1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 23 #include "disasm.h" 24 25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 26 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 27 [_id] = & _name ## _verifier_ops, 28 #define BPF_MAP_TYPE(_id, _ops) 29 #include <linux/bpf_types.h> 30 #undef BPF_PROG_TYPE 31 #undef BPF_MAP_TYPE 32 }; 33 34 /* bpf_check() is a static code analyzer that walks eBPF program 35 * instruction by instruction and updates register/stack state. 36 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 37 * 38 * The first pass is depth-first-search to check that the program is a DAG. 39 * It rejects the following programs: 40 * - larger than BPF_MAXINSNS insns 41 * - if loop is present (detected via back-edge) 42 * - unreachable insns exist (shouldn't be a forest. program = one function) 43 * - out of bounds or malformed jumps 44 * The second pass is all possible path descent from the 1st insn. 45 * Since it's analyzing all pathes through the program, the length of the 46 * analysis is limited to 64k insn, which may be hit even if total number of 47 * insn is less then 4K, but there are too many branches that change stack/regs. 48 * Number of 'branches to be analyzed' is limited to 1k 49 * 50 * On entry to each instruction, each register has a type, and the instruction 51 * changes the types of the registers depending on instruction semantics. 52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 53 * copied to R1. 54 * 55 * All registers are 64-bit. 56 * R0 - return register 57 * R1-R5 argument passing registers 58 * R6-R9 callee saved registers 59 * R10 - frame pointer read-only 60 * 61 * At the start of BPF program the register R1 contains a pointer to bpf_context 62 * and has type PTR_TO_CTX. 63 * 64 * Verifier tracks arithmetic operations on pointers in case: 65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 67 * 1st insn copies R10 (which has FRAME_PTR) type into R1 68 * and 2nd arithmetic instruction is pattern matched to recognize 69 * that it wants to construct a pointer to some element within stack. 70 * So after 2nd insn, the register R1 has type PTR_TO_STACK 71 * (and -20 constant is saved for further stack bounds checking). 72 * Meaning that this reg is a pointer to stack plus known immediate constant. 73 * 74 * Most of the time the registers have SCALAR_VALUE type, which 75 * means the register has some value, but it's not a valid pointer. 76 * (like pointer plus pointer becomes SCALAR_VALUE type) 77 * 78 * When verifier sees load or store instructions the type of base register 79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 80 * four pointer types recognized by check_mem_access() function. 81 * 82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 83 * and the range of [ptr, ptr + map's value_size) is accessible. 84 * 85 * registers used to pass values to function calls are checked against 86 * function argument constraints. 87 * 88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 89 * It means that the register type passed to this function must be 90 * PTR_TO_STACK and it will be used inside the function as 91 * 'pointer to map element key' 92 * 93 * For example the argument constraints for bpf_map_lookup_elem(): 94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 95 * .arg1_type = ARG_CONST_MAP_PTR, 96 * .arg2_type = ARG_PTR_TO_MAP_KEY, 97 * 98 * ret_type says that this function returns 'pointer to map elem value or null' 99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 100 * 2nd argument should be a pointer to stack, which will be used inside 101 * the helper function as a pointer to map element key. 102 * 103 * On the kernel side the helper function looks like: 104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 105 * { 106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 107 * void *key = (void *) (unsigned long) r2; 108 * void *value; 109 * 110 * here kernel can access 'key' and 'map' pointers safely, knowing that 111 * [key, key + map->key_size) bytes are valid and were initialized on 112 * the stack of eBPF program. 113 * } 114 * 115 * Corresponding eBPF program may look like: 116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 120 * here verifier looks at prototype of map_lookup_elem() and sees: 121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 123 * 124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 126 * and were initialized prior to this call. 127 * If it's ok, then verifier allows this BPF_CALL insn and looks at 128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 130 * returns ether pointer to map value or NULL. 131 * 132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 133 * insn, the register holding that pointer in the true branch changes state to 134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 135 * branch. See check_cond_jmp_op(). 136 * 137 * After the call R0 is set to return type of the function and registers R1-R5 138 * are set to NOT_INIT to indicate that they are no longer readable. 139 * 140 * The following reference types represent a potential reference to a kernel 141 * resource which, after first being allocated, must be checked and freed by 142 * the BPF program: 143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 144 * 145 * When the verifier sees a helper call return a reference type, it allocates a 146 * pointer id for the reference and stores it in the current function state. 147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 149 * passes through a NULL-check conditional. For the branch wherein the state is 150 * changed to CONST_IMM, the verifier releases the reference. 151 * 152 * For each helper function that allocates a reference, such as 153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 154 * bpf_sk_release(). When a reference type passes into the release function, 155 * the verifier also releases the reference. If any unchecked or unreleased 156 * reference remains at the end of the program, the verifier rejects it. 157 */ 158 159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 160 struct bpf_verifier_stack_elem { 161 /* verifer state is 'st' 162 * before processing instruction 'insn_idx' 163 * and after processing instruction 'prev_insn_idx' 164 */ 165 struct bpf_verifier_state st; 166 int insn_idx; 167 int prev_insn_idx; 168 struct bpf_verifier_stack_elem *next; 169 }; 170 171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 172 #define BPF_COMPLEXITY_LIMIT_STATES 64 173 174 #define BPF_MAP_KEY_POISON (1ULL << 63) 175 #define BPF_MAP_KEY_SEEN (1ULL << 62) 176 177 #define BPF_MAP_PTR_UNPRIV 1UL 178 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 179 POISON_POINTER_DELTA)) 180 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 181 182 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 183 { 184 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 185 } 186 187 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 188 { 189 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 190 } 191 192 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 193 const struct bpf_map *map, bool unpriv) 194 { 195 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 196 unpriv |= bpf_map_ptr_unpriv(aux); 197 aux->map_ptr_state = (unsigned long)map | 198 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 199 } 200 201 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 202 { 203 return aux->map_key_state & BPF_MAP_KEY_POISON; 204 } 205 206 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 207 { 208 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 209 } 210 211 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 212 { 213 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 214 } 215 216 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 217 { 218 bool poisoned = bpf_map_key_poisoned(aux); 219 220 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 221 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 222 } 223 224 struct bpf_call_arg_meta { 225 struct bpf_map *map_ptr; 226 bool raw_mode; 227 bool pkt_access; 228 int regno; 229 int access_size; 230 s64 msize_smax_value; 231 u64 msize_umax_value; 232 int ref_obj_id; 233 int func_id; 234 u32 btf_id; 235 }; 236 237 struct btf *btf_vmlinux; 238 239 static DEFINE_MUTEX(bpf_verifier_lock); 240 241 static const struct bpf_line_info * 242 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 243 { 244 const struct bpf_line_info *linfo; 245 const struct bpf_prog *prog; 246 u32 i, nr_linfo; 247 248 prog = env->prog; 249 nr_linfo = prog->aux->nr_linfo; 250 251 if (!nr_linfo || insn_off >= prog->len) 252 return NULL; 253 254 linfo = prog->aux->linfo; 255 for (i = 1; i < nr_linfo; i++) 256 if (insn_off < linfo[i].insn_off) 257 break; 258 259 return &linfo[i - 1]; 260 } 261 262 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 263 va_list args) 264 { 265 unsigned int n; 266 267 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 268 269 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 270 "verifier log line truncated - local buffer too short\n"); 271 272 n = min(log->len_total - log->len_used - 1, n); 273 log->kbuf[n] = '\0'; 274 275 if (log->level == BPF_LOG_KERNEL) { 276 pr_err("BPF:%s\n", log->kbuf); 277 return; 278 } 279 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 280 log->len_used += n; 281 else 282 log->ubuf = NULL; 283 } 284 285 /* log_level controls verbosity level of eBPF verifier. 286 * bpf_verifier_log_write() is used to dump the verification trace to the log, 287 * so the user can figure out what's wrong with the program 288 */ 289 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 290 const char *fmt, ...) 291 { 292 va_list args; 293 294 if (!bpf_verifier_log_needed(&env->log)) 295 return; 296 297 va_start(args, fmt); 298 bpf_verifier_vlog(&env->log, fmt, args); 299 va_end(args); 300 } 301 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 302 303 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 304 { 305 struct bpf_verifier_env *env = private_data; 306 va_list args; 307 308 if (!bpf_verifier_log_needed(&env->log)) 309 return; 310 311 va_start(args, fmt); 312 bpf_verifier_vlog(&env->log, fmt, args); 313 va_end(args); 314 } 315 316 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 317 const char *fmt, ...) 318 { 319 va_list args; 320 321 if (!bpf_verifier_log_needed(log)) 322 return; 323 324 va_start(args, fmt); 325 bpf_verifier_vlog(log, fmt, args); 326 va_end(args); 327 } 328 329 static const char *ltrim(const char *s) 330 { 331 while (isspace(*s)) 332 s++; 333 334 return s; 335 } 336 337 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 338 u32 insn_off, 339 const char *prefix_fmt, ...) 340 { 341 const struct bpf_line_info *linfo; 342 343 if (!bpf_verifier_log_needed(&env->log)) 344 return; 345 346 linfo = find_linfo(env, insn_off); 347 if (!linfo || linfo == env->prev_linfo) 348 return; 349 350 if (prefix_fmt) { 351 va_list args; 352 353 va_start(args, prefix_fmt); 354 bpf_verifier_vlog(&env->log, prefix_fmt, args); 355 va_end(args); 356 } 357 358 verbose(env, "%s\n", 359 ltrim(btf_name_by_offset(env->prog->aux->btf, 360 linfo->line_off))); 361 362 env->prev_linfo = linfo; 363 } 364 365 static bool type_is_pkt_pointer(enum bpf_reg_type type) 366 { 367 return type == PTR_TO_PACKET || 368 type == PTR_TO_PACKET_META; 369 } 370 371 static bool type_is_sk_pointer(enum bpf_reg_type type) 372 { 373 return type == PTR_TO_SOCKET || 374 type == PTR_TO_SOCK_COMMON || 375 type == PTR_TO_TCP_SOCK || 376 type == PTR_TO_XDP_SOCK; 377 } 378 379 static bool reg_type_may_be_null(enum bpf_reg_type type) 380 { 381 return type == PTR_TO_MAP_VALUE_OR_NULL || 382 type == PTR_TO_SOCKET_OR_NULL || 383 type == PTR_TO_SOCK_COMMON_OR_NULL || 384 type == PTR_TO_TCP_SOCK_OR_NULL; 385 } 386 387 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 388 { 389 return reg->type == PTR_TO_MAP_VALUE && 390 map_value_has_spin_lock(reg->map_ptr); 391 } 392 393 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 394 { 395 return type == PTR_TO_SOCKET || 396 type == PTR_TO_SOCKET_OR_NULL || 397 type == PTR_TO_TCP_SOCK || 398 type == PTR_TO_TCP_SOCK_OR_NULL; 399 } 400 401 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 402 { 403 return type == ARG_PTR_TO_SOCK_COMMON; 404 } 405 406 /* Determine whether the function releases some resources allocated by another 407 * function call. The first reference type argument will be assumed to be 408 * released by release_reference(). 409 */ 410 static bool is_release_function(enum bpf_func_id func_id) 411 { 412 return func_id == BPF_FUNC_sk_release; 413 } 414 415 static bool is_acquire_function(enum bpf_func_id func_id) 416 { 417 return func_id == BPF_FUNC_sk_lookup_tcp || 418 func_id == BPF_FUNC_sk_lookup_udp || 419 func_id == BPF_FUNC_skc_lookup_tcp; 420 } 421 422 static bool is_ptr_cast_function(enum bpf_func_id func_id) 423 { 424 return func_id == BPF_FUNC_tcp_sock || 425 func_id == BPF_FUNC_sk_fullsock; 426 } 427 428 /* string representation of 'enum bpf_reg_type' */ 429 static const char * const reg_type_str[] = { 430 [NOT_INIT] = "?", 431 [SCALAR_VALUE] = "inv", 432 [PTR_TO_CTX] = "ctx", 433 [CONST_PTR_TO_MAP] = "map_ptr", 434 [PTR_TO_MAP_VALUE] = "map_value", 435 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 436 [PTR_TO_STACK] = "fp", 437 [PTR_TO_PACKET] = "pkt", 438 [PTR_TO_PACKET_META] = "pkt_meta", 439 [PTR_TO_PACKET_END] = "pkt_end", 440 [PTR_TO_FLOW_KEYS] = "flow_keys", 441 [PTR_TO_SOCKET] = "sock", 442 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 443 [PTR_TO_SOCK_COMMON] = "sock_common", 444 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 445 [PTR_TO_TCP_SOCK] = "tcp_sock", 446 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 447 [PTR_TO_TP_BUFFER] = "tp_buffer", 448 [PTR_TO_XDP_SOCK] = "xdp_sock", 449 [PTR_TO_BTF_ID] = "ptr_", 450 }; 451 452 static char slot_type_char[] = { 453 [STACK_INVALID] = '?', 454 [STACK_SPILL] = 'r', 455 [STACK_MISC] = 'm', 456 [STACK_ZERO] = '0', 457 }; 458 459 static void print_liveness(struct bpf_verifier_env *env, 460 enum bpf_reg_liveness live) 461 { 462 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 463 verbose(env, "_"); 464 if (live & REG_LIVE_READ) 465 verbose(env, "r"); 466 if (live & REG_LIVE_WRITTEN) 467 verbose(env, "w"); 468 if (live & REG_LIVE_DONE) 469 verbose(env, "D"); 470 } 471 472 static struct bpf_func_state *func(struct bpf_verifier_env *env, 473 const struct bpf_reg_state *reg) 474 { 475 struct bpf_verifier_state *cur = env->cur_state; 476 477 return cur->frame[reg->frameno]; 478 } 479 480 const char *kernel_type_name(u32 id) 481 { 482 return btf_name_by_offset(btf_vmlinux, 483 btf_type_by_id(btf_vmlinux, id)->name_off); 484 } 485 486 static void print_verifier_state(struct bpf_verifier_env *env, 487 const struct bpf_func_state *state) 488 { 489 const struct bpf_reg_state *reg; 490 enum bpf_reg_type t; 491 int i; 492 493 if (state->frameno) 494 verbose(env, " frame%d:", state->frameno); 495 for (i = 0; i < MAX_BPF_REG; i++) { 496 reg = &state->regs[i]; 497 t = reg->type; 498 if (t == NOT_INIT) 499 continue; 500 verbose(env, " R%d", i); 501 print_liveness(env, reg->live); 502 verbose(env, "=%s", reg_type_str[t]); 503 if (t == SCALAR_VALUE && reg->precise) 504 verbose(env, "P"); 505 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 506 tnum_is_const(reg->var_off)) { 507 /* reg->off should be 0 for SCALAR_VALUE */ 508 verbose(env, "%lld", reg->var_off.value + reg->off); 509 } else { 510 if (t == PTR_TO_BTF_ID) 511 verbose(env, "%s", kernel_type_name(reg->btf_id)); 512 verbose(env, "(id=%d", reg->id); 513 if (reg_type_may_be_refcounted_or_null(t)) 514 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 515 if (t != SCALAR_VALUE) 516 verbose(env, ",off=%d", reg->off); 517 if (type_is_pkt_pointer(t)) 518 verbose(env, ",r=%d", reg->range); 519 else if (t == CONST_PTR_TO_MAP || 520 t == PTR_TO_MAP_VALUE || 521 t == PTR_TO_MAP_VALUE_OR_NULL) 522 verbose(env, ",ks=%d,vs=%d", 523 reg->map_ptr->key_size, 524 reg->map_ptr->value_size); 525 if (tnum_is_const(reg->var_off)) { 526 /* Typically an immediate SCALAR_VALUE, but 527 * could be a pointer whose offset is too big 528 * for reg->off 529 */ 530 verbose(env, ",imm=%llx", reg->var_off.value); 531 } else { 532 if (reg->smin_value != reg->umin_value && 533 reg->smin_value != S64_MIN) 534 verbose(env, ",smin_value=%lld", 535 (long long)reg->smin_value); 536 if (reg->smax_value != reg->umax_value && 537 reg->smax_value != S64_MAX) 538 verbose(env, ",smax_value=%lld", 539 (long long)reg->smax_value); 540 if (reg->umin_value != 0) 541 verbose(env, ",umin_value=%llu", 542 (unsigned long long)reg->umin_value); 543 if (reg->umax_value != U64_MAX) 544 verbose(env, ",umax_value=%llu", 545 (unsigned long long)reg->umax_value); 546 if (!tnum_is_unknown(reg->var_off)) { 547 char tn_buf[48]; 548 549 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 550 verbose(env, ",var_off=%s", tn_buf); 551 } 552 } 553 verbose(env, ")"); 554 } 555 } 556 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 557 char types_buf[BPF_REG_SIZE + 1]; 558 bool valid = false; 559 int j; 560 561 for (j = 0; j < BPF_REG_SIZE; j++) { 562 if (state->stack[i].slot_type[j] != STACK_INVALID) 563 valid = true; 564 types_buf[j] = slot_type_char[ 565 state->stack[i].slot_type[j]]; 566 } 567 types_buf[BPF_REG_SIZE] = 0; 568 if (!valid) 569 continue; 570 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 571 print_liveness(env, state->stack[i].spilled_ptr.live); 572 if (state->stack[i].slot_type[0] == STACK_SPILL) { 573 reg = &state->stack[i].spilled_ptr; 574 t = reg->type; 575 verbose(env, "=%s", reg_type_str[t]); 576 if (t == SCALAR_VALUE && reg->precise) 577 verbose(env, "P"); 578 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 579 verbose(env, "%lld", reg->var_off.value + reg->off); 580 } else { 581 verbose(env, "=%s", types_buf); 582 } 583 } 584 if (state->acquired_refs && state->refs[0].id) { 585 verbose(env, " refs=%d", state->refs[0].id); 586 for (i = 1; i < state->acquired_refs; i++) 587 if (state->refs[i].id) 588 verbose(env, ",%d", state->refs[i].id); 589 } 590 verbose(env, "\n"); 591 } 592 593 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 594 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 595 const struct bpf_func_state *src) \ 596 { \ 597 if (!src->FIELD) \ 598 return 0; \ 599 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 600 /* internal bug, make state invalid to reject the program */ \ 601 memset(dst, 0, sizeof(*dst)); \ 602 return -EFAULT; \ 603 } \ 604 memcpy(dst->FIELD, src->FIELD, \ 605 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 606 return 0; \ 607 } 608 /* copy_reference_state() */ 609 COPY_STATE_FN(reference, acquired_refs, refs, 1) 610 /* copy_stack_state() */ 611 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 612 #undef COPY_STATE_FN 613 614 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 615 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 616 bool copy_old) \ 617 { \ 618 u32 old_size = state->COUNT; \ 619 struct bpf_##NAME##_state *new_##FIELD; \ 620 int slot = size / SIZE; \ 621 \ 622 if (size <= old_size || !size) { \ 623 if (copy_old) \ 624 return 0; \ 625 state->COUNT = slot * SIZE; \ 626 if (!size && old_size) { \ 627 kfree(state->FIELD); \ 628 state->FIELD = NULL; \ 629 } \ 630 return 0; \ 631 } \ 632 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 633 GFP_KERNEL); \ 634 if (!new_##FIELD) \ 635 return -ENOMEM; \ 636 if (copy_old) { \ 637 if (state->FIELD) \ 638 memcpy(new_##FIELD, state->FIELD, \ 639 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 640 memset(new_##FIELD + old_size / SIZE, 0, \ 641 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 642 } \ 643 state->COUNT = slot * SIZE; \ 644 kfree(state->FIELD); \ 645 state->FIELD = new_##FIELD; \ 646 return 0; \ 647 } 648 /* realloc_reference_state() */ 649 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 650 /* realloc_stack_state() */ 651 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 652 #undef REALLOC_STATE_FN 653 654 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 655 * make it consume minimal amount of memory. check_stack_write() access from 656 * the program calls into realloc_func_state() to grow the stack size. 657 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 658 * which realloc_stack_state() copies over. It points to previous 659 * bpf_verifier_state which is never reallocated. 660 */ 661 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 662 int refs_size, bool copy_old) 663 { 664 int err = realloc_reference_state(state, refs_size, copy_old); 665 if (err) 666 return err; 667 return realloc_stack_state(state, stack_size, copy_old); 668 } 669 670 /* Acquire a pointer id from the env and update the state->refs to include 671 * this new pointer reference. 672 * On success, returns a valid pointer id to associate with the register 673 * On failure, returns a negative errno. 674 */ 675 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 676 { 677 struct bpf_func_state *state = cur_func(env); 678 int new_ofs = state->acquired_refs; 679 int id, err; 680 681 err = realloc_reference_state(state, state->acquired_refs + 1, true); 682 if (err) 683 return err; 684 id = ++env->id_gen; 685 state->refs[new_ofs].id = id; 686 state->refs[new_ofs].insn_idx = insn_idx; 687 688 return id; 689 } 690 691 /* release function corresponding to acquire_reference_state(). Idempotent. */ 692 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 693 { 694 int i, last_idx; 695 696 last_idx = state->acquired_refs - 1; 697 for (i = 0; i < state->acquired_refs; i++) { 698 if (state->refs[i].id == ptr_id) { 699 if (last_idx && i != last_idx) 700 memcpy(&state->refs[i], &state->refs[last_idx], 701 sizeof(*state->refs)); 702 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 703 state->acquired_refs--; 704 return 0; 705 } 706 } 707 return -EINVAL; 708 } 709 710 static int transfer_reference_state(struct bpf_func_state *dst, 711 struct bpf_func_state *src) 712 { 713 int err = realloc_reference_state(dst, src->acquired_refs, false); 714 if (err) 715 return err; 716 err = copy_reference_state(dst, src); 717 if (err) 718 return err; 719 return 0; 720 } 721 722 static void free_func_state(struct bpf_func_state *state) 723 { 724 if (!state) 725 return; 726 kfree(state->refs); 727 kfree(state->stack); 728 kfree(state); 729 } 730 731 static void clear_jmp_history(struct bpf_verifier_state *state) 732 { 733 kfree(state->jmp_history); 734 state->jmp_history = NULL; 735 state->jmp_history_cnt = 0; 736 } 737 738 static void free_verifier_state(struct bpf_verifier_state *state, 739 bool free_self) 740 { 741 int i; 742 743 for (i = 0; i <= state->curframe; i++) { 744 free_func_state(state->frame[i]); 745 state->frame[i] = NULL; 746 } 747 clear_jmp_history(state); 748 if (free_self) 749 kfree(state); 750 } 751 752 /* copy verifier state from src to dst growing dst stack space 753 * when necessary to accommodate larger src stack 754 */ 755 static int copy_func_state(struct bpf_func_state *dst, 756 const struct bpf_func_state *src) 757 { 758 int err; 759 760 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 761 false); 762 if (err) 763 return err; 764 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 765 err = copy_reference_state(dst, src); 766 if (err) 767 return err; 768 return copy_stack_state(dst, src); 769 } 770 771 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 772 const struct bpf_verifier_state *src) 773 { 774 struct bpf_func_state *dst; 775 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 776 int i, err; 777 778 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 779 kfree(dst_state->jmp_history); 780 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 781 if (!dst_state->jmp_history) 782 return -ENOMEM; 783 } 784 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 785 dst_state->jmp_history_cnt = src->jmp_history_cnt; 786 787 /* if dst has more stack frames then src frame, free them */ 788 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 789 free_func_state(dst_state->frame[i]); 790 dst_state->frame[i] = NULL; 791 } 792 dst_state->speculative = src->speculative; 793 dst_state->curframe = src->curframe; 794 dst_state->active_spin_lock = src->active_spin_lock; 795 dst_state->branches = src->branches; 796 dst_state->parent = src->parent; 797 dst_state->first_insn_idx = src->first_insn_idx; 798 dst_state->last_insn_idx = src->last_insn_idx; 799 for (i = 0; i <= src->curframe; i++) { 800 dst = dst_state->frame[i]; 801 if (!dst) { 802 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 803 if (!dst) 804 return -ENOMEM; 805 dst_state->frame[i] = dst; 806 } 807 err = copy_func_state(dst, src->frame[i]); 808 if (err) 809 return err; 810 } 811 return 0; 812 } 813 814 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 815 { 816 while (st) { 817 u32 br = --st->branches; 818 819 /* WARN_ON(br > 1) technically makes sense here, 820 * but see comment in push_stack(), hence: 821 */ 822 WARN_ONCE((int)br < 0, 823 "BUG update_branch_counts:branches_to_explore=%d\n", 824 br); 825 if (br) 826 break; 827 st = st->parent; 828 } 829 } 830 831 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 832 int *insn_idx) 833 { 834 struct bpf_verifier_state *cur = env->cur_state; 835 struct bpf_verifier_stack_elem *elem, *head = env->head; 836 int err; 837 838 if (env->head == NULL) 839 return -ENOENT; 840 841 if (cur) { 842 err = copy_verifier_state(cur, &head->st); 843 if (err) 844 return err; 845 } 846 if (insn_idx) 847 *insn_idx = head->insn_idx; 848 if (prev_insn_idx) 849 *prev_insn_idx = head->prev_insn_idx; 850 elem = head->next; 851 free_verifier_state(&head->st, false); 852 kfree(head); 853 env->head = elem; 854 env->stack_size--; 855 return 0; 856 } 857 858 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 859 int insn_idx, int prev_insn_idx, 860 bool speculative) 861 { 862 struct bpf_verifier_state *cur = env->cur_state; 863 struct bpf_verifier_stack_elem *elem; 864 int err; 865 866 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 867 if (!elem) 868 goto err; 869 870 elem->insn_idx = insn_idx; 871 elem->prev_insn_idx = prev_insn_idx; 872 elem->next = env->head; 873 env->head = elem; 874 env->stack_size++; 875 err = copy_verifier_state(&elem->st, cur); 876 if (err) 877 goto err; 878 elem->st.speculative |= speculative; 879 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 880 verbose(env, "The sequence of %d jumps is too complex.\n", 881 env->stack_size); 882 goto err; 883 } 884 if (elem->st.parent) { 885 ++elem->st.parent->branches; 886 /* WARN_ON(branches > 2) technically makes sense here, 887 * but 888 * 1. speculative states will bump 'branches' for non-branch 889 * instructions 890 * 2. is_state_visited() heuristics may decide not to create 891 * a new state for a sequence of branches and all such current 892 * and cloned states will be pointing to a single parent state 893 * which might have large 'branches' count. 894 */ 895 } 896 return &elem->st; 897 err: 898 free_verifier_state(env->cur_state, true); 899 env->cur_state = NULL; 900 /* pop all elements and return */ 901 while (!pop_stack(env, NULL, NULL)); 902 return NULL; 903 } 904 905 #define CALLER_SAVED_REGS 6 906 static const int caller_saved[CALLER_SAVED_REGS] = { 907 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 908 }; 909 910 static void __mark_reg_not_init(struct bpf_reg_state *reg); 911 912 /* Mark the unknown part of a register (variable offset or scalar value) as 913 * known to have the value @imm. 914 */ 915 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 916 { 917 /* Clear id, off, and union(map_ptr, range) */ 918 memset(((u8 *)reg) + sizeof(reg->type), 0, 919 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 920 reg->var_off = tnum_const(imm); 921 reg->smin_value = (s64)imm; 922 reg->smax_value = (s64)imm; 923 reg->umin_value = imm; 924 reg->umax_value = imm; 925 } 926 927 /* Mark the 'variable offset' part of a register as zero. This should be 928 * used only on registers holding a pointer type. 929 */ 930 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 931 { 932 __mark_reg_known(reg, 0); 933 } 934 935 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 936 { 937 __mark_reg_known(reg, 0); 938 reg->type = SCALAR_VALUE; 939 } 940 941 static void mark_reg_known_zero(struct bpf_verifier_env *env, 942 struct bpf_reg_state *regs, u32 regno) 943 { 944 if (WARN_ON(regno >= MAX_BPF_REG)) { 945 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 946 /* Something bad happened, let's kill all regs */ 947 for (regno = 0; regno < MAX_BPF_REG; regno++) 948 __mark_reg_not_init(regs + regno); 949 return; 950 } 951 __mark_reg_known_zero(regs + regno); 952 } 953 954 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 955 { 956 return type_is_pkt_pointer(reg->type); 957 } 958 959 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 960 { 961 return reg_is_pkt_pointer(reg) || 962 reg->type == PTR_TO_PACKET_END; 963 } 964 965 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 966 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 967 enum bpf_reg_type which) 968 { 969 /* The register can already have a range from prior markings. 970 * This is fine as long as it hasn't been advanced from its 971 * origin. 972 */ 973 return reg->type == which && 974 reg->id == 0 && 975 reg->off == 0 && 976 tnum_equals_const(reg->var_off, 0); 977 } 978 979 /* Attempts to improve min/max values based on var_off information */ 980 static void __update_reg_bounds(struct bpf_reg_state *reg) 981 { 982 /* min signed is max(sign bit) | min(other bits) */ 983 reg->smin_value = max_t(s64, reg->smin_value, 984 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 985 /* max signed is min(sign bit) | max(other bits) */ 986 reg->smax_value = min_t(s64, reg->smax_value, 987 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 988 reg->umin_value = max(reg->umin_value, reg->var_off.value); 989 reg->umax_value = min(reg->umax_value, 990 reg->var_off.value | reg->var_off.mask); 991 } 992 993 /* Uses signed min/max values to inform unsigned, and vice-versa */ 994 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 995 { 996 /* Learn sign from signed bounds. 997 * If we cannot cross the sign boundary, then signed and unsigned bounds 998 * are the same, so combine. This works even in the negative case, e.g. 999 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1000 */ 1001 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1002 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1003 reg->umin_value); 1004 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1005 reg->umax_value); 1006 return; 1007 } 1008 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1009 * boundary, so we must be careful. 1010 */ 1011 if ((s64)reg->umax_value >= 0) { 1012 /* Positive. We can't learn anything from the smin, but smax 1013 * is positive, hence safe. 1014 */ 1015 reg->smin_value = reg->umin_value; 1016 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1017 reg->umax_value); 1018 } else if ((s64)reg->umin_value < 0) { 1019 /* Negative. We can't learn anything from the smax, but smin 1020 * is negative, hence safe. 1021 */ 1022 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1023 reg->umin_value); 1024 reg->smax_value = reg->umax_value; 1025 } 1026 } 1027 1028 /* Attempts to improve var_off based on unsigned min/max information */ 1029 static void __reg_bound_offset(struct bpf_reg_state *reg) 1030 { 1031 reg->var_off = tnum_intersect(reg->var_off, 1032 tnum_range(reg->umin_value, 1033 reg->umax_value)); 1034 } 1035 1036 static void __reg_bound_offset32(struct bpf_reg_state *reg) 1037 { 1038 u64 mask = 0xffffFFFF; 1039 struct tnum range = tnum_range(reg->umin_value & mask, 1040 reg->umax_value & mask); 1041 struct tnum lo32 = tnum_cast(reg->var_off, 4); 1042 struct tnum hi32 = tnum_lshift(tnum_rshift(reg->var_off, 32), 32); 1043 1044 reg->var_off = tnum_or(hi32, tnum_intersect(lo32, range)); 1045 } 1046 1047 /* Reset the min/max bounds of a register */ 1048 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1049 { 1050 reg->smin_value = S64_MIN; 1051 reg->smax_value = S64_MAX; 1052 reg->umin_value = 0; 1053 reg->umax_value = U64_MAX; 1054 } 1055 1056 /* Mark a register as having a completely unknown (scalar) value. */ 1057 static void __mark_reg_unknown(struct bpf_reg_state *reg) 1058 { 1059 /* 1060 * Clear type, id, off, and union(map_ptr, range) and 1061 * padding between 'type' and union 1062 */ 1063 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1064 reg->type = SCALAR_VALUE; 1065 reg->var_off = tnum_unknown; 1066 reg->frameno = 0; 1067 __mark_reg_unbounded(reg); 1068 } 1069 1070 static void mark_reg_unknown(struct bpf_verifier_env *env, 1071 struct bpf_reg_state *regs, u32 regno) 1072 { 1073 if (WARN_ON(regno >= MAX_BPF_REG)) { 1074 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1075 /* Something bad happened, let's kill all regs except FP */ 1076 for (regno = 0; regno < BPF_REG_FP; regno++) 1077 __mark_reg_not_init(regs + regno); 1078 return; 1079 } 1080 regs += regno; 1081 __mark_reg_unknown(regs); 1082 /* constant backtracking is enabled for root without bpf2bpf calls */ 1083 regs->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ? 1084 true : false; 1085 } 1086 1087 static void __mark_reg_not_init(struct bpf_reg_state *reg) 1088 { 1089 __mark_reg_unknown(reg); 1090 reg->type = NOT_INIT; 1091 } 1092 1093 static void mark_reg_not_init(struct bpf_verifier_env *env, 1094 struct bpf_reg_state *regs, u32 regno) 1095 { 1096 if (WARN_ON(regno >= MAX_BPF_REG)) { 1097 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1098 /* Something bad happened, let's kill all regs except FP */ 1099 for (regno = 0; regno < BPF_REG_FP; regno++) 1100 __mark_reg_not_init(regs + regno); 1101 return; 1102 } 1103 __mark_reg_not_init(regs + regno); 1104 } 1105 1106 #define DEF_NOT_SUBREG (0) 1107 static void init_reg_state(struct bpf_verifier_env *env, 1108 struct bpf_func_state *state) 1109 { 1110 struct bpf_reg_state *regs = state->regs; 1111 int i; 1112 1113 for (i = 0; i < MAX_BPF_REG; i++) { 1114 mark_reg_not_init(env, regs, i); 1115 regs[i].live = REG_LIVE_NONE; 1116 regs[i].parent = NULL; 1117 regs[i].subreg_def = DEF_NOT_SUBREG; 1118 } 1119 1120 /* frame pointer */ 1121 regs[BPF_REG_FP].type = PTR_TO_STACK; 1122 mark_reg_known_zero(env, regs, BPF_REG_FP); 1123 regs[BPF_REG_FP].frameno = state->frameno; 1124 1125 /* 1st arg to a function */ 1126 regs[BPF_REG_1].type = PTR_TO_CTX; 1127 mark_reg_known_zero(env, regs, BPF_REG_1); 1128 } 1129 1130 #define BPF_MAIN_FUNC (-1) 1131 static void init_func_state(struct bpf_verifier_env *env, 1132 struct bpf_func_state *state, 1133 int callsite, int frameno, int subprogno) 1134 { 1135 state->callsite = callsite; 1136 state->frameno = frameno; 1137 state->subprogno = subprogno; 1138 init_reg_state(env, state); 1139 } 1140 1141 enum reg_arg_type { 1142 SRC_OP, /* register is used as source operand */ 1143 DST_OP, /* register is used as destination operand */ 1144 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1145 }; 1146 1147 static int cmp_subprogs(const void *a, const void *b) 1148 { 1149 return ((struct bpf_subprog_info *)a)->start - 1150 ((struct bpf_subprog_info *)b)->start; 1151 } 1152 1153 static int find_subprog(struct bpf_verifier_env *env, int off) 1154 { 1155 struct bpf_subprog_info *p; 1156 1157 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1158 sizeof(env->subprog_info[0]), cmp_subprogs); 1159 if (!p) 1160 return -ENOENT; 1161 return p - env->subprog_info; 1162 1163 } 1164 1165 static int add_subprog(struct bpf_verifier_env *env, int off) 1166 { 1167 int insn_cnt = env->prog->len; 1168 int ret; 1169 1170 if (off >= insn_cnt || off < 0) { 1171 verbose(env, "call to invalid destination\n"); 1172 return -EINVAL; 1173 } 1174 ret = find_subprog(env, off); 1175 if (ret >= 0) 1176 return 0; 1177 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1178 verbose(env, "too many subprograms\n"); 1179 return -E2BIG; 1180 } 1181 env->subprog_info[env->subprog_cnt++].start = off; 1182 sort(env->subprog_info, env->subprog_cnt, 1183 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1184 return 0; 1185 } 1186 1187 static int check_subprogs(struct bpf_verifier_env *env) 1188 { 1189 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1190 struct bpf_subprog_info *subprog = env->subprog_info; 1191 struct bpf_insn *insn = env->prog->insnsi; 1192 int insn_cnt = env->prog->len; 1193 1194 /* Add entry function. */ 1195 ret = add_subprog(env, 0); 1196 if (ret < 0) 1197 return ret; 1198 1199 /* determine subprog starts. The end is one before the next starts */ 1200 for (i = 0; i < insn_cnt; i++) { 1201 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1202 continue; 1203 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1204 continue; 1205 if (!env->allow_ptr_leaks) { 1206 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1207 return -EPERM; 1208 } 1209 ret = add_subprog(env, i + insn[i].imm + 1); 1210 if (ret < 0) 1211 return ret; 1212 } 1213 1214 /* Add a fake 'exit' subprog which could simplify subprog iteration 1215 * logic. 'subprog_cnt' should not be increased. 