extends, mark upper bits as known 0 */ 7788 coerce_reg_to_size(®s[value_regno], size); 7789 else 7790 coerce_reg_to_size_sx(®s[value_regno], size); 7791 } 7792 return err; 7793 } 7794 7795 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 7796 bool allow_trust_mismatch); 7797 7798 static int check_load_mem(struct bpf_verifier_env *env, struct bpf_insn *insn, 7799 bool strict_alignment_once, bool is_ldsx, 7800 bool allow_trust_mismatch, const char *ctx) 7801 { 7802 struct bpf_reg_state *regs = cur_regs(env); 7803 enum bpf_reg_type src_reg_type; 7804 int err; 7805 7806 /* check src operand */ 7807 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7808 if (err) 7809 return err; 7810 7811 /* check dst operand */ 7812 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7813 if (err) 7814 return err; 7815 7816 src_reg_type = regs[insn->src_reg].type; 7817 7818 /* Check if (src_reg + off) is readable. The state of dst_reg will be 7819 * updated by this call. 7820 */ 7821 err = check_mem_access(env, env->insn_idx, insn->src_reg, insn->off, 7822 BPF_SIZE(insn->code), BPF_READ, insn->dst_reg, 7823 strict_alignment_once, is_ldsx); 7824 err = err ?: save_aux_ptr_type(env, src_reg_type, 7825 allow_trust_mismatch); 7826 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], ctx); 7827 7828 return err; 7829 } 7830 7831 static int check_store_reg(struct bpf_verifier_env *env, struct bpf_insn *insn, 7832 bool strict_alignment_once) 7833 { 7834 struct bpf_reg_state *regs = cur_regs(env); 7835 enum bpf_reg_type dst_reg_type; 7836 int err; 7837 7838 /* check src1 operand */ 7839 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7840 if (err) 7841 return err; 7842 7843 /* check src2 operand */ 7844 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7845 if (err) 7846 return err; 7847 7848 dst_reg_type = regs[insn->dst_reg].type; 7849 7850 /* Check if (dst_reg + off) is writeable. */ 7851 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7852 BPF_SIZE(insn->code), BPF_WRITE, insn->src_reg, 7853 strict_alignment_once, false); 7854 err = err ?: save_aux_ptr_type(env, dst_reg_type, false); 7855 7856 return err; 7857 } 7858 7859 static int check_atomic_rmw(struct bpf_verifier_env *env, 7860 struct bpf_insn *insn) 7861 { 7862 int load_reg; 7863 int err; 7864 7865 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 7866 verbose(env, "invalid atomic operand size\n"); 7867 return -EINVAL; 7868 } 7869 7870 /* check src1 operand */ 7871 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7872 if (err) 7873 return err; 7874 7875 /* check src2 operand */ 7876 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7877 if (err) 7878 return err; 7879 7880 if (insn->imm == BPF_CMPXCHG) { 7881 /* Check comparison of R0 with memory location */ 7882 const u32 aux_reg = BPF_REG_0; 7883 7884 err = check_reg_arg(env, aux_reg, SRC_OP); 7885 if (err) 7886 return err; 7887 7888 if (is_pointer_value(env, aux_reg)) { 7889 verbose(env, "R%d leaks addr into mem\n", aux_reg); 7890 return -EACCES; 7891 } 7892 } 7893 7894 if (is_pointer_value(env, insn->src_reg)) { 7895 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 7896 return -EACCES; 7897 } 7898 7899 if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) { 7900 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7901 insn->dst_reg, 7902 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7903 return -EACCES; 7904 } 7905 7906 if (insn->imm & BPF_FETCH) { 7907 if (insn->imm == BPF_CMPXCHG) 7908 load_reg = BPF_REG_0; 7909 else 7910 load_reg = insn->src_reg; 7911 7912 /* check and record load of old value */ 7913 err = check_reg_arg(env, load_reg, DST_OP); 7914 if (err) 7915 return err; 7916 } else { 7917 /* This instruction accesses a memory location but doesn't 7918 * actually load it into a register. 7919 */ 7920 load_reg = -1; 7921 } 7922 7923 /* Check whether we can read the memory, with second call for fetch 7924 * case to simulate the register fill. 7925 */ 7926 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7927 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7928 if (!err && load_reg >= 0) 7929 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7930 insn->off, BPF_SIZE(insn->code), 7931 BPF_READ, load_reg, true, false); 7932 if (err) 7933 return err; 7934 7935 if (is_arena_reg(env, insn->dst_reg)) { 7936 err = save_aux_ptr_type(env, PTR_TO_ARENA, false); 7937 if (err) 7938 return err; 7939 } 7940 /* Check whether we can write into the same memory. */ 7941 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7942 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7943 if (err) 7944 return err; 7945 return 0; 7946 } 7947 7948 static int check_atomic_load(struct bpf_verifier_env *env, 7949 struct bpf_insn *insn) 7950 { 7951 int err; 7952 7953 err = check_load_mem(env, insn, true, false, false, "atomic_load"); 7954 if (err) 7955 return err; 7956 7957 if (!atomic_ptr_type_ok(env, insn->src_reg, insn)) { 7958 verbose(env, "BPF_ATOMIC loads from R%d %s is not allowed\n", 7959 insn->src_reg, 7960 reg_type_str(env, reg_state(env, insn->src_reg)->type)); 7961 return -EACCES; 7962 } 7963 7964 return 0; 7965 } 7966 7967 static int check_atomic_store(struct bpf_verifier_env *env, 7968 struct bpf_insn *insn) 7969 { 7970 int err; 7971 7972 err = check_store_reg(env, insn, true); 7973 if (err) 7974 return err; 7975 7976 if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) { 7977 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7978 insn->dst_reg, 7979 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7980 return -EACCES; 7981 } 7982 7983 return 0; 7984 } 7985 7986 static int check_atomic(struct bpf_verifier_env *env, struct bpf_insn *insn) 7987 { 7988 switch (insn->imm) { 7989 case BPF_ADD: 7990 case BPF_ADD | BPF_FETCH: 7991 case BPF_AND: 7992 case BPF_AND | BPF_FETCH: 7993 case BPF_OR: 7994 case BPF_OR | BPF_FETCH: 7995 case BPF_XOR: 7996 case BPF_XOR | BPF_FETCH: 7997 case BPF_XCHG: 7998 case BPF_CMPXCHG: 7999 return check_atomic_rmw(env, insn); 8000 case BPF_LOAD_ACQ: 8001 if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) { 8002 verbose(env, 8003 "64-bit load-acquires are only supported on 64-bit arches\n"); 8004 return -EOPNOTSUPP; 8005 } 8006 return check_atomic_load(env, insn); 8007 case BPF_STORE_REL: 8008 if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) { 8009 verbose(env, 8010 "64-bit store-releases are only supported on 64-bit arches\n"); 8011 return -EOPNOTSUPP; 8012 } 8013 return check_atomic_store(env, insn); 8014 default: 8015 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", 8016 insn->imm); 8017 return -EINVAL; 8018 } 8019 } 8020 8021 /* When register 'regno' is used to read the stack (either directly or through 8022 * a helper function) make sure that it's within stack boundary and, depending 8023 * on the access type and privileges, that all elements of the stack are 8024 * initialized. 8025 * 8026 * 'off' includes 'regno->off', but not its dynamic part (if any). 8027 * 8028 * All registers that have been spilled on the stack in the slots within the 8029 * read offsets are marked as read. 8030 */ 8031 static int check_stack_range_initialized( 8032 struct bpf_verifier_env *env, int regno, int off, 8033 int access_size, bool zero_size_allowed, 8034 enum bpf_access_type type, struct bpf_call_arg_meta *meta) 8035 { 8036 struct bpf_reg_state *reg = reg_state(env, regno); 8037 struct bpf_func_state *state = func(env, reg); 8038 int err, min_off, max_off, i, j, slot, spi; 8039 /* Some accesses can write anything into the stack, others are 8040 * read-only. 8041 */ 8042 bool clobber = false; 8043 8044 if (access_size == 0 && !zero_size_allowed) { 8045 verbose(env, "invalid zero-sized read\n"); 8046 return -EACCES; 8047 } 8048 8049 if (type == BPF_WRITE) 8050 clobber = true; 8051 8052 err = check_stack_access_within_bounds(env, regno, off, access_size, type); 8053 if (err) 8054 return err; 8055 8056 8057 if (tnum_is_const(reg->var_off)) { 8058 min_off = max_off = reg->var_off.value + off; 8059 } else { 8060 /* Variable offset is prohibited for unprivileged mode for 8061 * simplicity since it requires corresponding support in 8062 * Spectre masking for stack ALU. 8063 * See also retrieve_ptr_limit(). 8064 */ 8065 if (!env->bypass_spec_v1) { 8066 char tn_buf[48]; 8067 8068 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8069 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 8070 regno, tn_buf); 8071 return -EACCES; 8072 } 8073 /* Only initialized buffer on stack is allowed to be accessed 8074 * with variable offset. With uninitialized buffer it's hard to 8075 * guarantee that whole memory is marked as initialized on 8076 * helper return since specific bounds are unknown what may 8077 * cause uninitialized stack leaking. 8078 */ 8079 if (meta && meta->raw_mode) 8080 meta = NULL; 8081 8082 min_off = reg->smin_value + off; 8083 max_off = reg->smax_value + off; 8084 } 8085 8086 if (meta && meta->raw_mode) { 8087 /* Ensure we won't be overwriting dynptrs when simulating byte 8088 * by byte access in check_helper_call using meta.access_size. 8089 * This would be a problem if we have a helper in the future 8090 * which takes: 8091 * 8092 * helper(uninit_mem, len, dynptr) 8093 * 8094 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 8095 * may end up writing to dynptr itself when touching memory from 8096 * arg 1. This can be relaxed on a case by case basis for known 8097 * safe cases, but reject due to the possibilitiy of aliasing by 8098 * default. 8099 */ 8100 for (i = min_off; i < max_off + access_size; i++) { 8101 int stack_off = -i - 1; 8102 8103 spi = __get_spi(i); 8104 /* raw_mode may write past allocated_stack */ 8105 if (state->allocated_stack <= stack_off) 8106 continue; 8107 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 8108 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 8109 return -EACCES; 8110 } 8111 } 8112 meta->access_size = access_size; 8113 meta->regno = regno; 8114 return 0; 8115 } 8116 8117 for (i = min_off; i < max_off + access_size; i++) { 8118 u8 *stype; 8119 8120 slot = -i - 1; 8121 spi = slot / BPF_REG_SIZE; 8122 if (state->allocated_stack <= slot) { 8123 verbose(env, "allocated_stack too small\n"); 8124 return -EFAULT; 8125 } 8126 8127 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 8128 if (*stype == STACK_MISC) 8129 goto mark; 8130 if ((*stype == STACK_ZERO) || 8131 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 8132 if (clobber) { 8133 /* helper can write anything into the stack */ 8134 *stype = STACK_MISC; 8135 } 8136 goto mark; 8137 } 8138 8139 if (is_spilled_reg(&state->stack[spi]) && 8140 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 8141 env->allow_ptr_leaks)) { 8142 if (clobber) { 8143 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 8144 for (j = 0; j < BPF_REG_SIZE; j++) 8145 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 8146 } 8147 goto mark; 8148 } 8149 8150 if (tnum_is_const(reg->var_off)) { 8151 verbose(env, "invalid read from stack R%d off %d+%d size %d\n", 8152 regno, min_off, i - min_off, access_size); 8153 } else { 8154 char tn_buf[48]; 8155 8156 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8157 verbose(env, "invalid read from stack R%d var_off %s+%d size %d\n", 8158 regno, tn_buf, i - min_off, access_size); 8159 } 8160 return -EACCES; 8161 mark: 8162 /* reading any byte out of 8-byte 'spill_slot' will cause 8163 * the whole slot to be marked as 'read' 8164 */ 8165 err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi)); 8166 if (err) 8167 return err; 8168 /* We do not call bpf_mark_stack_write(), as we can not 8169 * be sure that whether stack slot is written to or not. Hence, 8170 * we must still conservatively propagate reads upwards even if 8171 * helper may write to the entire memory range. 8172 */ 8173 } 8174 return 0; 8175 } 8176 8177 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 8178 int access_size, enum bpf_access_type access_type, 8179 bool zero_size_allowed, 8180 struct bpf_call_arg_meta *meta) 8181 { 8182 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8183 u32 *max_access; 8184 8185 switch (base_type(reg->type)) { 8186 case PTR_TO_PACKET: 8187 case PTR_TO_PACKET_META: 8188 return check_packet_access(env, regno, reg->off, access_size, 8189 zero_size_allowed); 8190 case PTR_TO_MAP_KEY: 8191 if (access_type == BPF_WRITE) { 8192 verbose(env, "R%d cannot write into %s\n", regno, 8193 reg_type_str(env, reg->type)); 8194 return -EACCES; 8195 } 8196 return check_mem_region_access(env, regno, reg->off, access_size, 8197 reg->map_ptr->key_size, false); 8198 case PTR_TO_MAP_VALUE: 8199 if (check_map_access_type(env, regno, reg->off, access_size, access_type)) 8200 return -EACCES; 8201 return check_map_access(env, regno, reg->off, access_size, 8202 zero_size_allowed, ACCESS_HELPER); 8203 case PTR_TO_MEM: 8204 if (type_is_rdonly_mem(reg->type)) { 8205 if (access_type == BPF_WRITE) { 8206 verbose(env, "R%d cannot write into %s\n", regno, 8207 reg_type_str(env, reg->type)); 8208 return -EACCES; 8209 } 8210 } 8211 return check_mem_region_access(env, regno, reg->off, 8212 access_size, reg->mem_size, 8213 zero_size_allowed); 8214 case PTR_TO_BUF: 8215 if (type_is_rdonly_mem(reg->type)) { 8216 if (access_type == BPF_WRITE) { 8217 verbose(env, "R%d cannot write into %s\n", regno, 8218 reg_type_str(env, reg->type)); 8219 return -EACCES; 8220 } 8221 8222 max_access = &env->prog->aux->max_rdonly_access; 8223 } else { 8224 max_access = &env->prog->aux->max_rdwr_access; 8225 } 8226 return check_buffer_access(env, reg, regno, reg->off, 8227 access_size, zero_size_allowed, 8228 max_access); 8229 case PTR_TO_STACK: 8230 return check_stack_range_initialized( 8231 env, 8232 regno, reg->off, access_size, 8233 zero_size_allowed, access_type, meta); 8234 case PTR_TO_BTF_ID: 8235 return check_ptr_to_btf_access(env, regs, regno, reg->off, 8236 access_size, BPF_READ, -1); 8237 case PTR_TO_CTX: 8238 /* in case the function doesn't know how to access the context, 8239 * (because we are in a program of type SYSCALL for example), we 8240 * can not statically check its size. 8241 * Dynamically check it now. 8242 */ 8243 if (!env->ops->convert_ctx_access) { 8244 int offset = access_size - 1; 8245 8246 /* Allow zero-byte read from PTR_TO_CTX */ 8247 if (access_size == 0) 8248 return zero_size_allowed ? 0 : -EACCES; 8249 8250 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 8251 access_type, -1, false, false); 8252 } 8253 8254 fallthrough; 8255 default: /* scalar_value or invalid ptr */ 8256 /* Allow zero-byte read from NULL, regardless of pointer type */ 8257 if (zero_size_allowed && access_size == 0 && 8258 register_is_null(reg)) 8259 return 0; 8260 8261 verbose(env, "R%d type=%s ", regno, 8262 reg_type_str(env, reg->type)); 8263 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 8264 return -EACCES; 8265 } 8266 } 8267 8268 /* verify arguments to helpers or kfuncs consisting of a pointer and an access 8269 * size. 8270 * 8271 * @regno is the register containing the access size. regno-1 is the register 8272 * containing the pointer. 8273 */ 8274 static int check_mem_size_reg(struct bpf_verifier_env *env, 8275 struct bpf_reg_state *reg, u32 regno, 8276 enum bpf_access_type access_type, 8277 bool zero_size_allowed, 8278 struct bpf_call_arg_meta *meta) 8279 { 8280 int err; 8281 8282 /* This is used to refine r0 return value bounds for helpers 8283 * that enforce this value as an upper bound on return values. 8284 * See do_refine_retval_range() for helpers that can refine 8285 * the return value. C type of helper is u32 so we pull register 8286 * bound from umax_value however, if negative verifier errors 8287 * out. Only upper bounds can be learned because retval is an 8288 * int type and negative retvals are allowed. 8289 */ 8290 meta->msize_max_value = reg->umax_value; 8291 8292 /* The register is SCALAR_VALUE; the access check happens using 8293 * its boundaries. For unprivileged variable accesses, disable 8294 * raw mode so that the program is required to initialize all 8295 * the memory that the helper could just partially fill up. 8296 */ 8297 if (!tnum_is_const(reg->var_off)) 8298 meta = NULL; 8299 8300 if (reg->smin_value < 0) { 8301 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 8302 regno); 8303 return -EACCES; 8304 } 8305 8306 if (reg->umin_value == 0 && !zero_size_allowed) { 8307 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", 8308 regno, reg->umin_value, reg->umax_value); 8309 return -EACCES; 8310 } 8311 8312 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 8313 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 8314 regno); 8315 return -EACCES; 8316 } 8317 err = check_helper_mem_access(env, regno - 1, reg->umax_value, 8318 access_type, zero_size_allowed, meta); 8319 if (!err) 8320 err = mark_chain_precision(env, regno); 8321 return err; 8322 } 8323 8324 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 8325 u32 regno, u32 mem_size) 8326 { 8327 bool may_be_null = type_may_be_null(reg->type); 8328 struct bpf_reg_state saved_reg; 8329 int err; 8330 8331 if (register_is_null(reg)) 8332 return 0; 8333 8334 /* Assuming that the register contains a value check if the memory 8335 * access is safe. Temporarily save and restore the register's state as 8336 * the conversion shouldn't be visible to a caller. 8337 */ 8338 if (may_be_null) { 8339 saved_reg = *reg; 8340 mark_ptr_not_null_reg(reg); 8341 } 8342 8343 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL); 8344 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL); 8345 8346 if (may_be_null) 8347 *reg = saved_reg; 8348 8349 return err; 8350 } 8351 8352 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 8353 u32 regno) 8354 { 8355 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 8356 bool may_be_null = type_may_be_null(mem_reg->type); 8357 struct bpf_reg_state saved_reg; 8358 struct bpf_call_arg_meta meta; 8359 int err; 8360 8361 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 8362 8363 memset(&meta, 0, sizeof(meta)); 8364 8365 if (may_be_null) { 8366 saved_reg = *mem_reg; 8367 mark_ptr_not_null_reg(mem_reg); 8368 } 8369 8370 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta); 8371 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta); 8372 8373 if (may_be_null) 8374 *mem_reg = saved_reg; 8375 8376 return err; 8377 } 8378 8379 enum { 8380 PROCESS_SPIN_LOCK = (1 << 0), 8381 PROCESS_RES_LOCK = (1 << 1), 8382 PROCESS_LOCK_IRQ = (1 << 2), 8383 }; 8384 8385 /* Implementation details: 8386 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 8387 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 8388 * Two bpf_map_lookups (even with the same key) will have different reg->id. 8389 * Two separate bpf_obj_new will also have different reg->id. 8390 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 8391 * clears reg->id after value_or_null->value transition, since the verifier only 8392 * cares about the range of access to valid map value pointer and doesn't care 8393 * about actual address of the map element. 8394 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 8395 * reg->id > 0 after value_or_null->value transition. By doing so 8396 * two bpf_map_lookups will be considered two different pointers that 8397 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 8398 * returned from bpf_obj_new. 8399 * The verifier allows taking only one bpf_spin_lock at a time to avoid 8400 * dead-locks. 8401 * Since only one bpf_spin_lock is allowed the checks are simpler than 8402 * reg_is_refcounted() logic. The verifier needs to remember only 8403 * one spin_lock instead of array of acquired_refs. 8404 * env->cur_state->active_locks remembers which map value element or allocated 8405 * object got locked and clears it after bpf_spin_unlock. 8406 */ 8407 static int process_spin_lock(struct bpf_verifier_env *env, int regno, int flags) 8408 { 8409 bool is_lock = flags & PROCESS_SPIN_LOCK, is_res_lock = flags & PROCESS_RES_LOCK; 8410 const char *lock_str = is_res_lock ? "bpf_res_spin" : "bpf_spin"; 8411 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8412 struct bpf_verifier_state *cur = env->cur_state; 8413 bool is_const = tnum_is_const(reg->var_off); 8414 bool is_irq = flags & PROCESS_LOCK_IRQ; 8415 u64 val = reg->var_off.value; 8416 struct bpf_map *map = NULL; 8417 struct btf *btf = NULL; 8418 struct btf_record *rec; 8419 u32 spin_lock_off; 8420 int err; 8421 8422 if (!is_const) { 8423 verbose(env, 8424 "R%d doesn't have constant offset. %s_lock has to be at the constant offset\n", 8425 regno, lock_str); 8426 return -EINVAL; 8427 } 8428 if (reg->type == PTR_TO_MAP_VALUE) { 8429 map = reg->map_ptr; 8430 if (!map->btf) { 8431 verbose(env, 8432 "map '%s' has to have BTF in order to use %s_lock\n", 8433 map->name, lock_str); 8434 return -EINVAL; 8435 } 8436 } else { 8437 btf = reg->btf; 8438 } 8439 8440 rec = reg_btf_record(reg); 8441 if (!btf_record_has_field(rec, is_res_lock ? BPF_RES_SPIN_LOCK : BPF_SPIN_LOCK)) { 8442 verbose(env, "%s '%s' has no valid %s_lock\n", map ? "map" : "local", 8443 map ? map->name : "kptr", lock_str); 8444 return -EINVAL; 8445 } 8446 spin_lock_off = is_res_lock ? rec->res_spin_lock_off : rec->spin_lock_off; 8447 if (spin_lock_off != val + reg->off) { 8448 verbose(env, "off %lld doesn't point to 'struct %s_lock' that is at %d\n", 8449 val + reg->off, lock_str, spin_lock_off); 8450 return -EINVAL; 8451 } 8452 if (is_lock) { 8453 void *ptr; 8454 int type; 8455 8456 if (map) 8457 ptr = map; 8458 else 8459 ptr = btf; 8460 8461 if (!is_res_lock && cur->active_locks) { 8462 if (find_lock_state(env->cur_state, REF_TYPE_LOCK, 0, NULL)) { 8463 verbose(env, 8464 "Locking two bpf_spin_locks are not allowed\n"); 8465 return -EINVAL; 8466 } 8467 } else if (is_res_lock && cur->active_locks) { 8468 if (find_lock_state(env->cur_state, REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, reg->id, ptr)) { 8469 verbose(env, "Acquiring the same lock again, AA deadlock detected\n"); 8470 return -EINVAL; 8471 } 8472 } 8473 8474 if (is_res_lock && is_irq) 8475 type = REF_TYPE_RES_LOCK_IRQ; 8476 else if (is_res_lock) 8477 type = REF_TYPE_RES_LOCK; 8478 else 8479 type = REF_TYPE_LOCK; 8480 err = acquire_lock_state(env, env->insn_idx, type, reg->id, ptr); 8481 if (err < 0) { 8482 verbose(env, "Failed to acquire lock state\n"); 8483 return err; 8484 } 8485 } else { 8486 void *ptr; 8487 int type; 8488 8489 if (map) 8490 ptr = map; 8491 else 8492 ptr = btf; 8493 8494 if (!cur->active_locks) { 8495 verbose(env, "%s_unlock without taking a lock\n", lock_str); 8496 return -EINVAL; 8497 } 8498 8499 if (is_res_lock && is_irq) 8500 type = REF_TYPE_RES_LOCK_IRQ; 8501 else if (is_res_lock) 8502 type = REF_TYPE_RES_LOCK; 8503 else 8504 type = REF_TYPE_LOCK; 8505 if (!find_lock_state(cur, type, reg->id, ptr)) { 8506 verbose(env, "%s_unlock of different lock\n", lock_str); 8507 return -EINVAL; 8508 } 8509 if (reg->id != cur->active_lock_id || ptr != cur->active_lock_ptr) { 8510 verbose(env, "%s_unlock cannot be out of order\n", lock_str); 8511 return -EINVAL; 8512 } 8513 if (release_lock_state(cur, type, reg->id, ptr)) { 8514 verbose(env, "%s_unlock of different lock\n", lock_str); 8515 return -EINVAL; 8516 } 8517 8518 invalidate_non_owning_refs(env); 8519 } 8520 return 0; 8521 } 8522 8523 /* Check if @regno is a pointer to a specific field in a map value */ 8524 static int check_map_field_pointer(struct bpf_verifier_env *env, u32 regno, 8525 enum btf_field_type field_type) 8526 { 8527 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8528 bool is_const = tnum_is_const(reg->var_off); 8529 struct bpf_map *map = reg->map_ptr; 8530 u64 val = reg->var_off.value; 8531 const char *struct_name = btf_field_type_name(field_type); 8532 int field_off = -1; 8533 8534 if (!is_const) { 8535 verbose(env, 8536 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 8537 regno, struct_name); 8538 return -EINVAL; 8539 } 8540 if (!map->btf) { 8541 verbose(env, "map '%s' has to have BTF in order to use %s\n", map->name, 8542 struct_name); 8543 return -EINVAL; 8544 } 8545 if (!btf_record_has_field(map->record, field_type)) { 8546 verbose(env, "map '%s' has no valid %s\n", map->name, struct_name); 8547 return -EINVAL; 8548 } 8549 switch (field_type) { 8550 case BPF_TIMER: 8551 field_off = map->record->timer_off; 8552 break; 8553 case BPF_TASK_WORK: 8554 field_off = map->record->task_work_off; 8555 break; 8556 case BPF_WORKQUEUE: 8557 field_off = map->record->wq_off; 8558 break; 8559 default: 8560 verifier_bug(env, "unsupported BTF field type: %s\n", struct_name); 8561 return -EINVAL; 8562 } 8563 if (field_off != val + reg->off) { 8564 verbose(env, "off %lld doesn't point to 'struct %s' that is at %d\n", 8565 val + reg->off, struct_name, field_off); 8566 return -EINVAL; 8567 } 8568 return 0; 8569 } 8570 8571 static int process_timer_func(struct bpf_verifier_env *env, int regno, 8572 struct bpf_call_arg_meta *meta) 8573 { 8574 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8575 struct bpf_map *map = reg->map_ptr; 8576 int err; 8577 8578 err = check_map_field_pointer(env, regno, BPF_TIMER); 8579 if (err) 8580 return err; 8581 8582 if (meta->map_ptr) { 8583 verifier_bug(env, "Two map pointers in a timer helper"); 8584 return -EFAULT; 8585 } 8586 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 8587 verbose(env, "bpf_timer cannot be used for PREEMPT_RT.\n"); 8588 return -EOPNOTSUPP; 8589 } 8590 meta->map_uid = reg->map_uid; 8591 meta->map_ptr = map; 8592 return 0; 8593 } 8594 8595 static int process_wq_func(struct bpf_verifier_env *env, int regno, 8596 struct bpf_kfunc_call_arg_meta *meta) 8597 { 8598 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8599 struct bpf_map *map = reg->map_ptr; 8600 int err; 8601 8602 err = check_map_field_pointer(env, regno, BPF_WORKQUEUE); 8603 if (err) 8604 return err; 8605 8606 if (meta->map.ptr) { 8607 verifier_bug(env, "Two map pointers in a bpf_wq helper"); 8608 return -EFAULT; 8609 } 8610 8611 meta->map.uid = reg->map_uid; 8612 meta->map.ptr = map; 8613 return 0; 8614 } 8615 8616 static int process_task_work_func(struct bpf_verifier_env *env, int regno, 8617 struct bpf_kfunc_call_arg_meta *meta) 8618 { 8619 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8620 struct bpf_map *map = reg->map_ptr; 8621 int err; 8622 8623 err = check_map_field_pointer(env, regno, BPF_TASK_WORK); 8624 if (err) 8625 return err; 8626 8627 if (meta->map.ptr) { 8628 verifier_bug(env, "Two map pointers in a bpf_task_work helper"); 8629 return -EFAULT; 8630 } 8631 meta->map.uid = reg->map_uid; 8632 meta->map.ptr = map; 8633 return 0; 8634 } 8635 8636 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 8637 struct bpf_call_arg_meta *meta) 8638 { 8639 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8640 struct btf_field *kptr_field; 8641 struct bpf_map *map_ptr; 8642 struct btf_record *rec; 8643 u32 kptr_off; 8644 8645 if (type_is_ptr_alloc_obj(reg->type)) { 8646 rec = reg_btf_record(reg); 8647 } else { /* PTR_TO_MAP_VALUE */ 8648 map_ptr = reg->map_ptr; 8649 if (!map_ptr->btf) { 8650 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 8651 map_ptr->name); 8652 return -EINVAL; 8653 } 8654 rec = map_ptr->record; 8655 meta->map_ptr = map_ptr; 8656 } 8657 8658 if (!tnum_is_const(reg->var_off)) { 8659 verbose(env, 8660 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 8661 regno); 8662 return -EINVAL; 8663 } 8664 8665 if (!btf_record_has_field(rec, BPF_KPTR)) { 8666 verbose(env, "R%d has no valid kptr\n", regno); 8667 return -EINVAL; 8668 } 8669 8670 kptr_off = reg->off + reg->var_off.value; 8671 kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR); 8672 if (!kptr_field) { 8673 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 8674 return -EACCES; 8675 } 8676 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 8677 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 8678 return -EACCES; 8679 } 8680 meta->kptr_field = kptr_field; 8681 return 0; 8682 } 8683 8684 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 8685 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 8686 * 8687 * In both cases we deal with the first 8 bytes, but need to mark the next 8 8688 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 8689 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 8690 * 8691 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 8692 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 8693 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 8694 * mutate the view of the dynptr and also possibly destroy it. In the latter 8695 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 8696 * memory that dynptr points to. 8697 * 8698 * The verifier will keep track both levels of mutation (bpf_dynptr's in 8699 * reg->type and the memory's in reg->dynptr.type), but there is no support for 8700 * readonly dynptr view yet, hence only the first case is tracked and checked. 8701 * 8702 * This is consistent with how C applies the const modifier to a struct object, 8703 * where the pointer itself inside bpf_dynptr becomes const but not what it 8704 * points to. 8705 * 8706 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 8707 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 8708 */ 8709 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 8710 enum bpf_arg_type arg_type, int clone_ref_obj_id) 8711 { 8712 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8713 int err; 8714 8715 if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) { 8716 verbose(env, 8717 "arg#%d expected pointer to stack or const struct bpf_dynptr\n", 8718 regno - 1); 8719 return -EINVAL; 8720 } 8721 8722 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 8723 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 8724 */ 8725 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 8726 verifier_bug(env, "misconfigured dynptr helper type flags"); 8727 return -EFAULT; 8728 } 8729 8730 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 8731 * constructing a mutable bpf_dynptr object. 8732 * 8733 * Currently, this is only possible with PTR_TO_STACK 8734 * pointing to a region of at least 16 bytes which doesn't 8735 * contain an existing bpf_dynptr. 8736 * 8737 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 8738 * mutated or destroyed. However, the memory it points to 8739 * may be mutated. 8740 * 8741 * None - Points to a initialized dynptr that can be mutated and 8742 * destroyed, including mutation of the memory it points 8743 * to. 8744 */ 8745 if (arg_type & MEM_UNINIT) { 8746 int i; 8747 8748 if (!is_dynptr_reg_valid_uninit(env, reg)) { 8749 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 8750 return -EINVAL; 8751 } 8752 8753 /* we write BPF_DW bits (8 bytes) at a time */ 8754 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 8755 err = check_mem_access(env, insn_idx, regno, 8756 i, BPF_DW, BPF_WRITE, -1, false, false); 8757 if (err) 8758 return err; 8759 } 8760 8761 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 8762 } else /* MEM_RDONLY and None case from above */ { 8763 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 8764 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 8765 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 8766 return -EINVAL; 8767 } 8768 8769 if (!is_dynptr_reg_valid_init(env, reg)) { 8770 verbose(env, 8771 "Expected an initialized dynptr as arg #%d\n", 8772 regno - 1); 8773 return -EINVAL; 8774 } 8775 8776 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 8777 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 8778 verbose(env, 8779 "Expected a dynptr of type %s as arg #%d\n", 8780 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1); 8781 return -EINVAL; 8782 } 8783 8784 err = mark_dynptr_read(env, reg); 8785 } 8786 return err; 8787 } 8788 8789 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 8790 { 8791 struct bpf_func_state *state = func(env, reg); 8792 8793 return state->stack[spi].spilled_ptr.ref_obj_id; 8794 } 8795 8796 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8797 { 8798 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8799 } 8800 8801 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8802 { 8803 return meta->kfunc_flags & KF_ITER_NEW; 8804 } 8805 8806 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8807 { 8808 return meta->kfunc_flags & KF_ITER_NEXT; 8809 } 8810 8811 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8812 { 8813 return meta->kfunc_flags & KF_ITER_DESTROY; 8814 } 8815 8816 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx, 8817 const struct btf_param *arg) 8818 { 8819 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 8820 * kfunc is iter state pointer 8821 */ 8822 if (is_iter_kfunc(meta)) 8823 return arg_idx == 0; 8824 8825 /* iter passed as an argument to a generic kfunc */ 8826 return btf_param_match_suffix(meta->btf, arg, "__iter"); 8827 } 8828 8829 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 8830 struct bpf_kfunc_call_arg_meta *meta) 8831 { 8832 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8833 const struct btf_type *t; 8834 int spi, err, i, nr_slots, btf_id; 8835 8836 if (reg->type != PTR_TO_STACK) { 8837 verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1); 8838 return -EINVAL; 8839 } 8840 8841 /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs() 8842 * ensures struct convention, so we wouldn't need to do any BTF 8843 * validation here. But given iter state can be passed as a parameter 8844 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more 8845 * conservative here. 8846 */ 8847 btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1); 8848 if (btf_id < 0) { 8849 verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1); 8850 return -EINVAL; 8851 } 8852 t = btf_type_by_id(meta->btf, btf_id); 8853 nr_slots = t->size / BPF_REG_SIZE; 8854 8855 if (is_iter_new_kfunc(meta)) { 8856 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 8857 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 8858 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 8859 iter_type_str(meta->btf, btf_id), regno - 1); 8860 return -EINVAL; 8861 } 8862 8863 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 8864 err = check_mem_access(env, insn_idx, regno, 8865 i, BPF_DW, BPF_WRITE, -1, false, false); 8866 if (err) 8867 return err; 8868 } 8869 8870 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 8871 if (err) 8872 return err; 8873 } else { 8874 /* iter_next() or iter_destroy(), as well as any kfunc 8875 * accepting iter argument, expect initialized iter state 8876 */ 8877 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 8878 switch (err) { 8879 case 0: 8880 break; 8881 case -EINVAL: 8882 verbose(env, "expected an initialized iter_%s as arg #%d\n", 8883 iter_type_str(meta->btf, btf_id), regno - 1); 8884 return err; 8885 case -EPROTO: 8886 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 8887 return err; 8888 default: 8889 return err; 8890 } 8891 8892 spi = iter_get_spi(env, reg, nr_slots); 8893 if (spi < 0) 8894 return spi; 8895 8896 err = mark_iter_read(env, reg, spi, nr_slots); 8897 if (err) 8898 return err; 8899 8900 /* remember meta->iter info for process_iter_next_call() */ 8901 meta->iter.spi = spi; 8902 meta->iter.frameno = reg->frameno; 8903 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 8904 8905 if (is_iter_destroy_kfunc(meta)) { 8906 err = unmark_stack_slots_iter(env, reg, nr_slots); 8907 if (err) 8908 return err; 8909 } 8910 } 8911 8912 return 0; 8913 } 8914 8915 /* Look for a previous loop entry at insn_idx: nearest parent state 8916 * stopped at insn_idx with callsites matching those in cur->frame. 8917 */ 8918 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 8919 struct bpf_verifier_state *cur, 8920 int insn_idx) 8921 { 8922 struct bpf_verifier_state_list *sl; 8923 struct bpf_verifier_state *st; 8924 struct list_head *pos, *head; 8925 8926 /* Explored states are pushed in stack order, most recent states come first */ 8927 head = explored_state(env, insn_idx); 8928 list_for_each(pos, head) { 8929 sl = container_of(pos, struct bpf_verifier_state_list, node); 8930 /* If st->branches != 0 state is a part of current DFS verification path, 8931 * hence cur & st for a loop. 8932 */ 8933 st = &sl->state; 8934 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 8935 st->dfs_depth < cur->dfs_depth) 8936 return st; 8937 } 8938 8939 return NULL; 8940 } 8941 8942 static void reset_idmap_scratch(struct bpf_verifier_env *env); 8943 static bool regs_exact(const struct bpf_reg_state *rold, 8944 const struct bpf_reg_state *rcur, 8945 struct bpf_idmap *idmap); 8946 8947 static void maybe_widen_reg(struct bpf_verifier_env *env, 8948 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8949 struct bpf_idmap *idmap) 8950 { 8951 if (rold->type != SCALAR_VALUE) 8952 return; 8953 if (rold->type != rcur->type) 8954 return; 8955 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 8956 return; 8957 __mark_reg_unknown(env, rcur); 8958 } 8959 8960 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 8961 struct bpf_verifier_state *old, 8962 struct bpf_verifier_state *cur) 8963 { 8964 struct bpf_func_state *fold, *fcur; 8965 int i, fr, num_slots; 8966 8967 reset_idmap_scratch(env); 8968 for (fr = old->curframe; fr >= 0; fr--) { 8969 fold = old->frame[fr]; 8970 fcur = cur->frame[fr]; 8971 8972 for (i = 0; i < MAX_BPF_REG; i++) 8973 maybe_widen_reg(env, 8974 &fold->regs[i], 8975 &fcur->regs[i], 8976 &env->idmap_scratch); 8977 8978 num_slots = min(fold->allocated_stack / BPF_REG_SIZE, 8979 fcur->allocated_stack / BPF_REG_SIZE); 8980 for (i = 0; i < num_slots; i++) { 8981 if (!is_spilled_reg(&fold->stack[i]) || 8982 !is_spilled_reg(&fcur->stack[i])) 8983 continue; 8984 8985 maybe_widen_reg(env, 8986 &fold->stack[i].spilled_ptr, 8987 &fcur->stack[i].spilled_ptr, 8988 &env->idmap_scratch); 8989 } 8990 } 8991 return 0; 8992 } 8993 8994 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st, 8995 struct bpf_kfunc_call_arg_meta *meta) 8996 { 8997 int iter_frameno = meta->iter.frameno; 8998 int iter_spi = meta->iter.spi; 8999 9000 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 9001 } 9002 9003 /* process_iter_next_call() is called when verifier gets to iterator's next 9004 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 9005 * to it as just "iter_next()" in comments below. 9006 * 9007 * BPF verifier relies on a crucial contract for any iter_next() 9008 * implementation: it should *eventually* return NULL, and once that happens 9009 * it should keep returning NULL. That is, once iterator exhausts elements to 9010 * iterate, it should never reset or spuriously return new elements. 9011 * 9012 * With the assumption of such contract, process_iter_next_call() simulates 9013 * a fork in the verifier state to validate loop logic correctness and safety 9014 * without having to simulate infinite amount of iterations. 9015 * 9016 * In current state, we first assume that iter_next() returned NULL and 9017 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 9018 * conditions we should not form an infinite loop and should eventually reach 9019 * exit. 9020 * 9021 * Besides that, we also fork current state and enqueue it for later 9022 * verification. In a forked state we keep iterator state as ACTIVE 9023 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 9024 * also bump iteration depth to prevent erroneous infinite loop detection 9025 * later on (see iter_active_depths_differ() comment for details). In this 9026 * state we assume that we'll eventually loop back to another iter_next() 9027 * calls (it could be in exactly same location or in some other instruction, 9028 * it doesn't matter, we don't make any unnecessary assumptions about this, 9029 * everything revolves around iterator state in a stack slot, not which 9030 * instruction is calling iter_next()). When that happens, we either will come 9031 * to iter_next() with equivalent state and can conclude that next iteration 9032 * will proceed in exactly the same way as we just verified, so it's safe to 9033 * assume that loop converges. If not, we'll go on another iteration 9034 * simulation with a different input state, until all possible starting states 9035 * are validated or we reach maximum number of instructions limit. 9036 * 9037 * This way, we will either exhaustively discover all possible input states 9038 * that iterator loop can start with and eventually will converge, or we'll 9039 * effectively regress into bounded loop simulation logic and either reach 9040 * maximum number of instructions if loop is not provably convergent, or there 9041 * is some statically known limit on number of iterations (e.g., if there is 9042 * an explicit `if n > 100 then break;` statement somewhere in the loop). 9043 * 9044 * Iteration convergence logic in is_state_visited() relies on exact 9045 * states comparison, which ignores read and precision marks. 9046 * This is necessary because read and precision marks are not finalized 9047 * while in the loop. Exact comparison might preclude convergence for 9048 * simple programs like below: 9049 * 9050 * i = 0; 9051 * while(iter_next(&it)) 9052 * i++; 9053 * 9054 * At each iteration step i++ would produce a new distinct state and 9055 * eventually instruction processing limit would be reached. 9056 * 9057 * To avoid such behavior speculatively forget (widen) range for 9058 * imprecise scalar registers, if those registers were not precise at the 9059 * end of the previous iteration and do not match exactly. 9060 * 9061 * This is a conservative heuristic that allows to verify wide range of programs, 9062 * however it precludes verification of programs that conjure an 9063 * imprecise value on the first loop iteration and use it as precise on a second. 9064 * For example, the following safe program would fail to verify: 9065 * 9066 * struct bpf_num_iter it; 9067 * int arr[10]; 9068 * int i = 0, a = 0; 9069 * bpf_iter_num_new(&it, 0, 10); 9070 * while (bpf_iter_num_next(&it)) { 9071 * if (a == 0) { 9072 * a = 1; 9073 * i = 7; // Because i changed verifier would forget 9074 * // it's range on second loop entry. 9075 * } else { 9076 * arr[i] = 42; // This would fail to verify. 9077 * } 9078 * } 9079 * bpf_iter_num_destroy(&it); 9080 */ 9081 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 9082 struct bpf_kfunc_call_arg_meta *meta) 9083 { 9084 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 9085 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 9086 struct bpf_reg_state *cur_iter, *queued_iter; 9087 9088 BTF_TYPE_EMIT(struct bpf_iter); 9089 9090 cur_iter = get_iter_from_state(cur_st, meta); 9091 9092 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 9093 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 9094 verifier_bug(env, "unexpected iterator state %d (%s)", 9095 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 9096 return -EFAULT; 9097 } 9098 9099 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 9100 /* Because iter_next() call is a checkpoint is_state_visitied() 9101 * should guarantee parent state with same call sites and insn_idx. 9102 */ 9103 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 9104 !same_callsites(cur_st->parent, cur_st)) { 9105 verifier_bug(env, "bad parent state for iter next call"); 9106 return -EFAULT; 9107 } 9108 /* Note cur_st->parent in the call below, it is necessary to skip 9109 * checkpoint created for cur_st by is_state_visited() 9110 * right at this instruction. 9111 */ 9112 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 9113 /* branch out active iter state */ 9114 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 9115 if (IS_ERR(queued_st)) 9116 return PTR_ERR(queued_st); 9117 9118 queued_iter = get_iter_from_state(queued_st, meta); 9119 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 9120 queued_iter->iter.depth++; 9121 if (prev_st) 9122 widen_imprecise_scalars(env, prev_st, queued_st); 9123 9124 queued_fr = queued_st->frame[queued_st->curframe]; 9125 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 9126 } 9127 9128 /* switch to DRAINED state, but keep the depth unchanged */ 9129 /* mark current iter state as drained and assume returned NULL */ 9130 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 9131 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); 9132 9133 return 0; 9134 } 9135 9136 static bool arg_type_is_mem_size(enum bpf_arg_type type) 9137 { 9138 return type == ARG_CONST_SIZE || 9139 type == ARG_CONST_SIZE_OR_ZERO; 9140 } 9141 9142 static bool arg_type_is_raw_mem(enum bpf_arg_type type) 9143 { 9144 return base_type(type) == ARG_PTR_TO_MEM && 9145 type & MEM_UNINIT; 9146 } 9147 9148 static bool arg_type_is_release(enum bpf_arg_type type) 9149 { 9150 return type & OBJ_RELEASE; 9151 } 9152 9153 static bool arg_type_is_dynptr(enum bpf_arg_type type) 9154 { 9155 return base_type(type) == ARG_PTR_TO_DYNPTR; 9156 } 9157 9158 static int resolve_map_arg_type(struct bpf_verifier_env *env, 9159 const struct bpf_call_arg_meta *meta, 9160 enum bpf_arg_type *arg_type) 9161 { 9162 if (!meta->map_ptr) { 9163 /* kernel subsystem misconfigured verifier */ 9164 verifier_bug(env, "invalid map_ptr to access map->type"); 9165 return -EFAULT; 9166 } 9167 9168 switch (meta->map_ptr->map_type) { 9169 case BPF_MAP_TYPE_SOCKMAP: 9170 case BPF_MAP_TYPE_SOCKHASH: 9171 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 9172 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 9173 } else { 9174 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 9175 return -EINVAL; 9176 } 9177 break; 9178 case BPF_MAP_TYPE_BLOOM_FILTER: 9179 if (meta->func_id == BPF_FUNC_map_peek_elem) 9180 *arg_type = ARG_PTR_TO_MAP_VALUE; 9181 break; 9182 default: 9183 break; 9184 } 9185 return 0; 9186 } 9187 9188 struct bpf_reg_types { 9189 const enum bpf_reg_type types[10]; 9190 u32 *btf_id; 9191 }; 9192 9193 static const struct bpf_reg_types sock_types = { 9194 .types = { 9195 PTR_TO_SOCK_COMMON, 9196 PTR_TO_SOCKET, 9197 PTR_TO_TCP_SOCK, 9198 PTR_TO_XDP_SOCK, 9199 }, 9200 }; 9201 9202 #ifdef CONFIG_NET 9203 static const struct bpf_reg_types btf_id_sock_common_types = { 9204 .types = { 9205 PTR_TO_SOCK_COMMON, 9206 PTR_TO_SOCKET, 9207 PTR_TO_TCP_SOCK, 9208 PTR_TO_XDP_SOCK, 9209 PTR_TO_BTF_ID, 9210 PTR_TO_BTF_ID | PTR_TRUSTED, 9211 }, 9212 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 9213 }; 9214 #endif 9215 9216 static const struct bpf_reg_types mem_types = { 9217 .types = { 9218 PTR_TO_STACK, 9219 PTR_TO_PACKET, 9220 PTR_TO_PACKET_META, 9221 PTR_TO_MAP_KEY, 9222 PTR_TO_MAP_VALUE, 9223 PTR_TO_MEM, 9224 PTR_TO_MEM | MEM_RINGBUF, 9225 PTR_TO_BUF, 9226 PTR_TO_BTF_ID | PTR_TRUSTED, 9227 }, 9228 }; 9229 9230 static const struct bpf_reg_types spin_lock_types = { 9231 .types = { 9232 PTR_TO_MAP_VALUE, 9233 PTR_TO_BTF_ID | MEM_ALLOC, 9234 } 9235 }; 9236 9237 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 9238 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 9239 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 9240 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 9241 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 9242 static const struct bpf_reg_types btf_ptr_types = { 9243 .types = { 9244 PTR_TO_BTF_ID, 9245 PTR_TO_BTF_ID | PTR_TRUSTED, 9246 PTR_TO_BTF_ID | MEM_RCU, 9247 }, 9248 }; 9249 static const struct bpf_reg_types percpu_btf_ptr_types = { 9250 .types = { 9251 PTR_TO_BTF_ID | MEM_PERCPU, 9252 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 9253 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 9254 } 9255 }; 9256 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 9257 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 9258 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 9259 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 9260 static const struct bpf_reg_types kptr_xchg_dest_types = { 9261 .types = { 9262 PTR_TO_MAP_VALUE, 9263 PTR_TO_BTF_ID | MEM_ALLOC 9264 } 9265 }; 9266 static const struct bpf_reg_types dynptr_types = { 9267 .types = { 9268 PTR_TO_STACK, 9269 CONST_PTR_TO_DYNPTR, 9270 } 9271 }; 9272 9273 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 9274 [ARG_PTR_TO_MAP_KEY] = &mem_types, 9275 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 9276 [ARG_CONST_SIZE] = &scalar_types, 9277 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 9278 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 9279 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 9280 [ARG_PTR_TO_CTX] = &context_types, 9281 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 9282 #ifdef CONFIG_NET 9283 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 9284 #endif 9285 [ARG_PTR_TO_SOCKET] = &fullsock_types, 9286 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 9287 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 9288 [ARG_PTR_TO_MEM] = &mem_types, 9289 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 9290 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 9291 [ARG_PTR_TO_FUNC] = &func_ptr_types, 9292 [ARG_PTR_TO_STACK] = &stack_ptr_types, 9293 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 9294 [ARG_PTR_TO_TIMER] = &timer_types, 9295 [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types, 9296 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 9297 }; 9298 9299 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 9300 enum bpf_arg_type arg_type, 9301 const u32 *arg_btf_id, 9302 struct bpf_call_arg_meta *meta) 9303 { 9304 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 9305 enum bpf_reg_type expected, type = reg->type; 9306 const struct bpf_reg_types *compatible; 9307 int i, j; 9308 9309 compatible = compatible_reg_types[base_type(arg_type)]; 9310 if (!compatible) { 9311 verifier_bug(env, "unsupported arg type %d", arg_type); 9312 return -EFAULT; 9313 } 9314 9315 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 9316 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 9317 * 9318 * Same for MAYBE_NULL: 9319 * 9320 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 9321 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 9322 * 9323 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 9324 * 9325 * Therefore we fold these flags depending on the arg_type before comparison. 9326 */ 9327 if (arg_type & MEM_RDONLY) 9328 type &= ~MEM_RDONLY; 9329 if (arg_type & PTR_MAYBE_NULL) 9330 type &= ~PTR_MAYBE_NULL; 9331 if (base_type(arg_type) == ARG_PTR_TO_MEM) 9332 type &= ~DYNPTR_TYPE_FLAG_MASK; 9333 9334 /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */ 9335 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) { 9336 type &= ~MEM_ALLOC; 9337 type &= ~MEM_PERCPU; 9338 } 9339 9340 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 9341 expected = compatible->types[i]; 9342 if (expected == NOT_INIT) 9343 break; 9344 9345 if (type == expected) 9346 goto found; 9347 } 9348 9349 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 9350 for (j = 0; j + 1 < i; j++) 9351 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 9352 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 9353 return -EACCES; 9354 9355 found: 9356 if (base_type(reg->type) != PTR_TO_BTF_ID) 9357 return 0; 9358 9359 if (compatible == &mem_types) { 9360 if (!(arg_type & MEM_RDONLY)) { 9361 verbose(env, 9362 "%s() may write into memory pointed by R%d type=%s\n", 9363 func_id_name(meta->func_id), 9364 regno, reg_type_str(env, reg->type)); 9365 return -EACCES; 9366 } 9367 return 0; 9368 } 9369 9370 switch ((int)reg->type) { 9371 case PTR_TO_BTF_ID: 9372 case PTR_TO_BTF_ID | PTR_TRUSTED: 9373 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: 9374 case PTR_TO_BTF_ID | MEM_RCU: 9375 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 9376 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 9377 { 9378 /* For bpf_sk_release, it needs to match against first member 9379 * 'struct sock_common', hence make an exception for it. This 9380 * allows bpf_sk_release to work for multiple socket types. 9381 */ 9382 bool strict_type_match = arg_type_is_release(arg_type) && 9383 meta->func_id != BPF_FUNC_sk_release; 9384 9385 if (type_may_be_null(reg->type) && 9386 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 9387 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 9388 return -EACCES; 9389 } 9390 9391 if (!arg_btf_id) { 9392 if (!compatible->btf_id) { 9393 verifier_bug(env, "missing arg compatible BTF ID"); 9394 return -EFAULT; 9395 } 9396 arg_btf_id = compatible->btf_id; 9397 } 9398 9399 if (meta->func_id == BPF_FUNC_kptr_xchg) { 9400 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 9401 return -EACCES; 9402 } else { 9403 if (arg_btf_id == BPF_PTR_POISON) { 9404 verbose(env, "verifier internal error:"); 9405 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 9406 regno); 9407 return -EACCES; 9408 } 9409 9410 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 9411 btf_vmlinux, *arg_btf_id, 9412 strict_type_match)) { 9413 verbose(env, "R%d is of type %s but %s is expected\n", 9414 regno, btf_type_name(reg->btf, reg->btf_id), 9415 btf_type_name(btf_vmlinux, *arg_btf_id)); 9416 return -EACCES; 9417 } 9418 } 9419 break; 9420 } 9421 case PTR_TO_BTF_ID | MEM_ALLOC: 9422 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 9423 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 9424 meta->func_id != BPF_FUNC_kptr_xchg) { 9425 verifier_bug(env, "unimplemented handling of MEM_ALLOC"); 9426 return -EFAULT; 9427 } 9428 /* Check if local kptr in src arg matches kptr in dst arg */ 9429 if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) { 9430 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 9431 return -EACCES; 9432 } 9433 break; 9434 case PTR_TO_BTF_ID | MEM_PERCPU: 9435 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 9436 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 9437 /* Handled by helper specific checks */ 9438 break; 9439 default: 9440 verifier_bug(env, "invalid PTR_TO_BTF_ID register for type match"); 9441 return -EFAULT; 9442 } 9443 return 0; 9444 } 9445 9446 static struct btf_field * 9447 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 9448 { 9449 struct btf_field *field; 9450 struct btf_record *rec; 9451 9452 rec = reg_btf_record(reg); 9453 if (!rec) 9454 return NULL; 9455 9456 field = btf_record_find(rec, off, fields); 9457 if (!field) 9458 return NULL; 9459 9460 return field; 9461 } 9462 9463 static int check_func_arg_reg_off(struct bpf_verifier_env *env, 9464 const struct bpf_reg_state *reg, int regno, 9465 enum bpf_arg_type arg_type) 9466 { 9467 u32 type = reg->type; 9468 9469 /* When referenced register is passed to release function, its fixed 9470 * offset must be 0. 9471 * 9472 * We will check arg_type_is_release reg has ref_obj_id when storing 9473 * meta->release_regno. 9474 */ 9475 if (arg_type_is_release(arg_type)) { 9476 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 9477 * may not directly point to the object being released, but to 9478 * dynptr pointing to such object, which might be at some offset 9479 * on the stack. In that case, we simply to fallback to the 9480 * default handling. 9481 */ 9482 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 9483 return 0; 9484 9485 /* Doing check_ptr_off_reg check for the offset will catch this 9486 * because fixed_off_ok is false, but checking here allows us 9487 * to give the user a better error message. 9488 */ 9489 if (reg->off) { 9490 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 9491 regno); 9492 return -EINVAL; 9493 } 9494 return __check_ptr_off_reg(env, reg, regno, false); 9495 } 9496 9497 switch (type) { 9498 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 9499 case PTR_TO_STACK: 9500 case PTR_TO_PACKET: 9501 case PTR_TO_PACKET_META: 9502 case PTR_TO_MAP_KEY: 9503 case PTR_TO_MAP_VALUE: 9504 case PTR_TO_MEM: 9505 case PTR_TO_MEM | MEM_RDONLY: 9506 case PTR_TO_MEM | MEM_RINGBUF: 9507 case PTR_TO_BUF: 9508 case PTR_TO_BUF | MEM_RDONLY: 9509 case PTR_TO_ARENA: 9510 case SCALAR_VALUE: 9511 return 0; 9512 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 9513 * fixed offset. 9514 */ 9515 case PTR_TO_BTF_ID: 9516 case PTR_TO_BTF_ID | MEM_ALLOC: 9517 case PTR_TO_BTF_ID | PTR_TRUSTED: 9518 case PTR_TO_BTF_ID | MEM_RCU: 9519 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 9520 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 9521 /* When referenced PTR_TO_BTF_ID is passed to release function, 9522 * its fixed offset must be 0. In the other cases, fixed offset 9523 * can be non-zero. This was already checked above. So pass 9524 * fixed_off_ok as true to allow fixed offset for all other 9525 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 9526 * still need to do checks instead of returning. 9527 */ 9528 return __check_ptr_off_reg(env, reg, regno, true); 9529 default: 9530 return __check_ptr_off_reg(env, reg, regno, false); 9531 } 9532 } 9533 9534 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 9535 const struct bpf_func_proto *fn, 9536 struct bpf_reg_state *regs) 9537 { 9538 struct bpf_reg_state *state = NULL; 9539 int i; 9540 9541 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 9542 if (arg_type_is_dynptr(fn->arg_type[i])) { 9543 if (state) { 9544 verbose(env, "verifier internal error: multiple dynptr args\n"); 9545 return NULL; 9546 } 9547 state = ®s[BPF_REG_1 + i]; 9548 } 9549 9550 if (!state) 9551 verbose(env, "verifier internal error: no dynptr arg found\n"); 9552 9553 return state; 9554 } 9555 9556 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9557 { 9558 struct bpf_func_state *state = func(env, reg); 9559 int spi; 9560 9561 if (reg->type == CONST_PTR_TO_DYNPTR) 9562 return reg->id; 9563 spi = dynptr_get_spi(env, reg); 9564 if (spi < 0) 9565 return spi; 9566 return state->stack[spi].spilled_ptr.id; 9567 } 9568 9569 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9570 { 9571 struct bpf_func_state *state = func(env, reg); 9572 int spi; 9573 9574 if (reg->type == CONST_PTR_TO_DYNPTR) 9575 return reg->ref_obj_id; 9576 spi = dynptr_get_spi(env, reg); 9577 if (spi < 0) 9578 return spi; 9579 return state->stack[spi].spilled_ptr.ref_obj_id; 9580 } 9581 9582 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 9583 struct bpf_reg_state *reg) 9584 { 9585 struct bpf_func_state *state = func(env, reg); 9586 int spi; 9587 9588 if (reg->type == CONST_PTR_TO_DYNPTR) 9589 return reg->dynptr.type; 9590 9591 spi = __get_spi(reg->off); 9592 if (spi < 0) { 9593 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 9594 return BPF_DYNPTR_TYPE_INVALID; 9595 } 9596 9597 return state->stack[spi].spilled_ptr.dynptr.type; 9598 } 9599 9600 static int check_reg_const_str(struct bpf_verifier_env *env, 9601 struct bpf_reg_state *reg, u32 regno) 9602 { 9603 struct bpf_map *map = reg->map_ptr; 9604 int err; 9605 int map_off; 9606 u64 map_addr; 9607 char *str_ptr; 9608 9609 if (reg->type != PTR_TO_MAP_VALUE) 9610 return -EINVAL; 9611 9612 if (!bpf_map_is_rdonly(map)) { 9613 verbose(env, "R%d does not point to a readonly map'\n", regno); 9614 return -EACCES; 9615 } 9616 9617 if (!tnum_is_const(reg->var_off)) { 9618 verbose(env, "R%d is not a constant address'\n", regno); 9619 return -EACCES; 9620 } 9621 9622 if (!map->ops->map_direct_value_addr) { 9623 verbose(env, "no direct value access support for this map type\n"); 9624 return -EACCES; 9625 } 9626 9627 err = check_map_access(env, regno, reg->off, 9628 map->value_size - reg->off, false, 9629 ACCESS_HELPER); 9630 if (err) 9631 return err; 9632 9633 map_off = reg->off + reg->var_off.value; 9634 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 9635 if (err) { 9636 verbose(env, "direct value access on string failed\n"); 9637 return err; 9638 } 9639 9640 str_ptr = (char *)(long)(map_addr); 9641 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 9642 verbose(env, "string is not zero-terminated\n"); 9643 return -EINVAL; 9644 } 9645 return 0; 9646 } 9647 9648 /* Returns constant key value in `value` if possible, else negative error */ 9649 static int get_constant_map_key(struct bpf_verifier_env *env, 9650 struct bpf_reg_state *key, 9651 u32 key_size, 9652 s64 *value) 9653 { 9654 struct bpf_func_state *state = func(env, key); 9655 struct bpf_reg_state *reg; 9656 int slot, spi, off; 9657 int spill_size = 0; 9658 int zero_size = 0; 9659 int stack_off; 9660 int i, err; 9661 u8 *stype; 9662 9663 if (!env->bpf_capable) 9664 return -EOPNOTSUPP; 9665 if (key->type != PTR_TO_STACK) 9666 return -EOPNOTSUPP; 9667 if (!tnum_is_const(key->var_off)) 9668 return -EOPNOTSUPP; 9669 9670 stack_off = key->off + key->var_off.value; 9671 slot = -stack_off - 1; 9672 spi = slot / BPF_REG_SIZE; 9673 off = slot % BPF_REG_SIZE; 9674 stype = state->stack[spi].slot_type; 9675 9676 /* First handle precisely tracked STACK_ZERO */ 9677 for (i = off; i >= 0 && stype[i] == STACK_ZERO; i--) 9678 zero_size++; 9679 if (zero_size >= key_size) { 9680 *value = 0; 9681 return 0; 9682 } 9683 9684 /* Check that stack contains a scalar spill of expected size */ 9685 if (!is_spilled_scalar_reg(&state->stack[spi])) 9686 return -EOPNOTSUPP; 9687 for (i = off; i >= 0 && stype[i] == STACK_SPILL; i--) 9688 spill_size++; 9689 if (spill_size != key_size) 9690 return -EOPNOTSUPP; 9691 9692 reg = &state->stack[spi].spilled_ptr; 9693 if (!tnum_is_const(reg->var_off)) 9694 /* Stack value not statically known */ 9695 return -EOPNOTSUPP; 9696 9697 /* We are relying on a constant value. So mark as precise 9698 * to prevent pruning on it. 9699 */ 9700 bt_set_frame_slot(&env->bt, key->frameno, spi); 9701 err = mark_chain_precision_batch(env, env->cur_state); 9702 if (err < 0) 9703 return err; 9704 9705 *value = reg->var_off.value; 9706 return 0; 9707 } 9708 9709 static bool can_elide_value_nullness(enum bpf_map_type type); 9710 9711 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 9712 struct bpf_call_arg_meta *meta, 9713 const struct bpf_func_proto *fn, 9714 int insn_idx) 9715 { 9716 u32 regno = BPF_REG_1 + arg; 9717 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 9718 enum bpf_arg_type arg_type = fn->arg_type[arg]; 9719 enum bpf_reg_type type = reg->type; 9720 u32 *arg_btf_id = NULL; 9721 u32 key_size; 9722 int err = 0; 9723 9724 if (arg_type == ARG_DONTCARE) 9725 return 0; 9726 9727 err = check_reg_arg(env, regno, SRC_OP); 9728 if (err) 9729 return err; 9730 9731 if (arg_type == ARG_ANYTHING) { 9732 if (is_pointer_value(env, regno)) { 9733 verbose(env, "R%d leaks addr into helper function\n", 9734 regno); 9735 return -EACCES; 9736 } 9737 return 0; 9738 } 9739 9740 if (type_is_pkt_pointer(type) && 9741 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 9742 verbose(env, "helper access to the packet is not allowed\n"); 9743 return -EACCES; 9744 } 9745 9746 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 9747 err = resolve_map_arg_type(env, meta, &arg_type); 9748 if (err) 9749 return err; 9750 } 9751 9752 if (register_is_null(reg) && type_may_be_null(arg_type)) 9753 /* A NULL register has a SCALAR_VALUE type, so skip 9754 * type checking. 9755 */ 9756 goto skip_type_check; 9757 9758 /* arg_btf_id and arg_size are in a union. */ 9759 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 9760 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 9761 arg_btf_id = fn->arg_btf_id[arg]; 9762 9763 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 9764 if (err) 9765 return err; 9766 9767 err = check_func_arg_reg_off(env, reg, regno, arg_type); 9768 if (err) 9769 return err; 9770 9771 skip_type_check: 9772 if (arg_type_is_release(arg_type)) { 9773 if (arg_type_is_dynptr(arg_type)) { 9774 struct bpf_func_state *state = func(env, reg); 9775 int spi; 9776 9777 /* Only dynptr created on stack can be released, thus 9778 * the get_spi and stack state checks for spilled_ptr 9779 * should only be done before process_dynptr_func for 9780 * PTR_TO_STACK. 9781 */ 9782 if (reg->type == PTR_TO_STACK) { 9783 spi = dynptr_get_spi(env, reg); 9784 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 9785 verbose(env, "arg %d is an unacquired reference\n", regno); 9786 return -EINVAL; 9787 } 9788 } else { 9789 verbose(env, "cannot release unowned const bpf_dynptr\n"); 9790 return -EINVAL; 9791 } 9792 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 9793 verbose(env, "R%d must be referenced when passed to release function\n", 9794 regno); 9795 return -EINVAL; 9796 } 9797 if (meta->release_regno) { 9798 verifier_bug(env, "more than one release argument"); 9799 return -EFAULT; 9800 } 9801 meta->release_regno = regno; 9802 } 9803 9804 if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) { 9805 if (meta->ref_obj_id) { 9806 verbose(env, "more than one arg with ref_obj_id R%d %u %u", 9807 regno, reg->ref_obj_id, 9808 meta->ref_obj_id); 9809 return -EACCES; 9810 } 9811 meta->ref_obj_id = reg->ref_obj_id; 9812 } 9813 9814 switch (base_type(arg_type)) { 9815 case ARG_CONST_MAP_PTR: 9816 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 9817 if (meta->map_ptr) { 9818 /* Use map_uid (which is unique id of inner map) to reject: 9819 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 9820 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 9821 * if (inner_map1 && inner_map2) { 9822 * timer = bpf_map_lookup_elem(inner_map1); 9823 * if (timer) 9824 * // mismatch would have been allowed 9825 * bpf_timer_init(timer, inner_map2); 9826 * } 9827 * 9828 * Comparing map_ptr is enough to distinguish normal and outer maps. 9829 */ 9830 if (meta->map_ptr != reg->map_ptr || 9831 meta->map_uid != reg->map_uid) { 9832 verbose(env, 9833 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 9834 meta->map_uid, reg->map_uid); 9835 return -EINVAL; 9836 } 9837 } 9838 meta->map_ptr = reg->map_ptr; 9839 meta->map_uid = reg->map_uid; 9840 break; 9841 case ARG_PTR_TO_MAP_KEY: 9842 /* bpf_map_xxx(..., map_ptr, ..., key) call: 9843 * check that [key, key + map->key_size) are within 9844 * stack limits and initialized 9845 */ 9846 if (!meta->map_ptr) { 9847 /* in function declaration map_ptr must come before 9848 * map_key, so that it's verified and known before 9849 * we have to check map_key here. Otherwise it means 9850 * that kernel subsystem misconfigured verifier 9851 */ 9852 verifier_bug(env, "invalid map_ptr to access map->key"); 9853 return -EFAULT; 9854 } 9855 key_size = meta->map_ptr->key_size; 9856 err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL); 9857 if (err) 9858 return err; 9859 if (can_elide_value_nullness(meta->map_ptr->map_type)) { 9860 err = get_constant_map_key(env, reg, key_size, &meta->const_map_key); 9861 if (err < 0) { 9862 meta->const_map_key = -1; 9863 if (err == -EOPNOTSUPP) 9864 err = 0; 9865 else 9866 return err; 9867 } 9868 } 9869 break; 9870 case ARG_PTR_TO_MAP_VALUE: 9871 if (type_may_be_null(arg_type) && register_is_null(reg)) 9872 return 0; 9873 9874 /* bpf_map_xxx(..., map_ptr, ..., value) call: 9875 * check [value, value + map->value_size) validity 9876 */ 9877 if (!meta->map_ptr) { 9878 /* kernel subsystem misconfigured verifier */ 9879 verifier_bug(env, "invalid map_ptr to access map->value"); 9880 return -EFAULT; 9881 } 9882 meta->raw_mode = arg_type & MEM_UNINIT; 9883 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size, 9884 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9885 false, meta); 9886 break; 9887 case ARG_PTR_TO_PERCPU_BTF_ID: 9888 if (!reg->btf_id) { 9889 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 9890 return -EACCES; 9891 } 9892 meta->ret_btf = reg->btf; 9893 meta->ret_btf_id = reg->btf_id; 9894 break; 9895 case ARG_PTR_TO_SPIN_LOCK: 9896 if (in_rbtree_lock_required_cb(env)) { 9897 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 9898 return -EACCES; 9899 } 9900 if (meta->func_id == BPF_FUNC_spin_lock) { 9901 err = process_spin_lock(env, regno, PROCESS_SPIN_LOCK); 9902 if (err) 9903 return err; 9904 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 9905 err = process_spin_lock(env, regno, 0); 9906 if (err) 9907 return err; 9908 } else { 9909 verifier_bug(env, "spin lock arg on unexpected helper"); 9910 return -EFAULT; 9911 } 9912 break; 9913 case ARG_PTR_TO_TIMER: 9914 err = process_timer_func(env, regno, meta); 9915 if (err) 9916 return err; 9917 break; 9918 case ARG_PTR_TO_FUNC: 9919 meta->subprogno = reg->subprogno; 9920 break; 9921 case ARG_PTR_TO_MEM: 9922 /* The access to this pointer is only checked when we hit the 9923 * next is_mem_size argument below. 9924 */ 9925 meta->raw_mode = arg_type & MEM_UNINIT; 9926 if (arg_type & MEM_FIXED_SIZE) { 9927 err = check_helper_mem_access(env, regno, fn->arg_size[arg], 9928 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9929 false, meta); 9930 if (err) 9931 return err; 9932 if (arg_type & MEM_ALIGNED) 9933 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true); 9934 } 9935 break; 9936 case ARG_CONST_SIZE: 9937 err = check_mem_size_reg(env, reg, regno, 9938 fn->arg_type[arg - 1] & MEM_WRITE ? 9939 BPF_WRITE : BPF_READ, 9940 false, meta); 9941 break; 9942 case ARG_CONST_SIZE_OR_ZERO: 9943 err = check_mem_size_reg(env, reg, regno, 9944 fn->arg_type[arg - 1] & MEM_WRITE ? 9945 BPF_WRITE : BPF_READ, 9946 true, meta); 9947 break; 9948 case ARG_PTR_TO_DYNPTR: 9949 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 9950 if (err) 9951 return err; 9952 break; 9953 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 9954 if (!tnum_is_const(reg->var_off)) { 9955 verbose(env, "R%d is not a known constant'\n", 9956 regno); 9957 return -EACCES; 9958 } 9959 meta->mem_size = reg->var_off.value; 9960 err = mark_chain_precision(env, regno); 9961 if (err) 9962 return err; 9963 break; 9964 case ARG_PTR_TO_CONST_STR: 9965 { 9966 err = check_reg_const_str(env, reg, regno); 9967 if (err) 9968 return err; 9969 break; 9970 } 9971 case ARG_KPTR_XCHG_DEST: 9972 err = process_kptr_func(env, regno, meta); 9973 if (err) 9974 return err; 9975 break; 9976 } 9977 9978 return err; 9979 } 9980 9981 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 9982 { 9983 enum bpf_attach_type eatype = env->prog->expected_attach_type; 9984 enum bpf_prog_type type = resolve_prog_type(env->prog); 9985 9986 if (func_id != BPF_FUNC_map_update_elem && 9987 func_id != BPF_FUNC_map_delete_elem) 9988 return false; 9989 9990 /* It's not possible to get access to a locked struct sock in these 9991 * contexts, so updating is safe. 9992 */ 9993 switch (type) { 9994 case BPF_PROG_TYPE_TRACING: 9995 if (eatype == BPF_TRACE_ITER) 9996 return true; 9997 break; 9998 case BPF_PROG_TYPE_SOCK_OPS: 9999 /* map_update allowed only via dedicated helpers with event type checks */ 10000 if (func_id == BPF_FUNC_map_delete_elem) 10001 return true; 10002 break; 10003 case BPF_PROG_TYPE_SOCKET_FILTER: 10004 case BPF_PROG_TYPE_SCHED_CLS: 10005 case BPF_PROG_TYPE_SCHED_ACT: 10006 case BPF_PROG_TYPE_XDP: 10007 case BPF_PROG_TYPE_SK_REUSEPORT: 10008 case BPF_PROG_TYPE_FLOW_DISSECTOR: 10009 case BPF_PROG_TYPE_SK_LOOKUP: 10010 return true; 10011 default: 10012 break; 10013 } 10014 10015 verbose(env, "cannot update sockmap in this context\n"); 10016 return false; 10017 } 10018 10019 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 10020 { 10021 return env->prog->jit_requested && 10022 bpf_jit_supports_subprog_tailcalls(); 10023 } 10024 10025 static int check_map_func_compatibility(struct bpf_verifier_env *env, 10026 struct bpf_map *map, int func_id) 10027 { 10028 if (!map) 10029 return 0; 10030 10031 /* We need a two way check, first is from map perspective ... */ 10032 switch (map->map_type) { 10033 case BPF_MAP_TYPE_PROG_ARRAY: 10034 if (func_id != BPF_FUNC_tail_call) 10035 goto error; 10036 break; 10037 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 10038 if (func_id != BPF_FUNC_perf_event_read && 10039 func_id != BPF_FUNC_perf_event_output && 10040 func_id != BPF_FUNC_skb_output && 10041 func_id != BPF_FUNC_perf_event_read_value && 10042 func_id != BPF_FUNC_xdp_output) 10043 goto error; 10044 break; 10045 case BPF_MAP_TYPE_RINGBUF: 10046 if (func_id != BPF_FUNC_ringbuf_output && 10047 func_id != BPF_FUNC_ringbuf_reserve && 10048 func_id != BPF_FUNC_ringbuf_query && 10049 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 10050 func_id != BPF_FUNC_ringbuf_submit_dynptr && 10051 func_id != BPF_FUNC_ringbuf_discard_dynptr) 10052 goto error; 10053 break; 10054 case BPF_MAP_TYPE_USER_RINGBUF: 10055 if (func_id != BPF_FUNC_user_ringbuf_drain) 10056 goto error; 10057 break; 10058 case BPF_MAP_TYPE_STACK_TRACE: 10059 if (func_id != BPF_FUNC_get_stackid) 10060 goto error; 10061 break; 10062 case BPF_MAP_TYPE_CGROUP_ARRAY: 10063 if (func_id != BPF_FUNC_skb_under_cgroup && 10064 func_id != BPF_FUNC_current_task_under_cgroup) 10065 goto error; 10066 break; 10067 case BPF_MAP_TYPE_CGROUP_STORAGE: 10068 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 10069 if (func_id != BPF_FUNC_get_local_storage) 10070 goto error; 10071 break; 10072 case BPF_MAP_TYPE_DEVMAP: 10073 case BPF_MAP_TYPE_DEVMAP_HASH: 10074 if (func_id != BPF_FUNC_redirect_map && 10075 func_id != BPF_FUNC_map_lookup_elem) 10076 goto error; 10077 break; 10078 /* Restrict bpf side of cpumap and xskmap, open when use-cases 10079 * appear. 