1216 */ 1217 subprog[env->subprog_cnt].start = insn_cnt; 1218 1219 if (env->log.level & BPF_LOG_LEVEL2) 1220 for (i = 0; i < env->subprog_cnt; i++) 1221 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1222 1223 /* now check that all jumps are within the same subprog */ 1224 subprog_start = subprog[cur_subprog].start; 1225 subprog_end = subprog[cur_subprog + 1].start; 1226 for (i = 0; i < insn_cnt; i++) { 1227 u8 code = insn[i].code; 1228 1229 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1230 goto next; 1231 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1232 goto next; 1233 off = i + insn[i].off + 1; 1234 if (off < subprog_start || off >= subprog_end) { 1235 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1236 return -EINVAL; 1237 } 1238 next: 1239 if (i == subprog_end - 1) { 1240 /* to avoid fall-through from one subprog into another 1241 * the last insn of the subprog should be either exit 1242 * or unconditional jump back 1243 */ 1244 if (code != (BPF_JMP | BPF_EXIT) && 1245 code != (BPF_JMP | BPF_JA)) { 1246 verbose(env, "last insn is not an exit or jmp\n"); 1247 return -EINVAL; 1248 } 1249 subprog_start = subprog_end; 1250 cur_subprog++; 1251 if (cur_subprog < env->subprog_cnt) 1252 subprog_end = subprog[cur_subprog + 1].start; 1253 } 1254 } 1255 return 0; 1256 } 1257 1258 /* Parentage chain of this register (or stack slot) should take care of all 1259 * issues like callee-saved registers, stack slot allocation time, etc. 1260 */ 1261 static int mark_reg_read(struct bpf_verifier_env *env, 1262 const struct bpf_reg_state *state, 1263 struct bpf_reg_state *parent, u8 flag) 1264 { 1265 bool writes = parent == state->parent; /* Observe write marks */ 1266 int cnt = 0; 1267 1268 while (parent) { 1269 /* if read wasn't screened by an earlier write ... */ 1270 if (writes && state->live & REG_LIVE_WRITTEN) 1271 break; 1272 if (parent->live & REG_LIVE_DONE) { 1273 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1274 reg_type_str[parent->type], 1275 parent->var_off.value, parent->off); 1276 return -EFAULT; 1277 } 1278 /* The first condition is more likely to be true than the 1279 * second, checked it first. 1280 */ 1281 if ((parent->live & REG_LIVE_READ) == flag || 1282 parent->live & REG_LIVE_READ64) 1283 /* The parentage chain never changes and 1284 * this parent was already marked as LIVE_READ. 1285 * There is no need to keep walking the chain again and 1286 * keep re-marking all parents as LIVE_READ. 1287 * This case happens when the same register is read 1288 * multiple times without writes into it in-between. 1289 * Also, if parent has the stronger REG_LIVE_READ64 set, 1290 * then no need to set the weak REG_LIVE_READ32. 1291 */ 1292 break; 1293 /* ... then we depend on parent's value */ 1294 parent->live |= flag; 1295 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1296 if (flag == REG_LIVE_READ64) 1297 parent->live &= ~REG_LIVE_READ32; 1298 state = parent; 1299 parent = state->parent; 1300 writes = true; 1301 cnt++; 1302 } 1303 1304 if (env->longest_mark_read_walk < cnt) 1305 env->longest_mark_read_walk = cnt; 1306 return 0; 1307 } 1308 1309 /* This function is supposed to be used by the following 32-bit optimization 1310 * code only. It returns TRUE if the source or destination register operates 1311 * on 64-bit, otherwise return FALSE. 1312 */ 1313 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1314 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1315 { 1316 u8 code, class, op; 1317 1318 code = insn->code; 1319 class = BPF_CLASS(code); 1320 op = BPF_OP(code); 1321 if (class == BPF_JMP) { 1322 /* BPF_EXIT for "main" will reach here. Return TRUE 1323 * conservatively. 1324 */ 1325 if (op == BPF_EXIT) 1326 return true; 1327 if (op == BPF_CALL) { 1328 /* BPF to BPF call will reach here because of marking 1329 * caller saved clobber with DST_OP_NO_MARK for which we 1330 * don't care the register def because they are anyway 1331 * marked as NOT_INIT already. 1332 */ 1333 if (insn->src_reg == BPF_PSEUDO_CALL) 1334 return false; 1335 /* Helper call will reach here because of arg type 1336 * check, conservatively return TRUE. 1337 */ 1338 if (t == SRC_OP) 1339 return true; 1340 1341 return false; 1342 } 1343 } 1344 1345 if (class == BPF_ALU64 || class == BPF_JMP || 1346 /* BPF_END always use BPF_ALU class. */ 1347 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1348 return true; 1349 1350 if (class == BPF_ALU || class == BPF_JMP32) 1351 return false; 1352 1353 if (class == BPF_LDX) { 1354 if (t != SRC_OP) 1355 return BPF_SIZE(code) == BPF_DW; 1356 /* LDX source must be ptr. */ 1357 return true; 1358 } 1359 1360 if (class == BPF_STX) { 1361 if (reg->type != SCALAR_VALUE) 1362 return true; 1363 return BPF_SIZE(code) == BPF_DW; 1364 } 1365 1366 if (class == BPF_LD) { 1367 u8 mode = BPF_MODE(code); 1368 1369 /* LD_IMM64 */ 1370 if (mode == BPF_IMM) 1371 return true; 1372 1373 /* Both LD_IND and LD_ABS return 32-bit data. */ 1374 if (t != SRC_OP) 1375 return false; 1376 1377 /* Implicit ctx ptr. */ 1378 if (regno == BPF_REG_6) 1379 return true; 1380 1381 /* Explicit source could be any width. */ 1382 return true; 1383 } 1384 1385 if (class == BPF_ST) 1386 /* The only source register for BPF_ST is a ptr. */ 1387 return true; 1388 1389 /* Conservatively return true at default. */ 1390 return true; 1391 } 1392 1393 /* Return TRUE if INSN doesn't have explicit value define. */ 1394 static bool insn_no_def(struct bpf_insn *insn) 1395 { 1396 u8 class = BPF_CLASS(insn->code); 1397 1398 return (class == BPF_JMP || class == BPF_JMP32 || 1399 class == BPF_STX || class == BPF_ST); 1400 } 1401 1402 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1403 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1404 { 1405 if (insn_no_def(insn)) 1406 return false; 1407 1408 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1409 } 1410 1411 static void mark_insn_zext(struct bpf_verifier_env *env, 1412 struct bpf_reg_state *reg) 1413 { 1414 s32 def_idx = reg->subreg_def; 1415 1416 if (def_idx == DEF_NOT_SUBREG) 1417 return; 1418 1419 env->insn_aux_data[def_idx - 1].zext_dst = true; 1420 /* The dst will be zero extended, so won't be sub-register anymore. */ 1421 reg->subreg_def = DEF_NOT_SUBREG; 1422 } 1423 1424 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1425 enum reg_arg_type t) 1426 { 1427 struct bpf_verifier_state *vstate = env->cur_state; 1428 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1429 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1430 struct bpf_reg_state *reg, *regs = state->regs; 1431 bool rw64; 1432 1433 if (regno >= MAX_BPF_REG) { 1434 verbose(env, "R%d is invalid\n", regno); 1435 return -EINVAL; 1436 } 1437 1438 reg = ®s[regno]; 1439 rw64 = is_reg64(env, insn, regno, reg, t); 1440 if (t == SRC_OP) { 1441 /* check whether register used as source operand can be read */ 1442 if (reg->type == NOT_INIT) { 1443 verbose(env, "R%d !read_ok\n", regno); 1444 return -EACCES; 1445 } 1446 /* We don't need to worry about FP liveness because it's read-only */ 1447 if (regno == BPF_REG_FP) 1448 return 0; 1449 1450 if (rw64) 1451 mark_insn_zext(env, reg); 1452 1453 return mark_reg_read(env, reg, reg->parent, 1454 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1455 } else { 1456 /* check whether register used as dest operand can be written to */ 1457 if (regno == BPF_REG_FP) { 1458 verbose(env, "frame pointer is read only\n"); 1459 return -EACCES; 1460 } 1461 reg->live |= REG_LIVE_WRITTEN; 1462 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1463 if (t == DST_OP) 1464 mark_reg_unknown(env, regs, regno); 1465 } 1466 return 0; 1467 } 1468 1469 /* for any branch, call, exit record the history of jmps in the given state */ 1470 static int push_jmp_history(struct bpf_verifier_env *env, 1471 struct bpf_verifier_state *cur) 1472 { 1473 u32 cnt = cur->jmp_history_cnt; 1474 struct bpf_idx_pair *p; 1475 1476 cnt++; 1477 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1478 if (!p) 1479 return -ENOMEM; 1480 p[cnt - 1].idx = env->insn_idx; 1481 p[cnt - 1].prev_idx = env->prev_insn_idx; 1482 cur->jmp_history = p; 1483 cur->jmp_history_cnt = cnt; 1484 return 0; 1485 } 1486 1487 /* Backtrack one insn at a time. If idx is not at the top of recorded 1488 * history then previous instruction came from straight line execution. 1489 */ 1490 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1491 u32 *history) 1492 { 1493 u32 cnt = *history; 1494 1495 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1496 i = st->jmp_history[cnt - 1].prev_idx; 1497 (*history)--; 1498 } else { 1499 i--; 1500 } 1501 return i; 1502 } 1503 1504 /* For given verifier state backtrack_insn() is called from the last insn to 1505 * the first insn. Its purpose is to compute a bitmask of registers and 1506 * stack slots that needs precision in the parent verifier state. 1507 */ 1508 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1509 u32 *reg_mask, u64 *stack_mask) 1510 { 1511 const struct bpf_insn_cbs cbs = { 1512 .cb_print = verbose, 1513 .private_data = env, 1514 }; 1515 struct bpf_insn *insn = env->prog->insnsi + idx; 1516 u8 class = BPF_CLASS(insn->code); 1517 u8 opcode = BPF_OP(insn->code); 1518 u8 mode = BPF_MODE(insn->code); 1519 u32 dreg = 1u << insn->dst_reg; 1520 u32 sreg = 1u << insn->src_reg; 1521 u32 spi; 1522 1523 if (insn->code == 0) 1524 return 0; 1525 if (env->log.level & BPF_LOG_LEVEL) { 1526 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1527 verbose(env, "%d: ", idx); 1528 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1529 } 1530 1531 if (class == BPF_ALU || class == BPF_ALU64) { 1532 if (!(*reg_mask & dreg)) 1533 return 0; 1534 if (opcode == BPF_MOV) { 1535 if (BPF_SRC(insn->code) == BPF_X) { 1536 /* dreg = sreg 1537 * dreg needs precision after this insn 1538 * sreg needs precision before this insn 1539 */ 1540 *reg_mask &= ~dreg; 1541 *reg_mask |= sreg; 1542 } else { 1543 /* dreg = K 1544 * dreg needs precision after this insn. 1545 * Corresponding register is already marked 1546 * as precise=true in this verifier state. 1547 * No further markings in parent are necessary 1548 */ 1549 *reg_mask &= ~dreg; 1550 } 1551 } else { 1552 if (BPF_SRC(insn->code) == BPF_X) { 1553 /* dreg += sreg 1554 * both dreg and sreg need precision 1555 * before this insn 1556 */ 1557 *reg_mask |= sreg; 1558 } /* else dreg += K 1559 * dreg still needs precision before this insn 1560 */ 1561 } 1562 } else if (class == BPF_LDX) { 1563 if (!(*reg_mask & dreg)) 1564 return 0; 1565 *reg_mask &= ~dreg; 1566 1567 /* scalars can only be spilled into stack w/o losing precision. 1568 * Load from any other memory can be zero extended. 1569 * The desire to keep that precision is already indicated 1570 * by 'precise' mark in corresponding register of this state. 1571 * No further tracking necessary. 1572 */ 1573 if (insn->src_reg != BPF_REG_FP) 1574 return 0; 1575 if (BPF_SIZE(insn->code) != BPF_DW) 1576 return 0; 1577 1578 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1579 * that [fp - off] slot contains scalar that needs to be 1580 * tracked with precision 1581 */ 1582 spi = (-insn->off - 1) / BPF_REG_SIZE; 1583 if (spi >= 64) { 1584 verbose(env, "BUG spi %d\n", spi); 1585 WARN_ONCE(1, "verifier backtracking bug"); 1586 return -EFAULT; 1587 } 1588 *stack_mask |= 1ull << spi; 1589 } else if (class == BPF_STX || class == BPF_ST) { 1590 if (*reg_mask & dreg) 1591 /* stx & st shouldn't be using _scalar_ dst_reg 1592 * to access memory. It means backtracking 1593 * encountered a case of pointer subtraction. 1594 */ 1595 return -ENOTSUPP; 1596 /* scalars can only be spilled into stack */ 1597 if (insn->dst_reg != BPF_REG_FP) 1598 return 0; 1599 if (BPF_SIZE(insn->code) != BPF_DW) 1600 return 0; 1601 spi = (-insn->off - 1) / BPF_REG_SIZE; 1602 if (spi >= 64) { 1603 verbose(env, "BUG spi %d\n", spi); 1604 WARN_ONCE(1, "verifier backtracking bug"); 1605 return -EFAULT; 1606 } 1607 if (!(*stack_mask & (1ull << spi))) 1608 return 0; 1609 *stack_mask &= ~(1ull << spi); 1610 if (class == BPF_STX) 1611 *reg_mask |= sreg; 1612 } else if (class == BPF_JMP || class == BPF_JMP32) { 1613 if (opcode == BPF_CALL) { 1614 if (insn->src_reg == BPF_PSEUDO_CALL) 1615 return -ENOTSUPP; 1616 /* regular helper call sets R0 */ 1617 *reg_mask &= ~1; 1618 if (*reg_mask & 0x3f) { 1619 /* if backtracing was looking for registers R1-R5 1620 * they should have been found already. 1621 */ 1622 verbose(env, "BUG regs %x\n", *reg_mask); 1623 WARN_ONCE(1, "verifier backtracking bug"); 1624 return -EFAULT; 1625 } 1626 } else if (opcode == BPF_EXIT) { 1627 return -ENOTSUPP; 1628 } 1629 } else if (class == BPF_LD) { 1630 if (!(*reg_mask & dreg)) 1631 return 0; 1632 *reg_mask &= ~dreg; 1633 /* It's ld_imm64 or ld_abs or ld_ind. 1634 * For ld_imm64 no further tracking of precision 1635 * into parent is necessary 1636 */ 1637 if (mode == BPF_IND || mode == BPF_ABS) 1638 /* to be analyzed */ 1639 return -ENOTSUPP; 1640 } 1641 return 0; 1642 } 1643 1644 /* the scalar precision tracking algorithm: 1645 * . at the start all registers have precise=false. 1646 * . scalar ranges are tracked as normal through alu and jmp insns. 1647 * . once precise value of the scalar register is used in: 1648 * . ptr + scalar alu 1649 * . if (scalar cond K|scalar) 1650 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1651 * backtrack through the verifier states and mark all registers and 1652 * stack slots with spilled constants that these scalar regisers 1653 * should be precise. 1654 * . during state pruning two registers (or spilled stack slots) 1655 * are equivalent if both are not precise. 1656 * 1657 * Note the verifier cannot simply walk register parentage chain, 1658 * since many different registers and stack slots could have been 1659 * used to compute single precise scalar. 1660 * 1661 * The approach of starting with precise=true for all registers and then 1662 * backtrack to mark a register as not precise when the verifier detects 1663 * that program doesn't care about specific value (e.g., when helper 1664 * takes register as ARG_ANYTHING parameter) is not safe. 1665 * 1666 * It's ok to walk single parentage chain of the verifier states. 1667 * It's possible that this backtracking will go all the way till 1st insn. 1668 * All other branches will be explored for needing precision later. 1669 * 1670 * The backtracking needs to deal with cases like: 1671 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1672 * r9 -= r8 1673 * r5 = r9 1674 * if r5 > 0x79f goto pc+7 1675 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1676 * r5 += 1 1677 * ... 1678 * call bpf_perf_event_output#25 1679 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1680 * 1681 * and this case: 1682 * r6 = 1 1683 * call foo // uses callee's r6 inside to compute r0 1684 * r0 += r6 1685 * if r0 == 0 goto 1686 * 1687 * to track above reg_mask/stack_mask needs to be independent for each frame. 1688 * 1689 * Also if parent's curframe > frame where backtracking started, 1690 * the verifier need to mark registers in both frames, otherwise callees 1691 * may incorrectly prune callers. This is similar to 1692 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1693 * 1694 * For now backtracking falls back into conservative marking. 1695 */ 1696 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1697 struct bpf_verifier_state *st) 1698 { 1699 struct bpf_func_state *func; 1700 struct bpf_reg_state *reg; 1701 int i, j; 1702 1703 /* big hammer: mark all scalars precise in this path. 1704 * pop_stack may still get !precise scalars. 1705 */ 1706 for (; st; st = st->parent) 1707 for (i = 0; i <= st->curframe; i++) { 1708 func = st->frame[i]; 1709 for (j = 0; j < BPF_REG_FP; j++) { 1710 reg = &func->regs[j]; 1711 if (reg->type != SCALAR_VALUE) 1712 continue; 1713 reg->precise = true; 1714 } 1715 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1716 if (func->stack[j].slot_type[0] != STACK_SPILL) 1717 continue; 1718 reg = &func->stack[j].spilled_ptr; 1719 if (reg->type != SCALAR_VALUE) 1720 continue; 1721 reg->precise = true; 1722 } 1723 } 1724 } 1725 1726 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 1727 int spi) 1728 { 1729 struct bpf_verifier_state *st = env->cur_state; 1730 int first_idx = st->first_insn_idx; 1731 int last_idx = env->insn_idx; 1732 struct bpf_func_state *func; 1733 struct bpf_reg_state *reg; 1734 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 1735 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 1736 bool skip_first = true; 1737 bool new_marks = false; 1738 int i, err; 1739 1740 if (!env->allow_ptr_leaks) 1741 /* backtracking is root only for now */ 1742 return 0; 1743 1744 func = st->frame[st->curframe]; 1745 if (regno >= 0) { 1746 reg = &func->regs[regno]; 1747 if (reg->type != SCALAR_VALUE) { 1748 WARN_ONCE(1, "backtracing misuse"); 1749 return -EFAULT; 1750 } 1751 if (!reg->precise) 1752 new_marks = true; 1753 else 1754 reg_mask = 0; 1755 reg->precise = true; 1756 } 1757 1758 while (spi >= 0) { 1759 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 1760 stack_mask = 0; 1761 break; 1762 } 1763 reg = &func->stack[spi].spilled_ptr; 1764 if (reg->type != SCALAR_VALUE) { 1765 stack_mask = 0; 1766 break; 1767 } 1768 if (!reg->precise) 1769 new_marks = true; 1770 else 1771 stack_mask = 0; 1772 reg->precise = true; 1773 break; 1774 } 1775 1776 if (!new_marks) 1777 return 0; 1778 if (!reg_mask && !stack_mask) 1779 return 0; 1780 for (;;) { 1781 DECLARE_BITMAP(mask, 64); 1782 u32 history = st->jmp_history_cnt; 1783 1784 if (env->log.level & BPF_LOG_LEVEL) 1785 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 1786 for (i = last_idx;;) { 1787 if (skip_first) { 1788 err = 0; 1789 skip_first = false; 1790 } else { 1791 err = backtrack_insn(env, i, ®_mask, &stack_mask); 1792 } 1793 if (err == -ENOTSUPP) { 1794 mark_all_scalars_precise(env, st); 1795 return 0; 1796 } else if (err) { 1797 return err; 1798 } 1799 if (!reg_mask && !stack_mask) 1800 /* Found assignment(s) into tracked register in this state. 1801 * Since this state is already marked, just return. 1802 * Nothing to be tracked further in the parent state. 1803 */ 1804 return 0; 1805 if (i == first_idx) 1806 break; 1807 i = get_prev_insn_idx(st, i, &history); 1808 if (i >= env->prog->len) { 1809 /* This can happen if backtracking reached insn 0 1810 * and there are still reg_mask or stack_mask 1811 * to backtrack. 1812 * It means the backtracking missed the spot where 1813 * particular register was initialized with a constant. 1814 */ 1815 verbose(env, "BUG backtracking idx %d\n", i); 1816 WARN_ONCE(1, "verifier backtracking bug"); 1817 return -EFAULT; 1818 } 1819 } 1820 st = st->parent; 1821 if (!st) 1822 break; 1823 1824 new_marks = false; 1825 func = st->frame[st->curframe]; 1826 bitmap_from_u64(mask, reg_mask); 1827 for_each_set_bit(i, mask, 32) { 1828 reg = &func->regs[i]; 1829 if (reg->type != SCALAR_VALUE) { 1830 reg_mask &= ~(1u << i); 1831 continue; 1832 } 1833 if (!reg->precise) 1834 new_marks = true; 1835 reg->precise = true; 1836 } 1837 1838 bitmap_from_u64(mask, stack_mask); 1839 for_each_set_bit(i, mask, 64) { 1840 if (i >= func->allocated_stack / BPF_REG_SIZE) { 1841 /* the sequence of instructions: 1842 * 2: (bf) r3 = r10 1843 * 3: (7b) *(u64 *)(r3 -8) = r0 1844 * 4: (79) r4 = *(u64 *)(r10 -8) 1845 * doesn't contain jmps. It's backtracked 1846 * as a single block. 1847 * During backtracking insn 3 is not recognized as 1848 * stack access, so at the end of backtracking 1849 * stack slot fp-8 is still marked in stack_mask. 1850 * However the parent state may not have accessed 1851 * fp-8 and it's "unallocated" stack space. 1852 * In such case fallback to conservative. 1853 */ 1854 mark_all_scalars_precise(env, st); 1855 return 0; 1856 } 1857 1858 if (func->stack[i].slot_type[0] != STACK_SPILL) { 1859 stack_mask &= ~(1ull << i); 1860 continue; 1861 } 1862 reg = &func->stack[i].spilled_ptr; 1863 if (reg->type != SCALAR_VALUE) { 1864 stack_mask &= ~(1ull << i); 1865 continue; 1866 } 1867 if (!reg->precise) 1868 new_marks = true; 1869 reg->precise = true; 1870 } 1871 if (env->log.level & BPF_LOG_LEVEL) { 1872 print_verifier_state(env, func); 1873 verbose(env, "parent %s regs=%x stack=%llx marks\n", 1874 new_marks ? "didn't have" : "already had", 1875 reg_mask, stack_mask); 1876 } 1877 1878 if (!reg_mask && !stack_mask) 1879 break; 1880 if (!new_marks) 1881 break; 1882 1883 last_idx = st->last_insn_idx; 1884 first_idx = st->first_insn_idx; 1885 } 1886 return 0; 1887 } 1888 1889 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 1890 { 1891 return __mark_chain_precision(env, regno, -1); 1892 } 1893 1894 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 1895 { 1896 return __mark_chain_precision(env, -1, spi); 1897 } 1898 1899 static bool is_spillable_regtype(enum bpf_reg_type type) 1900 { 1901 switch (type) { 1902 case PTR_TO_MAP_VALUE: 1903 case PTR_TO_MAP_VALUE_OR_NULL: 1904 case PTR_TO_STACK: 1905 case PTR_TO_CTX: 1906 case PTR_TO_PACKET: 1907 case PTR_TO_PACKET_META: 1908 case PTR_TO_PACKET_END: 1909 case PTR_TO_FLOW_KEYS: 1910 case CONST_PTR_TO_MAP: 1911 case PTR_TO_SOCKET: 1912 case PTR_TO_SOCKET_OR_NULL: 1913 case PTR_TO_SOCK_COMMON: 1914 case PTR_TO_SOCK_COMMON_OR_NULL: 1915 case PTR_TO_TCP_SOCK: 1916 case PTR_TO_TCP_SOCK_OR_NULL: 1917 case PTR_TO_XDP_SOCK: 1918 return true; 1919 default: 1920 return false; 1921 } 1922 } 1923 1924 /* Does this register contain a constant zero? */ 1925 static bool register_is_null(struct bpf_reg_state *reg) 1926 { 1927 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1928 } 1929 1930 static bool register_is_const(struct bpf_reg_state *reg) 1931 { 1932 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 1933 } 1934 1935 static void save_register_state(struct bpf_func_state *state, 1936 int spi, struct bpf_reg_state *reg) 1937 { 1938 int i; 1939 1940 state->stack[spi].spilled_ptr = *reg; 1941 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1942 1943 for (i = 0; i < BPF_REG_SIZE; i++) 1944 state->stack[spi].slot_type[i] = STACK_SPILL; 1945 } 1946 1947 /* check_stack_read/write functions track spill/fill of registers, 1948 * stack boundary and alignment are checked in check_mem_access() 1949 */ 1950 static int check_stack_write(struct bpf_verifier_env *env, 1951 struct bpf_func_state *state, /* func where register points to */ 1952 int off, int size, int value_regno, int insn_idx) 1953 { 1954 struct bpf_func_state *cur; /* state of the current function */ 1955 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1956 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 1957 struct bpf_reg_state *reg = NULL; 1958 1959 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1960 state->acquired_refs, true); 1961 if (err) 1962 return err; 1963 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1964 * so it's aligned access and [off, off + size) are within stack limits 1965 */ 1966 if (!env->allow_ptr_leaks && 1967 state->stack[spi].slot_type[0] == STACK_SPILL && 1968 size != BPF_REG_SIZE) { 1969 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1970 return -EACCES; 1971 } 1972 1973 cur = env->cur_state->frame[env->cur_state->curframe]; 1974 if (value_regno >= 0) 1975 reg = &cur->regs[value_regno]; 1976 1977 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 1978 !register_is_null(reg) && env->allow_ptr_leaks) { 1979 if (dst_reg != BPF_REG_FP) { 1980 /* The backtracking logic can only recognize explicit 1981 * stack slot address like [fp - 8]. Other spill of 1982 * scalar via different register has to be conervative. 1983 * Backtrack from here and mark all registers as precise 1984 * that contributed into 'reg' being a constant. 1985 */ 1986 err = mark_chain_precision(env, value_regno); 1987 if (err) 1988 return err; 1989 } 1990 save_register_state(state, spi, reg); 1991 } else if (reg && is_spillable_regtype(reg->type)) { 1992 /* register containing pointer is being spilled into stack */ 1993 if (size != BPF_REG_SIZE) { 1994 verbose_linfo(env, insn_idx, "; "); 1995 verbose(env, "invalid size of register spill\n"); 1996 return -EACCES; 1997 } 1998 1999 if (state != cur && reg->type == PTR_TO_STACK) { 2000 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2001 return -EINVAL; 2002 } 2003 2004 if (!env->allow_ptr_leaks) { 2005 bool sanitize = false; 2006 2007 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2008 register_is_const(&state->stack[spi].spilled_ptr)) 2009 sanitize = true; 2010 for (i = 0; i < BPF_REG_SIZE; i++) 2011 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2012 sanitize = true; 2013 break; 2014 } 2015 if (sanitize) { 2016 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2017 int soff = (-spi - 1) * BPF_REG_SIZE; 2018 2019 /* detected reuse of integer stack slot with a pointer 2020 * which means either llvm is reusing stack slot or 2021 * an attacker is trying to exploit CVE-2018-3639 2022 * (speculative store bypass) 2023 * Have to sanitize that slot with preemptive 2024 * store of zero. 2025 */ 2026 if (*poff && *poff != soff) { 2027 /* disallow programs where single insn stores 2028 * into two different stack slots, since verifier 2029 * cannot sanitize them 2030 */ 2031 verbose(env, 2032 "insn %d cannot access two stack slots fp%d and fp%d", 2033 insn_idx, *poff, soff); 2034 return -EINVAL; 2035 } 2036 *poff = soff; 2037 } 2038 } 2039 save_register_state(state, spi, reg); 2040 } else { 2041 u8 type = STACK_MISC; 2042 2043 /* regular write of data into stack destroys any spilled ptr */ 2044 state->stack[spi].spilled_ptr.type = NOT_INIT; 2045 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2046 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2047 for (i = 0; i < BPF_REG_SIZE; i++) 2048 state->stack[spi].slot_type[i] = STACK_MISC; 2049 2050 /* only mark the slot as written if all 8 bytes were written 2051 * otherwise read propagation may incorrectly stop too soon 2052 * when stack slots are partially written. 2053 * This heuristic means that read propagation will be 2054 * conservative, since it will add reg_live_read marks 2055 * to stack slots all the way to first state when programs 2056 * writes+reads less than 8 bytes 2057 */ 2058 if (size == BPF_REG_SIZE) 2059 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2060 2061 /* when we zero initialize stack slots mark them as such */ 2062 if (reg && register_is_null(reg)) { 2063 /* backtracking doesn't work for STACK_ZERO yet. */ 2064 err = mark_chain_precision(env, value_regno); 2065 if (err) 2066 return err; 2067 type = STACK_ZERO; 2068 } 2069 2070 /* Mark slots affected by this stack write. */ 2071 for (i = 0; i < size; i++) 2072 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2073 type; 2074 } 2075 return 0; 2076 } 2077 2078 static int check_stack_read(struct bpf_verifier_env *env, 2079 struct bpf_func_state *reg_state /* func where register points to */, 2080 int off, int size, int value_regno) 2081 { 2082 struct bpf_verifier_state *vstate = env->cur_state; 2083 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2084 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2085 struct bpf_reg_state *reg; 2086 u8 *stype; 2087 2088 if (reg_state->allocated_stack <= slot) { 2089 verbose(env, "invalid read from stack off %d+0 size %d\n", 2090 off, size); 2091 return -EACCES; 2092 } 2093 stype = reg_state->stack[spi].slot_type; 2094 reg = ®_state->stack[spi].spilled_ptr; 2095 2096 if (stype[0] == STACK_SPILL) { 2097 if (size != BPF_REG_SIZE) { 2098 if (reg->type != SCALAR_VALUE) { 2099 verbose_linfo(env, env->insn_idx, "; "); 2100 verbose(env, "invalid size of register fill\n"); 2101 return -EACCES; 2102 } 2103 if (value_regno >= 0) { 2104 mark_reg_unknown(env, state->regs, value_regno); 2105 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2106 } 2107 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2108 return 0; 2109 } 2110 for (i = 1; i < BPF_REG_SIZE; i++) { 2111 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2112 verbose(env, "corrupted spill memory\n"); 2113 return -EACCES; 2114 } 2115 } 2116 2117 if (value_regno >= 0) { 2118 /* restore register state from stack */ 2119 state->regs[value_regno] = *reg; 2120 /* mark reg as written since spilled pointer state likely 2121 * has its liveness marks cleared by is_state_visited() 2122 * which resets stack/reg liveness for state transitions 2123 */ 2124 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2125 } 2126 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2127 } else { 2128 int zeros = 0; 2129 2130 for (i = 0; i < size; i++) { 2131 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2132 continue; 2133 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2134 zeros++; 2135 continue; 2136 } 2137 verbose(env, "invalid read from stack off %d+%d size %d\n", 2138 off, i, size); 2139 return -EACCES; 2140 } 2141 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2142 if (value_regno >= 0) { 2143 if (zeros == size) { 2144 /* any size read into register is zero extended, 2145 * so the whole register == const_zero 2146 */ 2147 __mark_reg_const_zero(&state->regs[value_regno]); 2148 /* backtracking doesn't support STACK_ZERO yet, 2149 * so mark it precise here, so that later 2150 * backtracking can stop here. 2151 * Backtracking may not need this if this register 2152 * doesn't participate in pointer adjustment. 2153 * Forward propagation of precise flag is not 2154 * necessary either. This mark is only to stop 2155 * backtracking. Any register that contributed 2156 * to const 0 was marked precise before spill. 2157 */ 2158 state->regs[value_regno].precise = true; 2159 } else { 2160 /* have read misc data from the stack */ 2161 mark_reg_unknown(env, state->regs, value_regno); 2162 } 2163 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2164 } 2165 } 2166 return 0; 2167 } 2168 2169 static int check_stack_access(struct bpf_verifier_env *env, 2170 const struct bpf_reg_state *reg, 2171 int off, int size) 2172 { 2173 /* Stack accesses must be at a fixed offset, so that we 2174 * can determine what type of data were returned. See 2175 * check_stack_read(). 2176 */ 2177 if (!tnum_is_const(reg->var_off)) { 2178 char tn_buf[48]; 2179 2180 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2181 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2182 tn_buf, off, size); 2183 return -EACCES; 2184 } 2185 2186 if (off >= 0 || off < -MAX_BPF_STACK) { 2187 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2188 return -EACCES; 2189 } 2190 2191 return 0; 2192 } 2193 2194 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2195 int off, int size, enum bpf_access_type type) 2196 { 2197 struct bpf_reg_state *regs = cur_regs(env); 2198 struct bpf_map *map = regs[regno].map_ptr; 2199 u32 cap = bpf_map_flags_to_cap(map); 2200 2201 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2202 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2203 map->value_size, off, size); 2204 return -EACCES; 2205 } 2206 2207 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2208 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2209 map->value_size, off, size); 2210 return -EACCES; 2211 } 2212 2213 return 0; 2214 } 2215 2216 /* check read/write into map element returned by bpf_map_lookup_elem() */ 2217 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 2218 int size, bool zero_size_allowed) 2219 { 2220 struct bpf_reg_state *regs = cur_regs(env); 2221 struct bpf_map *map = regs[regno].map_ptr; 2222 2223 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2224 off + size > map->value_size) { 2225 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2226 map->value_size, off, size); 2227 return -EACCES; 2228 } 2229 return 0; 2230 } 2231 2232 /* check read/write into a map element with possible variable offset */ 2233 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2234 int off, int size, bool zero_size_allowed) 2235 { 2236 struct bpf_verifier_state *vstate = env->cur_state; 2237 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2238 struct bpf_reg_state *reg = &state->regs[regno]; 2239 int err; 2240 2241 /* We may have adjusted the register to this map value, so we 2242 * need to try adding each of min_value and max_value to off 2243 * to make sure our theoretical access will be safe. 2244 */ 2245 if (env->log.level & BPF_LOG_LEVEL) 2246 print_verifier_state(env, state); 2247 2248 /* The minimum value is only important with signed 2249 * comparisons where we can't assume the floor of a 2250 * value is 0. If we are using signed variables for our 2251 * index'es we need to make sure that whatever we use 2252 * will have a set floor within our range. 2253 */ 2254 if (reg->smin_value < 0 && 2255 (reg->smin_value == S64_MIN || 2256 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2257 reg->smin_value + off < 0)) { 2258 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2259 regno); 2260 return -EACCES; 2261 } 2262 err = __check_map_access(env, regno, reg->smin_value + off, size, 2263 zero_size_allowed); 2264 if (err) { 2265 verbose(env, "R%d min value is outside of the array range\n", 2266 regno); 2267 return err; 2268 } 2269 2270 /* If we haven't set a max value then we need to bail since we can't be 2271 * sure we won't do bad things. 2272 * If reg->umax_value + off could overflow, treat that as unbounded too. 2273 */ 2274 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2275 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 2276 regno); 2277 return -EACCES; 2278 } 2279 err = __check_map_access(env, regno, reg->umax_value + off, size, 2280 zero_size_allowed); 2281 if (err) 2282 verbose(env, "R%d max value is outside of the array range\n", 2283 regno); 2284 2285 if (map_value_has_spin_lock(reg->map_ptr)) { 2286 u32 lock = reg->map_ptr->spin_lock_off; 2287 2288 /* if any part of struct bpf_spin_lock can be touched by 2289 * load/store reject this program. 2290 * To check that [x1, x2) overlaps with [y1, y2) 2291 * it is sufficient to check x1 < y2 && y1 < x2. 2292 */ 2293 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2294 lock < reg->umax_value + off + size) { 2295 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2296 return -EACCES; 2297 } 2298 } 2299 return err; 2300 } 2301 2302 #define MAX_PACKET_OFF 0xffff 2303 2304 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2305 const struct bpf_call_arg_meta *meta, 2306 enum bpf_access_type t) 2307 { 2308 switch (env->prog->type) { 2309 /* Program types only with direct read access go here! */ 2310 case BPF_PROG_TYPE_LWT_IN: 2311 case BPF_PROG_TYPE_LWT_OUT: 2312 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2313 case BPF_PROG_TYPE_SK_REUSEPORT: 2314 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2315 case BPF_PROG_TYPE_CGROUP_SKB: 2316 if (t == BPF_WRITE) 2317 return false; 2318 /* fallthrough */ 2319 2320 /* Program types with direct read + write access go here! */ 2321 case BPF_PROG_TYPE_SCHED_CLS: 2322 case BPF_PROG_TYPE_SCHED_ACT: 2323 case BPF_PROG_TYPE_XDP: 2324 case BPF_PROG_TYPE_LWT_XMIT: 2325 case BPF_PROG_TYPE_SK_SKB: 2326 case BPF_PROG_TYPE_SK_MSG: 2327 if (meta) 2328 return meta->pkt_access; 2329 2330 env->seen_direct_write = true; 2331 return true; 2332 2333 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2334 if (t == BPF_WRITE) 2335 env->seen_direct_write = true; 2336 2337 return true; 2338 2339 default: 2340 return false; 2341 } 2342 } 2343 2344 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 2345 int off, int size, bool zero_size_allowed) 2346 { 2347 struct bpf_reg_state *regs = cur_regs(env); 2348 struct bpf_reg_state *reg = ®s[regno]; 2349 2350 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2351 (u64)off + size > reg->range) { 2352 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2353 off, size, regno, reg->id, reg->off, reg->range); 2354 return -EACCES; 2355 } 2356 return 0; 2357 } 2358 2359 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2360 int size, bool zero_size_allowed) 2361 { 2362 struct bpf_reg_state *regs = cur_regs(env); 2363 struct bpf_reg_state *reg = ®s[regno]; 2364 int err; 2365 2366 /* We may have added a variable offset to the packet pointer; but any 2367 * reg->range we have comes after that. We are only checking the fixed 2368 * offset. 2369 */ 2370 2371 /* We don't allow negative numbers, because we aren't tracking enough 2372 * detail to prove they're safe. 2373 */ 2374 if (reg->smin_value < 0) { 2375 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2376 regno); 2377 return -EACCES; 2378 } 2379 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 2380 if (err) { 2381 verbose(env, "R%d offset is outside of the packet\n", regno); 2382 return err; 2383 } 2384 2385 /* __check_packet_access has made sure "off + size - 1" is within u16. 2386 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2387 * otherwise find_good_pkt_pointers would have refused to set range info 2388 * that __check_packet_access would have rejected this pkt access. 2389 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2390 */ 2391 env->prog->aux->max_pkt_offset = 2392 max_t(u32, env->prog->aux->max_pkt_offset, 2393 off + reg->umax_value + size - 1); 2394 2395 return err; 2396 } 2397 2398 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2399 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2400 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2401 u32 *btf_id) 2402 { 2403 struct bpf_insn_access_aux info = { 2404 .reg_type = *reg_type, 2405 .log = &env->log, 2406 }; 2407 2408 if (env->ops->is_valid_access && 2409 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2410 /* A non zero info.ctx_field_size indicates that this field is a 2411 * candidate for later verifier transformation to load the whole 2412 * field and then apply a mask when accessed with a narrower 2413 * access than actual ctx access size. A zero info.ctx_field_size 2414 * will only allow for whole field access and rejects any other 2415 * type of narrower access. 