10080 */ 10081 case BPF_MAP_TYPE_CPUMAP: 10082 if (func_id != BPF_FUNC_redirect_map) 10083 goto error; 10084 break; 10085 case BPF_MAP_TYPE_XSKMAP: 10086 if (func_id != BPF_FUNC_redirect_map && 10087 func_id != BPF_FUNC_map_lookup_elem) 10088 goto error; 10089 break; 10090 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 10091 case BPF_MAP_TYPE_HASH_OF_MAPS: 10092 if (func_id != BPF_FUNC_map_lookup_elem) 10093 goto error; 10094 break; 10095 case BPF_MAP_TYPE_SOCKMAP: 10096 if (func_id != BPF_FUNC_sk_redirect_map && 10097 func_id != BPF_FUNC_sock_map_update && 10098 func_id != BPF_FUNC_msg_redirect_map && 10099 func_id != BPF_FUNC_sk_select_reuseport && 10100 func_id != BPF_FUNC_map_lookup_elem && 10101 !may_update_sockmap(env, func_id)) 10102 goto error; 10103 break; 10104 case BPF_MAP_TYPE_SOCKHASH: 10105 if (func_id != BPF_FUNC_sk_redirect_hash && 10106 func_id != BPF_FUNC_sock_hash_update && 10107 func_id != BPF_FUNC_msg_redirect_hash && 10108 func_id != BPF_FUNC_sk_select_reuseport && 10109 func_id != BPF_FUNC_map_lookup_elem && 10110 !may_update_sockmap(env, func_id)) 10111 goto error; 10112 break; 10113 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 10114 if (func_id != BPF_FUNC_sk_select_reuseport) 10115 goto error; 10116 break; 10117 case BPF_MAP_TYPE_QUEUE: 10118 case BPF_MAP_TYPE_STACK: 10119 if (func_id != BPF_FUNC_map_peek_elem && 10120 func_id != BPF_FUNC_map_pop_elem && 10121 func_id != BPF_FUNC_map_push_elem) 10122 goto error; 10123 break; 10124 case BPF_MAP_TYPE_SK_STORAGE: 10125 if (func_id != BPF_FUNC_sk_storage_get && 10126 func_id != BPF_FUNC_sk_storage_delete && 10127 func_id != BPF_FUNC_kptr_xchg) 10128 goto error; 10129 break; 10130 case BPF_MAP_TYPE_INODE_STORAGE: 10131 if (func_id != BPF_FUNC_inode_storage_get && 10132 func_id != BPF_FUNC_inode_storage_delete && 10133 func_id != BPF_FUNC_kptr_xchg) 10134 goto error; 10135 break; 10136 case BPF_MAP_TYPE_TASK_STORAGE: 10137 if (func_id != BPF_FUNC_task_storage_get && 10138 func_id != BPF_FUNC_task_storage_delete && 10139 func_id != BPF_FUNC_kptr_xchg) 10140 goto error; 10141 break; 10142 case BPF_MAP_TYPE_CGRP_STORAGE: 10143 if (func_id != BPF_FUNC_cgrp_storage_get && 10144 func_id != BPF_FUNC_cgrp_storage_delete && 10145 func_id != BPF_FUNC_kptr_xchg) 10146 goto error; 10147 break; 10148 case BPF_MAP_TYPE_BLOOM_FILTER: 10149 if (func_id != BPF_FUNC_map_peek_elem && 10150 func_id != BPF_FUNC_map_push_elem) 10151 goto error; 10152 break; 10153 case BPF_MAP_TYPE_INSN_ARRAY: 10154 goto error; 10155 default: 10156 break; 10157 } 10158 10159 /* ... and second from the function itself. */ 10160 switch (func_id) { 10161 case BPF_FUNC_tail_call: 10162 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 10163 goto error; 10164 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 10165 verbose(env, "mixing of tail_calls and bpf-to-bpf calls is not supported\n"); 10166 return -EINVAL; 10167 } 10168 break; 10169 case BPF_FUNC_perf_event_read: 10170 case BPF_FUNC_perf_event_output: 10171 case BPF_FUNC_perf_event_read_value: 10172 case BPF_FUNC_skb_output: 10173 case BPF_FUNC_xdp_output: 10174 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 10175 goto error; 10176 break; 10177 case BPF_FUNC_ringbuf_output: 10178 case BPF_FUNC_ringbuf_reserve: 10179 case BPF_FUNC_ringbuf_query: 10180 case BPF_FUNC_ringbuf_reserve_dynptr: 10181 case BPF_FUNC_ringbuf_submit_dynptr: 10182 case BPF_FUNC_ringbuf_discard_dynptr: 10183 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 10184 goto error; 10185 break; 10186 case BPF_FUNC_user_ringbuf_drain: 10187 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 10188 goto error; 10189 break; 10190 case BPF_FUNC_get_stackid: 10191 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 10192 goto error; 10193 break; 10194 case BPF_FUNC_current_task_under_cgroup: 10195 case BPF_FUNC_skb_under_cgroup: 10196 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 10197 goto error; 10198 break; 10199 case BPF_FUNC_redirect_map: 10200 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 10201 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 10202 map->map_type != BPF_MAP_TYPE_CPUMAP && 10203 map->map_type != BPF_MAP_TYPE_XSKMAP) 10204 goto error; 10205 break; 10206 case BPF_FUNC_sk_redirect_map: 10207 case BPF_FUNC_msg_redirect_map: 10208 case BPF_FUNC_sock_map_update: 10209 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 10210 goto error; 10211 break; 10212 case BPF_FUNC_sk_redirect_hash: 10213 case BPF_FUNC_msg_redirect_hash: 10214 case BPF_FUNC_sock_hash_update: 10215 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 10216 goto error; 10217 break; 10218 case BPF_FUNC_get_local_storage: 10219 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 10220 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 10221 goto error; 10222 break; 10223 case BPF_FUNC_sk_select_reuseport: 10224 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 10225 map->map_type != BPF_MAP_TYPE_SOCKMAP && 10226 map->map_type != BPF_MAP_TYPE_SOCKHASH) 10227 goto error; 10228 break; 10229 case BPF_FUNC_map_pop_elem: 10230 if (map->map_type != BPF_MAP_TYPE_QUEUE && 10231 map->map_type != BPF_MAP_TYPE_STACK) 10232 goto error; 10233 break; 10234 case BPF_FUNC_map_peek_elem: 10235 case BPF_FUNC_map_push_elem: 10236 if (map->map_type != BPF_MAP_TYPE_QUEUE && 10237 map->map_type != BPF_MAP_TYPE_STACK && 10238 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 10239 goto error; 10240 break; 10241 case BPF_FUNC_map_lookup_percpu_elem: 10242 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 10243 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 10244 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 10245 goto error; 10246 break; 10247 case BPF_FUNC_sk_storage_get: 10248 case BPF_FUNC_sk_storage_delete: 10249 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 10250 goto error; 10251 break; 10252 case BPF_FUNC_inode_storage_get: 10253 case BPF_FUNC_inode_storage_delete: 10254 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 10255 goto error; 10256 break; 10257 case BPF_FUNC_task_storage_get: 10258 case BPF_FUNC_task_storage_delete: 10259 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 10260 goto error; 10261 break; 10262 case BPF_FUNC_cgrp_storage_get: 10263 case BPF_FUNC_cgrp_storage_delete: 10264 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 10265 goto error; 10266 break; 10267 default: 10268 break; 10269 } 10270 10271 return 0; 10272 error: 10273 verbose(env, "cannot pass map_type %d into func %s#%d\n", 10274 map->map_type, func_id_name(func_id), func_id); 10275 return -EINVAL; 10276 } 10277 10278 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 10279 { 10280 int count = 0; 10281 10282 if (arg_type_is_raw_mem(fn->arg1_type)) 10283 count++; 10284 if (arg_type_is_raw_mem(fn->arg2_type)) 10285 count++; 10286 if (arg_type_is_raw_mem(fn->arg3_type)) 10287 count++; 10288 if (arg_type_is_raw_mem(fn->arg4_type)) 10289 count++; 10290 if (arg_type_is_raw_mem(fn->arg5_type)) 10291 count++; 10292 10293 /* We only support one arg being in raw mode at the moment, 10294 * which is sufficient for the helper functions we have 10295 * right now. 10296 */ 10297 return count <= 1; 10298 } 10299 10300 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 10301 { 10302 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 10303 bool has_size = fn->arg_size[arg] != 0; 10304 bool is_next_size = false; 10305 10306 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 10307 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 10308 10309 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 10310 return is_next_size; 10311 10312 return has_size == is_next_size || is_next_size == is_fixed; 10313 } 10314 10315 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 10316 { 10317 /* bpf_xxx(..., buf, len) call will access 'len' 10318 * bytes from memory 'buf'. Both arg types need 10319 * to be paired, so make sure there's no buggy 10320 * helper function specification. 10321 */ 10322 if (arg_type_is_mem_size(fn->arg1_type) || 10323 check_args_pair_invalid(fn, 0) || 10324 check_args_pair_invalid(fn, 1) || 10325 check_args_pair_invalid(fn, 2) || 10326 check_args_pair_invalid(fn, 3) || 10327 check_args_pair_invalid(fn, 4)) 10328 return false; 10329 10330 return true; 10331 } 10332 10333 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 10334 { 10335 int i; 10336 10337 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 10338 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 10339 return !!fn->arg_btf_id[i]; 10340 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 10341 return fn->arg_btf_id[i] == BPF_PTR_POISON; 10342 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 10343 /* arg_btf_id and arg_size are in a union. */ 10344 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 10345 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 10346 return false; 10347 } 10348 10349 return true; 10350 } 10351 10352 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 10353 { 10354 return check_raw_mode_ok(fn) && 10355 check_arg_pair_ok(fn) && 10356 check_btf_id_ok(fn) ? 0 : -EINVAL; 10357 } 10358 10359 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 10360 * are now invalid, so turn them into unknown SCALAR_VALUE. 10361 * 10362 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 10363 * since these slices point to packet data. 10364 */ 10365 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 10366 { 10367 struct bpf_func_state *state; 10368 struct bpf_reg_state *reg; 10369 10370 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10371 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 10372 mark_reg_invalid(env, reg); 10373 })); 10374 } 10375 10376 enum { 10377 AT_PKT_END = -1, 10378 BEYOND_PKT_END = -2, 10379 }; 10380 10381 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 10382 { 10383 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 10384 struct bpf_reg_state *reg = &state->regs[regn]; 10385 10386 if (reg->type != PTR_TO_PACKET) 10387 /* PTR_TO_PACKET_META is not supported yet */ 10388 return; 10389 10390 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 10391 * How far beyond pkt_end it goes is unknown. 10392 * if (!range_open) it's the case of pkt >= pkt_end 10393 * if (range_open) it's the case of pkt > pkt_end 10394 * hence this pointer is at least 1 byte bigger than pkt_end 10395 */ 10396 if (range_open) 10397 reg->range = BEYOND_PKT_END; 10398 else 10399 reg->range = AT_PKT_END; 10400 } 10401 10402 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id) 10403 { 10404 int i; 10405 10406 for (i = 0; i < state->acquired_refs; i++) { 10407 if (state->refs[i].type != REF_TYPE_PTR) 10408 continue; 10409 if (state->refs[i].id == ref_obj_id) { 10410 release_reference_state(state, i); 10411 return 0; 10412 } 10413 } 10414 return -EINVAL; 10415 } 10416 10417 /* The pointer with the specified id has released its reference to kernel 10418 * resources. Identify all copies of the same pointer and clear the reference. 10419 * 10420 * This is the release function corresponding to acquire_reference(). Idempotent. 10421 */ 10422 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id) 10423 { 10424 struct bpf_verifier_state *vstate = env->cur_state; 10425 struct bpf_func_state *state; 10426 struct bpf_reg_state *reg; 10427 int err; 10428 10429 err = release_reference_nomark(vstate, ref_obj_id); 10430 if (err) 10431 return err; 10432 10433 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 10434 if (reg->ref_obj_id == ref_obj_id) 10435 mark_reg_invalid(env, reg); 10436 })); 10437 10438 return 0; 10439 } 10440 10441 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 10442 { 10443 struct bpf_func_state *unused; 10444 struct bpf_reg_state *reg; 10445 10446 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10447 if (type_is_non_owning_ref(reg->type)) 10448 mark_reg_invalid(env, reg); 10449 })); 10450 } 10451 10452 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 10453 struct bpf_reg_state *regs) 10454 { 10455 int i; 10456 10457 /* after the call registers r0 - r5 were scratched */ 10458 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10459 mark_reg_not_init(env, regs, caller_saved[i]); 10460 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 10461 } 10462 } 10463 10464 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 10465 struct bpf_func_state *caller, 10466 struct bpf_func_state *callee, 10467 int insn_idx); 10468 10469 static int set_callee_state(struct bpf_verifier_env *env, 10470 struct bpf_func_state *caller, 10471 struct bpf_func_state *callee, int insn_idx); 10472 10473 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 10474 set_callee_state_fn set_callee_state_cb, 10475 struct bpf_verifier_state *state) 10476 { 10477 struct bpf_func_state *caller, *callee; 10478 int err; 10479 10480 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 10481 verbose(env, "the call stack of %d frames is too deep\n", 10482 state->curframe + 2); 10483 return -E2BIG; 10484 } 10485 10486 if (state->frame[state->curframe + 1]) { 10487 verifier_bug(env, "Frame %d already allocated", state->curframe + 1); 10488 return -EFAULT; 10489 } 10490 10491 caller = state->frame[state->curframe]; 10492 callee = kzalloc(sizeof(*callee), GFP_KERNEL_ACCOUNT); 10493 if (!callee) 10494 return -ENOMEM; 10495 state->frame[state->curframe + 1] = callee; 10496 10497 /* callee cannot access r0, r6 - r9 for reading and has to write 10498 * into its own stack before reading from it. 10499 * callee can read/write into caller's stack 10500 */ 10501 init_func_state(env, callee, 10502 /* remember the callsite, it will be used by bpf_exit */ 10503 callsite, 10504 state->curframe + 1 /* frameno within this callchain */, 10505 subprog /* subprog number within this prog */); 10506 err = set_callee_state_cb(env, caller, callee, callsite); 10507 if (err) 10508 goto err_out; 10509 10510 /* only increment it after check_reg_arg() finished */ 10511 state->curframe++; 10512 10513 return 0; 10514 10515 err_out: 10516 free_func_state(callee); 10517 state->frame[state->curframe + 1] = NULL; 10518 return err; 10519 } 10520 10521 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 10522 const struct btf *btf, 10523 struct bpf_reg_state *regs) 10524 { 10525 struct bpf_subprog_info *sub = subprog_info(env, subprog); 10526 struct bpf_verifier_log *log = &env->log; 10527 u32 i; 10528 int ret; 10529 10530 ret = btf_prepare_func_args(env, subprog); 10531 if (ret) 10532 return ret; 10533 10534 /* check that BTF function arguments match actual types that the 10535 * verifier sees. 10536 */ 10537 for (i = 0; i < sub->arg_cnt; i++) { 10538 u32 regno = i + 1; 10539 struct bpf_reg_state *reg = ®s[regno]; 10540 struct bpf_subprog_arg_info *arg = &sub->args[i]; 10541 10542 if (arg->arg_type == ARG_ANYTHING) { 10543 if (reg->type != SCALAR_VALUE) { 10544 bpf_log(log, "R%d is not a scalar\n", regno); 10545 return -EINVAL; 10546 } 10547 } else if (arg->arg_type & PTR_UNTRUSTED) { 10548 /* 10549 * Anything is allowed for untrusted arguments, as these are 10550 * read-only and probe read instructions would protect against 10551 * invalid memory access. 10552 */ 10553 } else if (arg->arg_type == ARG_PTR_TO_CTX) { 10554 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 10555 if (ret < 0) 10556 return ret; 10557 /* If function expects ctx type in BTF check that caller 10558 * is passing PTR_TO_CTX. 10559 */ 10560 if (reg->type != PTR_TO_CTX) { 10561 bpf_log(log, "arg#%d expects pointer to ctx\n", i); 10562 return -EINVAL; 10563 } 10564 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 10565 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 10566 if (ret < 0) 10567 return ret; 10568 if (check_mem_reg(env, reg, regno, arg->mem_size)) 10569 return -EINVAL; 10570 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { 10571 bpf_log(log, "arg#%d is expected to be non-NULL\n", i); 10572 return -EINVAL; 10573 } 10574 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 10575 /* 10576 * Can pass any value and the kernel won't crash, but 10577 * only PTR_TO_ARENA or SCALAR make sense. Everything 10578 * else is a bug in the bpf program. Point it out to 10579 * the user at the verification time instead of 10580 * run-time debug nightmare. 10581 */ 10582 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { 10583 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); 10584 return -EINVAL; 10585 } 10586 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 10587 ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR); 10588 if (ret) 10589 return ret; 10590 10591 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); 10592 if (ret) 10593 return ret; 10594 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 10595 struct bpf_call_arg_meta meta; 10596 int err; 10597 10598 if (register_is_null(reg) && type_may_be_null(arg->arg_type)) 10599 continue; 10600 10601 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ 10602 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); 10603 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); 10604 if (err) 10605 return err; 10606 } else { 10607 verifier_bug(env, "unrecognized arg#%d type %d", i, arg->arg_type); 10608 return -EFAULT; 10609 } 10610 } 10611 10612 return 0; 10613 } 10614 10615 /* Compare BTF of a function call with given bpf_reg_state. 10616 * Returns: 10617 * EFAULT - there is a verifier bug. Abort verification. 10618 * EINVAL - there is a type mismatch or BTF is not available. 10619 * 0 - BTF matches with what bpf_reg_state expects. 10620 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 10621 */ 10622 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 10623 struct bpf_reg_state *regs) 10624 { 10625 struct bpf_prog *prog = env->prog; 10626 struct btf *btf = prog->aux->btf; 10627 u32 btf_id; 10628 int err; 10629 10630 if (!prog->aux->func_info) 10631 return -EINVAL; 10632 10633 btf_id = prog->aux->func_info[subprog].type_id; 10634 if (!btf_id) 10635 return -EFAULT; 10636 10637 if (prog->aux->func_info_aux[subprog].unreliable) 10638 return -EINVAL; 10639 10640 err = btf_check_func_arg_match(env, subprog, btf, regs); 10641 /* Compiler optimizations can remove arguments from static functions 10642 * or mismatched type can be passed into a global function. 10643 * In such cases mark the function as unreliable from BTF point of view. 10644 */ 10645 if (err) 10646 prog->aux->func_info_aux[subprog].unreliable = true; 10647 return err; 10648 } 10649 10650 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10651 int insn_idx, int subprog, 10652 set_callee_state_fn set_callee_state_cb) 10653 { 10654 struct bpf_verifier_state *state = env->cur_state, *callback_state; 10655 struct bpf_func_state *caller, *callee; 10656 int err; 10657 10658 caller = state->frame[state->curframe]; 10659 err = btf_check_subprog_call(env, subprog, caller->regs); 10660 if (err == -EFAULT) 10661 return err; 10662 10663 /* set_callee_state is used for direct subprog calls, but we are 10664 * interested in validating only BPF helpers that can call subprogs as 10665 * callbacks 10666 */ 10667 env->subprog_info[subprog].is_cb = true; 10668 if (bpf_pseudo_kfunc_call(insn) && 10669 !is_callback_calling_kfunc(insn->imm)) { 10670 verifier_bug(env, "kfunc %s#%d not marked as callback-calling", 10671 func_id_name(insn->imm), insn->imm); 10672 return -EFAULT; 10673 } else if (!bpf_pseudo_kfunc_call(insn) && 10674 !is_callback_calling_function(insn->imm)) { /* helper */ 10675 verifier_bug(env, "helper %s#%d not marked as callback-calling", 10676 func_id_name(insn->imm), insn->imm); 10677 return -EFAULT; 10678 } 10679 10680 if (is_async_callback_calling_insn(insn)) { 10681 struct bpf_verifier_state *async_cb; 10682 10683 /* there is no real recursion here. timer and workqueue callbacks are async */ 10684 env->subprog_info[subprog].is_async_cb = true; 10685 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 10686 insn_idx, subprog, 10687 is_async_cb_sleepable(env, insn)); 10688 if (IS_ERR(async_cb)) 10689 return PTR_ERR(async_cb); 10690 callee = async_cb->frame[0]; 10691 callee->async_entry_cnt = caller->async_entry_cnt + 1; 10692 10693 /* Convert bpf_timer_set_callback() args into timer callback args */ 10694 err = set_callee_state_cb(env, caller, callee, insn_idx); 10695 if (err) 10696 return err; 10697 10698 return 0; 10699 } 10700 10701 /* for callback functions enqueue entry to callback and 10702 * proceed with next instruction within current frame. 10703 */ 10704 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 10705 if (IS_ERR(callback_state)) 10706 return PTR_ERR(callback_state); 10707 10708 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 10709 callback_state); 10710 if (err) 10711 return err; 10712 10713 callback_state->callback_unroll_depth++; 10714 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 10715 caller->callback_depth = 0; 10716 return 0; 10717 } 10718 10719 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10720 int *insn_idx) 10721 { 10722 struct bpf_verifier_state *state = env->cur_state; 10723 struct bpf_func_state *caller; 10724 int err, subprog, target_insn; 10725 10726 target_insn = *insn_idx + insn->imm + 1; 10727 subprog = find_subprog(env, target_insn); 10728 if (verifier_bug_if(subprog < 0, env, "target of func call at insn %d is not a program", 10729 target_insn)) 10730 return -EFAULT; 10731 10732 caller = state->frame[state->curframe]; 10733 err = btf_check_subprog_call(env, subprog, caller->regs); 10734 if (err == -EFAULT) 10735 return err; 10736 if (subprog_is_global(env, subprog)) { 10737 const char *sub_name = subprog_name(env, subprog); 10738 10739 if (env->cur_state->active_locks) { 10740 verbose(env, "global function calls are not allowed while holding a lock,\n" 10741 "use static function instead\n"); 10742 return -EINVAL; 10743 } 10744 10745 if (env->subprog_info[subprog].might_sleep && 10746 (env->cur_state->active_rcu_locks || env->cur_state->active_preempt_locks || 10747 env->cur_state->active_irq_id || !in_sleepable(env))) { 10748 verbose(env, "global functions that may sleep are not allowed in non-sleepable context,\n" 10749 "i.e., in a RCU/IRQ/preempt-disabled section, or in\n" 10750 "a non-sleepable BPF program context\n"); 10751 return -EINVAL; 10752 } 10753 10754 if (err) { 10755 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 10756 subprog, sub_name); 10757 return err; 10758 } 10759 10760 if (env->log.level & BPF_LOG_LEVEL) 10761 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 10762 subprog, sub_name); 10763 if (env->subprog_info[subprog].changes_pkt_data) 10764 clear_all_pkt_pointers(env); 10765 /* mark global subprog for verifying after main prog */ 10766 subprog_aux(env, subprog)->called = true; 10767 clear_caller_saved_regs(env, caller->regs); 10768 10769 /* All global functions return a 64-bit SCALAR_VALUE */ 10770 mark_reg_unknown(env, caller->regs, BPF_REG_0); 10771 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10772 10773 /* continue with next insn after call */ 10774 return 0; 10775 } 10776 10777 /* for regular function entry setup new frame and continue 10778 * from that frame. 10779 */ 10780 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 10781 if (err) 10782 return err; 10783 10784 clear_caller_saved_regs(env, caller->regs); 10785 10786 /* and go analyze first insn of the callee */ 10787 *insn_idx = env->subprog_info[subprog].start - 1; 10788 10789 bpf_reset_live_stack_callchain(env); 10790 10791 if (env->log.level & BPF_LOG_LEVEL) { 10792 verbose(env, "caller:\n"); 10793 print_verifier_state(env, state, caller->frameno, true); 10794 verbose(env, "callee:\n"); 10795 print_verifier_state(env, state, state->curframe, true); 10796 } 10797 10798 return 0; 10799 } 10800 10801 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 10802 struct bpf_func_state *caller, 10803 struct bpf_func_state *callee) 10804 { 10805 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 10806 * void *callback_ctx, u64 flags); 10807 * callback_fn(struct bpf_map *map, void *key, void *value, 10808 * void *callback_ctx); 10809 */ 10810 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10811 10812 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10813 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10814 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10815 10816 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10817 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10818 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10819 10820 /* pointer to stack or null */ 10821 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 10822 10823 /* unused */ 10824 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10825 return 0; 10826 } 10827 10828 static int set_callee_state(struct bpf_verifier_env *env, 10829 struct bpf_func_state *caller, 10830 struct bpf_func_state *callee, int insn_idx) 10831 { 10832 int i; 10833 10834 /* copy r1 - r5 args that callee can access. The copy includes parent 10835 * pointers, which connects us up to the liveness chain 10836 */ 10837 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 10838 callee->regs[i] = caller->regs[i]; 10839 return 0; 10840 } 10841 10842 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 10843 struct bpf_func_state *caller, 10844 struct bpf_func_state *callee, 10845 int insn_idx) 10846 { 10847 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 10848 struct bpf_map *map; 10849 int err; 10850 10851 /* valid map_ptr and poison value does not matter */ 10852 map = insn_aux->map_ptr_state.map_ptr; 10853 if (!map->ops->map_set_for_each_callback_args || 10854 !map->ops->map_for_each_callback) { 10855 verbose(env, "callback function not allowed for map\n"); 10856 return -ENOTSUPP; 10857 } 10858 10859 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 10860 if (err) 10861 return err; 10862 10863 callee->in_callback_fn = true; 10864 callee->callback_ret_range = retval_range(0, 1); 10865 return 0; 10866 } 10867 10868 static int set_loop_callback_state(struct bpf_verifier_env *env, 10869 struct bpf_func_state *caller, 10870 struct bpf_func_state *callee, 10871 int insn_idx) 10872 { 10873 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 10874 * u64 flags); 10875 * callback_fn(u64 index, void *callback_ctx); 10876 */ 10877 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 10878 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10879 10880 /* unused */ 10881 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10882 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10883 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10884 10885 callee->in_callback_fn = true; 10886 callee->callback_ret_range = retval_range(0, 1); 10887 return 0; 10888 } 10889 10890 static int set_timer_callback_state(struct bpf_verifier_env *env, 10891 struct bpf_func_state *caller, 10892 struct bpf_func_state *callee, 10893 int insn_idx) 10894 { 10895 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 10896 10897 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 10898 * callback_fn(struct bpf_map *map, void *key, void *value); 10899 */ 10900 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 10901 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 10902 callee->regs[BPF_REG_1].map_ptr = map_ptr; 10903 10904 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10905 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10906 callee->regs[BPF_REG_2].map_ptr = map_ptr; 10907 10908 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10909 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10910 callee->regs[BPF_REG_3].map_ptr = map_ptr; 10911 10912 /* unused */ 10913 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10914 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10915 callee->in_async_callback_fn = true; 10916 callee->callback_ret_range = retval_range(0, 0); 10917 return 0; 10918 } 10919 10920 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 10921 struct bpf_func_state *caller, 10922 struct bpf_func_state *callee, 10923 int insn_idx) 10924 { 10925 /* bpf_find_vma(struct task_struct *task, u64 addr, 10926 * void *callback_fn, void *callback_ctx, u64 flags) 10927 * (callback_fn)(struct task_struct *task, 10928 * struct vm_area_struct *vma, void *callback_ctx); 10929 */ 10930 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10931 10932 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 10933 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10934 callee->regs[BPF_REG_2].btf = btf_vmlinux; 10935 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; 10936 10937 /* pointer to stack or null */ 10938 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 10939 10940 /* unused */ 10941 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10942 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10943 callee->in_callback_fn = true; 10944 callee->callback_ret_range = retval_range(0, 1); 10945 return 0; 10946 } 10947 10948 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 10949 struct bpf_func_state *caller, 10950 struct bpf_func_state *callee, 10951 int insn_idx) 10952 { 10953 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 10954 * callback_ctx, u64 flags); 10955 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 10956 */ 10957 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 10958 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 10959 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10960 10961 /* unused */ 10962 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10963 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10964 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10965 10966 callee->in_callback_fn = true; 10967 callee->callback_ret_range = retval_range(0, 1); 10968 return 0; 10969 } 10970 10971 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 10972 struct bpf_func_state *caller, 10973 struct bpf_func_state *callee, 10974 int insn_idx) 10975 { 10976 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 10977 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 10978 * 10979 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 10980 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 10981 * by this point, so look at 'root' 10982 */ 10983 struct btf_field *field; 10984 10985 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 10986 BPF_RB_ROOT); 10987 if (!field || !field->graph_root.value_btf_id) 10988 return -EFAULT; 10989 10990 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 10991 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 10992 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 10993 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 10994 10995 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10996 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10997 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10998 callee->in_callback_fn = true; 10999 callee->callback_ret_range = retval_range(0, 1); 11000 return 0; 11001 } 11002 11003 static int set_task_work_schedule_callback_state(struct bpf_verifier_env *env, 11004 struct bpf_func_state *caller, 11005 struct bpf_func_state *callee, 11006 int insn_idx) 11007 { 11008 struct bpf_map *map_ptr = caller->regs[BPF_REG_3].map_ptr; 11009 11010 /* 11011 * callback_fn(struct bpf_map *map, void *key, void *value); 11012 */ 11013 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 11014 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 11015 callee->regs[BPF_REG_1].map_ptr = map_ptr; 11016 11017 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 11018 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 11019 callee->regs[BPF_REG_2].map_ptr = map_ptr; 11020 11021 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 11022 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 11023 callee->regs[BPF_REG_3].map_ptr = map_ptr; 11024 11025 /* unused */ 11026 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 11027 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 11028 callee->in_async_callback_fn = true; 11029 callee->callback_ret_range = retval_range(S32_MIN, S32_MAX); 11030 return 0; 11031 } 11032 11033 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 11034 11035 /* Are we currently verifying the callback for a rbtree helper that must 11036 * be called with lock held? If so, no need to complain about unreleased 11037 * lock 11038 */ 11039 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 11040 { 11041 struct bpf_verifier_state *state = env->cur_state; 11042 struct bpf_insn *insn = env->prog->insnsi; 11043 struct bpf_func_state *callee; 11044 int kfunc_btf_id; 11045 11046 if (!state->curframe) 11047 return false; 11048 11049 callee = state->frame[state->curframe]; 11050 11051 if (!callee->in_callback_fn) 11052 return false; 11053 11054 kfunc_btf_id = insn[callee->callsite].imm; 11055 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 11056 } 11057 11058 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg, 11059 bool return_32bit) 11060 { 11061 if (return_32bit) 11062 return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval; 11063 else 11064 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; 11065 } 11066 11067 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 11068 { 11069 struct bpf_verifier_state *state = env->cur_state, *prev_st; 11070 struct bpf_func_state *caller, *callee; 11071 struct bpf_reg_state *r0; 11072 bool in_callback_fn; 11073 int err; 11074 11075 err = bpf_update_live_stack(env); 11076 if (err) 11077 return err; 11078 11079 callee = state->frame[state->curframe]; 11080 r0 = &callee->regs[BPF_REG_0]; 11081 if (r0->type == PTR_TO_STACK) { 11082 /* technically it's ok to return caller's stack pointer 11083 * (or caller's caller's pointer) back to the caller, 11084 * since these pointers are valid. Only current stack 11085 * pointer will be invalid as soon as function exits, 11086 * but let's be conservative 11087 */ 11088 verbose(env, "cannot return stack pointer to the caller\n"); 11089 return -EINVAL; 11090 } 11091 11092 caller = state->frame[state->curframe - 1]; 11093 if (callee->in_callback_fn) { 11094 if (r0->type != SCALAR_VALUE) { 11095 verbose(env, "R0 not a scalar value\n"); 11096 return -EACCES; 11097 } 11098 11099 /* we are going to rely on register's precise value */ 11100 err = mark_chain_precision(env, BPF_REG_0); 11101 if (err) 11102 return err; 11103 11104 /* enforce R0 return value range, and bpf_callback_t returns 64bit */ 11105 if (!retval_range_within(callee->callback_ret_range, r0, false)) { 11106 verbose_invalid_scalar(env, r0, callee->callback_ret_range, 11107 "At callback return", "R0"); 11108 return -EINVAL; 11109 } 11110 if (!bpf_calls_callback(env, callee->callsite)) { 11111 verifier_bug(env, "in callback at %d, callsite %d !calls_callback", 11112 *insn_idx, callee->callsite); 11113 return -EFAULT; 11114 } 11115 } else { 11116 /* return to the caller whatever r0 had in the callee */ 11117 caller->regs[BPF_REG_0] = *r0; 11118 } 11119 11120 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 11121 * there function call logic would reschedule callback visit. If iteration 11122 * converges is_state_visited() would prune that visit eventually. 11123 */ 11124 in_callback_fn = callee->in_callback_fn; 11125 if (in_callback_fn) 11126 *insn_idx = callee->callsite; 11127 else 11128 *insn_idx = callee->callsite + 1; 11129 11130 if (env->log.level & BPF_LOG_LEVEL) { 11131 verbose(env, "returning from callee:\n"); 11132 print_verifier_state(env, state, callee->frameno, true); 11133 verbose(env, "to caller at %d:\n", *insn_idx); 11134 print_verifier_state(env, state, caller->frameno, true); 11135 } 11136 /* clear everything in the callee. In case of exceptional exits using 11137 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 11138 free_func_state(callee); 11139 state->frame[state->curframe--] = NULL; 11140 11141 /* for callbacks widen imprecise scalars to make programs like below verify: 11142 * 11143 * struct ctx { int i; } 11144 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 11145 * ... 11146 * struct ctx = { .i = 0; } 11147 * bpf_loop(100, cb, &ctx, 0); 11148 * 11149 * This is similar to what is done in process_iter_next_call() for open 11150 * coded iterators. 11151 */ 11152 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 11153 if (prev_st) { 11154 err = widen_imprecise_scalars(env, prev_st, state); 11155 if (err) 11156 return err; 11157 } 11158 return 0; 11159 } 11160 11161 static int do_refine_retval_range(struct bpf_verifier_env *env, 11162 struct bpf_reg_state *regs, int ret_type, 11163 int func_id, 11164 struct bpf_call_arg_meta *meta) 11165 { 11166 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 11167 11168 if (ret_type != RET_INTEGER) 11169 return 0; 11170 11171 switch (func_id) { 11172 case BPF_FUNC_get_stack: 11173 case BPF_FUNC_get_task_stack: 11174 case BPF_FUNC_probe_read_str: 11175 case BPF_FUNC_probe_read_kernel_str: 11176 case BPF_FUNC_probe_read_user_str: 11177 ret_reg->smax_value = meta->msize_max_value; 11178 ret_reg->s32_max_value = meta->msize_max_value; 11179 ret_reg->smin_value = -MAX_ERRNO; 11180 ret_reg->s32_min_value = -MAX_ERRNO; 11181 reg_bounds_sync(ret_reg); 11182 break; 11183 case BPF_FUNC_get_smp_processor_id: 11184 ret_reg->umax_value = nr_cpu_ids - 1; 11185 ret_reg->u32_max_value = nr_cpu_ids - 1; 11186 ret_reg->smax_value = nr_cpu_ids - 1; 11187 ret_reg->s32_max_value = nr_cpu_ids - 1; 11188 ret_reg->umin_value = 0; 11189 ret_reg->u32_min_value = 0; 11190 ret_reg->smin_value = 0; 11191 ret_reg->s32_min_value = 0; 11192 reg_bounds_sync(ret_reg); 11193 break; 11194 } 11195 11196 return reg_bounds_sanity_check(env, ret_reg, "retval"); 11197 } 11198 11199 static int 11200 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 11201 int func_id, int insn_idx) 11202 { 11203 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 11204 struct bpf_map *map = meta->map_ptr; 11205 11206 if (func_id != BPF_FUNC_tail_call && 11207 func_id != BPF_FUNC_map_lookup_elem && 11208 func_id != BPF_FUNC_map_update_elem && 11209 func_id != BPF_FUNC_map_delete_elem && 11210 func_id != BPF_FUNC_map_push_elem && 11211 func_id != BPF_FUNC_map_pop_elem && 11212 func_id != BPF_FUNC_map_peek_elem && 11213 func_id != BPF_FUNC_for_each_map_elem && 11214 func_id != BPF_FUNC_redirect_map && 11215 func_id != BPF_FUNC_map_lookup_percpu_elem) 11216 return 0; 11217 11218 if (map == NULL) { 11219 verifier_bug(env, "expected map for helper call"); 11220 return -EFAULT; 11221 } 11222 11223 /* In case of read-only, some additional restrictions 11224 * need to be applied in order to prevent altering the 11225 * state of the map from program side. 11226 */ 11227 if ((map->map_flags & BPF_F_RDONLY_PROG) && 11228 (func_id == BPF_FUNC_map_delete_elem || 11229 func_id == BPF_FUNC_map_update_elem || 11230 func_id == BPF_FUNC_map_push_elem || 11231 func_id == BPF_FUNC_map_pop_elem)) { 11232 verbose(env, "write into map forbidden\n"); 11233 return -EACCES; 11234 } 11235 11236 if (!aux->map_ptr_state.map_ptr) 11237 bpf_map_ptr_store(aux, meta->map_ptr, 11238 !meta->map_ptr->bypass_spec_v1, false); 11239 else if (aux->map_ptr_state.map_ptr != meta->map_ptr) 11240 bpf_map_ptr_store(aux, meta->map_ptr, 11241 !meta->map_ptr->bypass_spec_v1, true); 11242 return 0; 11243 } 11244 11245 static int 11246 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 11247 int func_id, int insn_idx) 11248 { 11249 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 11250 struct bpf_reg_state *regs = cur_regs(env), *reg; 11251 struct bpf_map *map = meta->map_ptr; 11252 u64 val, max; 11253 int err; 11254 11255 if (func_id != BPF_FUNC_tail_call) 11256 return 0; 11257 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 11258 verbose(env, "expected prog array map for tail call"); 11259 return -EINVAL; 11260 } 11261 11262 reg = ®s[BPF_REG_3]; 11263 val = reg->var_off.value; 11264 max = map->max_entries; 11265 11266 if (!(is_reg_const(reg, false) && val < max)) { 11267 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 11268 return 0; 11269 } 11270 11271 err = mark_chain_precision(env, BPF_REG_3); 11272 if (err) 11273 return err; 11274 if (bpf_map_key_unseen(aux)) 11275 bpf_map_key_store(aux, val); 11276 else if (!bpf_map_key_poisoned(aux) && 11277 bpf_map_key_immediate(aux) != val) 11278 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 11279 return 0; 11280 } 11281 11282 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 11283 { 11284 struct bpf_verifier_state *state = env->cur_state; 11285 enum bpf_prog_type type = resolve_prog_type(env->prog); 11286 struct bpf_reg_state *reg = reg_state(env, BPF_REG_0); 11287 bool refs_lingering = false; 11288 int i; 11289 11290 if (!exception_exit && cur_func(env)->frameno) 11291 return 0; 11292 11293 for (i = 0; i < state->acquired_refs; i++) { 11294 if (state->refs[i].type != REF_TYPE_PTR) 11295 continue; 11296 /* Allow struct_ops programs to return a referenced kptr back to 11297 * kernel. Type checks are performed later in check_return_code. 11298 */ 11299 if (type == BPF_PROG_TYPE_STRUCT_OPS && !exception_exit && 11300 reg->ref_obj_id == state->refs[i].id) 11301 continue; 11302 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 11303 state->refs[i].id, state->refs[i].insn_idx); 11304 refs_lingering = true; 11305 } 11306 return refs_lingering ? -EINVAL : 0; 11307 } 11308 11309 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix) 11310 { 11311 int err; 11312 11313 if (check_lock && env->cur_state->active_locks) { 11314 verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix); 11315 return -EINVAL; 11316 } 11317 11318 err = check_reference_leak(env, exception_exit); 11319 if (err) { 11320 verbose(env, "%s would lead to reference leak\n", prefix); 11321 return err; 11322 } 11323 11324 if (check_lock && env->cur_state->active_irq_id) { 11325 verbose(env, "%s cannot be used inside bpf_local_irq_save-ed region\n", prefix); 11326 return -EINVAL; 11327 } 11328 11329 if (check_lock && env->cur_state->active_rcu_locks) { 11330 verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix); 11331 return -EINVAL; 11332 } 11333 11334 if (check_lock && env->cur_state->active_preempt_locks) { 11335 verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix); 11336 return -EINVAL; 11337 } 11338 11339 return 0; 11340 } 11341 11342 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 11343 struct bpf_reg_state *regs) 11344 { 11345 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 11346 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 11347 struct bpf_map *fmt_map = fmt_reg->map_ptr; 11348 struct bpf_bprintf_data data = {}; 11349 int err, fmt_map_off, num_args; 11350 u64 fmt_addr; 11351 char *fmt; 11352 11353 /* data must be an array of u64 */ 11354 if (data_len_reg->var_off.value % 8) 11355 return -EINVAL; 11356 num_args = data_len_reg->var_off.value / 8; 11357 11358 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 11359 * and map_direct_value_addr is set. 11360 */ 11361 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 11362 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 11363 fmt_map_off); 11364 if (err) { 11365 verbose(env, "failed to retrieve map value address\n"); 11366 return -EFAULT; 11367 } 11368 fmt = (char *)(long)fmt_addr + fmt_map_off; 11369 11370 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 11371 * can focus on validating the format specifiers. 11372 */ 11373 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 11374 if (err < 0) 11375 verbose(env, "Invalid format string\n"); 11376 11377 return err; 11378 } 11379 11380 static int check_get_func_ip(struct bpf_verifier_env *env) 11381 { 11382 enum bpf_prog_type type = resolve_prog_type(env->prog); 11383 int func_id = BPF_FUNC_get_func_ip; 11384 11385 if (type == BPF_PROG_TYPE_TRACING) { 11386 if (!bpf_prog_has_trampoline(env->prog)) { 11387 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 11388 func_id_name(func_id), func_id); 11389 return -ENOTSUPP; 11390 } 11391 return 0; 11392 } else if (type == BPF_PROG_TYPE_KPROBE) { 11393 return 0; 11394 } 11395 11396 verbose(env, "func %s#%d not supported for program type %d\n", 11397 func_id_name(func_id), func_id, type); 11398 return -ENOTSUPP; 11399 } 11400 11401 static struct bpf_insn_aux_data *cur_aux(const struct bpf_verifier_env *env) 11402 { 11403 return &env->insn_aux_data[env->insn_idx]; 11404 } 11405 11406 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 11407 { 11408 struct bpf_reg_state *regs = cur_regs(env); 11409 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 11410 bool reg_is_null = register_is_null(reg); 11411 11412 if (reg_is_null) 11413 mark_chain_precision(env, BPF_REG_4); 11414 11415 return reg_is_null; 11416 } 11417 11418 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 11419 { 11420 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 11421 11422 if (!state->initialized) { 11423 state->initialized = 1; 11424 state->fit_for_inline = loop_flag_is_zero(env); 11425 state->callback_subprogno = subprogno; 11426 return; 11427 } 11428 11429 if (!state->fit_for_inline) 11430 return; 11431 11432 state->fit_for_inline = (loop_flag_is_zero(env) && 11433 state->callback_subprogno == subprogno); 11434 } 11435 11436 /* Returns whether or not the given map type can potentially elide 11437 * lookup return value nullness check. This is possible if the key 11438 * is statically known. 11439 */ 11440 static bool can_elide_value_nullness(enum bpf_map_type type) 11441 { 11442 switch (type) { 11443 case BPF_MAP_TYPE_ARRAY: 11444 case BPF_MAP_TYPE_PERCPU_ARRAY: 11445 return true; 11446 default: 11447 return false; 11448 } 11449 } 11450 11451 static int get_helper_proto(struct bpf_verifier_env *env, int func_id, 11452 const struct bpf_func_proto **ptr) 11453 { 11454 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) 11455 return -ERANGE; 11456 11457 if (!env->ops->get_func_proto) 11458 return -EINVAL; 11459 11460 *ptr = env->ops->get_func_proto(func_id, env->prog); 11461 return *ptr && (*ptr)->func ? 0 : -EINVAL; 11462 } 11463 11464 /* Check if we're in a sleepable context. */ 11465 static inline bool in_sleepable_context(struct bpf_verifier_env *env) 11466 { 11467 return !env->cur_state->active_rcu_locks && 11468 !env->cur_state->active_preempt_locks && 11469 !env->cur_state->active_irq_id && 11470 in_sleepable(env); 11471 } 11472 11473 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11474 int *insn_idx_p) 11475 { 11476 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 11477 bool returns_cpu_specific_alloc_ptr = false; 11478 const struct bpf_func_proto *fn = NULL; 11479 enum bpf_return_type ret_type; 11480 enum bpf_type_flag ret_flag; 11481 struct bpf_reg_state *regs; 11482 struct bpf_call_arg_meta meta; 11483 int insn_idx = *insn_idx_p; 11484 bool changes_data; 11485 int i, err, func_id; 11486 11487 /* find function prototype */ 11488 func_id = insn->imm; 11489 err = get_helper_proto(env, insn->imm, &fn); 11490 if (err == -ERANGE) { 11491 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id); 11492 return -EINVAL; 11493 } 11494 11495 if (err) { 11496 verbose(env, "program of this type cannot use helper %s#%d\n", 11497 func_id_name(func_id), func_id); 11498 return err; 11499 } 11500 11501 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 11502 if (!env->prog->gpl_compatible && fn->gpl_only) { 11503 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 11504 return -EINVAL; 11505 } 11506 11507 if (fn->allowed && !fn->allowed(env->prog)) { 11508 verbose(env, "helper call is not allowed in probe\n"); 11509 return -EINVAL; 11510 } 11511 11512 if (!in_sleepable(env) && fn->might_sleep) { 11513 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 11514 return -EINVAL; 11515 } 11516 11517 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 11518 changes_data = bpf_helper_changes_pkt_data(func_id); 11519 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 11520 verifier_bug(env, "func %s#%d: r1 != ctx", func_id_name(func_id), func_id); 11521 return -EFAULT; 11522 } 11523 11524 memset(&meta, 0, sizeof(meta)); 11525 meta.pkt_access = fn->pkt_access; 11526 11527 err = check_func_proto(fn, func_id); 11528 if (err) { 11529 verifier_bug(env, "incorrect func proto %s#%d", func_id_name(func_id), func_id); 11530 return err; 11531 } 11532 11533 if (env->cur_state->active_rcu_locks) { 11534 if (fn->might_sleep) { 11535 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 11536 func_id_name(func_id), func_id); 11537 return -EINVAL; 11538 } 11539 } 11540 11541 if (env->cur_state->active_preempt_locks) { 11542 if (fn->might_sleep) { 11543 verbose(env, "sleepable helper %s#%d in non-preemptible region\n", 11544 func_id_name(func_id), func_id); 11545 return -EINVAL; 11546 } 11547 } 11548 11549 if (env->cur_state->active_irq_id) { 11550 if (fn->might_sleep) { 11551 verbose(env, "sleepable helper %s#%d in IRQ-disabled region\n", 11552 func_id_name(func_id), func_id); 11553 return -EINVAL; 11554 } 11555 } 11556 11557 /* Track non-sleepable context for helpers. */ 11558 if (!in_sleepable_context(env)) 11559 env->insn_aux_data[insn_idx].non_sleepable = true; 11560 11561 meta.func_id = func_id; 11562 /* check args */ 11563 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 11564 err = check_func_arg(env, i, &meta, fn, insn_idx); 11565 if (err) 11566 return err; 11567 } 11568 11569 err = record_func_map(env, &meta, func_id, insn_idx); 11570 if (err) 11571 return err; 11572 11573 err = record_func_key(env, &meta, func_id, insn_idx); 11574 if (err) 11575 return err; 11576 11577 /* Mark slots with STACK_MISC in case of raw mode, stack offset 11578 * is inferred from register state. 11579 */ 11580 for (i = 0; i < meta.access_size; i++) { 11581 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 11582 BPF_WRITE, -1, false, false); 11583 if (err) 11584 return err; 11585 } 11586 11587 regs = cur_regs(env); 11588 11589 if (meta.release_regno) { 11590 err = -EINVAL; 11591 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 11592 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 11593 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 11594 u32 ref_obj_id = meta.ref_obj_id; 11595 bool in_rcu = in_rcu_cs(env); 11596 struct bpf_func_state *state; 11597 struct bpf_reg_state *reg; 11598 11599 err = release_reference_nomark(env->cur_state, ref_obj_id); 11600 if (!err) { 11601 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11602 if (reg->ref_obj_id == ref_obj_id) { 11603 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 11604 reg->ref_obj_id = 0; 11605 reg->type &= ~MEM_ALLOC; 11606 reg->type |= MEM_RCU; 11607 } else { 11608 mark_reg_invalid(env, reg); 11609 } 11610 } 11611 })); 11612 } 11613 } else if (meta.ref_obj_id) { 11614 err = release_reference(env, meta.ref_obj_id); 11615 } else if (register_is_null(®s[meta.release_regno])) { 11616 /* meta.ref_obj_id can only be 0 if register that is meant to be 11617 * released is NULL, which must be > R0. 11618 */ 11619 err = 0; 11620 } 11621 if (err) { 11622 verbose(env, "func %s#%d reference has not been acquired before\n", 11623 func_id_name(func_id), func_id); 11624 return err; 11625 } 11626 } 11627 11628 switch (func_id) { 11629 case BPF_FUNC_tail_call: 11630 err = check_resource_leak(env, false, true, "tail_call"); 11631 if (err) 11632 return err; 11633 break; 11634 case BPF_FUNC_get_local_storage: 11635 /* check that flags argument in get_local_storage(map, flags) is 0, 11636 * this is required because get_local_storage() can't return an error. 11637 */ 11638 if (!register_is_null(®s[BPF_REG_2])) { 11639 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 11640 return -EINVAL; 11641 } 11642 break; 11643 case BPF_FUNC_for_each_map_elem: 11644 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11645 set_map_elem_callback_state); 11646 break; 11647 case BPF_FUNC_timer_set_callback: 11648 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11649 set_timer_callback_state); 11650 break; 11651 case BPF_FUNC_find_vma: 11652 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11653 set_find_vma_callback_state); 11654 break; 11655 case BPF_FUNC_snprintf: 11656 err = check_bpf_snprintf_call(env, regs); 11657 break; 11658 case BPF_FUNC_loop: 11659 update_loop_inline_state(env, meta.subprogno); 11660 /* Verifier relies on R1 value to determine if bpf_loop() iteration 11661 * is finished, thus mark it precise. 11662 */ 11663 err = mark_chain_precision(env, BPF_REG_1); 11664 if (err) 11665 return err; 11666 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 11667 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11668 set_loop_callback_state); 11669 } else { 11670 cur_func(env)->callback_depth = 0; 11671 if (env->log.level & BPF_LOG_LEVEL2) 11672 verbose(env, "frame%d bpf_loop iteration limit reached\n", 11673 env->cur_state->curframe); 11674 } 11675 break; 11676 case BPF_FUNC_dynptr_from_mem: 11677 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 11678 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 11679 reg_type_str(env, regs[BPF_REG_1].type)); 11680 return -EACCES; 11681 } 11682 break; 11683 case BPF_FUNC_set_retval: 11684 if (prog_type == BPF_PROG_TYPE_LSM && 11685 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 11686 if (!env->prog->aux->attach_func_proto->type) { 11687 /* Make sure programs that attach to void 11688 * hooks don't try to modify return value. 11689 */ 11690 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 11691 return -EINVAL; 11692 } 11693 } 11694 break; 11695 case BPF_FUNC_dynptr_data: 11696 { 11697 struct bpf_reg_state *reg; 11698 int id, ref_obj_id; 11699 11700 reg = get_dynptr_arg_reg(env, fn, regs); 11701 if (!reg) 11702 return -EFAULT; 11703 11704 11705 if (meta.dynptr_id) { 11706 verifier_bug(env, "meta.dynptr_id already set"); 11707 return -EFAULT; 11708 } 11709 if (meta.ref_obj_id) { 11710 verifier_bug(env, "meta.ref_obj_id already set"); 11711 return -EFAULT; 11712 } 11713 11714 id = dynptr_id(env, reg); 11715 if (id < 0) { 11716 verifier_bug(env, "failed to obtain dynptr id"); 11717 return id; 11718 } 11719 11720 ref_obj_id = dynptr_ref_obj_id(env, reg); 11721 if (ref_obj_id < 0) { 11722 verifier_bug(env, "failed to obtain dynptr ref_obj_id"); 11723 return ref_obj_id; 11724 } 11725 11726 meta.dynptr_id = id; 11727 meta.ref_obj_id = ref_obj_id; 11728 11729 break; 11730 } 11731 case BPF_FUNC_dynptr_write: 11732 { 11733 enum bpf_dynptr_type dynptr_type; 11734 struct bpf_reg_state *reg; 11735 11736 reg = get_dynptr_arg_reg(env, fn, regs); 11737 if (!reg) 11738 return -EFAULT; 11739 11740 dynptr_type = dynptr_get_type(env, reg); 11741 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 11742 return -EFAULT; 11743 11744 if (dynptr_type == BPF_DYNPTR_TYPE_SKB || 11745 dynptr_type == BPF_DYNPTR_TYPE_SKB_META) 11746 /* this will trigger clear_all_pkt_pointers(), which will 11747 * invalidate all dynptr slices associated with the skb 11748 */ 11749 changes_data = true; 11750 11751 break; 11752 } 11753 case BPF_FUNC_per_cpu_ptr: 11754 case BPF_FUNC_this_cpu_ptr: 11755 { 11756 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 11757 const struct btf_type *type; 11758 11759 if (reg->type & MEM_RCU) { 11760 type = btf_type_by_id(reg->btf, reg->btf_id); 11761 if (!type || !btf_type_is_struct(type)) { 11762 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 11763 return -EFAULT; 11764 } 11765 returns_cpu_specific_alloc_ptr = true; 11766 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 11767 } 11768 break; 11769 } 11770 case BPF_FUNC_user_ringbuf_drain: 11771 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11772 set_user_ringbuf_callback_state); 11773 break; 11774 } 11775 11776 if (err) 11777 return err; 11778 11779 /* reset caller saved regs */ 11780 for (i = 0; i < CALLER_SAVED_REGS; i++) { 11781 mark_reg_not_init(env, regs, caller_saved[i]); 11782 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 11783 } 11784 11785 /* helper call returns 64-bit value. */ 11786 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 11787 11788 /* update return register (already marked as written above) */ 11789 ret_type = fn->ret_type; 11790 ret_flag = type_flag(ret_type); 11791 11792 switch (base_type(ret_type)) { 11793 case RET_INTEGER: 11794 /* sets type to SCALAR_VALUE */ 11795 mark_reg_unknown(env, regs, BPF_REG_0); 11796 break; 11797 case RET_VOID: 11798 regs[BPF_REG_0].type = NOT_INIT; 11799 break; 11800 case RET_PTR_TO_MAP_VALUE: 11801 /* There is no offset yet applied, variable or fixed */ 11802 mark_reg_known_zero(env, regs, BPF_REG_0); 11803 /* remember map_ptr, so that check_map_access() 11804 * can check 'value_size' boundary of memory access 11805 * to map element returned from bpf_map_lookup_elem() 11806 */ 11807 if (meta.map_ptr == NULL) { 11808 verifier_bug(env, "unexpected null map_ptr"); 11809 return -EFAULT; 11810 } 11811 11812 if (func_id == BPF_FUNC_map_lookup_elem && 11813 can_elide_value_nullness(meta.map_ptr->map_type) && 11814 meta.const_map_key >= 0 && 11815 meta.const_map_key < meta.map_ptr->max_entries) 11816 ret_flag &= ~PTR_MAYBE_NULL; 11817 11818 regs[BPF_REG_0].map_ptr = meta.map_ptr; 11819 regs[BPF_REG_0].map_uid = meta.map_uid; 11820 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 11821 if (!type_may_be_null(ret_flag) && 11822 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) { 11823 regs[BPF_REG_0].id = ++env->id_gen; 11824 } 11825 break; 11826 case RET_PTR_TO_SOCKET: 11827 mark_reg_known_zero(env, regs, BPF_REG_0); 11828 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 11829 break; 11830 case RET_PTR_TO_SOCK_COMMON: 11831 mark_reg_known_zero(env, regs, BPF_REG_0); 11832 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 11833 break; 11834 case RET_PTR_TO_TCP_SOCK: 11835 mark_reg_known_zero(env, regs, BPF_REG_0); 11836 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 11837 break; 11838 case RET_PTR_TO_MEM: 11839 mark_reg_known_zero(env, regs, BPF_REG_0); 11840 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11841 regs[BPF_REG_0].mem_size = meta.mem_size; 11842 break; 11843 case RET_PTR_TO_MEM_OR_BTF_ID: 11844 { 11845 const struct btf_type *t; 11846 11847 mark_reg_known_zero(env, regs, BPF_REG_0); 11848 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 11849 if (!btf_type_is_struct(t)) { 11850 u32 tsize; 11851 const struct btf_type *ret; 11852 const char *tname; 11853 11854 /* resolve the type size of ksym. */ 11855 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 11856 if (IS_ERR(ret)) { 11857 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 11858 verbose(env, "unable to resolve the size of type '%s': %ld\n", 11859 tname, PTR_ERR(ret)); 11860 return -EINVAL; 11861 } 11862 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11863 regs[BPF_REG_0].mem_size = tsize; 11864 } else { 11865 if (returns_cpu_specific_alloc_ptr) { 11866 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 11867 } else { 11868 /* MEM_RDONLY may be carried from ret_flag, but it 11869 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 11870 * it will confuse the check of PTR_TO_BTF_ID in 11871 * check_mem_access(). 11872 */ 11873 ret_flag &= ~MEM_RDONLY; 11874 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11875 } 11876 11877 regs[BPF_REG_0].btf = meta.ret_btf; 11878 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11879 } 11880 break; 11881 } 11882 case RET_PTR_TO_BTF_ID: 11883 { 11884 struct btf *ret_btf; 11885 int ret_btf_id; 11886 11887 mark_reg_known_zero(env, regs, BPF_REG_0); 11888 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11889 if (func_id == BPF_FUNC_kptr_xchg) { 11890 ret_btf = meta.kptr_field->kptr.btf; 11891 ret_btf_id = meta.kptr_field->kptr.btf_id; 11892 if (!btf_is_kernel(ret_btf)) { 11893 regs[BPF_REG_0].type |= MEM_ALLOC; 11894 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 11895 regs[BPF_REG_0].type |= MEM_PERCPU; 11896 } 11897 } else { 11898 if (fn->ret_btf_id == BPF_PTR_POISON) { 11899 verifier_bug(env, "func %s has non-overwritten BPF_PTR_POISON return type", 11900 func_id_name(func_id)); 11901 return -EFAULT; 11902 } 11903 ret_btf = btf_vmlinux; 11904 ret_btf_id = *fn->ret_btf_id; 11905 } 11906 if (ret_btf_id == 0) { 11907 verbose(env, "invalid return type %u of func %s#%d\n", 11908 base_type(ret_type), func_id_name(func_id), 11909 func_id); 11910 return -EINVAL; 11911 } 11912 regs[BPF_REG_0].btf = ret_btf; 11913 regs[BPF_REG_0].btf_id = ret_btf_id; 11914 break; 11915 } 11916 default: 11917 verbose(env, "unknown return type %u of func %s#%d\n", 11918 base_type(ret_type), func_id_name(func_id), func_id); 11919 return -EINVAL; 11920 } 11921 11922 if (type_may_be_null(regs[BPF_REG_0].type)) 11923 regs[BPF_REG_0].id = ++env->id_gen; 11924 11925 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 11926 verifier_bug(env, "func %s#%d sets ref_obj_id more than once", 11927 func_id_name(func_id), func_id); 11928 return -EFAULT; 11929 } 11930 11931 if (is_dynptr_ref_function(func_id)) 11932 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 11933 11934 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 11935 /* For release_reference() */ 11936 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11937 } else if (is_acquire_function(func_id, meta.map_ptr)) { 11938 int id = acquire_reference(env, insn_idx); 11939 11940 if (id < 0) 11941 return id; 11942 /* For mark_ptr_or_null_reg() */ 11943 regs[BPF_REG_0].id = id; 11944 /* For release_reference() */ 11945 regs[BPF_REG_0].ref_obj_id = id; 11946 } 11947 11948 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 11949 if (err) 11950 return err; 11951 11952 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 11953 if (err) 11954 return err; 11955 11956 if ((func_id == BPF_FUNC_get_stack || 11957 func_id == BPF_FUNC_get_task_stack) && 11958 !env->prog->has_callchain_buf) { 11959 const char *err_str; 11960 11961 #ifdef CONFIG_PERF_EVENTS 11962 err = get_callchain_buffers(sysctl_perf_event_max_stack); 11963 err_str = "cannot get callchain buffer for func %s#%d\n"; 11964 #else 11965 err = -ENOTSUPP; 11966 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 11967 #endif 11968 if (err) { 11969 verbose(env, err_str, func_id_name(func_id), func_id); 11970 return err; 11971 } 11972 11973 env->prog->has_callchain_buf = true; 11974 } 11975 11976 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 11977 env->prog->call_get_stack = true; 11978 11979 if (func_id == BPF_FUNC_get_func_ip) { 11980 if (check_get_func_ip(env)) 11981 return -ENOTSUPP; 11982 env->prog->call_get_func_ip = true; 11983 } 11984 11985 if (func_id == BPF_FUNC_tail_call) { 11986 if (env->cur_state->curframe) { 11987 struct bpf_verifier_state *branch; 11988 11989 mark_reg_scratched(env, BPF_REG_0); 11990 branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false); 11991 if (IS_ERR(branch)) 11992 return PTR_ERR(branch); 11993 clear_all_pkt_pointers(env); 11994 mark_reg_unknown(env, regs, BPF_REG_0); 11995 err = prepare_func_exit(env, &env->insn_idx); 11996 if (err) 11997 return err; 11998 env->insn_idx--; 11999 } else { 12000 changes_data = false; 12001 } 12002 } 12003 12004 if (changes_data) 12005 clear_all_pkt_pointers(env); 12006 return 0; 12007 } 12008 12009 /* mark_btf_func_reg_size() is used when the reg size is determined by 12010 * the BTF func_proto's return value size and argument. 12011 */ 12012 static void __mark_btf_func_reg_size(struct bpf_verifier_env *env, struct bpf_reg_state *regs, 12013 u32 regno, size_t reg_size) 12014 { 12015 struct bpf_reg_state *reg = ®s[regno]; 12016 12017 if (regno == BPF_REG_0) { 12018 /* Function return value */ 12019 reg->subreg_def = reg_size == sizeof(u64) ? 12020 DEF_NOT_SUBREG : env->insn_idx + 1; 12021 } else if (reg_size == sizeof(u64)) { 12022 /* Function argument */ 12023 mark_insn_zext(env, reg); 12024 } 12025 } 12026 12027 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 12028 size_t reg_size) 12029 { 12030 return __mark_btf_func_reg_size(env, cur_regs(env), regno, reg_size); 12031 } 12032 12033 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 12034 { 12035 return meta->kfunc_flags & KF_ACQUIRE; 12036 } 12037 12038 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 12039 { 12040 return meta->kfunc_flags & KF_RELEASE; 12041 } 12042 12043 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 12044 { 12045 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 12046 } 12047 12048 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 12049 { 12050 return meta->kfunc_flags & KF_SLEEPABLE; 12051 } 12052 12053 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 12054 { 12055 return meta->kfunc_flags & KF_DESTRUCTIVE; 12056 } 12057 12058 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 12059 { 12060 return meta->kfunc_flags & KF_RCU; 12061 } 12062 12063 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 12064 { 12065 return meta->kfunc_flags & KF_RCU_PROTECTED; 12066 } 12067 12068 static bool is_kfunc_arg_mem_size(const struct btf *btf, 12069 const struct btf_param *arg, 12070 const struct bpf_reg_state *reg) 12071 { 12072 const struct btf_type *t; 12073 12074 t = btf_type_skip_modifiers(btf, arg->type, NULL); 12075 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 12076 return false; 12077 12078 return btf_param_match_suffix(btf, arg, "__sz"); 12079 } 12080 12081 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 12082 const struct btf_param *arg, 12083 const struct bpf_reg_state *reg) 12084 { 12085 const struct btf_type *t; 12086 12087 t = btf_type_skip_modifiers(btf, arg->type, NULL); 12088 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 12089 return false; 12090 12091 return btf_param_match_suffix(btf, arg, "__szk"); 12092 } 12093 12094 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 12095 { 12096 return btf_param_match_suffix(btf, arg, "__opt"); 12097 } 12098 12099 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 12100 { 12101 return btf_param_match_suffix(btf, arg, "__k"); 12102 } 12103 12104 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 12105 { 12106 return btf_param_match_suffix(btf, arg, "__ign"); 12107 } 12108 12109 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) 12110 { 12111 return btf_param_match_suffix(btf, arg, "__map"); 12112 } 12113 12114 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 12115 { 12116 return btf_param_match_suffix(btf, arg, "__alloc"); 12117 } 12118 12119 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 12120 { 12121 return btf_param_match_suffix(btf, arg, "__uninit"); 12122 } 12123 12124 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 12125 { 12126 return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); 12127 } 12128 12129 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 12130 { 12131 return btf_param_match_suffix(btf, arg, "__nullable"); 12132 } 12133 12134 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 12135 { 12136 return btf_param_match_suffix(btf, arg, "__str"); 12137 } 12138 12139 static bool is_kfunc_arg_irq_flag(const struct btf *btf, const struct btf_param *arg) 12140 { 12141 return btf_param_match_suffix(btf, arg, "__irq_flag"); 12142 } 12143 12144 static bool is_kfunc_arg_prog(const struct btf *btf, const struct btf_param *arg) 12145 { 12146 return btf_param_match_suffix(btf, arg, "__prog"); 12147 } 12148 12149 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 12150 const struct btf_param *arg, 12151 const char *name) 12152 { 12153 int len, target_len = strlen(name); 12154 const char *param_name; 12155 12156 param_name = btf_name_by_offset(btf, arg->name_off); 12157 if (str_is_empty(param_name)) 12158 return false; 12159 len = strlen(param_name); 12160 if (len != target_len) 12161 return false; 12162 if (strcmp(param_name, name)) 12163 return false; 12164 12165 return true; 12166 } 12167 12168 enum { 12169 KF_ARG_DYNPTR_ID, 12170 KF_ARG_LIST_HEAD_ID, 12171 KF_ARG_LIST_NODE_ID, 12172 KF_ARG_RB_ROOT_ID, 12173 KF_ARG_RB_NODE_ID, 12174 KF_ARG_WORKQUEUE_ID, 12175 KF_ARG_RES_SPIN_LOCK_ID, 12176 KF_ARG_TASK_WORK_ID, 12177 }; 12178 12179 BTF_ID_LIST(kf_arg_btf_ids) 12180 BTF_ID(struct, bpf_dynptr) 12181 BTF_ID(struct, bpf_list_head) 12182 BTF_ID(struct, bpf_list_node) 12183 BTF_ID(struct, bpf_rb_root) 12184 BTF_ID(struct, bpf_rb_node) 12185 BTF_ID(struct, bpf_wq) 12186 BTF_ID(struct, bpf_res_spin_lock) 12187 BTF_ID(struct, bpf_task_work) 12188 12189 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 12190 const struct btf_param *arg, int type) 12191 { 12192 const struct btf_type *t; 12193 u32 res_id; 12194 12195 t = btf_type_skip_modifiers(btf, arg->type, NULL); 12196 if (!t) 12197 return false; 12198 if (!btf_type_is_ptr(t)) 12199 return false; 12200 t = btf_type_skip_modifiers(btf, t->type, &res_id); 12201 if (!t) 12202 return false; 12203 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 12204 } 12205 12206 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 12207 { 12208 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 12209 } 12210 12211 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 12212 { 12213 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 12214 } 12215 12216 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 12217 { 12218 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 12219 } 12220 12221 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 12222 { 12223 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 12224 } 12225 12226 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 12227 { 12228 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 12229 } 12230 12231 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) 12232 { 12233 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); 12234 } 12235 12236 static bool is_kfunc_arg_task_work(const struct btf *btf, const struct btf_param *arg) 12237 { 12238 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_TASK_WORK_ID); 12239 } 12240 12241 static bool is_kfunc_arg_res_spin_lock(const struct btf *btf, const struct btf_param *arg) 12242 { 12243 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RES_SPIN_LOCK_ID); 12244 } 12245 12246 static bool is_rbtree_node_type(const struct btf_type *t) 12247 { 12248 return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_RB_NODE_ID]); 12249 } 12250 12251 static bool is_list_node_type(const struct btf_type *t) 12252 { 12253 return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_LIST_NODE_ID]); 12254 } 12255 12256 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 12257 const struct btf_param *arg) 12258 { 12259 const struct btf_type *t; 12260 12261 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 12262 if (!t) 12263 return false; 12264 12265 return true; 12266 } 12267 12268 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 12269 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 12270 const struct btf *btf, 12271 const struct btf_type *t, int rec) 12272 { 12273 const struct btf_type *member_type; 12274 const struct btf_member *member; 12275 u32 i; 12276 12277 if (!btf_type_is_struct(t)) 12278 return false; 12279 12280 for_each_member(i, t, member) { 12281 const struct btf_array *array; 12282 12283 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 12284 if (btf_type_is_struct(member_type)) { 12285 if (rec >= 3) { 12286 verbose(env, "max struct nesting depth exceeded\n"); 12287 return false; 12288 } 12289 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 12290 return false; 12291 continue; 12292 } 12293 if (btf_type_is_array(member_type)) { 12294 array = btf_array(member_type); 12295 if (!array->nelems) 12296 return false; 12297 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 12298 if (!btf_type_is_scalar(member_type)) 12299 return false; 12300 continue; 12301 } 12302 if (!btf_type_is_scalar(member_type)) 12303 return false; 12304 } 12305 return true; 12306 } 12307 12308 enum kfunc_ptr_arg_type { 12309 KF_ARG_PTR_TO_CTX, 12310 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 12311 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 12312 KF_ARG_PTR_TO_DYNPTR, 12313 KF_ARG_PTR_TO_ITER, 12314 KF_ARG_PTR_TO_LIST_HEAD, 12315 KF_ARG_PTR_TO_LIST_NODE, 12316 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 12317 KF_ARG_PTR_TO_MEM, 12318 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 12319 KF_ARG_PTR_TO_CALLBACK, 12320 KF_ARG_PTR_TO_RB_ROOT, 12321 KF_ARG_PTR_TO_RB_NODE, 12322 KF_ARG_PTR_TO_NULL, 12323 KF_ARG_PTR_TO_CONST_STR, 12324 KF_ARG_PTR_TO_MAP, 12325 KF_ARG_PTR_TO_WORKQUEUE, 12326 KF_ARG_PTR_TO_IRQ_FLAG, 12327 KF_ARG_PTR_TO_RES_SPIN_LOCK, 12328 KF_ARG_PTR_TO_TASK_WORK, 12329 }; 12330 12331 enum special_kfunc_type { 12332 KF_bpf_obj_new_impl, 12333 KF_bpf_obj_drop_impl, 12334 KF_bpf_refcount_acquire_impl, 12335 KF_bpf_list_push_front_impl, 12336 KF_bpf_list_push_back_impl, 12337 KF_bpf_list_pop_front, 12338 KF_bpf_list_pop_back, 12339 KF_bpf_list_front, 12340 KF_bpf_list_back, 12341 KF_bpf_cast_to_kern_ctx, 12342 KF_bpf_rdonly_cast, 12343 KF_bpf_rcu_read_lock, 12344 KF_bpf_rcu_read_unlock, 12345 KF_bpf_rbtree_remove, 12346 KF_bpf_rbtree_add_impl, 12347 KF_bpf_rbtree_first, 12348 KF_bpf_rbtree_root, 12349 KF_bpf_rbtree_left, 12350 KF_bpf_rbtree_right, 12351 KF_bpf_dynptr_from_skb, 12352 KF_bpf_dynptr_from_xdp, 12353 KF_bpf_dynptr_from_skb_meta, 12354 KF_bpf_xdp_pull_data, 12355 KF_bpf_dynptr_slice, 12356 KF_bpf_dynptr_slice_rdwr, 12357 KF_bpf_dynptr_clone, 12358 KF_bpf_percpu_obj_new_impl, 12359 KF_bpf_percpu_obj_drop_impl, 12360 KF_bpf_throw, 12361 KF_bpf_wq_set_callback_impl, 12362 KF_bpf_preempt_disable, 12363 KF_bpf_preempt_enable, 12364 KF_bpf_iter_css_task_new, 12365 KF_bpf_session_cookie, 12366 KF_bpf_get_kmem_cache, 12367 KF_bpf_local_irq_save, 12368 KF_bpf_local_irq_restore, 12369 KF_bpf_iter_num_new, 12370 KF_bpf_iter_num_next, 12371 KF_bpf_iter_num_destroy, 12372 KF_bpf_set_dentry_xattr, 12373 KF_bpf_remove_dentry_xattr, 12374 KF_bpf_res_spin_lock, 12375 KF_bpf_res_spin_unlock, 12376 KF_bpf_res_spin_lock_irqsave, 12377 KF_bpf_res_spin_unlock_irqrestore, 12378 KF_bpf_dynptr_from_file, 12379 KF_bpf_dynptr_file_discard, 12380 KF___bpf_trap, 12381 KF_bpf_task_work_schedule_signal_impl, 12382 KF_bpf_task_work_schedule_resume_impl, 12383 }; 12384 12385 BTF_ID_LIST(special_kfunc_list) 12386 BTF_ID(func, bpf_obj_new_impl) 12387 BTF_ID(func, bpf_obj_drop_impl) 12388 BTF_ID(func, bpf_refcount_acquire_impl) 12389 BTF_ID(func, bpf_list_push_front_impl) 12390 BTF_ID(func, bpf_list_push_back_impl) 12391 BTF_ID(func, bpf_list_pop_front) 12392 BTF_ID(func, bpf_list_pop_back) 12393 BTF_ID(func, bpf_list_front) 12394 BTF_ID(func, bpf_list_back) 12395 BTF_ID(func, bpf_cast_to_kern_ctx) 12396 BTF_ID(func, bpf_rdonly_cast) 12397 BTF_ID(func, bpf_rcu_read_lock) 12398 BTF_ID(func, bpf_rcu_read_unlock) 12399 BTF_ID(func, bpf_rbtree_remove) 12400 BTF_ID(func, bpf_rbtree_add_impl) 12401 BTF_ID(func, bpf_rbtree_first) 12402 BTF_ID(func, bpf_rbtree_root) 12403 BTF_ID(func, bpf_rbtree_left) 12404 BTF_ID(func, bpf_rbtree_right) 12405 #ifdef CONFIG_NET 12406 BTF_ID(func, bpf_dynptr_from_skb) 12407 BTF_ID(func, bpf_dynptr_from_xdp) 12408 BTF_ID(func, bpf_dynptr_from_skb_meta) 12409 BTF_ID(func, bpf_xdp_pull_data) 12410 #else 12411 BTF_ID_UNUSED 12412 BTF_ID_UNUSED 12413 BTF_ID_UNUSED 12414 BTF_ID_UNUSED 12415 #endif 12416 BTF_ID(func, bpf_dynptr_slice) 12417 BTF_ID(func, bpf_dynptr_slice_rdwr) 12418 BTF_ID(func, bpf_dynptr_clone) 12419 BTF_ID(func, bpf_percpu_obj_new_impl) 12420 BTF_ID(func, bpf_percpu_obj_drop_impl) 12421 BTF_ID(func, bpf_throw) 12422 BTF_ID(func, bpf_wq_set_callback_impl) 12423 BTF_ID(func, bpf_preempt_disable) 12424 BTF_ID(func, bpf_preempt_enable) 12425 #ifdef CONFIG_CGROUPS 12426 BTF_ID(func, bpf_iter_css_task_new) 12427 #else 12428 BTF_ID_UNUSED 12429 #endif 12430 #ifdef CONFIG_BPF_EVENTS 12431 BTF_ID(func, bpf_session_cookie) 12432 #else 12433 BTF_ID_UNUSED 12434 #endif 12435 BTF_ID(func, bpf_get_kmem_cache) 12436 BTF_ID(func, bpf_local_irq_save) 12437 BTF_ID(func, bpf_local_irq_restore) 12438 BTF_ID(func, bpf_iter_num_new) 12439 BTF_ID(func, bpf_iter_num_next) 12440 BTF_ID(func, bpf_iter_num_destroy) 12441 #ifdef CONFIG_BPF_LSM 12442 BTF_ID(func, bpf_set_dentry_xattr) 12443 BTF_ID(func, bpf_remove_dentry_xattr) 12444 #else 12445 BTF_ID_UNUSED 12446 BTF_ID_UNUSED 12447 #endif 12448 BTF_ID(func, bpf_res_spin_lock) 12449 BTF_ID(func, bpf_res_spin_unlock) 12450 BTF_ID(func, bpf_res_spin_lock_irqsave) 12451 BTF_ID(func, bpf_res_spin_unlock_irqrestore) 12452 BTF_ID(func, bpf_dynptr_from_file) 12453 BTF_ID(func, bpf_dynptr_file_discard) 12454 BTF_ID(func, __bpf_trap) 12455 BTF_ID(func, bpf_task_work_schedule_signal_impl) 12456 BTF_ID(func, bpf_task_work_schedule_resume_impl) 12457 12458 static bool is_task_work_add_kfunc(u32 func_id) 12459 { 12460 return func_id == special_kfunc_list[KF_bpf_task_work_schedule_signal_impl] || 12461 func_id == special_kfunc_list[KF_bpf_task_work_schedule_resume_impl]; 12462 } 12463 12464 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 12465 { 12466 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 12467 meta->arg_owning_ref) { 12468 return false; 12469 } 12470 12471 return meta->kfunc_flags & KF_RET_NULL; 12472 } 12473 12474 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 12475 { 12476 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 12477 } 12478 12479 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 12480 { 12481 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 12482 } 12483 12484 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta) 12485 { 12486 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable]; 12487 } 12488 12489 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta) 12490 { 12491 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable]; 12492 } 12493 12494 static bool is_kfunc_pkt_changing(struct bpf_kfunc_call_arg_meta *meta) 12495 { 12496 return meta->func_id == special_kfunc_list[KF_bpf_xdp_pull_data]; 12497 } 12498 12499 static enum kfunc_ptr_arg_type 12500 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 12501 struct bpf_kfunc_call_arg_meta *meta, 12502 const struct btf_type *t, const struct btf_type *ref_t, 12503 const char *ref_tname, const struct btf_param *args, 12504 int argno, int nargs) 12505 { 12506 u32 regno = argno + 1; 12507 struct bpf_reg_state *regs = cur_regs(env); 12508 struct bpf_reg_state *reg = ®s[regno]; 12509 bool arg_mem_size = false; 12510 12511 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 12512 return KF_ARG_PTR_TO_CTX; 12513 12514 /* In this function, we verify the kfunc's BTF as per the argument type, 12515 * leaving the rest of the verification with respect to the register 12516 * type to our caller. When a set of conditions hold in the BTF type of 12517 * arguments, we resolve it to a known kfunc_ptr_arg_type. 12518 */ 12519 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 12520 return KF_ARG_PTR_TO_CTX; 12521 12522 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 12523 return KF_ARG_PTR_TO_NULL; 12524 12525 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 12526 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 12527 12528 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 12529 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 12530 12531 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 12532 return KF_ARG_PTR_TO_DYNPTR; 12533 12534 if (is_kfunc_arg_iter(meta, argno, &args[argno])) 12535 return KF_ARG_PTR_TO_ITER; 12536 12537 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 12538 return KF_ARG_PTR_TO_LIST_HEAD; 12539 12540 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 12541 return KF_ARG_PTR_TO_LIST_NODE; 12542 12543 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 12544 return KF_ARG_PTR_TO_RB_ROOT; 12545 12546 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 12547 return KF_ARG_PTR_TO_RB_NODE; 12548 12549 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 12550 return KF_ARG_PTR_TO_CONST_STR; 12551 12552 if (is_kfunc_arg_map(meta->btf, &args[argno])) 12553 return KF_ARG_PTR_TO_MAP; 12554 12555 if (is_kfunc_arg_wq(meta->btf, &args[argno])) 12556 return KF_ARG_PTR_TO_WORKQUEUE; 12557 12558 if (is_kfunc_arg_task_work(meta->btf, &args[argno])) 12559 return KF_ARG_PTR_TO_TASK_WORK; 12560 12561 if (is_kfunc_arg_irq_flag(meta->btf, &args[argno])) 12562 return KF_ARG_PTR_TO_IRQ_FLAG; 12563 12564 if (is_kfunc_arg_res_spin_lock(meta->btf, &args[argno])) 12565 return KF_ARG_PTR_TO_RES_SPIN_LOCK; 12566 12567 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 12568 if (!btf_type_is_struct(ref_t)) { 12569 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 12570 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 12571 return -EINVAL; 12572 } 12573 return KF_ARG_PTR_TO_BTF_ID; 12574 } 12575 12576 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 12577 return KF_ARG_PTR_TO_CALLBACK; 12578 12579 if (argno + 1 < nargs && 12580 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 12581 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 12582 arg_mem_size = true; 12583 12584 /* This is the catch all argument type of register types supported by 12585 * check_helper_mem_access. However, we only allow when argument type is 12586 * pointer to scalar, or struct composed (recursively) of scalars. When 12587 * arg_mem_size is true, the pointer can be void *. 12588 */ 12589 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 12590 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 12591 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 12592 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 12593 return -EINVAL; 12594 } 12595 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 12596 } 12597 12598 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 12599 struct bpf_reg_state *reg, 12600 const struct btf_type *ref_t, 12601 const char *ref_tname, u32 ref_id, 12602 struct bpf_kfunc_call_arg_meta *meta, 12603 int argno) 12604 { 12605 const struct btf_type *reg_ref_t; 12606 bool strict_type_match = false; 12607 const struct btf *reg_btf; 12608 const char *reg_ref_tname; 12609 bool taking_projection; 12610 bool struct_same; 12611 u32 reg_ref_id; 12612 12613 if (base_type(reg->type) == PTR_TO_BTF_ID) { 12614 reg_btf = reg->btf; 12615 reg_ref_id = reg->btf_id; 12616 } else { 12617 reg_btf = btf_vmlinux; 12618 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 12619 } 12620 12621 /* Enforce strict type matching for calls to kfuncs that are acquiring 12622 * or releasing a reference, or are no-cast aliases. We do _not_ 12623 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 12624 * as we want to enable BPF programs to pass types that are bitwise 12625 * equivalent without forcing them to explicitly cast with something 12626 * like bpf_cast_to_kern_ctx(). 12627 * 12628 * For example, say we had a type like the following: 12629 * 12630 * struct bpf_cpumask { 12631 * cpumask_t cpumask; 12632 * refcount_t usage; 12633 * }; 12634 * 12635 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 12636 * to a struct cpumask, so it would be safe to pass a struct 12637 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 12638 * 12639 * The philosophy here is similar to how we allow scalars of different 12640 * types to be passed to kfuncs as long as the size is the same. The 12641 * only difference here is that we're simply allowing 12642 * btf_struct_ids_match() to walk the struct at the 0th offset, and 12643 * resolve types. 12644 */ 12645 if ((is_kfunc_release(meta) && reg->ref_obj_id) || 12646 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 12647 strict_type_match = true; 12648 12649 WARN_ON_ONCE(is_kfunc_release(meta) && 12650 (reg->off || !tnum_is_const(reg->var_off) || 12651 reg->var_off.value)); 12652 12653 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 12654 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 12655 struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match); 12656 /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot 12657 * actually use it -- it must cast to the underlying type. So we allow 12658 * caller to pass in the underlying type. 12659 */ 12660 taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname); 12661 if (!taking_projection && !struct_same) { 12662 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 12663 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 12664 btf_type_str(reg_ref_t), reg_ref_tname); 12665 return -EINVAL; 12666 } 12667 return 0; 12668 } 12669 12670 static int process_irq_flag(struct bpf_verifier_env *env, int regno, 12671 struct bpf_kfunc_call_arg_meta *meta) 12672 { 12673 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 12674 int err, kfunc_class = IRQ_NATIVE_KFUNC; 12675 bool irq_save; 12676 12677 if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save] || 12678 meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) { 12679 irq_save = true; 12680 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) 12681 kfunc_class = IRQ_LOCK_KFUNC; 12682 } else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore] || 12683 meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) { 12684 irq_save = false; 12685 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) 12686 kfunc_class = IRQ_LOCK_KFUNC; 12687 } else { 12688 verifier_bug(env, "unknown irq flags kfunc"); 12689 return -EFAULT; 12690 } 12691 12692 if (irq_save) { 12693 if (!is_irq_flag_reg_valid_uninit(env, reg)) { 12694 verbose(env, "expected uninitialized irq flag as arg#%d\n", regno - 1); 12695 return -EINVAL; 12696 } 12697 12698 err = check_mem_access(env, env->insn_idx, regno, 0, BPF_DW, BPF_WRITE, -1, false, false); 12699 if (err) 12700 return err; 12701 12702 err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx, kfunc_class); 12703 if (err) 12704 return err; 12705 } else { 12706 err = is_irq_flag_reg_valid_init(env, reg); 12707 if (err) { 12708 verbose(env, "expected an initialized irq flag as arg#%d\n", regno - 1); 12709 return err; 12710 } 12711 12712 err = mark_irq_flag_read(env, reg); 12713 if (err) 12714 return err; 12715 12716 err = unmark_stack_slot_irq_flag(env, reg, kfunc_class); 12717 if (err) 12718 return err; 12719 } 12720 return 0; 12721 } 12722 12723 12724 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 12725 { 12726 struct btf_record *rec = reg_btf_record(reg); 12727 12728 if (!env->cur_state->active_locks) { 12729 verifier_bug(env, "%s w/o active lock", __func__); 12730 return -EFAULT; 12731 } 12732 12733 if (type_flag(reg->type) & NON_OWN_REF) { 12734 verifier_bug(env, "NON_OWN_REF already set"); 12735 return -EFAULT; 12736 } 12737 12738 reg->type |= NON_OWN_REF; 12739 if (rec->refcount_off >= 0) 12740 reg->type |= MEM_RCU; 12741 12742 return 0; 12743 } 12744 12745 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 12746 { 12747 struct bpf_verifier_state *state = env->cur_state; 12748 struct bpf_func_state *unused; 12749 struct bpf_reg_state *reg; 12750 int i; 12751 12752 if (!ref_obj_id) { 12753 verifier_bug(env, "ref_obj_id is zero for owning -> non-owning conversion"); 12754 return -EFAULT; 12755 } 12756 12757 for (i = 0; i < state->acquired_refs; i++) { 12758 if (state->refs[i].id != ref_obj_id) 12759 continue; 12760 12761 /* Clear ref_obj_id here so release_reference doesn't clobber 12762 * the whole reg 12763 */ 12764 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 12765 if (reg->ref_obj_id == ref_obj_id) { 12766 reg->ref_obj_id = 0; 12767 ref_set_non_owning(env, reg); 12768 } 12769 })); 12770 return 0; 12771 } 12772 12773 verifier_bug(env, "ref state missing for ref_obj_id"); 12774 return -EFAULT; 12775 } 12776 12777 /* Implementation details: 12778 * 12779 * Each register points to some region of memory, which we define as an 12780 * allocation. Each allocation may embed a bpf_spin_lock which protects any 12781 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 12782 * allocation. The lock and the data it protects are colocated in the same 12783 * memory region. 12784 * 12785 * Hence, everytime a register holds a pointer value pointing to such 12786 * allocation, the verifier preserves a unique reg->id for it. 12787 * 12788 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 12789 * bpf_spin_lock is called. 12790 * 12791 * To enable this, lock state in the verifier captures two values: 12792 * active_lock.ptr = Register's type specific pointer 12793 * active_lock.id = A unique ID for each register pointer value 12794 * 12795 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 12796 * supported register types. 12797 * 12798 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 12799 * allocated objects is the reg->btf pointer. 12800 * 12801 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 12802 * can establish the provenance of the map value statically for each distinct 12803 * lookup into such maps. They always contain a single map value hence unique 12804 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 12805 * 12806 * So, in case of global variables, they use array maps with max_entries = 1, 12807 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 12808 * into the same map value as max_entries is 1, as described above). 12809 * 12810 * In case of inner map lookups, the inner map pointer has same map_ptr as the 12811 * outer map pointer (in verifier context), but each lookup into an inner map 12812 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 12813 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 12814 * will get different reg->id assigned to each lookup, hence different 12815 * active_lock.id. 12816 * 12817 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 12818 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 12819 * returned from bpf_obj_new. Each allocation receives a new reg->id. 12820 */ 12821 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 12822 { 12823 struct bpf_reference_state *s; 12824 void *ptr; 12825 u32 id; 12826 12827 switch ((int)reg->type) { 12828 case PTR_TO_MAP_VALUE: 12829 ptr = reg->map_ptr; 12830 break; 12831 case PTR_TO_BTF_ID | MEM_ALLOC: 12832 ptr = reg->btf; 12833 break; 12834 default: 12835 verifier_bug(env, "unknown reg type for lock check"); 12836 return -EFAULT; 12837 } 12838 id = reg->id; 12839 12840 if (!env->cur_state->active_locks) 12841 return -EINVAL; 12842 s = find_lock_state(env->cur_state, REF_TYPE_LOCK_MASK, id, ptr); 12843 if (!s) { 12844 verbose(env, "held lock and object are not in the same allocation\n"); 12845 return -EINVAL; 12846 } 12847 return 0; 12848 } 12849 12850 static bool is_bpf_list_api_kfunc(u32 btf_id) 12851 { 12852 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12853 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12854 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 12855 btf_id == special_kfunc_list[KF_bpf_list_pop_back] || 12856 btf_id == special_kfunc_list[KF_bpf_list_front] || 12857 btf_id == special_kfunc_list[KF_bpf_list_back]; 12858 } 12859 12860 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 12861 { 12862 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 12863 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12864 btf_id == special_kfunc_list[KF_bpf_rbtree_first] || 12865 btf_id == special_kfunc_list[KF_bpf_rbtree_root] || 12866 btf_id == special_kfunc_list[KF_bpf_rbtree_left] || 12867 btf_id == special_kfunc_list[KF_bpf_rbtree_right]; 12868 } 12869 12870 static bool is_bpf_iter_num_api_kfunc(u32 btf_id) 12871 { 12872 return btf_id == special_kfunc_list[KF_bpf_iter_num_new] || 12873 btf_id == special_kfunc_list[KF_bpf_iter_num_next] || 12874 btf_id == special_kfunc_list[KF_bpf_iter_num_destroy]; 12875 } 12876 12877 static bool is_bpf_graph_api_kfunc(u32 btf_id) 12878 { 12879 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 12880 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 12881 } 12882 12883 static bool is_bpf_res_spin_lock_kfunc(u32 btf_id) 12884 { 12885 return btf_id == special_kfunc_list[KF_bpf_res_spin_lock] || 12886 btf_id == special_kfunc_list[KF_bpf_res_spin_unlock] || 12887 btf_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] || 12888 btf_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]; 12889 } 12890 12891 static bool kfunc_spin_allowed(u32 btf_id) 12892 { 12893 return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id) || 12894 is_bpf_res_spin_lock_kfunc(btf_id); 12895 } 12896 12897 static bool is_sync_callback_calling_kfunc(u32 btf_id) 12898 { 12899 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 12900 } 12901 12902 static bool is_async_callback_calling_kfunc(u32 btf_id) 12903 { 12904 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl] || 12905 is_task_work_add_kfunc(btf_id); 12906 } 12907 12908 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 12909 { 12910 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 12911 insn->imm == special_kfunc_list[KF_bpf_throw]; 12912 } 12913 12914 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id) 12915 { 12916 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 12917 } 12918 12919 static bool is_callback_calling_kfunc(u32 btf_id) 12920 { 12921 return is_sync_callback_calling_kfunc(btf_id) || 12922 is_async_callback_calling_kfunc(btf_id); 12923 } 12924 12925 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 12926 { 12927 return is_bpf_rbtree_api_kfunc(btf_id); 12928 } 12929 12930 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 12931 enum btf_field_type head_field_type, 12932 u32 kfunc_btf_id) 12933 { 12934 bool ret; 12935 12936 switch (head_field_type) { 12937 case BPF_LIST_HEAD: 12938 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 12939 break; 12940 case BPF_RB_ROOT: 12941 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 12942 break; 12943 default: 12944 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 12945 btf_field_type_name(head_field_type)); 12946 return false; 12947 } 12948 12949 if (!ret) 12950 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 12951 btf_field_type_name(head_field_type)); 12952 return ret; 12953 } 12954 12955 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 12956 enum btf_field_type node_field_type, 12957 u32 kfunc_btf_id) 12958 { 12959 bool ret; 12960 12961 switch (node_field_type) { 12962 case BPF_LIST_NODE: 12963 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12964 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 12965 break; 12966 case BPF_RB_NODE: 12967 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12968 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 12969 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_left] || 12970 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_right]); 12971 break; 12972 default: 12973 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 12974 btf_field_type_name(node_field_type)); 12975 return false; 12976 } 12977 12978 if (!ret) 12979 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 12980 btf_field_type_name(node_field_type)); 12981 return ret; 12982 } 12983 12984 static int 12985 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 12986 struct bpf_reg_state *reg, u32 regno, 12987 struct bpf_kfunc_call_arg_meta *meta, 12988 enum btf_field_type head_field_type, 12989 struct btf_field **head_field) 12990 { 12991 const char *head_type_name; 12992 struct btf_field *field; 12993 struct btf_record *rec; 12994 u32 head_off; 12995 12996 if (meta->btf != btf_vmlinux) { 12997 verifier_bug(env, "unexpected btf mismatch in kfunc call"); 12998 return -EFAULT; 12999 } 13000 13001 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 13002 return -EFAULT; 13003 13004 head_type_name = btf_field_type_name(head_field_type); 13005 if (!tnum_is_const(reg->var_off)) { 13006 verbose(env, 13007 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 13008 regno, head_type_name); 13009 return -EINVAL; 13010 } 13011 13012 rec = reg_btf_record(reg); 13013 head_off = reg->off + reg->var_off.value; 13014 field = btf_record_find(rec, head_off, head_field_type); 13015 if (!field) { 13016 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 13017 return -EINVAL; 13018 } 13019 13020 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 13021 if (check_reg_allocation_locked(env, reg)) { 13022 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 13023 rec->spin_lock_off, head_type_name); 13024 return -EINVAL; 13025 } 13026 13027 if (*head_field) { 13028 verifier_bug(env, "repeating %s arg", head_type_name); 13029 return -EFAULT; 13030 } 13031 *head_field = field; 13032 return 0; 13033 } 13034 13035 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 13036 struct bpf_reg_state *reg, u32 regno, 13037 struct bpf_kfunc_call_arg_meta *meta) 13038 { 13039 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 13040 &meta->arg_list_head.field); 13041 } 13042 13043 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 13044 struct bpf_reg_state *reg, u32 regno, 13045 struct bpf_kfunc_call_arg_meta *meta) 13046 { 13047 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 13048 &meta->arg_rbtree_root.field); 13049 } 13050 13051 static int 13052 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 13053 struct bpf_reg_state *reg, u32 regno, 13054 struct bpf_kfunc_call_arg_meta *meta, 13055 enum btf_field_type head_field_type, 13056 enum btf_field_type node_field_type, 13057 struct btf_field **node_field) 13058 { 13059 const char *node_type_name; 13060 const struct btf_type *et, *t; 13061 struct btf_field *field; 13062 u32 node_off; 13063 13064 if (meta->btf != btf_vmlinux) { 13065 verifier_bug(env, "unexpected btf mismatch in kfunc call"); 13066 return -EFAULT; 13067 } 13068 13069 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 13070 return -EFAULT; 13071 13072 node_type_name = btf_field_type_name(node_field_type); 13073 if (!tnum_is_const(reg->var_off)) { 13074 verbose(env, 13075 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 13076 regno, node_type_name); 13077 return -EINVAL; 13078 } 13079 13080 node_off = reg->off + reg->var_off.value; 13081 field = reg_find_field_offset(reg, node_off, node_field_type); 13082 if (!field) { 13083 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 13084 return -EINVAL; 13085 } 13086 13087 field = *node_field; 13088 13089 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 13090 t = btf_type_by_id(reg->btf, reg->btf_id); 13091 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 13092 field->graph_root.value_btf_id, true)) { 13093 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 13094 "in struct %s, but arg is at offset=%d in struct %s\n", 13095 btf_field_type_name(head_field_type), 13096 btf_field_type_name(node_field_type), 13097 field->graph_root.node_offset, 13098 btf_name_by_offset(field->graph_root.btf, et->name_off), 13099 node_off, btf_name_by_offset(reg->btf, t->name_off)); 13100 return -EINVAL; 13101 } 13102 meta->arg_btf = reg->btf; 13103 meta->arg_btf_id = reg->btf_id; 13104 13105 if (node_off != field->graph_root.node_offset) { 13106 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 13107 node_off, btf_field_type_name(node_field_type), 13108 field->graph_root.node_offset, 13109 btf_name_by_offset(field->graph_root.btf, et->name_off)); 13110 return -EINVAL; 13111 } 13112 13113 return 0; 13114 } 13115 13116 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 13117 struct bpf_reg_state *reg, u32 regno, 13118 struct bpf_kfunc_call_arg_meta *meta) 13119 { 13120 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 13121 BPF_LIST_HEAD, BPF_LIST_NODE, 13122 &meta->arg_list_head.field); 13123 } 13124 13125 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 13126 struct bpf_reg_state *reg, u32 regno, 13127 struct bpf_kfunc_call_arg_meta *meta) 13128 { 13129 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 13130 BPF_RB_ROOT, BPF_RB_NODE, 13131 &meta->arg_rbtree_root.field); 13132 } 13133 13134 /* 13135 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 13136 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 13137 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 13138 * them can only be attached to some specific hook points. 13139 */ 13140 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 13141 { 13142 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 13143 13144 switch (prog_type) { 13145 case BPF_PROG_TYPE_LSM: 13146 return true; 13147 case BPF_PROG_TYPE_TRACING: 13148 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 13149 return true; 13150 fallthrough; 13151 default: 13152 return in_sleepable(env); 13153 } 13154 } 13155 13156 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 13157 int insn_idx) 13158 { 13159 const char *func_name = meta->func_name, *ref_tname; 13160 const struct btf *btf = meta->btf; 13161 const struct btf_param *args; 13162 struct btf_record *rec; 13163 u32 i, nargs; 13164 int ret; 13165 13166 args = (const struct btf_param *)(meta->func_proto + 1); 13167 nargs = btf_type_vlen(meta->func_proto); 13168 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 13169 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 13170 MAX_BPF_FUNC_REG_ARGS); 13171 return -EINVAL; 13172 } 13173 13174 /* Check that BTF function arguments match actual types that the 13175 * verifier sees. 13176 */ 13177 for (i = 0; i < nargs; i++) { 13178 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 13179 const struct btf_type *t, *ref_t, *resolve_ret; 13180 enum bpf_arg_type arg_type = ARG_DONTCARE; 13181 u32 regno = i + 1, ref_id, type_size; 13182 bool is_ret_buf_sz = false; 13183 int kf_arg_type; 13184 13185 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 13186 13187 if (is_kfunc_arg_ignore(btf, &args[i])) 13188 continue; 13189 13190 if (is_kfunc_arg_prog(btf, &args[i])) { 13191 /* Used to reject repeated use of __prog. */ 13192 if (meta->arg_prog) { 13193 verifier_bug(env, "Only 1 prog->aux argument supported per-kfunc"); 13194 return -EFAULT; 13195 } 13196 meta->arg_prog = true; 13197 cur_aux(env)->arg_prog = regno; 13198 continue; 13199 } 13200 13201 if (btf_type_is_scalar(t)) { 13202 if (reg->type != SCALAR_VALUE) { 13203 verbose(env, "R%d is not a scalar\n", regno); 13204 return -EINVAL; 13205 } 13206 13207 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 13208 if (meta->arg_constant.found) { 13209 verifier_bug(env, "only one constant argument permitted"); 13210 return -EFAULT; 13211 } 13212 if (!tnum_is_const(reg->var_off)) { 13213 verbose(env, "R%d must be a known constant\n", regno); 13214 return -EINVAL; 13215 } 13216 ret = mark_chain_precision(env, regno); 13217 if (ret < 0) 13218 return ret; 13219 meta->arg_constant.found = true; 13220 meta->arg_constant.value = reg->var_off.value; 13221 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 13222 meta->r0_rdonly = true; 13223 is_ret_buf_sz = true; 13224 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 13225 is_ret_buf_sz = true; 13226 } 13227 13228 if (is_ret_buf_sz) { 13229 if (meta->r0_size) { 13230 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 13231 return -EINVAL; 13232 } 13233 13234 if (!tnum_is_const(reg->var_off)) { 13235 verbose(env, "R%d is not a const\n", regno); 13236 return -EINVAL; 13237 } 13238 13239 meta->r0_size = reg->var_off.value; 13240 ret = mark_chain_precision(env, regno); 13241 if (ret) 13242 return ret; 13243 } 13244 continue; 13245 } 13246 13247 if (!btf_type_is_ptr(t)) { 13248 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 13249 return -EINVAL; 13250 } 13251 13252 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 13253 (register_is_null(reg) || type_may_be_null(reg->type)) && 13254 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 13255 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 13256 return -EACCES; 13257 } 13258 13259 if (reg->ref_obj_id) { 13260 if (is_kfunc_release(meta) && meta->ref_obj_id) { 13261 verifier_bug(env, "more than one arg with ref_obj_id R%d %u %u", 13262 regno, reg->ref_obj_id, 13263 meta->ref_obj_id); 13264 return -EFAULT; 13265 } 13266 meta->ref_obj_id = reg->ref_obj_id; 13267 if (is_kfunc_release(meta)) 13268 meta->release_regno = regno; 13269 } 13270 13271 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 13272 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 13273 13274 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 13275 if (kf_arg_type < 0) 13276 return kf_arg_type; 13277 13278 switch (kf_arg_type) { 13279 case KF_ARG_PTR_TO_NULL: 13280 continue; 13281 case KF_ARG_PTR_TO_MAP: 13282 if (!reg->map_ptr) { 13283 verbose(env, "pointer in R%d isn't map pointer\n", regno); 13284 return -EINVAL; 13285 } 13286 if (meta->map.ptr && (reg->map_ptr->record->wq_off >= 0 || 13287 reg->map_ptr->record->task_work_off >= 0)) { 13288 /* Use map_uid (which is unique id of inner map) to reject: 13289 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 13290 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 13291 * if (inner_map1 && inner_map2) { 13292 * wq = bpf_map_lookup_elem(inner_map1); 13293 * if (wq) 13294 * // mismatch would have been allowed 13295 * bpf_wq_init(wq, inner_map2); 13296 * } 13297 * 13298 * Comparing map_ptr is enough to distinguish normal and outer maps. 13299 */ 13300 if (meta->map.ptr != reg->map_ptr || 13301 meta->map.uid != reg->map_uid) { 13302 if (reg->map_ptr->record->task_work_off >= 0) { 13303 verbose(env, 13304 "bpf_task_work pointer in R2 map_uid=%d doesn't match map pointer in R3 map_uid=%d\n", 13305 meta->map.uid, reg->map_uid); 13306 return -EINVAL; 13307 } 13308 verbose(env, 13309 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 13310 meta->map.uid, reg->map_uid); 13311 return -EINVAL; 13312 } 13313 } 13314 meta->map.ptr = reg->map_ptr; 13315 meta->map.uid = reg->map_uid; 13316 fallthrough; 13317 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 13318 case KF_ARG_PTR_TO_BTF_ID: 13319 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 13320 break; 13321 13322 if (!is_trusted_reg(reg)) { 13323 if (!is_kfunc_rcu(meta)) { 13324 verbose(env, "R%d must be referenced or trusted\n", regno); 13325 return -EINVAL; 13326 } 13327 if (!is_rcu_reg(reg)) { 13328 verbose(env, "R%d must be a rcu pointer\n", regno); 13329 return -EINVAL; 13330 } 13331 } 13332 fallthrough; 13333 case KF_ARG_PTR_TO_CTX: 13334 case KF_ARG_PTR_TO_DYNPTR: 13335 case KF_ARG_PTR_TO_ITER: 13336 case KF_ARG_PTR_TO_LIST_HEAD: 13337 case KF_ARG_PTR_TO_LIST_NODE: 13338 case KF_ARG_PTR_TO_RB_ROOT: 13339 case KF_ARG_PTR_TO_RB_NODE: 13340 case KF_ARG_PTR_TO_MEM: 13341 case KF_ARG_PTR_TO_MEM_SIZE: 13342 case KF_ARG_PTR_TO_CALLBACK: 13343 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 13344 case KF_ARG_PTR_TO_CONST_STR: 13345 case KF_ARG_PTR_TO_WORKQUEUE: 13346 case KF_ARG_PTR_TO_TASK_WORK: 13347 case KF_ARG_PTR_TO_IRQ_FLAG: 13348 case KF_ARG_PTR_TO_RES_SPIN_LOCK: 13349 break; 13350 default: 13351 verifier_bug(env, "unknown kfunc arg type %d", kf_arg_type); 13352 return -EFAULT; 13353 } 13354 13355 if (is_kfunc_release(meta) && reg->ref_obj_id) 13356 arg_type |= OBJ_RELEASE; 13357 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 13358 if (ret < 0) 13359 return ret; 13360 13361 switch (kf_arg_type) { 13362 case KF_ARG_PTR_TO_CTX: 13363 if (reg->type != PTR_TO_CTX) { 13364 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", 13365 i, reg_type_str(env, reg->type)); 13366 return -EINVAL; 13367 } 13368 13369 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 13370 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 13371 if (ret < 0) 13372 return -EINVAL; 13373 meta->ret_btf_id = ret; 13374 } 13375 break; 13376 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 13377 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 13378 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 13379 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 13380 return -EINVAL; 13381 } 13382 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 13383 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 13384 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 13385 return -EINVAL; 13386 } 13387 } else { 13388 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13389 return -EINVAL; 13390 } 13391 if (!reg->ref_obj_id) { 13392 verbose(env, "allocated object must be referenced\n"); 13393 return -EINVAL; 13394 } 13395 if (meta->btf == btf_vmlinux) { 13396 meta->arg_btf = reg->btf; 13397 meta->arg_btf_id = reg->btf_id; 13398 } 13399 break; 13400 case KF_ARG_PTR_TO_DYNPTR: 13401 { 13402 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 13403 int clone_ref_obj_id = 0; 13404 13405 if (reg->type == CONST_PTR_TO_DYNPTR) 13406 dynptr_arg_type |= MEM_RDONLY; 13407 13408 if (is_kfunc_arg_uninit(btf, &args[i])) 13409 dynptr_arg_type |= MEM_UNINIT; 13410 13411 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 13412 dynptr_arg_type |= DYNPTR_TYPE_SKB; 13413 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 13414 dynptr_arg_type |= DYNPTR_TYPE_XDP; 13415 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb_meta]) { 13416 dynptr_arg_type |= DYNPTR_TYPE_SKB_META; 13417 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_file]) { 13418 dynptr_arg_type |= DYNPTR_TYPE_FILE; 13419 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_file_discard]) { 13420 dynptr_arg_type |= DYNPTR_TYPE_FILE; 13421 meta->release_regno = regno; 13422 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 13423 (dynptr_arg_type & MEM_UNINIT)) { 13424 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 13425 13426 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 13427 verifier_bug(env, "no dynptr type for parent of clone"); 13428 return -EFAULT; 13429 } 13430 13431 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 13432 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 13433 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 13434 verifier_bug(env, "missing ref obj id for parent of clone"); 13435 return -EFAULT; 13436 } 13437 } 13438 13439 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 13440 if (ret < 0) 13441 return ret; 13442 13443 if (!(dynptr_arg_type & MEM_UNINIT)) { 13444 int id = dynptr_id(env, reg); 13445 13446 if (id < 0) { 13447 verifier_bug(env, "failed to obtain dynptr id"); 13448 return id; 13449 } 13450 meta->initialized_dynptr.id = id; 13451 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 13452 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 13453 } 13454 13455 break; 13456 } 13457 case KF_ARG_PTR_TO_ITER: 13458 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 13459 if (!check_css_task_iter_allowlist(env)) { 13460 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 13461 return -EINVAL; 13462 } 13463 } 13464 ret = process_iter_arg(env, regno, insn_idx, meta); 13465 if (ret < 0) 13466 return ret; 13467 break; 13468 case KF_ARG_PTR_TO_LIST_HEAD: 13469 if (reg->type != PTR_TO_MAP_VALUE && 13470 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13471 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 13472 return -EINVAL; 13473 } 13474 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 13475 verbose(env, "allocated object must be referenced\n"); 13476 return -EINVAL; 13477 } 13478 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 13479 if (ret < 0) 13480 return ret; 13481 break; 13482 case KF_ARG_PTR_TO_RB_ROOT: 13483 if (reg->type != PTR_TO_MAP_VALUE && 13484 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13485 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 13486 return -EINVAL; 13487 } 13488 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 13489 verbose(env, "allocated object must be referenced\n"); 13490 return -EINVAL; 13491 } 13492 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 13493 if (ret < 0) 13494 return ret; 13495 break; 13496 case KF_ARG_PTR_TO_LIST_NODE: 13497 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13498 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13499 return -EINVAL; 13500 } 13501 if (!reg->ref_obj_id) { 13502 verbose(env, "allocated object must be referenced\n"); 13503 return -EINVAL; 13504 } 13505 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 13506 if (ret < 0) 13507 return ret; 13508 break; 13509 case KF_ARG_PTR_TO_RB_NODE: 13510 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13511 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13512 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13513 return -EINVAL; 13514 } 13515 if (!reg->ref_obj_id) { 13516 verbose(env, "allocated object must be referenced\n"); 13517 return -EINVAL; 13518 } 13519 } else { 13520 if (!type_is_non_owning_ref(reg->type) && !reg->ref_obj_id) { 13521 verbose(env, "%s can only take non-owning or refcounted bpf_rb_node pointer\n", func_name); 13522 return -EINVAL; 13523 } 13524 if (in_rbtree_lock_required_cb(env)) { 13525 verbose(env, "%s not allowed in rbtree cb\n", func_name); 13526 return -EINVAL; 13527 } 13528 } 13529 13530 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 13531 if (ret < 0) 13532 return ret; 13533 break; 13534 case KF_ARG_PTR_TO_MAP: 13535 /* If argument has '__map' suffix expect 'struct bpf_map *' */ 13536 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; 13537 ref_t = btf_type_by_id(btf_vmlinux, ref_id); 13538 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 13539 fallthrough; 13540 case KF_ARG_PTR_TO_BTF_ID: 13541 /* Only base_type is checked, further checks are done here */ 13542 if ((base_type(reg->type) != PTR_TO_BTF_ID || 13543 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 13544 !reg2btf_ids[base_type(reg->type)]) { 13545 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 13546 verbose(env, "expected %s or socket\n", 13547 reg_type_str(env, base_type(reg->type) | 13548 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 13549 return -EINVAL; 13550 } 13551 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 13552 if (ret < 0) 13553 return ret; 13554 break; 13555 case KF_ARG_PTR_TO_MEM: 13556 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 13557 if (IS_ERR(resolve_ret)) { 13558 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 13559 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 13560 return -EINVAL; 13561 } 13562 ret = check_mem_reg(env, reg, regno, type_size); 13563 if (ret < 0) 13564 return ret; 13565 break; 13566 case KF_ARG_PTR_TO_MEM_SIZE: 13567 { 13568 struct bpf_reg_state *buff_reg = ®s[regno]; 13569 const struct btf_param *buff_arg = &args[i]; 13570 struct bpf_reg_state *size_reg = ®s[regno + 1]; 13571 const struct btf_param *size_arg = &args[i + 1]; 13572 13573 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 13574 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 13575 if (ret < 0) { 13576 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 13577 return ret; 13578 } 13579 } 13580 13581 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 13582 if (meta->arg_constant.found) { 13583 verifier_bug(env, "only one constant argument permitted"); 13584 return -EFAULT; 13585 } 13586 if (!tnum_is_const(size_reg->var_off)) { 13587 verbose(env, "R%d must be a known constant\n", regno + 1); 13588 return -EINVAL; 13589 } 13590 meta->arg_constant.found = true; 13591 meta->arg_constant.value = size_reg->var_off.value; 13592 } 13593 13594 /* Skip next '__sz' or '__szk' argument */ 13595 i++; 13596 break; 13597 } 13598 case KF_ARG_PTR_TO_CALLBACK: 13599 if (reg->type != PTR_TO_FUNC) { 13600 verbose(env, "arg%d expected pointer to func\n", i); 13601 return -EINVAL; 13602 } 13603 meta->subprogno = reg->subprogno; 13604 break; 13605 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 13606 if (!type_is_ptr_alloc_obj(reg->type)) { 13607 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 13608 return -EINVAL; 13609 } 13610 if (!type_is_non_owning_ref(reg->type)) 13611 meta->arg_owning_ref = true; 13612 13613 rec = reg_btf_record(reg); 13614 if (!rec) { 13615 verifier_bug(env, "Couldn't find btf_record"); 13616 return -EFAULT; 13617 } 13618 13619 if (rec->refcount_off < 0) { 13620 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 13621 return -EINVAL; 13622 } 13623 13624 meta->arg_btf = reg->btf; 13625 meta->arg_btf_id = reg->btf_id; 13626 break; 13627 case KF_ARG_PTR_TO_CONST_STR: 13628 if (reg->type != PTR_TO_MAP_VALUE) { 13629 verbose(env, "arg#%d doesn't point to a const string\n", i); 13630 return -EINVAL; 13631 } 13632 ret = check_reg_const_str(env, reg, regno); 13633 if (ret) 13634 return ret; 13635 break; 13636 case KF_ARG_PTR_TO_WORKQUEUE: 13637 if (reg->type != PTR_TO_MAP_VALUE) { 13638 verbose(env, "arg#%d doesn't point to a map value\n", i); 13639 return -EINVAL; 13640 } 13641 ret = process_wq_func(env, regno, meta); 13642 if (ret < 0) 13643 return ret; 13644 break; 13645 case KF_ARG_PTR_TO_TASK_WORK: 13646 if (reg->type != PTR_TO_MAP_VALUE) { 13647 verbose(env, "arg#%d doesn't point to a map value\n", i); 13648 return -EINVAL; 13649 } 13650 ret = process_task_work_func(env, regno, meta); 13651 if (ret < 0) 13652 return ret; 13653 break; 13654 case KF_ARG_PTR_TO_IRQ_FLAG: 13655 if (reg->type != PTR_TO_STACK) { 13656 verbose(env, "arg#%d doesn't point to an irq flag on stack\n", i); 13657 return -EINVAL; 13658 } 13659 ret = process_irq_flag(env, regno, meta); 13660 if (ret < 0) 13661 return ret; 13662 break; 13663 case KF_ARG_PTR_TO_RES_SPIN_LOCK: 13664 { 13665 int flags = PROCESS_RES_LOCK; 13666 13667 if (reg->type != PTR_TO_MAP_VALUE && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13668 verbose(env, "arg#%d doesn't point to map value or allocated object\n", i); 13669 return -EINVAL; 13670 } 13671 13672 if (!is_bpf_res_spin_lock_kfunc(meta->func_id)) 13673 return -EFAULT; 13674 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock] || 13675 meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) 13676 flags |= PROCESS_SPIN_LOCK; 13677 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] || 13678 meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) 13679 flags |= PROCESS_LOCK_IRQ; 13680 ret = process_spin_lock(env, regno, flags); 13681 if (ret < 0) 13682 return ret; 13683 break; 13684 } 13685 } 13686 } 13687 13688 if (is_kfunc_release(meta) && !meta->release_regno) { 13689 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 13690 func_name); 13691 return -EINVAL; 13692 } 13693 13694 return 0; 13695 } 13696 13697 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 13698 struct bpf_insn *insn, 13699 struct bpf_kfunc_call_arg_meta *meta, 13700 const char **kfunc_name) 13701 { 13702 const struct btf_type *func, *func_proto; 13703 u32 func_id, *kfunc_flags; 13704 const char *func_name; 13705 struct btf *desc_btf; 13706 13707 if (kfunc_name) 13708 *kfunc_name = NULL; 13709 13710 if (!insn->imm) 13711 return -EINVAL; 13712 13713 desc_btf = find_kfunc_desc_btf(env, insn->off); 13714 if (IS_ERR(desc_btf)) 13715 return PTR_ERR(desc_btf); 13716 13717 func_id = insn->imm; 13718 func = btf_type_by_id(desc_btf, func_id); 13719 func_name = btf_name_by_offset(desc_btf, func->name_off); 13720 if (kfunc_name) 13721 *kfunc_name = func_name; 13722 func_proto = btf_type_by_id(desc_btf, func->type); 13723 13724 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 13725 if (!kfunc_flags) { 13726 return -EACCES; 13727 } 13728 13729 memset(meta, 0, sizeof(*meta)); 13730 meta->btf = desc_btf; 13731 meta->func_id = func_id; 13732 meta->kfunc_flags = *kfunc_flags; 13733 meta->func_proto = func_proto; 13734 meta->func_name = func_name; 13735 13736 return 0; 13737 } 13738 13739 /* check special kfuncs and return: 13740 * 1 - not fall-through to 'else' branch, continue verification 13741 * 0 - fall-through to 'else' branch 13742 * < 0 - not fall-through to 'else' branch, return error 13743 */ 13744 static int check_special_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 13745 struct bpf_reg_state *regs, struct bpf_insn_aux_data *insn_aux, 13746 const struct btf_type *ptr_type, struct btf *desc_btf) 13747 { 13748 const struct btf_type *ret_t; 13749 int err = 0; 13750 13751 if (meta->btf != btf_vmlinux) 13752 return 0; 13753 13754 if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 13755 meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13756 struct btf_struct_meta *struct_meta; 13757 struct btf *ret_btf; 13758 u32 ret_btf_id; 13759 13760 if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 13761 return -ENOMEM; 13762 13763 if (((u64)(u32)meta->arg_constant.value) != meta->arg_constant.value) { 13764 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 13765 return -EINVAL; 13766 } 13767 13768 ret_btf = env->prog->aux->btf; 13769 ret_btf_id = meta->arg_constant.value; 13770 13771 /* This may be NULL due to user not supplying a BTF */ 13772 if (!ret_btf) { 13773 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 13774 return -EINVAL; 13775 } 13776 13777 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 13778 if (!ret_t || !__btf_type_is_struct(ret_t)) { 13779 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 13780 return -EINVAL; 13781 } 13782 13783 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13784 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { 13785 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", 13786 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); 13787 return -EINVAL; 13788 } 13789 13790 if (!bpf_global_percpu_ma_set) { 13791 mutex_lock(&bpf_percpu_ma_lock); 13792 if (!bpf_global_percpu_ma_set) { 13793 /* Charge memory allocated with bpf_global_percpu_ma to 13794 * root memcg. The obj_cgroup for root memcg is NULL. 13795 */ 13796 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); 13797 if (!err) 13798 bpf_global_percpu_ma_set = true; 13799 } 13800 mutex_unlock(&bpf_percpu_ma_lock); 13801 if (err) 13802 return err; 13803 } 13804 13805 mutex_lock(&bpf_percpu_ma_lock); 13806 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); 13807 mutex_unlock(&bpf_percpu_ma_lock); 13808 if (err) 13809 return err; 13810 } 13811 13812 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 13813 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13814 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 13815 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 13816 return -EINVAL; 13817 } 13818 13819 if (struct_meta) { 13820 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 13821 return -EINVAL; 13822 } 13823 } 13824 13825 mark_reg_known_zero(env, regs, BPF_REG_0); 13826 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 13827 regs[BPF_REG_0].btf = ret_btf; 13828 regs[BPF_REG_0].btf_id = ret_btf_id; 13829 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 13830 regs[BPF_REG_0].type |= MEM_PERCPU; 13831 13832 insn_aux->obj_new_size = ret_t->size; 13833 insn_aux->kptr_struct_meta = struct_meta; 13834 } else if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 13835 mark_reg_known_zero(env, regs, BPF_REG_0); 13836 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 13837 regs[BPF_REG_0].btf = meta->arg_btf; 13838 regs[BPF_REG_0].btf_id = meta->arg_btf_id; 13839 13840 insn_aux->kptr_struct_meta = 13841 btf_find_struct_meta(meta->arg_btf, 13842 meta->arg_btf_id); 13843 } else if (is_list_node_type(ptr_type)) { 13844 struct btf_field *field = meta->arg_list_head.field; 13845 13846 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 13847 } else if (is_rbtree_node_type(ptr_type)) { 13848 struct btf_field *field = meta->arg_rbtree_root.field; 13849 13850 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 13851 } else if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 13852 mark_reg_known_zero(env, regs, BPF_REG_0); 13853 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 13854 regs[BPF_REG_0].btf = desc_btf; 13855 regs[BPF_REG_0].btf_id = meta->ret_btf_id; 13856 } else if (meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 13857 ret_t = btf_type_by_id(desc_btf, meta->arg_constant.value); 13858 if (!ret_t) { 13859 verbose(env, "Unknown type ID %lld passed to kfunc bpf_rdonly_cast\n", 13860 meta->arg_constant.value); 13861 return -EINVAL; 13862 } else if (btf_type_is_struct(ret_t)) { 13863 mark_reg_known_zero(env, regs, BPF_REG_0); 13864 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 13865 regs[BPF_REG_0].btf = desc_btf; 13866 regs[BPF_REG_0].btf_id = meta->arg_constant.value; 13867 } else if (btf_type_is_void(ret_t)) { 13868 mark_reg_known_zero(env, regs, BPF_REG_0); 13869 regs[BPF_REG_0].type = PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED; 13870 regs[BPF_REG_0].mem_size = 0; 13871 } else { 13872 verbose(env, 13873 "kfunc bpf_rdonly_cast type ID argument must be of a struct or void\n"); 13874 return -EINVAL; 13875 } 13876 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 13877 meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 13878 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta->initialized_dynptr.type); 13879 13880 mark_reg_known_zero(env, regs, BPF_REG_0); 13881 13882 if (!meta->arg_constant.found) { 13883 verifier_bug(env, "bpf_dynptr_slice(_rdwr) no constant size"); 13884 return -EFAULT; 13885 } 13886 13887 regs[BPF_REG_0].mem_size = meta->arg_constant.value; 13888 13889 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 13890 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 13891 13892 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 13893 regs[BPF_REG_0].type |= MEM_RDONLY; 13894 } else { 13895 /* this will set env->seen_direct_write to true */ 13896 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 13897 verbose(env, "the prog does not allow writes to packet data\n"); 13898 return -EINVAL; 13899 } 13900 } 13901 13902 if (!meta->initialized_dynptr.id) { 13903 verifier_bug(env, "no dynptr id"); 13904 return -EFAULT; 13905 } 13906 regs[BPF_REG_0].dynptr_id = meta->initialized_dynptr.id; 13907 13908 /* we don't need to set BPF_REG_0's ref obj id 13909 * because packet slices are not refcounted (see 13910 * dynptr_type_refcounted) 13911 */ 13912 } else { 13913 return 0; 13914 } 13915 13916 return 1; 13917 } 13918 13919 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); 13920 13921 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 13922 int *insn_idx_p) 13923 { 13924 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable; 13925 u32 i, nargs, ptr_type_id, release_ref_obj_id; 13926 struct bpf_reg_state *regs = cur_regs(env); 13927 const char *func_name, *ptr_type_name; 13928 const struct btf_type *t, *ptr_type; 13929 struct bpf_kfunc_call_arg_meta meta; 13930 struct bpf_insn_aux_data *insn_aux; 13931 int err, insn_idx = *insn_idx_p; 13932 const struct btf_param *args; 13933 struct btf *desc_btf; 13934 13935 /* skip for now, but return error when we find this in fixup_kfunc_call */ 13936 if (!insn->imm) 13937 return 0; 13938 13939 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 13940 if (err == -EACCES && func_name) 13941 verbose(env, "calling kernel function %s is not allowed\n", func_name); 13942 if (err) 13943 return err; 13944 desc_btf = meta.btf; 13945 insn_aux = &env->insn_aux_data[insn_idx]; 13946 13947 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 13948 13949 if (!insn->off && 13950 (insn->imm == special_kfunc_list[KF_bpf_res_spin_lock] || 13951 insn->imm == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) { 13952 struct bpf_verifier_state *branch; 13953 struct bpf_reg_state *regs; 13954 13955 branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false); 13956 if (IS_ERR(branch)) { 13957 verbose(env, "failed to push state for failed lock acquisition\n"); 13958 return PTR_ERR(branch); 13959 } 13960 13961 regs = branch->frame[branch->curframe]->regs; 13962 13963 /* Clear r0-r5 registers in forked state */ 13964 for (i = 0; i < CALLER_SAVED_REGS; i++) 13965 mark_reg_not_init(env, regs, caller_saved[i]); 13966 13967 mark_reg_unknown(env, regs, BPF_REG_0); 13968 err = __mark_reg_s32_range(env, regs, BPF_REG_0, -MAX_ERRNO, -1); 13969 if (err) { 13970 verbose(env, "failed to mark s32 range for retval in forked state for lock\n"); 13971 return err; 13972 } 13973 __mark_btf_func_reg_size(env, regs, BPF_REG_0, sizeof(u32)); 13974 } else if (!insn->off && insn->imm == special_kfunc_list[KF___bpf_trap]) { 13975 verbose(env, "unexpected __bpf_trap() due to uninitialized variable?\n"); 13976 return -EFAULT; 13977 } 13978 13979 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 13980 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 13981 return -EACCES; 13982 } 13983 13984 sleepable = is_kfunc_sleepable(&meta); 13985 if (sleepable && !in_sleepable(env)) { 13986 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 13987 return -EACCES; 13988 } 13989 13990 /* Track non-sleepable context for kfuncs, same as for helpers. */ 13991 if (!in_sleepable_context(env)) 13992 insn_aux->non_sleepable = true; 13993 13994 /* Check the arguments */ 13995 err = check_kfunc_args(env, &meta, insn_idx); 13996 if (err < 0) 13997 return err; 13998 13999 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 14000 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 14001 set_rbtree_add_callback_state); 14002 if (err) { 14003 verbose(env, "kfunc %s#%d failed callback verification\n", 14004 func_name, meta.func_id); 14005 return err; 14006 } 14007 } 14008 14009 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) { 14010 meta.r0_size = sizeof(u64); 14011 meta.r0_rdonly = false; 14012 } 14013 14014 if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) { 14015 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 14016 set_timer_callback_state); 14017 if (err) { 14018 verbose(env, "kfunc %s#%d failed callback verification\n", 14019 func_name, meta.func_id); 14020 return err; 14021 } 14022 } 14023 14024 if (is_task_work_add_kfunc(meta.func_id)) { 14025 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 14026 set_task_work_schedule_callback_state); 14027 if (err) { 14028 verbose(env, "kfunc %s#%d failed callback verification\n", 14029 func_name, meta.func_id); 14030 return err; 14031 } 14032 } 14033 14034 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 14035 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 14036 14037 preempt_disable = is_kfunc_bpf_preempt_disable(&meta); 14038 preempt_enable = is_kfunc_bpf_preempt_enable(&meta); 14039 14040 if (rcu_lock) { 14041 env->cur_state->active_rcu_locks++; 14042 } else if (rcu_unlock) { 14043 struct bpf_func_state *state; 14044 struct bpf_reg_state *reg; 14045 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 14046 14047 if (env->cur_state->active_rcu_locks == 0) { 14048 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 14049 return -EINVAL; 14050 } 14051 if (--env->cur_state->active_rcu_locks == 0) { 14052 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 14053 if (reg->type & MEM_RCU) { 14054 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 14055 reg->type |= PTR_UNTRUSTED; 14056 } 14057 })); 14058 } 14059 } else if (sleepable && env->cur_state->active_rcu_locks) { 14060 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 14061 return -EACCES; 14062 } 14063 14064 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 14065 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 14066 return -EACCES; 14067 } 14068 14069 if (env->cur_state->active_preempt_locks) { 14070 if (preempt_disable) { 14071 env->cur_state->active_preempt_locks++; 14072 } else if (preempt_enable) { 14073 env->cur_state->active_preempt_locks--; 14074 } else if (sleepable) { 14075 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name); 14076 return -EACCES; 14077 } 14078 } else if (preempt_disable) { 14079 env->cur_state->active_preempt_locks++; 14080 } else if (preempt_enable) { 14081 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name); 14082 return -EINVAL; 14083 } 14084 14085 if (env->cur_state->active_irq_id && sleepable) { 14086 verbose(env, "kernel func %s is sleepable within IRQ-disabled region\n", func_name); 14087 return -EACCES; 14088 } 14089 14090 if (is_kfunc_rcu_protected(&meta) && !in_rcu_cs(env)) { 14091 verbose(env, "kernel func %s requires RCU critical section protection\n", func_name); 14092 return -EACCES; 14093 } 14094 14095 /* In case of release function, we get register number of refcounted 14096 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 14097 */ 14098 if (meta.release_regno) { 14099 struct bpf_reg_state *reg = ®s[meta.release_regno]; 14100 14101 if (meta.initialized_dynptr.ref_obj_id) { 14102 err = unmark_stack_slots_dynptr(env, reg); 14103 } else { 14104 err = release_reference(env, reg->ref_obj_id); 14105 if (err) 14106 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 14107 func_name, meta.func_id); 14108 } 14109 if (err) 14110 return err; 14111 } 14112 14113 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 14114 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 14115 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 14116 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 14117 insn_aux->insert_off = regs[BPF_REG_2].off; 14118 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 14119 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 14120 if (err) { 14121 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 14122 func_name, meta.func_id); 14123 return err; 14124 } 14125 14126 err = release_reference(env, release_ref_obj_id); 14127 if (err) { 14128 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 14129 func_name, meta.func_id); 14130 return err; 14131 } 14132 } 14133 14134 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 14135 if (!bpf_jit_supports_exceptions()) { 14136 verbose(env, "JIT does not support calling kfunc %s#%d\n", 14137 func_name, meta.func_id); 14138 return -ENOTSUPP; 14139 } 14140 env->seen_exception = true; 14141 14142 /* In the case of the default callback, the cookie value passed 14143 * to bpf_throw becomes the return value of the program. 14144 */ 14145 if (!env->exception_callback_subprog) { 14146 err = check_return_code(env, BPF_REG_1, "R1"); 14147 if (err < 0) 14148 return err; 14149 } 14150 } 14151 14152 for (i = 0; i < CALLER_SAVED_REGS; i++) 14153 mark_reg_not_init(env, regs, caller_saved[i]); 14154 14155 /* Check return type */ 14156 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 14157 14158 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 14159 /* Only exception is bpf_obj_new_impl */ 14160 if (meta.btf != btf_vmlinux || 14161 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 14162 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 14163 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 14164 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 14165 return -EINVAL; 14166 } 14167 } 14168 14169 if (btf_type_is_scalar(t)) { 14170 mark_reg_unknown(env, regs, BPF_REG_0); 14171 if (meta.btf == btf_vmlinux && (meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock] || 14172 meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) 14173 __mark_reg_const_zero(env, ®s[BPF_REG_0]); 14174 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 14175 } else if (btf_type_is_ptr(t)) { 14176 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 14177 err = check_special_kfunc(env, &meta, regs, insn_aux, ptr_type, desc_btf); 14178 if (err) { 14179 if (err < 0) 14180 return err; 14181 } else if (btf_type_is_void(ptr_type)) { 14182 /* kfunc returning 'void *' is equivalent to returning scalar */ 14183 mark_reg_unknown(env, regs, BPF_REG_0); 14184 } else if (!__btf_type_is_struct(ptr_type)) { 14185 if (!meta.r0_size) { 14186 __u32 sz; 14187 14188 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 14189 meta.r0_size = sz; 14190 meta.r0_rdonly = true; 14191 } 14192 } 14193 if (!meta.r0_size) { 14194 ptr_type_name = btf_name_by_offset(desc_btf, 14195 ptr_type->name_off); 14196 verbose(env, 14197 "kernel function %s returns pointer type %s %s is not supported\n", 14198 func_name, 14199 btf_type_str(ptr_type), 14200 ptr_type_name); 14201 return -EINVAL; 14202 } 14203 14204 mark_reg_known_zero(env, regs, BPF_REG_0); 14205 regs[BPF_REG_0].type = PTR_TO_MEM; 14206 regs[BPF_REG_0].mem_size = meta.r0_size; 14207 14208 if (meta.r0_rdonly) 14209 regs[BPF_REG_0].type |= MEM_RDONLY; 14210 14211 /* Ensures we don't access the memory after a release_reference() */ 14212 if (meta.ref_obj_id) 14213 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 14214 14215 if (is_kfunc_rcu_protected(&meta)) 14216 regs[BPF_REG_0].type |= MEM_RCU; 14217 } else { 14218 mark_reg_known_zero(env, regs, BPF_REG_0); 14219 regs[BPF_REG_0].btf = desc_btf; 14220 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 14221 regs[BPF_REG_0].btf_id = ptr_type_id; 14222 14223 if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache]) 14224 regs[BPF_REG_0].type |= PTR_UNTRUSTED; 14225 else if (is_kfunc_rcu_protected(&meta)) 14226 regs[BPF_REG_0].type |= MEM_RCU; 14227 14228 if (is_iter_next_kfunc(&meta)) { 14229 struct bpf_reg_state *cur_iter; 14230 14231 cur_iter = get_iter_from_state(env->cur_state, &meta); 14232 14233 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */ 14234 regs[BPF_REG_0].type |= MEM_RCU; 14235 else 14236 regs[BPF_REG_0].type |= PTR_TRUSTED; 14237 } 14238 } 14239 14240 if (is_kfunc_ret_null(&meta)) { 14241 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 14242 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 14243 regs[BPF_REG_0].id = ++env->id_gen; 14244 } 14245 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 14246 if (is_kfunc_acquire(&meta)) { 14247 int id = acquire_reference(env, insn_idx); 14248 14249 if (id < 0) 14250 return id; 14251 if (is_kfunc_ret_null(&meta)) 14252 regs[BPF_REG_0].id = id; 14253 regs[BPF_REG_0].ref_obj_id = id; 14254 } else if (is_rbtree_node_type(ptr_type) || is_list_node_type(ptr_type)) { 14255 ref_set_non_owning(env, ®s[BPF_REG_0]); 14256 } 14257 14258 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 14259 regs[BPF_REG_0].id = ++env->id_gen; 14260 } else if (btf_type_is_void(t)) { 14261 if (meta.btf == btf_vmlinux) { 14262 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 14263 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 14264 insn_aux->kptr_struct_meta = 14265 btf_find_struct_meta(meta.arg_btf, 14266 meta.arg_btf_id); 14267 } 14268 } 14269 } 14270 14271 if (is_kfunc_pkt_changing(&meta)) 14272 clear_all_pkt_pointers(env); 14273 14274 nargs = btf_type_vlen(meta.func_proto); 14275 args = (const struct btf_param *)(meta.func_proto + 1); 14276 for (i = 0; i < nargs; i++) { 14277 u32 regno = i + 1; 14278 14279 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 14280 if (btf_type_is_ptr(t)) 14281 mark_btf_func_reg_size(env, regno, sizeof(void *)); 14282 else 14283 /* scalar. ensured by btf_check_kfunc_arg_match() */ 14284 mark_btf_func_reg_size(env, regno, t->size); 14285 } 14286 14287 if (is_iter_next_kfunc(&meta)) { 14288 err = process_iter_next_call(env, insn_idx, &meta); 14289 if (err) 14290 return err; 14291 } 14292 14293 return 0; 14294 } 14295 14296 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 14297 const struct bpf_reg_state *reg, 14298 enum bpf_reg_type type) 14299 { 14300 bool known = tnum_is_const(reg->var_off); 14301 s64 val = reg->var_off.value; 14302 s64 smin = reg->smin_value; 14303 14304 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 14305 verbose(env, "math between %s pointer and %lld is not allowed\n", 14306 reg_type_str(env, type), val); 14307 return false; 14308 } 14309 14310 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 14311 verbose(env, "%s pointer offset %d is not allowed\n", 14312 reg_type_str(env, type), reg->off); 14313 return false; 14314 } 14315 14316 if (smin == S64_MIN) { 14317 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 14318 reg_type_str(env, type)); 14319 return false; 14320 } 14321 14322 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 14323 verbose(env, "value %lld makes %s pointer be out of bounds\n", 14324 smin, reg_type_str(env, type)); 14325 return false; 14326 } 14327 14328 return true; 14329 } 14330 14331 enum { 14332 REASON_BOUNDS = -1, 14333 REASON_TYPE = -2, 14334 REASON_PATHS = -3, 14335 REASON_LIMIT = -4, 14336 REASON_STACK = -5, 14337 }; 14338 14339 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 14340 u32 *alu_limit, bool mask_to_left) 14341 { 14342 u32 max = 0, ptr_limit = 0; 14343 14344 switch (ptr_reg->type) { 14345 case PTR_TO_STACK: 14346 /* Offset 0 is out-of-bounds, but acceptable start for the 14347 * left direction, see BPF_REG_FP. Also, unknown scalar 14348 * offset where we would need to deal with min/max bounds is 14349 * currently prohibited for unprivileged. 14350 */ 14351 max = MAX_BPF_STACK + mask_to_left; 14352 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 14353 break; 14354 case PTR_TO_MAP_VALUE: 14355 max = ptr_reg->map_ptr->value_size; 14356 ptr_limit = (mask_to_left ? 14357 ptr_reg->smin_value : 14358 ptr_reg->umax_value) + ptr_reg->off; 14359 break; 14360 default: 14361 return REASON_TYPE; 14362 } 14363 14364 if (ptr_limit >= max) 14365 return REASON_LIMIT; 14366 *alu_limit = ptr_limit; 14367 return 0; 14368 } 14369 14370 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 14371 const struct bpf_insn *insn) 14372 { 14373 return env->bypass_spec_v1 || 14374 BPF_SRC(insn->code) == BPF_K || 14375 cur_aux(env)->nospec; 14376 } 14377 14378 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 14379 u32 alu_state, u32 alu_limit) 14380 { 14381 /* If we arrived here from different branches with different 14382 * state or limits to sanitize, then this won't work. 14383 */ 14384 if (aux->alu_state && 14385 (aux->alu_state != alu_state || 14386 aux->alu_limit != alu_limit)) 14387 return REASON_PATHS; 14388 14389 /* Corresponding fixup done in do_misc_fixups(). */ 14390 aux->alu_state = alu_state; 14391 aux->alu_limit = alu_limit; 14392 return 0; 14393 } 14394 14395 static int sanitize_val_alu(struct bpf_verifier_env *env, 14396 struct bpf_insn *insn) 14397 { 14398 struct bpf_insn_aux_data *aux = cur_aux(env); 14399 14400 if (can_skip_alu_sanitation(env, insn)) 14401 return 0; 14402 14403 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 14404 } 14405 14406 static bool sanitize_needed(u8 opcode) 14407 { 14408 return opcode == BPF_ADD || opcode == BPF_SUB; 14409 } 14410 14411 struct bpf_sanitize_info { 14412 struct bpf_insn_aux_data aux; 14413 bool mask_to_left; 14414 }; 14415 14416 static int sanitize_speculative_path(struct bpf_verifier_env *env, 14417 const struct bpf_insn *insn, 14418 u32 next_idx, u32 curr_idx) 14419 { 14420 struct bpf_verifier_state *branch; 14421 struct bpf_reg_state *regs; 14422 14423 branch = push_stack(env, next_idx, curr_idx, true); 14424 if (!IS_ERR(branch) && insn) { 14425 regs = branch->frame[branch->curframe]->regs; 14426 if (BPF_SRC(insn->code) == BPF_K) { 14427 mark_reg_unknown(env, regs, insn->dst_reg); 14428 } else if (BPF_SRC(insn->code) == BPF_X) { 14429 mark_reg_unknown(env, regs, insn->dst_reg); 14430 mark_reg_unknown(env, regs, insn->src_reg); 14431 } 14432 } 14433 return PTR_ERR_OR_ZERO(branch); 14434 } 14435 14436 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 14437 struct bpf_insn *insn, 14438 const struct bpf_reg_state *ptr_reg, 14439 const struct bpf_reg_state *off_reg, 14440 struct bpf_reg_state *dst_reg, 14441 struct bpf_sanitize_info *info, 14442 const bool commit_window) 14443 { 14444 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 14445 struct bpf_verifier_state *vstate = env->cur_state; 14446 bool off_is_imm = tnum_is_const(off_reg->var_off); 14447 bool off_is_neg = off_reg->smin_value < 0; 14448 bool ptr_is_dst_reg = ptr_reg == dst_reg; 14449 u8 opcode = BPF_OP(insn->code); 14450 u32 alu_state, alu_limit; 14451 struct bpf_reg_state tmp; 14452 int err; 14453 14454 if (can_skip_alu_sanitation(env, insn)) 14455 return 0; 14456 14457 /* We already marked aux for masking from non-speculative 14458 * paths, thus we got here in the first place. We only care 14459 * to explore bad access from here. 14460 */ 14461 if (vstate->speculative) 14462 goto do_sim; 14463 14464 if (!commit_window) { 14465 if (!tnum_is_const(off_reg->var_off) && 14466 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 14467 return REASON_BOUNDS; 14468 14469 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 14470 (opcode == BPF_SUB && !off_is_neg); 14471 } 14472 14473 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 14474 if (err < 0) 14475 return err; 14476 14477 if (commit_window) { 14478 /* In commit phase we narrow the masking window based on 14479 * the observed pointer move after the simulated operation. 