2416 */ 2417 *reg_type = info.reg_type; 2418 2419 if (*reg_type == PTR_TO_BTF_ID) 2420 *btf_id = info.btf_id; 2421 else 2422 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2423 /* remember the offset of last byte accessed in ctx */ 2424 if (env->prog->aux->max_ctx_offset < off + size) 2425 env->prog->aux->max_ctx_offset = off + size; 2426 return 0; 2427 } 2428 2429 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2430 return -EACCES; 2431 } 2432 2433 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2434 int size) 2435 { 2436 if (size < 0 || off < 0 || 2437 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2438 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2439 off, size); 2440 return -EACCES; 2441 } 2442 return 0; 2443 } 2444 2445 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2446 u32 regno, int off, int size, 2447 enum bpf_access_type t) 2448 { 2449 struct bpf_reg_state *regs = cur_regs(env); 2450 struct bpf_reg_state *reg = ®s[regno]; 2451 struct bpf_insn_access_aux info = {}; 2452 bool valid; 2453 2454 if (reg->smin_value < 0) { 2455 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2456 regno); 2457 return -EACCES; 2458 } 2459 2460 switch (reg->type) { 2461 case PTR_TO_SOCK_COMMON: 2462 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2463 break; 2464 case PTR_TO_SOCKET: 2465 valid = bpf_sock_is_valid_access(off, size, t, &info); 2466 break; 2467 case PTR_TO_TCP_SOCK: 2468 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2469 break; 2470 case PTR_TO_XDP_SOCK: 2471 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2472 break; 2473 default: 2474 valid = false; 2475 } 2476 2477 2478 if (valid) { 2479 env->insn_aux_data[insn_idx].ctx_field_size = 2480 info.ctx_field_size; 2481 return 0; 2482 } 2483 2484 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2485 regno, reg_type_str[reg->type], off, size); 2486 2487 return -EACCES; 2488 } 2489 2490 static bool __is_pointer_value(bool allow_ptr_leaks, 2491 const struct bpf_reg_state *reg) 2492 { 2493 if (allow_ptr_leaks) 2494 return false; 2495 2496 return reg->type != SCALAR_VALUE; 2497 } 2498 2499 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2500 { 2501 return cur_regs(env) + regno; 2502 } 2503 2504 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2505 { 2506 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2507 } 2508 2509 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2510 { 2511 const struct bpf_reg_state *reg = reg_state(env, regno); 2512 2513 return reg->type == PTR_TO_CTX; 2514 } 2515 2516 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2517 { 2518 const struct bpf_reg_state *reg = reg_state(env, regno); 2519 2520 return type_is_sk_pointer(reg->type); 2521 } 2522 2523 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2524 { 2525 const struct bpf_reg_state *reg = reg_state(env, regno); 2526 2527 return type_is_pkt_pointer(reg->type); 2528 } 2529 2530 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2531 { 2532 const struct bpf_reg_state *reg = reg_state(env, regno); 2533 2534 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2535 return reg->type == PTR_TO_FLOW_KEYS; 2536 } 2537 2538 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2539 const struct bpf_reg_state *reg, 2540 int off, int size, bool strict) 2541 { 2542 struct tnum reg_off; 2543 int ip_align; 2544 2545 /* Byte size accesses are always allowed. */ 2546 if (!strict || size == 1) 2547 return 0; 2548 2549 /* For platforms that do not have a Kconfig enabling 2550 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2551 * NET_IP_ALIGN is universally set to '2'. And on platforms 2552 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2553 * to this code only in strict mode where we want to emulate 2554 * the NET_IP_ALIGN==2 checking. Therefore use an 2555 * unconditional IP align value of '2'. 2556 */ 2557 ip_align = 2; 2558 2559 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2560 if (!tnum_is_aligned(reg_off, size)) { 2561 char tn_buf[48]; 2562 2563 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2564 verbose(env, 2565 "misaligned packet access off %d+%s+%d+%d size %d\n", 2566 ip_align, tn_buf, reg->off, off, size); 2567 return -EACCES; 2568 } 2569 2570 return 0; 2571 } 2572 2573 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2574 const struct bpf_reg_state *reg, 2575 const char *pointer_desc, 2576 int off, int size, bool strict) 2577 { 2578 struct tnum reg_off; 2579 2580 /* Byte size accesses are always allowed. */ 2581 if (!strict || size == 1) 2582 return 0; 2583 2584 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2585 if (!tnum_is_aligned(reg_off, size)) { 2586 char tn_buf[48]; 2587 2588 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2589 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2590 pointer_desc, tn_buf, reg->off, off, size); 2591 return -EACCES; 2592 } 2593 2594 return 0; 2595 } 2596 2597 static int check_ptr_alignment(struct bpf_verifier_env *env, 2598 const struct bpf_reg_state *reg, int off, 2599 int size, bool strict_alignment_once) 2600 { 2601 bool strict = env->strict_alignment || strict_alignment_once; 2602 const char *pointer_desc = ""; 2603 2604 switch (reg->type) { 2605 case PTR_TO_PACKET: 2606 case PTR_TO_PACKET_META: 2607 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2608 * right in front, treat it the very same way. 2609 */ 2610 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2611 case PTR_TO_FLOW_KEYS: 2612 pointer_desc = "flow keys "; 2613 break; 2614 case PTR_TO_MAP_VALUE: 2615 pointer_desc = "value "; 2616 break; 2617 case PTR_TO_CTX: 2618 pointer_desc = "context "; 2619 break; 2620 case PTR_TO_STACK: 2621 pointer_desc = "stack "; 2622 /* The stack spill tracking logic in check_stack_write() 2623 * and check_stack_read() relies on stack accesses being 2624 * aligned. 2625 */ 2626 strict = true; 2627 break; 2628 case PTR_TO_SOCKET: 2629 pointer_desc = "sock "; 2630 break; 2631 case PTR_TO_SOCK_COMMON: 2632 pointer_desc = "sock_common "; 2633 break; 2634 case PTR_TO_TCP_SOCK: 2635 pointer_desc = "tcp_sock "; 2636 break; 2637 case PTR_TO_XDP_SOCK: 2638 pointer_desc = "xdp_sock "; 2639 break; 2640 default: 2641 break; 2642 } 2643 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2644 strict); 2645 } 2646 2647 static int update_stack_depth(struct bpf_verifier_env *env, 2648 const struct bpf_func_state *func, 2649 int off) 2650 { 2651 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2652 2653 if (stack >= -off) 2654 return 0; 2655 2656 /* update known max for given subprogram */ 2657 env->subprog_info[func->subprogno].stack_depth = -off; 2658 return 0; 2659 } 2660 2661 /* starting from main bpf function walk all instructions of the function 2662 * and recursively walk all callees that given function can call. 2663 * Ignore jump and exit insns. 2664 * Since recursion is prevented by check_cfg() this algorithm 2665 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2666 */ 2667 static int check_max_stack_depth(struct bpf_verifier_env *env) 2668 { 2669 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2670 struct bpf_subprog_info *subprog = env->subprog_info; 2671 struct bpf_insn *insn = env->prog->insnsi; 2672 int ret_insn[MAX_CALL_FRAMES]; 2673 int ret_prog[MAX_CALL_FRAMES]; 2674 2675 process_func: 2676 /* round up to 32-bytes, since this is granularity 2677 * of interpreter stack size 2678 */ 2679 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2680 if (depth > MAX_BPF_STACK) { 2681 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2682 frame + 1, depth); 2683 return -EACCES; 2684 } 2685 continue_func: 2686 subprog_end = subprog[idx + 1].start; 2687 for (; i < subprog_end; i++) { 2688 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2689 continue; 2690 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2691 continue; 2692 /* remember insn and function to return to */ 2693 ret_insn[frame] = i + 1; 2694 ret_prog[frame] = idx; 2695 2696 /* find the callee */ 2697 i = i + insn[i].imm + 1; 2698 idx = find_subprog(env, i); 2699 if (idx < 0) { 2700 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2701 i); 2702 return -EFAULT; 2703 } 2704 frame++; 2705 if (frame >= MAX_CALL_FRAMES) { 2706 verbose(env, "the call stack of %d frames is too deep !\n", 2707 frame); 2708 return -E2BIG; 2709 } 2710 goto process_func; 2711 } 2712 /* end of for() loop means the last insn of the 'subprog' 2713 * was reached. Doesn't matter whether it was JA or EXIT 2714 */ 2715 if (frame == 0) 2716 return 0; 2717 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2718 frame--; 2719 i = ret_insn[frame]; 2720 idx = ret_prog[frame]; 2721 goto continue_func; 2722 } 2723 2724 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2725 static int get_callee_stack_depth(struct bpf_verifier_env *env, 2726 const struct bpf_insn *insn, int idx) 2727 { 2728 int start = idx + insn->imm + 1, subprog; 2729 2730 subprog = find_subprog(env, start); 2731 if (subprog < 0) { 2732 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2733 start); 2734 return -EFAULT; 2735 } 2736 return env->subprog_info[subprog].stack_depth; 2737 } 2738 #endif 2739 2740 static int check_ctx_reg(struct bpf_verifier_env *env, 2741 const struct bpf_reg_state *reg, int regno) 2742 { 2743 /* Access to ctx or passing it to a helper is only allowed in 2744 * its original, unmodified form. 2745 */ 2746 2747 if (reg->off) { 2748 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 2749 regno, reg->off); 2750 return -EACCES; 2751 } 2752 2753 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2754 char tn_buf[48]; 2755 2756 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2757 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 2758 return -EACCES; 2759 } 2760 2761 return 0; 2762 } 2763 2764 static int check_tp_buffer_access(struct bpf_verifier_env *env, 2765 const struct bpf_reg_state *reg, 2766 int regno, int off, int size) 2767 { 2768 if (off < 0) { 2769 verbose(env, 2770 "R%d invalid tracepoint buffer access: off=%d, size=%d", 2771 regno, off, size); 2772 return -EACCES; 2773 } 2774 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2775 char tn_buf[48]; 2776 2777 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2778 verbose(env, 2779 "R%d invalid variable buffer offset: off=%d, var_off=%s", 2780 regno, off, tn_buf); 2781 return -EACCES; 2782 } 2783 if (off + size > env->prog->aux->max_tp_access) 2784 env->prog->aux->max_tp_access = off + size; 2785 2786 return 0; 2787 } 2788 2789 2790 /* truncate register to smaller size (in bytes) 2791 * must be called with size < BPF_REG_SIZE 2792 */ 2793 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 2794 { 2795 u64 mask; 2796 2797 /* clear high bits in bit representation */ 2798 reg->var_off = tnum_cast(reg->var_off, size); 2799 2800 /* fix arithmetic bounds */ 2801 mask = ((u64)1 << (size * 8)) - 1; 2802 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 2803 reg->umin_value &= mask; 2804 reg->umax_value &= mask; 2805 } else { 2806 reg->umin_value = 0; 2807 reg->umax_value = mask; 2808 } 2809 reg->smin_value = reg->umin_value; 2810 reg->smax_value = reg->umax_value; 2811 } 2812 2813 static bool bpf_map_is_rdonly(const struct bpf_map *map) 2814 { 2815 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 2816 } 2817 2818 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 2819 { 2820 void *ptr; 2821 u64 addr; 2822 int err; 2823 2824 err = map->ops->map_direct_value_addr(map, &addr, off); 2825 if (err) 2826 return err; 2827 ptr = (void *)(long)addr + off; 2828 2829 switch (size) { 2830 case sizeof(u8): 2831 *val = (u64)*(u8 *)ptr; 2832 break; 2833 case sizeof(u16): 2834 *val = (u64)*(u16 *)ptr; 2835 break; 2836 case sizeof(u32): 2837 *val = (u64)*(u32 *)ptr; 2838 break; 2839 case sizeof(u64): 2840 *val = *(u64 *)ptr; 2841 break; 2842 default: 2843 return -EINVAL; 2844 } 2845 return 0; 2846 } 2847 2848 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 2849 struct bpf_reg_state *regs, 2850 int regno, int off, int size, 2851 enum bpf_access_type atype, 2852 int value_regno) 2853 { 2854 struct bpf_reg_state *reg = regs + regno; 2855 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 2856 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 2857 u32 btf_id; 2858 int ret; 2859 2860 if (atype != BPF_READ) { 2861 verbose(env, "only read is supported\n"); 2862 return -EACCES; 2863 } 2864 2865 if (off < 0) { 2866 verbose(env, 2867 "R%d is ptr_%s invalid negative access: off=%d\n", 2868 regno, tname, off); 2869 return -EACCES; 2870 } 2871 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2872 char tn_buf[48]; 2873 2874 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2875 verbose(env, 2876 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 2877 regno, tname, off, tn_buf); 2878 return -EACCES; 2879 } 2880 2881 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id); 2882 if (ret < 0) 2883 return ret; 2884 2885 if (ret == SCALAR_VALUE) { 2886 mark_reg_unknown(env, regs, value_regno); 2887 return 0; 2888 } 2889 mark_reg_known_zero(env, regs, value_regno); 2890 regs[value_regno].type = PTR_TO_BTF_ID; 2891 regs[value_regno].btf_id = btf_id; 2892 return 0; 2893 } 2894 2895 /* check whether memory at (regno + off) is accessible for t = (read | write) 2896 * if t==write, value_regno is a register which value is stored into memory 2897 * if t==read, value_regno is a register which will receive the value from memory 2898 * if t==write && value_regno==-1, some unknown value is stored into memory 2899 * if t==read && value_regno==-1, don't care what we read from memory 2900 */ 2901 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 2902 int off, int bpf_size, enum bpf_access_type t, 2903 int value_regno, bool strict_alignment_once) 2904 { 2905 struct bpf_reg_state *regs = cur_regs(env); 2906 struct bpf_reg_state *reg = regs + regno; 2907 struct bpf_func_state *state; 2908 int size, err = 0; 2909 2910 size = bpf_size_to_bytes(bpf_size); 2911 if (size < 0) 2912 return size; 2913 2914 /* alignment checks will add in reg->off themselves */ 2915 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 2916 if (err) 2917 return err; 2918 2919 /* for access checks, reg->off is just part of off */ 2920 off += reg->off; 2921 2922 if (reg->type == PTR_TO_MAP_VALUE) { 2923 if (t == BPF_WRITE && value_regno >= 0 && 2924 is_pointer_value(env, value_regno)) { 2925 verbose(env, "R%d leaks addr into map\n", value_regno); 2926 return -EACCES; 2927 } 2928 err = check_map_access_type(env, regno, off, size, t); 2929 if (err) 2930 return err; 2931 err = check_map_access(env, regno, off, size, false); 2932 if (!err && t == BPF_READ && value_regno >= 0) { 2933 struct bpf_map *map = reg->map_ptr; 2934 2935 /* if map is read-only, track its contents as scalars */ 2936 if (tnum_is_const(reg->var_off) && 2937 bpf_map_is_rdonly(map) && 2938 map->ops->map_direct_value_addr) { 2939 int map_off = off + reg->var_off.value; 2940 u64 val = 0; 2941 2942 err = bpf_map_direct_read(map, map_off, size, 2943 &val); 2944 if (err) 2945 return err; 2946 2947 regs[value_regno].type = SCALAR_VALUE; 2948 __mark_reg_known(®s[value_regno], val); 2949 } else { 2950 mark_reg_unknown(env, regs, value_regno); 2951 } 2952 } 2953 } else if (reg->type == PTR_TO_CTX) { 2954 enum bpf_reg_type reg_type = SCALAR_VALUE; 2955 u32 btf_id = 0; 2956 2957 if (t == BPF_WRITE && value_regno >= 0 && 2958 is_pointer_value(env, value_regno)) { 2959 verbose(env, "R%d leaks addr into ctx\n", value_regno); 2960 return -EACCES; 2961 } 2962 2963 err = check_ctx_reg(env, reg, regno); 2964 if (err < 0) 2965 return err; 2966 2967 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 2968 if (err) 2969 verbose_linfo(env, insn_idx, "; "); 2970 if (!err && t == BPF_READ && value_regno >= 0) { 2971 /* ctx access returns either a scalar, or a 2972 * PTR_TO_PACKET[_META,_END]. In the latter 2973 * case, we know the offset is zero. 2974 */ 2975 if (reg_type == SCALAR_VALUE) { 2976 mark_reg_unknown(env, regs, value_regno); 2977 } else { 2978 mark_reg_known_zero(env, regs, 2979 value_regno); 2980 if (reg_type_may_be_null(reg_type)) 2981 regs[value_regno].id = ++env->id_gen; 2982 /* A load of ctx field could have different 2983 * actual load size with the one encoded in the 2984 * insn. When the dst is PTR, it is for sure not 2985 * a sub-register. 2986 */ 2987 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 2988 if (reg_type == PTR_TO_BTF_ID) 2989 regs[value_regno].btf_id = btf_id; 2990 } 2991 regs[value_regno].type = reg_type; 2992 } 2993 2994 } else if (reg->type == PTR_TO_STACK) { 2995 off += reg->var_off.value; 2996 err = check_stack_access(env, reg, off, size); 2997 if (err) 2998 return err; 2999 3000 state = func(env, reg); 3001 err = update_stack_depth(env, state, off); 3002 if (err) 3003 return err; 3004 3005 if (t == BPF_WRITE) 3006 err = check_stack_write(env, state, off, size, 3007 value_regno, insn_idx); 3008 else 3009 err = check_stack_read(env, state, off, size, 3010 value_regno); 3011 } else if (reg_is_pkt_pointer(reg)) { 3012 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3013 verbose(env, "cannot write into packet\n"); 3014 return -EACCES; 3015 } 3016 if (t == BPF_WRITE && value_regno >= 0 && 3017 is_pointer_value(env, value_regno)) { 3018 verbose(env, "R%d leaks addr into packet\n", 3019 value_regno); 3020 return -EACCES; 3021 } 3022 err = check_packet_access(env, regno, off, size, false); 3023 if (!err && t == BPF_READ && value_regno >= 0) 3024 mark_reg_unknown(env, regs, value_regno); 3025 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3026 if (t == BPF_WRITE && value_regno >= 0 && 3027 is_pointer_value(env, value_regno)) { 3028 verbose(env, "R%d leaks addr into flow keys\n", 3029 value_regno); 3030 return -EACCES; 3031 } 3032 3033 err = check_flow_keys_access(env, off, size); 3034 if (!err && t == BPF_READ && value_regno >= 0) 3035 mark_reg_unknown(env, regs, value_regno); 3036 } else if (type_is_sk_pointer(reg->type)) { 3037 if (t == BPF_WRITE) { 3038 verbose(env, "R%d cannot write into %s\n", 3039 regno, reg_type_str[reg->type]); 3040 return -EACCES; 3041 } 3042 err = check_sock_access(env, insn_idx, regno, off, size, t); 3043 if (!err && value_regno >= 0) 3044 mark_reg_unknown(env, regs, value_regno); 3045 } else if (reg->type == PTR_TO_TP_BUFFER) { 3046 err = check_tp_buffer_access(env, reg, regno, off, size); 3047 if (!err && t == BPF_READ && value_regno >= 0) 3048 mark_reg_unknown(env, regs, value_regno); 3049 } else if (reg->type == PTR_TO_BTF_ID) { 3050 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3051 value_regno); 3052 } else { 3053 verbose(env, "R%d invalid mem access '%s'\n", regno, 3054 reg_type_str[reg->type]); 3055 return -EACCES; 3056 } 3057 3058 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3059 regs[value_regno].type == SCALAR_VALUE) { 3060 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3061 coerce_reg_to_size(®s[value_regno], size); 3062 } 3063 return err; 3064 } 3065 3066 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3067 { 3068 int err; 3069 3070 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3071 insn->imm != 0) { 3072 verbose(env, "BPF_XADD uses reserved fields\n"); 3073 return -EINVAL; 3074 } 3075 3076 /* check src1 operand */ 3077 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3078 if (err) 3079 return err; 3080 3081 /* check src2 operand */ 3082 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3083 if (err) 3084 return err; 3085 3086 if (is_pointer_value(env, insn->src_reg)) { 3087 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3088 return -EACCES; 3089 } 3090 3091 if (is_ctx_reg(env, insn->dst_reg) || 3092 is_pkt_reg(env, insn->dst_reg) || 3093 is_flow_key_reg(env, insn->dst_reg) || 3094 is_sk_reg(env, insn->dst_reg)) { 3095 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3096 insn->dst_reg, 3097 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3098 return -EACCES; 3099 } 3100 3101 /* check whether atomic_add can read the memory */ 3102 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3103 BPF_SIZE(insn->code), BPF_READ, -1, true); 3104 if (err) 3105 return err; 3106 3107 /* check whether atomic_add can write into the same memory */ 3108 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3109 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3110 } 3111 3112 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3113 int off, int access_size, 3114 bool zero_size_allowed) 3115 { 3116 struct bpf_reg_state *reg = reg_state(env, regno); 3117 3118 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3119 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3120 if (tnum_is_const(reg->var_off)) { 3121 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3122 regno, off, access_size); 3123 } else { 3124 char tn_buf[48]; 3125 3126 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3127 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3128 regno, tn_buf, access_size); 3129 } 3130 return -EACCES; 3131 } 3132 return 0; 3133 } 3134 3135 /* when register 'regno' is passed into function that will read 'access_size' 3136 * bytes from that pointer, make sure that it's within stack boundary 3137 * and all elements of stack are initialized. 3138 * Unlike most pointer bounds-checking functions, this one doesn't take an 3139 * 'off' argument, so it has to add in reg->off itself. 3140 */ 3141 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3142 int access_size, bool zero_size_allowed, 3143 struct bpf_call_arg_meta *meta) 3144 { 3145 struct bpf_reg_state *reg = reg_state(env, regno); 3146 struct bpf_func_state *state = func(env, reg); 3147 int err, min_off, max_off, i, j, slot, spi; 3148 3149 if (reg->type != PTR_TO_STACK) { 3150 /* Allow zero-byte read from NULL, regardless of pointer type */ 3151 if (zero_size_allowed && access_size == 0 && 3152 register_is_null(reg)) 3153 return 0; 3154 3155 verbose(env, "R%d type=%s expected=%s\n", regno, 3156 reg_type_str[reg->type], 3157 reg_type_str[PTR_TO_STACK]); 3158 return -EACCES; 3159 } 3160 3161 if (tnum_is_const(reg->var_off)) { 3162 min_off = max_off = reg->var_off.value + reg->off; 3163 err = __check_stack_boundary(env, regno, min_off, access_size, 3164 zero_size_allowed); 3165 if (err) 3166 return err; 3167 } else { 3168 /* Variable offset is prohibited for unprivileged mode for 3169 * simplicity since it requires corresponding support in 3170 * Spectre masking for stack ALU. 3171 * See also retrieve_ptr_limit(). 3172 */ 3173 if (!env->allow_ptr_leaks) { 3174 char tn_buf[48]; 3175 3176 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3177 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3178 regno, tn_buf); 3179 return -EACCES; 3180 } 3181 /* Only initialized buffer on stack is allowed to be accessed 3182 * with variable offset. With uninitialized buffer it's hard to 3183 * guarantee that whole memory is marked as initialized on 3184 * helper return since specific bounds are unknown what may 3185 * cause uninitialized stack leaking. 3186 */ 3187 if (meta && meta->raw_mode) 3188 meta = NULL; 3189 3190 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3191 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3192 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3193 regno); 3194 return -EACCES; 3195 } 3196 min_off = reg->smin_value + reg->off; 3197 max_off = reg->smax_value + reg->off; 3198 err = __check_stack_boundary(env, regno, min_off, access_size, 3199 zero_size_allowed); 3200 if (err) { 3201 verbose(env, "R%d min value is outside of stack bound\n", 3202 regno); 3203 return err; 3204 } 3205 err = __check_stack_boundary(env, regno, max_off, access_size, 3206 zero_size_allowed); 3207 if (err) { 3208 verbose(env, "R%d max value is outside of stack bound\n", 3209 regno); 3210 return err; 3211 } 3212 } 3213 3214 if (meta && meta->raw_mode) { 3215 meta->access_size = access_size; 3216 meta->regno = regno; 3217 return 0; 3218 } 3219 3220 for (i = min_off; i < max_off + access_size; i++) { 3221 u8 *stype; 3222 3223 slot = -i - 1; 3224 spi = slot / BPF_REG_SIZE; 3225 if (state->allocated_stack <= slot) 3226 goto err; 3227 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3228 if (*stype == STACK_MISC) 3229 goto mark; 3230 if (*stype == STACK_ZERO) { 3231 /* helper can write anything into the stack */ 3232 *stype = STACK_MISC; 3233 goto mark; 3234 } 3235 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3236 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3237 __mark_reg_unknown(&state->stack[spi].spilled_ptr); 3238 for (j = 0; j < BPF_REG_SIZE; j++) 3239 state->stack[spi].slot_type[j] = STACK_MISC; 3240 goto mark; 3241 } 3242 3243 err: 3244 if (tnum_is_const(reg->var_off)) { 3245 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3246 min_off, i - min_off, access_size); 3247 } else { 3248 char tn_buf[48]; 3249 3250 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3251 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3252 tn_buf, i - min_off, access_size); 3253 } 3254 return -EACCES; 3255 mark: 3256 /* reading any byte out of 8-byte 'spill_slot' will cause 3257 * the whole slot to be marked as 'read' 3258 */ 3259 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3260 state->stack[spi].spilled_ptr.parent, 3261 REG_LIVE_READ64); 3262 } 3263 return update_stack_depth(env, state, min_off); 3264 } 3265 3266 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3267 int access_size, bool zero_size_allowed, 3268 struct bpf_call_arg_meta *meta) 3269 { 3270 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3271 3272 switch (reg->type) { 3273 case PTR_TO_PACKET: 3274 case PTR_TO_PACKET_META: 3275 return check_packet_access(env, regno, reg->off, access_size, 3276 zero_size_allowed); 3277 case PTR_TO_MAP_VALUE: 3278 if (check_map_access_type(env, regno, reg->off, access_size, 3279 meta && meta->raw_mode ? BPF_WRITE : 3280 BPF_READ)) 3281 return -EACCES; 3282 return check_map_access(env, regno, reg->off, access_size, 3283 zero_size_allowed); 3284 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3285 return check_stack_boundary(env, regno, access_size, 3286 zero_size_allowed, meta); 3287 } 3288 } 3289 3290 /* Implementation details: 3291 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3292 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3293 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3294 * value_or_null->value transition, since the verifier only cares about 3295 * the range of access to valid map value pointer and doesn't care about actual 3296 * address of the map element. 3297 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3298 * reg->id > 0 after value_or_null->value transition. By doing so 3299 * two bpf_map_lookups will be considered two different pointers that 3300 * point to different bpf_spin_locks. 3301 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3302 * dead-locks. 3303 * Since only one bpf_spin_lock is allowed the checks are simpler than 3304 * reg_is_refcounted() logic. The verifier needs to remember only 3305 * one spin_lock instead of array of acquired_refs. 3306 * cur_state->active_spin_lock remembers which map value element got locked 3307 * and clears it after bpf_spin_unlock. 3308 */ 3309 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3310 bool is_lock) 3311 { 3312 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3313 struct bpf_verifier_state *cur = env->cur_state; 3314 bool is_const = tnum_is_const(reg->var_off); 3315 struct bpf_map *map = reg->map_ptr; 3316 u64 val = reg->var_off.value; 3317 3318 if (reg->type != PTR_TO_MAP_VALUE) { 3319 verbose(env, "R%d is not a pointer to map_value\n", regno); 3320 return -EINVAL; 3321 } 3322 if (!is_const) { 3323 verbose(env, 3324 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3325 regno); 3326 return -EINVAL; 3327 } 3328 if (!map->btf) { 3329 verbose(env, 3330 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3331 map->name); 3332 return -EINVAL; 3333 } 3334 if (!map_value_has_spin_lock(map)) { 3335 if (map->spin_lock_off == -E2BIG) 3336 verbose(env, 3337 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3338 map->name); 3339 else if (map->spin_lock_off == -ENOENT) 3340 verbose(env, 3341 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3342 map->name); 3343 else 3344 verbose(env, 3345 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3346 map->name); 3347 return -EINVAL; 3348 } 3349 if (map->spin_lock_off != val + reg->off) { 3350 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3351 val + reg->off); 3352 return -EINVAL; 3353 } 3354 if (is_lock) { 3355 if (cur->active_spin_lock) { 3356 verbose(env, 3357 "Locking two bpf_spin_locks are not allowed\n"); 3358 return -EINVAL; 3359 } 3360 cur->active_spin_lock = reg->id; 3361 } else { 3362 if (!cur->active_spin_lock) { 3363 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3364 return -EINVAL; 3365 } 3366 if (cur->active_spin_lock != reg->id) { 3367 verbose(env, "bpf_spin_unlock of different lock\n"); 3368 return -EINVAL; 3369 } 3370 cur->active_spin_lock = 0; 3371 } 3372 return 0; 3373 } 3374 3375 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3376 { 3377 return type == ARG_PTR_TO_MEM || 3378 type == ARG_PTR_TO_MEM_OR_NULL || 3379 type == ARG_PTR_TO_UNINIT_MEM; 3380 } 3381 3382 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3383 { 3384 return type == ARG_CONST_SIZE || 3385 type == ARG_CONST_SIZE_OR_ZERO; 3386 } 3387 3388 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3389 { 3390 return type == ARG_PTR_TO_INT || 3391 type == ARG_PTR_TO_LONG; 3392 } 3393 3394 static int int_ptr_type_to_size(enum bpf_arg_type type) 3395 { 3396 if (type == ARG_PTR_TO_INT) 3397 return sizeof(u32); 3398 else if (type == ARG_PTR_TO_LONG) 3399 return sizeof(u64); 3400 3401 return -EINVAL; 3402 } 3403 3404 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 3405 enum bpf_arg_type arg_type, 3406 struct bpf_call_arg_meta *meta) 3407 { 3408 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3409 enum bpf_reg_type expected_type, type = reg->type; 3410 int err = 0; 3411 3412 if (arg_type == ARG_DONTCARE) 3413 return 0; 3414 3415 err = check_reg_arg(env, regno, SRC_OP); 3416 if (err) 3417 return err; 3418 3419 if (arg_type == ARG_ANYTHING) { 3420 if (is_pointer_value(env, regno)) { 3421 verbose(env, "R%d leaks addr into helper function\n", 3422 regno); 3423 return -EACCES; 3424 } 3425 return 0; 3426 } 3427 3428 if (type_is_pkt_pointer(type) && 3429 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3430 verbose(env, "helper access to the packet is not allowed\n"); 3431 return -EACCES; 3432 } 3433 3434 if (arg_type == ARG_PTR_TO_MAP_KEY || 3435 arg_type == ARG_PTR_TO_MAP_VALUE || 3436 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3437 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3438 expected_type = PTR_TO_STACK; 3439 if (register_is_null(reg) && 3440 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3441 /* final test in check_stack_boundary() */; 3442 else if (!type_is_pkt_pointer(type) && 3443 type != PTR_TO_MAP_VALUE && 3444 type != expected_type) 3445 goto err_type; 3446 } else if (arg_type == ARG_CONST_SIZE || 3447 arg_type == ARG_CONST_SIZE_OR_ZERO) { 3448 expected_type = SCALAR_VALUE; 3449 if (type != expected_type) 3450 goto err_type; 3451 } else if (arg_type == ARG_CONST_MAP_PTR) { 3452 expected_type = CONST_PTR_TO_MAP; 3453 if (type != expected_type) 3454 goto err_type; 3455 } else if (arg_type == ARG_PTR_TO_CTX) { 3456 expected_type = PTR_TO_CTX; 3457 if (type != expected_type) 3458 goto err_type; 3459 err = check_ctx_reg(env, reg, regno); 3460 if (err < 0) 3461 return err; 3462 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3463 expected_type = PTR_TO_SOCK_COMMON; 3464 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3465 if (!type_is_sk_pointer(type)) 3466 goto err_type; 3467 if (reg->ref_obj_id) { 3468 if (meta->ref_obj_id) { 3469 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3470 regno, reg->ref_obj_id, 3471 meta->ref_obj_id); 3472 return -EFAULT; 3473 } 3474 meta->ref_obj_id = reg->ref_obj_id; 3475 } 3476 } else if (arg_type == ARG_PTR_TO_SOCKET) { 3477 expected_type = PTR_TO_SOCKET; 3478 if (type != expected_type) 3479 goto err_type; 3480 } else if (arg_type == ARG_PTR_TO_BTF_ID) { 3481 expected_type = PTR_TO_BTF_ID; 3482 if (type != expected_type) 3483 goto err_type; 3484 if (reg->btf_id != meta->btf_id) { 3485 verbose(env, "Helper has type %s got %s in R%d\n", 3486 kernel_type_name(meta->btf_id), 3487 kernel_type_name(reg->btf_id), regno); 3488 3489 return -EACCES; 3490 } 3491 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) { 3492 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 3493 regno); 3494 return -EACCES; 3495 } 3496 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3497 if (meta->func_id == BPF_FUNC_spin_lock) { 3498 if (process_spin_lock(env, regno, true)) 3499 return -EACCES; 3500 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3501 if (process_spin_lock(env, regno, false)) 3502 return -EACCES; 3503 } else { 3504 verbose(env, "verifier internal error\n"); 3505 return -EFAULT; 3506 } 3507 } else if (arg_type_is_mem_ptr(arg_type)) { 3508 expected_type = PTR_TO_STACK; 3509 /* One exception here. In case function allows for NULL to be 3510 * passed in as argument, it's a SCALAR_VALUE type. Final test 3511 * happens during stack boundary checking. 3512 */ 3513 if (register_is_null(reg) && 3514 arg_type == ARG_PTR_TO_MEM_OR_NULL) 3515 /* final test in check_stack_boundary() */; 3516 else if (!type_is_pkt_pointer(type) && 3517 type != PTR_TO_MAP_VALUE && 3518 type != expected_type) 3519 goto err_type; 3520 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 3521 } else if (arg_type_is_int_ptr(arg_type)) { 3522 expected_type = PTR_TO_STACK; 3523 if (!type_is_pkt_pointer(type) && 3524 type != PTR_TO_MAP_VALUE && 3525 type != expected_type) 3526 goto err_type; 3527 } else { 3528 verbose(env, "unsupported arg_type %d\n", arg_type); 3529 return -EFAULT; 3530 } 3531 3532 if (arg_type == ARG_CONST_MAP_PTR) { 3533 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 3534 meta->map_ptr = reg->map_ptr; 3535 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 3536 /* bpf_map_xxx(..., map_ptr, ..., key) call: 3537 * check that [key, key + map->key_size) are within 3538 * stack limits and initialized 3539 */ 3540 if (!meta->map_ptr) { 3541 /* in function declaration map_ptr must come before 3542 * map_key, so that it's verified and known before 3543 * we have to check map_key here. Otherwise it means 3544 * that kernel subsystem misconfigured verifier 3545 */ 3546 verbose(env, "invalid map_ptr to access map->key\n"); 3547 return -EACCES; 3548 } 3549 err = check_helper_mem_access(env, regno, 3550 meta->map_ptr->key_size, false, 3551 NULL); 3552 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 3553 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 3554 !register_is_null(reg)) || 3555 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 3556 /* bpf_map_xxx(..., map_ptr, ..., value) call: 3557 * check [value, value + map->value_size) validity 3558 */ 3559 if (!meta->map_ptr) { 3560 /* kernel subsystem misconfigured verifier */ 3561 verbose(env, "invalid map_ptr to access map->value\n"); 3562 return -EACCES; 3563 } 3564 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 3565 err = check_helper_mem_access(env, regno, 3566 meta->map_ptr->value_size, false, 3567 meta); 3568 } else if (arg_type_is_mem_size(arg_type)) { 3569 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 3570 3571 /* remember the mem_size which may be used later 3572 * to refine return values. 3573 */ 3574 meta->msize_smax_value = reg->smax_value; 3575 meta->msize_umax_value = reg->umax_value; 3576 3577 /* The register is SCALAR_VALUE; the access check 3578 * happens using its boundaries. 3579 */ 3580 if (!tnum_is_const(reg->var_off)) 3581 /* For unprivileged variable accesses, disable raw 3582 * mode so that the program is required to 3583 * initialize all the memory that the helper could 3584 * just partially fill up. 3585 */ 3586 meta = NULL; 3587 3588 if (reg->smin_value < 0) { 3589 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 3590 regno); 3591 return -EACCES; 3592 } 3593 3594 if (reg->umin_value == 0) { 3595 err = check_helper_mem_access(env, regno - 1, 0, 3596 zero_size_allowed, 3597 meta); 3598 if (err) 3599 return err; 3600 } 3601 3602 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 3603 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 3604 regno); 3605 return -EACCES; 3606 } 3607 err = check_helper_mem_access(env, regno - 1, 3608 reg->umax_value, 3609 zero_size_allowed, meta); 3610 if (!err) 3611 err = mark_chain_precision(env, regno); 3612 } else if (arg_type_is_int_ptr(arg_type)) { 3613 int size = int_ptr_type_to_size(arg_type); 3614 3615 err = check_helper_mem_access(env, regno, size, false, meta); 3616 if (err) 3617 return err; 3618 err = check_ptr_alignment(env, reg, 0, size, true); 3619 } 3620 3621 return err; 3622 err_type: 3623 verbose(env, "R%d type=%s expected=%s\n", regno, 3624 reg_type_str[type], reg_type_str[expected_type]); 3625 return -EACCES; 3626 } 3627 3628 static int check_map_func_compatibility(struct bpf_verifier_env *env, 3629 struct bpf_map *map, int func_id) 3630 { 3631 if (!map) 3632 return 0; 3633 3634 /* We need a two way check, first is from map perspective ... */ 3635 switch (map->map_type) { 3636 case BPF_MAP_TYPE_PROG_ARRAY: 3637 if (func_id != BPF_FUNC_tail_call) 3638 goto error; 3639 break; 3640 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 3641 if (func_id != BPF_FUNC_perf_event_read && 3642 func_id != BPF_FUNC_perf_event_output && 3643 func_id != BPF_FUNC_skb_output && 3644 func_id != BPF_FUNC_perf_event_read_value) 3645 goto error; 3646 break; 3647 case BPF_MAP_TYPE_STACK_TRACE: 3648 if (func_id != BPF_FUNC_get_stackid) 3649 goto error; 3650 break; 3651 case BPF_MAP_TYPE_CGROUP_ARRAY: 3652 if (func_id != BPF_FUNC_skb_under_cgroup && 3653 func_id != BPF_FUNC_current_task_under_cgroup) 3654 goto error; 3655 break; 3656 case BPF_MAP_TYPE_CGROUP_STORAGE: 3657 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 3658 if (func_id != BPF_FUNC_get_local_storage) 3659 goto error; 3660 break; 3661 case BPF_MAP_TYPE_DEVMAP: 3662 case BPF_MAP_TYPE_DEVMAP_HASH: 3663 if (func_id != BPF_FUNC_redirect_map && 3664 func_id != BPF_FUNC_map_lookup_elem) 3665 goto error; 3666 break; 3667 /* Restrict bpf side of cpumap and xskmap, open when use-cases 3668 * appear. 