14480 */ 14481 alu_state = info->aux.alu_state; 14482 alu_limit = abs(info->aux.alu_limit - alu_limit); 14483 } else { 14484 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 14485 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 14486 alu_state |= ptr_is_dst_reg ? 14487 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 14488 14489 /* Limit pruning on unknown scalars to enable deep search for 14490 * potential masking differences from other program paths. 14491 */ 14492 if (!off_is_imm) 14493 env->explore_alu_limits = true; 14494 } 14495 14496 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 14497 if (err < 0) 14498 return err; 14499 do_sim: 14500 /* If we're in commit phase, we're done here given we already 14501 * pushed the truncated dst_reg into the speculative verification 14502 * stack. 14503 * 14504 * Also, when register is a known constant, we rewrite register-based 14505 * operation to immediate-based, and thus do not need masking (and as 14506 * a consequence, do not need to simulate the zero-truncation either). 14507 */ 14508 if (commit_window || off_is_imm) 14509 return 0; 14510 14511 /* Simulate and find potential out-of-bounds access under 14512 * speculative execution from truncation as a result of 14513 * masking when off was not within expected range. If off 14514 * sits in dst, then we temporarily need to move ptr there 14515 * to simulate dst (== 0) +/-= ptr. Needed, for example, 14516 * for cases where we use K-based arithmetic in one direction 14517 * and truncated reg-based in the other in order to explore 14518 * bad access. 14519 */ 14520 if (!ptr_is_dst_reg) { 14521 tmp = *dst_reg; 14522 copy_register_state(dst_reg, ptr_reg); 14523 } 14524 err = sanitize_speculative_path(env, NULL, env->insn_idx + 1, env->insn_idx); 14525 if (err < 0) 14526 return REASON_STACK; 14527 if (!ptr_is_dst_reg) 14528 *dst_reg = tmp; 14529 return 0; 14530 } 14531 14532 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 14533 { 14534 struct bpf_verifier_state *vstate = env->cur_state; 14535 14536 /* If we simulate paths under speculation, we don't update the 14537 * insn as 'seen' such that when we verify unreachable paths in 14538 * the non-speculative domain, sanitize_dead_code() can still 14539 * rewrite/sanitize them. 14540 */ 14541 if (!vstate->speculative) 14542 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 14543 } 14544 14545 static int sanitize_err(struct bpf_verifier_env *env, 14546 const struct bpf_insn *insn, int reason, 14547 const struct bpf_reg_state *off_reg, 14548 const struct bpf_reg_state *dst_reg) 14549 { 14550 static const char *err = "pointer arithmetic with it prohibited for !root"; 14551 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 14552 u32 dst = insn->dst_reg, src = insn->src_reg; 14553 14554 switch (reason) { 14555 case REASON_BOUNDS: 14556 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 14557 off_reg == dst_reg ? dst : src, err); 14558 break; 14559 case REASON_TYPE: 14560 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 14561 off_reg == dst_reg ? src : dst, err); 14562 break; 14563 case REASON_PATHS: 14564 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 14565 dst, op, err); 14566 break; 14567 case REASON_LIMIT: 14568 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 14569 dst, op, err); 14570 break; 14571 case REASON_STACK: 14572 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 14573 dst, err); 14574 return -ENOMEM; 14575 default: 14576 verifier_bug(env, "unknown reason (%d)", reason); 14577 break; 14578 } 14579 14580 return -EACCES; 14581 } 14582 14583 /* check that stack access falls within stack limits and that 'reg' doesn't 14584 * have a variable offset. 14585 * 14586 * Variable offset is prohibited for unprivileged mode for simplicity since it 14587 * requires corresponding support in Spectre masking for stack ALU. See also 14588 * retrieve_ptr_limit(). 14589 * 14590 * 14591 * 'off' includes 'reg->off'. 14592 */ 14593 static int check_stack_access_for_ptr_arithmetic( 14594 struct bpf_verifier_env *env, 14595 int regno, 14596 const struct bpf_reg_state *reg, 14597 int off) 14598 { 14599 if (!tnum_is_const(reg->var_off)) { 14600 char tn_buf[48]; 14601 14602 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 14603 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 14604 regno, tn_buf, off); 14605 return -EACCES; 14606 } 14607 14608 if (off >= 0 || off < -MAX_BPF_STACK) { 14609 verbose(env, "R%d stack pointer arithmetic goes out of range, " 14610 "prohibited for !root; off=%d\n", regno, off); 14611 return -EACCES; 14612 } 14613 14614 return 0; 14615 } 14616 14617 static int sanitize_check_bounds(struct bpf_verifier_env *env, 14618 const struct bpf_insn *insn, 14619 const struct bpf_reg_state *dst_reg) 14620 { 14621 u32 dst = insn->dst_reg; 14622 14623 /* For unprivileged we require that resulting offset must be in bounds 14624 * in order to be able to sanitize access later on. 14625 */ 14626 if (env->bypass_spec_v1) 14627 return 0; 14628 14629 switch (dst_reg->type) { 14630 case PTR_TO_STACK: 14631 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 14632 dst_reg->off + dst_reg->var_off.value)) 14633 return -EACCES; 14634 break; 14635 case PTR_TO_MAP_VALUE: 14636 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 14637 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 14638 "prohibited for !root\n", dst); 14639 return -EACCES; 14640 } 14641 break; 14642 default: 14643 return -EOPNOTSUPP; 14644 } 14645 14646 return 0; 14647 } 14648 14649 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 14650 * Caller should also handle BPF_MOV case separately. 14651 * If we return -EACCES, caller may want to try again treating pointer as a 14652 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 14653 */ 14654 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 14655 struct bpf_insn *insn, 14656 const struct bpf_reg_state *ptr_reg, 14657 const struct bpf_reg_state *off_reg) 14658 { 14659 struct bpf_verifier_state *vstate = env->cur_state; 14660 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14661 struct bpf_reg_state *regs = state->regs, *dst_reg; 14662 bool known = tnum_is_const(off_reg->var_off); 14663 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 14664 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 14665 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 14666 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 14667 struct bpf_sanitize_info info = {}; 14668 u8 opcode = BPF_OP(insn->code); 14669 u32 dst = insn->dst_reg; 14670 int ret, bounds_ret; 14671 14672 dst_reg = ®s[dst]; 14673 14674 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 14675 smin_val > smax_val || umin_val > umax_val) { 14676 /* Taint dst register if offset had invalid bounds derived from 14677 * e.g. dead branches. 14678 */ 14679 __mark_reg_unknown(env, dst_reg); 14680 return 0; 14681 } 14682 14683 if (BPF_CLASS(insn->code) != BPF_ALU64) { 14684 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 14685 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 14686 __mark_reg_unknown(env, dst_reg); 14687 return 0; 14688 } 14689 14690 verbose(env, 14691 "R%d 32-bit pointer arithmetic prohibited\n", 14692 dst); 14693 return -EACCES; 14694 } 14695 14696 if (ptr_reg->type & PTR_MAYBE_NULL) { 14697 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 14698 dst, reg_type_str(env, ptr_reg->type)); 14699 return -EACCES; 14700 } 14701 14702 /* 14703 * Accesses to untrusted PTR_TO_MEM are done through probe 14704 * instructions, hence no need to track offsets. 14705 */ 14706 if (base_type(ptr_reg->type) == PTR_TO_MEM && (ptr_reg->type & PTR_UNTRUSTED)) 14707 return 0; 14708 14709 switch (base_type(ptr_reg->type)) { 14710 case PTR_TO_CTX: 14711 case PTR_TO_MAP_VALUE: 14712 case PTR_TO_MAP_KEY: 14713 case PTR_TO_STACK: 14714 case PTR_TO_PACKET_META: 14715 case PTR_TO_PACKET: 14716 case PTR_TO_TP_BUFFER: 14717 case PTR_TO_BTF_ID: 14718 case PTR_TO_MEM: 14719 case PTR_TO_BUF: 14720 case PTR_TO_FUNC: 14721 case CONST_PTR_TO_DYNPTR: 14722 break; 14723 case PTR_TO_FLOW_KEYS: 14724 if (known) 14725 break; 14726 fallthrough; 14727 case CONST_PTR_TO_MAP: 14728 /* smin_val represents the known value */ 14729 if (known && smin_val == 0 && opcode == BPF_ADD) 14730 break; 14731 fallthrough; 14732 default: 14733 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 14734 dst, reg_type_str(env, ptr_reg->type)); 14735 return -EACCES; 14736 } 14737 14738 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 14739 * The id may be overwritten later if we create a new variable offset. 14740 */ 14741 dst_reg->type = ptr_reg->type; 14742 dst_reg->id = ptr_reg->id; 14743 14744 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 14745 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 14746 return -EINVAL; 14747 14748 /* pointer types do not carry 32-bit bounds at the moment. */ 14749 __mark_reg32_unbounded(dst_reg); 14750 14751 if (sanitize_needed(opcode)) { 14752 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 14753 &info, false); 14754 if (ret < 0) 14755 return sanitize_err(env, insn, ret, off_reg, dst_reg); 14756 } 14757 14758 switch (opcode) { 14759 case BPF_ADD: 14760 /* We can take a fixed offset as long as it doesn't overflow 14761 * the s32 'off' field 14762 */ 14763 if (known && (ptr_reg->off + smin_val == 14764 (s64)(s32)(ptr_reg->off + smin_val))) { 14765 /* pointer += K. Accumulate it into fixed offset */ 14766 dst_reg->smin_value = smin_ptr; 14767 dst_reg->smax_value = smax_ptr; 14768 dst_reg->umin_value = umin_ptr; 14769 dst_reg->umax_value = umax_ptr; 14770 dst_reg->var_off = ptr_reg->var_off; 14771 dst_reg->off = ptr_reg->off + smin_val; 14772 dst_reg->raw = ptr_reg->raw; 14773 break; 14774 } 14775 /* A new variable offset is created. Note that off_reg->off 14776 * == 0, since it's a scalar. 14777 * dst_reg gets the pointer type and since some positive 14778 * integer value was added to the pointer, give it a new 'id' 14779 * if it's a PTR_TO_PACKET. 14780 * this creates a new 'base' pointer, off_reg (variable) gets 14781 * added into the variable offset, and we copy the fixed offset 14782 * from ptr_reg. 14783 */ 14784 if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) || 14785 check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) { 14786 dst_reg->smin_value = S64_MIN; 14787 dst_reg->smax_value = S64_MAX; 14788 } 14789 if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) || 14790 check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) { 14791 dst_reg->umin_value = 0; 14792 dst_reg->umax_value = U64_MAX; 14793 } 14794 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 14795 dst_reg->off = ptr_reg->off; 14796 dst_reg->raw = ptr_reg->raw; 14797 if (reg_is_pkt_pointer(ptr_reg)) { 14798 dst_reg->id = ++env->id_gen; 14799 /* something was added to pkt_ptr, set range to zero */ 14800 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 14801 } 14802 break; 14803 case BPF_SUB: 14804 if (dst_reg == off_reg) { 14805 /* scalar -= pointer. Creates an unknown scalar */ 14806 verbose(env, "R%d tried to subtract pointer from scalar\n", 14807 dst); 14808 return -EACCES; 14809 } 14810 /* We don't allow subtraction from FP, because (according to 14811 * test_verifier.c test "invalid fp arithmetic", JITs might not 14812 * be able to deal with it. 14813 */ 14814 if (ptr_reg->type == PTR_TO_STACK) { 14815 verbose(env, "R%d subtraction from stack pointer prohibited\n", 14816 dst); 14817 return -EACCES; 14818 } 14819 if (known && (ptr_reg->off - smin_val == 14820 (s64)(s32)(ptr_reg->off - smin_val))) { 14821 /* pointer -= K. Subtract it from fixed offset */ 14822 dst_reg->smin_value = smin_ptr; 14823 dst_reg->smax_value = smax_ptr; 14824 dst_reg->umin_value = umin_ptr; 14825 dst_reg->umax_value = umax_ptr; 14826 dst_reg->var_off = ptr_reg->var_off; 14827 dst_reg->id = ptr_reg->id; 14828 dst_reg->off = ptr_reg->off - smin_val; 14829 dst_reg->raw = ptr_reg->raw; 14830 break; 14831 } 14832 /* A new variable offset is created. If the subtrahend is known 14833 * nonnegative, then any reg->range we had before is still good. 14834 */ 14835 if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) || 14836 check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) { 14837 /* Overflow possible, we know nothing */ 14838 dst_reg->smin_value = S64_MIN; 14839 dst_reg->smax_value = S64_MAX; 14840 } 14841 if (umin_ptr < umax_val) { 14842 /* Overflow possible, we know nothing */ 14843 dst_reg->umin_value = 0; 14844 dst_reg->umax_value = U64_MAX; 14845 } else { 14846 /* Cannot overflow (as long as bounds are consistent) */ 14847 dst_reg->umin_value = umin_ptr - umax_val; 14848 dst_reg->umax_value = umax_ptr - umin_val; 14849 } 14850 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 14851 dst_reg->off = ptr_reg->off; 14852 dst_reg->raw = ptr_reg->raw; 14853 if (reg_is_pkt_pointer(ptr_reg)) { 14854 dst_reg->id = ++env->id_gen; 14855 /* something was added to pkt_ptr, set range to zero */ 14856 if (smin_val < 0) 14857 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 14858 } 14859 break; 14860 case BPF_AND: 14861 case BPF_OR: 14862 case BPF_XOR: 14863 /* bitwise ops on pointers are troublesome, prohibit. */ 14864 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 14865 dst, bpf_alu_string[opcode >> 4]); 14866 return -EACCES; 14867 default: 14868 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 14869 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 14870 dst, bpf_alu_string[opcode >> 4]); 14871 return -EACCES; 14872 } 14873 14874 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 14875 return -EINVAL; 14876 reg_bounds_sync(dst_reg); 14877 bounds_ret = sanitize_check_bounds(env, insn, dst_reg); 14878 if (bounds_ret == -EACCES) 14879 return bounds_ret; 14880 if (sanitize_needed(opcode)) { 14881 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 14882 &info, true); 14883 if (verifier_bug_if(!can_skip_alu_sanitation(env, insn) 14884 && !env->cur_state->speculative 14885 && bounds_ret 14886 && !ret, 14887 env, "Pointer type unsupported by sanitize_check_bounds() not rejected by retrieve_ptr_limit() as required")) { 14888 return -EFAULT; 14889 } 14890 if (ret < 0) 14891 return sanitize_err(env, insn, ret, off_reg, dst_reg); 14892 } 14893 14894 return 0; 14895 } 14896 14897 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 14898 struct bpf_reg_state *src_reg) 14899 { 14900 s32 *dst_smin = &dst_reg->s32_min_value; 14901 s32 *dst_smax = &dst_reg->s32_max_value; 14902 u32 *dst_umin = &dst_reg->u32_min_value; 14903 u32 *dst_umax = &dst_reg->u32_max_value; 14904 u32 umin_val = src_reg->u32_min_value; 14905 u32 umax_val = src_reg->u32_max_value; 14906 bool min_overflow, max_overflow; 14907 14908 if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) || 14909 check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) { 14910 *dst_smin = S32_MIN; 14911 *dst_smax = S32_MAX; 14912 } 14913 14914 /* If either all additions overflow or no additions overflow, then 14915 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax = 14916 * dst_umax + src_umax. Otherwise (some additions overflow), set 14917 * the output bounds to unbounded. 14918 */ 14919 min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin); 14920 max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax); 14921 14922 if (!min_overflow && max_overflow) { 14923 *dst_umin = 0; 14924 *dst_umax = U32_MAX; 14925 } 14926 } 14927 14928 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 14929 struct bpf_reg_state *src_reg) 14930 { 14931 s64 *dst_smin = &dst_reg->smin_value; 14932 s64 *dst_smax = &dst_reg->smax_value; 14933 u64 *dst_umin = &dst_reg->umin_value; 14934 u64 *dst_umax = &dst_reg->umax_value; 14935 u64 umin_val = src_reg->umin_value; 14936 u64 umax_val = src_reg->umax_value; 14937 bool min_overflow, max_overflow; 14938 14939 if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) || 14940 check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) { 14941 *dst_smin = S64_MIN; 14942 *dst_smax = S64_MAX; 14943 } 14944 14945 /* If either all additions overflow or no additions overflow, then 14946 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax = 14947 * dst_umax + src_umax. Otherwise (some additions overflow), set 14948 * the output bounds to unbounded. 14949 */ 14950 min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin); 14951 max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax); 14952 14953 if (!min_overflow && max_overflow) { 14954 *dst_umin = 0; 14955 *dst_umax = U64_MAX; 14956 } 14957 } 14958 14959 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 14960 struct bpf_reg_state *src_reg) 14961 { 14962 s32 *dst_smin = &dst_reg->s32_min_value; 14963 s32 *dst_smax = &dst_reg->s32_max_value; 14964 u32 *dst_umin = &dst_reg->u32_min_value; 14965 u32 *dst_umax = &dst_reg->u32_max_value; 14966 u32 umin_val = src_reg->u32_min_value; 14967 u32 umax_val = src_reg->u32_max_value; 14968 bool min_underflow, max_underflow; 14969 14970 if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) || 14971 check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) { 14972 /* Overflow possible, we know nothing */ 14973 *dst_smin = S32_MIN; 14974 *dst_smax = S32_MAX; 14975 } 14976 14977 /* If either all subtractions underflow or no subtractions 14978 * underflow, it is okay to set: dst_umin = dst_umin - src_umax, 14979 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions 14980 * underflow), set the output bounds to unbounded. 14981 */ 14982 min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin); 14983 max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax); 14984 14985 if (min_underflow && !max_underflow) { 14986 *dst_umin = 0; 14987 *dst_umax = U32_MAX; 14988 } 14989 } 14990 14991 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 14992 struct bpf_reg_state *src_reg) 14993 { 14994 s64 *dst_smin = &dst_reg->smin_value; 14995 s64 *dst_smax = &dst_reg->smax_value; 14996 u64 *dst_umin = &dst_reg->umin_value; 14997 u64 *dst_umax = &dst_reg->umax_value; 14998 u64 umin_val = src_reg->umin_value; 14999 u64 umax_val = src_reg->umax_value; 15000 bool min_underflow, max_underflow; 15001 15002 if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) || 15003 check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) { 15004 /* Overflow possible, we know nothing */ 15005 *dst_smin = S64_MIN; 15006 *dst_smax = S64_MAX; 15007 } 15008 15009 /* If either all subtractions underflow or no subtractions 15010 * underflow, it is okay to set: dst_umin = dst_umin - src_umax, 15011 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions 15012 * underflow), set the output bounds to unbounded. 15013 */ 15014 min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin); 15015 max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax); 15016 15017 if (min_underflow && !max_underflow) { 15018 *dst_umin = 0; 15019 *dst_umax = U64_MAX; 15020 } 15021 } 15022 15023 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 15024 struct bpf_reg_state *src_reg) 15025 { 15026 s32 *dst_smin = &dst_reg->s32_min_value; 15027 s32 *dst_smax = &dst_reg->s32_max_value; 15028 u32 *dst_umin = &dst_reg->u32_min_value; 15029 u32 *dst_umax = &dst_reg->u32_max_value; 15030 s32 tmp_prod[4]; 15031 15032 if (check_mul_overflow(*dst_umax, src_reg->u32_max_value, dst_umax) || 15033 check_mul_overflow(*dst_umin, src_reg->u32_min_value, dst_umin)) { 15034 /* Overflow possible, we know nothing */ 15035 *dst_umin = 0; 15036 *dst_umax = U32_MAX; 15037 } 15038 if (check_mul_overflow(*dst_smin, src_reg->s32_min_value, &tmp_prod[0]) || 15039 check_mul_overflow(*dst_smin, src_reg->s32_max_value, &tmp_prod[1]) || 15040 check_mul_overflow(*dst_smax, src_reg->s32_min_value, &tmp_prod[2]) || 15041 check_mul_overflow(*dst_smax, src_reg->s32_max_value, &tmp_prod[3])) { 15042 /* Overflow possible, we know nothing */ 15043 *dst_smin = S32_MIN; 15044 *dst_smax = S32_MAX; 15045 } else { 15046 *dst_smin = min_array(tmp_prod, 4); 15047 *dst_smax = max_array(tmp_prod, 4); 15048 } 15049 } 15050 15051 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 15052 struct bpf_reg_state *src_reg) 15053 { 15054 s64 *dst_smin = &dst_reg->smin_value; 15055 s64 *dst_smax = &dst_reg->smax_value; 15056 u64 *dst_umin = &dst_reg->umin_value; 15057 u64 *dst_umax = &dst_reg->umax_value; 15058 s64 tmp_prod[4]; 15059 15060 if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) || 15061 check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin)) { 15062 /* Overflow possible, we know nothing */ 15063 *dst_umin = 0; 15064 *dst_umax = U64_MAX; 15065 } 15066 if (check_mul_overflow(*dst_smin, src_reg->smin_value, &tmp_prod[0]) || 15067 check_mul_overflow(*dst_smin, src_reg->smax_value, &tmp_prod[1]) || 15068 check_mul_overflow(*dst_smax, src_reg->smin_value, &tmp_prod[2]) || 15069 check_mul_overflow(*dst_smax, src_reg->smax_value, &tmp_prod[3])) { 15070 /* Overflow possible, we know nothing */ 15071 *dst_smin = S64_MIN; 15072 *dst_smax = S64_MAX; 15073 } else { 15074 *dst_smin = min_array(tmp_prod, 4); 15075 *dst_smax = max_array(tmp_prod, 4); 15076 } 15077 } 15078 15079 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 15080 struct bpf_reg_state *src_reg) 15081 { 15082 bool src_known = tnum_subreg_is_const(src_reg->var_off); 15083 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 15084 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 15085 u32 umax_val = src_reg->u32_max_value; 15086 15087 if (src_known && dst_known) { 15088 __mark_reg32_known(dst_reg, var32_off.value); 15089 return; 15090 } 15091 15092 /* We get our minimum from the var_off, since that's inherently 15093 * bitwise. Our maximum is the minimum of the operands' maxima. 15094 */ 15095 dst_reg->u32_min_value = var32_off.value; 15096 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 15097 15098 /* Safe to set s32 bounds by casting u32 result into s32 when u32 15099 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 15100 */ 15101 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 15102 dst_reg->s32_min_value = dst_reg->u32_min_value; 15103 dst_reg->s32_max_value = dst_reg->u32_max_value; 15104 } else { 15105 dst_reg->s32_min_value = S32_MIN; 15106 dst_reg->s32_max_value = S32_MAX; 15107 } 15108 } 15109 15110 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 15111 struct bpf_reg_state *src_reg) 15112 { 15113 bool src_known = tnum_is_const(src_reg->var_off); 15114 bool dst_known = tnum_is_const(dst_reg->var_off); 15115 u64 umax_val = src_reg->umax_value; 15116 15117 if (src_known && dst_known) { 15118 __mark_reg_known(dst_reg, dst_reg->var_off.value); 15119 return; 15120 } 15121 15122 /* We get our minimum from the var_off, since that's inherently 15123 * bitwise. Our maximum is the minimum of the operands' maxima. 15124 */ 15125 dst_reg->umin_value = dst_reg->var_off.value; 15126 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 15127 15128 /* Safe to set s64 bounds by casting u64 result into s64 when u64 15129 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 15130 */ 15131 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 15132 dst_reg->smin_value = dst_reg->umin_value; 15133 dst_reg->smax_value = dst_reg->umax_value; 15134 } else { 15135 dst_reg->smin_value = S64_MIN; 15136 dst_reg->smax_value = S64_MAX; 15137 } 15138 /* We may learn something more from the var_off */ 15139 __update_reg_bounds(dst_reg); 15140 } 15141 15142 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 15143 struct bpf_reg_state *src_reg) 15144 { 15145 bool src_known = tnum_subreg_is_const(src_reg->var_off); 15146 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 15147 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 15148 u32 umin_val = src_reg->u32_min_value; 15149 15150 if (src_known && dst_known) { 15151 __mark_reg32_known(dst_reg, var32_off.value); 15152 return; 15153 } 15154 15155 /* We get our maximum from the var_off, and our minimum is the 15156 * maximum of the operands' minima 15157 */ 15158 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 15159 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 15160 15161 /* Safe to set s32 bounds by casting u32 result into s32 when u32 15162 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 15163 */ 15164 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 15165 dst_reg->s32_min_value = dst_reg->u32_min_value; 15166 dst_reg->s32_max_value = dst_reg->u32_max_value; 15167 } else { 15168 dst_reg->s32_min_value = S32_MIN; 15169 dst_reg->s32_max_value = S32_MAX; 15170 } 15171 } 15172 15173 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 15174 struct bpf_reg_state *src_reg) 15175 { 15176 bool src_known = tnum_is_const(src_reg->var_off); 15177 bool dst_known = tnum_is_const(dst_reg->var_off); 15178 u64 umin_val = src_reg->umin_value; 15179 15180 if (src_known && dst_known) { 15181 __mark_reg_known(dst_reg, dst_reg->var_off.value); 15182 return; 15183 } 15184 15185 /* We get our maximum from the var_off, and our minimum is the 15186 * maximum of the operands' minima 15187 */ 15188 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 15189 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 15190 15191 /* Safe to set s64 bounds by casting u64 result into s64 when u64 15192 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 15193 */ 15194 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 15195 dst_reg->smin_value = dst_reg->umin_value; 15196 dst_reg->smax_value = dst_reg->umax_value; 15197 } else { 15198 dst_reg->smin_value = S64_MIN; 15199 dst_reg->smax_value = S64_MAX; 15200 } 15201 /* We may learn something more from the var_off */ 15202 __update_reg_bounds(dst_reg); 15203 } 15204 15205 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 15206 struct bpf_reg_state *src_reg) 15207 { 15208 bool src_known = tnum_subreg_is_const(src_reg->var_off); 15209 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 15210 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 15211 15212 if (src_known && dst_known) { 15213 __mark_reg32_known(dst_reg, var32_off.value); 15214 return; 15215 } 15216 15217 /* We get both minimum and maximum from the var32_off. */ 15218 dst_reg->u32_min_value = var32_off.value; 15219 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 15220 15221 /* Safe to set s32 bounds by casting u32 result into s32 when u32 15222 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 15223 */ 15224 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 15225 dst_reg->s32_min_value = dst_reg->u32_min_value; 15226 dst_reg->s32_max_value = dst_reg->u32_max_value; 15227 } else { 15228 dst_reg->s32_min_value = S32_MIN; 15229 dst_reg->s32_max_value = S32_MAX; 15230 } 15231 } 15232 15233 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 15234 struct bpf_reg_state *src_reg) 15235 { 15236 bool src_known = tnum_is_const(src_reg->var_off); 15237 bool dst_known = tnum_is_const(dst_reg->var_off); 15238 15239 if (src_known && dst_known) { 15240 /* dst_reg->var_off.value has been updated earlier */ 15241 __mark_reg_known(dst_reg, dst_reg->var_off.value); 15242 return; 15243 } 15244 15245 /* We get both minimum and maximum from the var_off. */ 15246 dst_reg->umin_value = dst_reg->var_off.value; 15247 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 15248 15249 /* Safe to set s64 bounds by casting u64 result into s64 when u64 15250 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 15251 */ 15252 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 15253 dst_reg->smin_value = dst_reg->umin_value; 15254 dst_reg->smax_value = dst_reg->umax_value; 15255 } else { 15256 dst_reg->smin_value = S64_MIN; 15257 dst_reg->smax_value = S64_MAX; 15258 } 15259 15260 __update_reg_bounds(dst_reg); 15261 } 15262 15263 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 15264 u64 umin_val, u64 umax_val) 15265 { 15266 /* We lose all sign bit information (except what we can pick 15267 * up from var_off) 15268 */ 15269 dst_reg->s32_min_value = S32_MIN; 15270 dst_reg->s32_max_value = S32_MAX; 15271 /* If we might shift our top bit out, then we know nothing */ 15272 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 15273 dst_reg->u32_min_value = 0; 15274 dst_reg->u32_max_value = U32_MAX; 15275 } else { 15276 dst_reg->u32_min_value <<= umin_val; 15277 dst_reg->u32_max_value <<= umax_val; 15278 } 15279 } 15280 15281 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 15282 struct bpf_reg_state *src_reg) 15283 { 15284 u32 umax_val = src_reg->u32_max_value; 15285 u32 umin_val = src_reg->u32_min_value; 15286 /* u32 alu operation will zext upper bits */ 15287 struct tnum subreg = tnum_subreg(dst_reg->var_off); 15288 15289 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 15290 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 15291 /* Not required but being careful mark reg64 bounds as unknown so 15292 * that we are forced to pick them up from tnum and zext later and 15293 * if some path skips this step we are still safe. 15294 */ 15295 __mark_reg64_unbounded(dst_reg); 15296 __update_reg32_bounds(dst_reg); 15297 } 15298 15299 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 15300 u64 umin_val, u64 umax_val) 15301 { 15302 /* Special case <<32 because it is a common compiler pattern to sign 15303 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 15304 * positive we know this shift will also be positive so we can track 15305 * bounds correctly. Otherwise we lose all sign bit information except 15306 * what we can pick up from var_off. Perhaps we can generalize this 15307 * later to shifts of any length. 15308 */ 15309 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 15310 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 15311 else 15312 dst_reg->smax_value = S64_MAX; 15313 15314 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 15315 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 15316 else 15317 dst_reg->smin_value = S64_MIN; 15318 15319 /* If we might shift our top bit out, then we know nothing */ 15320 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 15321 dst_reg->umin_value = 0; 15322 dst_reg->umax_value = U64_MAX; 15323 } else { 15324 dst_reg->umin_value <<= umin_val; 15325 dst_reg->umax_value <<= umax_val; 15326 } 15327 } 15328 15329 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 15330 struct bpf_reg_state *src_reg) 15331 { 15332 u64 umax_val = src_reg->umax_value; 15333 u64 umin_val = src_reg->umin_value; 15334 15335 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 15336 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 15337 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 15338 15339 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 15340 /* We may learn something more from the var_off */ 15341 __update_reg_bounds(dst_reg); 15342 } 15343 15344 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 15345 struct bpf_reg_state *src_reg) 15346 { 15347 struct tnum subreg = tnum_subreg(dst_reg->var_off); 15348 u32 umax_val = src_reg->u32_max_value; 15349 u32 umin_val = src_reg->u32_min_value; 15350 15351 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 15352 * be negative, then either: 15353 * 1) src_reg might be zero, so the sign bit of the result is 15354 * unknown, so we lose our signed bounds 15355 * 2) it's known negative, thus the unsigned bounds capture the 15356 * signed bounds 15357 * 3) the signed bounds cross zero, so they tell us nothing 15358 * about the result 15359 * If the value in dst_reg is known nonnegative, then again the 15360 * unsigned bounds capture the signed bounds. 15361 * Thus, in all cases it suffices to blow away our signed bounds 15362 * and rely on inferring new ones from the unsigned bounds and 15363 * var_off of the result. 15364 */ 15365 dst_reg->s32_min_value = S32_MIN; 15366 dst_reg->s32_max_value = S32_MAX; 15367 15368 dst_reg->var_off = tnum_rshift(subreg, umin_val); 15369 dst_reg->u32_min_value >>= umax_val; 15370 dst_reg->u32_max_value >>= umin_val; 15371 15372 __mark_reg64_unbounded(dst_reg); 15373 __update_reg32_bounds(dst_reg); 15374 } 15375 15376 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 15377 struct bpf_reg_state *src_reg) 15378 { 15379 u64 umax_val = src_reg->umax_value; 15380 u64 umin_val = src_reg->umin_value; 15381 15382 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 15383 * be negative, then either: 15384 * 1) src_reg might be zero, so the sign bit of the result is 15385 * unknown, so we lose our signed bounds 15386 * 2) it's known negative, thus the unsigned bounds capture the 15387 * signed bounds 15388 * 3) the signed bounds cross zero, so they tell us nothing 15389 * about the result 15390 * If the value in dst_reg is known nonnegative, then again the 15391 * unsigned bounds capture the signed bounds. 15392 * Thus, in all cases it suffices to blow away our signed bounds 15393 * and rely on inferring new ones from the unsigned bounds and 15394 * var_off of the result. 15395 */ 15396 dst_reg->smin_value = S64_MIN; 15397 dst_reg->smax_value = S64_MAX; 15398 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 15399 dst_reg->umin_value >>= umax_val; 15400 dst_reg->umax_value >>= umin_val; 15401 15402 /* Its not easy to operate on alu32 bounds here because it depends 15403 * on bits being shifted in. Take easy way out and mark unbounded 15404 * so we can recalculate later from tnum. 15405 */ 15406 __mark_reg32_unbounded(dst_reg); 15407 __update_reg_bounds(dst_reg); 15408 } 15409 15410 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 15411 struct bpf_reg_state *src_reg) 15412 { 15413 u64 umin_val = src_reg->u32_min_value; 15414 15415 /* Upon reaching here, src_known is true and 15416 * umax_val is equal to umin_val. 15417 */ 15418 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 15419 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 15420 15421 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 15422 15423 /* blow away the dst_reg umin_value/umax_value and rely on 15424 * dst_reg var_off to refine the result. 15425 */ 15426 dst_reg->u32_min_value = 0; 15427 dst_reg->u32_max_value = U32_MAX; 15428 15429 __mark_reg64_unbounded(dst_reg); 15430 __update_reg32_bounds(dst_reg); 15431 } 15432 15433 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 15434 struct bpf_reg_state *src_reg) 15435 { 15436 u64 umin_val = src_reg->umin_value; 15437 15438 /* Upon reaching here, src_known is true and umax_val is equal 15439 * to umin_val. 15440 */ 15441 dst_reg->smin_value >>= umin_val; 15442 dst_reg->smax_value >>= umin_val; 15443 15444 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 15445 15446 /* blow away the dst_reg umin_value/umax_value and rely on 15447 * dst_reg var_off to refine the result. 15448 */ 15449 dst_reg->umin_value = 0; 15450 dst_reg->umax_value = U64_MAX; 15451 15452 /* Its not easy to operate on alu32 bounds here because it depends 15453 * on bits being shifted in from upper 32-bits. Take easy way out 15454 * and mark unbounded so we can recalculate later from tnum. 15455 */ 15456 __mark_reg32_unbounded(dst_reg); 15457 __update_reg_bounds(dst_reg); 15458 } 15459 15460 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn, 15461 const struct bpf_reg_state *src_reg) 15462 { 15463 bool src_is_const = false; 15464 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 15465 15466 if (insn_bitness == 32) { 15467 if (tnum_subreg_is_const(src_reg->var_off) 15468 && src_reg->s32_min_value == src_reg->s32_max_value 15469 && src_reg->u32_min_value == src_reg->u32_max_value) 15470 src_is_const = true; 15471 } else { 15472 if (tnum_is_const(src_reg->var_off) 15473 && src_reg->smin_value == src_reg->smax_value 15474 && src_reg->umin_value == src_reg->umax_value) 15475 src_is_const = true; 15476 } 15477 15478 switch (BPF_OP(insn->code)) { 15479 case BPF_ADD: 15480 case BPF_SUB: 15481 case BPF_NEG: 15482 case BPF_AND: 15483 case BPF_XOR: 15484 case BPF_OR: 15485 case BPF_MUL: 15486 return true; 15487 15488 /* Shift operators range is only computable if shift dimension operand 15489 * is a constant. Shifts greater than 31 or 63 are undefined. This 15490 * includes shifts by a negative number. 15491 */ 15492 case BPF_LSH: 15493 case BPF_RSH: 15494 case BPF_ARSH: 15495 return (src_is_const && src_reg->umax_value < insn_bitness); 15496 default: 15497 return false; 15498 } 15499 } 15500 15501 /* WARNING: This function does calculations on 64-bit values, but the actual 15502 * execution may occur on 32-bit values. Therefore, things like bitshifts 15503 * need extra checks in the 32-bit case. 15504 */ 15505 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 15506 struct bpf_insn *insn, 15507 struct bpf_reg_state *dst_reg, 15508 struct bpf_reg_state src_reg) 15509 { 15510 u8 opcode = BPF_OP(insn->code); 15511 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 15512 int ret; 15513 15514 if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) { 15515 __mark_reg_unknown(env, dst_reg); 15516 return 0; 15517 } 15518 15519 if (sanitize_needed(opcode)) { 15520 ret = sanitize_val_alu(env, insn); 15521 if (ret < 0) 15522 return sanitize_err(env, insn, ret, NULL, NULL); 15523 } 15524 15525 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 15526 * There are two classes of instructions: The first class we track both 15527 * alu32 and alu64 sign/unsigned bounds independently this provides the 15528 * greatest amount of precision when alu operations are mixed with jmp32 15529 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 15530 * and BPF_OR. This is possible because these ops have fairly easy to 15531 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 15532 * See alu32 verifier tests for examples. The second class of 15533 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 15534 * with regards to tracking sign/unsigned bounds because the bits may 15535 * cross subreg boundaries in the alu64 case. When this happens we mark 15536 * the reg unbounded in the subreg bound space and use the resulting 15537 * tnum to calculate an approximation of the sign/unsigned bounds. 15538 */ 15539 switch (opcode) { 15540 case BPF_ADD: 15541 scalar32_min_max_add(dst_reg, &src_reg); 15542 scalar_min_max_add(dst_reg, &src_reg); 15543 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 15544 break; 15545 case BPF_SUB: 15546 scalar32_min_max_sub(dst_reg, &src_reg); 15547 scalar_min_max_sub(dst_reg, &src_reg); 15548 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 15549 break; 15550 case BPF_NEG: 15551 env->fake_reg[0] = *dst_reg; 15552 __mark_reg_known(dst_reg, 0); 15553 scalar32_min_max_sub(dst_reg, &env->fake_reg[0]); 15554 scalar_min_max_sub(dst_reg, &env->fake_reg[0]); 15555 dst_reg->var_off = tnum_neg(env->fake_reg[0].var_off); 15556 break; 15557 case BPF_MUL: 15558 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 15559 scalar32_min_max_mul(dst_reg, &src_reg); 15560 scalar_min_max_mul(dst_reg, &src_reg); 15561 break; 15562 case BPF_AND: 15563 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 15564 scalar32_min_max_and(dst_reg, &src_reg); 15565 scalar_min_max_and(dst_reg, &src_reg); 15566 break; 15567 case BPF_OR: 15568 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 15569 scalar32_min_max_or(dst_reg, &src_reg); 15570 scalar_min_max_or(dst_reg, &src_reg); 15571 break; 15572 case BPF_XOR: 15573 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 15574 scalar32_min_max_xor(dst_reg, &src_reg); 15575 scalar_min_max_xor(dst_reg, &src_reg); 15576 break; 15577 case BPF_LSH: 15578 if (alu32) 15579 scalar32_min_max_lsh(dst_reg, &src_reg); 15580 else 15581 scalar_min_max_lsh(dst_reg, &src_reg); 15582 break; 15583 case BPF_RSH: 15584 if (alu32) 15585 scalar32_min_max_rsh(dst_reg, &src_reg); 15586 else 15587 scalar_min_max_rsh(dst_reg, &src_reg); 15588 break; 15589 case BPF_ARSH: 15590 if (alu32) 15591 scalar32_min_max_arsh(dst_reg, &src_reg); 15592 else 15593 scalar_min_max_arsh(dst_reg, &src_reg); 15594 break; 15595 default: 15596 break; 15597 } 15598 15599 /* ALU32 ops are zero extended into 64bit register */ 15600 if (alu32) 15601 zext_32_to_64(dst_reg); 15602 reg_bounds_sync(dst_reg); 15603 return 0; 15604 } 15605 15606 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 15607 * and var_off. 15608 */ 15609 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 15610 struct bpf_insn *insn) 15611 { 15612 struct bpf_verifier_state *vstate = env->cur_state; 15613 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 15614 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 15615 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 15616 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 15617 u8 opcode = BPF_OP(insn->code); 15618 int err; 15619 15620 dst_reg = ®s[insn->dst_reg]; 15621 src_reg = NULL; 15622 15623 if (dst_reg->type == PTR_TO_ARENA) { 15624 struct bpf_insn_aux_data *aux = cur_aux(env); 15625 15626 if (BPF_CLASS(insn->code) == BPF_ALU64) 15627 /* 15628 * 32-bit operations zero upper bits automatically. 15629 * 64-bit operations need to be converted to 32. 15630 */ 15631 aux->needs_zext = true; 15632 15633 /* Any arithmetic operations are allowed on arena pointers */ 15634 return 0; 15635 } 15636 15637 if (dst_reg->type != SCALAR_VALUE) 15638 ptr_reg = dst_reg; 15639 15640 if (BPF_SRC(insn->code) == BPF_X) { 15641 src_reg = ®s[insn->src_reg]; 15642 if (src_reg->type != SCALAR_VALUE) { 15643 if (dst_reg->type != SCALAR_VALUE) { 15644 /* Combining two pointers by any ALU op yields 15645 * an arbitrary scalar. Disallow all math except 15646 * pointer subtraction 15647 */ 15648 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 15649 mark_reg_unknown(env, regs, insn->dst_reg); 15650 return 0; 15651 } 15652 verbose(env, "R%d pointer %s pointer prohibited\n", 15653 insn->dst_reg, 15654 bpf_alu_string[opcode >> 4]); 15655 return -EACCES; 15656 } else { 15657 /* scalar += pointer 15658 * This is legal, but we have to reverse our 15659 * src/dest handling in computing the range 15660 */ 15661 err = mark_chain_precision(env, insn->dst_reg); 15662 if (err) 15663 return err; 15664 return adjust_ptr_min_max_vals(env, insn, 15665 src_reg, dst_reg); 15666 } 15667 } else if (ptr_reg) { 15668 /* pointer += scalar */ 15669 err = mark_chain_precision(env, insn->src_reg); 15670 if (err) 15671 return err; 15672 return adjust_ptr_min_max_vals(env, insn, 15673 dst_reg, src_reg); 15674 } else if (dst_reg->precise) { 15675 /* if dst_reg is precise, src_reg should be precise as well */ 15676 err = mark_chain_precision(env, insn->src_reg); 15677 if (err) 15678 return err; 15679 } 15680 } else { 15681 /* Pretend the src is a reg with a known value, since we only 15682 * need to be able to read from this state. 15683 */ 15684 off_reg.type = SCALAR_VALUE; 15685 __mark_reg_known(&off_reg, insn->imm); 15686 src_reg = &off_reg; 15687 if (ptr_reg) /* pointer += K */ 15688 return adjust_ptr_min_max_vals(env, insn, 15689 ptr_reg, src_reg); 15690 } 15691 15692 /* Got here implies adding two SCALAR_VALUEs */ 15693 if (WARN_ON_ONCE(ptr_reg)) { 15694 print_verifier_state(env, vstate, vstate->curframe, true); 15695 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 15696 return -EFAULT; 15697 } 15698 if (WARN_ON(!src_reg)) { 15699 print_verifier_state(env, vstate, vstate->curframe, true); 15700 verbose(env, "verifier internal error: no src_reg\n"); 15701 return -EFAULT; 15702 } 15703 err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 15704 if (err) 15705 return err; 15706 /* 15707 * Compilers can generate the code 15708 * r1 = r2 15709 * r1 += 0x1 15710 * if r2 < 1000 goto ... 15711 * use r1 in memory access 15712 * So for 64-bit alu remember constant delta between r2 and r1 and 15713 * update r1 after 'if' condition. 15714 */ 15715 if (env->bpf_capable && 15716 BPF_OP(insn->code) == BPF_ADD && !alu32 && 15717 dst_reg->id && is_reg_const(src_reg, false)) { 15718 u64 val = reg_const_value(src_reg, false); 15719 15720 if ((dst_reg->id & BPF_ADD_CONST) || 15721 /* prevent overflow in sync_linked_regs() later */ 15722 val > (u32)S32_MAX) { 15723 /* 15724 * If the register already went through rX += val 15725 * we cannot accumulate another val into rx->off. 15726 */ 15727 dst_reg->off = 0; 15728 dst_reg->id = 0; 15729 } else { 15730 dst_reg->id |= BPF_ADD_CONST; 15731 dst_reg->off = val; 15732 } 15733 } else { 15734 /* 15735 * Make sure ID is cleared otherwise dst_reg min/max could be 15736 * incorrectly propagated into other registers by sync_linked_regs() 15737 */ 15738 dst_reg->id = 0; 15739 } 15740 return 0; 15741 } 15742 15743 /* check validity of 32-bit and 64-bit arithmetic operations */ 15744 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 15745 { 15746 struct bpf_reg_state *regs = cur_regs(env); 15747 u8 opcode = BPF_OP(insn->code); 15748 int err; 15749 15750 if (opcode == BPF_END || opcode == BPF_NEG) { 15751 if (opcode == BPF_NEG) { 15752 if (BPF_SRC(insn->code) != BPF_K || 15753 insn->src_reg != BPF_REG_0 || 15754 insn->off != 0 || insn->imm != 0) { 15755 verbose(env, "BPF_NEG uses reserved fields\n"); 15756 return -EINVAL; 15757 } 15758 } else { 15759 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 15760 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 15761 (BPF_CLASS(insn->code) == BPF_ALU64 && 15762 BPF_SRC(insn->code) != BPF_TO_LE)) { 15763 verbose(env, "BPF_END uses reserved fields\n"); 15764 return -EINVAL; 15765 } 15766 } 15767 15768 /* check src operand */ 15769 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15770 if (err) 15771 return err; 15772 15773 if (is_pointer_value(env, insn->dst_reg)) { 15774 verbose(env, "R%d pointer arithmetic prohibited\n", 15775 insn->dst_reg); 15776 return -EACCES; 15777 } 15778 15779 /* check dest operand */ 15780 if (opcode == BPF_NEG && 15781 regs[insn->dst_reg].type == SCALAR_VALUE) { 15782 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15783 err = err ?: adjust_scalar_min_max_vals(env, insn, 15784 ®s[insn->dst_reg], 15785 regs[insn->dst_reg]); 15786 } else { 15787 err = check_reg_arg(env, insn->dst_reg, DST_OP); 15788 } 15789 if (err) 15790 return err; 15791 15792 } else if (opcode == BPF_MOV) { 15793 15794 if (BPF_SRC(insn->code) == BPF_X) { 15795 if (BPF_CLASS(insn->code) == BPF_ALU) { 15796 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || 15797 insn->imm) { 15798 verbose(env, "BPF_MOV uses reserved fields\n"); 15799 return -EINVAL; 15800 } 15801 } else if (insn->off == BPF_ADDR_SPACE_CAST) { 15802 if (insn->imm != 1 && insn->imm != 1u << 16) { 15803 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); 15804 return -EINVAL; 15805 } 15806 if (!env->prog->aux->arena) { 15807 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n"); 15808 return -EINVAL; 15809 } 15810 } else { 15811 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && 15812 insn->off != 32) || insn->imm) { 15813 verbose(env, "BPF_MOV uses reserved fields\n"); 15814 return -EINVAL; 15815 } 15816 } 15817 15818 /* check src operand */ 15819 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15820 if (err) 15821 return err; 15822 } else { 15823 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 15824 verbose(env, "BPF_MOV uses reserved fields\n"); 15825 return -EINVAL; 15826 } 15827 } 15828 15829 /* check dest operand, mark as required later */ 15830 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15831 if (err) 15832 return err; 15833 15834 if (BPF_SRC(insn->code) == BPF_X) { 15835 struct bpf_reg_state *src_reg = regs + insn->src_reg; 15836 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 15837 15838 if (BPF_CLASS(insn->code) == BPF_ALU64) { 15839 if (insn->imm) { 15840 /* off == BPF_ADDR_SPACE_CAST */ 15841 mark_reg_unknown(env, regs, insn->dst_reg); 15842 if (insn->imm == 1) { /* cast from as(1) to as(0) */ 15843 dst_reg->type = PTR_TO_ARENA; 15844 /* PTR_TO_ARENA is 32-bit */ 15845 dst_reg->subreg_def = env->insn_idx + 1; 15846 } 15847 } else if (insn->off == 0) { 15848 /* case: R1 = R2 15849 * copy register state to dest reg 15850 */ 15851 assign_scalar_id_before_mov(env, src_reg); 15852 copy_register_state(dst_reg, src_reg); 15853 dst_reg->subreg_def = DEF_NOT_SUBREG; 15854 } else { 15855 /* case: R1 = (s8, s16 s32)R2 */ 15856 if (is_pointer_value(env, insn->src_reg)) { 15857 verbose(env, 15858 "R%d sign-extension part of pointer\n", 15859 insn->src_reg); 15860 return -EACCES; 15861 } else if (src_reg->type == SCALAR_VALUE) { 15862 bool no_sext; 15863 15864 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 15865 if (no_sext) 15866 assign_scalar_id_before_mov(env, src_reg); 15867 copy_register_state(dst_reg, src_reg); 15868 if (!no_sext) 15869 dst_reg->id = 0; 15870 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 15871 dst_reg->subreg_def = DEF_NOT_SUBREG; 15872 } else { 15873 mark_reg_unknown(env, regs, insn->dst_reg); 15874 } 15875 } 15876 } else { 15877 /* R1 = (u32) R2 */ 15878 if (is_pointer_value(env, insn->src_reg)) { 15879 verbose(env, 15880 "R%d partial copy of pointer\n", 15881 insn->src_reg); 15882 return -EACCES; 15883 } else if (src_reg->type == SCALAR_VALUE) { 15884 if (insn->off == 0) { 15885 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; 15886 15887 if (is_src_reg_u32) 15888 assign_scalar_id_before_mov(env, src_reg); 15889 copy_register_state(dst_reg, src_reg); 15890 /* Make sure ID is cleared if src_reg is not in u32 15891 * range otherwise dst_reg min/max could be incorrectly 15892 * propagated into src_reg by sync_linked_regs() 15893 */ 15894 if (!is_src_reg_u32) 15895 dst_reg->id = 0; 15896 dst_reg->subreg_def = env->insn_idx + 1; 15897 } else { 15898 /* case: W1 = (s8, s16)W2 */ 15899 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 15900 15901 if (no_sext) 15902 assign_scalar_id_before_mov(env, src_reg); 15903 copy_register_state(dst_reg, src_reg); 15904 if (!no_sext) 15905 dst_reg->id = 0; 15906 dst_reg->subreg_def = env->insn_idx + 1; 15907 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 15908 } 15909 } else { 15910 mark_reg_unknown(env, regs, 15911 insn->dst_reg); 15912 } 15913 zext_32_to_64(dst_reg); 15914 reg_bounds_sync(dst_reg); 15915 } 15916 } else { 15917 /* case: R = imm 15918 * remember the value we stored into this reg 15919 */ 15920 /* clear any state __mark_reg_known doesn't set */ 15921 mark_reg_unknown(env, regs, insn->dst_reg); 15922 regs[insn->dst_reg].type = SCALAR_VALUE; 15923 if (BPF_CLASS(insn->code) == BPF_ALU64) { 15924 __mark_reg_known(regs + insn->dst_reg, 15925 insn->imm); 15926 } else { 15927 __mark_reg_known(regs + insn->dst_reg, 15928 (u32)insn->imm); 15929 } 15930 } 15931 15932 } else if (opcode > BPF_END) { 15933 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 15934 return -EINVAL; 15935 15936 } else { /* all other ALU ops: and, sub, xor, add, ... */ 15937 15938 if (BPF_SRC(insn->code) == BPF_X) { 15939 if (insn->imm != 0 || (insn->off != 0 && insn->off != 1) || 15940 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 15941 verbose(env, "BPF_ALU uses reserved fields\n"); 15942 return -EINVAL; 15943 } 15944 /* check src1 operand */ 15945 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15946 if (err) 15947 return err; 15948 } else { 15949 if (insn->src_reg != BPF_REG_0 || (insn->off != 0 && insn->off != 1) || 15950 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 15951 verbose(env, "BPF_ALU uses reserved fields\n"); 15952 return -EINVAL; 15953 } 15954 } 15955 15956 /* check src2 operand */ 15957 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15958 if (err) 15959 return err; 15960 15961 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 15962 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 15963 verbose(env, "div by zero\n"); 15964 return -EINVAL; 15965 } 15966 15967 if ((opcode == BPF_LSH || opcode == BPF_RSH || 15968 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 15969 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 15970 15971 if (insn->imm < 0 || insn->imm >= size) { 15972 verbose(env, "invalid shift %d\n", insn->imm); 15973 return -EINVAL; 15974 } 15975 } 15976 15977 /* check dest operand */ 15978 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15979 err = err ?: adjust_reg_min_max_vals(env, insn); 15980 if (err) 15981 return err; 15982 } 15983 15984 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 15985 } 15986 15987 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 15988 struct bpf_reg_state *dst_reg, 15989 enum bpf_reg_type type, 15990 bool range_right_open) 15991 { 15992 struct bpf_func_state *state; 15993 struct bpf_reg_state *reg; 15994 int new_range; 15995 15996 if (dst_reg->off < 0 || 15997 (dst_reg->off == 0 && range_right_open)) 15998 /* This doesn't give us any range */ 15999 return; 16000 16001 if (dst_reg->umax_value > MAX_PACKET_OFF || 16002 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 16003 /* Risk of overflow. For instance, ptr + (1<<63) may be less 16004 * than pkt_end, but that's because it's also less than pkt. 16005 */ 16006 return; 16007 16008 new_range = dst_reg->off; 16009 if (range_right_open) 16010 new_range++; 16011 16012 /* Examples for register markings: 16013 * 16014 * pkt_data in dst register: 16015 * 16016 * r2 = r3; 16017 * r2 += 8; 16018 * if (r2 > pkt_end) goto <handle exception> 16019 * <access okay> 16020 * 16021 * r2 = r3; 16022 * r2 += 8; 16023 * if (r2 < pkt_end) goto <access okay> 16024 * <handle exception> 16025 * 16026 * Where: 16027 * r2 == dst_reg, pkt_end == src_reg 16028 * r2=pkt(id=n,off=8,r=0) 16029 * r3=pkt(id=n,off=0,r=0) 16030 * 16031 * pkt_data in src register: 16032 * 16033 * r2 = r3; 16034 * r2 += 8; 16035 * if (pkt_end >= r2) goto <access okay> 16036 * <handle exception> 16037 * 16038 * r2 = r3; 16039 * r2 += 8; 16040 * if (pkt_end <= r2) goto <handle exception> 16041 * <access okay> 16042 * 16043 * Where: 16044 * pkt_end == dst_reg, r2 == src_reg 16045 * r2=pkt(id=n,off=8,r=0) 16046 * r3=pkt(id=n,off=0,r=0) 16047 * 16048 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 16049 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 16050 * and [r3, r3 + 8-1) respectively is safe to access depending on 16051 * the check. 16052 */ 16053 16054 /* If our ids match, then we must have the same max_value. And we 16055 * don't care about the other reg's fixed offset, since if it's too big 16056 * the range won't allow anything. 16057 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 16058 */ 16059 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 16060 if (reg->type == type && reg->id == dst_reg->id) 16061 /* keep the maximum range already checked */ 16062 reg->range = max(reg->range, new_range); 16063 })); 16064 } 16065 16066 /* 16067 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 16068 */ 16069 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 16070 u8 opcode, bool is_jmp32) 16071 { 16072 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 16073 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 16074 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 16075 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 16076 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 16077 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 16078 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 16079 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 16080 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 16081 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 16082 16083 if (reg1 == reg2) { 16084 switch (opcode) { 16085 case BPF_JGE: 16086 case BPF_JLE: 16087 case BPF_JSGE: 16088 case BPF_JSLE: 16089 case BPF_JEQ: 16090 return 1; 16091 case BPF_JGT: 16092 case BPF_JLT: 16093 case BPF_JSGT: 16094 case BPF_JSLT: 16095 case BPF_JNE: 16096 return 0; 16097 case BPF_JSET: 16098 if (tnum_is_const(t1)) 16099 return t1.value != 0; 16100 else 16101 return (smin1 <= 0 && smax1 >= 0) ? -1 : 1; 16102 default: 16103 return -1; 16104 } 16105 } 16106 16107 switch (opcode) { 16108 case BPF_JEQ: 16109 /* constants, umin/umax and smin/smax checks would be 16110 * redundant in this case because they all should match 16111 */ 16112 if (tnum_is_const(t1) && tnum_is_const(t2)) 16113 return t1.value == t2.value; 16114 if (!tnum_overlap(t1, t2)) 16115 return 0; 16116 /* non-overlapping ranges */ 16117 if (umin1 > umax2 || umax1 < umin2) 16118 return 0; 16119 if (smin1 > smax2 || smax1 < smin2) 16120 return 0; 16121 if (!is_jmp32) { 16122 /* if 64-bit ranges are inconclusive, see if we can 16123 * utilize 32-bit subrange knowledge to eliminate 16124 * branches that can't be taken a priori 16125 */ 16126 if (reg1->u32_min_value > reg2->u32_max_value || 16127 reg1->u32_max_value < reg2->u32_min_value) 16128 return 0; 16129 if (reg1->s32_min_value > reg2->s32_max_value || 16130 reg1->s32_max_value < reg2->s32_min_value) 16131 return 0; 16132 } 16133 break; 16134 case BPF_JNE: 16135 /* constants, umin/umax and smin/smax checks would be 16136 * redundant in this case because they all should match 16137 */ 16138 if (tnum_is_const(t1) && tnum_is_const(t2)) 16139 return t1.value != t2.value; 16140 if (!tnum_overlap(t1, t2)) 16141 return 1; 16142 /* non-overlapping ranges */ 16143 if (umin1 > umax2 || umax1 < umin2) 16144 return 1; 16145 if (smin1 > smax2 || smax1 < smin2) 16146 return 1; 16147 if (!is_jmp32) { 16148 /* if 64-bit ranges are inconclusive, see if we can 16149 * utilize 32-bit subrange knowledge to eliminate 16150 * branches that can't be taken a priori 16151 */ 16152 if (reg1->u32_min_value > reg2->u32_max_value || 16153 reg1->u32_max_value < reg2->u32_min_value) 16154 return 1; 16155 if (reg1->s32_min_value > reg2->s32_max_value || 16156 reg1->s32_max_value < reg2->s32_min_value) 16157 return 1; 16158 } 16159 break; 16160 case BPF_JSET: 16161 if (!is_reg_const(reg2, is_jmp32)) { 16162 swap(reg1, reg2); 16163 swap(t1, t2); 16164 } 16165 if (!is_reg_const(reg2, is_jmp32)) 16166 return -1; 16167 if ((~t1.mask & t1.value) & t2.value) 16168 return 1; 16169 if (!((t1.mask | t1.value) & t2.value)) 16170 return 0; 16171 break; 16172 case BPF_JGT: 16173 if (umin1 > umax2) 16174 return 1; 16175 else if (umax1 <= umin2) 16176 return 0; 16177 break; 16178 case BPF_JSGT: 16179 if (smin1 > smax2) 16180 return 1; 16181 else if (smax1 <= smin2) 16182 return 0; 16183 break; 16184 case BPF_JLT: 16185 if (umax1 < umin2) 16186 return 1; 16187 else if (umin1 >= umax2) 16188 return 0; 16189 break; 16190 case BPF_JSLT: 16191 if (smax1 < smin2) 16192 return 1; 16193 else if (smin1 >= smax2) 16194 return 0; 16195 break; 16196 case BPF_JGE: 16197 if (umin1 >= umax2) 16198 return 1; 16199 else if (umax1 < umin2) 16200 return 0; 16201 break; 16202 case BPF_JSGE: 16203 if (smin1 >= smax2) 16204 return 1; 16205 else if (smax1 < smin2) 16206 return 0; 16207 break; 16208 case BPF_JLE: 16209 if (umax1 <= umin2) 16210 return 1; 16211 else if (umin1 > umax2) 16212 return 0; 16213 break; 16214 case BPF_JSLE: 16215 if (smax1 <= smin2) 16216 return 1; 16217 else if (smin1 > smax2) 16218 return 0; 16219 break; 16220 } 16221 16222 return -1; 16223 } 16224 16225 static int flip_opcode(u32 opcode) 16226 { 16227 /* How can we transform "a <op> b" into "b <op> a"? */ 16228 static const u8 opcode_flip[16] = { 16229 /* these stay the same */ 16230 [BPF_JEQ >> 4] = BPF_JEQ, 16231 [BPF_JNE >> 4] = BPF_JNE, 16232 [BPF_JSET >> 4] = BPF_JSET, 16233 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 16234 [BPF_JGE >> 4] = BPF_JLE, 16235 [BPF_JGT >> 4] = BPF_JLT, 16236 [BPF_JLE >> 4] = BPF_JGE, 16237 [BPF_JLT >> 4] = BPF_JGT, 16238 [BPF_JSGE >> 4] = BPF_JSLE, 16239 [BPF_JSGT >> 4] = BPF_JSLT, 16240 [BPF_JSLE >> 4] = BPF_JSGE, 16241 [BPF_JSLT >> 4] = BPF_JSGT 16242 }; 16243 return opcode_flip[opcode >> 4]; 16244 } 16245 16246 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 16247 struct bpf_reg_state *src_reg, 16248 u8 opcode) 16249 { 16250 struct bpf_reg_state *pkt; 16251 16252 if (src_reg->type == PTR_TO_PACKET_END) { 16253 pkt = dst_reg; 16254 } else if (dst_reg->type == PTR_TO_PACKET_END) { 16255 pkt = src_reg; 16256 opcode = flip_opcode(opcode); 16257 } else { 16258 return -1; 16259 } 16260 16261 if (pkt->range >= 0) 16262 return -1; 16263 16264 switch (opcode) { 16265 case BPF_JLE: 16266 /* pkt <= pkt_end */ 16267 fallthrough; 16268 case BPF_JGT: 16269 /* pkt > pkt_end */ 16270 if (pkt->range == BEYOND_PKT_END) 16271 /* pkt has at last one extra byte beyond pkt_end */ 16272 return opcode == BPF_JGT; 16273 break; 16274 case BPF_JLT: 16275 /* pkt < pkt_end */ 16276 fallthrough; 16277 case BPF_JGE: 16278 /* pkt >= pkt_end */ 16279 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 16280 return opcode == BPF_JGE; 16281 break; 16282 } 16283 return -1; 16284 } 16285 16286 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 16287 * and return: 16288 * 1 - branch will be taken and "goto target" will be executed 16289 * 0 - branch will not be taken and fall-through to next insn 16290 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 16291 * range [0,10] 16292 */ 16293 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 16294 u8 opcode, bool is_jmp32) 16295 { 16296 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 16297 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 16298 16299 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 16300 u64 val; 16301 16302 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 16303 if (!is_reg_const(reg2, is_jmp32)) { 16304 opcode = flip_opcode(opcode); 16305 swap(reg1, reg2); 16306 } 16307 /* and ensure that reg2 is a constant */ 16308 if (!is_reg_const(reg2, is_jmp32)) 16309 return -1; 16310 16311 if (!reg_not_null(reg1)) 16312 return -1; 16313 16314 /* If pointer is valid tests against zero will fail so we can 16315 * use this to direct branch taken. 16316 */ 16317 val = reg_const_value(reg2, is_jmp32); 16318 if (val != 0) 16319 return -1; 16320 16321 switch (opcode) { 16322 case BPF_JEQ: 16323 return 0; 16324 case BPF_JNE: 16325 return 1; 16326 default: 16327 return -1; 16328 } 16329 } 16330 16331 /* now deal with two scalars, but not necessarily constants */ 16332 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 16333 } 16334 16335 /* Opcode that corresponds to a *false* branch condition. 16336 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 16337 */ 16338 static u8 rev_opcode(u8 opcode) 16339 { 16340 switch (opcode) { 16341 case BPF_JEQ: return BPF_JNE; 16342 case BPF_JNE: return BPF_JEQ; 16343 /* JSET doesn't have it's reverse opcode in BPF, so add 16344 * BPF_X flag to denote the reverse of that operation 16345 */ 16346 case BPF_JSET: return BPF_JSET | BPF_X; 16347 case BPF_JSET | BPF_X: return BPF_JSET; 16348 case BPF_JGE: return BPF_JLT; 16349 case BPF_JGT: return BPF_JLE; 16350 case BPF_JLE: return BPF_JGT; 16351 case BPF_JLT: return BPF_JGE; 16352 case BPF_JSGE: return BPF_JSLT; 16353 case BPF_JSGT: return BPF_JSLE; 16354 case BPF_JSLE: return BPF_JSGT; 16355 case BPF_JSLT: return BPF_JSGE; 16356 default: return 0; 16357 } 16358 } 16359 16360 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 16361 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 16362 u8 opcode, bool is_jmp32) 16363 { 16364 struct tnum t; 16365 u64 val; 16366 16367 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */ 16368 switch (opcode) { 16369 case BPF_JGE: 16370 case BPF_JGT: 16371 case BPF_JSGE: 16372 case BPF_JSGT: 16373 opcode = flip_opcode(opcode); 16374 swap(reg1, reg2); 16375 break; 16376 default: 16377 break; 16378 } 16379 16380 switch (opcode) { 16381 case BPF_JEQ: 16382 if (is_jmp32) { 16383 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 16384 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 16385 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 16386 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 16387 reg2->u32_min_value = reg1->u32_min_value; 16388 reg2->u32_max_value = reg1->u32_max_value; 16389 reg2->s32_min_value = reg1->s32_min_value; 16390 reg2->s32_max_value = reg1->s32_max_value; 16391 16392 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 16393 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 16394 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 16395 } else { 16396 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 16397 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 16398 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 16399 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 16400 reg2->umin_value = reg1->umin_value; 16401 reg2->umax_value = reg1->umax_value; 16402 reg2->smin_value = reg1->smin_value; 16403 reg2->smax_value = reg1->smax_value; 16404 16405 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 16406 reg2->var_off = reg1->var_off; 16407 } 16408 break; 16409 case BPF_JNE: 16410 if (!is_reg_const(reg2, is_jmp32)) 16411 swap(reg1, reg2); 16412 if (!is_reg_const(reg2, is_jmp32)) 16413 break; 16414 16415 /* try to recompute the bound of reg1 if reg2 is a const and 16416 * is exactly the edge of reg1. 16417 */ 16418 val = reg_const_value(reg2, is_jmp32); 16419 if (is_jmp32) { 16420 /* u32_min_value is not equal to 0xffffffff at this point, 16421 * because otherwise u32_max_value is 0xffffffff as well, 16422 * in such a case both reg1 and reg2 would be constants, 16423 * jump would be predicted and reg_set_min_max() won't 16424 * be called. 16425 * 16426 * Same reasoning works for all {u,s}{min,max}{32,64} cases 16427 * below. 16428 */ 16429 if (reg1->u32_min_value == (u32)val) 16430 reg1->u32_min_value++; 16431 if (reg1->u32_max_value == (u32)val) 16432 reg1->u32_max_value--; 16433 if (reg1->s32_min_value == (s32)val) 16434 reg1->s32_min_value++; 16435 if (reg1->s32_max_value == (s32)val) 16436 reg1->s32_max_value--; 16437 } else { 16438 if (reg1->umin_value == (u64)val) 16439 reg1->umin_value++; 16440 if (reg1->umax_value == (u64)val) 16441 reg1->umax_value--; 16442 if (reg1->smin_value == (s64)val) 16443 reg1->smin_value++; 16444 if (reg1->smax_value == (s64)val) 16445 reg1->smax_value--; 16446 } 16447 break; 16448 case BPF_JSET: 16449 if (!is_reg_const(reg2, is_jmp32)) 16450 swap(reg1, reg2); 16451 if (!is_reg_const(reg2, is_jmp32)) 16452 break; 16453 val = reg_const_value(reg2, is_jmp32); 16454 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 16455 * requires single bit to learn something useful. E.g., if we 16456 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 16457 * are actually set? We can learn something definite only if 16458 * it's a single-bit value to begin with. 16459 * 16460 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 16461 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 16462 * bit 1 is set, which we can readily use in adjustments. 16463 */ 16464 if (!is_power_of_2(val)) 16465 break; 16466 if (is_jmp32) { 16467 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 16468 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 16469 } else { 16470 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 16471 } 16472 break; 16473 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 16474 if (!is_reg_const(reg2, is_jmp32)) 16475 swap(reg1, reg2); 16476 if (!is_reg_const(reg2, is_jmp32)) 16477 break; 16478 val = reg_const_value(reg2, is_jmp32); 16479 /* Forget the ranges before narrowing tnums, to avoid invariant 16480 * violations if we're on a dead branch. 16481 */ 16482 __mark_reg_unbounded(reg1); 16483 if (is_jmp32) { 16484 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 16485 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 16486 } else { 16487 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 16488 } 16489 break; 16490 case BPF_JLE: 16491 if (is_jmp32) { 16492 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 16493 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 16494 } else { 16495 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 16496 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 16497 } 16498 break; 16499 case BPF_JLT: 16500 if (is_jmp32) { 16501 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 16502 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 16503 } else { 16504 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 16505 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 16506 } 16507 break; 16508 case BPF_JSLE: 16509 if (is_jmp32) { 16510 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 16511 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 16512 } else { 16513 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 16514 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 16515 } 16516 break; 16517 case BPF_JSLT: 16518 if (is_jmp32) { 16519 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 16520 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 16521 } else { 16522 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 16523 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 16524 } 16525 break; 16526 default: 16527 return; 16528 } 16529 } 16530 16531 /* Adjusts the register min/max values in the case that the dst_reg and 16532 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 16533 * check, in which case we have a fake SCALAR_VALUE representing insn->imm). 16534 * Technically we can do similar adjustments for pointers to the same object, 16535 * but we don't support that right now. 16536 */ 16537 static int reg_set_min_max(struct bpf_verifier_env *env, 16538 struct bpf_reg_state *true_reg1, 16539 struct bpf_reg_state *true_reg2, 16540 struct bpf_reg_state *false_reg1, 16541 struct bpf_reg_state *false_reg2, 16542 u8 opcode, bool is_jmp32) 16543 { 16544 int err; 16545 16546 /* If either register is a pointer, we can't learn anything about its 16547 * variable offset from the compare (unless they were a pointer into 16548 * the same object, but we don't bother with that). 16549 */ 16550 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 16551 return 0; 16552 16553 /* We compute branch direction for same SCALAR_VALUE registers in 16554 * is_scalar_branch_taken(). For unknown branch directions (e.g., BPF_JSET) 16555 * on the same registers, we don't need to adjust the min/max values. 16556 */ 16557 if (false_reg1 == false_reg2) 16558 return 0; 16559 16560 /* fallthrough (FALSE) branch */ 16561 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 16562 reg_bounds_sync(false_reg1); 16563 reg_bounds_sync(false_reg2); 16564 16565 /* jump (TRUE) branch */ 16566 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 16567 reg_bounds_sync(true_reg1); 16568 reg_bounds_sync(true_reg2); 16569 16570 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 16571 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 16572 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 16573 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 16574 return err; 16575 } 16576 16577 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 16578 struct bpf_reg_state *reg, u32 id, 16579 bool is_null) 16580 { 16581 if (type_may_be_null(reg->type) && reg->id == id && 16582 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 16583 /* Old offset (both fixed and variable parts) should have been 16584 * known-zero, because we don't allow pointer arithmetic on 16585 * pointers that might be NULL. If we see this happening, don't 16586 * convert the register. 16587 * 16588 * But in some cases, some helpers that return local kptrs 16589 * advance offset for the returned pointer. In those cases, it 16590 * is fine to expect to see reg->off. 16591 */ 16592 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 16593 return; 16594 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 16595 WARN_ON_ONCE(reg->off)) 16596 return; 16597 16598 if (is_null) { 16599 reg->type = SCALAR_VALUE; 16600 /* We don't need id and ref_obj_id from this point 16601 * onwards anymore, thus we should better reset it, 16602 * so that state pruning has chances to take effect. 16603 */ 16604 reg->id = 0; 16605 reg->ref_obj_id = 0; 16606 16607 return; 16608 } 16609 16610 mark_ptr_not_null_reg(reg); 16611 16612 if (!reg_may_point_to_spin_lock(reg)) { 16613 /* For not-NULL ptr, reg->ref_obj_id will be reset 16614 * in release_reference(). 16615 * 16616 * reg->id is still used by spin_lock ptr. Other 16617 * than spin_lock ptr type, reg->id can be reset. 