3669 */ 3670 case BPF_MAP_TYPE_CPUMAP: 3671 if (func_id != BPF_FUNC_redirect_map) 3672 goto error; 3673 break; 3674 case BPF_MAP_TYPE_XSKMAP: 3675 if (func_id != BPF_FUNC_redirect_map && 3676 func_id != BPF_FUNC_map_lookup_elem) 3677 goto error; 3678 break; 3679 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 3680 case BPF_MAP_TYPE_HASH_OF_MAPS: 3681 if (func_id != BPF_FUNC_map_lookup_elem) 3682 goto error; 3683 break; 3684 case BPF_MAP_TYPE_SOCKMAP: 3685 if (func_id != BPF_FUNC_sk_redirect_map && 3686 func_id != BPF_FUNC_sock_map_update && 3687 func_id != BPF_FUNC_map_delete_elem && 3688 func_id != BPF_FUNC_msg_redirect_map) 3689 goto error; 3690 break; 3691 case BPF_MAP_TYPE_SOCKHASH: 3692 if (func_id != BPF_FUNC_sk_redirect_hash && 3693 func_id != BPF_FUNC_sock_hash_update && 3694 func_id != BPF_FUNC_map_delete_elem && 3695 func_id != BPF_FUNC_msg_redirect_hash) 3696 goto error; 3697 break; 3698 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 3699 if (func_id != BPF_FUNC_sk_select_reuseport) 3700 goto error; 3701 break; 3702 case BPF_MAP_TYPE_QUEUE: 3703 case BPF_MAP_TYPE_STACK: 3704 if (func_id != BPF_FUNC_map_peek_elem && 3705 func_id != BPF_FUNC_map_pop_elem && 3706 func_id != BPF_FUNC_map_push_elem) 3707 goto error; 3708 break; 3709 case BPF_MAP_TYPE_SK_STORAGE: 3710 if (func_id != BPF_FUNC_sk_storage_get && 3711 func_id != BPF_FUNC_sk_storage_delete) 3712 goto error; 3713 break; 3714 default: 3715 break; 3716 } 3717 3718 /* ... and second from the function itself. */ 3719 switch (func_id) { 3720 case BPF_FUNC_tail_call: 3721 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 3722 goto error; 3723 if (env->subprog_cnt > 1) { 3724 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 3725 return -EINVAL; 3726 } 3727 break; 3728 case BPF_FUNC_perf_event_read: 3729 case BPF_FUNC_perf_event_output: 3730 case BPF_FUNC_perf_event_read_value: 3731 case BPF_FUNC_skb_output: 3732 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 3733 goto error; 3734 break; 3735 case BPF_FUNC_get_stackid: 3736 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 3737 goto error; 3738 break; 3739 case BPF_FUNC_current_task_under_cgroup: 3740 case BPF_FUNC_skb_under_cgroup: 3741 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 3742 goto error; 3743 break; 3744 case BPF_FUNC_redirect_map: 3745 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 3746 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 3747 map->map_type != BPF_MAP_TYPE_CPUMAP && 3748 map->map_type != BPF_MAP_TYPE_XSKMAP) 3749 goto error; 3750 break; 3751 case BPF_FUNC_sk_redirect_map: 3752 case BPF_FUNC_msg_redirect_map: 3753 case BPF_FUNC_sock_map_update: 3754 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 3755 goto error; 3756 break; 3757 case BPF_FUNC_sk_redirect_hash: 3758 case BPF_FUNC_msg_redirect_hash: 3759 case BPF_FUNC_sock_hash_update: 3760 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 3761 goto error; 3762 break; 3763 case BPF_FUNC_get_local_storage: 3764 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 3765 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 3766 goto error; 3767 break; 3768 case BPF_FUNC_sk_select_reuseport: 3769 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 3770 goto error; 3771 break; 3772 case BPF_FUNC_map_peek_elem: 3773 case BPF_FUNC_map_pop_elem: 3774 case BPF_FUNC_map_push_elem: 3775 if (map->map_type != BPF_MAP_TYPE_QUEUE && 3776 map->map_type != BPF_MAP_TYPE_STACK) 3777 goto error; 3778 break; 3779 case BPF_FUNC_sk_storage_get: 3780 case BPF_FUNC_sk_storage_delete: 3781 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 3782 goto error; 3783 break; 3784 default: 3785 break; 3786 } 3787 3788 return 0; 3789 error: 3790 verbose(env, "cannot pass map_type %d into func %s#%d\n", 3791 map->map_type, func_id_name(func_id), func_id); 3792 return -EINVAL; 3793 } 3794 3795 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 3796 { 3797 int count = 0; 3798 3799 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 3800 count++; 3801 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 3802 count++; 3803 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 3804 count++; 3805 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 3806 count++; 3807 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 3808 count++; 3809 3810 /* We only support one arg being in raw mode at the moment, 3811 * which is sufficient for the helper functions we have 3812 * right now. 3813 */ 3814 return count <= 1; 3815 } 3816 3817 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 3818 enum bpf_arg_type arg_next) 3819 { 3820 return (arg_type_is_mem_ptr(arg_curr) && 3821 !arg_type_is_mem_size(arg_next)) || 3822 (!arg_type_is_mem_ptr(arg_curr) && 3823 arg_type_is_mem_size(arg_next)); 3824 } 3825 3826 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 3827 { 3828 /* bpf_xxx(..., buf, len) call will access 'len' 3829 * bytes from memory 'buf'. Both arg types need 3830 * to be paired, so make sure there's no buggy 3831 * helper function specification. 3832 */ 3833 if (arg_type_is_mem_size(fn->arg1_type) || 3834 arg_type_is_mem_ptr(fn->arg5_type) || 3835 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 3836 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 3837 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 3838 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 3839 return false; 3840 3841 return true; 3842 } 3843 3844 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 3845 { 3846 int count = 0; 3847 3848 if (arg_type_may_be_refcounted(fn->arg1_type)) 3849 count++; 3850 if (arg_type_may_be_refcounted(fn->arg2_type)) 3851 count++; 3852 if (arg_type_may_be_refcounted(fn->arg3_type)) 3853 count++; 3854 if (arg_type_may_be_refcounted(fn->arg4_type)) 3855 count++; 3856 if (arg_type_may_be_refcounted(fn->arg5_type)) 3857 count++; 3858 3859 /* A reference acquiring function cannot acquire 3860 * another refcounted ptr. 3861 */ 3862 if (is_acquire_function(func_id) && count) 3863 return false; 3864 3865 /* We only support one arg being unreferenced at the moment, 3866 * which is sufficient for the helper functions we have right now. 3867 */ 3868 return count <= 1; 3869 } 3870 3871 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 3872 { 3873 return check_raw_mode_ok(fn) && 3874 check_arg_pair_ok(fn) && 3875 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 3876 } 3877 3878 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 3879 * are now invalid, so turn them into unknown SCALAR_VALUE. 3880 */ 3881 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 3882 struct bpf_func_state *state) 3883 { 3884 struct bpf_reg_state *regs = state->regs, *reg; 3885 int i; 3886 3887 for (i = 0; i < MAX_BPF_REG; i++) 3888 if (reg_is_pkt_pointer_any(®s[i])) 3889 mark_reg_unknown(env, regs, i); 3890 3891 bpf_for_each_spilled_reg(i, state, reg) { 3892 if (!reg) 3893 continue; 3894 if (reg_is_pkt_pointer_any(reg)) 3895 __mark_reg_unknown(reg); 3896 } 3897 } 3898 3899 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 3900 { 3901 struct bpf_verifier_state *vstate = env->cur_state; 3902 int i; 3903 3904 for (i = 0; i <= vstate->curframe; i++) 3905 __clear_all_pkt_pointers(env, vstate->frame[i]); 3906 } 3907 3908 static void release_reg_references(struct bpf_verifier_env *env, 3909 struct bpf_func_state *state, 3910 int ref_obj_id) 3911 { 3912 struct bpf_reg_state *regs = state->regs, *reg; 3913 int i; 3914 3915 for (i = 0; i < MAX_BPF_REG; i++) 3916 if (regs[i].ref_obj_id == ref_obj_id) 3917 mark_reg_unknown(env, regs, i); 3918 3919 bpf_for_each_spilled_reg(i, state, reg) { 3920 if (!reg) 3921 continue; 3922 if (reg->ref_obj_id == ref_obj_id) 3923 __mark_reg_unknown(reg); 3924 } 3925 } 3926 3927 /* The pointer with the specified id has released its reference to kernel 3928 * resources. Identify all copies of the same pointer and clear the reference. 3929 */ 3930 static int release_reference(struct bpf_verifier_env *env, 3931 int ref_obj_id) 3932 { 3933 struct bpf_verifier_state *vstate = env->cur_state; 3934 int err; 3935 int i; 3936 3937 err = release_reference_state(cur_func(env), ref_obj_id); 3938 if (err) 3939 return err; 3940 3941 for (i = 0; i <= vstate->curframe; i++) 3942 release_reg_references(env, vstate->frame[i], ref_obj_id); 3943 3944 return 0; 3945 } 3946 3947 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 3948 int *insn_idx) 3949 { 3950 struct bpf_verifier_state *state = env->cur_state; 3951 struct bpf_func_state *caller, *callee; 3952 int i, err, subprog, target_insn; 3953 3954 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 3955 verbose(env, "the call stack of %d frames is too deep\n", 3956 state->curframe + 2); 3957 return -E2BIG; 3958 } 3959 3960 target_insn = *insn_idx + insn->imm; 3961 subprog = find_subprog(env, target_insn + 1); 3962 if (subprog < 0) { 3963 verbose(env, "verifier bug. No program starts at insn %d\n", 3964 target_insn + 1); 3965 return -EFAULT; 3966 } 3967 3968 caller = state->frame[state->curframe]; 3969 if (state->frame[state->curframe + 1]) { 3970 verbose(env, "verifier bug. Frame %d already allocated\n", 3971 state->curframe + 1); 3972 return -EFAULT; 3973 } 3974 3975 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 3976 if (!callee) 3977 return -ENOMEM; 3978 state->frame[state->curframe + 1] = callee; 3979 3980 /* callee cannot access r0, r6 - r9 for reading and has to write 3981 * into its own stack before reading from it. 3982 * callee can read/write into caller's stack 3983 */ 3984 init_func_state(env, callee, 3985 /* remember the callsite, it will be used by bpf_exit */ 3986 *insn_idx /* callsite */, 3987 state->curframe + 1 /* frameno within this callchain */, 3988 subprog /* subprog number within this prog */); 3989 3990 /* Transfer references to the callee */ 3991 err = transfer_reference_state(callee, caller); 3992 if (err) 3993 return err; 3994 3995 /* copy r1 - r5 args that callee can access. The copy includes parent 3996 * pointers, which connects us up to the liveness chain 3997 */ 3998 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3999 callee->regs[i] = caller->regs[i]; 4000 4001 /* after the call registers r0 - r5 were scratched */ 4002 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4003 mark_reg_not_init(env, caller->regs, caller_saved[i]); 4004 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4005 } 4006 4007 /* only increment it after check_reg_arg() finished */ 4008 state->curframe++; 4009 4010 if (btf_check_func_arg_match(env, subprog)) 4011 return -EINVAL; 4012 4013 /* and go analyze first insn of the callee */ 4014 *insn_idx = target_insn; 4015 4016 if (env->log.level & BPF_LOG_LEVEL) { 4017 verbose(env, "caller:\n"); 4018 print_verifier_state(env, caller); 4019 verbose(env, "callee:\n"); 4020 print_verifier_state(env, callee); 4021 } 4022 return 0; 4023 } 4024 4025 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4026 { 4027 struct bpf_verifier_state *state = env->cur_state; 4028 struct bpf_func_state *caller, *callee; 4029 struct bpf_reg_state *r0; 4030 int err; 4031 4032 callee = state->frame[state->curframe]; 4033 r0 = &callee->regs[BPF_REG_0]; 4034 if (r0->type == PTR_TO_STACK) { 4035 /* technically it's ok to return caller's stack pointer 4036 * (or caller's caller's pointer) back to the caller, 4037 * since these pointers are valid. Only current stack 4038 * pointer will be invalid as soon as function exits, 4039 * but let's be conservative 4040 */ 4041 verbose(env, "cannot return stack pointer to the caller\n"); 4042 return -EINVAL; 4043 } 4044 4045 state->curframe--; 4046 caller = state->frame[state->curframe]; 4047 /* return to the caller whatever r0 had in the callee */ 4048 caller->regs[BPF_REG_0] = *r0; 4049 4050 /* Transfer references to the caller */ 4051 err = transfer_reference_state(caller, callee); 4052 if (err) 4053 return err; 4054 4055 *insn_idx = callee->callsite + 1; 4056 if (env->log.level & BPF_LOG_LEVEL) { 4057 verbose(env, "returning from callee:\n"); 4058 print_verifier_state(env, callee); 4059 verbose(env, "to caller at %d:\n", *insn_idx); 4060 print_verifier_state(env, caller); 4061 } 4062 /* clear everything in the callee */ 4063 free_func_state(callee); 4064 state->frame[state->curframe + 1] = NULL; 4065 return 0; 4066 } 4067 4068 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4069 int func_id, 4070 struct bpf_call_arg_meta *meta) 4071 { 4072 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4073 4074 if (ret_type != RET_INTEGER || 4075 (func_id != BPF_FUNC_get_stack && 4076 func_id != BPF_FUNC_probe_read_str)) 4077 return; 4078 4079 ret_reg->smax_value = meta->msize_smax_value; 4080 ret_reg->umax_value = meta->msize_umax_value; 4081 __reg_deduce_bounds(ret_reg); 4082 __reg_bound_offset(ret_reg); 4083 } 4084 4085 static int 4086 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4087 int func_id, int insn_idx) 4088 { 4089 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4090 struct bpf_map *map = meta->map_ptr; 4091 4092 if (func_id != BPF_FUNC_tail_call && 4093 func_id != BPF_FUNC_map_lookup_elem && 4094 func_id != BPF_FUNC_map_update_elem && 4095 func_id != BPF_FUNC_map_delete_elem && 4096 func_id != BPF_FUNC_map_push_elem && 4097 func_id != BPF_FUNC_map_pop_elem && 4098 func_id != BPF_FUNC_map_peek_elem) 4099 return 0; 4100 4101 if (map == NULL) { 4102 verbose(env, "kernel subsystem misconfigured verifier\n"); 4103 return -EINVAL; 4104 } 4105 4106 /* In case of read-only, some additional restrictions 4107 * need to be applied in order to prevent altering the 4108 * state of the map from program side. 4109 */ 4110 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4111 (func_id == BPF_FUNC_map_delete_elem || 4112 func_id == BPF_FUNC_map_update_elem || 4113 func_id == BPF_FUNC_map_push_elem || 4114 func_id == BPF_FUNC_map_pop_elem)) { 4115 verbose(env, "write into map forbidden\n"); 4116 return -EACCES; 4117 } 4118 4119 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4120 bpf_map_ptr_store(aux, meta->map_ptr, 4121 meta->map_ptr->unpriv_array); 4122 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4123 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4124 meta->map_ptr->unpriv_array); 4125 return 0; 4126 } 4127 4128 static int 4129 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4130 int func_id, int insn_idx) 4131 { 4132 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4133 struct bpf_reg_state *regs = cur_regs(env), *reg; 4134 struct bpf_map *map = meta->map_ptr; 4135 struct tnum range; 4136 u64 val; 4137 int err; 4138 4139 if (func_id != BPF_FUNC_tail_call) 4140 return 0; 4141 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4142 verbose(env, "kernel subsystem misconfigured verifier\n"); 4143 return -EINVAL; 4144 } 4145 4146 range = tnum_range(0, map->max_entries - 1); 4147 reg = ®s[BPF_REG_3]; 4148 4149 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 4150 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4151 return 0; 4152 } 4153 4154 err = mark_chain_precision(env, BPF_REG_3); 4155 if (err) 4156 return err; 4157 4158 val = reg->var_off.value; 4159 if (bpf_map_key_unseen(aux)) 4160 bpf_map_key_store(aux, val); 4161 else if (!bpf_map_key_poisoned(aux) && 4162 bpf_map_key_immediate(aux) != val) 4163 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4164 return 0; 4165 } 4166 4167 static int check_reference_leak(struct bpf_verifier_env *env) 4168 { 4169 struct bpf_func_state *state = cur_func(env); 4170 int i; 4171 4172 for (i = 0; i < state->acquired_refs; i++) { 4173 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 4174 state->refs[i].id, state->refs[i].insn_idx); 4175 } 4176 return state->acquired_refs ? -EINVAL : 0; 4177 } 4178 4179 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 4180 { 4181 const struct bpf_func_proto *fn = NULL; 4182 struct bpf_reg_state *regs; 4183 struct bpf_call_arg_meta meta; 4184 bool changes_data; 4185 int i, err; 4186 4187 /* find function prototype */ 4188 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 4189 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 4190 func_id); 4191 return -EINVAL; 4192 } 4193 4194 if (env->ops->get_func_proto) 4195 fn = env->ops->get_func_proto(func_id, env->prog); 4196 if (!fn) { 4197 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 4198 func_id); 4199 return -EINVAL; 4200 } 4201 4202 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 4203 if (!env->prog->gpl_compatible && fn->gpl_only) { 4204 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 4205 return -EINVAL; 4206 } 4207 4208 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 4209 changes_data = bpf_helper_changes_pkt_data(fn->func); 4210 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 4211 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 4212 func_id_name(func_id), func_id); 4213 return -EINVAL; 4214 } 4215 4216 memset(&meta, 0, sizeof(meta)); 4217 meta.pkt_access = fn->pkt_access; 4218 4219 err = check_func_proto(fn, func_id); 4220 if (err) { 4221 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 4222 func_id_name(func_id), func_id); 4223 return err; 4224 } 4225 4226 meta.func_id = func_id; 4227 /* check args */ 4228 for (i = 0; i < 5; i++) { 4229 err = btf_resolve_helper_id(&env->log, fn, i); 4230 if (err > 0) 4231 meta.btf_id = err; 4232 err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta); 4233 if (err) 4234 return err; 4235 } 4236 4237 err = record_func_map(env, &meta, func_id, insn_idx); 4238 if (err) 4239 return err; 4240 4241 err = record_func_key(env, &meta, func_id, insn_idx); 4242 if (err) 4243 return err; 4244 4245 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4246 * is inferred from register state. 4247 */ 4248 for (i = 0; i < meta.access_size; i++) { 4249 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 4250 BPF_WRITE, -1, false); 4251 if (err) 4252 return err; 4253 } 4254 4255 if (func_id == BPF_FUNC_tail_call) { 4256 err = check_reference_leak(env); 4257 if (err) { 4258 verbose(env, "tail_call would lead to reference leak\n"); 4259 return err; 4260 } 4261 } else if (is_release_function(func_id)) { 4262 err = release_reference(env, meta.ref_obj_id); 4263 if (err) { 4264 verbose(env, "func %s#%d reference has not been acquired before\n", 4265 func_id_name(func_id), func_id); 4266 return err; 4267 } 4268 } 4269 4270 regs = cur_regs(env); 4271 4272 /* check that flags argument in get_local_storage(map, flags) is 0, 4273 * this is required because get_local_storage() can't return an error. 4274 */ 4275 if (func_id == BPF_FUNC_get_local_storage && 4276 !register_is_null(®s[BPF_REG_2])) { 4277 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 4278 return -EINVAL; 4279 } 4280 4281 /* reset caller saved regs */ 4282 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4283 mark_reg_not_init(env, regs, caller_saved[i]); 4284 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4285 } 4286 4287 /* helper call returns 64-bit value. */ 4288 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4289 4290 /* update return register (already marked as written above) */ 4291 if (fn->ret_type == RET_INTEGER) { 4292 /* sets type to SCALAR_VALUE */ 4293 mark_reg_unknown(env, regs, BPF_REG_0); 4294 } else if (fn->ret_type == RET_VOID) { 4295 regs[BPF_REG_0].type = NOT_INIT; 4296 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4297 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4298 /* There is no offset yet applied, variable or fixed */ 4299 mark_reg_known_zero(env, regs, BPF_REG_0); 4300 /* remember map_ptr, so that check_map_access() 4301 * can check 'value_size' boundary of memory access 4302 * to map element returned from bpf_map_lookup_elem() 4303 */ 4304 if (meta.map_ptr == NULL) { 4305 verbose(env, 4306 "kernel subsystem misconfigured verifier\n"); 4307 return -EINVAL; 4308 } 4309 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4310 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4311 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4312 if (map_value_has_spin_lock(meta.map_ptr)) 4313 regs[BPF_REG_0].id = ++env->id_gen; 4314 } else { 4315 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4316 regs[BPF_REG_0].id = ++env->id_gen; 4317 } 4318 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4319 mark_reg_known_zero(env, regs, BPF_REG_0); 4320 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4321 regs[BPF_REG_0].id = ++env->id_gen; 4322 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4323 mark_reg_known_zero(env, regs, BPF_REG_0); 4324 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4325 regs[BPF_REG_0].id = ++env->id_gen; 4326 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4327 mark_reg_known_zero(env, regs, BPF_REG_0); 4328 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4329 regs[BPF_REG_0].id = ++env->id_gen; 4330 } else { 4331 verbose(env, "unknown return type %d of func %s#%d\n", 4332 fn->ret_type, func_id_name(func_id), func_id); 4333 return -EINVAL; 4334 } 4335 4336 if (is_ptr_cast_function(func_id)) { 4337 /* For release_reference() */ 4338 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4339 } else if (is_acquire_function(func_id)) { 4340 int id = acquire_reference_state(env, insn_idx); 4341 4342 if (id < 0) 4343 return id; 4344 /* For mark_ptr_or_null_reg() */ 4345 regs[BPF_REG_0].id = id; 4346 /* For release_reference() */ 4347 regs[BPF_REG_0].ref_obj_id = id; 4348 } 4349 4350 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4351 4352 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4353 if (err) 4354 return err; 4355 4356 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 4357 const char *err_str; 4358 4359 #ifdef CONFIG_PERF_EVENTS 4360 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4361 err_str = "cannot get callchain buffer for func %s#%d\n"; 4362 #else 4363 err = -ENOTSUPP; 4364 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4365 #endif 4366 if (err) { 4367 verbose(env, err_str, func_id_name(func_id), func_id); 4368 return err; 4369 } 4370 4371 env->prog->has_callchain_buf = true; 4372 } 4373 4374 if (changes_data) 4375 clear_all_pkt_pointers(env); 4376 return 0; 4377 } 4378 4379 static bool signed_add_overflows(s64 a, s64 b) 4380 { 4381 /* Do the add in u64, where overflow is well-defined */ 4382 s64 res = (s64)((u64)a + (u64)b); 4383 4384 if (b < 0) 4385 return res > a; 4386 return res < a; 4387 } 4388 4389 static bool signed_sub_overflows(s64 a, s64 b) 4390 { 4391 /* Do the sub in u64, where overflow is well-defined */ 4392 s64 res = (s64)((u64)a - (u64)b); 4393 4394 if (b < 0) 4395 return res < a; 4396 return res > a; 4397 } 4398 4399 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 4400 const struct bpf_reg_state *reg, 4401 enum bpf_reg_type type) 4402 { 4403 bool known = tnum_is_const(reg->var_off); 4404 s64 val = reg->var_off.value; 4405 s64 smin = reg->smin_value; 4406 4407 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 4408 verbose(env, "math between %s pointer and %lld is not allowed\n", 4409 reg_type_str[type], val); 4410 return false; 4411 } 4412 4413 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 4414 verbose(env, "%s pointer offset %d is not allowed\n", 4415 reg_type_str[type], reg->off); 4416 return false; 4417 } 4418 4419 if (smin == S64_MIN) { 4420 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 4421 reg_type_str[type]); 4422 return false; 4423 } 4424 4425 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 4426 verbose(env, "value %lld makes %s pointer be out of bounds\n", 4427 smin, reg_type_str[type]); 4428 return false; 4429 } 4430 4431 return true; 4432 } 4433 4434 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 4435 { 4436 return &env->insn_aux_data[env->insn_idx]; 4437 } 4438 4439 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 4440 u32 *ptr_limit, u8 opcode, bool off_is_neg) 4441 { 4442 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 4443 (opcode == BPF_SUB && !off_is_neg); 4444 u32 off; 4445 4446 switch (ptr_reg->type) { 4447 case PTR_TO_STACK: 4448 /* Indirect variable offset stack access is prohibited in 4449 * unprivileged mode so it's not handled here. 4450 */ 4451 off = ptr_reg->off + ptr_reg->var_off.value; 4452 if (mask_to_left) 4453 *ptr_limit = MAX_BPF_STACK + off; 4454 else 4455 *ptr_limit = -off; 4456 return 0; 4457 case PTR_TO_MAP_VALUE: 4458 if (mask_to_left) { 4459 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 4460 } else { 4461 off = ptr_reg->smin_value + ptr_reg->off; 4462 *ptr_limit = ptr_reg->map_ptr->value_size - off; 4463 } 4464 return 0; 4465 default: 4466 return -EINVAL; 4467 } 4468 } 4469 4470 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 4471 const struct bpf_insn *insn) 4472 { 4473 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 4474 } 4475 4476 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 4477 u32 alu_state, u32 alu_limit) 4478 { 4479 /* If we arrived here from different branches with different 4480 * state or limits to sanitize, then this won't work. 4481 */ 4482 if (aux->alu_state && 4483 (aux->alu_state != alu_state || 4484 aux->alu_limit != alu_limit)) 4485 return -EACCES; 4486 4487 /* Corresponding fixup done in fixup_bpf_calls(). */ 4488 aux->alu_state = alu_state; 4489 aux->alu_limit = alu_limit; 4490 return 0; 4491 } 4492 4493 static int sanitize_val_alu(struct bpf_verifier_env *env, 4494 struct bpf_insn *insn) 4495 { 4496 struct bpf_insn_aux_data *aux = cur_aux(env); 4497 4498 if (can_skip_alu_sanitation(env, insn)) 4499 return 0; 4500 4501 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 4502 } 4503 4504 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 4505 struct bpf_insn *insn, 4506 const struct bpf_reg_state *ptr_reg, 4507 struct bpf_reg_state *dst_reg, 4508 bool off_is_neg) 4509 { 4510 struct bpf_verifier_state *vstate = env->cur_state; 4511 struct bpf_insn_aux_data *aux = cur_aux(env); 4512 bool ptr_is_dst_reg = ptr_reg == dst_reg; 4513 u8 opcode = BPF_OP(insn->code); 4514 u32 alu_state, alu_limit; 4515 struct bpf_reg_state tmp; 4516 bool ret; 4517 4518 if (can_skip_alu_sanitation(env, insn)) 4519 return 0; 4520 4521 /* We already marked aux for masking from non-speculative 4522 * paths, thus we got here in the first place. We only care 4523 * to explore bad access from here. 4524 */ 4525 if (vstate->speculative) 4526 goto do_sim; 4527 4528 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 4529 alu_state |= ptr_is_dst_reg ? 4530 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 4531 4532 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 4533 return 0; 4534 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 4535 return -EACCES; 4536 do_sim: 4537 /* Simulate and find potential out-of-bounds access under 4538 * speculative execution from truncation as a result of 4539 * masking when off was not within expected range. If off 4540 * sits in dst, then we temporarily need to move ptr there 4541 * to simulate dst (== 0) +/-= ptr. Needed, for example, 4542 * for cases where we use K-based arithmetic in one direction 4543 * and truncated reg-based in the other in order to explore 4544 * bad access. 4545 */ 4546 if (!ptr_is_dst_reg) { 4547 tmp = *dst_reg; 4548 *dst_reg = *ptr_reg; 4549 } 4550 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 4551 if (!ptr_is_dst_reg && ret) 4552 *dst_reg = tmp; 4553 return !ret ? -EFAULT : 0; 4554 } 4555 4556 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 4557 * Caller should also handle BPF_MOV case separately. 4558 * If we return -EACCES, caller may want to try again treating pointer as a 4559 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 4560 */ 4561 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 4562 struct bpf_insn *insn, 4563 const struct bpf_reg_state *ptr_reg, 4564 const struct bpf_reg_state *off_reg) 4565 { 4566 struct bpf_verifier_state *vstate = env->cur_state; 4567 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4568 struct bpf_reg_state *regs = state->regs, *dst_reg; 4569 bool known = tnum_is_const(off_reg->var_off); 4570 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 4571 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 4572 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 4573 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 4574 u32 dst = insn->dst_reg, src = insn->src_reg; 4575 u8 opcode = BPF_OP(insn->code); 4576 int ret; 4577 4578 dst_reg = ®s[dst]; 4579 4580 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 4581 smin_val > smax_val || umin_val > umax_val) { 4582 /* Taint dst register if offset had invalid bounds derived from 4583 * e.g. dead branches. 4584 */ 4585 __mark_reg_unknown(dst_reg); 4586 return 0; 4587 } 4588 4589 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4590 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 4591 verbose(env, 4592 "R%d 32-bit pointer arithmetic prohibited\n", 4593 dst); 4594 return -EACCES; 4595 } 4596 4597 switch (ptr_reg->type) { 4598 case PTR_TO_MAP_VALUE_OR_NULL: 4599 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 4600 dst, reg_type_str[ptr_reg->type]); 4601 return -EACCES; 4602 case CONST_PTR_TO_MAP: 4603 case PTR_TO_PACKET_END: 4604 case PTR_TO_SOCKET: 4605 case PTR_TO_SOCKET_OR_NULL: 4606 case PTR_TO_SOCK_COMMON: 4607 case PTR_TO_SOCK_COMMON_OR_NULL: 4608 case PTR_TO_TCP_SOCK: 4609 case PTR_TO_TCP_SOCK_OR_NULL: 4610 case PTR_TO_XDP_SOCK: 4611 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 4612 dst, reg_type_str[ptr_reg->type]); 4613 return -EACCES; 4614 case PTR_TO_MAP_VALUE: 4615 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 4616 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 4617 off_reg == dst_reg ? dst : src); 4618 return -EACCES; 4619 } 4620 /* fall-through */ 4621 default: 4622 break; 4623 } 4624 4625 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 4626 * The id may be overwritten later if we create a new variable offset. 4627 */ 4628 dst_reg->type = ptr_reg->type; 4629 dst_reg->id = ptr_reg->id; 4630 4631 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 4632 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 4633 return -EINVAL; 4634 4635 switch (opcode) { 4636 case BPF_ADD: 4637 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4638 if (ret < 0) { 4639 verbose(env, "R%d tried to add from different maps or paths\n", dst); 4640 return ret; 4641 } 4642 /* We can take a fixed offset as long as it doesn't overflow 4643 * the s32 'off' field 4644 */ 4645 if (known && (ptr_reg->off + smin_val == 4646 (s64)(s32)(ptr_reg->off + smin_val))) { 4647 /* pointer += K. Accumulate it into fixed offset */ 4648 dst_reg->smin_value = smin_ptr; 4649 dst_reg->smax_value = smax_ptr; 4650 dst_reg->umin_value = umin_ptr; 4651 dst_reg->umax_value = umax_ptr; 4652 dst_reg->var_off = ptr_reg->var_off; 4653 dst_reg->off = ptr_reg->off + smin_val; 4654 dst_reg->raw = ptr_reg->raw; 4655 break; 4656 } 4657 /* A new variable offset is created. Note that off_reg->off 4658 * == 0, since it's a scalar. 4659 * dst_reg gets the pointer type and since some positive 4660 * integer value was added to the pointer, give it a new 'id' 4661 * if it's a PTR_TO_PACKET. 4662 * this creates a new 'base' pointer, off_reg (variable) gets 4663 * added into the variable offset, and we copy the fixed offset 4664 * from ptr_reg. 4665 */ 4666 if (signed_add_overflows(smin_ptr, smin_val) || 4667 signed_add_overflows(smax_ptr, smax_val)) { 4668 dst_reg->smin_value = S64_MIN; 4669 dst_reg->smax_value = S64_MAX; 4670 } else { 4671 dst_reg->smin_value = smin_ptr + smin_val; 4672 dst_reg->smax_value = smax_ptr + smax_val; 4673 } 4674 if (umin_ptr + umin_val < umin_ptr || 4675 umax_ptr + umax_val < umax_ptr) { 4676 dst_reg->umin_value = 0; 4677 dst_reg->umax_value = U64_MAX; 4678 } else { 4679 dst_reg->umin_value = umin_ptr + umin_val; 4680 dst_reg->umax_value = umax_ptr + umax_val; 4681 } 4682 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 4683 dst_reg->off = ptr_reg->off; 4684 dst_reg->raw = ptr_reg->raw; 4685 if (reg_is_pkt_pointer(ptr_reg)) { 4686 dst_reg->id = ++env->id_gen; 4687 /* something was added to pkt_ptr, set range to zero */ 4688 dst_reg->raw = 0; 4689 } 4690 break; 4691 case BPF_SUB: 4692 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4693 if (ret < 0) { 4694 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 4695 return ret; 4696 } 4697 if (dst_reg == off_reg) { 4698 /* scalar -= pointer. Creates an unknown scalar */ 4699 verbose(env, "R%d tried to subtract pointer from scalar\n", 4700 dst); 4701 return -EACCES; 4702 } 4703 /* We don't allow subtraction from FP, because (according to 4704 * test_verifier.c test "invalid fp arithmetic", JITs might not 4705 * be able to deal with it. 4706 */ 4707 if (ptr_reg->type == PTR_TO_STACK) { 4708 verbose(env, "R%d subtraction from stack pointer prohibited\n", 4709 dst); 4710 return -EACCES; 4711 } 4712 if (known && (ptr_reg->off - smin_val == 4713 (s64)(s32)(ptr_reg->off - smin_val))) { 4714 /* pointer -= K. Subtract it from fixed offset */ 4715 dst_reg->smin_value = smin_ptr; 4716 dst_reg->smax_value = smax_ptr; 4717 dst_reg->umin_value = umin_ptr; 4718 dst_reg->umax_value = umax_ptr; 4719 dst_reg->var_off = ptr_reg->var_off; 4720 dst_reg->id = ptr_reg->id; 4721 dst_reg->off = ptr_reg->off - smin_val; 4722 dst_reg->raw = ptr_reg->raw; 4723 break; 4724 } 4725 /* A new variable offset is created. If the subtrahend is known 4726 * nonnegative, then any reg->range we had before is still good. 4727 */ 4728 if (signed_sub_overflows(smin_ptr, smax_val) || 4729 signed_sub_overflows(smax_ptr, smin_val)) { 4730 /* Overflow possible, we know nothing */ 4731 dst_reg->smin_value = S64_MIN; 4732 dst_reg->smax_value = S64_MAX; 4733 } else { 4734 dst_reg->smin_value = smin_ptr - smax_val; 4735 dst_reg->smax_value = smax_ptr - smin_val; 4736 } 4737 if (umin_ptr < umax_val) { 4738 /* Overflow possible, we know nothing */ 4739 dst_reg->umin_value = 0; 4740 dst_reg->umax_value = U64_MAX; 4741 } else { 4742 /* Cannot overflow (as long as bounds are consistent) */ 4743 dst_reg->umin_value = umin_ptr - umax_val; 4744 dst_reg->umax_value = umax_ptr - umin_val; 4745 } 4746 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 4747 dst_reg->off = ptr_reg->off; 4748 dst_reg->raw = ptr_reg->raw; 4749 if (reg_is_pkt_pointer(ptr_reg)) { 4750 dst_reg->id = ++env->id_gen; 4751 /* something was added to pkt_ptr, set range to zero */ 4752 if (smin_val < 0) 4753 dst_reg->raw = 0; 4754 } 4755 break; 4756 case BPF_AND: 4757 case BPF_OR: 4758 case BPF_XOR: 4759 /* bitwise ops on pointers are troublesome, prohibit. */ 4760 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 4761 dst, bpf_alu_string[opcode >> 4]); 4762 return -EACCES; 4763 default: 4764 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 4765 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 4766 dst, bpf_alu_string[opcode >> 4]); 4767 return -EACCES; 4768 } 4769 4770 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 4771 return -EINVAL; 4772 4773 __update_reg_bounds(dst_reg); 4774 __reg_deduce_bounds(dst_reg); 4775 __reg_bound_offset(dst_reg); 4776 4777 /* For unprivileged we require that resulting offset must be in bounds 4778 * in order to be able to sanitize access later on. 4779 */ 4780 if (!env->allow_ptr_leaks) { 4781 if (dst_reg->type == PTR_TO_MAP_VALUE && 4782 check_map_access(env, dst, dst_reg->off, 1, false)) { 4783 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 4784 "prohibited for !root\n", dst); 4785 return -EACCES; 4786 } else if (dst_reg->type == PTR_TO_STACK && 4787 check_stack_access(env, dst_reg, dst_reg->off + 4788 dst_reg->var_off.value, 1)) { 4789 verbose(env, "R%d stack pointer arithmetic goes out of range, " 4790 "prohibited for !root\n", dst); 4791 return -EACCES; 4792 } 4793 } 4794 4795 return 0; 4796 } 4797 4798 /* WARNING: This function does calculations on 64-bit values, but the actual 4799 * execution may occur on 32-bit values. Therefore, things like bitshifts 4800 * need extra checks in the 32-bit case. 4801 */ 4802 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 4803 struct bpf_insn *insn, 4804 struct bpf_reg_state *dst_reg, 4805 struct bpf_reg_state src_reg) 4806 { 4807 struct bpf_reg_state *regs = cur_regs(env); 4808 u8 opcode = BPF_OP(insn->code); 4809 bool src_known, dst_known; 4810 s64 smin_val, smax_val; 4811 u64 umin_val, umax_val; 4812 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 4813 u32 dst = insn->dst_reg; 4814 int ret; 4815 4816 if (insn_bitness == 32) { 4817 /* Relevant for 32-bit RSH: Information can propagate towards 4818 * LSB, so it isn't sufficient to only truncate the output to 4819 * 32 bits. 4820 */ 4821 coerce_reg_to_size(dst_reg, 4); 4822 coerce_reg_to_size(&src_reg, 4); 4823 } 4824 4825 smin_val = src_reg.smin_value; 4826 smax_val = src_reg.smax_value; 4827 umin_val = src_reg.umin_value; 4828 umax_val = src_reg.umax_value; 4829 src_known = tnum_is_const(src_reg.var_off); 4830 dst_known = tnum_is_const(dst_reg->var_off); 4831 4832 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 4833 smin_val > smax_val || umin_val > umax_val) { 4834 /* Taint dst register if offset had invalid bounds derived from 4835 * e.g. dead branches. 4836 */ 4837 __mark_reg_unknown(dst_reg); 4838 return 0; 4839 } 4840 4841 if (!src_known && 4842 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 4843 __mark_reg_unknown(dst_reg); 4844 return 0; 4845 } 4846 4847 switch (opcode) { 4848 case BPF_ADD: 4849 ret = sanitize_val_alu(env, insn); 4850 if (ret < 0) { 4851 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 4852 return ret; 4853 } 4854 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 4855 signed_add_overflows(dst_reg->smax_value, smax_val)) { 4856 dst_reg->smin_value = S64_MIN; 4857 dst_reg->smax_value = S64_MAX; 4858 } else { 4859 dst_reg->smin_value += smin_val; 4860 dst_reg->smax_value += smax_val; 4861 } 4862 if (dst_reg->umin_value + umin_val < umin_val || 4863 dst_reg->umax_value + umax_val < umax_val) { 4864 dst_reg->umin_value = 0; 4865 dst_reg->umax_value = U64_MAX; 4866 } else { 4867 dst_reg->umin_value += umin_val; 4868 dst_reg->umax_value += umax_val; 4869 } 4870 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 4871 break; 4872 case BPF_SUB: 4873 ret = sanitize_val_alu(env, insn); 4874 if (ret < 0) { 4875 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 4876 return ret; 4877 } 4878 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 4879 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 4880 /* Overflow possible, we know nothing */ 4881 dst_reg->smin_value = S64_MIN; 4882 dst_reg->smax_value = S64_MAX; 4883 } else { 4884 dst_reg->smin_value -= smax_val; 4885 dst_reg->smax_value -= smin_val; 4886 } 4887 if (dst_reg->umin_value < umax_val) { 4888 /* Overflow possible, we know nothing */ 4889 dst_reg->umin_value = 0; 4890 dst_reg->umax_value = U64_MAX; 4891 } else { 4892 /* Cannot overflow (as long as bounds are consistent) */ 4893 dst_reg->umin_value -= umax_val; 4894 dst_reg->umax_value -= umin_val; 4895 } 4896 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 4897 break; 4898 case BPF_MUL: 4899 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 4900 if (smin_val < 0 || dst_reg->smin_value < 0) { 4901 /* Ain't nobody got time to multiply that sign */ 4902 __mark_reg_unbounded(dst_reg); 4903 __update_reg_bounds(dst_reg); 4904 break; 4905 } 4906 /* Both values are positive, so we can work with unsigned and 4907 * copy the result to signed (unless it exceeds S64_MAX). 4908 */ 4909 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 4910 /* Potential overflow, we know nothing */ 4911 __mark_reg_unbounded(dst_reg); 4912 /* (except what we can learn from the var_off) */ 4913 __update_reg_bounds(dst_reg); 4914 break; 4915 } 4916 dst_reg->umin_value *= umin_val; 4917 dst_reg->umax_value *= umax_val; 4918 if (dst_reg->umax_value > S64_MAX) { 4919 /* Overflow possible, we know nothing */ 4920 dst_reg->smin_value = S64_MIN; 4921 dst_reg->smax_value = S64_MAX; 4922 } else { 4923 dst_reg->smin_value = dst_reg->umin_value; 4924 dst_reg->smax_value = dst_reg->umax_value; 4925 } 4926 break; 4927 case BPF_AND: 4928 if (src_known && dst_known) { 4929 __mark_reg_known(dst_reg, dst_reg->var_off.value & 4930 src_reg.var_off.value); 4931 break; 4932 } 4933 /* We get our minimum from the var_off, since that's inherently 4934 * bitwise. Our maximum is the minimum of the operands' maxima. 4935 */ 4936 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 4937 dst_reg->umin_value = dst_reg->var_off.value; 4938 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 4939 if (dst_reg->smin_value < 0 || smin_val < 0) { 4940 /* Lose signed bounds when ANDing negative numbers, 4941 * ain't nobody got time for that. 4942 */ 4943 dst_reg->smin_value = S64_MIN; 4944 dst_reg->smax_value = S64_MAX; 4945 } else { 4946 /* ANDing two positives gives a positive, so safe to 4947 * cast result into s64. 4948 */ 4949 dst_reg->smin_value = dst_reg->umin_value; 4950 dst_reg->smax_value = dst_reg->umax_value; 4951 } 4952 /* We may learn something more from the var_off */ 4953 __update_reg_bounds(dst_reg); 4954 break; 4955 case BPF_OR: 4956 if (src_known && dst_known) { 4957 __mark_reg_known(dst_reg, dst_reg->var_off.value | 4958 src_reg.var_off.value); 4959 break; 4960 } 4961 /* We get our maximum from the var_off, and our minimum is the 4962 * maximum of the operands' minima 4963 */ 4964 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 4965 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 4966 dst_reg->umax_value = dst_reg->var_off.value | 4967 dst_reg->var_off.mask; 4968 if (dst_reg->smin_value < 0 || smin_val < 0) { 4969 /* Lose signed bounds when ORing negative numbers, 4970 * ain't nobody got time for that. 4971 */ 4972 dst_reg->smin_value = S64_MIN; 4973 dst_reg->smax_value = S64_MAX; 4974 } else { 4975 /* ORing two positives gives a positive, so safe to 4976 * cast result into s64. 4977 */ 4978 dst_reg->smin_value = dst_reg->umin_value; 4979 dst_reg->smax_value = dst_reg->umax_value; 4980 } 4981 /* We may learn something more from the var_off */ 4982 __update_reg_bounds(dst_reg); 4983 break; 4984 case BPF_LSH: 4985 if (umax_val >= insn_bitness) { 4986 /* Shifts greater than 31 or 63 are undefined. 4987 * This includes shifts by a negative number. 4988 */ 4989 mark_reg_unknown(env, regs, insn->dst_reg); 4990 break; 4991 } 4992 /* We lose all sign bit information (except what we can pick 4993 * up from var_off) 4994 */ 4995 dst_reg->smin_value = S64_MIN; 4996 dst_reg->smax_value = S64_MAX; 4997 /* If we might shift our top bit out, then we know nothing */ 4998 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 4999 dst_reg->umin_value = 0; 5000 dst_reg->umax_value = U64_MAX; 5001 } else { 5002 dst_reg->umin_value <<= umin_val; 5003 dst_reg->umax_value <<= umax_val; 5004 } 5005 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 5006 /* We may learn something more from the var_off */ 5007 __update_reg_bounds(dst_reg); 5008 break; 5009 case BPF_RSH: 5010 if (umax_val >= insn_bitness) { 5011 /* Shifts greater than 31 or 63 are undefined. 5012 * This includes shifts by a negative number. 5013 */ 5014 mark_reg_unknown(env, regs, insn->dst_reg); 5015 break; 5016 } 5017 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5018 * be negative, then either: 5019 * 1) src_reg might be zero, so the sign bit of the result is 5020 * unknown, so we lose our signed bounds 5021 * 2) it's known negative, thus the unsigned bounds capture the 5022 * signed bounds 5023 * 3) the signed bounds cross zero, so they tell us nothing 5024 * about the result 5025 * If the value in dst_reg is known nonnegative, then again the 5026 * unsigned bounts capture the signed bounds. 5027 * Thus, in all cases it suffices to blow away our signed bounds 5028 * and rely on inferring new ones from the unsigned bounds and 5029 * var_off of the result. 5030 */ 5031 dst_reg->smin_value = S64_MIN; 5032 dst_reg->smax_value = S64_MAX; 5033 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 5034 dst_reg->umin_value >>= umax_val; 5035 dst_reg->umax_value >>= umin_val; 5036 /* We may learn something more from the var_off */ 5037 __update_reg_bounds(dst_reg); 5038 break; 5039 case BPF_ARSH: 5040 if (umax_val >= insn_bitness) { 5041 /* Shifts greater than 31 or 63 are undefined. 5042 * This includes shifts by a negative number. 5043 */ 5044 mark_reg_unknown(env, regs, insn->dst_reg); 5045 break; 5046 } 5047 5048 /* Upon reaching here, src_known is true and 5049 * umax_val is equal to umin_val. 5050 */ 5051 dst_reg->smin_value >>= umin_val; 5052 dst_reg->smax_value >>= umin_val; 5053 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 5054 5055 /* blow away the dst_reg umin_value/umax_value and rely on 5056 * dst_reg var_off to refine the result. 5057 */ 5058 dst_reg->umin_value = 0; 5059 dst_reg->umax_value = U64_MAX; 5060 __update_reg_bounds(dst_reg); 5061 break; 5062 default: 5063 mark_reg_unknown(env, regs, insn->dst_reg); 5064 break; 5065 } 5066 5067 if (BPF_CLASS(insn->code) != BPF_ALU64) { 5068 /* 32-bit ALU ops are (32,32)->32 */ 5069 coerce_reg_to_size(dst_reg, 4); 5070 } 5071 5072 __reg_deduce_bounds(dst_reg); 5073 __reg_bound_offset(dst_reg); 5074 return 0; 5075 } 5076 5077 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 5078 * and var_off. 5079 */ 5080 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 5081 struct bpf_insn *insn) 5082 { 5083 struct bpf_verifier_state *vstate = env->cur_state; 5084 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5085 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 5086 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 5087 u8 opcode = BPF_OP(insn->code); 5088 int err; 5089 5090 dst_reg = ®s[insn->dst_reg]; 5091 src_reg = NULL; 5092 if (dst_reg->type != SCALAR_VALUE) 5093 ptr_reg = dst_reg; 5094 if (BPF_SRC(insn->code) == BPF_X) { 5095 src_reg = ®s[insn->src_reg]; 5096 if (src_reg->type != SCALAR_VALUE) { 5097 if (dst_reg->type != SCALAR_VALUE) { 5098 /* Combining two pointers by any ALU op yields 5099 * an arbitrary scalar. Disallow all math except 5100 * pointer subtraction 5101 */ 5102 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5103 mark_reg_unknown(env, regs, insn->dst_reg); 5104 return 0; 5105 } 5106 verbose(env, "R%d pointer %s pointer prohibited\n", 5107 insn->dst_reg, 5108 bpf_alu_string[opcode >> 4]); 5109 return -EACCES; 5110 } else { 5111 /* scalar += pointer 5112 * This is legal, but we have to reverse our 5113 * src/dest handling in computing the range 5114 */ 5115 err = mark_chain_precision(env, insn->dst_reg); 5116 if (err) 5117 return err; 5118 return adjust_ptr_min_max_vals(env, insn, 5119 src_reg, dst_reg); 5120 } 5121 } else if (ptr_reg) { 5122 /* pointer += scalar */ 5123 err = mark_chain_precision(env, insn->src_reg); 5124 if (err) 5125 return err; 5126 return adjust_ptr_min_max_vals(env, insn, 5127 dst_reg, src_reg); 5128 } 5129 } else { 5130 /* Pretend the src is a reg with a known value, since we only 5131 * need to be able to read from this state. 5132 */ 5133 off_reg.type = SCALAR_VALUE; 5134 __mark_reg_known(&off_reg, insn->imm); 5135 src_reg = &off_reg; 5136 if (ptr_reg) /* pointer += K */ 5137 return adjust_ptr_min_max_vals(env, insn, 5138 ptr_reg, src_reg); 5139 } 5140 5141 /* Got here implies adding two SCALAR_VALUEs */ 5142 if (WARN_ON_ONCE(ptr_reg)) { 5143 print_verifier_state(env, state); 5144 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 5145 return -EINVAL; 5146 } 5147 if (WARN_ON(!src_reg)) { 5148 print_verifier_state(env, state); 5149 verbose(env, "verifier internal error: no src_reg\n"); 5150 return -EINVAL; 5151 } 5152 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 5153 } 5154 5155 /* check validity of 32-bit and 64-bit arithmetic operations */ 5156 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 5157 { 5158 struct bpf_reg_state *regs = cur_regs(env); 5159 u8 opcode = BPF_OP(insn->code); 5160 int err; 5161 5162 if (opcode == BPF_END || opcode == BPF_NEG) { 5163 if (opcode == BPF_NEG) { 5164 if (BPF_SRC(insn->code) != 0 || 5165 insn->src_reg != BPF_REG_0 || 5166 insn->off != 0 || insn->imm != 0) { 5167 verbose(env, "BPF_NEG uses reserved fields\n"); 5168 return -EINVAL; 5169 } 5170 } else { 5171 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 5172 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 5173 BPF_CLASS(insn->code) == BPF_ALU64) { 5174 verbose(env, "BPF_END uses reserved fields\n"); 5175 return -EINVAL; 5176 } 5177 } 5178 5179 /* check src operand */ 5180 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5181 if (err) 5182 return err; 5183 5184 if (is_pointer_value(env, insn->dst_reg)) { 5185 verbose(env, "R%d pointer arithmetic prohibited\n", 5186 insn->dst_reg); 5187 return -EACCES; 5188 } 5189 5190 /* check dest operand */ 5191 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5192 if (err) 5193 return err; 5194 5195 } else if (opcode == BPF_MOV) { 5196 5197 if (BPF_SRC(insn->code) == BPF_X) { 5198 if (insn->imm != 0 || insn->off != 0) { 5199 verbose(env, "BPF_MOV uses reserved fields\n"); 5200 return -EINVAL; 5201 } 5202 5203 /* check src operand */ 5204 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5205 if (err) 5206 return err; 5207 } else { 5208 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5209 verbose(env, "BPF_MOV uses reserved fields\n"); 5210 return -EINVAL; 5211 } 5212 } 5213 5214 /* check dest operand, mark as required later */ 5215 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5216 if (err) 5217 return err; 5218 5219 if (BPF_SRC(insn->code) == BPF_X) { 5220 struct bpf_reg_state *src_reg = regs + insn->src_reg; 5221 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 5222 5223 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5224 /* case: R1 = R2 5225 * copy register state to dest reg 5226 */ 5227 *dst_reg = *src_reg; 5228 dst_reg->live |= REG_LIVE_WRITTEN; 5229 dst_reg->subreg_def = DEF_NOT_SUBREG; 5230 } else { 5231 /* R1 = (u32) R2 */ 5232 if (is_pointer_value(env, insn->src_reg)) { 5233 verbose(env, 5234 "R%d partial copy of pointer\n", 5235 insn->src_reg); 5236 return -EACCES; 5237 } else if (src_reg->type == SCALAR_VALUE) { 5238 *dst_reg = *src_reg; 5239 dst_reg->live |= REG_LIVE_WRITTEN; 5240 dst_reg->subreg_def = env->insn_idx + 1; 5241 } else { 5242 mark_reg_unknown(env, regs, 5243 insn->dst_reg); 5244 } 5245 coerce_reg_to_size(dst_reg, 4); 5246 } 5247 } else { 5248 /* case: R = imm 5249 * remember the value we stored into this reg 5250 */ 5251 /* clear any state __mark_reg_known doesn't set */ 5252 mark_reg_unknown(env, regs, insn->dst_reg); 5253 regs[insn->dst_reg].type = SCALAR_VALUE; 5254 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5255 __mark_reg_known(regs + insn->dst_reg, 5256 insn->imm); 5257 } else { 5258 __mark_reg_known(regs + insn->dst_reg, 5259 (u32)insn->imm); 5260 } 5261 } 5262 5263 } else if (opcode > BPF_END) { 5264 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 5265 return -EINVAL; 5266 5267 } else { /* all other ALU ops: and, sub, xor, add, ... */ 5268 5269 if (BPF_SRC(insn->code) == BPF_X) { 5270 if (insn->imm != 0 || insn->off != 0) { 5271 verbose(env, "BPF_ALU uses reserved fields\n"); 5272 return -EINVAL; 5273 } 5274 /* check src1 operand */ 5275 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5276 if (err) 5277 return err; 5278 } else { 5279 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5280 verbose(env, "BPF_ALU uses reserved fields\n"); 5281 return -EINVAL; 5282 } 5283 } 5284 5285 /* check src2 operand */ 5286 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5287 if (err) 5288 return err; 5289 5290 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 5291 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 5292 verbose(env, "div by zero\n"); 5293 return -EINVAL; 5294 } 5295 5296 if ((opcode == BPF_LSH || opcode == BPF_RSH || 5297 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 5298 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 5299 5300 if (insn->imm < 0 || insn->imm >= size) { 5301 verbose(env, "invalid shift %d\n", insn->imm); 5302 return -EINVAL; 5303 } 5304 } 5305 5306 /* check dest operand */ 5307 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5308 if (err) 5309 return err; 5310 5311 return adjust_reg_min_max_vals(env, insn); 5312 } 5313 5314 return 0; 5315 } 5316 5317 static void __find_good_pkt_pointers(struct bpf_func_state *state, 5318 struct bpf_reg_state *dst_reg, 5319 enum bpf_reg_type type, u16 new_range) 5320 { 5321 struct bpf_reg_state *reg; 5322 int i; 5323 5324 for (i = 0; i < MAX_BPF_REG; i++) { 5325 reg = &state->regs[i]; 5326 if (reg->type == type && reg->id == dst_reg->id) 5327 /* keep the maximum range already checked */ 5328 reg->range = max(reg->range, new_range); 5329 } 5330 5331 bpf_for_each_spilled_reg(i, state, reg) { 5332 if (!reg) 5333 continue; 5334 if (reg->type == type && reg->id == dst_reg->id) 5335 reg->range = max(reg->range, new_range); 5336 } 5337 } 5338 5339 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 5340 struct bpf_reg_state *dst_reg, 5341 enum bpf_reg_type type, 5342 bool range_right_open) 5343 { 5344 u16 new_range; 5345 int i; 5346 5347 if (dst_reg->off < 0 || 5348 (dst_reg->off == 0 && range_right_open)) 5349 /* This doesn't give us any range */ 5350 return; 5351 5352 if (dst_reg->umax_value > MAX_PACKET_OFF || 5353 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 5354 /* Risk of overflow. For instance, ptr + (1<<63) may be less 5355 * than pkt_end, but that's because it's also less than pkt. 5356 */ 5357 return; 5358 5359 new_range = dst_reg->off; 5360 if (range_right_open) 5361 new_range--; 5362 5363 /* Examples for register markings: 5364 * 5365 * pkt_data in dst register: 5366 * 5367 * r2 = r3; 5368 * r2 += 8; 5369 * if (r2 > pkt_end) goto <handle exception> 5370 * <access okay> 5371 * 5372 * r2 = r3; 5373 * r2 += 8; 5374 * if (r2 < pkt_end) goto <access okay> 5375 * <handle exception> 5376 * 5377 * Where: 5378 * r2 == dst_reg, pkt_end == src_reg 5379 * r2=pkt(id=n,off=8,r=0) 5380 * r3=pkt(id=n,off=0,r=0) 5381 * 5382 * pkt_data in src register: 5383 * 5384 * r2 = r3; 5385 * r2 += 8; 5386 * if (pkt_end >= r2) goto <access okay> 5387 * <handle exception> 5388 * 5389 * r2 = r3; 5390 * r2 += 8; 5391 * if (pkt_end <= r2) goto <handle exception> 5392 * <access okay> 5393 * 5394 * Where: 5395 * pkt_end == dst_reg, r2 == src_reg 5396 * r2=pkt(id=n,off=8,r=0) 5397 * r3=pkt(id=n,off=0,r=0) 5398 * 5399 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 5400 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 5401 * and [r3, r3 + 8-1) respectively is safe to access depending on 5402 * the check. 5403 */ 5404 5405 /* If our ids match, then we must have the same max_value. And we 5406 * don't care about the other reg's fixed offset, since if it's too big 5407 * the range won't allow anything. 5408 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 5409 */ 5410 for (i = 0; i <= vstate->curframe; i++) 5411 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 5412 new_range); 5413 } 5414 5415 /* compute branch direction of the expression "if (reg opcode val) goto target;" 5416 * and return: 5417 * 1 - branch will be taken and "goto target" will be executed 5418 * 0 - branch will not be taken and fall-through to next insn 5419 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 5420 */ 5421 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 5422 bool is_jmp32) 5423 { 5424 struct bpf_reg_state reg_lo; 5425 s64 sval; 5426 5427 if (__is_pointer_value(false, reg)) 5428 return -1; 5429 5430 if (is_jmp32) { 5431 reg_lo = *reg; 5432 reg = ®_lo; 5433 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size 5434 * could truncate high bits and update umin/umax according to 5435 * information of low bits. 5436 */ 5437 coerce_reg_to_size(reg, 4); 5438 /* smin/smax need special handling. For example, after coerce, 5439 * if smin_value is 0x00000000ffffffffLL, the value is -1 when 5440 * used as operand to JMP32. It is a negative number from s32's 5441 * point of view, while it is a positive number when seen as 5442 * s64. The smin/smax are kept as s64, therefore, when used with 5443 * JMP32, they need to be transformed into s32, then sign 5444 * extended back to s64. 5445 * 5446 * Also, smin/smax were copied from umin/umax. If umin/umax has 5447 * different sign bit, then min/max relationship doesn't 5448 * maintain after casting into s32, for this case, set smin/smax 5449 * to safest range. 5450 */ 5451 if ((reg->umax_value ^ reg->umin_value) & 5452 (1ULL << 31)) { 5453 reg->smin_value = S32_MIN; 5454 reg->smax_value = S32_MAX; 5455 } 5456 reg->smin_value = (s64)(s32)reg->smin_value; 5457 reg->smax_value = (s64)(s32)reg->smax_value; 5458 5459 val = (u32)val; 5460 sval = (s64)(s32)val; 5461 } else { 5462 sval = (s64)val; 5463 } 5464 5465 switch (opcode) { 5466 case BPF_JEQ: 5467 if (tnum_is_const(reg->var_off)) 5468 return !!tnum_equals_const(reg->var_off, val); 5469 break; 5470 case BPF_JNE: 5471 if (tnum_is_const(reg->var_off)) 5472 return !tnum_equals_const(reg->var_off, val); 5473 break; 5474 case BPF_JSET: 5475 if ((~reg->var_off.mask & reg->var_off.value) & val) 5476 return 1; 5477 if (!((reg->var_off.mask | reg->var_off.value) & val)) 5478 return 0; 5479 break; 5480 case BPF_JGT: 5481 if (reg->umin_value > val) 5482 return 1; 5483 else if (reg->umax_value <= val) 5484 return 0; 5485 break; 5486 case BPF_JSGT: 5487 if (reg->smin_value > sval) 5488 return 1; 5489 else if (reg->smax_value < sval) 5490 return 0; 5491 break; 5492 case BPF_JLT: 5493 if (reg->umax_value < val) 5494 return 1; 5495 else if (reg->umin_value >= val) 5496 return 0; 5497 break; 5498 case BPF_JSLT: 5499 if (reg->smax_value < sval) 5500 return 1; 5501 else if (reg->smin_value >= sval) 5502 return 0; 5503 break; 5504 case BPF_JGE: 5505 if (reg->umin_value >= val) 5506 return 1; 5507 else if (reg->umax_value < val) 5508 return 0; 5509 break; 5510 case BPF_JSGE: 5511 if (reg->smin_value >= sval) 5512 return 1; 5513 else if (reg->smax_value < sval) 5514 return 0; 5515 break; 5516 case BPF_JLE: 5517 if (reg->umax_value <= val) 5518 return 1; 5519 else if (reg->umin_value > val) 5520 return 0; 5521 break; 5522 case BPF_JSLE: 5523 if (reg->smax_value <= sval) 5524 return 1; 5525 else if (reg->smin_value > sval) 5526 return 0; 5527 break; 5528 } 5529 5530 return -1; 5531 } 5532 5533 /* Generate min value of the high 32-bit from TNUM info. */ 5534 static u64 gen_hi_min(struct tnum var) 5535 { 5536 return var.value & ~0xffffffffULL; 5537 } 5538 5539 /* Generate max value of the high 32-bit from TNUM info. */ 5540 static u64 gen_hi_max(struct tnum var) 5541 { 5542 return (var.value | var.mask) & ~0xffffffffULL; 5543 } 5544 5545 /* Return true if VAL is compared with a s64 sign extended from s32, and they 5546 * are with the same signedness. 5547 */ 5548 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg) 5549 { 5550 return ((s32)sval >= 0 && 5551 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) || 5552 ((s32)sval < 0 && 5553 reg->smax_value <= 0 && reg->smin_value >= S32_MIN); 5554 } 5555 5556 /* Adjusts the register min/max values in the case that the dst_reg is the 5557 * variable register that we are working on, and src_reg is a constant or we're 5558 * simply doing a BPF_K check. 5559 * In JEQ/JNE cases we also adjust the var_off values. 5560 */ 5561 static void reg_set_min_max(struct bpf_reg_state *true_reg, 5562 struct bpf_reg_state *false_reg, u64 val, 5563 u8 opcode, bool is_jmp32) 5564 { 5565 s64 sval; 5566 5567 /* If the dst_reg is a pointer, we can't learn anything about its 5568 * variable offset from the compare (unless src_reg were a pointer into 5569 * the same object, but we don't bother with that. 5570 * Since false_reg and true_reg have the same type by construction, we 5571 * only need to check one of them for pointerness. 5572 */ 5573 if (__is_pointer_value(false, false_reg)) 5574 return; 5575 5576 val = is_jmp32 ? (u32)val : val; 5577 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5578 5579 switch (opcode) { 5580 case BPF_JEQ: 5581 case BPF_JNE: 5582 { 5583 struct bpf_reg_state *reg = 5584 opcode == BPF_JEQ ? true_reg : false_reg; 5585 5586 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 5587 * if it is true we know the value for sure. Likewise for 5588 * BPF_JNE. 5589 */ 5590 if (is_jmp32) { 5591 u64 old_v = reg->var_off.value; 5592 u64 hi_mask = ~0xffffffffULL; 5593 5594 reg->var_off.value = (old_v & hi_mask) | val; 5595 reg->var_off.mask &= hi_mask; 5596 } else { 5597 __mark_reg_known(reg, val); 5598 } 5599 break; 5600 } 5601 case BPF_JSET: 5602 false_reg->var_off = tnum_and(false_reg->var_off, 5603 tnum_const(~val)); 5604 if (is_power_of_2(val)) 5605 true_reg->var_off = tnum_or(true_reg->var_off, 5606 tnum_const(val)); 5607 break; 5608 case BPF_JGE: 5609 case BPF_JGT: 5610 { 5611 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 5612 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 5613 5614 if (is_jmp32) { 5615 false_umax += gen_hi_max(false_reg->var_off); 5616 true_umin += gen_hi_min(true_reg->var_off); 5617 } 5618 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5619 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5620 break; 5621 } 5622 case BPF_JSGE: 5623 case BPF_JSGT: 5624 { 5625 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 5626 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 5627 5628 /* If the full s64 was not sign-extended from s32 then don't 5629 * deduct further info. 5630 */ 5631 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5632 break; 5633 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5634 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5635 break; 5636 } 5637 case BPF_JLE: 5638 case BPF_JLT: 5639 { 5640 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 5641 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 5642 5643 if (is_jmp32) { 5644 false_umin += gen_hi_min(false_reg->var_off); 5645 true_umax += gen_hi_max(true_reg->var_off); 5646 } 5647 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5648 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5649 break; 5650 } 5651 case BPF_JSLE: 5652 case BPF_JSLT: 5653 { 5654 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 5655 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 5656 5657 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5658 break; 5659 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5660 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5661 break; 5662 } 5663 default: 5664 break; 5665 } 5666 5667 __reg_deduce_bounds(false_reg); 5668 __reg_deduce_bounds(true_reg); 5669 /* We might have learned some bits from the bounds. */ 5670 __reg_bound_offset(false_reg); 5671 __reg_bound_offset(true_reg); 5672 if (is_jmp32) { 5673 __reg_bound_offset32(false_reg); 5674 __reg_bound_offset32(true_reg); 5675 } 5676 /* Intersecting with the old var_off might have improved our bounds 5677 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5678 * then new var_off is (0; 0x7f...fc) which improves our umax. 5679 */ 5680 __update_reg_bounds(false_reg); 5681 __update_reg_bounds(true_reg); 5682 } 5683 5684 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 5685 * the variable reg. 5686 */ 5687 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 5688 struct bpf_reg_state *false_reg, u64 val, 5689 u8 opcode, bool is_jmp32) 5690 { 5691 s64 sval; 5692 5693 if (__is_pointer_value(false, false_reg)) 5694 return; 5695 5696 val = is_jmp32 ? (u32)val : val; 5697 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5698 5699 switch (opcode) { 5700 case BPF_JEQ: 5701 case BPF_JNE: 5702 { 5703 struct bpf_reg_state *reg = 5704 opcode == BPF_JEQ ? true_reg : false_reg; 5705 5706 if (is_jmp32) { 5707 u64 old_v = reg->var_off.value; 5708 u64 hi_mask = ~0xffffffffULL; 5709 5710 reg->var_off.value = (old_v & hi_mask) | val; 5711 reg->var_off.mask &= hi_mask; 5712 } else { 5713 __mark_reg_known(reg, val); 5714 } 5715 break; 5716 } 5717 case BPF_JSET: 5718 false_reg->var_off = tnum_and(false_reg->var_off, 5719 tnum_const(~val)); 5720 if (is_power_of_2(val)) 5721 true_reg->var_off = tnum_or(true_reg->var_off, 5722 tnum_const(val)); 5723 break; 5724 case BPF_JGE: 5725 case BPF_JGT: 5726 { 5727 u64 false_umin = opcode == BPF_JGT ? val : val + 1; 5728 u64 true_umax = opcode == BPF_JGT ? val - 1 : val; 5729 5730 if (is_jmp32) { 5731 false_umin += gen_hi_min(false_reg->var_off); 5732 true_umax += gen_hi_max(true_reg->var_off); 5733 } 5734 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5735 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5736 break; 5737 } 5738 case BPF_JSGE: 5739 case BPF_JSGT: 5740 { 5741 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1; 5742 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval; 5743 5744 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5745 break; 5746 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5747 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5748 break; 5749 } 5750 case BPF_JLE: 5751 case BPF_JLT: 5752 { 5753 u64 false_umax = opcode == BPF_JLT ? val : val - 1; 5754 u64 true_umin = opcode == BPF_JLT ? val + 1 : val; 5755 5756 if (is_jmp32) { 5757 false_umax += gen_hi_max(false_reg->var_off); 5758 true_umin += gen_hi_min(true_reg->var_off); 5759 } 5760 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5761 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5762 break; 5763 } 5764 case BPF_JSLE: 5765 case BPF_JSLT: 5766 { 5767 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1; 5768 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval; 5769 5770 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5771 break; 5772 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5773 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5774 break; 5775 } 5776 default: 5777 break; 5778 } 5779 5780 __reg_deduce_bounds(false_reg); 5781 __reg_deduce_bounds(true_reg); 5782 /* We might have learned some bits from the bounds. */ 5783 __reg_bound_offset(false_reg); 5784 __reg_bound_offset(true_reg); 5785 if (is_jmp32) { 5786 __reg_bound_offset32(false_reg); 5787 __reg_bound_offset32(true_reg); 5788 } 5789 /* Intersecting with the old var_off might have improved our bounds 5790 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5791 * then new var_off is (0; 0x7f...fc) which improves our umax. 5792 */ 5793 __update_reg_bounds(false_reg); 5794 __update_reg_bounds(true_reg); 5795 } 5796 5797 /* Regs are known to be equal, so intersect their min/max/var_off */ 5798 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 5799 struct bpf_reg_state *dst_reg) 5800 { 5801 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 5802 dst_reg->umin_value); 5803 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 5804 dst_reg->umax_value); 5805 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 5806 dst_reg->smin_value); 5807 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 5808 dst_reg->smax_value); 5809 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 5810 dst_reg->var_off); 5811 /* We might have learned new bounds from the var_off. */ 5812 __update_reg_bounds(src_reg); 5813 __update_reg_bounds(dst_reg); 5814 /* We might have learned something about the sign bit. */ 5815 __reg_deduce_bounds(src_reg); 5816 __reg_deduce_bounds(dst_reg); 5817 /* We might have learned some bits from the bounds. */ 5818 __reg_bound_offset(src_reg); 5819 __reg_bound_offset(dst_reg); 5820 /* Intersecting with the old var_off might have improved our bounds 5821 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5822 * then new var_off is (0; 0x7f...fc) which improves our umax. 5823 */ 5824 __update_reg_bounds(src_reg); 5825 __update_reg_bounds(dst_reg); 5826 } 5827 5828 static void reg_combine_min_max(struct bpf_reg_state *true_src, 5829 struct bpf_reg_state *true_dst, 5830 struct bpf_reg_state *false_src, 5831 struct bpf_reg_state *false_dst, 5832 u8 opcode) 5833 { 5834 switch (opcode) { 5835 case BPF_JEQ: 5836 __reg_combine_min_max(true_src, true_dst); 5837 break; 5838 case BPF_JNE: 5839 __reg_combine_min_max(false_src, false_dst); 5840 break; 5841 } 5842 } 5843 5844 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 5845 struct bpf_reg_state *reg, u32 id, 5846 bool is_null) 5847 { 5848 if (reg_type_may_be_null(reg->type) && reg->id == id) { 5849 /* Old offset (both fixed and variable parts) should 5850 * have been known-zero, because we don't allow pointer 5851 * arithmetic on pointers that might be NULL. 5852 */ 5853 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 5854 !tnum_equals_const(reg->var_off, 0) || 5855 reg->off)) { 5856 __mark_reg_known_zero(reg); 5857 reg->off = 0; 5858 } 5859 if (is_null) { 5860 reg->type = SCALAR_VALUE; 5861 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 5862 if (reg->map_ptr->inner_map_meta) { 5863 reg->type = CONST_PTR_TO_MAP; 5864 reg->map_ptr = reg->map_ptr->inner_map_meta; 5865 } else if (reg->map_ptr->map_type == 5866 BPF_MAP_TYPE_XSKMAP) { 5867 reg->type = PTR_TO_XDP_SOCK; 5868 } else { 5869 reg->type = PTR_TO_MAP_VALUE; 5870 } 5871 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 5872 reg->type = PTR_TO_SOCKET; 5873 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 5874 reg->type = PTR_TO_SOCK_COMMON; 5875 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 5876 reg->type = PTR_TO_TCP_SOCK; 5877 } 5878 if (is_null) { 5879 /* We don't need id and ref_obj_id from this point 5880 * onwards anymore, thus we should better reset it, 5881 * so that state pruning has chances to take effect. 5882 */ 5883 reg->id = 0; 5884 reg->ref_obj_id = 0; 5885 } else if (!reg_may_point_to_spin_lock(reg)) { 5886 /* For not-NULL ptr, reg->ref_obj_id will be reset 5887 * in release_reg_references(). 5888 * 5889 * reg->id is still used by spin_lock ptr. Other 5890 * than spin_lock ptr type, reg->id can be reset. 5891 */ 5892 reg->id = 0; 5893 } 5894 } 5895 } 5896 5897 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 5898 bool is_null) 5899 { 5900 struct bpf_reg_state *reg; 5901 int i; 5902 5903 for (i = 0; i < MAX_BPF_REG; i++) 5904 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 5905 5906 bpf_for_each_spilled_reg(i, state, reg) { 5907 if (!reg) 5908 continue; 5909 mark_ptr_or_null_reg(state, reg, id, is_null); 5910 } 5911 } 5912 5913 /* The logic is similar to find_good_pkt_pointers(), both could eventually 5914 * be folded together at some point. 5915 */ 5916 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 5917 bool is_null) 5918 { 5919 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5920 struct bpf_reg_state *regs = state->regs; 5921 u32 ref_obj_id = regs[regno].ref_obj_id; 5922 u32 id = regs[regno].id; 5923 int i; 5924 5925 if (ref_obj_id && ref_obj_id == id && is_null) 5926 /* regs[regno] is in the " == NULL" branch. 5927 * No one could have freed the reference state before 5928 * doing the NULL check. 5929 */ 5930 WARN_ON_ONCE(release_reference_state(state, id)); 5931 5932 for (i = 0; i <= vstate->curframe; i++) 5933 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 5934 } 5935 5936 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 5937 struct bpf_reg_state *dst_reg, 5938 struct bpf_reg_state *src_reg, 5939 struct bpf_verifier_state *this_branch, 5940 struct bpf_verifier_state *other_branch) 5941 { 5942 if (BPF_SRC(insn->code) != BPF_X) 5943 return false; 5944 5945 /* Pointers are always 64-bit. */ 5946 if (BPF_CLASS(insn->code) == BPF_JMP32) 5947 return false; 5948 5949 switch (BPF_OP(insn->code)) { 5950 case BPF_JGT: 5951 if ((dst_reg->type == PTR_TO_PACKET && 5952 src_reg->type == PTR_TO_PACKET_END) || 5953 (dst_reg->type == PTR_TO_PACKET_META && 5954 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5955 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 5956 find_good_pkt_pointers(this_branch, dst_reg, 5957 dst_reg->type, false); 5958 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5959 src_reg->type == PTR_TO_PACKET) || 5960 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5961 src_reg->type == PTR_TO_PACKET_META)) { 5962 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 5963 find_good_pkt_pointers(other_branch, src_reg, 5964 src_reg->type, true); 5965 } else { 5966 return false; 5967 } 5968 break; 5969 case BPF_JLT: 5970 if ((dst_reg->type == PTR_TO_PACKET && 5971 src_reg->type == PTR_TO_PACKET_END) || 5972 (dst_reg->type == PTR_TO_PACKET_META && 5973 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5974 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 5975 find_good_pkt_pointers(other_branch, dst_reg, 5976 dst_reg->type, true); 5977 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5978 src_reg->type == PTR_TO_PACKET) || 5979 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5980 src_reg->type == PTR_TO_PACKET_META)) { 5981 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 5982 find_good_pkt_pointers(this_branch, src_reg, 5983 src_reg->type, false); 5984 } else { 5985 return false; 5986 } 5987 break; 5988 case BPF_JGE: 5989 if ((dst_reg->type == PTR_TO_PACKET && 5990 src_reg->type == PTR_TO_PACKET_END) || 5991 (dst_reg->type == PTR_TO_PACKET_META && 5992 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5993 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 5994 find_good_pkt_pointers(this_branch, dst_reg, 5995 dst_reg->type, true); 5996 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5997 src_reg->type == PTR_TO_PACKET) || 5998 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5999 src_reg->type == PTR_TO_PACKET_META)) { 6000 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 6001 find_good_pkt_pointers(other_branch, src_reg, 6002 src_reg->type, false); 6003 } else { 6004 return false; 6005 } 6006 break; 6007 case BPF_JLE: 6008 if ((dst_reg->type == PTR_TO_PACKET && 6009 src_reg->type == PTR_TO_PACKET_END) || 6010 (dst_reg->type == PTR_TO_PACKET_META && 6011 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6012 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 6013 find_good_pkt_pointers(other_branch, dst_reg, 6014 dst_reg->type, false); 6015 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6016 src_reg->type == PTR_TO_PACKET) || 6017 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6018 src_reg->type == PTR_TO_PACKET_META)) { 6019 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 6020 find_good_pkt_pointers(this_branch, src_reg, 6021 src_reg->type, true); 6022 } else { 6023 return false; 6024 } 6025 break; 6026 default: 6027 return false; 6028 } 6029 6030 return true; 6031 } 6032 6033 static int check_cond_jmp_op(struct bpf_verifier_env *env, 6034 struct bpf_insn *insn, int *insn_idx) 6035 { 6036 struct bpf_verifier_state *this_branch = env->cur_state; 6037 struct bpf_verifier_state *other_branch; 6038 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 6039 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 6040 u8 opcode = BPF_OP(insn->code); 6041 bool is_jmp32; 6042 int pred = -1; 6043 int err; 6044 6045 /* Only conditional jumps are expected to reach here. */ 6046 if (opcode == BPF_JA || opcode > BPF_JSLE) { 6047 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 6048 return -EINVAL; 6049 } 6050 6051 if (BPF_SRC(insn->code) == BPF_X) { 6052 if (insn->imm != 0) { 6053 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6054 return -EINVAL; 6055 } 6056 6057 /* check src1 operand */ 6058 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6059 if (err) 6060 return err; 6061 6062 if (is_pointer_value(env, insn->src_reg)) { 6063 verbose(env, "R%d pointer comparison prohibited\n", 6064 insn->src_reg); 6065 return -EACCES; 6066 } 6067 src_reg = ®s[insn->src_reg]; 6068 } else { 6069 if (insn->src_reg != BPF_REG_0) { 6070 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6071 return -EINVAL; 6072 } 6073 } 6074 6075 /* check src2 operand */ 6076 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6077 if (err) 6078 return err; 6079 6080 dst_reg = ®s[insn->dst_reg]; 6081 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 6082 6083 if (BPF_SRC(insn->code) == BPF_K) 6084 pred = is_branch_taken(dst_reg, insn->imm, 6085 opcode, is_jmp32); 6086 else if (src_reg->type == SCALAR_VALUE && 6087 tnum_is_const(src_reg->var_off)) 6088 pred = is_branch_taken(dst_reg, src_reg->var_off.value, 6089 opcode, is_jmp32); 6090 if (pred >= 0) { 6091 err = mark_chain_precision(env, insn->dst_reg); 6092 if (BPF_SRC(insn->code) == BPF_X && !err) 6093 err = mark_chain_precision(env, insn->src_reg); 6094 if (err) 6095 return err; 6096 } 6097 if (pred == 1) { 6098 /* only follow the goto, ignore fall-through */ 6099 *insn_idx += insn->off; 6100 return 0; 6101 } else if (pred == 0) { 6102 /* only follow fall-through branch, since 6103 * that's where the program will go 6104 */ 6105 return 0; 6106 } 6107 6108 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 6109 false); 6110 if (!other_branch) 6111 return -EFAULT; 6112 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 6113 6114 /* detect if we are comparing against a constant value so we can adjust 6115 * our min/max values for our dst register. 6116 * this is only legit if both are scalars (or pointers to the same 6117 * object, I suppose, but we don't support that right now), because 6118 * otherwise the different base pointers mean the offsets aren't 6119 * comparable. 