16618 */ 16619 reg->id = 0; 16620 } 16621 } 16622 } 16623 16624 /* The logic is similar to find_good_pkt_pointers(), both could eventually 16625 * be folded together at some point. 16626 */ 16627 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 16628 bool is_null) 16629 { 16630 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 16631 struct bpf_reg_state *regs = state->regs, *reg; 16632 u32 ref_obj_id = regs[regno].ref_obj_id; 16633 u32 id = regs[regno].id; 16634 16635 if (ref_obj_id && ref_obj_id == id && is_null) 16636 /* regs[regno] is in the " == NULL" branch. 16637 * No one could have freed the reference state before 16638 * doing the NULL check. 16639 */ 16640 WARN_ON_ONCE(release_reference_nomark(vstate, id)); 16641 16642 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 16643 mark_ptr_or_null_reg(state, reg, id, is_null); 16644 })); 16645 } 16646 16647 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 16648 struct bpf_reg_state *dst_reg, 16649 struct bpf_reg_state *src_reg, 16650 struct bpf_verifier_state *this_branch, 16651 struct bpf_verifier_state *other_branch) 16652 { 16653 if (BPF_SRC(insn->code) != BPF_X) 16654 return false; 16655 16656 /* Pointers are always 64-bit. */ 16657 if (BPF_CLASS(insn->code) == BPF_JMP32) 16658 return false; 16659 16660 switch (BPF_OP(insn->code)) { 16661 case BPF_JGT: 16662 if ((dst_reg->type == PTR_TO_PACKET && 16663 src_reg->type == PTR_TO_PACKET_END) || 16664 (dst_reg->type == PTR_TO_PACKET_META && 16665 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16666 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 16667 find_good_pkt_pointers(this_branch, dst_reg, 16668 dst_reg->type, false); 16669 mark_pkt_end(other_branch, insn->dst_reg, true); 16670 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16671 src_reg->type == PTR_TO_PACKET) || 16672 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16673 src_reg->type == PTR_TO_PACKET_META)) { 16674 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 16675 find_good_pkt_pointers(other_branch, src_reg, 16676 src_reg->type, true); 16677 mark_pkt_end(this_branch, insn->src_reg, false); 16678 } else { 16679 return false; 16680 } 16681 break; 16682 case BPF_JLT: 16683 if ((dst_reg->type == PTR_TO_PACKET && 16684 src_reg->type == PTR_TO_PACKET_END) || 16685 (dst_reg->type == PTR_TO_PACKET_META && 16686 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16687 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 16688 find_good_pkt_pointers(other_branch, dst_reg, 16689 dst_reg->type, true); 16690 mark_pkt_end(this_branch, insn->dst_reg, false); 16691 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16692 src_reg->type == PTR_TO_PACKET) || 16693 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16694 src_reg->type == PTR_TO_PACKET_META)) { 16695 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 16696 find_good_pkt_pointers(this_branch, src_reg, 16697 src_reg->type, false); 16698 mark_pkt_end(other_branch, insn->src_reg, true); 16699 } else { 16700 return false; 16701 } 16702 break; 16703 case BPF_JGE: 16704 if ((dst_reg->type == PTR_TO_PACKET && 16705 src_reg->type == PTR_TO_PACKET_END) || 16706 (dst_reg->type == PTR_TO_PACKET_META && 16707 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16708 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 16709 find_good_pkt_pointers(this_branch, dst_reg, 16710 dst_reg->type, true); 16711 mark_pkt_end(other_branch, insn->dst_reg, false); 16712 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16713 src_reg->type == PTR_TO_PACKET) || 16714 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16715 src_reg->type == PTR_TO_PACKET_META)) { 16716 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 16717 find_good_pkt_pointers(other_branch, src_reg, 16718 src_reg->type, false); 16719 mark_pkt_end(this_branch, insn->src_reg, true); 16720 } else { 16721 return false; 16722 } 16723 break; 16724 case BPF_JLE: 16725 if ((dst_reg->type == PTR_TO_PACKET && 16726 src_reg->type == PTR_TO_PACKET_END) || 16727 (dst_reg->type == PTR_TO_PACKET_META && 16728 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16729 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 16730 find_good_pkt_pointers(other_branch, dst_reg, 16731 dst_reg->type, false); 16732 mark_pkt_end(this_branch, insn->dst_reg, true); 16733 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16734 src_reg->type == PTR_TO_PACKET) || 16735 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16736 src_reg->type == PTR_TO_PACKET_META)) { 16737 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 16738 find_good_pkt_pointers(this_branch, src_reg, 16739 src_reg->type, true); 16740 mark_pkt_end(other_branch, insn->src_reg, false); 16741 } else { 16742 return false; 16743 } 16744 break; 16745 default: 16746 return false; 16747 } 16748 16749 return true; 16750 } 16751 16752 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg, 16753 u32 id, u32 frameno, u32 spi_or_reg, bool is_reg) 16754 { 16755 struct linked_reg *e; 16756 16757 if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id) 16758 return; 16759 16760 e = linked_regs_push(reg_set); 16761 if (e) { 16762 e->frameno = frameno; 16763 e->is_reg = is_reg; 16764 e->regno = spi_or_reg; 16765 } else { 16766 reg->id = 0; 16767 } 16768 } 16769 16770 /* For all R being scalar registers or spilled scalar registers 16771 * in verifier state, save R in linked_regs if R->id == id. 16772 * If there are too many Rs sharing same id, reset id for leftover Rs. 16773 */ 16774 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id, 16775 struct linked_regs *linked_regs) 16776 { 16777 struct bpf_func_state *func; 16778 struct bpf_reg_state *reg; 16779 int i, j; 16780 16781 id = id & ~BPF_ADD_CONST; 16782 for (i = vstate->curframe; i >= 0; i--) { 16783 func = vstate->frame[i]; 16784 for (j = 0; j < BPF_REG_FP; j++) { 16785 reg = &func->regs[j]; 16786 __collect_linked_regs(linked_regs, reg, id, i, j, true); 16787 } 16788 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 16789 if (!is_spilled_reg(&func->stack[j])) 16790 continue; 16791 reg = &func->stack[j].spilled_ptr; 16792 __collect_linked_regs(linked_regs, reg, id, i, j, false); 16793 } 16794 } 16795 } 16796 16797 /* For all R in linked_regs, copy known_reg range into R 16798 * if R->id == known_reg->id. 16799 */ 16800 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg, 16801 struct linked_regs *linked_regs) 16802 { 16803 struct bpf_reg_state fake_reg; 16804 struct bpf_reg_state *reg; 16805 struct linked_reg *e; 16806 int i; 16807 16808 for (i = 0; i < linked_regs->cnt; ++i) { 16809 e = &linked_regs->entries[i]; 16810 reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno] 16811 : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr; 16812 if (reg->type != SCALAR_VALUE || reg == known_reg) 16813 continue; 16814 if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST)) 16815 continue; 16816 if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) || 16817 reg->off == known_reg->off) { 16818 s32 saved_subreg_def = reg->subreg_def; 16819 16820 copy_register_state(reg, known_reg); 16821 reg->subreg_def = saved_subreg_def; 16822 } else { 16823 s32 saved_subreg_def = reg->subreg_def; 16824 s32 saved_off = reg->off; 16825 16826 fake_reg.type = SCALAR_VALUE; 16827 __mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off); 16828 16829 /* reg = known_reg; reg += delta */ 16830 copy_register_state(reg, known_reg); 16831 /* 16832 * Must preserve off, id and add_const flag, 16833 * otherwise another sync_linked_regs() will be incorrect. 16834 */ 16835 reg->off = saved_off; 16836 reg->subreg_def = saved_subreg_def; 16837 16838 scalar32_min_max_add(reg, &fake_reg); 16839 scalar_min_max_add(reg, &fake_reg); 16840 reg->var_off = tnum_add(reg->var_off, fake_reg.var_off); 16841 } 16842 } 16843 } 16844 16845 static int check_cond_jmp_op(struct bpf_verifier_env *env, 16846 struct bpf_insn *insn, int *insn_idx) 16847 { 16848 struct bpf_verifier_state *this_branch = env->cur_state; 16849 struct bpf_verifier_state *other_branch; 16850 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 16851 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 16852 struct bpf_reg_state *eq_branch_regs; 16853 struct linked_regs linked_regs = {}; 16854 u8 opcode = BPF_OP(insn->code); 16855 int insn_flags = 0; 16856 bool is_jmp32; 16857 int pred = -1; 16858 int err; 16859 16860 /* Only conditional jumps are expected to reach here. */ 16861 if (opcode == BPF_JA || opcode > BPF_JCOND) { 16862 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 16863 return -EINVAL; 16864 } 16865 16866 if (opcode == BPF_JCOND) { 16867 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 16868 int idx = *insn_idx; 16869 16870 if (insn->code != (BPF_JMP | BPF_JCOND) || 16871 insn->src_reg != BPF_MAY_GOTO || 16872 insn->dst_reg || insn->imm) { 16873 verbose(env, "invalid may_goto imm %d\n", insn->imm); 16874 return -EINVAL; 16875 } 16876 prev_st = find_prev_entry(env, cur_st->parent, idx); 16877 16878 /* branch out 'fallthrough' insn as a new state to explore */ 16879 queued_st = push_stack(env, idx + 1, idx, false); 16880 if (IS_ERR(queued_st)) 16881 return PTR_ERR(queued_st); 16882 16883 queued_st->may_goto_depth++; 16884 if (prev_st) 16885 widen_imprecise_scalars(env, prev_st, queued_st); 16886 *insn_idx += insn->off; 16887 return 0; 16888 } 16889 16890 /* check src2 operand */ 16891 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16892 if (err) 16893 return err; 16894 16895 dst_reg = ®s[insn->dst_reg]; 16896 if (BPF_SRC(insn->code) == BPF_X) { 16897 if (insn->imm != 0) { 16898 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 16899 return -EINVAL; 16900 } 16901 16902 /* check src1 operand */ 16903 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16904 if (err) 16905 return err; 16906 16907 src_reg = ®s[insn->src_reg]; 16908 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 16909 is_pointer_value(env, insn->src_reg)) { 16910 verbose(env, "R%d pointer comparison prohibited\n", 16911 insn->src_reg); 16912 return -EACCES; 16913 } 16914 16915 if (src_reg->type == PTR_TO_STACK) 16916 insn_flags |= INSN_F_SRC_REG_STACK; 16917 if (dst_reg->type == PTR_TO_STACK) 16918 insn_flags |= INSN_F_DST_REG_STACK; 16919 } else { 16920 if (insn->src_reg != BPF_REG_0) { 16921 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 16922 return -EINVAL; 16923 } 16924 src_reg = &env->fake_reg[0]; 16925 memset(src_reg, 0, sizeof(*src_reg)); 16926 src_reg->type = SCALAR_VALUE; 16927 __mark_reg_known(src_reg, insn->imm); 16928 16929 if (dst_reg->type == PTR_TO_STACK) 16930 insn_flags |= INSN_F_DST_REG_STACK; 16931 } 16932 16933 if (insn_flags) { 16934 err = push_jmp_history(env, this_branch, insn_flags, 0); 16935 if (err) 16936 return err; 16937 } 16938 16939 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 16940 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 16941 if (pred >= 0) { 16942 /* If we get here with a dst_reg pointer type it is because 16943 * above is_branch_taken() special cased the 0 comparison. 16944 */ 16945 if (!__is_pointer_value(false, dst_reg)) 16946 err = mark_chain_precision(env, insn->dst_reg); 16947 if (BPF_SRC(insn->code) == BPF_X && !err && 16948 !__is_pointer_value(false, src_reg)) 16949 err = mark_chain_precision(env, insn->src_reg); 16950 if (err) 16951 return err; 16952 } 16953 16954 if (pred == 1) { 16955 /* Only follow the goto, ignore fall-through. If needed, push 16956 * the fall-through branch for simulation under speculative 16957 * execution. 16958 */ 16959 if (!env->bypass_spec_v1) { 16960 err = sanitize_speculative_path(env, insn, *insn_idx + 1, *insn_idx); 16961 if (err < 0) 16962 return err; 16963 } 16964 if (env->log.level & BPF_LOG_LEVEL) 16965 print_insn_state(env, this_branch, this_branch->curframe); 16966 *insn_idx += insn->off; 16967 return 0; 16968 } else if (pred == 0) { 16969 /* Only follow the fall-through branch, since that's where the 16970 * program will go. If needed, push the goto branch for 16971 * simulation under speculative execution. 16972 */ 16973 if (!env->bypass_spec_v1) { 16974 err = sanitize_speculative_path(env, insn, *insn_idx + insn->off + 1, 16975 *insn_idx); 16976 if (err < 0) 16977 return err; 16978 } 16979 if (env->log.level & BPF_LOG_LEVEL) 16980 print_insn_state(env, this_branch, this_branch->curframe); 16981 return 0; 16982 } 16983 16984 /* Push scalar registers sharing same ID to jump history, 16985 * do this before creating 'other_branch', so that both 16986 * 'this_branch' and 'other_branch' share this history 16987 * if parent state is created. 16988 */ 16989 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id) 16990 collect_linked_regs(this_branch, src_reg->id, &linked_regs); 16991 if (dst_reg->type == SCALAR_VALUE && dst_reg->id) 16992 collect_linked_regs(this_branch, dst_reg->id, &linked_regs); 16993 if (linked_regs.cnt > 1) { 16994 err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs)); 16995 if (err) 16996 return err; 16997 } 16998 16999 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, false); 17000 if (IS_ERR(other_branch)) 17001 return PTR_ERR(other_branch); 17002 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 17003 17004 if (BPF_SRC(insn->code) == BPF_X) { 17005 err = reg_set_min_max(env, 17006 &other_branch_regs[insn->dst_reg], 17007 &other_branch_regs[insn->src_reg], 17008 dst_reg, src_reg, opcode, is_jmp32); 17009 } else /* BPF_SRC(insn->code) == BPF_K */ { 17010 /* reg_set_min_max() can mangle the fake_reg. Make a copy 17011 * so that these are two different memory locations. The 17012 * src_reg is not used beyond here in context of K. 17013 */ 17014 memcpy(&env->fake_reg[1], &env->fake_reg[0], 17015 sizeof(env->fake_reg[0])); 17016 err = reg_set_min_max(env, 17017 &other_branch_regs[insn->dst_reg], 17018 &env->fake_reg[0], 17019 dst_reg, &env->fake_reg[1], 17020 opcode, is_jmp32); 17021 } 17022 if (err) 17023 return err; 17024 17025 if (BPF_SRC(insn->code) == BPF_X && 17026 src_reg->type == SCALAR_VALUE && src_reg->id && 17027 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 17028 sync_linked_regs(this_branch, src_reg, &linked_regs); 17029 sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs); 17030 } 17031 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 17032 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 17033 sync_linked_regs(this_branch, dst_reg, &linked_regs); 17034 sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs); 17035 } 17036 17037 /* if one pointer register is compared to another pointer 17038 * register check if PTR_MAYBE_NULL could be lifted. 17039 * E.g. register A - maybe null 17040 * register B - not null 17041 * for JNE A, B, ... - A is not null in the false branch; 17042 * for JEQ A, B, ... - A is not null in the true branch. 17043 * 17044 * Since PTR_TO_BTF_ID points to a kernel struct that does 17045 * not need to be null checked by the BPF program, i.e., 17046 * could be null even without PTR_MAYBE_NULL marking, so 17047 * only propagate nullness when neither reg is that type. 17048 */ 17049 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 17050 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 17051 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 17052 base_type(src_reg->type) != PTR_TO_BTF_ID && 17053 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 17054 eq_branch_regs = NULL; 17055 switch (opcode) { 17056 case BPF_JEQ: 17057 eq_branch_regs = other_branch_regs; 17058 break; 17059 case BPF_JNE: 17060 eq_branch_regs = regs; 17061 break; 17062 default: 17063 /* do nothing */ 17064 break; 17065 } 17066 if (eq_branch_regs) { 17067 if (type_may_be_null(src_reg->type)) 17068 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 17069 else 17070 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 17071 } 17072 } 17073 17074 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 17075 * NOTE: these optimizations below are related with pointer comparison 17076 * which will never be JMP32. 17077 */ 17078 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 17079 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 17080 type_may_be_null(dst_reg->type)) { 17081 /* Mark all identical registers in each branch as either 17082 * safe or unknown depending R == 0 or R != 0 conditional. 17083 */ 17084 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 17085 opcode == BPF_JNE); 17086 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 17087 opcode == BPF_JEQ); 17088 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 17089 this_branch, other_branch) && 17090 is_pointer_value(env, insn->dst_reg)) { 17091 verbose(env, "R%d pointer comparison prohibited\n", 17092 insn->dst_reg); 17093 return -EACCES; 17094 } 17095 if (env->log.level & BPF_LOG_LEVEL) 17096 print_insn_state(env, this_branch, this_branch->curframe); 17097 return 0; 17098 } 17099 17100 /* verify BPF_LD_IMM64 instruction */ 17101 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 17102 { 17103 struct bpf_insn_aux_data *aux = cur_aux(env); 17104 struct bpf_reg_state *regs = cur_regs(env); 17105 struct bpf_reg_state *dst_reg; 17106 struct bpf_map *map; 17107 int err; 17108 17109 if (BPF_SIZE(insn->code) != BPF_DW) { 17110 verbose(env, "invalid BPF_LD_IMM insn\n"); 17111 return -EINVAL; 17112 } 17113 if (insn->off != 0) { 17114 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 17115 return -EINVAL; 17116 } 17117 17118 err = check_reg_arg(env, insn->dst_reg, DST_OP); 17119 if (err) 17120 return err; 17121 17122 dst_reg = ®s[insn->dst_reg]; 17123 if (insn->src_reg == 0) { 17124 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 17125 17126 dst_reg->type = SCALAR_VALUE; 17127 __mark_reg_known(®s[insn->dst_reg], imm); 17128 return 0; 17129 } 17130 17131 /* All special src_reg cases are listed below. From this point onwards 17132 * we either succeed and assign a corresponding dst_reg->type after 17133 * zeroing the offset, or fail and reject the program. 17134 */ 17135 mark_reg_known_zero(env, regs, insn->dst_reg); 17136 17137 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 17138 dst_reg->type = aux->btf_var.reg_type; 17139 switch (base_type(dst_reg->type)) { 17140 case PTR_TO_MEM: 17141 dst_reg->mem_size = aux->btf_var.mem_size; 17142 break; 17143 case PTR_TO_BTF_ID: 17144 dst_reg->btf = aux->btf_var.btf; 17145 dst_reg->btf_id = aux->btf_var.btf_id; 17146 break; 17147 default: 17148 verifier_bug(env, "pseudo btf id: unexpected dst reg type"); 17149 return -EFAULT; 17150 } 17151 return 0; 17152 } 17153 17154 if (insn->src_reg == BPF_PSEUDO_FUNC) { 17155 struct bpf_prog_aux *aux = env->prog->aux; 17156 u32 subprogno = find_subprog(env, 17157 env->insn_idx + insn->imm + 1); 17158 17159 if (!aux->func_info) { 17160 verbose(env, "missing btf func_info\n"); 17161 return -EINVAL; 17162 } 17163 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 17164 verbose(env, "callback function not static\n"); 17165 return -EINVAL; 17166 } 17167 17168 dst_reg->type = PTR_TO_FUNC; 17169 dst_reg->subprogno = subprogno; 17170 return 0; 17171 } 17172 17173 map = env->used_maps[aux->map_index]; 17174 dst_reg->map_ptr = map; 17175 17176 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 17177 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 17178 if (map->map_type == BPF_MAP_TYPE_ARENA) { 17179 __mark_reg_unknown(env, dst_reg); 17180 return 0; 17181 } 17182 dst_reg->type = PTR_TO_MAP_VALUE; 17183 dst_reg->off = aux->map_off; 17184 WARN_ON_ONCE(map->map_type != BPF_MAP_TYPE_INSN_ARRAY && 17185 map->max_entries != 1); 17186 /* We want reg->id to be same (0) as map_value is not distinct */ 17187 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 17188 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 17189 dst_reg->type = CONST_PTR_TO_MAP; 17190 } else { 17191 verifier_bug(env, "unexpected src reg value for ldimm64"); 17192 return -EFAULT; 17193 } 17194 17195 return 0; 17196 } 17197 17198 static bool may_access_skb(enum bpf_prog_type type) 17199 { 17200 switch (type) { 17201 case BPF_PROG_TYPE_SOCKET_FILTER: 17202 case BPF_PROG_TYPE_SCHED_CLS: 17203 case BPF_PROG_TYPE_SCHED_ACT: 17204 return true; 17205 default: 17206 return false; 17207 } 17208 } 17209 17210 /* verify safety of LD_ABS|LD_IND instructions: 17211 * - they can only appear in the programs where ctx == skb 17212 * - since they are wrappers of function calls, they scratch R1-R5 registers, 17213 * preserve R6-R9, and store return value into R0 17214 * 17215 * Implicit input: 17216 * ctx == skb == R6 == CTX 17217 * 17218 * Explicit input: 17219 * SRC == any register 17220 * IMM == 32-bit immediate 17221 * 17222 * Output: 17223 * R0 - 8/16/32-bit skb data converted to cpu endianness 17224 */ 17225 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 17226 { 17227 struct bpf_reg_state *regs = cur_regs(env); 17228 static const int ctx_reg = BPF_REG_6; 17229 u8 mode = BPF_MODE(insn->code); 17230 int i, err; 17231 17232 if (!may_access_skb(resolve_prog_type(env->prog))) { 17233 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 17234 return -EINVAL; 17235 } 17236 17237 if (!env->ops->gen_ld_abs) { 17238 verifier_bug(env, "gen_ld_abs is null"); 17239 return -EFAULT; 17240 } 17241 17242 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 17243 BPF_SIZE(insn->code) == BPF_DW || 17244 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 17245 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 17246 return -EINVAL; 17247 } 17248 17249 /* check whether implicit source operand (register R6) is readable */ 17250 err = check_reg_arg(env, ctx_reg, SRC_OP); 17251 if (err) 17252 return err; 17253 17254 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 17255 * gen_ld_abs() may terminate the program at runtime, leading to 17256 * reference leak. 17257 */ 17258 err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]"); 17259 if (err) 17260 return err; 17261 17262 if (regs[ctx_reg].type != PTR_TO_CTX) { 17263 verbose(env, 17264 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 17265 return -EINVAL; 17266 } 17267 17268 if (mode == BPF_IND) { 17269 /* check explicit source operand */ 17270 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17271 if (err) 17272 return err; 17273 } 17274 17275 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 17276 if (err < 0) 17277 return err; 17278 17279 /* reset caller saved regs to unreadable */ 17280 for (i = 0; i < CALLER_SAVED_REGS; i++) { 17281 mark_reg_not_init(env, regs, caller_saved[i]); 17282 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 17283 } 17284 17285 /* mark destination R0 register as readable, since it contains 17286 * the value fetched from the packet. 17287 * Already marked as written above. 17288 */ 17289 mark_reg_unknown(env, regs, BPF_REG_0); 17290 /* ld_abs load up to 32-bit skb data. */ 17291 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 17292 return 0; 17293 } 17294 17295 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) 17296 { 17297 const char *exit_ctx = "At program exit"; 17298 struct tnum enforce_attach_type_range = tnum_unknown; 17299 const struct bpf_prog *prog = env->prog; 17300 struct bpf_reg_state *reg = reg_state(env, regno); 17301 struct bpf_retval_range range = retval_range(0, 1); 17302 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 17303 int err; 17304 struct bpf_func_state *frame = env->cur_state->frame[0]; 17305 const bool is_subprog = frame->subprogno; 17306 bool return_32bit = false; 17307 const struct btf_type *reg_type, *ret_type = NULL; 17308 17309 /* LSM and struct_ops func-ptr's return type could be "void" */ 17310 if (!is_subprog || frame->in_exception_callback_fn) { 17311 switch (prog_type) { 17312 case BPF_PROG_TYPE_LSM: 17313 if (prog->expected_attach_type == BPF_LSM_CGROUP) 17314 /* See below, can be 0 or 0-1 depending on hook. */ 17315 break; 17316 if (!prog->aux->attach_func_proto->type) 17317 return 0; 17318 break; 17319 case BPF_PROG_TYPE_STRUCT_OPS: 17320 if (!prog->aux->attach_func_proto->type) 17321 return 0; 17322 17323 if (frame->in_exception_callback_fn) 17324 break; 17325 17326 /* Allow a struct_ops program to return a referenced kptr if it 17327 * matches the operator's return type and is in its unmodified 17328 * form. A scalar zero (i.e., a null pointer) is also allowed. 17329 */ 17330 reg_type = reg->btf ? btf_type_by_id(reg->btf, reg->btf_id) : NULL; 17331 ret_type = btf_type_resolve_ptr(prog->aux->attach_btf, 17332 prog->aux->attach_func_proto->type, 17333 NULL); 17334 if (ret_type && ret_type == reg_type && reg->ref_obj_id) 17335 return __check_ptr_off_reg(env, reg, regno, false); 17336 break; 17337 default: 17338 break; 17339 } 17340 } 17341 17342 /* eBPF calling convention is such that R0 is used 17343 * to return the value from eBPF program. 17344 * Make sure that it's readable at this time 17345 * of bpf_exit, which means that program wrote 17346 * something into it earlier 17347 */ 17348 err = check_reg_arg(env, regno, SRC_OP); 17349 if (err) 17350 return err; 17351 17352 if (is_pointer_value(env, regno)) { 17353 verbose(env, "R%d leaks addr as return value\n", regno); 17354 return -EACCES; 17355 } 17356 17357 if (frame->in_async_callback_fn) { 17358 exit_ctx = "At async callback return"; 17359 range = frame->callback_ret_range; 17360 goto enforce_retval; 17361 } 17362 17363 if (is_subprog && !frame->in_exception_callback_fn) { 17364 if (reg->type != SCALAR_VALUE) { 17365 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 17366 regno, reg_type_str(env, reg->type)); 17367 return -EINVAL; 17368 } 17369 return 0; 17370 } 17371 17372 switch (prog_type) { 17373 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 17374 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 17375 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 17376 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 17377 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 17378 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 17379 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 17380 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 17381 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 17382 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 17383 range = retval_range(1, 1); 17384 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 17385 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 17386 range = retval_range(0, 3); 17387 break; 17388 case BPF_PROG_TYPE_CGROUP_SKB: 17389 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 17390 range = retval_range(0, 3); 17391 enforce_attach_type_range = tnum_range(2, 3); 17392 } 17393 break; 17394 case BPF_PROG_TYPE_CGROUP_SOCK: 17395 case BPF_PROG_TYPE_SOCK_OPS: 17396 case BPF_PROG_TYPE_CGROUP_DEVICE: 17397 case BPF_PROG_TYPE_CGROUP_SYSCTL: 17398 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 17399 break; 17400 case BPF_PROG_TYPE_RAW_TRACEPOINT: 17401 if (!env->prog->aux->attach_btf_id) 17402 return 0; 17403 range = retval_range(0, 0); 17404 break; 17405 case BPF_PROG_TYPE_TRACING: 17406 switch (env->prog->expected_attach_type) { 17407 case BPF_TRACE_FENTRY: 17408 case BPF_TRACE_FEXIT: 17409 range = retval_range(0, 0); 17410 break; 17411 case BPF_TRACE_RAW_TP: 17412 case BPF_MODIFY_RETURN: 17413 return 0; 17414 case BPF_TRACE_ITER: 17415 break; 17416 default: 17417 return -ENOTSUPP; 17418 } 17419 break; 17420 case BPF_PROG_TYPE_KPROBE: 17421 switch (env->prog->expected_attach_type) { 17422 case BPF_TRACE_KPROBE_SESSION: 17423 case BPF_TRACE_UPROBE_SESSION: 17424 range = retval_range(0, 1); 17425 break; 17426 default: 17427 return 0; 17428 } 17429 break; 17430 case BPF_PROG_TYPE_SK_LOOKUP: 17431 range = retval_range(SK_DROP, SK_PASS); 17432 break; 17433 17434 case BPF_PROG_TYPE_LSM: 17435 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 17436 /* no range found, any return value is allowed */ 17437 if (!get_func_retval_range(env->prog, &range)) 17438 return 0; 17439 /* no restricted range, any return value is allowed */ 17440 if (range.minval == S32_MIN && range.maxval == S32_MAX) 17441 return 0; 17442 return_32bit = true; 17443 } else if (!env->prog->aux->attach_func_proto->type) { 17444 /* Make sure programs that attach to void 17445 * hooks don't try to modify return value. 17446 */ 17447 range = retval_range(1, 1); 17448 } 17449 break; 17450 17451 case BPF_PROG_TYPE_NETFILTER: 17452 range = retval_range(NF_DROP, NF_ACCEPT); 17453 break; 17454 case BPF_PROG_TYPE_STRUCT_OPS: 17455 if (!ret_type) 17456 return 0; 17457 range = retval_range(0, 0); 17458 break; 17459 case BPF_PROG_TYPE_EXT: 17460 /* freplace program can return anything as its return value 17461 * depends on the to-be-replaced kernel func or bpf program. 17462 */ 17463 default: 17464 return 0; 17465 } 17466 17467 enforce_retval: 17468 if (reg->type != SCALAR_VALUE) { 17469 verbose(env, "%s the register R%d is not a known value (%s)\n", 17470 exit_ctx, regno, reg_type_str(env, reg->type)); 17471 return -EINVAL; 17472 } 17473 17474 err = mark_chain_precision(env, regno); 17475 if (err) 17476 return err; 17477 17478 if (!retval_range_within(range, reg, return_32bit)) { 17479 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); 17480 if (!is_subprog && 17481 prog->expected_attach_type == BPF_LSM_CGROUP && 17482 prog_type == BPF_PROG_TYPE_LSM && 17483 !prog->aux->attach_func_proto->type) 17484 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 17485 return -EINVAL; 17486 } 17487 17488 if (!tnum_is_unknown(enforce_attach_type_range) && 17489 tnum_in(enforce_attach_type_range, reg->var_off)) 17490 env->prog->enforce_expected_attach_type = 1; 17491 return 0; 17492 } 17493 17494 static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off) 17495 { 17496 struct bpf_subprog_info *subprog; 17497 17498 subprog = bpf_find_containing_subprog(env, off); 17499 subprog->changes_pkt_data = true; 17500 } 17501 17502 static void mark_subprog_might_sleep(struct bpf_verifier_env *env, int off) 17503 { 17504 struct bpf_subprog_info *subprog; 17505 17506 subprog = bpf_find_containing_subprog(env, off); 17507 subprog->might_sleep = true; 17508 } 17509 17510 /* 't' is an index of a call-site. 17511 * 'w' is a callee entry point. 17512 * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED. 17513 * Rely on DFS traversal order and absence of recursive calls to guarantee that 17514 * callee's change_pkt_data marks would be correct at that moment. 17515 */ 17516 static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w) 17517 { 17518 struct bpf_subprog_info *caller, *callee; 17519 17520 caller = bpf_find_containing_subprog(env, t); 17521 callee = bpf_find_containing_subprog(env, w); 17522 caller->changes_pkt_data |= callee->changes_pkt_data; 17523 caller->might_sleep |= callee->might_sleep; 17524 } 17525 17526 /* non-recursive DFS pseudo code 17527 * 1 procedure DFS-iterative(G,v): 17528 * 2 label v as discovered 17529 * 3 let S be a stack 17530 * 4 S.push(v) 17531 * 5 while S is not empty 17532 * 6 t <- S.peek() 17533 * 7 if t is what we're looking for: 17534 * 8 return t 17535 * 9 for all edges e in G.adjacentEdges(t) do 17536 * 10 if edge e is already labelled 17537 * 11 continue with the next edge 17538 * 12 w <- G.adjacentVertex(t,e) 17539 * 13 if vertex w is not discovered and not explored 17540 * 14 label e as tree-edge 17541 * 15 label w as discovered 17542 * 16 S.push(w) 17543 * 17 continue at 5 17544 * 18 else if vertex w is discovered 17545 * 19 label e as back-edge 17546 * 20 else 17547 * 21 // vertex w is explored 17548 * 22 label e as forward- or cross-edge 17549 * 23 label t as explored 17550 * 24 S.pop() 17551 * 17552 * convention: 17553 * 0x10 - discovered 17554 * 0x11 - discovered and fall-through edge labelled 17555 * 0x12 - discovered and fall-through and branch edges labelled 17556 * 0x20 - explored 17557 */ 17558 17559 enum { 17560 DISCOVERED = 0x10, 17561 EXPLORED = 0x20, 17562 FALLTHROUGH = 1, 17563 BRANCH = 2, 17564 }; 17565 17566 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 17567 { 17568 env->insn_aux_data[idx].prune_point = true; 17569 } 17570 17571 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 17572 { 17573 return env->insn_aux_data[insn_idx].prune_point; 17574 } 17575 17576 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 17577 { 17578 env->insn_aux_data[idx].force_checkpoint = true; 17579 } 17580 17581 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 17582 { 17583 return env->insn_aux_data[insn_idx].force_checkpoint; 17584 } 17585 17586 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 17587 { 17588 env->insn_aux_data[idx].calls_callback = true; 17589 } 17590 17591 bool bpf_calls_callback(struct bpf_verifier_env *env, int insn_idx) 17592 { 17593 return env->insn_aux_data[insn_idx].calls_callback; 17594 } 17595 17596 enum { 17597 DONE_EXPLORING = 0, 17598 KEEP_EXPLORING = 1, 17599 }; 17600 17601 /* t, w, e - match pseudo-code above: 17602 * t - index of current instruction 17603 * w - next instruction 17604 * e - edge 17605 */ 17606 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 17607 { 17608 int *insn_stack = env->cfg.insn_stack; 17609 int *insn_state = env->cfg.insn_state; 17610 17611 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 17612 return DONE_EXPLORING; 17613 17614 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 17615 return DONE_EXPLORING; 17616 17617 if (w < 0 || w >= env->prog->len) { 17618 verbose_linfo(env, t, "%d: ", t); 17619 verbose(env, "jump out of range from insn %d to %d\n", t, w); 17620 return -EINVAL; 17621 } 17622 17623 if (e == BRANCH) { 17624 /* mark branch target for state pruning */ 17625 mark_prune_point(env, w); 17626 mark_jmp_point(env, w); 17627 } 17628 17629 if (insn_state[w] == 0) { 17630 /* tree-edge */ 17631 insn_state[t] = DISCOVERED | e; 17632 insn_state[w] = DISCOVERED; 17633 if (env->cfg.cur_stack >= env->prog->len) 17634 return -E2BIG; 17635 insn_stack[env->cfg.cur_stack++] = w; 17636 return KEEP_EXPLORING; 17637 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 17638 if (env->bpf_capable) 17639 return DONE_EXPLORING; 17640 verbose_linfo(env, t, "%d: ", t); 17641 verbose_linfo(env, w, "%d: ", w); 17642 verbose(env, "back-edge from insn %d to %d\n", t, w); 17643 return -EINVAL; 17644 } else if (insn_state[w] == EXPLORED) { 17645 /* forward- or cross-edge */ 17646 insn_state[t] = DISCOVERED | e; 17647 } else { 17648 verifier_bug(env, "insn state internal bug"); 17649 return -EFAULT; 17650 } 17651 return DONE_EXPLORING; 17652 } 17653 17654 static int visit_func_call_insn(int t, struct bpf_insn *insns, 17655 struct bpf_verifier_env *env, 17656 bool visit_callee) 17657 { 17658 int ret, insn_sz; 17659 int w; 17660 17661 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 17662 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 17663 if (ret) 17664 return ret; 17665 17666 mark_prune_point(env, t + insn_sz); 17667 /* when we exit from subprog, we need to record non-linear history */ 17668 mark_jmp_point(env, t + insn_sz); 17669 17670 if (visit_callee) { 17671 w = t + insns[t].imm + 1; 17672 mark_prune_point(env, t); 17673 merge_callee_effects(env, t, w); 17674 ret = push_insn(t, w, BRANCH, env); 17675 } 17676 return ret; 17677 } 17678 17679 /* Bitmask with 1s for all caller saved registers */ 17680 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 17681 17682 /* True if do_misc_fixups() replaces calls to helper number 'imm', 17683 * replacement patch is presumed to follow bpf_fastcall contract 17684 * (see mark_fastcall_pattern_for_call() below). 17685 */ 17686 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm) 17687 { 17688 switch (imm) { 17689 #ifdef CONFIG_X86_64 17690 case BPF_FUNC_get_smp_processor_id: 17691 return env->prog->jit_requested && bpf_jit_supports_percpu_insn(); 17692 #endif 17693 default: 17694 return false; 17695 } 17696 } 17697 17698 struct call_summary { 17699 u8 num_params; 17700 bool is_void; 17701 bool fastcall; 17702 }; 17703 17704 /* If @call is a kfunc or helper call, fills @cs and returns true, 17705 * otherwise returns false. 17706 */ 17707 static bool get_call_summary(struct bpf_verifier_env *env, struct bpf_insn *call, 17708 struct call_summary *cs) 17709 { 17710 struct bpf_kfunc_call_arg_meta meta; 17711 const struct bpf_func_proto *fn; 17712 int i; 17713 17714 if (bpf_helper_call(call)) { 17715 17716 if (get_helper_proto(env, call->imm, &fn) < 0) 17717 /* error would be reported later */ 17718 return false; 17719 cs->fastcall = fn->allow_fastcall && 17720 (verifier_inlines_helper_call(env, call->imm) || 17721 bpf_jit_inlines_helper_call(call->imm)); 17722 cs->is_void = fn->ret_type == RET_VOID; 17723 cs->num_params = 0; 17724 for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) { 17725 if (fn->arg_type[i] == ARG_DONTCARE) 17726 break; 17727 cs->num_params++; 17728 } 17729 return true; 17730 } 17731 17732 if (bpf_pseudo_kfunc_call(call)) { 17733 int err; 17734 17735 err = fetch_kfunc_meta(env, call, &meta, NULL); 17736 if (err < 0) 17737 /* error would be reported later */ 17738 return false; 17739 cs->num_params = btf_type_vlen(meta.func_proto); 17740 cs->fastcall = meta.kfunc_flags & KF_FASTCALL; 17741 cs->is_void = btf_type_is_void(btf_type_by_id(meta.btf, meta.func_proto->type)); 17742 return true; 17743 } 17744 17745 return false; 17746 } 17747 17748 /* LLVM define a bpf_fastcall function attribute. 17749 * This attribute means that function scratches only some of 17750 * the caller saved registers defined by ABI. 17751 * For BPF the set of such registers could be defined as follows: 17752 * - R0 is scratched only if function is non-void; 17753 * - R1-R5 are scratched only if corresponding parameter type is defined 17754 * in the function prototype. 17755 * 17756 * The contract between kernel and clang allows to simultaneously use 17757 * such functions and maintain backwards compatibility with old 17758 * kernels that don't understand bpf_fastcall calls: 17759 * 17760 * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5 17761 * registers are not scratched by the call; 17762 * 17763 * - as a post-processing step, clang visits each bpf_fastcall call and adds 17764 * spill/fill for every live r0-r5; 17765 * 17766 * - stack offsets used for the spill/fill are allocated as lowest 17767 * stack offsets in whole function and are not used for any other 17768 * purposes; 17769 * 17770 * - when kernel loads a program, it looks for such patterns 17771 * (bpf_fastcall function surrounded by spills/fills) and checks if 17772 * spill/fill stack offsets are used exclusively in fastcall patterns; 17773 * 17774 * - if so, and if verifier or current JIT inlines the call to the 17775 * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary 17776 * spill/fill pairs; 17777 * 17778 * - when old kernel loads a program, presence of spill/fill pairs 17779 * keeps BPF program valid, albeit slightly less efficient. 17780 * 17781 * For example: 17782 * 17783 * r1 = 1; 17784 * r2 = 2; 17785 * *(u64 *)(r10 - 8) = r1; r1 = 1; 17786 * *(u64 *)(r10 - 16) = r2; r2 = 2; 17787 * call %[to_be_inlined] --> call %[to_be_inlined] 17788 * r2 = *(u64 *)(r10 - 16); r0 = r1; 17789 * r1 = *(u64 *)(r10 - 8); r0 += r2; 17790 * r0 = r1; exit; 17791 * r0 += r2; 17792 * exit; 17793 * 17794 * The purpose of mark_fastcall_pattern_for_call is to: 17795 * - look for such patterns; 17796 * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern; 17797 * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction; 17798 * - update env->subprog_info[*]->fastcall_stack_off to find an offset 17799 * at which bpf_fastcall spill/fill stack slots start; 17800 * - update env->subprog_info[*]->keep_fastcall_stack. 17801 * 17802 * The .fastcall_pattern and .fastcall_stack_off are used by 17803 * check_fastcall_stack_contract() to check if every stack access to 17804 * fastcall spill/fill stack slot originates from spill/fill 17805 * instructions, members of fastcall patterns. 17806 * 17807 * If such condition holds true for a subprogram, fastcall patterns could 17808 * be rewritten by remove_fastcall_spills_fills(). 17809 * Otherwise bpf_fastcall patterns are not changed in the subprogram 17810 * (code, presumably, generated by an older clang version). 17811 * 17812 * For example, it is *not* safe to remove spill/fill below: 17813 * 17814 * r1 = 1; 17815 * *(u64 *)(r10 - 8) = r1; r1 = 1; 17816 * call %[to_be_inlined] --> call %[to_be_inlined] 17817 * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!! 17818 * r0 = *(u64 *)(r10 - 8); r0 += r1; 17819 * r0 += r1; exit; 17820 * exit; 17821 */ 17822 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env, 17823 struct bpf_subprog_info *subprog, 17824 int insn_idx, s16 lowest_off) 17825 { 17826 struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx; 17827 struct bpf_insn *call = &env->prog->insnsi[insn_idx]; 17828 u32 clobbered_regs_mask; 17829 struct call_summary cs; 17830 u32 expected_regs_mask; 17831 s16 off; 17832 int i; 17833 17834 if (!get_call_summary(env, call, &cs)) 17835 return; 17836 17837 /* A bitmask specifying which caller saved registers are clobbered 17838 * by a call to a helper/kfunc *as if* this helper/kfunc follows 17839 * bpf_fastcall contract: 17840 * - includes R0 if function is non-void; 17841 * - includes R1-R5 if corresponding parameter has is described 17842 * in the function prototype. 17843 */ 17844 clobbered_regs_mask = GENMASK(cs.num_params, cs.is_void ? 1 : 0); 17845 /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */ 17846 expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS; 17847 17848 /* match pairs of form: 17849 * 17850 * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0) 17851 * ... 17852 * call %[to_be_inlined] 17853 * ... 17854 * rX = *(u64 *)(r10 - Y) 17855 */ 17856 for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) { 17857 if (insn_idx - i < 0 || insn_idx + i >= env->prog->len) 17858 break; 17859 stx = &insns[insn_idx - i]; 17860 ldx = &insns[insn_idx + i]; 17861 /* must be a stack spill/fill pair */ 17862 if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) || 17863 ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) || 17864 stx->dst_reg != BPF_REG_10 || 17865 ldx->src_reg != BPF_REG_10) 17866 break; 17867 /* must be a spill/fill for the same reg */ 17868 if (stx->src_reg != ldx->dst_reg) 17869 break; 17870 /* must be one of the previously unseen registers */ 17871 if ((BIT(stx->src_reg) & expected_regs_mask) == 0) 17872 break; 17873 /* must be a spill/fill for the same expected offset, 17874 * no need to check offset alignment, BPF_DW stack access 17875 * is always 8-byte aligned. 17876 */ 17877 if (stx->off != off || ldx->off != off) 17878 break; 17879 expected_regs_mask &= ~BIT(stx->src_reg); 17880 env->insn_aux_data[insn_idx - i].fastcall_pattern = 1; 17881 env->insn_aux_data[insn_idx + i].fastcall_pattern = 1; 17882 } 17883 if (i == 1) 17884 return; 17885 17886 /* Conditionally set 'fastcall_spills_num' to allow forward 17887 * compatibility when more helper functions are marked as 17888 * bpf_fastcall at compile time than current kernel supports, e.g: 17889 * 17890 * 1: *(u64 *)(r10 - 8) = r1 17891 * 2: call A ;; assume A is bpf_fastcall for current kernel 17892 * 3: r1 = *(u64 *)(r10 - 8) 17893 * 4: *(u64 *)(r10 - 8) = r1 17894 * 5: call B ;; assume B is not bpf_fastcall for current kernel 17895 * 6: r1 = *(u64 *)(r10 - 8) 17896 * 17897 * There is no need to block bpf_fastcall rewrite for such program. 17898 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy, 17899 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills() 17900 * does not remove spill/fill pair {4,6}. 17901 */ 17902 if (cs.fastcall) 17903 env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1; 17904 else 17905 subprog->keep_fastcall_stack = 1; 17906 subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off); 17907 } 17908 17909 static int mark_fastcall_patterns(struct bpf_verifier_env *env) 17910 { 17911 struct bpf_subprog_info *subprog = env->subprog_info; 17912 struct bpf_insn *insn; 17913 s16 lowest_off; 17914 int s, i; 17915 17916 for (s = 0; s < env->subprog_cnt; ++s, ++subprog) { 17917 /* find lowest stack spill offset used in this subprog */ 17918 lowest_off = 0; 17919 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 17920 insn = env->prog->insnsi + i; 17921 if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) || 17922 insn->dst_reg != BPF_REG_10) 17923 continue; 17924 lowest_off = min(lowest_off, insn->off); 17925 } 17926 /* use this offset to find fastcall patterns */ 17927 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 17928 insn = env->prog->insnsi + i; 17929 if (insn->code != (BPF_JMP | BPF_CALL)) 17930 continue; 17931 mark_fastcall_pattern_for_call(env, subprog, i, lowest_off); 17932 } 17933 } 17934 return 0; 17935 } 17936 17937 static struct bpf_iarray *iarray_realloc(struct bpf_iarray *old, size_t n_elem) 17938 { 17939 size_t new_size = sizeof(struct bpf_iarray) + n_elem * sizeof(old->items[0]); 17940 struct bpf_iarray *new; 17941 17942 new = kvrealloc(old, new_size, GFP_KERNEL_ACCOUNT); 17943 if (!new) { 17944 /* this is what callers always want, so simplify the call site */ 17945 kvfree(old); 17946 return NULL; 17947 } 17948 17949 new->cnt = n_elem; 17950 return new; 17951 } 17952 17953 static int copy_insn_array(struct bpf_map *map, u32 start, u32 end, u32 *items) 17954 { 17955 struct bpf_insn_array_value *value; 17956 u32 i; 17957 17958 for (i = start; i <= end; i++) { 17959 value = map->ops->map_lookup_elem(map, &i); 17960 /* 17961 * map_lookup_elem of an array map will never return an error, 17962 * but not checking it makes some static analysers to worry 17963 */ 17964 if (IS_ERR(value)) 17965 return PTR_ERR(value); 17966 else if (!value) 17967 return -EINVAL; 17968 items[i - start] = value->xlated_off; 17969 } 17970 return 0; 17971 } 17972 17973 static int cmp_ptr_to_u32(const void *a, const void *b) 17974 { 17975 return *(u32 *)a - *(u32 *)b; 17976 } 17977 17978 static int sort_insn_array_uniq(u32 *items, int cnt) 17979 { 17980 int unique = 1; 17981 int i; 17982 17983 sort(items, cnt, sizeof(items[0]), cmp_ptr_to_u32, NULL); 17984 17985 for (i = 1; i < cnt; i++) 17986 if (items[i] != items[unique - 1]) 17987 items[unique++] = items[i]; 17988 17989 return unique; 17990 } 17991 17992 /* 17993 * sort_unique({map[start], ..., map[end]}) into off 17994 */ 17995 static int copy_insn_array_uniq(struct bpf_map *map, u32 start, u32 end, u32 *off) 17996 { 17997 u32 n = end - start + 1; 17998 int err; 17999 18000 err = copy_insn_array(map, start, end, off); 18001 if (err) 18002 return err; 18003 18004 return sort_insn_array_uniq(off, n); 18005 } 18006 18007 /* 18008 * Copy all unique offsets from the map 18009 */ 18010 static struct bpf_iarray *jt_from_map(struct bpf_map *map) 18011 { 18012 struct bpf_iarray *jt; 18013 int err; 18014 int n; 18015 18016 jt = iarray_realloc(NULL, map->max_entries); 18017 if (!jt) 18018 return ERR_PTR(-ENOMEM); 18019 18020 n = copy_insn_array_uniq(map, 0, map->max_entries - 1, jt->items); 18021 if (n < 0) { 18022 err = n; 18023 goto err_free; 18024 } 18025 if (n == 0) { 18026 err = -EINVAL; 18027 goto err_free; 18028 } 18029 jt->cnt = n; 18030 return jt; 18031 18032 err_free: 18033 kvfree(jt); 18034 return ERR_PTR(err); 18035 } 18036 18037 /* 18038 * Find and collect all maps which fit in the subprog. Return the result as one 18039 * combined jump table in jt->items (allocated with kvcalloc) 18040 */ 18041 static struct bpf_iarray *jt_from_subprog(struct bpf_verifier_env *env, 18042 int subprog_start, int subprog_end) 18043 { 18044 struct bpf_iarray *jt = NULL; 18045 struct bpf_map *map; 18046 struct bpf_iarray *jt_cur; 18047 int i; 18048 18049 for (i = 0; i < env->insn_array_map_cnt; i++) { 18050 /* 18051 * TODO (when needed): collect only jump tables, not static keys 18052 * or maps for indirect calls 18053 */ 18054 map = env->insn_array_maps[i]; 18055 18056 jt_cur = jt_from_map(map); 18057 if (IS_ERR(jt_cur)) { 18058 kvfree(jt); 18059 return jt_cur; 18060 } 18061 18062 /* 18063 * This is enough to check one element. The full table is 18064 * checked to fit inside the subprog later in create_jt() 18065 */ 18066 if (jt_cur->items[0] >= subprog_start && jt_cur->items[0] < subprog_end) { 18067 u32 old_cnt = jt ? jt->cnt : 0; 18068 jt = iarray_realloc(jt, old_cnt + jt_cur->cnt); 18069 if (!jt) { 18070 kvfree(jt_cur); 18071 return ERR_PTR(-ENOMEM); 18072 } 18073 memcpy(jt->items + old_cnt, jt_cur->items, jt_cur->cnt << 2); 18074 } 18075 18076 kvfree(jt_cur); 18077 } 18078 18079 if (!jt) { 18080 verbose(env, "no jump tables found for subprog starting at %u\n", subprog_start); 18081 return ERR_PTR(-EINVAL); 18082 } 18083 18084 jt->cnt = sort_insn_array_uniq(jt->items, jt->cnt); 18085 return jt; 18086 } 18087 18088 static struct bpf_iarray * 18089 create_jt(int t, struct bpf_verifier_env *env) 18090 { 18091 static struct bpf_subprog_info *subprog; 18092 int subprog_start, subprog_end; 18093 struct bpf_iarray *jt; 18094 int i; 18095 18096 subprog = bpf_find_containing_subprog(env, t); 18097 subprog_start = subprog->start; 18098 subprog_end = (subprog + 1)->start; 18099 jt = jt_from_subprog(env, subprog_start, subprog_end); 18100 if (IS_ERR(jt)) 18101 return jt; 18102 18103 /* Check that the every element of the jump table fits within the given subprogram */ 18104 for (i = 0; i < jt->cnt; i++) { 18105 if (jt->items[i] < subprog_start || jt->items[i] >= subprog_end) { 18106 verbose(env, "jump table for insn %d points outside of the subprog [%u,%u]\n", 18107 t, subprog_start, subprog_end); 18108 kvfree(jt); 18109 return ERR_PTR(-EINVAL); 18110 } 18111 } 18112 18113 return jt; 18114 } 18115 18116 /* "conditional jump with N edges" */ 18117 static int visit_gotox_insn(int t, struct bpf_verifier_env *env) 18118 { 18119 int *insn_stack = env->cfg.insn_stack; 18120 int *insn_state = env->cfg.insn_state; 18121 bool keep_exploring = false; 18122 struct bpf_iarray *jt; 18123 int i, w; 18124 18125 jt = env->insn_aux_data[t].jt; 18126 if (!jt) { 18127 jt = create_jt(t, env); 18128 if (IS_ERR(jt)) 18129 return PTR_ERR(jt); 18130 18131 env->insn_aux_data[t].jt = jt; 18132 } 18133 18134 mark_prune_point(env, t); 18135 for (i = 0; i < jt->cnt; i++) { 18136 w = jt->items[i]; 18137 if (w < 0 || w >= env->prog->len) { 18138 verbose(env, "indirect jump out of range from insn %d to %d\n", t, w); 18139 return -EINVAL; 18140 } 18141 18142 mark_jmp_point(env, w); 18143 18144 /* EXPLORED || DISCOVERED */ 18145 if (insn_state[w]) 18146 continue; 18147 18148 if (env->cfg.cur_stack >= env->prog->len) 18149 return -E2BIG; 18150 18151 insn_stack[env->cfg.cur_stack++] = w; 18152 insn_state[w] |= DISCOVERED; 18153 keep_exploring = true; 18154 } 18155 18156 return keep_exploring ? KEEP_EXPLORING : DONE_EXPLORING; 18157 } 18158 18159 static int visit_tailcall_insn(struct bpf_verifier_env *env, int t) 18160 { 18161 static struct bpf_subprog_info *subprog; 18162 struct bpf_iarray *jt; 18163 18164 if (env->insn_aux_data[t].jt) 18165 return 0; 18166 18167 jt = iarray_realloc(NULL, 2); 18168 if (!jt) 18169 return -ENOMEM; 18170 18171 subprog = bpf_find_containing_subprog(env, t); 18172 jt->items[0] = t + 1; 18173 jt->items[1] = subprog->exit_idx; 18174 env->insn_aux_data[t].jt = jt; 18175 return 0; 18176 } 18177 18178 /* Visits the instruction at index t and returns one of the following: 18179 * < 0 - an error occurred 18180 * DONE_EXPLORING - the instruction was fully explored 18181 * KEEP_EXPLORING - there is still work to be done before it is fully explored 18182 */ 18183 static int visit_insn(int t, struct bpf_verifier_env *env) 18184 { 18185 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 18186 int ret, off, insn_sz; 18187 18188 if (bpf_pseudo_func(insn)) 18189 return visit_func_call_insn(t, insns, env, true); 18190 18191 /* All non-branch instructions have a single fall-through edge. */ 18192 if (BPF_CLASS(insn->code) != BPF_JMP && 18193 BPF_CLASS(insn->code) != BPF_JMP32) { 18194 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 18195 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 18196 } 18197 18198 switch (BPF_OP(insn->code)) { 18199 case BPF_EXIT: 18200 return DONE_EXPLORING; 18201 18202 case BPF_CALL: 18203 if (is_async_callback_calling_insn(insn)) 18204 /* Mark this call insn as a prune point to trigger 18205 * is_state_visited() check before call itself is 18206 * processed by __check_func_call(). Otherwise new 18207 * async state will be pushed for further exploration. 18208 */ 18209 mark_prune_point(env, t); 18210 /* For functions that invoke callbacks it is not known how many times 18211 * callback would be called. Verifier models callback calling functions 18212 * by repeatedly visiting callback bodies and returning to origin call 18213 * instruction. 18214 * In order to stop such iteration verifier needs to identify when a 18215 * state identical some state from a previous iteration is reached. 18216 * Check below forces creation of checkpoint before callback calling 18217 * instruction to allow search for such identical states. 18218 */ 18219 if (is_sync_callback_calling_insn(insn)) { 18220 mark_calls_callback(env, t); 18221 mark_force_checkpoint(env, t); 18222 mark_prune_point(env, t); 18223 mark_jmp_point(env, t); 18224 } 18225 if (bpf_helper_call(insn)) { 18226 const struct bpf_func_proto *fp; 18227 18228 ret = get_helper_proto(env, insn->imm, &fp); 18229 /* If called in a non-sleepable context program will be 18230 * rejected anyway, so we should end up with precise 18231 * sleepable marks on subprogs, except for dead code 18232 * elimination. 18233 */ 18234 if (ret == 0 && fp->might_sleep) 18235 mark_subprog_might_sleep(env, t); 18236 if (bpf_helper_changes_pkt_data(insn->imm)) 18237 mark_subprog_changes_pkt_data(env, t); 18238 if (insn->imm == BPF_FUNC_tail_call) 18239 visit_tailcall_insn(env, t); 18240 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 18241 struct bpf_kfunc_call_arg_meta meta; 18242 18243 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 18244 if (ret == 0 && is_iter_next_kfunc(&meta)) { 18245 mark_prune_point(env, t); 18246 /* Checking and saving state checkpoints at iter_next() call 18247 * is crucial for fast convergence of open-coded iterator loop 18248 * logic, so we need to force it. If we don't do that, 18249 * is_state_visited() might skip saving a checkpoint, causing 18250 * unnecessarily long sequence of not checkpointed 18251 * instructions and jumps, leading to exhaustion of jump 18252 * history buffer, and potentially other undesired outcomes. 18253 * It is expected that with correct open-coded iterators 18254 * convergence will happen quickly, so we don't run a risk of 18255 * exhausting memory. 18256 */ 18257 mark_force_checkpoint(env, t); 18258 } 18259 /* Same as helpers, if called in a non-sleepable context 18260 * program will be rejected anyway, so we should end up 18261 * with precise sleepable marks on subprogs, except for 18262 * dead code elimination. 18263 */ 18264 if (ret == 0 && is_kfunc_sleepable(&meta)) 18265 mark_subprog_might_sleep(env, t); 18266 if (ret == 0 && is_kfunc_pkt_changing(&meta)) 18267 mark_subprog_changes_pkt_data(env, t); 18268 } 18269 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 18270 18271 case BPF_JA: 18272 if (BPF_SRC(insn->code) == BPF_X) 18273 return visit_gotox_insn(t, env); 18274 18275 if (BPF_CLASS(insn->code) == BPF_JMP) 18276 off = insn->off; 18277 else 18278 off = insn->imm; 18279 18280 /* unconditional jump with single edge */ 18281 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 18282 if (ret) 18283 return ret; 18284 18285 mark_prune_point(env, t + off + 1); 18286 mark_jmp_point(env, t + off + 1); 18287 18288 return ret; 18289 18290 default: 18291 /* conditional jump with two edges */ 18292 mark_prune_point(env, t); 18293 if (is_may_goto_insn(insn)) 18294 mark_force_checkpoint(env, t); 18295 18296 ret = push_insn(t, t + 1, FALLTHROUGH, env); 18297 if (ret) 18298 return ret; 18299 18300 return push_insn(t, t + insn->off + 1, BRANCH, env); 18301 } 18302 } 18303 18304 /* non-recursive depth-first-search to detect loops in BPF program 18305 * loop == back-edge in directed graph 18306 */ 18307 static int check_cfg(struct bpf_verifier_env *env) 18308 { 18309 int insn_cnt = env->prog->len; 18310 int *insn_stack, *insn_state; 18311 int ex_insn_beg, i, ret = 0; 18312 18313 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 18314 if (!insn_state) 18315 return -ENOMEM; 18316 18317 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 18318 if (!insn_stack) { 18319 kvfree(insn_state); 18320 return -ENOMEM; 18321 } 18322 18323 ex_insn_beg = env->exception_callback_subprog 18324 ? env->subprog_info[env->exception_callback_subprog].start 18325 : 0; 18326 18327 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 18328 insn_stack[0] = 0; /* 0 is the first instruction */ 18329 env->cfg.cur_stack = 1; 18330 18331 walk_cfg: 18332 while (env->cfg.cur_stack > 0) { 18333 int t = insn_stack[env->cfg.cur_stack - 1]; 18334 18335 ret = visit_insn(t, env); 18336 switch (ret) { 18337 case DONE_EXPLORING: 18338 insn_state[t] = EXPLORED; 18339 env->cfg.cur_stack--; 18340 break; 18341 case KEEP_EXPLORING: 18342 break; 18343 default: 18344 if (ret > 0) { 18345 verifier_bug(env, "visit_insn internal bug"); 18346 ret = -EFAULT; 18347 } 18348 goto err_free; 18349 } 18350 } 18351 18352 if (env->cfg.cur_stack < 0) { 18353 verifier_bug(env, "pop stack internal bug"); 18354 ret = -EFAULT; 18355 goto err_free; 18356 } 18357 18358 if (ex_insn_beg && insn_state[ex_insn_beg] != EXPLORED) { 18359 insn_state[ex_insn_beg] = DISCOVERED; 18360 insn_stack[0] = ex_insn_beg; 18361 env->cfg.cur_stack = 1; 18362 goto walk_cfg; 18363 } 18364 18365 for (i = 0; i < insn_cnt; i++) { 18366 struct bpf_insn *insn = &env->prog->insnsi[i]; 18367 18368 if (insn_state[i] != EXPLORED) { 18369 verbose(env, "unreachable insn %d\n", i); 18370 ret = -EINVAL; 18371 goto err_free; 18372 } 18373 if (bpf_is_ldimm64(insn)) { 18374 if (insn_state[i + 1] != 0) { 18375 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 18376 ret = -EINVAL; 18377 goto err_free; 18378 } 18379 i++; /* skip second half of ldimm64 */ 18380 } 18381 } 18382 ret = 0; /* cfg looks good */ 18383 env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data; 18384 env->prog->aux->might_sleep = env->subprog_info[0].might_sleep; 18385 18386 err_free: 18387 kvfree(insn_state); 18388 kvfree(insn_stack); 18389 env->cfg.insn_state = env->cfg.insn_stack = NULL; 18390 return ret; 18391 } 18392 18393 /* 18394 * For each subprogram 'i' fill array env->cfg.insn_subprogram sub-range 18395 * [env->subprog_info[i].postorder_start, env->subprog_info[i+1].postorder_start) 18396 * with indices of 'i' instructions in postorder. 18397 */ 18398 static int compute_postorder(struct bpf_verifier_env *env) 18399 { 18400 u32 cur_postorder, i, top, stack_sz, s; 18401 int *stack = NULL, *postorder = NULL, *state = NULL; 18402 struct bpf_iarray *succ; 18403 18404 postorder = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT); 18405 state = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT); 18406 stack = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT); 18407 if (!postorder || !state || !stack) { 18408 kvfree(postorder); 18409 kvfree(state); 18410 kvfree(stack); 18411 return -ENOMEM; 18412 } 18413 cur_postorder = 0; 18414 for (i = 0; i < env->subprog_cnt; i++) { 18415 env->subprog_info[i].postorder_start = cur_postorder; 18416 stack[0] = env->subprog_info[i].start; 18417 stack_sz = 1; 18418 do { 18419 top = stack[stack_sz - 1]; 18420 state[top] |= DISCOVERED; 18421 if (state[top] & EXPLORED) { 18422 postorder[cur_postorder++] = top; 18423 stack_sz--; 18424 continue; 18425 } 18426 succ = bpf_insn_successors(env, top); 18427 for (s = 0; s < succ->cnt; ++s) { 18428 if (!state[succ->items[s]]) { 18429 stack[stack_sz++] = succ->items[s]; 18430 state[succ->items[s]] |= DISCOVERED; 18431 } 18432 } 18433 state[top] |= EXPLORED; 18434 } while (stack_sz); 18435 } 18436 env->subprog_info[i].postorder_start = cur_postorder; 18437 env->cfg.insn_postorder = postorder; 18438 env->cfg.cur_postorder = cur_postorder; 18439 kvfree(stack); 18440 kvfree(state); 18441 return 0; 18442 } 18443 18444 static int check_abnormal_return(struct bpf_verifier_env *env) 18445 { 18446 int i; 18447 18448 for (i = 1; i < env->subprog_cnt; i++) { 18449 if (env->subprog_info[i].has_ld_abs) { 18450 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 18451 return -EINVAL; 18452 } 18453 if (env->subprog_info[i].has_tail_call) { 18454 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 18455 return -EINVAL; 18456 } 18457 } 18458 return 0; 18459 } 18460 18461 /* The minimum supported BTF func info size */ 18462 #define MIN_BPF_FUNCINFO_SIZE 8 18463 #define MAX_FUNCINFO_REC_SIZE 252 18464 18465 static int check_btf_func_early(struct bpf_verifier_env *env, 18466 const union bpf_attr *attr, 18467 bpfptr_t uattr) 18468 { 18469 u32 krec_size = sizeof(struct bpf_func_info); 18470 const struct btf_type *type, *func_proto; 18471 u32 i, nfuncs, urec_size, min_size; 18472 struct bpf_func_info *krecord; 18473 struct bpf_prog *prog; 18474 const struct btf *btf; 18475 u32 prev_offset = 0; 18476 bpfptr_t urecord; 18477 int ret = -ENOMEM; 18478 18479 nfuncs = attr->func_info_cnt; 18480 if (!nfuncs) { 18481 if (check_abnormal_return(env)) 18482 return -EINVAL; 18483 return 0; 18484 } 18485 18486 urec_size = attr->func_info_rec_size; 18487 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 18488 urec_size > MAX_FUNCINFO_REC_SIZE || 18489 urec_size % sizeof(u32)) { 18490 verbose(env, "invalid func info rec size %u\n", urec_size); 18491 return -EINVAL; 18492 } 18493 18494 prog = env->prog; 18495 btf = prog->aux->btf; 18496 18497 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 18498 min_size = min_t(u32, krec_size, urec_size); 18499 18500 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 18501 if (!krecord) 18502 return -ENOMEM; 18503 18504 for (i = 0; i < nfuncs; i++) { 18505 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 18506 if (ret) { 18507 if (ret == -E2BIG) { 18508 verbose(env, "nonzero tailing record in func info"); 18509 /* set the size kernel expects so loader can zero 18510 * out the rest of the record. 18511 */ 18512 if (copy_to_bpfptr_offset(uattr, 18513 offsetof(union bpf_attr, func_info_rec_size), 18514 &min_size, sizeof(min_size))) 18515 ret = -EFAULT; 18516 } 18517 goto err_free; 18518 } 18519 18520 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 18521 ret = -EFAULT; 18522 goto err_free; 18523 } 18524 18525 /* check insn_off */ 18526 ret = -EINVAL; 18527 if (i == 0) { 18528 if (krecord[i].insn_off) { 18529 verbose(env, 18530 "nonzero insn_off %u for the first func info record", 18531 krecord[i].insn_off); 18532 goto err_free; 18533 } 18534 } else if (krecord[i].insn_off <= prev_offset) { 18535 verbose(env, 18536 "same or smaller insn offset (%u) than previous func info record (%u)", 18537 krecord[i].insn_off, prev_offset); 18538 goto err_free; 18539 } 18540 18541 /* check type_id */ 18542 type = btf_type_by_id(btf, krecord[i].type_id); 18543 if (!type || !btf_type_is_func(type)) { 18544 verbose(env, "invalid type id %d in func info", 18545 krecord[i].type_id); 18546 goto err_free; 18547 } 18548 18549 func_proto = btf_type_by_id(btf, type->type); 18550 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 18551 /* btf_func_check() already verified it during BTF load */ 18552 goto err_free; 18553 18554 prev_offset = krecord[i].insn_off; 18555 bpfptr_add(&urecord, urec_size); 18556 } 18557 18558 prog->aux->func_info = krecord; 18559 prog->aux->func_info_cnt = nfuncs; 18560 return 0; 18561 18562 err_free: 18563 kvfree(krecord); 18564 return ret; 18565 } 18566 18567 static int check_btf_func(struct bpf_verifier_env *env, 18568 const union bpf_attr *attr, 18569 bpfptr_t uattr) 18570 { 18571 const struct btf_type *type, *func_proto, *ret_type; 18572 u32 i, nfuncs, urec_size; 18573 struct bpf_func_info *krecord; 18574 struct bpf_func_info_aux *info_aux = NULL; 18575 struct bpf_prog *prog; 18576 const struct btf *btf; 18577 bpfptr_t urecord; 18578 bool scalar_return; 18579 int ret = -ENOMEM; 18580 18581 nfuncs = attr->func_info_cnt; 18582 if (!nfuncs) { 18583 if (check_abnormal_return(env)) 18584 return -EINVAL; 18585 return 0; 18586 } 18587 if (nfuncs != env->subprog_cnt) { 18588 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 18589 return -EINVAL; 18590 } 18591 18592 urec_size = attr->func_info_rec_size; 18593 18594 prog = env->prog; 18595 btf = prog->aux->btf; 18596 18597 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 18598 18599 krecord = prog->aux->func_info; 18600 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 18601 if (!info_aux) 18602 return -ENOMEM; 18603 18604 for (i = 0; i < nfuncs; i++) { 18605 /* check insn_off */ 18606 ret = -EINVAL; 18607 18608 if (env->subprog_info[i].start != krecord[i].insn_off) { 18609 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 18610 goto err_free; 18611 } 18612 18613 /* Already checked type_id */ 18614 type = btf_type_by_id(btf, krecord[i].type_id); 18615 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 18616 /* Already checked func_proto */ 18617 func_proto = btf_type_by_id(btf, type->type); 18618 18619 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 18620 scalar_return = 18621 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 18622 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 18623 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 18624 goto err_free; 18625 } 18626 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 18627 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 18628 goto err_free; 18629 } 18630 18631 bpfptr_add(&urecord, urec_size); 18632 } 18633 18634 prog->aux->func_info_aux = info_aux; 18635 return 0; 18636 18637 err_free: 18638 kfree(info_aux); 18639 return ret; 18640 } 18641 18642 static void adjust_btf_func(struct bpf_verifier_env *env) 18643 { 18644 struct bpf_prog_aux *aux = env->prog->aux; 18645 int i; 18646 18647 if (!aux->func_info) 18648 return; 18649 18650 /* func_info is not available for hidden subprogs */ 18651 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 18652 aux->func_info[i].insn_off = env->subprog_info[i].start; 18653 } 18654 18655 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 18656 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 18657 18658 static int check_btf_line(struct bpf_verifier_env *env, 18659 const union bpf_attr *attr, 18660 bpfptr_t uattr) 18661 { 18662 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 18663 struct bpf_subprog_info *sub; 18664 struct bpf_line_info *linfo; 18665 struct bpf_prog *prog; 18666 const struct btf *btf; 18667 bpfptr_t ulinfo; 18668 int err; 18669 18670 nr_linfo = attr->line_info_cnt; 18671 if (!nr_linfo) 18672 return 0; 18673 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 18674 return -EINVAL; 18675 18676 rec_size = attr->line_info_rec_size; 18677 if (rec_size < MIN_BPF_LINEINFO_SIZE || 18678 rec_size > MAX_LINEINFO_REC_SIZE || 18679 rec_size & (sizeof(u32) - 1)) 18680 return -EINVAL; 18681 18682 /* Need to zero it in case the userspace may 18683 * pass in a smaller bpf_line_info object. 18684 */ 18685 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 18686 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 18687 if (!linfo) 18688 return -ENOMEM; 18689 18690 prog = env->prog; 18691 btf = prog->aux->btf; 18692 18693 s = 0; 18694 sub = env->subprog_info; 18695 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 18696 expected_size = sizeof(struct bpf_line_info); 18697 ncopy = min_t(u32, expected_size, rec_size); 18698 for (i = 0; i < nr_linfo; i++) { 18699 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 18700 if (err) { 18701 if (err == -E2BIG) { 18702 verbose(env, "nonzero tailing record in line_info"); 18703 if (copy_to_bpfptr_offset(uattr, 18704 offsetof(union bpf_attr, line_info_rec_size), 18705 &expected_size, sizeof(expected_size))) 18706 err = -EFAULT; 18707 } 18708 goto err_free; 18709 } 18710 18711 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 18712 err = -EFAULT; 18713 goto err_free; 18714 } 18715 18716 /* 18717 * Check insn_off to ensure 18718 * 1) strictly increasing AND 18719 * 2) bounded by prog->len 18720 * 18721 * The linfo[0].insn_off == 0 check logically falls into 18722 * the later "missing bpf_line_info for func..." case 18723 * because the first linfo[0].insn_off must be the 18724 * first sub also and the first sub must have 18725 * subprog_info[0].start == 0. 