6120 */ 6121 if (BPF_SRC(insn->code) == BPF_X) { 6122 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 6123 struct bpf_reg_state lo_reg0 = *dst_reg; 6124 struct bpf_reg_state lo_reg1 = *src_reg; 6125 struct bpf_reg_state *src_lo, *dst_lo; 6126 6127 dst_lo = &lo_reg0; 6128 src_lo = &lo_reg1; 6129 coerce_reg_to_size(dst_lo, 4); 6130 coerce_reg_to_size(src_lo, 4); 6131 6132 if (dst_reg->type == SCALAR_VALUE && 6133 src_reg->type == SCALAR_VALUE) { 6134 if (tnum_is_const(src_reg->var_off) || 6135 (is_jmp32 && tnum_is_const(src_lo->var_off))) 6136 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6137 dst_reg, 6138 is_jmp32 6139 ? src_lo->var_off.value 6140 : src_reg->var_off.value, 6141 opcode, is_jmp32); 6142 else if (tnum_is_const(dst_reg->var_off) || 6143 (is_jmp32 && tnum_is_const(dst_lo->var_off))) 6144 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 6145 src_reg, 6146 is_jmp32 6147 ? dst_lo->var_off.value 6148 : dst_reg->var_off.value, 6149 opcode, is_jmp32); 6150 else if (!is_jmp32 && 6151 (opcode == BPF_JEQ || opcode == BPF_JNE)) 6152 /* Comparing for equality, we can combine knowledge */ 6153 reg_combine_min_max(&other_branch_regs[insn->src_reg], 6154 &other_branch_regs[insn->dst_reg], 6155 src_reg, dst_reg, opcode); 6156 } 6157 } else if (dst_reg->type == SCALAR_VALUE) { 6158 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6159 dst_reg, insn->imm, opcode, is_jmp32); 6160 } 6161 6162 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 6163 * NOTE: these optimizations below are related with pointer comparison 6164 * which will never be JMP32. 6165 */ 6166 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 6167 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 6168 reg_type_may_be_null(dst_reg->type)) { 6169 /* Mark all identical registers in each branch as either 6170 * safe or unknown depending R == 0 or R != 0 conditional. 6171 */ 6172 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 6173 opcode == BPF_JNE); 6174 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 6175 opcode == BPF_JEQ); 6176 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 6177 this_branch, other_branch) && 6178 is_pointer_value(env, insn->dst_reg)) { 6179 verbose(env, "R%d pointer comparison prohibited\n", 6180 insn->dst_reg); 6181 return -EACCES; 6182 } 6183 if (env->log.level & BPF_LOG_LEVEL) 6184 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 6185 return 0; 6186 } 6187 6188 /* verify BPF_LD_IMM64 instruction */ 6189 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 6190 { 6191 struct bpf_insn_aux_data *aux = cur_aux(env); 6192 struct bpf_reg_state *regs = cur_regs(env); 6193 struct bpf_map *map; 6194 int err; 6195 6196 if (BPF_SIZE(insn->code) != BPF_DW) { 6197 verbose(env, "invalid BPF_LD_IMM insn\n"); 6198 return -EINVAL; 6199 } 6200 if (insn->off != 0) { 6201 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 6202 return -EINVAL; 6203 } 6204 6205 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6206 if (err) 6207 return err; 6208 6209 if (insn->src_reg == 0) { 6210 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 6211 6212 regs[insn->dst_reg].type = SCALAR_VALUE; 6213 __mark_reg_known(®s[insn->dst_reg], imm); 6214 return 0; 6215 } 6216 6217 map = env->used_maps[aux->map_index]; 6218 mark_reg_known_zero(env, regs, insn->dst_reg); 6219 regs[insn->dst_reg].map_ptr = map; 6220 6221 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 6222 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 6223 regs[insn->dst_reg].off = aux->map_off; 6224 if (map_value_has_spin_lock(map)) 6225 regs[insn->dst_reg].id = ++env->id_gen; 6226 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 6227 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 6228 } else { 6229 verbose(env, "bpf verifier is misconfigured\n"); 6230 return -EINVAL; 6231 } 6232 6233 return 0; 6234 } 6235 6236 static bool may_access_skb(enum bpf_prog_type type) 6237 { 6238 switch (type) { 6239 case BPF_PROG_TYPE_SOCKET_FILTER: 6240 case BPF_PROG_TYPE_SCHED_CLS: 6241 case BPF_PROG_TYPE_SCHED_ACT: 6242 return true; 6243 default: 6244 return false; 6245 } 6246 } 6247 6248 /* verify safety of LD_ABS|LD_IND instructions: 6249 * - they can only appear in the programs where ctx == skb 6250 * - since they are wrappers of function calls, they scratch R1-R5 registers, 6251 * preserve R6-R9, and store return value into R0 6252 * 6253 * Implicit input: 6254 * ctx == skb == R6 == CTX 6255 * 6256 * Explicit input: 6257 * SRC == any register 6258 * IMM == 32-bit immediate 6259 * 6260 * Output: 6261 * R0 - 8/16/32-bit skb data converted to cpu endianness 6262 */ 6263 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 6264 { 6265 struct bpf_reg_state *regs = cur_regs(env); 6266 u8 mode = BPF_MODE(insn->code); 6267 int i, err; 6268 6269 if (!may_access_skb(env->prog->type)) { 6270 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 6271 return -EINVAL; 6272 } 6273 6274 if (!env->ops->gen_ld_abs) { 6275 verbose(env, "bpf verifier is misconfigured\n"); 6276 return -EINVAL; 6277 } 6278 6279 if (env->subprog_cnt > 1) { 6280 /* when program has LD_ABS insn JITs and interpreter assume 6281 * that r1 == ctx == skb which is not the case for callees 6282 * that can have arbitrary arguments. It's problematic 6283 * for main prog as well since JITs would need to analyze 6284 * all functions in order to make proper register save/restore 6285 * decisions in the main prog. Hence disallow LD_ABS with calls 6286 */ 6287 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 6288 return -EINVAL; 6289 } 6290 6291 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 6292 BPF_SIZE(insn->code) == BPF_DW || 6293 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 6294 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 6295 return -EINVAL; 6296 } 6297 6298 /* check whether implicit source operand (register R6) is readable */ 6299 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 6300 if (err) 6301 return err; 6302 6303 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 6304 * gen_ld_abs() may terminate the program at runtime, leading to 6305 * reference leak. 6306 */ 6307 err = check_reference_leak(env); 6308 if (err) { 6309 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 6310 return err; 6311 } 6312 6313 if (env->cur_state->active_spin_lock) { 6314 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 6315 return -EINVAL; 6316 } 6317 6318 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 6319 verbose(env, 6320 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 6321 return -EINVAL; 6322 } 6323 6324 if (mode == BPF_IND) { 6325 /* check explicit source operand */ 6326 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6327 if (err) 6328 return err; 6329 } 6330 6331 /* reset caller saved regs to unreadable */ 6332 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6333 mark_reg_not_init(env, regs, caller_saved[i]); 6334 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6335 } 6336 6337 /* mark destination R0 register as readable, since it contains 6338 * the value fetched from the packet. 6339 * Already marked as written above. 6340 */ 6341 mark_reg_unknown(env, regs, BPF_REG_0); 6342 /* ld_abs load up to 32-bit skb data. */ 6343 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 6344 return 0; 6345 } 6346 6347 static int check_return_code(struct bpf_verifier_env *env) 6348 { 6349 struct tnum enforce_attach_type_range = tnum_unknown; 6350 struct bpf_reg_state *reg; 6351 struct tnum range = tnum_range(0, 1); 6352 6353 switch (env->prog->type) { 6354 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 6355 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 6356 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG) 6357 range = tnum_range(1, 1); 6358 break; 6359 case BPF_PROG_TYPE_CGROUP_SKB: 6360 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 6361 range = tnum_range(0, 3); 6362 enforce_attach_type_range = tnum_range(2, 3); 6363 } 6364 break; 6365 case BPF_PROG_TYPE_CGROUP_SOCK: 6366 case BPF_PROG_TYPE_SOCK_OPS: 6367 case BPF_PROG_TYPE_CGROUP_DEVICE: 6368 case BPF_PROG_TYPE_CGROUP_SYSCTL: 6369 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 6370 break; 6371 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6372 if (!env->prog->aux->attach_btf_id) 6373 return 0; 6374 range = tnum_const(0); 6375 break; 6376 default: 6377 return 0; 6378 } 6379 6380 reg = cur_regs(env) + BPF_REG_0; 6381 if (reg->type != SCALAR_VALUE) { 6382 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 6383 reg_type_str[reg->type]); 6384 return -EINVAL; 6385 } 6386 6387 if (!tnum_in(range, reg->var_off)) { 6388 char tn_buf[48]; 6389 6390 verbose(env, "At program exit the register R0 "); 6391 if (!tnum_is_unknown(reg->var_off)) { 6392 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6393 verbose(env, "has value %s", tn_buf); 6394 } else { 6395 verbose(env, "has unknown scalar value"); 6396 } 6397 tnum_strn(tn_buf, sizeof(tn_buf), range); 6398 verbose(env, " should have been in %s\n", tn_buf); 6399 return -EINVAL; 6400 } 6401 6402 if (!tnum_is_unknown(enforce_attach_type_range) && 6403 tnum_in(enforce_attach_type_range, reg->var_off)) 6404 env->prog->enforce_expected_attach_type = 1; 6405 return 0; 6406 } 6407 6408 /* non-recursive DFS pseudo code 6409 * 1 procedure DFS-iterative(G,v): 6410 * 2 label v as discovered 6411 * 3 let S be a stack 6412 * 4 S.push(v) 6413 * 5 while S is not empty 6414 * 6 t <- S.pop() 6415 * 7 if t is what we're looking for: 6416 * 8 return t 6417 * 9 for all edges e in G.adjacentEdges(t) do 6418 * 10 if edge e is already labelled 6419 * 11 continue with the next edge 6420 * 12 w <- G.adjacentVertex(t,e) 6421 * 13 if vertex w is not discovered and not explored 6422 * 14 label e as tree-edge 6423 * 15 label w as discovered 6424 * 16 S.push(w) 6425 * 17 continue at 5 6426 * 18 else if vertex w is discovered 6427 * 19 label e as back-edge 6428 * 20 else 6429 * 21 // vertex w is explored 6430 * 22 label e as forward- or cross-edge 6431 * 23 label t as explored 6432 * 24 S.pop() 6433 * 6434 * convention: 6435 * 0x10 - discovered 6436 * 0x11 - discovered and fall-through edge labelled 6437 * 0x12 - discovered and fall-through and branch edges labelled 6438 * 0x20 - explored 6439 */ 6440 6441 enum { 6442 DISCOVERED = 0x10, 6443 EXPLORED = 0x20, 6444 FALLTHROUGH = 1, 6445 BRANCH = 2, 6446 }; 6447 6448 static u32 state_htab_size(struct bpf_verifier_env *env) 6449 { 6450 return env->prog->len; 6451 } 6452 6453 static struct bpf_verifier_state_list **explored_state( 6454 struct bpf_verifier_env *env, 6455 int idx) 6456 { 6457 struct bpf_verifier_state *cur = env->cur_state; 6458 struct bpf_func_state *state = cur->frame[cur->curframe]; 6459 6460 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 6461 } 6462 6463 static void init_explored_state(struct bpf_verifier_env *env, int idx) 6464 { 6465 env->insn_aux_data[idx].prune_point = true; 6466 } 6467 6468 /* t, w, e - match pseudo-code above: 6469 * t - index of current instruction 6470 * w - next instruction 6471 * e - edge 6472 */ 6473 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 6474 bool loop_ok) 6475 { 6476 int *insn_stack = env->cfg.insn_stack; 6477 int *insn_state = env->cfg.insn_state; 6478 6479 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 6480 return 0; 6481 6482 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 6483 return 0; 6484 6485 if (w < 0 || w >= env->prog->len) { 6486 verbose_linfo(env, t, "%d: ", t); 6487 verbose(env, "jump out of range from insn %d to %d\n", t, w); 6488 return -EINVAL; 6489 } 6490 6491 if (e == BRANCH) 6492 /* mark branch target for state pruning */ 6493 init_explored_state(env, w); 6494 6495 if (insn_state[w] == 0) { 6496 /* tree-edge */ 6497 insn_state[t] = DISCOVERED | e; 6498 insn_state[w] = DISCOVERED; 6499 if (env->cfg.cur_stack >= env->prog->len) 6500 return -E2BIG; 6501 insn_stack[env->cfg.cur_stack++] = w; 6502 return 1; 6503 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 6504 if (loop_ok && env->allow_ptr_leaks) 6505 return 0; 6506 verbose_linfo(env, t, "%d: ", t); 6507 verbose_linfo(env, w, "%d: ", w); 6508 verbose(env, "back-edge from insn %d to %d\n", t, w); 6509 return -EINVAL; 6510 } else if (insn_state[w] == EXPLORED) { 6511 /* forward- or cross-edge */ 6512 insn_state[t] = DISCOVERED | e; 6513 } else { 6514 verbose(env, "insn state internal bug\n"); 6515 return -EFAULT; 6516 } 6517 return 0; 6518 } 6519 6520 /* non-recursive depth-first-search to detect loops in BPF program 6521 * loop == back-edge in directed graph 6522 */ 6523 static int check_cfg(struct bpf_verifier_env *env) 6524 { 6525 struct bpf_insn *insns = env->prog->insnsi; 6526 int insn_cnt = env->prog->len; 6527 int *insn_stack, *insn_state; 6528 int ret = 0; 6529 int i, t; 6530 6531 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6532 if (!insn_state) 6533 return -ENOMEM; 6534 6535 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6536 if (!insn_stack) { 6537 kvfree(insn_state); 6538 return -ENOMEM; 6539 } 6540 6541 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 6542 insn_stack[0] = 0; /* 0 is the first instruction */ 6543 env->cfg.cur_stack = 1; 6544 6545 peek_stack: 6546 if (env->cfg.cur_stack == 0) 6547 goto check_state; 6548 t = insn_stack[env->cfg.cur_stack - 1]; 6549 6550 if (BPF_CLASS(insns[t].code) == BPF_JMP || 6551 BPF_CLASS(insns[t].code) == BPF_JMP32) { 6552 u8 opcode = BPF_OP(insns[t].code); 6553 6554 if (opcode == BPF_EXIT) { 6555 goto mark_explored; 6556 } else if (opcode == BPF_CALL) { 6557 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6558 if (ret == 1) 6559 goto peek_stack; 6560 else if (ret < 0) 6561 goto err_free; 6562 if (t + 1 < insn_cnt) 6563 init_explored_state(env, t + 1); 6564 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 6565 init_explored_state(env, t); 6566 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 6567 env, false); 6568 if (ret == 1) 6569 goto peek_stack; 6570 else if (ret < 0) 6571 goto err_free; 6572 } 6573 } else if (opcode == BPF_JA) { 6574 if (BPF_SRC(insns[t].code) != BPF_K) { 6575 ret = -EINVAL; 6576 goto err_free; 6577 } 6578 /* unconditional jump with single edge */ 6579 ret = push_insn(t, t + insns[t].off + 1, 6580 FALLTHROUGH, env, true); 6581 if (ret == 1) 6582 goto peek_stack; 6583 else if (ret < 0) 6584 goto err_free; 6585 /* unconditional jmp is not a good pruning point, 6586 * but it's marked, since backtracking needs 6587 * to record jmp history in is_state_visited(). 6588 */ 6589 init_explored_state(env, t + insns[t].off + 1); 6590 /* tell verifier to check for equivalent states 6591 * after every call and jump 6592 */ 6593 if (t + 1 < insn_cnt) 6594 init_explored_state(env, t + 1); 6595 } else { 6596 /* conditional jump with two edges */ 6597 init_explored_state(env, t); 6598 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 6599 if (ret == 1) 6600 goto peek_stack; 6601 else if (ret < 0) 6602 goto err_free; 6603 6604 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 6605 if (ret == 1) 6606 goto peek_stack; 6607 else if (ret < 0) 6608 goto err_free; 6609 } 6610 } else { 6611 /* all other non-branch instructions with single 6612 * fall-through edge 6613 */ 6614 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6615 if (ret == 1) 6616 goto peek_stack; 6617 else if (ret < 0) 6618 goto err_free; 6619 } 6620 6621 mark_explored: 6622 insn_state[t] = EXPLORED; 6623 if (env->cfg.cur_stack-- <= 0) { 6624 verbose(env, "pop stack internal bug\n"); 6625 ret = -EFAULT; 6626 goto err_free; 6627 } 6628 goto peek_stack; 6629 6630 check_state: 6631 for (i = 0; i < insn_cnt; i++) { 6632 if (insn_state[i] != EXPLORED) { 6633 verbose(env, "unreachable insn %d\n", i); 6634 ret = -EINVAL; 6635 goto err_free; 6636 } 6637 } 6638 ret = 0; /* cfg looks good */ 6639 6640 err_free: 6641 kvfree(insn_state); 6642 kvfree(insn_stack); 6643 env->cfg.insn_state = env->cfg.insn_stack = NULL; 6644 return ret; 6645 } 6646 6647 /* The minimum supported BTF func info size */ 6648 #define MIN_BPF_FUNCINFO_SIZE 8 6649 #define MAX_FUNCINFO_REC_SIZE 252 6650 6651 static int check_btf_func(struct bpf_verifier_env *env, 6652 const union bpf_attr *attr, 6653 union bpf_attr __user *uattr) 6654 { 6655 u32 i, nfuncs, urec_size, min_size; 6656 u32 krec_size = sizeof(struct bpf_func_info); 6657 struct bpf_func_info *krecord; 6658 struct bpf_func_info_aux *info_aux = NULL; 6659 const struct btf_type *type; 6660 struct bpf_prog *prog; 6661 const struct btf *btf; 6662 void __user *urecord; 6663 u32 prev_offset = 0; 6664 int ret = 0; 6665 6666 nfuncs = attr->func_info_cnt; 6667 if (!nfuncs) 6668 return 0; 6669 6670 if (nfuncs != env->subprog_cnt) { 6671 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 6672 return -EINVAL; 6673 } 6674 6675 urec_size = attr->func_info_rec_size; 6676 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 6677 urec_size > MAX_FUNCINFO_REC_SIZE || 6678 urec_size % sizeof(u32)) { 6679 verbose(env, "invalid func info rec size %u\n", urec_size); 6680 return -EINVAL; 6681 } 6682 6683 prog = env->prog; 6684 btf = prog->aux->btf; 6685 6686 urecord = u64_to_user_ptr(attr->func_info); 6687 min_size = min_t(u32, krec_size, urec_size); 6688 6689 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 6690 if (!krecord) 6691 return -ENOMEM; 6692 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 6693 if (!info_aux) 6694 goto err_free; 6695 6696 for (i = 0; i < nfuncs; i++) { 6697 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 6698 if (ret) { 6699 if (ret == -E2BIG) { 6700 verbose(env, "nonzero tailing record in func info"); 6701 /* set the size kernel expects so loader can zero 6702 * out the rest of the record. 6703 */ 6704 if (put_user(min_size, &uattr->func_info_rec_size)) 6705 ret = -EFAULT; 6706 } 6707 goto err_free; 6708 } 6709 6710 if (copy_from_user(&krecord[i], urecord, min_size)) { 6711 ret = -EFAULT; 6712 goto err_free; 6713 } 6714 6715 /* check insn_off */ 6716 if (i == 0) { 6717 if (krecord[i].insn_off) { 6718 verbose(env, 6719 "nonzero insn_off %u for the first func info record", 6720 krecord[i].insn_off); 6721 ret = -EINVAL; 6722 goto err_free; 6723 } 6724 } else if (krecord[i].insn_off <= prev_offset) { 6725 verbose(env, 6726 "same or smaller insn offset (%u) than previous func info record (%u)", 6727 krecord[i].insn_off, prev_offset); 6728 ret = -EINVAL; 6729 goto err_free; 6730 } 6731 6732 if (env->subprog_info[i].start != krecord[i].insn_off) { 6733 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 6734 ret = -EINVAL; 6735 goto err_free; 6736 } 6737 6738 /* check type_id */ 6739 type = btf_type_by_id(btf, krecord[i].type_id); 6740 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 6741 verbose(env, "invalid type id %d in func info", 6742 krecord[i].type_id); 6743 ret = -EINVAL; 6744 goto err_free; 6745 } 6746 prev_offset = krecord[i].insn_off; 6747 urecord += urec_size; 6748 } 6749 6750 prog->aux->func_info = krecord; 6751 prog->aux->func_info_cnt = nfuncs; 6752 prog->aux->func_info_aux = info_aux; 6753 return 0; 6754 6755 err_free: 6756 kvfree(krecord); 6757 kfree(info_aux); 6758 return ret; 6759 } 6760 6761 static void adjust_btf_func(struct bpf_verifier_env *env) 6762 { 6763 struct bpf_prog_aux *aux = env->prog->aux; 6764 int i; 6765 6766 if (!aux->func_info) 6767 return; 6768 6769 for (i = 0; i < env->subprog_cnt; i++) 6770 aux->func_info[i].insn_off = env->subprog_info[i].start; 6771 } 6772 6773 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 6774 sizeof(((struct bpf_line_info *)(0))->line_col)) 6775 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 6776 6777 static int check_btf_line(struct bpf_verifier_env *env, 6778 const union bpf_attr *attr, 6779 union bpf_attr __user *uattr) 6780 { 6781 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 6782 struct bpf_subprog_info *sub; 6783 struct bpf_line_info *linfo; 6784 struct bpf_prog *prog; 6785 const struct btf *btf; 6786 void __user *ulinfo; 6787 int err; 6788 6789 nr_linfo = attr->line_info_cnt; 6790 if (!nr_linfo) 6791 return 0; 6792 6793 rec_size = attr->line_info_rec_size; 6794 if (rec_size < MIN_BPF_LINEINFO_SIZE || 6795 rec_size > MAX_LINEINFO_REC_SIZE || 6796 rec_size & (sizeof(u32) - 1)) 6797 return -EINVAL; 6798 6799 /* Need to zero it in case the userspace may 6800 * pass in a smaller bpf_line_info object. 6801 */ 6802 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 6803 GFP_KERNEL | __GFP_NOWARN); 6804 if (!linfo) 6805 return -ENOMEM; 6806 6807 prog = env->prog; 6808 btf = prog->aux->btf; 6809 6810 s = 0; 6811 sub = env->subprog_info; 6812 ulinfo = u64_to_user_ptr(attr->line_info); 6813 expected_size = sizeof(struct bpf_line_info); 6814 ncopy = min_t(u32, expected_size, rec_size); 6815 for (i = 0; i < nr_linfo; i++) { 6816 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 6817 if (err) { 6818 if (err == -E2BIG) { 6819 verbose(env, "nonzero tailing record in line_info"); 6820 if (put_user(expected_size, 6821 &uattr->line_info_rec_size)) 6822 err = -EFAULT; 6823 } 6824 goto err_free; 6825 } 6826 6827 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 6828 err = -EFAULT; 6829 goto err_free; 6830 } 6831 6832 /* 6833 * Check insn_off to ensure 6834 * 1) strictly increasing AND 6835 * 2) bounded by prog->len 6836 * 6837 * The linfo[0].insn_off == 0 check logically falls into 6838 * the later "missing bpf_line_info for func..." case 6839 * because the first linfo[0].insn_off must be the 6840 * first sub also and the first sub must have 6841 * subprog_info[0].start == 0. 6842 */ 6843 if ((i && linfo[i].insn_off <= prev_offset) || 6844 linfo[i].insn_off >= prog->len) { 6845 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 6846 i, linfo[i].insn_off, prev_offset, 6847 prog->len); 6848 err = -EINVAL; 6849 goto err_free; 6850 } 6851 6852 if (!prog->insnsi[linfo[i].insn_off].code) { 6853 verbose(env, 6854 "Invalid insn code at line_info[%u].insn_off\n", 6855 i); 6856 err = -EINVAL; 6857 goto err_free; 6858 } 6859 6860 if (!btf_name_by_offset(btf, linfo[i].line_off) || 6861 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 6862 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 6863 err = -EINVAL; 6864 goto err_free; 6865 } 6866 6867 if (s != env->subprog_cnt) { 6868 if (linfo[i].insn_off == sub[s].start) { 6869 sub[s].linfo_idx = i; 6870 s++; 6871 } else if (sub[s].start < linfo[i].insn_off) { 6872 verbose(env, "missing bpf_line_info for func#%u\n", s); 6873 err = -EINVAL; 6874 goto err_free; 6875 } 6876 } 6877 6878 prev_offset = linfo[i].insn_off; 6879 ulinfo += rec_size; 6880 } 6881 6882 if (s != env->subprog_cnt) { 6883 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 6884 env->subprog_cnt - s, s); 6885 err = -EINVAL; 6886 goto err_free; 6887 } 6888 6889 prog->aux->linfo = linfo; 6890 prog->aux->nr_linfo = nr_linfo; 6891 6892 return 0; 6893 6894 err_free: 6895 kvfree(linfo); 6896 return err; 6897 } 6898 6899 static int check_btf_info(struct bpf_verifier_env *env, 6900 const union bpf_attr *attr, 6901 union bpf_attr __user *uattr) 6902 { 6903 struct btf *btf; 6904 int err; 6905 6906 if (!attr->func_info_cnt && !attr->line_info_cnt) 6907 return 0; 6908 6909 btf = btf_get_by_fd(attr->prog_btf_fd); 6910 if (IS_ERR(btf)) 6911 return PTR_ERR(btf); 6912 env->prog->aux->btf = btf; 6913 6914 err = check_btf_func(env, attr, uattr); 6915 if (err) 6916 return err; 6917 6918 err = check_btf_line(env, attr, uattr); 6919 if (err) 6920 return err; 6921 6922 return 0; 6923 } 6924 6925 /* check %cur's range satisfies %old's */ 6926 static bool range_within(struct bpf_reg_state *old, 6927 struct bpf_reg_state *cur) 6928 { 6929 return old->umin_value <= cur->umin_value && 6930 old->umax_value >= cur->umax_value && 6931 old->smin_value <= cur->smin_value && 6932 old->smax_value >= cur->smax_value; 6933 } 6934 6935 /* Maximum number of register states that can exist at once */ 6936 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 6937 struct idpair { 6938 u32 old; 6939 u32 cur; 6940 }; 6941 6942 /* If in the old state two registers had the same id, then they need to have 6943 * the same id in the new state as well. But that id could be different from 6944 * the old state, so we need to track the mapping from old to new ids. 6945 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 6946 * regs with old id 5 must also have new id 9 for the new state to be safe. But 6947 * regs with a different old id could still have new id 9, we don't care about 6948 * that. 6949 * So we look through our idmap to see if this old id has been seen before. If 6950 * so, we require the new id to match; otherwise, we add the id pair to the map. 6951 */ 6952 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 6953 { 6954 unsigned int i; 6955 6956 for (i = 0; i < ID_MAP_SIZE; i++) { 6957 if (!idmap[i].old) { 6958 /* Reached an empty slot; haven't seen this id before */ 6959 idmap[i].old = old_id; 6960 idmap[i].cur = cur_id; 6961 return true; 6962 } 6963 if (idmap[i].old == old_id) 6964 return idmap[i].cur == cur_id; 6965 } 6966 /* We ran out of idmap slots, which should be impossible */ 6967 WARN_ON_ONCE(1); 6968 return false; 6969 } 6970 6971 static void clean_func_state(struct bpf_verifier_env *env, 6972 struct bpf_func_state *st) 6973 { 6974 enum bpf_reg_liveness live; 6975 int i, j; 6976 6977 for (i = 0; i < BPF_REG_FP; i++) { 6978 live = st->regs[i].live; 6979 /* liveness must not touch this register anymore */ 6980 st->regs[i].live |= REG_LIVE_DONE; 6981 if (!(live & REG_LIVE_READ)) 6982 /* since the register is unused, clear its state 6983 * to make further comparison simpler 6984 */ 6985 __mark_reg_not_init(&st->regs[i]); 6986 } 6987 6988 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 6989 live = st->stack[i].spilled_ptr.live; 6990 /* liveness must not touch this stack slot anymore */ 6991 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 6992 if (!(live & REG_LIVE_READ)) { 6993 __mark_reg_not_init(&st->stack[i].spilled_ptr); 6994 for (j = 0; j < BPF_REG_SIZE; j++) 6995 st->stack[i].slot_type[j] = STACK_INVALID; 6996 } 6997 } 6998 } 6999 7000 static void clean_verifier_state(struct bpf_verifier_env *env, 7001 struct bpf_verifier_state *st) 7002 { 7003 int i; 7004 7005 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 7006 /* all regs in this state in all frames were already marked */ 7007 return; 7008 7009 for (i = 0; i <= st->curframe; i++) 7010 clean_func_state(env, st->frame[i]); 7011 } 7012 7013 /* the parentage chains form a tree. 7014 * the verifier states are added to state lists at given insn and 7015 * pushed into state stack for future exploration. 7016 * when the verifier reaches bpf_exit insn some of the verifer states 7017 * stored in the state lists have their final liveness state already, 7018 * but a lot of states will get revised from liveness point of view when 7019 * the verifier explores other branches. 7020 * Example: 7021 * 1: r0 = 1 7022 * 2: if r1 == 100 goto pc+1 7023 * 3: r0 = 2 7024 * 4: exit 7025 * when the verifier reaches exit insn the register r0 in the state list of 7026 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 7027 * of insn 2 and goes exploring further. At the insn 4 it will walk the 7028 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 7029 * 7030 * Since the verifier pushes the branch states as it sees them while exploring 7031 * the program the condition of walking the branch instruction for the second 7032 * time means that all states below this branch were already explored and 7033 * their final liveness markes are already propagated. 7034 * Hence when the verifier completes the search of state list in is_state_visited() 7035 * we can call this clean_live_states() function to mark all liveness states 7036 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 7037 * will not be used. 7038 * This function also clears the registers and stack for states that !READ 7039 * to simplify state merging. 7040 * 7041 * Important note here that walking the same branch instruction in the callee 7042 * doesn't meant that the states are DONE. The verifier has to compare 7043 * the callsites 7044 */ 7045 static void clean_live_states(struct bpf_verifier_env *env, int insn, 7046 struct bpf_verifier_state *cur) 7047 { 7048 struct bpf_verifier_state_list *sl; 7049 int i; 7050 7051 sl = *explored_state(env, insn); 7052 while (sl) { 7053 if (sl->state.branches) 7054 goto next; 7055 if (sl->state.insn_idx != insn || 7056 sl->state.curframe != cur->curframe) 7057 goto next; 7058 for (i = 0; i <= cur->curframe; i++) 7059 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 7060 goto next; 7061 clean_verifier_state(env, &sl->state); 7062 next: 7063 sl = sl->next; 7064 } 7065 } 7066 7067 /* Returns true if (rold safe implies rcur safe) */ 7068 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7069 struct idpair *idmap) 7070 { 7071 bool equal; 7072 7073 if (!(rold->live & REG_LIVE_READ)) 7074 /* explored state didn't use this */ 7075 return true; 7076 7077 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 7078 7079 if (rold->type == PTR_TO_STACK) 7080 /* two stack pointers are equal only if they're pointing to 7081 * the same stack frame, since fp-8 in foo != fp-8 in bar 7082 */ 7083 return equal && rold->frameno == rcur->frameno; 7084 7085 if (equal) 7086 return true; 7087 7088 if (rold->type == NOT_INIT) 7089 /* explored state can't have used this */ 7090 return true; 7091 if (rcur->type == NOT_INIT) 7092 return false; 7093 switch (rold->type) { 7094 case SCALAR_VALUE: 7095 if (rcur->type == SCALAR_VALUE) { 7096 if (!rold->precise && !rcur->precise) 7097 return true; 7098 /* new val must satisfy old val knowledge */ 7099 return range_within(rold, rcur) && 7100 tnum_in(rold->var_off, rcur->var_off); 7101 } else { 7102 /* We're trying to use a pointer in place of a scalar. 7103 * Even if the scalar was unbounded, this could lead to 7104 * pointer leaks because scalars are allowed to leak 7105 * while pointers are not. We could make this safe in 7106 * special cases if root is calling us, but it's 7107 * probably not worth the hassle. 7108 */ 7109 return false; 7110 } 7111 case PTR_TO_MAP_VALUE: 7112 /* If the new min/max/var_off satisfy the old ones and 7113 * everything else matches, we are OK. 7114 * 'id' is not compared, since it's only used for maps with 7115 * bpf_spin_lock inside map element and in such cases if 7116 * the rest of the prog is valid for one map element then 7117 * it's valid for all map elements regardless of the key 7118 * used in bpf_map_lookup() 7119 */ 7120 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 7121 range_within(rold, rcur) && 7122 tnum_in(rold->var_off, rcur->var_off); 7123 case PTR_TO_MAP_VALUE_OR_NULL: 7124 /* a PTR_TO_MAP_VALUE could be safe to use as a 7125 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 7126 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 7127 * checked, doing so could have affected others with the same 7128 * id, and we can't check for that because we lost the id when 7129 * we converted to a PTR_TO_MAP_VALUE. 7130 */ 7131 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 7132 return false; 7133 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 7134 return false; 7135 /* Check our ids match any regs they're supposed to */ 7136 return check_ids(rold->id, rcur->id, idmap); 7137 case PTR_TO_PACKET_META: 7138 case PTR_TO_PACKET: 7139 if (rcur->type != rold->type) 7140 return false; 7141 /* We must have at least as much range as the old ptr 7142 * did, so that any accesses which were safe before are 7143 * still safe. This is true even if old range < old off, 7144 * since someone could have accessed through (ptr - k), or 7145 * even done ptr -= k in a register, to get a safe access. 7146 */ 7147 if (rold->range > rcur->range) 7148 return false; 7149 /* If the offsets don't match, we can't trust our alignment; 7150 * nor can we be sure that we won't fall out of range. 7151 */ 7152 if (rold->off != rcur->off) 7153 return false; 7154 /* id relations must be preserved */ 7155 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 7156 return false; 7157 /* new val must satisfy old val knowledge */ 7158 return range_within(rold, rcur) && 7159 tnum_in(rold->var_off, rcur->var_off); 7160 case PTR_TO_CTX: 7161 case CONST_PTR_TO_MAP: 7162 case PTR_TO_PACKET_END: 7163 case PTR_TO_FLOW_KEYS: 7164 case PTR_TO_SOCKET: 7165 case PTR_TO_SOCKET_OR_NULL: 7166 case PTR_TO_SOCK_COMMON: 7167 case PTR_TO_SOCK_COMMON_OR_NULL: 7168 case PTR_TO_TCP_SOCK: 7169 case PTR_TO_TCP_SOCK_OR_NULL: 7170 case PTR_TO_XDP_SOCK: 7171 /* Only valid matches are exact, which memcmp() above 7172 * would have accepted 7173 */ 7174 default: 7175 /* Don't know what's going on, just say it's not safe */ 7176 return false; 7177 } 7178 7179 /* Shouldn't get here; if we do, say it's not safe */ 7180 WARN_ON_ONCE(1); 7181 return false; 7182 } 7183 7184 static bool stacksafe(struct bpf_func_state *old, 7185 struct bpf_func_state *cur, 7186 struct idpair *idmap) 7187 { 7188 int i, spi; 7189 7190 /* walk slots of the explored stack and ignore any additional 7191 * slots in the current stack, since explored(safe) state 7192 * didn't use them 7193 */ 7194 for (i = 0; i < old->allocated_stack; i++) { 7195 spi = i / BPF_REG_SIZE; 7196 7197 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 7198 i += BPF_REG_SIZE - 1; 7199 /* explored state didn't use this */ 7200 continue; 7201 } 7202 7203 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 7204 continue; 7205 7206 /* explored stack has more populated slots than current stack 7207 * and these slots were used 7208 */ 7209 if (i >= cur->allocated_stack) 7210 return false; 7211 7212 /* if old state was safe with misc data in the stack 7213 * it will be safe with zero-initialized stack. 7214 * The opposite is not true 7215 */ 7216 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 7217 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 7218 continue; 7219 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 7220 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 7221 /* Ex: old explored (safe) state has STACK_SPILL in 7222 * this stack slot, but current has has STACK_MISC -> 7223 * this verifier states are not equivalent, 7224 * return false to continue verification of this path 7225 */ 7226 return false; 7227 if (i % BPF_REG_SIZE) 7228 continue; 7229 if (old->stack[spi].slot_type[0] != STACK_SPILL) 7230 continue; 7231 if (!regsafe(&old->stack[spi].spilled_ptr, 7232 &cur->stack[spi].spilled_ptr, 7233 idmap)) 7234 /* when explored and current stack slot are both storing 7235 * spilled registers, check that stored pointers types 7236 * are the same as well. 7237 * Ex: explored safe path could have stored 7238 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 7239 * but current path has stored: 7240 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 7241 * such verifier states are not equivalent. 7242 * return false to continue verification of this path 7243 */ 7244 return false; 7245 } 7246 return true; 7247 } 7248 7249 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 7250 { 7251 if (old->acquired_refs != cur->acquired_refs) 7252 return false; 7253 return !memcmp(old->refs, cur->refs, 7254 sizeof(*old->refs) * old->acquired_refs); 7255 } 7256 7257 /* compare two verifier states 7258 * 7259 * all states stored in state_list are known to be valid, since 7260 * verifier reached 'bpf_exit' instruction through them 7261 * 7262 * this function is called when verifier exploring different branches of 7263 * execution popped from the state stack. If it sees an old state that has 7264 * more strict register state and more strict stack state then this execution 7265 * branch doesn't need to be explored further, since verifier already 7266 * concluded that more strict state leads to valid finish. 