18726 */ 18727 if ((i && linfo[i].insn_off <= prev_offset) || 18728 linfo[i].insn_off >= prog->len) { 18729 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 18730 i, linfo[i].insn_off, prev_offset, 18731 prog->len); 18732 err = -EINVAL; 18733 goto err_free; 18734 } 18735 18736 if (!prog->insnsi[linfo[i].insn_off].code) { 18737 verbose(env, 18738 "Invalid insn code at line_info[%u].insn_off\n", 18739 i); 18740 err = -EINVAL; 18741 goto err_free; 18742 } 18743 18744 if (!btf_name_by_offset(btf, linfo[i].line_off) || 18745 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 18746 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 18747 err = -EINVAL; 18748 goto err_free; 18749 } 18750 18751 if (s != env->subprog_cnt) { 18752 if (linfo[i].insn_off == sub[s].start) { 18753 sub[s].linfo_idx = i; 18754 s++; 18755 } else if (sub[s].start < linfo[i].insn_off) { 18756 verbose(env, "missing bpf_line_info for func#%u\n", s); 18757 err = -EINVAL; 18758 goto err_free; 18759 } 18760 } 18761 18762 prev_offset = linfo[i].insn_off; 18763 bpfptr_add(&ulinfo, rec_size); 18764 } 18765 18766 if (s != env->subprog_cnt) { 18767 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 18768 env->subprog_cnt - s, s); 18769 err = -EINVAL; 18770 goto err_free; 18771 } 18772 18773 prog->aux->linfo = linfo; 18774 prog->aux->nr_linfo = nr_linfo; 18775 18776 return 0; 18777 18778 err_free: 18779 kvfree(linfo); 18780 return err; 18781 } 18782 18783 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 18784 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 18785 18786 static int check_core_relo(struct bpf_verifier_env *env, 18787 const union bpf_attr *attr, 18788 bpfptr_t uattr) 18789 { 18790 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 18791 struct bpf_core_relo core_relo = {}; 18792 struct bpf_prog *prog = env->prog; 18793 const struct btf *btf = prog->aux->btf; 18794 struct bpf_core_ctx ctx = { 18795 .log = &env->log, 18796 .btf = btf, 18797 }; 18798 bpfptr_t u_core_relo; 18799 int err; 18800 18801 nr_core_relo = attr->core_relo_cnt; 18802 if (!nr_core_relo) 18803 return 0; 18804 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 18805 return -EINVAL; 18806 18807 rec_size = attr->core_relo_rec_size; 18808 if (rec_size < MIN_CORE_RELO_SIZE || 18809 rec_size > MAX_CORE_RELO_SIZE || 18810 rec_size % sizeof(u32)) 18811 return -EINVAL; 18812 18813 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 18814 expected_size = sizeof(struct bpf_core_relo); 18815 ncopy = min_t(u32, expected_size, rec_size); 18816 18817 /* Unlike func_info and line_info, copy and apply each CO-RE 18818 * relocation record one at a time. 18819 */ 18820 for (i = 0; i < nr_core_relo; i++) { 18821 /* future proofing when sizeof(bpf_core_relo) changes */ 18822 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 18823 if (err) { 18824 if (err == -E2BIG) { 18825 verbose(env, "nonzero tailing record in core_relo"); 18826 if (copy_to_bpfptr_offset(uattr, 18827 offsetof(union bpf_attr, core_relo_rec_size), 18828 &expected_size, sizeof(expected_size))) 18829 err = -EFAULT; 18830 } 18831 break; 18832 } 18833 18834 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 18835 err = -EFAULT; 18836 break; 18837 } 18838 18839 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 18840 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 18841 i, core_relo.insn_off, prog->len); 18842 err = -EINVAL; 18843 break; 18844 } 18845 18846 err = bpf_core_apply(&ctx, &core_relo, i, 18847 &prog->insnsi[core_relo.insn_off / 8]); 18848 if (err) 18849 break; 18850 bpfptr_add(&u_core_relo, rec_size); 18851 } 18852 return err; 18853 } 18854 18855 static int check_btf_info_early(struct bpf_verifier_env *env, 18856 const union bpf_attr *attr, 18857 bpfptr_t uattr) 18858 { 18859 struct btf *btf; 18860 int err; 18861 18862 if (!attr->func_info_cnt && !attr->line_info_cnt) { 18863 if (check_abnormal_return(env)) 18864 return -EINVAL; 18865 return 0; 18866 } 18867 18868 btf = btf_get_by_fd(attr->prog_btf_fd); 18869 if (IS_ERR(btf)) 18870 return PTR_ERR(btf); 18871 if (btf_is_kernel(btf)) { 18872 btf_put(btf); 18873 return -EACCES; 18874 } 18875 env->prog->aux->btf = btf; 18876 18877 err = check_btf_func_early(env, attr, uattr); 18878 if (err) 18879 return err; 18880 return 0; 18881 } 18882 18883 static int check_btf_info(struct bpf_verifier_env *env, 18884 const union bpf_attr *attr, 18885 bpfptr_t uattr) 18886 { 18887 int err; 18888 18889 if (!attr->func_info_cnt && !attr->line_info_cnt) { 18890 if (check_abnormal_return(env)) 18891 return -EINVAL; 18892 return 0; 18893 } 18894 18895 err = check_btf_func(env, attr, uattr); 18896 if (err) 18897 return err; 18898 18899 err = check_btf_line(env, attr, uattr); 18900 if (err) 18901 return err; 18902 18903 err = check_core_relo(env, attr, uattr); 18904 if (err) 18905 return err; 18906 18907 return 0; 18908 } 18909 18910 /* check %cur's range satisfies %old's */ 18911 static bool range_within(const struct bpf_reg_state *old, 18912 const struct bpf_reg_state *cur) 18913 { 18914 return old->umin_value <= cur->umin_value && 18915 old->umax_value >= cur->umax_value && 18916 old->smin_value <= cur->smin_value && 18917 old->smax_value >= cur->smax_value && 18918 old->u32_min_value <= cur->u32_min_value && 18919 old->u32_max_value >= cur->u32_max_value && 18920 old->s32_min_value <= cur->s32_min_value && 18921 old->s32_max_value >= cur->s32_max_value; 18922 } 18923 18924 /* If in the old state two registers had the same id, then they need to have 18925 * the same id in the new state as well. But that id could be different from 18926 * the old state, so we need to track the mapping from old to new ids. 18927 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 18928 * regs with old id 5 must also have new id 9 for the new state to be safe. But 18929 * regs with a different old id could still have new id 9, we don't care about 18930 * that. 18931 * So we look through our idmap to see if this old id has been seen before. If 18932 * so, we require the new id to match; otherwise, we add the id pair to the map. 18933 */ 18934 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 18935 { 18936 struct bpf_id_pair *map = idmap->map; 18937 unsigned int i; 18938 18939 /* either both IDs should be set or both should be zero */ 18940 if (!!old_id != !!cur_id) 18941 return false; 18942 18943 if (old_id == 0) /* cur_id == 0 as well */ 18944 return true; 18945 18946 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 18947 if (!map[i].old) { 18948 /* Reached an empty slot; haven't seen this id before */ 18949 map[i].old = old_id; 18950 map[i].cur = cur_id; 18951 return true; 18952 } 18953 if (map[i].old == old_id) 18954 return map[i].cur == cur_id; 18955 if (map[i].cur == cur_id) 18956 return false; 18957 } 18958 /* We ran out of idmap slots, which should be impossible */ 18959 WARN_ON_ONCE(1); 18960 return false; 18961 } 18962 18963 /* Similar to check_ids(), but allocate a unique temporary ID 18964 * for 'old_id' or 'cur_id' of zero. 18965 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 18966 */ 18967 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 18968 { 18969 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 18970 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 18971 18972 return check_ids(old_id, cur_id, idmap); 18973 } 18974 18975 static void clean_func_state(struct bpf_verifier_env *env, 18976 struct bpf_func_state *st, 18977 u32 ip) 18978 { 18979 u16 live_regs = env->insn_aux_data[ip].live_regs_before; 18980 int i, j; 18981 18982 for (i = 0; i < BPF_REG_FP; i++) { 18983 /* liveness must not touch this register anymore */ 18984 if (!(live_regs & BIT(i))) 18985 /* since the register is unused, clear its state 18986 * to make further comparison simpler 18987 */ 18988 __mark_reg_not_init(env, &st->regs[i]); 18989 } 18990 18991 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 18992 if (!bpf_stack_slot_alive(env, st->frameno, i)) { 18993 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 18994 for (j = 0; j < BPF_REG_SIZE; j++) 18995 st->stack[i].slot_type[j] = STACK_INVALID; 18996 } 18997 } 18998 } 18999 19000 static void clean_verifier_state(struct bpf_verifier_env *env, 19001 struct bpf_verifier_state *st) 19002 { 19003 int i, ip; 19004 19005 bpf_live_stack_query_init(env, st); 19006 st->cleaned = true; 19007 for (i = 0; i <= st->curframe; i++) { 19008 ip = frame_insn_idx(st, i); 19009 clean_func_state(env, st->frame[i], ip); 19010 } 19011 } 19012 19013 /* the parentage chains form a tree. 19014 * the verifier states are added to state lists at given insn and 19015 * pushed into state stack for future exploration. 19016 * when the verifier reaches bpf_exit insn some of the verifier states 19017 * stored in the state lists have their final liveness state already, 19018 * but a lot of states will get revised from liveness point of view when 19019 * the verifier explores other branches. 19020 * Example: 19021 * 1: *(u64)(r10 - 8) = 1 19022 * 2: if r1 == 100 goto pc+1 19023 * 3: *(u64)(r10 - 8) = 2 19024 * 4: r0 = *(u64)(r10 - 8) 19025 * 5: exit 19026 * when the verifier reaches exit insn the stack slot -8 in the state list of 19027 * insn 2 is not yet marked alive. Then the verifier pops the other_branch 19028 * of insn 2 and goes exploring further. After the insn 4 read, liveness 19029 * analysis would propagate read mark for -8 at insn 2. 19030 * 19031 * Since the verifier pushes the branch states as it sees them while exploring 19032 * the program the condition of walking the branch instruction for the second 19033 * time means that all states below this branch were already explored and 19034 * their final liveness marks are already propagated. 19035 * Hence when the verifier completes the search of state list in is_state_visited() 19036 * we can call this clean_live_states() function to clear dead the registers and stack 19037 * slots to simplify state merging. 19038 * 19039 * Important note here that walking the same branch instruction in the callee 19040 * doesn't meant that the states are DONE. The verifier has to compare 19041 * the callsites 19042 */ 19043 static void clean_live_states(struct bpf_verifier_env *env, int insn, 19044 struct bpf_verifier_state *cur) 19045 { 19046 struct bpf_verifier_state_list *sl; 19047 struct list_head *pos, *head; 19048 19049 head = explored_state(env, insn); 19050 list_for_each(pos, head) { 19051 sl = container_of(pos, struct bpf_verifier_state_list, node); 19052 if (sl->state.branches) 19053 continue; 19054 if (sl->state.insn_idx != insn || 19055 !same_callsites(&sl->state, cur)) 19056 continue; 19057 if (sl->state.cleaned) 19058 /* all regs in this state in all frames were already marked */ 19059 continue; 19060 if (incomplete_read_marks(env, &sl->state)) 19061 continue; 19062 clean_verifier_state(env, &sl->state); 19063 } 19064 } 19065 19066 static bool regs_exact(const struct bpf_reg_state *rold, 19067 const struct bpf_reg_state *rcur, 19068 struct bpf_idmap *idmap) 19069 { 19070 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 19071 check_ids(rold->id, rcur->id, idmap) && 19072 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 19073 } 19074 19075 enum exact_level { 19076 NOT_EXACT, 19077 EXACT, 19078 RANGE_WITHIN 19079 }; 19080 19081 /* Returns true if (rold safe implies rcur safe) */ 19082 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 19083 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, 19084 enum exact_level exact) 19085 { 19086 if (exact == EXACT) 19087 return regs_exact(rold, rcur, idmap); 19088 19089 if (rold->type == NOT_INIT) { 19090 if (exact == NOT_EXACT || rcur->type == NOT_INIT) 19091 /* explored state can't have used this */ 19092 return true; 19093 } 19094 19095 /* Enforce that register types have to match exactly, including their 19096 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 19097 * rule. 19098 * 19099 * One can make a point that using a pointer register as unbounded 19100 * SCALAR would be technically acceptable, but this could lead to 19101 * pointer leaks because scalars are allowed to leak while pointers 19102 * are not. We could make this safe in special cases if root is 19103 * calling us, but it's probably not worth the hassle. 19104 * 19105 * Also, register types that are *not* MAYBE_NULL could technically be 19106 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 19107 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 19108 * to the same map). 19109 * However, if the old MAYBE_NULL register then got NULL checked, 19110 * doing so could have affected others with the same id, and we can't 19111 * check for that because we lost the id when we converted to 19112 * a non-MAYBE_NULL variant. 19113 * So, as a general rule we don't allow mixing MAYBE_NULL and 19114 * non-MAYBE_NULL registers as well. 19115 */ 19116 if (rold->type != rcur->type) 19117 return false; 19118 19119 switch (base_type(rold->type)) { 19120 case SCALAR_VALUE: 19121 if (env->explore_alu_limits) { 19122 /* explore_alu_limits disables tnum_in() and range_within() 19123 * logic and requires everything to be strict 19124 */ 19125 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 19126 check_scalar_ids(rold->id, rcur->id, idmap); 19127 } 19128 if (!rold->precise && exact == NOT_EXACT) 19129 return true; 19130 if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST)) 19131 return false; 19132 if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off)) 19133 return false; 19134 /* Why check_ids() for scalar registers? 19135 * 19136 * Consider the following BPF code: 19137 * 1: r6 = ... unbound scalar, ID=a ... 19138 * 2: r7 = ... unbound scalar, ID=b ... 19139 * 3: if (r6 > r7) goto +1 19140 * 4: r6 = r7 19141 * 5: if (r6 > X) goto ... 19142 * 6: ... memory operation using r7 ... 19143 * 19144 * First verification path is [1-6]: 19145 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 19146 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark 19147 * r7 <= X, because r6 and r7 share same id. 19148 * Next verification path is [1-4, 6]. 19149 * 19150 * Instruction (6) would be reached in two states: 19151 * I. r6{.id=b}, r7{.id=b} via path 1-6; 19152 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 19153 * 19154 * Use check_ids() to distinguish these states. 19155 * --- 19156 * Also verify that new value satisfies old value range knowledge. 19157 */ 19158 return range_within(rold, rcur) && 19159 tnum_in(rold->var_off, rcur->var_off) && 19160 check_scalar_ids(rold->id, rcur->id, idmap); 19161 case PTR_TO_MAP_KEY: 19162 case PTR_TO_MAP_VALUE: 19163 case PTR_TO_MEM: 19164 case PTR_TO_BUF: 19165 case PTR_TO_TP_BUFFER: 19166 /* If the new min/max/var_off satisfy the old ones and 19167 * everything else matches, we are OK. 19168 */ 19169 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 19170 range_within(rold, rcur) && 19171 tnum_in(rold->var_off, rcur->var_off) && 19172 check_ids(rold->id, rcur->id, idmap) && 19173 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 19174 case PTR_TO_PACKET_META: 19175 case PTR_TO_PACKET: 19176 /* We must have at least as much range as the old ptr 19177 * did, so that any accesses which were safe before are 19178 * still safe. This is true even if old range < old off, 19179 * since someone could have accessed through (ptr - k), or 19180 * even done ptr -= k in a register, to get a safe access. 19181 */ 19182 if (rold->range > rcur->range) 19183 return false; 19184 /* If the offsets don't match, we can't trust our alignment; 19185 * nor can we be sure that we won't fall out of range. 19186 */ 19187 if (rold->off != rcur->off) 19188 return false; 19189 /* id relations must be preserved */ 19190 if (!check_ids(rold->id, rcur->id, idmap)) 19191 return false; 19192 /* new val must satisfy old val knowledge */ 19193 return range_within(rold, rcur) && 19194 tnum_in(rold->var_off, rcur->var_off); 19195 case PTR_TO_STACK: 19196 /* two stack pointers are equal only if they're pointing to 19197 * the same stack frame, since fp-8 in foo != fp-8 in bar 19198 */ 19199 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 19200 case PTR_TO_ARENA: 19201 return true; 19202 case PTR_TO_INSN: 19203 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 19204 rold->off == rcur->off && range_within(rold, rcur) && 19205 tnum_in(rold->var_off, rcur->var_off); 19206 default: 19207 return regs_exact(rold, rcur, idmap); 19208 } 19209 } 19210 19211 static struct bpf_reg_state unbound_reg; 19212 19213 static __init int unbound_reg_init(void) 19214 { 19215 __mark_reg_unknown_imprecise(&unbound_reg); 19216 return 0; 19217 } 19218 late_initcall(unbound_reg_init); 19219 19220 static bool is_stack_all_misc(struct bpf_verifier_env *env, 19221 struct bpf_stack_state *stack) 19222 { 19223 u32 i; 19224 19225 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { 19226 if ((stack->slot_type[i] == STACK_MISC) || 19227 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) 19228 continue; 19229 return false; 19230 } 19231 19232 return true; 19233 } 19234 19235 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, 19236 struct bpf_stack_state *stack) 19237 { 19238 if (is_spilled_scalar_reg64(stack)) 19239 return &stack->spilled_ptr; 19240 19241 if (is_stack_all_misc(env, stack)) 19242 return &unbound_reg; 19243 19244 return NULL; 19245 } 19246 19247 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 19248 struct bpf_func_state *cur, struct bpf_idmap *idmap, 19249 enum exact_level exact) 19250 { 19251 int i, spi; 19252 19253 /* walk slots of the explored stack and ignore any additional 19254 * slots in the current stack, since explored(safe) state 19255 * didn't use them 19256 */ 19257 for (i = 0; i < old->allocated_stack; i++) { 19258 struct bpf_reg_state *old_reg, *cur_reg; 19259 19260 spi = i / BPF_REG_SIZE; 19261 19262 if (exact != NOT_EXACT && 19263 (i >= cur->allocated_stack || 19264 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 19265 cur->stack[spi].slot_type[i % BPF_REG_SIZE])) 19266 return false; 19267 19268 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 19269 continue; 19270 19271 if (env->allow_uninit_stack && 19272 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 19273 continue; 19274 19275 /* explored stack has more populated slots than current stack 19276 * and these slots were used 19277 */ 19278 if (i >= cur->allocated_stack) 19279 return false; 19280 19281 /* 64-bit scalar spill vs all slots MISC and vice versa. 19282 * Load from all slots MISC produces unbound scalar. 19283 * Construct a fake register for such stack and call 19284 * regsafe() to ensure scalar ids are compared. 19285 */ 19286 old_reg = scalar_reg_for_stack(env, &old->stack[spi]); 19287 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); 19288 if (old_reg && cur_reg) { 19289 if (!regsafe(env, old_reg, cur_reg, idmap, exact)) 19290 return false; 19291 i += BPF_REG_SIZE - 1; 19292 continue; 19293 } 19294 19295 /* if old state was safe with misc data in the stack 19296 * it will be safe with zero-initialized stack. 19297 * The opposite is not true 19298 */ 19299 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 19300 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 19301 continue; 19302 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 19303 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 19304 /* Ex: old explored (safe) state has STACK_SPILL in 19305 * this stack slot, but current has STACK_MISC -> 19306 * this verifier states are not equivalent, 19307 * return false to continue verification of this path 19308 */ 19309 return false; 19310 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 19311 continue; 19312 /* Both old and cur are having same slot_type */ 19313 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 19314 case STACK_SPILL: 19315 /* when explored and current stack slot are both storing 19316 * spilled registers, check that stored pointers types 19317 * are the same as well. 19318 * Ex: explored safe path could have stored 19319 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 19320 * but current path has stored: 19321 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 19322 * such verifier states are not equivalent. 19323 * return false to continue verification of this path 19324 */ 19325 if (!regsafe(env, &old->stack[spi].spilled_ptr, 19326 &cur->stack[spi].spilled_ptr, idmap, exact)) 19327 return false; 19328 break; 19329 case STACK_DYNPTR: 19330 old_reg = &old->stack[spi].spilled_ptr; 19331 cur_reg = &cur->stack[spi].spilled_ptr; 19332 if (old_reg->dynptr.type != cur_reg->dynptr.type || 19333 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 19334 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 19335 return false; 19336 break; 19337 case STACK_ITER: 19338 old_reg = &old->stack[spi].spilled_ptr; 19339 cur_reg = &cur->stack[spi].spilled_ptr; 19340 /* iter.depth is not compared between states as it 19341 * doesn't matter for correctness and would otherwise 19342 * prevent convergence; we maintain it only to prevent 19343 * infinite loop check triggering, see 19344 * iter_active_depths_differ() 19345 */ 19346 if (old_reg->iter.btf != cur_reg->iter.btf || 19347 old_reg->iter.btf_id != cur_reg->iter.btf_id || 19348 old_reg->iter.state != cur_reg->iter.state || 19349 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 19350 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 19351 return false; 19352 break; 19353 case STACK_IRQ_FLAG: 19354 old_reg = &old->stack[spi].spilled_ptr; 19355 cur_reg = &cur->stack[spi].spilled_ptr; 19356 if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap) || 19357 old_reg->irq.kfunc_class != cur_reg->irq.kfunc_class) 19358 return false; 19359 break; 19360 case STACK_MISC: 19361 case STACK_ZERO: 19362 case STACK_INVALID: 19363 continue; 19364 /* Ensure that new unhandled slot types return false by default */ 19365 default: 19366 return false; 19367 } 19368 } 19369 return true; 19370 } 19371 19372 static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *cur, 19373 struct bpf_idmap *idmap) 19374 { 19375 int i; 19376 19377 if (old->acquired_refs != cur->acquired_refs) 19378 return false; 19379 19380 if (old->active_locks != cur->active_locks) 19381 return false; 19382 19383 if (old->active_preempt_locks != cur->active_preempt_locks) 19384 return false; 19385 19386 if (old->active_rcu_locks != cur->active_rcu_locks) 19387 return false; 19388 19389 if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap)) 19390 return false; 19391 19392 if (!check_ids(old->active_lock_id, cur->active_lock_id, idmap) || 19393 old->active_lock_ptr != cur->active_lock_ptr) 19394 return false; 19395 19396 for (i = 0; i < old->acquired_refs; i++) { 19397 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) || 19398 old->refs[i].type != cur->refs[i].type) 19399 return false; 19400 switch (old->refs[i].type) { 19401 case REF_TYPE_PTR: 19402 case REF_TYPE_IRQ: 19403 break; 19404 case REF_TYPE_LOCK: 19405 case REF_TYPE_RES_LOCK: 19406 case REF_TYPE_RES_LOCK_IRQ: 19407 if (old->refs[i].ptr != cur->refs[i].ptr) 19408 return false; 19409 break; 19410 default: 19411 WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type); 19412 return false; 19413 } 19414 } 19415 19416 return true; 19417 } 19418 19419 /* compare two verifier states 19420 * 19421 * all states stored in state_list are known to be valid, since 19422 * verifier reached 'bpf_exit' instruction through them 19423 * 19424 * this function is called when verifier exploring different branches of 19425 * execution popped from the state stack. If it sees an old state that has 19426 * more strict register state and more strict stack state then this execution 19427 * branch doesn't need to be explored further, since verifier already 19428 * concluded that more strict state leads to valid finish. 19429 * 19430 * Therefore two states are equivalent if register state is more conservative 19431 * and explored stack state is more conservative than the current one. 19432 * Example: 19433 * explored current 19434 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 19435 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 19436 * 19437 * In other words if current stack state (one being explored) has more 19438 * valid slots than old one that already passed validation, it means 19439 * the verifier can stop exploring and conclude that current state is valid too 19440 * 19441 * Similarly with registers. If explored state has register type as invalid 19442 * whereas register type in current state is meaningful, it means that 19443 * the current state will reach 'bpf_exit' instruction safely 19444 */ 19445 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 19446 struct bpf_func_state *cur, u32 insn_idx, enum exact_level exact) 19447 { 19448 u16 live_regs = env->insn_aux_data[insn_idx].live_regs_before; 19449 u16 i; 19450 19451 if (old->callback_depth > cur->callback_depth) 19452 return false; 19453 19454 for (i = 0; i < MAX_BPF_REG; i++) 19455 if (((1 << i) & live_regs) && 19456 !regsafe(env, &old->regs[i], &cur->regs[i], 19457 &env->idmap_scratch, exact)) 19458 return false; 19459 19460 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 19461 return false; 19462 19463 return true; 19464 } 19465 19466 static void reset_idmap_scratch(struct bpf_verifier_env *env) 19467 { 19468 env->idmap_scratch.tmp_id_gen = env->id_gen; 19469 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 19470 } 19471 19472 static bool states_equal(struct bpf_verifier_env *env, 19473 struct bpf_verifier_state *old, 19474 struct bpf_verifier_state *cur, 19475 enum exact_level exact) 19476 { 19477 u32 insn_idx; 19478 int i; 19479 19480 if (old->curframe != cur->curframe) 19481 return false; 19482 19483 reset_idmap_scratch(env); 19484 19485 /* Verification state from speculative execution simulation 19486 * must never prune a non-speculative execution one. 19487 */ 19488 if (old->speculative && !cur->speculative) 19489 return false; 19490 19491 if (old->in_sleepable != cur->in_sleepable) 19492 return false; 19493 19494 if (!refsafe(old, cur, &env->idmap_scratch)) 19495 return false; 19496 19497 /* for states to be equal callsites have to be the same 19498 * and all frame states need to be equivalent 19499 */ 19500 for (i = 0; i <= old->curframe; i++) { 19501 insn_idx = frame_insn_idx(old, i); 19502 if (old->frame[i]->callsite != cur->frame[i]->callsite) 19503 return false; 19504 if (!func_states_equal(env, old->frame[i], cur->frame[i], insn_idx, exact)) 19505 return false; 19506 } 19507 return true; 19508 } 19509 19510 /* find precise scalars in the previous equivalent state and 19511 * propagate them into the current state 19512 */ 19513 static int propagate_precision(struct bpf_verifier_env *env, 19514 const struct bpf_verifier_state *old, 19515 struct bpf_verifier_state *cur, 19516 bool *changed) 19517 { 19518 struct bpf_reg_state *state_reg; 19519 struct bpf_func_state *state; 19520 int i, err = 0, fr; 19521 bool first; 19522 19523 for (fr = old->curframe; fr >= 0; fr--) { 19524 state = old->frame[fr]; 19525 state_reg = state->regs; 19526 first = true; 19527 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 19528 if (state_reg->type != SCALAR_VALUE || 19529 !state_reg->precise) 19530 continue; 19531 if (env->log.level & BPF_LOG_LEVEL2) { 19532 if (first) 19533 verbose(env, "frame %d: propagating r%d", fr, i); 19534 else 19535 verbose(env, ",r%d", i); 19536 } 19537 bt_set_frame_reg(&env->bt, fr, i); 19538 first = false; 19539 } 19540 19541 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 19542 if (!is_spilled_reg(&state->stack[i])) 19543 continue; 19544 state_reg = &state->stack[i].spilled_ptr; 19545 if (state_reg->type != SCALAR_VALUE || 19546 !state_reg->precise) 19547 continue; 19548 if (env->log.level & BPF_LOG_LEVEL2) { 19549 if (first) 19550 verbose(env, "frame %d: propagating fp%d", 19551 fr, (-i - 1) * BPF_REG_SIZE); 19552 else 19553 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 19554 } 19555 bt_set_frame_slot(&env->bt, fr, i); 19556 first = false; 19557 } 19558 if (!first && (env->log.level & BPF_LOG_LEVEL2)) 19559 verbose(env, "\n"); 19560 } 19561 19562 err = __mark_chain_precision(env, cur, -1, changed); 19563 if (err < 0) 19564 return err; 19565 19566 return 0; 19567 } 19568 19569 #define MAX_BACKEDGE_ITERS 64 19570 19571 /* Propagate read and precision marks from visit->backedges[*].state->equal_state 19572 * to corresponding parent states of visit->backedges[*].state until fixed point is reached, 19573 * then free visit->backedges. 19574 * After execution of this function incomplete_read_marks() will return false 19575 * for all states corresponding to @visit->callchain. 19576 */ 19577 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit) 19578 { 19579 struct bpf_scc_backedge *backedge; 19580 struct bpf_verifier_state *st; 19581 bool changed; 19582 int i, err; 19583 19584 i = 0; 19585 do { 19586 if (i++ > MAX_BACKEDGE_ITERS) { 19587 if (env->log.level & BPF_LOG_LEVEL2) 19588 verbose(env, "%s: too many iterations\n", __func__); 19589 for (backedge = visit->backedges; backedge; backedge = backedge->next) 19590 mark_all_scalars_precise(env, &backedge->state); 19591 break; 19592 } 19593 changed = false; 19594 for (backedge = visit->backedges; backedge; backedge = backedge->next) { 19595 st = &backedge->state; 19596 err = propagate_precision(env, st->equal_state, st, &changed); 19597 if (err) 19598 return err; 19599 } 19600 } while (changed); 19601 19602 free_backedges(visit); 19603 return 0; 19604 } 19605 19606 static bool states_maybe_looping(struct bpf_verifier_state *old, 19607 struct bpf_verifier_state *cur) 19608 { 19609 struct bpf_func_state *fold, *fcur; 19610 int i, fr = cur->curframe; 19611 19612 if (old->curframe != fr) 19613 return false; 19614 19615 fold = old->frame[fr]; 19616 fcur = cur->frame[fr]; 19617 for (i = 0; i < MAX_BPF_REG; i++) 19618 if (memcmp(&fold->regs[i], &fcur->regs[i], 19619 offsetof(struct bpf_reg_state, frameno))) 19620 return false; 19621 return true; 19622 } 19623 19624 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 19625 { 19626 return env->insn_aux_data[insn_idx].is_iter_next; 19627 } 19628 19629 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 19630 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 19631 * states to match, which otherwise would look like an infinite loop. So while 19632 * iter_next() calls are taken care of, we still need to be careful and 19633 * prevent erroneous and too eager declaration of "infinite loop", when 19634 * iterators are involved. 19635 * 19636 * Here's a situation in pseudo-BPF assembly form: 19637 * 19638 * 0: again: ; set up iter_next() call args 19639 * 1: r1 = &it ; <CHECKPOINT HERE> 19640 * 2: call bpf_iter_num_next ; this is iter_next() call 19641 * 3: if r0 == 0 goto done 19642 * 4: ... something useful here ... 19643 * 5: goto again ; another iteration 19644 * 6: done: 19645 * 7: r1 = &it 19646 * 8: call bpf_iter_num_destroy ; clean up iter state 19647 * 9: exit 19648 * 19649 * This is a typical loop. Let's assume that we have a prune point at 1:, 19650 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 19651 * again`, assuming other heuristics don't get in a way). 19652 * 19653 * When we first time come to 1:, let's say we have some state X. We proceed 19654 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 19655 * Now we come back to validate that forked ACTIVE state. We proceed through 19656 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 19657 * are converging. But the problem is that we don't know that yet, as this 19658 * convergence has to happen at iter_next() call site only. So if nothing is 19659 * done, at 1: verifier will use bounded loop logic and declare infinite 19660 * looping (and would be *technically* correct, if not for iterator's 19661 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 19662 * don't want that. So what we do in process_iter_next_call() when we go on 19663 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 19664 * a different iteration. So when we suspect an infinite loop, we additionally 19665 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 19666 * pretend we are not looping and wait for next iter_next() call. 19667 * 19668 * This only applies to ACTIVE state. In DRAINED state we don't expect to 19669 * loop, because that would actually mean infinite loop, as DRAINED state is 19670 * "sticky", and so we'll keep returning into the same instruction with the 19671 * same state (at least in one of possible code paths). 19672 * 19673 * This approach allows to keep infinite loop heuristic even in the face of 19674 * active iterator. E.g., C snippet below is and will be detected as 19675 * infinitely looping: 19676 * 19677 * struct bpf_iter_num it; 19678 * int *p, x; 19679 * 19680 * bpf_iter_num_new(&it, 0, 10); 19681 * while ((p = bpf_iter_num_next(&t))) { 19682 * x = p; 19683 * while (x--) {} // <<-- infinite loop here 19684 * } 19685 * 19686 */ 19687 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 19688 { 19689 struct bpf_reg_state *slot, *cur_slot; 19690 struct bpf_func_state *state; 19691 int i, fr; 19692 19693 for (fr = old->curframe; fr >= 0; fr--) { 19694 state = old->frame[fr]; 19695 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 19696 if (state->stack[i].slot_type[0] != STACK_ITER) 19697 continue; 19698 19699 slot = &state->stack[i].spilled_ptr; 19700 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 19701 continue; 19702 19703 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 19704 if (cur_slot->iter.depth != slot->iter.depth) 19705 return true; 19706 } 19707 } 19708 return false; 19709 } 19710 19711 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 19712 { 19713 struct bpf_verifier_state_list *new_sl; 19714 struct bpf_verifier_state_list *sl; 19715 struct bpf_verifier_state *cur = env->cur_state, *new; 19716 bool force_new_state, add_new_state, loop; 19717 int n, err, states_cnt = 0; 19718 struct list_head *pos, *tmp, *head; 19719 19720 force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) || 19721 /* Avoid accumulating infinitely long jmp history */ 19722 cur->jmp_history_cnt > 40; 19723 19724 /* bpf progs typically have pruning point every 4 instructions 19725 * http://vger.kernel.org/bpfconf2019.html#session-1 19726 * Do not add new state for future pruning if the verifier hasn't seen 19727 * at least 2 jumps and at least 8 instructions. 19728 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 19729 * In tests that amounts to up to 50% reduction into total verifier 19730 * memory consumption and 20% verifier time speedup. 19731 */ 19732 add_new_state = force_new_state; 19733 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 19734 env->insn_processed - env->prev_insn_processed >= 8) 19735 add_new_state = true; 19736 19737 clean_live_states(env, insn_idx, cur); 19738 19739 loop = false; 19740 head = explored_state(env, insn_idx); 19741 list_for_each_safe(pos, tmp, head) { 19742 sl = container_of(pos, struct bpf_verifier_state_list, node); 19743 states_cnt++; 19744 if (sl->state.insn_idx != insn_idx) 19745 continue; 19746 19747 if (sl->state.branches) { 19748 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 19749 19750 if (frame->in_async_callback_fn && 19751 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 19752 /* Different async_entry_cnt means that the verifier is 19753 * processing another entry into async callback. 19754 * Seeing the same state is not an indication of infinite 19755 * loop or infinite recursion. 19756 * But finding the same state doesn't mean that it's safe 19757 * to stop processing the current state. The previous state 19758 * hasn't yet reached bpf_exit, since state.branches > 0. 19759 * Checking in_async_callback_fn alone is not enough either. 19760 * Since the verifier still needs to catch infinite loops 19761 * inside async callbacks. 19762 */ 19763 goto skip_inf_loop_check; 19764 } 19765 /* BPF open-coded iterators loop detection is special. 19766 * states_maybe_looping() logic is too simplistic in detecting 19767 * states that *might* be equivalent, because it doesn't know 19768 * about ID remapping, so don't even perform it. 19769 * See process_iter_next_call() and iter_active_depths_differ() 19770 * for overview of the logic. When current and one of parent 19771 * states are detected as equivalent, it's a good thing: we prove 19772 * convergence and can stop simulating further iterations. 19773 * It's safe to assume that iterator loop will finish, taking into 19774 * account iter_next() contract of eventually returning 19775 * sticky NULL result. 19776 * 19777 * Note, that states have to be compared exactly in this case because 19778 * read and precision marks might not be finalized inside the loop. 19779 * E.g. as in the program below: 19780 * 19781 * 1. r7 = -16 19782 * 2. r6 = bpf_get_prandom_u32() 19783 * 3. while (bpf_iter_num_next(&fp[-8])) { 19784 * 4. if (r6 != 42) { 19785 * 5. r7 = -32 19786 * 6. r6 = bpf_get_prandom_u32() 19787 * 7. continue 19788 * 8. } 19789 * 9. r0 = r10 19790 * 10. r0 += r7 19791 * 11. r8 = *(u64 *)(r0 + 0) 19792 * 12. r6 = bpf_get_prandom_u32() 19793 * 13. } 19794 * 19795 * Here verifier would first visit path 1-3, create a checkpoint at 3 19796 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 19797 * not have read or precision mark for r7 yet, thus inexact states 19798 * comparison would discard current state with r7=-32 19799 * => unsafe memory access at 11 would not be caught. 19800 */ 19801 if (is_iter_next_insn(env, insn_idx)) { 19802 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 19803 struct bpf_func_state *cur_frame; 19804 struct bpf_reg_state *iter_state, *iter_reg; 19805 int spi; 19806 19807 cur_frame = cur->frame[cur->curframe]; 19808 /* btf_check_iter_kfuncs() enforces that 19809 * iter state pointer is always the first arg 19810 */ 19811 iter_reg = &cur_frame->regs[BPF_REG_1]; 19812 /* current state is valid due to states_equal(), 19813 * so we can assume valid iter and reg state, 19814 * no need for extra (re-)validations 19815 */ 19816 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 19817 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 19818 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 19819 loop = true; 19820 goto hit; 19821 } 19822 } 19823 goto skip_inf_loop_check; 19824 } 19825 if (is_may_goto_insn_at(env, insn_idx)) { 19826 if (sl->state.may_goto_depth != cur->may_goto_depth && 19827 states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 19828 loop = true; 19829 goto hit; 19830 } 19831 } 19832 if (bpf_calls_callback(env, insn_idx)) { 19833 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) 19834 goto hit; 19835 goto skip_inf_loop_check; 19836 } 19837 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 19838 if (states_maybe_looping(&sl->state, cur) && 19839 states_equal(env, &sl->state, cur, EXACT) && 19840 !iter_active_depths_differ(&sl->state, cur) && 19841 sl->state.may_goto_depth == cur->may_goto_depth && 19842 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 19843 verbose_linfo(env, insn_idx, "; "); 19844 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 19845 verbose(env, "cur state:"); 19846 print_verifier_state(env, cur, cur->curframe, true); 19847 verbose(env, "old state:"); 19848 print_verifier_state(env, &sl->state, cur->curframe, true); 19849 return -EINVAL; 19850 } 19851 /* if the verifier is processing a loop, avoid adding new state 19852 * too often, since different loop iterations have distinct 19853 * states and may not help future pruning. 19854 * This threshold shouldn't be too low to make sure that 19855 * a loop with large bound will be rejected quickly. 19856 * The most abusive loop will be: 19857 * r1 += 1 19858 * if r1 < 1000000 goto pc-2 19859 * 1M insn_procssed limit / 100 == 10k peak states. 19860 * This threshold shouldn't be too high either, since states 19861 * at the end of the loop are likely to be useful in pruning. 19862 */ 19863 skip_inf_loop_check: 19864 if (!force_new_state && 19865 env->jmps_processed - env->prev_jmps_processed < 20 && 19866 env->insn_processed - env->prev_insn_processed < 100) 19867 add_new_state = false; 19868 goto miss; 19869 } 19870 /* See comments for mark_all_regs_read_and_precise() */ 19871 loop = incomplete_read_marks(env, &sl->state); 19872 if (states_equal(env, &sl->state, cur, loop ? RANGE_WITHIN : NOT_EXACT)) { 19873 hit: 19874 sl->hit_cnt++; 19875 19876 /* if previous state reached the exit with precision and 19877 * current state is equivalent to it (except precision marks) 19878 * the precision needs to be propagated back in 19879 * the current state. 19880 */ 19881 err = 0; 19882 if (is_jmp_point(env, env->insn_idx)) 19883 err = push_jmp_history(env, cur, 0, 0); 19884 err = err ? : propagate_precision(env, &sl->state, cur, NULL); 19885 if (err) 19886 return err; 19887 /* When processing iterator based loops above propagate_liveness and 19888 * propagate_precision calls are not sufficient to transfer all relevant 19889 * read and precision marks. E.g. consider the following case: 19890 * 19891 * .-> A --. Assume the states are visited in the order A, B, C. 19892 * | | | Assume that state B reaches a state equivalent to state A. 19893 * | v v At this point, state C is not processed yet, so state A 19894 * '-- B C has not received any read or precision marks from C. 19895 * Thus, marks propagated from A to B are incomplete. 19896 * 19897 * The verifier mitigates this by performing the following steps: 19898 * 19899 * - Prior to the main verification pass, strongly connected components 19900 * (SCCs) are computed over the program's control flow graph, 19901 * intraprocedurally. 19902 * 19903 * - During the main verification pass, `maybe_enter_scc()` checks 19904 * whether the current verifier state is entering an SCC. If so, an 19905 * instance of a `bpf_scc_visit` object is created, and the state 19906 * entering the SCC is recorded as the entry state. 19907 * 19908 * - This instance is associated not with the SCC itself, but with a 19909 * `bpf_scc_callchain`: a tuple consisting of the call sites leading to 19910 * the SCC and the SCC id. See `compute_scc_callchain()`. 19911 * 19912 * - When a verification path encounters a `states_equal(..., 19913 * RANGE_WITHIN)` condition, there exists a call chain describing the 19914 * current state and a corresponding `bpf_scc_visit` instance. A copy 19915 * of the current state is created and added to 19916 * `bpf_scc_visit->backedges`. 19917 * 19918 * - When a verification path terminates, `maybe_exit_scc()` is called 19919 * from `update_branch_counts()`. For states with `branches == 0`, it 19920 * checks whether the state is the entry state of any `bpf_scc_visit` 19921 * instance. If it is, this indicates that all paths originating from 19922 * this SCC visit have been explored. `propagate_backedges()` is then 19923 * called, which propagates read and precision marks through the 19924 * backedges until a fixed point is reached. 19925 * (In the earlier example, this would propagate marks from A to B, 19926 * from C to A, and then again from A to B.) 19927 * 19928 * A note on callchains 19929 * -------------------- 19930 * 19931 * Consider the following example: 19932 * 19933 * void foo() { loop { ... SCC#1 ... } } 19934 * void main() { 19935 * A: foo(); 19936 * B: ... 19937 * C: foo(); 19938 * } 19939 * 19940 * Here, there are two distinct callchains leading to SCC#1: 19941 * - (A, SCC#1) 19942 * - (C, SCC#1) 19943 * 19944 * Each callchain identifies a separate `bpf_scc_visit` instance that 19945 * accumulates backedge states. The `propagate_{liveness,precision}()` 19946 * functions traverse the parent state of each backedge state, which 19947 * means these parent states must remain valid (i.e., not freed) while 19948 * the corresponding `bpf_scc_visit` instance exists. 19949 * 19950 * Associating `bpf_scc_visit` instances directly with SCCs instead of 19951 * callchains would break this invariant: 19952 * - States explored during `C: foo()` would contribute backedges to 19953 * SCC#1, but SCC#1 would only be exited once the exploration of 19954 * `A: foo()` completes. 19955 * - By that time, the states explored between `A: foo()` and `C: foo()` 19956 * (i.e., `B: ...`) may have already been freed, causing the parent 19957 * links for states from `C: foo()` to become invalid. 19958 */ 19959 if (loop) { 19960 struct bpf_scc_backedge *backedge; 19961 19962 backedge = kzalloc(sizeof(*backedge), GFP_KERNEL_ACCOUNT); 19963 if (!backedge) 19964 return -ENOMEM; 19965 err = copy_verifier_state(&backedge->state, cur); 19966 backedge->state.equal_state = &sl->state; 19967 backedge->state.insn_idx = insn_idx; 19968 err = err ?: add_scc_backedge(env, &sl->state, backedge); 19969 if (err) { 19970 free_verifier_state(&backedge->state, false); 19971 kfree(backedge); 19972 return err; 19973 } 19974 } 19975 return 1; 19976 } 19977 miss: 19978 /* when new state is not going to be added do not increase miss count. 19979 * Otherwise several loop iterations will remove the state 19980 * recorded earlier. The goal of these heuristics is to have 19981 * states from some iterations of the loop (some in the beginning 19982 * and some at the end) to help pruning. 19983 */ 19984 if (add_new_state) 19985 sl->miss_cnt++; 19986 /* heuristic to determine whether this state is beneficial 19987 * to keep checking from state equivalence point of view. 19988 * Higher numbers increase max_states_per_insn and verification time, 19989 * but do not meaningfully decrease insn_processed. 19990 * 'n' controls how many times state could miss before eviction. 19991 * Use bigger 'n' for checkpoints because evicting checkpoint states 19992 * too early would hinder iterator convergence. 19993 */ 19994 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 19995 if (sl->miss_cnt > sl->hit_cnt * n + n) { 19996 /* the state is unlikely to be useful. Remove it to 19997 * speed up verification 19998 */ 19999 sl->in_free_list = true; 20000 list_del(&sl->node); 20001 list_add(&sl->node, &env->free_list); 20002 env->free_list_size++; 20003 env->explored_states_size--; 20004 maybe_free_verifier_state(env, sl); 20005 } 20006 } 20007 20008 if (env->max_states_per_insn < states_cnt) 20009 env->max_states_per_insn = states_cnt; 20010 20011 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 20012 return 0; 20013 20014 if (!add_new_state) 20015 return 0; 20016 20017 /* There were no equivalent states, remember the current one. 20018 * Technically the current state is not proven to be safe yet, 20019 * but it will either reach outer most bpf_exit (which means it's safe) 20020 * or it will be rejected. When there are no loops the verifier won't be 20021 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 20022 * again on the way to bpf_exit. 20023 * When looping the sl->state.branches will be > 0 and this state 20024 * will not be considered for equivalence until branches == 0. 20025 */ 20026 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL_ACCOUNT); 20027 if (!new_sl) 20028 return -ENOMEM; 20029 env->total_states++; 20030 env->explored_states_size++; 20031 update_peak_states(env); 20032 env->prev_jmps_processed = env->jmps_processed; 20033 env->prev_insn_processed = env->insn_processed; 20034 20035 /* forget precise markings we inherited, see __mark_chain_precision */ 20036 if (env->bpf_capable) 20037 mark_all_scalars_imprecise(env, cur); 20038 20039 /* add new state to the head of linked list */ 20040 new = &new_sl->state; 20041 err = copy_verifier_state(new, cur); 20042 if (err) { 20043 free_verifier_state(new, false); 20044 kfree(new_sl); 20045 return err; 20046 } 20047 new->insn_idx = insn_idx; 20048 verifier_bug_if(new->branches != 1, env, 20049 "%s:branches_to_explore=%d insn %d", 20050 __func__, new->branches, insn_idx); 20051 err = maybe_enter_scc(env, new); 20052 if (err) { 20053 free_verifier_state(new, false); 20054 kfree(new_sl); 20055 return err; 20056 } 20057 20058 cur->parent = new; 20059 cur->first_insn_idx = insn_idx; 20060 cur->dfs_depth = new->dfs_depth + 1; 20061 clear_jmp_history(cur); 20062 list_add(&new_sl->node, head); 20063 return 0; 20064 } 20065 20066 /* Return true if it's OK to have the same insn return a different type. */ 20067 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 20068 { 20069 switch (base_type(type)) { 20070 case PTR_TO_CTX: 20071 case PTR_TO_SOCKET: 20072 case PTR_TO_SOCK_COMMON: 20073 case PTR_TO_TCP_SOCK: 20074 case PTR_TO_XDP_SOCK: 20075 case PTR_TO_BTF_ID: 20076 case PTR_TO_ARENA: 20077 return false; 20078 default: 20079 return true; 20080 } 20081 } 20082 20083 /* If an instruction was previously used with particular pointer types, then we 20084 * need to be careful to avoid cases such as the below, where it may be ok 20085 * for one branch accessing the pointer, but not ok for the other branch: 20086 * 20087 * R1 = sock_ptr 20088 * goto X; 20089 * ... 20090 * R1 = some_other_valid_ptr; 20091 * goto X; 20092 * ... 20093 * R2 = *(u32 *)(R1 + 0); 20094 */ 20095 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 20096 { 20097 return src != prev && (!reg_type_mismatch_ok(src) || 20098 !reg_type_mismatch_ok(prev)); 20099 } 20100 20101 static bool is_ptr_to_mem_or_btf_id(enum bpf_reg_type type) 20102 { 20103 switch (base_type(type)) { 20104 case PTR_TO_MEM: 20105 case PTR_TO_BTF_ID: 20106 return true; 20107 default: 20108 return false; 20109 } 20110 } 20111 20112 static bool is_ptr_to_mem(enum bpf_reg_type type) 20113 { 20114 return base_type(type) == PTR_TO_MEM; 20115 } 20116 20117 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 20118 bool allow_trust_mismatch) 20119 { 20120 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 20121 enum bpf_reg_type merged_type; 20122 20123 if (*prev_type == NOT_INIT) { 20124 /* Saw a valid insn 20125 * dst_reg = *(u32 *)(src_reg + off) 20126 * save type to validate intersecting paths 20127 */ 20128 *prev_type = type; 20129 } else if (reg_type_mismatch(type, *prev_type)) { 20130 /* Abuser program is trying to use the same insn 20131 * dst_reg = *(u32*) (src_reg + off) 20132 * with different pointer types: 20133 * src_reg == ctx in one branch and 20134 * src_reg == stack|map in some other branch. 20135 * Reject it. 20136 */ 20137 if (allow_trust_mismatch && 20138 is_ptr_to_mem_or_btf_id(type) && 20139 is_ptr_to_mem_or_btf_id(*prev_type)) { 20140 /* 20141 * Have to support a use case when one path through 20142 * the program yields TRUSTED pointer while another 20143 * is UNTRUSTED. Fallback to UNTRUSTED to generate 20144 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 20145 * Same behavior of MEM_RDONLY flag. 20146 */ 20147 if (is_ptr_to_mem(type) || is_ptr_to_mem(*prev_type)) 20148 merged_type = PTR_TO_MEM; 20149 else 20150 merged_type = PTR_TO_BTF_ID; 20151 if ((type & PTR_UNTRUSTED) || (*prev_type & PTR_UNTRUSTED)) 20152 merged_type |= PTR_UNTRUSTED; 20153 if ((type & MEM_RDONLY) || (*prev_type & MEM_RDONLY)) 20154 merged_type |= MEM_RDONLY; 20155 *prev_type = merged_type; 20156 } else { 20157 verbose(env, "same insn cannot be used with different pointers\n"); 20158 return -EINVAL; 20159 } 20160 } 20161 20162 return 0; 20163 } 20164 20165 enum { 20166 PROCESS_BPF_EXIT = 1 20167 }; 20168 20169 static int process_bpf_exit_full(struct bpf_verifier_env *env, 20170 bool *do_print_state, 20171 bool exception_exit) 20172 { 20173 /* We must do check_reference_leak here before 20174 * prepare_func_exit to handle the case when 20175 * state->curframe > 0, it may be a callback function, 20176 * for which reference_state must match caller reference 20177 * state when it exits. 20178 */ 20179 int err = check_resource_leak(env, exception_exit, 20180 !env->cur_state->curframe, 20181 "BPF_EXIT instruction in main prog"); 20182 if (err) 20183 return err; 20184 20185 /* The side effect of the prepare_func_exit which is 20186 * being skipped is that it frees bpf_func_state. 20187 * Typically, process_bpf_exit will only be hit with 20188 * outermost exit. copy_verifier_state in pop_stack will 20189 * handle freeing of any extra bpf_func_state left over 20190 * from not processing all nested function exits. We 20191 * also skip return code checks as they are not needed 20192 * for exceptional exits. 20193 */ 20194 if (exception_exit) 20195 return PROCESS_BPF_EXIT; 20196 20197 if (env->cur_state->curframe) { 20198 /* exit from nested function */ 20199 err = prepare_func_exit(env, &env->insn_idx); 20200 if (err) 20201 return err; 20202 *do_print_state = true; 20203 return 0; 20204 } 20205 20206 err = check_return_code(env, BPF_REG_0, "R0"); 20207 if (err) 20208 return err; 20209 return PROCESS_BPF_EXIT; 20210 } 20211 20212 static int indirect_jump_min_max_index(struct bpf_verifier_env *env, 20213 int regno, 20214 struct bpf_map *map, 20215 u32 *pmin_index, u32 *pmax_index) 20216 { 20217 struct bpf_reg_state *reg = reg_state(env, regno); 20218 u64 min_index, max_index; 20219 const u32 size = 8; 20220 20221 if (check_add_overflow(reg->umin_value, reg->off, &min_index) || 20222 (min_index > (u64) U32_MAX * size)) { 20223 verbose(env, "the sum of R%u umin_value %llu and off %u is too big\n", 20224 regno, reg->umin_value, reg->off); 20225 return -ERANGE; 20226 } 20227 if (check_add_overflow(reg->umax_value, reg->off, &max_index) || 20228 (max_index > (u64) U32_MAX * size)) { 20229 verbose(env, "the sum of R%u umax_value %llu and off %u is too big\n", 20230 regno, reg->umax_value, reg->off); 20231 return -ERANGE; 20232 } 20233 20234 min_index /= size; 20235 max_index /= size; 20236 20237 if (max_index >= map->max_entries) { 20238 verbose(env, "R%u points to outside of jump table: [%llu,%llu] max_entries %u\n", 20239 regno, min_index, max_index, map->max_entries); 20240 return -EINVAL; 20241 } 20242 20243 *pmin_index = min_index; 20244 *pmax_index = max_index; 20245 return 0; 20246 } 20247 20248 /* gotox *dst_reg */ 20249 static int check_indirect_jump(struct bpf_verifier_env *env, struct bpf_insn *insn) 20250 { 20251 struct bpf_verifier_state *other_branch; 20252 struct bpf_reg_state *dst_reg; 20253 struct bpf_map *map; 20254 u32 min_index, max_index; 20255 int err = 0; 20256 int n; 20257 int i; 20258 20259 dst_reg = reg_state(env, insn->dst_reg); 20260 if (dst_reg->type != PTR_TO_INSN) { 20261 verbose(env, "R%d has type %s, expected PTR_TO_INSN\n", 20262 insn->dst_reg, reg_type_str(env, dst_reg->type)); 20263 return -EINVAL; 20264 } 20265 20266 map = dst_reg->map_ptr; 20267 if (verifier_bug_if(!map, env, "R%d has an empty map pointer", insn->dst_reg)) 20268 return -EFAULT; 20269 20270 if (verifier_bug_if(map->map_type != BPF_MAP_TYPE_INSN_ARRAY, env, 20271 "R%d has incorrect map type %d", insn->dst_reg, map->map_type)) 20272 return -EFAULT; 20273 20274 err = indirect_jump_min_max_index(env, insn->dst_reg, map, &min_index, &max_index); 20275 if (err) 20276 return err; 20277 20278 /* Ensure that the buffer is large enough */ 20279 if (!env->gotox_tmp_buf || env->gotox_tmp_buf->cnt < max_index - min_index + 1) { 20280 env->gotox_tmp_buf = iarray_realloc(env->gotox_tmp_buf, 20281 max_index - min_index + 1); 20282 if (!env->gotox_tmp_buf) 20283 return -ENOMEM; 20284 } 20285 20286 n = copy_insn_array_uniq(map, min_index, max_index, env->gotox_tmp_buf->items); 20287 if (n < 0) 20288 return n; 20289 if (n == 0) { 20290 verbose(env, "register R%d doesn't point to any offset in map id=%d\n", 20291 insn->dst_reg, map->id); 20292 return -EINVAL; 20293 } 20294 20295 for (i = 0; i < n - 1; i++) { 20296 other_branch = push_stack(env, env->gotox_tmp_buf->items[i], 20297 env->insn_idx, env->cur_state->speculative); 20298 if (IS_ERR(other_branch)) 20299 return PTR_ERR(other_branch); 20300 } 20301 env->insn_idx = env->gotox_tmp_buf->items[n-1]; 20302 return 0; 20303 } 20304 20305 static int do_check_insn(struct bpf_verifier_env *env, bool *do_print_state) 20306 { 20307 int err; 20308 struct bpf_insn *insn = &env->prog->insnsi[env->insn_idx]; 20309 u8 class = BPF_CLASS(insn->code); 20310 20311 if (class == BPF_ALU || class == BPF_ALU64) { 20312 err = check_alu_op(env, insn); 20313 if (err) 20314 return err; 20315 20316 } else if (class == BPF_LDX) { 20317 bool is_ldsx = BPF_MODE(insn->code) == BPF_MEMSX; 20318 20319 /* Check for reserved fields is already done in 20320 * resolve_pseudo_ldimm64(). 20321 */ 20322 err = check_load_mem(env, insn, false, is_ldsx, true, "ldx"); 20323 if (err) 20324 return err; 20325 } else if (class == BPF_STX) { 20326 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 20327 err = check_atomic(env, insn); 20328 if (err) 20329 return err; 20330 env->insn_idx++; 20331 return 0; 20332 } 20333 20334 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 20335 verbose(env, "BPF_STX uses reserved fields\n"); 20336 return -EINVAL; 20337 } 20338 20339 err = check_store_reg(env, insn, false); 20340 if (err) 20341 return err; 20342 } else if (class == BPF_ST) { 20343 enum bpf_reg_type dst_reg_type; 20344 20345 if (BPF_MODE(insn->code) != BPF_MEM || 20346 insn->src_reg != BPF_REG_0) { 20347 verbose(env, "BPF_ST uses reserved fields\n"); 20348 return -EINVAL; 20349 } 20350 /* check src operand */ 20351 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 20352 if (err) 20353 return err; 20354 20355 dst_reg_type = cur_regs(env)[insn->dst_reg].type; 20356 20357 /* check that memory (dst_reg + off) is writeable */ 20358 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 20359 insn->off, BPF_SIZE(insn->code), 20360 BPF_WRITE, -1, false, false); 20361 if (err) 20362 return err; 20363 20364 err = save_aux_ptr_type(env, dst_reg_type, false); 20365 if (err) 20366 return err; 20367 } else if (class == BPF_JMP || class == BPF_JMP32) { 20368 u8 opcode = BPF_OP(insn->code); 20369 20370 env->jmps_processed++; 20371 if (opcode == BPF_CALL) { 20372 if (BPF_SRC(insn->code) != BPF_K || 20373 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL && 20374 insn->off != 0) || 20375 (insn->src_reg != BPF_REG_0 && 20376 insn->src_reg != BPF_PSEUDO_CALL && 20377 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 20378 insn->dst_reg != BPF_REG_0 || class == BPF_JMP32) { 20379 verbose(env, "BPF_CALL uses reserved fields\n"); 20380 return -EINVAL; 20381 } 20382 20383 if (env->cur_state->active_locks) { 20384 if ((insn->src_reg == BPF_REG_0 && 20385 insn->imm != BPF_FUNC_spin_unlock) || 20386 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 20387 (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) { 20388 verbose(env, 20389 "function calls are not allowed while holding a lock\n"); 20390 return -EINVAL; 20391 } 20392 } 20393 if (insn->src_reg == BPF_PSEUDO_CALL) { 20394 err = check_func_call(env, insn, &env->insn_idx); 20395 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 20396 err = check_kfunc_call(env, insn, &env->insn_idx); 20397 if (!err && is_bpf_throw_kfunc(insn)) 20398 return process_bpf_exit_full(env, do_print_state, true); 20399 } else { 20400 err = check_helper_call(env, insn, &env->insn_idx); 20401 } 20402 if (err) 20403 return err; 20404 20405 mark_reg_scratched(env, BPF_REG_0); 20406 } else if (opcode == BPF_JA) { 20407 if (BPF_SRC(insn->code) == BPF_X) { 20408 if (insn->src_reg != BPF_REG_0 || 20409 insn->imm != 0 || insn->off != 0) { 20410 verbose(env, "BPF_JA|BPF_X uses reserved fields\n"); 20411 return -EINVAL; 20412 } 20413 return check_indirect_jump(env, insn); 20414 } 20415 20416 if (BPF_SRC(insn->code) != BPF_K || 20417 insn->src_reg != BPF_REG_0 || 20418 insn->dst_reg != BPF_REG_0 || 20419 (class == BPF_JMP && insn->imm != 0) || 20420 (class == BPF_JMP32 && insn->off != 0)) { 20421 verbose(env, "BPF_JA uses reserved fields\n"); 20422 return -EINVAL; 20423 } 20424 20425 if (class == BPF_JMP) 20426 env->insn_idx += insn->off + 1; 20427 else 20428 env->insn_idx += insn->imm + 1; 20429 return 0; 20430 } else if (opcode == BPF_EXIT) { 20431 if (BPF_SRC(insn->code) != BPF_K || 20432 insn->imm != 0 || 20433 insn->src_reg != BPF_REG_0 || 20434 insn->dst_reg != BPF_REG_0 || 20435 class == BPF_JMP32) { 20436 verbose(env, "BPF_EXIT uses reserved fields\n"); 20437 return -EINVAL; 20438 } 20439 return process_bpf_exit_full(env, do_print_state, false); 20440 } else { 20441 err = check_cond_jmp_op(env, insn, &env->insn_idx); 20442 if (err) 20443 return err; 20444 } 20445 } else if (class == BPF_LD) { 20446 u8 mode = BPF_MODE(insn->code); 20447 20448 if (mode == BPF_ABS || mode == BPF_IND) { 20449 err = check_ld_abs(env, insn); 20450 if (err) 20451 return err; 20452 20453 } else if (mode == BPF_IMM) { 20454 err = check_ld_imm(env, insn); 20455 if (err) 20456 return err; 20457 20458 env->insn_idx++; 20459 sanitize_mark_insn_seen(env); 20460 } else { 20461 verbose(env, "invalid BPF_LD mode\n"); 20462 return -EINVAL; 20463 } 20464 } else { 20465 verbose(env, "unknown insn class %d\n", class); 20466 return -EINVAL; 20467 } 20468 20469 env->insn_idx++; 20470 return 0; 20471 } 20472 20473 static int do_check(struct bpf_verifier_env *env) 20474 { 20475 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 20476 struct bpf_verifier_state *state = env->cur_state; 20477 struct bpf_insn *insns = env->prog->insnsi; 20478 int insn_cnt = env->prog->len; 20479 bool do_print_state = false; 20480 int prev_insn_idx = -1; 20481 20482 for (;;) { 20483 struct bpf_insn *insn; 20484 struct bpf_insn_aux_data *insn_aux; 20485 int err, marks_err; 20486 20487 /* reset current history entry on each new instruction */ 20488 env->cur_hist_ent = NULL; 20489 20490 env->prev_insn_idx = prev_insn_idx; 20491 if (env->insn_idx >= insn_cnt) { 20492 verbose(env, "invalid insn idx %d insn_cnt %d\n", 20493 env->insn_idx, insn_cnt); 20494 return -EFAULT; 20495 } 20496 20497 insn = &insns[env->insn_idx]; 20498 insn_aux = &env->insn_aux_data[env->insn_idx]; 20499 20500 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 20501 verbose(env, 20502 "BPF program is too large. Processed %d insn\n", 20503 env->insn_processed); 20504 return -E2BIG; 20505 } 20506 20507 state->last_insn_idx = env->prev_insn_idx; 20508 state->insn_idx = env->insn_idx; 20509 20510 if (is_prune_point(env, env->insn_idx)) { 20511 err = is_state_visited(env, env->insn_idx); 20512 if (err < 0) 20513 return err; 20514 if (err == 1) { 20515 /* found equivalent state, can prune the search */ 20516 if (env->log.level & BPF_LOG_LEVEL) { 20517 if (do_print_state) 20518 verbose(env, "\nfrom %d to %d%s: safe\n", 20519 env->prev_insn_idx, env->insn_idx, 20520 env->cur_state->speculative ? 20521 " (speculative execution)" : ""); 20522 else 20523 verbose(env, "%d: safe\n", env->insn_idx); 20524 } 20525 goto process_bpf_exit; 20526 } 20527 } 20528 20529 if (is_jmp_point(env, env->insn_idx)) { 20530 err = push_jmp_history(env, state, 0, 0); 20531 if (err) 20532 return err; 20533 } 20534 20535 if (signal_pending(current)) 20536 return -EAGAIN; 20537 20538 if (need_resched()) 20539 cond_resched(); 20540 20541 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 20542 verbose(env, "\nfrom %d to %d%s:", 20543 env->prev_insn_idx, env->insn_idx, 20544 env->cur_state->speculative ? 20545 " (speculative execution)" : ""); 20546 print_verifier_state(env, state, state->curframe, true); 20547 do_print_state = false; 20548 } 20549 20550 if (env->log.level & BPF_LOG_LEVEL) { 20551 if (verifier_state_scratched(env)) 20552 print_insn_state(env, state, state->curframe); 20553 20554 verbose_linfo(env, env->insn_idx, "; "); 20555 env->prev_log_pos = env->log.end_pos; 20556 verbose(env, "%d: ", env->insn_idx); 20557 verbose_insn(env, insn); 20558 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 20559 env->prev_log_pos = env->log.end_pos; 20560 } 20561 20562 if (bpf_prog_is_offloaded(env->prog->aux)) { 20563 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 20564 env->prev_insn_idx); 20565 if (err) 20566 return err; 20567 } 20568 20569 sanitize_mark_insn_seen(env); 20570 prev_insn_idx = env->insn_idx; 20571 20572 /* Reduce verification complexity by stopping speculative path 20573 * verification when a nospec is encountered. 20574 */ 20575 if (state->speculative && insn_aux->nospec) 20576 goto process_bpf_exit; 20577 20578 err = bpf_reset_stack_write_marks(env, env->insn_idx); 20579 if (err) 20580 return err; 20581 err = do_check_insn(env, &do_print_state); 20582 if (err >= 0 || error_recoverable_with_nospec(err)) { 20583 marks_err = bpf_commit_stack_write_marks(env); 20584 if (marks_err) 20585 return marks_err; 20586 } 20587 if (error_recoverable_with_nospec(err) && state->speculative) { 20588 /* Prevent this speculative path from ever reaching the 20589 * insn that would have been unsafe to execute. 20590 */ 20591 insn_aux->nospec = true; 20592 /* If it was an ADD/SUB insn, potentially remove any 20593 * markings for alu sanitization. 20594 */ 20595 insn_aux->alu_state = 0; 20596 goto process_bpf_exit; 20597 } else if (err < 0) { 20598 return err; 20599 } else if (err == PROCESS_BPF_EXIT) { 20600 goto process_bpf_exit; 20601 } 20602 WARN_ON_ONCE(err); 20603 20604 if (state->speculative && insn_aux->nospec_result) { 20605 /* If we are on a path that performed a jump-op, this 20606 * may skip a nospec patched-in after the jump. This can 20607 * currently never happen because nospec_result is only 20608 * used for the write-ops 20609 * `*(size*)(dst_reg+off)=src_reg|imm32` which must 20610 * never skip the following insn. Still, add a warning 20611 * to document this in case nospec_result is used 20612 * elsewhere in the future. 20613 * 20614 * All non-branch instructions have a single 20615 * fall-through edge. For these, nospec_result should 20616 * already work. 20617 */ 20618 if (verifier_bug_if(BPF_CLASS(insn->code) == BPF_JMP || 20619 BPF_CLASS(insn->code) == BPF_JMP32, env, 20620 "speculation barrier after jump instruction may not have the desired effect")) 20621 return -EFAULT; 20622 process_bpf_exit: 20623 mark_verifier_state_scratched(env); 20624 err = update_branch_counts(env, env->cur_state); 20625 if (err) 20626 return err; 20627 err = bpf_update_live_stack(env); 20628 if (err) 20629 return err; 20630 err = pop_stack(env, &prev_insn_idx, &env->insn_idx, 20631 pop_log); 20632 if (err < 0) { 20633 if (err != -ENOENT) 20634 return err; 20635 break; 20636 } else { 20637 do_print_state = true; 20638 continue; 20639 } 20640 } 20641 } 20642 20643 return 0; 20644 } 20645 20646 static int find_btf_percpu_datasec(struct btf *btf) 20647 { 20648 const struct btf_type *t; 20649 const char *tname; 20650 int i, n; 20651 20652 /* 20653 * Both vmlinux and module each have their own ".data..percpu" 20654 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 20655 * types to look at only module's own BTF types. 20656 */ 20657 n = btf_nr_types(btf); 20658 if (btf_is_module(btf)) 20659 i = btf_nr_types(btf_vmlinux); 20660 else 20661 i = 1; 20662 20663 for(; i < n; i++) { 20664 t = btf_type_by_id(btf, i); 20665 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 20666 continue; 20667 20668 tname = btf_name_by_offset(btf, t->name_off); 20669 if (!strcmp(tname, ".data..percpu")) 20670 return i; 20671 } 20672 20673 return -ENOENT; 20674 } 20675 20676 /* 20677 * Add btf to the used_btfs array and return the index. (If the btf was 20678 * already added, then just return the index.) Upon successful insertion 20679 * increase btf refcnt, and, if present, also refcount the corresponding 20680 * kernel module. 20681 */ 20682 static int __add_used_btf(struct bpf_verifier_env *env, struct btf *btf) 20683 { 20684 struct btf_mod_pair *btf_mod; 20685 int i; 20686 20687 /* check whether we recorded this BTF (and maybe module) already */ 20688 for (i = 0; i < env->used_btf_cnt; i++) 20689 if (env->used_btfs[i].btf == btf) 20690 return i; 20691 20692 if (env->used_btf_cnt >= MAX_USED_BTFS) { 20693 verbose(env, "The total number of btfs per program has reached the limit of %u\n", 20694 MAX_USED_BTFS); 20695 return -E2BIG; 20696 } 20697 20698 btf_get(btf); 20699 20700 btf_mod = &env->used_btfs[env->used_btf_cnt]; 20701 btf_mod->btf = btf; 20702 btf_mod->module = NULL; 20703 20704 /* if we reference variables from kernel module, bump its refcount */ 20705 if (btf_is_module(btf)) { 20706 btf_mod->module = btf_try_get_module(btf); 20707 if (!btf_mod->module) { 20708 btf_put(btf); 20709 return -ENXIO; 20710 } 20711 } 20712 20713 return env->used_btf_cnt++; 20714 } 20715 20716 /* replace pseudo btf_id with kernel symbol address */ 20717 static int __check_pseudo_btf_id(struct bpf_verifier_env *env, 20718 struct bpf_insn *insn, 20719 struct bpf_insn_aux_data *aux, 20720 struct btf *btf) 20721 { 20722 const struct btf_var_secinfo *vsi; 20723 const struct btf_type *datasec; 20724 const struct btf_type *t; 20725 const char *sym_name; 20726 bool percpu = false; 20727 u32 type, id = insn->imm; 20728 s32 datasec_id; 20729 u64 addr; 20730 int i; 20731 20732 t = btf_type_by_id(btf, id); 20733 if (!t) { 20734 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 20735 return -ENOENT; 20736 } 20737 20738 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 20739 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 20740 return -EINVAL; 20741 } 20742 20743 sym_name = btf_name_by_offset(btf, t->name_off); 20744 addr = kallsyms_lookup_name(sym_name); 20745 if (!addr) { 20746 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 20747 sym_name); 20748 return -ENOENT; 20749 } 20750 insn[0].imm = (u32)addr; 20751 insn[1].imm = addr >> 32; 20752 20753 if (btf_type_is_func(t)) { 20754 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 20755 aux->btf_var.mem_size = 0; 20756 return 0; 20757 } 20758 20759 datasec_id = find_btf_percpu_datasec(btf); 20760 if (datasec_id > 0) { 20761 datasec = btf_type_by_id(btf, datasec_id); 20762 for_each_vsi(i, datasec, vsi) { 20763 if (vsi->type == id) { 20764 percpu = true; 20765 break; 20766 } 20767 } 20768 } 20769 20770 type = t->type; 20771 t = btf_type_skip_modifiers(btf, type, NULL); 20772 if (percpu) { 20773 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 20774 aux->btf_var.btf = btf; 20775 aux->btf_var.btf_id = type; 20776 } else if (!btf_type_is_struct(t)) { 20777 const struct btf_type *ret; 20778 const char *tname; 20779 u32 tsize; 20780 20781 /* resolve the type size of ksym. */ 20782 ret = btf_resolve_size(btf, t, &tsize); 20783 if (IS_ERR(ret)) { 20784 tname = btf_name_by_offset(btf, t->name_off); 20785 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 20786 tname, PTR_ERR(ret)); 20787 return -EINVAL; 20788 } 20789 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 20790 aux->btf_var.mem_size = tsize; 20791 } else { 20792 aux->btf_var.reg_type = PTR_TO_BTF_ID; 20793 aux->btf_var.btf = btf; 20794 aux->btf_var.btf_id = type; 20795 } 20796 20797 return 0; 20798 } 20799 20800 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 20801 struct bpf_insn *insn, 20802 struct bpf_insn_aux_data *aux) 20803 { 20804 struct btf *btf; 20805 int btf_fd; 20806 int err; 20807 20808 btf_fd = insn[1].imm; 20809 if (btf_fd) { 20810 CLASS(fd, f)(btf_fd); 20811 20812 btf = __btf_get_by_fd(f); 20813 if (IS_ERR(btf)) { 20814 verbose(env, "invalid module BTF object FD specified.\n"); 20815 return -EINVAL; 20816 } 20817 } else { 20818 if (!btf_vmlinux) { 20819 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 20820 return -EINVAL; 20821 } 20822 btf = btf_vmlinux; 20823 } 20824 20825 err = __check_pseudo_btf_id(env, insn, aux, btf); 20826 if (err) 20827 return err; 20828 20829 err = __add_used_btf(env, btf); 20830 if (err < 0) 20831 return err; 20832 return 0; 20833 } 20834 20835 static bool is_tracing_prog_type(enum bpf_prog_type type) 20836 { 20837 switch (type) { 20838 case BPF_PROG_TYPE_KPROBE: 20839 case BPF_PROG_TYPE_TRACEPOINT: 20840 case BPF_PROG_TYPE_PERF_EVENT: 20841 case BPF_PROG_TYPE_RAW_TRACEPOINT: 20842 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 20843 return true; 20844 default: 20845 return false; 20846 } 20847 } 20848 20849 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 20850 { 20851 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 20852 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 20853 } 20854 20855 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 20856 struct bpf_map *map, 20857 struct bpf_prog *prog) 20858 20859 { 20860 enum bpf_prog_type prog_type = resolve_prog_type(prog); 20861 20862 if (map->excl_prog_sha && 20863 memcmp(map->excl_prog_sha, prog->digest, SHA256_DIGEST_SIZE)) { 20864 verbose(env, "program's hash doesn't match map's excl_prog_hash\n"); 20865 return -EACCES; 20866 } 20867 20868 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 20869 btf_record_has_field(map->record, BPF_RB_ROOT)) { 20870 if (is_tracing_prog_type(prog_type)) { 20871 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 20872 return -EINVAL; 20873 } 20874 } 20875 20876 if (btf_record_has_field(map->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) { 20877 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 20878 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 20879 return -EINVAL; 20880 } 20881 20882 if (is_tracing_prog_type(prog_type)) { 20883 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 20884 return -EINVAL; 20885 } 20886 } 20887 20888 if (btf_record_has_field(map->record, BPF_TIMER)) { 20889 if (is_tracing_prog_type(prog_type)) { 20890 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 20891 return -EINVAL; 20892 } 20893 } 20894 20895 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) { 20896 if (is_tracing_prog_type(prog_type)) { 20897 verbose(env, "tracing progs cannot use bpf_wq yet\n"); 20898 return -EINVAL; 20899 } 20900 } 20901 20902 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 20903 !bpf_offload_prog_map_match(prog, map)) { 20904 verbose(env, "offload device mismatch between prog and map\n"); 20905 return -EINVAL; 20906 } 20907 20908 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 20909 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 20910 return -EINVAL; 20911 } 20912 20913 if (prog->sleepable) 20914 switch (map->map_type) { 20915 case BPF_MAP_TYPE_HASH: 20916 case BPF_MAP_TYPE_LRU_HASH: 20917 case BPF_MAP_TYPE_ARRAY: 20918 case BPF_MAP_TYPE_PERCPU_HASH: 20919 case BPF_MAP_TYPE_PERCPU_ARRAY: 20920 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 20921 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 20922 case BPF_MAP_TYPE_HASH_OF_MAPS: 20923 case BPF_MAP_TYPE_RINGBUF: 20924 case BPF_MAP_TYPE_USER_RINGBUF: 20925 case BPF_MAP_TYPE_INODE_STORAGE: 20926 case BPF_MAP_TYPE_SK_STORAGE: 20927 case BPF_MAP_TYPE_TASK_STORAGE: 20928 case BPF_MAP_TYPE_CGRP_STORAGE: 20929 case BPF_MAP_TYPE_QUEUE: 20930 case BPF_MAP_TYPE_STACK: 20931 case BPF_MAP_TYPE_ARENA: 20932 case BPF_MAP_TYPE_INSN_ARRAY: 20933 break; 20934 default: 20935 verbose(env, 20936 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 20937 return -EINVAL; 20938 } 20939 20940 if (bpf_map_is_cgroup_storage(map) && 20941 bpf_cgroup_storage_assign(env->prog->aux, map)) { 20942 verbose(env, "only one cgroup storage of each type is allowed\n"); 20943 return -EBUSY; 20944 } 20945 20946 if (map->map_type == BPF_MAP_TYPE_ARENA) { 20947 if (env->prog->aux->arena) { 20948 verbose(env, "Only one arena per program\n"); 20949 return -EBUSY; 20950 } 20951 if (!env->allow_ptr_leaks || !env->bpf_capable) { 20952 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); 20953 return -EPERM; 20954 } 20955 if (!env->prog->jit_requested) { 20956 verbose(env, "JIT is required to use arena\n"); 20957 return -EOPNOTSUPP; 20958 } 20959 if (!bpf_jit_supports_arena()) { 20960 verbose(env, "JIT doesn't support arena\n"); 20961 return -EOPNOTSUPP; 20962 } 20963 env->prog->aux->arena = (void *)map; 20964 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { 20965 verbose(env, "arena's user address must be set via map_extra or mmap()\n"); 20966 return -EINVAL; 20967 } 20968 } 20969 20970 return 0; 20971 } 20972 20973 static int __add_used_map(struct bpf_verifier_env *env, struct bpf_map *map) 20974 { 20975 int i, err; 20976 20977 /* check whether we recorded this map already */ 20978 for (i = 0; i < env->used_map_cnt; i++) 20979 if (env->used_maps[i] == map) 20980 return i; 20981 20982 if (env->used_map_cnt >= MAX_USED_MAPS) { 20983 verbose(env, "The total number of maps per program has reached the limit of %u\n", 20984 MAX_USED_MAPS); 20985 return -E2BIG; 20986 } 20987 20988 err = check_map_prog_compatibility(env, map, env->prog); 20989 if (err) 20990 return err; 20991 20992 if (env->prog->sleepable) 20993 atomic64_inc(&map->sleepable_refcnt); 20994 20995 /* hold the map. If the program is rejected by verifier, 20996 * the map will be released by release_maps() or it 20997 * will be used by the valid program until it's unloaded 20998 * and all maps are released in bpf_free_used_maps() 20999 */ 21000 bpf_map_inc(map); 21001 21002 env->used_maps[env->used_map_cnt++] = map; 21003 21004 if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) { 21005 err = bpf_insn_array_init(map, env->prog); 21006 if (err) { 21007 verbose(env, "Failed to properly initialize insn array\n"); 21008 return err; 21009 } 21010 env->insn_array_maps[env->insn_array_map_cnt++] = map; 21011 } 21012 21013 return env->used_map_cnt - 1; 21014 } 21015 21016 /* Add map behind fd to used maps list, if it's not already there, and return 21017 * its index. 21018 * Returns <0 on error, or >= 0 index, on success. 21019 */ 21020 static int add_used_map(struct bpf_verifier_env *env, int fd) 21021 { 21022 struct bpf_map *map; 21023 CLASS(fd, f)(fd); 21024 21025 map = __bpf_map_get(f); 21026 if (IS_ERR(map)) { 21027 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 21028 return PTR_ERR(map); 21029 } 21030 21031 return __add_used_map(env, map); 21032 } 21033 21034 /* find and rewrite pseudo imm in ld_imm64 instructions: 21035 * 21036 * 1. if it accesses map FD, replace it with actual map pointer. 21037 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 21038 * 21039 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 21040 */ 21041 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 21042 { 21043 struct bpf_insn *insn = env->prog->insnsi; 21044 int insn_cnt = env->prog->len; 21045 int i, err; 21046 21047 err = bpf_prog_calc_tag(env->prog); 21048 if (err) 21049 return err; 21050 21051 for (i = 0; i < insn_cnt; i++, insn++) { 21052 if (BPF_CLASS(insn->code) == BPF_LDX && 21053 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 21054 insn->imm != 0)) { 21055 verbose(env, "BPF_LDX uses reserved fields\n"); 21056 return -EINVAL; 21057 } 21058 21059 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 21060 struct bpf_insn_aux_data *aux; 21061 struct bpf_map *map; 21062 int map_idx; 21063 u64 addr; 21064 u32 fd; 21065 21066 if (i == insn_cnt - 1 || insn[1].code != 0 || 21067 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 21068 insn[1].off != 0) { 21069 verbose(env, "invalid bpf_ld_imm64 insn\n"); 21070 return -EINVAL; 21071 } 21072 21073 if (insn[0].src_reg == 0) 21074 /* valid generic load 64-bit imm */ 21075 goto next_insn; 21076 21077 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 21078 aux = &env->insn_aux_data[i]; 21079 err = check_pseudo_btf_id(env, insn, aux); 21080 if (err) 21081 return err; 21082 goto next_insn; 21083 } 21084 21085 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 21086 aux = &env->insn_aux_data[i]; 21087 aux->ptr_type = PTR_TO_FUNC; 21088 goto next_insn; 21089 } 21090 21091 /* In final convert_pseudo_ld_imm64() step, this is 21092 * converted into regular 64-bit imm load insn. 21093 */ 21094 switch (insn[0].src_reg) { 21095 case BPF_PSEUDO_MAP_VALUE: 21096 case BPF_PSEUDO_MAP_IDX_VALUE: 21097 break; 21098 case BPF_PSEUDO_MAP_FD: 21099 case BPF_PSEUDO_MAP_IDX: 21100 if (insn[1].imm == 0) 21101 break; 21102 fallthrough; 21103 default: 21104 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 21105 return -EINVAL; 21106 } 21107 21108 switch (insn[0].src_reg) { 21109 case BPF_PSEUDO_MAP_IDX_VALUE: 21110 case BPF_PSEUDO_MAP_IDX: 21111 if (bpfptr_is_null(env->fd_array)) { 21112 verbose(env, "fd_idx without fd_array is invalid\n"); 21113 return -EPROTO; 21114 } 21115 if (copy_from_bpfptr_offset(&fd, env->fd_array, 21116 insn[0].imm * sizeof(fd), 21117 sizeof(fd))) 21118 return -EFAULT; 21119 break; 21120 default: 21121 fd = insn[0].imm; 21122 break; 21123 } 21124 21125 map_idx = add_used_map(env, fd); 21126 if (map_idx < 0) 21127 return map_idx; 21128 map = env->used_maps[map_idx]; 21129 21130 aux = &env->insn_aux_data[i]; 21131 aux->map_index = map_idx; 21132 21133 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 21134 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 21135 addr = (unsigned long)map; 21136 } else { 21137 u32 off = insn[1].imm; 21138 21139 if (off >= BPF_MAX_VAR_OFF) { 21140 verbose(env, "direct value offset of %u is not allowed\n", off); 21141 return -EINVAL; 21142 } 21143 21144 if (!map->ops->map_direct_value_addr) { 21145 verbose(env, "no direct value access support for this map type\n"); 21146 return -EINVAL; 21147 } 21148 21149 err = map->ops->map_direct_value_addr(map, &addr, off); 21150 if (err) { 21151 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 21152 map->value_size, off); 21153 return err; 21154 } 21155 21156 aux->map_off = off; 21157 addr += off; 21158 } 21159 21160 insn[0].imm = (u32)addr; 21161 insn[1].imm = addr >> 32; 21162 21163 next_insn: 21164 insn++; 21165 i++; 21166 continue; 21167 } 21168 21169 /* Basic sanity check before we invest more work here. */ 21170 if (!bpf_opcode_in_insntable(insn->code)) { 21171 verbose(env, "unknown opcode %02x\n", insn->code); 21172 return -EINVAL; 21173 } 21174 } 21175 21176 /* now all pseudo BPF_LD_IMM64 instructions load valid 21177 * 'struct bpf_map *' into a register instead of user map_fd. 21178 * These pointers will be used later by verifier to validate map access. 21179 */ 21180 return 0; 21181 } 21182 21183 /* drop refcnt of maps used by the rejected program */ 21184 static void release_maps(struct bpf_verifier_env *env) 21185 { 21186 __bpf_free_used_maps(env->prog->aux, env->used_maps, 21187 env->used_map_cnt); 21188 } 21189 21190 /* drop refcnt of maps used by the rejected program */ 21191 static void release_btfs(struct bpf_verifier_env *env) 21192 { 21193 __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt); 21194 } 21195 21196 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 21197 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 21198 { 21199 struct bpf_insn *insn = env->prog->insnsi; 21200 int insn_cnt = env->prog->len; 21201 int i; 21202 21203 for (i = 0; i < insn_cnt; i++, insn++) { 21204 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 21205 continue; 21206 if (insn->src_reg == BPF_PSEUDO_FUNC) 21207 continue; 21208 insn->src_reg = 0; 21209 } 21210 } 21211 21212 /* single env->prog->insni[off] instruction was replaced with the range 21213 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 21214 * [0, off) and [off, end) to new locations, so the patched range stays zero 21215 */ 21216 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 21217 struct bpf_prog *new_prog, u32 off, u32 cnt) 21218 { 21219 struct bpf_insn_aux_data *data = env->insn_aux_data; 21220 struct bpf_insn *insn = new_prog->insnsi; 21221 u32 old_seen = data[off].seen; 21222 u32 prog_len; 21223 int i; 21224 21225 /* aux info at OFF always needs adjustment, no matter fast path 21226 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 21227 * original insn at old prog. 21228 */ 21229 data[off].zext_dst = insn_has_def32(insn + off + cnt - 1); 21230 21231 if (cnt == 1) 21232 return; 21233 prog_len = new_prog->len; 21234 21235 memmove(data + off + cnt - 1, data + off, 21236 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 21237 memset(data + off, 0, sizeof(struct bpf_insn_aux_data) * (cnt - 1)); 21238 for (i = off; i < off + cnt - 1; i++) { 21239 /* Expand insni[off]'s seen count to the patched range. */ 21240 data[i].seen = old_seen; 21241 data[i].zext_dst = insn_has_def32(insn + i); 21242 } 21243 } 21244 21245 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 21246 { 21247 int i; 21248 21249 if (len == 1) 21250 return; 21251 /* NOTE: fake 'exit' subprog should be updated as well. */ 21252 for (i = 0; i <= env->subprog_cnt; i++) { 21253 if (env->subprog_info[i].start <= off) 21254 continue; 21255 env->subprog_info[i].start += len - 1; 21256 } 21257 } 21258 21259 static void release_insn_arrays(struct bpf_verifier_env *env) 21260 { 21261 int i; 21262 21263 for (i = 0; i < env->insn_array_map_cnt; i++) 21264 bpf_insn_array_release(env->insn_array_maps[i]); 21265 } 21266 21267 static void adjust_insn_arrays(struct bpf_verifier_env *env, u32 off, u32 len) 21268 { 21269 int i; 21270 21271 if (len == 1) 21272 return; 21273 21274 for (i = 0; i < env->insn_array_map_cnt; i++) 21275 bpf_insn_array_adjust(env->insn_array_maps[i], off, len); 21276 } 21277 21278 static void adjust_insn_arrays_after_remove(struct bpf_verifier_env *env, u32 off, u32 len) 21279 { 21280 int i; 21281 21282 for (i = 0; i < env->insn_array_map_cnt; i++) 21283 bpf_insn_array_adjust_after_remove(env->insn_array_maps[i], off, len); 21284 } 21285 21286 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 21287 { 21288 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 21289 int i, sz = prog->aux->size_poke_tab; 21290 struct bpf_jit_poke_descriptor *desc; 21291 21292 for (i = 0; i < sz; i++) { 21293 desc = &tab[i]; 21294 if (desc->insn_idx <= off) 21295 continue; 21296 desc->insn_idx += len - 1; 21297 } 21298 } 21299 21300 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 21301 const struct bpf_insn *patch, u32 len) 21302 { 21303 struct bpf_prog *new_prog; 21304 struct bpf_insn_aux_data *new_data = NULL; 21305 21306 if (len > 1) { 21307 new_data = vrealloc(env->insn_aux_data, 21308 array_size(env->prog->len + len - 1, 21309 sizeof(struct bpf_insn_aux_data)), 21310 GFP_KERNEL_ACCOUNT | __GFP_ZERO); 21311 if (!new_data) 21312 return NULL; 21313 21314 env->insn_aux_data = new_data; 21315 } 21316 21317 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 21318 if (IS_ERR(new_prog)) { 21319 if (PTR_ERR(new_prog) == -ERANGE) 21320 verbose(env, 21321 "insn %d cannot be patched due to 16-bit range\n", 21322 env->insn_aux_data[off].orig_idx); 21323 return NULL; 21324 } 21325 adjust_insn_aux_data(env, new_prog, off, len); 21326 adjust_subprog_starts(env, off, len); 21327 adjust_insn_arrays(env, off, len); 21328 adjust_poke_descs(new_prog, off, len); 21329 return new_prog; 21330 } 21331 21332 /* 21333 * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the 21334 * jump offset by 'delta'. 21335 */ 21336 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta) 21337 { 21338 struct bpf_insn *insn = prog->insnsi; 21339 u32 insn_cnt = prog->len, i; 21340 s32 imm; 21341 s16 off; 21342 21343 for (i = 0; i < insn_cnt; i++, insn++) { 21344 u8 code = insn->code; 21345 21346 if (tgt_idx <= i && i < tgt_idx + delta) 21347 continue; 21348 21349 if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || 21350 BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT) 21351 continue; 21352 21353 if (insn->code == (BPF_JMP32 | BPF_JA)) { 21354 if (i + 1 + insn->imm != tgt_idx) 21355 continue; 21356 if (check_add_overflow(insn->imm, delta, &imm)) 21357 return -ERANGE; 21358 insn->imm = imm; 21359 } else { 21360 if (i + 1 + insn->off != tgt_idx) 21361 continue; 21362 if (check_add_overflow(insn->off, delta, &off)) 21363 return -ERANGE; 21364 insn->off = off; 21365 } 21366 } 21367 return 0; 21368 } 21369 21370 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 21371 u32 off, u32 cnt) 21372 { 21373 int i, j; 21374 21375 /* find first prog starting at or after off (first to remove) */ 21376 for (i = 0; i < env->subprog_cnt; i++) 21377 if (env->subprog_info[i].start >= off) 21378 break; 21379 /* find first prog starting at or after off + cnt (first to stay) */ 21380 for (j = i; j < env->subprog_cnt; j++) 21381 if (env->subprog_info[j].start >= off + cnt) 21382 break; 21383 /* if j doesn't start exactly at off + cnt, we are just removing 21384 * the front of previous prog 21385 */ 21386 if (env->subprog_info[j].start != off + cnt) 21387 j--; 21388 21389 if (j > i) { 21390 struct bpf_prog_aux *aux = env->prog->aux; 21391 int move; 21392 21393 /* move fake 'exit' subprog as well */ 21394 move = env->subprog_cnt + 1 - j; 21395 21396 memmove(env->subprog_info + i, 21397 env->subprog_info + j, 21398 sizeof(*env->subprog_info) * move); 21399 env->subprog_cnt -= j - i; 21400 21401 /* remove func_info */ 21402 if (aux->func_info) { 21403 move = aux->func_info_cnt - j; 21404 21405 memmove(aux->func_info + i, 21406 aux->func_info + j, 21407 sizeof(*aux->func_info) * move); 21408 aux->func_info_cnt -= j - i; 21409 /* func_info->insn_off is set after all code rewrites, 21410 * in adjust_btf_func() - no need to adjust 21411 */ 21412 } 21413 } else { 21414 /* convert i from "first prog to remove" to "first to adjust" */ 21415 if (env->subprog_info[i].start == off) 21416 i++; 21417 } 21418 21419 /* update fake 'exit' subprog as well */ 21420 for (; i <= env->subprog_cnt; i++) 21421 env->subprog_info[i].start -= cnt; 21422 21423 return 0; 21424 } 21425 21426 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 21427 u32 cnt) 21428 { 21429 struct bpf_prog *prog = env->prog; 21430 u32 i, l_off, l_cnt, nr_linfo; 21431 struct bpf_line_info *linfo; 21432 21433 nr_linfo = prog->aux->nr_linfo; 21434 if (!nr_linfo) 21435 return 0; 21436 21437 linfo = prog->aux->linfo; 21438 21439 /* find first line info to remove, count lines to be removed */ 21440 for (i = 0; i < nr_linfo; i++) 21441 if (linfo[i].insn_off >= off) 21442 break; 21443 21444 l_off = i; 21445 l_cnt = 0; 21446 for (; i < nr_linfo; i++) 21447 if (linfo[i].insn_off < off + cnt) 21448 l_cnt++; 21449 else 21450 break; 21451 21452 /* First live insn doesn't match first live linfo, it needs to "inherit" 21453 * last removed linfo. prog is already modified, so prog->len == off 21454 * means no live instructions after (tail of the program was removed). 21455 */ 21456 if (prog->len != off && l_cnt && 21457 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 21458 l_cnt--; 21459 linfo[--i].insn_off = off + cnt; 21460 } 21461 21462 /* remove the line info which refer to the removed instructions */ 21463 if (l_cnt) { 21464 memmove(linfo + l_off, linfo + i, 21465 sizeof(*linfo) * (nr_linfo - i)); 21466 21467 prog->aux->nr_linfo -= l_cnt; 21468 nr_linfo = prog->aux->nr_linfo; 21469 } 21470 21471 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 21472 for (i = l_off; i < nr_linfo; i++) 21473 linfo[i].insn_off -= cnt; 21474 21475 /* fix up all subprogs (incl. 'exit') which start >= off */ 21476 for (i = 0; i <= env->subprog_cnt; i++) 21477 if (env->subprog_info[i].linfo_idx > l_off) { 21478 /* program may have started in the removed region but 21479 * may not be fully removed 21480 */ 21481 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 21482 env->subprog_info[i].linfo_idx -= l_cnt; 21483 else 21484 env->subprog_info[i].linfo_idx = l_off; 21485 } 21486 21487 return 0; 21488 } 21489 21490 /* 21491 * Clean up dynamically allocated fields of aux data for instructions [start, ...] 21492 */ 21493 static void clear_insn_aux_data(struct bpf_verifier_env *env, int start, int len) 21494 { 21495 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 21496 struct bpf_insn *insns = env->prog->insnsi; 21497 int end = start + len; 21498 int i; 21499 21500 for (i = start; i < end; i++) { 21501 if (aux_data[i].jt) { 21502 kvfree(aux_data[i].jt); 21503 aux_data[i].jt = NULL; 21504 } 21505 21506 if (bpf_is_ldimm64(&insns[i])) 21507 i++; 21508 } 21509 } 21510 21511 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 21512 { 21513 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 21514 unsigned int orig_prog_len = env->prog->len; 21515 int err; 21516 21517 if (bpf_prog_is_offloaded(env->prog->aux)) 21518 bpf_prog_offload_remove_insns(env, off, cnt); 21519 21520 /* Should be called before bpf_remove_insns, as it uses prog->insnsi */ 21521 clear_insn_aux_data(env, off, cnt); 21522 21523 err = bpf_remove_insns(env->prog, off, cnt); 21524 if (err) 21525 return err; 21526 21527 err = adjust_subprog_starts_after_remove(env, off, cnt); 21528 if (err) 21529 return err; 21530 21531 err = bpf_adj_linfo_after_remove(env, off, cnt); 21532 if (err) 21533 return err; 21534 21535 adjust_insn_arrays_after_remove(env, off, cnt); 21536 21537 memmove(aux_data + off, aux_data + off + cnt, 21538 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 21539 21540 return 0; 21541 } 21542 21543 /* The verifier does more data flow analysis than llvm and will not 21544 * explore branches that are dead at run time. Malicious programs can 21545 * have dead code too. Therefore replace all dead at-run-time code 21546 * with 'ja -1'. 21547 * 21548 * Just nops are not optimal, e.g. if they would sit at the end of the 21549 * program and through another bug we would manage to jump there, then 21550 * we'd execute beyond program memory otherwise. Returning exception 21551 * code also wouldn't work since we can have subprogs where the dead 21552 * code could be located. 21553 */ 21554 static void sanitize_dead_code(struct bpf_verifier_env *env) 21555 { 21556 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 21557 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 21558 struct bpf_insn *insn = env->prog->insnsi; 21559 const int insn_cnt = env->prog->len; 21560 int i; 21561 21562 for (i = 0; i < insn_cnt; i++) { 21563 if (aux_data[i].seen) 21564 continue; 21565 memcpy(insn + i, &trap, sizeof(trap)); 21566 aux_data[i].zext_dst = false; 21567 } 21568 } 21569 21570 static bool insn_is_cond_jump(u8 code) 21571 { 21572 u8 op; 21573 21574 op = BPF_OP(code); 21575 if (BPF_CLASS(code) == BPF_JMP32) 21576 return op != BPF_JA; 21577 21578 if (BPF_CLASS(code) != BPF_JMP) 21579 return false; 21580 21581 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 21582 } 21583 21584 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 21585 { 21586 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 21587 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 21588 struct bpf_insn *insn = env->prog->insnsi; 21589 const int insn_cnt = env->prog->len; 21590 int i; 21591 21592 for (i = 0; i < insn_cnt; i++, insn++) { 21593 if (!insn_is_cond_jump(insn->code)) 21594 continue; 21595 21596 if (!aux_data[i + 1].seen) 21597 ja.off = insn->off; 21598 else if (!aux_data[i + 1 + insn->off].seen) 21599 ja.off = 0; 21600 else 21601 continue; 21602 21603 if (bpf_prog_is_offloaded(env->prog->aux)) 21604 bpf_prog_offload_replace_insn(env, i, &ja); 21605 21606 memcpy(insn, &ja, sizeof(ja)); 21607 } 21608 } 21609 21610 static int opt_remove_dead_code(struct bpf_verifier_env *env) 21611 { 21612 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 21613 int insn_cnt = env->prog->len; 21614 int i, err; 21615 21616 for (i = 0; i < insn_cnt; i++) { 21617 int j; 21618 21619 j = 0; 21620 while (i + j < insn_cnt && !aux_data[i + j].seen) 21621 j++; 21622 if (!j) 21623 continue; 21624 21625 err = verifier_remove_insns(env, i, j); 21626 if (err) 21627 return err; 21628 insn_cnt = env->prog->len; 21629 } 21630 21631 return 0; 21632 } 21633 21634 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 21635 static const struct bpf_insn MAY_GOTO_0 = BPF_RAW_INSN(BPF_JMP | BPF_JCOND, 0, 0, 0, 0); 21636 21637 static int opt_remove_nops(struct bpf_verifier_env *env) 21638 { 21639 struct bpf_insn *insn = env->prog->insnsi; 21640 int insn_cnt = env->prog->len; 21641 bool is_may_goto_0, is_ja; 21642 int i, err; 21643 21644 for (i = 0; i < insn_cnt; i++) { 21645 is_may_goto_0 = !memcmp(&insn[i], &MAY_GOTO_0, sizeof(MAY_GOTO_0)); 21646 is_ja = !memcmp(&insn[i], &NOP, sizeof(NOP)); 21647 21648 if (!is_may_goto_0 && !is_ja) 21649 continue; 21650 21651 err = verifier_remove_insns(env, i, 1); 21652 if (err) 21653 return err; 21654 insn_cnt--; 21655 /* Go back one insn to catch may_goto +1; may_goto +0 sequence */ 21656 i -= (is_may_goto_0 && i > 0) ? 2 : 1; 21657 } 21658 21659 return 0; 21660 } 21661 21662 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 21663 const union bpf_attr *attr) 21664 { 21665 struct bpf_insn *patch; 21666 /* use env->insn_buf as two independent buffers */ 21667 struct bpf_insn *zext_patch = env->insn_buf; 21668 struct bpf_insn *rnd_hi32_patch = &env->insn_buf[2]; 21669 struct bpf_insn_aux_data *aux = env->insn_aux_data; 21670 int i, patch_len, delta = 0, len = env->prog->len; 21671 struct bpf_insn *insns = env->prog->insnsi; 21672 struct bpf_prog *new_prog; 21673 bool rnd_hi32; 21674 21675 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 21676 zext_patch[1] = BPF_ZEXT_REG(0); 21677 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 21678 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 21679 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 21680 for (i = 0; i < len; i++) { 21681 int adj_idx = i + delta; 21682 struct bpf_insn insn; 21683 int load_reg; 21684 21685 insn = insns[adj_idx]; 21686 load_reg = insn_def_regno(&insn); 21687 if (!aux[adj_idx].zext_dst) { 21688 u8 code, class; 21689 u32 imm_rnd; 21690 21691 if (!rnd_hi32) 21692 continue; 21693 21694 code = insn.code; 21695 class = BPF_CLASS(code); 21696 if (load_reg == -1) 21697 continue; 21698 21699 /* NOTE: arg "reg" (the fourth one) is only used for 21700 * BPF_STX + SRC_OP, so it is safe to pass NULL 21701 * here. 21702 */ 21703 if (is_reg64(&insn, load_reg, NULL, DST_OP)) { 21704 if (class == BPF_LD && 21705 BPF_MODE(code) == BPF_IMM) 21706 i++; 21707 continue; 21708 } 21709 21710 /* ctx load could be transformed into wider load. */ 21711 if (class == BPF_LDX && 21712 aux[adj_idx].ptr_type == PTR_TO_CTX) 21713 continue; 21714 21715 imm_rnd = get_random_u32(); 21716 rnd_hi32_patch[0] = insn; 21717 rnd_hi32_patch[1].imm = imm_rnd; 21718 rnd_hi32_patch[3].dst_reg = load_reg; 21719 patch = rnd_hi32_patch; 21720 patch_len = 4; 21721 goto apply_patch_buffer; 21722 } 21723 21724 /* Add in an zero-extend instruction if a) the JIT has requested 21725 * it or b) it's a CMPXCHG. 21726 * 21727 * The latter is because: BPF_CMPXCHG always loads a value into 21728 * R0, therefore always zero-extends. However some archs' 21729 * equivalent instruction only does this load when the 21730 * comparison is successful. This detail of CMPXCHG is 21731 * orthogonal to the general zero-extension behaviour of the 21732 * CPU, so it's treated independently of bpf_jit_needs_zext. 21733 */ 21734 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 21735 continue; 21736 21737 /* Zero-extension is done by the caller. */ 21738 if (bpf_pseudo_kfunc_call(&insn)) 21739 continue; 21740 21741 if (verifier_bug_if(load_reg == -1, env, 21742 "zext_dst is set, but no reg is defined")) 21743 return -EFAULT; 21744 21745 zext_patch[0] = insn; 21746 zext_patch[1].dst_reg = load_reg; 21747 zext_patch[1].src_reg = load_reg; 21748 patch = zext_patch; 21749 patch_len = 2; 21750 apply_patch_buffer: 21751 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 21752 if (!new_prog) 21753 return -ENOMEM; 21754 env->prog = new_prog; 21755 insns = new_prog->insnsi; 21756 aux = env->insn_aux_data; 21757 delta += patch_len - 1; 21758 } 21759 21760 return 0; 21761 } 21762 21763 /* convert load instructions that access fields of a context type into a 21764 * sequence of instructions that access fields of the underlying structure: 21765 * struct __sk_buff -> struct sk_buff 21766 * struct bpf_sock_ops -> struct sock 21767 */ 21768 static int convert_ctx_accesses(struct bpf_verifier_env *env) 21769 { 21770 struct bpf_subprog_info *subprogs = env->subprog_info; 21771 const struct bpf_verifier_ops *ops = env->ops; 21772 int i, cnt, size, ctx_field_size, ret, delta = 0, epilogue_cnt = 0; 21773 const int insn_cnt = env->prog->len; 21774 struct bpf_insn *epilogue_buf = env->epilogue_buf; 21775 struct bpf_insn *insn_buf = env->insn_buf; 21776 struct bpf_insn *insn; 21777 u32 target_size, size_default, off; 21778 struct bpf_prog *new_prog; 21779 enum bpf_access_type type; 21780 bool is_narrower_load; 21781 int epilogue_idx = 0; 21782 21783 if (ops->gen_epilogue) { 21784 epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog, 21785 -(subprogs[0].stack_depth + 8)); 21786 if (epilogue_cnt >= INSN_BUF_SIZE) { 21787 verifier_bug(env, "epilogue is too long"); 21788 return -EFAULT; 21789 } else if (epilogue_cnt) { 21790 /* Save the ARG_PTR_TO_CTX for the epilogue to use */ 21791 cnt = 0; 21792 subprogs[0].stack_depth += 8; 21793 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1, 21794 -subprogs[0].stack_depth); 21795 insn_buf[cnt++] = env->prog->insnsi[0]; 21796 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 21797 if (!new_prog) 21798 return -ENOMEM; 21799 env->prog = new_prog; 21800 delta += cnt - 1; 21801 21802 ret = add_kfunc_in_insns(env, epilogue_buf, epilogue_cnt - 1); 21803 if (ret < 0) 21804 return ret; 21805 } 21806 } 21807 21808 if (ops->gen_prologue || env->seen_direct_write) { 21809 if (!ops->gen_prologue) { 21810 verifier_bug(env, "gen_prologue is null"); 21811 return -EFAULT; 21812 } 21813 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 21814 env->prog); 21815 if (cnt >= INSN_BUF_SIZE) { 21816 verifier_bug(env, "prologue is too long"); 21817 return -EFAULT; 21818 } else if (cnt) { 21819 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 21820 if (!new_prog) 21821 return -ENOMEM; 21822 21823 env->prog = new_prog; 21824 delta += cnt - 1; 21825 21826 ret = add_kfunc_in_insns(env, insn_buf, cnt - 1); 21827 if (ret < 0) 21828 return ret; 21829 } 21830 } 21831 21832 if (delta) 21833 WARN_ON(adjust_jmp_off(env->prog, 0, delta)); 21834 21835 if (bpf_prog_is_offloaded(env->prog->aux)) 21836 return 0; 21837 21838 insn = env->prog->insnsi + delta; 21839 21840 for (i = 0; i < insn_cnt; i++, insn++) { 21841 bpf_convert_ctx_access_t convert_ctx_access; 21842 u8 mode; 21843 21844 if (env->insn_aux_data[i + delta].nospec) { 21845 WARN_ON_ONCE(env->insn_aux_data[i + delta].alu_state); 21846 struct bpf_insn *patch = insn_buf; 21847 21848 *patch++ = BPF_ST_NOSPEC(); 21849 *patch++ = *insn; 21850 cnt = patch - insn_buf; 21851 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21852 if (!new_prog) 21853 return -ENOMEM; 21854 21855 delta += cnt - 1; 21856 env->prog = new_prog; 21857 insn = new_prog->insnsi + i + delta; 21858 /* This can not be easily merged with the 21859 * nospec_result-case, because an insn may require a 21860 * nospec before and after itself. Therefore also do not 21861 * 'continue' here but potentially apply further 21862 * patching to insn. *insn should equal patch[1] now. 21863 */ 21864 } 21865 21866 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 21867 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 21868 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 21869 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 21870 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 21871 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 21872 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 21873 type = BPF_READ; 21874 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 21875 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 21876 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 21877 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 21878 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 21879 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 21880 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 21881 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 21882 type = BPF_WRITE; 21883 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_B) || 21884 insn->code == (BPF_STX | BPF_ATOMIC | BPF_H) || 21885 insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) || 21886 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) && 21887 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) { 21888 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code); 21889 env->prog->aux->num_exentries++; 21890 continue; 21891 } else if (insn->code == (BPF_JMP | BPF_EXIT) && 21892 epilogue_cnt && 21893 i + delta < subprogs[1].start) { 21894 /* Generate epilogue for the main prog */ 21895 if (epilogue_idx) { 21896 /* jump back to the earlier generated epilogue */ 21897 insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1); 21898 cnt = 1; 21899 } else { 21900 memcpy(insn_buf, epilogue_buf, 21901 epilogue_cnt * sizeof(*epilogue_buf)); 21902 cnt = epilogue_cnt; 21903 /* epilogue_idx cannot be 0. It must have at 21904 * least one ctx ptr saving insn before the 21905 * epilogue. 21906 */ 21907 epilogue_idx = i + delta; 21908 } 21909 goto patch_insn_buf; 21910 } else { 21911 continue; 21912 } 21913 21914 if (type == BPF_WRITE && 21915 env->insn_aux_data[i + delta].nospec_result) { 21916 /* nospec_result is only used to mitigate Spectre v4 and 21917 * to limit verification-time for Spectre v1. 21918 */ 21919 struct bpf_insn *patch = insn_buf; 21920 21921 *patch++ = *insn; 21922 *patch++ = BPF_ST_NOSPEC(); 21923 cnt = patch - insn_buf; 21924 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21925 if (!new_prog) 21926 return -ENOMEM; 21927 21928 delta += cnt - 1; 21929 env->prog = new_prog; 21930 insn = new_prog->insnsi + i + delta; 21931 continue; 21932 } 21933 21934 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 21935 case PTR_TO_CTX: 21936 if (!ops->convert_ctx_access) 21937 continue; 21938 convert_ctx_access = ops->convert_ctx_access; 21939 break; 21940 case PTR_TO_SOCKET: 21941 case PTR_TO_SOCK_COMMON: 21942 convert_ctx_access = bpf_sock_convert_ctx_access; 21943 break; 21944 case PTR_TO_TCP_SOCK: 21945 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 21946 break; 21947 case PTR_TO_XDP_SOCK: 21948 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 21949 break; 21950 case PTR_TO_BTF_ID: 21951 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 21952 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 21953 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 21954 * be said once it is marked PTR_UNTRUSTED, hence we must handle 21955 * any faults for loads into such types. BPF_WRITE is disallowed 21956 * for this case. 21957 */ 21958 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 21959 case PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED: 21960 if (type == BPF_READ) { 21961 if (BPF_MODE(insn->code) == BPF_MEM) 21962 insn->code = BPF_LDX | BPF_PROBE_MEM | 21963 BPF_SIZE((insn)->code); 21964 else 21965 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 21966 BPF_SIZE((insn)->code); 21967 env->prog->aux->num_exentries++; 21968 } 21969 continue; 21970 case PTR_TO_ARENA: 21971 if (BPF_MODE(insn->code) == BPF_MEMSX) { 21972 if (!bpf_jit_supports_insn(insn, true)) { 21973 verbose(env, "sign extending loads from arena are not supported yet\n"); 21974 return -EOPNOTSUPP; 21975 } 21976 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32SX | BPF_SIZE(insn->code); 21977 } else { 21978 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); 21979 } 21980 env->prog->aux->num_exentries++; 21981 continue; 21982 default: 21983 continue; 21984 } 21985 21986 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 21987 size = BPF_LDST_BYTES(insn); 21988 mode = BPF_MODE(insn->code); 21989 21990 /* If the read access is a narrower load of the field, 21991 * convert to a 4/8-byte load, to minimum program type specific 21992 * convert_ctx_access changes. If conversion is successful, 21993 * we will apply proper mask to the result. 21994 */ 21995 is_narrower_load = size < ctx_field_size; 21996 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 21997 off = insn->off; 21998 if (is_narrower_load) { 21999 u8 size_code; 22000 22001 if (type == BPF_WRITE) { 22002 verifier_bug(env, "narrow ctx access misconfigured"); 22003 return -EFAULT; 22004 } 22005 22006 size_code = BPF_H; 22007 if (ctx_field_size == 4) 22008 size_code = BPF_W; 22009 else if (ctx_field_size == 8) 22010 size_code = BPF_DW; 22011 22012 insn->off = off & ~(size_default - 1); 22013 insn->code = BPF_LDX | BPF_MEM | size_code; 22014 } 22015 22016 target_size = 0; 22017 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 22018 &target_size); 22019 if (cnt == 0 || cnt >= INSN_BUF_SIZE || 22020 (ctx_field_size && !target_size)) { 22021 verifier_bug(env, "error during ctx access conversion (%d)", cnt); 22022 return -EFAULT; 22023 } 22024 22025 if (is_narrower_load && size < target_size) { 22026 u8 shift = bpf_ctx_narrow_access_offset( 22027 off, size, size_default) * 8; 22028 if (shift && cnt + 1 >= INSN_BUF_SIZE) { 22029 verifier_bug(env, "narrow ctx load misconfigured"); 22030 return -EFAULT; 22031 } 22032 if (ctx_field_size <= 4) { 22033 if (shift) 22034 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 22035 insn->dst_reg, 22036 shift); 22037 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 22038 (1 << size * 8) - 1); 22039 } else { 22040 if (shift) 22041 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 22042 insn->dst_reg, 22043 shift); 22044 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 22045 (1ULL << size * 8) - 1); 22046 } 22047 } 22048 if (mode == BPF_MEMSX) 22049 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 22050 insn->dst_reg, insn->dst_reg, 22051 size * 8, 0); 22052 22053 patch_insn_buf: 22054 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22055 if (!new_prog) 22056 return -ENOMEM; 22057 22058 delta += cnt - 1; 22059 22060 /* keep walking new program and skip insns we just inserted */ 22061 env->prog = new_prog; 22062 insn = new_prog->insnsi + i + delta; 22063 } 22064 22065 return 0; 22066 } 22067 22068 static int jit_subprogs(struct bpf_verifier_env *env) 22069 { 22070 struct bpf_prog *prog = env->prog, **func, *tmp; 22071 int i, j, subprog_start, subprog_end = 0, len, subprog; 22072 struct bpf_map *map_ptr; 22073 struct bpf_insn *insn; 22074 void *old_bpf_func; 22075 int err, num_exentries; 22076 int old_len, subprog_start_adjustment = 0; 22077 22078 if (env->subprog_cnt <= 1) 22079 return 0; 22080 22081 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 22082 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 22083 continue; 22084 22085 /* Upon error here we cannot fall back to interpreter but 22086 * need a hard reject of the program. Thus -EFAULT is 22087 * propagated in any case. 22088 */ 22089 subprog = find_subprog(env, i + insn->imm + 1); 22090 if (verifier_bug_if(subprog < 0, env, "No program to jit at insn %d", 22091 i + insn->imm + 1)) 22092 return -EFAULT; 22093 /* temporarily remember subprog id inside insn instead of 22094 * aux_data, since next loop will split up all insns into funcs 22095 */ 22096 insn->off = subprog; 22097 /* remember original imm in case JIT fails and fallback 22098 * to interpreter will be needed 22099 */ 22100 env->insn_aux_data[i].call_imm = insn->imm; 22101 /* point imm to __bpf_call_base+1 from JITs point of view */ 22102 insn->imm = 1; 22103 if (bpf_pseudo_func(insn)) { 22104 #if defined(MODULES_VADDR) 22105 u64 addr = MODULES_VADDR; 22106 #else 22107 u64 addr = VMALLOC_START; 22108 #endif 22109 /* jit (e.g. x86_64) may emit fewer instructions 22110 * if it learns a u32 imm is the same as a u64 imm. 22111 * Set close enough to possible prog address. 22112 */ 22113 insn[0].imm = (u32)addr; 22114 insn[1].imm = addr >> 32; 22115 } 22116 } 22117 22118 err = bpf_prog_alloc_jited_linfo(prog); 22119 if (err) 22120 goto out_undo_insn; 22121 22122 err = -ENOMEM; 22123 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 22124 if (!func) 22125 goto out_undo_insn; 22126 22127 for (i = 0; i < env->subprog_cnt; i++) { 22128 subprog_start = subprog_end; 22129 subprog_end = env->subprog_info[i + 1].start; 22130 22131 len = subprog_end - subprog_start; 22132 /* bpf_prog_run() doesn't call subprogs directly, 22133 * hence main prog stats include the runtime of subprogs. 22134 * subprogs don't have IDs and not reachable via prog_get_next_id 22135 * func[i]->stats will never be accessed and stays NULL 22136 */ 22137 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 22138 if (!func[i]) 22139 goto out_free; 22140 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 22141 len * sizeof(struct bpf_insn)); 22142 func[i]->type = prog->type; 22143 func[i]->len = len; 22144 if (bpf_prog_calc_tag(func[i])) 22145 goto out_free; 22146 func[i]->is_func = 1; 22147 func[i]->sleepable = prog->sleepable; 22148 func[i]->aux->func_idx = i; 22149 /* Below members will be freed only at prog->aux */ 22150 func[i]->aux->btf = prog->aux->btf; 22151 func[i]->aux->subprog_start = subprog_start + subprog_start_adjustment; 22152 func[i]->aux->func_info = prog->aux->func_info; 22153 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 22154 func[i]->aux->poke_tab = prog->aux->poke_tab; 22155 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 22156 func[i]->aux->main_prog_aux = prog->aux; 22157 22158 for (j = 0; j < prog->aux->size_poke_tab; j++) { 22159 struct bpf_jit_poke_descriptor *poke; 22160 22161 poke = &prog->aux->poke_tab[j]; 22162 if (poke->insn_idx < subprog_end && 22163 poke->insn_idx >= subprog_start) 22164 poke->aux = func[i]->aux; 22165 } 22166 22167 func[i]->aux->name[0] = 'F'; 22168 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 22169 if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) 22170 func[i]->aux->jits_use_priv_stack = true; 22171 22172 func[i]->jit_requested = 1; 22173 func[i]->blinding_requested = prog->blinding_requested; 22174 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 22175 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 22176 func[i]->aux->linfo = prog->aux->linfo; 22177 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 22178 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 22179 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 22180 func[i]->aux->arena = prog->aux->arena; 22181 func[i]->aux->used_maps = env->used_maps; 22182 func[i]->aux->used_map_cnt = env->used_map_cnt; 22183 num_exentries = 0; 22184 insn = func[i]->insnsi; 22185 for (j = 0; j < func[i]->len; j++, insn++) { 22186 if (BPF_CLASS(insn->code) == BPF_LDX && 22187 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 22188 BPF_MODE(insn->code) == BPF_PROBE_MEM32 || 22189 BPF_MODE(insn->code) == BPF_PROBE_MEM32SX || 22190 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 22191 num_exentries++; 22192 if ((BPF_CLASS(insn->code) == BPF_STX || 22193 BPF_CLASS(insn->code) == BPF_ST) && 22194 BPF_MODE(insn->code) == BPF_PROBE_MEM32) 22195 num_exentries++; 22196 if (BPF_CLASS(insn->code) == BPF_STX && 22197 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) 22198 num_exentries++; 22199 } 22200 func[i]->aux->num_exentries = num_exentries; 22201 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 22202 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 22203 func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data; 22204 func[i]->aux->might_sleep = env->subprog_info[i].might_sleep; 22205 if (!i) 22206 func[i]->aux->exception_boundary = env->seen_exception; 22207 22208 /* 22209 * To properly pass the absolute subprog start to jit 22210 * all instruction adjustments should be accumulated 22211 */ 22212 old_len = func[i]->len; 22213 func[i] = bpf_int_jit_compile(func[i]); 22214 subprog_start_adjustment += func[i]->len - old_len; 22215 22216 if (!func[i]->jited) { 22217 err = -ENOTSUPP; 22218 goto out_free; 22219 } 22220 cond_resched(); 22221 } 22222 22223 /* at this point all bpf functions were successfully JITed 22224 * now populate all bpf_calls with correct addresses and 22225 * run last pass of JIT 22226 */ 22227 for (i = 0; i < env->subprog_cnt; i++) { 22228 insn = func[i]->insnsi; 22229 for (j = 0; j < func[i]->len; j++, insn++) { 22230 if (bpf_pseudo_func(insn)) { 22231 subprog = insn->off; 22232 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 22233 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 22234 continue; 22235 } 22236 if (!bpf_pseudo_call(insn)) 22237 continue; 22238 subprog = insn->off; 22239 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 22240 } 22241 22242 /* we use the aux data to keep a list of the start addresses 22243 * of the JITed images for each function in the program 22244 * 22245 * for some architectures, such as powerpc64, the imm field 22246 * might not be large enough to hold the offset of the start 22247 * address of the callee's JITed image from __bpf_call_base 22248 * 22249 * in such cases, we can lookup the start address of a callee 22250 * by using its subprog id, available from the off field of 22251 * the call instruction, as an index for this list 22252 */ 22253 func[i]->aux->func = func; 22254 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 22255 func[i]->aux->real_func_cnt = env->subprog_cnt; 22256 } 22257 for (i = 0; i < env->subprog_cnt; i++) { 22258 old_bpf_func = func[i]->bpf_func; 22259 tmp = bpf_int_jit_compile(func[i]); 22260 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 22261 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 22262 err = -ENOTSUPP; 22263 goto out_free; 22264 } 22265 cond_resched(); 22266 } 22267 22268 /* 22269 * Cleanup func[i]->aux fields which aren't required 22270 * or can become invalid in future 22271 */ 22272 for (i = 0; i < env->subprog_cnt; i++) { 22273 func[i]->aux->used_maps = NULL; 22274 func[i]->aux->used_map_cnt = 0; 22275 } 22276 22277 /* finally lock prog and jit images for all functions and 22278 * populate kallsysm. Begin at the first subprogram, since 22279 * bpf_prog_load will add the kallsyms for the main program. 22280 */ 22281 for (i = 1; i < env->subprog_cnt; i++) { 22282 err = bpf_prog_lock_ro(func[i]); 22283 if (err) 22284 goto out_free; 22285 } 22286 22287 for (i = 1; i < env->subprog_cnt; i++) 22288 bpf_prog_kallsyms_add(func[i]); 22289 22290 /* Last step: make now unused interpreter insns from main 22291 * prog consistent for later dump requests, so they can 22292 * later look the same as if they were interpreted only. 22293 */ 22294 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 22295 if (bpf_pseudo_func(insn)) { 22296 insn[0].imm = env->insn_aux_data[i].call_imm; 22297 insn[1].imm = insn->off; 22298 insn->off = 0; 22299 continue; 22300 } 22301 if (!bpf_pseudo_call(insn)) 22302 continue; 22303 insn->off = env->insn_aux_data[i].call_imm; 22304 subprog = find_subprog(env, i + insn->off + 1); 22305 insn->imm = subprog; 22306 } 22307 22308 prog->jited = 1; 22309 prog->bpf_func = func[0]->bpf_func; 22310 prog->jited_len = func[0]->jited_len; 22311 prog->aux->extable = func[0]->aux->extable; 22312 prog->aux->num_exentries = func[0]->aux->num_exentries; 22313 prog->aux->func = func; 22314 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 22315 prog->aux->real_func_cnt = env->subprog_cnt; 22316 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 22317 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 22318 bpf_prog_jit_attempt_done(prog); 22319 return 0; 22320 out_free: 22321 /* We failed JIT'ing, so at this point we need to unregister poke 22322 * descriptors from subprogs, so that kernel is not attempting to 22323 * patch it anymore as we're freeing the subprog JIT memory. 22324 */ 22325 for (i = 0; i < prog->aux->size_poke_tab; i++) { 22326 map_ptr = prog->aux->poke_tab[i].tail_call.map; 22327 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 22328 } 22329 /* At this point we're guaranteed that poke descriptors are not 22330 * live anymore. We can just unlink its descriptor table as it's 22331 * released with the main prog. 22332 */ 22333 for (i = 0; i < env->subprog_cnt; i++) { 22334 if (!func[i]) 22335 continue; 22336 func[i]->aux->poke_tab = NULL; 22337 bpf_jit_free(func[i]); 22338 } 22339 kfree(func); 22340 out_undo_insn: 22341 /* cleanup main prog to be interpreted */ 22342 prog->jit_requested = 0; 22343 prog->blinding_requested = 0; 22344 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 22345 if (!bpf_pseudo_call(insn)) 22346 continue; 22347 insn->off = 0; 22348 insn->imm = env->insn_aux_data[i].call_imm; 22349 } 22350 bpf_prog_jit_attempt_done(prog); 22351 return err; 22352 } 22353 22354 static int fixup_call_args(struct bpf_verifier_env *env) 22355 { 22356 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 22357 struct bpf_prog *prog = env->prog; 22358 struct bpf_insn *insn = prog->insnsi; 22359 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 22360 int i, depth; 22361 #endif 22362 int err = 0; 22363 22364 if (env->prog->jit_requested && 22365 !bpf_prog_is_offloaded(env->prog->aux)) { 22366 err = jit_subprogs(env); 22367 if (err == 0) 22368 return 0; 22369 if (err == -EFAULT) 22370 return err; 22371 } 22372 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 22373 if (has_kfunc_call) { 22374 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 22375 return -EINVAL; 22376 } 22377 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 22378 /* When JIT fails the progs with bpf2bpf calls and tail_calls 22379 * have to be rejected, since interpreter doesn't support them yet. 22380 */ 22381 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 22382 return -EINVAL; 22383 } 22384 for (i = 0; i < prog->len; i++, insn++) { 22385 if (bpf_pseudo_func(insn)) { 22386 /* When JIT fails the progs with callback calls 22387 * have to be rejected, since interpreter doesn't support them yet. 22388 */ 22389 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 22390 return -EINVAL; 22391 } 22392 22393 if (!bpf_pseudo_call(insn)) 22394 continue; 22395 depth = get_callee_stack_depth(env, insn, i); 22396 if (depth < 0) 22397 return depth; 22398 bpf_patch_call_args(insn, depth); 22399 } 22400 err = 0; 22401 #endif 22402 return err; 22403 } 22404 22405 /* replace a generic kfunc with a specialized version if necessary */ 22406 static int specialize_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_desc *desc, int insn_idx) 22407 { 22408 struct bpf_prog *prog = env->prog; 22409 bool seen_direct_write; 22410 void *xdp_kfunc; 22411 bool is_rdonly; 22412 u32 func_id = desc->func_id; 22413 u16 offset = desc->offset; 22414 unsigned long addr = desc->addr; 22415 22416 if (offset) /* return if module BTF is used */ 22417 return 0; 22418 22419 if (bpf_dev_bound_kfunc_id(func_id)) { 22420 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 22421 if (xdp_kfunc) 22422 addr = (unsigned long)xdp_kfunc; 22423 /* fallback to default kfunc when not supported by netdev */ 22424 } else if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 22425 seen_direct_write = env->seen_direct_write; 22426 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 22427 22428 if (is_rdonly) 22429 addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 22430 22431 /* restore env->seen_direct_write to its original value, since 22432 * may_access_direct_pkt_data mutates it 22433 */ 22434 env->seen_direct_write = seen_direct_write; 22435 } else if (func_id == special_kfunc_list[KF_bpf_set_dentry_xattr]) { 22436 if (bpf_lsm_has_d_inode_locked(prog)) 22437 addr = (unsigned long)bpf_set_dentry_xattr_locked; 22438 } else if (func_id == special_kfunc_list[KF_bpf_remove_dentry_xattr]) { 22439 if (bpf_lsm_has_d_inode_locked(prog)) 22440 addr = (unsigned long)bpf_remove_dentry_xattr_locked; 22441 } else if (func_id == special_kfunc_list[KF_bpf_dynptr_from_file]) { 22442 if (!env->insn_aux_data[insn_idx].non_sleepable) 22443 addr = (unsigned long)bpf_dynptr_from_file_sleepable; 22444 } 22445 desc->addr = addr; 22446 return 0; 22447 } 22448 22449 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 22450 u16 struct_meta_reg, 22451 u16 node_offset_reg, 22452 struct bpf_insn *insn, 22453 struct bpf_insn *insn_buf, 22454 int *cnt) 22455 { 22456 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 22457 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 22458 22459 insn_buf[0] = addr[0]; 22460 insn_buf[1] = addr[1]; 22461 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 22462 insn_buf[3] = *insn; 22463 *cnt = 4; 22464 } 22465 22466 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 22467 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 22468 { 22469 struct bpf_kfunc_desc *desc; 22470 int err; 22471 22472 if (!insn->imm) { 22473 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 22474 return -EINVAL; 22475 } 22476 22477 *cnt = 0; 22478 22479 /* insn->imm has the btf func_id. Replace it with an offset relative to 22480 * __bpf_call_base, unless the JIT needs to call functions that are 22481 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 22482 */ 22483 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 22484 if (!desc) { 22485 verifier_bug(env, "kernel function descriptor not found for func_id %u", 22486 insn->imm); 22487 return -EFAULT; 22488 } 22489 22490 err = specialize_kfunc(env, desc, insn_idx); 22491 if (err) 22492 return err; 22493 22494 if (!bpf_jit_supports_far_kfunc_call()) 22495 insn->imm = BPF_CALL_IMM(desc->addr); 22496 if (insn->off) 22497 return 0; 22498 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 22499 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 22500 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 22501 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 22502 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 22503 22504 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 22505 verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d", 22506 insn_idx); 22507 return -EFAULT; 22508 } 22509 22510 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 22511 insn_buf[1] = addr[0]; 22512 insn_buf[2] = addr[1]; 22513 insn_buf[3] = *insn; 22514 *cnt = 4; 22515 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 22516 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 22517 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 22518 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 22519 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 22520 22521 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 22522 verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d", 22523 insn_idx); 22524 return -EFAULT; 22525 } 22526 22527 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 22528 !kptr_struct_meta) { 22529 verifier_bug(env, "kptr_struct_meta expected at insn_idx %d", 22530 insn_idx); 22531 return -EFAULT; 22532 } 22533 22534 insn_buf[0] = addr[0]; 22535 insn_buf[1] = addr[1]; 22536 insn_buf[2] = *insn; 22537 *cnt = 3; 22538 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 22539 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 22540 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 22541 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 22542 int struct_meta_reg = BPF_REG_3; 22543 int node_offset_reg = BPF_REG_4; 22544 22545 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 22546 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 22547 struct_meta_reg = BPF_REG_4; 22548 node_offset_reg = BPF_REG_5; 22549 } 22550 22551 if (!kptr_struct_meta) { 22552 verifier_bug(env, "kptr_struct_meta expected at insn_idx %d", 22553 insn_idx); 22554 return -EFAULT; 22555 } 22556 22557 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 22558 node_offset_reg, insn, insn_buf, cnt); 22559 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 22560 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 22561 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 22562 *cnt = 1; 22563 } 22564 22565 if (env->insn_aux_data[insn_idx].arg_prog) { 22566 u32 regno = env->insn_aux_data[insn_idx].arg_prog; 22567 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(regno, (long)env->prog->aux) }; 22568 int idx = *cnt; 22569 22570 insn_buf[idx++] = ld_addrs[0]; 22571 insn_buf[idx++] = ld_addrs[1]; 22572 insn_buf[idx++] = *insn; 22573 *cnt = idx; 22574 } 22575 return 0; 22576 } 22577 22578 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 22579 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 22580 { 22581 struct bpf_subprog_info *info = env->subprog_info; 22582 int cnt = env->subprog_cnt; 22583 struct bpf_prog *prog; 22584 22585 /* We only reserve one slot for hidden subprogs in subprog_info. */ 22586 if (env->hidden_subprog_cnt) { 22587 verifier_bug(env, "only one hidden subprog supported"); 22588 return -EFAULT; 22589 } 22590 /* We're not patching any existing instruction, just appending the new 22591 * ones for the hidden subprog. Hence all of the adjustment operations 22592 * in bpf_patch_insn_data are no-ops. 22593 */ 22594 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 22595 if (!prog) 22596 return -ENOMEM; 22597 env->prog = prog; 22598 info[cnt + 1].start = info[cnt].start; 22599 info[cnt].start = prog->len - len + 1; 22600 env->subprog_cnt++; 22601 env->hidden_subprog_cnt++; 22602 return 0; 22603 } 22604 22605 /* Do various post-verification rewrites in a single program pass. 22606 * These rewrites simplify JIT and interpreter implementations. 22607 */ 22608 static int do_misc_fixups(struct bpf_verifier_env *env) 22609 { 22610 struct bpf_prog *prog = env->prog; 22611 enum bpf_attach_type eatype = prog->expected_attach_type; 22612 enum bpf_prog_type prog_type = resolve_prog_type(prog); 22613 struct bpf_insn *insn = prog->insnsi; 22614 const struct bpf_func_proto *fn; 22615 const int insn_cnt = prog->len; 22616 const struct bpf_map_ops *ops; 22617 struct bpf_insn_aux_data *aux; 22618 struct bpf_insn *insn_buf = env->insn_buf; 22619 struct bpf_prog *new_prog; 22620 struct bpf_map *map_ptr; 22621 int i, ret, cnt, delta = 0, cur_subprog = 0; 22622 struct bpf_subprog_info *subprogs = env->subprog_info; 22623 u16 stack_depth = subprogs[cur_subprog].stack_depth; 22624 u16 stack_depth_extra = 0; 22625 22626 if (env->seen_exception && !env->exception_callback_subprog) { 22627 struct bpf_insn *patch = insn_buf; 22628 22629 *patch++ = env->prog->insnsi[insn_cnt - 1]; 22630 *patch++ = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 22631 *patch++ = BPF_EXIT_INSN(); 22632 ret = add_hidden_subprog(env, insn_buf, patch - insn_buf); 22633 if (ret < 0) 22634 return ret; 22635 prog = env->prog; 22636 insn = prog->insnsi; 22637 22638 env->exception_callback_subprog = env->subprog_cnt - 1; 22639 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 22640 mark_subprog_exc_cb(env, env->exception_callback_subprog); 22641 } 22642 22643 for (i = 0; i < insn_cnt;) { 22644 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { 22645 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || 22646 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { 22647 /* convert to 32-bit mov that clears upper 32-bit */ 22648 insn->code = BPF_ALU | BPF_MOV | BPF_X; 22649 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */ 22650 insn->off = 0; 22651 insn->imm = 0; 22652 } /* cast from as(0) to as(1) should be handled by JIT */ 22653 goto next_insn; 22654 } 22655 22656 if (env->insn_aux_data[i + delta].needs_zext) 22657 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ 22658 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); 22659 22660 /* Make sdiv/smod divide-by-minus-one exceptions impossible. */ 22661 if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) || 22662 insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) || 22663 insn->code == (BPF_ALU | BPF_MOD | BPF_K) || 22664 insn->code == (BPF_ALU | BPF_DIV | BPF_K)) && 22665 insn->off == 1 && insn->imm == -1) { 22666 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 22667 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 22668 struct bpf_insn *patch = insn_buf; 22669 22670 if (isdiv) 22671 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22672 BPF_NEG | BPF_K, insn->dst_reg, 22673 0, 0, 0); 22674 else 22675 *patch++ = BPF_MOV32_IMM(insn->dst_reg, 0); 22676 22677 cnt = patch - insn_buf; 22678 22679 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22680 if (!new_prog) 22681 return -ENOMEM; 22682 22683 delta += cnt - 1; 22684 env->prog = prog = new_prog; 22685 insn = new_prog->insnsi + i + delta; 22686 goto next_insn; 22687 } 22688 22689 /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */ 22690 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 22691 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 22692 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 22693 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 22694 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 22695 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 22696 bool is_sdiv = isdiv && insn->off == 1; 22697 bool is_smod = !isdiv && insn->off == 1; 22698 struct bpf_insn *patch = insn_buf; 22699 22700 if (is_sdiv) { 22701 /* [R,W]x sdiv 0 -> 0 22702 * LLONG_MIN sdiv -1 -> LLONG_MIN 22703 * INT_MIN sdiv -1 -> INT_MIN 22704 */ 22705 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 22706 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22707 BPF_ADD | BPF_K, BPF_REG_AX, 22708 0, 0, 1); 22709 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22710 BPF_JGT | BPF_K, BPF_REG_AX, 22711 0, 4, 1); 22712 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22713 BPF_JEQ | BPF_K, BPF_REG_AX, 22714 0, 1, 0); 22715 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22716 BPF_MOV | BPF_K, insn->dst_reg, 22717 0, 0, 0); 22718 /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */ 22719 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22720 BPF_NEG | BPF_K, insn->dst_reg, 22721 0, 0, 0); 22722 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22723 *patch++ = *insn; 22724 cnt = patch - insn_buf; 22725 } else if (is_smod) { 22726 /* [R,W]x mod 0 -> [R,W]x */ 22727 /* [R,W]x mod -1 -> 0 */ 22728 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 22729 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22730 BPF_ADD | BPF_K, BPF_REG_AX, 22731 0, 0, 1); 22732 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22733 BPF_JGT | BPF_K, BPF_REG_AX, 22734 0, 3, 1); 22735 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22736 BPF_JEQ | BPF_K, BPF_REG_AX, 22737 0, 3 + (is64 ? 0 : 1), 1); 22738 *patch++ = BPF_MOV32_IMM(insn->dst_reg, 0); 22739 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22740 *patch++ = *insn; 22741 22742 if (!is64) { 22743 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22744 *patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg); 22745 } 22746 cnt = patch - insn_buf; 22747 } else if (isdiv) { 22748 /* [R,W]x div 0 -> 0 */ 22749 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22750 BPF_JNE | BPF_K, insn->src_reg, 22751 0, 2, 0); 22752 *patch++ = BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg); 22753 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22754 *patch++ = *insn; 22755 cnt = patch - insn_buf; 22756 } else { 22757 /* [R,W]x mod 0 -> [R,W]x */ 22758 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22759 BPF_JEQ | BPF_K, insn->src_reg, 22760 0, 1 + (is64 ? 0 : 1), 0); 22761 *patch++ = *insn; 22762 22763 if (!is64) { 22764 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22765 *patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg); 22766 } 22767 cnt = patch - insn_buf; 22768 } 22769 22770 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22771 if (!new_prog) 22772 return -ENOMEM; 22773 22774 delta += cnt - 1; 22775 env->prog = prog = new_prog; 22776 insn = new_prog->insnsi + i + delta; 22777 goto next_insn; 22778 } 22779 22780 /* Make it impossible to de-reference a userspace address */ 22781 if (BPF_CLASS(insn->code) == BPF_LDX && 22782 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 22783 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { 22784 struct bpf_insn *patch = insn_buf; 22785 u64 uaddress_limit = bpf_arch_uaddress_limit(); 22786 22787 if (!uaddress_limit) 22788 goto next_insn; 22789 22790 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 22791 if (insn->off) 22792 *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); 22793 *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); 22794 *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); 22795 *patch++ = *insn; 22796 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22797 *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); 22798 22799 cnt = patch - insn_buf; 22800 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22801 if (!new_prog) 22802 return -ENOMEM; 22803 22804 delta += cnt - 1; 22805 env->prog = prog = new_prog; 22806 insn = new_prog->insnsi + i + delta; 22807 goto next_insn; 22808 } 22809 22810 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 22811 if (BPF_CLASS(insn->code) == BPF_LD && 22812 (BPF_MODE(insn->code) == BPF_ABS || 22813 BPF_MODE(insn->code) == BPF_IND)) { 22814 cnt = env->ops->gen_ld_abs(insn, insn_buf); 22815 if (cnt == 0 || cnt >= INSN_BUF_SIZE) { 22816 verifier_bug(env, "%d insns generated for ld_abs", cnt); 22817 return -EFAULT; 22818 } 22819 22820 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22821 if (!new_prog) 22822 return -ENOMEM; 22823 22824 delta += cnt - 1; 22825 env->prog = prog = new_prog; 22826 insn = new_prog->insnsi + i + delta; 22827 goto next_insn; 22828 } 22829 22830 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 22831 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 22832 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 22833 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 22834 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 22835 struct bpf_insn *patch = insn_buf; 22836 bool issrc, isneg, isimm; 22837 u32 off_reg; 22838 22839 aux = &env->insn_aux_data[i + delta]; 22840 if (!aux->alu_state || 22841 aux->alu_state == BPF_ALU_NON_POINTER) 22842 goto next_insn; 22843 22844 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 22845 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 22846 BPF_ALU_SANITIZE_SRC; 22847 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 22848 22849 off_reg = issrc ? insn->src_reg : insn->dst_reg; 22850 if (isimm) { 22851 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 22852 } else { 22853 if (isneg) 22854 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 22855 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 22856 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 22857 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 22858 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 22859 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 22860 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 22861 } 22862 if (!issrc) 22863 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 22864 insn->src_reg = BPF_REG_AX; 22865 if (isneg) 22866 insn->code = insn->code == code_add ? 22867 code_sub : code_add; 22868 *patch++ = *insn; 22869 if (issrc && isneg && !isimm) 22870 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 22871 cnt = patch - insn_buf; 22872 22873 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22874 if (!new_prog) 22875 return -ENOMEM; 22876 22877 delta += cnt - 1; 22878 env->prog = prog = new_prog; 22879 insn = new_prog->insnsi + i + delta; 22880 goto next_insn; 22881 } 22882 22883 if (is_may_goto_insn(insn) && bpf_jit_supports_timed_may_goto()) { 22884 int stack_off_cnt = -stack_depth - 16; 22885 22886 /* 22887 * Two 8 byte slots, depth-16 stores the count, and 22888 * depth-8 stores the start timestamp of the loop. 22889 * 22890 * The starting value of count is BPF_MAX_TIMED_LOOPS 22891 * (0xffff). Every iteration loads it and subs it by 1, 22892 * until the value becomes 0 in AX (thus, 1 in stack), 22893 * after which we call arch_bpf_timed_may_goto, which 22894 * either sets AX to 0xffff to keep looping, or to 0 22895 * upon timeout. AX is then stored into the stack. In 22896 * the next iteration, we either see 0 and break out, or 22897 * continue iterating until the next time value is 0 22898 * after subtraction, rinse and repeat. 22899 */ 22900 stack_depth_extra = 16; 22901 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off_cnt); 22902 if (insn->off >= 0) 22903 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 5); 22904 else 22905 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 22906 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 22907 insn_buf[3] = BPF_JMP_IMM(BPF_JNE, BPF_REG_AX, 0, 2); 22908 /* 22909 * AX is used as an argument to pass in stack_off_cnt 22910 * (to add to r10/fp), and also as the return value of 22911 * the call to arch_bpf_timed_may_goto. 22912 */ 22913 insn_buf[4] = BPF_MOV64_IMM(BPF_REG_AX, stack_off_cnt); 22914 insn_buf[5] = BPF_EMIT_CALL(arch_bpf_timed_may_goto); 22915 insn_buf[6] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off_cnt); 22916 cnt = 7; 22917 22918 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22919 if (!new_prog) 22920 return -ENOMEM; 22921 22922 delta += cnt - 1; 22923 env->prog = prog = new_prog; 22924 insn = new_prog->insnsi + i + delta; 22925 goto next_insn; 22926 } else if (is_may_goto_insn(insn)) { 22927 int stack_off = -stack_depth - 8; 22928 22929 stack_depth_extra = 8; 22930 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); 22931 if (insn->off >= 0) 22932 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); 22933 else 22934 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 22935 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 22936 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); 22937 cnt = 4; 22938 22939 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22940 if (!new_prog) 22941 return -ENOMEM; 22942 22943 delta += cnt - 1; 22944 env->prog = prog = new_prog; 22945 insn = new_prog->insnsi + i + delta; 22946 goto next_insn; 22947 } 22948 22949 if (insn->code != (BPF_JMP | BPF_CALL)) 22950 goto next_insn; 22951 if (insn->src_reg == BPF_PSEUDO_CALL) 22952 goto next_insn; 22953 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 22954 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 22955 if (ret) 22956 return ret; 22957 if (cnt == 0) 22958 goto next_insn; 22959 22960 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22961 if (!new_prog) 22962 return -ENOMEM; 22963 22964 delta += cnt - 1; 22965 env->prog = prog = new_prog; 22966 insn = new_prog->insnsi + i + delta; 22967 goto next_insn; 22968 } 22969 22970 /* Skip inlining the helper call if the JIT does it. */ 22971 if (bpf_jit_inlines_helper_call(insn->imm)) 22972 goto next_insn; 22973 22974 if (insn->imm == BPF_FUNC_get_route_realm) 22975 prog->dst_needed = 1; 22976 if (insn->imm == BPF_FUNC_get_prandom_u32) 22977 bpf_user_rnd_init_once(); 22978 if (insn->imm == BPF_FUNC_override_return) 22979 prog->kprobe_override = 1; 22980 if (insn->imm == BPF_FUNC_tail_call) { 22981 /* If we tail call into other programs, we 22982 * cannot make any assumptions since they can 22983 * be replaced dynamically during runtime in 22984 * the program array. 22985 */ 22986 prog->cb_access = 1; 22987 if (!allow_tail_call_in_subprogs(env)) 22988 prog->aux->stack_depth = MAX_BPF_STACK; 22989 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 22990 22991 /* mark bpf_tail_call as different opcode to avoid 22992 * conditional branch in the interpreter for every normal 22993 * call and to prevent accidental JITing by JIT compiler 22994 * that doesn't support bpf_tail_call yet 22995 */ 22996 insn->imm = 0; 22997 insn->code = BPF_JMP | BPF_TAIL_CALL; 22998 22999 aux = &env->insn_aux_data[i + delta]; 23000 if (env->bpf_capable && !prog->blinding_requested && 23001 prog->jit_requested && 23002 !bpf_map_key_poisoned(aux) && 23003 !bpf_map_ptr_poisoned(aux) && 23004 !bpf_map_ptr_unpriv(aux)) { 23005 struct bpf_jit_poke_descriptor desc = { 23006 .reason = BPF_POKE_REASON_TAIL_CALL, 23007 .tail_call.map = aux->map_ptr_state.map_ptr, 23008 .tail_call.key = bpf_map_key_immediate(aux), 23009 .insn_idx = i + delta, 23010 }; 23011 23012 ret = bpf_jit_add_poke_descriptor(prog, &desc); 23013 if (ret < 0) { 23014 verbose(env, "adding tail call poke descriptor failed\n"); 23015 return ret; 23016 } 23017 23018 insn->imm = ret + 1; 23019 goto next_insn; 23020 } 23021 23022 if (!bpf_map_ptr_unpriv(aux)) 23023 goto next_insn; 23024 23025 /* instead of changing every JIT dealing with tail_call 23026 * emit two extra insns: 23027 * if (index >= max_entries) goto out; 23028 * index &= array->index_mask; 23029 * to avoid out-of-bounds cpu speculation 23030 */ 23031 if (bpf_map_ptr_poisoned(aux)) { 23032 verbose(env, "tail_call abusing map_ptr\n"); 23033 return -EINVAL; 23034 } 23035 23036 map_ptr = aux->map_ptr_state.map_ptr; 23037 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 23038 map_ptr->max_entries, 2); 23039 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 23040 container_of(map_ptr, 23041 struct bpf_array, 23042 map)->index_mask); 23043 insn_buf[2] = *insn; 23044 cnt = 3; 23045 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23046 if (!new_prog) 23047 return -ENOMEM; 23048 23049 delta += cnt - 1; 23050 env->prog = prog = new_prog; 23051 insn = new_prog->insnsi + i + delta; 23052 goto next_insn; 23053 } 23054 23055 if (insn->imm == BPF_FUNC_timer_set_callback) { 23056 /* The verifier will process callback_fn as many times as necessary 23057 * with different maps and the register states prepared by 23058 * set_timer_callback_state will be accurate. 23059 * 23060 * The following use case is valid: 23061 * map1 is shared by prog1, prog2, prog3. 23062 * prog1 calls bpf_timer_init for some map1 elements 23063 * prog2 calls bpf_timer_set_callback for some map1 elements. 23064 * Those that were not bpf_timer_init-ed will return -EINVAL. 23065 * prog3 calls bpf_timer_start for some map1 elements. 23066 * Those that were not both bpf_timer_init-ed and 23067 * bpf_timer_set_callback-ed will return -EINVAL. 23068 */ 23069 struct bpf_insn ld_addrs[2] = { 23070 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 23071 }; 23072 23073 insn_buf[0] = ld_addrs[0]; 23074 insn_buf[1] = ld_addrs[1]; 23075 insn_buf[2] = *insn; 23076 cnt = 3; 23077 23078 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23079 if (!new_prog) 23080 return -ENOMEM; 23081 23082 delta += cnt - 1; 23083 env->prog = prog = new_prog; 23084 insn = new_prog->insnsi + i + delta; 23085 goto patch_call_imm; 23086 } 23087 23088 if (is_storage_get_function(insn->imm)) { 23089 if (env->insn_aux_data[i + delta].non_sleepable) 23090 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 23091 else 23092 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 23093 insn_buf[1] = *insn; 23094 cnt = 2; 23095 23096 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23097 if (!new_prog) 23098 return -ENOMEM; 23099 23100 delta += cnt - 1; 23101 env->prog = prog = new_prog; 23102 insn = new_prog->insnsi + i + delta; 23103 goto patch_call_imm; 23104 } 23105 23106 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 23107 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 23108 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 23109 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 23110 */ 23111 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 23112 insn_buf[1] = *insn; 23113 cnt = 2; 23114 23115 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23116 if (!new_prog) 23117 return -ENOMEM; 23118 23119 delta += cnt - 1; 23120 env->prog = prog = new_prog; 23121 insn = new_prog->insnsi + i + delta; 23122 goto patch_call_imm; 23123 } 23124 23125 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 23126 * and other inlining handlers are currently limited to 64 bit 23127 * only. 23128 */ 23129 if (prog->jit_requested && BITS_PER_LONG == 64 && 23130 (insn->imm == BPF_FUNC_map_lookup_elem || 23131 insn->imm == BPF_FUNC_map_update_elem || 23132 insn->imm == BPF_FUNC_map_delete_elem || 23133 insn->imm == BPF_FUNC_map_push_elem || 23134 insn->imm == BPF_FUNC_map_pop_elem || 23135 insn->imm == BPF_FUNC_map_peek_elem || 23136 insn->imm == BPF_FUNC_redirect_map || 23137 insn->imm == BPF_FUNC_for_each_map_elem || 23138 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 23139 aux = &env->insn_aux_data[i + delta]; 23140 if (bpf_map_ptr_poisoned(aux)) 23141 goto patch_call_imm; 23142 23143 map_ptr = aux->map_ptr_state.map_ptr; 23144 ops = map_ptr->ops; 23145 if (insn->imm == BPF_FUNC_map_lookup_elem && 23146 ops->map_gen_lookup) { 23147 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 23148 if (cnt == -EOPNOTSUPP) 23149 goto patch_map_ops_generic; 23150 if (cnt <= 0 || cnt >= INSN_BUF_SIZE) { 23151 verifier_bug(env, "%d insns generated for map lookup", cnt); 23152 return -EFAULT; 23153 } 23154 23155 new_prog = bpf_patch_insn_data(env, i + delta, 23156 insn_buf, cnt); 23157 if (!new_prog) 23158 return -ENOMEM; 23159 23160 delta += cnt - 1; 23161 env->prog = prog = new_prog; 23162 insn = new_prog->insnsi + i + delta; 23163 goto next_insn; 23164 } 23165 23166 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 23167 (void *(*)(struct bpf_map *map, void *key))NULL)); 23168 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 23169 (long (*)(struct bpf_map *map, void *key))NULL)); 23170 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 23171 (long (*)(struct bpf_map *map, void *key, void *value, 23172 u64 flags))NULL)); 23173 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 23174 (long (*)(struct bpf_map *map, void *value, 23175 u64 flags))NULL)); 23176 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 23177 (long (*)(struct bpf_map *map, void *value))NULL)); 23178 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 23179 (long (*)(struct bpf_map *map, void *value))NULL)); 23180 BUILD_BUG_ON(!