7267 * 7268 * Therefore two states are equivalent if register state is more conservative 7269 * and explored stack state is more conservative than the current one. 7270 * Example: 7271 * explored current 7272 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 7273 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 7274 * 7275 * In other words if current stack state (one being explored) has more 7276 * valid slots than old one that already passed validation, it means 7277 * the verifier can stop exploring and conclude that current state is valid too 7278 * 7279 * Similarly with registers. If explored state has register type as invalid 7280 * whereas register type in current state is meaningful, it means that 7281 * the current state will reach 'bpf_exit' instruction safely 7282 */ 7283 static bool func_states_equal(struct bpf_func_state *old, 7284 struct bpf_func_state *cur) 7285 { 7286 struct idpair *idmap; 7287 bool ret = false; 7288 int i; 7289 7290 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 7291 /* If we failed to allocate the idmap, just say it's not safe */ 7292 if (!idmap) 7293 return false; 7294 7295 for (i = 0; i < MAX_BPF_REG; i++) { 7296 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 7297 goto out_free; 7298 } 7299 7300 if (!stacksafe(old, cur, idmap)) 7301 goto out_free; 7302 7303 if (!refsafe(old, cur)) 7304 goto out_free; 7305 ret = true; 7306 out_free: 7307 kfree(idmap); 7308 return ret; 7309 } 7310 7311 static bool states_equal(struct bpf_verifier_env *env, 7312 struct bpf_verifier_state *old, 7313 struct bpf_verifier_state *cur) 7314 { 7315 int i; 7316 7317 if (old->curframe != cur->curframe) 7318 return false; 7319 7320 /* Verification state from speculative execution simulation 7321 * must never prune a non-speculative execution one. 7322 */ 7323 if (old->speculative && !cur->speculative) 7324 return false; 7325 7326 if (old->active_spin_lock != cur->active_spin_lock) 7327 return false; 7328 7329 /* for states to be equal callsites have to be the same 7330 * and all frame states need to be equivalent 7331 */ 7332 for (i = 0; i <= old->curframe; i++) { 7333 if (old->frame[i]->callsite != cur->frame[i]->callsite) 7334 return false; 7335 if (!func_states_equal(old->frame[i], cur->frame[i])) 7336 return false; 7337 } 7338 return true; 7339 } 7340 7341 /* Return 0 if no propagation happened. Return negative error code if error 7342 * happened. Otherwise, return the propagated bit. 7343 */ 7344 static int propagate_liveness_reg(struct bpf_verifier_env *env, 7345 struct bpf_reg_state *reg, 7346 struct bpf_reg_state *parent_reg) 7347 { 7348 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 7349 u8 flag = reg->live & REG_LIVE_READ; 7350 int err; 7351 7352 /* When comes here, read flags of PARENT_REG or REG could be any of 7353 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 7354 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 7355 */ 7356 if (parent_flag == REG_LIVE_READ64 || 7357 /* Or if there is no read flag from REG. */ 7358 !flag || 7359 /* Or if the read flag from REG is the same as PARENT_REG. */ 7360 parent_flag == flag) 7361 return 0; 7362 7363 err = mark_reg_read(env, reg, parent_reg, flag); 7364 if (err) 7365 return err; 7366 7367 return flag; 7368 } 7369 7370 /* A write screens off any subsequent reads; but write marks come from the 7371 * straight-line code between a state and its parent. When we arrive at an 7372 * equivalent state (jump target or such) we didn't arrive by the straight-line 7373 * code, so read marks in the state must propagate to the parent regardless 7374 * of the state's write marks. That's what 'parent == state->parent' comparison 7375 * in mark_reg_read() is for. 7376 */ 7377 static int propagate_liveness(struct bpf_verifier_env *env, 7378 const struct bpf_verifier_state *vstate, 7379 struct bpf_verifier_state *vparent) 7380 { 7381 struct bpf_reg_state *state_reg, *parent_reg; 7382 struct bpf_func_state *state, *parent; 7383 int i, frame, err = 0; 7384 7385 if (vparent->curframe != vstate->curframe) { 7386 WARN(1, "propagate_live: parent frame %d current frame %d\n", 7387 vparent->curframe, vstate->curframe); 7388 return -EFAULT; 7389 } 7390 /* Propagate read liveness of registers... */ 7391 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 7392 for (frame = 0; frame <= vstate->curframe; frame++) { 7393 parent = vparent->frame[frame]; 7394 state = vstate->frame[frame]; 7395 parent_reg = parent->regs; 7396 state_reg = state->regs; 7397 /* We don't need to worry about FP liveness, it's read-only */ 7398 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 7399 err = propagate_liveness_reg(env, &state_reg[i], 7400 &parent_reg[i]); 7401 if (err < 0) 7402 return err; 7403 if (err == REG_LIVE_READ64) 7404 mark_insn_zext(env, &parent_reg[i]); 7405 } 7406 7407 /* Propagate stack slots. */ 7408 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 7409 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 7410 parent_reg = &parent->stack[i].spilled_ptr; 7411 state_reg = &state->stack[i].spilled_ptr; 7412 err = propagate_liveness_reg(env, state_reg, 7413 parent_reg); 7414 if (err < 0) 7415 return err; 7416 } 7417 } 7418 return 0; 7419 } 7420 7421 /* find precise scalars in the previous equivalent state and 7422 * propagate them into the current state 7423 */ 7424 static int propagate_precision(struct bpf_verifier_env *env, 7425 const struct bpf_verifier_state *old) 7426 { 7427 struct bpf_reg_state *state_reg; 7428 struct bpf_func_state *state; 7429 int i, err = 0; 7430 7431 state = old->frame[old->curframe]; 7432 state_reg = state->regs; 7433 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 7434 if (state_reg->type != SCALAR_VALUE || 7435 !state_reg->precise) 7436 continue; 7437 if (env->log.level & BPF_LOG_LEVEL2) 7438 verbose(env, "propagating r%d\n", i); 7439 err = mark_chain_precision(env, i); 7440 if (err < 0) 7441 return err; 7442 } 7443 7444 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 7445 if (state->stack[i].slot_type[0] != STACK_SPILL) 7446 continue; 7447 state_reg = &state->stack[i].spilled_ptr; 7448 if (state_reg->type != SCALAR_VALUE || 7449 !state_reg->precise) 7450 continue; 7451 if (env->log.level & BPF_LOG_LEVEL2) 7452 verbose(env, "propagating fp%d\n", 7453 (-i - 1) * BPF_REG_SIZE); 7454 err = mark_chain_precision_stack(env, i); 7455 if (err < 0) 7456 return err; 7457 } 7458 return 0; 7459 } 7460 7461 static bool states_maybe_looping(struct bpf_verifier_state *old, 7462 struct bpf_verifier_state *cur) 7463 { 7464 struct bpf_func_state *fold, *fcur; 7465 int i, fr = cur->curframe; 7466 7467 if (old->curframe != fr) 7468 return false; 7469 7470 fold = old->frame[fr]; 7471 fcur = cur->frame[fr]; 7472 for (i = 0; i < MAX_BPF_REG; i++) 7473 if (memcmp(&fold->regs[i], &fcur->regs[i], 7474 offsetof(struct bpf_reg_state, parent))) 7475 return false; 7476 return true; 7477 } 7478 7479 7480 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 7481 { 7482 struct bpf_verifier_state_list *new_sl; 7483 struct bpf_verifier_state_list *sl, **pprev; 7484 struct bpf_verifier_state *cur = env->cur_state, *new; 7485 int i, j, err, states_cnt = 0; 7486 bool add_new_state = env->test_state_freq ? true : false; 7487 7488 cur->last_insn_idx = env->prev_insn_idx; 7489 if (!env->insn_aux_data[insn_idx].prune_point) 7490 /* this 'insn_idx' instruction wasn't marked, so we will not 7491 * be doing state search here 7492 */ 7493 return 0; 7494 7495 /* bpf progs typically have pruning point every 4 instructions 7496 * http://vger.kernel.org/bpfconf2019.html#session-1 7497 * Do not add new state for future pruning if the verifier hasn't seen 7498 * at least 2 jumps and at least 8 instructions. 7499 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 7500 * In tests that amounts to up to 50% reduction into total verifier 7501 * memory consumption and 20% verifier time speedup. 7502 */ 7503 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 7504 env->insn_processed - env->prev_insn_processed >= 8) 7505 add_new_state = true; 7506 7507 pprev = explored_state(env, insn_idx); 7508 sl = *pprev; 7509 7510 clean_live_states(env, insn_idx, cur); 7511 7512 while (sl) { 7513 states_cnt++; 7514 if (sl->state.insn_idx != insn_idx) 7515 goto next; 7516 if (sl->state.branches) { 7517 if (states_maybe_looping(&sl->state, cur) && 7518 states_equal(env, &sl->state, cur)) { 7519 verbose_linfo(env, insn_idx, "; "); 7520 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 7521 return -EINVAL; 7522 } 7523 /* if the verifier is processing a loop, avoid adding new state 7524 * too often, since different loop iterations have distinct 7525 * states and may not help future pruning. 7526 * This threshold shouldn't be too low to make sure that 7527 * a loop with large bound will be rejected quickly. 7528 * The most abusive loop will be: 7529 * r1 += 1 7530 * if r1 < 1000000 goto pc-2 7531 * 1M insn_procssed limit / 100 == 10k peak states. 7532 * This threshold shouldn't be too high either, since states 7533 * at the end of the loop are likely to be useful in pruning. 7534 */ 7535 if (env->jmps_processed - env->prev_jmps_processed < 20 && 7536 env->insn_processed - env->prev_insn_processed < 100) 7537 add_new_state = false; 7538 goto miss; 7539 } 7540 if (states_equal(env, &sl->state, cur)) { 7541 sl->hit_cnt++; 7542 /* reached equivalent register/stack state, 7543 * prune the search. 7544 * Registers read by the continuation are read by us. 7545 * If we have any write marks in env->cur_state, they 7546 * will prevent corresponding reads in the continuation 7547 * from reaching our parent (an explored_state). Our 7548 * own state will get the read marks recorded, but 7549 * they'll be immediately forgotten as we're pruning 7550 * this state and will pop a new one. 7551 */ 7552 err = propagate_liveness(env, &sl->state, cur); 7553 7554 /* if previous state reached the exit with precision and 7555 * current state is equivalent to it (except precsion marks) 7556 * the precision needs to be propagated back in 7557 * the current state. 7558 */ 7559 err = err ? : push_jmp_history(env, cur); 7560 err = err ? : propagate_precision(env, &sl->state); 7561 if (err) 7562 return err; 7563 return 1; 7564 } 7565 miss: 7566 /* when new state is not going to be added do not increase miss count. 7567 * Otherwise several loop iterations will remove the state 7568 * recorded earlier. The goal of these heuristics is to have 7569 * states from some iterations of the loop (some in the beginning 7570 * and some at the end) to help pruning. 7571 */ 7572 if (add_new_state) 7573 sl->miss_cnt++; 7574 /* heuristic to determine whether this state is beneficial 7575 * to keep checking from state equivalence point of view. 7576 * Higher numbers increase max_states_per_insn and verification time, 7577 * but do not meaningfully decrease insn_processed. 7578 */ 7579 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 7580 /* the state is unlikely to be useful. Remove it to 7581 * speed up verification 7582 */ 7583 *pprev = sl->next; 7584 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 7585 u32 br = sl->state.branches; 7586 7587 WARN_ONCE(br, 7588 "BUG live_done but branches_to_explore %d\n", 7589 br); 7590 free_verifier_state(&sl->state, false); 7591 kfree(sl); 7592 env->peak_states--; 7593 } else { 7594 /* cannot free this state, since parentage chain may 7595 * walk it later. Add it for free_list instead to 7596 * be freed at the end of verification 7597 */ 7598 sl->next = env->free_list; 7599 env->free_list = sl; 7600 } 7601 sl = *pprev; 7602 continue; 7603 } 7604 next: 7605 pprev = &sl->next; 7606 sl = *pprev; 7607 } 7608 7609 if (env->max_states_per_insn < states_cnt) 7610 env->max_states_per_insn = states_cnt; 7611 7612 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 7613 return push_jmp_history(env, cur); 7614 7615 if (!add_new_state) 7616 return push_jmp_history(env, cur); 7617 7618 /* There were no equivalent states, remember the current one. 7619 * Technically the current state is not proven to be safe yet, 7620 * but it will either reach outer most bpf_exit (which means it's safe) 7621 * or it will be rejected. When there are no loops the verifier won't be 7622 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 7623 * again on the way to bpf_exit. 7624 * When looping the sl->state.branches will be > 0 and this state 7625 * will not be considered for equivalence until branches == 0. 7626 */ 7627 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 7628 if (!new_sl) 7629 return -ENOMEM; 7630 env->total_states++; 7631 env->peak_states++; 7632 env->prev_jmps_processed = env->jmps_processed; 7633 env->prev_insn_processed = env->insn_processed; 7634 7635 /* add new state to the head of linked list */ 7636 new = &new_sl->state; 7637 err = copy_verifier_state(new, cur); 7638 if (err) { 7639 free_verifier_state(new, false); 7640 kfree(new_sl); 7641 return err; 7642 } 7643 new->insn_idx = insn_idx; 7644 WARN_ONCE(new->branches != 1, 7645 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 7646 7647 cur->parent = new; 7648 cur->first_insn_idx = insn_idx; 7649 clear_jmp_history(cur); 7650 new_sl->next = *explored_state(env, insn_idx); 7651 *explored_state(env, insn_idx) = new_sl; 7652 /* connect new state to parentage chain. Current frame needs all 7653 * registers connected. Only r6 - r9 of the callers are alive (pushed 7654 * to the stack implicitly by JITs) so in callers' frames connect just 7655 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 7656 * the state of the call instruction (with WRITTEN set), and r0 comes 7657 * from callee with its full parentage chain, anyway. 7658 */ 7659 /* clear write marks in current state: the writes we did are not writes 7660 * our child did, so they don't screen off its reads from us. 7661 * (There are no read marks in current state, because reads always mark 7662 * their parent and current state never has children yet. Only 7663 * explored_states can get read marks.) 7664 */ 7665 for (j = 0; j <= cur->curframe; j++) { 7666 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 7667 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 7668 for (i = 0; i < BPF_REG_FP; i++) 7669 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 7670 } 7671 7672 /* all stack frames are accessible from callee, clear them all */ 7673 for (j = 0; j <= cur->curframe; j++) { 7674 struct bpf_func_state *frame = cur->frame[j]; 7675 struct bpf_func_state *newframe = new->frame[j]; 7676 7677 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 7678 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 7679 frame->stack[i].spilled_ptr.parent = 7680 &newframe->stack[i].spilled_ptr; 7681 } 7682 } 7683 return 0; 7684 } 7685 7686 /* Return true if it's OK to have the same insn return a different type. */ 7687 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 7688 { 7689 switch (type) { 7690 case PTR_TO_CTX: 7691 case PTR_TO_SOCKET: 7692 case PTR_TO_SOCKET_OR_NULL: 7693 case PTR_TO_SOCK_COMMON: 7694 case PTR_TO_SOCK_COMMON_OR_NULL: 7695 case PTR_TO_TCP_SOCK: 7696 case PTR_TO_TCP_SOCK_OR_NULL: 7697 case PTR_TO_XDP_SOCK: 7698 case PTR_TO_BTF_ID: 7699 return false; 7700 default: 7701 return true; 7702 } 7703 } 7704 7705 /* If an instruction was previously used with particular pointer types, then we 7706 * need to be careful to avoid cases such as the below, where it may be ok 7707 * for one branch accessing the pointer, but not ok for the other branch: 7708 * 7709 * R1 = sock_ptr 7710 * goto X; 7711 * ... 7712 * R1 = some_other_valid_ptr; 7713 * goto X; 7714 * ... 7715 * R2 = *(u32 *)(R1 + 0); 7716 */ 7717 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 7718 { 7719 return src != prev && (!reg_type_mismatch_ok(src) || 7720 !reg_type_mismatch_ok(prev)); 7721 } 7722 7723 static int do_check(struct bpf_verifier_env *env) 7724 { 7725 struct bpf_verifier_state *state; 7726 struct bpf_insn *insns = env->prog->insnsi; 7727 struct bpf_reg_state *regs; 7728 int insn_cnt = env->prog->len; 7729 bool do_print_state = false; 7730 int prev_insn_idx = -1; 7731 7732 env->prev_linfo = NULL; 7733 7734 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 7735 if (!state) 7736 return -ENOMEM; 7737 state->curframe = 0; 7738 state->speculative = false; 7739 state->branches = 1; 7740 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 7741 if (!state->frame[0]) { 7742 kfree(state); 7743 return -ENOMEM; 7744 } 7745 env->cur_state = state; 7746 init_func_state(env, state->frame[0], 7747 BPF_MAIN_FUNC /* callsite */, 7748 0 /* frameno */, 7749 0 /* subprogno, zero == main subprog */); 7750 7751 if (btf_check_func_arg_match(env, 0)) 7752 return -EINVAL; 7753 7754 for (;;) { 7755 struct bpf_insn *insn; 7756 u8 class; 7757 int err; 7758 7759 env->prev_insn_idx = prev_insn_idx; 7760 if (env->insn_idx >= insn_cnt) { 7761 verbose(env, "invalid insn idx %d insn_cnt %d\n", 7762 env->insn_idx, insn_cnt); 7763 return -EFAULT; 7764 } 7765 7766 insn = &insns[env->insn_idx]; 7767 class = BPF_CLASS(insn->code); 7768 7769 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 7770 verbose(env, 7771 "BPF program is too large. Processed %d insn\n", 7772 env->insn_processed); 7773 return -E2BIG; 7774 } 7775 7776 err = is_state_visited(env, env->insn_idx); 7777 if (err < 0) 7778 return err; 7779 if (err == 1) { 7780 /* found equivalent state, can prune the search */ 7781 if (env->log.level & BPF_LOG_LEVEL) { 7782 if (do_print_state) 7783 verbose(env, "\nfrom %d to %d%s: safe\n", 7784 env->prev_insn_idx, env->insn_idx, 7785 env->cur_state->speculative ? 7786 " (speculative execution)" : ""); 7787 else 7788 verbose(env, "%d: safe\n", env->insn_idx); 7789 } 7790 goto process_bpf_exit; 7791 } 7792 7793 if (signal_pending(current)) 7794 return -EAGAIN; 7795 7796 if (need_resched()) 7797 cond_resched(); 7798 7799 if (env->log.level & BPF_LOG_LEVEL2 || 7800 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 7801 if (env->log.level & BPF_LOG_LEVEL2) 7802 verbose(env, "%d:", env->insn_idx); 7803 else 7804 verbose(env, "\nfrom %d to %d%s:", 7805 env->prev_insn_idx, env->insn_idx, 7806 env->cur_state->speculative ? 7807 " (speculative execution)" : ""); 7808 print_verifier_state(env, state->frame[state->curframe]); 7809 do_print_state = false; 7810 } 7811 7812 if (env->log.level & BPF_LOG_LEVEL) { 7813 const struct bpf_insn_cbs cbs = { 7814 .cb_print = verbose, 7815 .private_data = env, 7816 }; 7817 7818 verbose_linfo(env, env->insn_idx, "; "); 7819 verbose(env, "%d: ", env->insn_idx); 7820 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 7821 } 7822 7823 if (bpf_prog_is_dev_bound(env->prog->aux)) { 7824 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 7825 env->prev_insn_idx); 7826 if (err) 7827 return err; 7828 } 7829 7830 regs = cur_regs(env); 7831 env->insn_aux_data[env->insn_idx].seen = true; 7832 prev_insn_idx = env->insn_idx; 7833 7834 if (class == BPF_ALU || class == BPF_ALU64) { 7835 err = check_alu_op(env, insn); 7836 if (err) 7837 return err; 7838 7839 } else if (class == BPF_LDX) { 7840 enum bpf_reg_type *prev_src_type, src_reg_type; 7841 7842 /* check for reserved fields is already done */ 7843 7844 /* check src operand */ 7845 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7846 if (err) 7847 return err; 7848 7849 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7850 if (err) 7851 return err; 7852 7853 src_reg_type = regs[insn->src_reg].type; 7854 7855 /* check that memory (src_reg + off) is readable, 7856 * the state of dst_reg will be updated by this func 7857 */ 7858 err = check_mem_access(env, env->insn_idx, insn->src_reg, 7859 insn->off, BPF_SIZE(insn->code), 7860 BPF_READ, insn->dst_reg, false); 7861 if (err) 7862 return err; 7863 7864 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7865 7866 if (*prev_src_type == NOT_INIT) { 7867 /* saw a valid insn 7868 * dst_reg = *(u32 *)(src_reg + off) 7869 * save type to validate intersecting paths 7870 */ 7871 *prev_src_type = src_reg_type; 7872 7873 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 7874 /* ABuser program is trying to use the same insn 7875 * dst_reg = *(u32*) (src_reg + off) 7876 * with different pointer types: 7877 * src_reg == ctx in one branch and 7878 * src_reg == stack|map in some other branch. 7879 * Reject it. 7880 */ 7881 verbose(env, "same insn cannot be used with different pointers\n"); 7882 return -EINVAL; 7883 } 7884 7885 } else if (class == BPF_STX) { 7886 enum bpf_reg_type *prev_dst_type, dst_reg_type; 7887 7888 if (BPF_MODE(insn->code) == BPF_XADD) { 7889 err = check_xadd(env, env->insn_idx, insn); 7890 if (err) 7891 return err; 7892 env->insn_idx++; 7893 continue; 7894 } 7895 7896 /* check src1 operand */ 7897 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7898 if (err) 7899 return err; 7900 /* check src2 operand */ 7901 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7902 if (err) 7903 return err; 7904 7905 dst_reg_type = regs[insn->dst_reg].type; 7906 7907 /* check that memory (dst_reg + off) is writeable */ 7908 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7909 insn->off, BPF_SIZE(insn->code), 7910 BPF_WRITE, insn->src_reg, false); 7911 if (err) 7912 return err; 7913 7914 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7915 7916 if (*prev_dst_type == NOT_INIT) { 7917 *prev_dst_type = dst_reg_type; 7918 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 7919 verbose(env, "same insn cannot be used with different pointers\n"); 7920 return -EINVAL; 7921 } 7922 7923 } else if (class == BPF_ST) { 7924 if (BPF_MODE(insn->code) != BPF_MEM || 7925 insn->src_reg != BPF_REG_0) { 7926 verbose(env, "BPF_ST uses reserved fields\n"); 7927 return -EINVAL; 7928 } 7929 /* check src operand */ 7930 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7931 if (err) 7932 return err; 7933 7934 if (is_ctx_reg(env, insn->dst_reg)) { 7935 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 7936 insn->dst_reg, 7937 reg_type_str[reg_state(env, insn->dst_reg)->type]); 7938 return -EACCES; 7939 } 7940 7941 /* check that memory (dst_reg + off) is writeable */ 7942 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7943 insn->off, BPF_SIZE(insn->code), 7944 BPF_WRITE, -1, false); 7945 if (err) 7946 return err; 7947 7948 } else if (class == BPF_JMP || class == BPF_JMP32) { 7949 u8 opcode = BPF_OP(insn->code); 7950 7951 env->jmps_processed++; 7952 if (opcode == BPF_CALL) { 7953 if (BPF_SRC(insn->code) != BPF_K || 7954 insn->off != 0 || 7955 (insn->src_reg != BPF_REG_0 && 7956 insn->src_reg != BPF_PSEUDO_CALL) || 7957 insn->dst_reg != BPF_REG_0 || 7958 class == BPF_JMP32) { 7959 verbose(env, "BPF_CALL uses reserved fields\n"); 7960 return -EINVAL; 7961 } 7962 7963 if (env->cur_state->active_spin_lock && 7964 (insn->src_reg == BPF_PSEUDO_CALL || 7965 insn->imm != BPF_FUNC_spin_unlock)) { 7966 verbose(env, "function calls are not allowed while holding a lock\n"); 7967 return -EINVAL; 7968 } 7969 if (insn->src_reg == BPF_PSEUDO_CALL) 7970 err = check_func_call(env, insn, &env->insn_idx); 7971 else 7972 err = check_helper_call(env, insn->imm, env->insn_idx); 7973 if (err) 7974 return err; 7975 7976 } else if (opcode == BPF_JA) { 7977 if (BPF_SRC(insn->code) != BPF_K || 7978 insn->imm != 0 || 7979 insn->src_reg != BPF_REG_0 || 7980 insn->dst_reg != BPF_REG_0 || 7981 class == BPF_JMP32) { 7982 verbose(env, "BPF_JA uses reserved fields\n"); 7983 return -EINVAL; 7984 } 7985 7986 env->insn_idx += insn->off + 1; 7987 continue; 7988 7989 } else if (opcode == BPF_EXIT) { 7990 if (BPF_SRC(insn->code) != BPF_K || 7991 insn->imm != 0 || 7992 insn->src_reg != BPF_REG_0 || 7993 insn->dst_reg != BPF_REG_0 || 7994 class == BPF_JMP32) { 7995 verbose(env, "BPF_EXIT uses reserved fields\n"); 7996 return -EINVAL; 7997 } 7998 7999 if (env->cur_state->active_spin_lock) { 8000 verbose(env, "bpf_spin_unlock is missing\n"); 8001 return -EINVAL; 8002 } 8003 8004 if (state->curframe) { 8005 /* exit from nested function */ 8006 err = prepare_func_exit(env, &env->insn_idx); 8007 if (err) 8008 return err; 8009 do_print_state = true; 8010 continue; 8011 } 8012 8013 err = check_reference_leak(env); 8014 if (err) 8015 return err; 8016 8017 /* eBPF calling convetion is such that R0 is used 8018 * to return the value from eBPF program. 8019 * Make sure that it's readable at this time 8020 * of bpf_exit, which means that program wrote 8021 * something into it earlier 8022 */ 8023 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 8024 if (err) 8025 return err; 8026 8027 if (is_pointer_value(env, BPF_REG_0)) { 8028 verbose(env, "R0 leaks addr as return value\n"); 8029 return -EACCES; 8030 } 8031 8032 err = check_return_code(env); 8033 if (err) 8034 return err; 8035 process_bpf_exit: 8036 update_branch_counts(env, env->cur_state); 8037 err = pop_stack(env, &prev_insn_idx, 8038 &env->insn_idx); 8039 if (err < 0) { 8040 if (err != -ENOENT) 8041 return err; 8042 break; 8043 } else { 8044 do_print_state = true; 8045 continue; 8046 } 8047 } else { 8048 err = check_cond_jmp_op(env, insn, &env->insn_idx); 8049 if (err) 8050 return err; 8051 } 8052 } else if (class == BPF_LD) { 8053 u8 mode = BPF_MODE(insn->code); 8054 8055 if (mode == BPF_ABS || mode == BPF_IND) { 8056 err = check_ld_abs(env, insn); 8057 if (err) 8058 return err; 8059 8060 } else if (mode == BPF_IMM) { 8061 err = check_ld_imm(env, insn); 8062 if (err) 8063 return err; 8064 8065 env->insn_idx++; 8066 env->insn_aux_data[env->insn_idx].seen = true; 8067 } else { 8068 verbose(env, "invalid BPF_LD mode\n"); 8069 return -EINVAL; 8070 } 8071 } else { 8072 verbose(env, "unknown insn class %d\n", class); 8073 return -EINVAL; 8074 } 8075 8076 env->insn_idx++; 8077 } 8078 8079 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 8080 return 0; 8081 } 8082 8083 static int check_map_prealloc(struct bpf_map *map) 8084 { 8085 return (map->map_type != BPF_MAP_TYPE_HASH && 8086 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8087 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 8088 !(map->map_flags & BPF_F_NO_PREALLOC); 8089 } 8090 8091 static bool is_tracing_prog_type(enum bpf_prog_type type) 8092 { 8093 switch (type) { 8094 case BPF_PROG_TYPE_KPROBE: 8095 case BPF_PROG_TYPE_TRACEPOINT: 8096 case BPF_PROG_TYPE_PERF_EVENT: 8097 case BPF_PROG_TYPE_RAW_TRACEPOINT: 8098 return true; 8099 default: 8100 return false; 8101 } 8102 } 8103 8104 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 8105 struct bpf_map *map, 8106 struct bpf_prog *prog) 8107 8108 { 8109 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 8110 * preallocated hash maps, since doing memory allocation 8111 * in overflow_handler can crash depending on where nmi got 8112 * triggered. 8113 */ 8114 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 8115 if (!check_map_prealloc(map)) { 8116 verbose(env, "perf_event programs can only use preallocated hash map\n"); 8117 return -EINVAL; 8118 } 8119 if (map->inner_map_meta && 8120 !check_map_prealloc(map->inner_map_meta)) { 8121 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 8122 return -EINVAL; 8123 } 8124 } 8125 8126 if ((is_tracing_prog_type(prog->type) || 8127 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 8128 map_value_has_spin_lock(map)) { 8129 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 8130 return -EINVAL; 8131 } 8132 8133 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 8134 !bpf_offload_prog_map_match(prog, map)) { 8135 verbose(env, "offload device mismatch between prog and map\n"); 8136 return -EINVAL; 8137 } 8138 8139 return 0; 8140 } 8141 8142 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 8143 { 8144 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 8145 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 8146 } 8147 8148 /* look for pseudo eBPF instructions that access map FDs and 8149 * replace them with actual map pointers 8150 */ 8151 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 8152 { 8153 struct bpf_insn *insn = env->prog->insnsi; 8154 int insn_cnt = env->prog->len; 8155 int i, j, err; 8156 8157 err = bpf_prog_calc_tag(env->prog); 8158 if (err) 8159 return err; 8160 8161 for (i = 0; i < insn_cnt; i++, insn++) { 8162 if (BPF_CLASS(insn->code) == BPF_LDX && 8163 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 8164 verbose(env, "BPF_LDX uses reserved fields\n"); 8165 return -EINVAL; 8166 } 8167 8168 if (BPF_CLASS(insn->code) == BPF_STX && 8169 ((BPF_MODE(insn->code) != BPF_MEM && 8170 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 8171 verbose(env, "BPF_STX uses reserved fields\n"); 8172 return -EINVAL; 8173 } 8174 8175 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 8176 struct bpf_insn_aux_data *aux; 8177 struct bpf_map *map; 8178 struct fd f; 8179 u64 addr; 8180 8181 if (i == insn_cnt - 1 || insn[1].code != 0 || 8182 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 8183 insn[1].off != 0) { 8184 verbose(env, "invalid bpf_ld_imm64 insn\n"); 8185 return -EINVAL; 8186 } 8187 8188 if (insn[0].src_reg == 0) 8189 /* valid generic load 64-bit imm */ 8190 goto next_insn; 8191 8192 /* In final convert_pseudo_ld_imm64() step, this is 8193 * converted into regular 64-bit imm load insn. 8194 */ 8195 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 8196 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 8197 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 8198 insn[1].imm != 0)) { 8199 verbose(env, 8200 "unrecognized bpf_ld_imm64 insn\n"); 8201 return -EINVAL; 8202 } 8203 8204 f = fdget(insn[0].imm); 8205 map = __bpf_map_get(f); 8206 if (IS_ERR(map)) { 8207 verbose(env, "fd %d is not pointing to valid bpf_map\n", 8208 insn[0].imm); 8209 return PTR_ERR(map); 8210 } 8211 8212 err = check_map_prog_compatibility(env, map, env->prog); 8213 if (err) { 8214 fdput(f); 8215 return err; 8216 } 8217 8218 aux = &env->insn_aux_data[i]; 8219 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 8220 addr = (unsigned long)map; 8221 } else { 8222 u32 off = insn[1].imm; 8223 8224 if (off >= BPF_MAX_VAR_OFF) { 8225 verbose(env, "direct value offset of %u is not allowed\n", off); 8226 fdput(f); 8227 return -EINVAL; 8228 } 8229 8230 if (!map->ops->map_direct_value_addr) { 8231 verbose(env, "no direct value access support for this map type\n"); 8232 fdput(f); 8233 return -EINVAL; 8234 } 8235 8236 err = map->ops->map_direct_value_addr(map, &addr, off); 8237 if (err) { 8238 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 8239 map->value_size, off); 8240 fdput(f); 8241 return err; 8242 } 8243 8244 aux->map_off = off; 8245 addr += off; 8246 } 8247 8248 insn[0].imm = (u32)addr; 8249 insn[1].imm = addr >> 32; 8250 8251 /* check whether we recorded this map already */ 8252 for (j = 0; j < env->used_map_cnt; j++) { 8253 if (env->used_maps[j] == map) { 8254 aux->map_index = j; 8255 fdput(f); 8256 goto next_insn; 8257 } 8258 } 8259 8260 if (env->used_map_cnt >= MAX_USED_MAPS) { 8261 fdput(f); 8262 return -E2BIG; 8263 } 8264 8265 /* hold the map. If the program is rejected by verifier, 8266 * the map will be released by release_maps() or it 8267 * will be used by the valid program until it's unloaded 8268 * and all maps are released in free_used_maps() 8269 */ 8270 bpf_map_inc(map); 8271 8272 aux->map_index = env->used_map_cnt; 8273 env->used_maps[env->used_map_cnt++] = map; 8274 8275 if (bpf_map_is_cgroup_storage(map) && 8276 bpf_cgroup_storage_assign(env->prog->aux, map)) { 8277 verbose(env, "only one cgroup storage of each type is allowed\n"); 8278 fdput(f); 8279 return -EBUSY; 8280 } 8281 8282 fdput(f); 8283 next_insn: 8284 insn++; 8285 i++; 8286 continue; 8287 } 8288 8289 /* Basic sanity check before we invest more work here. */ 8290 if (!bpf_opcode_in_insntable(insn->code)) { 8291 verbose(env, "unknown opcode %02x\n", insn->code); 8292 return -EINVAL; 8293 } 8294 } 8295 8296 /* now all pseudo BPF_LD_IMM64 instructions load valid 8297 * 'struct bpf_map *' into a register instead of user map_fd. 8298 * These pointers will be used later by verifier to validate map access. 8299 */ 8300 return 0; 8301 } 8302 8303 /* drop refcnt of maps used by the rejected program */ 8304 static void release_maps(struct bpf_verifier_env *env) 8305 { 8306 __bpf_free_used_maps(env->prog->aux, env->used_maps, 8307 env->used_map_cnt); 8308 } 8309 8310 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 8311 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 8312 { 8313 struct bpf_insn *insn = env->prog->insnsi; 8314 int insn_cnt = env->prog->len; 8315 int i; 8316 8317 for (i = 0; i < insn_cnt; i++, insn++) 8318 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 8319 insn->src_reg = 0; 8320 } 8321 8322 /* single env->prog->insni[off] instruction was replaced with the range 8323 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 8324 * [0, off) and [off, end) to new locations, so the patched range stays zero 8325 */ 8326 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 8327 struct bpf_prog *new_prog, u32 off, u32 cnt) 8328 { 8329 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 8330 struct bpf_insn *insn = new_prog->insnsi; 8331 u32 prog_len; 8332 int i; 8333 8334 /* aux info at OFF always needs adjustment, no matter fast path 8335 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 8336 * original insn at old prog. 8337 */ 8338 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 8339 8340 if (cnt == 1) 8341 return 0; 8342 prog_len = new_prog->len; 8343 new_data = vzalloc(array_size(prog_len, 8344 sizeof(struct bpf_insn_aux_data))); 8345 if (!new_data) 8346 return -ENOMEM; 8347 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 8348 memcpy(new_data + off + cnt - 1, old_data + off, 8349 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 8350 for (i = off; i < off + cnt - 1; i++) { 8351 new_data[i].seen = true; 8352 new_data[i].zext_dst = insn_has_def32(env, insn + i); 8353 } 8354 env->insn_aux_data = new_data; 8355 vfree(old_data); 8356 return 0; 8357 } 8358 8359 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 8360 { 8361 int i; 8362 8363 if (len == 1) 8364 return; 8365 /* NOTE: fake 'exit' subprog should be updated as well. */ 8366 for (i = 0; i <= env->subprog_cnt; i++) { 8367 if (env->subprog_info[i].start <= off) 8368 continue; 8369 env->subprog_info[i].start += len - 1; 8370 } 8371 } 8372 8373 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 8374 const struct bpf_insn *patch, u32 len) 8375 { 8376 struct bpf_prog *new_prog; 8377 8378 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 8379 if (IS_ERR(new_prog)) { 8380 if (PTR_ERR(new_prog) == -ERANGE) 8381 verbose(env, 8382 "insn %d cannot be patched due to 16-bit range\n", 8383 env->insn_aux_data[off].orig_idx); 8384 return NULL; 8385 } 8386 if (adjust_insn_aux_data(env, new_prog, off, len)) 8387 return NULL; 8388 adjust_subprog_starts(env, off, len); 8389 return new_prog; 8390 } 8391 8392 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 8393 u32 off, u32 cnt) 8394 { 8395 int i, j; 8396 8397 /* find first prog starting at or after off (first to remove) */ 8398 for (i = 0; i < env->subprog_cnt; i++) 8399 if (env->subprog_info[i].start >= off) 8400 break; 8401 /* find first prog starting at or after off + cnt (first to stay) */ 8402 for (j = i; j < env->subprog_cnt; j++) 8403 if (env->subprog_info[j].start >= off + cnt) 8404 break; 8405 /* if j doesn't start exactly at off + cnt, we are just removing 8406 * the front of previous prog 8407 */ 8408 if (env->subprog_info[j].start != off + cnt) 8409 j--; 8410 8411 if (j > i) { 8412 struct bpf_prog_aux *aux = env->prog->aux; 8413 int move; 8414 8415 /* move fake 'exit' subprog as well */ 8416 move = env->subprog_cnt + 1 - j; 8417 8418 memmove(env->subprog_info + i, 8419 env->subprog_info + j, 8420 sizeof(*env->subprog_info) * move); 8421 env->subprog_cnt -= j - i; 8422 8423 /* remove func_info */ 8424 if (aux->func_info) { 8425 move = aux->func_info_cnt - j; 8426 8427 memmove(aux->func_info + i, 8428 aux->func_info + j, 8429 sizeof(*aux->func_info) * move); 8430 aux->func_info_cnt -= j - i; 8431 /* func_info->insn_off is set after all code rewrites, 8432 * in adjust_btf_func() - no need to adjust 8433 */ 8434 } 8435 } else { 8436 /* convert i from "first prog to remove" to "first to adjust" */ 8437 if (env->subprog_info[i].start == off) 8438 i++; 8439 } 8440 8441 /* update fake 'exit' subprog as well */ 8442 for (; i <= env->subprog_cnt; i++) 8443 env->subprog_info[i].start -= cnt; 8444 8445 return 0; 8446 } 8447 8448 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 8449 u32 cnt) 8450 { 8451 struct bpf_prog *prog = env->prog; 8452 u32 i, l_off, l_cnt, nr_linfo; 8453 struct bpf_line_info *linfo; 8454 8455 nr_linfo = prog->aux->nr_linfo; 8456 if (!nr_linfo) 8457 return 0; 8458 8459 linfo = prog->aux->linfo; 8460 8461 /* find first line info to remove, count lines to be removed */ 8462 for (i = 0; i < nr_linfo; i++) 8463 if (linfo[i].insn_off >= off) 8464 break; 8465 8466 l_off = i; 8467 l_cnt = 0; 8468 for (; i < nr_linfo; i++) 8469 if (linfo[i].insn_off < off + cnt) 8470 l_cnt++; 8471 else 8472 break; 8473 8474 /* First live insn doesn't match first live linfo, it needs to "inherit" 8475 * last removed linfo. prog is already modified, so prog->len == off 8476 * means no live instructions after (tail of the program was removed). 8477 */ 8478 if (prog->len != off && l_cnt && 8479 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 8480 l_cnt--; 8481 linfo[--i].insn_off = off + cnt; 8482 } 8483 8484 /* remove the line info which refer to the removed instructions */ 8485 if (l_cnt) { 8486 memmove(linfo + l_off, linfo + i, 8487 sizeof(*linfo) * (nr_linfo - i)); 8488 8489 prog->aux->nr_linfo -= l_cnt; 8490 nr_linfo = prog->aux->nr_linfo; 8491 } 8492 8493 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 8494 for (i = l_off; i < nr_linfo; i++) 8495 linfo[i].insn_off -= cnt; 8496 8497 /* fix up all subprogs (incl. 'exit') which start >= off */ 8498 for (i = 0; i <= env->subprog_cnt; i++) 8499 if (env->subprog_info[i].linfo_idx > l_off) { 8500 /* program may have started in the removed region but 8501 * may not be fully removed 8502 */ 8503 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 8504 env->subprog_info[i].linfo_idx -= l_cnt; 8505 else 8506 env->subprog_info[i].linfo_idx = l_off; 8507 } 8508 8509 return 0; 8510 } 8511 8512 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 8513 { 8514 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8515 unsigned int orig_prog_len = env->prog->len; 8516 int err; 8517 8518 if (bpf_prog_is_dev_bound(env->prog->aux)) 8519 bpf_prog_offload_remove_insns(env, off, cnt); 8520 8521 err = bpf_remove_insns(env->prog, off, cnt); 8522 if (err) 8523 return err; 8524 8525 err = adjust_subprog_starts_after_remove(env, off, cnt); 8526 if (err) 8527 return err; 8528 8529 err = bpf_adj_linfo_after_remove(env, off, cnt); 8530 if (err) 8531 return err; 8532 8533 memmove(aux_data + off, aux_data + off + cnt, 8534 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 8535 8536 return 0; 8537 } 8538 8539 /* The verifier does more data flow analysis than llvm and will not 8540 * explore branches that are dead at run time. Malicious programs can 8541 * have dead code too. Therefore replace all dead at-run-time code 8542 * with 'ja -1'. 8543 * 8544 * Just nops are not optimal, e.g. if they would sit at the end of the 8545 * program and through another bug we would manage to jump there, then 8546 * we'd execute beyond program memory otherwise. Returning exception 8547 * code also wouldn't work since we can have subprogs where the dead 8548 * code could be located. 