__same_type(ops->map_redirect, 23181 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 23182 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 23183 (long (*)(struct bpf_map *map, 23184 bpf_callback_t callback_fn, 23185 void *callback_ctx, 23186 u64 flags))NULL)); 23187 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 23188 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 23189 23190 patch_map_ops_generic: 23191 switch (insn->imm) { 23192 case BPF_FUNC_map_lookup_elem: 23193 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 23194 goto next_insn; 23195 case BPF_FUNC_map_update_elem: 23196 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 23197 goto next_insn; 23198 case BPF_FUNC_map_delete_elem: 23199 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 23200 goto next_insn; 23201 case BPF_FUNC_map_push_elem: 23202 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 23203 goto next_insn; 23204 case BPF_FUNC_map_pop_elem: 23205 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 23206 goto next_insn; 23207 case BPF_FUNC_map_peek_elem: 23208 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 23209 goto next_insn; 23210 case BPF_FUNC_redirect_map: 23211 insn->imm = BPF_CALL_IMM(ops->map_redirect); 23212 goto next_insn; 23213 case BPF_FUNC_for_each_map_elem: 23214 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 23215 goto next_insn; 23216 case BPF_FUNC_map_lookup_percpu_elem: 23217 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 23218 goto next_insn; 23219 } 23220 23221 goto patch_call_imm; 23222 } 23223 23224 /* Implement bpf_jiffies64 inline. */ 23225 if (prog->jit_requested && BITS_PER_LONG == 64 && 23226 insn->imm == BPF_FUNC_jiffies64) { 23227 struct bpf_insn ld_jiffies_addr[2] = { 23228 BPF_LD_IMM64(BPF_REG_0, 23229 (unsigned long)&jiffies), 23230 }; 23231 23232 insn_buf[0] = ld_jiffies_addr[0]; 23233 insn_buf[1] = ld_jiffies_addr[1]; 23234 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 23235 BPF_REG_0, 0); 23236 cnt = 3; 23237 23238 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 23239 cnt); 23240 if (!new_prog) 23241 return -ENOMEM; 23242 23243 delta += cnt - 1; 23244 env->prog = prog = new_prog; 23245 insn = new_prog->insnsi + i + delta; 23246 goto next_insn; 23247 } 23248 23249 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML) 23250 /* Implement bpf_get_smp_processor_id() inline. */ 23251 if (insn->imm == BPF_FUNC_get_smp_processor_id && 23252 verifier_inlines_helper_call(env, insn->imm)) { 23253 /* BPF_FUNC_get_smp_processor_id inlining is an 23254 * optimization, so if cpu_number is ever 23255 * changed in some incompatible and hard to support 23256 * way, it's fine to back out this inlining logic 23257 */ 23258 #ifdef CONFIG_SMP 23259 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, (u32)(unsigned long)&cpu_number); 23260 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 23261 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0); 23262 cnt = 3; 23263 #else 23264 insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0); 23265 cnt = 1; 23266 #endif 23267 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23268 if (!new_prog) 23269 return -ENOMEM; 23270 23271 delta += cnt - 1; 23272 env->prog = prog = new_prog; 23273 insn = new_prog->insnsi + i + delta; 23274 goto next_insn; 23275 } 23276 #endif 23277 /* Implement bpf_get_func_arg inline. */ 23278 if (prog_type == BPF_PROG_TYPE_TRACING && 23279 insn->imm == BPF_FUNC_get_func_arg) { 23280 /* Load nr_args from ctx - 8 */ 23281 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 23282 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 23283 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 23284 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 23285 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 23286 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 23287 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 23288 insn_buf[7] = BPF_JMP_A(1); 23289 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 23290 cnt = 9; 23291 23292 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23293 if (!new_prog) 23294 return -ENOMEM; 23295 23296 delta += cnt - 1; 23297 env->prog = prog = new_prog; 23298 insn = new_prog->insnsi + i + delta; 23299 goto next_insn; 23300 } 23301 23302 /* Implement bpf_get_func_ret inline. */ 23303 if (prog_type == BPF_PROG_TYPE_TRACING && 23304 insn->imm == BPF_FUNC_get_func_ret) { 23305 if (eatype == BPF_TRACE_FEXIT || 23306 eatype == BPF_MODIFY_RETURN) { 23307 /* Load nr_args from ctx - 8 */ 23308 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 23309 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 23310 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 23311 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 23312 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 23313 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 23314 cnt = 6; 23315 } else { 23316 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 23317 cnt = 1; 23318 } 23319 23320 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23321 if (!new_prog) 23322 return -ENOMEM; 23323 23324 delta += cnt - 1; 23325 env->prog = prog = new_prog; 23326 insn = new_prog->insnsi + i + delta; 23327 goto next_insn; 23328 } 23329 23330 /* Implement get_func_arg_cnt inline. */ 23331 if (prog_type == BPF_PROG_TYPE_TRACING && 23332 insn->imm == BPF_FUNC_get_func_arg_cnt) { 23333 /* Load nr_args from ctx - 8 */ 23334 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 23335 23336 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 23337 if (!new_prog) 23338 return -ENOMEM; 23339 23340 env->prog = prog = new_prog; 23341 insn = new_prog->insnsi + i + delta; 23342 goto next_insn; 23343 } 23344 23345 /* Implement bpf_get_func_ip inline. */ 23346 if (prog_type == BPF_PROG_TYPE_TRACING && 23347 insn->imm == BPF_FUNC_get_func_ip) { 23348 /* Load IP address from ctx - 16 */ 23349 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 23350 23351 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 23352 if (!new_prog) 23353 return -ENOMEM; 23354 23355 env->prog = prog = new_prog; 23356 insn = new_prog->insnsi + i + delta; 23357 goto next_insn; 23358 } 23359 23360 /* Implement bpf_get_branch_snapshot inline. */ 23361 if (IS_ENABLED(CONFIG_PERF_EVENTS) && 23362 prog->jit_requested && BITS_PER_LONG == 64 && 23363 insn->imm == BPF_FUNC_get_branch_snapshot) { 23364 /* We are dealing with the following func protos: 23365 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags); 23366 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt); 23367 */ 23368 const u32 br_entry_size = sizeof(struct perf_branch_entry); 23369 23370 /* struct perf_branch_entry is part of UAPI and is 23371 * used as an array element, so extremely unlikely to 23372 * ever grow or shrink 23373 */ 23374 BUILD_BUG_ON(br_entry_size != 24); 23375 23376 /* if (unlikely(flags)) return -EINVAL */ 23377 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7); 23378 23379 /* Transform size (bytes) into number of entries (cnt = size / 24). 23380 * But to avoid expensive division instruction, we implement 23381 * divide-by-3 through multiplication, followed by further 23382 * division by 8 through 3-bit right shift. 23383 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr., 23384 * p. 227, chapter "Unsigned Division by 3" for details and proofs. 23385 * 23386 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab. 23387 */ 23388 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab); 23389 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0); 23390 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36); 23391 23392 /* call perf_snapshot_branch_stack implementation */ 23393 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack)); 23394 /* if (entry_cnt == 0) return -ENOENT */ 23395 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4); 23396 /* return entry_cnt * sizeof(struct perf_branch_entry) */ 23397 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size); 23398 insn_buf[7] = BPF_JMP_A(3); 23399 /* return -EINVAL; */ 23400 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 23401 insn_buf[9] = BPF_JMP_A(1); 23402 /* return -ENOENT; */ 23403 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT); 23404 cnt = 11; 23405 23406 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23407 if (!new_prog) 23408 return -ENOMEM; 23409 23410 delta += cnt - 1; 23411 env->prog = prog = new_prog; 23412 insn = new_prog->insnsi + i + delta; 23413 goto next_insn; 23414 } 23415 23416 /* Implement bpf_kptr_xchg inline */ 23417 if (prog->jit_requested && BITS_PER_LONG == 64 && 23418 insn->imm == BPF_FUNC_kptr_xchg && 23419 bpf_jit_supports_ptr_xchg()) { 23420 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); 23421 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); 23422 cnt = 2; 23423 23424 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 23425 if (!new_prog) 23426 return -ENOMEM; 23427 23428 delta += cnt - 1; 23429 env->prog = prog = new_prog; 23430 insn = new_prog->insnsi + i + delta; 23431 goto next_insn; 23432 } 23433 patch_call_imm: 23434 fn = env->ops->get_func_proto(insn->imm, env->prog); 23435 /* all functions that have prototype and verifier allowed 23436 * programs to call them, must be real in-kernel functions 23437 */ 23438 if (!fn->func) { 23439 verifier_bug(env, 23440 "not inlined functions %s#%d is missing func", 23441 func_id_name(insn->imm), insn->imm); 23442 return -EFAULT; 23443 } 23444 insn->imm = fn->func - __bpf_call_base; 23445 next_insn: 23446 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 23447 subprogs[cur_subprog].stack_depth += stack_depth_extra; 23448 subprogs[cur_subprog].stack_extra = stack_depth_extra; 23449 23450 stack_depth = subprogs[cur_subprog].stack_depth; 23451 if (stack_depth > MAX_BPF_STACK && !prog->jit_requested) { 23452 verbose(env, "stack size %d(extra %d) is too large\n", 23453 stack_depth, stack_depth_extra); 23454 return -EINVAL; 23455 } 23456 cur_subprog++; 23457 stack_depth = subprogs[cur_subprog].stack_depth; 23458 stack_depth_extra = 0; 23459 } 23460 i++; 23461 insn++; 23462 } 23463 23464 env->prog->aux->stack_depth = subprogs[0].stack_depth; 23465 for (i = 0; i < env->subprog_cnt; i++) { 23466 int delta = bpf_jit_supports_timed_may_goto() ? 2 : 1; 23467 int subprog_start = subprogs[i].start; 23468 int stack_slots = subprogs[i].stack_extra / 8; 23469 int slots = delta, cnt = 0; 23470 23471 if (!stack_slots) 23472 continue; 23473 /* We need two slots in case timed may_goto is supported. */ 23474 if (stack_slots > slots) { 23475 verifier_bug(env, "stack_slots supports may_goto only"); 23476 return -EFAULT; 23477 } 23478 23479 stack_depth = subprogs[i].stack_depth; 23480 if (bpf_jit_supports_timed_may_goto()) { 23481 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth, 23482 BPF_MAX_TIMED_LOOPS); 23483 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth + 8, 0); 23484 } else { 23485 /* Add ST insn to subprog prologue to init extra stack */ 23486 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth, 23487 BPF_MAX_LOOPS); 23488 } 23489 /* Copy first actual insn to preserve it */ 23490 insn_buf[cnt++] = env->prog->insnsi[subprog_start]; 23491 23492 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, cnt); 23493 if (!new_prog) 23494 return -ENOMEM; 23495 env->prog = prog = new_prog; 23496 /* 23497 * If may_goto is a first insn of a prog there could be a jmp 23498 * insn that points to it, hence adjust all such jmps to point 23499 * to insn after BPF_ST that inits may_goto count. 23500 * Adjustment will succeed because bpf_patch_insn_data() didn't fail. 23501 */ 23502 WARN_ON(adjust_jmp_off(env->prog, subprog_start, delta)); 23503 } 23504 23505 /* Since poke tab is now finalized, publish aux to tracker. */ 23506 for (i = 0; i < prog->aux->size_poke_tab; i++) { 23507 map_ptr = prog->aux->poke_tab[i].tail_call.map; 23508 if (!map_ptr->ops->map_poke_track || 23509 !map_ptr->ops->map_poke_untrack || 23510 !map_ptr->ops->map_poke_run) { 23511 verifier_bug(env, "poke tab is misconfigured"); 23512 return -EFAULT; 23513 } 23514 23515 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 23516 if (ret < 0) { 23517 verbose(env, "tracking tail call prog failed\n"); 23518 return ret; 23519 } 23520 } 23521 23522 ret = sort_kfunc_descs_by_imm_off(env); 23523 if (ret) 23524 return ret; 23525 23526 return 0; 23527 } 23528 23529 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 23530 int position, 23531 s32 stack_base, 23532 u32 callback_subprogno, 23533 u32 *total_cnt) 23534 { 23535 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 23536 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 23537 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 23538 int reg_loop_max = BPF_REG_6; 23539 int reg_loop_cnt = BPF_REG_7; 23540 int reg_loop_ctx = BPF_REG_8; 23541 23542 struct bpf_insn *insn_buf = env->insn_buf; 23543 struct bpf_prog *new_prog; 23544 u32 callback_start; 23545 u32 call_insn_offset; 23546 s32 callback_offset; 23547 u32 cnt = 0; 23548 23549 /* This represents an inlined version of bpf_iter.c:bpf_loop, 23550 * be careful to modify this code in sync. 23551 */ 23552 23553 /* Return error and jump to the end of the patch if 23554 * expected number of iterations is too big. 23555 */ 23556 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2); 23557 insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG); 23558 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16); 23559 /* spill R6, R7, R8 to use these as loop vars */ 23560 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset); 23561 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset); 23562 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset); 23563 /* initialize loop vars */ 23564 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1); 23565 insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0); 23566 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3); 23567 /* loop header, 23568 * if reg_loop_cnt >= reg_loop_max skip the loop body 23569 */ 23570 insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5); 23571 /* callback call, 23572 * correct callback offset would be set after patching 23573 */ 23574 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt); 23575 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx); 23576 insn_buf[cnt++] = BPF_CALL_REL(0); 23577 /* increment loop counter */ 23578 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1); 23579 /* jump to loop header if callback returned 0 */ 23580 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6); 23581 /* return value of bpf_loop, 23582 * set R0 to the number of iterations 23583 */ 23584 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt); 23585 /* restore original values of R6, R7, R8 */ 23586 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset); 23587 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset); 23588 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset); 23589 23590 *total_cnt = cnt; 23591 new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt); 23592 if (!new_prog) 23593 return new_prog; 23594 23595 /* callback start is known only after patching */ 23596 callback_start = env->subprog_info[callback_subprogno].start; 23597 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 23598 call_insn_offset = position + 12; 23599 callback_offset = callback_start - call_insn_offset - 1; 23600 new_prog->insnsi[call_insn_offset].imm = callback_offset; 23601 23602 return new_prog; 23603 } 23604 23605 static bool is_bpf_loop_call(struct bpf_insn *insn) 23606 { 23607 return insn->code == (BPF_JMP | BPF_CALL) && 23608 insn->src_reg == 0 && 23609 insn->imm == BPF_FUNC_loop; 23610 } 23611 23612 /* For all sub-programs in the program (including main) check 23613 * insn_aux_data to see if there are bpf_loop calls that require 23614 * inlining. If such calls are found the calls are replaced with a 23615 * sequence of instructions produced by `inline_bpf_loop` function and 23616 * subprog stack_depth is increased by the size of 3 registers. 23617 * This stack space is used to spill values of the R6, R7, R8. These 23618 * registers are used to store the loop bound, counter and context 23619 * variables. 23620 */ 23621 static int optimize_bpf_loop(struct bpf_verifier_env *env) 23622 { 23623 struct bpf_subprog_info *subprogs = env->subprog_info; 23624 int i, cur_subprog = 0, cnt, delta = 0; 23625 struct bpf_insn *insn = env->prog->insnsi; 23626 int insn_cnt = env->prog->len; 23627 u16 stack_depth = subprogs[cur_subprog].stack_depth; 23628 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 23629 u16 stack_depth_extra = 0; 23630 23631 for (i = 0; i < insn_cnt; i++, insn++) { 23632 struct bpf_loop_inline_state *inline_state = 23633 &env->insn_aux_data[i + delta].loop_inline_state; 23634 23635 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 23636 struct bpf_prog *new_prog; 23637 23638 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 23639 new_prog = inline_bpf_loop(env, 23640 i + delta, 23641 -(stack_depth + stack_depth_extra), 23642 inline_state->callback_subprogno, 23643 &cnt); 23644 if (!new_prog) 23645 return -ENOMEM; 23646 23647 delta += cnt - 1; 23648 env->prog = new_prog; 23649 insn = new_prog->insnsi + i + delta; 23650 } 23651 23652 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 23653 subprogs[cur_subprog].stack_depth += stack_depth_extra; 23654 cur_subprog++; 23655 stack_depth = subprogs[cur_subprog].stack_depth; 23656 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 23657 stack_depth_extra = 0; 23658 } 23659 } 23660 23661 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 23662 23663 return 0; 23664 } 23665 23666 /* Remove unnecessary spill/fill pairs, members of fastcall pattern, 23667 * adjust subprograms stack depth when possible. 23668 */ 23669 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env) 23670 { 23671 struct bpf_subprog_info *subprog = env->subprog_info; 23672 struct bpf_insn_aux_data *aux = env->insn_aux_data; 23673 struct bpf_insn *insn = env->prog->insnsi; 23674 int insn_cnt = env->prog->len; 23675 u32 spills_num; 23676 bool modified = false; 23677 int i, j; 23678 23679 for (i = 0; i < insn_cnt; i++, insn++) { 23680 if (aux[i].fastcall_spills_num > 0) { 23681 spills_num = aux[i].fastcall_spills_num; 23682 /* NOPs would be removed by opt_remove_nops() */ 23683 for (j = 1; j <= spills_num; ++j) { 23684 *(insn - j) = NOP; 23685 *(insn + j) = NOP; 23686 } 23687 modified = true; 23688 } 23689 if ((subprog + 1)->start == i + 1) { 23690 if (modified && !subprog->keep_fastcall_stack) 23691 subprog->stack_depth = -subprog->fastcall_stack_off; 23692 subprog++; 23693 modified = false; 23694 } 23695 } 23696 23697 return 0; 23698 } 23699 23700 static void free_states(struct bpf_verifier_env *env) 23701 { 23702 struct bpf_verifier_state_list *sl; 23703 struct list_head *head, *pos, *tmp; 23704 struct bpf_scc_info *info; 23705 int i, j; 23706 23707 free_verifier_state(env->cur_state, true); 23708 env->cur_state = NULL; 23709 while (!pop_stack(env, NULL, NULL, false)); 23710 23711 list_for_each_safe(pos, tmp, &env->free_list) { 23712 sl = container_of(pos, struct bpf_verifier_state_list, node); 23713 free_verifier_state(&sl->state, false); 23714 kfree(sl); 23715 } 23716 INIT_LIST_HEAD(&env->free_list); 23717 23718 for (i = 0; i < env->scc_cnt; ++i) { 23719 info = env->scc_info[i]; 23720 if (!info) 23721 continue; 23722 for (j = 0; j < info->num_visits; j++) 23723 free_backedges(&info->visits[j]); 23724 kvfree(info); 23725 env->scc_info[i] = NULL; 23726 } 23727 23728 if (!env->explored_states) 23729 return; 23730 23731 for (i = 0; i < state_htab_size(env); i++) { 23732 head = &env->explored_states[i]; 23733 23734 list_for_each_safe(pos, tmp, head) { 23735 sl = container_of(pos, struct bpf_verifier_state_list, node); 23736 free_verifier_state(&sl->state, false); 23737 kfree(sl); 23738 } 23739 INIT_LIST_HEAD(&env->explored_states[i]); 23740 } 23741 } 23742 23743 static int do_check_common(struct bpf_verifier_env *env, int subprog) 23744 { 23745 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 23746 struct bpf_subprog_info *sub = subprog_info(env, subprog); 23747 struct bpf_prog_aux *aux = env->prog->aux; 23748 struct bpf_verifier_state *state; 23749 struct bpf_reg_state *regs; 23750 int ret, i; 23751 23752 env->prev_linfo = NULL; 23753 env->pass_cnt++; 23754 23755 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL_ACCOUNT); 23756 if (!state) 23757 return -ENOMEM; 23758 state->curframe = 0; 23759 state->speculative = false; 23760 state->branches = 1; 23761 state->in_sleepable = env->prog->sleepable; 23762 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL_ACCOUNT); 23763 if (!state->frame[0]) { 23764 kfree(state); 23765 return -ENOMEM; 23766 } 23767 env->cur_state = state; 23768 init_func_state(env, state->frame[0], 23769 BPF_MAIN_FUNC /* callsite */, 23770 0 /* frameno */, 23771 subprog); 23772 state->first_insn_idx = env->subprog_info[subprog].start; 23773 state->last_insn_idx = -1; 23774 23775 regs = state->frame[state->curframe]->regs; 23776 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 23777 const char *sub_name = subprog_name(env, subprog); 23778 struct bpf_subprog_arg_info *arg; 23779 struct bpf_reg_state *reg; 23780 23781 if (env->log.level & BPF_LOG_LEVEL) 23782 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); 23783 ret = btf_prepare_func_args(env, subprog); 23784 if (ret) 23785 goto out; 23786 23787 if (subprog_is_exc_cb(env, subprog)) { 23788 state->frame[0]->in_exception_callback_fn = true; 23789 /* We have already ensured that the callback returns an integer, just 23790 * like all global subprogs. We need to determine it only has a single 23791 * scalar argument. 23792 */ 23793 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { 23794 verbose(env, "exception cb only supports single integer argument\n"); 23795 ret = -EINVAL; 23796 goto out; 23797 } 23798 } 23799 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { 23800 arg = &sub->args[i - BPF_REG_1]; 23801 reg = ®s[i]; 23802 23803 if (arg->arg_type == ARG_PTR_TO_CTX) { 23804 reg->type = PTR_TO_CTX; 23805 mark_reg_known_zero(env, regs, i); 23806 } else if (arg->arg_type == ARG_ANYTHING) { 23807 reg->type = SCALAR_VALUE; 23808 mark_reg_unknown(env, regs, i); 23809 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 23810 /* assume unspecial LOCAL dynptr type */ 23811 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); 23812 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 23813 reg->type = PTR_TO_MEM; 23814 reg->type |= arg->arg_type & 23815 (PTR_MAYBE_NULL | PTR_UNTRUSTED | MEM_RDONLY); 23816 mark_reg_known_zero(env, regs, i); 23817 reg->mem_size = arg->mem_size; 23818 if (arg->arg_type & PTR_MAYBE_NULL) 23819 reg->id = ++env->id_gen; 23820 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 23821 reg->type = PTR_TO_BTF_ID; 23822 if (arg->arg_type & PTR_MAYBE_NULL) 23823 reg->type |= PTR_MAYBE_NULL; 23824 if (arg->arg_type & PTR_UNTRUSTED) 23825 reg->type |= PTR_UNTRUSTED; 23826 if (arg->arg_type & PTR_TRUSTED) 23827 reg->type |= PTR_TRUSTED; 23828 mark_reg_known_zero(env, regs, i); 23829 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ 23830 reg->btf_id = arg->btf_id; 23831 reg->id = ++env->id_gen; 23832 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 23833 /* caller can pass either PTR_TO_ARENA or SCALAR */ 23834 mark_reg_unknown(env, regs, i); 23835 } else { 23836 verifier_bug(env, "unhandled arg#%d type %d", 23837 i - BPF_REG_1, arg->arg_type); 23838 ret = -EFAULT; 23839 goto out; 23840 } 23841 } 23842 } else { 23843 /* if main BPF program has associated BTF info, validate that 23844 * it's matching expected signature, and otherwise mark BTF 23845 * info for main program as unreliable 23846 */ 23847 if (env->prog->aux->func_info_aux) { 23848 ret = btf_prepare_func_args(env, 0); 23849 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) 23850 env->prog->aux->func_info_aux[0].unreliable = true; 23851 } 23852 23853 /* 1st arg to a function */ 23854 regs[BPF_REG_1].type = PTR_TO_CTX; 23855 mark_reg_known_zero(env, regs, BPF_REG_1); 23856 } 23857 23858 /* Acquire references for struct_ops program arguments tagged with "__ref" */ 23859 if (!subprog && env->prog->type == BPF_PROG_TYPE_STRUCT_OPS) { 23860 for (i = 0; i < aux->ctx_arg_info_size; i++) 23861 aux->ctx_arg_info[i].ref_obj_id = aux->ctx_arg_info[i].refcounted ? 23862 acquire_reference(env, 0) : 0; 23863 } 23864 23865 ret = do_check(env); 23866 out: 23867 if (!ret && pop_log) 23868 bpf_vlog_reset(&env->log, 0); 23869 free_states(env); 23870 return ret; 23871 } 23872 23873 /* Lazily verify all global functions based on their BTF, if they are called 23874 * from main BPF program or any of subprograms transitively. 23875 * BPF global subprogs called from dead code are not validated. 23876 * All callable global functions must pass verification. 23877 * Otherwise the whole program is rejected. 23878 * Consider: 23879 * int bar(int); 23880 * int foo(int f) 23881 * { 23882 * return bar(f); 23883 * } 23884 * int bar(int b) 23885 * { 23886 * ... 23887 * } 23888 * foo() will be verified first for R1=any_scalar_value. During verification it 23889 * will be assumed that bar() already verified successfully and call to bar() 23890 * from foo() will be checked for type match only. Later bar() will be verified 23891 * independently to check that it's safe for R1=any_scalar_value. 23892 */ 23893 static int do_check_subprogs(struct bpf_verifier_env *env) 23894 { 23895 struct bpf_prog_aux *aux = env->prog->aux; 23896 struct bpf_func_info_aux *sub_aux; 23897 int i, ret, new_cnt; 23898 23899 if (!aux->func_info) 23900 return 0; 23901 23902 /* exception callback is presumed to be always called */ 23903 if (env->exception_callback_subprog) 23904 subprog_aux(env, env->exception_callback_subprog)->called = true; 23905 23906 again: 23907 new_cnt = 0; 23908 for (i = 1; i < env->subprog_cnt; i++) { 23909 if (!subprog_is_global(env, i)) 23910 continue; 23911 23912 sub_aux = subprog_aux(env, i); 23913 if (!sub_aux->called || sub_aux->verified) 23914 continue; 23915 23916 env->insn_idx = env->subprog_info[i].start; 23917 WARN_ON_ONCE(env->insn_idx == 0); 23918 ret = do_check_common(env, i); 23919 if (ret) { 23920 return ret; 23921 } else if (env->log.level & BPF_LOG_LEVEL) { 23922 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 23923 i, subprog_name(env, i)); 23924 } 23925 23926 /* We verified new global subprog, it might have called some 23927 * more global subprogs that we haven't verified yet, so we 23928 * need to do another pass over subprogs to verify those. 23929 */ 23930 sub_aux->verified = true; 23931 new_cnt++; 23932 } 23933 23934 /* We can't loop forever as we verify at least one global subprog on 23935 * each pass. 23936 */ 23937 if (new_cnt) 23938 goto again; 23939 23940 return 0; 23941 } 23942 23943 static int do_check_main(struct bpf_verifier_env *env) 23944 { 23945 int ret; 23946 23947 env->insn_idx = 0; 23948 ret = do_check_common(env, 0); 23949 if (!ret) 23950 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 23951 return ret; 23952 } 23953 23954 23955 static void print_verification_stats(struct bpf_verifier_env *env) 23956 { 23957 int i; 23958 23959 if (env->log.level & BPF_LOG_STATS) { 23960 verbose(env, "verification time %lld usec\n", 23961 div_u64(env->verification_time, 1000)); 23962 verbose(env, "stack depth "); 23963 for (i = 0; i < env->subprog_cnt; i++) { 23964 u32 depth = env->subprog_info[i].stack_depth; 23965 23966 verbose(env, "%d", depth); 23967 if (i + 1 < env->subprog_cnt) 23968 verbose(env, "+"); 23969 } 23970 verbose(env, "\n"); 23971 } 23972 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 23973 "total_states %d peak_states %d mark_read %d\n", 23974 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 23975 env->max_states_per_insn, env->total_states, 23976 env->peak_states, env->longest_mark_read_walk); 23977 } 23978 23979 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog, 23980 const struct bpf_ctx_arg_aux *info, u32 cnt) 23981 { 23982 prog->aux->ctx_arg_info = kmemdup_array(info, cnt, sizeof(*info), GFP_KERNEL_ACCOUNT); 23983 prog->aux->ctx_arg_info_size = cnt; 23984 23985 return prog->aux->ctx_arg_info ? 0 : -ENOMEM; 23986 } 23987 23988 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 23989 { 23990 const struct btf_type *t, *func_proto; 23991 const struct bpf_struct_ops_desc *st_ops_desc; 23992 const struct bpf_struct_ops *st_ops; 23993 const struct btf_member *member; 23994 struct bpf_prog *prog = env->prog; 23995 bool has_refcounted_arg = false; 23996 u32 btf_id, member_idx, member_off; 23997 struct btf *btf; 23998 const char *mname; 23999 int i, err; 24000 24001 if (!prog->gpl_compatible) { 24002 verbose(env, "struct ops programs must have a GPL compatible license\n"); 24003 return -EINVAL; 24004 } 24005 24006 if (!prog->aux->attach_btf_id) 24007 return -ENOTSUPP; 24008 24009 btf = prog->aux->attach_btf; 24010 if (btf_is_module(btf)) { 24011 /* Make sure st_ops is valid through the lifetime of env */ 24012 env->attach_btf_mod = btf_try_get_module(btf); 24013 if (!env->attach_btf_mod) { 24014 verbose(env, "struct_ops module %s is not found\n", 24015 btf_get_name(btf)); 24016 return -ENOTSUPP; 24017 } 24018 } 24019 24020 btf_id = prog->aux->attach_btf_id; 24021 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 24022 if (!st_ops_desc) { 24023 verbose(env, "attach_btf_id %u is not a supported struct\n", 24024 btf_id); 24025 return -ENOTSUPP; 24026 } 24027 st_ops = st_ops_desc->st_ops; 24028 24029 t = st_ops_desc->type; 24030 member_idx = prog->expected_attach_type; 24031 if (member_idx >= btf_type_vlen(t)) { 24032 verbose(env, "attach to invalid member idx %u of struct %s\n", 24033 member_idx, st_ops->name); 24034 return -EINVAL; 24035 } 24036 24037 member = &btf_type_member(t)[member_idx]; 24038 mname = btf_name_by_offset(btf, member->name_off); 24039 func_proto = btf_type_resolve_func_ptr(btf, member->type, 24040 NULL); 24041 if (!func_proto) { 24042 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 24043 mname, member_idx, st_ops->name); 24044 return -EINVAL; 24045 } 24046 24047 member_off = __btf_member_bit_offset(t, member) / 8; 24048 err = bpf_struct_ops_supported(st_ops, member_off); 24049 if (err) { 24050 verbose(env, "attach to unsupported member %s of struct %s\n", 24051 mname, st_ops->name); 24052 return err; 24053 } 24054 24055 if (st_ops->check_member) { 24056 err = st_ops->check_member(t, member, prog); 24057 24058 if (err) { 24059 verbose(env, "attach to unsupported member %s of struct %s\n", 24060 mname, st_ops->name); 24061 return err; 24062 } 24063 } 24064 24065 if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) { 24066 verbose(env, "Private stack not supported by jit\n"); 24067 return -EACCES; 24068 } 24069 24070 for (i = 0; i < st_ops_desc->arg_info[member_idx].cnt; i++) { 24071 if (st_ops_desc->arg_info[member_idx].info->refcounted) { 24072 has_refcounted_arg = true; 24073 break; 24074 } 24075 } 24076 24077 /* Tail call is not allowed for programs with refcounted arguments since we 24078 * cannot guarantee that valid refcounted kptrs will be passed to the callee. 24079 */ 24080 for (i = 0; i < env->subprog_cnt; i++) { 24081 if (has_refcounted_arg && env->subprog_info[i].has_tail_call) { 24082 verbose(env, "program with __ref argument cannot tail call\n"); 24083 return -EINVAL; 24084 } 24085 } 24086 24087 prog->aux->st_ops = st_ops; 24088 prog->aux->attach_st_ops_member_off = member_off; 24089 24090 prog->aux->attach_func_proto = func_proto; 24091 prog->aux->attach_func_name = mname; 24092 env->ops = st_ops->verifier_ops; 24093 24094 return bpf_prog_ctx_arg_info_init(prog, st_ops_desc->arg_info[member_idx].info, 24095 st_ops_desc->arg_info[member_idx].cnt); 24096 } 24097 #define SECURITY_PREFIX "security_" 24098 24099 static int check_attach_modify_return(unsigned long addr, const char *func_name) 24100 { 24101 if (within_error_injection_list(addr) || 24102 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 24103 return 0; 24104 24105 return -EINVAL; 24106 } 24107 24108 /* list of non-sleepable functions that are otherwise on 24109 * ALLOW_ERROR_INJECTION list 24110 */ 24111 BTF_SET_START(btf_non_sleepable_error_inject) 24112 /* Three functions below can be called from sleepable and non-sleepable context. 24113 * Assume non-sleepable from bpf safety point of view. 24114 */ 24115 BTF_ID(func, __filemap_add_folio) 24116 #ifdef CONFIG_FAIL_PAGE_ALLOC 24117 BTF_ID(func, should_fail_alloc_page) 24118 #endif 24119 #ifdef CONFIG_FAILSLAB 24120 BTF_ID(func, should_failslab) 24121 #endif 24122 BTF_SET_END(btf_non_sleepable_error_inject) 24123 24124 static int check_non_sleepable_error_inject(u32 btf_id) 24125 { 24126 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 24127 } 24128 24129 int bpf_check_attach_target(struct bpf_verifier_log *log, 24130 const struct bpf_prog *prog, 24131 const struct bpf_prog *tgt_prog, 24132 u32 btf_id, 24133 struct bpf_attach_target_info *tgt_info) 24134 { 24135 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 24136 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; 24137 char trace_symbol[KSYM_SYMBOL_LEN]; 24138 const char prefix[] = "btf_trace_"; 24139 struct bpf_raw_event_map *btp; 24140 int ret = 0, subprog = -1, i; 24141 const struct btf_type *t; 24142 bool conservative = true; 24143 const char *tname, *fname; 24144 struct btf *btf; 24145 long addr = 0; 24146 struct module *mod = NULL; 24147 24148 if (!btf_id) { 24149 bpf_log(log, "Tracing programs must provide btf_id\n"); 24150 return -EINVAL; 24151 } 24152 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 24153 if (!btf) { 24154 bpf_log(log, 24155 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 24156 return -EINVAL; 24157 } 24158 t = btf_type_by_id(btf, btf_id); 24159 if (!t) { 24160 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 24161 return -EINVAL; 24162 } 24163 tname = btf_name_by_offset(btf, t->name_off); 24164 if (!tname) { 24165 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 24166 return -EINVAL; 24167 } 24168 if (tgt_prog) { 24169 struct bpf_prog_aux *aux = tgt_prog->aux; 24170 bool tgt_changes_pkt_data; 24171 bool tgt_might_sleep; 24172 24173 if (bpf_prog_is_dev_bound(prog->aux) && 24174 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 24175 bpf_log(log, "Target program bound device mismatch"); 24176 return -EINVAL; 24177 } 24178 24179 for (i = 0; i < aux->func_info_cnt; i++) 24180 if (aux->func_info[i].type_id == btf_id) { 24181 subprog = i; 24182 break; 24183 } 24184 if (subprog == -1) { 24185 bpf_log(log, "Subprog %s doesn't exist\n", tname); 24186 return -EINVAL; 24187 } 24188 if (aux->func && aux->func[subprog]->aux->exception_cb) { 24189 bpf_log(log, 24190 "%s programs cannot attach to exception callback\n", 24191 prog_extension ? "Extension" : "FENTRY/FEXIT"); 24192 return -EINVAL; 24193 } 24194 conservative = aux->func_info_aux[subprog].unreliable; 24195 if (prog_extension) { 24196 if (conservative) { 24197 bpf_log(log, 24198 "Cannot replace static functions\n"); 24199 return -EINVAL; 24200 } 24201 if (!prog->jit_requested) { 24202 bpf_log(log, 24203 "Extension programs should be JITed\n"); 24204 return -EINVAL; 24205 } 24206 tgt_changes_pkt_data = aux->func 24207 ? aux->func[subprog]->aux->changes_pkt_data 24208 : aux->changes_pkt_data; 24209 if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) { 24210 bpf_log(log, 24211 "Extension program changes packet data, while original does not\n"); 24212 return -EINVAL; 24213 } 24214 24215 tgt_might_sleep = aux->func 24216 ? aux->func[subprog]->aux->might_sleep 24217 : aux->might_sleep; 24218 if (prog->aux->might_sleep && !tgt_might_sleep) { 24219 bpf_log(log, 24220 "Extension program may sleep, while original does not\n"); 24221 return -EINVAL; 24222 } 24223 } 24224 if (!tgt_prog->jited) { 24225 bpf_log(log, "Can attach to only JITed progs\n"); 24226 return -EINVAL; 24227 } 24228 if (prog_tracing) { 24229 if (aux->attach_tracing_prog) { 24230 /* 24231 * Target program is an fentry/fexit which is already attached 24232 * to another tracing program. More levels of nesting 24233 * attachment are not allowed. 24234 */ 24235 bpf_log(log, "Cannot nest tracing program attach more than once\n"); 24236 return -EINVAL; 24237 } 24238 } else if (tgt_prog->type == prog->type) { 24239 /* 24240 * To avoid potential call chain cycles, prevent attaching of a 24241 * program extension to another extension. It's ok to attach 24242 * fentry/fexit to extension program. 24243 */ 24244 bpf_log(log, "Cannot recursively attach\n"); 24245 return -EINVAL; 24246 } 24247 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 24248 prog_extension && 24249 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 24250 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 24251 /* Program extensions can extend all program types 24252 * except fentry/fexit. The reason is the following. 24253 * The fentry/fexit programs are used for performance 24254 * analysis, stats and can be attached to any program 24255 * type. When extension program is replacing XDP function 24256 * it is necessary to allow performance analysis of all 24257 * functions. Both original XDP program and its program 24258 * extension. Hence attaching fentry/fexit to 24259 * BPF_PROG_TYPE_EXT is allowed. If extending of 24260 * fentry/fexit was allowed it would be possible to create 24261 * long call chain fentry->extension->fentry->extension 24262 * beyond reasonable stack size. Hence extending fentry 24263 * is not allowed. 24264 */ 24265 bpf_log(log, "Cannot extend fentry/fexit\n"); 24266 return -EINVAL; 24267 } 24268 } else { 24269 if (prog_extension) { 24270 bpf_log(log, "Cannot replace kernel functions\n"); 24271 return -EINVAL; 24272 } 24273 } 24274 24275 switch (prog->expected_attach_type) { 24276 case BPF_TRACE_RAW_TP: 24277 if (tgt_prog) { 24278 bpf_log(log, 24279 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 24280 return -EINVAL; 24281 } 24282 if (!btf_type_is_typedef(t)) { 24283 bpf_log(log, "attach_btf_id %u is not a typedef\n", 24284 btf_id); 24285 return -EINVAL; 24286 } 24287 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 24288 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 24289 btf_id, tname); 24290 return -EINVAL; 24291 } 24292 tname += sizeof(prefix) - 1; 24293 24294 /* The func_proto of "btf_trace_##tname" is generated from typedef without argument 24295 * names. Thus using bpf_raw_event_map to get argument names. 24296 */ 24297 btp = bpf_get_raw_tracepoint(tname); 24298 if (!btp) 24299 return -EINVAL; 24300 fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL, 24301 trace_symbol); 24302 bpf_put_raw_tracepoint(btp); 24303 24304 if (fname) 24305 ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC); 24306 24307 if (!fname || ret < 0) { 24308 bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n", 24309 prefix, tname); 24310 t = btf_type_by_id(btf, t->type); 24311 if (!btf_type_is_ptr(t)) 24312 /* should never happen in valid vmlinux build */ 24313 return -EINVAL; 24314 } else { 24315 t = btf_type_by_id(btf, ret); 24316 if (!btf_type_is_func(t)) 24317 /* should never happen in valid vmlinux build */ 24318 return -EINVAL; 24319 } 24320 24321 t = btf_type_by_id(btf, t->type); 24322 if (!btf_type_is_func_proto(t)) 24323 /* should never happen in valid vmlinux build */ 24324 return -EINVAL; 24325 24326 break; 24327 case BPF_TRACE_ITER: 24328 if (!btf_type_is_func(t)) { 24329 bpf_log(log, "attach_btf_id %u is not a function\n", 24330 btf_id); 24331 return -EINVAL; 24332 } 24333 t = btf_type_by_id(btf, t->type); 24334 if (!btf_type_is_func_proto(t)) 24335 return -EINVAL; 24336 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 24337 if (ret) 24338 return ret; 24339 break; 24340 default: 24341 if (!prog_extension) 24342 return -EINVAL; 24343 fallthrough; 24344 case BPF_MODIFY_RETURN: 24345 case BPF_LSM_MAC: 24346 case BPF_LSM_CGROUP: 24347 case BPF_TRACE_FENTRY: 24348 case BPF_TRACE_FEXIT: 24349 if (!btf_type_is_func(t)) { 24350 bpf_log(log, "attach_btf_id %u is not a function\n", 24351 btf_id); 24352 return -EINVAL; 24353 } 24354 if (prog_extension && 24355 btf_check_type_match(log, prog, btf, t)) 24356 return -EINVAL; 24357 t = btf_type_by_id(btf, t->type); 24358 if (!btf_type_is_func_proto(t)) 24359 return -EINVAL; 24360 24361 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 24362 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 24363 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 24364 return -EINVAL; 24365 24366 if (tgt_prog && conservative) 24367 t = NULL; 24368 24369 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 24370 if (ret < 0) 24371 return ret; 24372 24373 if (tgt_prog) { 24374 if (subprog == 0) 24375 addr = (long) tgt_prog->bpf_func; 24376 else 24377 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 24378 } else { 24379 if (btf_is_module(btf)) { 24380 mod = btf_try_get_module(btf); 24381 if (mod) 24382 addr = find_kallsyms_symbol_value(mod, tname); 24383 else 24384 addr = 0; 24385 } else { 24386 addr = kallsyms_lookup_name(tname); 24387 } 24388 if (!addr) { 24389 module_put(mod); 24390 bpf_log(log, 24391 "The address of function %s cannot be found\n", 24392 tname); 24393 return -ENOENT; 24394 } 24395 } 24396 24397 if (prog->sleepable) { 24398 ret = -EINVAL; 24399 switch (prog->type) { 24400 case BPF_PROG_TYPE_TRACING: 24401 24402 /* fentry/fexit/fmod_ret progs can be sleepable if they are 24403 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 24404 */ 24405 if (!check_non_sleepable_error_inject(btf_id) && 24406 within_error_injection_list(addr)) 24407 ret = 0; 24408 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 24409 * in the fmodret id set with the KF_SLEEPABLE flag. 24410 */ 24411 else { 24412 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 24413 prog); 24414 24415 if (flags && (*flags & KF_SLEEPABLE)) 24416 ret = 0; 24417 } 24418 break; 24419 case BPF_PROG_TYPE_LSM: 24420 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 24421 * Only some of them are sleepable. 24422 */ 24423 if (bpf_lsm_is_sleepable_hook(btf_id)) 24424 ret = 0; 24425 break; 24426 default: 24427 break; 24428 } 24429 if (ret) { 24430 module_put(mod); 24431 bpf_log(log, "%s is not sleepable\n", tname); 24432 return ret; 24433 } 24434 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 24435 if (tgt_prog) { 24436 module_put(mod); 24437 bpf_log(log, "can't modify return codes of BPF programs\n"); 24438 return -EINVAL; 24439 } 24440 ret = -EINVAL; 24441 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 24442 !check_attach_modify_return(addr, tname)) 24443 ret = 0; 24444 if (ret) { 24445 module_put(mod); 24446 bpf_log(log, "%s() is not modifiable\n", tname); 24447 return ret; 24448 } 24449 } 24450 24451 break; 24452 } 24453 tgt_info->tgt_addr = addr; 24454 tgt_info->tgt_name = tname; 24455 tgt_info->tgt_type = t; 24456 tgt_info->tgt_mod = mod; 24457 return 0; 24458 } 24459 24460 BTF_SET_START(btf_id_deny) 24461 BTF_ID_UNUSED 24462 #ifdef CONFIG_SMP 24463 BTF_ID(func, ___migrate_enable) 24464 BTF_ID(func, migrate_disable) 24465 BTF_ID(func, migrate_enable) 24466 #endif 24467 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 24468 BTF_ID(func, rcu_read_unlock_strict) 24469 #endif 24470 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 24471 BTF_ID(func, preempt_count_add) 24472 BTF_ID(func, preempt_count_sub) 24473 #endif 24474 #ifdef CONFIG_PREEMPT_RCU 24475 BTF_ID(func, __rcu_read_lock) 24476 BTF_ID(func, __rcu_read_unlock) 24477 #endif 24478 BTF_SET_END(btf_id_deny) 24479 24480 /* fexit and fmod_ret can't be used to attach to __noreturn functions. 24481 * Currently, we must manually list all __noreturn functions here. Once a more 24482 * robust solution is implemented, this workaround can be removed. 24483 */ 24484 BTF_SET_START(noreturn_deny) 24485 #ifdef CONFIG_IA32_EMULATION 24486 BTF_ID(func, __ia32_sys_exit) 24487 BTF_ID(func, __ia32_sys_exit_group) 24488 #endif 24489 #ifdef CONFIG_KUNIT 24490 BTF_ID(func, __kunit_abort) 24491 BTF_ID(func, kunit_try_catch_throw) 24492 #endif 24493 #ifdef CONFIG_MODULES 24494 BTF_ID(func, __module_put_and_kthread_exit) 24495 #endif 24496 #ifdef CONFIG_X86_64 24497 BTF_ID(func, __x64_sys_exit) 24498 BTF_ID(func, __x64_sys_exit_group) 24499 #endif 24500 BTF_ID(func, do_exit) 24501 BTF_ID(func, do_group_exit) 24502 BTF_ID(func, kthread_complete_and_exit) 24503 BTF_ID(func, kthread_exit) 24504 BTF_ID(func, make_task_dead) 24505 BTF_SET_END(noreturn_deny) 24506 24507 static bool can_be_sleepable(struct bpf_prog *prog) 24508 { 24509 if (prog->type == BPF_PROG_TYPE_TRACING) { 24510 switch (prog->expected_attach_type) { 24511 case BPF_TRACE_FENTRY: 24512 case BPF_TRACE_FEXIT: 24513 case BPF_MODIFY_RETURN: 24514 case BPF_TRACE_ITER: 24515 return true; 24516 default: 24517 return false; 24518 } 24519 } 24520 return prog->type == BPF_PROG_TYPE_LSM || 24521 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 24522 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 24523 } 24524 24525 static int check_attach_btf_id(struct bpf_verifier_env *env) 24526 { 24527 struct bpf_prog *prog = env->prog; 24528 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 24529 struct bpf_attach_target_info tgt_info = {}; 24530 u32 btf_id = prog->aux->attach_btf_id; 24531 struct bpf_trampoline *tr; 24532 int ret; 24533 u64 key; 24534 24535 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 24536 if (prog->sleepable) 24537 /* attach_btf_id checked to be zero already */ 24538 return 0; 24539 verbose(env, "Syscall programs can only be sleepable\n"); 24540 return -EINVAL; 24541 } 24542 24543 if (prog->sleepable && !can_be_sleepable(prog)) { 24544 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 24545 return -EINVAL; 24546 } 24547 24548 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 24549 return check_struct_ops_btf_id(env); 24550 24551 if (prog->type != BPF_PROG_TYPE_TRACING && 24552 prog->type != BPF_PROG_TYPE_LSM && 24553 prog->type != BPF_PROG_TYPE_EXT) 24554 return 0; 24555 24556 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 24557 if (ret) 24558 return ret; 24559 24560 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 24561 /* to make freplace equivalent to their targets, they need to 24562 * inherit env->ops and expected_attach_type for the rest of the 24563 * verification 24564 */ 24565 env->ops = bpf_verifier_ops[tgt_prog->type]; 24566 prog->expected_attach_type = tgt_prog->expected_attach_type; 24567 } 24568 24569 /* store info about the attachment target that will be used later */ 24570 prog->aux->attach_func_proto = tgt_info.tgt_type; 24571 prog->aux->attach_func_name = tgt_info.tgt_name; 24572 prog->aux->mod = tgt_info.tgt_mod; 24573 24574 if (tgt_prog) { 24575 prog->aux->saved_dst_prog_type = tgt_prog->type; 24576 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 24577 } 24578 24579 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 24580 prog->aux->attach_btf_trace = true; 24581 return 0; 24582 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 24583 return bpf_iter_prog_supported(prog); 24584 } 24585 24586 if (prog->type == BPF_PROG_TYPE_LSM) { 24587 ret = bpf_lsm_verify_prog(&env->log, prog); 24588 if (ret < 0) 24589 return ret; 24590 } else if (prog->type == BPF_PROG_TYPE_TRACING && 24591 btf_id_set_contains(&btf_id_deny, btf_id)) { 24592 verbose(env, "Attaching tracing programs to function '%s' is rejected.\n", 24593 tgt_info.tgt_name); 24594 return -EINVAL; 24595 } else if ((prog->expected_attach_type == BPF_TRACE_FEXIT || 24596 prog->expected_attach_type == BPF_MODIFY_RETURN) && 24597 btf_id_set_contains(&noreturn_deny, btf_id)) { 24598 verbose(env, "Attaching fexit/fmod_ret to __noreturn function '%s' is rejected.\n", 24599 tgt_info.tgt_name); 24600 return -EINVAL; 24601 } 24602 24603 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 24604 tr = bpf_trampoline_get(key, &tgt_info); 24605 if (!tr) 24606 return -ENOMEM; 24607 24608 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 24609 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 24610 24611 prog->aux->dst_trampoline = tr; 24612 return 0; 24613 } 24614 24615 struct btf *bpf_get_btf_vmlinux(void) 24616 { 24617 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 24618 mutex_lock(&bpf_verifier_lock); 24619 if (!btf_vmlinux) 24620 btf_vmlinux = btf_parse_vmlinux(); 24621 mutex_unlock(&bpf_verifier_lock); 24622 } 24623 return btf_vmlinux; 24624 } 24625 24626 /* 24627 * The add_fd_from_fd_array() is executed only if fd_array_cnt is non-zero. In 24628 * this case expect that every file descriptor in the array is either a map or 24629 * a BTF. Everything else is considered to be trash. 24630 */ 24631 static int add_fd_from_fd_array(struct bpf_verifier_env *env, int fd) 24632 { 24633 struct bpf_map *map; 24634 struct btf *btf; 24635 CLASS(fd, f)(fd); 24636 int err; 24637 24638 map = __bpf_map_get(f); 24639 if (!IS_ERR(map)) { 24640 err = __add_used_map(env, map); 24641 if (err < 0) 24642 return err; 24643 return 0; 24644 } 24645 24646 btf = __btf_get_by_fd(f); 24647 if (!IS_ERR(btf)) { 24648 err = __add_used_btf(env, btf); 24649 if (err < 0) 24650 return err; 24651 return 0; 24652 } 24653 24654 verbose(env, "fd %d is not pointing to valid bpf_map or btf\n", fd); 24655 return PTR_ERR(map); 24656 } 24657 24658 static int process_fd_array(struct bpf_verifier_env *env, union bpf_attr *attr, bpfptr_t uattr) 24659 { 24660 size_t size = sizeof(int); 24661 int ret; 24662 int fd; 24663 u32 i; 24664 24665 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 24666 24667 /* 24668 * The only difference between old (no fd_array_cnt is given) and new 24669 * APIs is that in the latter case the fd_array is expected to be 24670 * continuous and is scanned for map fds right away 24671 */ 24672 if (!attr->fd_array_cnt) 24673 return 0; 24674 24675 /* Check for integer overflow */ 24676 if (attr->fd_array_cnt >= (U32_MAX / size)) { 24677 verbose(env, "fd_array_cnt is too big (%u)\n", attr->fd_array_cnt); 24678 return -EINVAL; 24679 } 24680 24681 for (i = 0; i < attr->fd_array_cnt; i++) { 24682 if (copy_from_bpfptr_offset(&fd, env->fd_array, i * size, size)) 24683 return -EFAULT; 24684 24685 ret = add_fd_from_fd_array(env, fd); 24686 if (ret) 24687 return ret; 24688 } 24689 24690 return 0; 24691 } 24692 24693 /* Each field is a register bitmask */ 24694 struct insn_live_regs { 24695 u16 use; /* registers read by instruction */ 24696 u16 def; /* registers written by instruction */ 24697 u16 in; /* registers that may be alive before instruction */ 24698 u16 out; /* registers that may be alive after instruction */ 24699 }; 24700 24701 /* Bitmask with 1s for all caller saved registers */ 24702 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 24703 24704 /* Compute info->{use,def} fields for the instruction */ 24705 static void compute_insn_live_regs(struct bpf_verifier_env *env, 24706 struct bpf_insn *insn, 24707 struct insn_live_regs *info) 24708 { 24709 struct call_summary cs; 24710 u8 class = BPF_CLASS(insn->code); 24711 u8 code = BPF_OP(insn->code); 24712 u8 mode = BPF_MODE(insn->code); 24713 u16 src = BIT(insn->src_reg); 24714 u16 dst = BIT(insn->dst_reg); 24715 u16 r0 = BIT(0); 24716 u16 def = 0; 24717 u16 use = 0xffff; 24718 24719 switch (class) { 24720 case BPF_LD: 24721 switch (mode) { 24722 case BPF_IMM: 24723 if (BPF_SIZE(insn->code) == BPF_DW) { 24724 def = dst; 24725 use = 0; 24726 } 24727 break; 24728 case BPF_LD | BPF_ABS: 24729 case BPF_LD | BPF_IND: 24730 /* stick with defaults */ 24731 break; 24732 } 24733 break; 24734 case BPF_LDX: 24735 switch (mode) { 24736 case BPF_MEM: 24737 case BPF_MEMSX: 24738 def = dst; 24739 use = src; 24740 break; 24741 } 24742 break; 24743 case BPF_ST: 24744 switch (mode) { 24745 case BPF_MEM: 24746 def = 0; 24747 use = dst; 24748 break; 24749 } 24750 break; 24751 case BPF_STX: 24752 switch (mode) { 24753 case BPF_MEM: 24754 def = 0; 24755 use = dst | src; 24756 break; 24757 case BPF_ATOMIC: 24758 switch (insn->imm) { 24759 case BPF_CMPXCHG: 24760 use = r0 | dst | src; 24761 def = r0; 24762 break; 24763 case BPF_LOAD_ACQ: 24764 def = dst; 24765 use = src; 24766 break; 24767 case BPF_STORE_REL: 24768 def = 0; 24769 use = dst | src; 24770 break; 24771 default: 24772 use = dst | src; 24773 if (insn->imm & BPF_FETCH) 24774 def = src; 24775 else 24776 def = 0; 24777 } 24778 break; 24779 } 24780 break; 24781 case BPF_ALU: 24782 case BPF_ALU64: 24783 switch (code) { 24784 case BPF_END: 24785 use = dst; 24786 def = dst; 24787 break; 24788 case BPF_MOV: 24789 def = dst; 24790 if (BPF_SRC(insn->code) == BPF_K) 24791 use = 0; 24792 else 24793 use = src; 24794 break; 24795 default: 24796 def = dst; 24797 if (BPF_SRC(insn->code) == BPF_K) 24798 use = dst; 24799 else 24800 use = dst | src; 24801 } 24802 break; 24803 case BPF_JMP: 24804 case BPF_JMP32: 24805 switch (code) { 24806 case BPF_JA: 24807 case BPF_JCOND: 24808 def = 0; 24809 use = 0; 24810 break; 24811 case BPF_EXIT: 24812 def = 0; 24813 use = r0; 24814 break; 24815 case BPF_CALL: 24816 def = ALL_CALLER_SAVED_REGS; 24817 use = def & ~BIT(BPF_REG_0); 24818 if (get_call_summary(env, insn, &cs)) 24819 use = GENMASK(cs.num_params, 1); 24820 break; 24821 default: 24822 def = 0; 24823 if (BPF_SRC(insn->code) == BPF_K) 24824 use = dst; 24825 else 24826 use = dst | src; 24827 } 24828 break; 24829 } 24830 24831 info->def = def; 24832 info->use = use; 24833 } 24834 24835 /* Compute may-live registers after each instruction in the program. 24836 * The register is live after the instruction I if it is read by some 24837 * instruction S following I during program execution and is not 24838 * overwritten between I and S. 24839 * 24840 * Store result in env->insn_aux_data[i].live_regs. 24841 */ 24842 static int compute_live_registers(struct bpf_verifier_env *env) 24843 { 24844 struct bpf_insn_aux_data *insn_aux = env->insn_aux_data; 24845 struct bpf_insn *insns = env->prog->insnsi; 24846 struct insn_live_regs *state; 24847 int insn_cnt = env->prog->len; 24848 int err = 0, i, j; 24849 bool changed; 24850 24851 /* Use the following algorithm: 24852 * - define the following: 24853 * - I.use : a set of all registers read by instruction I; 24854 * - I.def : a set of all registers written by instruction I; 24855 * - I.in : a set of all registers that may be alive before I execution; 24856 * - I.out : a set of all registers that may be alive after I execution; 24857 * - insn_successors(I): a set of instructions S that might immediately 24858 * follow I for some program execution; 24859 * - associate separate empty sets 'I.in' and 'I.out' with each instruction; 24860 * - visit each instruction in a postorder and update 24861 * state[i].in, state[i].out as follows: 24862 * 24863 * state[i].out = U [state[s].in for S in insn_successors(i)] 24864 * state[i].in = (state[i].out / state[i].def) U state[i].use 24865 * 24866 * (where U stands for set union, / stands for set difference) 24867 * - repeat the computation while {in,out} fields changes for 24868 * any instruction. 24869 */ 24870 state = kvcalloc(insn_cnt, sizeof(*state), GFP_KERNEL_ACCOUNT); 24871 if (!state) { 24872 err = -ENOMEM; 24873 goto out; 24874 } 24875 24876 for (i = 0; i < insn_cnt; ++i) 24877 compute_insn_live_regs(env, &insns[i], &state[i]); 24878 24879 changed = true; 24880 while (changed) { 24881 changed = false; 24882 for (i = 0; i < env->cfg.cur_postorder; ++i) { 24883 int insn_idx = env->cfg.insn_postorder[i]; 24884 struct insn_live_regs *live = &state[insn_idx]; 24885 struct bpf_iarray *succ; 24886 u16 new_out = 0; 24887 u16 new_in = 0; 24888 24889 succ = bpf_insn_successors(env, insn_idx); 24890 for (int s = 0; s < succ->cnt; ++s) 24891 new_out |= state[succ->items[s]].in; 24892 new_in = (new_out & ~live->def) | live->use; 24893 if (new_out != live->out || new_in != live->in) { 24894 live->in = new_in; 24895 live->out = new_out; 24896 changed = true; 24897 } 24898 } 24899 } 24900 24901 for (i = 0; i < insn_cnt; ++i) 24902 insn_aux[i].live_regs_before = state[i].in; 24903 24904 if (env->log.level & BPF_LOG_LEVEL2) { 24905 verbose(env, "Live regs before insn:\n"); 24906 for (i = 0; i < insn_cnt; ++i) { 24907 if (env->insn_aux_data[i].scc) 24908 verbose(env, "%3d ", env->insn_aux_data[i].scc); 24909 else 24910 verbose(env, " "); 24911 verbose(env, "%3d: ", i); 24912 for (j = BPF_REG_0; j < BPF_REG_10; ++j) 24913 if (insn_aux[i].live_regs_before & BIT(j)) 24914 verbose(env, "%d", j); 24915 else 24916 verbose(env, "."); 24917 verbose(env, " "); 24918 verbose_insn(env, &insns[i]); 24919 if (bpf_is_ldimm64(&insns[i])) 24920 i++; 24921 } 24922 } 24923 24924 out: 24925 kvfree(state); 24926 return err; 24927 } 24928 24929 /* 24930 * Compute strongly connected components (SCCs) on the CFG. 24931 * Assign an SCC number to each instruction, recorded in env->insn_aux[*].scc. 24932 * If instruction is a sole member of its SCC and there are no self edges, 24933 * assign it SCC number of zero. 24934 * Uses a non-recursive adaptation of Tarjan's algorithm for SCC computation. 24935 */ 24936 static int compute_scc(struct bpf_verifier_env *env) 24937 { 24938 const u32 NOT_ON_STACK = U32_MAX; 24939 24940 struct bpf_insn_aux_data *aux = env->insn_aux_data; 24941 const u32 insn_cnt = env->prog->len; 24942 int stack_sz, dfs_sz, err = 0; 24943 u32 *stack, *pre, *low, *dfs; 24944 u32 i, j, t, w; 24945 u32 next_preorder_num; 24946 u32 next_scc_id; 24947 bool assign_scc; 24948 struct bpf_iarray *succ; 24949 24950 next_preorder_num = 1; 24951 next_scc_id = 1; 24952 /* 24953 * - 'stack' accumulates vertices in DFS order, see invariant comment below; 24954 * - 'pre[t] == p' => preorder number of vertex 't' is 'p'; 24955 * - 'low[t] == n' => smallest preorder number of the vertex reachable from 't' is 'n'; 24956 * - 'dfs' DFS traversal stack, used to emulate explicit recursion. 24957 */ 24958 stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 24959 pre = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 24960 low = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 24961 dfs = kvcalloc(insn_cnt, sizeof(*dfs), GFP_KERNEL_ACCOUNT); 24962 if (!stack || !pre || !low || !dfs) { 24963 err = -ENOMEM; 24964 goto exit; 24965 } 24966 /* 24967 * References: 24968 * [1] R. Tarjan "Depth-First Search and Linear Graph Algorithms" 24969 * [2] D. J. Pearce "A Space-Efficient Algorithm for Finding Strongly Connected Components" 24970 * 24971 * The algorithm maintains the following invariant: 24972 * - suppose there is a path 'u' ~> 'v', such that 'pre[v] < pre[u]'; 24973 * - then, vertex 'u' remains on stack while vertex 'v' is on stack. 24974 * 24975 * Consequently: 24976 * - If 'low[v] < pre[v]', there is a path from 'v' to some vertex 'u', 24977 * such that 'pre[u] == low[v]'; vertex 'u' is currently on the stack, 24978 * and thus there is an SCC (loop) containing both 'u' and 'v'. 24979 * - If 'low[v] == pre[v]', loops containing 'v' have been explored, 24980 * and 'v' can be considered the root of some SCC. 24981 * 24982 * Here is a pseudo-code for an explicitly recursive version of the algorithm: 24983 * 24984 * NOT_ON_STACK = insn_cnt + 1 24985 * pre = [0] * insn_cnt 24986 * low = [0] * insn_cnt 24987 * scc = [0] * insn_cnt 24988 * stack = [] 24989 * 24990 * next_preorder_num = 1 24991 * next_scc_id = 1 24992 * 24993 * def recur(w): 24994 * nonlocal next_preorder_num 24995 * nonlocal next_scc_id 24996 * 24997 * pre[w] = next_preorder_num 24998 * low[w] = next_preorder_num 24999 * next_preorder_num += 1 25000 * stack.append(w) 25001 * for s in successors(w): 25002 * # Note: for classic algorithm the block below should look as: 25003 * # 25004 * # if pre[s] == 0: 25005 * # recur(s) 25006 * # low[w] = min(low[w], low[s]) 25007 * # elif low[s] != NOT_ON_STACK: 25008 * # low[w] = min(low[w], pre[s]) 25009 * # 25010 * # But replacing both 'min' instructions with 'low[w] = min(low[w], low[s])' 25011 * # does not break the invariant and makes itartive version of the algorithm 25012 * # simpler. See 'Algorithm #3' from [2]. 25013 * 25014 * # 's' not yet visited 25015 * if pre[s] == 0: 25016 * recur(s) 25017 * # if 's' is on stack, pick lowest reachable preorder number from it; 25018 * # if 's' is not on stack 'low[s] == NOT_ON_STACK > low[w]', 25019 * # so 'min' would be a noop. 25020 * low[w] = min(low[w], low[s]) 25021 * 25022 * if low[w] == pre[w]: 25023 * # 'w' is the root of an SCC, pop all vertices 25024 * # below 'w' on stack and assign same SCC to them. 25025 * while True: 25026 * t = stack.pop() 25027 * low[t] = NOT_ON_STACK 25028 * scc[t] = next_scc_id 25029 * if t == w: 25030 * break 25031 * next_scc_id += 1 25032 * 25033 * for i in range(0, insn_cnt): 25034 * if pre[i] == 0: 25035 * recur(i) 25036 * 25037 * Below implementation replaces explicit recursion with array 'dfs'. 25038 */ 25039 for (i = 0; i < insn_cnt; i++) { 25040 if (pre[i]) 25041 continue; 25042 stack_sz = 0; 25043 dfs_sz = 1; 25044 dfs[0] = i; 25045 dfs_continue: 25046 while (dfs_sz) { 25047 w = dfs[dfs_sz - 1]; 25048 if (pre[w] == 0) { 25049 low[w] = next_preorder_num; 25050 pre[w] = next_preorder_num; 25051 next_preorder_num++; 25052 stack[stack_sz++] = w; 25053 } 25054 /* Visit 'w' successors */ 25055 succ = bpf_insn_successors(env, w); 25056 for (j = 0; j < succ->cnt; ++j) { 25057 if (pre[succ->items[j]]) { 25058 low[w] = min(low[w], low[succ->items[j]]); 25059 } else { 25060 dfs[dfs_sz++] = succ->items[j]; 25061 goto dfs_continue; 25062 } 25063 } 25064 /* 25065 * Preserve the invariant: if some vertex above in the stack 25066 * is reachable from 'w', keep 'w' on the stack. 25067 */ 25068 if (low[w] < pre[w]) { 25069 dfs_sz--; 25070 goto dfs_continue; 25071 } 25072 /* 25073 * Assign SCC number only if component has two or more elements, 25074 * or if component has a self reference. 25075 */ 25076 assign_scc = stack[stack_sz - 1] != w; 25077 for (j = 0; j < succ->cnt; ++j) { 25078 if (succ->items[j] == w) { 25079 assign_scc = true; 25080 break; 25081 } 25082 } 25083 /* Pop component elements from stack */ 25084 do { 25085 t = stack[--stack_sz]; 25086 low[t] = NOT_ON_STACK; 25087 if (assign_scc) 25088 aux[t].scc = next_scc_id; 25089 } while (t != w); 25090 if (assign_scc) 25091 next_scc_id++; 25092 dfs_sz--; 25093 } 25094 } 25095 env->scc_info = kvcalloc(next_scc_id, sizeof(*env->scc_info), GFP_KERNEL_ACCOUNT); 25096 if (!env->scc_info) { 25097 err = -ENOMEM; 25098 goto exit; 25099 } 25100 env->scc_cnt = next_scc_id; 25101 exit: 25102 kvfree(stack); 25103 kvfree(pre); 25104 kvfree(low); 25105 kvfree(dfs); 25106 return err; 25107 } 25108 25109 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 25110 { 25111 u64 start_time = ktime_get_ns(); 25112 struct bpf_verifier_env *env; 25113 int i, len, ret = -EINVAL, err; 25114 u32 log_true_size; 25115 bool is_priv; 25116 25117 BTF_TYPE_EMIT(enum bpf_features); 25118 25119 /* no program is valid */ 25120 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 25121 return -EINVAL; 25122 25123 /* 'struct bpf_verifier_env' can be global, but since it's not small, 25124 * allocate/free it every time bpf_check() is called 25125 */ 25126 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL_ACCOUNT); 25127 if (!env) 25128 return -ENOMEM; 25129 25130 env->bt.env = env; 25131 25132 len = (*prog)->len; 25133 env->insn_aux_data = 25134 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 25135 ret = -ENOMEM; 25136 if (!env->insn_aux_data) 25137 goto err_free_env; 25138 for (i = 0; i < len; i++) 25139 env->insn_aux_data[i].orig_idx = i; 25140 env->succ = iarray_realloc(NULL, 2); 25141 if (!env->succ) 25142 goto err_free_env; 25143 env->prog = *prog; 25144 env->ops = bpf_verifier_ops[env->prog->type]; 25145 25146 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); 25147 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); 25148 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); 25149 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); 25150 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); 25151 25152 bpf_get_btf_vmlinux(); 25153 25154 /* grab the mutex to protect few globals used by verifier */ 25155 if (!is_priv) 25156 mutex_lock(&bpf_verifier_lock); 25157 25158 /* user could have requested verbose verifier output 25159 * and supplied buffer to store the verification trace 25160 */ 25161 ret = bpf_vlog_init(&env->log, attr->log_level, 25162 (char __user *) (unsigned long) attr->log_buf, 25163 attr->log_size); 25164 if (ret) 25165 goto err_unlock; 25166 25167 ret = process_fd_array(env, attr, uattr); 25168 if (ret) 25169 goto skip_full_check; 25170 25171 mark_verifier_state_clean(env); 25172 25173 if (IS_ERR(btf_vmlinux)) { 25174 /* Either gcc or pahole or kernel are broken. */ 25175 verbose(env, "in-kernel BTF is malformed\n"); 25176 ret = PTR_ERR(btf_vmlinux); 25177 goto skip_full_check; 25178 } 25179 25180 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 25181 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 25182 env->strict_alignment = true; 25183 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 25184 env->strict_alignment = false; 25185 25186 if (is_priv) 25187 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 25188 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 25189 25190 env->explored_states = kvcalloc(state_htab_size(env), 25191 sizeof(struct list_head), 25192 GFP_KERNEL_ACCOUNT); 25193 ret = -ENOMEM; 25194 if (!env->explored_states) 25195 goto skip_full_check; 25196 25197 for (i = 0; i < state_htab_size(env); i++) 25198 INIT_LIST_HEAD(&env->explored_states[i]); 25199 INIT_LIST_HEAD(&env->free_list); 25200 25201 ret = check_btf_info_early(env, attr, uattr); 25202 if (ret < 0) 25203 goto skip_full_check; 25204 25205 ret = add_subprog_and_kfunc(env); 25206 if (ret < 0) 25207 goto skip_full_check; 25208 25209 ret = check_subprogs(env); 25210 if (ret < 0) 25211 goto skip_full_check; 25212 25213 ret = check_btf_info(env, attr, uattr); 25214 if (ret < 0) 25215 goto skip_full_check; 25216 25217 ret = resolve_pseudo_ldimm64(env); 25218 if (ret < 0) 25219 goto skip_full_check; 25220 25221 if (bpf_prog_is_offloaded(env->prog->aux)) { 25222 ret = bpf_prog_offload_verifier_prep(env->prog); 25223 if (ret) 25224 goto skip_full_check; 25225 } 25226 25227 ret = check_cfg(env); 25228 if (ret < 0) 25229 goto skip_full_check; 25230 25231 ret = compute_postorder(env); 25232 if (ret < 0) 25233 goto skip_full_check; 25234 25235 ret = bpf_stack_liveness_init(env); 25236 if (ret) 25237 goto skip_full_check; 25238 25239 ret = check_attach_btf_id(env); 25240 if (ret) 25241 goto skip_full_check; 25242 25243 ret = compute_scc(env); 25244 if (ret < 0) 25245 goto skip_full_check; 25246 25247 ret = compute_live_registers(env); 25248 if (ret < 0) 25249 goto skip_full_check; 25250 25251 ret = mark_fastcall_patterns(env); 25252 if (ret < 0) 25253 goto skip_full_check; 25254 25255 ret = do_check_main(env); 25256 ret = ret ?: do_check_subprogs(env); 25257 25258 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 25259 ret = bpf_prog_offload_finalize(env); 25260 25261 skip_full_check: 25262 kvfree(env->explored_states); 25263 25264 /* might decrease stack depth, keep it before passes that 25265 * allocate additional slots. 25266 */ 25267 if (ret == 0) 25268 ret = remove_fastcall_spills_fills(env); 25269 25270 if (ret == 0) 25271 ret = check_max_stack_depth(env); 25272 25273 /* instruction rewrites happen after this point */ 25274 if (ret == 0) 25275 ret = optimize_bpf_loop(env); 25276 25277 if (is_priv) { 25278 if (ret == 0) 25279 opt_hard_wire_dead_code_branches(env); 25280 if (ret == 0) 25281 ret = opt_remove_dead_code(env); 25282 if (ret == 0) 25283 ret = opt_remove_nops(env); 25284 } else { 25285 if (ret == 0) 25286 sanitize_dead_code(env); 25287 } 25288 25289 if (ret == 0) 25290 /* program is valid, convert *(u32*)(ctx + off) accesses */ 25291 ret = convert_ctx_accesses(env); 25292 25293 if (ret == 0) 25294 ret = do_misc_fixups(env); 25295 25296 /* do 32-bit optimization after insn patching has done so those patched 25297 * insns could be handled correctly. 25298 */ 25299 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 25300 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 25301 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 25302 : false; 25303 } 25304 25305 if (ret == 0) 25306 ret = fixup_call_args(env); 25307 25308 env->verification_time = ktime_get_ns() - start_time; 25309 print_verification_stats(env); 25310 env->prog->aux->verified_insns = env->insn_processed; 25311 25312 /* preserve original error even if log finalization is successful */ 25313 err = bpf_vlog_finalize(&env->log, &log_true_size); 25314 if (err) 25315 ret = err; 25316 25317 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 25318 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 25319 &log_true_size, sizeof(log_true_size))) { 25320 ret = -EFAULT; 25321 goto err_release_maps; 25322 } 25323 25324 if (ret) 25325 goto err_release_maps; 25326 25327 if (env->used_map_cnt) { 25328 /* if program passed verifier, update used_maps in bpf_prog_info */ 25329 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 25330 sizeof(env->used_maps[0]), 25331 GFP_KERNEL_ACCOUNT); 25332 25333 if (!env->prog->aux->used_maps) { 25334 ret = -ENOMEM; 25335 goto err_release_maps; 25336 } 25337 25338 memcpy(env->prog->aux->used_maps, env->used_maps, 25339 sizeof(env->used_maps[0]) * env->used_map_cnt); 25340 env->prog->aux->used_map_cnt = env->used_map_cnt; 25341 } 25342 if (env->used_btf_cnt) { 25343 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 25344 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 25345 sizeof(env->used_btfs[0]), 25346 GFP_KERNEL_ACCOUNT); 25347 if (!env->prog->aux->used_btfs) { 25348 ret = -ENOMEM; 25349 goto err_release_maps; 25350 } 25351 25352 memcpy(env->prog->aux->used_btfs, env->used_btfs, 25353 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 25354 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 25355 } 25356 if (env->used_map_cnt || env->used_btf_cnt) { 25357 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 25358 * bpf_ld_imm64 instructions 25359 */ 25360 convert_pseudo_ld_imm64(env); 25361 } 25362 25363 adjust_btf_func(env); 25364 25365 err_release_maps: 25366 if (ret) 25367 release_insn_arrays(env); 25368 if (!env->prog->aux->used_maps) 25369 /* if we didn't copy map pointers into bpf_prog_info, release 25370 * them now. Otherwise free_used_maps() will release them. 25371 */ 25372 release_maps(env); 25373 if (!env->prog->aux->used_btfs) 25374 release_btfs(env); 25375 25376 /* extension progs temporarily inherit the attach_type of their targets 25377 for verification purposes, so set it back to zero before returning 25378 */ 25379 if (env->prog->type == BPF_PROG_TYPE_EXT) 25380 env->prog->expected_attach_type = 0; 25381 25382 *prog = env->prog; 25383 25384 module_put(env->attach_btf_mod); 25385 err_unlock: 25386 if (!is_priv) 25387 mutex_unlock(&bpf_verifier_lock); 25388 clear_insn_aux_data(env, 0, env->prog->len); 25389 vfree(env->insn_aux_data); 25390 err_free_env: 25391 bpf_stack_liveness_free(env); 25392 kvfree(env->cfg.insn_postorder); 25393 kvfree(env->scc_info); 25394 kvfree(env->succ); 25395 kvfree(env->gotox_tmp_buf); 25396 kvfree(env); 25397 return ret; 25398 } 25399