8549 */ 8550 static void sanitize_dead_code(struct bpf_verifier_env *env) 8551 { 8552 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8553 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 8554 struct bpf_insn *insn = env->prog->insnsi; 8555 const int insn_cnt = env->prog->len; 8556 int i; 8557 8558 for (i = 0; i < insn_cnt; i++) { 8559 if (aux_data[i].seen) 8560 continue; 8561 memcpy(insn + i, &trap, sizeof(trap)); 8562 } 8563 } 8564 8565 static bool insn_is_cond_jump(u8 code) 8566 { 8567 u8 op; 8568 8569 if (BPF_CLASS(code) == BPF_JMP32) 8570 return true; 8571 8572 if (BPF_CLASS(code) != BPF_JMP) 8573 return false; 8574 8575 op = BPF_OP(code); 8576 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 8577 } 8578 8579 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 8580 { 8581 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8582 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8583 struct bpf_insn *insn = env->prog->insnsi; 8584 const int insn_cnt = env->prog->len; 8585 int i; 8586 8587 for (i = 0; i < insn_cnt; i++, insn++) { 8588 if (!insn_is_cond_jump(insn->code)) 8589 continue; 8590 8591 if (!aux_data[i + 1].seen) 8592 ja.off = insn->off; 8593 else if (!aux_data[i + 1 + insn->off].seen) 8594 ja.off = 0; 8595 else 8596 continue; 8597 8598 if (bpf_prog_is_dev_bound(env->prog->aux)) 8599 bpf_prog_offload_replace_insn(env, i, &ja); 8600 8601 memcpy(insn, &ja, sizeof(ja)); 8602 } 8603 } 8604 8605 static int opt_remove_dead_code(struct bpf_verifier_env *env) 8606 { 8607 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8608 int insn_cnt = env->prog->len; 8609 int i, err; 8610 8611 for (i = 0; i < insn_cnt; i++) { 8612 int j; 8613 8614 j = 0; 8615 while (i + j < insn_cnt && !aux_data[i + j].seen) 8616 j++; 8617 if (!j) 8618 continue; 8619 8620 err = verifier_remove_insns(env, i, j); 8621 if (err) 8622 return err; 8623 insn_cnt = env->prog->len; 8624 } 8625 8626 return 0; 8627 } 8628 8629 static int opt_remove_nops(struct bpf_verifier_env *env) 8630 { 8631 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8632 struct bpf_insn *insn = env->prog->insnsi; 8633 int insn_cnt = env->prog->len; 8634 int i, err; 8635 8636 for (i = 0; i < insn_cnt; i++) { 8637 if (memcmp(&insn[i], &ja, sizeof(ja))) 8638 continue; 8639 8640 err = verifier_remove_insns(env, i, 1); 8641 if (err) 8642 return err; 8643 insn_cnt--; 8644 i--; 8645 } 8646 8647 return 0; 8648 } 8649 8650 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 8651 const union bpf_attr *attr) 8652 { 8653 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 8654 struct bpf_insn_aux_data *aux = env->insn_aux_data; 8655 int i, patch_len, delta = 0, len = env->prog->len; 8656 struct bpf_insn *insns = env->prog->insnsi; 8657 struct bpf_prog *new_prog; 8658 bool rnd_hi32; 8659 8660 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 8661 zext_patch[1] = BPF_ZEXT_REG(0); 8662 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 8663 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 8664 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 8665 for (i = 0; i < len; i++) { 8666 int adj_idx = i + delta; 8667 struct bpf_insn insn; 8668 8669 insn = insns[adj_idx]; 8670 if (!aux[adj_idx].zext_dst) { 8671 u8 code, class; 8672 u32 imm_rnd; 8673 8674 if (!rnd_hi32) 8675 continue; 8676 8677 code = insn.code; 8678 class = BPF_CLASS(code); 8679 if (insn_no_def(&insn)) 8680 continue; 8681 8682 /* NOTE: arg "reg" (the fourth one) is only used for 8683 * BPF_STX which has been ruled out in above 8684 * check, it is safe to pass NULL here. 8685 */ 8686 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 8687 if (class == BPF_LD && 8688 BPF_MODE(code) == BPF_IMM) 8689 i++; 8690 continue; 8691 } 8692 8693 /* ctx load could be transformed into wider load. */ 8694 if (class == BPF_LDX && 8695 aux[adj_idx].ptr_type == PTR_TO_CTX) 8696 continue; 8697 8698 imm_rnd = get_random_int(); 8699 rnd_hi32_patch[0] = insn; 8700 rnd_hi32_patch[1].imm = imm_rnd; 8701 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 8702 patch = rnd_hi32_patch; 8703 patch_len = 4; 8704 goto apply_patch_buffer; 8705 } 8706 8707 if (!bpf_jit_needs_zext()) 8708 continue; 8709 8710 zext_patch[0] = insn; 8711 zext_patch[1].dst_reg = insn.dst_reg; 8712 zext_patch[1].src_reg = insn.dst_reg; 8713 patch = zext_patch; 8714 patch_len = 2; 8715 apply_patch_buffer: 8716 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 8717 if (!new_prog) 8718 return -ENOMEM; 8719 env->prog = new_prog; 8720 insns = new_prog->insnsi; 8721 aux = env->insn_aux_data; 8722 delta += patch_len - 1; 8723 } 8724 8725 return 0; 8726 } 8727 8728 /* convert load instructions that access fields of a context type into a 8729 * sequence of instructions that access fields of the underlying structure: 8730 * struct __sk_buff -> struct sk_buff 8731 * struct bpf_sock_ops -> struct sock 8732 */ 8733 static int convert_ctx_accesses(struct bpf_verifier_env *env) 8734 { 8735 const struct bpf_verifier_ops *ops = env->ops; 8736 int i, cnt, size, ctx_field_size, delta = 0; 8737 const int insn_cnt = env->prog->len; 8738 struct bpf_insn insn_buf[16], *insn; 8739 u32 target_size, size_default, off; 8740 struct bpf_prog *new_prog; 8741 enum bpf_access_type type; 8742 bool is_narrower_load; 8743 8744 if (ops->gen_prologue || env->seen_direct_write) { 8745 if (!ops->gen_prologue) { 8746 verbose(env, "bpf verifier is misconfigured\n"); 8747 return -EINVAL; 8748 } 8749 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 8750 env->prog); 8751 if (cnt >= ARRAY_SIZE(insn_buf)) { 8752 verbose(env, "bpf verifier is misconfigured\n"); 8753 return -EINVAL; 8754 } else if (cnt) { 8755 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 8756 if (!new_prog) 8757 return -ENOMEM; 8758 8759 env->prog = new_prog; 8760 delta += cnt - 1; 8761 } 8762 } 8763 8764 if (bpf_prog_is_dev_bound(env->prog->aux)) 8765 return 0; 8766 8767 insn = env->prog->insnsi + delta; 8768 8769 for (i = 0; i < insn_cnt; i++, insn++) { 8770 bpf_convert_ctx_access_t convert_ctx_access; 8771 8772 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 8773 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 8774 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 8775 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 8776 type = BPF_READ; 8777 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 8778 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 8779 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 8780 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 8781 type = BPF_WRITE; 8782 else 8783 continue; 8784 8785 if (type == BPF_WRITE && 8786 env->insn_aux_data[i + delta].sanitize_stack_off) { 8787 struct bpf_insn patch[] = { 8788 /* Sanitize suspicious stack slot with zero. 8789 * There are no memory dependencies for this store, 8790 * since it's only using frame pointer and immediate 8791 * constant of zero 8792 */ 8793 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 8794 env->insn_aux_data[i + delta].sanitize_stack_off, 8795 0), 8796 /* the original STX instruction will immediately 8797 * overwrite the same stack slot with appropriate value 8798 */ 8799 *insn, 8800 }; 8801 8802 cnt = ARRAY_SIZE(patch); 8803 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 8804 if (!new_prog) 8805 return -ENOMEM; 8806 8807 delta += cnt - 1; 8808 env->prog = new_prog; 8809 insn = new_prog->insnsi + i + delta; 8810 continue; 8811 } 8812 8813 switch (env->insn_aux_data[i + delta].ptr_type) { 8814 case PTR_TO_CTX: 8815 if (!ops->convert_ctx_access) 8816 continue; 8817 convert_ctx_access = ops->convert_ctx_access; 8818 break; 8819 case PTR_TO_SOCKET: 8820 case PTR_TO_SOCK_COMMON: 8821 convert_ctx_access = bpf_sock_convert_ctx_access; 8822 break; 8823 case PTR_TO_TCP_SOCK: 8824 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 8825 break; 8826 case PTR_TO_XDP_SOCK: 8827 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 8828 break; 8829 case PTR_TO_BTF_ID: 8830 if (type == BPF_WRITE) { 8831 verbose(env, "Writes through BTF pointers are not allowed\n"); 8832 return -EINVAL; 8833 } 8834 insn->code = BPF_LDX | BPF_PROBE_MEM | BPF_SIZE((insn)->code); 8835 env->prog->aux->num_exentries++; 8836 continue; 8837 default: 8838 continue; 8839 } 8840 8841 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 8842 size = BPF_LDST_BYTES(insn); 8843 8844 /* If the read access is a narrower load of the field, 8845 * convert to a 4/8-byte load, to minimum program type specific 8846 * convert_ctx_access changes. If conversion is successful, 8847 * we will apply proper mask to the result. 8848 */ 8849 is_narrower_load = size < ctx_field_size; 8850 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 8851 off = insn->off; 8852 if (is_narrower_load) { 8853 u8 size_code; 8854 8855 if (type == BPF_WRITE) { 8856 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 8857 return -EINVAL; 8858 } 8859 8860 size_code = BPF_H; 8861 if (ctx_field_size == 4) 8862 size_code = BPF_W; 8863 else if (ctx_field_size == 8) 8864 size_code = BPF_DW; 8865 8866 insn->off = off & ~(size_default - 1); 8867 insn->code = BPF_LDX | BPF_MEM | size_code; 8868 } 8869 8870 target_size = 0; 8871 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 8872 &target_size); 8873 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 8874 (ctx_field_size && !target_size)) { 8875 verbose(env, "bpf verifier is misconfigured\n"); 8876 return -EINVAL; 8877 } 8878 8879 if (is_narrower_load && size < target_size) { 8880 u8 shift = bpf_ctx_narrow_access_offset( 8881 off, size, size_default) * 8; 8882 if (ctx_field_size <= 4) { 8883 if (shift) 8884 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 8885 insn->dst_reg, 8886 shift); 8887 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 8888 (1 << size * 8) - 1); 8889 } else { 8890 if (shift) 8891 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 8892 insn->dst_reg, 8893 shift); 8894 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 8895 (1ULL << size * 8) - 1); 8896 } 8897 } 8898 8899 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8900 if (!new_prog) 8901 return -ENOMEM; 8902 8903 delta += cnt - 1; 8904 8905 /* keep walking new program and skip insns we just inserted */ 8906 env->prog = new_prog; 8907 insn = new_prog->insnsi + i + delta; 8908 } 8909 8910 return 0; 8911 } 8912 8913 static int jit_subprogs(struct bpf_verifier_env *env) 8914 { 8915 struct bpf_prog *prog = env->prog, **func, *tmp; 8916 int i, j, subprog_start, subprog_end = 0, len, subprog; 8917 struct bpf_insn *insn; 8918 void *old_bpf_func; 8919 int err; 8920 8921 if (env->subprog_cnt <= 1) 8922 return 0; 8923 8924 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8925 if (insn->code != (BPF_JMP | BPF_CALL) || 8926 insn->src_reg != BPF_PSEUDO_CALL) 8927 continue; 8928 /* Upon error here we cannot fall back to interpreter but 8929 * need a hard reject of the program. Thus -EFAULT is 8930 * propagated in any case. 8931 */ 8932 subprog = find_subprog(env, i + insn->imm + 1); 8933 if (subprog < 0) { 8934 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 8935 i + insn->imm + 1); 8936 return -EFAULT; 8937 } 8938 /* temporarily remember subprog id inside insn instead of 8939 * aux_data, since next loop will split up all insns into funcs 8940 */ 8941 insn->off = subprog; 8942 /* remember original imm in case JIT fails and fallback 8943 * to interpreter will be needed 8944 */ 8945 env->insn_aux_data[i].call_imm = insn->imm; 8946 /* point imm to __bpf_call_base+1 from JITs point of view */ 8947 insn->imm = 1; 8948 } 8949 8950 err = bpf_prog_alloc_jited_linfo(prog); 8951 if (err) 8952 goto out_undo_insn; 8953 8954 err = -ENOMEM; 8955 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 8956 if (!func) 8957 goto out_undo_insn; 8958 8959 for (i = 0; i < env->subprog_cnt; i++) { 8960 subprog_start = subprog_end; 8961 subprog_end = env->subprog_info[i + 1].start; 8962 8963 len = subprog_end - subprog_start; 8964 /* BPF_PROG_RUN doesn't call subprogs directly, 8965 * hence main prog stats include the runtime of subprogs. 8966 * subprogs don't have IDs and not reachable via prog_get_next_id 8967 * func[i]->aux->stats will never be accessed and stays NULL 8968 */ 8969 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 8970 if (!func[i]) 8971 goto out_free; 8972 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 8973 len * sizeof(struct bpf_insn)); 8974 func[i]->type = prog->type; 8975 func[i]->len = len; 8976 if (bpf_prog_calc_tag(func[i])) 8977 goto out_free; 8978 func[i]->is_func = 1; 8979 func[i]->aux->func_idx = i; 8980 /* the btf and func_info will be freed only at prog->aux */ 8981 func[i]->aux->btf = prog->aux->btf; 8982 func[i]->aux->func_info = prog->aux->func_info; 8983 8984 /* Use bpf_prog_F_tag to indicate functions in stack traces. 8985 * Long term would need debug info to populate names 8986 */ 8987 func[i]->aux->name[0] = 'F'; 8988 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 8989 func[i]->jit_requested = 1; 8990 func[i]->aux->linfo = prog->aux->linfo; 8991 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 8992 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 8993 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 8994 func[i] = bpf_int_jit_compile(func[i]); 8995 if (!func[i]->jited) { 8996 err = -ENOTSUPP; 8997 goto out_free; 8998 } 8999 cond_resched(); 9000 } 9001 /* at this point all bpf functions were successfully JITed 9002 * now populate all bpf_calls with correct addresses and 9003 * run last pass of JIT 9004 */ 9005 for (i = 0; i < env->subprog_cnt; i++) { 9006 insn = func[i]->insnsi; 9007 for (j = 0; j < func[i]->len; j++, insn++) { 9008 if (insn->code != (BPF_JMP | BPF_CALL) || 9009 insn->src_reg != BPF_PSEUDO_CALL) 9010 continue; 9011 subprog = insn->off; 9012 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 9013 __bpf_call_base; 9014 } 9015 9016 /* we use the aux data to keep a list of the start addresses 9017 * of the JITed images for each function in the program 9018 * 9019 * for some architectures, such as powerpc64, the imm field 9020 * might not be large enough to hold the offset of the start 9021 * address of the callee's JITed image from __bpf_call_base 9022 * 9023 * in such cases, we can lookup the start address of a callee 9024 * by using its subprog id, available from the off field of 9025 * the call instruction, as an index for this list 9026 */ 9027 func[i]->aux->func = func; 9028 func[i]->aux->func_cnt = env->subprog_cnt; 9029 } 9030 for (i = 0; i < env->subprog_cnt; i++) { 9031 old_bpf_func = func[i]->bpf_func; 9032 tmp = bpf_int_jit_compile(func[i]); 9033 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 9034 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 9035 err = -ENOTSUPP; 9036 goto out_free; 9037 } 9038 cond_resched(); 9039 } 9040 9041 /* finally lock prog and jit images for all functions and 9042 * populate kallsysm 9043 */ 9044 for (i = 0; i < env->subprog_cnt; i++) { 9045 bpf_prog_lock_ro(func[i]); 9046 bpf_prog_kallsyms_add(func[i]); 9047 } 9048 9049 /* Last step: make now unused interpreter insns from main 9050 * prog consistent for later dump requests, so they can 9051 * later look the same as if they were interpreted only. 9052 */ 9053 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9054 if (insn->code != (BPF_JMP | BPF_CALL) || 9055 insn->src_reg != BPF_PSEUDO_CALL) 9056 continue; 9057 insn->off = env->insn_aux_data[i].call_imm; 9058 subprog = find_subprog(env, i + insn->off + 1); 9059 insn->imm = subprog; 9060 } 9061 9062 prog->jited = 1; 9063 prog->bpf_func = func[0]->bpf_func; 9064 prog->aux->func = func; 9065 prog->aux->func_cnt = env->subprog_cnt; 9066 bpf_prog_free_unused_jited_linfo(prog); 9067 return 0; 9068 out_free: 9069 for (i = 0; i < env->subprog_cnt; i++) 9070 if (func[i]) 9071 bpf_jit_free(func[i]); 9072 kfree(func); 9073 out_undo_insn: 9074 /* cleanup main prog to be interpreted */ 9075 prog->jit_requested = 0; 9076 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9077 if (insn->code != (BPF_JMP | BPF_CALL) || 9078 insn->src_reg != BPF_PSEUDO_CALL) 9079 continue; 9080 insn->off = 0; 9081 insn->imm = env->insn_aux_data[i].call_imm; 9082 } 9083 bpf_prog_free_jited_linfo(prog); 9084 return err; 9085 } 9086 9087 static int fixup_call_args(struct bpf_verifier_env *env) 9088 { 9089 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9090 struct bpf_prog *prog = env->prog; 9091 struct bpf_insn *insn = prog->insnsi; 9092 int i, depth; 9093 #endif 9094 int err = 0; 9095 9096 if (env->prog->jit_requested && 9097 !bpf_prog_is_dev_bound(env->prog->aux)) { 9098 err = jit_subprogs(env); 9099 if (err == 0) 9100 return 0; 9101 if (err == -EFAULT) 9102 return err; 9103 } 9104 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9105 for (i = 0; i < prog->len; i++, insn++) { 9106 if (insn->code != (BPF_JMP | BPF_CALL) || 9107 insn->src_reg != BPF_PSEUDO_CALL) 9108 continue; 9109 depth = get_callee_stack_depth(env, insn, i); 9110 if (depth < 0) 9111 return depth; 9112 bpf_patch_call_args(insn, depth); 9113 } 9114 err = 0; 9115 #endif 9116 return err; 9117 } 9118 9119 /* fixup insn->imm field of bpf_call instructions 9120 * and inline eligible helpers as explicit sequence of BPF instructions 9121 * 9122 * this function is called after eBPF program passed verification 9123 */ 9124 static int fixup_bpf_calls(struct bpf_verifier_env *env) 9125 { 9126 struct bpf_prog *prog = env->prog; 9127 bool expect_blinding = bpf_jit_blinding_enabled(prog); 9128 struct bpf_insn *insn = prog->insnsi; 9129 const struct bpf_func_proto *fn; 9130 const int insn_cnt = prog->len; 9131 const struct bpf_map_ops *ops; 9132 struct bpf_insn_aux_data *aux; 9133 struct bpf_insn insn_buf[16]; 9134 struct bpf_prog *new_prog; 9135 struct bpf_map *map_ptr; 9136 int i, ret, cnt, delta = 0; 9137 9138 for (i = 0; i < insn_cnt; i++, insn++) { 9139 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 9140 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9141 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 9142 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9143 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 9144 struct bpf_insn mask_and_div[] = { 9145 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9146 /* Rx div 0 -> 0 */ 9147 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 9148 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 9149 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 9150 *insn, 9151 }; 9152 struct bpf_insn mask_and_mod[] = { 9153 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9154 /* Rx mod 0 -> Rx */ 9155 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 9156 *insn, 9157 }; 9158 struct bpf_insn *patchlet; 9159 9160 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9161 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9162 patchlet = mask_and_div + (is64 ? 1 : 0); 9163 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 9164 } else { 9165 patchlet = mask_and_mod + (is64 ? 1 : 0); 9166 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 9167 } 9168 9169 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 9170 if (!new_prog) 9171 return -ENOMEM; 9172 9173 delta += cnt - 1; 9174 env->prog = prog = new_prog; 9175 insn = new_prog->insnsi + i + delta; 9176 continue; 9177 } 9178 9179 if (BPF_CLASS(insn->code) == BPF_LD && 9180 (BPF_MODE(insn->code) == BPF_ABS || 9181 BPF_MODE(insn->code) == BPF_IND)) { 9182 cnt = env->ops->gen_ld_abs(insn, insn_buf); 9183 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9184 verbose(env, "bpf verifier is misconfigured\n"); 9185 return -EINVAL; 9186 } 9187 9188 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9189 if (!new_prog) 9190 return -ENOMEM; 9191 9192 delta += cnt - 1; 9193 env->prog = prog = new_prog; 9194 insn = new_prog->insnsi + i + delta; 9195 continue; 9196 } 9197 9198 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 9199 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 9200 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 9201 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 9202 struct bpf_insn insn_buf[16]; 9203 struct bpf_insn *patch = &insn_buf[0]; 9204 bool issrc, isneg; 9205 u32 off_reg; 9206 9207 aux = &env->insn_aux_data[i + delta]; 9208 if (!aux->alu_state || 9209 aux->alu_state == BPF_ALU_NON_POINTER) 9210 continue; 9211 9212 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 9213 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 9214 BPF_ALU_SANITIZE_SRC; 9215 9216 off_reg = issrc ? insn->src_reg : insn->dst_reg; 9217 if (isneg) 9218 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9219 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 9220 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 9221 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 9222 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 9223 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 9224 if (issrc) { 9225 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 9226 off_reg); 9227 insn->src_reg = BPF_REG_AX; 9228 } else { 9229 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 9230 BPF_REG_AX); 9231 } 9232 if (isneg) 9233 insn->code = insn->code == code_add ? 9234 code_sub : code_add; 9235 *patch++ = *insn; 9236 if (issrc && isneg) 9237 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9238 cnt = patch - insn_buf; 9239 9240 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9241 if (!new_prog) 9242 return -ENOMEM; 9243 9244 delta += cnt - 1; 9245 env->prog = prog = new_prog; 9246 insn = new_prog->insnsi + i + delta; 9247 continue; 9248 } 9249 9250 if (insn->code != (BPF_JMP | BPF_CALL)) 9251 continue; 9252 if (insn->src_reg == BPF_PSEUDO_CALL) 9253 continue; 9254 9255 if (insn->imm == BPF_FUNC_get_route_realm) 9256 prog->dst_needed = 1; 9257 if (insn->imm == BPF_FUNC_get_prandom_u32) 9258 bpf_user_rnd_init_once(); 9259 if (insn->imm == BPF_FUNC_override_return) 9260 prog->kprobe_override = 1; 9261 if (insn->imm == BPF_FUNC_tail_call) { 9262 /* If we tail call into other programs, we 9263 * cannot make any assumptions since they can 9264 * be replaced dynamically during runtime in 9265 * the program array. 9266 */ 9267 prog->cb_access = 1; 9268 env->prog->aux->stack_depth = MAX_BPF_STACK; 9269 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 9270 9271 /* mark bpf_tail_call as different opcode to avoid 9272 * conditional branch in the interpeter for every normal 9273 * call and to prevent accidental JITing by JIT compiler 9274 * that doesn't support bpf_tail_call yet 9275 */ 9276 insn->imm = 0; 9277 insn->code = BPF_JMP | BPF_TAIL_CALL; 9278 9279 aux = &env->insn_aux_data[i + delta]; 9280 if (env->allow_ptr_leaks && !expect_blinding && 9281 prog->jit_requested && 9282 !bpf_map_key_poisoned(aux) && 9283 !bpf_map_ptr_poisoned(aux) && 9284 !bpf_map_ptr_unpriv(aux)) { 9285 struct bpf_jit_poke_descriptor desc = { 9286 .reason = BPF_POKE_REASON_TAIL_CALL, 9287 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 9288 .tail_call.key = bpf_map_key_immediate(aux), 9289 }; 9290 9291 ret = bpf_jit_add_poke_descriptor(prog, &desc); 9292 if (ret < 0) { 9293 verbose(env, "adding tail call poke descriptor failed\n"); 9294 return ret; 9295 } 9296 9297 insn->imm = ret + 1; 9298 continue; 9299 } 9300 9301 if (!bpf_map_ptr_unpriv(aux)) 9302 continue; 9303 9304 /* instead of changing every JIT dealing with tail_call 9305 * emit two extra insns: 9306 * if (index >= max_entries) goto out; 9307 * index &= array->index_mask; 9308 * to avoid out-of-bounds cpu speculation 9309 */ 9310 if (bpf_map_ptr_poisoned(aux)) { 9311 verbose(env, "tail_call abusing map_ptr\n"); 9312 return -EINVAL; 9313 } 9314 9315 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 9316 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 9317 map_ptr->max_entries, 2); 9318 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 9319 container_of(map_ptr, 9320 struct bpf_array, 9321 map)->index_mask); 9322 insn_buf[2] = *insn; 9323 cnt = 3; 9324 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9325 if (!new_prog) 9326 return -ENOMEM; 9327 9328 delta += cnt - 1; 9329 env->prog = prog = new_prog; 9330 insn = new_prog->insnsi + i + delta; 9331 continue; 9332 } 9333 9334 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 9335 * and other inlining handlers are currently limited to 64 bit 9336 * only. 9337 */ 9338 if (prog->jit_requested && BITS_PER_LONG == 64 && 9339 (insn->imm == BPF_FUNC_map_lookup_elem || 9340 insn->imm == BPF_FUNC_map_update_elem || 9341 insn->imm == BPF_FUNC_map_delete_elem || 9342 insn->imm == BPF_FUNC_map_push_elem || 9343 insn->imm == BPF_FUNC_map_pop_elem || 9344 insn->imm == BPF_FUNC_map_peek_elem)) { 9345 aux = &env->insn_aux_data[i + delta]; 9346 if (bpf_map_ptr_poisoned(aux)) 9347 goto patch_call_imm; 9348 9349 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 9350 ops = map_ptr->ops; 9351 if (insn->imm == BPF_FUNC_map_lookup_elem && 9352 ops->map_gen_lookup) { 9353 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 9354 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9355 verbose(env, "bpf verifier is misconfigured\n"); 9356 return -EINVAL; 9357 } 9358 9359 new_prog = bpf_patch_insn_data(env, i + delta, 9360 insn_buf, cnt); 9361 if (!new_prog) 9362 return -ENOMEM; 9363 9364 delta += cnt - 1; 9365 env->prog = prog = new_prog; 9366 insn = new_prog->insnsi + i + delta; 9367 continue; 9368 } 9369 9370 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 9371 (void *(*)(struct bpf_map *map, void *key))NULL)); 9372 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 9373 (int (*)(struct bpf_map *map, void *key))NULL)); 9374 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 9375 (int (*)(struct bpf_map *map, void *key, void *value, 9376 u64 flags))NULL)); 9377 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 9378 (int (*)(struct bpf_map *map, void *value, 9379 u64 flags))NULL)); 9380 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 9381 (int (*)(struct bpf_map *map, void *value))NULL)); 9382 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 9383 (int (*)(struct bpf_map *map, void *value))NULL)); 9384 9385 switch (insn->imm) { 9386 case BPF_FUNC_map_lookup_elem: 9387 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 9388 __bpf_call_base; 9389 continue; 9390 case BPF_FUNC_map_update_elem: 9391 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 9392 __bpf_call_base; 9393 continue; 9394 case BPF_FUNC_map_delete_elem: 9395 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 9396 __bpf_call_base; 9397 continue; 9398 case BPF_FUNC_map_push_elem: 9399 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 9400 __bpf_call_base; 9401 continue; 9402 case BPF_FUNC_map_pop_elem: 9403 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 9404 __bpf_call_base; 9405 continue; 9406 case BPF_FUNC_map_peek_elem: 9407 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 9408 __bpf_call_base; 9409 continue; 9410 } 9411 9412 goto patch_call_imm; 9413 } 9414 9415 patch_call_imm: 9416 fn = env->ops->get_func_proto(insn->imm, env->prog); 9417 /* all functions that have prototype and verifier allowed 9418 * programs to call them, must be real in-kernel functions 9419 */ 9420 if (!fn->func) { 9421 verbose(env, 9422 "kernel subsystem misconfigured func %s#%d\n", 9423 func_id_name(insn->imm), insn->imm); 9424 return -EFAULT; 9425 } 9426 insn->imm = fn->func - __bpf_call_base; 9427 } 9428 9429 /* Since poke tab is now finalized, publish aux to tracker. */ 9430 for (i = 0; i < prog->aux->size_poke_tab; i++) { 9431 map_ptr = prog->aux->poke_tab[i].tail_call.map; 9432 if (!map_ptr->ops->map_poke_track || 9433 !map_ptr->ops->map_poke_untrack || 9434 !map_ptr->ops->map_poke_run) { 9435 verbose(env, "bpf verifier is misconfigured\n"); 9436 return -EINVAL; 9437 } 9438 9439 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 9440 if (ret < 0) { 9441 verbose(env, "tracking tail call prog failed\n"); 9442 return ret; 9443 } 9444 } 9445 9446 return 0; 9447 } 9448 9449 static void free_states(struct bpf_verifier_env *env) 9450 { 9451 struct bpf_verifier_state_list *sl, *sln; 9452 int i; 9453 9454 sl = env->free_list; 9455 while (sl) { 9456 sln = sl->next; 9457 free_verifier_state(&sl->state, false); 9458 kfree(sl); 9459 sl = sln; 9460 } 9461 9462 if (!env->explored_states) 9463 return; 9464 9465 for (i = 0; i < state_htab_size(env); i++) { 9466 sl = env->explored_states[i]; 9467 9468 while (sl) { 9469 sln = sl->next; 9470 free_verifier_state(&sl->state, false); 9471 kfree(sl); 9472 sl = sln; 9473 } 9474 } 9475 9476 kvfree(env->explored_states); 9477 } 9478 9479 static void print_verification_stats(struct bpf_verifier_env *env) 9480 { 9481 int i; 9482 9483 if (env->log.level & BPF_LOG_STATS) { 9484 verbose(env, "verification time %lld usec\n", 9485 div_u64(env->verification_time, 1000)); 9486 verbose(env, "stack depth "); 9487 for (i = 0; i < env->subprog_cnt; i++) { 9488 u32 depth = env->subprog_info[i].stack_depth; 9489 9490 verbose(env, "%d", depth); 9491 if (i + 1 < env->subprog_cnt) 9492 verbose(env, "+"); 9493 } 9494 verbose(env, "\n"); 9495 } 9496 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 9497 "total_states %d peak_states %d mark_read %d\n", 9498 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 9499 env->max_states_per_insn, env->total_states, 9500 env->peak_states, env->longest_mark_read_walk); 9501 } 9502 9503 static int check_attach_btf_id(struct bpf_verifier_env *env) 9504 { 9505 struct bpf_prog *prog = env->prog; 9506 struct bpf_prog *tgt_prog = prog->aux->linked_prog; 9507 u32 btf_id = prog->aux->attach_btf_id; 9508 const char prefix[] = "btf_trace_"; 9509 int ret = 0, subprog = -1, i; 9510 struct bpf_trampoline *tr; 9511 const struct btf_type *t; 9512 bool conservative = true; 9513 const char *tname; 9514 struct btf *btf; 9515 long addr; 9516 u64 key; 9517 9518 if (prog->type != BPF_PROG_TYPE_TRACING) 9519 return 0; 9520 9521 if (!btf_id) { 9522 verbose(env, "Tracing programs must provide btf_id\n"); 9523 return -EINVAL; 9524 } 9525 btf = bpf_prog_get_target_btf(prog); 9526 if (!btf) { 9527 verbose(env, 9528 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 9529 return -EINVAL; 9530 } 9531 t = btf_type_by_id(btf, btf_id); 9532 if (!t) { 9533 verbose(env, "attach_btf_id %u is invalid\n", btf_id); 9534 return -EINVAL; 9535 } 9536 tname = btf_name_by_offset(btf, t->name_off); 9537 if (!tname) { 9538 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id); 9539 return -EINVAL; 9540 } 9541 if (tgt_prog) { 9542 struct bpf_prog_aux *aux = tgt_prog->aux; 9543 9544 for (i = 0; i < aux->func_info_cnt; i++) 9545 if (aux->func_info[i].type_id == btf_id) { 9546 subprog = i; 9547 break; 9548 } 9549 if (subprog == -1) { 9550 verbose(env, "Subprog %s doesn't exist\n", tname); 9551 return -EINVAL; 9552 } 9553 conservative = aux->func_info_aux[subprog].unreliable; 9554 key = ((u64)aux->id) << 32 | btf_id; 9555 } else { 9556 key = btf_id; 9557 } 9558 9559 switch (prog->expected_attach_type) { 9560 case BPF_TRACE_RAW_TP: 9561 if (tgt_prog) { 9562 verbose(env, 9563 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 9564 return -EINVAL; 9565 } 9566 if (!btf_type_is_typedef(t)) { 9567 verbose(env, "attach_btf_id %u is not a typedef\n", 9568 btf_id); 9569 return -EINVAL; 9570 } 9571 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 9572 verbose(env, "attach_btf_id %u points to wrong type name %s\n", 9573 btf_id, tname); 9574 return -EINVAL; 9575 } 9576 tname += sizeof(prefix) - 1; 9577 t = btf_type_by_id(btf, t->type); 9578 if (!btf_type_is_ptr(t)) 9579 /* should never happen in valid vmlinux build */ 9580 return -EINVAL; 9581 t = btf_type_by_id(btf, t->type); 9582 if (!btf_type_is_func_proto(t)) 9583 /* should never happen in valid vmlinux build */ 9584 return -EINVAL; 9585 9586 /* remember two read only pointers that are valid for 9587 * the life time of the kernel 9588 */ 9589 prog->aux->attach_func_name = tname; 9590 prog->aux->attach_func_proto = t; 9591 prog->aux->attach_btf_trace = true; 9592 return 0; 9593 case BPF_TRACE_FENTRY: 9594 case BPF_TRACE_FEXIT: 9595 if (!btf_type_is_func(t)) { 9596 verbose(env, "attach_btf_id %u is not a function\n", 9597 btf_id); 9598 return -EINVAL; 9599 } 9600 t = btf_type_by_id(btf, t->type); 9601 if (!btf_type_is_func_proto(t)) 9602 return -EINVAL; 9603 tr = bpf_trampoline_lookup(key); 9604 if (!tr) 9605 return -ENOMEM; 9606 prog->aux->attach_func_name = tname; 9607 /* t is either vmlinux type or another program's type */ 9608 prog->aux->attach_func_proto = t; 9609 mutex_lock(&tr->mutex); 9610 if (tr->func.addr) { 9611 prog->aux->trampoline = tr; 9612 goto out; 9613 } 9614 if (tgt_prog && conservative) { 9615 prog->aux->attach_func_proto = NULL; 9616 t = NULL; 9617 } 9618 ret = btf_distill_func_proto(&env->log, btf, t, 9619 tname, &tr->func.model); 9620 if (ret < 0) 9621 goto out; 9622 if (tgt_prog) { 9623 if (!tgt_prog->jited) { 9624 /* for now */ 9625 verbose(env, "Can trace only JITed BPF progs\n"); 9626 ret = -EINVAL; 9627 goto out; 9628 } 9629 if (tgt_prog->type == BPF_PROG_TYPE_TRACING) { 9630 /* prevent cycles */ 9631 verbose(env, "Cannot recursively attach\n"); 9632 ret = -EINVAL; 9633 goto out; 9634 } 9635 if (subprog == 0) 9636 addr = (long) tgt_prog->bpf_func; 9637 else 9638 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 9639 } else { 9640 addr = kallsyms_lookup_name(tname); 9641 if (!addr) { 9642 verbose(env, 9643 "The address of function %s cannot be found\n", 9644 tname); 9645 ret = -ENOENT; 9646 goto out; 9647 } 9648 } 9649 tr->func.addr = (void *)addr; 9650 prog->aux->trampoline = tr; 9651 out: 9652 mutex_unlock(&tr->mutex); 9653 if (ret) 9654 bpf_trampoline_put(tr); 9655 return ret; 9656 default: 9657 return -EINVAL; 9658 } 9659 } 9660 9661 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 9662 union bpf_attr __user *uattr) 9663 { 9664 u64 start_time = ktime_get_ns(); 9665 struct bpf_verifier_env *env; 9666 struct bpf_verifier_log *log; 9667 int i, len, ret = -EINVAL; 9668 bool is_priv; 9669 9670 /* no program is valid */ 9671 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 9672 return -EINVAL; 9673 9674 /* 'struct bpf_verifier_env' can be global, but since it's not small, 9675 * allocate/free it every time bpf_check() is called 9676 */ 9677 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 9678 if (!env) 9679 return -ENOMEM; 9680 log = &env->log; 9681 9682 len = (*prog)->len; 9683 env->insn_aux_data = 9684 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 9685 ret = -ENOMEM; 9686 if (!env->insn_aux_data) 9687 goto err_free_env; 9688 for (i = 0; i < len; i++) 9689 env->insn_aux_data[i].orig_idx = i; 9690 env->prog = *prog; 9691 env->ops = bpf_verifier_ops[env->prog->type]; 9692 is_priv = capable(CAP_SYS_ADMIN); 9693 9694 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 9695 mutex_lock(&bpf_verifier_lock); 9696 if (!btf_vmlinux) 9697 btf_vmlinux = btf_parse_vmlinux(); 9698 mutex_unlock(&bpf_verifier_lock); 9699 } 9700 9701 /* grab the mutex to protect few globals used by verifier */ 9702 if (!is_priv) 9703 mutex_lock(&bpf_verifier_lock); 9704 9705 if (attr->log_level || attr->log_buf || attr->log_size) { 9706 /* user requested verbose verifier output 9707 * and supplied buffer to store the verification trace 9708 */ 9709 log->level = attr->log_level; 9710 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 9711 log->len_total = attr->log_size; 9712 9713 ret = -EINVAL; 9714 /* log attributes have to be sane */ 9715 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 9716 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 9717 goto err_unlock; 9718 } 9719 9720 if (IS_ERR(btf_vmlinux)) { 9721 /* Either gcc or pahole or kernel are broken. */ 9722 verbose(env, "in-kernel BTF is malformed\n"); 9723 ret = PTR_ERR(btf_vmlinux); 9724 goto skip_full_check; 9725 } 9726 9727 ret = check_attach_btf_id(env); 9728 if (ret) 9729 goto skip_full_check; 9730 9731 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 9732 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 9733 env->strict_alignment = true; 9734 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 9735 env->strict_alignment = false; 9736 9737 env->allow_ptr_leaks = is_priv; 9738 9739 if (is_priv) 9740 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 9741 9742 ret = replace_map_fd_with_map_ptr(env); 9743 if (ret < 0) 9744 goto skip_full_check; 9745 9746 if (bpf_prog_is_dev_bound(env->prog->aux)) { 9747 ret = bpf_prog_offload_verifier_prep(env->prog); 9748 if (ret) 9749 goto skip_full_check; 9750 } 9751 9752 env->explored_states = kvcalloc(state_htab_size(env), 9753 sizeof(struct bpf_verifier_state_list *), 9754 GFP_USER); 9755 ret = -ENOMEM; 9756 if (!env->explored_states) 9757 goto skip_full_check; 9758 9759 ret = check_subprogs(env); 9760 if (ret < 0) 9761 goto skip_full_check; 9762 9763 ret = check_btf_info(env, attr, uattr); 9764 if (ret < 0) 9765 goto skip_full_check; 9766 9767 ret = check_cfg(env); 9768 if (ret < 0) 9769 goto skip_full_check; 9770 9771 ret = do_check(env); 9772 if (env->cur_state) { 9773 free_verifier_state(env->cur_state, true); 9774 env->cur_state = NULL; 9775 } 9776 9777 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 9778 ret = bpf_prog_offload_finalize(env); 9779 9780 skip_full_check: 9781 while (!pop_stack(env, NULL, NULL)); 9782 free_states(env); 9783 9784 if (ret == 0) 9785 ret = check_max_stack_depth(env); 9786 9787 /* instruction rewrites happen after this point */ 9788 if (is_priv) { 9789 if (ret == 0) 9790 opt_hard_wire_dead_code_branches(env); 9791 if (ret == 0) 9792 ret = opt_remove_dead_code(env); 9793 if (ret == 0) 9794 ret = opt_remove_nops(env); 9795 } else { 9796 if (ret == 0) 9797 sanitize_dead_code(env); 9798 } 9799 9800 if (ret == 0) 9801 /* program is valid, convert *(u32*)(ctx + off) accesses */ 9802 ret = convert_ctx_accesses(env); 9803 9804 if (ret == 0) 9805 ret = fixup_bpf_calls(env); 9806 9807 /* do 32-bit optimization after insn patching has done so those patched 9808 * insns could be handled correctly. 9809 */ 9810 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 9811 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 9812 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 9813 : false; 9814 } 9815 9816 if (ret == 0) 9817 ret = fixup_call_args(env); 9818 9819 env->verification_time = ktime_get_ns() - start_time; 9820 print_verification_stats(env); 9821 9822 if (log->level && bpf_verifier_log_full(log)) 9823 ret = -ENOSPC; 9824 if (log->level && !log->ubuf) { 9825 ret = -EFAULT; 9826 goto err_release_maps; 9827 } 9828 9829 if (ret == 0 && env->used_map_cnt) { 9830 /* if program passed verifier, update used_maps in bpf_prog_info */ 9831 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 9832 sizeof(env->used_maps[0]), 9833 GFP_KERNEL); 9834 9835 if (!env->prog->aux->used_maps) { 9836 ret = -ENOMEM; 9837 goto err_release_maps; 9838 } 9839 9840 memcpy(env->prog->aux->used_maps, env->used_maps, 9841 sizeof(env->used_maps[0]) * env->used_map_cnt); 9842 env->prog->aux->used_map_cnt = env->used_map_cnt; 9843 9844 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 9845 * bpf_ld_imm64 instructions 9846 */ 9847 convert_pseudo_ld_imm64(env); 9848 } 9849 9850 if (ret == 0) 9851 adjust_btf_func(env); 9852 9853 err_release_maps: 9854 if (!env->prog->aux->used_maps) 9855 /* if we didn't copy map pointers into bpf_prog_info, release 9856 * them now. Otherwise free_used_maps() will release them. 9857 */ 9858 release_maps(env); 9859 *prog = env->prog; 9860 err_unlock: 9861 if (!is_priv) 9862 mutex_unlock(&bpf_verifier_lock); 9863 vfree(env->insn_aux_data); 9864 err_free_env: 9865 kfree(env); 9866 return ret; 9867 } 9868